SemaOverload.cpp revision 904eed3f6148758d39a2d3c88f3133274460d645
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Expr.h"
19#include "llvm/Support/Compiler.h"
20#include <algorithm>
21
22namespace clang {
23
24/// GetConversionCategory - Retrieve the implicit conversion
25/// category corresponding to the given implicit conversion kind.
26ImplicitConversionCategory
27GetConversionCategory(ImplicitConversionKind Kind) {
28  static const ImplicitConversionCategory
29    Category[(int)ICK_Num_Conversion_Kinds] = {
30    ICC_Identity,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Lvalue_Transformation,
34    ICC_Qualification_Adjustment,
35    ICC_Promotion,
36    ICC_Promotion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion
44  };
45  return Category[(int)Kind];
46}
47
48/// GetConversionRank - Retrieve the implicit conversion rank
49/// corresponding to the given implicit conversion kind.
50ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
51  static const ImplicitConversionRank
52    Rank[(int)ICK_Num_Conversion_Kinds] = {
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Exact_Match,
57    ICR_Exact_Match,
58    ICR_Promotion,
59    ICR_Promotion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion
67  };
68  return Rank[(int)Kind];
69}
70
71/// GetImplicitConversionName - Return the name of this kind of
72/// implicit conversion.
73const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
74  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
75    "No conversion",
76    "Lvalue-to-rvalue",
77    "Array-to-pointer",
78    "Function-to-pointer",
79    "Qualification",
80    "Integral promotion",
81    "Floating point promotion",
82    "Integral conversion",
83    "Floating conversion",
84    "Floating-integral conversion",
85    "Pointer conversion",
86    "Pointer-to-member conversion",
87    "Boolean conversion",
88    "Derived-to-base conversion"
89  };
90  return Name[Kind];
91}
92
93/// StandardConversionSequence - Set the standard conversion
94/// sequence to the identity conversion.
95void StandardConversionSequence::setAsIdentityConversion() {
96  First = ICK_Identity;
97  Second = ICK_Identity;
98  Third = ICK_Identity;
99  Deprecated = false;
100  ReferenceBinding = false;
101  DirectBinding = false;
102  CopyConstructor = 0;
103}
104
105/// getRank - Retrieve the rank of this standard conversion sequence
106/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
107/// implicit conversions.
108ImplicitConversionRank StandardConversionSequence::getRank() const {
109  ImplicitConversionRank Rank = ICR_Exact_Match;
110  if  (GetConversionRank(First) > Rank)
111    Rank = GetConversionRank(First);
112  if  (GetConversionRank(Second) > Rank)
113    Rank = GetConversionRank(Second);
114  if  (GetConversionRank(Third) > Rank)
115    Rank = GetConversionRank(Third);
116  return Rank;
117}
118
119/// isPointerConversionToBool - Determines whether this conversion is
120/// a conversion of a pointer or pointer-to-member to bool. This is
121/// used as part of the ranking of standard conversion sequences
122/// (C++ 13.3.3.2p4).
123bool StandardConversionSequence::isPointerConversionToBool() const
124{
125  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
126  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
127
128  // Note that FromType has not necessarily been transformed by the
129  // array-to-pointer or function-to-pointer implicit conversions, so
130  // check for their presence as well as checking whether FromType is
131  // a pointer.
132  if (ToType->isBooleanType() &&
133      (FromType->isPointerType() ||
134       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
135    return true;
136
137  return false;
138}
139
140/// isPointerConversionToVoidPointer - Determines whether this
141/// conversion is a conversion of a pointer to a void pointer. This is
142/// used as part of the ranking of standard conversion sequences (C++
143/// 13.3.3.2p4).
144bool
145StandardConversionSequence::
146isPointerConversionToVoidPointer(ASTContext& Context) const
147{
148  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
149  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
150
151  // Note that FromType has not necessarily been transformed by the
152  // array-to-pointer implicit conversion, so check for its presence
153  // and redo the conversion to get a pointer.
154  if (First == ICK_Array_To_Pointer)
155    FromType = Context.getArrayDecayedType(FromType);
156
157  if (Second == ICK_Pointer_Conversion)
158    if (const PointerType* ToPtrType = ToType->getAsPointerType())
159      return ToPtrType->getPointeeType()->isVoidType();
160
161  return false;
162}
163
164/// DebugPrint - Print this standard conversion sequence to standard
165/// error. Useful for debugging overloading issues.
166void StandardConversionSequence::DebugPrint() const {
167  bool PrintedSomething = false;
168  if (First != ICK_Identity) {
169    fprintf(stderr, "%s", GetImplicitConversionName(First));
170    PrintedSomething = true;
171  }
172
173  if (Second != ICK_Identity) {
174    if (PrintedSomething) {
175      fprintf(stderr, " -> ");
176    }
177    fprintf(stderr, "%s", GetImplicitConversionName(Second));
178
179    if (CopyConstructor) {
180      fprintf(stderr, " (by copy constructor)");
181    } else if (DirectBinding) {
182      fprintf(stderr, " (direct reference binding)");
183    } else if (ReferenceBinding) {
184      fprintf(stderr, " (reference binding)");
185    }
186    PrintedSomething = true;
187  }
188
189  if (Third != ICK_Identity) {
190    if (PrintedSomething) {
191      fprintf(stderr, " -> ");
192    }
193    fprintf(stderr, "%s", GetImplicitConversionName(Third));
194    PrintedSomething = true;
195  }
196
197  if (!PrintedSomething) {
198    fprintf(stderr, "No conversions required");
199  }
200}
201
202/// DebugPrint - Print this user-defined conversion sequence to standard
203/// error. Useful for debugging overloading issues.
204void UserDefinedConversionSequence::DebugPrint() const {
205  if (Before.First || Before.Second || Before.Third) {
206    Before.DebugPrint();
207    fprintf(stderr, " -> ");
208  }
209  fprintf(stderr, "'%s'", ConversionFunction->getName());
210  if (After.First || After.Second || After.Third) {
211    fprintf(stderr, " -> ");
212    After.DebugPrint();
213  }
214}
215
216/// DebugPrint - Print this implicit conversion sequence to standard
217/// error. Useful for debugging overloading issues.
218void ImplicitConversionSequence::DebugPrint() const {
219  switch (ConversionKind) {
220  case StandardConversion:
221    fprintf(stderr, "Standard conversion: ");
222    Standard.DebugPrint();
223    break;
224  case UserDefinedConversion:
225    fprintf(stderr, "User-defined conversion: ");
226    UserDefined.DebugPrint();
227    break;
228  case EllipsisConversion:
229    fprintf(stderr, "Ellipsis conversion");
230    break;
231  case BadConversion:
232    fprintf(stderr, "Bad conversion");
233    break;
234  }
235
236  fprintf(stderr, "\n");
237}
238
239// IsOverload - Determine whether the given New declaration is an
240// overload of the Old declaration. This routine returns false if New
241// and Old cannot be overloaded, e.g., if they are functions with the
242// same signature (C++ 1.3.10) or if the Old declaration isn't a
243// function (or overload set). When it does return false and Old is an
244// OverloadedFunctionDecl, MatchedDecl will be set to point to the
245// FunctionDecl that New cannot be overloaded with.
246//
247// Example: Given the following input:
248//
249//   void f(int, float); // #1
250//   void f(int, int); // #2
251//   int f(int, int); // #3
252//
253// When we process #1, there is no previous declaration of "f",
254// so IsOverload will not be used.
255//
256// When we process #2, Old is a FunctionDecl for #1.  By comparing the
257// parameter types, we see that #1 and #2 are overloaded (since they
258// have different signatures), so this routine returns false;
259// MatchedDecl is unchanged.
260//
261// When we process #3, Old is an OverloadedFunctionDecl containing #1
262// and #2. We compare the signatures of #3 to #1 (they're overloaded,
263// so we do nothing) and then #3 to #2. Since the signatures of #3 and
264// #2 are identical (return types of functions are not part of the
265// signature), IsOverload returns false and MatchedDecl will be set to
266// point to the FunctionDecl for #2.
267bool
268Sema::IsOverload(FunctionDecl *New, Decl* OldD,
269                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
270{
271  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
272    // Is this new function an overload of every function in the
273    // overload set?
274    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
275                                           FuncEnd = Ovl->function_end();
276    for (; Func != FuncEnd; ++Func) {
277      if (!IsOverload(New, *Func, MatchedDecl)) {
278        MatchedDecl = Func;
279        return false;
280      }
281    }
282
283    // This function overloads every function in the overload set.
284    return true;
285  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
286    // Is the function New an overload of the function Old?
287    QualType OldQType = Context.getCanonicalType(Old->getType());
288    QualType NewQType = Context.getCanonicalType(New->getType());
289
290    // Compare the signatures (C++ 1.3.10) of the two functions to
291    // determine whether they are overloads. If we find any mismatch
292    // in the signature, they are overloads.
293
294    // If either of these functions is a K&R-style function (no
295    // prototype), then we consider them to have matching signatures.
296    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
297        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
298      return false;
299
300    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
301    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
302
303    // The signature of a function includes the types of its
304    // parameters (C++ 1.3.10), which includes the presence or absence
305    // of the ellipsis; see C++ DR 357).
306    if (OldQType != NewQType &&
307        (OldType->getNumArgs() != NewType->getNumArgs() ||
308         OldType->isVariadic() != NewType->isVariadic() ||
309         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
310                     NewType->arg_type_begin())))
311      return true;
312
313    // If the function is a class member, its signature includes the
314    // cv-qualifiers (if any) on the function itself.
315    //
316    // As part of this, also check whether one of the member functions
317    // is static, in which case they are not overloads (C++
318    // 13.1p2). While not part of the definition of the signature,
319    // this check is important to determine whether these functions
320    // can be overloaded.
321    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
322    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
323    if (OldMethod && NewMethod &&
324        !OldMethod->isStatic() && !NewMethod->isStatic() &&
325        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
326      return true;
327
328    // The signatures match; this is not an overload.
329    return false;
330  } else {
331    // (C++ 13p1):
332    //   Only function declarations can be overloaded; object and type
333    //   declarations cannot be overloaded.
334    return false;
335  }
336}
337
338/// TryImplicitConversion - Attempt to perform an implicit conversion
339/// from the given expression (Expr) to the given type (ToType). This
340/// function returns an implicit conversion sequence that can be used
341/// to perform the initialization. Given
342///
343///   void f(float f);
344///   void g(int i) { f(i); }
345///
346/// this routine would produce an implicit conversion sequence to
347/// describe the initialization of f from i, which will be a standard
348/// conversion sequence containing an lvalue-to-rvalue conversion (C++
349/// 4.1) followed by a floating-integral conversion (C++ 4.9).
350//
351/// Note that this routine only determines how the conversion can be
352/// performed; it does not actually perform the conversion. As such,
353/// it will not produce any diagnostics if no conversion is available,
354/// but will instead return an implicit conversion sequence of kind
355/// "BadConversion".
356///
357/// If @p SuppressUserConversions, then user-defined conversions are
358/// not permitted.
359ImplicitConversionSequence
360Sema::TryImplicitConversion(Expr* From, QualType ToType,
361                            bool SuppressUserConversions)
362{
363  ImplicitConversionSequence ICS;
364  if (IsStandardConversion(From, ToType, ICS.Standard))
365    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
366  else if (!SuppressUserConversions &&
367           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
368    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
369    // C++ [over.ics.user]p4:
370    //   A conversion of an expression of class type to the same class
371    //   type is given Exact Match rank, and a conversion of an
372    //   expression of class type to a base class of that type is
373    //   given Conversion rank, in spite of the fact that a copy
374    //   constructor (i.e., a user-defined conversion function) is
375    //   called for those cases.
376    if (CXXConstructorDecl *Constructor
377          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
378      if (Constructor->isCopyConstructor(Context)) {
379        // Turn this into a "standard" conversion sequence, so that it
380        // gets ranked with standard conversion sequences.
381        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
382        ICS.Standard.setAsIdentityConversion();
383        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
384        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
385        ICS.Standard.CopyConstructor = Constructor;
386        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
387                          ToType.getUnqualifiedType()))
388          ICS.Standard.Second = ICK_Derived_To_Base;
389      }
390    }
391  } else
392    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
393
394  return ICS;
395}
396
397/// IsStandardConversion - Determines whether there is a standard
398/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
399/// expression From to the type ToType. Standard conversion sequences
400/// only consider non-class types; for conversions that involve class
401/// types, use TryImplicitConversion. If a conversion exists, SCS will
402/// contain the standard conversion sequence required to perform this
403/// conversion and this routine will return true. Otherwise, this
404/// routine will return false and the value of SCS is unspecified.
405bool
406Sema::IsStandardConversion(Expr* From, QualType ToType,
407                           StandardConversionSequence &SCS)
408{
409  QualType FromType = From->getType();
410
411  // There are no standard conversions for class types, so abort early.
412  if (FromType->isRecordType() || ToType->isRecordType())
413    return false;
414
415  // Standard conversions (C++ [conv])
416  SCS.Deprecated = false;
417  SCS.FromTypePtr = FromType.getAsOpaquePtr();
418  SCS.CopyConstructor = 0;
419
420  // The first conversion can be an lvalue-to-rvalue conversion,
421  // array-to-pointer conversion, or function-to-pointer conversion
422  // (C++ 4p1).
423
424  // Lvalue-to-rvalue conversion (C++ 4.1):
425  //   An lvalue (3.10) of a non-function, non-array type T can be
426  //   converted to an rvalue.
427  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
428  if (argIsLvalue == Expr::LV_Valid &&
429      !FromType->isFunctionType() && !FromType->isArrayType() &&
430      !FromType->isOverloadType()) {
431    SCS.First = ICK_Lvalue_To_Rvalue;
432
433    // If T is a non-class type, the type of the rvalue is the
434    // cv-unqualified version of T. Otherwise, the type of the rvalue
435    // is T (C++ 4.1p1).
436    FromType = FromType.getUnqualifiedType();
437  }
438  // Array-to-pointer conversion (C++ 4.2)
439  else if (FromType->isArrayType()) {
440    SCS.First = ICK_Array_To_Pointer;
441
442    // An lvalue or rvalue of type "array of N T" or "array of unknown
443    // bound of T" can be converted to an rvalue of type "pointer to
444    // T" (C++ 4.2p1).
445    FromType = Context.getArrayDecayedType(FromType);
446
447    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
448      // This conversion is deprecated. (C++ D.4).
449      SCS.Deprecated = true;
450
451      // For the purpose of ranking in overload resolution
452      // (13.3.3.1.1), this conversion is considered an
453      // array-to-pointer conversion followed by a qualification
454      // conversion (4.4). (C++ 4.2p2)
455      SCS.Second = ICK_Identity;
456      SCS.Third = ICK_Qualification;
457      SCS.ToTypePtr = ToType.getAsOpaquePtr();
458      return true;
459    }
460  }
461  // Function-to-pointer conversion (C++ 4.3).
462  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
463    SCS.First = ICK_Function_To_Pointer;
464
465    // An lvalue of function type T can be converted to an rvalue of
466    // type "pointer to T." The result is a pointer to the
467    // function. (C++ 4.3p1).
468    FromType = Context.getPointerType(FromType);
469  }
470  // Address of overloaded function (C++ [over.over]).
471  else if (FunctionDecl *Fn
472             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
473    SCS.First = ICK_Function_To_Pointer;
474
475    // We were able to resolve the address of the overloaded function,
476    // so we can convert to the type of that function.
477    FromType = Fn->getType();
478    if (ToType->isReferenceType())
479      FromType = Context.getReferenceType(FromType);
480    else
481      FromType = Context.getPointerType(FromType);
482  }
483  // We don't require any conversions for the first step.
484  else {
485    SCS.First = ICK_Identity;
486  }
487
488  // The second conversion can be an integral promotion, floating
489  // point promotion, integral conversion, floating point conversion,
490  // floating-integral conversion, pointer conversion,
491  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
492  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
493      Context.getCanonicalType(ToType).getUnqualifiedType()) {
494    // The unqualified versions of the types are the same: there's no
495    // conversion to do.
496    SCS.Second = ICK_Identity;
497  }
498  // Integral promotion (C++ 4.5).
499  else if (IsIntegralPromotion(From, FromType, ToType)) {
500    SCS.Second = ICK_Integral_Promotion;
501    FromType = ToType.getUnqualifiedType();
502  }
503  // Floating point promotion (C++ 4.6).
504  else if (IsFloatingPointPromotion(FromType, ToType)) {
505    SCS.Second = ICK_Floating_Promotion;
506    FromType = ToType.getUnqualifiedType();
507  }
508  // Integral conversions (C++ 4.7).
509  // FIXME: isIntegralType shouldn't be true for enums in C++.
510  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
511           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
512    SCS.Second = ICK_Integral_Conversion;
513    FromType = ToType.getUnqualifiedType();
514  }
515  // Floating point conversions (C++ 4.8).
516  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
517    SCS.Second = ICK_Floating_Conversion;
518    FromType = ToType.getUnqualifiedType();
519  }
520  // Floating-integral conversions (C++ 4.9).
521  // FIXME: isIntegralType shouldn't be true for enums in C++.
522  else if ((FromType->isFloatingType() &&
523            ToType->isIntegralType() && !ToType->isBooleanType() &&
524                                        !ToType->isEnumeralType()) ||
525           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
526            ToType->isFloatingType())) {
527    SCS.Second = ICK_Floating_Integral;
528    FromType = ToType.getUnqualifiedType();
529  }
530  // Pointer conversions (C++ 4.10).
531  else if (IsPointerConversion(From, FromType, ToType, FromType)) {
532    SCS.Second = ICK_Pointer_Conversion;
533  }
534  // FIXME: Pointer to member conversions (4.11).
535  // Boolean conversions (C++ 4.12).
536  // FIXME: pointer-to-member type
537  else if (ToType->isBooleanType() &&
538           (FromType->isArithmeticType() ||
539            FromType->isEnumeralType() ||
540            FromType->isPointerType())) {
541    SCS.Second = ICK_Boolean_Conversion;
542    FromType = Context.BoolTy;
543  } else {
544    // No second conversion required.
545    SCS.Second = ICK_Identity;
546  }
547
548  QualType CanonFrom;
549  QualType CanonTo;
550  // The third conversion can be a qualification conversion (C++ 4p1).
551  if (IsQualificationConversion(FromType, ToType)) {
552    SCS.Third = ICK_Qualification;
553    FromType = ToType;
554    CanonFrom = Context.getCanonicalType(FromType);
555    CanonTo = Context.getCanonicalType(ToType);
556  } else {
557    // No conversion required
558    SCS.Third = ICK_Identity;
559
560    // C++ [over.best.ics]p6:
561    //   [...] Any difference in top-level cv-qualification is
562    //   subsumed by the initialization itself and does not constitute
563    //   a conversion. [...]
564    CanonFrom = Context.getCanonicalType(FromType);
565    CanonTo = Context.getCanonicalType(ToType);
566    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
567        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
568      FromType = ToType;
569      CanonFrom = CanonTo;
570    }
571  }
572
573  // If we have not converted the argument type to the parameter type,
574  // this is a bad conversion sequence.
575  if (CanonFrom != CanonTo)
576    return false;
577
578  SCS.ToTypePtr = FromType.getAsOpaquePtr();
579  return true;
580}
581
582/// IsIntegralPromotion - Determines whether the conversion from the
583/// expression From (whose potentially-adjusted type is FromType) to
584/// ToType is an integral promotion (C++ 4.5). If so, returns true and
585/// sets PromotedType to the promoted type.
586bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
587{
588  const BuiltinType *To = ToType->getAsBuiltinType();
589  // All integers are built-in.
590  if (!To) {
591    return false;
592  }
593
594  // An rvalue of type char, signed char, unsigned char, short int, or
595  // unsigned short int can be converted to an rvalue of type int if
596  // int can represent all the values of the source type; otherwise,
597  // the source rvalue can be converted to an rvalue of type unsigned
598  // int (C++ 4.5p1).
599  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
600    if (// We can promote any signed, promotable integer type to an int
601        (FromType->isSignedIntegerType() ||
602         // We can promote any unsigned integer type whose size is
603         // less than int to an int.
604         (!FromType->isSignedIntegerType() &&
605          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
606      return To->getKind() == BuiltinType::Int;
607    }
608
609    return To->getKind() == BuiltinType::UInt;
610  }
611
612  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
613  // can be converted to an rvalue of the first of the following types
614  // that can represent all the values of its underlying type: int,
615  // unsigned int, long, or unsigned long (C++ 4.5p2).
616  if ((FromType->isEnumeralType() || FromType->isWideCharType())
617      && ToType->isIntegerType()) {
618    // Determine whether the type we're converting from is signed or
619    // unsigned.
620    bool FromIsSigned;
621    uint64_t FromSize = Context.getTypeSize(FromType);
622    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
623      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
624      FromIsSigned = UnderlyingType->isSignedIntegerType();
625    } else {
626      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
627      FromIsSigned = true;
628    }
629
630    // The types we'll try to promote to, in the appropriate
631    // order. Try each of these types.
632    QualType PromoteTypes[4] = {
633      Context.IntTy, Context.UnsignedIntTy,
634      Context.LongTy, Context.UnsignedLongTy
635    };
636    for (int Idx = 0; Idx < 0; ++Idx) {
637      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
638      if (FromSize < ToSize ||
639          (FromSize == ToSize &&
640           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
641        // We found the type that we can promote to. If this is the
642        // type we wanted, we have a promotion. Otherwise, no
643        // promotion.
644        return Context.getCanonicalType(ToType).getUnqualifiedType()
645          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
646      }
647    }
648  }
649
650  // An rvalue for an integral bit-field (9.6) can be converted to an
651  // rvalue of type int if int can represent all the values of the
652  // bit-field; otherwise, it can be converted to unsigned int if
653  // unsigned int can represent all the values of the bit-field. If
654  // the bit-field is larger yet, no integral promotion applies to
655  // it. If the bit-field has an enumerated type, it is treated as any
656  // other value of that type for promotion purposes (C++ 4.5p3).
657  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
658    using llvm::APSInt;
659    FieldDecl *MemberDecl = MemRef->getMemberDecl();
660    APSInt BitWidth;
661    if (MemberDecl->isBitField() &&
662        FromType->isIntegralType() && !FromType->isEnumeralType() &&
663        From->isIntegerConstantExpr(BitWidth, Context)) {
664      APSInt ToSize(Context.getTypeSize(ToType));
665
666      // Are we promoting to an int from a bitfield that fits in an int?
667      if (BitWidth < ToSize ||
668          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
669        return To->getKind() == BuiltinType::Int;
670      }
671
672      // Are we promoting to an unsigned int from an unsigned bitfield
673      // that fits into an unsigned int?
674      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
675        return To->getKind() == BuiltinType::UInt;
676      }
677
678      return false;
679    }
680  }
681
682  // An rvalue of type bool can be converted to an rvalue of type int,
683  // with false becoming zero and true becoming one (C++ 4.5p4).
684  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
685    return true;
686  }
687
688  return false;
689}
690
691/// IsFloatingPointPromotion - Determines whether the conversion from
692/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
693/// returns true and sets PromotedType to the promoted type.
694bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
695{
696  /// An rvalue of type float can be converted to an rvalue of type
697  /// double. (C++ 4.6p1).
698  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
699    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
700      if (FromBuiltin->getKind() == BuiltinType::Float &&
701          ToBuiltin->getKind() == BuiltinType::Double)
702        return true;
703
704  return false;
705}
706
707/// IsPointerConversion - Determines whether the conversion of the
708/// expression From, which has the (possibly adjusted) type FromType,
709/// can be converted to the type ToType via a pointer conversion (C++
710/// 4.10). If so, returns true and places the converted type (that
711/// might differ from ToType in its cv-qualifiers at some level) into
712/// ConvertedType.
713bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
714                               QualType& ConvertedType)
715{
716  const PointerType* ToTypePtr = ToType->getAsPointerType();
717  if (!ToTypePtr)
718    return false;
719
720  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
721  if (From->isNullPointerConstant(Context)) {
722    ConvertedType = ToType;
723    return true;
724  }
725
726  // An rvalue of type "pointer to cv T," where T is an object type,
727  // can be converted to an rvalue of type "pointer to cv void" (C++
728  // 4.10p2).
729  if (FromType->isPointerType() &&
730      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
731      ToTypePtr->getPointeeType()->isVoidType()) {
732    // We need to produce a pointer to cv void, where cv is the same
733    // set of cv-qualifiers as we had on the incoming pointee type.
734    QualType toPointee = ToTypePtr->getPointeeType();
735    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
736                   ->getPointeeType().getCVRQualifiers();
737
738    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
739	  == Quals) {
740      // ToType is exactly the type we want. Use it.
741      ConvertedType = ToType;
742    } else {
743      // Build a new type with the right qualifiers.
744      ConvertedType
745	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
746    }
747    return true;
748  }
749
750  // C++ [conv.ptr]p3:
751  //
752  //   An rvalue of type "pointer to cv D," where D is a class type,
753  //   can be converted to an rvalue of type "pointer to cv B," where
754  //   B is a base class (clause 10) of D. If B is an inaccessible
755  //   (clause 11) or ambiguous (10.2) base class of D, a program that
756  //   necessitates this conversion is ill-formed. The result of the
757  //   conversion is a pointer to the base class sub-object of the
758  //   derived class object. The null pointer value is converted to
759  //   the null pointer value of the destination type.
760  //
761  // Note that we do not check for ambiguity or inaccessibility
762  // here. That is handled by CheckPointerConversion.
763  if (const PointerType *FromPtrType = FromType->getAsPointerType())
764    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
765      if (FromPtrType->getPointeeType()->isRecordType() &&
766          ToPtrType->getPointeeType()->isRecordType() &&
767          IsDerivedFrom(FromPtrType->getPointeeType(),
768                        ToPtrType->getPointeeType())) {
769        // The conversion is okay. Now, we need to produce the type
770        // that results from this conversion, which will have the same
771        // qualifiers as the incoming type.
772        QualType CanonFromPointee
773          = Context.getCanonicalType(FromPtrType->getPointeeType());
774        QualType ToPointee = ToPtrType->getPointeeType();
775        QualType CanonToPointee = Context.getCanonicalType(ToPointee);
776        unsigned Quals = CanonFromPointee.getCVRQualifiers();
777
778        if (CanonToPointee.getCVRQualifiers() == Quals) {
779          // ToType is exactly the type we want. Use it.
780          ConvertedType = ToType;
781        } else {
782          // Build a new type with the right qualifiers.
783          ConvertedType
784            = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
785        }
786        return true;
787      }
788    }
789
790  return false;
791}
792
793/// CheckPointerConversion - Check the pointer conversion from the
794/// expression From to the type ToType. This routine checks for
795/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
796/// conversions for which IsPointerConversion has already returned
797/// true. It returns true and produces a diagnostic if there was an
798/// error, or returns false otherwise.
799bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
800  QualType FromType = From->getType();
801
802  if (const PointerType *FromPtrType = FromType->getAsPointerType())
803    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
804      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
805                      /*DetectVirtual=*/false);
806      QualType FromPointeeType = FromPtrType->getPointeeType(),
807               ToPointeeType   = ToPtrType->getPointeeType();
808      if (FromPointeeType->isRecordType() &&
809          ToPointeeType->isRecordType()) {
810        // We must have a derived-to-base conversion. Check an
811        // ambiguous or inaccessible conversion.
812        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
813                                            From->getExprLoc(),
814                                            From->getSourceRange());
815      }
816    }
817
818  return false;
819}
820
821/// IsQualificationConversion - Determines whether the conversion from
822/// an rvalue of type FromType to ToType is a qualification conversion
823/// (C++ 4.4).
824bool
825Sema::IsQualificationConversion(QualType FromType, QualType ToType)
826{
827  FromType = Context.getCanonicalType(FromType);
828  ToType = Context.getCanonicalType(ToType);
829
830  // If FromType and ToType are the same type, this is not a
831  // qualification conversion.
832  if (FromType == ToType)
833    return false;
834
835  // (C++ 4.4p4):
836  //   A conversion can add cv-qualifiers at levels other than the first
837  //   in multi-level pointers, subject to the following rules: [...]
838  bool PreviousToQualsIncludeConst = true;
839  bool UnwrappedAnyPointer = false;
840  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
841    // Within each iteration of the loop, we check the qualifiers to
842    // determine if this still looks like a qualification
843    // conversion. Then, if all is well, we unwrap one more level of
844    // pointers or pointers-to-members and do it all again
845    // until there are no more pointers or pointers-to-members left to
846    // unwrap.
847    UnwrappedAnyPointer = true;
848
849    //   -- for every j > 0, if const is in cv 1,j then const is in cv
850    //      2,j, and similarly for volatile.
851    if (!ToType.isAtLeastAsQualifiedAs(FromType))
852      return false;
853
854    //   -- if the cv 1,j and cv 2,j are different, then const is in
855    //      every cv for 0 < k < j.
856    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
857        && !PreviousToQualsIncludeConst)
858      return false;
859
860    // Keep track of whether all prior cv-qualifiers in the "to" type
861    // include const.
862    PreviousToQualsIncludeConst
863      = PreviousToQualsIncludeConst && ToType.isConstQualified();
864  }
865
866  // We are left with FromType and ToType being the pointee types
867  // after unwrapping the original FromType and ToType the same number
868  // of types. If we unwrapped any pointers, and if FromType and
869  // ToType have the same unqualified type (since we checked
870  // qualifiers above), then this is a qualification conversion.
871  return UnwrappedAnyPointer &&
872    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
873}
874
875/// IsUserDefinedConversion - Determines whether there is a
876/// user-defined conversion sequence (C++ [over.ics.user]) that
877/// converts expression From to the type ToType. If such a conversion
878/// exists, User will contain the user-defined conversion sequence
879/// that performs such a conversion and this routine will return
880/// true. Otherwise, this routine returns false and User is
881/// unspecified.
882bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
883                                   UserDefinedConversionSequence& User)
884{
885  OverloadCandidateSet CandidateSet;
886  if (const CXXRecordType *ToRecordType
887        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
888    // C++ [over.match.ctor]p1:
889    //   When objects of class type are direct-initialized (8.5), or
890    //   copy-initialized from an expression of the same or a
891    //   derived class type (8.5), overload resolution selects the
892    //   constructor. [...] For copy-initialization, the candidate
893    //   functions are all the converting constructors (12.3.1) of
894    //   that class. The argument list is the expression-list within
895    //   the parentheses of the initializer.
896    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
897    const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
898    for (OverloadedFunctionDecl::function_const_iterator func
899           = Constructors->function_begin();
900         func != Constructors->function_end(); ++func) {
901      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
902      if (Constructor->isConvertingConstructor())
903        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
904                             /*SuppressUserConversions=*/true);
905    }
906  }
907
908  if (const CXXRecordType *FromRecordType
909        = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
910    // Add all of the conversion functions as candidates.
911    // FIXME: Look for conversions in base classes!
912    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
913    OverloadedFunctionDecl *Conversions
914      = FromRecordDecl->getConversionFunctions();
915    for (OverloadedFunctionDecl::function_iterator Func
916           = Conversions->function_begin();
917         Func != Conversions->function_end(); ++Func) {
918      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
919      AddConversionCandidate(Conv, From, ToType, CandidateSet);
920    }
921  }
922
923  OverloadCandidateSet::iterator Best;
924  switch (BestViableFunction(CandidateSet, Best)) {
925    case OR_Success:
926      // Record the standard conversion we used and the conversion function.
927      if (CXXConstructorDecl *Constructor
928            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
929        // C++ [over.ics.user]p1:
930        //   If the user-defined conversion is specified by a
931        //   constructor (12.3.1), the initial standard conversion
932        //   sequence converts the source type to the type required by
933        //   the argument of the constructor.
934        //
935        // FIXME: What about ellipsis conversions?
936        QualType ThisType = Constructor->getThisType(Context);
937        User.Before = Best->Conversions[0].Standard;
938        User.ConversionFunction = Constructor;
939        User.After.setAsIdentityConversion();
940        User.After.FromTypePtr
941          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
942        User.After.ToTypePtr = ToType.getAsOpaquePtr();
943        return true;
944      } else if (CXXConversionDecl *Conversion
945                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
946        // C++ [over.ics.user]p1:
947        //
948        //   [...] If the user-defined conversion is specified by a
949        //   conversion function (12.3.2), the initial standard
950        //   conversion sequence converts the source type to the
951        //   implicit object parameter of the conversion function.
952        User.Before = Best->Conversions[0].Standard;
953        User.ConversionFunction = Conversion;
954
955        // C++ [over.ics.user]p2:
956        //   The second standard conversion sequence converts the
957        //   result of the user-defined conversion to the target type
958        //   for the sequence. Since an implicit conversion sequence
959        //   is an initialization, the special rules for
960        //   initialization by user-defined conversion apply when
961        //   selecting the best user-defined conversion for a
962        //   user-defined conversion sequence (see 13.3.3 and
963        //   13.3.3.1).
964        User.After = Best->FinalConversion;
965        return true;
966      } else {
967        assert(false && "Not a constructor or conversion function?");
968        return false;
969      }
970
971    case OR_No_Viable_Function:
972      // No conversion here! We're done.
973      return false;
974
975    case OR_Ambiguous:
976      // FIXME: See C++ [over.best.ics]p10 for the handling of
977      // ambiguous conversion sequences.
978      return false;
979    }
980
981  return false;
982}
983
984/// CompareImplicitConversionSequences - Compare two implicit
985/// conversion sequences to determine whether one is better than the
986/// other or if they are indistinguishable (C++ 13.3.3.2).
987ImplicitConversionSequence::CompareKind
988Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
989                                         const ImplicitConversionSequence& ICS2)
990{
991  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
992  // conversion sequences (as defined in 13.3.3.1)
993  //   -- a standard conversion sequence (13.3.3.1.1) is a better
994  //      conversion sequence than a user-defined conversion sequence or
995  //      an ellipsis conversion sequence, and
996  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
997  //      conversion sequence than an ellipsis conversion sequence
998  //      (13.3.3.1.3).
999  //
1000  if (ICS1.ConversionKind < ICS2.ConversionKind)
1001    return ImplicitConversionSequence::Better;
1002  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1003    return ImplicitConversionSequence::Worse;
1004
1005  // Two implicit conversion sequences of the same form are
1006  // indistinguishable conversion sequences unless one of the
1007  // following rules apply: (C++ 13.3.3.2p3):
1008  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1009    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1010  else if (ICS1.ConversionKind ==
1011             ImplicitConversionSequence::UserDefinedConversion) {
1012    // User-defined conversion sequence U1 is a better conversion
1013    // sequence than another user-defined conversion sequence U2 if
1014    // they contain the same user-defined conversion function or
1015    // constructor and if the second standard conversion sequence of
1016    // U1 is better than the second standard conversion sequence of
1017    // U2 (C++ 13.3.3.2p3).
1018    if (ICS1.UserDefined.ConversionFunction ==
1019          ICS2.UserDefined.ConversionFunction)
1020      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1021                                                ICS2.UserDefined.After);
1022  }
1023
1024  return ImplicitConversionSequence::Indistinguishable;
1025}
1026
1027/// CompareStandardConversionSequences - Compare two standard
1028/// conversion sequences to determine whether one is better than the
1029/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1030ImplicitConversionSequence::CompareKind
1031Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1032                                         const StandardConversionSequence& SCS2)
1033{
1034  // Standard conversion sequence S1 is a better conversion sequence
1035  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1036
1037  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1038  //     sequences in the canonical form defined by 13.3.3.1.1,
1039  //     excluding any Lvalue Transformation; the identity conversion
1040  //     sequence is considered to be a subsequence of any
1041  //     non-identity conversion sequence) or, if not that,
1042  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1043    // Neither is a proper subsequence of the other. Do nothing.
1044    ;
1045  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1046           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1047           (SCS1.Second == ICK_Identity &&
1048            SCS1.Third == ICK_Identity))
1049    // SCS1 is a proper subsequence of SCS2.
1050    return ImplicitConversionSequence::Better;
1051  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1052           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1053           (SCS2.Second == ICK_Identity &&
1054            SCS2.Third == ICK_Identity))
1055    // SCS2 is a proper subsequence of SCS1.
1056    return ImplicitConversionSequence::Worse;
1057
1058  //  -- the rank of S1 is better than the rank of S2 (by the rules
1059  //     defined below), or, if not that,
1060  ImplicitConversionRank Rank1 = SCS1.getRank();
1061  ImplicitConversionRank Rank2 = SCS2.getRank();
1062  if (Rank1 < Rank2)
1063    return ImplicitConversionSequence::Better;
1064  else if (Rank2 < Rank1)
1065    return ImplicitConversionSequence::Worse;
1066
1067  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1068  // are indistinguishable unless one of the following rules
1069  // applies:
1070
1071  //   A conversion that is not a conversion of a pointer, or
1072  //   pointer to member, to bool is better than another conversion
1073  //   that is such a conversion.
1074  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1075    return SCS2.isPointerConversionToBool()
1076             ? ImplicitConversionSequence::Better
1077             : ImplicitConversionSequence::Worse;
1078
1079  // C++ [over.ics.rank]p4b2:
1080  //
1081  //   If class B is derived directly or indirectly from class A,
1082  //   conversion of B* to A* is better than conversion of B* to
1083  //   void*, and conversion of A* to void* is better than conversion
1084  //   of B* to void*.
1085  bool SCS1ConvertsToVoid
1086    = SCS1.isPointerConversionToVoidPointer(Context);
1087  bool SCS2ConvertsToVoid
1088    = SCS2.isPointerConversionToVoidPointer(Context);
1089  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1090    // Exactly one of the conversion sequences is a conversion to
1091    // a void pointer; it's the worse conversion.
1092    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1093                              : ImplicitConversionSequence::Worse;
1094  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1095    // Neither conversion sequence converts to a void pointer; compare
1096    // their derived-to-base conversions.
1097    if (ImplicitConversionSequence::CompareKind DerivedCK
1098          = CompareDerivedToBaseConversions(SCS1, SCS2))
1099      return DerivedCK;
1100  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1101    // Both conversion sequences are conversions to void
1102    // pointers. Compare the source types to determine if there's an
1103    // inheritance relationship in their sources.
1104    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1105    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1106
1107    // Adjust the types we're converting from via the array-to-pointer
1108    // conversion, if we need to.
1109    if (SCS1.First == ICK_Array_To_Pointer)
1110      FromType1 = Context.getArrayDecayedType(FromType1);
1111    if (SCS2.First == ICK_Array_To_Pointer)
1112      FromType2 = Context.getArrayDecayedType(FromType2);
1113
1114    QualType FromPointee1
1115      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1116    QualType FromPointee2
1117      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1118
1119    if (IsDerivedFrom(FromPointee2, FromPointee1))
1120      return ImplicitConversionSequence::Better;
1121    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1122      return ImplicitConversionSequence::Worse;
1123  }
1124
1125  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1126  // bullet 3).
1127  if (ImplicitConversionSequence::CompareKind QualCK
1128        = CompareQualificationConversions(SCS1, SCS2))
1129    return QualCK;
1130
1131  // C++ [over.ics.rank]p3b4:
1132  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1133  //      which the references refer are the same type except for
1134  //      top-level cv-qualifiers, and the type to which the reference
1135  //      initialized by S2 refers is more cv-qualified than the type
1136  //      to which the reference initialized by S1 refers.
1137  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1138    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1139    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1140    T1 = Context.getCanonicalType(T1);
1141    T2 = Context.getCanonicalType(T2);
1142    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1143      if (T2.isMoreQualifiedThan(T1))
1144        return ImplicitConversionSequence::Better;
1145      else if (T1.isMoreQualifiedThan(T2))
1146        return ImplicitConversionSequence::Worse;
1147    }
1148  }
1149
1150  return ImplicitConversionSequence::Indistinguishable;
1151}
1152
1153/// CompareQualificationConversions - Compares two standard conversion
1154/// sequences to determine whether they can be ranked based on their
1155/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1156ImplicitConversionSequence::CompareKind
1157Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1158                                      const StandardConversionSequence& SCS2)
1159{
1160  // C++ 13.3.3.2p3:
1161  //  -- S1 and S2 differ only in their qualification conversion and
1162  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1163  //     cv-qualification signature of type T1 is a proper subset of
1164  //     the cv-qualification signature of type T2, and S1 is not the
1165  //     deprecated string literal array-to-pointer conversion (4.2).
1166  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1167      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1168    return ImplicitConversionSequence::Indistinguishable;
1169
1170  // FIXME: the example in the standard doesn't use a qualification
1171  // conversion (!)
1172  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1173  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1174  T1 = Context.getCanonicalType(T1);
1175  T2 = Context.getCanonicalType(T2);
1176
1177  // If the types are the same, we won't learn anything by unwrapped
1178  // them.
1179  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1180    return ImplicitConversionSequence::Indistinguishable;
1181
1182  ImplicitConversionSequence::CompareKind Result
1183    = ImplicitConversionSequence::Indistinguishable;
1184  while (UnwrapSimilarPointerTypes(T1, T2)) {
1185    // Within each iteration of the loop, we check the qualifiers to
1186    // determine if this still looks like a qualification
1187    // conversion. Then, if all is well, we unwrap one more level of
1188    // pointers or pointers-to-members and do it all again
1189    // until there are no more pointers or pointers-to-members left
1190    // to unwrap. This essentially mimics what
1191    // IsQualificationConversion does, but here we're checking for a
1192    // strict subset of qualifiers.
1193    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1194      // The qualifiers are the same, so this doesn't tell us anything
1195      // about how the sequences rank.
1196      ;
1197    else if (T2.isMoreQualifiedThan(T1)) {
1198      // T1 has fewer qualifiers, so it could be the better sequence.
1199      if (Result == ImplicitConversionSequence::Worse)
1200        // Neither has qualifiers that are a subset of the other's
1201        // qualifiers.
1202        return ImplicitConversionSequence::Indistinguishable;
1203
1204      Result = ImplicitConversionSequence::Better;
1205    } else if (T1.isMoreQualifiedThan(T2)) {
1206      // T2 has fewer qualifiers, so it could be the better sequence.
1207      if (Result == ImplicitConversionSequence::Better)
1208        // Neither has qualifiers that are a subset of the other's
1209        // qualifiers.
1210        return ImplicitConversionSequence::Indistinguishable;
1211
1212      Result = ImplicitConversionSequence::Worse;
1213    } else {
1214      // Qualifiers are disjoint.
1215      return ImplicitConversionSequence::Indistinguishable;
1216    }
1217
1218    // If the types after this point are equivalent, we're done.
1219    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1220      break;
1221  }
1222
1223  // Check that the winning standard conversion sequence isn't using
1224  // the deprecated string literal array to pointer conversion.
1225  switch (Result) {
1226  case ImplicitConversionSequence::Better:
1227    if (SCS1.Deprecated)
1228      Result = ImplicitConversionSequence::Indistinguishable;
1229    break;
1230
1231  case ImplicitConversionSequence::Indistinguishable:
1232    break;
1233
1234  case ImplicitConversionSequence::Worse:
1235    if (SCS2.Deprecated)
1236      Result = ImplicitConversionSequence::Indistinguishable;
1237    break;
1238  }
1239
1240  return Result;
1241}
1242
1243/// CompareDerivedToBaseConversions - Compares two standard conversion
1244/// sequences to determine whether they can be ranked based on their
1245/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
1246ImplicitConversionSequence::CompareKind
1247Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1248                                      const StandardConversionSequence& SCS2) {
1249  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1250  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1251  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1252  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1253
1254  // Adjust the types we're converting from via the array-to-pointer
1255  // conversion, if we need to.
1256  if (SCS1.First == ICK_Array_To_Pointer)
1257    FromType1 = Context.getArrayDecayedType(FromType1);
1258  if (SCS2.First == ICK_Array_To_Pointer)
1259    FromType2 = Context.getArrayDecayedType(FromType2);
1260
1261  // Canonicalize all of the types.
1262  FromType1 = Context.getCanonicalType(FromType1);
1263  ToType1 = Context.getCanonicalType(ToType1);
1264  FromType2 = Context.getCanonicalType(FromType2);
1265  ToType2 = Context.getCanonicalType(ToType2);
1266
1267  // C++ [over.ics.rank]p4b3:
1268  //
1269  //   If class B is derived directly or indirectly from class A and
1270  //   class C is derived directly or indirectly from B,
1271
1272  // Compare based on pointer conversions.
1273  if (SCS1.Second == ICK_Pointer_Conversion &&
1274      SCS2.Second == ICK_Pointer_Conversion) {
1275    QualType FromPointee1
1276      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1277    QualType ToPointee1
1278      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1279    QualType FromPointee2
1280      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1281    QualType ToPointee2
1282      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1283    //   -- conversion of C* to B* is better than conversion of C* to A*,
1284    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1285      if (IsDerivedFrom(ToPointee1, ToPointee2))
1286        return ImplicitConversionSequence::Better;
1287      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1288        return ImplicitConversionSequence::Worse;
1289    }
1290
1291    //   -- conversion of B* to A* is better than conversion of C* to A*,
1292    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1293      if (IsDerivedFrom(FromPointee2, FromPointee1))
1294        return ImplicitConversionSequence::Better;
1295      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1296        return ImplicitConversionSequence::Worse;
1297    }
1298  }
1299
1300  // Compare based on reference bindings.
1301  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1302      SCS1.Second == ICK_Derived_To_Base) {
1303    //   -- binding of an expression of type C to a reference of type
1304    //      B& is better than binding an expression of type C to a
1305    //      reference of type A&,
1306    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1307        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1308      if (IsDerivedFrom(ToType1, ToType2))
1309        return ImplicitConversionSequence::Better;
1310      else if (IsDerivedFrom(ToType2, ToType1))
1311        return ImplicitConversionSequence::Worse;
1312    }
1313
1314    //   -- binding of an expression of type B to a reference of type
1315    //      A& is better than binding an expression of type C to a
1316    //      reference of type A&,
1317    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1318        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1319      if (IsDerivedFrom(FromType2, FromType1))
1320        return ImplicitConversionSequence::Better;
1321      else if (IsDerivedFrom(FromType1, FromType2))
1322        return ImplicitConversionSequence::Worse;
1323    }
1324  }
1325
1326
1327  // FIXME: conversion of A::* to B::* is better than conversion of
1328  // A::* to C::*,
1329
1330  // FIXME: conversion of B::* to C::* is better than conversion of
1331  // A::* to C::*, and
1332
1333  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1334      SCS1.Second == ICK_Derived_To_Base) {
1335    //   -- conversion of C to B is better than conversion of C to A,
1336    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1337        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1338      if (IsDerivedFrom(ToType1, ToType2))
1339        return ImplicitConversionSequence::Better;
1340      else if (IsDerivedFrom(ToType2, ToType1))
1341        return ImplicitConversionSequence::Worse;
1342    }
1343
1344    //   -- conversion of B to A is better than conversion of C to A.
1345    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1346        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1347      if (IsDerivedFrom(FromType2, FromType1))
1348        return ImplicitConversionSequence::Better;
1349      else if (IsDerivedFrom(FromType1, FromType2))
1350        return ImplicitConversionSequence::Worse;
1351    }
1352  }
1353
1354  return ImplicitConversionSequence::Indistinguishable;
1355}
1356
1357/// TryCopyInitialization - Try to copy-initialize a value of type
1358/// ToType from the expression From. Return the implicit conversion
1359/// sequence required to pass this argument, which may be a bad
1360/// conversion sequence (meaning that the argument cannot be passed to
1361/// a parameter of this type). If @p SuppressUserConversions, then we
1362/// do not permit any user-defined conversion sequences.
1363ImplicitConversionSequence
1364Sema::TryCopyInitialization(Expr *From, QualType ToType,
1365                            bool SuppressUserConversions) {
1366  if (!getLangOptions().CPlusPlus) {
1367    // In C, copy initialization is the same as performing an assignment.
1368    AssignConvertType ConvTy =
1369      CheckSingleAssignmentConstraints(ToType, From);
1370    ImplicitConversionSequence ICS;
1371    if (getLangOptions().NoExtensions? ConvTy != Compatible
1372                                     : ConvTy == Incompatible)
1373      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1374    else
1375      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1376    return ICS;
1377  } else if (ToType->isReferenceType()) {
1378    ImplicitConversionSequence ICS;
1379    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1380    return ICS;
1381  } else {
1382    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1383  }
1384}
1385
1386/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1387/// type ToType. Returns true (and emits a diagnostic) if there was
1388/// an error, returns false if the initialization succeeded.
1389bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1390                                     const char* Flavor) {
1391  if (!getLangOptions().CPlusPlus) {
1392    // In C, argument passing is the same as performing an assignment.
1393    QualType FromType = From->getType();
1394    AssignConvertType ConvTy =
1395      CheckSingleAssignmentConstraints(ToType, From);
1396
1397    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1398                                    FromType, From, Flavor);
1399  } else if (ToType->isReferenceType()) {
1400    return CheckReferenceInit(From, ToType);
1401  } else {
1402    if (PerformImplicitConversion(From, ToType))
1403      return Diag(From->getSourceRange().getBegin(),
1404                  diag::err_typecheck_convert_incompatible,
1405                  ToType.getAsString(), From->getType().getAsString(),
1406                  Flavor,
1407                  From->getSourceRange());
1408    else
1409      return false;
1410  }
1411}
1412
1413/// AddOverloadCandidate - Adds the given function to the set of
1414/// candidate functions, using the given function call arguments.  If
1415/// @p SuppressUserConversions, then don't allow user-defined
1416/// conversions via constructors or conversion operators.
1417void
1418Sema::AddOverloadCandidate(FunctionDecl *Function,
1419                           Expr **Args, unsigned NumArgs,
1420                           OverloadCandidateSet& CandidateSet,
1421                           bool SuppressUserConversions)
1422{
1423  const FunctionTypeProto* Proto
1424    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1425  assert(Proto && "Functions without a prototype cannot be overloaded");
1426  assert(!isa<CXXConversionDecl>(Function) &&
1427         "Use AddConversionCandidate for conversion functions");
1428
1429  // Add this candidate
1430  CandidateSet.push_back(OverloadCandidate());
1431  OverloadCandidate& Candidate = CandidateSet.back();
1432  Candidate.Function = Function;
1433
1434  unsigned NumArgsInProto = Proto->getNumArgs();
1435
1436  // (C++ 13.3.2p2): A candidate function having fewer than m
1437  // parameters is viable only if it has an ellipsis in its parameter
1438  // list (8.3.5).
1439  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1440    Candidate.Viable = false;
1441    return;
1442  }
1443
1444  // (C++ 13.3.2p2): A candidate function having more than m parameters
1445  // is viable only if the (m+1)st parameter has a default argument
1446  // (8.3.6). For the purposes of overload resolution, the
1447  // parameter list is truncated on the right, so that there are
1448  // exactly m parameters.
1449  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1450  if (NumArgs < MinRequiredArgs) {
1451    // Not enough arguments.
1452    Candidate.Viable = false;
1453    return;
1454  }
1455
1456  // Determine the implicit conversion sequences for each of the
1457  // arguments.
1458  Candidate.Viable = true;
1459  Candidate.Conversions.resize(NumArgs);
1460  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1461    if (ArgIdx < NumArgsInProto) {
1462      // (C++ 13.3.2p3): for F to be a viable function, there shall
1463      // exist for each argument an implicit conversion sequence
1464      // (13.3.3.1) that converts that argument to the corresponding
1465      // parameter of F.
1466      QualType ParamType = Proto->getArgType(ArgIdx);
1467      Candidate.Conversions[ArgIdx]
1468        = TryCopyInitialization(Args[ArgIdx], ParamType,
1469                                SuppressUserConversions);
1470      if (Candidate.Conversions[ArgIdx].ConversionKind
1471            == ImplicitConversionSequence::BadConversion)
1472        Candidate.Viable = false;
1473    } else {
1474      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1475      // argument for which there is no corresponding parameter is
1476      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1477      Candidate.Conversions[ArgIdx].ConversionKind
1478        = ImplicitConversionSequence::EllipsisConversion;
1479    }
1480  }
1481}
1482
1483/// AddConversionCandidate - Add a C++ conversion function as a
1484/// candidate in the candidate set (C++ [over.match.conv],
1485/// C++ [over.match.copy]). From is the expression we're converting from,
1486/// and ToType is the type that we're eventually trying to convert to
1487/// (which may or may not be the same type as the type that the
1488/// conversion function produces).
1489void
1490Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1491                             Expr *From, QualType ToType,
1492                             OverloadCandidateSet& CandidateSet) {
1493  // Add this candidate
1494  CandidateSet.push_back(OverloadCandidate());
1495  OverloadCandidate& Candidate = CandidateSet.back();
1496  Candidate.Function = Conversion;
1497  Candidate.FinalConversion.setAsIdentityConversion();
1498  Candidate.FinalConversion.FromTypePtr
1499    = Conversion->getConversionType().getAsOpaquePtr();
1500  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1501
1502  // Determine the implicit conversion sequences for each of the
1503  // arguments.
1504  Candidate.Viable = true;
1505  Candidate.Conversions.resize(1);
1506
1507  // FIXME: We need to follow the rules for the implicit object
1508  // parameter.
1509  QualType ImplicitObjectType
1510    = Context.getTypeDeclType(Conversion->getParent());
1511  ImplicitObjectType
1512    = ImplicitObjectType.getQualifiedType(Conversion->getTypeQualifiers());
1513  ImplicitObjectType = Context.getReferenceType(ImplicitObjectType);
1514  Candidate.Conversions[0] = TryCopyInitialization(From, ImplicitObjectType,
1515                                                   true);
1516  if (Candidate.Conversions[0].ConversionKind
1517      == ImplicitConversionSequence::BadConversion) {
1518    Candidate.Viable = false;
1519    return;
1520  }
1521
1522  // To determine what the conversion from the result of calling the
1523  // conversion function to the type we're eventually trying to
1524  // convert to (ToType), we need to synthesize a call to the
1525  // conversion function and attempt copy initialization from it. This
1526  // makes sure that we get the right semantics with respect to
1527  // lvalues/rvalues and the type. Fortunately, we can allocate this
1528  // call on the stack and we don't need its arguments to be
1529  // well-formed.
1530  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1531                            SourceLocation());
1532  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
1533                                &ConversionRef);
1534  CallExpr Call(&ConversionFn, 0, 0,
1535                Conversion->getConversionType().getNonReferenceType(),
1536                SourceLocation());
1537  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1538  switch (ICS.ConversionKind) {
1539  case ImplicitConversionSequence::StandardConversion:
1540    Candidate.FinalConversion = ICS.Standard;
1541    break;
1542
1543  case ImplicitConversionSequence::BadConversion:
1544    Candidate.Viable = false;
1545    break;
1546
1547  default:
1548    assert(false &&
1549           "Can only end up with a standard conversion sequence or failure");
1550  }
1551}
1552
1553/// AddOverloadCandidates - Add all of the function overloads in Ovl
1554/// to the candidate set.
1555void
1556Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
1557                            Expr **Args, unsigned NumArgs,
1558                            OverloadCandidateSet& CandidateSet,
1559                            bool SuppressUserConversions)
1560{
1561  for (OverloadedFunctionDecl::function_const_iterator Func
1562         = Ovl->function_begin();
1563       Func != Ovl->function_end(); ++Func)
1564    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
1565                         SuppressUserConversions);
1566}
1567
1568/// isBetterOverloadCandidate - Determines whether the first overload
1569/// candidate is a better candidate than the second (C++ 13.3.3p1).
1570bool
1571Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
1572                                const OverloadCandidate& Cand2)
1573{
1574  // Define viable functions to be better candidates than non-viable
1575  // functions.
1576  if (!Cand2.Viable)
1577    return Cand1.Viable;
1578  else if (!Cand1.Viable)
1579    return false;
1580
1581  // FIXME: Deal with the implicit object parameter for static member
1582  // functions. (C++ 13.3.3p1).
1583
1584  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
1585  // function than another viable function F2 if for all arguments i,
1586  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
1587  // then...
1588  unsigned NumArgs = Cand1.Conversions.size();
1589  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
1590  bool HasBetterConversion = false;
1591  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1592    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
1593                                               Cand2.Conversions[ArgIdx])) {
1594    case ImplicitConversionSequence::Better:
1595      // Cand1 has a better conversion sequence.
1596      HasBetterConversion = true;
1597      break;
1598
1599    case ImplicitConversionSequence::Worse:
1600      // Cand1 can't be better than Cand2.
1601      return false;
1602
1603    case ImplicitConversionSequence::Indistinguishable:
1604      // Do nothing.
1605      break;
1606    }
1607  }
1608
1609  if (HasBetterConversion)
1610    return true;
1611
1612  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1613
1614  // C++ [over.match.best]p1b4:
1615  //
1616  //   -- the context is an initialization by user-defined conversion
1617  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
1618  //      from the return type of F1 to the destination type (i.e.,
1619  //      the type of the entity being initialized) is a better
1620  //      conversion sequence than the standard conversion sequence
1621  //      from the return type of F2 to the destination type.
1622  if (isa<CXXConversionDecl>(Cand1.Function) &&
1623      isa<CXXConversionDecl>(Cand2.Function)) {
1624    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
1625                                               Cand2.FinalConversion)) {
1626    case ImplicitConversionSequence::Better:
1627      // Cand1 has a better conversion sequence.
1628      return true;
1629
1630    case ImplicitConversionSequence::Worse:
1631      // Cand1 can't be better than Cand2.
1632      return false;
1633
1634    case ImplicitConversionSequence::Indistinguishable:
1635      // Do nothing
1636      break;
1637    }
1638  }
1639
1640  return false;
1641}
1642
1643/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1644/// within an overload candidate set. If overloading is successful,
1645/// the result will be OR_Success and Best will be set to point to the
1646/// best viable function within the candidate set. Otherwise, one of
1647/// several kinds of errors will be returned; see
1648/// Sema::OverloadingResult.
1649Sema::OverloadingResult
1650Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1651                         OverloadCandidateSet::iterator& Best)
1652{
1653  // Find the best viable function.
1654  Best = CandidateSet.end();
1655  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1656       Cand != CandidateSet.end(); ++Cand) {
1657    if (Cand->Viable) {
1658      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1659        Best = Cand;
1660    }
1661  }
1662
1663  // If we didn't find any viable functions, abort.
1664  if (Best == CandidateSet.end())
1665    return OR_No_Viable_Function;
1666
1667  // Make sure that this function is better than every other viable
1668  // function. If not, we have an ambiguity.
1669  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1670       Cand != CandidateSet.end(); ++Cand) {
1671    if (Cand->Viable &&
1672        Cand != Best &&
1673        !isBetterOverloadCandidate(*Best, *Cand))
1674      return OR_Ambiguous;
1675  }
1676
1677  // Best is the best viable function.
1678  return OR_Success;
1679}
1680
1681/// PrintOverloadCandidates - When overload resolution fails, prints
1682/// diagnostic messages containing the candidates in the candidate
1683/// set. If OnlyViable is true, only viable candidates will be printed.
1684void
1685Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1686                              bool OnlyViable)
1687{
1688  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1689                             LastCand = CandidateSet.end();
1690  for (; Cand != LastCand; ++Cand) {
1691    if (Cand->Viable ||!OnlyViable)
1692      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1693  }
1694}
1695
1696/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
1697/// an overloaded function (C++ [over.over]), where @p From is an
1698/// expression with overloaded function type and @p ToType is the type
1699/// we're trying to resolve to. For example:
1700///
1701/// @code
1702/// int f(double);
1703/// int f(int);
1704///
1705/// int (*pfd)(double) = f; // selects f(double)
1706/// @endcode
1707///
1708/// This routine returns the resulting FunctionDecl if it could be
1709/// resolved, and NULL otherwise. When @p Complain is true, this
1710/// routine will emit diagnostics if there is an error.
1711FunctionDecl *
1712Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
1713                                         bool Complain) {
1714  QualType FunctionType = ToType;
1715  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
1716    FunctionType = ToTypePtr->getPointeeType();
1717
1718  // We only look at pointers or references to functions.
1719  if (!FunctionType->isFunctionType())
1720    return 0;
1721
1722  // Find the actual overloaded function declaration.
1723  OverloadedFunctionDecl *Ovl = 0;
1724
1725  // C++ [over.over]p1:
1726  //   [...] [Note: any redundant set of parentheses surrounding the
1727  //   overloaded function name is ignored (5.1). ]
1728  Expr *OvlExpr = From->IgnoreParens();
1729
1730  // C++ [over.over]p1:
1731  //   [...] The overloaded function name can be preceded by the &
1732  //   operator.
1733  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
1734    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1735      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
1736  }
1737
1738  // Try to dig out the overloaded function.
1739  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
1740    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
1741
1742  // If there's no overloaded function declaration, we're done.
1743  if (!Ovl)
1744    return 0;
1745
1746  // Look through all of the overloaded functions, searching for one
1747  // whose type matches exactly.
1748  // FIXME: When templates or using declarations come along, we'll actually
1749  // have to deal with duplicates, partial ordering, etc. For now, we
1750  // can just do a simple search.
1751  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
1752  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
1753       Fun != Ovl->function_end(); ++Fun) {
1754    // C++ [over.over]p3:
1755    //   Non-member functions and static member functions match
1756    //   targets of type “pointer-to-function”or
1757    //   “reference-to-function.”
1758    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
1759      if (!Method->isStatic())
1760        continue;
1761
1762    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
1763      return *Fun;
1764  }
1765
1766  return 0;
1767}
1768
1769/// FixOverloadedFunctionReference - E is an expression that refers to
1770/// a C++ overloaded function (possibly with some parentheses and
1771/// perhaps a '&' around it). We have resolved the overloaded function
1772/// to the function declaration Fn, so patch up the expression E to
1773/// refer (possibly indirectly) to Fn.
1774void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
1775  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
1776    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
1777    E->setType(PE->getSubExpr()->getType());
1778  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
1779    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
1780           "Can only take the address of an overloaded function");
1781    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
1782    E->setType(Context.getPointerType(E->getType()));
1783  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
1784    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
1785           "Expected overloaded function");
1786    DR->setDecl(Fn);
1787    E->setType(Fn->getType());
1788  } else {
1789    assert(false && "Invalid reference to overloaded function");
1790  }
1791}
1792
1793} // end namespace clang
1794