SemaOverload.cpp revision 8a51491d936d8c50480f3c3ca6647be12a7ad51f
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407ImplicitConversionSequence
408Sema::TryImplicitConversion(Expr* From, QualType ToType,
409                            bool SuppressUserConversions,
410                            bool AllowExplicit, bool ForceRValue,
411                            bool InOverloadResolution) {
412  ImplicitConversionSequence ICS;
413  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
414    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
415  else if (getLangOptions().CPlusPlus &&
416           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
417                                   !SuppressUserConversions, AllowExplicit,
418                                   ForceRValue)) {
419    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
420    // C++ [over.ics.user]p4:
421    //   A conversion of an expression of class type to the same class
422    //   type is given Exact Match rank, and a conversion of an
423    //   expression of class type to a base class of that type is
424    //   given Conversion rank, in spite of the fact that a copy
425    //   constructor (i.e., a user-defined conversion function) is
426    //   called for those cases.
427    if (CXXConstructorDecl *Constructor
428          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
429      QualType FromCanon
430        = Context.getCanonicalType(From->getType().getUnqualifiedType());
431      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
432      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
433        // Turn this into a "standard" conversion sequence, so that it
434        // gets ranked with standard conversion sequences.
435        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
436        ICS.Standard.setAsIdentityConversion();
437        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
438        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
439        ICS.Standard.CopyConstructor = Constructor;
440        if (ToCanon != FromCanon)
441          ICS.Standard.Second = ICK_Derived_To_Base;
442      }
443    }
444
445    // C++ [over.best.ics]p4:
446    //   However, when considering the argument of a user-defined
447    //   conversion function that is a candidate by 13.3.1.3 when
448    //   invoked for the copying of the temporary in the second step
449    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
450    //   13.3.1.6 in all cases, only standard conversion sequences and
451    //   ellipsis conversion sequences are allowed.
452    if (SuppressUserConversions &&
453        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
454      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
455  } else
456    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
457
458  return ICS;
459}
460
461/// IsStandardConversion - Determines whether there is a standard
462/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
463/// expression From to the type ToType. Standard conversion sequences
464/// only consider non-class types; for conversions that involve class
465/// types, use TryImplicitConversion. If a conversion exists, SCS will
466/// contain the standard conversion sequence required to perform this
467/// conversion and this routine will return true. Otherwise, this
468/// routine will return false and the value of SCS is unspecified.
469bool
470Sema::IsStandardConversion(Expr* From, QualType ToType,
471                           bool InOverloadResolution,
472                           StandardConversionSequence &SCS) {
473  QualType FromType = From->getType();
474
475  // Standard conversions (C++ [conv])
476  SCS.setAsIdentityConversion();
477  SCS.Deprecated = false;
478  SCS.IncompatibleObjC = false;
479  SCS.FromTypePtr = FromType.getAsOpaquePtr();
480  SCS.CopyConstructor = 0;
481
482  // There are no standard conversions for class types in C++, so
483  // abort early. When overloading in C, however, we do permit
484  if (FromType->isRecordType() || ToType->isRecordType()) {
485    if (getLangOptions().CPlusPlus)
486      return false;
487
488    // When we're overloading in C, we allow, as standard conversions,
489  }
490
491  // The first conversion can be an lvalue-to-rvalue conversion,
492  // array-to-pointer conversion, or function-to-pointer conversion
493  // (C++ 4p1).
494
495  // Lvalue-to-rvalue conversion (C++ 4.1):
496  //   An lvalue (3.10) of a non-function, non-array type T can be
497  //   converted to an rvalue.
498  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
499  if (argIsLvalue == Expr::LV_Valid &&
500      !FromType->isFunctionType() && !FromType->isArrayType() &&
501      Context.getCanonicalType(FromType) != Context.OverloadTy) {
502    SCS.First = ICK_Lvalue_To_Rvalue;
503
504    // If T is a non-class type, the type of the rvalue is the
505    // cv-unqualified version of T. Otherwise, the type of the rvalue
506    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
507    // just strip the qualifiers because they don't matter.
508
509    // FIXME: Doesn't see through to qualifiers behind a typedef!
510    FromType = FromType.getUnqualifiedType();
511  } else if (FromType->isArrayType()) {
512    // Array-to-pointer conversion (C++ 4.2)
513    SCS.First = ICK_Array_To_Pointer;
514
515    // An lvalue or rvalue of type "array of N T" or "array of unknown
516    // bound of T" can be converted to an rvalue of type "pointer to
517    // T" (C++ 4.2p1).
518    FromType = Context.getArrayDecayedType(FromType);
519
520    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
521      // This conversion is deprecated. (C++ D.4).
522      SCS.Deprecated = true;
523
524      // For the purpose of ranking in overload resolution
525      // (13.3.3.1.1), this conversion is considered an
526      // array-to-pointer conversion followed by a qualification
527      // conversion (4.4). (C++ 4.2p2)
528      SCS.Second = ICK_Identity;
529      SCS.Third = ICK_Qualification;
530      SCS.ToTypePtr = ToType.getAsOpaquePtr();
531      return true;
532    }
533  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
534    // Function-to-pointer conversion (C++ 4.3).
535    SCS.First = ICK_Function_To_Pointer;
536
537    // An lvalue of function type T can be converted to an rvalue of
538    // type "pointer to T." The result is a pointer to the
539    // function. (C++ 4.3p1).
540    FromType = Context.getPointerType(FromType);
541  } else if (FunctionDecl *Fn
542             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
543    // Address of overloaded function (C++ [over.over]).
544    SCS.First = ICK_Function_To_Pointer;
545
546    // We were able to resolve the address of the overloaded function,
547    // so we can convert to the type of that function.
548    FromType = Fn->getType();
549    if (ToType->isLValueReferenceType())
550      FromType = Context.getLValueReferenceType(FromType);
551    else if (ToType->isRValueReferenceType())
552      FromType = Context.getRValueReferenceType(FromType);
553    else if (ToType->isMemberPointerType()) {
554      // Resolve address only succeeds if both sides are member pointers,
555      // but it doesn't have to be the same class. See DR 247.
556      // Note that this means that the type of &Derived::fn can be
557      // Ret (Base::*)(Args) if the fn overload actually found is from the
558      // base class, even if it was brought into the derived class via a
559      // using declaration. The standard isn't clear on this issue at all.
560      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
561      FromType = Context.getMemberPointerType(FromType,
562                    Context.getTypeDeclType(M->getParent()).getTypePtr());
563    } else
564      FromType = Context.getPointerType(FromType);
565  } else {
566    // We don't require any conversions for the first step.
567    SCS.First = ICK_Identity;
568  }
569
570  // The second conversion can be an integral promotion, floating
571  // point promotion, integral conversion, floating point conversion,
572  // floating-integral conversion, pointer conversion,
573  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
574  // For overloading in C, this can also be a "compatible-type"
575  // conversion.
576  bool IncompatibleObjC = false;
577  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
578    // The unqualified versions of the types are the same: there's no
579    // conversion to do.
580    SCS.Second = ICK_Identity;
581  } else if (IsIntegralPromotion(From, FromType, ToType)) {
582    // Integral promotion (C++ 4.5).
583    SCS.Second = ICK_Integral_Promotion;
584    FromType = ToType.getUnqualifiedType();
585  } else if (IsFloatingPointPromotion(FromType, ToType)) {
586    // Floating point promotion (C++ 4.6).
587    SCS.Second = ICK_Floating_Promotion;
588    FromType = ToType.getUnqualifiedType();
589  } else if (IsComplexPromotion(FromType, ToType)) {
590    // Complex promotion (Clang extension)
591    SCS.Second = ICK_Complex_Promotion;
592    FromType = ToType.getUnqualifiedType();
593  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
594           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
595    // Integral conversions (C++ 4.7).
596    // FIXME: isIntegralType shouldn't be true for enums in C++.
597    SCS.Second = ICK_Integral_Conversion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
600    // Floating point conversions (C++ 4.8).
601    SCS.Second = ICK_Floating_Conversion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (FromType->isComplexType() && ToType->isComplexType()) {
604    // Complex conversions (C99 6.3.1.6)
605    SCS.Second = ICK_Complex_Conversion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isFloatingType() &&
608              ToType->isIntegralType() && (!ToType->isBooleanType() &&
609                                           !ToType->isEnumeralType())) ||
610             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
611              ToType->isFloatingType())) {
612    // Floating-integral conversions (C++ 4.9).
613    // FIXME: isIntegralType shouldn't be true for enums in C++.
614    SCS.Second = ICK_Floating_Integral;
615    FromType = ToType.getUnqualifiedType();
616  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
617             (ToType->isComplexType() && FromType->isArithmeticType())) {
618    // Complex-real conversions (C99 6.3.1.7)
619    SCS.Second = ICK_Complex_Real;
620    FromType = ToType.getUnqualifiedType();
621  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
622                                 FromType, IncompatibleObjC)) {
623    // Pointer conversions (C++ 4.10).
624    SCS.Second = ICK_Pointer_Conversion;
625    SCS.IncompatibleObjC = IncompatibleObjC;
626  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
627    // Pointer to member conversions (4.11).
628    SCS.Second = ICK_Pointer_Member;
629  } else if (ToType->isBooleanType() &&
630             (FromType->isArithmeticType() ||
631              FromType->isEnumeralType() ||
632              FromType->isPointerType() ||
633              FromType->isBlockPointerType() ||
634              FromType->isMemberPointerType() ||
635              FromType->isNullPtrType())) {
636    // Boolean conversions (C++ 4.12).
637    SCS.Second = ICK_Boolean_Conversion;
638    FromType = Context.BoolTy;
639  } else if (!getLangOptions().CPlusPlus &&
640             Context.typesAreCompatible(ToType, FromType)) {
641    // Compatible conversions (Clang extension for C function overloading)
642    SCS.Second = ICK_Compatible_Conversion;
643  } else {
644    // No second conversion required.
645    SCS.Second = ICK_Identity;
646  }
647
648  QualType CanonFrom;
649  QualType CanonTo;
650  // The third conversion can be a qualification conversion (C++ 4p1).
651  if (IsQualificationConversion(FromType, ToType)) {
652    SCS.Third = ICK_Qualification;
653    FromType = ToType;
654    CanonFrom = Context.getCanonicalType(FromType);
655    CanonTo = Context.getCanonicalType(ToType);
656  } else {
657    // No conversion required
658    SCS.Third = ICK_Identity;
659
660    // C++ [over.best.ics]p6:
661    //   [...] Any difference in top-level cv-qualification is
662    //   subsumed by the initialization itself and does not constitute
663    //   a conversion. [...]
664    CanonFrom = Context.getCanonicalType(FromType);
665    CanonTo = Context.getCanonicalType(ToType);
666    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
667        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
668      FromType = ToType;
669      CanonFrom = CanonTo;
670    }
671  }
672
673  // If we have not converted the argument type to the parameter type,
674  // this is a bad conversion sequence.
675  if (CanonFrom != CanonTo)
676    return false;
677
678  SCS.ToTypePtr = FromType.getAsOpaquePtr();
679  return true;
680}
681
682/// IsIntegralPromotion - Determines whether the conversion from the
683/// expression From (whose potentially-adjusted type is FromType) to
684/// ToType is an integral promotion (C++ 4.5). If so, returns true and
685/// sets PromotedType to the promoted type.
686bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
687  const BuiltinType *To = ToType->getAsBuiltinType();
688  // All integers are built-in.
689  if (!To) {
690    return false;
691  }
692
693  // An rvalue of type char, signed char, unsigned char, short int, or
694  // unsigned short int can be converted to an rvalue of type int if
695  // int can represent all the values of the source type; otherwise,
696  // the source rvalue can be converted to an rvalue of type unsigned
697  // int (C++ 4.5p1).
698  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
699    if (// We can promote any signed, promotable integer type to an int
700        (FromType->isSignedIntegerType() ||
701         // We can promote any unsigned integer type whose size is
702         // less than int to an int.
703         (!FromType->isSignedIntegerType() &&
704          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
705      return To->getKind() == BuiltinType::Int;
706    }
707
708    return To->getKind() == BuiltinType::UInt;
709  }
710
711  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
712  // can be converted to an rvalue of the first of the following types
713  // that can represent all the values of its underlying type: int,
714  // unsigned int, long, or unsigned long (C++ 4.5p2).
715  if ((FromType->isEnumeralType() || FromType->isWideCharType())
716      && ToType->isIntegerType()) {
717    // Determine whether the type we're converting from is signed or
718    // unsigned.
719    bool FromIsSigned;
720    uint64_t FromSize = Context.getTypeSize(FromType);
721    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
722      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
723      FromIsSigned = UnderlyingType->isSignedIntegerType();
724    } else {
725      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
726      FromIsSigned = true;
727    }
728
729    // The types we'll try to promote to, in the appropriate
730    // order. Try each of these types.
731    QualType PromoteTypes[6] = {
732      Context.IntTy, Context.UnsignedIntTy,
733      Context.LongTy, Context.UnsignedLongTy ,
734      Context.LongLongTy, Context.UnsignedLongLongTy
735    };
736    for (int Idx = 0; Idx < 6; ++Idx) {
737      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
738      if (FromSize < ToSize ||
739          (FromSize == ToSize &&
740           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
741        // We found the type that we can promote to. If this is the
742        // type we wanted, we have a promotion. Otherwise, no
743        // promotion.
744        return Context.getCanonicalType(ToType).getUnqualifiedType()
745          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
746      }
747    }
748  }
749
750  // An rvalue for an integral bit-field (9.6) can be converted to an
751  // rvalue of type int if int can represent all the values of the
752  // bit-field; otherwise, it can be converted to unsigned int if
753  // unsigned int can represent all the values of the bit-field. If
754  // the bit-field is larger yet, no integral promotion applies to
755  // it. If the bit-field has an enumerated type, it is treated as any
756  // other value of that type for promotion purposes (C++ 4.5p3).
757  // FIXME: We should delay checking of bit-fields until we actually perform the
758  // conversion.
759  using llvm::APSInt;
760  if (From)
761    if (FieldDecl *MemberDecl = From->getBitField()) {
762      APSInt BitWidth;
763      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
764          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
765        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
766        ToSize = Context.getTypeSize(ToType);
767
768        // Are we promoting to an int from a bitfield that fits in an int?
769        if (BitWidth < ToSize ||
770            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
771          return To->getKind() == BuiltinType::Int;
772        }
773
774        // Are we promoting to an unsigned int from an unsigned bitfield
775        // that fits into an unsigned int?
776        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
777          return To->getKind() == BuiltinType::UInt;
778        }
779
780        return false;
781      }
782    }
783
784  // An rvalue of type bool can be converted to an rvalue of type int,
785  // with false becoming zero and true becoming one (C++ 4.5p4).
786  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
787    return true;
788  }
789
790  return false;
791}
792
793/// IsFloatingPointPromotion - Determines whether the conversion from
794/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
795/// returns true and sets PromotedType to the promoted type.
796bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
797  /// An rvalue of type float can be converted to an rvalue of type
798  /// double. (C++ 4.6p1).
799  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
800    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
801      if (FromBuiltin->getKind() == BuiltinType::Float &&
802          ToBuiltin->getKind() == BuiltinType::Double)
803        return true;
804
805      // C99 6.3.1.5p1:
806      //   When a float is promoted to double or long double, or a
807      //   double is promoted to long double [...].
808      if (!getLangOptions().CPlusPlus &&
809          (FromBuiltin->getKind() == BuiltinType::Float ||
810           FromBuiltin->getKind() == BuiltinType::Double) &&
811          (ToBuiltin->getKind() == BuiltinType::LongDouble))
812        return true;
813    }
814
815  return false;
816}
817
818/// \brief Determine if a conversion is a complex promotion.
819///
820/// A complex promotion is defined as a complex -> complex conversion
821/// where the conversion between the underlying real types is a
822/// floating-point or integral promotion.
823bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
824  const ComplexType *FromComplex = FromType->getAsComplexType();
825  if (!FromComplex)
826    return false;
827
828  const ComplexType *ToComplex = ToType->getAsComplexType();
829  if (!ToComplex)
830    return false;
831
832  return IsFloatingPointPromotion(FromComplex->getElementType(),
833                                  ToComplex->getElementType()) ||
834    IsIntegralPromotion(0, FromComplex->getElementType(),
835                        ToComplex->getElementType());
836}
837
838/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
839/// the pointer type FromPtr to a pointer to type ToPointee, with the
840/// same type qualifiers as FromPtr has on its pointee type. ToType,
841/// if non-empty, will be a pointer to ToType that may or may not have
842/// the right set of qualifiers on its pointee.
843static QualType
844BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
845                                   QualType ToPointee, QualType ToType,
846                                   ASTContext &Context) {
847  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
848  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
849  unsigned Quals = CanonFromPointee.getCVRQualifiers();
850
851  // Exact qualifier match -> return the pointer type we're converting to.
852  if (CanonToPointee.getCVRQualifiers() == Quals) {
853    // ToType is exactly what we need. Return it.
854    if (ToType.getTypePtr())
855      return ToType;
856
857    // Build a pointer to ToPointee. It has the right qualifiers
858    // already.
859    return Context.getPointerType(ToPointee);
860  }
861
862  // Just build a canonical type that has the right qualifiers.
863  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
864}
865
866static bool isNullPointerConstantForConversion(Expr *Expr,
867                                               bool InOverloadResolution,
868                                               ASTContext &Context) {
869  // Handle value-dependent integral null pointer constants correctly.
870  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
871  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
872      Expr->getType()->isIntegralType())
873    return !InOverloadResolution;
874
875  return Expr->isNullPointerConstant(Context);
876}
877
878/// IsPointerConversion - Determines whether the conversion of the
879/// expression From, which has the (possibly adjusted) type FromType,
880/// can be converted to the type ToType via a pointer conversion (C++
881/// 4.10). If so, returns true and places the converted type (that
882/// might differ from ToType in its cv-qualifiers at some level) into
883/// ConvertedType.
884///
885/// This routine also supports conversions to and from block pointers
886/// and conversions with Objective-C's 'id', 'id<protocols...>', and
887/// pointers to interfaces. FIXME: Once we've determined the
888/// appropriate overloading rules for Objective-C, we may want to
889/// split the Objective-C checks into a different routine; however,
890/// GCC seems to consider all of these conversions to be pointer
891/// conversions, so for now they live here. IncompatibleObjC will be
892/// set if the conversion is an allowed Objective-C conversion that
893/// should result in a warning.
894bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
895                               bool InOverloadResolution,
896                               QualType& ConvertedType,
897                               bool &IncompatibleObjC) {
898  IncompatibleObjC = false;
899  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
900    return true;
901
902  // Conversion from a null pointer constant to any Objective-C pointer type.
903  if (ToType->isObjCObjectPointerType() &&
904      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
905    ConvertedType = ToType;
906    return true;
907  }
908
909  // Blocks: Block pointers can be converted to void*.
910  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
911      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
912    ConvertedType = ToType;
913    return true;
914  }
915  // Blocks: A null pointer constant can be converted to a block
916  // pointer type.
917  if (ToType->isBlockPointerType() &&
918      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
919    ConvertedType = ToType;
920    return true;
921  }
922
923  // If the left-hand-side is nullptr_t, the right side can be a null
924  // pointer constant.
925  if (ToType->isNullPtrType() &&
926      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
927    ConvertedType = ToType;
928    return true;
929  }
930
931  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
932  if (!ToTypePtr)
933    return false;
934
935  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
936  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // Beyond this point, both types need to be pointers.
942  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
943  if (!FromTypePtr)
944    return false;
945
946  QualType FromPointeeType = FromTypePtr->getPointeeType();
947  QualType ToPointeeType = ToTypePtr->getPointeeType();
948
949  // An rvalue of type "pointer to cv T," where T is an object type,
950  // can be converted to an rvalue of type "pointer to cv void" (C++
951  // 4.10p2).
952  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
953    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
954                                                       ToPointeeType,
955                                                       ToType, Context);
956    return true;
957  }
958
959  // When we're overloading in C, we allow a special kind of pointer
960  // conversion for compatible-but-not-identical pointee types.
961  if (!getLangOptions().CPlusPlus &&
962      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
963    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
964                                                       ToPointeeType,
965                                                       ToType, Context);
966    return true;
967  }
968
969  // C++ [conv.ptr]p3:
970  //
971  //   An rvalue of type "pointer to cv D," where D is a class type,
972  //   can be converted to an rvalue of type "pointer to cv B," where
973  //   B is a base class (clause 10) of D. If B is an inaccessible
974  //   (clause 11) or ambiguous (10.2) base class of D, a program that
975  //   necessitates this conversion is ill-formed. The result of the
976  //   conversion is a pointer to the base class sub-object of the
977  //   derived class object. The null pointer value is converted to
978  //   the null pointer value of the destination type.
979  //
980  // Note that we do not check for ambiguity or inaccessibility
981  // here. That is handled by CheckPointerConversion.
982  if (getLangOptions().CPlusPlus &&
983      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
984      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
985    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
986                                                       ToPointeeType,
987                                                       ToType, Context);
988    return true;
989  }
990
991  return false;
992}
993
994/// isObjCPointerConversion - Determines whether this is an
995/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
996/// with the same arguments and return values.
997bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
998                                   QualType& ConvertedType,
999                                   bool &IncompatibleObjC) {
1000  if (!getLangOptions().ObjC1)
1001    return false;
1002
1003  // First, we handle all conversions on ObjC object pointer types.
1004  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1005  const ObjCObjectPointerType *FromObjCPtr =
1006    FromType->getAsObjCObjectPointerType();
1007
1008  if (ToObjCPtr && FromObjCPtr) {
1009    // Objective C++: We're able to convert between "id" or "Class" and a
1010    // pointer to any interface (in both directions).
1011    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1012      ConvertedType = ToType;
1013      return true;
1014    }
1015    // Conversions with Objective-C's id<...>.
1016    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1017         ToObjCPtr->isObjCQualifiedIdType()) &&
1018        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1019                                                  /*compare=*/false)) {
1020      ConvertedType = ToType;
1021      return true;
1022    }
1023    // Objective C++: We're able to convert from a pointer to an
1024    // interface to a pointer to a different interface.
1025    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1026      ConvertedType = ToType;
1027      return true;
1028    }
1029
1030    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1031      // Okay: this is some kind of implicit downcast of Objective-C
1032      // interfaces, which is permitted. However, we're going to
1033      // complain about it.
1034      IncompatibleObjC = true;
1035      ConvertedType = FromType;
1036      return true;
1037    }
1038  }
1039  // Beyond this point, both types need to be C pointers or block pointers.
1040  QualType ToPointeeType;
1041  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1042    ToPointeeType = ToCPtr->getPointeeType();
1043  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1044    ToPointeeType = ToBlockPtr->getPointeeType();
1045  else
1046    return false;
1047
1048  QualType FromPointeeType;
1049  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1050    FromPointeeType = FromCPtr->getPointeeType();
1051  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1052    FromPointeeType = FromBlockPtr->getPointeeType();
1053  else
1054    return false;
1055
1056  // If we have pointers to pointers, recursively check whether this
1057  // is an Objective-C conversion.
1058  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1059      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1060                              IncompatibleObjC)) {
1061    // We always complain about this conversion.
1062    IncompatibleObjC = true;
1063    ConvertedType = ToType;
1064    return true;
1065  }
1066  // If we have pointers to functions or blocks, check whether the only
1067  // differences in the argument and result types are in Objective-C
1068  // pointer conversions. If so, we permit the conversion (but
1069  // complain about it).
1070  const FunctionProtoType *FromFunctionType
1071    = FromPointeeType->getAsFunctionProtoType();
1072  const FunctionProtoType *ToFunctionType
1073    = ToPointeeType->getAsFunctionProtoType();
1074  if (FromFunctionType && ToFunctionType) {
1075    // If the function types are exactly the same, this isn't an
1076    // Objective-C pointer conversion.
1077    if (Context.getCanonicalType(FromPointeeType)
1078          == Context.getCanonicalType(ToPointeeType))
1079      return false;
1080
1081    // Perform the quick checks that will tell us whether these
1082    // function types are obviously different.
1083    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1084        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1085        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1086      return false;
1087
1088    bool HasObjCConversion = false;
1089    if (Context.getCanonicalType(FromFunctionType->getResultType())
1090          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1091      // Okay, the types match exactly. Nothing to do.
1092    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1093                                       ToFunctionType->getResultType(),
1094                                       ConvertedType, IncompatibleObjC)) {
1095      // Okay, we have an Objective-C pointer conversion.
1096      HasObjCConversion = true;
1097    } else {
1098      // Function types are too different. Abort.
1099      return false;
1100    }
1101
1102    // Check argument types.
1103    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1104         ArgIdx != NumArgs; ++ArgIdx) {
1105      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1106      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1107      if (Context.getCanonicalType(FromArgType)
1108            == Context.getCanonicalType(ToArgType)) {
1109        // Okay, the types match exactly. Nothing to do.
1110      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1111                                         ConvertedType, IncompatibleObjC)) {
1112        // Okay, we have an Objective-C pointer conversion.
1113        HasObjCConversion = true;
1114      } else {
1115        // Argument types are too different. Abort.
1116        return false;
1117      }
1118    }
1119
1120    if (HasObjCConversion) {
1121      // We had an Objective-C conversion. Allow this pointer
1122      // conversion, but complain about it.
1123      ConvertedType = ToType;
1124      IncompatibleObjC = true;
1125      return true;
1126    }
1127  }
1128
1129  return false;
1130}
1131
1132/// CheckPointerConversion - Check the pointer conversion from the
1133/// expression From to the type ToType. This routine checks for
1134/// ambiguous or inaccessible derived-to-base pointer
1135/// conversions for which IsPointerConversion has already returned
1136/// true. It returns true and produces a diagnostic if there was an
1137/// error, or returns false otherwise.
1138bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1139                                  CastExpr::CastKind &Kind) {
1140  QualType FromType = From->getType();
1141
1142  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1143    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1144      QualType FromPointeeType = FromPtrType->getPointeeType(),
1145               ToPointeeType   = ToPtrType->getPointeeType();
1146
1147      if (FromPointeeType->isRecordType() &&
1148          ToPointeeType->isRecordType()) {
1149        // We must have a derived-to-base conversion. Check an
1150        // ambiguous or inaccessible conversion.
1151        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1152                                         From->getExprLoc(),
1153                                         From->getSourceRange()))
1154          return true;
1155
1156        // The conversion was successful.
1157        Kind = CastExpr::CK_DerivedToBase;
1158      }
1159    }
1160  if (const ObjCObjectPointerType *FromPtrType =
1161        FromType->getAsObjCObjectPointerType())
1162    if (const ObjCObjectPointerType *ToPtrType =
1163          ToType->getAsObjCObjectPointerType()) {
1164      // Objective-C++ conversions are always okay.
1165      // FIXME: We should have a different class of conversions for the
1166      // Objective-C++ implicit conversions.
1167      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1168        return false;
1169
1170  }
1171  return false;
1172}
1173
1174/// IsMemberPointerConversion - Determines whether the conversion of the
1175/// expression From, which has the (possibly adjusted) type FromType, can be
1176/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1177/// If so, returns true and places the converted type (that might differ from
1178/// ToType in its cv-qualifiers at some level) into ConvertedType.
1179bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1180                                     QualType ToType, QualType &ConvertedType) {
1181  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1182  if (!ToTypePtr)
1183    return false;
1184
1185  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1186  if (From->isNullPointerConstant(Context)) {
1187    ConvertedType = ToType;
1188    return true;
1189  }
1190
1191  // Otherwise, both types have to be member pointers.
1192  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1193  if (!FromTypePtr)
1194    return false;
1195
1196  // A pointer to member of B can be converted to a pointer to member of D,
1197  // where D is derived from B (C++ 4.11p2).
1198  QualType FromClass(FromTypePtr->getClass(), 0);
1199  QualType ToClass(ToTypePtr->getClass(), 0);
1200  // FIXME: What happens when these are dependent? Is this function even called?
1201
1202  if (IsDerivedFrom(ToClass, FromClass)) {
1203    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1204                                                 ToClass.getTypePtr());
1205    return true;
1206  }
1207
1208  return false;
1209}
1210
1211/// CheckMemberPointerConversion - Check the member pointer conversion from the
1212/// expression From to the type ToType. This routine checks for ambiguous or
1213/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1214/// for which IsMemberPointerConversion has already returned true. It returns
1215/// true and produces a diagnostic if there was an error, or returns false
1216/// otherwise.
1217bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1218                                        CastExpr::CastKind &Kind) {
1219  QualType FromType = From->getType();
1220  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1221  if (!FromPtrType) {
1222    // This must be a null pointer to member pointer conversion
1223    assert(From->isNullPointerConstant(Context) &&
1224           "Expr must be null pointer constant!");
1225    Kind = CastExpr::CK_NullToMemberPointer;
1226    return false;
1227  }
1228
1229  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1230  assert(ToPtrType && "No member pointer cast has a target type "
1231                      "that is not a member pointer.");
1232
1233  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1234  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1235
1236  // FIXME: What about dependent types?
1237  assert(FromClass->isRecordType() && "Pointer into non-class.");
1238  assert(ToClass->isRecordType() && "Pointer into non-class.");
1239
1240  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1241                  /*DetectVirtual=*/true);
1242  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1243  assert(DerivationOkay &&
1244         "Should not have been called if derivation isn't OK.");
1245  (void)DerivationOkay;
1246
1247  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1248                                  getUnqualifiedType())) {
1249    // Derivation is ambiguous. Redo the check to find the exact paths.
1250    Paths.clear();
1251    Paths.setRecordingPaths(true);
1252    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1253    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1254    (void)StillOkay;
1255
1256    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1257    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1258      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1259    return true;
1260  }
1261
1262  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1263    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1264      << FromClass << ToClass << QualType(VBase, 0)
1265      << From->getSourceRange();
1266    return true;
1267  }
1268
1269  // Must be a base to derived member conversion.
1270  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1271  return false;
1272}
1273
1274/// IsQualificationConversion - Determines whether the conversion from
1275/// an rvalue of type FromType to ToType is a qualification conversion
1276/// (C++ 4.4).
1277bool
1278Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1279  FromType = Context.getCanonicalType(FromType);
1280  ToType = Context.getCanonicalType(ToType);
1281
1282  // If FromType and ToType are the same type, this is not a
1283  // qualification conversion.
1284  if (FromType == ToType)
1285    return false;
1286
1287  // (C++ 4.4p4):
1288  //   A conversion can add cv-qualifiers at levels other than the first
1289  //   in multi-level pointers, subject to the following rules: [...]
1290  bool PreviousToQualsIncludeConst = true;
1291  bool UnwrappedAnyPointer = false;
1292  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1293    // Within each iteration of the loop, we check the qualifiers to
1294    // determine if this still looks like a qualification
1295    // conversion. Then, if all is well, we unwrap one more level of
1296    // pointers or pointers-to-members and do it all again
1297    // until there are no more pointers or pointers-to-members left to
1298    // unwrap.
1299    UnwrappedAnyPointer = true;
1300
1301    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1302    //      2,j, and similarly for volatile.
1303    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1304      return false;
1305
1306    //   -- if the cv 1,j and cv 2,j are different, then const is in
1307    //      every cv for 0 < k < j.
1308    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1309        && !PreviousToQualsIncludeConst)
1310      return false;
1311
1312    // Keep track of whether all prior cv-qualifiers in the "to" type
1313    // include const.
1314    PreviousToQualsIncludeConst
1315      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1316  }
1317
1318  // We are left with FromType and ToType being the pointee types
1319  // after unwrapping the original FromType and ToType the same number
1320  // of types. If we unwrapped any pointers, and if FromType and
1321  // ToType have the same unqualified type (since we checked
1322  // qualifiers above), then this is a qualification conversion.
1323  return UnwrappedAnyPointer &&
1324    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1325}
1326
1327/// \brief Given a function template or function, extract the function template
1328/// declaration (if any) and the underlying function declaration.
1329template<typename T>
1330static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1331                                   FunctionTemplateDecl *&FunctionTemplate) {
1332  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1333  if (FunctionTemplate)
1334    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1335  else
1336    Function = cast<T>(Orig);
1337}
1338
1339/// Determines whether there is a user-defined conversion sequence
1340/// (C++ [over.ics.user]) that converts expression From to the type
1341/// ToType. If such a conversion exists, User will contain the
1342/// user-defined conversion sequence that performs such a conversion
1343/// and this routine will return true. Otherwise, this routine returns
1344/// false and User is unspecified.
1345///
1346/// \param AllowConversionFunctions true if the conversion should
1347/// consider conversion functions at all. If false, only constructors
1348/// will be considered.
1349///
1350/// \param AllowExplicit  true if the conversion should consider C++0x
1351/// "explicit" conversion functions as well as non-explicit conversion
1352/// functions (C++0x [class.conv.fct]p2).
1353///
1354/// \param ForceRValue  true if the expression should be treated as an rvalue
1355/// for overload resolution.
1356bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1357                                   UserDefinedConversionSequence& User,
1358                                   bool AllowConversionFunctions,
1359                                   bool AllowExplicit, bool ForceRValue) {
1360  OverloadCandidateSet CandidateSet;
1361  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1362    if (CXXRecordDecl *ToRecordDecl
1363          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1364      // C++ [over.match.ctor]p1:
1365      //   When objects of class type are direct-initialized (8.5), or
1366      //   copy-initialized from an expression of the same or a
1367      //   derived class type (8.5), overload resolution selects the
1368      //   constructor. [...] For copy-initialization, the candidate
1369      //   functions are all the converting constructors (12.3.1) of
1370      //   that class. The argument list is the expression-list within
1371      //   the parentheses of the initializer.
1372      DeclarationName ConstructorName
1373        = Context.DeclarationNames.getCXXConstructorName(
1374                          Context.getCanonicalType(ToType).getUnqualifiedType());
1375      DeclContext::lookup_iterator Con, ConEnd;
1376      for (llvm::tie(Con, ConEnd)
1377             = ToRecordDecl->lookup(ConstructorName);
1378           Con != ConEnd; ++Con) {
1379        // Find the constructor (which may be a template).
1380        CXXConstructorDecl *Constructor = 0;
1381        FunctionTemplateDecl *ConstructorTmpl
1382          = dyn_cast<FunctionTemplateDecl>(*Con);
1383        if (ConstructorTmpl)
1384          Constructor
1385            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1386        else
1387          Constructor = cast<CXXConstructorDecl>(*Con);
1388
1389        if (!Constructor->isInvalidDecl() &&
1390            Constructor->isConvertingConstructor(AllowExplicit)) {
1391          if (ConstructorTmpl)
1392            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1393                                         1, CandidateSet,
1394                                         /*SuppressUserConversions=*/true,
1395                                         ForceRValue);
1396          else
1397            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1398                                 /*SuppressUserConversions=*/true, ForceRValue);
1399        }
1400      }
1401    }
1402  }
1403
1404  if (!AllowConversionFunctions) {
1405    // Don't allow any conversion functions to enter the overload set.
1406  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1407                                 PDiag(0)
1408                                   << From->getSourceRange())) {
1409    // No conversion functions from incomplete types.
1410  } else if (const RecordType *FromRecordType
1411               = From->getType()->getAs<RecordType>()) {
1412    if (CXXRecordDecl *FromRecordDecl
1413         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1414      // Add all of the conversion functions as candidates.
1415      // FIXME: Look for conversions in base classes!
1416      OverloadedFunctionDecl *Conversions
1417        = FromRecordDecl->getConversionFunctions();
1418      for (OverloadedFunctionDecl::function_iterator Func
1419             = Conversions->function_begin();
1420           Func != Conversions->function_end(); ++Func) {
1421        CXXConversionDecl *Conv;
1422        FunctionTemplateDecl *ConvTemplate;
1423        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1424        if (ConvTemplate)
1425          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1426        else
1427          Conv = dyn_cast<CXXConversionDecl>(*Func);
1428
1429        if (AllowExplicit || !Conv->isExplicit()) {
1430          if (ConvTemplate)
1431            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1432                                           CandidateSet);
1433          else
1434            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1435        }
1436      }
1437    }
1438  }
1439
1440  OverloadCandidateSet::iterator Best;
1441  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1442    case OR_Success:
1443      // Record the standard conversion we used and the conversion function.
1444      if (CXXConstructorDecl *Constructor
1445            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1446        // C++ [over.ics.user]p1:
1447        //   If the user-defined conversion is specified by a
1448        //   constructor (12.3.1), the initial standard conversion
1449        //   sequence converts the source type to the type required by
1450        //   the argument of the constructor.
1451        //
1452        // FIXME: What about ellipsis conversions?
1453        QualType ThisType = Constructor->getThisType(Context);
1454        User.Before = Best->Conversions[0].Standard;
1455        User.ConversionFunction = Constructor;
1456        User.After.setAsIdentityConversion();
1457        User.After.FromTypePtr
1458          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1459        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1460        return true;
1461      } else if (CXXConversionDecl *Conversion
1462                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1463        // C++ [over.ics.user]p1:
1464        //
1465        //   [...] If the user-defined conversion is specified by a
1466        //   conversion function (12.3.2), the initial standard
1467        //   conversion sequence converts the source type to the
1468        //   implicit object parameter of the conversion function.
1469        User.Before = Best->Conversions[0].Standard;
1470        User.ConversionFunction = Conversion;
1471
1472        // C++ [over.ics.user]p2:
1473        //   The second standard conversion sequence converts the
1474        //   result of the user-defined conversion to the target type
1475        //   for the sequence. Since an implicit conversion sequence
1476        //   is an initialization, the special rules for
1477        //   initialization by user-defined conversion apply when
1478        //   selecting the best user-defined conversion for a
1479        //   user-defined conversion sequence (see 13.3.3 and
1480        //   13.3.3.1).
1481        User.After = Best->FinalConversion;
1482        return true;
1483      } else {
1484        assert(false && "Not a constructor or conversion function?");
1485        return false;
1486      }
1487
1488    case OR_No_Viable_Function:
1489    case OR_Deleted:
1490      // No conversion here! We're done.
1491      return false;
1492
1493    case OR_Ambiguous:
1494      // FIXME: See C++ [over.best.ics]p10 for the handling of
1495      // ambiguous conversion sequences.
1496      return false;
1497    }
1498
1499  return false;
1500}
1501
1502/// CompareImplicitConversionSequences - Compare two implicit
1503/// conversion sequences to determine whether one is better than the
1504/// other or if they are indistinguishable (C++ 13.3.3.2).
1505ImplicitConversionSequence::CompareKind
1506Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1507                                         const ImplicitConversionSequence& ICS2)
1508{
1509  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1510  // conversion sequences (as defined in 13.3.3.1)
1511  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1512  //      conversion sequence than a user-defined conversion sequence or
1513  //      an ellipsis conversion sequence, and
1514  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1515  //      conversion sequence than an ellipsis conversion sequence
1516  //      (13.3.3.1.3).
1517  //
1518  if (ICS1.ConversionKind < ICS2.ConversionKind)
1519    return ImplicitConversionSequence::Better;
1520  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1521    return ImplicitConversionSequence::Worse;
1522
1523  // Two implicit conversion sequences of the same form are
1524  // indistinguishable conversion sequences unless one of the
1525  // following rules apply: (C++ 13.3.3.2p3):
1526  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1527    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1528  else if (ICS1.ConversionKind ==
1529             ImplicitConversionSequence::UserDefinedConversion) {
1530    // User-defined conversion sequence U1 is a better conversion
1531    // sequence than another user-defined conversion sequence U2 if
1532    // they contain the same user-defined conversion function or
1533    // constructor and if the second standard conversion sequence of
1534    // U1 is better than the second standard conversion sequence of
1535    // U2 (C++ 13.3.3.2p3).
1536    if (ICS1.UserDefined.ConversionFunction ==
1537          ICS2.UserDefined.ConversionFunction)
1538      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1539                                                ICS2.UserDefined.After);
1540  }
1541
1542  return ImplicitConversionSequence::Indistinguishable;
1543}
1544
1545/// CompareStandardConversionSequences - Compare two standard
1546/// conversion sequences to determine whether one is better than the
1547/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1548ImplicitConversionSequence::CompareKind
1549Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1550                                         const StandardConversionSequence& SCS2)
1551{
1552  // Standard conversion sequence S1 is a better conversion sequence
1553  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1554
1555  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1556  //     sequences in the canonical form defined by 13.3.3.1.1,
1557  //     excluding any Lvalue Transformation; the identity conversion
1558  //     sequence is considered to be a subsequence of any
1559  //     non-identity conversion sequence) or, if not that,
1560  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1561    // Neither is a proper subsequence of the other. Do nothing.
1562    ;
1563  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1564           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1565           (SCS1.Second == ICK_Identity &&
1566            SCS1.Third == ICK_Identity))
1567    // SCS1 is a proper subsequence of SCS2.
1568    return ImplicitConversionSequence::Better;
1569  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1570           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1571           (SCS2.Second == ICK_Identity &&
1572            SCS2.Third == ICK_Identity))
1573    // SCS2 is a proper subsequence of SCS1.
1574    return ImplicitConversionSequence::Worse;
1575
1576  //  -- the rank of S1 is better than the rank of S2 (by the rules
1577  //     defined below), or, if not that,
1578  ImplicitConversionRank Rank1 = SCS1.getRank();
1579  ImplicitConversionRank Rank2 = SCS2.getRank();
1580  if (Rank1 < Rank2)
1581    return ImplicitConversionSequence::Better;
1582  else if (Rank2 < Rank1)
1583    return ImplicitConversionSequence::Worse;
1584
1585  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1586  // are indistinguishable unless one of the following rules
1587  // applies:
1588
1589  //   A conversion that is not a conversion of a pointer, or
1590  //   pointer to member, to bool is better than another conversion
1591  //   that is such a conversion.
1592  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1593    return SCS2.isPointerConversionToBool()
1594             ? ImplicitConversionSequence::Better
1595             : ImplicitConversionSequence::Worse;
1596
1597  // C++ [over.ics.rank]p4b2:
1598  //
1599  //   If class B is derived directly or indirectly from class A,
1600  //   conversion of B* to A* is better than conversion of B* to
1601  //   void*, and conversion of A* to void* is better than conversion
1602  //   of B* to void*.
1603  bool SCS1ConvertsToVoid
1604    = SCS1.isPointerConversionToVoidPointer(Context);
1605  bool SCS2ConvertsToVoid
1606    = SCS2.isPointerConversionToVoidPointer(Context);
1607  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1608    // Exactly one of the conversion sequences is a conversion to
1609    // a void pointer; it's the worse conversion.
1610    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1611                              : ImplicitConversionSequence::Worse;
1612  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1613    // Neither conversion sequence converts to a void pointer; compare
1614    // their derived-to-base conversions.
1615    if (ImplicitConversionSequence::CompareKind DerivedCK
1616          = CompareDerivedToBaseConversions(SCS1, SCS2))
1617      return DerivedCK;
1618  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1619    // Both conversion sequences are conversions to void
1620    // pointers. Compare the source types to determine if there's an
1621    // inheritance relationship in their sources.
1622    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1623    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1624
1625    // Adjust the types we're converting from via the array-to-pointer
1626    // conversion, if we need to.
1627    if (SCS1.First == ICK_Array_To_Pointer)
1628      FromType1 = Context.getArrayDecayedType(FromType1);
1629    if (SCS2.First == ICK_Array_To_Pointer)
1630      FromType2 = Context.getArrayDecayedType(FromType2);
1631
1632    QualType FromPointee1
1633      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1634    QualType FromPointee2
1635      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1636
1637    if (IsDerivedFrom(FromPointee2, FromPointee1))
1638      return ImplicitConversionSequence::Better;
1639    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1640      return ImplicitConversionSequence::Worse;
1641
1642    // Objective-C++: If one interface is more specific than the
1643    // other, it is the better one.
1644    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1645    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1646    if (FromIface1 && FromIface1) {
1647      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1648        return ImplicitConversionSequence::Better;
1649      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1650        return ImplicitConversionSequence::Worse;
1651    }
1652  }
1653
1654  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1655  // bullet 3).
1656  if (ImplicitConversionSequence::CompareKind QualCK
1657        = CompareQualificationConversions(SCS1, SCS2))
1658    return QualCK;
1659
1660  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1661    // C++0x [over.ics.rank]p3b4:
1662    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1663    //      implicit object parameter of a non-static member function declared
1664    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1665    //      rvalue and S2 binds an lvalue reference.
1666    // FIXME: We don't know if we're dealing with the implicit object parameter,
1667    // or if the member function in this case has a ref qualifier.
1668    // (Of course, we don't have ref qualifiers yet.)
1669    if (SCS1.RRefBinding != SCS2.RRefBinding)
1670      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1671                              : ImplicitConversionSequence::Worse;
1672
1673    // C++ [over.ics.rank]p3b4:
1674    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1675    //      which the references refer are the same type except for
1676    //      top-level cv-qualifiers, and the type to which the reference
1677    //      initialized by S2 refers is more cv-qualified than the type
1678    //      to which the reference initialized by S1 refers.
1679    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1680    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1681    T1 = Context.getCanonicalType(T1);
1682    T2 = Context.getCanonicalType(T2);
1683    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1684      if (T2.isMoreQualifiedThan(T1))
1685        return ImplicitConversionSequence::Better;
1686      else if (T1.isMoreQualifiedThan(T2))
1687        return ImplicitConversionSequence::Worse;
1688    }
1689  }
1690
1691  return ImplicitConversionSequence::Indistinguishable;
1692}
1693
1694/// CompareQualificationConversions - Compares two standard conversion
1695/// sequences to determine whether they can be ranked based on their
1696/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1697ImplicitConversionSequence::CompareKind
1698Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1699                                      const StandardConversionSequence& SCS2) {
1700  // C++ 13.3.3.2p3:
1701  //  -- S1 and S2 differ only in their qualification conversion and
1702  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1703  //     cv-qualification signature of type T1 is a proper subset of
1704  //     the cv-qualification signature of type T2, and S1 is not the
1705  //     deprecated string literal array-to-pointer conversion (4.2).
1706  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1707      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1708    return ImplicitConversionSequence::Indistinguishable;
1709
1710  // FIXME: the example in the standard doesn't use a qualification
1711  // conversion (!)
1712  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1713  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1714  T1 = Context.getCanonicalType(T1);
1715  T2 = Context.getCanonicalType(T2);
1716
1717  // If the types are the same, we won't learn anything by unwrapped
1718  // them.
1719  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1720    return ImplicitConversionSequence::Indistinguishable;
1721
1722  ImplicitConversionSequence::CompareKind Result
1723    = ImplicitConversionSequence::Indistinguishable;
1724  while (UnwrapSimilarPointerTypes(T1, T2)) {
1725    // Within each iteration of the loop, we check the qualifiers to
1726    // determine if this still looks like a qualification
1727    // conversion. Then, if all is well, we unwrap one more level of
1728    // pointers or pointers-to-members and do it all again
1729    // until there are no more pointers or pointers-to-members left
1730    // to unwrap. This essentially mimics what
1731    // IsQualificationConversion does, but here we're checking for a
1732    // strict subset of qualifiers.
1733    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1734      // The qualifiers are the same, so this doesn't tell us anything
1735      // about how the sequences rank.
1736      ;
1737    else if (T2.isMoreQualifiedThan(T1)) {
1738      // T1 has fewer qualifiers, so it could be the better sequence.
1739      if (Result == ImplicitConversionSequence::Worse)
1740        // Neither has qualifiers that are a subset of the other's
1741        // qualifiers.
1742        return ImplicitConversionSequence::Indistinguishable;
1743
1744      Result = ImplicitConversionSequence::Better;
1745    } else if (T1.isMoreQualifiedThan(T2)) {
1746      // T2 has fewer qualifiers, so it could be the better sequence.
1747      if (Result == ImplicitConversionSequence::Better)
1748        // Neither has qualifiers that are a subset of the other's
1749        // qualifiers.
1750        return ImplicitConversionSequence::Indistinguishable;
1751
1752      Result = ImplicitConversionSequence::Worse;
1753    } else {
1754      // Qualifiers are disjoint.
1755      return ImplicitConversionSequence::Indistinguishable;
1756    }
1757
1758    // If the types after this point are equivalent, we're done.
1759    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1760      break;
1761  }
1762
1763  // Check that the winning standard conversion sequence isn't using
1764  // the deprecated string literal array to pointer conversion.
1765  switch (Result) {
1766  case ImplicitConversionSequence::Better:
1767    if (SCS1.Deprecated)
1768      Result = ImplicitConversionSequence::Indistinguishable;
1769    break;
1770
1771  case ImplicitConversionSequence::Indistinguishable:
1772    break;
1773
1774  case ImplicitConversionSequence::Worse:
1775    if (SCS2.Deprecated)
1776      Result = ImplicitConversionSequence::Indistinguishable;
1777    break;
1778  }
1779
1780  return Result;
1781}
1782
1783/// CompareDerivedToBaseConversions - Compares two standard conversion
1784/// sequences to determine whether they can be ranked based on their
1785/// various kinds of derived-to-base conversions (C++
1786/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1787/// conversions between Objective-C interface types.
1788ImplicitConversionSequence::CompareKind
1789Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1790                                      const StandardConversionSequence& SCS2) {
1791  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1792  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1793  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1794  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1795
1796  // Adjust the types we're converting from via the array-to-pointer
1797  // conversion, if we need to.
1798  if (SCS1.First == ICK_Array_To_Pointer)
1799    FromType1 = Context.getArrayDecayedType(FromType1);
1800  if (SCS2.First == ICK_Array_To_Pointer)
1801    FromType2 = Context.getArrayDecayedType(FromType2);
1802
1803  // Canonicalize all of the types.
1804  FromType1 = Context.getCanonicalType(FromType1);
1805  ToType1 = Context.getCanonicalType(ToType1);
1806  FromType2 = Context.getCanonicalType(FromType2);
1807  ToType2 = Context.getCanonicalType(ToType2);
1808
1809  // C++ [over.ics.rank]p4b3:
1810  //
1811  //   If class B is derived directly or indirectly from class A and
1812  //   class C is derived directly or indirectly from B,
1813  //
1814  // For Objective-C, we let A, B, and C also be Objective-C
1815  // interfaces.
1816
1817  // Compare based on pointer conversions.
1818  if (SCS1.Second == ICK_Pointer_Conversion &&
1819      SCS2.Second == ICK_Pointer_Conversion &&
1820      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1821      FromType1->isPointerType() && FromType2->isPointerType() &&
1822      ToType1->isPointerType() && ToType2->isPointerType()) {
1823    QualType FromPointee1
1824      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1825    QualType ToPointee1
1826      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1827    QualType FromPointee2
1828      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1829    QualType ToPointee2
1830      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1831
1832    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1833    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1834    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1835    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1836
1837    //   -- conversion of C* to B* is better than conversion of C* to A*,
1838    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1839      if (IsDerivedFrom(ToPointee1, ToPointee2))
1840        return ImplicitConversionSequence::Better;
1841      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1842        return ImplicitConversionSequence::Worse;
1843
1844      if (ToIface1 && ToIface2) {
1845        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1846          return ImplicitConversionSequence::Better;
1847        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1848          return ImplicitConversionSequence::Worse;
1849      }
1850    }
1851
1852    //   -- conversion of B* to A* is better than conversion of C* to A*,
1853    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1854      if (IsDerivedFrom(FromPointee2, FromPointee1))
1855        return ImplicitConversionSequence::Better;
1856      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1857        return ImplicitConversionSequence::Worse;
1858
1859      if (FromIface1 && FromIface2) {
1860        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1861          return ImplicitConversionSequence::Better;
1862        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1863          return ImplicitConversionSequence::Worse;
1864      }
1865    }
1866  }
1867
1868  // Compare based on reference bindings.
1869  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1870      SCS1.Second == ICK_Derived_To_Base) {
1871    //   -- binding of an expression of type C to a reference of type
1872    //      B& is better than binding an expression of type C to a
1873    //      reference of type A&,
1874    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1875        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1876      if (IsDerivedFrom(ToType1, ToType2))
1877        return ImplicitConversionSequence::Better;
1878      else if (IsDerivedFrom(ToType2, ToType1))
1879        return ImplicitConversionSequence::Worse;
1880    }
1881
1882    //   -- binding of an expression of type B to a reference of type
1883    //      A& is better than binding an expression of type C to a
1884    //      reference of type A&,
1885    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1886        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1887      if (IsDerivedFrom(FromType2, FromType1))
1888        return ImplicitConversionSequence::Better;
1889      else if (IsDerivedFrom(FromType1, FromType2))
1890        return ImplicitConversionSequence::Worse;
1891    }
1892  }
1893
1894
1895  // FIXME: conversion of A::* to B::* is better than conversion of
1896  // A::* to C::*,
1897
1898  // FIXME: conversion of B::* to C::* is better than conversion of
1899  // A::* to C::*, and
1900
1901  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1902      SCS1.Second == ICK_Derived_To_Base) {
1903    //   -- conversion of C to B is better than conversion of C to A,
1904    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1905        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1906      if (IsDerivedFrom(ToType1, ToType2))
1907        return ImplicitConversionSequence::Better;
1908      else if (IsDerivedFrom(ToType2, ToType1))
1909        return ImplicitConversionSequence::Worse;
1910    }
1911
1912    //   -- conversion of B to A is better than conversion of C to A.
1913    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1914        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1915      if (IsDerivedFrom(FromType2, FromType1))
1916        return ImplicitConversionSequence::Better;
1917      else if (IsDerivedFrom(FromType1, FromType2))
1918        return ImplicitConversionSequence::Worse;
1919    }
1920  }
1921
1922  return ImplicitConversionSequence::Indistinguishable;
1923}
1924
1925/// TryCopyInitialization - Try to copy-initialize a value of type
1926/// ToType from the expression From. Return the implicit conversion
1927/// sequence required to pass this argument, which may be a bad
1928/// conversion sequence (meaning that the argument cannot be passed to
1929/// a parameter of this type). If @p SuppressUserConversions, then we
1930/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1931/// then we treat @p From as an rvalue, even if it is an lvalue.
1932ImplicitConversionSequence
1933Sema::TryCopyInitialization(Expr *From, QualType ToType,
1934                            bool SuppressUserConversions, bool ForceRValue,
1935                            bool InOverloadResolution) {
1936  if (ToType->isReferenceType()) {
1937    ImplicitConversionSequence ICS;
1938    CheckReferenceInit(From, ToType,
1939                       SuppressUserConversions,
1940                       /*AllowExplicit=*/false,
1941                       ForceRValue,
1942                       &ICS);
1943    return ICS;
1944  } else {
1945    return TryImplicitConversion(From, ToType,
1946                                 SuppressUserConversions,
1947                                 /*AllowExplicit=*/false,
1948                                 ForceRValue,
1949                                 InOverloadResolution);
1950  }
1951}
1952
1953/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1954/// the expression @p From. Returns true (and emits a diagnostic) if there was
1955/// an error, returns false if the initialization succeeded. Elidable should
1956/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1957/// differently in C++0x for this case.
1958bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1959                                     const char* Flavor, bool Elidable) {
1960  if (!getLangOptions().CPlusPlus) {
1961    // In C, argument passing is the same as performing an assignment.
1962    QualType FromType = From->getType();
1963
1964    AssignConvertType ConvTy =
1965      CheckSingleAssignmentConstraints(ToType, From);
1966    if (ConvTy != Compatible &&
1967        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1968      ConvTy = Compatible;
1969
1970    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1971                                    FromType, From, Flavor);
1972  }
1973
1974  if (ToType->isReferenceType())
1975    return CheckReferenceInit(From, ToType,
1976                              /*SuppressUserConversions=*/false,
1977                              /*AllowExplicit=*/false,
1978                              /*ForceRValue=*/false);
1979
1980  if (!PerformImplicitConversion(From, ToType, Flavor,
1981                                 /*AllowExplicit=*/false, Elidable))
1982    return false;
1983
1984  return Diag(From->getSourceRange().getBegin(),
1985              diag::err_typecheck_convert_incompatible)
1986    << ToType << From->getType() << Flavor << From->getSourceRange();
1987}
1988
1989/// TryObjectArgumentInitialization - Try to initialize the object
1990/// parameter of the given member function (@c Method) from the
1991/// expression @p From.
1992ImplicitConversionSequence
1993Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1994  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1995  unsigned MethodQuals = Method->getTypeQualifiers();
1996  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1997
1998  // Set up the conversion sequence as a "bad" conversion, to allow us
1999  // to exit early.
2000  ImplicitConversionSequence ICS;
2001  ICS.Standard.setAsIdentityConversion();
2002  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2003
2004  // We need to have an object of class type.
2005  QualType FromType = From->getType();
2006  if (const PointerType *PT = FromType->getAs<PointerType>())
2007    FromType = PT->getPointeeType();
2008
2009  assert(FromType->isRecordType());
2010
2011  // The implicit object parmeter is has the type "reference to cv X",
2012  // where X is the class of which the function is a member
2013  // (C++ [over.match.funcs]p4). However, when finding an implicit
2014  // conversion sequence for the argument, we are not allowed to
2015  // create temporaries or perform user-defined conversions
2016  // (C++ [over.match.funcs]p5). We perform a simplified version of
2017  // reference binding here, that allows class rvalues to bind to
2018  // non-constant references.
2019
2020  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2021  // with the implicit object parameter (C++ [over.match.funcs]p5).
2022  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2023  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2024      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2025    return ICS;
2026
2027  // Check that we have either the same type or a derived type. It
2028  // affects the conversion rank.
2029  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2030  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2031    ICS.Standard.Second = ICK_Identity;
2032  else if (IsDerivedFrom(FromType, ClassType))
2033    ICS.Standard.Second = ICK_Derived_To_Base;
2034  else
2035    return ICS;
2036
2037  // Success. Mark this as a reference binding.
2038  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2039  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2040  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2041  ICS.Standard.ReferenceBinding = true;
2042  ICS.Standard.DirectBinding = true;
2043  ICS.Standard.RRefBinding = false;
2044  return ICS;
2045}
2046
2047/// PerformObjectArgumentInitialization - Perform initialization of
2048/// the implicit object parameter for the given Method with the given
2049/// expression.
2050bool
2051Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2052  QualType FromRecordType, DestType;
2053  QualType ImplicitParamRecordType  =
2054    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2055
2056  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2057    FromRecordType = PT->getPointeeType();
2058    DestType = Method->getThisType(Context);
2059  } else {
2060    FromRecordType = From->getType();
2061    DestType = ImplicitParamRecordType;
2062  }
2063
2064  ImplicitConversionSequence ICS
2065    = TryObjectArgumentInitialization(From, Method);
2066  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2067    return Diag(From->getSourceRange().getBegin(),
2068                diag::err_implicit_object_parameter_init)
2069       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2070
2071  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2072      CheckDerivedToBaseConversion(FromRecordType,
2073                                   ImplicitParamRecordType,
2074                                   From->getSourceRange().getBegin(),
2075                                   From->getSourceRange()))
2076    return true;
2077
2078  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2079                    /*isLvalue=*/true);
2080  return false;
2081}
2082
2083/// TryContextuallyConvertToBool - Attempt to contextually convert the
2084/// expression From to bool (C++0x [conv]p3).
2085ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2086  return TryImplicitConversion(From, Context.BoolTy,
2087                               // FIXME: Are these flags correct?
2088                               /*SuppressUserConversions=*/false,
2089                               /*AllowExplicit=*/true,
2090                               /*ForceRValue=*/false,
2091                               /*InOverloadResolution=*/false);
2092}
2093
2094/// PerformContextuallyConvertToBool - Perform a contextual conversion
2095/// of the expression From to bool (C++0x [conv]p3).
2096bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2097  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2098  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2099    return false;
2100
2101  return Diag(From->getSourceRange().getBegin(),
2102              diag::err_typecheck_bool_condition)
2103    << From->getType() << From->getSourceRange();
2104}
2105
2106/// AddOverloadCandidate - Adds the given function to the set of
2107/// candidate functions, using the given function call arguments.  If
2108/// @p SuppressUserConversions, then don't allow user-defined
2109/// conversions via constructors or conversion operators.
2110/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2111/// hacky way to implement the overloading rules for elidable copy
2112/// initialization in C++0x (C++0x 12.8p15).
2113void
2114Sema::AddOverloadCandidate(FunctionDecl *Function,
2115                           Expr **Args, unsigned NumArgs,
2116                           OverloadCandidateSet& CandidateSet,
2117                           bool SuppressUserConversions,
2118                           bool ForceRValue) {
2119  const FunctionProtoType* Proto
2120    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2121  assert(Proto && "Functions without a prototype cannot be overloaded");
2122  assert(!isa<CXXConversionDecl>(Function) &&
2123         "Use AddConversionCandidate for conversion functions");
2124  assert(!Function->getDescribedFunctionTemplate() &&
2125         "Use AddTemplateOverloadCandidate for function templates");
2126
2127  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2128    if (!isa<CXXConstructorDecl>(Method)) {
2129      // If we get here, it's because we're calling a member function
2130      // that is named without a member access expression (e.g.,
2131      // "this->f") that was either written explicitly or created
2132      // implicitly. This can happen with a qualified call to a member
2133      // function, e.g., X::f(). We use a NULL object as the implied
2134      // object argument (C++ [over.call.func]p3).
2135      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2136                         SuppressUserConversions, ForceRValue);
2137      return;
2138    }
2139    // We treat a constructor like a non-member function, since its object
2140    // argument doesn't participate in overload resolution.
2141  }
2142
2143
2144  // Add this candidate
2145  CandidateSet.push_back(OverloadCandidate());
2146  OverloadCandidate& Candidate = CandidateSet.back();
2147  Candidate.Function = Function;
2148  Candidate.Viable = true;
2149  Candidate.IsSurrogate = false;
2150  Candidate.IgnoreObjectArgument = false;
2151
2152  unsigned NumArgsInProto = Proto->getNumArgs();
2153
2154  // (C++ 13.3.2p2): A candidate function having fewer than m
2155  // parameters is viable only if it has an ellipsis in its parameter
2156  // list (8.3.5).
2157  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2158    Candidate.Viable = false;
2159    return;
2160  }
2161
2162  // (C++ 13.3.2p2): A candidate function having more than m parameters
2163  // is viable only if the (m+1)st parameter has a default argument
2164  // (8.3.6). For the purposes of overload resolution, the
2165  // parameter list is truncated on the right, so that there are
2166  // exactly m parameters.
2167  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2168  if (NumArgs < MinRequiredArgs) {
2169    // Not enough arguments.
2170    Candidate.Viable = false;
2171    return;
2172  }
2173
2174  // Determine the implicit conversion sequences for each of the
2175  // arguments.
2176  Candidate.Conversions.resize(NumArgs);
2177  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2178    if (ArgIdx < NumArgsInProto) {
2179      // (C++ 13.3.2p3): for F to be a viable function, there shall
2180      // exist for each argument an implicit conversion sequence
2181      // (13.3.3.1) that converts that argument to the corresponding
2182      // parameter of F.
2183      QualType ParamType = Proto->getArgType(ArgIdx);
2184      Candidate.Conversions[ArgIdx]
2185        = TryCopyInitialization(Args[ArgIdx], ParamType,
2186                                SuppressUserConversions, ForceRValue,
2187                                /*InOverloadResolution=*/true);
2188      if (Candidate.Conversions[ArgIdx].ConversionKind
2189            == ImplicitConversionSequence::BadConversion) {
2190        Candidate.Viable = false;
2191        break;
2192      }
2193    } else {
2194      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2195      // argument for which there is no corresponding parameter is
2196      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2197      Candidate.Conversions[ArgIdx].ConversionKind
2198        = ImplicitConversionSequence::EllipsisConversion;
2199    }
2200  }
2201}
2202
2203/// \brief Add all of the function declarations in the given function set to
2204/// the overload canddiate set.
2205void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2206                                 Expr **Args, unsigned NumArgs,
2207                                 OverloadCandidateSet& CandidateSet,
2208                                 bool SuppressUserConversions) {
2209  for (FunctionSet::const_iterator F = Functions.begin(),
2210                                FEnd = Functions.end();
2211       F != FEnd; ++F) {
2212    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2213      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2214                           SuppressUserConversions);
2215    else
2216      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2217                                   /*FIXME: explicit args */false, 0, 0,
2218                                   Args, NumArgs, CandidateSet,
2219                                   SuppressUserConversions);
2220  }
2221}
2222
2223/// AddMethodCandidate - Adds the given C++ member function to the set
2224/// of candidate functions, using the given function call arguments
2225/// and the object argument (@c Object). For example, in a call
2226/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2227/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2228/// allow user-defined conversions via constructors or conversion
2229/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2230/// a slightly hacky way to implement the overloading rules for elidable copy
2231/// initialization in C++0x (C++0x 12.8p15).
2232void
2233Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2234                         Expr **Args, unsigned NumArgs,
2235                         OverloadCandidateSet& CandidateSet,
2236                         bool SuppressUserConversions, bool ForceRValue) {
2237  const FunctionProtoType* Proto
2238    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2239  assert(Proto && "Methods without a prototype cannot be overloaded");
2240  assert(!isa<CXXConversionDecl>(Method) &&
2241         "Use AddConversionCandidate for conversion functions");
2242  assert(!isa<CXXConstructorDecl>(Method) &&
2243         "Use AddOverloadCandidate for constructors");
2244
2245  // Add this candidate
2246  CandidateSet.push_back(OverloadCandidate());
2247  OverloadCandidate& Candidate = CandidateSet.back();
2248  Candidate.Function = Method;
2249  Candidate.IsSurrogate = false;
2250  Candidate.IgnoreObjectArgument = false;
2251
2252  unsigned NumArgsInProto = Proto->getNumArgs();
2253
2254  // (C++ 13.3.2p2): A candidate function having fewer than m
2255  // parameters is viable only if it has an ellipsis in its parameter
2256  // list (8.3.5).
2257  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2258    Candidate.Viable = false;
2259    return;
2260  }
2261
2262  // (C++ 13.3.2p2): A candidate function having more than m parameters
2263  // is viable only if the (m+1)st parameter has a default argument
2264  // (8.3.6). For the purposes of overload resolution, the
2265  // parameter list is truncated on the right, so that there are
2266  // exactly m parameters.
2267  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2268  if (NumArgs < MinRequiredArgs) {
2269    // Not enough arguments.
2270    Candidate.Viable = false;
2271    return;
2272  }
2273
2274  Candidate.Viable = true;
2275  Candidate.Conversions.resize(NumArgs + 1);
2276
2277  if (Method->isStatic() || !Object)
2278    // The implicit object argument is ignored.
2279    Candidate.IgnoreObjectArgument = true;
2280  else {
2281    // Determine the implicit conversion sequence for the object
2282    // parameter.
2283    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2284    if (Candidate.Conversions[0].ConversionKind
2285          == ImplicitConversionSequence::BadConversion) {
2286      Candidate.Viable = false;
2287      return;
2288    }
2289  }
2290
2291  // Determine the implicit conversion sequences for each of the
2292  // arguments.
2293  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2294    if (ArgIdx < NumArgsInProto) {
2295      // (C++ 13.3.2p3): for F to be a viable function, there shall
2296      // exist for each argument an implicit conversion sequence
2297      // (13.3.3.1) that converts that argument to the corresponding
2298      // parameter of F.
2299      QualType ParamType = Proto->getArgType(ArgIdx);
2300      Candidate.Conversions[ArgIdx + 1]
2301        = TryCopyInitialization(Args[ArgIdx], ParamType,
2302                                SuppressUserConversions, ForceRValue,
2303                                /*InOverloadResolution=*/true);
2304      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2305            == ImplicitConversionSequence::BadConversion) {
2306        Candidate.Viable = false;
2307        break;
2308      }
2309    } else {
2310      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2311      // argument for which there is no corresponding parameter is
2312      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2313      Candidate.Conversions[ArgIdx + 1].ConversionKind
2314        = ImplicitConversionSequence::EllipsisConversion;
2315    }
2316  }
2317}
2318
2319/// \brief Add a C++ member function template as a candidate to the candidate
2320/// set, using template argument deduction to produce an appropriate member
2321/// function template specialization.
2322void
2323Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2324                                 bool HasExplicitTemplateArgs,
2325                                 const TemplateArgument *ExplicitTemplateArgs,
2326                                 unsigned NumExplicitTemplateArgs,
2327                                 Expr *Object, Expr **Args, unsigned NumArgs,
2328                                 OverloadCandidateSet& CandidateSet,
2329                                 bool SuppressUserConversions,
2330                                 bool ForceRValue) {
2331  // C++ [over.match.funcs]p7:
2332  //   In each case where a candidate is a function template, candidate
2333  //   function template specializations are generated using template argument
2334  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2335  //   candidate functions in the usual way.113) A given name can refer to one
2336  //   or more function templates and also to a set of overloaded non-template
2337  //   functions. In such a case, the candidate functions generated from each
2338  //   function template are combined with the set of non-template candidate
2339  //   functions.
2340  TemplateDeductionInfo Info(Context);
2341  FunctionDecl *Specialization = 0;
2342  if (TemplateDeductionResult Result
2343      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2344                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2345                                Args, NumArgs, Specialization, Info)) {
2346        // FIXME: Record what happened with template argument deduction, so
2347        // that we can give the user a beautiful diagnostic.
2348        (void)Result;
2349        return;
2350      }
2351
2352  // Add the function template specialization produced by template argument
2353  // deduction as a candidate.
2354  assert(Specialization && "Missing member function template specialization?");
2355  assert(isa<CXXMethodDecl>(Specialization) &&
2356         "Specialization is not a member function?");
2357  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2358                     CandidateSet, SuppressUserConversions, ForceRValue);
2359}
2360
2361/// \brief Add a C++ function template specialization as a candidate
2362/// in the candidate set, using template argument deduction to produce
2363/// an appropriate function template specialization.
2364void
2365Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2366                                   bool HasExplicitTemplateArgs,
2367                                 const TemplateArgument *ExplicitTemplateArgs,
2368                                   unsigned NumExplicitTemplateArgs,
2369                                   Expr **Args, unsigned NumArgs,
2370                                   OverloadCandidateSet& CandidateSet,
2371                                   bool SuppressUserConversions,
2372                                   bool ForceRValue) {
2373  // C++ [over.match.funcs]p7:
2374  //   In each case where a candidate is a function template, candidate
2375  //   function template specializations are generated using template argument
2376  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2377  //   candidate functions in the usual way.113) A given name can refer to one
2378  //   or more function templates and also to a set of overloaded non-template
2379  //   functions. In such a case, the candidate functions generated from each
2380  //   function template are combined with the set of non-template candidate
2381  //   functions.
2382  TemplateDeductionInfo Info(Context);
2383  FunctionDecl *Specialization = 0;
2384  if (TemplateDeductionResult Result
2385        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2386                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2387                                  Args, NumArgs, Specialization, Info)) {
2388    // FIXME: Record what happened with template argument deduction, so
2389    // that we can give the user a beautiful diagnostic.
2390    (void)Result;
2391    return;
2392  }
2393
2394  // Add the function template specialization produced by template argument
2395  // deduction as a candidate.
2396  assert(Specialization && "Missing function template specialization?");
2397  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2398                       SuppressUserConversions, ForceRValue);
2399}
2400
2401/// AddConversionCandidate - Add a C++ conversion function as a
2402/// candidate in the candidate set (C++ [over.match.conv],
2403/// C++ [over.match.copy]). From is the expression we're converting from,
2404/// and ToType is the type that we're eventually trying to convert to
2405/// (which may or may not be the same type as the type that the
2406/// conversion function produces).
2407void
2408Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2409                             Expr *From, QualType ToType,
2410                             OverloadCandidateSet& CandidateSet) {
2411  assert(!Conversion->getDescribedFunctionTemplate() &&
2412         "Conversion function templates use AddTemplateConversionCandidate");
2413
2414  // Add this candidate
2415  CandidateSet.push_back(OverloadCandidate());
2416  OverloadCandidate& Candidate = CandidateSet.back();
2417  Candidate.Function = Conversion;
2418  Candidate.IsSurrogate = false;
2419  Candidate.IgnoreObjectArgument = false;
2420  Candidate.FinalConversion.setAsIdentityConversion();
2421  Candidate.FinalConversion.FromTypePtr
2422    = Conversion->getConversionType().getAsOpaquePtr();
2423  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2424
2425  // Determine the implicit conversion sequence for the implicit
2426  // object parameter.
2427  Candidate.Viable = true;
2428  Candidate.Conversions.resize(1);
2429  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2430
2431  if (Candidate.Conversions[0].ConversionKind
2432      == ImplicitConversionSequence::BadConversion) {
2433    Candidate.Viable = false;
2434    return;
2435  }
2436
2437  // To determine what the conversion from the result of calling the
2438  // conversion function to the type we're eventually trying to
2439  // convert to (ToType), we need to synthesize a call to the
2440  // conversion function and attempt copy initialization from it. This
2441  // makes sure that we get the right semantics with respect to
2442  // lvalues/rvalues and the type. Fortunately, we can allocate this
2443  // call on the stack and we don't need its arguments to be
2444  // well-formed.
2445  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2446                            SourceLocation());
2447  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2448                                CastExpr::CK_Unknown,
2449                                &ConversionRef, false);
2450
2451  // Note that it is safe to allocate CallExpr on the stack here because
2452  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2453  // allocator).
2454  CallExpr Call(Context, &ConversionFn, 0, 0,
2455                Conversion->getConversionType().getNonReferenceType(),
2456                SourceLocation());
2457  ImplicitConversionSequence ICS =
2458    TryCopyInitialization(&Call, ToType,
2459                          /*SuppressUserConversions=*/true,
2460                          /*ForceRValue=*/false,
2461                          /*InOverloadResolution=*/false);
2462
2463  switch (ICS.ConversionKind) {
2464  case ImplicitConversionSequence::StandardConversion:
2465    Candidate.FinalConversion = ICS.Standard;
2466    break;
2467
2468  case ImplicitConversionSequence::BadConversion:
2469    Candidate.Viable = false;
2470    break;
2471
2472  default:
2473    assert(false &&
2474           "Can only end up with a standard conversion sequence or failure");
2475  }
2476}
2477
2478/// \brief Adds a conversion function template specialization
2479/// candidate to the overload set, using template argument deduction
2480/// to deduce the template arguments of the conversion function
2481/// template from the type that we are converting to (C++
2482/// [temp.deduct.conv]).
2483void
2484Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2485                                     Expr *From, QualType ToType,
2486                                     OverloadCandidateSet &CandidateSet) {
2487  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2488         "Only conversion function templates permitted here");
2489
2490  TemplateDeductionInfo Info(Context);
2491  CXXConversionDecl *Specialization = 0;
2492  if (TemplateDeductionResult Result
2493        = DeduceTemplateArguments(FunctionTemplate, ToType,
2494                                  Specialization, Info)) {
2495    // FIXME: Record what happened with template argument deduction, so
2496    // that we can give the user a beautiful diagnostic.
2497    (void)Result;
2498    return;
2499  }
2500
2501  // Add the conversion function template specialization produced by
2502  // template argument deduction as a candidate.
2503  assert(Specialization && "Missing function template specialization?");
2504  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2505}
2506
2507/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2508/// converts the given @c Object to a function pointer via the
2509/// conversion function @c Conversion, and then attempts to call it
2510/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2511/// the type of function that we'll eventually be calling.
2512void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2513                                 const FunctionProtoType *Proto,
2514                                 Expr *Object, Expr **Args, unsigned NumArgs,
2515                                 OverloadCandidateSet& CandidateSet) {
2516  CandidateSet.push_back(OverloadCandidate());
2517  OverloadCandidate& Candidate = CandidateSet.back();
2518  Candidate.Function = 0;
2519  Candidate.Surrogate = Conversion;
2520  Candidate.Viable = true;
2521  Candidate.IsSurrogate = true;
2522  Candidate.IgnoreObjectArgument = false;
2523  Candidate.Conversions.resize(NumArgs + 1);
2524
2525  // Determine the implicit conversion sequence for the implicit
2526  // object parameter.
2527  ImplicitConversionSequence ObjectInit
2528    = TryObjectArgumentInitialization(Object, Conversion);
2529  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2530    Candidate.Viable = false;
2531    return;
2532  }
2533
2534  // The first conversion is actually a user-defined conversion whose
2535  // first conversion is ObjectInit's standard conversion (which is
2536  // effectively a reference binding). Record it as such.
2537  Candidate.Conversions[0].ConversionKind
2538    = ImplicitConversionSequence::UserDefinedConversion;
2539  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2540  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2541  Candidate.Conversions[0].UserDefined.After
2542    = Candidate.Conversions[0].UserDefined.Before;
2543  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2544
2545  // Find the
2546  unsigned NumArgsInProto = Proto->getNumArgs();
2547
2548  // (C++ 13.3.2p2): A candidate function having fewer than m
2549  // parameters is viable only if it has an ellipsis in its parameter
2550  // list (8.3.5).
2551  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2552    Candidate.Viable = false;
2553    return;
2554  }
2555
2556  // Function types don't have any default arguments, so just check if
2557  // we have enough arguments.
2558  if (NumArgs < NumArgsInProto) {
2559    // Not enough arguments.
2560    Candidate.Viable = false;
2561    return;
2562  }
2563
2564  // Determine the implicit conversion sequences for each of the
2565  // arguments.
2566  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2567    if (ArgIdx < NumArgsInProto) {
2568      // (C++ 13.3.2p3): for F to be a viable function, there shall
2569      // exist for each argument an implicit conversion sequence
2570      // (13.3.3.1) that converts that argument to the corresponding
2571      // parameter of F.
2572      QualType ParamType = Proto->getArgType(ArgIdx);
2573      Candidate.Conversions[ArgIdx + 1]
2574        = TryCopyInitialization(Args[ArgIdx], ParamType,
2575                                /*SuppressUserConversions=*/false,
2576                                /*ForceRValue=*/false,
2577                                /*InOverloadResolution=*/false);
2578      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2579            == ImplicitConversionSequence::BadConversion) {
2580        Candidate.Viable = false;
2581        break;
2582      }
2583    } else {
2584      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2585      // argument for which there is no corresponding parameter is
2586      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2587      Candidate.Conversions[ArgIdx + 1].ConversionKind
2588        = ImplicitConversionSequence::EllipsisConversion;
2589    }
2590  }
2591}
2592
2593// FIXME: This will eventually be removed, once we've migrated all of the
2594// operator overloading logic over to the scheme used by binary operators, which
2595// works for template instantiation.
2596void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2597                                 SourceLocation OpLoc,
2598                                 Expr **Args, unsigned NumArgs,
2599                                 OverloadCandidateSet& CandidateSet,
2600                                 SourceRange OpRange) {
2601
2602  FunctionSet Functions;
2603
2604  QualType T1 = Args[0]->getType();
2605  QualType T2;
2606  if (NumArgs > 1)
2607    T2 = Args[1]->getType();
2608
2609  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2610  if (S)
2611    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2612  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2613  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2614  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2615  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2616}
2617
2618/// \brief Add overload candidates for overloaded operators that are
2619/// member functions.
2620///
2621/// Add the overloaded operator candidates that are member functions
2622/// for the operator Op that was used in an operator expression such
2623/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2624/// CandidateSet will store the added overload candidates. (C++
2625/// [over.match.oper]).
2626void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2627                                       SourceLocation OpLoc,
2628                                       Expr **Args, unsigned NumArgs,
2629                                       OverloadCandidateSet& CandidateSet,
2630                                       SourceRange OpRange) {
2631  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2632
2633  // C++ [over.match.oper]p3:
2634  //   For a unary operator @ with an operand of a type whose
2635  //   cv-unqualified version is T1, and for a binary operator @ with
2636  //   a left operand of a type whose cv-unqualified version is T1 and
2637  //   a right operand of a type whose cv-unqualified version is T2,
2638  //   three sets of candidate functions, designated member
2639  //   candidates, non-member candidates and built-in candidates, are
2640  //   constructed as follows:
2641  QualType T1 = Args[0]->getType();
2642  QualType T2;
2643  if (NumArgs > 1)
2644    T2 = Args[1]->getType();
2645
2646  //     -- If T1 is a class type, the set of member candidates is the
2647  //        result of the qualified lookup of T1::operator@
2648  //        (13.3.1.1.1); otherwise, the set of member candidates is
2649  //        empty.
2650  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2651    // Complete the type if it can be completed. Otherwise, we're done.
2652    if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0)))
2653      return;
2654
2655    LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName,
2656                                                 LookupOrdinaryName, false);
2657    for (LookupResult::iterator Oper = Operators.begin(),
2658                             OperEnd = Operators.end();
2659         Oper != OperEnd;
2660         ++Oper)
2661      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2662                         Args+1, NumArgs - 1, CandidateSet,
2663                         /*SuppressUserConversions=*/false);
2664  }
2665}
2666
2667/// AddBuiltinCandidate - Add a candidate for a built-in
2668/// operator. ResultTy and ParamTys are the result and parameter types
2669/// of the built-in candidate, respectively. Args and NumArgs are the
2670/// arguments being passed to the candidate. IsAssignmentOperator
2671/// should be true when this built-in candidate is an assignment
2672/// operator. NumContextualBoolArguments is the number of arguments
2673/// (at the beginning of the argument list) that will be contextually
2674/// converted to bool.
2675void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2676                               Expr **Args, unsigned NumArgs,
2677                               OverloadCandidateSet& CandidateSet,
2678                               bool IsAssignmentOperator,
2679                               unsigned NumContextualBoolArguments) {
2680  // Add this candidate
2681  CandidateSet.push_back(OverloadCandidate());
2682  OverloadCandidate& Candidate = CandidateSet.back();
2683  Candidate.Function = 0;
2684  Candidate.IsSurrogate = false;
2685  Candidate.IgnoreObjectArgument = false;
2686  Candidate.BuiltinTypes.ResultTy = ResultTy;
2687  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2688    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2689
2690  // Determine the implicit conversion sequences for each of the
2691  // arguments.
2692  Candidate.Viable = true;
2693  Candidate.Conversions.resize(NumArgs);
2694  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2695    // C++ [over.match.oper]p4:
2696    //   For the built-in assignment operators, conversions of the
2697    //   left operand are restricted as follows:
2698    //     -- no temporaries are introduced to hold the left operand, and
2699    //     -- no user-defined conversions are applied to the left
2700    //        operand to achieve a type match with the left-most
2701    //        parameter of a built-in candidate.
2702    //
2703    // We block these conversions by turning off user-defined
2704    // conversions, since that is the only way that initialization of
2705    // a reference to a non-class type can occur from something that
2706    // is not of the same type.
2707    if (ArgIdx < NumContextualBoolArguments) {
2708      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2709             "Contextual conversion to bool requires bool type");
2710      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2711    } else {
2712      Candidate.Conversions[ArgIdx]
2713        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2714                                ArgIdx == 0 && IsAssignmentOperator,
2715                                /*ForceRValue=*/false,
2716                                /*InOverloadResolution=*/false);
2717    }
2718    if (Candidate.Conversions[ArgIdx].ConversionKind
2719        == ImplicitConversionSequence::BadConversion) {
2720      Candidate.Viable = false;
2721      break;
2722    }
2723  }
2724}
2725
2726/// BuiltinCandidateTypeSet - A set of types that will be used for the
2727/// candidate operator functions for built-in operators (C++
2728/// [over.built]). The types are separated into pointer types and
2729/// enumeration types.
2730class BuiltinCandidateTypeSet  {
2731  /// TypeSet - A set of types.
2732  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2733
2734  /// PointerTypes - The set of pointer types that will be used in the
2735  /// built-in candidates.
2736  TypeSet PointerTypes;
2737
2738  /// MemberPointerTypes - The set of member pointer types that will be
2739  /// used in the built-in candidates.
2740  TypeSet MemberPointerTypes;
2741
2742  /// EnumerationTypes - The set of enumeration types that will be
2743  /// used in the built-in candidates.
2744  TypeSet EnumerationTypes;
2745
2746  /// Sema - The semantic analysis instance where we are building the
2747  /// candidate type set.
2748  Sema &SemaRef;
2749
2750  /// Context - The AST context in which we will build the type sets.
2751  ASTContext &Context;
2752
2753  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2754  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2755
2756public:
2757  /// iterator - Iterates through the types that are part of the set.
2758  typedef TypeSet::iterator iterator;
2759
2760  BuiltinCandidateTypeSet(Sema &SemaRef)
2761    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2762
2763  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2764                             bool AllowExplicitConversions);
2765
2766  /// pointer_begin - First pointer type found;
2767  iterator pointer_begin() { return PointerTypes.begin(); }
2768
2769  /// pointer_end - Past the last pointer type found;
2770  iterator pointer_end() { return PointerTypes.end(); }
2771
2772  /// member_pointer_begin - First member pointer type found;
2773  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2774
2775  /// member_pointer_end - Past the last member pointer type found;
2776  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2777
2778  /// enumeration_begin - First enumeration type found;
2779  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2780
2781  /// enumeration_end - Past the last enumeration type found;
2782  iterator enumeration_end() { return EnumerationTypes.end(); }
2783};
2784
2785/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2786/// the set of pointer types along with any more-qualified variants of
2787/// that type. For example, if @p Ty is "int const *", this routine
2788/// will add "int const *", "int const volatile *", "int const
2789/// restrict *", and "int const volatile restrict *" to the set of
2790/// pointer types. Returns true if the add of @p Ty itself succeeded,
2791/// false otherwise.
2792bool
2793BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2794  // Insert this type.
2795  if (!PointerTypes.insert(Ty))
2796    return false;
2797
2798  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2799    QualType PointeeTy = PointerTy->getPointeeType();
2800    // FIXME: Optimize this so that we don't keep trying to add the same types.
2801
2802    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2803    // pointer conversions that don't cast away constness?
2804    if (!PointeeTy.isConstQualified())
2805      AddPointerWithMoreQualifiedTypeVariants
2806        (Context.getPointerType(PointeeTy.withConst()));
2807    if (!PointeeTy.isVolatileQualified())
2808      AddPointerWithMoreQualifiedTypeVariants
2809        (Context.getPointerType(PointeeTy.withVolatile()));
2810    if (!PointeeTy.isRestrictQualified())
2811      AddPointerWithMoreQualifiedTypeVariants
2812        (Context.getPointerType(PointeeTy.withRestrict()));
2813  }
2814
2815  return true;
2816}
2817
2818/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2819/// to the set of pointer types along with any more-qualified variants of
2820/// that type. For example, if @p Ty is "int const *", this routine
2821/// will add "int const *", "int const volatile *", "int const
2822/// restrict *", and "int const volatile restrict *" to the set of
2823/// pointer types. Returns true if the add of @p Ty itself succeeded,
2824/// false otherwise.
2825bool
2826BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2827    QualType Ty) {
2828  // Insert this type.
2829  if (!MemberPointerTypes.insert(Ty))
2830    return false;
2831
2832  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2833    QualType PointeeTy = PointerTy->getPointeeType();
2834    const Type *ClassTy = PointerTy->getClass();
2835    // FIXME: Optimize this so that we don't keep trying to add the same types.
2836
2837    if (!PointeeTy.isConstQualified())
2838      AddMemberPointerWithMoreQualifiedTypeVariants
2839        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2840    if (!PointeeTy.isVolatileQualified())
2841      AddMemberPointerWithMoreQualifiedTypeVariants
2842        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2843    if (!PointeeTy.isRestrictQualified())
2844      AddMemberPointerWithMoreQualifiedTypeVariants
2845        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2846  }
2847
2848  return true;
2849}
2850
2851/// AddTypesConvertedFrom - Add each of the types to which the type @p
2852/// Ty can be implicit converted to the given set of @p Types. We're
2853/// primarily interested in pointer types and enumeration types. We also
2854/// take member pointer types, for the conditional operator.
2855/// AllowUserConversions is true if we should look at the conversion
2856/// functions of a class type, and AllowExplicitConversions if we
2857/// should also include the explicit conversion functions of a class
2858/// type.
2859void
2860BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2861                                               bool AllowUserConversions,
2862                                               bool AllowExplicitConversions) {
2863  // Only deal with canonical types.
2864  Ty = Context.getCanonicalType(Ty);
2865
2866  // Look through reference types; they aren't part of the type of an
2867  // expression for the purposes of conversions.
2868  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2869    Ty = RefTy->getPointeeType();
2870
2871  // We don't care about qualifiers on the type.
2872  Ty = Ty.getUnqualifiedType();
2873
2874  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2875    QualType PointeeTy = PointerTy->getPointeeType();
2876
2877    // Insert our type, and its more-qualified variants, into the set
2878    // of types.
2879    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2880      return;
2881
2882    // Add 'cv void*' to our set of types.
2883    if (!Ty->isVoidType()) {
2884      QualType QualVoid
2885        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2886      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2887    }
2888
2889    // If this is a pointer to a class type, add pointers to its bases
2890    // (with the same level of cv-qualification as the original
2891    // derived class, of course).
2892    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2893      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2894      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2895           Base != ClassDecl->bases_end(); ++Base) {
2896        QualType BaseTy = Context.getCanonicalType(Base->getType());
2897        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2898
2899        // Add the pointer type, recursively, so that we get all of
2900        // the indirect base classes, too.
2901        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2902      }
2903    }
2904  } else if (Ty->isMemberPointerType()) {
2905    // Member pointers are far easier, since the pointee can't be converted.
2906    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2907      return;
2908  } else if (Ty->isEnumeralType()) {
2909    EnumerationTypes.insert(Ty);
2910  } else if (AllowUserConversions) {
2911    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2912      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
2913        // No conversion functions in incomplete types.
2914        return;
2915      }
2916
2917      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2918      // FIXME: Visit conversion functions in the base classes, too.
2919      OverloadedFunctionDecl *Conversions
2920        = ClassDecl->getConversionFunctions();
2921      for (OverloadedFunctionDecl::function_iterator Func
2922             = Conversions->function_begin();
2923           Func != Conversions->function_end(); ++Func) {
2924        CXXConversionDecl *Conv;
2925        FunctionTemplateDecl *ConvTemplate;
2926        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
2927
2928        // Skip conversion function templates; they don't tell us anything
2929        // about which builtin types we can convert to.
2930        if (ConvTemplate)
2931          continue;
2932
2933        if (AllowExplicitConversions || !Conv->isExplicit())
2934          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2935      }
2936    }
2937  }
2938}
2939
2940/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
2941/// the volatile- and non-volatile-qualified assignment operators for the
2942/// given type to the candidate set.
2943static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
2944                                                   QualType T,
2945                                                   Expr **Args,
2946                                                   unsigned NumArgs,
2947                                    OverloadCandidateSet &CandidateSet) {
2948  QualType ParamTypes[2];
2949
2950  // T& operator=(T&, T)
2951  ParamTypes[0] = S.Context.getLValueReferenceType(T);
2952  ParamTypes[1] = T;
2953  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2954                        /*IsAssignmentOperator=*/true);
2955
2956  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
2957    // volatile T& operator=(volatile T&, T)
2958    ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile());
2959    ParamTypes[1] = T;
2960    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2961                          /*IsAssignmentOperator=*/true);
2962  }
2963}
2964
2965/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2966/// operator overloads to the candidate set (C++ [over.built]), based
2967/// on the operator @p Op and the arguments given. For example, if the
2968/// operator is a binary '+', this routine might add "int
2969/// operator+(int, int)" to cover integer addition.
2970void
2971Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2972                                   Expr **Args, unsigned NumArgs,
2973                                   OverloadCandidateSet& CandidateSet) {
2974  // The set of "promoted arithmetic types", which are the arithmetic
2975  // types are that preserved by promotion (C++ [over.built]p2). Note
2976  // that the first few of these types are the promoted integral
2977  // types; these types need to be first.
2978  // FIXME: What about complex?
2979  const unsigned FirstIntegralType = 0;
2980  const unsigned LastIntegralType = 13;
2981  const unsigned FirstPromotedIntegralType = 7,
2982                 LastPromotedIntegralType = 13;
2983  const unsigned FirstPromotedArithmeticType = 7,
2984                 LastPromotedArithmeticType = 16;
2985  const unsigned NumArithmeticTypes = 16;
2986  QualType ArithmeticTypes[NumArithmeticTypes] = {
2987    Context.BoolTy, Context.CharTy, Context.WCharTy,
2988// FIXME:   Context.Char16Ty, Context.Char32Ty,
2989    Context.SignedCharTy, Context.ShortTy,
2990    Context.UnsignedCharTy, Context.UnsignedShortTy,
2991    Context.IntTy, Context.LongTy, Context.LongLongTy,
2992    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2993    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2994  };
2995
2996  // Find all of the types that the arguments can convert to, but only
2997  // if the operator we're looking at has built-in operator candidates
2998  // that make use of these types.
2999  BuiltinCandidateTypeSet CandidateTypes(*this);
3000  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3001      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3002      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3003      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3004      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3005      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3006    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3007      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3008                                           true,
3009                                           (Op == OO_Exclaim ||
3010                                            Op == OO_AmpAmp ||
3011                                            Op == OO_PipePipe));
3012  }
3013
3014  bool isComparison = false;
3015  switch (Op) {
3016  case OO_None:
3017  case NUM_OVERLOADED_OPERATORS:
3018    assert(false && "Expected an overloaded operator");
3019    break;
3020
3021  case OO_Star: // '*' is either unary or binary
3022    if (NumArgs == 1)
3023      goto UnaryStar;
3024    else
3025      goto BinaryStar;
3026    break;
3027
3028  case OO_Plus: // '+' is either unary or binary
3029    if (NumArgs == 1)
3030      goto UnaryPlus;
3031    else
3032      goto BinaryPlus;
3033    break;
3034
3035  case OO_Minus: // '-' is either unary or binary
3036    if (NumArgs == 1)
3037      goto UnaryMinus;
3038    else
3039      goto BinaryMinus;
3040    break;
3041
3042  case OO_Amp: // '&' is either unary or binary
3043    if (NumArgs == 1)
3044      goto UnaryAmp;
3045    else
3046      goto BinaryAmp;
3047
3048  case OO_PlusPlus:
3049  case OO_MinusMinus:
3050    // C++ [over.built]p3:
3051    //
3052    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3053    //   is either volatile or empty, there exist candidate operator
3054    //   functions of the form
3055    //
3056    //       VQ T&      operator++(VQ T&);
3057    //       T          operator++(VQ T&, int);
3058    //
3059    // C++ [over.built]p4:
3060    //
3061    //   For every pair (T, VQ), where T is an arithmetic type other
3062    //   than bool, and VQ is either volatile or empty, there exist
3063    //   candidate operator functions of the form
3064    //
3065    //       VQ T&      operator--(VQ T&);
3066    //       T          operator--(VQ T&, int);
3067    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3068         Arith < NumArithmeticTypes; ++Arith) {
3069      QualType ArithTy = ArithmeticTypes[Arith];
3070      QualType ParamTypes[2]
3071        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3072
3073      // Non-volatile version.
3074      if (NumArgs == 1)
3075        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3076      else
3077        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3078
3079      // Volatile version
3080      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
3081      if (NumArgs == 1)
3082        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3083      else
3084        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3085    }
3086
3087    // C++ [over.built]p5:
3088    //
3089    //   For every pair (T, VQ), where T is a cv-qualified or
3090    //   cv-unqualified object type, and VQ is either volatile or
3091    //   empty, there exist candidate operator functions of the form
3092    //
3093    //       T*VQ&      operator++(T*VQ&);
3094    //       T*VQ&      operator--(T*VQ&);
3095    //       T*         operator++(T*VQ&, int);
3096    //       T*         operator--(T*VQ&, int);
3097    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3098         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3099      // Skip pointer types that aren't pointers to object types.
3100      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3101        continue;
3102
3103      QualType ParamTypes[2] = {
3104        Context.getLValueReferenceType(*Ptr), Context.IntTy
3105      };
3106
3107      // Without volatile
3108      if (NumArgs == 1)
3109        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3110      else
3111        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3112
3113      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3114        // With volatile
3115        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3116        if (NumArgs == 1)
3117          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3118        else
3119          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3120      }
3121    }
3122    break;
3123
3124  UnaryStar:
3125    // C++ [over.built]p6:
3126    //   For every cv-qualified or cv-unqualified object type T, there
3127    //   exist candidate operator functions of the form
3128    //
3129    //       T&         operator*(T*);
3130    //
3131    // C++ [over.built]p7:
3132    //   For every function type T, there exist candidate operator
3133    //   functions of the form
3134    //       T&         operator*(T*);
3135    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3136         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3137      QualType ParamTy = *Ptr;
3138      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3139      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3140                          &ParamTy, Args, 1, CandidateSet);
3141    }
3142    break;
3143
3144  UnaryPlus:
3145    // C++ [over.built]p8:
3146    //   For every type T, there exist candidate operator functions of
3147    //   the form
3148    //
3149    //       T*         operator+(T*);
3150    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3151         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3152      QualType ParamTy = *Ptr;
3153      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3154    }
3155
3156    // Fall through
3157
3158  UnaryMinus:
3159    // C++ [over.built]p9:
3160    //  For every promoted arithmetic type T, there exist candidate
3161    //  operator functions of the form
3162    //
3163    //       T         operator+(T);
3164    //       T         operator-(T);
3165    for (unsigned Arith = FirstPromotedArithmeticType;
3166         Arith < LastPromotedArithmeticType; ++Arith) {
3167      QualType ArithTy = ArithmeticTypes[Arith];
3168      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3169    }
3170    break;
3171
3172  case OO_Tilde:
3173    // C++ [over.built]p10:
3174    //   For every promoted integral type T, there exist candidate
3175    //   operator functions of the form
3176    //
3177    //        T         operator~(T);
3178    for (unsigned Int = FirstPromotedIntegralType;
3179         Int < LastPromotedIntegralType; ++Int) {
3180      QualType IntTy = ArithmeticTypes[Int];
3181      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3182    }
3183    break;
3184
3185  case OO_New:
3186  case OO_Delete:
3187  case OO_Array_New:
3188  case OO_Array_Delete:
3189  case OO_Call:
3190    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3191    break;
3192
3193  case OO_Comma:
3194  UnaryAmp:
3195  case OO_Arrow:
3196    // C++ [over.match.oper]p3:
3197    //   -- For the operator ',', the unary operator '&', or the
3198    //      operator '->', the built-in candidates set is empty.
3199    break;
3200
3201  case OO_EqualEqual:
3202  case OO_ExclaimEqual:
3203    // C++ [over.match.oper]p16:
3204    //   For every pointer to member type T, there exist candidate operator
3205    //   functions of the form
3206    //
3207    //        bool operator==(T,T);
3208    //        bool operator!=(T,T);
3209    for (BuiltinCandidateTypeSet::iterator
3210           MemPtr = CandidateTypes.member_pointer_begin(),
3211           MemPtrEnd = CandidateTypes.member_pointer_end();
3212         MemPtr != MemPtrEnd;
3213         ++MemPtr) {
3214      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3215      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3216    }
3217
3218    // Fall through
3219
3220  case OO_Less:
3221  case OO_Greater:
3222  case OO_LessEqual:
3223  case OO_GreaterEqual:
3224    // C++ [over.built]p15:
3225    //
3226    //   For every pointer or enumeration type T, there exist
3227    //   candidate operator functions of the form
3228    //
3229    //        bool       operator<(T, T);
3230    //        bool       operator>(T, T);
3231    //        bool       operator<=(T, T);
3232    //        bool       operator>=(T, T);
3233    //        bool       operator==(T, T);
3234    //        bool       operator!=(T, T);
3235    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3236         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3237      QualType ParamTypes[2] = { *Ptr, *Ptr };
3238      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3239    }
3240    for (BuiltinCandidateTypeSet::iterator Enum
3241           = CandidateTypes.enumeration_begin();
3242         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3243      QualType ParamTypes[2] = { *Enum, *Enum };
3244      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3245    }
3246
3247    // Fall through.
3248    isComparison = true;
3249
3250  BinaryPlus:
3251  BinaryMinus:
3252    if (!isComparison) {
3253      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3254
3255      // C++ [over.built]p13:
3256      //
3257      //   For every cv-qualified or cv-unqualified object type T
3258      //   there exist candidate operator functions of the form
3259      //
3260      //      T*         operator+(T*, ptrdiff_t);
3261      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3262      //      T*         operator-(T*, ptrdiff_t);
3263      //      T*         operator+(ptrdiff_t, T*);
3264      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3265      //
3266      // C++ [over.built]p14:
3267      //
3268      //   For every T, where T is a pointer to object type, there
3269      //   exist candidate operator functions of the form
3270      //
3271      //      ptrdiff_t  operator-(T, T);
3272      for (BuiltinCandidateTypeSet::iterator Ptr
3273             = CandidateTypes.pointer_begin();
3274           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3275        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3276
3277        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3278        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3279
3280        if (Op == OO_Plus) {
3281          // T* operator+(ptrdiff_t, T*);
3282          ParamTypes[0] = ParamTypes[1];
3283          ParamTypes[1] = *Ptr;
3284          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3285        } else {
3286          // ptrdiff_t operator-(T, T);
3287          ParamTypes[1] = *Ptr;
3288          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3289                              Args, 2, CandidateSet);
3290        }
3291      }
3292    }
3293    // Fall through
3294
3295  case OO_Slash:
3296  BinaryStar:
3297  Conditional:
3298    // C++ [over.built]p12:
3299    //
3300    //   For every pair of promoted arithmetic types L and R, there
3301    //   exist candidate operator functions of the form
3302    //
3303    //        LR         operator*(L, R);
3304    //        LR         operator/(L, R);
3305    //        LR         operator+(L, R);
3306    //        LR         operator-(L, R);
3307    //        bool       operator<(L, R);
3308    //        bool       operator>(L, R);
3309    //        bool       operator<=(L, R);
3310    //        bool       operator>=(L, R);
3311    //        bool       operator==(L, R);
3312    //        bool       operator!=(L, R);
3313    //
3314    //   where LR is the result of the usual arithmetic conversions
3315    //   between types L and R.
3316    //
3317    // C++ [over.built]p24:
3318    //
3319    //   For every pair of promoted arithmetic types L and R, there exist
3320    //   candidate operator functions of the form
3321    //
3322    //        LR       operator?(bool, L, R);
3323    //
3324    //   where LR is the result of the usual arithmetic conversions
3325    //   between types L and R.
3326    // Our candidates ignore the first parameter.
3327    for (unsigned Left = FirstPromotedArithmeticType;
3328         Left < LastPromotedArithmeticType; ++Left) {
3329      for (unsigned Right = FirstPromotedArithmeticType;
3330           Right < LastPromotedArithmeticType; ++Right) {
3331        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3332        QualType Result
3333          = isComparison
3334          ? Context.BoolTy
3335          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3336        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3337      }
3338    }
3339    break;
3340
3341  case OO_Percent:
3342  BinaryAmp:
3343  case OO_Caret:
3344  case OO_Pipe:
3345  case OO_LessLess:
3346  case OO_GreaterGreater:
3347    // C++ [over.built]p17:
3348    //
3349    //   For every pair of promoted integral types L and R, there
3350    //   exist candidate operator functions of the form
3351    //
3352    //      LR         operator%(L, R);
3353    //      LR         operator&(L, R);
3354    //      LR         operator^(L, R);
3355    //      LR         operator|(L, R);
3356    //      L          operator<<(L, R);
3357    //      L          operator>>(L, R);
3358    //
3359    //   where LR is the result of the usual arithmetic conversions
3360    //   between types L and R.
3361    for (unsigned Left = FirstPromotedIntegralType;
3362         Left < LastPromotedIntegralType; ++Left) {
3363      for (unsigned Right = FirstPromotedIntegralType;
3364           Right < LastPromotedIntegralType; ++Right) {
3365        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3366        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3367            ? LandR[0]
3368            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3369        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3370      }
3371    }
3372    break;
3373
3374  case OO_Equal:
3375    // C++ [over.built]p20:
3376    //
3377    //   For every pair (T, VQ), where T is an enumeration or
3378    //   pointer to member type and VQ is either volatile or
3379    //   empty, there exist candidate operator functions of the form
3380    //
3381    //        VQ T&      operator=(VQ T&, T);
3382    for (BuiltinCandidateTypeSet::iterator
3383           Enum = CandidateTypes.enumeration_begin(),
3384           EnumEnd = CandidateTypes.enumeration_end();
3385         Enum != EnumEnd; ++Enum)
3386      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3387                                             CandidateSet);
3388    for (BuiltinCandidateTypeSet::iterator
3389           MemPtr = CandidateTypes.member_pointer_begin(),
3390         MemPtrEnd = CandidateTypes.member_pointer_end();
3391         MemPtr != MemPtrEnd; ++MemPtr)
3392      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3393                                             CandidateSet);
3394      // Fall through.
3395
3396  case OO_PlusEqual:
3397  case OO_MinusEqual:
3398    // C++ [over.built]p19:
3399    //
3400    //   For every pair (T, VQ), where T is any type and VQ is either
3401    //   volatile or empty, there exist candidate operator functions
3402    //   of the form
3403    //
3404    //        T*VQ&      operator=(T*VQ&, T*);
3405    //
3406    // C++ [over.built]p21:
3407    //
3408    //   For every pair (T, VQ), where T is a cv-qualified or
3409    //   cv-unqualified object type and VQ is either volatile or
3410    //   empty, there exist candidate operator functions of the form
3411    //
3412    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3413    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3414    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3415         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3416      QualType ParamTypes[2];
3417      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3418
3419      // non-volatile version
3420      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3421      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3422                          /*IsAssigmentOperator=*/Op == OO_Equal);
3423
3424      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3425        // volatile version
3426        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3427        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3428                            /*IsAssigmentOperator=*/Op == OO_Equal);
3429      }
3430    }
3431    // Fall through.
3432
3433  case OO_StarEqual:
3434  case OO_SlashEqual:
3435    // C++ [over.built]p18:
3436    //
3437    //   For every triple (L, VQ, R), where L is an arithmetic type,
3438    //   VQ is either volatile or empty, and R is a promoted
3439    //   arithmetic type, there exist candidate operator functions of
3440    //   the form
3441    //
3442    //        VQ L&      operator=(VQ L&, R);
3443    //        VQ L&      operator*=(VQ L&, R);
3444    //        VQ L&      operator/=(VQ L&, R);
3445    //        VQ L&      operator+=(VQ L&, R);
3446    //        VQ L&      operator-=(VQ L&, R);
3447    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3448      for (unsigned Right = FirstPromotedArithmeticType;
3449           Right < LastPromotedArithmeticType; ++Right) {
3450        QualType ParamTypes[2];
3451        ParamTypes[1] = ArithmeticTypes[Right];
3452
3453        // Add this built-in operator as a candidate (VQ is empty).
3454        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3455        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3456                            /*IsAssigmentOperator=*/Op == OO_Equal);
3457
3458        // Add this built-in operator as a candidate (VQ is 'volatile').
3459        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3460        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3461        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3462                            /*IsAssigmentOperator=*/Op == OO_Equal);
3463      }
3464    }
3465    break;
3466
3467  case OO_PercentEqual:
3468  case OO_LessLessEqual:
3469  case OO_GreaterGreaterEqual:
3470  case OO_AmpEqual:
3471  case OO_CaretEqual:
3472  case OO_PipeEqual:
3473    // C++ [over.built]p22:
3474    //
3475    //   For every triple (L, VQ, R), where L is an integral type, VQ
3476    //   is either volatile or empty, and R is a promoted integral
3477    //   type, there exist candidate operator functions of the form
3478    //
3479    //        VQ L&       operator%=(VQ L&, R);
3480    //        VQ L&       operator<<=(VQ L&, R);
3481    //        VQ L&       operator>>=(VQ L&, R);
3482    //        VQ L&       operator&=(VQ L&, R);
3483    //        VQ L&       operator^=(VQ L&, R);
3484    //        VQ L&       operator|=(VQ L&, R);
3485    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3486      for (unsigned Right = FirstPromotedIntegralType;
3487           Right < LastPromotedIntegralType; ++Right) {
3488        QualType ParamTypes[2];
3489        ParamTypes[1] = ArithmeticTypes[Right];
3490
3491        // Add this built-in operator as a candidate (VQ is empty).
3492        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3493        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3494
3495        // Add this built-in operator as a candidate (VQ is 'volatile').
3496        ParamTypes[0] = ArithmeticTypes[Left];
3497        ParamTypes[0].addVolatile();
3498        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3499        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3500      }
3501    }
3502    break;
3503
3504  case OO_Exclaim: {
3505    // C++ [over.operator]p23:
3506    //
3507    //   There also exist candidate operator functions of the form
3508    //
3509    //        bool        operator!(bool);
3510    //        bool        operator&&(bool, bool);     [BELOW]
3511    //        bool        operator||(bool, bool);     [BELOW]
3512    QualType ParamTy = Context.BoolTy;
3513    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3514                        /*IsAssignmentOperator=*/false,
3515                        /*NumContextualBoolArguments=*/1);
3516    break;
3517  }
3518
3519  case OO_AmpAmp:
3520  case OO_PipePipe: {
3521    // C++ [over.operator]p23:
3522    //
3523    //   There also exist candidate operator functions of the form
3524    //
3525    //        bool        operator!(bool);            [ABOVE]
3526    //        bool        operator&&(bool, bool);
3527    //        bool        operator||(bool, bool);
3528    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3529    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3530                        /*IsAssignmentOperator=*/false,
3531                        /*NumContextualBoolArguments=*/2);
3532    break;
3533  }
3534
3535  case OO_Subscript:
3536    // C++ [over.built]p13:
3537    //
3538    //   For every cv-qualified or cv-unqualified object type T there
3539    //   exist candidate operator functions of the form
3540    //
3541    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3542    //        T&         operator[](T*, ptrdiff_t);
3543    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3544    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3545    //        T&         operator[](ptrdiff_t, T*);
3546    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3547         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3548      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3549      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3550      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3551
3552      // T& operator[](T*, ptrdiff_t)
3553      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3554
3555      // T& operator[](ptrdiff_t, T*);
3556      ParamTypes[0] = ParamTypes[1];
3557      ParamTypes[1] = *Ptr;
3558      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3559    }
3560    break;
3561
3562  case OO_ArrowStar:
3563    // FIXME: No support for pointer-to-members yet.
3564    break;
3565
3566  case OO_Conditional:
3567    // Note that we don't consider the first argument, since it has been
3568    // contextually converted to bool long ago. The candidates below are
3569    // therefore added as binary.
3570    //
3571    // C++ [over.built]p24:
3572    //   For every type T, where T is a pointer or pointer-to-member type,
3573    //   there exist candidate operator functions of the form
3574    //
3575    //        T        operator?(bool, T, T);
3576    //
3577    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3578         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3579      QualType ParamTypes[2] = { *Ptr, *Ptr };
3580      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3581    }
3582    for (BuiltinCandidateTypeSet::iterator Ptr =
3583           CandidateTypes.member_pointer_begin(),
3584         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3585      QualType ParamTypes[2] = { *Ptr, *Ptr };
3586      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3587    }
3588    goto Conditional;
3589  }
3590}
3591
3592/// \brief Add function candidates found via argument-dependent lookup
3593/// to the set of overloading candidates.
3594///
3595/// This routine performs argument-dependent name lookup based on the
3596/// given function name (which may also be an operator name) and adds
3597/// all of the overload candidates found by ADL to the overload
3598/// candidate set (C++ [basic.lookup.argdep]).
3599void
3600Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3601                                           Expr **Args, unsigned NumArgs,
3602                                           OverloadCandidateSet& CandidateSet) {
3603  FunctionSet Functions;
3604
3605  // Record all of the function candidates that we've already
3606  // added to the overload set, so that we don't add those same
3607  // candidates a second time.
3608  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3609                                   CandEnd = CandidateSet.end();
3610       Cand != CandEnd; ++Cand)
3611    if (Cand->Function) {
3612      Functions.insert(Cand->Function);
3613      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3614        Functions.insert(FunTmpl);
3615    }
3616
3617  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3618
3619  // Erase all of the candidates we already knew about.
3620  // FIXME: This is suboptimal. Is there a better way?
3621  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3622                                   CandEnd = CandidateSet.end();
3623       Cand != CandEnd; ++Cand)
3624    if (Cand->Function) {
3625      Functions.erase(Cand->Function);
3626      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3627        Functions.erase(FunTmpl);
3628    }
3629
3630  // For each of the ADL candidates we found, add it to the overload
3631  // set.
3632  for (FunctionSet::iterator Func = Functions.begin(),
3633                          FuncEnd = Functions.end();
3634       Func != FuncEnd; ++Func) {
3635    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3636      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3637    else
3638      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3639                                   /*FIXME: explicit args */false, 0, 0,
3640                                   Args, NumArgs, CandidateSet);
3641  }
3642}
3643
3644/// isBetterOverloadCandidate - Determines whether the first overload
3645/// candidate is a better candidate than the second (C++ 13.3.3p1).
3646bool
3647Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3648                                const OverloadCandidate& Cand2) {
3649  // Define viable functions to be better candidates than non-viable
3650  // functions.
3651  if (!Cand2.Viable)
3652    return Cand1.Viable;
3653  else if (!Cand1.Viable)
3654    return false;
3655
3656  // C++ [over.match.best]p1:
3657  //
3658  //   -- if F is a static member function, ICS1(F) is defined such
3659  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3660  //      any function G, and, symmetrically, ICS1(G) is neither
3661  //      better nor worse than ICS1(F).
3662  unsigned StartArg = 0;
3663  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3664    StartArg = 1;
3665
3666  // C++ [over.match.best]p1:
3667  //   A viable function F1 is defined to be a better function than another
3668  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3669  //   conversion sequence than ICSi(F2), and then...
3670  unsigned NumArgs = Cand1.Conversions.size();
3671  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3672  bool HasBetterConversion = false;
3673  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3674    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3675                                               Cand2.Conversions[ArgIdx])) {
3676    case ImplicitConversionSequence::Better:
3677      // Cand1 has a better conversion sequence.
3678      HasBetterConversion = true;
3679      break;
3680
3681    case ImplicitConversionSequence::Worse:
3682      // Cand1 can't be better than Cand2.
3683      return false;
3684
3685    case ImplicitConversionSequence::Indistinguishable:
3686      // Do nothing.
3687      break;
3688    }
3689  }
3690
3691  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3692  //       ICSj(F2), or, if not that,
3693  if (HasBetterConversion)
3694    return true;
3695
3696  //     - F1 is a non-template function and F2 is a function template
3697  //       specialization, or, if not that,
3698  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3699      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3700    return true;
3701
3702  //   -- F1 and F2 are function template specializations, and the function
3703  //      template for F1 is more specialized than the template for F2
3704  //      according to the partial ordering rules described in 14.5.5.2, or,
3705  //      if not that,
3706  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3707      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3708    if (FunctionTemplateDecl *BetterTemplate
3709          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3710                                       Cand2.Function->getPrimaryTemplate(),
3711                                       TPOC_Call))
3712      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3713
3714  //   -- the context is an initialization by user-defined conversion
3715  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3716  //      from the return type of F1 to the destination type (i.e.,
3717  //      the type of the entity being initialized) is a better
3718  //      conversion sequence than the standard conversion sequence
3719  //      from the return type of F2 to the destination type.
3720  if (Cand1.Function && Cand2.Function &&
3721      isa<CXXConversionDecl>(Cand1.Function) &&
3722      isa<CXXConversionDecl>(Cand2.Function)) {
3723    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3724                                               Cand2.FinalConversion)) {
3725    case ImplicitConversionSequence::Better:
3726      // Cand1 has a better conversion sequence.
3727      return true;
3728
3729    case ImplicitConversionSequence::Worse:
3730      // Cand1 can't be better than Cand2.
3731      return false;
3732
3733    case ImplicitConversionSequence::Indistinguishable:
3734      // Do nothing
3735      break;
3736    }
3737  }
3738
3739  return false;
3740}
3741
3742/// \brief Computes the best viable function (C++ 13.3.3)
3743/// within an overload candidate set.
3744///
3745/// \param CandidateSet the set of candidate functions.
3746///
3747/// \param Loc the location of the function name (or operator symbol) for
3748/// which overload resolution occurs.
3749///
3750/// \param Best f overload resolution was successful or found a deleted
3751/// function, Best points to the candidate function found.
3752///
3753/// \returns The result of overload resolution.
3754Sema::OverloadingResult
3755Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3756                         SourceLocation Loc,
3757                         OverloadCandidateSet::iterator& Best) {
3758  // Find the best viable function.
3759  Best = CandidateSet.end();
3760  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3761       Cand != CandidateSet.end(); ++Cand) {
3762    if (Cand->Viable) {
3763      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3764        Best = Cand;
3765    }
3766  }
3767
3768  // If we didn't find any viable functions, abort.
3769  if (Best == CandidateSet.end())
3770    return OR_No_Viable_Function;
3771
3772  // Make sure that this function is better than every other viable
3773  // function. If not, we have an ambiguity.
3774  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3775       Cand != CandidateSet.end(); ++Cand) {
3776    if (Cand->Viable &&
3777        Cand != Best &&
3778        !isBetterOverloadCandidate(*Best, *Cand)) {
3779      Best = CandidateSet.end();
3780      return OR_Ambiguous;
3781    }
3782  }
3783
3784  // Best is the best viable function.
3785  if (Best->Function &&
3786      (Best->Function->isDeleted() ||
3787       Best->Function->getAttr<UnavailableAttr>()))
3788    return OR_Deleted;
3789
3790  // C++ [basic.def.odr]p2:
3791  //   An overloaded function is used if it is selected by overload resolution
3792  //   when referred to from a potentially-evaluated expression. [Note: this
3793  //   covers calls to named functions (5.2.2), operator overloading
3794  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3795  //   placement new (5.3.4), as well as non-default initialization (8.5).
3796  if (Best->Function)
3797    MarkDeclarationReferenced(Loc, Best->Function);
3798  return OR_Success;
3799}
3800
3801/// PrintOverloadCandidates - When overload resolution fails, prints
3802/// diagnostic messages containing the candidates in the candidate
3803/// set. If OnlyViable is true, only viable candidates will be printed.
3804void
3805Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3806                              bool OnlyViable) {
3807  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3808                             LastCand = CandidateSet.end();
3809  for (; Cand != LastCand; ++Cand) {
3810    if (Cand->Viable || !OnlyViable) {
3811      if (Cand->Function) {
3812        if (Cand->Function->isDeleted() ||
3813            Cand->Function->getAttr<UnavailableAttr>()) {
3814          // Deleted or "unavailable" function.
3815          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3816            << Cand->Function->isDeleted();
3817        } else {
3818          // Normal function
3819          // FIXME: Give a better reason!
3820          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3821        }
3822      } else if (Cand->IsSurrogate) {
3823        // Desugar the type of the surrogate down to a function type,
3824        // retaining as many typedefs as possible while still showing
3825        // the function type (and, therefore, its parameter types).
3826        QualType FnType = Cand->Surrogate->getConversionType();
3827        bool isLValueReference = false;
3828        bool isRValueReference = false;
3829        bool isPointer = false;
3830        if (const LValueReferenceType *FnTypeRef =
3831              FnType->getAs<LValueReferenceType>()) {
3832          FnType = FnTypeRef->getPointeeType();
3833          isLValueReference = true;
3834        } else if (const RValueReferenceType *FnTypeRef =
3835                     FnType->getAs<RValueReferenceType>()) {
3836          FnType = FnTypeRef->getPointeeType();
3837          isRValueReference = true;
3838        }
3839        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3840          FnType = FnTypePtr->getPointeeType();
3841          isPointer = true;
3842        }
3843        // Desugar down to a function type.
3844        FnType = QualType(FnType->getAsFunctionType(), 0);
3845        // Reconstruct the pointer/reference as appropriate.
3846        if (isPointer) FnType = Context.getPointerType(FnType);
3847        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3848        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3849
3850        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3851          << FnType;
3852      } else {
3853        // FIXME: We need to get the identifier in here
3854        // FIXME: Do we want the error message to point at the operator?
3855        // (built-ins won't have a location)
3856        QualType FnType
3857          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3858                                    Cand->BuiltinTypes.ParamTypes,
3859                                    Cand->Conversions.size(),
3860                                    false, 0);
3861
3862        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3863      }
3864    }
3865  }
3866}
3867
3868/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3869/// an overloaded function (C++ [over.over]), where @p From is an
3870/// expression with overloaded function type and @p ToType is the type
3871/// we're trying to resolve to. For example:
3872///
3873/// @code
3874/// int f(double);
3875/// int f(int);
3876///
3877/// int (*pfd)(double) = f; // selects f(double)
3878/// @endcode
3879///
3880/// This routine returns the resulting FunctionDecl if it could be
3881/// resolved, and NULL otherwise. When @p Complain is true, this
3882/// routine will emit diagnostics if there is an error.
3883FunctionDecl *
3884Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3885                                         bool Complain) {
3886  QualType FunctionType = ToType;
3887  bool IsMember = false;
3888  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3889    FunctionType = ToTypePtr->getPointeeType();
3890  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3891    FunctionType = ToTypeRef->getPointeeType();
3892  else if (const MemberPointerType *MemTypePtr =
3893                    ToType->getAs<MemberPointerType>()) {
3894    FunctionType = MemTypePtr->getPointeeType();
3895    IsMember = true;
3896  }
3897
3898  // We only look at pointers or references to functions.
3899  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3900  if (!FunctionType->isFunctionType())
3901    return 0;
3902
3903  // Find the actual overloaded function declaration.
3904  OverloadedFunctionDecl *Ovl = 0;
3905
3906  // C++ [over.over]p1:
3907  //   [...] [Note: any redundant set of parentheses surrounding the
3908  //   overloaded function name is ignored (5.1). ]
3909  Expr *OvlExpr = From->IgnoreParens();
3910
3911  // C++ [over.over]p1:
3912  //   [...] The overloaded function name can be preceded by the &
3913  //   operator.
3914  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3915    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3916      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3917  }
3918
3919  // Try to dig out the overloaded function.
3920  FunctionTemplateDecl *FunctionTemplate = 0;
3921  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3922    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3923    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3924  }
3925
3926  // If there's no overloaded function declaration or function template,
3927  // we're done.
3928  if (!Ovl && !FunctionTemplate)
3929    return 0;
3930
3931  OverloadIterator Fun;
3932  if (Ovl)
3933    Fun = Ovl;
3934  else
3935    Fun = FunctionTemplate;
3936
3937  // Look through all of the overloaded functions, searching for one
3938  // whose type matches exactly.
3939  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3940
3941  bool FoundNonTemplateFunction = false;
3942  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3943    // C++ [over.over]p3:
3944    //   Non-member functions and static member functions match
3945    //   targets of type "pointer-to-function" or "reference-to-function."
3946    //   Nonstatic member functions match targets of
3947    //   type "pointer-to-member-function."
3948    // Note that according to DR 247, the containing class does not matter.
3949
3950    if (FunctionTemplateDecl *FunctionTemplate
3951          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3952      if (CXXMethodDecl *Method
3953            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3954        // Skip non-static function templates when converting to pointer, and
3955        // static when converting to member pointer.
3956        if (Method->isStatic() == IsMember)
3957          continue;
3958      } else if (IsMember)
3959        continue;
3960
3961      // C++ [over.over]p2:
3962      //   If the name is a function template, template argument deduction is
3963      //   done (14.8.2.2), and if the argument deduction succeeds, the
3964      //   resulting template argument list is used to generate a single
3965      //   function template specialization, which is added to the set of
3966      //   overloaded functions considered.
3967      FunctionDecl *Specialization = 0;
3968      TemplateDeductionInfo Info(Context);
3969      if (TemplateDeductionResult Result
3970            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3971                                      /*FIXME:*/0, /*FIXME:*/0,
3972                                      FunctionType, Specialization, Info)) {
3973        // FIXME: make a note of the failed deduction for diagnostics.
3974        (void)Result;
3975      } else {
3976        assert(FunctionType
3977                 == Context.getCanonicalType(Specialization->getType()));
3978        Matches.insert(
3979                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3980      }
3981    }
3982
3983    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3984      // Skip non-static functions when converting to pointer, and static
3985      // when converting to member pointer.
3986      if (Method->isStatic() == IsMember)
3987        continue;
3988    } else if (IsMember)
3989      continue;
3990
3991    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3992      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3993        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3994        FoundNonTemplateFunction = true;
3995      }
3996    }
3997  }
3998
3999  // If there were 0 or 1 matches, we're done.
4000  if (Matches.empty())
4001    return 0;
4002  else if (Matches.size() == 1)
4003    return *Matches.begin();
4004
4005  // C++ [over.over]p4:
4006  //   If more than one function is selected, [...]
4007  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4008  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4009  if (FoundNonTemplateFunction) {
4010    //   [...] any function template specializations in the set are
4011    //   eliminated if the set also contains a non-template function, [...]
4012    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4013      if ((*M)->getPrimaryTemplate() == 0)
4014        RemainingMatches.push_back(*M);
4015  } else {
4016    //   [...] and any given function template specialization F1 is
4017    //   eliminated if the set contains a second function template
4018    //   specialization whose function template is more specialized
4019    //   than the function template of F1 according to the partial
4020    //   ordering rules of 14.5.5.2.
4021
4022    // The algorithm specified above is quadratic. We instead use a
4023    // two-pass algorithm (similar to the one used to identify the
4024    // best viable function in an overload set) that identifies the
4025    // best function template (if it exists).
4026    MatchIter Best = Matches.begin();
4027    MatchIter M = Best, MEnd = Matches.end();
4028    // Find the most specialized function.
4029    for (++M; M != MEnd; ++M)
4030      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4031                                     (*Best)->getPrimaryTemplate(),
4032                                     TPOC_Other)
4033            == (*M)->getPrimaryTemplate())
4034        Best = M;
4035
4036    // Determine whether this function template is more specialized
4037    // that all of the others.
4038    bool Ambiguous = false;
4039    for (M = Matches.begin(); M != MEnd; ++M) {
4040      if (M != Best &&
4041          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4042                                     (*Best)->getPrimaryTemplate(),
4043                                     TPOC_Other)
4044           != (*Best)->getPrimaryTemplate()) {
4045        Ambiguous = true;
4046        break;
4047      }
4048    }
4049
4050    // If one function template was more specialized than all of the
4051    // others, return it.
4052    if (!Ambiguous)
4053      return *Best;
4054
4055    // We could not find a most-specialized function template, which
4056    // is equivalent to having a set of function templates with more
4057    // than one such template. So, we place all of the function
4058    // templates into the set of remaining matches and produce a
4059    // diagnostic below. FIXME: we could perform the quadratic
4060    // algorithm here, pruning the result set to limit the number of
4061    // candidates output later.
4062     RemainingMatches.append(Matches.begin(), Matches.end());
4063  }
4064
4065  // [...] After such eliminations, if any, there shall remain exactly one
4066  // selected function.
4067  if (RemainingMatches.size() == 1)
4068    return RemainingMatches.front();
4069
4070  // FIXME: We should probably return the same thing that BestViableFunction
4071  // returns (even if we issue the diagnostics here).
4072  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4073    << RemainingMatches[0]->getDeclName();
4074  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4075    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4076  return 0;
4077}
4078
4079/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4080/// (which eventually refers to the declaration Func) and the call
4081/// arguments Args/NumArgs, attempt to resolve the function call down
4082/// to a specific function. If overload resolution succeeds, returns
4083/// the function declaration produced by overload
4084/// resolution. Otherwise, emits diagnostics, deletes all of the
4085/// arguments and Fn, and returns NULL.
4086FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4087                                            DeclarationName UnqualifiedName,
4088                                            bool HasExplicitTemplateArgs,
4089                                 const TemplateArgument *ExplicitTemplateArgs,
4090                                            unsigned NumExplicitTemplateArgs,
4091                                            SourceLocation LParenLoc,
4092                                            Expr **Args, unsigned NumArgs,
4093                                            SourceLocation *CommaLocs,
4094                                            SourceLocation RParenLoc,
4095                                            bool &ArgumentDependentLookup) {
4096  OverloadCandidateSet CandidateSet;
4097
4098  // Add the functions denoted by Callee to the set of candidate
4099  // functions. While we're doing so, track whether argument-dependent
4100  // lookup still applies, per:
4101  //
4102  // C++0x [basic.lookup.argdep]p3:
4103  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4104  //   and let Y be the lookup set produced by argument dependent
4105  //   lookup (defined as follows). If X contains
4106  //
4107  //     -- a declaration of a class member, or
4108  //
4109  //     -- a block-scope function declaration that is not a
4110  //        using-declaration, or
4111  //
4112  //     -- a declaration that is neither a function or a function
4113  //        template
4114  //
4115  //   then Y is empty.
4116  if (OverloadedFunctionDecl *Ovl
4117        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
4118    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4119                                                FuncEnd = Ovl->function_end();
4120         Func != FuncEnd; ++Func) {
4121      DeclContext *Ctx = 0;
4122      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
4123        if (HasExplicitTemplateArgs)
4124          continue;
4125
4126        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
4127        Ctx = FunDecl->getDeclContext();
4128      } else {
4129        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
4130        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
4131                                     ExplicitTemplateArgs,
4132                                     NumExplicitTemplateArgs,
4133                                     Args, NumArgs, CandidateSet);
4134        Ctx = FunTmpl->getDeclContext();
4135      }
4136
4137
4138      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
4139        ArgumentDependentLookup = false;
4140    }
4141  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
4142    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4143    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
4144
4145    if (Func->getDeclContext()->isRecord() ||
4146        Func->getDeclContext()->isFunctionOrMethod())
4147      ArgumentDependentLookup = false;
4148  } else if (FunctionTemplateDecl *FuncTemplate
4149               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
4150    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4151                                 ExplicitTemplateArgs,
4152                                 NumExplicitTemplateArgs,
4153                                 Args, NumArgs, CandidateSet);
4154
4155    if (FuncTemplate->getDeclContext()->isRecord())
4156      ArgumentDependentLookup = false;
4157  }
4158
4159  if (Callee)
4160    UnqualifiedName = Callee->getDeclName();
4161
4162  // FIXME: Pass explicit template arguments through for ADL
4163  if (ArgumentDependentLookup)
4164    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4165                                         CandidateSet);
4166
4167  OverloadCandidateSet::iterator Best;
4168  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4169  case OR_Success:
4170    return Best->Function;
4171
4172  case OR_No_Viable_Function:
4173    Diag(Fn->getSourceRange().getBegin(),
4174         diag::err_ovl_no_viable_function_in_call)
4175      << UnqualifiedName << Fn->getSourceRange();
4176    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4177    break;
4178
4179  case OR_Ambiguous:
4180    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4181      << UnqualifiedName << Fn->getSourceRange();
4182    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4183    break;
4184
4185  case OR_Deleted:
4186    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4187      << Best->Function->isDeleted()
4188      << UnqualifiedName
4189      << Fn->getSourceRange();
4190    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4191    break;
4192  }
4193
4194  // Overload resolution failed. Destroy all of the subexpressions and
4195  // return NULL.
4196  Fn->Destroy(Context);
4197  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4198    Args[Arg]->Destroy(Context);
4199  return 0;
4200}
4201
4202/// \brief Create a unary operation that may resolve to an overloaded
4203/// operator.
4204///
4205/// \param OpLoc The location of the operator itself (e.g., '*').
4206///
4207/// \param OpcIn The UnaryOperator::Opcode that describes this
4208/// operator.
4209///
4210/// \param Functions The set of non-member functions that will be
4211/// considered by overload resolution. The caller needs to build this
4212/// set based on the context using, e.g.,
4213/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4214/// set should not contain any member functions; those will be added
4215/// by CreateOverloadedUnaryOp().
4216///
4217/// \param input The input argument.
4218Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4219                                                     unsigned OpcIn,
4220                                                     FunctionSet &Functions,
4221                                                     ExprArg input) {
4222  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4223  Expr *Input = (Expr *)input.get();
4224
4225  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4226  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4227  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4228
4229  Expr *Args[2] = { Input, 0 };
4230  unsigned NumArgs = 1;
4231
4232  // For post-increment and post-decrement, add the implicit '0' as
4233  // the second argument, so that we know this is a post-increment or
4234  // post-decrement.
4235  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4236    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4237    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4238                                           SourceLocation());
4239    NumArgs = 2;
4240  }
4241
4242  if (Input->isTypeDependent()) {
4243    OverloadedFunctionDecl *Overloads
4244      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4245    for (FunctionSet::iterator Func = Functions.begin(),
4246                            FuncEnd = Functions.end();
4247         Func != FuncEnd; ++Func)
4248      Overloads->addOverload(*Func);
4249
4250    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4251                                                OpLoc, false, false);
4252
4253    input.release();
4254    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4255                                                   &Args[0], NumArgs,
4256                                                   Context.DependentTy,
4257                                                   OpLoc));
4258  }
4259
4260  // Build an empty overload set.
4261  OverloadCandidateSet CandidateSet;
4262
4263  // Add the candidates from the given function set.
4264  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4265
4266  // Add operator candidates that are member functions.
4267  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4268
4269  // Add builtin operator candidates.
4270  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4271
4272  // Perform overload resolution.
4273  OverloadCandidateSet::iterator Best;
4274  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4275  case OR_Success: {
4276    // We found a built-in operator or an overloaded operator.
4277    FunctionDecl *FnDecl = Best->Function;
4278
4279    if (FnDecl) {
4280      // We matched an overloaded operator. Build a call to that
4281      // operator.
4282
4283      // Convert the arguments.
4284      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4285        if (PerformObjectArgumentInitialization(Input, Method))
4286          return ExprError();
4287      } else {
4288        // Convert the arguments.
4289        if (PerformCopyInitialization(Input,
4290                                      FnDecl->getParamDecl(0)->getType(),
4291                                      "passing"))
4292          return ExprError();
4293      }
4294
4295      // Determine the result type
4296      QualType ResultTy
4297        = FnDecl->getType()->getAsFunctionType()->getResultType();
4298      ResultTy = ResultTy.getNonReferenceType();
4299
4300      // Build the actual expression node.
4301      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4302                                               SourceLocation());
4303      UsualUnaryConversions(FnExpr);
4304
4305      input.release();
4306
4307      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4308                                                   &Input, 1, ResultTy, OpLoc);
4309      return MaybeBindToTemporary(CE);
4310    } else {
4311      // We matched a built-in operator. Convert the arguments, then
4312      // break out so that we will build the appropriate built-in
4313      // operator node.
4314        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4315                                      Best->Conversions[0], "passing"))
4316          return ExprError();
4317
4318        break;
4319      }
4320    }
4321
4322    case OR_No_Viable_Function:
4323      // No viable function; fall through to handling this as a
4324      // built-in operator, which will produce an error message for us.
4325      break;
4326
4327    case OR_Ambiguous:
4328      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4329          << UnaryOperator::getOpcodeStr(Opc)
4330          << Input->getSourceRange();
4331      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4332      return ExprError();
4333
4334    case OR_Deleted:
4335      Diag(OpLoc, diag::err_ovl_deleted_oper)
4336        << Best->Function->isDeleted()
4337        << UnaryOperator::getOpcodeStr(Opc)
4338        << Input->getSourceRange();
4339      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4340      return ExprError();
4341    }
4342
4343  // Either we found no viable overloaded operator or we matched a
4344  // built-in operator. In either case, fall through to trying to
4345  // build a built-in operation.
4346  input.release();
4347  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4348}
4349
4350/// \brief Create a binary operation that may resolve to an overloaded
4351/// operator.
4352///
4353/// \param OpLoc The location of the operator itself (e.g., '+').
4354///
4355/// \param OpcIn The BinaryOperator::Opcode that describes this
4356/// operator.
4357///
4358/// \param Functions The set of non-member functions that will be
4359/// considered by overload resolution. The caller needs to build this
4360/// set based on the context using, e.g.,
4361/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4362/// set should not contain any member functions; those will be added
4363/// by CreateOverloadedBinOp().
4364///
4365/// \param LHS Left-hand argument.
4366/// \param RHS Right-hand argument.
4367Sema::OwningExprResult
4368Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4369                            unsigned OpcIn,
4370                            FunctionSet &Functions,
4371                            Expr *LHS, Expr *RHS) {
4372  Expr *Args[2] = { LHS, RHS };
4373  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4374
4375  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4376  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4377  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4378
4379  // If either side is type-dependent, create an appropriate dependent
4380  // expression.
4381  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4382    // .* cannot be overloaded.
4383    if (Opc == BinaryOperator::PtrMemD)
4384      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4385                                                Context.DependentTy, OpLoc));
4386
4387    OverloadedFunctionDecl *Overloads
4388      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4389    for (FunctionSet::iterator Func = Functions.begin(),
4390                            FuncEnd = Functions.end();
4391         Func != FuncEnd; ++Func)
4392      Overloads->addOverload(*Func);
4393
4394    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4395                                                OpLoc, false, false);
4396
4397    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4398                                                   Args, 2,
4399                                                   Context.DependentTy,
4400                                                   OpLoc));
4401  }
4402
4403  // If this is the .* operator, which is not overloadable, just
4404  // create a built-in binary operator.
4405  if (Opc == BinaryOperator::PtrMemD)
4406    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4407
4408  // If this is one of the assignment operators, we only perform
4409  // overload resolution if the left-hand side is a class or
4410  // enumeration type (C++ [expr.ass]p3).
4411  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4412      !Args[0]->getType()->isOverloadableType())
4413    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4414
4415  // Build an empty overload set.
4416  OverloadCandidateSet CandidateSet;
4417
4418  // Add the candidates from the given function set.
4419  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4420
4421  // Add operator candidates that are member functions.
4422  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4423
4424  // Add builtin operator candidates.
4425  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4426
4427  // Perform overload resolution.
4428  OverloadCandidateSet::iterator Best;
4429  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4430    case OR_Success: {
4431      // We found a built-in operator or an overloaded operator.
4432      FunctionDecl *FnDecl = Best->Function;
4433
4434      if (FnDecl) {
4435        // We matched an overloaded operator. Build a call to that
4436        // operator.
4437
4438        // Convert the arguments.
4439        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4440          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4441              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4442                                        "passing"))
4443            return ExprError();
4444        } else {
4445          // Convert the arguments.
4446          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4447                                        "passing") ||
4448              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4449                                        "passing"))
4450            return ExprError();
4451        }
4452
4453        // Determine the result type
4454        QualType ResultTy
4455          = FnDecl->getType()->getAsFunctionType()->getResultType();
4456        ResultTy = ResultTy.getNonReferenceType();
4457
4458        // Build the actual expression node.
4459        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4460                                                 OpLoc);
4461        UsualUnaryConversions(FnExpr);
4462
4463        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4464                                                     Args, 2, ResultTy, OpLoc);
4465        return MaybeBindToTemporary(CE);
4466      } else {
4467        // We matched a built-in operator. Convert the arguments, then
4468        // break out so that we will build the appropriate built-in
4469        // operator node.
4470        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4471                                      Best->Conversions[0], "passing") ||
4472            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4473                                      Best->Conversions[1], "passing"))
4474          return ExprError();
4475
4476        break;
4477      }
4478    }
4479
4480    case OR_No_Viable_Function:
4481      // For class as left operand for assignment or compound assigment operator
4482      // do not fall through to handling in built-in, but report that no overloaded
4483      // assignment operator found
4484      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4485        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4486             << BinaryOperator::getOpcodeStr(Opc)
4487             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4488        return ExprError();
4489      }
4490      // No viable function; fall through to handling this as a
4491      // built-in operator, which will produce an error message for us.
4492      break;
4493
4494    case OR_Ambiguous:
4495      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4496          << BinaryOperator::getOpcodeStr(Opc)
4497          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4498      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4499      return ExprError();
4500
4501    case OR_Deleted:
4502      Diag(OpLoc, diag::err_ovl_deleted_oper)
4503        << Best->Function->isDeleted()
4504        << BinaryOperator::getOpcodeStr(Opc)
4505        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4506      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4507      return ExprError();
4508    }
4509
4510  // Either we found no viable overloaded operator or we matched a
4511  // built-in operator. In either case, try to build a built-in
4512  // operation.
4513  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4514}
4515
4516/// BuildCallToMemberFunction - Build a call to a member
4517/// function. MemExpr is the expression that refers to the member
4518/// function (and includes the object parameter), Args/NumArgs are the
4519/// arguments to the function call (not including the object
4520/// parameter). The caller needs to validate that the member
4521/// expression refers to a member function or an overloaded member
4522/// function.
4523Sema::ExprResult
4524Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4525                                SourceLocation LParenLoc, Expr **Args,
4526                                unsigned NumArgs, SourceLocation *CommaLocs,
4527                                SourceLocation RParenLoc) {
4528  // Dig out the member expression. This holds both the object
4529  // argument and the member function we're referring to.
4530  MemberExpr *MemExpr = 0;
4531  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4532    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4533  else
4534    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4535  assert(MemExpr && "Building member call without member expression");
4536
4537  // Extract the object argument.
4538  Expr *ObjectArg = MemExpr->getBase();
4539
4540  CXXMethodDecl *Method = 0;
4541  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4542      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4543    // Add overload candidates
4544    OverloadCandidateSet CandidateSet;
4545    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4546
4547    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4548         Func != FuncEnd; ++Func) {
4549      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4550        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4551                           /*SuppressUserConversions=*/false);
4552      else
4553        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4554                                   MemExpr->hasExplicitTemplateArgumentList(),
4555                                   MemExpr->getTemplateArgs(),
4556                                   MemExpr->getNumTemplateArgs(),
4557                                   ObjectArg, Args, NumArgs,
4558                                   CandidateSet,
4559                                   /*SuppressUsedConversions=*/false);
4560    }
4561
4562    OverloadCandidateSet::iterator Best;
4563    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4564    case OR_Success:
4565      Method = cast<CXXMethodDecl>(Best->Function);
4566      break;
4567
4568    case OR_No_Viable_Function:
4569      Diag(MemExpr->getSourceRange().getBegin(),
4570           diag::err_ovl_no_viable_member_function_in_call)
4571        << DeclName << MemExprE->getSourceRange();
4572      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4573      // FIXME: Leaking incoming expressions!
4574      return true;
4575
4576    case OR_Ambiguous:
4577      Diag(MemExpr->getSourceRange().getBegin(),
4578           diag::err_ovl_ambiguous_member_call)
4579        << DeclName << MemExprE->getSourceRange();
4580      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4581      // FIXME: Leaking incoming expressions!
4582      return true;
4583
4584    case OR_Deleted:
4585      Diag(MemExpr->getSourceRange().getBegin(),
4586           diag::err_ovl_deleted_member_call)
4587        << Best->Function->isDeleted()
4588        << DeclName << MemExprE->getSourceRange();
4589      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4590      // FIXME: Leaking incoming expressions!
4591      return true;
4592    }
4593
4594    FixOverloadedFunctionReference(MemExpr, Method);
4595  } else {
4596    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4597  }
4598
4599  assert(Method && "Member call to something that isn't a method?");
4600  ExprOwningPtr<CXXMemberCallExpr>
4601    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4602                                                  NumArgs,
4603                                  Method->getResultType().getNonReferenceType(),
4604                                  RParenLoc));
4605
4606  // Convert the object argument (for a non-static member function call).
4607  if (!Method->isStatic() &&
4608      PerformObjectArgumentInitialization(ObjectArg, Method))
4609    return true;
4610  MemExpr->setBase(ObjectArg);
4611
4612  // Convert the rest of the arguments
4613  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4614  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4615                              RParenLoc))
4616    return true;
4617
4618  if (CheckFunctionCall(Method, TheCall.get()))
4619    return true;
4620
4621  return MaybeBindToTemporary(TheCall.release()).release();
4622}
4623
4624/// BuildCallToObjectOfClassType - Build a call to an object of class
4625/// type (C++ [over.call.object]), which can end up invoking an
4626/// overloaded function call operator (@c operator()) or performing a
4627/// user-defined conversion on the object argument.
4628Sema::ExprResult
4629Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4630                                   SourceLocation LParenLoc,
4631                                   Expr **Args, unsigned NumArgs,
4632                                   SourceLocation *CommaLocs,
4633                                   SourceLocation RParenLoc) {
4634  assert(Object->getType()->isRecordType() && "Requires object type argument");
4635  const RecordType *Record = Object->getType()->getAs<RecordType>();
4636
4637  // C++ [over.call.object]p1:
4638  //  If the primary-expression E in the function call syntax
4639  //  evaluates to a class object of type "cv T", then the set of
4640  //  candidate functions includes at least the function call
4641  //  operators of T. The function call operators of T are obtained by
4642  //  ordinary lookup of the name operator() in the context of
4643  //  (E).operator().
4644  OverloadCandidateSet CandidateSet;
4645  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4646  DeclContext::lookup_const_iterator Oper, OperEnd;
4647  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4648       Oper != OperEnd; ++Oper)
4649    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4650                       CandidateSet, /*SuppressUserConversions=*/false);
4651
4652  // C++ [over.call.object]p2:
4653  //   In addition, for each conversion function declared in T of the
4654  //   form
4655  //
4656  //        operator conversion-type-id () cv-qualifier;
4657  //
4658  //   where cv-qualifier is the same cv-qualification as, or a
4659  //   greater cv-qualification than, cv, and where conversion-type-id
4660  //   denotes the type "pointer to function of (P1,...,Pn) returning
4661  //   R", or the type "reference to pointer to function of
4662  //   (P1,...,Pn) returning R", or the type "reference to function
4663  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4664  //   is also considered as a candidate function. Similarly,
4665  //   surrogate call functions are added to the set of candidate
4666  //   functions for each conversion function declared in an
4667  //   accessible base class provided the function is not hidden
4668  //   within T by another intervening declaration.
4669
4670  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
4671    // FIXME: Look in base classes for more conversion operators!
4672    OverloadedFunctionDecl *Conversions
4673      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4674    for (OverloadedFunctionDecl::function_iterator
4675           Func = Conversions->function_begin(),
4676           FuncEnd = Conversions->function_end();
4677         Func != FuncEnd; ++Func) {
4678      CXXConversionDecl *Conv;
4679      FunctionTemplateDecl *ConvTemplate;
4680      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
4681
4682      // Skip over templated conversion functions; they aren't
4683      // surrogates.
4684      if (ConvTemplate)
4685        continue;
4686
4687      // Strip the reference type (if any) and then the pointer type (if
4688      // any) to get down to what might be a function type.
4689      QualType ConvType = Conv->getConversionType().getNonReferenceType();
4690      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4691        ConvType = ConvPtrType->getPointeeType();
4692
4693      if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4694        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4695    }
4696  }
4697
4698  // Perform overload resolution.
4699  OverloadCandidateSet::iterator Best;
4700  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4701  case OR_Success:
4702    // Overload resolution succeeded; we'll build the appropriate call
4703    // below.
4704    break;
4705
4706  case OR_No_Viable_Function:
4707    Diag(Object->getSourceRange().getBegin(),
4708         diag::err_ovl_no_viable_object_call)
4709      << Object->getType() << Object->getSourceRange();
4710    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4711    break;
4712
4713  case OR_Ambiguous:
4714    Diag(Object->getSourceRange().getBegin(),
4715         diag::err_ovl_ambiguous_object_call)
4716      << Object->getType() << Object->getSourceRange();
4717    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4718    break;
4719
4720  case OR_Deleted:
4721    Diag(Object->getSourceRange().getBegin(),
4722         diag::err_ovl_deleted_object_call)
4723      << Best->Function->isDeleted()
4724      << Object->getType() << Object->getSourceRange();
4725    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4726    break;
4727  }
4728
4729  if (Best == CandidateSet.end()) {
4730    // We had an error; delete all of the subexpressions and return
4731    // the error.
4732    Object->Destroy(Context);
4733    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4734      Args[ArgIdx]->Destroy(Context);
4735    return true;
4736  }
4737
4738  if (Best->Function == 0) {
4739    // Since there is no function declaration, this is one of the
4740    // surrogate candidates. Dig out the conversion function.
4741    CXXConversionDecl *Conv
4742      = cast<CXXConversionDecl>(
4743                         Best->Conversions[0].UserDefined.ConversionFunction);
4744
4745    // We selected one of the surrogate functions that converts the
4746    // object parameter to a function pointer. Perform the conversion
4747    // on the object argument, then let ActOnCallExpr finish the job.
4748    // FIXME: Represent the user-defined conversion in the AST!
4749    ImpCastExprToType(Object,
4750                      Conv->getConversionType().getNonReferenceType(),
4751                      CastExpr::CK_Unknown,
4752                      Conv->getConversionType()->isLValueReferenceType());
4753    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4754                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4755                         CommaLocs, RParenLoc).release();
4756  }
4757
4758  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4759  // that calls this method, using Object for the implicit object
4760  // parameter and passing along the remaining arguments.
4761  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4762  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4763
4764  unsigned NumArgsInProto = Proto->getNumArgs();
4765  unsigned NumArgsToCheck = NumArgs;
4766
4767  // Build the full argument list for the method call (the
4768  // implicit object parameter is placed at the beginning of the
4769  // list).
4770  Expr **MethodArgs;
4771  if (NumArgs < NumArgsInProto) {
4772    NumArgsToCheck = NumArgsInProto;
4773    MethodArgs = new Expr*[NumArgsInProto + 1];
4774  } else {
4775    MethodArgs = new Expr*[NumArgs + 1];
4776  }
4777  MethodArgs[0] = Object;
4778  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4779    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4780
4781  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4782                                          SourceLocation());
4783  UsualUnaryConversions(NewFn);
4784
4785  // Once we've built TheCall, all of the expressions are properly
4786  // owned.
4787  QualType ResultTy = Method->getResultType().getNonReferenceType();
4788  ExprOwningPtr<CXXOperatorCallExpr>
4789    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4790                                                    MethodArgs, NumArgs + 1,
4791                                                    ResultTy, RParenLoc));
4792  delete [] MethodArgs;
4793
4794  // We may have default arguments. If so, we need to allocate more
4795  // slots in the call for them.
4796  if (NumArgs < NumArgsInProto)
4797    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4798  else if (NumArgs > NumArgsInProto)
4799    NumArgsToCheck = NumArgsInProto;
4800
4801  bool IsError = false;
4802
4803  // Initialize the implicit object parameter.
4804  IsError |= PerformObjectArgumentInitialization(Object, Method);
4805  TheCall->setArg(0, Object);
4806
4807
4808  // Check the argument types.
4809  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4810    Expr *Arg;
4811    if (i < NumArgs) {
4812      Arg = Args[i];
4813
4814      // Pass the argument.
4815      QualType ProtoArgType = Proto->getArgType(i);
4816      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4817    } else {
4818      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4819    }
4820
4821    TheCall->setArg(i + 1, Arg);
4822  }
4823
4824  // If this is a variadic call, handle args passed through "...".
4825  if (Proto->isVariadic()) {
4826    // Promote the arguments (C99 6.5.2.2p7).
4827    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4828      Expr *Arg = Args[i];
4829      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4830      TheCall->setArg(i + 1, Arg);
4831    }
4832  }
4833
4834  if (IsError) return true;
4835
4836  if (CheckFunctionCall(Method, TheCall.get()))
4837    return true;
4838
4839  return MaybeBindToTemporary(TheCall.release()).release();
4840}
4841
4842/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4843///  (if one exists), where @c Base is an expression of class type and
4844/// @c Member is the name of the member we're trying to find.
4845Sema::OwningExprResult
4846Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4847  Expr *Base = static_cast<Expr *>(BaseIn.get());
4848  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4849
4850  // C++ [over.ref]p1:
4851  //
4852  //   [...] An expression x->m is interpreted as (x.operator->())->m
4853  //   for a class object x of type T if T::operator->() exists and if
4854  //   the operator is selected as the best match function by the
4855  //   overload resolution mechanism (13.3).
4856  // FIXME: look in base classes.
4857  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4858  OverloadCandidateSet CandidateSet;
4859  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4860
4861  LookupResult R = LookupQualifiedName(BaseRecord->getDecl(), OpName,
4862                                       LookupOrdinaryName);
4863
4864  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
4865       Oper != OperEnd; ++Oper)
4866    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4867                       /*SuppressUserConversions=*/false);
4868
4869  // Perform overload resolution.
4870  OverloadCandidateSet::iterator Best;
4871  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4872  case OR_Success:
4873    // Overload resolution succeeded; we'll build the call below.
4874    break;
4875
4876  case OR_No_Viable_Function:
4877    if (CandidateSet.empty())
4878      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4879        << Base->getType() << Base->getSourceRange();
4880    else
4881      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4882        << "operator->" << Base->getSourceRange();
4883    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4884    return ExprError();
4885
4886  case OR_Ambiguous:
4887    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4888      << "->" << Base->getSourceRange();
4889    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4890    return ExprError();
4891
4892  case OR_Deleted:
4893    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4894      << Best->Function->isDeleted()
4895      << "->" << Base->getSourceRange();
4896    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4897    return ExprError();
4898  }
4899
4900  // Convert the object parameter.
4901  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4902  if (PerformObjectArgumentInitialization(Base, Method))
4903    return ExprError();
4904
4905  // No concerns about early exits now.
4906  BaseIn.release();
4907
4908  // Build the operator call.
4909  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4910                                           SourceLocation());
4911  UsualUnaryConversions(FnExpr);
4912  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4913                                 Method->getResultType().getNonReferenceType(),
4914                                 OpLoc);
4915  return Owned(Base);
4916}
4917
4918/// FixOverloadedFunctionReference - E is an expression that refers to
4919/// a C++ overloaded function (possibly with some parentheses and
4920/// perhaps a '&' around it). We have resolved the overloaded function
4921/// to the function declaration Fn, so patch up the expression E to
4922/// refer (possibly indirectly) to Fn.
4923void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4924  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4925    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4926    E->setType(PE->getSubExpr()->getType());
4927  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4928    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4929           "Can only take the address of an overloaded function");
4930    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4931      if (Method->isStatic()) {
4932        // Do nothing: static member functions aren't any different
4933        // from non-member functions.
4934      } else if (QualifiedDeclRefExpr *DRE
4935                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4936        // We have taken the address of a pointer to member
4937        // function. Perform the computation here so that we get the
4938        // appropriate pointer to member type.
4939        DRE->setDecl(Fn);
4940        DRE->setType(Fn->getType());
4941        QualType ClassType
4942          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4943        E->setType(Context.getMemberPointerType(Fn->getType(),
4944                                                ClassType.getTypePtr()));
4945        return;
4946      }
4947    }
4948    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4949    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4950  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4951    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4952            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4953           "Expected overloaded function or function template");
4954    DR->setDecl(Fn);
4955    E->setType(Fn->getType());
4956  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4957    MemExpr->setMemberDecl(Fn);
4958    E->setType(Fn->getType());
4959  } else {
4960    assert(false && "Invalid reference to overloaded function");
4961  }
4962}
4963
4964} // end namespace clang
4965