SemaOverload.cpp revision 8e9bebdea69c590dedfbf27374114cb76fe12fbd
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Expr.h"
18#include "llvm/Support/Compiler.h"
19#include <algorithm>
20
21namespace clang {
22
23/// GetConversionCategory - Retrieve the implicit conversion
24/// category corresponding to the given implicit conversion kind.
25ImplicitConversionCategory
26GetConversionCategory(ImplicitConversionKind Kind) {
27  static const ImplicitConversionCategory
28    Category[(int)ICK_Num_Conversion_Kinds] = {
29    ICC_Identity,
30    ICC_Lvalue_Transformation,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Qualification_Adjustment,
34    ICC_Promotion,
35    ICC_Promotion,
36    ICC_Conversion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion
42  };
43  return Category[(int)Kind];
44}
45
46/// GetConversionRank - Retrieve the implicit conversion rank
47/// corresponding to the given implicit conversion kind.
48ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
49  static const ImplicitConversionRank
50    Rank[(int)ICK_Num_Conversion_Kinds] = {
51    ICR_Exact_Match,
52    ICR_Exact_Match,
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Promotion,
57    ICR_Promotion,
58    ICR_Conversion,
59    ICR_Conversion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion
64  };
65  return Rank[(int)Kind];
66}
67
68/// GetImplicitConversionName - Return the name of this kind of
69/// implicit conversion.
70const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
71  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
72    "No conversion",
73    "Lvalue-to-rvalue",
74    "Array-to-pointer",
75    "Function-to-pointer",
76    "Qualification",
77    "Integral promotion",
78    "Floating point promotion",
79    "Integral conversion",
80    "Floating conversion",
81    "Floating-integral conversion",
82    "Pointer conversion",
83    "Pointer-to-member conversion",
84    "Boolean conversion"
85  };
86  return Name[Kind];
87}
88
89/// getRank - Retrieve the rank of this standard conversion sequence
90/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
91/// implicit conversions.
92ImplicitConversionRank StandardConversionSequence::getRank() const {
93  ImplicitConversionRank Rank = ICR_Exact_Match;
94  if  (GetConversionRank(First) > Rank)
95    Rank = GetConversionRank(First);
96  if  (GetConversionRank(Second) > Rank)
97    Rank = GetConversionRank(Second);
98  if  (GetConversionRank(Third) > Rank)
99    Rank = GetConversionRank(Third);
100  return Rank;
101}
102
103/// isPointerConversionToBool - Determines whether this conversion is
104/// a conversion of a pointer or pointer-to-member to bool. This is
105/// used as part of the ranking of standard conversion sequences
106/// (C++ 13.3.3.2p4).
107bool StandardConversionSequence::isPointerConversionToBool() const
108{
109  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
110  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
111
112  // Note that FromType has not necessarily been transformed by the
113  // array-to-pointer or function-to-pointer implicit conversions, so
114  // check for their presence as well as checking whether FromType is
115  // a pointer.
116  if (ToType->isBooleanType() &&
117      (FromType->isPointerType() ||
118       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
119    return true;
120
121  return false;
122}
123
124/// DebugPrint - Print this standard conversion sequence to standard
125/// error. Useful for debugging overloading issues.
126void StandardConversionSequence::DebugPrint() const {
127  bool PrintedSomething = false;
128  if (First != ICK_Identity) {
129    fprintf(stderr, "%s", GetImplicitConversionName(First));
130    PrintedSomething = true;
131  }
132
133  if (Second != ICK_Identity) {
134    if (PrintedSomething) {
135      fprintf(stderr, " -> ");
136    }
137    fprintf(stderr, "%s", GetImplicitConversionName(Second));
138    PrintedSomething = true;
139  }
140
141  if (Third != ICK_Identity) {
142    if (PrintedSomething) {
143      fprintf(stderr, " -> ");
144    }
145    fprintf(stderr, "%s", GetImplicitConversionName(Third));
146    PrintedSomething = true;
147  }
148
149  if (!PrintedSomething) {
150    fprintf(stderr, "No conversions required");
151  }
152}
153
154/// DebugPrint - Print this user-defined conversion sequence to standard
155/// error. Useful for debugging overloading issues.
156void UserDefinedConversionSequence::DebugPrint() const {
157  if (Before.First || Before.Second || Before.Third) {
158    Before.DebugPrint();
159    fprintf(stderr, " -> ");
160  }
161  fprintf(stderr, "'%s'", ConversionFunction->getName());
162  if (After.First || After.Second || After.Third) {
163    fprintf(stderr, " -> ");
164    After.DebugPrint();
165  }
166}
167
168/// DebugPrint - Print this implicit conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void ImplicitConversionSequence::DebugPrint() const {
171  switch (ConversionKind) {
172  case StandardConversion:
173    fprintf(stderr, "Standard conversion: ");
174    Standard.DebugPrint();
175    break;
176  case UserDefinedConversion:
177    fprintf(stderr, "User-defined conversion: ");
178    UserDefined.DebugPrint();
179    break;
180  case EllipsisConversion:
181    fprintf(stderr, "Ellipsis conversion");
182    break;
183  case BadConversion:
184    fprintf(stderr, "Bad conversion");
185    break;
186  }
187
188  fprintf(stderr, "\n");
189}
190
191// IsOverload - Determine whether the given New declaration is an
192// overload of the Old declaration. This routine returns false if New
193// and Old cannot be overloaded, e.g., if they are functions with the
194// same signature (C++ 1.3.10) or if the Old declaration isn't a
195// function (or overload set). When it does return false and Old is an
196// OverloadedFunctionDecl, MatchedDecl will be set to point to the
197// FunctionDecl that New cannot be overloaded with.
198//
199// Example: Given the following input:
200//
201//   void f(int, float); // #1
202//   void f(int, int); // #2
203//   int f(int, int); // #3
204//
205// When we process #1, there is no previous declaration of "f",
206// so IsOverload will not be used.
207//
208// When we process #2, Old is a FunctionDecl for #1.  By comparing the
209// parameter types, we see that #1 and #2 are overloaded (since they
210// have different signatures), so this routine returns false;
211// MatchedDecl is unchanged.
212//
213// When we process #3, Old is an OverloadedFunctionDecl containing #1
214// and #2. We compare the signatures of #3 to #1 (they're overloaded,
215// so we do nothing) and then #3 to #2. Since the signatures of #3 and
216// #2 are identical (return types of functions are not part of the
217// signature), IsOverload returns false and MatchedDecl will be set to
218// point to the FunctionDecl for #2.
219bool
220Sema::IsOverload(FunctionDecl *New, Decl* OldD,
221                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
222{
223  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
224    // Is this new function an overload of every function in the
225    // overload set?
226    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
227                                           FuncEnd = Ovl->function_end();
228    for (; Func != FuncEnd; ++Func) {
229      if (!IsOverload(New, *Func, MatchedDecl)) {
230        MatchedDecl = Func;
231        return false;
232      }
233    }
234
235    // This function overloads every function in the overload set.
236    return true;
237  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
238    // Is the function New an overload of the function Old?
239    QualType OldQType = Context.getCanonicalType(Old->getType());
240    QualType NewQType = Context.getCanonicalType(New->getType());
241
242    // Compare the signatures (C++ 1.3.10) of the two functions to
243    // determine whether they are overloads. If we find any mismatch
244    // in the signature, they are overloads.
245
246    // If either of these functions is a K&R-style function (no
247    // prototype), then we consider them to have matching signatures.
248    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
249        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
250      return false;
251
252    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
253    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
254
255    // The signature of a function includes the types of its
256    // parameters (C++ 1.3.10), which includes the presence or absence
257    // of the ellipsis; see C++ DR 357).
258    if (OldQType != NewQType &&
259        (OldType->getNumArgs() != NewType->getNumArgs() ||
260         OldType->isVariadic() != NewType->isVariadic() ||
261         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
262                     NewType->arg_type_begin())))
263      return true;
264
265    // If the function is a class member, its signature includes the
266    // cv-qualifiers (if any) on the function itself.
267    //
268    // As part of this, also check whether one of the member functions
269    // is static, in which case they are not overloads (C++
270    // 13.1p2). While not part of the definition of the signature,
271    // this check is important to determine whether these functions
272    // can be overloaded.
273    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
274    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
275    if (OldMethod && NewMethod &&
276        !OldMethod->isStatic() && !NewMethod->isStatic() &&
277        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
278      return true;
279
280    // The signatures match; this is not an overload.
281    return false;
282  } else {
283    // (C++ 13p1):
284    //   Only function declarations can be overloaded; object and type
285    //   declarations cannot be overloaded.
286    return false;
287  }
288}
289
290/// TryCopyInitialization - Attempt to copy-initialize a value of the
291/// given type (ToType) from the given expression (Expr), as one would
292/// do when copy-initializing a function parameter. This function
293/// returns an implicit conversion sequence that can be used to
294/// perform the initialization. Given
295///
296///   void f(float f);
297///   void g(int i) { f(i); }
298///
299/// this routine would produce an implicit conversion sequence to
300/// describe the initialization of f from i, which will be a standard
301/// conversion sequence containing an lvalue-to-rvalue conversion (C++
302/// 4.1) followed by a floating-integral conversion (C++ 4.9).
303//
304/// Note that this routine only determines how the conversion can be
305/// performed; it does not actually perform the conversion. As such,
306/// it will not produce any diagnostics if no conversion is available,
307/// but will instead return an implicit conversion sequence of kind
308/// "BadConversion".
309ImplicitConversionSequence
310Sema::TryCopyInitialization(Expr* From, QualType ToType)
311{
312  ImplicitConversionSequence ICS;
313
314  QualType FromType = From->getType();
315
316  // Standard conversions (C++ 4)
317  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
318  ICS.Standard.Deprecated = false;
319  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
320
321  // The first conversion can be an lvalue-to-rvalue conversion,
322  // array-to-pointer conversion, or function-to-pointer conversion
323  // (C++ 4p1).
324
325  // Lvalue-to-rvalue conversion (C++ 4.1):
326  //   An lvalue (3.10) of a non-function, non-array type T can be
327  //   converted to an rvalue.
328  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
329  if (argIsLvalue == Expr::LV_Valid &&
330      !FromType->isFunctionType() && !FromType->isArrayType()) {
331    ICS.Standard.First = ICK_Lvalue_To_Rvalue;
332
333    // If T is a non-class type, the type of the rvalue is the
334    // cv-unqualified version of T. Otherwise, the type of the rvalue
335    // is T (C++ 4.1p1).
336    if (!FromType->isRecordType())
337      FromType = FromType.getUnqualifiedType();
338  }
339  // Array-to-pointer conversion (C++ 4.2)
340  else if (FromType->isArrayType()) {
341    ICS.Standard.First = ICK_Array_To_Pointer;
342
343    // An lvalue or rvalue of type "array of N T" or "array of unknown
344    // bound of T" can be converted to an rvalue of type "pointer to
345    // T" (C++ 4.2p1).
346    FromType = Context.getArrayDecayedType(FromType);
347
348    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
349      // This conversion is deprecated. (C++ D.4).
350      ICS.Standard.Deprecated = true;
351
352      // For the purpose of ranking in overload resolution
353      // (13.3.3.1.1), this conversion is considered an
354      // array-to-pointer conversion followed by a qualification
355      // conversion (4.4). (C++ 4.2p2)
356      ICS.Standard.Second = ICK_Identity;
357      ICS.Standard.Third = ICK_Qualification;
358      ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
359      return ICS;
360    }
361  }
362  // Function-to-pointer conversion (C++ 4.3).
363  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
364    ICS.Standard.First = ICK_Function_To_Pointer;
365
366    // An lvalue of function type T can be converted to an rvalue of
367    // type "pointer to T." The result is a pointer to the
368    // function. (C++ 4.3p1).
369    FromType = Context.getPointerType(FromType);
370
371    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
372  }
373  // We don't require any conversions for the first step.
374  else {
375    ICS.Standard.First = ICK_Identity;
376  }
377
378  // The second conversion can be an integral promotion, floating
379  // point promotion, integral conversion, floating point conversion,
380  // floating-integral conversion, pointer conversion,
381  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
382  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
383      Context.getCanonicalType(ToType).getUnqualifiedType()) {
384    // The unqualified versions of the types are the same: there's no
385    // conversion to do.
386    ICS.Standard.Second = ICK_Identity;
387  }
388  // Integral promotion (C++ 4.5).
389  else if (IsIntegralPromotion(From, FromType, ToType)) {
390    ICS.Standard.Second = ICK_Integral_Promotion;
391    FromType = ToType.getUnqualifiedType();
392  }
393  // Floating point promotion (C++ 4.6).
394  else if (IsFloatingPointPromotion(FromType, ToType)) {
395    ICS.Standard.Second = ICK_Floating_Promotion;
396    FromType = ToType.getUnqualifiedType();
397  }
398  // Integral conversions (C++ 4.7).
399  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
400           (ToType->isIntegralType() || ToType->isEnumeralType())) {
401    ICS.Standard.Second = ICK_Integral_Conversion;
402    FromType = ToType.getUnqualifiedType();
403  }
404  // Floating point conversions (C++ 4.8).
405  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
406    ICS.Standard.Second = ICK_Floating_Conversion;
407    FromType = ToType.getUnqualifiedType();
408  }
409  // Floating-integral conversions (C++ 4.9).
410  else if ((FromType->isFloatingType() &&
411            ToType->isIntegralType() && !ToType->isBooleanType()) ||
412           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
413            ToType->isFloatingType())) {
414    ICS.Standard.Second = ICK_Floating_Integral;
415    FromType = ToType.getUnqualifiedType();
416  }
417  // Pointer conversions (C++ 4.10).
418  else if (IsPointerConversion(From, FromType, ToType, FromType))
419    ICS.Standard.Second = ICK_Pointer_Conversion;
420  // FIXME: Pointer to member conversions (4.11).
421  // Boolean conversions (C++ 4.12).
422  // FIXME: pointer-to-member type
423  else if (ToType->isBooleanType() &&
424           (FromType->isArithmeticType() ||
425            FromType->isEnumeralType() ||
426            FromType->isPointerType())) {
427    ICS.Standard.Second = ICK_Boolean_Conversion;
428    FromType = Context.BoolTy;
429  } else {
430    // No second conversion required.
431    ICS.Standard.Second = ICK_Identity;
432  }
433
434  // The third conversion can be a qualification conversion (C++ 4p1).
435  // FIXME: CheckPointerTypesForAssignment isn't the right way to
436  // determine whether we have a qualification conversion.
437  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType)
438      && CheckPointerTypesForAssignment(ToType, FromType) == Compatible) {
439    ICS.Standard.Third = ICK_Qualification;
440    FromType = ToType;
441  } else {
442    // No conversion required
443    ICS.Standard.Third = ICK_Identity;
444  }
445
446  // If we have not converted the argument type to the parameter type,
447  // this is a bad conversion sequence.
448  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType))
449    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
450
451  ICS.Standard.ToTypePtr = FromType.getAsOpaquePtr();
452  return ICS;
453}
454
455/// IsIntegralPromotion - Determines whether the conversion from the
456/// expression From (whose potentially-adjusted type is FromType) to
457/// ToType is an integral promotion (C++ 4.5). If so, returns true and
458/// sets PromotedType to the promoted type.
459bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
460{
461  const BuiltinType *To = ToType->getAsBuiltinType();
462
463  // An rvalue of type char, signed char, unsigned char, short int, or
464  // unsigned short int can be converted to an rvalue of type int if
465  // int can represent all the values of the source type; otherwise,
466  // the source rvalue can be converted to an rvalue of type unsigned
467  // int (C++ 4.5p1).
468  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && To) {
469    if (// We can promote any signed, promotable integer type to an int
470        (FromType->isSignedIntegerType() ||
471         // We can promote any unsigned integer type whose size is
472         // less than int to an int.
473         (!FromType->isSignedIntegerType() &&
474          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))))
475      return To->getKind() == BuiltinType::Int;
476
477    return To->getKind() == BuiltinType::UInt;
478  }
479
480  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
481  // can be converted to an rvalue of the first of the following types
482  // that can represent all the values of its underlying type: int,
483  // unsigned int, long, or unsigned long (C++ 4.5p2).
484  if ((FromType->isEnumeralType() || FromType->isWideCharType())
485      && ToType->isIntegerType()) {
486    // Determine whether the type we're converting from is signed or
487    // unsigned.
488    bool FromIsSigned;
489    uint64_t FromSize = Context.getTypeSize(FromType);
490    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
491      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
492      FromIsSigned = UnderlyingType->isSignedIntegerType();
493    } else {
494      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
495      FromIsSigned = true;
496    }
497
498    // The types we'll try to promote to, in the appropriate
499    // order. Try each of these types.
500    QualType PromoteTypes[4] = {
501      Context.IntTy, Context.UnsignedIntTy,
502      Context.LongTy, Context.UnsignedLongTy
503    };
504    for (int Idx = 0; Idx < 0; ++Idx) {
505      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
506      if (FromSize < ToSize ||
507          (FromSize == ToSize &&
508           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
509        // We found the type that we can promote to. If this is the
510        // type we wanted, we have a promotion. Otherwise, no
511        // promotion.
512        return Context.getCanonicalType(FromType).getUnqualifiedType()
513          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
514      }
515    }
516  }
517
518  // An rvalue for an integral bit-field (9.6) can be converted to an
519  // rvalue of type int if int can represent all the values of the
520  // bit-field; otherwise, it can be converted to unsigned int if
521  // unsigned int can represent all the values of the bit-field. If
522  // the bit-field is larger yet, no integral promotion applies to
523  // it. If the bit-field has an enumerated type, it is treated as any
524  // other value of that type for promotion purposes (C++ 4.5p3).
525  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
526    using llvm::APSInt;
527    FieldDecl *MemberDecl = MemRef->getMemberDecl();
528    APSInt BitWidth;
529    if (MemberDecl->isBitField() &&
530        FromType->isIntegralType() && !FromType->isEnumeralType() &&
531        From->isIntegerConstantExpr(BitWidth, Context)) {
532      APSInt ToSize(Context.getTypeSize(ToType));
533
534      // Are we promoting to an int from a bitfield that fits in an int?
535      if (BitWidth < ToSize ||
536          (FromType->isSignedIntegerType() && BitWidth <= ToSize))
537        return To->getKind() == BuiltinType::Int;
538
539      // Are we promoting to an unsigned int from an unsigned bitfield
540      // that fits into an unsigned int?
541      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize)
542        return To->getKind() == BuiltinType::UInt;
543
544      return false;
545    }
546  }
547
548  // An rvalue of type bool can be converted to an rvalue of type int,
549  // with false becoming zero and true becoming one (C++ 4.5p4).
550  if (FromType->isBooleanType() && To && To->getKind() == BuiltinType::Int)
551    return true;
552
553  return false;
554}
555
556/// IsFloatingPointPromotion - Determines whether the conversion from
557/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
558/// returns true and sets PromotedType to the promoted type.
559bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
560{
561  /// An rvalue of type float can be converted to an rvalue of type
562  /// double. (C++ 4.6p1).
563  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
564    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
565      if (FromBuiltin->getKind() == BuiltinType::Float &&
566          ToBuiltin->getKind() == BuiltinType::Double)
567        return true;
568
569  return false;
570}
571
572/// IsPointerConversion - Determines whether the conversion of the
573/// expression From, which has the (possibly adjusted) type FromType,
574/// can be converted to the type ToType via a pointer conversion (C++
575/// 4.10). If so, returns true and places the converted type (that
576/// might differ from ToType in its cv-qualifiers at some level) into
577/// ConvertedType.
578bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
579                               QualType& ConvertedType)
580{
581  const PointerType* ToTypePtr = ToType->getAsPointerType();
582  if (!ToTypePtr)
583    return false;
584
585  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
586  if (From->isNullPointerConstant(Context)) {
587    ConvertedType = ToType;
588    return true;
589  }
590
591  // An rvalue of type "pointer to cv T," where T is an object type,
592  // can be converted to an rvalue of type "pointer to cv void" (C++
593  // 4.10p2).
594  if (FromType->isPointerType() &&
595      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
596      ToTypePtr->getPointeeType()->isVoidType()) {
597    // We need to produce a pointer to cv void, where cv is the same
598    // set of cv-qualifiers as we had on the incoming pointee type.
599    QualType toPointee = ToTypePtr->getPointeeType();
600    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
601                   ->getPointeeType().getCVRQualifiers();
602
603    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
604	  == Quals) {
605      // ToType is exactly the type we want. Use it.
606      ConvertedType = ToType;
607    } else {
608      // Build a new type with the right qualifiers.
609      ConvertedType
610	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
611    }
612    return true;
613  }
614
615  // FIXME: An rvalue of type "pointer to cv D," where D is a class
616  // type, can be converted to an rvalue of type "pointer to cv B,"
617  // where B is a base class (clause 10) of D (C++ 4.10p3).
618  return false;
619}
620
621/// CompareImplicitConversionSequences - Compare two implicit
622/// conversion sequences to determine whether one is better than the
623/// other or if they are indistinguishable (C++ 13.3.3.2).
624ImplicitConversionSequence::CompareKind
625Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
626                                         const ImplicitConversionSequence& ICS2)
627{
628  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
629  // conversion sequences (as defined in 13.3.3.1)
630  //   -- a standard conversion sequence (13.3.3.1.1) is a better
631  //      conversion sequence than a user-defined conversion sequence or
632  //      an ellipsis conversion sequence, and
633  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
634  //      conversion sequence than an ellipsis conversion sequence
635  //      (13.3.3.1.3).
636  //
637  if (ICS1.ConversionKind < ICS2.ConversionKind)
638    return ImplicitConversionSequence::Better;
639  else if (ICS2.ConversionKind < ICS1.ConversionKind)
640    return ImplicitConversionSequence::Worse;
641
642  // Two implicit conversion sequences of the same form are
643  // indistinguishable conversion sequences unless one of the
644  // following rules apply: (C++ 13.3.3.2p3):
645  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
646    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
647  else if (ICS1.ConversionKind ==
648             ImplicitConversionSequence::UserDefinedConversion) {
649    // User-defined conversion sequence U1 is a better conversion
650    // sequence than another user-defined conversion sequence U2 if
651    // they contain the same user-defined conversion function or
652    // constructor and if the second standard conversion sequence of
653    // U1 is better than the second standard conversion sequence of
654    // U2 (C++ 13.3.3.2p3).
655    if (ICS1.UserDefined.ConversionFunction ==
656          ICS2.UserDefined.ConversionFunction)
657      return CompareStandardConversionSequences(ICS1.UserDefined.After,
658                                                ICS2.UserDefined.After);
659  }
660
661  return ImplicitConversionSequence::Indistinguishable;
662}
663
664/// CompareStandardConversionSequences - Compare two standard
665/// conversion sequences to determine whether one is better than the
666/// other or if they are indistinguishable (C++ 13.3.3.2p3).
667ImplicitConversionSequence::CompareKind
668Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
669                                         const StandardConversionSequence& SCS2)
670{
671  // Standard conversion sequence S1 is a better conversion sequence
672  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
673
674  //  -- S1 is a proper subsequence of S2 (comparing the conversion
675  //     sequences in the canonical form defined by 13.3.3.1.1,
676  //     excluding any Lvalue Transformation; the identity conversion
677  //     sequence is considered to be a subsequence of any
678  //     non-identity conversion sequence) or, if not that,
679  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
680    // Neither is a proper subsequence of the other. Do nothing.
681    ;
682  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
683           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
684           (SCS1.Second == ICK_Identity &&
685            SCS1.Third == ICK_Identity))
686    // SCS1 is a proper subsequence of SCS2.
687    return ImplicitConversionSequence::Better;
688  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
689           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
690           (SCS2.Second == ICK_Identity &&
691            SCS2.Third == ICK_Identity))
692    // SCS2 is a proper subsequence of SCS1.
693    return ImplicitConversionSequence::Worse;
694
695  //  -- the rank of S1 is better than the rank of S2 (by the rules
696  //     defined below), or, if not that,
697  ImplicitConversionRank Rank1 = SCS1.getRank();
698  ImplicitConversionRank Rank2 = SCS2.getRank();
699  if (Rank1 < Rank2)
700    return ImplicitConversionSequence::Better;
701  else if (Rank2 < Rank1)
702    return ImplicitConversionSequence::Worse;
703  else {
704    // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
705    // are indistinguishable unless one of the following rules
706    // applies:
707
708    //   A conversion that is not a conversion of a pointer, or
709    //   pointer to member, to bool is better than another conversion
710    //   that is such a conversion.
711    if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
712      return SCS2.isPointerConversionToBool()
713               ? ImplicitConversionSequence::Better
714               : ImplicitConversionSequence::Worse;
715
716    // FIXME: The other bullets in (C++ 13.3.3.2p4) require support
717    // for derived classes.
718  }
719
720  // FIXME: Handle comparison by qualifications.
721  // FIXME: Handle comparison of reference bindings.
722  return ImplicitConversionSequence::Indistinguishable;
723}
724
725/// AddOverloadCandidate - Adds the given function to the set of
726/// candidate functions, using the given function call arguments.
727void
728Sema::AddOverloadCandidate(FunctionDecl *Function,
729                           Expr **Args, unsigned NumArgs,
730                           OverloadCandidateSet& CandidateSet)
731{
732  const FunctionTypeProto* Proto
733    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
734  assert(Proto && "Functions without a prototype cannot be overloaded");
735
736  // Add this candidate
737  CandidateSet.push_back(OverloadCandidate());
738  OverloadCandidate& Candidate = CandidateSet.back();
739  Candidate.Function = Function;
740
741  unsigned NumArgsInProto = Proto->getNumArgs();
742
743  // (C++ 13.3.2p2): A candidate function having fewer than m
744  // parameters is viable only if it has an ellipsis in its parameter
745  // list (8.3.5).
746  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
747    Candidate.Viable = false;
748    return;
749  }
750
751  // (C++ 13.3.2p2): A candidate function having more than m parameters
752  // is viable only if the (m+1)st parameter has a default argument
753  // (8.3.6). For the purposes of overload resolution, the
754  // parameter list is truncated on the right, so that there are
755  // exactly m parameters.
756  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
757  if (NumArgs < MinRequiredArgs) {
758    // Not enough arguments.
759    Candidate.Viable = false;
760    return;
761  }
762
763  // Determine the implicit conversion sequences for each of the
764  // arguments.
765  Candidate.Viable = true;
766  Candidate.Conversions.resize(NumArgs);
767  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
768    if (ArgIdx < NumArgsInProto) {
769      // (C++ 13.3.2p3): for F to be a viable function, there shall
770      // exist for each argument an implicit conversion sequence
771      // (13.3.3.1) that converts that argument to the corresponding
772      // parameter of F.
773      QualType ParamType = Proto->getArgType(ArgIdx);
774      Candidate.Conversions[ArgIdx]
775        = TryCopyInitialization(Args[ArgIdx], ParamType);
776      if (Candidate.Conversions[ArgIdx].ConversionKind
777            == ImplicitConversionSequence::BadConversion)
778        Candidate.Viable = false;
779    } else {
780      // (C++ 13.3.2p2): For the purposes of overload resolution, any
781      // argument for which there is no corresponding parameter is
782      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
783      Candidate.Conversions[ArgIdx].ConversionKind
784        = ImplicitConversionSequence::EllipsisConversion;
785    }
786  }
787}
788
789/// AddOverloadCandidates - Add all of the function overloads in Ovl
790/// to the candidate set.
791void
792Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl,
793                            Expr **Args, unsigned NumArgs,
794                            OverloadCandidateSet& CandidateSet)
795{
796  for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
797       Func != Ovl->function_end(); ++Func)
798    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
799}
800
801/// isBetterOverloadCandidate - Determines whether the first overload
802/// candidate is a better candidate than the second (C++ 13.3.3p1).
803bool
804Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
805                                const OverloadCandidate& Cand2)
806{
807  // Define viable functions to be better candidates than non-viable
808  // functions.
809  if (!Cand2.Viable)
810    return Cand1.Viable;
811  else if (!Cand1.Viable)
812    return false;
813
814  // FIXME: Deal with the implicit object parameter for static member
815  // functions. (C++ 13.3.3p1).
816
817  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
818  // function than another viable function F2 if for all arguments i,
819  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
820  // then...
821  unsigned NumArgs = Cand1.Conversions.size();
822  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
823  bool HasBetterConversion = false;
824  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
825    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
826                                               Cand2.Conversions[ArgIdx])) {
827    case ImplicitConversionSequence::Better:
828      // Cand1 has a better conversion sequence.
829      HasBetterConversion = true;
830      break;
831
832    case ImplicitConversionSequence::Worse:
833      // Cand1 can't be better than Cand2.
834      return false;
835
836    case ImplicitConversionSequence::Indistinguishable:
837      // Do nothing.
838      break;
839    }
840  }
841
842  if (HasBetterConversion)
843    return true;
844
845  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
846
847  return false;
848}
849
850/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
851/// within an overload candidate set. If overloading is successful,
852/// the result will be OR_Success and Best will be set to point to the
853/// best viable function within the candidate set. Otherwise, one of
854/// several kinds of errors will be returned; see
855/// Sema::OverloadingResult.
856Sema::OverloadingResult
857Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
858                         OverloadCandidateSet::iterator& Best)
859{
860  // Find the best viable function.
861  Best = CandidateSet.end();
862  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
863       Cand != CandidateSet.end(); ++Cand) {
864    if (Cand->Viable) {
865      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
866        Best = Cand;
867    }
868  }
869
870  // If we didn't find any viable functions, abort.
871  if (Best == CandidateSet.end())
872    return OR_No_Viable_Function;
873
874  // Make sure that this function is better than every other viable
875  // function. If not, we have an ambiguity.
876  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
877       Cand != CandidateSet.end(); ++Cand) {
878    if (Cand->Viable &&
879        Cand != Best &&
880        !isBetterOverloadCandidate(*Best, *Cand))
881      return OR_Ambiguous;
882  }
883
884  // Best is the best viable function.
885  return OR_Success;
886}
887
888/// PrintOverloadCandidates - When overload resolution fails, prints
889/// diagnostic messages containing the candidates in the candidate
890/// set. If OnlyViable is true, only viable candidates will be printed.
891void
892Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
893                              bool OnlyViable)
894{
895  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
896                             LastCand = CandidateSet.end();
897  for (; Cand != LastCand; ++Cand) {
898    if (Cand->Viable ||!OnlyViable)
899      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
900  }
901}
902
903} // end namespace clang
904