SemaOverload.cpp revision 8a51491d936d8c50480f3c3ca6647be12a7ad51f
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "SemaInherit.h" 16#include "clang/Basic/Diagnostic.h" 17#include "clang/Lex/Preprocessor.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeOrdering.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/SmallPtrSet.h" 24#include "llvm/ADT/STLExtras.h" 25#include "llvm/Support/Compiler.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Qualification_Adjustment, 42 ICC_Promotion, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion 55 }; 56 return Category[(int)Kind]; 57} 58 59/// GetConversionRank - Retrieve the implicit conversion rank 60/// corresponding to the given implicit conversion kind. 61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 62 static const ImplicitConversionRank 63 Rank[(int)ICK_Num_Conversion_Kinds] = { 64 ICR_Exact_Match, 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Promotion, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Conversion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion 82 }; 83 return Rank[(int)Kind]; 84} 85 86/// GetImplicitConversionName - Return the name of this kind of 87/// implicit conversion. 88const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 89 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 90 "No conversion", 91 "Lvalue-to-rvalue", 92 "Array-to-pointer", 93 "Function-to-pointer", 94 "Qualification", 95 "Integral promotion", 96 "Floating point promotion", 97 "Complex promotion", 98 "Integral conversion", 99 "Floating conversion", 100 "Complex conversion", 101 "Floating-integral conversion", 102 "Complex-real conversion", 103 "Pointer conversion", 104 "Pointer-to-member conversion", 105 "Boolean conversion", 106 "Compatible-types conversion", 107 "Derived-to-base conversion" 108 }; 109 return Name[Kind]; 110} 111 112/// StandardConversionSequence - Set the standard conversion 113/// sequence to the identity conversion. 114void StandardConversionSequence::setAsIdentityConversion() { 115 First = ICK_Identity; 116 Second = ICK_Identity; 117 Third = ICK_Identity; 118 Deprecated = false; 119 ReferenceBinding = false; 120 DirectBinding = false; 121 RRefBinding = false; 122 CopyConstructor = 0; 123} 124 125/// getRank - Retrieve the rank of this standard conversion sequence 126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 127/// implicit conversions. 128ImplicitConversionRank StandardConversionSequence::getRank() const { 129 ImplicitConversionRank Rank = ICR_Exact_Match; 130 if (GetConversionRank(First) > Rank) 131 Rank = GetConversionRank(First); 132 if (GetConversionRank(Second) > Rank) 133 Rank = GetConversionRank(Second); 134 if (GetConversionRank(Third) > Rank) 135 Rank = GetConversionRank(Third); 136 return Rank; 137} 138 139/// isPointerConversionToBool - Determines whether this conversion is 140/// a conversion of a pointer or pointer-to-member to bool. This is 141/// used as part of the ranking of standard conversion sequences 142/// (C++ 13.3.3.2p4). 143bool StandardConversionSequence::isPointerConversionToBool() const { 144 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 145 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 146 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (ToType->isBooleanType() && 152 (FromType->isPointerType() || FromType->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 bool PrintedSomething = false; 186 if (First != ICK_Identity) { 187 fprintf(stderr, "%s", GetImplicitConversionName(First)); 188 PrintedSomething = true; 189 } 190 191 if (Second != ICK_Identity) { 192 if (PrintedSomething) { 193 fprintf(stderr, " -> "); 194 } 195 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 196 197 if (CopyConstructor) { 198 fprintf(stderr, " (by copy constructor)"); 199 } else if (DirectBinding) { 200 fprintf(stderr, " (direct reference binding)"); 201 } else if (ReferenceBinding) { 202 fprintf(stderr, " (reference binding)"); 203 } 204 PrintedSomething = true; 205 } 206 207 if (Third != ICK_Identity) { 208 if (PrintedSomething) { 209 fprintf(stderr, " -> "); 210 } 211 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 212 PrintedSomething = true; 213 } 214 215 if (!PrintedSomething) { 216 fprintf(stderr, "No conversions required"); 217 } 218} 219 220/// DebugPrint - Print this user-defined conversion sequence to standard 221/// error. Useful for debugging overloading issues. 222void UserDefinedConversionSequence::DebugPrint() const { 223 if (Before.First || Before.Second || Before.Third) { 224 Before.DebugPrint(); 225 fprintf(stderr, " -> "); 226 } 227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 228 if (After.First || After.Second || After.Third) { 229 fprintf(stderr, " -> "); 230 After.DebugPrint(); 231 } 232} 233 234/// DebugPrint - Print this implicit conversion sequence to standard 235/// error. Useful for debugging overloading issues. 236void ImplicitConversionSequence::DebugPrint() const { 237 switch (ConversionKind) { 238 case StandardConversion: 239 fprintf(stderr, "Standard conversion: "); 240 Standard.DebugPrint(); 241 break; 242 case UserDefinedConversion: 243 fprintf(stderr, "User-defined conversion: "); 244 UserDefined.DebugPrint(); 245 break; 246 case EllipsisConversion: 247 fprintf(stderr, "Ellipsis conversion"); 248 break; 249 case BadConversion: 250 fprintf(stderr, "Bad conversion"); 251 break; 252 } 253 254 fprintf(stderr, "\n"); 255} 256 257// IsOverload - Determine whether the given New declaration is an 258// overload of the Old declaration. This routine returns false if New 259// and Old cannot be overloaded, e.g., if they are functions with the 260// same signature (C++ 1.3.10) or if the Old declaration isn't a 261// function (or overload set). When it does return false and Old is an 262// OverloadedFunctionDecl, MatchedDecl will be set to point to the 263// FunctionDecl that New cannot be overloaded with. 264// 265// Example: Given the following input: 266// 267// void f(int, float); // #1 268// void f(int, int); // #2 269// int f(int, int); // #3 270// 271// When we process #1, there is no previous declaration of "f", 272// so IsOverload will not be used. 273// 274// When we process #2, Old is a FunctionDecl for #1. By comparing the 275// parameter types, we see that #1 and #2 are overloaded (since they 276// have different signatures), so this routine returns false; 277// MatchedDecl is unchanged. 278// 279// When we process #3, Old is an OverloadedFunctionDecl containing #1 280// and #2. We compare the signatures of #3 to #1 (they're overloaded, 281// so we do nothing) and then #3 to #2. Since the signatures of #3 and 282// #2 are identical (return types of functions are not part of the 283// signature), IsOverload returns false and MatchedDecl will be set to 284// point to the FunctionDecl for #2. 285bool 286Sema::IsOverload(FunctionDecl *New, Decl* OldD, 287 OverloadedFunctionDecl::function_iterator& MatchedDecl) { 288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { 289 // Is this new function an overload of every function in the 290 // overload set? 291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 292 FuncEnd = Ovl->function_end(); 293 for (; Func != FuncEnd; ++Func) { 294 if (!IsOverload(New, *Func, MatchedDecl)) { 295 MatchedDecl = Func; 296 return false; 297 } 298 } 299 300 // This function overloads every function in the overload set. 301 return true; 302 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD)) 303 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl); 304 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { 305 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 306 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 307 308 // C++ [temp.fct]p2: 309 // A function template can be overloaded with other function templates 310 // and with normal (non-template) functions. 311 if ((OldTemplate == 0) != (NewTemplate == 0)) 312 return true; 313 314 // Is the function New an overload of the function Old? 315 QualType OldQType = Context.getCanonicalType(Old->getType()); 316 QualType NewQType = Context.getCanonicalType(New->getType()); 317 318 // Compare the signatures (C++ 1.3.10) of the two functions to 319 // determine whether they are overloads. If we find any mismatch 320 // in the signature, they are overloads. 321 322 // If either of these functions is a K&R-style function (no 323 // prototype), then we consider them to have matching signatures. 324 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 325 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 326 return false; 327 328 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 329 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 330 331 // The signature of a function includes the types of its 332 // parameters (C++ 1.3.10), which includes the presence or absence 333 // of the ellipsis; see C++ DR 357). 334 if (OldQType != NewQType && 335 (OldType->getNumArgs() != NewType->getNumArgs() || 336 OldType->isVariadic() != NewType->isVariadic() || 337 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 338 NewType->arg_type_begin()))) 339 return true; 340 341 // C++ [temp.over.link]p4: 342 // The signature of a function template consists of its function 343 // signature, its return type and its template parameter list. The names 344 // of the template parameters are significant only for establishing the 345 // relationship between the template parameters and the rest of the 346 // signature. 347 // 348 // We check the return type and template parameter lists for function 349 // templates first; the remaining checks follow. 350 if (NewTemplate && 351 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 352 OldTemplate->getTemplateParameters(), 353 false, false, SourceLocation()) || 354 OldType->getResultType() != NewType->getResultType())) 355 return true; 356 357 // If the function is a class member, its signature includes the 358 // cv-qualifiers (if any) on the function itself. 359 // 360 // As part of this, also check whether one of the member functions 361 // is static, in which case they are not overloads (C++ 362 // 13.1p2). While not part of the definition of the signature, 363 // this check is important to determine whether these functions 364 // can be overloaded. 365 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 366 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 367 if (OldMethod && NewMethod && 368 !OldMethod->isStatic() && !NewMethod->isStatic() && 369 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 370 return true; 371 372 // The signatures match; this is not an overload. 373 return false; 374 } else { 375 // (C++ 13p1): 376 // Only function declarations can be overloaded; object and type 377 // declarations cannot be overloaded. 378 return false; 379 } 380} 381 382/// TryImplicitConversion - Attempt to perform an implicit conversion 383/// from the given expression (Expr) to the given type (ToType). This 384/// function returns an implicit conversion sequence that can be used 385/// to perform the initialization. Given 386/// 387/// void f(float f); 388/// void g(int i) { f(i); } 389/// 390/// this routine would produce an implicit conversion sequence to 391/// describe the initialization of f from i, which will be a standard 392/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 393/// 4.1) followed by a floating-integral conversion (C++ 4.9). 394// 395/// Note that this routine only determines how the conversion can be 396/// performed; it does not actually perform the conversion. As such, 397/// it will not produce any diagnostics if no conversion is available, 398/// but will instead return an implicit conversion sequence of kind 399/// "BadConversion". 400/// 401/// If @p SuppressUserConversions, then user-defined conversions are 402/// not permitted. 403/// If @p AllowExplicit, then explicit user-defined conversions are 404/// permitted. 405/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 406/// no matter its actual lvalueness. 407ImplicitConversionSequence 408Sema::TryImplicitConversion(Expr* From, QualType ToType, 409 bool SuppressUserConversions, 410 bool AllowExplicit, bool ForceRValue, 411 bool InOverloadResolution) { 412 ImplicitConversionSequence ICS; 413 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 414 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 415 else if (getLangOptions().CPlusPlus && 416 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 417 !SuppressUserConversions, AllowExplicit, 418 ForceRValue)) { 419 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 420 // C++ [over.ics.user]p4: 421 // A conversion of an expression of class type to the same class 422 // type is given Exact Match rank, and a conversion of an 423 // expression of class type to a base class of that type is 424 // given Conversion rank, in spite of the fact that a copy 425 // constructor (i.e., a user-defined conversion function) is 426 // called for those cases. 427 if (CXXConstructorDecl *Constructor 428 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 429 QualType FromCanon 430 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 431 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 432 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 433 // Turn this into a "standard" conversion sequence, so that it 434 // gets ranked with standard conversion sequences. 435 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 436 ICS.Standard.setAsIdentityConversion(); 437 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 438 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 439 ICS.Standard.CopyConstructor = Constructor; 440 if (ToCanon != FromCanon) 441 ICS.Standard.Second = ICK_Derived_To_Base; 442 } 443 } 444 445 // C++ [over.best.ics]p4: 446 // However, when considering the argument of a user-defined 447 // conversion function that is a candidate by 13.3.1.3 when 448 // invoked for the copying of the temporary in the second step 449 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 450 // 13.3.1.6 in all cases, only standard conversion sequences and 451 // ellipsis conversion sequences are allowed. 452 if (SuppressUserConversions && 453 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 454 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 455 } else 456 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 457 458 return ICS; 459} 460 461/// IsStandardConversion - Determines whether there is a standard 462/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 463/// expression From to the type ToType. Standard conversion sequences 464/// only consider non-class types; for conversions that involve class 465/// types, use TryImplicitConversion. If a conversion exists, SCS will 466/// contain the standard conversion sequence required to perform this 467/// conversion and this routine will return true. Otherwise, this 468/// routine will return false and the value of SCS is unspecified. 469bool 470Sema::IsStandardConversion(Expr* From, QualType ToType, 471 bool InOverloadResolution, 472 StandardConversionSequence &SCS) { 473 QualType FromType = From->getType(); 474 475 // Standard conversions (C++ [conv]) 476 SCS.setAsIdentityConversion(); 477 SCS.Deprecated = false; 478 SCS.IncompatibleObjC = false; 479 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 480 SCS.CopyConstructor = 0; 481 482 // There are no standard conversions for class types in C++, so 483 // abort early. When overloading in C, however, we do permit 484 if (FromType->isRecordType() || ToType->isRecordType()) { 485 if (getLangOptions().CPlusPlus) 486 return false; 487 488 // When we're overloading in C, we allow, as standard conversions, 489 } 490 491 // The first conversion can be an lvalue-to-rvalue conversion, 492 // array-to-pointer conversion, or function-to-pointer conversion 493 // (C++ 4p1). 494 495 // Lvalue-to-rvalue conversion (C++ 4.1): 496 // An lvalue (3.10) of a non-function, non-array type T can be 497 // converted to an rvalue. 498 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 499 if (argIsLvalue == Expr::LV_Valid && 500 !FromType->isFunctionType() && !FromType->isArrayType() && 501 Context.getCanonicalType(FromType) != Context.OverloadTy) { 502 SCS.First = ICK_Lvalue_To_Rvalue; 503 504 // If T is a non-class type, the type of the rvalue is the 505 // cv-unqualified version of T. Otherwise, the type of the rvalue 506 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 507 // just strip the qualifiers because they don't matter. 508 509 // FIXME: Doesn't see through to qualifiers behind a typedef! 510 FromType = FromType.getUnqualifiedType(); 511 } else if (FromType->isArrayType()) { 512 // Array-to-pointer conversion (C++ 4.2) 513 SCS.First = ICK_Array_To_Pointer; 514 515 // An lvalue or rvalue of type "array of N T" or "array of unknown 516 // bound of T" can be converted to an rvalue of type "pointer to 517 // T" (C++ 4.2p1). 518 FromType = Context.getArrayDecayedType(FromType); 519 520 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 521 // This conversion is deprecated. (C++ D.4). 522 SCS.Deprecated = true; 523 524 // For the purpose of ranking in overload resolution 525 // (13.3.3.1.1), this conversion is considered an 526 // array-to-pointer conversion followed by a qualification 527 // conversion (4.4). (C++ 4.2p2) 528 SCS.Second = ICK_Identity; 529 SCS.Third = ICK_Qualification; 530 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 531 return true; 532 } 533 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 534 // Function-to-pointer conversion (C++ 4.3). 535 SCS.First = ICK_Function_To_Pointer; 536 537 // An lvalue of function type T can be converted to an rvalue of 538 // type "pointer to T." The result is a pointer to the 539 // function. (C++ 4.3p1). 540 FromType = Context.getPointerType(FromType); 541 } else if (FunctionDecl *Fn 542 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 543 // Address of overloaded function (C++ [over.over]). 544 SCS.First = ICK_Function_To_Pointer; 545 546 // We were able to resolve the address of the overloaded function, 547 // so we can convert to the type of that function. 548 FromType = Fn->getType(); 549 if (ToType->isLValueReferenceType()) 550 FromType = Context.getLValueReferenceType(FromType); 551 else if (ToType->isRValueReferenceType()) 552 FromType = Context.getRValueReferenceType(FromType); 553 else if (ToType->isMemberPointerType()) { 554 // Resolve address only succeeds if both sides are member pointers, 555 // but it doesn't have to be the same class. See DR 247. 556 // Note that this means that the type of &Derived::fn can be 557 // Ret (Base::*)(Args) if the fn overload actually found is from the 558 // base class, even if it was brought into the derived class via a 559 // using declaration. The standard isn't clear on this issue at all. 560 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 561 FromType = Context.getMemberPointerType(FromType, 562 Context.getTypeDeclType(M->getParent()).getTypePtr()); 563 } else 564 FromType = Context.getPointerType(FromType); 565 } else { 566 // We don't require any conversions for the first step. 567 SCS.First = ICK_Identity; 568 } 569 570 // The second conversion can be an integral promotion, floating 571 // point promotion, integral conversion, floating point conversion, 572 // floating-integral conversion, pointer conversion, 573 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 574 // For overloading in C, this can also be a "compatible-type" 575 // conversion. 576 bool IncompatibleObjC = false; 577 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 578 // The unqualified versions of the types are the same: there's no 579 // conversion to do. 580 SCS.Second = ICK_Identity; 581 } else if (IsIntegralPromotion(From, FromType, ToType)) { 582 // Integral promotion (C++ 4.5). 583 SCS.Second = ICK_Integral_Promotion; 584 FromType = ToType.getUnqualifiedType(); 585 } else if (IsFloatingPointPromotion(FromType, ToType)) { 586 // Floating point promotion (C++ 4.6). 587 SCS.Second = ICK_Floating_Promotion; 588 FromType = ToType.getUnqualifiedType(); 589 } else if (IsComplexPromotion(FromType, ToType)) { 590 // Complex promotion (Clang extension) 591 SCS.Second = ICK_Complex_Promotion; 592 FromType = ToType.getUnqualifiedType(); 593 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 594 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 595 // Integral conversions (C++ 4.7). 596 // FIXME: isIntegralType shouldn't be true for enums in C++. 597 SCS.Second = ICK_Integral_Conversion; 598 FromType = ToType.getUnqualifiedType(); 599 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 600 // Floating point conversions (C++ 4.8). 601 SCS.Second = ICK_Floating_Conversion; 602 FromType = ToType.getUnqualifiedType(); 603 } else if (FromType->isComplexType() && ToType->isComplexType()) { 604 // Complex conversions (C99 6.3.1.6) 605 SCS.Second = ICK_Complex_Conversion; 606 FromType = ToType.getUnqualifiedType(); 607 } else if ((FromType->isFloatingType() && 608 ToType->isIntegralType() && (!ToType->isBooleanType() && 609 !ToType->isEnumeralType())) || 610 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 611 ToType->isFloatingType())) { 612 // Floating-integral conversions (C++ 4.9). 613 // FIXME: isIntegralType shouldn't be true for enums in C++. 614 SCS.Second = ICK_Floating_Integral; 615 FromType = ToType.getUnqualifiedType(); 616 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 617 (ToType->isComplexType() && FromType->isArithmeticType())) { 618 // Complex-real conversions (C99 6.3.1.7) 619 SCS.Second = ICK_Complex_Real; 620 FromType = ToType.getUnqualifiedType(); 621 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 622 FromType, IncompatibleObjC)) { 623 // Pointer conversions (C++ 4.10). 624 SCS.Second = ICK_Pointer_Conversion; 625 SCS.IncompatibleObjC = IncompatibleObjC; 626 } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) { 627 // Pointer to member conversions (4.11). 628 SCS.Second = ICK_Pointer_Member; 629 } else if (ToType->isBooleanType() && 630 (FromType->isArithmeticType() || 631 FromType->isEnumeralType() || 632 FromType->isPointerType() || 633 FromType->isBlockPointerType() || 634 FromType->isMemberPointerType() || 635 FromType->isNullPtrType())) { 636 // Boolean conversions (C++ 4.12). 637 SCS.Second = ICK_Boolean_Conversion; 638 FromType = Context.BoolTy; 639 } else if (!getLangOptions().CPlusPlus && 640 Context.typesAreCompatible(ToType, FromType)) { 641 // Compatible conversions (Clang extension for C function overloading) 642 SCS.Second = ICK_Compatible_Conversion; 643 } else { 644 // No second conversion required. 645 SCS.Second = ICK_Identity; 646 } 647 648 QualType CanonFrom; 649 QualType CanonTo; 650 // The third conversion can be a qualification conversion (C++ 4p1). 651 if (IsQualificationConversion(FromType, ToType)) { 652 SCS.Third = ICK_Qualification; 653 FromType = ToType; 654 CanonFrom = Context.getCanonicalType(FromType); 655 CanonTo = Context.getCanonicalType(ToType); 656 } else { 657 // No conversion required 658 SCS.Third = ICK_Identity; 659 660 // C++ [over.best.ics]p6: 661 // [...] Any difference in top-level cv-qualification is 662 // subsumed by the initialization itself and does not constitute 663 // a conversion. [...] 664 CanonFrom = Context.getCanonicalType(FromType); 665 CanonTo = Context.getCanonicalType(ToType); 666 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && 667 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { 668 FromType = ToType; 669 CanonFrom = CanonTo; 670 } 671 } 672 673 // If we have not converted the argument type to the parameter type, 674 // this is a bad conversion sequence. 675 if (CanonFrom != CanonTo) 676 return false; 677 678 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 679 return true; 680} 681 682/// IsIntegralPromotion - Determines whether the conversion from the 683/// expression From (whose potentially-adjusted type is FromType) to 684/// ToType is an integral promotion (C++ 4.5). If so, returns true and 685/// sets PromotedType to the promoted type. 686bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 687 const BuiltinType *To = ToType->getAsBuiltinType(); 688 // All integers are built-in. 689 if (!To) { 690 return false; 691 } 692 693 // An rvalue of type char, signed char, unsigned char, short int, or 694 // unsigned short int can be converted to an rvalue of type int if 695 // int can represent all the values of the source type; otherwise, 696 // the source rvalue can be converted to an rvalue of type unsigned 697 // int (C++ 4.5p1). 698 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 699 if (// We can promote any signed, promotable integer type to an int 700 (FromType->isSignedIntegerType() || 701 // We can promote any unsigned integer type whose size is 702 // less than int to an int. 703 (!FromType->isSignedIntegerType() && 704 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 705 return To->getKind() == BuiltinType::Int; 706 } 707 708 return To->getKind() == BuiltinType::UInt; 709 } 710 711 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 712 // can be converted to an rvalue of the first of the following types 713 // that can represent all the values of its underlying type: int, 714 // unsigned int, long, or unsigned long (C++ 4.5p2). 715 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 716 && ToType->isIntegerType()) { 717 // Determine whether the type we're converting from is signed or 718 // unsigned. 719 bool FromIsSigned; 720 uint64_t FromSize = Context.getTypeSize(FromType); 721 if (const EnumType *FromEnumType = FromType->getAsEnumType()) { 722 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 723 FromIsSigned = UnderlyingType->isSignedIntegerType(); 724 } else { 725 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 726 FromIsSigned = true; 727 } 728 729 // The types we'll try to promote to, in the appropriate 730 // order. Try each of these types. 731 QualType PromoteTypes[6] = { 732 Context.IntTy, Context.UnsignedIntTy, 733 Context.LongTy, Context.UnsignedLongTy , 734 Context.LongLongTy, Context.UnsignedLongLongTy 735 }; 736 for (int Idx = 0; Idx < 6; ++Idx) { 737 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 738 if (FromSize < ToSize || 739 (FromSize == ToSize && 740 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 741 // We found the type that we can promote to. If this is the 742 // type we wanted, we have a promotion. Otherwise, no 743 // promotion. 744 return Context.getCanonicalType(ToType).getUnqualifiedType() 745 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); 746 } 747 } 748 } 749 750 // An rvalue for an integral bit-field (9.6) can be converted to an 751 // rvalue of type int if int can represent all the values of the 752 // bit-field; otherwise, it can be converted to unsigned int if 753 // unsigned int can represent all the values of the bit-field. If 754 // the bit-field is larger yet, no integral promotion applies to 755 // it. If the bit-field has an enumerated type, it is treated as any 756 // other value of that type for promotion purposes (C++ 4.5p3). 757 // FIXME: We should delay checking of bit-fields until we actually perform the 758 // conversion. 759 using llvm::APSInt; 760 if (From) 761 if (FieldDecl *MemberDecl = From->getBitField()) { 762 APSInt BitWidth; 763 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 764 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 765 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 766 ToSize = Context.getTypeSize(ToType); 767 768 // Are we promoting to an int from a bitfield that fits in an int? 769 if (BitWidth < ToSize || 770 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 771 return To->getKind() == BuiltinType::Int; 772 } 773 774 // Are we promoting to an unsigned int from an unsigned bitfield 775 // that fits into an unsigned int? 776 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 777 return To->getKind() == BuiltinType::UInt; 778 } 779 780 return false; 781 } 782 } 783 784 // An rvalue of type bool can be converted to an rvalue of type int, 785 // with false becoming zero and true becoming one (C++ 4.5p4). 786 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 787 return true; 788 } 789 790 return false; 791} 792 793/// IsFloatingPointPromotion - Determines whether the conversion from 794/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 795/// returns true and sets PromotedType to the promoted type. 796bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 797 /// An rvalue of type float can be converted to an rvalue of type 798 /// double. (C++ 4.6p1). 799 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType()) 800 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) { 801 if (FromBuiltin->getKind() == BuiltinType::Float && 802 ToBuiltin->getKind() == BuiltinType::Double) 803 return true; 804 805 // C99 6.3.1.5p1: 806 // When a float is promoted to double or long double, or a 807 // double is promoted to long double [...]. 808 if (!getLangOptions().CPlusPlus && 809 (FromBuiltin->getKind() == BuiltinType::Float || 810 FromBuiltin->getKind() == BuiltinType::Double) && 811 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 812 return true; 813 } 814 815 return false; 816} 817 818/// \brief Determine if a conversion is a complex promotion. 819/// 820/// A complex promotion is defined as a complex -> complex conversion 821/// where the conversion between the underlying real types is a 822/// floating-point or integral promotion. 823bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 824 const ComplexType *FromComplex = FromType->getAsComplexType(); 825 if (!FromComplex) 826 return false; 827 828 const ComplexType *ToComplex = ToType->getAsComplexType(); 829 if (!ToComplex) 830 return false; 831 832 return IsFloatingPointPromotion(FromComplex->getElementType(), 833 ToComplex->getElementType()) || 834 IsIntegralPromotion(0, FromComplex->getElementType(), 835 ToComplex->getElementType()); 836} 837 838/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 839/// the pointer type FromPtr to a pointer to type ToPointee, with the 840/// same type qualifiers as FromPtr has on its pointee type. ToType, 841/// if non-empty, will be a pointer to ToType that may or may not have 842/// the right set of qualifiers on its pointee. 843static QualType 844BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 845 QualType ToPointee, QualType ToType, 846 ASTContext &Context) { 847 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 848 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 849 unsigned Quals = CanonFromPointee.getCVRQualifiers(); 850 851 // Exact qualifier match -> return the pointer type we're converting to. 852 if (CanonToPointee.getCVRQualifiers() == Quals) { 853 // ToType is exactly what we need. Return it. 854 if (ToType.getTypePtr()) 855 return ToType; 856 857 // Build a pointer to ToPointee. It has the right qualifiers 858 // already. 859 return Context.getPointerType(ToPointee); 860 } 861 862 // Just build a canonical type that has the right qualifiers. 863 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals)); 864} 865 866static bool isNullPointerConstantForConversion(Expr *Expr, 867 bool InOverloadResolution, 868 ASTContext &Context) { 869 // Handle value-dependent integral null pointer constants correctly. 870 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 871 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 872 Expr->getType()->isIntegralType()) 873 return !InOverloadResolution; 874 875 return Expr->isNullPointerConstant(Context); 876} 877 878/// IsPointerConversion - Determines whether the conversion of the 879/// expression From, which has the (possibly adjusted) type FromType, 880/// can be converted to the type ToType via a pointer conversion (C++ 881/// 4.10). If so, returns true and places the converted type (that 882/// might differ from ToType in its cv-qualifiers at some level) into 883/// ConvertedType. 884/// 885/// This routine also supports conversions to and from block pointers 886/// and conversions with Objective-C's 'id', 'id<protocols...>', and 887/// pointers to interfaces. FIXME: Once we've determined the 888/// appropriate overloading rules for Objective-C, we may want to 889/// split the Objective-C checks into a different routine; however, 890/// GCC seems to consider all of these conversions to be pointer 891/// conversions, so for now they live here. IncompatibleObjC will be 892/// set if the conversion is an allowed Objective-C conversion that 893/// should result in a warning. 894bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 895 bool InOverloadResolution, 896 QualType& ConvertedType, 897 bool &IncompatibleObjC) { 898 IncompatibleObjC = false; 899 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 900 return true; 901 902 // Conversion from a null pointer constant to any Objective-C pointer type. 903 if (ToType->isObjCObjectPointerType() && 904 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 905 ConvertedType = ToType; 906 return true; 907 } 908 909 // Blocks: Block pointers can be converted to void*. 910 if (FromType->isBlockPointerType() && ToType->isPointerType() && 911 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 912 ConvertedType = ToType; 913 return true; 914 } 915 // Blocks: A null pointer constant can be converted to a block 916 // pointer type. 917 if (ToType->isBlockPointerType() && 918 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 919 ConvertedType = ToType; 920 return true; 921 } 922 923 // If the left-hand-side is nullptr_t, the right side can be a null 924 // pointer constant. 925 if (ToType->isNullPtrType() && 926 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 927 ConvertedType = ToType; 928 return true; 929 } 930 931 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 932 if (!ToTypePtr) 933 return false; 934 935 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 936 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 937 ConvertedType = ToType; 938 return true; 939 } 940 941 // Beyond this point, both types need to be pointers. 942 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 943 if (!FromTypePtr) 944 return false; 945 946 QualType FromPointeeType = FromTypePtr->getPointeeType(); 947 QualType ToPointeeType = ToTypePtr->getPointeeType(); 948 949 // An rvalue of type "pointer to cv T," where T is an object type, 950 // can be converted to an rvalue of type "pointer to cv void" (C++ 951 // 4.10p2). 952 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 953 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 954 ToPointeeType, 955 ToType, Context); 956 return true; 957 } 958 959 // When we're overloading in C, we allow a special kind of pointer 960 // conversion for compatible-but-not-identical pointee types. 961 if (!getLangOptions().CPlusPlus && 962 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 963 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 964 ToPointeeType, 965 ToType, Context); 966 return true; 967 } 968 969 // C++ [conv.ptr]p3: 970 // 971 // An rvalue of type "pointer to cv D," where D is a class type, 972 // can be converted to an rvalue of type "pointer to cv B," where 973 // B is a base class (clause 10) of D. If B is an inaccessible 974 // (clause 11) or ambiguous (10.2) base class of D, a program that 975 // necessitates this conversion is ill-formed. The result of the 976 // conversion is a pointer to the base class sub-object of the 977 // derived class object. The null pointer value is converted to 978 // the null pointer value of the destination type. 979 // 980 // Note that we do not check for ambiguity or inaccessibility 981 // here. That is handled by CheckPointerConversion. 982 if (getLangOptions().CPlusPlus && 983 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 984 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 985 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 986 ToPointeeType, 987 ToType, Context); 988 return true; 989 } 990 991 return false; 992} 993 994/// isObjCPointerConversion - Determines whether this is an 995/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 996/// with the same arguments and return values. 997bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 998 QualType& ConvertedType, 999 bool &IncompatibleObjC) { 1000 if (!getLangOptions().ObjC1) 1001 return false; 1002 1003 // First, we handle all conversions on ObjC object pointer types. 1004 const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType(); 1005 const ObjCObjectPointerType *FromObjCPtr = 1006 FromType->getAsObjCObjectPointerType(); 1007 1008 if (ToObjCPtr && FromObjCPtr) { 1009 // Objective C++: We're able to convert between "id" or "Class" and a 1010 // pointer to any interface (in both directions). 1011 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1012 ConvertedType = ToType; 1013 return true; 1014 } 1015 // Conversions with Objective-C's id<...>. 1016 if ((FromObjCPtr->isObjCQualifiedIdType() || 1017 ToObjCPtr->isObjCQualifiedIdType()) && 1018 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1019 /*compare=*/false)) { 1020 ConvertedType = ToType; 1021 return true; 1022 } 1023 // Objective C++: We're able to convert from a pointer to an 1024 // interface to a pointer to a different interface. 1025 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1026 ConvertedType = ToType; 1027 return true; 1028 } 1029 1030 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1031 // Okay: this is some kind of implicit downcast of Objective-C 1032 // interfaces, which is permitted. However, we're going to 1033 // complain about it. 1034 IncompatibleObjC = true; 1035 ConvertedType = FromType; 1036 return true; 1037 } 1038 } 1039 // Beyond this point, both types need to be C pointers or block pointers. 1040 QualType ToPointeeType; 1041 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1042 ToPointeeType = ToCPtr->getPointeeType(); 1043 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1044 ToPointeeType = ToBlockPtr->getPointeeType(); 1045 else 1046 return false; 1047 1048 QualType FromPointeeType; 1049 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1050 FromPointeeType = FromCPtr->getPointeeType(); 1051 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1052 FromPointeeType = FromBlockPtr->getPointeeType(); 1053 else 1054 return false; 1055 1056 // If we have pointers to pointers, recursively check whether this 1057 // is an Objective-C conversion. 1058 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1059 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1060 IncompatibleObjC)) { 1061 // We always complain about this conversion. 1062 IncompatibleObjC = true; 1063 ConvertedType = ToType; 1064 return true; 1065 } 1066 // If we have pointers to functions or blocks, check whether the only 1067 // differences in the argument and result types are in Objective-C 1068 // pointer conversions. If so, we permit the conversion (but 1069 // complain about it). 1070 const FunctionProtoType *FromFunctionType 1071 = FromPointeeType->getAsFunctionProtoType(); 1072 const FunctionProtoType *ToFunctionType 1073 = ToPointeeType->getAsFunctionProtoType(); 1074 if (FromFunctionType && ToFunctionType) { 1075 // If the function types are exactly the same, this isn't an 1076 // Objective-C pointer conversion. 1077 if (Context.getCanonicalType(FromPointeeType) 1078 == Context.getCanonicalType(ToPointeeType)) 1079 return false; 1080 1081 // Perform the quick checks that will tell us whether these 1082 // function types are obviously different. 1083 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1084 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1085 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1086 return false; 1087 1088 bool HasObjCConversion = false; 1089 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1090 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1091 // Okay, the types match exactly. Nothing to do. 1092 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1093 ToFunctionType->getResultType(), 1094 ConvertedType, IncompatibleObjC)) { 1095 // Okay, we have an Objective-C pointer conversion. 1096 HasObjCConversion = true; 1097 } else { 1098 // Function types are too different. Abort. 1099 return false; 1100 } 1101 1102 // Check argument types. 1103 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1104 ArgIdx != NumArgs; ++ArgIdx) { 1105 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1106 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1107 if (Context.getCanonicalType(FromArgType) 1108 == Context.getCanonicalType(ToArgType)) { 1109 // Okay, the types match exactly. Nothing to do. 1110 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1111 ConvertedType, IncompatibleObjC)) { 1112 // Okay, we have an Objective-C pointer conversion. 1113 HasObjCConversion = true; 1114 } else { 1115 // Argument types are too different. Abort. 1116 return false; 1117 } 1118 } 1119 1120 if (HasObjCConversion) { 1121 // We had an Objective-C conversion. Allow this pointer 1122 // conversion, but complain about it. 1123 ConvertedType = ToType; 1124 IncompatibleObjC = true; 1125 return true; 1126 } 1127 } 1128 1129 return false; 1130} 1131 1132/// CheckPointerConversion - Check the pointer conversion from the 1133/// expression From to the type ToType. This routine checks for 1134/// ambiguous or inaccessible derived-to-base pointer 1135/// conversions for which IsPointerConversion has already returned 1136/// true. It returns true and produces a diagnostic if there was an 1137/// error, or returns false otherwise. 1138bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1139 CastExpr::CastKind &Kind) { 1140 QualType FromType = From->getType(); 1141 1142 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1143 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1144 QualType FromPointeeType = FromPtrType->getPointeeType(), 1145 ToPointeeType = ToPtrType->getPointeeType(); 1146 1147 if (FromPointeeType->isRecordType() && 1148 ToPointeeType->isRecordType()) { 1149 // We must have a derived-to-base conversion. Check an 1150 // ambiguous or inaccessible conversion. 1151 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1152 From->getExprLoc(), 1153 From->getSourceRange())) 1154 return true; 1155 1156 // The conversion was successful. 1157 Kind = CastExpr::CK_DerivedToBase; 1158 } 1159 } 1160 if (const ObjCObjectPointerType *FromPtrType = 1161 FromType->getAsObjCObjectPointerType()) 1162 if (const ObjCObjectPointerType *ToPtrType = 1163 ToType->getAsObjCObjectPointerType()) { 1164 // Objective-C++ conversions are always okay. 1165 // FIXME: We should have a different class of conversions for the 1166 // Objective-C++ implicit conversions. 1167 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1168 return false; 1169 1170 } 1171 return false; 1172} 1173 1174/// IsMemberPointerConversion - Determines whether the conversion of the 1175/// expression From, which has the (possibly adjusted) type FromType, can be 1176/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1177/// If so, returns true and places the converted type (that might differ from 1178/// ToType in its cv-qualifiers at some level) into ConvertedType. 1179bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1180 QualType ToType, QualType &ConvertedType) { 1181 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1182 if (!ToTypePtr) 1183 return false; 1184 1185 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1186 if (From->isNullPointerConstant(Context)) { 1187 ConvertedType = ToType; 1188 return true; 1189 } 1190 1191 // Otherwise, both types have to be member pointers. 1192 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1193 if (!FromTypePtr) 1194 return false; 1195 1196 // A pointer to member of B can be converted to a pointer to member of D, 1197 // where D is derived from B (C++ 4.11p2). 1198 QualType FromClass(FromTypePtr->getClass(), 0); 1199 QualType ToClass(ToTypePtr->getClass(), 0); 1200 // FIXME: What happens when these are dependent? Is this function even called? 1201 1202 if (IsDerivedFrom(ToClass, FromClass)) { 1203 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1204 ToClass.getTypePtr()); 1205 return true; 1206 } 1207 1208 return false; 1209} 1210 1211/// CheckMemberPointerConversion - Check the member pointer conversion from the 1212/// expression From to the type ToType. This routine checks for ambiguous or 1213/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1214/// for which IsMemberPointerConversion has already returned true. It returns 1215/// true and produces a diagnostic if there was an error, or returns false 1216/// otherwise. 1217bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1218 CastExpr::CastKind &Kind) { 1219 QualType FromType = From->getType(); 1220 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1221 if (!FromPtrType) { 1222 // This must be a null pointer to member pointer conversion 1223 assert(From->isNullPointerConstant(Context) && 1224 "Expr must be null pointer constant!"); 1225 Kind = CastExpr::CK_NullToMemberPointer; 1226 return false; 1227 } 1228 1229 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1230 assert(ToPtrType && "No member pointer cast has a target type " 1231 "that is not a member pointer."); 1232 1233 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1234 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1235 1236 // FIXME: What about dependent types? 1237 assert(FromClass->isRecordType() && "Pointer into non-class."); 1238 assert(ToClass->isRecordType() && "Pointer into non-class."); 1239 1240 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1241 /*DetectVirtual=*/true); 1242 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1243 assert(DerivationOkay && 1244 "Should not have been called if derivation isn't OK."); 1245 (void)DerivationOkay; 1246 1247 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1248 getUnqualifiedType())) { 1249 // Derivation is ambiguous. Redo the check to find the exact paths. 1250 Paths.clear(); 1251 Paths.setRecordingPaths(true); 1252 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1253 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1254 (void)StillOkay; 1255 1256 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1257 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1258 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1259 return true; 1260 } 1261 1262 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1263 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1264 << FromClass << ToClass << QualType(VBase, 0) 1265 << From->getSourceRange(); 1266 return true; 1267 } 1268 1269 // Must be a base to derived member conversion. 1270 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1271 return false; 1272} 1273 1274/// IsQualificationConversion - Determines whether the conversion from 1275/// an rvalue of type FromType to ToType is a qualification conversion 1276/// (C++ 4.4). 1277bool 1278Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1279 FromType = Context.getCanonicalType(FromType); 1280 ToType = Context.getCanonicalType(ToType); 1281 1282 // If FromType and ToType are the same type, this is not a 1283 // qualification conversion. 1284 if (FromType == ToType) 1285 return false; 1286 1287 // (C++ 4.4p4): 1288 // A conversion can add cv-qualifiers at levels other than the first 1289 // in multi-level pointers, subject to the following rules: [...] 1290 bool PreviousToQualsIncludeConst = true; 1291 bool UnwrappedAnyPointer = false; 1292 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1293 // Within each iteration of the loop, we check the qualifiers to 1294 // determine if this still looks like a qualification 1295 // conversion. Then, if all is well, we unwrap one more level of 1296 // pointers or pointers-to-members and do it all again 1297 // until there are no more pointers or pointers-to-members left to 1298 // unwrap. 1299 UnwrappedAnyPointer = true; 1300 1301 // -- for every j > 0, if const is in cv 1,j then const is in cv 1302 // 2,j, and similarly for volatile. 1303 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1304 return false; 1305 1306 // -- if the cv 1,j and cv 2,j are different, then const is in 1307 // every cv for 0 < k < j. 1308 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1309 && !PreviousToQualsIncludeConst) 1310 return false; 1311 1312 // Keep track of whether all prior cv-qualifiers in the "to" type 1313 // include const. 1314 PreviousToQualsIncludeConst 1315 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1316 } 1317 1318 // We are left with FromType and ToType being the pointee types 1319 // after unwrapping the original FromType and ToType the same number 1320 // of types. If we unwrapped any pointers, and if FromType and 1321 // ToType have the same unqualified type (since we checked 1322 // qualifiers above), then this is a qualification conversion. 1323 return UnwrappedAnyPointer && 1324 FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); 1325} 1326 1327/// \brief Given a function template or function, extract the function template 1328/// declaration (if any) and the underlying function declaration. 1329template<typename T> 1330static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function, 1331 FunctionTemplateDecl *&FunctionTemplate) { 1332 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig); 1333 if (FunctionTemplate) 1334 Function = cast<T>(FunctionTemplate->getTemplatedDecl()); 1335 else 1336 Function = cast<T>(Orig); 1337} 1338 1339/// Determines whether there is a user-defined conversion sequence 1340/// (C++ [over.ics.user]) that converts expression From to the type 1341/// ToType. If such a conversion exists, User will contain the 1342/// user-defined conversion sequence that performs such a conversion 1343/// and this routine will return true. Otherwise, this routine returns 1344/// false and User is unspecified. 1345/// 1346/// \param AllowConversionFunctions true if the conversion should 1347/// consider conversion functions at all. If false, only constructors 1348/// will be considered. 1349/// 1350/// \param AllowExplicit true if the conversion should consider C++0x 1351/// "explicit" conversion functions as well as non-explicit conversion 1352/// functions (C++0x [class.conv.fct]p2). 1353/// 1354/// \param ForceRValue true if the expression should be treated as an rvalue 1355/// for overload resolution. 1356bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1357 UserDefinedConversionSequence& User, 1358 bool AllowConversionFunctions, 1359 bool AllowExplicit, bool ForceRValue) { 1360 OverloadCandidateSet CandidateSet; 1361 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1362 if (CXXRecordDecl *ToRecordDecl 1363 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1364 // C++ [over.match.ctor]p1: 1365 // When objects of class type are direct-initialized (8.5), or 1366 // copy-initialized from an expression of the same or a 1367 // derived class type (8.5), overload resolution selects the 1368 // constructor. [...] For copy-initialization, the candidate 1369 // functions are all the converting constructors (12.3.1) of 1370 // that class. The argument list is the expression-list within 1371 // the parentheses of the initializer. 1372 DeclarationName ConstructorName 1373 = Context.DeclarationNames.getCXXConstructorName( 1374 Context.getCanonicalType(ToType).getUnqualifiedType()); 1375 DeclContext::lookup_iterator Con, ConEnd; 1376 for (llvm::tie(Con, ConEnd) 1377 = ToRecordDecl->lookup(ConstructorName); 1378 Con != ConEnd; ++Con) { 1379 // Find the constructor (which may be a template). 1380 CXXConstructorDecl *Constructor = 0; 1381 FunctionTemplateDecl *ConstructorTmpl 1382 = dyn_cast<FunctionTemplateDecl>(*Con); 1383 if (ConstructorTmpl) 1384 Constructor 1385 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1386 else 1387 Constructor = cast<CXXConstructorDecl>(*Con); 1388 1389 if (!Constructor->isInvalidDecl() && 1390 Constructor->isConvertingConstructor(AllowExplicit)) { 1391 if (ConstructorTmpl) 1392 AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From, 1393 1, CandidateSet, 1394 /*SuppressUserConversions=*/true, 1395 ForceRValue); 1396 else 1397 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1398 /*SuppressUserConversions=*/true, ForceRValue); 1399 } 1400 } 1401 } 1402 } 1403 1404 if (!AllowConversionFunctions) { 1405 // Don't allow any conversion functions to enter the overload set. 1406 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1407 PDiag(0) 1408 << From->getSourceRange())) { 1409 // No conversion functions from incomplete types. 1410 } else if (const RecordType *FromRecordType 1411 = From->getType()->getAs<RecordType>()) { 1412 if (CXXRecordDecl *FromRecordDecl 1413 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1414 // Add all of the conversion functions as candidates. 1415 // FIXME: Look for conversions in base classes! 1416 OverloadedFunctionDecl *Conversions 1417 = FromRecordDecl->getConversionFunctions(); 1418 for (OverloadedFunctionDecl::function_iterator Func 1419 = Conversions->function_begin(); 1420 Func != Conversions->function_end(); ++Func) { 1421 CXXConversionDecl *Conv; 1422 FunctionTemplateDecl *ConvTemplate; 1423 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 1424 if (ConvTemplate) 1425 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1426 else 1427 Conv = dyn_cast<CXXConversionDecl>(*Func); 1428 1429 if (AllowExplicit || !Conv->isExplicit()) { 1430 if (ConvTemplate) 1431 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1432 CandidateSet); 1433 else 1434 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1435 } 1436 } 1437 } 1438 } 1439 1440 OverloadCandidateSet::iterator Best; 1441 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1442 case OR_Success: 1443 // Record the standard conversion we used and the conversion function. 1444 if (CXXConstructorDecl *Constructor 1445 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1446 // C++ [over.ics.user]p1: 1447 // If the user-defined conversion is specified by a 1448 // constructor (12.3.1), the initial standard conversion 1449 // sequence converts the source type to the type required by 1450 // the argument of the constructor. 1451 // 1452 // FIXME: What about ellipsis conversions? 1453 QualType ThisType = Constructor->getThisType(Context); 1454 User.Before = Best->Conversions[0].Standard; 1455 User.ConversionFunction = Constructor; 1456 User.After.setAsIdentityConversion(); 1457 User.After.FromTypePtr 1458 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1459 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1460 return true; 1461 } else if (CXXConversionDecl *Conversion 1462 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1463 // C++ [over.ics.user]p1: 1464 // 1465 // [...] If the user-defined conversion is specified by a 1466 // conversion function (12.3.2), the initial standard 1467 // conversion sequence converts the source type to the 1468 // implicit object parameter of the conversion function. 1469 User.Before = Best->Conversions[0].Standard; 1470 User.ConversionFunction = Conversion; 1471 1472 // C++ [over.ics.user]p2: 1473 // The second standard conversion sequence converts the 1474 // result of the user-defined conversion to the target type 1475 // for the sequence. Since an implicit conversion sequence 1476 // is an initialization, the special rules for 1477 // initialization by user-defined conversion apply when 1478 // selecting the best user-defined conversion for a 1479 // user-defined conversion sequence (see 13.3.3 and 1480 // 13.3.3.1). 1481 User.After = Best->FinalConversion; 1482 return true; 1483 } else { 1484 assert(false && "Not a constructor or conversion function?"); 1485 return false; 1486 } 1487 1488 case OR_No_Viable_Function: 1489 case OR_Deleted: 1490 // No conversion here! We're done. 1491 return false; 1492 1493 case OR_Ambiguous: 1494 // FIXME: See C++ [over.best.ics]p10 for the handling of 1495 // ambiguous conversion sequences. 1496 return false; 1497 } 1498 1499 return false; 1500} 1501 1502/// CompareImplicitConversionSequences - Compare two implicit 1503/// conversion sequences to determine whether one is better than the 1504/// other or if they are indistinguishable (C++ 13.3.3.2). 1505ImplicitConversionSequence::CompareKind 1506Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1507 const ImplicitConversionSequence& ICS2) 1508{ 1509 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1510 // conversion sequences (as defined in 13.3.3.1) 1511 // -- a standard conversion sequence (13.3.3.1.1) is a better 1512 // conversion sequence than a user-defined conversion sequence or 1513 // an ellipsis conversion sequence, and 1514 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1515 // conversion sequence than an ellipsis conversion sequence 1516 // (13.3.3.1.3). 1517 // 1518 if (ICS1.ConversionKind < ICS2.ConversionKind) 1519 return ImplicitConversionSequence::Better; 1520 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1521 return ImplicitConversionSequence::Worse; 1522 1523 // Two implicit conversion sequences of the same form are 1524 // indistinguishable conversion sequences unless one of the 1525 // following rules apply: (C++ 13.3.3.2p3): 1526 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1527 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1528 else if (ICS1.ConversionKind == 1529 ImplicitConversionSequence::UserDefinedConversion) { 1530 // User-defined conversion sequence U1 is a better conversion 1531 // sequence than another user-defined conversion sequence U2 if 1532 // they contain the same user-defined conversion function or 1533 // constructor and if the second standard conversion sequence of 1534 // U1 is better than the second standard conversion sequence of 1535 // U2 (C++ 13.3.3.2p3). 1536 if (ICS1.UserDefined.ConversionFunction == 1537 ICS2.UserDefined.ConversionFunction) 1538 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1539 ICS2.UserDefined.After); 1540 } 1541 1542 return ImplicitConversionSequence::Indistinguishable; 1543} 1544 1545/// CompareStandardConversionSequences - Compare two standard 1546/// conversion sequences to determine whether one is better than the 1547/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1548ImplicitConversionSequence::CompareKind 1549Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1550 const StandardConversionSequence& SCS2) 1551{ 1552 // Standard conversion sequence S1 is a better conversion sequence 1553 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1554 1555 // -- S1 is a proper subsequence of S2 (comparing the conversion 1556 // sequences in the canonical form defined by 13.3.3.1.1, 1557 // excluding any Lvalue Transformation; the identity conversion 1558 // sequence is considered to be a subsequence of any 1559 // non-identity conversion sequence) or, if not that, 1560 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1561 // Neither is a proper subsequence of the other. Do nothing. 1562 ; 1563 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1564 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1565 (SCS1.Second == ICK_Identity && 1566 SCS1.Third == ICK_Identity)) 1567 // SCS1 is a proper subsequence of SCS2. 1568 return ImplicitConversionSequence::Better; 1569 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1570 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1571 (SCS2.Second == ICK_Identity && 1572 SCS2.Third == ICK_Identity)) 1573 // SCS2 is a proper subsequence of SCS1. 1574 return ImplicitConversionSequence::Worse; 1575 1576 // -- the rank of S1 is better than the rank of S2 (by the rules 1577 // defined below), or, if not that, 1578 ImplicitConversionRank Rank1 = SCS1.getRank(); 1579 ImplicitConversionRank Rank2 = SCS2.getRank(); 1580 if (Rank1 < Rank2) 1581 return ImplicitConversionSequence::Better; 1582 else if (Rank2 < Rank1) 1583 return ImplicitConversionSequence::Worse; 1584 1585 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1586 // are indistinguishable unless one of the following rules 1587 // applies: 1588 1589 // A conversion that is not a conversion of a pointer, or 1590 // pointer to member, to bool is better than another conversion 1591 // that is such a conversion. 1592 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1593 return SCS2.isPointerConversionToBool() 1594 ? ImplicitConversionSequence::Better 1595 : ImplicitConversionSequence::Worse; 1596 1597 // C++ [over.ics.rank]p4b2: 1598 // 1599 // If class B is derived directly or indirectly from class A, 1600 // conversion of B* to A* is better than conversion of B* to 1601 // void*, and conversion of A* to void* is better than conversion 1602 // of B* to void*. 1603 bool SCS1ConvertsToVoid 1604 = SCS1.isPointerConversionToVoidPointer(Context); 1605 bool SCS2ConvertsToVoid 1606 = SCS2.isPointerConversionToVoidPointer(Context); 1607 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1608 // Exactly one of the conversion sequences is a conversion to 1609 // a void pointer; it's the worse conversion. 1610 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1611 : ImplicitConversionSequence::Worse; 1612 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1613 // Neither conversion sequence converts to a void pointer; compare 1614 // their derived-to-base conversions. 1615 if (ImplicitConversionSequence::CompareKind DerivedCK 1616 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1617 return DerivedCK; 1618 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1619 // Both conversion sequences are conversions to void 1620 // pointers. Compare the source types to determine if there's an 1621 // inheritance relationship in their sources. 1622 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1623 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1624 1625 // Adjust the types we're converting from via the array-to-pointer 1626 // conversion, if we need to. 1627 if (SCS1.First == ICK_Array_To_Pointer) 1628 FromType1 = Context.getArrayDecayedType(FromType1); 1629 if (SCS2.First == ICK_Array_To_Pointer) 1630 FromType2 = Context.getArrayDecayedType(FromType2); 1631 1632 QualType FromPointee1 1633 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1634 QualType FromPointee2 1635 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1636 1637 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1638 return ImplicitConversionSequence::Better; 1639 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1640 return ImplicitConversionSequence::Worse; 1641 1642 // Objective-C++: If one interface is more specific than the 1643 // other, it is the better one. 1644 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); 1645 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); 1646 if (FromIface1 && FromIface1) { 1647 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1648 return ImplicitConversionSequence::Better; 1649 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1650 return ImplicitConversionSequence::Worse; 1651 } 1652 } 1653 1654 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1655 // bullet 3). 1656 if (ImplicitConversionSequence::CompareKind QualCK 1657 = CompareQualificationConversions(SCS1, SCS2)) 1658 return QualCK; 1659 1660 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1661 // C++0x [over.ics.rank]p3b4: 1662 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1663 // implicit object parameter of a non-static member function declared 1664 // without a ref-qualifier, and S1 binds an rvalue reference to an 1665 // rvalue and S2 binds an lvalue reference. 1666 // FIXME: We don't know if we're dealing with the implicit object parameter, 1667 // or if the member function in this case has a ref qualifier. 1668 // (Of course, we don't have ref qualifiers yet.) 1669 if (SCS1.RRefBinding != SCS2.RRefBinding) 1670 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1671 : ImplicitConversionSequence::Worse; 1672 1673 // C++ [over.ics.rank]p3b4: 1674 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1675 // which the references refer are the same type except for 1676 // top-level cv-qualifiers, and the type to which the reference 1677 // initialized by S2 refers is more cv-qualified than the type 1678 // to which the reference initialized by S1 refers. 1679 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1680 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1681 T1 = Context.getCanonicalType(T1); 1682 T2 = Context.getCanonicalType(T2); 1683 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { 1684 if (T2.isMoreQualifiedThan(T1)) 1685 return ImplicitConversionSequence::Better; 1686 else if (T1.isMoreQualifiedThan(T2)) 1687 return ImplicitConversionSequence::Worse; 1688 } 1689 } 1690 1691 return ImplicitConversionSequence::Indistinguishable; 1692} 1693 1694/// CompareQualificationConversions - Compares two standard conversion 1695/// sequences to determine whether they can be ranked based on their 1696/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1697ImplicitConversionSequence::CompareKind 1698Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1699 const StandardConversionSequence& SCS2) { 1700 // C++ 13.3.3.2p3: 1701 // -- S1 and S2 differ only in their qualification conversion and 1702 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1703 // cv-qualification signature of type T1 is a proper subset of 1704 // the cv-qualification signature of type T2, and S1 is not the 1705 // deprecated string literal array-to-pointer conversion (4.2). 1706 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1707 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1708 return ImplicitConversionSequence::Indistinguishable; 1709 1710 // FIXME: the example in the standard doesn't use a qualification 1711 // conversion (!) 1712 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1713 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1714 T1 = Context.getCanonicalType(T1); 1715 T2 = Context.getCanonicalType(T2); 1716 1717 // If the types are the same, we won't learn anything by unwrapped 1718 // them. 1719 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1720 return ImplicitConversionSequence::Indistinguishable; 1721 1722 ImplicitConversionSequence::CompareKind Result 1723 = ImplicitConversionSequence::Indistinguishable; 1724 while (UnwrapSimilarPointerTypes(T1, T2)) { 1725 // Within each iteration of the loop, we check the qualifiers to 1726 // determine if this still looks like a qualification 1727 // conversion. Then, if all is well, we unwrap one more level of 1728 // pointers or pointers-to-members and do it all again 1729 // until there are no more pointers or pointers-to-members left 1730 // to unwrap. This essentially mimics what 1731 // IsQualificationConversion does, but here we're checking for a 1732 // strict subset of qualifiers. 1733 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1734 // The qualifiers are the same, so this doesn't tell us anything 1735 // about how the sequences rank. 1736 ; 1737 else if (T2.isMoreQualifiedThan(T1)) { 1738 // T1 has fewer qualifiers, so it could be the better sequence. 1739 if (Result == ImplicitConversionSequence::Worse) 1740 // Neither has qualifiers that are a subset of the other's 1741 // qualifiers. 1742 return ImplicitConversionSequence::Indistinguishable; 1743 1744 Result = ImplicitConversionSequence::Better; 1745 } else if (T1.isMoreQualifiedThan(T2)) { 1746 // T2 has fewer qualifiers, so it could be the better sequence. 1747 if (Result == ImplicitConversionSequence::Better) 1748 // Neither has qualifiers that are a subset of the other's 1749 // qualifiers. 1750 return ImplicitConversionSequence::Indistinguishable; 1751 1752 Result = ImplicitConversionSequence::Worse; 1753 } else { 1754 // Qualifiers are disjoint. 1755 return ImplicitConversionSequence::Indistinguishable; 1756 } 1757 1758 // If the types after this point are equivalent, we're done. 1759 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1760 break; 1761 } 1762 1763 // Check that the winning standard conversion sequence isn't using 1764 // the deprecated string literal array to pointer conversion. 1765 switch (Result) { 1766 case ImplicitConversionSequence::Better: 1767 if (SCS1.Deprecated) 1768 Result = ImplicitConversionSequence::Indistinguishable; 1769 break; 1770 1771 case ImplicitConversionSequence::Indistinguishable: 1772 break; 1773 1774 case ImplicitConversionSequence::Worse: 1775 if (SCS2.Deprecated) 1776 Result = ImplicitConversionSequence::Indistinguishable; 1777 break; 1778 } 1779 1780 return Result; 1781} 1782 1783/// CompareDerivedToBaseConversions - Compares two standard conversion 1784/// sequences to determine whether they can be ranked based on their 1785/// various kinds of derived-to-base conversions (C++ 1786/// [over.ics.rank]p4b3). As part of these checks, we also look at 1787/// conversions between Objective-C interface types. 1788ImplicitConversionSequence::CompareKind 1789Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1790 const StandardConversionSequence& SCS2) { 1791 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1792 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1793 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1794 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1795 1796 // Adjust the types we're converting from via the array-to-pointer 1797 // conversion, if we need to. 1798 if (SCS1.First == ICK_Array_To_Pointer) 1799 FromType1 = Context.getArrayDecayedType(FromType1); 1800 if (SCS2.First == ICK_Array_To_Pointer) 1801 FromType2 = Context.getArrayDecayedType(FromType2); 1802 1803 // Canonicalize all of the types. 1804 FromType1 = Context.getCanonicalType(FromType1); 1805 ToType1 = Context.getCanonicalType(ToType1); 1806 FromType2 = Context.getCanonicalType(FromType2); 1807 ToType2 = Context.getCanonicalType(ToType2); 1808 1809 // C++ [over.ics.rank]p4b3: 1810 // 1811 // If class B is derived directly or indirectly from class A and 1812 // class C is derived directly or indirectly from B, 1813 // 1814 // For Objective-C, we let A, B, and C also be Objective-C 1815 // interfaces. 1816 1817 // Compare based on pointer conversions. 1818 if (SCS1.Second == ICK_Pointer_Conversion && 1819 SCS2.Second == ICK_Pointer_Conversion && 1820 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1821 FromType1->isPointerType() && FromType2->isPointerType() && 1822 ToType1->isPointerType() && ToType2->isPointerType()) { 1823 QualType FromPointee1 1824 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1825 QualType ToPointee1 1826 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1827 QualType FromPointee2 1828 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1829 QualType ToPointee2 1830 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1831 1832 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); 1833 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); 1834 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType(); 1835 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType(); 1836 1837 // -- conversion of C* to B* is better than conversion of C* to A*, 1838 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1839 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1840 return ImplicitConversionSequence::Better; 1841 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1842 return ImplicitConversionSequence::Worse; 1843 1844 if (ToIface1 && ToIface2) { 1845 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1846 return ImplicitConversionSequence::Better; 1847 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1848 return ImplicitConversionSequence::Worse; 1849 } 1850 } 1851 1852 // -- conversion of B* to A* is better than conversion of C* to A*, 1853 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1854 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1855 return ImplicitConversionSequence::Better; 1856 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1857 return ImplicitConversionSequence::Worse; 1858 1859 if (FromIface1 && FromIface2) { 1860 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1861 return ImplicitConversionSequence::Better; 1862 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1863 return ImplicitConversionSequence::Worse; 1864 } 1865 } 1866 } 1867 1868 // Compare based on reference bindings. 1869 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1870 SCS1.Second == ICK_Derived_To_Base) { 1871 // -- binding of an expression of type C to a reference of type 1872 // B& is better than binding an expression of type C to a 1873 // reference of type A&, 1874 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1875 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1876 if (IsDerivedFrom(ToType1, ToType2)) 1877 return ImplicitConversionSequence::Better; 1878 else if (IsDerivedFrom(ToType2, ToType1)) 1879 return ImplicitConversionSequence::Worse; 1880 } 1881 1882 // -- binding of an expression of type B to a reference of type 1883 // A& is better than binding an expression of type C to a 1884 // reference of type A&, 1885 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1886 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1887 if (IsDerivedFrom(FromType2, FromType1)) 1888 return ImplicitConversionSequence::Better; 1889 else if (IsDerivedFrom(FromType1, FromType2)) 1890 return ImplicitConversionSequence::Worse; 1891 } 1892 } 1893 1894 1895 // FIXME: conversion of A::* to B::* is better than conversion of 1896 // A::* to C::*, 1897 1898 // FIXME: conversion of B::* to C::* is better than conversion of 1899 // A::* to C::*, and 1900 1901 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1902 SCS1.Second == ICK_Derived_To_Base) { 1903 // -- conversion of C to B is better than conversion of C to A, 1904 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1905 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1906 if (IsDerivedFrom(ToType1, ToType2)) 1907 return ImplicitConversionSequence::Better; 1908 else if (IsDerivedFrom(ToType2, ToType1)) 1909 return ImplicitConversionSequence::Worse; 1910 } 1911 1912 // -- conversion of B to A is better than conversion of C to A. 1913 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1914 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1915 if (IsDerivedFrom(FromType2, FromType1)) 1916 return ImplicitConversionSequence::Better; 1917 else if (IsDerivedFrom(FromType1, FromType2)) 1918 return ImplicitConversionSequence::Worse; 1919 } 1920 } 1921 1922 return ImplicitConversionSequence::Indistinguishable; 1923} 1924 1925/// TryCopyInitialization - Try to copy-initialize a value of type 1926/// ToType from the expression From. Return the implicit conversion 1927/// sequence required to pass this argument, which may be a bad 1928/// conversion sequence (meaning that the argument cannot be passed to 1929/// a parameter of this type). If @p SuppressUserConversions, then we 1930/// do not permit any user-defined conversion sequences. If @p ForceRValue, 1931/// then we treat @p From as an rvalue, even if it is an lvalue. 1932ImplicitConversionSequence 1933Sema::TryCopyInitialization(Expr *From, QualType ToType, 1934 bool SuppressUserConversions, bool ForceRValue, 1935 bool InOverloadResolution) { 1936 if (ToType->isReferenceType()) { 1937 ImplicitConversionSequence ICS; 1938 CheckReferenceInit(From, ToType, 1939 SuppressUserConversions, 1940 /*AllowExplicit=*/false, 1941 ForceRValue, 1942 &ICS); 1943 return ICS; 1944 } else { 1945 return TryImplicitConversion(From, ToType, 1946 SuppressUserConversions, 1947 /*AllowExplicit=*/false, 1948 ForceRValue, 1949 InOverloadResolution); 1950 } 1951} 1952 1953/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 1954/// the expression @p From. Returns true (and emits a diagnostic) if there was 1955/// an error, returns false if the initialization succeeded. Elidable should 1956/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 1957/// differently in C++0x for this case. 1958bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 1959 const char* Flavor, bool Elidable) { 1960 if (!getLangOptions().CPlusPlus) { 1961 // In C, argument passing is the same as performing an assignment. 1962 QualType FromType = From->getType(); 1963 1964 AssignConvertType ConvTy = 1965 CheckSingleAssignmentConstraints(ToType, From); 1966 if (ConvTy != Compatible && 1967 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 1968 ConvTy = Compatible; 1969 1970 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 1971 FromType, From, Flavor); 1972 } 1973 1974 if (ToType->isReferenceType()) 1975 return CheckReferenceInit(From, ToType, 1976 /*SuppressUserConversions=*/false, 1977 /*AllowExplicit=*/false, 1978 /*ForceRValue=*/false); 1979 1980 if (!PerformImplicitConversion(From, ToType, Flavor, 1981 /*AllowExplicit=*/false, Elidable)) 1982 return false; 1983 1984 return Diag(From->getSourceRange().getBegin(), 1985 diag::err_typecheck_convert_incompatible) 1986 << ToType << From->getType() << Flavor << From->getSourceRange(); 1987} 1988 1989/// TryObjectArgumentInitialization - Try to initialize the object 1990/// parameter of the given member function (@c Method) from the 1991/// expression @p From. 1992ImplicitConversionSequence 1993Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 1994 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 1995 unsigned MethodQuals = Method->getTypeQualifiers(); 1996 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals); 1997 1998 // Set up the conversion sequence as a "bad" conversion, to allow us 1999 // to exit early. 2000 ImplicitConversionSequence ICS; 2001 ICS.Standard.setAsIdentityConversion(); 2002 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2003 2004 // We need to have an object of class type. 2005 QualType FromType = From->getType(); 2006 if (const PointerType *PT = FromType->getAs<PointerType>()) 2007 FromType = PT->getPointeeType(); 2008 2009 assert(FromType->isRecordType()); 2010 2011 // The implicit object parmeter is has the type "reference to cv X", 2012 // where X is the class of which the function is a member 2013 // (C++ [over.match.funcs]p4). However, when finding an implicit 2014 // conversion sequence for the argument, we are not allowed to 2015 // create temporaries or perform user-defined conversions 2016 // (C++ [over.match.funcs]p5). We perform a simplified version of 2017 // reference binding here, that allows class rvalues to bind to 2018 // non-constant references. 2019 2020 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2021 // with the implicit object parameter (C++ [over.match.funcs]p5). 2022 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2023 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() && 2024 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType)) 2025 return ICS; 2026 2027 // Check that we have either the same type or a derived type. It 2028 // affects the conversion rank. 2029 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2030 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) 2031 ICS.Standard.Second = ICK_Identity; 2032 else if (IsDerivedFrom(FromType, ClassType)) 2033 ICS.Standard.Second = ICK_Derived_To_Base; 2034 else 2035 return ICS; 2036 2037 // Success. Mark this as a reference binding. 2038 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2039 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2040 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2041 ICS.Standard.ReferenceBinding = true; 2042 ICS.Standard.DirectBinding = true; 2043 ICS.Standard.RRefBinding = false; 2044 return ICS; 2045} 2046 2047/// PerformObjectArgumentInitialization - Perform initialization of 2048/// the implicit object parameter for the given Method with the given 2049/// expression. 2050bool 2051Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2052 QualType FromRecordType, DestType; 2053 QualType ImplicitParamRecordType = 2054 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2055 2056 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2057 FromRecordType = PT->getPointeeType(); 2058 DestType = Method->getThisType(Context); 2059 } else { 2060 FromRecordType = From->getType(); 2061 DestType = ImplicitParamRecordType; 2062 } 2063 2064 ImplicitConversionSequence ICS 2065 = TryObjectArgumentInitialization(From, Method); 2066 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2067 return Diag(From->getSourceRange().getBegin(), 2068 diag::err_implicit_object_parameter_init) 2069 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2070 2071 if (ICS.Standard.Second == ICK_Derived_To_Base && 2072 CheckDerivedToBaseConversion(FromRecordType, 2073 ImplicitParamRecordType, 2074 From->getSourceRange().getBegin(), 2075 From->getSourceRange())) 2076 return true; 2077 2078 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2079 /*isLvalue=*/true); 2080 return false; 2081} 2082 2083/// TryContextuallyConvertToBool - Attempt to contextually convert the 2084/// expression From to bool (C++0x [conv]p3). 2085ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2086 return TryImplicitConversion(From, Context.BoolTy, 2087 // FIXME: Are these flags correct? 2088 /*SuppressUserConversions=*/false, 2089 /*AllowExplicit=*/true, 2090 /*ForceRValue=*/false, 2091 /*InOverloadResolution=*/false); 2092} 2093 2094/// PerformContextuallyConvertToBool - Perform a contextual conversion 2095/// of the expression From to bool (C++0x [conv]p3). 2096bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2097 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2098 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2099 return false; 2100 2101 return Diag(From->getSourceRange().getBegin(), 2102 diag::err_typecheck_bool_condition) 2103 << From->getType() << From->getSourceRange(); 2104} 2105 2106/// AddOverloadCandidate - Adds the given function to the set of 2107/// candidate functions, using the given function call arguments. If 2108/// @p SuppressUserConversions, then don't allow user-defined 2109/// conversions via constructors or conversion operators. 2110/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2111/// hacky way to implement the overloading rules for elidable copy 2112/// initialization in C++0x (C++0x 12.8p15). 2113void 2114Sema::AddOverloadCandidate(FunctionDecl *Function, 2115 Expr **Args, unsigned NumArgs, 2116 OverloadCandidateSet& CandidateSet, 2117 bool SuppressUserConversions, 2118 bool ForceRValue) { 2119 const FunctionProtoType* Proto 2120 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType()); 2121 assert(Proto && "Functions without a prototype cannot be overloaded"); 2122 assert(!isa<CXXConversionDecl>(Function) && 2123 "Use AddConversionCandidate for conversion functions"); 2124 assert(!Function->getDescribedFunctionTemplate() && 2125 "Use AddTemplateOverloadCandidate for function templates"); 2126 2127 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2128 if (!isa<CXXConstructorDecl>(Method)) { 2129 // If we get here, it's because we're calling a member function 2130 // that is named without a member access expression (e.g., 2131 // "this->f") that was either written explicitly or created 2132 // implicitly. This can happen with a qualified call to a member 2133 // function, e.g., X::f(). We use a NULL object as the implied 2134 // object argument (C++ [over.call.func]p3). 2135 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2136 SuppressUserConversions, ForceRValue); 2137 return; 2138 } 2139 // We treat a constructor like a non-member function, since its object 2140 // argument doesn't participate in overload resolution. 2141 } 2142 2143 2144 // Add this candidate 2145 CandidateSet.push_back(OverloadCandidate()); 2146 OverloadCandidate& Candidate = CandidateSet.back(); 2147 Candidate.Function = Function; 2148 Candidate.Viable = true; 2149 Candidate.IsSurrogate = false; 2150 Candidate.IgnoreObjectArgument = false; 2151 2152 unsigned NumArgsInProto = Proto->getNumArgs(); 2153 2154 // (C++ 13.3.2p2): A candidate function having fewer than m 2155 // parameters is viable only if it has an ellipsis in its parameter 2156 // list (8.3.5). 2157 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2158 Candidate.Viable = false; 2159 return; 2160 } 2161 2162 // (C++ 13.3.2p2): A candidate function having more than m parameters 2163 // is viable only if the (m+1)st parameter has a default argument 2164 // (8.3.6). For the purposes of overload resolution, the 2165 // parameter list is truncated on the right, so that there are 2166 // exactly m parameters. 2167 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2168 if (NumArgs < MinRequiredArgs) { 2169 // Not enough arguments. 2170 Candidate.Viable = false; 2171 return; 2172 } 2173 2174 // Determine the implicit conversion sequences for each of the 2175 // arguments. 2176 Candidate.Conversions.resize(NumArgs); 2177 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2178 if (ArgIdx < NumArgsInProto) { 2179 // (C++ 13.3.2p3): for F to be a viable function, there shall 2180 // exist for each argument an implicit conversion sequence 2181 // (13.3.3.1) that converts that argument to the corresponding 2182 // parameter of F. 2183 QualType ParamType = Proto->getArgType(ArgIdx); 2184 Candidate.Conversions[ArgIdx] 2185 = TryCopyInitialization(Args[ArgIdx], ParamType, 2186 SuppressUserConversions, ForceRValue, 2187 /*InOverloadResolution=*/true); 2188 if (Candidate.Conversions[ArgIdx].ConversionKind 2189 == ImplicitConversionSequence::BadConversion) { 2190 Candidate.Viable = false; 2191 break; 2192 } 2193 } else { 2194 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2195 // argument for which there is no corresponding parameter is 2196 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2197 Candidate.Conversions[ArgIdx].ConversionKind 2198 = ImplicitConversionSequence::EllipsisConversion; 2199 } 2200 } 2201} 2202 2203/// \brief Add all of the function declarations in the given function set to 2204/// the overload canddiate set. 2205void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2206 Expr **Args, unsigned NumArgs, 2207 OverloadCandidateSet& CandidateSet, 2208 bool SuppressUserConversions) { 2209 for (FunctionSet::const_iterator F = Functions.begin(), 2210 FEnd = Functions.end(); 2211 F != FEnd; ++F) { 2212 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) 2213 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2214 SuppressUserConversions); 2215 else 2216 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F), 2217 /*FIXME: explicit args */false, 0, 0, 2218 Args, NumArgs, CandidateSet, 2219 SuppressUserConversions); 2220 } 2221} 2222 2223/// AddMethodCandidate - Adds the given C++ member function to the set 2224/// of candidate functions, using the given function call arguments 2225/// and the object argument (@c Object). For example, in a call 2226/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2227/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2228/// allow user-defined conversions via constructors or conversion 2229/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2230/// a slightly hacky way to implement the overloading rules for elidable copy 2231/// initialization in C++0x (C++0x 12.8p15). 2232void 2233Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2234 Expr **Args, unsigned NumArgs, 2235 OverloadCandidateSet& CandidateSet, 2236 bool SuppressUserConversions, bool ForceRValue) { 2237 const FunctionProtoType* Proto 2238 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType()); 2239 assert(Proto && "Methods without a prototype cannot be overloaded"); 2240 assert(!isa<CXXConversionDecl>(Method) && 2241 "Use AddConversionCandidate for conversion functions"); 2242 assert(!isa<CXXConstructorDecl>(Method) && 2243 "Use AddOverloadCandidate for constructors"); 2244 2245 // Add this candidate 2246 CandidateSet.push_back(OverloadCandidate()); 2247 OverloadCandidate& Candidate = CandidateSet.back(); 2248 Candidate.Function = Method; 2249 Candidate.IsSurrogate = false; 2250 Candidate.IgnoreObjectArgument = false; 2251 2252 unsigned NumArgsInProto = Proto->getNumArgs(); 2253 2254 // (C++ 13.3.2p2): A candidate function having fewer than m 2255 // parameters is viable only if it has an ellipsis in its parameter 2256 // list (8.3.5). 2257 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2258 Candidate.Viable = false; 2259 return; 2260 } 2261 2262 // (C++ 13.3.2p2): A candidate function having more than m parameters 2263 // is viable only if the (m+1)st parameter has a default argument 2264 // (8.3.6). For the purposes of overload resolution, the 2265 // parameter list is truncated on the right, so that there are 2266 // exactly m parameters. 2267 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2268 if (NumArgs < MinRequiredArgs) { 2269 // Not enough arguments. 2270 Candidate.Viable = false; 2271 return; 2272 } 2273 2274 Candidate.Viable = true; 2275 Candidate.Conversions.resize(NumArgs + 1); 2276 2277 if (Method->isStatic() || !Object) 2278 // The implicit object argument is ignored. 2279 Candidate.IgnoreObjectArgument = true; 2280 else { 2281 // Determine the implicit conversion sequence for the object 2282 // parameter. 2283 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2284 if (Candidate.Conversions[0].ConversionKind 2285 == ImplicitConversionSequence::BadConversion) { 2286 Candidate.Viable = false; 2287 return; 2288 } 2289 } 2290 2291 // Determine the implicit conversion sequences for each of the 2292 // arguments. 2293 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2294 if (ArgIdx < NumArgsInProto) { 2295 // (C++ 13.3.2p3): for F to be a viable function, there shall 2296 // exist for each argument an implicit conversion sequence 2297 // (13.3.3.1) that converts that argument to the corresponding 2298 // parameter of F. 2299 QualType ParamType = Proto->getArgType(ArgIdx); 2300 Candidate.Conversions[ArgIdx + 1] 2301 = TryCopyInitialization(Args[ArgIdx], ParamType, 2302 SuppressUserConversions, ForceRValue, 2303 /*InOverloadResolution=*/true); 2304 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2305 == ImplicitConversionSequence::BadConversion) { 2306 Candidate.Viable = false; 2307 break; 2308 } 2309 } else { 2310 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2311 // argument for which there is no corresponding parameter is 2312 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2313 Candidate.Conversions[ArgIdx + 1].ConversionKind 2314 = ImplicitConversionSequence::EllipsisConversion; 2315 } 2316 } 2317} 2318 2319/// \brief Add a C++ member function template as a candidate to the candidate 2320/// set, using template argument deduction to produce an appropriate member 2321/// function template specialization. 2322void 2323Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2324 bool HasExplicitTemplateArgs, 2325 const TemplateArgument *ExplicitTemplateArgs, 2326 unsigned NumExplicitTemplateArgs, 2327 Expr *Object, Expr **Args, unsigned NumArgs, 2328 OverloadCandidateSet& CandidateSet, 2329 bool SuppressUserConversions, 2330 bool ForceRValue) { 2331 // C++ [over.match.funcs]p7: 2332 // In each case where a candidate is a function template, candidate 2333 // function template specializations are generated using template argument 2334 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2335 // candidate functions in the usual way.113) A given name can refer to one 2336 // or more function templates and also to a set of overloaded non-template 2337 // functions. In such a case, the candidate functions generated from each 2338 // function template are combined with the set of non-template candidate 2339 // functions. 2340 TemplateDeductionInfo Info(Context); 2341 FunctionDecl *Specialization = 0; 2342 if (TemplateDeductionResult Result 2343 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs, 2344 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2345 Args, NumArgs, Specialization, Info)) { 2346 // FIXME: Record what happened with template argument deduction, so 2347 // that we can give the user a beautiful diagnostic. 2348 (void)Result; 2349 return; 2350 } 2351 2352 // Add the function template specialization produced by template argument 2353 // deduction as a candidate. 2354 assert(Specialization && "Missing member function template specialization?"); 2355 assert(isa<CXXMethodDecl>(Specialization) && 2356 "Specialization is not a member function?"); 2357 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2358 CandidateSet, SuppressUserConversions, ForceRValue); 2359} 2360 2361/// \brief Add a C++ function template specialization as a candidate 2362/// in the candidate set, using template argument deduction to produce 2363/// an appropriate function template specialization. 2364void 2365Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2366 bool HasExplicitTemplateArgs, 2367 const TemplateArgument *ExplicitTemplateArgs, 2368 unsigned NumExplicitTemplateArgs, 2369 Expr **Args, unsigned NumArgs, 2370 OverloadCandidateSet& CandidateSet, 2371 bool SuppressUserConversions, 2372 bool ForceRValue) { 2373 // C++ [over.match.funcs]p7: 2374 // In each case where a candidate is a function template, candidate 2375 // function template specializations are generated using template argument 2376 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2377 // candidate functions in the usual way.113) A given name can refer to one 2378 // or more function templates and also to a set of overloaded non-template 2379 // functions. In such a case, the candidate functions generated from each 2380 // function template are combined with the set of non-template candidate 2381 // functions. 2382 TemplateDeductionInfo Info(Context); 2383 FunctionDecl *Specialization = 0; 2384 if (TemplateDeductionResult Result 2385 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 2386 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2387 Args, NumArgs, Specialization, Info)) { 2388 // FIXME: Record what happened with template argument deduction, so 2389 // that we can give the user a beautiful diagnostic. 2390 (void)Result; 2391 return; 2392 } 2393 2394 // Add the function template specialization produced by template argument 2395 // deduction as a candidate. 2396 assert(Specialization && "Missing function template specialization?"); 2397 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2398 SuppressUserConversions, ForceRValue); 2399} 2400 2401/// AddConversionCandidate - Add a C++ conversion function as a 2402/// candidate in the candidate set (C++ [over.match.conv], 2403/// C++ [over.match.copy]). From is the expression we're converting from, 2404/// and ToType is the type that we're eventually trying to convert to 2405/// (which may or may not be the same type as the type that the 2406/// conversion function produces). 2407void 2408Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2409 Expr *From, QualType ToType, 2410 OverloadCandidateSet& CandidateSet) { 2411 assert(!Conversion->getDescribedFunctionTemplate() && 2412 "Conversion function templates use AddTemplateConversionCandidate"); 2413 2414 // Add this candidate 2415 CandidateSet.push_back(OverloadCandidate()); 2416 OverloadCandidate& Candidate = CandidateSet.back(); 2417 Candidate.Function = Conversion; 2418 Candidate.IsSurrogate = false; 2419 Candidate.IgnoreObjectArgument = false; 2420 Candidate.FinalConversion.setAsIdentityConversion(); 2421 Candidate.FinalConversion.FromTypePtr 2422 = Conversion->getConversionType().getAsOpaquePtr(); 2423 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2424 2425 // Determine the implicit conversion sequence for the implicit 2426 // object parameter. 2427 Candidate.Viable = true; 2428 Candidate.Conversions.resize(1); 2429 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2430 2431 if (Candidate.Conversions[0].ConversionKind 2432 == ImplicitConversionSequence::BadConversion) { 2433 Candidate.Viable = false; 2434 return; 2435 } 2436 2437 // To determine what the conversion from the result of calling the 2438 // conversion function to the type we're eventually trying to 2439 // convert to (ToType), we need to synthesize a call to the 2440 // conversion function and attempt copy initialization from it. This 2441 // makes sure that we get the right semantics with respect to 2442 // lvalues/rvalues and the type. Fortunately, we can allocate this 2443 // call on the stack and we don't need its arguments to be 2444 // well-formed. 2445 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2446 SourceLocation()); 2447 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2448 CastExpr::CK_Unknown, 2449 &ConversionRef, false); 2450 2451 // Note that it is safe to allocate CallExpr on the stack here because 2452 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2453 // allocator). 2454 CallExpr Call(Context, &ConversionFn, 0, 0, 2455 Conversion->getConversionType().getNonReferenceType(), 2456 SourceLocation()); 2457 ImplicitConversionSequence ICS = 2458 TryCopyInitialization(&Call, ToType, 2459 /*SuppressUserConversions=*/true, 2460 /*ForceRValue=*/false, 2461 /*InOverloadResolution=*/false); 2462 2463 switch (ICS.ConversionKind) { 2464 case ImplicitConversionSequence::StandardConversion: 2465 Candidate.FinalConversion = ICS.Standard; 2466 break; 2467 2468 case ImplicitConversionSequence::BadConversion: 2469 Candidate.Viable = false; 2470 break; 2471 2472 default: 2473 assert(false && 2474 "Can only end up with a standard conversion sequence or failure"); 2475 } 2476} 2477 2478/// \brief Adds a conversion function template specialization 2479/// candidate to the overload set, using template argument deduction 2480/// to deduce the template arguments of the conversion function 2481/// template from the type that we are converting to (C++ 2482/// [temp.deduct.conv]). 2483void 2484Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2485 Expr *From, QualType ToType, 2486 OverloadCandidateSet &CandidateSet) { 2487 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2488 "Only conversion function templates permitted here"); 2489 2490 TemplateDeductionInfo Info(Context); 2491 CXXConversionDecl *Specialization = 0; 2492 if (TemplateDeductionResult Result 2493 = DeduceTemplateArguments(FunctionTemplate, ToType, 2494 Specialization, Info)) { 2495 // FIXME: Record what happened with template argument deduction, so 2496 // that we can give the user a beautiful diagnostic. 2497 (void)Result; 2498 return; 2499 } 2500 2501 // Add the conversion function template specialization produced by 2502 // template argument deduction as a candidate. 2503 assert(Specialization && "Missing function template specialization?"); 2504 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2505} 2506 2507/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2508/// converts the given @c Object to a function pointer via the 2509/// conversion function @c Conversion, and then attempts to call it 2510/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2511/// the type of function that we'll eventually be calling. 2512void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2513 const FunctionProtoType *Proto, 2514 Expr *Object, Expr **Args, unsigned NumArgs, 2515 OverloadCandidateSet& CandidateSet) { 2516 CandidateSet.push_back(OverloadCandidate()); 2517 OverloadCandidate& Candidate = CandidateSet.back(); 2518 Candidate.Function = 0; 2519 Candidate.Surrogate = Conversion; 2520 Candidate.Viable = true; 2521 Candidate.IsSurrogate = true; 2522 Candidate.IgnoreObjectArgument = false; 2523 Candidate.Conversions.resize(NumArgs + 1); 2524 2525 // Determine the implicit conversion sequence for the implicit 2526 // object parameter. 2527 ImplicitConversionSequence ObjectInit 2528 = TryObjectArgumentInitialization(Object, Conversion); 2529 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2530 Candidate.Viable = false; 2531 return; 2532 } 2533 2534 // The first conversion is actually a user-defined conversion whose 2535 // first conversion is ObjectInit's standard conversion (which is 2536 // effectively a reference binding). Record it as such. 2537 Candidate.Conversions[0].ConversionKind 2538 = ImplicitConversionSequence::UserDefinedConversion; 2539 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2540 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2541 Candidate.Conversions[0].UserDefined.After 2542 = Candidate.Conversions[0].UserDefined.Before; 2543 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2544 2545 // Find the 2546 unsigned NumArgsInProto = Proto->getNumArgs(); 2547 2548 // (C++ 13.3.2p2): A candidate function having fewer than m 2549 // parameters is viable only if it has an ellipsis in its parameter 2550 // list (8.3.5). 2551 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2552 Candidate.Viable = false; 2553 return; 2554 } 2555 2556 // Function types don't have any default arguments, so just check if 2557 // we have enough arguments. 2558 if (NumArgs < NumArgsInProto) { 2559 // Not enough arguments. 2560 Candidate.Viable = false; 2561 return; 2562 } 2563 2564 // Determine the implicit conversion sequences for each of the 2565 // arguments. 2566 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2567 if (ArgIdx < NumArgsInProto) { 2568 // (C++ 13.3.2p3): for F to be a viable function, there shall 2569 // exist for each argument an implicit conversion sequence 2570 // (13.3.3.1) that converts that argument to the corresponding 2571 // parameter of F. 2572 QualType ParamType = Proto->getArgType(ArgIdx); 2573 Candidate.Conversions[ArgIdx + 1] 2574 = TryCopyInitialization(Args[ArgIdx], ParamType, 2575 /*SuppressUserConversions=*/false, 2576 /*ForceRValue=*/false, 2577 /*InOverloadResolution=*/false); 2578 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2579 == ImplicitConversionSequence::BadConversion) { 2580 Candidate.Viable = false; 2581 break; 2582 } 2583 } else { 2584 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2585 // argument for which there is no corresponding parameter is 2586 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2587 Candidate.Conversions[ArgIdx + 1].ConversionKind 2588 = ImplicitConversionSequence::EllipsisConversion; 2589 } 2590 } 2591} 2592 2593// FIXME: This will eventually be removed, once we've migrated all of the 2594// operator overloading logic over to the scheme used by binary operators, which 2595// works for template instantiation. 2596void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2597 SourceLocation OpLoc, 2598 Expr **Args, unsigned NumArgs, 2599 OverloadCandidateSet& CandidateSet, 2600 SourceRange OpRange) { 2601 2602 FunctionSet Functions; 2603 2604 QualType T1 = Args[0]->getType(); 2605 QualType T2; 2606 if (NumArgs > 1) 2607 T2 = Args[1]->getType(); 2608 2609 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2610 if (S) 2611 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2612 ArgumentDependentLookup(OpName, Args, NumArgs, Functions); 2613 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2614 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2615 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet); 2616} 2617 2618/// \brief Add overload candidates for overloaded operators that are 2619/// member functions. 2620/// 2621/// Add the overloaded operator candidates that are member functions 2622/// for the operator Op that was used in an operator expression such 2623/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2624/// CandidateSet will store the added overload candidates. (C++ 2625/// [over.match.oper]). 2626void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2627 SourceLocation OpLoc, 2628 Expr **Args, unsigned NumArgs, 2629 OverloadCandidateSet& CandidateSet, 2630 SourceRange OpRange) { 2631 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2632 2633 // C++ [over.match.oper]p3: 2634 // For a unary operator @ with an operand of a type whose 2635 // cv-unqualified version is T1, and for a binary operator @ with 2636 // a left operand of a type whose cv-unqualified version is T1 and 2637 // a right operand of a type whose cv-unqualified version is T2, 2638 // three sets of candidate functions, designated member 2639 // candidates, non-member candidates and built-in candidates, are 2640 // constructed as follows: 2641 QualType T1 = Args[0]->getType(); 2642 QualType T2; 2643 if (NumArgs > 1) 2644 T2 = Args[1]->getType(); 2645 2646 // -- If T1 is a class type, the set of member candidates is the 2647 // result of the qualified lookup of T1::operator@ 2648 // (13.3.1.1.1); otherwise, the set of member candidates is 2649 // empty. 2650 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2651 // Complete the type if it can be completed. Otherwise, we're done. 2652 if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0))) 2653 return; 2654 2655 LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName, 2656 LookupOrdinaryName, false); 2657 for (LookupResult::iterator Oper = Operators.begin(), 2658 OperEnd = Operators.end(); 2659 Oper != OperEnd; 2660 ++Oper) 2661 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0], 2662 Args+1, NumArgs - 1, CandidateSet, 2663 /*SuppressUserConversions=*/false); 2664 } 2665} 2666 2667/// AddBuiltinCandidate - Add a candidate for a built-in 2668/// operator. ResultTy and ParamTys are the result and parameter types 2669/// of the built-in candidate, respectively. Args and NumArgs are the 2670/// arguments being passed to the candidate. IsAssignmentOperator 2671/// should be true when this built-in candidate is an assignment 2672/// operator. NumContextualBoolArguments is the number of arguments 2673/// (at the beginning of the argument list) that will be contextually 2674/// converted to bool. 2675void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2676 Expr **Args, unsigned NumArgs, 2677 OverloadCandidateSet& CandidateSet, 2678 bool IsAssignmentOperator, 2679 unsigned NumContextualBoolArguments) { 2680 // Add this candidate 2681 CandidateSet.push_back(OverloadCandidate()); 2682 OverloadCandidate& Candidate = CandidateSet.back(); 2683 Candidate.Function = 0; 2684 Candidate.IsSurrogate = false; 2685 Candidate.IgnoreObjectArgument = false; 2686 Candidate.BuiltinTypes.ResultTy = ResultTy; 2687 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2688 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2689 2690 // Determine the implicit conversion sequences for each of the 2691 // arguments. 2692 Candidate.Viable = true; 2693 Candidate.Conversions.resize(NumArgs); 2694 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2695 // C++ [over.match.oper]p4: 2696 // For the built-in assignment operators, conversions of the 2697 // left operand are restricted as follows: 2698 // -- no temporaries are introduced to hold the left operand, and 2699 // -- no user-defined conversions are applied to the left 2700 // operand to achieve a type match with the left-most 2701 // parameter of a built-in candidate. 2702 // 2703 // We block these conversions by turning off user-defined 2704 // conversions, since that is the only way that initialization of 2705 // a reference to a non-class type can occur from something that 2706 // is not of the same type. 2707 if (ArgIdx < NumContextualBoolArguments) { 2708 assert(ParamTys[ArgIdx] == Context.BoolTy && 2709 "Contextual conversion to bool requires bool type"); 2710 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2711 } else { 2712 Candidate.Conversions[ArgIdx] 2713 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2714 ArgIdx == 0 && IsAssignmentOperator, 2715 /*ForceRValue=*/false, 2716 /*InOverloadResolution=*/false); 2717 } 2718 if (Candidate.Conversions[ArgIdx].ConversionKind 2719 == ImplicitConversionSequence::BadConversion) { 2720 Candidate.Viable = false; 2721 break; 2722 } 2723 } 2724} 2725 2726/// BuiltinCandidateTypeSet - A set of types that will be used for the 2727/// candidate operator functions for built-in operators (C++ 2728/// [over.built]). The types are separated into pointer types and 2729/// enumeration types. 2730class BuiltinCandidateTypeSet { 2731 /// TypeSet - A set of types. 2732 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2733 2734 /// PointerTypes - The set of pointer types that will be used in the 2735 /// built-in candidates. 2736 TypeSet PointerTypes; 2737 2738 /// MemberPointerTypes - The set of member pointer types that will be 2739 /// used in the built-in candidates. 2740 TypeSet MemberPointerTypes; 2741 2742 /// EnumerationTypes - The set of enumeration types that will be 2743 /// used in the built-in candidates. 2744 TypeSet EnumerationTypes; 2745 2746 /// Sema - The semantic analysis instance where we are building the 2747 /// candidate type set. 2748 Sema &SemaRef; 2749 2750 /// Context - The AST context in which we will build the type sets. 2751 ASTContext &Context; 2752 2753 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty); 2754 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2755 2756public: 2757 /// iterator - Iterates through the types that are part of the set. 2758 typedef TypeSet::iterator iterator; 2759 2760 BuiltinCandidateTypeSet(Sema &SemaRef) 2761 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2762 2763 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, 2764 bool AllowExplicitConversions); 2765 2766 /// pointer_begin - First pointer type found; 2767 iterator pointer_begin() { return PointerTypes.begin(); } 2768 2769 /// pointer_end - Past the last pointer type found; 2770 iterator pointer_end() { return PointerTypes.end(); } 2771 2772 /// member_pointer_begin - First member pointer type found; 2773 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2774 2775 /// member_pointer_end - Past the last member pointer type found; 2776 iterator member_pointer_end() { return MemberPointerTypes.end(); } 2777 2778 /// enumeration_begin - First enumeration type found; 2779 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2780 2781 /// enumeration_end - Past the last enumeration type found; 2782 iterator enumeration_end() { return EnumerationTypes.end(); } 2783}; 2784 2785/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 2786/// the set of pointer types along with any more-qualified variants of 2787/// that type. For example, if @p Ty is "int const *", this routine 2788/// will add "int const *", "int const volatile *", "int const 2789/// restrict *", and "int const volatile restrict *" to the set of 2790/// pointer types. Returns true if the add of @p Ty itself succeeded, 2791/// false otherwise. 2792bool 2793BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) { 2794 // Insert this type. 2795 if (!PointerTypes.insert(Ty)) 2796 return false; 2797 2798 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 2799 QualType PointeeTy = PointerTy->getPointeeType(); 2800 // FIXME: Optimize this so that we don't keep trying to add the same types. 2801 2802 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all 2803 // pointer conversions that don't cast away constness? 2804 if (!PointeeTy.isConstQualified()) 2805 AddPointerWithMoreQualifiedTypeVariants 2806 (Context.getPointerType(PointeeTy.withConst())); 2807 if (!PointeeTy.isVolatileQualified()) 2808 AddPointerWithMoreQualifiedTypeVariants 2809 (Context.getPointerType(PointeeTy.withVolatile())); 2810 if (!PointeeTy.isRestrictQualified()) 2811 AddPointerWithMoreQualifiedTypeVariants 2812 (Context.getPointerType(PointeeTy.withRestrict())); 2813 } 2814 2815 return true; 2816} 2817 2818/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 2819/// to the set of pointer types along with any more-qualified variants of 2820/// that type. For example, if @p Ty is "int const *", this routine 2821/// will add "int const *", "int const volatile *", "int const 2822/// restrict *", and "int const volatile restrict *" to the set of 2823/// pointer types. Returns true if the add of @p Ty itself succeeded, 2824/// false otherwise. 2825bool 2826BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 2827 QualType Ty) { 2828 // Insert this type. 2829 if (!MemberPointerTypes.insert(Ty)) 2830 return false; 2831 2832 if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) { 2833 QualType PointeeTy = PointerTy->getPointeeType(); 2834 const Type *ClassTy = PointerTy->getClass(); 2835 // FIXME: Optimize this so that we don't keep trying to add the same types. 2836 2837 if (!PointeeTy.isConstQualified()) 2838 AddMemberPointerWithMoreQualifiedTypeVariants 2839 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy)); 2840 if (!PointeeTy.isVolatileQualified()) 2841 AddMemberPointerWithMoreQualifiedTypeVariants 2842 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy)); 2843 if (!PointeeTy.isRestrictQualified()) 2844 AddMemberPointerWithMoreQualifiedTypeVariants 2845 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy)); 2846 } 2847 2848 return true; 2849} 2850 2851/// AddTypesConvertedFrom - Add each of the types to which the type @p 2852/// Ty can be implicit converted to the given set of @p Types. We're 2853/// primarily interested in pointer types and enumeration types. We also 2854/// take member pointer types, for the conditional operator. 2855/// AllowUserConversions is true if we should look at the conversion 2856/// functions of a class type, and AllowExplicitConversions if we 2857/// should also include the explicit conversion functions of a class 2858/// type. 2859void 2860BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 2861 bool AllowUserConversions, 2862 bool AllowExplicitConversions) { 2863 // Only deal with canonical types. 2864 Ty = Context.getCanonicalType(Ty); 2865 2866 // Look through reference types; they aren't part of the type of an 2867 // expression for the purposes of conversions. 2868 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 2869 Ty = RefTy->getPointeeType(); 2870 2871 // We don't care about qualifiers on the type. 2872 Ty = Ty.getUnqualifiedType(); 2873 2874 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 2875 QualType PointeeTy = PointerTy->getPointeeType(); 2876 2877 // Insert our type, and its more-qualified variants, into the set 2878 // of types. 2879 if (!AddPointerWithMoreQualifiedTypeVariants(Ty)) 2880 return; 2881 2882 // Add 'cv void*' to our set of types. 2883 if (!Ty->isVoidType()) { 2884 QualType QualVoid 2885 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers()); 2886 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid)); 2887 } 2888 2889 // If this is a pointer to a class type, add pointers to its bases 2890 // (with the same level of cv-qualification as the original 2891 // derived class, of course). 2892 if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) { 2893 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl()); 2894 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); 2895 Base != ClassDecl->bases_end(); ++Base) { 2896 QualType BaseTy = Context.getCanonicalType(Base->getType()); 2897 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers()); 2898 2899 // Add the pointer type, recursively, so that we get all of 2900 // the indirect base classes, too. 2901 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false); 2902 } 2903 } 2904 } else if (Ty->isMemberPointerType()) { 2905 // Member pointers are far easier, since the pointee can't be converted. 2906 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 2907 return; 2908 } else if (Ty->isEnumeralType()) { 2909 EnumerationTypes.insert(Ty); 2910 } else if (AllowUserConversions) { 2911 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 2912 if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) { 2913 // No conversion functions in incomplete types. 2914 return; 2915 } 2916 2917 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 2918 // FIXME: Visit conversion functions in the base classes, too. 2919 OverloadedFunctionDecl *Conversions 2920 = ClassDecl->getConversionFunctions(); 2921 for (OverloadedFunctionDecl::function_iterator Func 2922 = Conversions->function_begin(); 2923 Func != Conversions->function_end(); ++Func) { 2924 CXXConversionDecl *Conv; 2925 FunctionTemplateDecl *ConvTemplate; 2926 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 2927 2928 // Skip conversion function templates; they don't tell us anything 2929 // about which builtin types we can convert to. 2930 if (ConvTemplate) 2931 continue; 2932 2933 if (AllowExplicitConversions || !Conv->isExplicit()) 2934 AddTypesConvertedFrom(Conv->getConversionType(), false, false); 2935 } 2936 } 2937 } 2938} 2939 2940/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 2941/// the volatile- and non-volatile-qualified assignment operators for the 2942/// given type to the candidate set. 2943static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 2944 QualType T, 2945 Expr **Args, 2946 unsigned NumArgs, 2947 OverloadCandidateSet &CandidateSet) { 2948 QualType ParamTypes[2]; 2949 2950 // T& operator=(T&, T) 2951 ParamTypes[0] = S.Context.getLValueReferenceType(T); 2952 ParamTypes[1] = T; 2953 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 2954 /*IsAssignmentOperator=*/true); 2955 2956 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 2957 // volatile T& operator=(volatile T&, T) 2958 ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile()); 2959 ParamTypes[1] = T; 2960 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 2961 /*IsAssignmentOperator=*/true); 2962 } 2963} 2964 2965/// AddBuiltinOperatorCandidates - Add the appropriate built-in 2966/// operator overloads to the candidate set (C++ [over.built]), based 2967/// on the operator @p Op and the arguments given. For example, if the 2968/// operator is a binary '+', this routine might add "int 2969/// operator+(int, int)" to cover integer addition. 2970void 2971Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 2972 Expr **Args, unsigned NumArgs, 2973 OverloadCandidateSet& CandidateSet) { 2974 // The set of "promoted arithmetic types", which are the arithmetic 2975 // types are that preserved by promotion (C++ [over.built]p2). Note 2976 // that the first few of these types are the promoted integral 2977 // types; these types need to be first. 2978 // FIXME: What about complex? 2979 const unsigned FirstIntegralType = 0; 2980 const unsigned LastIntegralType = 13; 2981 const unsigned FirstPromotedIntegralType = 7, 2982 LastPromotedIntegralType = 13; 2983 const unsigned FirstPromotedArithmeticType = 7, 2984 LastPromotedArithmeticType = 16; 2985 const unsigned NumArithmeticTypes = 16; 2986 QualType ArithmeticTypes[NumArithmeticTypes] = { 2987 Context.BoolTy, Context.CharTy, Context.WCharTy, 2988// FIXME: Context.Char16Ty, Context.Char32Ty, 2989 Context.SignedCharTy, Context.ShortTy, 2990 Context.UnsignedCharTy, Context.UnsignedShortTy, 2991 Context.IntTy, Context.LongTy, Context.LongLongTy, 2992 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 2993 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 2994 }; 2995 2996 // Find all of the types that the arguments can convert to, but only 2997 // if the operator we're looking at has built-in operator candidates 2998 // that make use of these types. 2999 BuiltinCandidateTypeSet CandidateTypes(*this); 3000 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3001 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3002 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3003 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3004 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3005 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3006 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3007 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3008 true, 3009 (Op == OO_Exclaim || 3010 Op == OO_AmpAmp || 3011 Op == OO_PipePipe)); 3012 } 3013 3014 bool isComparison = false; 3015 switch (Op) { 3016 case OO_None: 3017 case NUM_OVERLOADED_OPERATORS: 3018 assert(false && "Expected an overloaded operator"); 3019 break; 3020 3021 case OO_Star: // '*' is either unary or binary 3022 if (NumArgs == 1) 3023 goto UnaryStar; 3024 else 3025 goto BinaryStar; 3026 break; 3027 3028 case OO_Plus: // '+' is either unary or binary 3029 if (NumArgs == 1) 3030 goto UnaryPlus; 3031 else 3032 goto BinaryPlus; 3033 break; 3034 3035 case OO_Minus: // '-' is either unary or binary 3036 if (NumArgs == 1) 3037 goto UnaryMinus; 3038 else 3039 goto BinaryMinus; 3040 break; 3041 3042 case OO_Amp: // '&' is either unary or binary 3043 if (NumArgs == 1) 3044 goto UnaryAmp; 3045 else 3046 goto BinaryAmp; 3047 3048 case OO_PlusPlus: 3049 case OO_MinusMinus: 3050 // C++ [over.built]p3: 3051 // 3052 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3053 // is either volatile or empty, there exist candidate operator 3054 // functions of the form 3055 // 3056 // VQ T& operator++(VQ T&); 3057 // T operator++(VQ T&, int); 3058 // 3059 // C++ [over.built]p4: 3060 // 3061 // For every pair (T, VQ), where T is an arithmetic type other 3062 // than bool, and VQ is either volatile or empty, there exist 3063 // candidate operator functions of the form 3064 // 3065 // VQ T& operator--(VQ T&); 3066 // T operator--(VQ T&, int); 3067 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3068 Arith < NumArithmeticTypes; ++Arith) { 3069 QualType ArithTy = ArithmeticTypes[Arith]; 3070 QualType ParamTypes[2] 3071 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3072 3073 // Non-volatile version. 3074 if (NumArgs == 1) 3075 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3076 else 3077 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3078 3079 // Volatile version 3080 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile()); 3081 if (NumArgs == 1) 3082 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3083 else 3084 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3085 } 3086 3087 // C++ [over.built]p5: 3088 // 3089 // For every pair (T, VQ), where T is a cv-qualified or 3090 // cv-unqualified object type, and VQ is either volatile or 3091 // empty, there exist candidate operator functions of the form 3092 // 3093 // T*VQ& operator++(T*VQ&); 3094 // T*VQ& operator--(T*VQ&); 3095 // T* operator++(T*VQ&, int); 3096 // T* operator--(T*VQ&, int); 3097 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3098 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3099 // Skip pointer types that aren't pointers to object types. 3100 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3101 continue; 3102 3103 QualType ParamTypes[2] = { 3104 Context.getLValueReferenceType(*Ptr), Context.IntTy 3105 }; 3106 3107 // Without volatile 3108 if (NumArgs == 1) 3109 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3110 else 3111 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3112 3113 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 3114 // With volatile 3115 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile()); 3116 if (NumArgs == 1) 3117 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3118 else 3119 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3120 } 3121 } 3122 break; 3123 3124 UnaryStar: 3125 // C++ [over.built]p6: 3126 // For every cv-qualified or cv-unqualified object type T, there 3127 // exist candidate operator functions of the form 3128 // 3129 // T& operator*(T*); 3130 // 3131 // C++ [over.built]p7: 3132 // For every function type T, there exist candidate operator 3133 // functions of the form 3134 // T& operator*(T*); 3135 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3136 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3137 QualType ParamTy = *Ptr; 3138 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3139 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3140 &ParamTy, Args, 1, CandidateSet); 3141 } 3142 break; 3143 3144 UnaryPlus: 3145 // C++ [over.built]p8: 3146 // For every type T, there exist candidate operator functions of 3147 // the form 3148 // 3149 // T* operator+(T*); 3150 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3151 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3152 QualType ParamTy = *Ptr; 3153 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3154 } 3155 3156 // Fall through 3157 3158 UnaryMinus: 3159 // C++ [over.built]p9: 3160 // For every promoted arithmetic type T, there exist candidate 3161 // operator functions of the form 3162 // 3163 // T operator+(T); 3164 // T operator-(T); 3165 for (unsigned Arith = FirstPromotedArithmeticType; 3166 Arith < LastPromotedArithmeticType; ++Arith) { 3167 QualType ArithTy = ArithmeticTypes[Arith]; 3168 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3169 } 3170 break; 3171 3172 case OO_Tilde: 3173 // C++ [over.built]p10: 3174 // For every promoted integral type T, there exist candidate 3175 // operator functions of the form 3176 // 3177 // T operator~(T); 3178 for (unsigned Int = FirstPromotedIntegralType; 3179 Int < LastPromotedIntegralType; ++Int) { 3180 QualType IntTy = ArithmeticTypes[Int]; 3181 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3182 } 3183 break; 3184 3185 case OO_New: 3186 case OO_Delete: 3187 case OO_Array_New: 3188 case OO_Array_Delete: 3189 case OO_Call: 3190 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3191 break; 3192 3193 case OO_Comma: 3194 UnaryAmp: 3195 case OO_Arrow: 3196 // C++ [over.match.oper]p3: 3197 // -- For the operator ',', the unary operator '&', or the 3198 // operator '->', the built-in candidates set is empty. 3199 break; 3200 3201 case OO_EqualEqual: 3202 case OO_ExclaimEqual: 3203 // C++ [over.match.oper]p16: 3204 // For every pointer to member type T, there exist candidate operator 3205 // functions of the form 3206 // 3207 // bool operator==(T,T); 3208 // bool operator!=(T,T); 3209 for (BuiltinCandidateTypeSet::iterator 3210 MemPtr = CandidateTypes.member_pointer_begin(), 3211 MemPtrEnd = CandidateTypes.member_pointer_end(); 3212 MemPtr != MemPtrEnd; 3213 ++MemPtr) { 3214 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3215 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3216 } 3217 3218 // Fall through 3219 3220 case OO_Less: 3221 case OO_Greater: 3222 case OO_LessEqual: 3223 case OO_GreaterEqual: 3224 // C++ [over.built]p15: 3225 // 3226 // For every pointer or enumeration type T, there exist 3227 // candidate operator functions of the form 3228 // 3229 // bool operator<(T, T); 3230 // bool operator>(T, T); 3231 // bool operator<=(T, T); 3232 // bool operator>=(T, T); 3233 // bool operator==(T, T); 3234 // bool operator!=(T, T); 3235 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3236 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3237 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3238 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3239 } 3240 for (BuiltinCandidateTypeSet::iterator Enum 3241 = CandidateTypes.enumeration_begin(); 3242 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3243 QualType ParamTypes[2] = { *Enum, *Enum }; 3244 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3245 } 3246 3247 // Fall through. 3248 isComparison = true; 3249 3250 BinaryPlus: 3251 BinaryMinus: 3252 if (!isComparison) { 3253 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3254 3255 // C++ [over.built]p13: 3256 // 3257 // For every cv-qualified or cv-unqualified object type T 3258 // there exist candidate operator functions of the form 3259 // 3260 // T* operator+(T*, ptrdiff_t); 3261 // T& operator[](T*, ptrdiff_t); [BELOW] 3262 // T* operator-(T*, ptrdiff_t); 3263 // T* operator+(ptrdiff_t, T*); 3264 // T& operator[](ptrdiff_t, T*); [BELOW] 3265 // 3266 // C++ [over.built]p14: 3267 // 3268 // For every T, where T is a pointer to object type, there 3269 // exist candidate operator functions of the form 3270 // 3271 // ptrdiff_t operator-(T, T); 3272 for (BuiltinCandidateTypeSet::iterator Ptr 3273 = CandidateTypes.pointer_begin(); 3274 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3275 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3276 3277 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3278 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3279 3280 if (Op == OO_Plus) { 3281 // T* operator+(ptrdiff_t, T*); 3282 ParamTypes[0] = ParamTypes[1]; 3283 ParamTypes[1] = *Ptr; 3284 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3285 } else { 3286 // ptrdiff_t operator-(T, T); 3287 ParamTypes[1] = *Ptr; 3288 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3289 Args, 2, CandidateSet); 3290 } 3291 } 3292 } 3293 // Fall through 3294 3295 case OO_Slash: 3296 BinaryStar: 3297 Conditional: 3298 // C++ [over.built]p12: 3299 // 3300 // For every pair of promoted arithmetic types L and R, there 3301 // exist candidate operator functions of the form 3302 // 3303 // LR operator*(L, R); 3304 // LR operator/(L, R); 3305 // LR operator+(L, R); 3306 // LR operator-(L, R); 3307 // bool operator<(L, R); 3308 // bool operator>(L, R); 3309 // bool operator<=(L, R); 3310 // bool operator>=(L, R); 3311 // bool operator==(L, R); 3312 // bool operator!=(L, R); 3313 // 3314 // where LR is the result of the usual arithmetic conversions 3315 // between types L and R. 3316 // 3317 // C++ [over.built]p24: 3318 // 3319 // For every pair of promoted arithmetic types L and R, there exist 3320 // candidate operator functions of the form 3321 // 3322 // LR operator?(bool, L, R); 3323 // 3324 // where LR is the result of the usual arithmetic conversions 3325 // between types L and R. 3326 // Our candidates ignore the first parameter. 3327 for (unsigned Left = FirstPromotedArithmeticType; 3328 Left < LastPromotedArithmeticType; ++Left) { 3329 for (unsigned Right = FirstPromotedArithmeticType; 3330 Right < LastPromotedArithmeticType; ++Right) { 3331 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3332 QualType Result 3333 = isComparison 3334 ? Context.BoolTy 3335 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3336 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3337 } 3338 } 3339 break; 3340 3341 case OO_Percent: 3342 BinaryAmp: 3343 case OO_Caret: 3344 case OO_Pipe: 3345 case OO_LessLess: 3346 case OO_GreaterGreater: 3347 // C++ [over.built]p17: 3348 // 3349 // For every pair of promoted integral types L and R, there 3350 // exist candidate operator functions of the form 3351 // 3352 // LR operator%(L, R); 3353 // LR operator&(L, R); 3354 // LR operator^(L, R); 3355 // LR operator|(L, R); 3356 // L operator<<(L, R); 3357 // L operator>>(L, R); 3358 // 3359 // where LR is the result of the usual arithmetic conversions 3360 // between types L and R. 3361 for (unsigned Left = FirstPromotedIntegralType; 3362 Left < LastPromotedIntegralType; ++Left) { 3363 for (unsigned Right = FirstPromotedIntegralType; 3364 Right < LastPromotedIntegralType; ++Right) { 3365 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3366 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3367 ? LandR[0] 3368 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3369 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3370 } 3371 } 3372 break; 3373 3374 case OO_Equal: 3375 // C++ [over.built]p20: 3376 // 3377 // For every pair (T, VQ), where T is an enumeration or 3378 // pointer to member type and VQ is either volatile or 3379 // empty, there exist candidate operator functions of the form 3380 // 3381 // VQ T& operator=(VQ T&, T); 3382 for (BuiltinCandidateTypeSet::iterator 3383 Enum = CandidateTypes.enumeration_begin(), 3384 EnumEnd = CandidateTypes.enumeration_end(); 3385 Enum != EnumEnd; ++Enum) 3386 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3387 CandidateSet); 3388 for (BuiltinCandidateTypeSet::iterator 3389 MemPtr = CandidateTypes.member_pointer_begin(), 3390 MemPtrEnd = CandidateTypes.member_pointer_end(); 3391 MemPtr != MemPtrEnd; ++MemPtr) 3392 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3393 CandidateSet); 3394 // Fall through. 3395 3396 case OO_PlusEqual: 3397 case OO_MinusEqual: 3398 // C++ [over.built]p19: 3399 // 3400 // For every pair (T, VQ), where T is any type and VQ is either 3401 // volatile or empty, there exist candidate operator functions 3402 // of the form 3403 // 3404 // T*VQ& operator=(T*VQ&, T*); 3405 // 3406 // C++ [over.built]p21: 3407 // 3408 // For every pair (T, VQ), where T is a cv-qualified or 3409 // cv-unqualified object type and VQ is either volatile or 3410 // empty, there exist candidate operator functions of the form 3411 // 3412 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3413 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3414 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3415 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3416 QualType ParamTypes[2]; 3417 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3418 3419 // non-volatile version 3420 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3421 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3422 /*IsAssigmentOperator=*/Op == OO_Equal); 3423 3424 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 3425 // volatile version 3426 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile()); 3427 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3428 /*IsAssigmentOperator=*/Op == OO_Equal); 3429 } 3430 } 3431 // Fall through. 3432 3433 case OO_StarEqual: 3434 case OO_SlashEqual: 3435 // C++ [over.built]p18: 3436 // 3437 // For every triple (L, VQ, R), where L is an arithmetic type, 3438 // VQ is either volatile or empty, and R is a promoted 3439 // arithmetic type, there exist candidate operator functions of 3440 // the form 3441 // 3442 // VQ L& operator=(VQ L&, R); 3443 // VQ L& operator*=(VQ L&, R); 3444 // VQ L& operator/=(VQ L&, R); 3445 // VQ L& operator+=(VQ L&, R); 3446 // VQ L& operator-=(VQ L&, R); 3447 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3448 for (unsigned Right = FirstPromotedArithmeticType; 3449 Right < LastPromotedArithmeticType; ++Right) { 3450 QualType ParamTypes[2]; 3451 ParamTypes[1] = ArithmeticTypes[Right]; 3452 3453 // Add this built-in operator as a candidate (VQ is empty). 3454 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3455 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3456 /*IsAssigmentOperator=*/Op == OO_Equal); 3457 3458 // Add this built-in operator as a candidate (VQ is 'volatile'). 3459 ParamTypes[0] = ArithmeticTypes[Left].withVolatile(); 3460 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3461 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3462 /*IsAssigmentOperator=*/Op == OO_Equal); 3463 } 3464 } 3465 break; 3466 3467 case OO_PercentEqual: 3468 case OO_LessLessEqual: 3469 case OO_GreaterGreaterEqual: 3470 case OO_AmpEqual: 3471 case OO_CaretEqual: 3472 case OO_PipeEqual: 3473 // C++ [over.built]p22: 3474 // 3475 // For every triple (L, VQ, R), where L is an integral type, VQ 3476 // is either volatile or empty, and R is a promoted integral 3477 // type, there exist candidate operator functions of the form 3478 // 3479 // VQ L& operator%=(VQ L&, R); 3480 // VQ L& operator<<=(VQ L&, R); 3481 // VQ L& operator>>=(VQ L&, R); 3482 // VQ L& operator&=(VQ L&, R); 3483 // VQ L& operator^=(VQ L&, R); 3484 // VQ L& operator|=(VQ L&, R); 3485 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3486 for (unsigned Right = FirstPromotedIntegralType; 3487 Right < LastPromotedIntegralType; ++Right) { 3488 QualType ParamTypes[2]; 3489 ParamTypes[1] = ArithmeticTypes[Right]; 3490 3491 // Add this built-in operator as a candidate (VQ is empty). 3492 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3493 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3494 3495 // Add this built-in operator as a candidate (VQ is 'volatile'). 3496 ParamTypes[0] = ArithmeticTypes[Left]; 3497 ParamTypes[0].addVolatile(); 3498 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3499 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3500 } 3501 } 3502 break; 3503 3504 case OO_Exclaim: { 3505 // C++ [over.operator]p23: 3506 // 3507 // There also exist candidate operator functions of the form 3508 // 3509 // bool operator!(bool); 3510 // bool operator&&(bool, bool); [BELOW] 3511 // bool operator||(bool, bool); [BELOW] 3512 QualType ParamTy = Context.BoolTy; 3513 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3514 /*IsAssignmentOperator=*/false, 3515 /*NumContextualBoolArguments=*/1); 3516 break; 3517 } 3518 3519 case OO_AmpAmp: 3520 case OO_PipePipe: { 3521 // C++ [over.operator]p23: 3522 // 3523 // There also exist candidate operator functions of the form 3524 // 3525 // bool operator!(bool); [ABOVE] 3526 // bool operator&&(bool, bool); 3527 // bool operator||(bool, bool); 3528 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3529 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3530 /*IsAssignmentOperator=*/false, 3531 /*NumContextualBoolArguments=*/2); 3532 break; 3533 } 3534 3535 case OO_Subscript: 3536 // C++ [over.built]p13: 3537 // 3538 // For every cv-qualified or cv-unqualified object type T there 3539 // exist candidate operator functions of the form 3540 // 3541 // T* operator+(T*, ptrdiff_t); [ABOVE] 3542 // T& operator[](T*, ptrdiff_t); 3543 // T* operator-(T*, ptrdiff_t); [ABOVE] 3544 // T* operator+(ptrdiff_t, T*); [ABOVE] 3545 // T& operator[](ptrdiff_t, T*); 3546 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3547 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3548 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3549 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3550 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3551 3552 // T& operator[](T*, ptrdiff_t) 3553 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3554 3555 // T& operator[](ptrdiff_t, T*); 3556 ParamTypes[0] = ParamTypes[1]; 3557 ParamTypes[1] = *Ptr; 3558 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3559 } 3560 break; 3561 3562 case OO_ArrowStar: 3563 // FIXME: No support for pointer-to-members yet. 3564 break; 3565 3566 case OO_Conditional: 3567 // Note that we don't consider the first argument, since it has been 3568 // contextually converted to bool long ago. The candidates below are 3569 // therefore added as binary. 3570 // 3571 // C++ [over.built]p24: 3572 // For every type T, where T is a pointer or pointer-to-member type, 3573 // there exist candidate operator functions of the form 3574 // 3575 // T operator?(bool, T, T); 3576 // 3577 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3578 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3579 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3580 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3581 } 3582 for (BuiltinCandidateTypeSet::iterator Ptr = 3583 CandidateTypes.member_pointer_begin(), 3584 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3585 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3586 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3587 } 3588 goto Conditional; 3589 } 3590} 3591 3592/// \brief Add function candidates found via argument-dependent lookup 3593/// to the set of overloading candidates. 3594/// 3595/// This routine performs argument-dependent name lookup based on the 3596/// given function name (which may also be an operator name) and adds 3597/// all of the overload candidates found by ADL to the overload 3598/// candidate set (C++ [basic.lookup.argdep]). 3599void 3600Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3601 Expr **Args, unsigned NumArgs, 3602 OverloadCandidateSet& CandidateSet) { 3603 FunctionSet Functions; 3604 3605 // Record all of the function candidates that we've already 3606 // added to the overload set, so that we don't add those same 3607 // candidates a second time. 3608 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3609 CandEnd = CandidateSet.end(); 3610 Cand != CandEnd; ++Cand) 3611 if (Cand->Function) { 3612 Functions.insert(Cand->Function); 3613 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3614 Functions.insert(FunTmpl); 3615 } 3616 3617 ArgumentDependentLookup(Name, Args, NumArgs, Functions); 3618 3619 // Erase all of the candidates we already knew about. 3620 // FIXME: This is suboptimal. Is there a better way? 3621 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3622 CandEnd = CandidateSet.end(); 3623 Cand != CandEnd; ++Cand) 3624 if (Cand->Function) { 3625 Functions.erase(Cand->Function); 3626 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3627 Functions.erase(FunTmpl); 3628 } 3629 3630 // For each of the ADL candidates we found, add it to the overload 3631 // set. 3632 for (FunctionSet::iterator Func = Functions.begin(), 3633 FuncEnd = Functions.end(); 3634 Func != FuncEnd; ++Func) { 3635 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) 3636 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet); 3637 else 3638 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 3639 /*FIXME: explicit args */false, 0, 0, 3640 Args, NumArgs, CandidateSet); 3641 } 3642} 3643 3644/// isBetterOverloadCandidate - Determines whether the first overload 3645/// candidate is a better candidate than the second (C++ 13.3.3p1). 3646bool 3647Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 3648 const OverloadCandidate& Cand2) { 3649 // Define viable functions to be better candidates than non-viable 3650 // functions. 3651 if (!Cand2.Viable) 3652 return Cand1.Viable; 3653 else if (!Cand1.Viable) 3654 return false; 3655 3656 // C++ [over.match.best]p1: 3657 // 3658 // -- if F is a static member function, ICS1(F) is defined such 3659 // that ICS1(F) is neither better nor worse than ICS1(G) for 3660 // any function G, and, symmetrically, ICS1(G) is neither 3661 // better nor worse than ICS1(F). 3662 unsigned StartArg = 0; 3663 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 3664 StartArg = 1; 3665 3666 // C++ [over.match.best]p1: 3667 // A viable function F1 is defined to be a better function than another 3668 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 3669 // conversion sequence than ICSi(F2), and then... 3670 unsigned NumArgs = Cand1.Conversions.size(); 3671 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 3672 bool HasBetterConversion = false; 3673 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 3674 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 3675 Cand2.Conversions[ArgIdx])) { 3676 case ImplicitConversionSequence::Better: 3677 // Cand1 has a better conversion sequence. 3678 HasBetterConversion = true; 3679 break; 3680 3681 case ImplicitConversionSequence::Worse: 3682 // Cand1 can't be better than Cand2. 3683 return false; 3684 3685 case ImplicitConversionSequence::Indistinguishable: 3686 // Do nothing. 3687 break; 3688 } 3689 } 3690 3691 // -- for some argument j, ICSj(F1) is a better conversion sequence than 3692 // ICSj(F2), or, if not that, 3693 if (HasBetterConversion) 3694 return true; 3695 3696 // - F1 is a non-template function and F2 is a function template 3697 // specialization, or, if not that, 3698 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 3699 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 3700 return true; 3701 3702 // -- F1 and F2 are function template specializations, and the function 3703 // template for F1 is more specialized than the template for F2 3704 // according to the partial ordering rules described in 14.5.5.2, or, 3705 // if not that, 3706 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 3707 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 3708 if (FunctionTemplateDecl *BetterTemplate 3709 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 3710 Cand2.Function->getPrimaryTemplate(), 3711 TPOC_Call)) 3712 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 3713 3714 // -- the context is an initialization by user-defined conversion 3715 // (see 8.5, 13.3.1.5) and the standard conversion sequence 3716 // from the return type of F1 to the destination type (i.e., 3717 // the type of the entity being initialized) is a better 3718 // conversion sequence than the standard conversion sequence 3719 // from the return type of F2 to the destination type. 3720 if (Cand1.Function && Cand2.Function && 3721 isa<CXXConversionDecl>(Cand1.Function) && 3722 isa<CXXConversionDecl>(Cand2.Function)) { 3723 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 3724 Cand2.FinalConversion)) { 3725 case ImplicitConversionSequence::Better: 3726 // Cand1 has a better conversion sequence. 3727 return true; 3728 3729 case ImplicitConversionSequence::Worse: 3730 // Cand1 can't be better than Cand2. 3731 return false; 3732 3733 case ImplicitConversionSequence::Indistinguishable: 3734 // Do nothing 3735 break; 3736 } 3737 } 3738 3739 return false; 3740} 3741 3742/// \brief Computes the best viable function (C++ 13.3.3) 3743/// within an overload candidate set. 3744/// 3745/// \param CandidateSet the set of candidate functions. 3746/// 3747/// \param Loc the location of the function name (or operator symbol) for 3748/// which overload resolution occurs. 3749/// 3750/// \param Best f overload resolution was successful or found a deleted 3751/// function, Best points to the candidate function found. 3752/// 3753/// \returns The result of overload resolution. 3754Sema::OverloadingResult 3755Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 3756 SourceLocation Loc, 3757 OverloadCandidateSet::iterator& Best) { 3758 // Find the best viable function. 3759 Best = CandidateSet.end(); 3760 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3761 Cand != CandidateSet.end(); ++Cand) { 3762 if (Cand->Viable) { 3763 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 3764 Best = Cand; 3765 } 3766 } 3767 3768 // If we didn't find any viable functions, abort. 3769 if (Best == CandidateSet.end()) 3770 return OR_No_Viable_Function; 3771 3772 // Make sure that this function is better than every other viable 3773 // function. If not, we have an ambiguity. 3774 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3775 Cand != CandidateSet.end(); ++Cand) { 3776 if (Cand->Viable && 3777 Cand != Best && 3778 !isBetterOverloadCandidate(*Best, *Cand)) { 3779 Best = CandidateSet.end(); 3780 return OR_Ambiguous; 3781 } 3782 } 3783 3784 // Best is the best viable function. 3785 if (Best->Function && 3786 (Best->Function->isDeleted() || 3787 Best->Function->getAttr<UnavailableAttr>())) 3788 return OR_Deleted; 3789 3790 // C++ [basic.def.odr]p2: 3791 // An overloaded function is used if it is selected by overload resolution 3792 // when referred to from a potentially-evaluated expression. [Note: this 3793 // covers calls to named functions (5.2.2), operator overloading 3794 // (clause 13), user-defined conversions (12.3.2), allocation function for 3795 // placement new (5.3.4), as well as non-default initialization (8.5). 3796 if (Best->Function) 3797 MarkDeclarationReferenced(Loc, Best->Function); 3798 return OR_Success; 3799} 3800 3801/// PrintOverloadCandidates - When overload resolution fails, prints 3802/// diagnostic messages containing the candidates in the candidate 3803/// set. If OnlyViable is true, only viable candidates will be printed. 3804void 3805Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 3806 bool OnlyViable) { 3807 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3808 LastCand = CandidateSet.end(); 3809 for (; Cand != LastCand; ++Cand) { 3810 if (Cand->Viable || !OnlyViable) { 3811 if (Cand->Function) { 3812 if (Cand->Function->isDeleted() || 3813 Cand->Function->getAttr<UnavailableAttr>()) { 3814 // Deleted or "unavailable" function. 3815 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 3816 << Cand->Function->isDeleted(); 3817 } else { 3818 // Normal function 3819 // FIXME: Give a better reason! 3820 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 3821 } 3822 } else if (Cand->IsSurrogate) { 3823 // Desugar the type of the surrogate down to a function type, 3824 // retaining as many typedefs as possible while still showing 3825 // the function type (and, therefore, its parameter types). 3826 QualType FnType = Cand->Surrogate->getConversionType(); 3827 bool isLValueReference = false; 3828 bool isRValueReference = false; 3829 bool isPointer = false; 3830 if (const LValueReferenceType *FnTypeRef = 3831 FnType->getAs<LValueReferenceType>()) { 3832 FnType = FnTypeRef->getPointeeType(); 3833 isLValueReference = true; 3834 } else if (const RValueReferenceType *FnTypeRef = 3835 FnType->getAs<RValueReferenceType>()) { 3836 FnType = FnTypeRef->getPointeeType(); 3837 isRValueReference = true; 3838 } 3839 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 3840 FnType = FnTypePtr->getPointeeType(); 3841 isPointer = true; 3842 } 3843 // Desugar down to a function type. 3844 FnType = QualType(FnType->getAsFunctionType(), 0); 3845 // Reconstruct the pointer/reference as appropriate. 3846 if (isPointer) FnType = Context.getPointerType(FnType); 3847 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 3848 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 3849 3850 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 3851 << FnType; 3852 } else { 3853 // FIXME: We need to get the identifier in here 3854 // FIXME: Do we want the error message to point at the operator? 3855 // (built-ins won't have a location) 3856 QualType FnType 3857 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy, 3858 Cand->BuiltinTypes.ParamTypes, 3859 Cand->Conversions.size(), 3860 false, 0); 3861 3862 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType; 3863 } 3864 } 3865 } 3866} 3867 3868/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 3869/// an overloaded function (C++ [over.over]), where @p From is an 3870/// expression with overloaded function type and @p ToType is the type 3871/// we're trying to resolve to. For example: 3872/// 3873/// @code 3874/// int f(double); 3875/// int f(int); 3876/// 3877/// int (*pfd)(double) = f; // selects f(double) 3878/// @endcode 3879/// 3880/// This routine returns the resulting FunctionDecl if it could be 3881/// resolved, and NULL otherwise. When @p Complain is true, this 3882/// routine will emit diagnostics if there is an error. 3883FunctionDecl * 3884Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 3885 bool Complain) { 3886 QualType FunctionType = ToType; 3887 bool IsMember = false; 3888 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 3889 FunctionType = ToTypePtr->getPointeeType(); 3890 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 3891 FunctionType = ToTypeRef->getPointeeType(); 3892 else if (const MemberPointerType *MemTypePtr = 3893 ToType->getAs<MemberPointerType>()) { 3894 FunctionType = MemTypePtr->getPointeeType(); 3895 IsMember = true; 3896 } 3897 3898 // We only look at pointers or references to functions. 3899 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 3900 if (!FunctionType->isFunctionType()) 3901 return 0; 3902 3903 // Find the actual overloaded function declaration. 3904 OverloadedFunctionDecl *Ovl = 0; 3905 3906 // C++ [over.over]p1: 3907 // [...] [Note: any redundant set of parentheses surrounding the 3908 // overloaded function name is ignored (5.1). ] 3909 Expr *OvlExpr = From->IgnoreParens(); 3910 3911 // C++ [over.over]p1: 3912 // [...] The overloaded function name can be preceded by the & 3913 // operator. 3914 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 3915 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 3916 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 3917 } 3918 3919 // Try to dig out the overloaded function. 3920 FunctionTemplateDecl *FunctionTemplate = 0; 3921 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) { 3922 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 3923 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl()); 3924 } 3925 3926 // If there's no overloaded function declaration or function template, 3927 // we're done. 3928 if (!Ovl && !FunctionTemplate) 3929 return 0; 3930 3931 OverloadIterator Fun; 3932 if (Ovl) 3933 Fun = Ovl; 3934 else 3935 Fun = FunctionTemplate; 3936 3937 // Look through all of the overloaded functions, searching for one 3938 // whose type matches exactly. 3939 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 3940 3941 bool FoundNonTemplateFunction = false; 3942 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) { 3943 // C++ [over.over]p3: 3944 // Non-member functions and static member functions match 3945 // targets of type "pointer-to-function" or "reference-to-function." 3946 // Nonstatic member functions match targets of 3947 // type "pointer-to-member-function." 3948 // Note that according to DR 247, the containing class does not matter. 3949 3950 if (FunctionTemplateDecl *FunctionTemplate 3951 = dyn_cast<FunctionTemplateDecl>(*Fun)) { 3952 if (CXXMethodDecl *Method 3953 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 3954 // Skip non-static function templates when converting to pointer, and 3955 // static when converting to member pointer. 3956 if (Method->isStatic() == IsMember) 3957 continue; 3958 } else if (IsMember) 3959 continue; 3960 3961 // C++ [over.over]p2: 3962 // If the name is a function template, template argument deduction is 3963 // done (14.8.2.2), and if the argument deduction succeeds, the 3964 // resulting template argument list is used to generate a single 3965 // function template specialization, which is added to the set of 3966 // overloaded functions considered. 3967 FunctionDecl *Specialization = 0; 3968 TemplateDeductionInfo Info(Context); 3969 if (TemplateDeductionResult Result 3970 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false, 3971 /*FIXME:*/0, /*FIXME:*/0, 3972 FunctionType, Specialization, Info)) { 3973 // FIXME: make a note of the failed deduction for diagnostics. 3974 (void)Result; 3975 } else { 3976 assert(FunctionType 3977 == Context.getCanonicalType(Specialization->getType())); 3978 Matches.insert( 3979 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 3980 } 3981 } 3982 3983 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { 3984 // Skip non-static functions when converting to pointer, and static 3985 // when converting to member pointer. 3986 if (Method->isStatic() == IsMember) 3987 continue; 3988 } else if (IsMember) 3989 continue; 3990 3991 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) { 3992 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 3993 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl())); 3994 FoundNonTemplateFunction = true; 3995 } 3996 } 3997 } 3998 3999 // If there were 0 or 1 matches, we're done. 4000 if (Matches.empty()) 4001 return 0; 4002 else if (Matches.size() == 1) 4003 return *Matches.begin(); 4004 4005 // C++ [over.over]p4: 4006 // If more than one function is selected, [...] 4007 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4008 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4009 if (FoundNonTemplateFunction) { 4010 // [...] any function template specializations in the set are 4011 // eliminated if the set also contains a non-template function, [...] 4012 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4013 if ((*M)->getPrimaryTemplate() == 0) 4014 RemainingMatches.push_back(*M); 4015 } else { 4016 // [...] and any given function template specialization F1 is 4017 // eliminated if the set contains a second function template 4018 // specialization whose function template is more specialized 4019 // than the function template of F1 according to the partial 4020 // ordering rules of 14.5.5.2. 4021 4022 // The algorithm specified above is quadratic. We instead use a 4023 // two-pass algorithm (similar to the one used to identify the 4024 // best viable function in an overload set) that identifies the 4025 // best function template (if it exists). 4026 MatchIter Best = Matches.begin(); 4027 MatchIter M = Best, MEnd = Matches.end(); 4028 // Find the most specialized function. 4029 for (++M; M != MEnd; ++M) 4030 if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(), 4031 (*Best)->getPrimaryTemplate(), 4032 TPOC_Other) 4033 == (*M)->getPrimaryTemplate()) 4034 Best = M; 4035 4036 // Determine whether this function template is more specialized 4037 // that all of the others. 4038 bool Ambiguous = false; 4039 for (M = Matches.begin(); M != MEnd; ++M) { 4040 if (M != Best && 4041 getMoreSpecializedTemplate((*M)->getPrimaryTemplate(), 4042 (*Best)->getPrimaryTemplate(), 4043 TPOC_Other) 4044 != (*Best)->getPrimaryTemplate()) { 4045 Ambiguous = true; 4046 break; 4047 } 4048 } 4049 4050 // If one function template was more specialized than all of the 4051 // others, return it. 4052 if (!Ambiguous) 4053 return *Best; 4054 4055 // We could not find a most-specialized function template, which 4056 // is equivalent to having a set of function templates with more 4057 // than one such template. So, we place all of the function 4058 // templates into the set of remaining matches and produce a 4059 // diagnostic below. FIXME: we could perform the quadratic 4060 // algorithm here, pruning the result set to limit the number of 4061 // candidates output later. 4062 RemainingMatches.append(Matches.begin(), Matches.end()); 4063 } 4064 4065 // [...] After such eliminations, if any, there shall remain exactly one 4066 // selected function. 4067 if (RemainingMatches.size() == 1) 4068 return RemainingMatches.front(); 4069 4070 // FIXME: We should probably return the same thing that BestViableFunction 4071 // returns (even if we issue the diagnostics here). 4072 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4073 << RemainingMatches[0]->getDeclName(); 4074 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4075 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4076 return 0; 4077} 4078 4079/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4080/// (which eventually refers to the declaration Func) and the call 4081/// arguments Args/NumArgs, attempt to resolve the function call down 4082/// to a specific function. If overload resolution succeeds, returns 4083/// the function declaration produced by overload 4084/// resolution. Otherwise, emits diagnostics, deletes all of the 4085/// arguments and Fn, and returns NULL. 4086FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, 4087 DeclarationName UnqualifiedName, 4088 bool HasExplicitTemplateArgs, 4089 const TemplateArgument *ExplicitTemplateArgs, 4090 unsigned NumExplicitTemplateArgs, 4091 SourceLocation LParenLoc, 4092 Expr **Args, unsigned NumArgs, 4093 SourceLocation *CommaLocs, 4094 SourceLocation RParenLoc, 4095 bool &ArgumentDependentLookup) { 4096 OverloadCandidateSet CandidateSet; 4097 4098 // Add the functions denoted by Callee to the set of candidate 4099 // functions. While we're doing so, track whether argument-dependent 4100 // lookup still applies, per: 4101 // 4102 // C++0x [basic.lookup.argdep]p3: 4103 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4104 // and let Y be the lookup set produced by argument dependent 4105 // lookup (defined as follows). If X contains 4106 // 4107 // -- a declaration of a class member, or 4108 // 4109 // -- a block-scope function declaration that is not a 4110 // using-declaration, or 4111 // 4112 // -- a declaration that is neither a function or a function 4113 // template 4114 // 4115 // then Y is empty. 4116 if (OverloadedFunctionDecl *Ovl 4117 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) { 4118 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 4119 FuncEnd = Ovl->function_end(); 4120 Func != FuncEnd; ++Func) { 4121 DeclContext *Ctx = 0; 4122 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) { 4123 if (HasExplicitTemplateArgs) 4124 continue; 4125 4126 AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet); 4127 Ctx = FunDecl->getDeclContext(); 4128 } else { 4129 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func); 4130 AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs, 4131 ExplicitTemplateArgs, 4132 NumExplicitTemplateArgs, 4133 Args, NumArgs, CandidateSet); 4134 Ctx = FunTmpl->getDeclContext(); 4135 } 4136 4137 4138 if (Ctx->isRecord() || Ctx->isFunctionOrMethod()) 4139 ArgumentDependentLookup = false; 4140 } 4141 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) { 4142 assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); 4143 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet); 4144 4145 if (Func->getDeclContext()->isRecord() || 4146 Func->getDeclContext()->isFunctionOrMethod()) 4147 ArgumentDependentLookup = false; 4148 } else if (FunctionTemplateDecl *FuncTemplate 4149 = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) { 4150 AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, 4151 ExplicitTemplateArgs, 4152 NumExplicitTemplateArgs, 4153 Args, NumArgs, CandidateSet); 4154 4155 if (FuncTemplate->getDeclContext()->isRecord()) 4156 ArgumentDependentLookup = false; 4157 } 4158 4159 if (Callee) 4160 UnqualifiedName = Callee->getDeclName(); 4161 4162 // FIXME: Pass explicit template arguments through for ADL 4163 if (ArgumentDependentLookup) 4164 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4165 CandidateSet); 4166 4167 OverloadCandidateSet::iterator Best; 4168 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4169 case OR_Success: 4170 return Best->Function; 4171 4172 case OR_No_Viable_Function: 4173 Diag(Fn->getSourceRange().getBegin(), 4174 diag::err_ovl_no_viable_function_in_call) 4175 << UnqualifiedName << Fn->getSourceRange(); 4176 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4177 break; 4178 4179 case OR_Ambiguous: 4180 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4181 << UnqualifiedName << Fn->getSourceRange(); 4182 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4183 break; 4184 4185 case OR_Deleted: 4186 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4187 << Best->Function->isDeleted() 4188 << UnqualifiedName 4189 << Fn->getSourceRange(); 4190 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4191 break; 4192 } 4193 4194 // Overload resolution failed. Destroy all of the subexpressions and 4195 // return NULL. 4196 Fn->Destroy(Context); 4197 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4198 Args[Arg]->Destroy(Context); 4199 return 0; 4200} 4201 4202/// \brief Create a unary operation that may resolve to an overloaded 4203/// operator. 4204/// 4205/// \param OpLoc The location of the operator itself (e.g., '*'). 4206/// 4207/// \param OpcIn The UnaryOperator::Opcode that describes this 4208/// operator. 4209/// 4210/// \param Functions The set of non-member functions that will be 4211/// considered by overload resolution. The caller needs to build this 4212/// set based on the context using, e.g., 4213/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4214/// set should not contain any member functions; those will be added 4215/// by CreateOverloadedUnaryOp(). 4216/// 4217/// \param input The input argument. 4218Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4219 unsigned OpcIn, 4220 FunctionSet &Functions, 4221 ExprArg input) { 4222 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4223 Expr *Input = (Expr *)input.get(); 4224 4225 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4226 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4227 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4228 4229 Expr *Args[2] = { Input, 0 }; 4230 unsigned NumArgs = 1; 4231 4232 // For post-increment and post-decrement, add the implicit '0' as 4233 // the second argument, so that we know this is a post-increment or 4234 // post-decrement. 4235 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4236 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4237 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4238 SourceLocation()); 4239 NumArgs = 2; 4240 } 4241 4242 if (Input->isTypeDependent()) { 4243 OverloadedFunctionDecl *Overloads 4244 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4245 for (FunctionSet::iterator Func = Functions.begin(), 4246 FuncEnd = Functions.end(); 4247 Func != FuncEnd; ++Func) 4248 Overloads->addOverload(*Func); 4249 4250 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4251 OpLoc, false, false); 4252 4253 input.release(); 4254 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4255 &Args[0], NumArgs, 4256 Context.DependentTy, 4257 OpLoc)); 4258 } 4259 4260 // Build an empty overload set. 4261 OverloadCandidateSet CandidateSet; 4262 4263 // Add the candidates from the given function set. 4264 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4265 4266 // Add operator candidates that are member functions. 4267 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4268 4269 // Add builtin operator candidates. 4270 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet); 4271 4272 // Perform overload resolution. 4273 OverloadCandidateSet::iterator Best; 4274 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4275 case OR_Success: { 4276 // We found a built-in operator or an overloaded operator. 4277 FunctionDecl *FnDecl = Best->Function; 4278 4279 if (FnDecl) { 4280 // We matched an overloaded operator. Build a call to that 4281 // operator. 4282 4283 // Convert the arguments. 4284 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4285 if (PerformObjectArgumentInitialization(Input, Method)) 4286 return ExprError(); 4287 } else { 4288 // Convert the arguments. 4289 if (PerformCopyInitialization(Input, 4290 FnDecl->getParamDecl(0)->getType(), 4291 "passing")) 4292 return ExprError(); 4293 } 4294 4295 // Determine the result type 4296 QualType ResultTy 4297 = FnDecl->getType()->getAsFunctionType()->getResultType(); 4298 ResultTy = ResultTy.getNonReferenceType(); 4299 4300 // Build the actual expression node. 4301 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4302 SourceLocation()); 4303 UsualUnaryConversions(FnExpr); 4304 4305 input.release(); 4306 4307 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4308 &Input, 1, ResultTy, OpLoc); 4309 return MaybeBindToTemporary(CE); 4310 } else { 4311 // We matched a built-in operator. Convert the arguments, then 4312 // break out so that we will build the appropriate built-in 4313 // operator node. 4314 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4315 Best->Conversions[0], "passing")) 4316 return ExprError(); 4317 4318 break; 4319 } 4320 } 4321 4322 case OR_No_Viable_Function: 4323 // No viable function; fall through to handling this as a 4324 // built-in operator, which will produce an error message for us. 4325 break; 4326 4327 case OR_Ambiguous: 4328 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4329 << UnaryOperator::getOpcodeStr(Opc) 4330 << Input->getSourceRange(); 4331 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4332 return ExprError(); 4333 4334 case OR_Deleted: 4335 Diag(OpLoc, diag::err_ovl_deleted_oper) 4336 << Best->Function->isDeleted() 4337 << UnaryOperator::getOpcodeStr(Opc) 4338 << Input->getSourceRange(); 4339 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4340 return ExprError(); 4341 } 4342 4343 // Either we found no viable overloaded operator or we matched a 4344 // built-in operator. In either case, fall through to trying to 4345 // build a built-in operation. 4346 input.release(); 4347 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4348} 4349 4350/// \brief Create a binary operation that may resolve to an overloaded 4351/// operator. 4352/// 4353/// \param OpLoc The location of the operator itself (e.g., '+'). 4354/// 4355/// \param OpcIn The BinaryOperator::Opcode that describes this 4356/// operator. 4357/// 4358/// \param Functions The set of non-member functions that will be 4359/// considered by overload resolution. The caller needs to build this 4360/// set based on the context using, e.g., 4361/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4362/// set should not contain any member functions; those will be added 4363/// by CreateOverloadedBinOp(). 4364/// 4365/// \param LHS Left-hand argument. 4366/// \param RHS Right-hand argument. 4367Sema::OwningExprResult 4368Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4369 unsigned OpcIn, 4370 FunctionSet &Functions, 4371 Expr *LHS, Expr *RHS) { 4372 Expr *Args[2] = { LHS, RHS }; 4373 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4374 4375 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4376 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4377 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4378 4379 // If either side is type-dependent, create an appropriate dependent 4380 // expression. 4381 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4382 // .* cannot be overloaded. 4383 if (Opc == BinaryOperator::PtrMemD) 4384 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4385 Context.DependentTy, OpLoc)); 4386 4387 OverloadedFunctionDecl *Overloads 4388 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4389 for (FunctionSet::iterator Func = Functions.begin(), 4390 FuncEnd = Functions.end(); 4391 Func != FuncEnd; ++Func) 4392 Overloads->addOverload(*Func); 4393 4394 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4395 OpLoc, false, false); 4396 4397 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4398 Args, 2, 4399 Context.DependentTy, 4400 OpLoc)); 4401 } 4402 4403 // If this is the .* operator, which is not overloadable, just 4404 // create a built-in binary operator. 4405 if (Opc == BinaryOperator::PtrMemD) 4406 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4407 4408 // If this is one of the assignment operators, we only perform 4409 // overload resolution if the left-hand side is a class or 4410 // enumeration type (C++ [expr.ass]p3). 4411 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && 4412 !Args[0]->getType()->isOverloadableType()) 4413 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4414 4415 // Build an empty overload set. 4416 OverloadCandidateSet CandidateSet; 4417 4418 // Add the candidates from the given function set. 4419 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4420 4421 // Add operator candidates that are member functions. 4422 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4423 4424 // Add builtin operator candidates. 4425 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet); 4426 4427 // Perform overload resolution. 4428 OverloadCandidateSet::iterator Best; 4429 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4430 case OR_Success: { 4431 // We found a built-in operator or an overloaded operator. 4432 FunctionDecl *FnDecl = Best->Function; 4433 4434 if (FnDecl) { 4435 // We matched an overloaded operator. Build a call to that 4436 // operator. 4437 4438 // Convert the arguments. 4439 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4440 if (PerformObjectArgumentInitialization(Args[0], Method) || 4441 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4442 "passing")) 4443 return ExprError(); 4444 } else { 4445 // Convert the arguments. 4446 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4447 "passing") || 4448 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4449 "passing")) 4450 return ExprError(); 4451 } 4452 4453 // Determine the result type 4454 QualType ResultTy 4455 = FnDecl->getType()->getAsFunctionType()->getResultType(); 4456 ResultTy = ResultTy.getNonReferenceType(); 4457 4458 // Build the actual expression node. 4459 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4460 OpLoc); 4461 UsualUnaryConversions(FnExpr); 4462 4463 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4464 Args, 2, ResultTy, OpLoc); 4465 return MaybeBindToTemporary(CE); 4466 } else { 4467 // We matched a built-in operator. Convert the arguments, then 4468 // break out so that we will build the appropriate built-in 4469 // operator node. 4470 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4471 Best->Conversions[0], "passing") || 4472 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4473 Best->Conversions[1], "passing")) 4474 return ExprError(); 4475 4476 break; 4477 } 4478 } 4479 4480 case OR_No_Viable_Function: 4481 // For class as left operand for assignment or compound assigment operator 4482 // do not fall through to handling in built-in, but report that no overloaded 4483 // assignment operator found 4484 if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4485 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4486 << BinaryOperator::getOpcodeStr(Opc) 4487 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4488 return ExprError(); 4489 } 4490 // No viable function; fall through to handling this as a 4491 // built-in operator, which will produce an error message for us. 4492 break; 4493 4494 case OR_Ambiguous: 4495 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4496 << BinaryOperator::getOpcodeStr(Opc) 4497 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4498 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4499 return ExprError(); 4500 4501 case OR_Deleted: 4502 Diag(OpLoc, diag::err_ovl_deleted_oper) 4503 << Best->Function->isDeleted() 4504 << BinaryOperator::getOpcodeStr(Opc) 4505 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4506 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4507 return ExprError(); 4508 } 4509 4510 // Either we found no viable overloaded operator or we matched a 4511 // built-in operator. In either case, try to build a built-in 4512 // operation. 4513 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4514} 4515 4516/// BuildCallToMemberFunction - Build a call to a member 4517/// function. MemExpr is the expression that refers to the member 4518/// function (and includes the object parameter), Args/NumArgs are the 4519/// arguments to the function call (not including the object 4520/// parameter). The caller needs to validate that the member 4521/// expression refers to a member function or an overloaded member 4522/// function. 4523Sema::ExprResult 4524Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 4525 SourceLocation LParenLoc, Expr **Args, 4526 unsigned NumArgs, SourceLocation *CommaLocs, 4527 SourceLocation RParenLoc) { 4528 // Dig out the member expression. This holds both the object 4529 // argument and the member function we're referring to. 4530 MemberExpr *MemExpr = 0; 4531 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 4532 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 4533 else 4534 MemExpr = dyn_cast<MemberExpr>(MemExprE); 4535 assert(MemExpr && "Building member call without member expression"); 4536 4537 // Extract the object argument. 4538 Expr *ObjectArg = MemExpr->getBase(); 4539 4540 CXXMethodDecl *Method = 0; 4541 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 4542 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) { 4543 // Add overload candidates 4544 OverloadCandidateSet CandidateSet; 4545 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName(); 4546 4547 for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd; 4548 Func != FuncEnd; ++Func) { 4549 if ((Method = dyn_cast<CXXMethodDecl>(*Func))) 4550 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 4551 /*SuppressUserConversions=*/false); 4552 else 4553 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func), 4554 MemExpr->hasExplicitTemplateArgumentList(), 4555 MemExpr->getTemplateArgs(), 4556 MemExpr->getNumTemplateArgs(), 4557 ObjectArg, Args, NumArgs, 4558 CandidateSet, 4559 /*SuppressUsedConversions=*/false); 4560 } 4561 4562 OverloadCandidateSet::iterator Best; 4563 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { 4564 case OR_Success: 4565 Method = cast<CXXMethodDecl>(Best->Function); 4566 break; 4567 4568 case OR_No_Viable_Function: 4569 Diag(MemExpr->getSourceRange().getBegin(), 4570 diag::err_ovl_no_viable_member_function_in_call) 4571 << DeclName << MemExprE->getSourceRange(); 4572 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4573 // FIXME: Leaking incoming expressions! 4574 return true; 4575 4576 case OR_Ambiguous: 4577 Diag(MemExpr->getSourceRange().getBegin(), 4578 diag::err_ovl_ambiguous_member_call) 4579 << DeclName << MemExprE->getSourceRange(); 4580 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4581 // FIXME: Leaking incoming expressions! 4582 return true; 4583 4584 case OR_Deleted: 4585 Diag(MemExpr->getSourceRange().getBegin(), 4586 diag::err_ovl_deleted_member_call) 4587 << Best->Function->isDeleted() 4588 << DeclName << MemExprE->getSourceRange(); 4589 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4590 // FIXME: Leaking incoming expressions! 4591 return true; 4592 } 4593 4594 FixOverloadedFunctionReference(MemExpr, Method); 4595 } else { 4596 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 4597 } 4598 4599 assert(Method && "Member call to something that isn't a method?"); 4600 ExprOwningPtr<CXXMemberCallExpr> 4601 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 4602 NumArgs, 4603 Method->getResultType().getNonReferenceType(), 4604 RParenLoc)); 4605 4606 // Convert the object argument (for a non-static member function call). 4607 if (!Method->isStatic() && 4608 PerformObjectArgumentInitialization(ObjectArg, Method)) 4609 return true; 4610 MemExpr->setBase(ObjectArg); 4611 4612 // Convert the rest of the arguments 4613 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 4614 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 4615 RParenLoc)) 4616 return true; 4617 4618 if (CheckFunctionCall(Method, TheCall.get())) 4619 return true; 4620 4621 return MaybeBindToTemporary(TheCall.release()).release(); 4622} 4623 4624/// BuildCallToObjectOfClassType - Build a call to an object of class 4625/// type (C++ [over.call.object]), which can end up invoking an 4626/// overloaded function call operator (@c operator()) or performing a 4627/// user-defined conversion on the object argument. 4628Sema::ExprResult 4629Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 4630 SourceLocation LParenLoc, 4631 Expr **Args, unsigned NumArgs, 4632 SourceLocation *CommaLocs, 4633 SourceLocation RParenLoc) { 4634 assert(Object->getType()->isRecordType() && "Requires object type argument"); 4635 const RecordType *Record = Object->getType()->getAs<RecordType>(); 4636 4637 // C++ [over.call.object]p1: 4638 // If the primary-expression E in the function call syntax 4639 // evaluates to a class object of type "cv T", then the set of 4640 // candidate functions includes at least the function call 4641 // operators of T. The function call operators of T are obtained by 4642 // ordinary lookup of the name operator() in the context of 4643 // (E).operator(). 4644 OverloadCandidateSet CandidateSet; 4645 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 4646 DeclContext::lookup_const_iterator Oper, OperEnd; 4647 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName); 4648 Oper != OperEnd; ++Oper) 4649 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 4650 CandidateSet, /*SuppressUserConversions=*/false); 4651 4652 // C++ [over.call.object]p2: 4653 // In addition, for each conversion function declared in T of the 4654 // form 4655 // 4656 // operator conversion-type-id () cv-qualifier; 4657 // 4658 // where cv-qualifier is the same cv-qualification as, or a 4659 // greater cv-qualification than, cv, and where conversion-type-id 4660 // denotes the type "pointer to function of (P1,...,Pn) returning 4661 // R", or the type "reference to pointer to function of 4662 // (P1,...,Pn) returning R", or the type "reference to function 4663 // of (P1,...,Pn) returning R", a surrogate call function [...] 4664 // is also considered as a candidate function. Similarly, 4665 // surrogate call functions are added to the set of candidate 4666 // functions for each conversion function declared in an 4667 // accessible base class provided the function is not hidden 4668 // within T by another intervening declaration. 4669 4670 if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) { 4671 // FIXME: Look in base classes for more conversion operators! 4672 OverloadedFunctionDecl *Conversions 4673 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 4674 for (OverloadedFunctionDecl::function_iterator 4675 Func = Conversions->function_begin(), 4676 FuncEnd = Conversions->function_end(); 4677 Func != FuncEnd; ++Func) { 4678 CXXConversionDecl *Conv; 4679 FunctionTemplateDecl *ConvTemplate; 4680 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 4681 4682 // Skip over templated conversion functions; they aren't 4683 // surrogates. 4684 if (ConvTemplate) 4685 continue; 4686 4687 // Strip the reference type (if any) and then the pointer type (if 4688 // any) to get down to what might be a function type. 4689 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 4690 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 4691 ConvType = ConvPtrType->getPointeeType(); 4692 4693 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType()) 4694 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 4695 } 4696 } 4697 4698 // Perform overload resolution. 4699 OverloadCandidateSet::iterator Best; 4700 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 4701 case OR_Success: 4702 // Overload resolution succeeded; we'll build the appropriate call 4703 // below. 4704 break; 4705 4706 case OR_No_Viable_Function: 4707 Diag(Object->getSourceRange().getBegin(), 4708 diag::err_ovl_no_viable_object_call) 4709 << Object->getType() << Object->getSourceRange(); 4710 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4711 break; 4712 4713 case OR_Ambiguous: 4714 Diag(Object->getSourceRange().getBegin(), 4715 diag::err_ovl_ambiguous_object_call) 4716 << Object->getType() << Object->getSourceRange(); 4717 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4718 break; 4719 4720 case OR_Deleted: 4721 Diag(Object->getSourceRange().getBegin(), 4722 diag::err_ovl_deleted_object_call) 4723 << Best->Function->isDeleted() 4724 << Object->getType() << Object->getSourceRange(); 4725 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4726 break; 4727 } 4728 4729 if (Best == CandidateSet.end()) { 4730 // We had an error; delete all of the subexpressions and return 4731 // the error. 4732 Object->Destroy(Context); 4733 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4734 Args[ArgIdx]->Destroy(Context); 4735 return true; 4736 } 4737 4738 if (Best->Function == 0) { 4739 // Since there is no function declaration, this is one of the 4740 // surrogate candidates. Dig out the conversion function. 4741 CXXConversionDecl *Conv 4742 = cast<CXXConversionDecl>( 4743 Best->Conversions[0].UserDefined.ConversionFunction); 4744 4745 // We selected one of the surrogate functions that converts the 4746 // object parameter to a function pointer. Perform the conversion 4747 // on the object argument, then let ActOnCallExpr finish the job. 4748 // FIXME: Represent the user-defined conversion in the AST! 4749 ImpCastExprToType(Object, 4750 Conv->getConversionType().getNonReferenceType(), 4751 CastExpr::CK_Unknown, 4752 Conv->getConversionType()->isLValueReferenceType()); 4753 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc, 4754 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 4755 CommaLocs, RParenLoc).release(); 4756 } 4757 4758 // We found an overloaded operator(). Build a CXXOperatorCallExpr 4759 // that calls this method, using Object for the implicit object 4760 // parameter and passing along the remaining arguments. 4761 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 4762 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType(); 4763 4764 unsigned NumArgsInProto = Proto->getNumArgs(); 4765 unsigned NumArgsToCheck = NumArgs; 4766 4767 // Build the full argument list for the method call (the 4768 // implicit object parameter is placed at the beginning of the 4769 // list). 4770 Expr **MethodArgs; 4771 if (NumArgs < NumArgsInProto) { 4772 NumArgsToCheck = NumArgsInProto; 4773 MethodArgs = new Expr*[NumArgsInProto + 1]; 4774 } else { 4775 MethodArgs = new Expr*[NumArgs + 1]; 4776 } 4777 MethodArgs[0] = Object; 4778 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4779 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 4780 4781 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 4782 SourceLocation()); 4783 UsualUnaryConversions(NewFn); 4784 4785 // Once we've built TheCall, all of the expressions are properly 4786 // owned. 4787 QualType ResultTy = Method->getResultType().getNonReferenceType(); 4788 ExprOwningPtr<CXXOperatorCallExpr> 4789 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 4790 MethodArgs, NumArgs + 1, 4791 ResultTy, RParenLoc)); 4792 delete [] MethodArgs; 4793 4794 // We may have default arguments. If so, we need to allocate more 4795 // slots in the call for them. 4796 if (NumArgs < NumArgsInProto) 4797 TheCall->setNumArgs(Context, NumArgsInProto + 1); 4798 else if (NumArgs > NumArgsInProto) 4799 NumArgsToCheck = NumArgsInProto; 4800 4801 bool IsError = false; 4802 4803 // Initialize the implicit object parameter. 4804 IsError |= PerformObjectArgumentInitialization(Object, Method); 4805 TheCall->setArg(0, Object); 4806 4807 4808 // Check the argument types. 4809 for (unsigned i = 0; i != NumArgsToCheck; i++) { 4810 Expr *Arg; 4811 if (i < NumArgs) { 4812 Arg = Args[i]; 4813 4814 // Pass the argument. 4815 QualType ProtoArgType = Proto->getArgType(i); 4816 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 4817 } else { 4818 Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i)); 4819 } 4820 4821 TheCall->setArg(i + 1, Arg); 4822 } 4823 4824 // If this is a variadic call, handle args passed through "...". 4825 if (Proto->isVariadic()) { 4826 // Promote the arguments (C99 6.5.2.2p7). 4827 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 4828 Expr *Arg = Args[i]; 4829 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 4830 TheCall->setArg(i + 1, Arg); 4831 } 4832 } 4833 4834 if (IsError) return true; 4835 4836 if (CheckFunctionCall(Method, TheCall.get())) 4837 return true; 4838 4839 return MaybeBindToTemporary(TheCall.release()).release(); 4840} 4841 4842/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 4843/// (if one exists), where @c Base is an expression of class type and 4844/// @c Member is the name of the member we're trying to find. 4845Sema::OwningExprResult 4846Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 4847 Expr *Base = static_cast<Expr *>(BaseIn.get()); 4848 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 4849 4850 // C++ [over.ref]p1: 4851 // 4852 // [...] An expression x->m is interpreted as (x.operator->())->m 4853 // for a class object x of type T if T::operator->() exists and if 4854 // the operator is selected as the best match function by the 4855 // overload resolution mechanism (13.3). 4856 // FIXME: look in base classes. 4857 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 4858 OverloadCandidateSet CandidateSet; 4859 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 4860 4861 LookupResult R = LookupQualifiedName(BaseRecord->getDecl(), OpName, 4862 LookupOrdinaryName); 4863 4864 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 4865 Oper != OperEnd; ++Oper) 4866 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 4867 /*SuppressUserConversions=*/false); 4868 4869 // Perform overload resolution. 4870 OverloadCandidateSet::iterator Best; 4871 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4872 case OR_Success: 4873 // Overload resolution succeeded; we'll build the call below. 4874 break; 4875 4876 case OR_No_Viable_Function: 4877 if (CandidateSet.empty()) 4878 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 4879 << Base->getType() << Base->getSourceRange(); 4880 else 4881 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4882 << "operator->" << Base->getSourceRange(); 4883 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4884 return ExprError(); 4885 4886 case OR_Ambiguous: 4887 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4888 << "->" << Base->getSourceRange(); 4889 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4890 return ExprError(); 4891 4892 case OR_Deleted: 4893 Diag(OpLoc, diag::err_ovl_deleted_oper) 4894 << Best->Function->isDeleted() 4895 << "->" << Base->getSourceRange(); 4896 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4897 return ExprError(); 4898 } 4899 4900 // Convert the object parameter. 4901 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 4902 if (PerformObjectArgumentInitialization(Base, Method)) 4903 return ExprError(); 4904 4905 // No concerns about early exits now. 4906 BaseIn.release(); 4907 4908 // Build the operator call. 4909 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 4910 SourceLocation()); 4911 UsualUnaryConversions(FnExpr); 4912 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1, 4913 Method->getResultType().getNonReferenceType(), 4914 OpLoc); 4915 return Owned(Base); 4916} 4917 4918/// FixOverloadedFunctionReference - E is an expression that refers to 4919/// a C++ overloaded function (possibly with some parentheses and 4920/// perhaps a '&' around it). We have resolved the overloaded function 4921/// to the function declaration Fn, so patch up the expression E to 4922/// refer (possibly indirectly) to Fn. 4923void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 4924 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 4925 FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 4926 E->setType(PE->getSubExpr()->getType()); 4927 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 4928 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 4929 "Can only take the address of an overloaded function"); 4930 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 4931 if (Method->isStatic()) { 4932 // Do nothing: static member functions aren't any different 4933 // from non-member functions. 4934 } else if (QualifiedDeclRefExpr *DRE 4935 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) { 4936 // We have taken the address of a pointer to member 4937 // function. Perform the computation here so that we get the 4938 // appropriate pointer to member type. 4939 DRE->setDecl(Fn); 4940 DRE->setType(Fn->getType()); 4941 QualType ClassType 4942 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 4943 E->setType(Context.getMemberPointerType(Fn->getType(), 4944 ClassType.getTypePtr())); 4945 return; 4946 } 4947 } 4948 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 4949 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType())); 4950 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { 4951 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) || 4952 isa<FunctionTemplateDecl>(DR->getDecl())) && 4953 "Expected overloaded function or function template"); 4954 DR->setDecl(Fn); 4955 E->setType(Fn->getType()); 4956 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 4957 MemExpr->setMemberDecl(Fn); 4958 E->setType(Fn->getType()); 4959 } else { 4960 assert(false && "Invalid reference to overloaded function"); 4961 } 4962} 4963 4964} // end namespace clang 4965