SemaOverload.cpp revision 909bcb37c4bc1ea1a62d505881defc3c3ba0eca3
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44                                                     VK_LValue, Loc, LocInfo));
45  E = S.DefaultFunctionArrayConversion(E.take());
46  if (E.isInvalid())
47    return ExprError();
48  return move(E);
49}
50
51static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
52                                 bool InOverloadResolution,
53                                 StandardConversionSequence &SCS,
54                                 bool CStyle,
55                                 bool AllowObjCWritebackConversion);
56
57static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
58                                                 QualType &ToType,
59                                                 bool InOverloadResolution,
60                                                 StandardConversionSequence &SCS,
61                                                 bool CStyle);
62static OverloadingResult
63IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
64                        UserDefinedConversionSequence& User,
65                        OverloadCandidateSet& Conversions,
66                        bool AllowExplicit);
67
68
69static ImplicitConversionSequence::CompareKind
70CompareStandardConversionSequences(Sema &S,
71                                   const StandardConversionSequence& SCS1,
72                                   const StandardConversionSequence& SCS2);
73
74static ImplicitConversionSequence::CompareKind
75CompareQualificationConversions(Sema &S,
76                                const StandardConversionSequence& SCS1,
77                                const StandardConversionSequence& SCS2);
78
79static ImplicitConversionSequence::CompareKind
80CompareDerivedToBaseConversions(Sema &S,
81                                const StandardConversionSequence& SCS1,
82                                const StandardConversionSequence& SCS2);
83
84
85
86/// GetConversionCategory - Retrieve the implicit conversion
87/// category corresponding to the given implicit conversion kind.
88ImplicitConversionCategory
89GetConversionCategory(ImplicitConversionKind Kind) {
90  static const ImplicitConversionCategory
91    Category[(int)ICK_Num_Conversion_Kinds] = {
92    ICC_Identity,
93    ICC_Lvalue_Transformation,
94    ICC_Lvalue_Transformation,
95    ICC_Lvalue_Transformation,
96    ICC_Identity,
97    ICC_Qualification_Adjustment,
98    ICC_Promotion,
99    ICC_Promotion,
100    ICC_Promotion,
101    ICC_Conversion,
102    ICC_Conversion,
103    ICC_Conversion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion
114  };
115  return Category[(int)Kind];
116}
117
118/// GetConversionRank - Retrieve the implicit conversion rank
119/// corresponding to the given implicit conversion kind.
120ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
121  static const ImplicitConversionRank
122    Rank[(int)ICK_Num_Conversion_Kinds] = {
123    ICR_Exact_Match,
124    ICR_Exact_Match,
125    ICR_Exact_Match,
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Promotion,
130    ICR_Promotion,
131    ICR_Promotion,
132    ICR_Conversion,
133    ICR_Conversion,
134    ICR_Conversion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Complex_Real_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Writeback_Conversion
147  };
148  return Rank[(int)Kind];
149}
150
151/// GetImplicitConversionName - Return the name of this kind of
152/// implicit conversion.
153const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
154  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
155    "No conversion",
156    "Lvalue-to-rvalue",
157    "Array-to-pointer",
158    "Function-to-pointer",
159    "Noreturn adjustment",
160    "Qualification",
161    "Integral promotion",
162    "Floating point promotion",
163    "Complex promotion",
164    "Integral conversion",
165    "Floating conversion",
166    "Complex conversion",
167    "Floating-integral conversion",
168    "Pointer conversion",
169    "Pointer-to-member conversion",
170    "Boolean conversion",
171    "Compatible-types conversion",
172    "Derived-to-base conversion",
173    "Vector conversion",
174    "Vector splat",
175    "Complex-real conversion",
176    "Block Pointer conversion",
177    "Transparent Union Conversion"
178    "Writeback conversion"
179  };
180  return Name[Kind];
181}
182
183/// StandardConversionSequence - Set the standard conversion
184/// sequence to the identity conversion.
185void StandardConversionSequence::setAsIdentityConversion() {
186  First = ICK_Identity;
187  Second = ICK_Identity;
188  Third = ICK_Identity;
189  DeprecatedStringLiteralToCharPtr = false;
190  QualificationIncludesObjCLifetime = false;
191  ReferenceBinding = false;
192  DirectBinding = false;
193  IsLvalueReference = true;
194  BindsToFunctionLvalue = false;
195  BindsToRvalue = false;
196  BindsImplicitObjectArgumentWithoutRefQualifier = false;
197  ObjCLifetimeConversionBinding = false;
198  CopyConstructor = 0;
199}
200
201/// getRank - Retrieve the rank of this standard conversion sequence
202/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
203/// implicit conversions.
204ImplicitConversionRank StandardConversionSequence::getRank() const {
205  ImplicitConversionRank Rank = ICR_Exact_Match;
206  if  (GetConversionRank(First) > Rank)
207    Rank = GetConversionRank(First);
208  if  (GetConversionRank(Second) > Rank)
209    Rank = GetConversionRank(Second);
210  if  (GetConversionRank(Third) > Rank)
211    Rank = GetConversionRank(Third);
212  return Rank;
213}
214
215/// isPointerConversionToBool - Determines whether this conversion is
216/// a conversion of a pointer or pointer-to-member to bool. This is
217/// used as part of the ranking of standard conversion sequences
218/// (C++ 13.3.3.2p4).
219bool StandardConversionSequence::isPointerConversionToBool() const {
220  // Note that FromType has not necessarily been transformed by the
221  // array-to-pointer or function-to-pointer implicit conversions, so
222  // check for their presence as well as checking whether FromType is
223  // a pointer.
224  if (getToType(1)->isBooleanType() &&
225      (getFromType()->isPointerType() ||
226       getFromType()->isObjCObjectPointerType() ||
227       getFromType()->isBlockPointerType() ||
228       getFromType()->isNullPtrType() ||
229       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230    return true;
231
232  return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242  QualType FromType = getFromType();
243  QualType ToType = getToType(1);
244
245  // Note that FromType has not necessarily been transformed by the
246  // array-to-pointer implicit conversion, so check for its presence
247  // and redo the conversion to get a pointer.
248  if (First == ICK_Array_To_Pointer)
249    FromType = Context.getArrayDecayedType(FromType);
250
251  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253      return ToPtrType->getPointeeType()->isVoidType();
254
255  return false;
256}
257
258/// DebugPrint - Print this standard conversion sequence to standard
259/// error. Useful for debugging overloading issues.
260void StandardConversionSequence::DebugPrint() const {
261  llvm::raw_ostream &OS = llvm::errs();
262  bool PrintedSomething = false;
263  if (First != ICK_Identity) {
264    OS << GetImplicitConversionName(First);
265    PrintedSomething = true;
266  }
267
268  if (Second != ICK_Identity) {
269    if (PrintedSomething) {
270      OS << " -> ";
271    }
272    OS << GetImplicitConversionName(Second);
273
274    if (CopyConstructor) {
275      OS << " (by copy constructor)";
276    } else if (DirectBinding) {
277      OS << " (direct reference binding)";
278    } else if (ReferenceBinding) {
279      OS << " (reference binding)";
280    }
281    PrintedSomething = true;
282  }
283
284  if (Third != ICK_Identity) {
285    if (PrintedSomething) {
286      OS << " -> ";
287    }
288    OS << GetImplicitConversionName(Third);
289    PrintedSomething = true;
290  }
291
292  if (!PrintedSomething) {
293    OS << "No conversions required";
294  }
295}
296
297/// DebugPrint - Print this user-defined conversion sequence to standard
298/// error. Useful for debugging overloading issues.
299void UserDefinedConversionSequence::DebugPrint() const {
300  llvm::raw_ostream &OS = llvm::errs();
301  if (Before.First || Before.Second || Before.Third) {
302    Before.DebugPrint();
303    OS << " -> ";
304  }
305  OS << '\'' << ConversionFunction << '\'';
306  if (After.First || After.Second || After.Third) {
307    OS << " -> ";
308    After.DebugPrint();
309  }
310}
311
312/// DebugPrint - Print this implicit conversion sequence to standard
313/// error. Useful for debugging overloading issues.
314void ImplicitConversionSequence::DebugPrint() const {
315  llvm::raw_ostream &OS = llvm::errs();
316  switch (ConversionKind) {
317  case StandardConversion:
318    OS << "Standard conversion: ";
319    Standard.DebugPrint();
320    break;
321  case UserDefinedConversion:
322    OS << "User-defined conversion: ";
323    UserDefined.DebugPrint();
324    break;
325  case EllipsisConversion:
326    OS << "Ellipsis conversion";
327    break;
328  case AmbiguousConversion:
329    OS << "Ambiguous conversion";
330    break;
331  case BadConversion:
332    OS << "Bad conversion";
333    break;
334  }
335
336  OS << "\n";
337}
338
339void AmbiguousConversionSequence::construct() {
340  new (&conversions()) ConversionSet();
341}
342
343void AmbiguousConversionSequence::destruct() {
344  conversions().~ConversionSet();
345}
346
347void
348AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
349  FromTypePtr = O.FromTypePtr;
350  ToTypePtr = O.ToTypePtr;
351  new (&conversions()) ConversionSet(O.conversions());
352}
353
354namespace {
355  // Structure used by OverloadCandidate::DeductionFailureInfo to store
356  // template parameter and template argument information.
357  struct DFIParamWithArguments {
358    TemplateParameter Param;
359    TemplateArgument FirstArg;
360    TemplateArgument SecondArg;
361  };
362}
363
364/// \brief Convert from Sema's representation of template deduction information
365/// to the form used in overload-candidate information.
366OverloadCandidate::DeductionFailureInfo
367static MakeDeductionFailureInfo(ASTContext &Context,
368                                Sema::TemplateDeductionResult TDK,
369                                TemplateDeductionInfo &Info) {
370  OverloadCandidate::DeductionFailureInfo Result;
371  Result.Result = static_cast<unsigned>(TDK);
372  Result.Data = 0;
373  switch (TDK) {
374  case Sema::TDK_Success:
375  case Sema::TDK_InstantiationDepth:
376  case Sema::TDK_TooManyArguments:
377  case Sema::TDK_TooFewArguments:
378    break;
379
380  case Sema::TDK_Incomplete:
381  case Sema::TDK_InvalidExplicitArguments:
382    Result.Data = Info.Param.getOpaqueValue();
383    break;
384
385  case Sema::TDK_Inconsistent:
386  case Sema::TDK_Underqualified: {
387    // FIXME: Should allocate from normal heap so that we can free this later.
388    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
389    Saved->Param = Info.Param;
390    Saved->FirstArg = Info.FirstArg;
391    Saved->SecondArg = Info.SecondArg;
392    Result.Data = Saved;
393    break;
394  }
395
396  case Sema::TDK_SubstitutionFailure:
397    Result.Data = Info.take();
398    break;
399
400  case Sema::TDK_NonDeducedMismatch:
401  case Sema::TDK_FailedOverloadResolution:
402    break;
403  }
404
405  return Result;
406}
407
408void OverloadCandidate::DeductionFailureInfo::Destroy() {
409  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
410  case Sema::TDK_Success:
411  case Sema::TDK_InstantiationDepth:
412  case Sema::TDK_Incomplete:
413  case Sema::TDK_TooManyArguments:
414  case Sema::TDK_TooFewArguments:
415  case Sema::TDK_InvalidExplicitArguments:
416    break;
417
418  case Sema::TDK_Inconsistent:
419  case Sema::TDK_Underqualified:
420    // FIXME: Destroy the data?
421    Data = 0;
422    break;
423
424  case Sema::TDK_SubstitutionFailure:
425    // FIXME: Destroy the template arugment list?
426    Data = 0;
427    break;
428
429  // Unhandled
430  case Sema::TDK_NonDeducedMismatch:
431  case Sema::TDK_FailedOverloadResolution:
432    break;
433  }
434}
435
436TemplateParameter
437OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
438  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
439  case Sema::TDK_Success:
440  case Sema::TDK_InstantiationDepth:
441  case Sema::TDK_TooManyArguments:
442  case Sema::TDK_TooFewArguments:
443  case Sema::TDK_SubstitutionFailure:
444    return TemplateParameter();
445
446  case Sema::TDK_Incomplete:
447  case Sema::TDK_InvalidExplicitArguments:
448    return TemplateParameter::getFromOpaqueValue(Data);
449
450  case Sema::TDK_Inconsistent:
451  case Sema::TDK_Underqualified:
452    return static_cast<DFIParamWithArguments*>(Data)->Param;
453
454  // Unhandled
455  case Sema::TDK_NonDeducedMismatch:
456  case Sema::TDK_FailedOverloadResolution:
457    break;
458  }
459
460  return TemplateParameter();
461}
462
463TemplateArgumentList *
464OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
465  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
466    case Sema::TDK_Success:
467    case Sema::TDK_InstantiationDepth:
468    case Sema::TDK_TooManyArguments:
469    case Sema::TDK_TooFewArguments:
470    case Sema::TDK_Incomplete:
471    case Sema::TDK_InvalidExplicitArguments:
472    case Sema::TDK_Inconsistent:
473    case Sema::TDK_Underqualified:
474      return 0;
475
476    case Sema::TDK_SubstitutionFailure:
477      return static_cast<TemplateArgumentList*>(Data);
478
479    // Unhandled
480    case Sema::TDK_NonDeducedMismatch:
481    case Sema::TDK_FailedOverloadResolution:
482      break;
483  }
484
485  return 0;
486}
487
488const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
489  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
490  case Sema::TDK_Success:
491  case Sema::TDK_InstantiationDepth:
492  case Sema::TDK_Incomplete:
493  case Sema::TDK_TooManyArguments:
494  case Sema::TDK_TooFewArguments:
495  case Sema::TDK_InvalidExplicitArguments:
496  case Sema::TDK_SubstitutionFailure:
497    return 0;
498
499  case Sema::TDK_Inconsistent:
500  case Sema::TDK_Underqualified:
501    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
502
503  // Unhandled
504  case Sema::TDK_NonDeducedMismatch:
505  case Sema::TDK_FailedOverloadResolution:
506    break;
507  }
508
509  return 0;
510}
511
512const TemplateArgument *
513OverloadCandidate::DeductionFailureInfo::getSecondArg() {
514  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
515  case Sema::TDK_Success:
516  case Sema::TDK_InstantiationDepth:
517  case Sema::TDK_Incomplete:
518  case Sema::TDK_TooManyArguments:
519  case Sema::TDK_TooFewArguments:
520  case Sema::TDK_InvalidExplicitArguments:
521  case Sema::TDK_SubstitutionFailure:
522    return 0;
523
524  case Sema::TDK_Inconsistent:
525  case Sema::TDK_Underqualified:
526    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
527
528  // Unhandled
529  case Sema::TDK_NonDeducedMismatch:
530  case Sema::TDK_FailedOverloadResolution:
531    break;
532  }
533
534  return 0;
535}
536
537void OverloadCandidateSet::clear() {
538  inherited::clear();
539  Functions.clear();
540}
541
542// IsOverload - Determine whether the given New declaration is an
543// overload of the declarations in Old. This routine returns false if
544// New and Old cannot be overloaded, e.g., if New has the same
545// signature as some function in Old (C++ 1.3.10) or if the Old
546// declarations aren't functions (or function templates) at all. When
547// it does return false, MatchedDecl will point to the decl that New
548// cannot be overloaded with.  This decl may be a UsingShadowDecl on
549// top of the underlying declaration.
550//
551// Example: Given the following input:
552//
553//   void f(int, float); // #1
554//   void f(int, int); // #2
555//   int f(int, int); // #3
556//
557// When we process #1, there is no previous declaration of "f",
558// so IsOverload will not be used.
559//
560// When we process #2, Old contains only the FunctionDecl for #1.  By
561// comparing the parameter types, we see that #1 and #2 are overloaded
562// (since they have different signatures), so this routine returns
563// false; MatchedDecl is unchanged.
564//
565// When we process #3, Old is an overload set containing #1 and #2. We
566// compare the signatures of #3 to #1 (they're overloaded, so we do
567// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
568// identical (return types of functions are not part of the
569// signature), IsOverload returns false and MatchedDecl will be set to
570// point to the FunctionDecl for #2.
571//
572// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
573// into a class by a using declaration.  The rules for whether to hide
574// shadow declarations ignore some properties which otherwise figure
575// into a function template's signature.
576Sema::OverloadKind
577Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
578                    NamedDecl *&Match, bool NewIsUsingDecl) {
579  for (LookupResult::iterator I = Old.begin(), E = Old.end();
580         I != E; ++I) {
581    NamedDecl *OldD = *I;
582
583    bool OldIsUsingDecl = false;
584    if (isa<UsingShadowDecl>(OldD)) {
585      OldIsUsingDecl = true;
586
587      // We can always introduce two using declarations into the same
588      // context, even if they have identical signatures.
589      if (NewIsUsingDecl) continue;
590
591      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
592    }
593
594    // If either declaration was introduced by a using declaration,
595    // we'll need to use slightly different rules for matching.
596    // Essentially, these rules are the normal rules, except that
597    // function templates hide function templates with different
598    // return types or template parameter lists.
599    bool UseMemberUsingDeclRules =
600      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
601
602    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
603      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
604        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
605          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
606          continue;
607        }
608
609        Match = *I;
610        return Ovl_Match;
611      }
612    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
613      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
614        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
615          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
616          continue;
617        }
618
619        Match = *I;
620        return Ovl_Match;
621      }
622    } else if (isa<UsingDecl>(OldD)) {
623      // We can overload with these, which can show up when doing
624      // redeclaration checks for UsingDecls.
625      assert(Old.getLookupKind() == LookupUsingDeclName);
626    } else if (isa<TagDecl>(OldD)) {
627      // We can always overload with tags by hiding them.
628    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
629      // Optimistically assume that an unresolved using decl will
630      // overload; if it doesn't, we'll have to diagnose during
631      // template instantiation.
632    } else {
633      // (C++ 13p1):
634      //   Only function declarations can be overloaded; object and type
635      //   declarations cannot be overloaded.
636      Match = *I;
637      return Ovl_NonFunction;
638    }
639  }
640
641  return Ovl_Overload;
642}
643
644bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
645                      bool UseUsingDeclRules) {
646  // If both of the functions are extern "C", then they are not
647  // overloads.
648  if (Old->isExternC() && New->isExternC())
649    return false;
650
651  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
652  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
653
654  // C++ [temp.fct]p2:
655  //   A function template can be overloaded with other function templates
656  //   and with normal (non-template) functions.
657  if ((OldTemplate == 0) != (NewTemplate == 0))
658    return true;
659
660  // Is the function New an overload of the function Old?
661  QualType OldQType = Context.getCanonicalType(Old->getType());
662  QualType NewQType = Context.getCanonicalType(New->getType());
663
664  // Compare the signatures (C++ 1.3.10) of the two functions to
665  // determine whether they are overloads. If we find any mismatch
666  // in the signature, they are overloads.
667
668  // If either of these functions is a K&R-style function (no
669  // prototype), then we consider them to have matching signatures.
670  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
671      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
672    return false;
673
674  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
675  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
676
677  // The signature of a function includes the types of its
678  // parameters (C++ 1.3.10), which includes the presence or absence
679  // of the ellipsis; see C++ DR 357).
680  if (OldQType != NewQType &&
681      (OldType->getNumArgs() != NewType->getNumArgs() ||
682       OldType->isVariadic() != NewType->isVariadic() ||
683       !FunctionArgTypesAreEqual(OldType, NewType)))
684    return true;
685
686  // C++ [temp.over.link]p4:
687  //   The signature of a function template consists of its function
688  //   signature, its return type and its template parameter list. The names
689  //   of the template parameters are significant only for establishing the
690  //   relationship between the template parameters and the rest of the
691  //   signature.
692  //
693  // We check the return type and template parameter lists for function
694  // templates first; the remaining checks follow.
695  //
696  // However, we don't consider either of these when deciding whether
697  // a member introduced by a shadow declaration is hidden.
698  if (!UseUsingDeclRules && NewTemplate &&
699      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
700                                       OldTemplate->getTemplateParameters(),
701                                       false, TPL_TemplateMatch) ||
702       OldType->getResultType() != NewType->getResultType()))
703    return true;
704
705  // If the function is a class member, its signature includes the
706  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
707  //
708  // As part of this, also check whether one of the member functions
709  // is static, in which case they are not overloads (C++
710  // 13.1p2). While not part of the definition of the signature,
711  // this check is important to determine whether these functions
712  // can be overloaded.
713  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
714  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
715  if (OldMethod && NewMethod &&
716      !OldMethod->isStatic() && !NewMethod->isStatic() &&
717      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
718       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
719    if (!UseUsingDeclRules &&
720        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
721        (OldMethod->getRefQualifier() == RQ_None ||
722         NewMethod->getRefQualifier() == RQ_None)) {
723      // C++0x [over.load]p2:
724      //   - Member function declarations with the same name and the same
725      //     parameter-type-list as well as member function template
726      //     declarations with the same name, the same parameter-type-list, and
727      //     the same template parameter lists cannot be overloaded if any of
728      //     them, but not all, have a ref-qualifier (8.3.5).
729      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
730        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
731      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
732    }
733
734    return true;
735  }
736
737  // The signatures match; this is not an overload.
738  return false;
739}
740
741/// \brief Checks availability of the function depending on the current
742/// function context. Inside an unavailable function, unavailability is ignored.
743///
744/// \returns true if \arg FD is unavailable and current context is inside
745/// an available function, false otherwise.
746bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
747  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
748}
749
750/// TryImplicitConversion - Attempt to perform an implicit conversion
751/// from the given expression (Expr) to the given type (ToType). This
752/// function returns an implicit conversion sequence that can be used
753/// to perform the initialization. Given
754///
755///   void f(float f);
756///   void g(int i) { f(i); }
757///
758/// this routine would produce an implicit conversion sequence to
759/// describe the initialization of f from i, which will be a standard
760/// conversion sequence containing an lvalue-to-rvalue conversion (C++
761/// 4.1) followed by a floating-integral conversion (C++ 4.9).
762//
763/// Note that this routine only determines how the conversion can be
764/// performed; it does not actually perform the conversion. As such,
765/// it will not produce any diagnostics if no conversion is available,
766/// but will instead return an implicit conversion sequence of kind
767/// "BadConversion".
768///
769/// If @p SuppressUserConversions, then user-defined conversions are
770/// not permitted.
771/// If @p AllowExplicit, then explicit user-defined conversions are
772/// permitted.
773///
774/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
775/// writeback conversion, which allows __autoreleasing id* parameters to
776/// be initialized with __strong id* or __weak id* arguments.
777static ImplicitConversionSequence
778TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
779                      bool SuppressUserConversions,
780                      bool AllowExplicit,
781                      bool InOverloadResolution,
782                      bool CStyle,
783                      bool AllowObjCWritebackConversion) {
784  ImplicitConversionSequence ICS;
785  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
786                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
787    ICS.setStandard();
788    return ICS;
789  }
790
791  if (!S.getLangOptions().CPlusPlus) {
792    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
793    return ICS;
794  }
795
796  // C++ [over.ics.user]p4:
797  //   A conversion of an expression of class type to the same class
798  //   type is given Exact Match rank, and a conversion of an
799  //   expression of class type to a base class of that type is
800  //   given Conversion rank, in spite of the fact that a copy/move
801  //   constructor (i.e., a user-defined conversion function) is
802  //   called for those cases.
803  QualType FromType = From->getType();
804  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
805      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
806       S.IsDerivedFrom(FromType, ToType))) {
807    ICS.setStandard();
808    ICS.Standard.setAsIdentityConversion();
809    ICS.Standard.setFromType(FromType);
810    ICS.Standard.setAllToTypes(ToType);
811
812    // We don't actually check at this point whether there is a valid
813    // copy/move constructor, since overloading just assumes that it
814    // exists. When we actually perform initialization, we'll find the
815    // appropriate constructor to copy the returned object, if needed.
816    ICS.Standard.CopyConstructor = 0;
817
818    // Determine whether this is considered a derived-to-base conversion.
819    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
820      ICS.Standard.Second = ICK_Derived_To_Base;
821
822    return ICS;
823  }
824
825  if (SuppressUserConversions) {
826    // We're not in the case above, so there is no conversion that
827    // we can perform.
828    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
829    return ICS;
830  }
831
832  // Attempt user-defined conversion.
833  OverloadCandidateSet Conversions(From->getExprLoc());
834  OverloadingResult UserDefResult
835    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
836                              AllowExplicit);
837
838  if (UserDefResult == OR_Success) {
839    ICS.setUserDefined();
840    // C++ [over.ics.user]p4:
841    //   A conversion of an expression of class type to the same class
842    //   type is given Exact Match rank, and a conversion of an
843    //   expression of class type to a base class of that type is
844    //   given Conversion rank, in spite of the fact that a copy
845    //   constructor (i.e., a user-defined conversion function) is
846    //   called for those cases.
847    if (CXXConstructorDecl *Constructor
848          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
849      QualType FromCanon
850        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
851      QualType ToCanon
852        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
853      if (Constructor->isCopyConstructor() &&
854          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
855        // Turn this into a "standard" conversion sequence, so that it
856        // gets ranked with standard conversion sequences.
857        ICS.setStandard();
858        ICS.Standard.setAsIdentityConversion();
859        ICS.Standard.setFromType(From->getType());
860        ICS.Standard.setAllToTypes(ToType);
861        ICS.Standard.CopyConstructor = Constructor;
862        if (ToCanon != FromCanon)
863          ICS.Standard.Second = ICK_Derived_To_Base;
864      }
865    }
866
867    // C++ [over.best.ics]p4:
868    //   However, when considering the argument of a user-defined
869    //   conversion function that is a candidate by 13.3.1.3 when
870    //   invoked for the copying of the temporary in the second step
871    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
872    //   13.3.1.6 in all cases, only standard conversion sequences and
873    //   ellipsis conversion sequences are allowed.
874    if (SuppressUserConversions && ICS.isUserDefined()) {
875      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
876    }
877  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
878    ICS.setAmbiguous();
879    ICS.Ambiguous.setFromType(From->getType());
880    ICS.Ambiguous.setToType(ToType);
881    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
882         Cand != Conversions.end(); ++Cand)
883      if (Cand->Viable)
884        ICS.Ambiguous.addConversion(Cand->Function);
885  } else {
886    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
887  }
888
889  return ICS;
890}
891
892ImplicitConversionSequence
893Sema::TryImplicitConversion(Expr *From, QualType ToType,
894                            bool SuppressUserConversions,
895                            bool AllowExplicit,
896                            bool InOverloadResolution,
897                            bool CStyle,
898                            bool AllowObjCWritebackConversion) {
899  return clang::TryImplicitConversion(*this, From, ToType,
900                                      SuppressUserConversions, AllowExplicit,
901                                      InOverloadResolution, CStyle,
902                                      AllowObjCWritebackConversion);
903}
904
905/// PerformImplicitConversion - Perform an implicit conversion of the
906/// expression From to the type ToType. Returns the
907/// converted expression. Flavor is the kind of conversion we're
908/// performing, used in the error message. If @p AllowExplicit,
909/// explicit user-defined conversions are permitted.
910ExprResult
911Sema::PerformImplicitConversion(Expr *From, QualType ToType,
912                                AssignmentAction Action, bool AllowExplicit) {
913  ImplicitConversionSequence ICS;
914  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
915}
916
917ExprResult
918Sema::PerformImplicitConversion(Expr *From, QualType ToType,
919                                AssignmentAction Action, bool AllowExplicit,
920                                ImplicitConversionSequence& ICS) {
921  // Objective-C ARC: Determine whether we will allow the writeback conversion.
922  bool AllowObjCWritebackConversion
923    = getLangOptions().ObjCAutoRefCount &&
924      (Action == AA_Passing || Action == AA_Sending);
925
926
927  ICS = clang::TryImplicitConversion(*this, From, ToType,
928                                     /*SuppressUserConversions=*/false,
929                                     AllowExplicit,
930                                     /*InOverloadResolution=*/false,
931                                     /*CStyle=*/false,
932                                     AllowObjCWritebackConversion);
933  return PerformImplicitConversion(From, ToType, ICS, Action);
934}
935
936/// \brief Determine whether the conversion from FromType to ToType is a valid
937/// conversion that strips "noreturn" off the nested function type.
938bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
939                                QualType &ResultTy) {
940  if (Context.hasSameUnqualifiedType(FromType, ToType))
941    return false;
942
943  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
944  // where F adds one of the following at most once:
945  //   - a pointer
946  //   - a member pointer
947  //   - a block pointer
948  CanQualType CanTo = Context.getCanonicalType(ToType);
949  CanQualType CanFrom = Context.getCanonicalType(FromType);
950  Type::TypeClass TyClass = CanTo->getTypeClass();
951  if (TyClass != CanFrom->getTypeClass()) return false;
952  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
953    if (TyClass == Type::Pointer) {
954      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
955      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
956    } else if (TyClass == Type::BlockPointer) {
957      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
958      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
959    } else if (TyClass == Type::MemberPointer) {
960      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
961      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
962    } else {
963      return false;
964    }
965
966    TyClass = CanTo->getTypeClass();
967    if (TyClass != CanFrom->getTypeClass()) return false;
968    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
969      return false;
970  }
971
972  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
973  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
974  if (!EInfo.getNoReturn()) return false;
975
976  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
977  assert(QualType(FromFn, 0).isCanonical());
978  if (QualType(FromFn, 0) != CanTo) return false;
979
980  ResultTy = ToType;
981  return true;
982}
983
984/// \brief Determine whether the conversion from FromType to ToType is a valid
985/// vector conversion.
986///
987/// \param ICK Will be set to the vector conversion kind, if this is a vector
988/// conversion.
989static bool IsVectorConversion(ASTContext &Context, QualType FromType,
990                               QualType ToType, ImplicitConversionKind &ICK) {
991  // We need at least one of these types to be a vector type to have a vector
992  // conversion.
993  if (!ToType->isVectorType() && !FromType->isVectorType())
994    return false;
995
996  // Identical types require no conversions.
997  if (Context.hasSameUnqualifiedType(FromType, ToType))
998    return false;
999
1000  // There are no conversions between extended vector types, only identity.
1001  if (ToType->isExtVectorType()) {
1002    // There are no conversions between extended vector types other than the
1003    // identity conversion.
1004    if (FromType->isExtVectorType())
1005      return false;
1006
1007    // Vector splat from any arithmetic type to a vector.
1008    if (FromType->isArithmeticType()) {
1009      ICK = ICK_Vector_Splat;
1010      return true;
1011    }
1012  }
1013
1014  // We can perform the conversion between vector types in the following cases:
1015  // 1)vector types are equivalent AltiVec and GCC vector types
1016  // 2)lax vector conversions are permitted and the vector types are of the
1017  //   same size
1018  if (ToType->isVectorType() && FromType->isVectorType()) {
1019    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1020        (Context.getLangOptions().LaxVectorConversions &&
1021         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1022      ICK = ICK_Vector_Conversion;
1023      return true;
1024    }
1025  }
1026
1027  return false;
1028}
1029
1030/// IsStandardConversion - Determines whether there is a standard
1031/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1032/// expression From to the type ToType. Standard conversion sequences
1033/// only consider non-class types; for conversions that involve class
1034/// types, use TryImplicitConversion. If a conversion exists, SCS will
1035/// contain the standard conversion sequence required to perform this
1036/// conversion and this routine will return true. Otherwise, this
1037/// routine will return false and the value of SCS is unspecified.
1038static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1039                                 bool InOverloadResolution,
1040                                 StandardConversionSequence &SCS,
1041                                 bool CStyle,
1042                                 bool AllowObjCWritebackConversion) {
1043  QualType FromType = From->getType();
1044
1045  // Standard conversions (C++ [conv])
1046  SCS.setAsIdentityConversion();
1047  SCS.DeprecatedStringLiteralToCharPtr = false;
1048  SCS.IncompatibleObjC = false;
1049  SCS.setFromType(FromType);
1050  SCS.CopyConstructor = 0;
1051
1052  // There are no standard conversions for class types in C++, so
1053  // abort early. When overloading in C, however, we do permit
1054  if (FromType->isRecordType() || ToType->isRecordType()) {
1055    if (S.getLangOptions().CPlusPlus)
1056      return false;
1057
1058    // When we're overloading in C, we allow, as standard conversions,
1059  }
1060
1061  // The first conversion can be an lvalue-to-rvalue conversion,
1062  // array-to-pointer conversion, or function-to-pointer conversion
1063  // (C++ 4p1).
1064
1065  if (FromType == S.Context.OverloadTy) {
1066    DeclAccessPair AccessPair;
1067    if (FunctionDecl *Fn
1068          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1069                                                 AccessPair)) {
1070      // We were able to resolve the address of the overloaded function,
1071      // so we can convert to the type of that function.
1072      FromType = Fn->getType();
1073
1074      // we can sometimes resolve &foo<int> regardless of ToType, so check
1075      // if the type matches (identity) or we are converting to bool
1076      if (!S.Context.hasSameUnqualifiedType(
1077                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1078        QualType resultTy;
1079        // if the function type matches except for [[noreturn]], it's ok
1080        if (!S.IsNoReturnConversion(FromType,
1081              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1082          // otherwise, only a boolean conversion is standard
1083          if (!ToType->isBooleanType())
1084            return false;
1085      }
1086
1087      // Check if the "from" expression is taking the address of an overloaded
1088      // function and recompute the FromType accordingly. Take advantage of the
1089      // fact that non-static member functions *must* have such an address-of
1090      // expression.
1091      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1092      if (Method && !Method->isStatic()) {
1093        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1094               "Non-unary operator on non-static member address");
1095        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1096               == UO_AddrOf &&
1097               "Non-address-of operator on non-static member address");
1098        const Type *ClassType
1099          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1100        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1101      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1102        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1103               UO_AddrOf &&
1104               "Non-address-of operator for overloaded function expression");
1105        FromType = S.Context.getPointerType(FromType);
1106      }
1107
1108      // Check that we've computed the proper type after overload resolution.
1109      assert(S.Context.hasSameType(
1110        FromType,
1111        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1112    } else {
1113      return false;
1114    }
1115  }
1116  // Lvalue-to-rvalue conversion (C++ 4.1):
1117  //   An lvalue (3.10) of a non-function, non-array type T can be
1118  //   converted to an rvalue.
1119  bool argIsLValue = From->isLValue();
1120  if (argIsLValue &&
1121      !FromType->isFunctionType() && !FromType->isArrayType() &&
1122      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1123    SCS.First = ICK_Lvalue_To_Rvalue;
1124
1125    // If T is a non-class type, the type of the rvalue is the
1126    // cv-unqualified version of T. Otherwise, the type of the rvalue
1127    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1128    // just strip the qualifiers because they don't matter.
1129    FromType = FromType.getUnqualifiedType();
1130  } else if (FromType->isArrayType()) {
1131    // Array-to-pointer conversion (C++ 4.2)
1132    SCS.First = ICK_Array_To_Pointer;
1133
1134    // An lvalue or rvalue of type "array of N T" or "array of unknown
1135    // bound of T" can be converted to an rvalue of type "pointer to
1136    // T" (C++ 4.2p1).
1137    FromType = S.Context.getArrayDecayedType(FromType);
1138
1139    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1140      // This conversion is deprecated. (C++ D.4).
1141      SCS.DeprecatedStringLiteralToCharPtr = true;
1142
1143      // For the purpose of ranking in overload resolution
1144      // (13.3.3.1.1), this conversion is considered an
1145      // array-to-pointer conversion followed by a qualification
1146      // conversion (4.4). (C++ 4.2p2)
1147      SCS.Second = ICK_Identity;
1148      SCS.Third = ICK_Qualification;
1149      SCS.QualificationIncludesObjCLifetime = false;
1150      SCS.setAllToTypes(FromType);
1151      return true;
1152    }
1153  } else if (FromType->isFunctionType() && argIsLValue) {
1154    // Function-to-pointer conversion (C++ 4.3).
1155    SCS.First = ICK_Function_To_Pointer;
1156
1157    // An lvalue of function type T can be converted to an rvalue of
1158    // type "pointer to T." The result is a pointer to the
1159    // function. (C++ 4.3p1).
1160    FromType = S.Context.getPointerType(FromType);
1161  } else {
1162    // We don't require any conversions for the first step.
1163    SCS.First = ICK_Identity;
1164  }
1165  SCS.setToType(0, FromType);
1166
1167  // The second conversion can be an integral promotion, floating
1168  // point promotion, integral conversion, floating point conversion,
1169  // floating-integral conversion, pointer conversion,
1170  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1171  // For overloading in C, this can also be a "compatible-type"
1172  // conversion.
1173  bool IncompatibleObjC = false;
1174  ImplicitConversionKind SecondICK = ICK_Identity;
1175  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1176    // The unqualified versions of the types are the same: there's no
1177    // conversion to do.
1178    SCS.Second = ICK_Identity;
1179  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1180    // Integral promotion (C++ 4.5).
1181    SCS.Second = ICK_Integral_Promotion;
1182    FromType = ToType.getUnqualifiedType();
1183  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1184    // Floating point promotion (C++ 4.6).
1185    SCS.Second = ICK_Floating_Promotion;
1186    FromType = ToType.getUnqualifiedType();
1187  } else if (S.IsComplexPromotion(FromType, ToType)) {
1188    // Complex promotion (Clang extension)
1189    SCS.Second = ICK_Complex_Promotion;
1190    FromType = ToType.getUnqualifiedType();
1191  } else if (ToType->isBooleanType() &&
1192             (FromType->isArithmeticType() ||
1193              FromType->isAnyPointerType() ||
1194              FromType->isBlockPointerType() ||
1195              FromType->isMemberPointerType() ||
1196              FromType->isNullPtrType())) {
1197    // Boolean conversions (C++ 4.12).
1198    SCS.Second = ICK_Boolean_Conversion;
1199    FromType = S.Context.BoolTy;
1200  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1201             ToType->isIntegralType(S.Context)) {
1202    // Integral conversions (C++ 4.7).
1203    SCS.Second = ICK_Integral_Conversion;
1204    FromType = ToType.getUnqualifiedType();
1205  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1206    // Complex conversions (C99 6.3.1.6)
1207    SCS.Second = ICK_Complex_Conversion;
1208    FromType = ToType.getUnqualifiedType();
1209  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1210             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1211    // Complex-real conversions (C99 6.3.1.7)
1212    SCS.Second = ICK_Complex_Real;
1213    FromType = ToType.getUnqualifiedType();
1214  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1215    // Floating point conversions (C++ 4.8).
1216    SCS.Second = ICK_Floating_Conversion;
1217    FromType = ToType.getUnqualifiedType();
1218  } else if ((FromType->isRealFloatingType() &&
1219              ToType->isIntegralType(S.Context)) ||
1220             (FromType->isIntegralOrUnscopedEnumerationType() &&
1221              ToType->isRealFloatingType())) {
1222    // Floating-integral conversions (C++ 4.9).
1223    SCS.Second = ICK_Floating_Integral;
1224    FromType = ToType.getUnqualifiedType();
1225  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1226    SCS.Second = ICK_Block_Pointer_Conversion;
1227  } else if (AllowObjCWritebackConversion &&
1228             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1229    SCS.Second = ICK_Writeback_Conversion;
1230  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1231                                   FromType, IncompatibleObjC)) {
1232    // Pointer conversions (C++ 4.10).
1233    SCS.Second = ICK_Pointer_Conversion;
1234    SCS.IncompatibleObjC = IncompatibleObjC;
1235    FromType = FromType.getUnqualifiedType();
1236  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1237                                         InOverloadResolution, FromType)) {
1238    // Pointer to member conversions (4.11).
1239    SCS.Second = ICK_Pointer_Member;
1240  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1241    SCS.Second = SecondICK;
1242    FromType = ToType.getUnqualifiedType();
1243  } else if (!S.getLangOptions().CPlusPlus &&
1244             S.Context.typesAreCompatible(ToType, FromType)) {
1245    // Compatible conversions (Clang extension for C function overloading)
1246    SCS.Second = ICK_Compatible_Conversion;
1247    FromType = ToType.getUnqualifiedType();
1248  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1249    // Treat a conversion that strips "noreturn" as an identity conversion.
1250    SCS.Second = ICK_NoReturn_Adjustment;
1251  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1252                                             InOverloadResolution,
1253                                             SCS, CStyle)) {
1254    SCS.Second = ICK_TransparentUnionConversion;
1255    FromType = ToType;
1256  } else {
1257    // No second conversion required.
1258    SCS.Second = ICK_Identity;
1259  }
1260  SCS.setToType(1, FromType);
1261
1262  QualType CanonFrom;
1263  QualType CanonTo;
1264  // The third conversion can be a qualification conversion (C++ 4p1).
1265  bool ObjCLifetimeConversion;
1266  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1267                                  ObjCLifetimeConversion)) {
1268    SCS.Third = ICK_Qualification;
1269    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1270    FromType = ToType;
1271    CanonFrom = S.Context.getCanonicalType(FromType);
1272    CanonTo = S.Context.getCanonicalType(ToType);
1273  } else {
1274    // No conversion required
1275    SCS.Third = ICK_Identity;
1276
1277    // C++ [over.best.ics]p6:
1278    //   [...] Any difference in top-level cv-qualification is
1279    //   subsumed by the initialization itself and does not constitute
1280    //   a conversion. [...]
1281    CanonFrom = S.Context.getCanonicalType(FromType);
1282    CanonTo = S.Context.getCanonicalType(ToType);
1283    if (CanonFrom.getLocalUnqualifiedType()
1284                                       == CanonTo.getLocalUnqualifiedType() &&
1285        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1286         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1287         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1288      FromType = ToType;
1289      CanonFrom = CanonTo;
1290    }
1291  }
1292  SCS.setToType(2, FromType);
1293
1294  // If we have not converted the argument type to the parameter type,
1295  // this is a bad conversion sequence.
1296  if (CanonFrom != CanonTo)
1297    return false;
1298
1299  return true;
1300}
1301
1302static bool
1303IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1304                                     QualType &ToType,
1305                                     bool InOverloadResolution,
1306                                     StandardConversionSequence &SCS,
1307                                     bool CStyle) {
1308
1309  const RecordType *UT = ToType->getAsUnionType();
1310  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1311    return false;
1312  // The field to initialize within the transparent union.
1313  RecordDecl *UD = UT->getDecl();
1314  // It's compatible if the expression matches any of the fields.
1315  for (RecordDecl::field_iterator it = UD->field_begin(),
1316       itend = UD->field_end();
1317       it != itend; ++it) {
1318    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1319                             CStyle, /*ObjCWritebackConversion=*/false)) {
1320      ToType = it->getType();
1321      return true;
1322    }
1323  }
1324  return false;
1325}
1326
1327/// IsIntegralPromotion - Determines whether the conversion from the
1328/// expression From (whose potentially-adjusted type is FromType) to
1329/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1330/// sets PromotedType to the promoted type.
1331bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1332  const BuiltinType *To = ToType->getAs<BuiltinType>();
1333  // All integers are built-in.
1334  if (!To) {
1335    return false;
1336  }
1337
1338  // An rvalue of type char, signed char, unsigned char, short int, or
1339  // unsigned short int can be converted to an rvalue of type int if
1340  // int can represent all the values of the source type; otherwise,
1341  // the source rvalue can be converted to an rvalue of type unsigned
1342  // int (C++ 4.5p1).
1343  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1344      !FromType->isEnumeralType()) {
1345    if (// We can promote any signed, promotable integer type to an int
1346        (FromType->isSignedIntegerType() ||
1347         // We can promote any unsigned integer type whose size is
1348         // less than int to an int.
1349         (!FromType->isSignedIntegerType() &&
1350          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1351      return To->getKind() == BuiltinType::Int;
1352    }
1353
1354    return To->getKind() == BuiltinType::UInt;
1355  }
1356
1357  // C++0x [conv.prom]p3:
1358  //   A prvalue of an unscoped enumeration type whose underlying type is not
1359  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1360  //   following types that can represent all the values of the enumeration
1361  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1362  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1363  //   long long int. If none of the types in that list can represent all the
1364  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1365  //   type can be converted to an rvalue a prvalue of the extended integer type
1366  //   with lowest integer conversion rank (4.13) greater than the rank of long
1367  //   long in which all the values of the enumeration can be represented. If
1368  //   there are two such extended types, the signed one is chosen.
1369  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1370    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1371    // provided for a scoped enumeration.
1372    if (FromEnumType->getDecl()->isScoped())
1373      return false;
1374
1375    // We have already pre-calculated the promotion type, so this is trivial.
1376    if (ToType->isIntegerType() &&
1377        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1378      return Context.hasSameUnqualifiedType(ToType,
1379                                FromEnumType->getDecl()->getPromotionType());
1380  }
1381
1382  // C++0x [conv.prom]p2:
1383  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1384  //   to an rvalue a prvalue of the first of the following types that can
1385  //   represent all the values of its underlying type: int, unsigned int,
1386  //   long int, unsigned long int, long long int, or unsigned long long int.
1387  //   If none of the types in that list can represent all the values of its
1388  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1389  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1390  //   type.
1391  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1392      ToType->isIntegerType()) {
1393    // Determine whether the type we're converting from is signed or
1394    // unsigned.
1395    bool FromIsSigned;
1396    uint64_t FromSize = Context.getTypeSize(FromType);
1397
1398    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1399    FromIsSigned = true;
1400
1401    // The types we'll try to promote to, in the appropriate
1402    // order. Try each of these types.
1403    QualType PromoteTypes[6] = {
1404      Context.IntTy, Context.UnsignedIntTy,
1405      Context.LongTy, Context.UnsignedLongTy ,
1406      Context.LongLongTy, Context.UnsignedLongLongTy
1407    };
1408    for (int Idx = 0; Idx < 6; ++Idx) {
1409      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1410      if (FromSize < ToSize ||
1411          (FromSize == ToSize &&
1412           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1413        // We found the type that we can promote to. If this is the
1414        // type we wanted, we have a promotion. Otherwise, no
1415        // promotion.
1416        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1417      }
1418    }
1419  }
1420
1421  // An rvalue for an integral bit-field (9.6) can be converted to an
1422  // rvalue of type int if int can represent all the values of the
1423  // bit-field; otherwise, it can be converted to unsigned int if
1424  // unsigned int can represent all the values of the bit-field. If
1425  // the bit-field is larger yet, no integral promotion applies to
1426  // it. If the bit-field has an enumerated type, it is treated as any
1427  // other value of that type for promotion purposes (C++ 4.5p3).
1428  // FIXME: We should delay checking of bit-fields until we actually perform the
1429  // conversion.
1430  using llvm::APSInt;
1431  if (From)
1432    if (FieldDecl *MemberDecl = From->getBitField()) {
1433      APSInt BitWidth;
1434      if (FromType->isIntegralType(Context) &&
1435          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1436        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1437        ToSize = Context.getTypeSize(ToType);
1438
1439        // Are we promoting to an int from a bitfield that fits in an int?
1440        if (BitWidth < ToSize ||
1441            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1442          return To->getKind() == BuiltinType::Int;
1443        }
1444
1445        // Are we promoting to an unsigned int from an unsigned bitfield
1446        // that fits into an unsigned int?
1447        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1448          return To->getKind() == BuiltinType::UInt;
1449        }
1450
1451        return false;
1452      }
1453    }
1454
1455  // An rvalue of type bool can be converted to an rvalue of type int,
1456  // with false becoming zero and true becoming one (C++ 4.5p4).
1457  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1458    return true;
1459  }
1460
1461  return false;
1462}
1463
1464/// IsFloatingPointPromotion - Determines whether the conversion from
1465/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1466/// returns true and sets PromotedType to the promoted type.
1467bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1468  /// An rvalue of type float can be converted to an rvalue of type
1469  /// double. (C++ 4.6p1).
1470  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1471    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1472      if (FromBuiltin->getKind() == BuiltinType::Float &&
1473          ToBuiltin->getKind() == BuiltinType::Double)
1474        return true;
1475
1476      // C99 6.3.1.5p1:
1477      //   When a float is promoted to double or long double, or a
1478      //   double is promoted to long double [...].
1479      if (!getLangOptions().CPlusPlus &&
1480          (FromBuiltin->getKind() == BuiltinType::Float ||
1481           FromBuiltin->getKind() == BuiltinType::Double) &&
1482          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1483        return true;
1484    }
1485
1486  return false;
1487}
1488
1489/// \brief Determine if a conversion is a complex promotion.
1490///
1491/// A complex promotion is defined as a complex -> complex conversion
1492/// where the conversion between the underlying real types is a
1493/// floating-point or integral promotion.
1494bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1495  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1496  if (!FromComplex)
1497    return false;
1498
1499  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1500  if (!ToComplex)
1501    return false;
1502
1503  return IsFloatingPointPromotion(FromComplex->getElementType(),
1504                                  ToComplex->getElementType()) ||
1505    IsIntegralPromotion(0, FromComplex->getElementType(),
1506                        ToComplex->getElementType());
1507}
1508
1509/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1510/// the pointer type FromPtr to a pointer to type ToPointee, with the
1511/// same type qualifiers as FromPtr has on its pointee type. ToType,
1512/// if non-empty, will be a pointer to ToType that may or may not have
1513/// the right set of qualifiers on its pointee.
1514///
1515static QualType
1516BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1517                                   QualType ToPointee, QualType ToType,
1518                                   ASTContext &Context,
1519                                   bool StripObjCLifetime = false) {
1520  assert((FromPtr->getTypeClass() == Type::Pointer ||
1521          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1522         "Invalid similarly-qualified pointer type");
1523
1524  /// Conversions to 'id' subsume cv-qualifier conversions.
1525  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1526    return ToType.getUnqualifiedType();
1527
1528  QualType CanonFromPointee
1529    = Context.getCanonicalType(FromPtr->getPointeeType());
1530  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1531  Qualifiers Quals = CanonFromPointee.getQualifiers();
1532
1533  if (StripObjCLifetime)
1534    Quals.removeObjCLifetime();
1535
1536  // Exact qualifier match -> return the pointer type we're converting to.
1537  if (CanonToPointee.getLocalQualifiers() == Quals) {
1538    // ToType is exactly what we need. Return it.
1539    if (!ToType.isNull())
1540      return ToType.getUnqualifiedType();
1541
1542    // Build a pointer to ToPointee. It has the right qualifiers
1543    // already.
1544    if (isa<ObjCObjectPointerType>(ToType))
1545      return Context.getObjCObjectPointerType(ToPointee);
1546    return Context.getPointerType(ToPointee);
1547  }
1548
1549  // Just build a canonical type that has the right qualifiers.
1550  QualType QualifiedCanonToPointee
1551    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1552
1553  if (isa<ObjCObjectPointerType>(ToType))
1554    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1555  return Context.getPointerType(QualifiedCanonToPointee);
1556}
1557
1558static bool isNullPointerConstantForConversion(Expr *Expr,
1559                                               bool InOverloadResolution,
1560                                               ASTContext &Context) {
1561  // Handle value-dependent integral null pointer constants correctly.
1562  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1563  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1564      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1565    return !InOverloadResolution;
1566
1567  return Expr->isNullPointerConstant(Context,
1568                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1569                                        : Expr::NPC_ValueDependentIsNull);
1570}
1571
1572/// IsPointerConversion - Determines whether the conversion of the
1573/// expression From, which has the (possibly adjusted) type FromType,
1574/// can be converted to the type ToType via a pointer conversion (C++
1575/// 4.10). If so, returns true and places the converted type (that
1576/// might differ from ToType in its cv-qualifiers at some level) into
1577/// ConvertedType.
1578///
1579/// This routine also supports conversions to and from block pointers
1580/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1581/// pointers to interfaces. FIXME: Once we've determined the
1582/// appropriate overloading rules for Objective-C, we may want to
1583/// split the Objective-C checks into a different routine; however,
1584/// GCC seems to consider all of these conversions to be pointer
1585/// conversions, so for now they live here. IncompatibleObjC will be
1586/// set if the conversion is an allowed Objective-C conversion that
1587/// should result in a warning.
1588bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1589                               bool InOverloadResolution,
1590                               QualType& ConvertedType,
1591                               bool &IncompatibleObjC) {
1592  IncompatibleObjC = false;
1593  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1594                              IncompatibleObjC))
1595    return true;
1596
1597  // Conversion from a null pointer constant to any Objective-C pointer type.
1598  if (ToType->isObjCObjectPointerType() &&
1599      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1600    ConvertedType = ToType;
1601    return true;
1602  }
1603
1604  // Blocks: Block pointers can be converted to void*.
1605  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1606      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1607    ConvertedType = ToType;
1608    return true;
1609  }
1610  // Blocks: A null pointer constant can be converted to a block
1611  // pointer type.
1612  if (ToType->isBlockPointerType() &&
1613      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1614    ConvertedType = ToType;
1615    return true;
1616  }
1617
1618  // If the left-hand-side is nullptr_t, the right side can be a null
1619  // pointer constant.
1620  if (ToType->isNullPtrType() &&
1621      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1622    ConvertedType = ToType;
1623    return true;
1624  }
1625
1626  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1627  if (!ToTypePtr)
1628    return false;
1629
1630  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1631  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1632    ConvertedType = ToType;
1633    return true;
1634  }
1635
1636  // Beyond this point, both types need to be pointers
1637  // , including objective-c pointers.
1638  QualType ToPointeeType = ToTypePtr->getPointeeType();
1639  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1640      !getLangOptions().ObjCAutoRefCount) {
1641    ConvertedType = BuildSimilarlyQualifiedPointerType(
1642                                      FromType->getAs<ObjCObjectPointerType>(),
1643                                                       ToPointeeType,
1644                                                       ToType, Context);
1645    return true;
1646  }
1647  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1648  if (!FromTypePtr)
1649    return false;
1650
1651  QualType FromPointeeType = FromTypePtr->getPointeeType();
1652
1653  // If the unqualified pointee types are the same, this can't be a
1654  // pointer conversion, so don't do all of the work below.
1655  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1656    return false;
1657
1658  // An rvalue of type "pointer to cv T," where T is an object type,
1659  // can be converted to an rvalue of type "pointer to cv void" (C++
1660  // 4.10p2).
1661  if (FromPointeeType->isIncompleteOrObjectType() &&
1662      ToPointeeType->isVoidType()) {
1663    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1664                                                       ToPointeeType,
1665                                                       ToType, Context,
1666                                                   /*StripObjCLifetime=*/true);
1667    return true;
1668  }
1669
1670  // MSVC allows implicit function to void* type conversion.
1671  if (getLangOptions().Microsoft && FromPointeeType->isFunctionType() &&
1672      ToPointeeType->isVoidType()) {
1673    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1674                                                       ToPointeeType,
1675                                                       ToType, Context);
1676    return true;
1677  }
1678
1679  // When we're overloading in C, we allow a special kind of pointer
1680  // conversion for compatible-but-not-identical pointee types.
1681  if (!getLangOptions().CPlusPlus &&
1682      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1683    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1684                                                       ToPointeeType,
1685                                                       ToType, Context);
1686    return true;
1687  }
1688
1689  // C++ [conv.ptr]p3:
1690  //
1691  //   An rvalue of type "pointer to cv D," where D is a class type,
1692  //   can be converted to an rvalue of type "pointer to cv B," where
1693  //   B is a base class (clause 10) of D. If B is an inaccessible
1694  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1695  //   necessitates this conversion is ill-formed. The result of the
1696  //   conversion is a pointer to the base class sub-object of the
1697  //   derived class object. The null pointer value is converted to
1698  //   the null pointer value of the destination type.
1699  //
1700  // Note that we do not check for ambiguity or inaccessibility
1701  // here. That is handled by CheckPointerConversion.
1702  if (getLangOptions().CPlusPlus &&
1703      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1704      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1705      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1706      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1707    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1708                                                       ToPointeeType,
1709                                                       ToType, Context);
1710    return true;
1711  }
1712
1713  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1714      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1715    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1716                                                       ToPointeeType,
1717                                                       ToType, Context);
1718    return true;
1719  }
1720
1721  return false;
1722}
1723
1724/// \brief Adopt the given qualifiers for the given type.
1725static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1726  Qualifiers TQs = T.getQualifiers();
1727
1728  // Check whether qualifiers already match.
1729  if (TQs == Qs)
1730    return T;
1731
1732  if (Qs.compatiblyIncludes(TQs))
1733    return Context.getQualifiedType(T, Qs);
1734
1735  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1736}
1737
1738/// isObjCPointerConversion - Determines whether this is an
1739/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1740/// with the same arguments and return values.
1741bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1742                                   QualType& ConvertedType,
1743                                   bool &IncompatibleObjC) {
1744  if (!getLangOptions().ObjC1)
1745    return false;
1746
1747  // The set of qualifiers on the type we're converting from.
1748  Qualifiers FromQualifiers = FromType.getQualifiers();
1749
1750  // First, we handle all conversions on ObjC object pointer types.
1751  const ObjCObjectPointerType* ToObjCPtr =
1752    ToType->getAs<ObjCObjectPointerType>();
1753  const ObjCObjectPointerType *FromObjCPtr =
1754    FromType->getAs<ObjCObjectPointerType>();
1755
1756  if (ToObjCPtr && FromObjCPtr) {
1757    // If the pointee types are the same (ignoring qualifications),
1758    // then this is not a pointer conversion.
1759    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1760                                       FromObjCPtr->getPointeeType()))
1761      return false;
1762
1763    // Check for compatible
1764    // Objective C++: We're able to convert between "id" or "Class" and a
1765    // pointer to any interface (in both directions).
1766    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1767      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1768      return true;
1769    }
1770    // Conversions with Objective-C's id<...>.
1771    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1772         ToObjCPtr->isObjCQualifiedIdType()) &&
1773        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1774                                                  /*compare=*/false)) {
1775      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1776      return true;
1777    }
1778    // Objective C++: We're able to convert from a pointer to an
1779    // interface to a pointer to a different interface.
1780    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1781      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1782      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1783      if (getLangOptions().CPlusPlus && LHS && RHS &&
1784          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1785                                                FromObjCPtr->getPointeeType()))
1786        return false;
1787      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1788                                                   ToObjCPtr->getPointeeType(),
1789                                                         ToType, Context);
1790      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1791      return true;
1792    }
1793
1794    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1795      // Okay: this is some kind of implicit downcast of Objective-C
1796      // interfaces, which is permitted. However, we're going to
1797      // complain about it.
1798      IncompatibleObjC = true;
1799      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1800                                                   ToObjCPtr->getPointeeType(),
1801                                                         ToType, Context);
1802      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1803      return true;
1804    }
1805  }
1806  // Beyond this point, both types need to be C pointers or block pointers.
1807  QualType ToPointeeType;
1808  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1809    ToPointeeType = ToCPtr->getPointeeType();
1810  else if (const BlockPointerType *ToBlockPtr =
1811            ToType->getAs<BlockPointerType>()) {
1812    // Objective C++: We're able to convert from a pointer to any object
1813    // to a block pointer type.
1814    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1815      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1816      return true;
1817    }
1818    ToPointeeType = ToBlockPtr->getPointeeType();
1819  }
1820  else if (FromType->getAs<BlockPointerType>() &&
1821           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1822    // Objective C++: We're able to convert from a block pointer type to a
1823    // pointer to any object.
1824    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1825    return true;
1826  }
1827  else
1828    return false;
1829
1830  QualType FromPointeeType;
1831  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1832    FromPointeeType = FromCPtr->getPointeeType();
1833  else if (const BlockPointerType *FromBlockPtr =
1834           FromType->getAs<BlockPointerType>())
1835    FromPointeeType = FromBlockPtr->getPointeeType();
1836  else
1837    return false;
1838
1839  // If we have pointers to pointers, recursively check whether this
1840  // is an Objective-C conversion.
1841  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1842      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1843                              IncompatibleObjC)) {
1844    // We always complain about this conversion.
1845    IncompatibleObjC = true;
1846    ConvertedType = Context.getPointerType(ConvertedType);
1847    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1848    return true;
1849  }
1850  // Allow conversion of pointee being objective-c pointer to another one;
1851  // as in I* to id.
1852  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1853      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1854      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1855                              IncompatibleObjC)) {
1856
1857    ConvertedType = Context.getPointerType(ConvertedType);
1858    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1859    return true;
1860  }
1861
1862  // If we have pointers to functions or blocks, check whether the only
1863  // differences in the argument and result types are in Objective-C
1864  // pointer conversions. If so, we permit the conversion (but
1865  // complain about it).
1866  const FunctionProtoType *FromFunctionType
1867    = FromPointeeType->getAs<FunctionProtoType>();
1868  const FunctionProtoType *ToFunctionType
1869    = ToPointeeType->getAs<FunctionProtoType>();
1870  if (FromFunctionType && ToFunctionType) {
1871    // If the function types are exactly the same, this isn't an
1872    // Objective-C pointer conversion.
1873    if (Context.getCanonicalType(FromPointeeType)
1874          == Context.getCanonicalType(ToPointeeType))
1875      return false;
1876
1877    // Perform the quick checks that will tell us whether these
1878    // function types are obviously different.
1879    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1880        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1881        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1882      return false;
1883
1884    bool HasObjCConversion = false;
1885    if (Context.getCanonicalType(FromFunctionType->getResultType())
1886          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1887      // Okay, the types match exactly. Nothing to do.
1888    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1889                                       ToFunctionType->getResultType(),
1890                                       ConvertedType, IncompatibleObjC)) {
1891      // Okay, we have an Objective-C pointer conversion.
1892      HasObjCConversion = true;
1893    } else {
1894      // Function types are too different. Abort.
1895      return false;
1896    }
1897
1898    // Check argument types.
1899    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1900         ArgIdx != NumArgs; ++ArgIdx) {
1901      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1902      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1903      if (Context.getCanonicalType(FromArgType)
1904            == Context.getCanonicalType(ToArgType)) {
1905        // Okay, the types match exactly. Nothing to do.
1906      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1907                                         ConvertedType, IncompatibleObjC)) {
1908        // Okay, we have an Objective-C pointer conversion.
1909        HasObjCConversion = true;
1910      } else {
1911        // Argument types are too different. Abort.
1912        return false;
1913      }
1914    }
1915
1916    if (HasObjCConversion) {
1917      // We had an Objective-C conversion. Allow this pointer
1918      // conversion, but complain about it.
1919      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1920      IncompatibleObjC = true;
1921      return true;
1922    }
1923  }
1924
1925  return false;
1926}
1927
1928/// \brief Determine whether this is an Objective-C writeback conversion,
1929/// used for parameter passing when performing automatic reference counting.
1930///
1931/// \param FromType The type we're converting form.
1932///
1933/// \param ToType The type we're converting to.
1934///
1935/// \param ConvertedType The type that will be produced after applying
1936/// this conversion.
1937bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
1938                                     QualType &ConvertedType) {
1939  if (!getLangOptions().ObjCAutoRefCount ||
1940      Context.hasSameUnqualifiedType(FromType, ToType))
1941    return false;
1942
1943  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
1944  QualType ToPointee;
1945  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
1946    ToPointee = ToPointer->getPointeeType();
1947  else
1948    return false;
1949
1950  Qualifiers ToQuals = ToPointee.getQualifiers();
1951  if (!ToPointee->isObjCLifetimeType() ||
1952      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
1953      !ToQuals.withoutObjCGLifetime().empty())
1954    return false;
1955
1956  // Argument must be a pointer to __strong to __weak.
1957  QualType FromPointee;
1958  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
1959    FromPointee = FromPointer->getPointeeType();
1960  else
1961    return false;
1962
1963  Qualifiers FromQuals = FromPointee.getQualifiers();
1964  if (!FromPointee->isObjCLifetimeType() ||
1965      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
1966       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
1967    return false;
1968
1969  // Make sure that we have compatible qualifiers.
1970  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
1971  if (!ToQuals.compatiblyIncludes(FromQuals))
1972    return false;
1973
1974  // Remove qualifiers from the pointee type we're converting from; they
1975  // aren't used in the compatibility check belong, and we'll be adding back
1976  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
1977  FromPointee = FromPointee.getUnqualifiedType();
1978
1979  // The unqualified form of the pointee types must be compatible.
1980  ToPointee = ToPointee.getUnqualifiedType();
1981  bool IncompatibleObjC;
1982  if (Context.typesAreCompatible(FromPointee, ToPointee))
1983    FromPointee = ToPointee;
1984  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
1985                                    IncompatibleObjC))
1986    return false;
1987
1988  /// \brief Construct the type we're converting to, which is a pointer to
1989  /// __autoreleasing pointee.
1990  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
1991  ConvertedType = Context.getPointerType(FromPointee);
1992  return true;
1993}
1994
1995bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
1996                                    QualType& ConvertedType) {
1997  QualType ToPointeeType;
1998  if (const BlockPointerType *ToBlockPtr =
1999        ToType->getAs<BlockPointerType>())
2000    ToPointeeType = ToBlockPtr->getPointeeType();
2001  else
2002    return false;
2003
2004  QualType FromPointeeType;
2005  if (const BlockPointerType *FromBlockPtr =
2006      FromType->getAs<BlockPointerType>())
2007    FromPointeeType = FromBlockPtr->getPointeeType();
2008  else
2009    return false;
2010  // We have pointer to blocks, check whether the only
2011  // differences in the argument and result types are in Objective-C
2012  // pointer conversions. If so, we permit the conversion.
2013
2014  const FunctionProtoType *FromFunctionType
2015    = FromPointeeType->getAs<FunctionProtoType>();
2016  const FunctionProtoType *ToFunctionType
2017    = ToPointeeType->getAs<FunctionProtoType>();
2018
2019  if (!FromFunctionType || !ToFunctionType)
2020    return false;
2021
2022  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2023    return true;
2024
2025  // Perform the quick checks that will tell us whether these
2026  // function types are obviously different.
2027  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2028      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2029    return false;
2030
2031  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2032  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2033  if (FromEInfo != ToEInfo)
2034    return false;
2035
2036  bool IncompatibleObjC = false;
2037  if (Context.hasSameType(FromFunctionType->getResultType(),
2038                          ToFunctionType->getResultType())) {
2039    // Okay, the types match exactly. Nothing to do.
2040  } else {
2041    QualType RHS = FromFunctionType->getResultType();
2042    QualType LHS = ToFunctionType->getResultType();
2043    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2044        !RHS.hasQualifiers() && LHS.hasQualifiers())
2045       LHS = LHS.getUnqualifiedType();
2046
2047     if (Context.hasSameType(RHS,LHS)) {
2048       // OK exact match.
2049     } else if (isObjCPointerConversion(RHS, LHS,
2050                                        ConvertedType, IncompatibleObjC)) {
2051     if (IncompatibleObjC)
2052       return false;
2053     // Okay, we have an Objective-C pointer conversion.
2054     }
2055     else
2056       return false;
2057   }
2058
2059   // Check argument types.
2060   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2061        ArgIdx != NumArgs; ++ArgIdx) {
2062     IncompatibleObjC = false;
2063     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2064     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2065     if (Context.hasSameType(FromArgType, ToArgType)) {
2066       // Okay, the types match exactly. Nothing to do.
2067     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2068                                        ConvertedType, IncompatibleObjC)) {
2069       if (IncompatibleObjC)
2070         return false;
2071       // Okay, we have an Objective-C pointer conversion.
2072     } else
2073       // Argument types are too different. Abort.
2074       return false;
2075   }
2076   ConvertedType = ToType;
2077   return true;
2078}
2079
2080/// FunctionArgTypesAreEqual - This routine checks two function proto types
2081/// for equlity of their argument types. Caller has already checked that
2082/// they have same number of arguments. This routine assumes that Objective-C
2083/// pointer types which only differ in their protocol qualifiers are equal.
2084bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2085                                    const FunctionProtoType *NewType) {
2086  if (!getLangOptions().ObjC1)
2087    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
2088                      NewType->arg_type_begin());
2089
2090  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2091       N = NewType->arg_type_begin(),
2092       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2093    QualType ToType = (*O);
2094    QualType FromType = (*N);
2095    if (ToType != FromType) {
2096      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2097        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2098          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2099               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2100              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2101               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2102            continue;
2103      }
2104      else if (const ObjCObjectPointerType *PTTo =
2105                 ToType->getAs<ObjCObjectPointerType>()) {
2106        if (const ObjCObjectPointerType *PTFr =
2107              FromType->getAs<ObjCObjectPointerType>())
2108          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
2109            continue;
2110      }
2111      return false;
2112    }
2113  }
2114  return true;
2115}
2116
2117/// CheckPointerConversion - Check the pointer conversion from the
2118/// expression From to the type ToType. This routine checks for
2119/// ambiguous or inaccessible derived-to-base pointer
2120/// conversions for which IsPointerConversion has already returned
2121/// true. It returns true and produces a diagnostic if there was an
2122/// error, or returns false otherwise.
2123bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2124                                  CastKind &Kind,
2125                                  CXXCastPath& BasePath,
2126                                  bool IgnoreBaseAccess) {
2127  QualType FromType = From->getType();
2128  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2129
2130  Kind = CK_BitCast;
2131
2132  if (!IsCStyleOrFunctionalCast &&
2133      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2134      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2135    DiagRuntimeBehavior(From->getExprLoc(), From,
2136                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2137                          << ToType << From->getSourceRange());
2138
2139  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
2140    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2141      QualType FromPointeeType = FromPtrType->getPointeeType(),
2142               ToPointeeType   = ToPtrType->getPointeeType();
2143
2144      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2145          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2146        // We must have a derived-to-base conversion. Check an
2147        // ambiguous or inaccessible conversion.
2148        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2149                                         From->getExprLoc(),
2150                                         From->getSourceRange(), &BasePath,
2151                                         IgnoreBaseAccess))
2152          return true;
2153
2154        // The conversion was successful.
2155        Kind = CK_DerivedToBase;
2156      }
2157    }
2158  if (const ObjCObjectPointerType *FromPtrType =
2159        FromType->getAs<ObjCObjectPointerType>()) {
2160    if (const ObjCObjectPointerType *ToPtrType =
2161          ToType->getAs<ObjCObjectPointerType>()) {
2162      // Objective-C++ conversions are always okay.
2163      // FIXME: We should have a different class of conversions for the
2164      // Objective-C++ implicit conversions.
2165      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2166        return false;
2167    }
2168  }
2169
2170  // We shouldn't fall into this case unless it's valid for other
2171  // reasons.
2172  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2173    Kind = CK_NullToPointer;
2174
2175  return false;
2176}
2177
2178/// IsMemberPointerConversion - Determines whether the conversion of the
2179/// expression From, which has the (possibly adjusted) type FromType, can be
2180/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2181/// If so, returns true and places the converted type (that might differ from
2182/// ToType in its cv-qualifiers at some level) into ConvertedType.
2183bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2184                                     QualType ToType,
2185                                     bool InOverloadResolution,
2186                                     QualType &ConvertedType) {
2187  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2188  if (!ToTypePtr)
2189    return false;
2190
2191  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2192  if (From->isNullPointerConstant(Context,
2193                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2194                                        : Expr::NPC_ValueDependentIsNull)) {
2195    ConvertedType = ToType;
2196    return true;
2197  }
2198
2199  // Otherwise, both types have to be member pointers.
2200  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2201  if (!FromTypePtr)
2202    return false;
2203
2204  // A pointer to member of B can be converted to a pointer to member of D,
2205  // where D is derived from B (C++ 4.11p2).
2206  QualType FromClass(FromTypePtr->getClass(), 0);
2207  QualType ToClass(ToTypePtr->getClass(), 0);
2208
2209  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2210      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2211      IsDerivedFrom(ToClass, FromClass)) {
2212    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2213                                                 ToClass.getTypePtr());
2214    return true;
2215  }
2216
2217  return false;
2218}
2219
2220/// CheckMemberPointerConversion - Check the member pointer conversion from the
2221/// expression From to the type ToType. This routine checks for ambiguous or
2222/// virtual or inaccessible base-to-derived member pointer conversions
2223/// for which IsMemberPointerConversion has already returned true. It returns
2224/// true and produces a diagnostic if there was an error, or returns false
2225/// otherwise.
2226bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2227                                        CastKind &Kind,
2228                                        CXXCastPath &BasePath,
2229                                        bool IgnoreBaseAccess) {
2230  QualType FromType = From->getType();
2231  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2232  if (!FromPtrType) {
2233    // This must be a null pointer to member pointer conversion
2234    assert(From->isNullPointerConstant(Context,
2235                                       Expr::NPC_ValueDependentIsNull) &&
2236           "Expr must be null pointer constant!");
2237    Kind = CK_NullToMemberPointer;
2238    return false;
2239  }
2240
2241  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2242  assert(ToPtrType && "No member pointer cast has a target type "
2243                      "that is not a member pointer.");
2244
2245  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2246  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2247
2248  // FIXME: What about dependent types?
2249  assert(FromClass->isRecordType() && "Pointer into non-class.");
2250  assert(ToClass->isRecordType() && "Pointer into non-class.");
2251
2252  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2253                     /*DetectVirtual=*/true);
2254  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2255  assert(DerivationOkay &&
2256         "Should not have been called if derivation isn't OK.");
2257  (void)DerivationOkay;
2258
2259  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2260                                  getUnqualifiedType())) {
2261    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2262    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2263      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2264    return true;
2265  }
2266
2267  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2268    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2269      << FromClass << ToClass << QualType(VBase, 0)
2270      << From->getSourceRange();
2271    return true;
2272  }
2273
2274  if (!IgnoreBaseAccess)
2275    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2276                         Paths.front(),
2277                         diag::err_downcast_from_inaccessible_base);
2278
2279  // Must be a base to derived member conversion.
2280  BuildBasePathArray(Paths, BasePath);
2281  Kind = CK_BaseToDerivedMemberPointer;
2282  return false;
2283}
2284
2285/// IsQualificationConversion - Determines whether the conversion from
2286/// an rvalue of type FromType to ToType is a qualification conversion
2287/// (C++ 4.4).
2288///
2289/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2290/// when the qualification conversion involves a change in the Objective-C
2291/// object lifetime.
2292bool
2293Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2294                                bool CStyle, bool &ObjCLifetimeConversion) {
2295  FromType = Context.getCanonicalType(FromType);
2296  ToType = Context.getCanonicalType(ToType);
2297  ObjCLifetimeConversion = false;
2298
2299  // If FromType and ToType are the same type, this is not a
2300  // qualification conversion.
2301  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2302    return false;
2303
2304  // (C++ 4.4p4):
2305  //   A conversion can add cv-qualifiers at levels other than the first
2306  //   in multi-level pointers, subject to the following rules: [...]
2307  bool PreviousToQualsIncludeConst = true;
2308  bool UnwrappedAnyPointer = false;
2309  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2310    // Within each iteration of the loop, we check the qualifiers to
2311    // determine if this still looks like a qualification
2312    // conversion. Then, if all is well, we unwrap one more level of
2313    // pointers or pointers-to-members and do it all again
2314    // until there are no more pointers or pointers-to-members left to
2315    // unwrap.
2316    UnwrappedAnyPointer = true;
2317
2318    Qualifiers FromQuals = FromType.getQualifiers();
2319    Qualifiers ToQuals = ToType.getQualifiers();
2320
2321    // Objective-C ARC:
2322    //   Check Objective-C lifetime conversions.
2323    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2324        UnwrappedAnyPointer) {
2325      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2326        ObjCLifetimeConversion = true;
2327        FromQuals.removeObjCLifetime();
2328        ToQuals.removeObjCLifetime();
2329      } else {
2330        // Qualification conversions cannot cast between different
2331        // Objective-C lifetime qualifiers.
2332        return false;
2333      }
2334    }
2335
2336    // Allow addition/removal of GC attributes but not changing GC attributes.
2337    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2338        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2339      FromQuals.removeObjCGCAttr();
2340      ToQuals.removeObjCGCAttr();
2341    }
2342
2343    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2344    //      2,j, and similarly for volatile.
2345    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2346      return false;
2347
2348    //   -- if the cv 1,j and cv 2,j are different, then const is in
2349    //      every cv for 0 < k < j.
2350    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2351        && !PreviousToQualsIncludeConst)
2352      return false;
2353
2354    // Keep track of whether all prior cv-qualifiers in the "to" type
2355    // include const.
2356    PreviousToQualsIncludeConst
2357      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2358  }
2359
2360  // We are left with FromType and ToType being the pointee types
2361  // after unwrapping the original FromType and ToType the same number
2362  // of types. If we unwrapped any pointers, and if FromType and
2363  // ToType have the same unqualified type (since we checked
2364  // qualifiers above), then this is a qualification conversion.
2365  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2366}
2367
2368/// Determines whether there is a user-defined conversion sequence
2369/// (C++ [over.ics.user]) that converts expression From to the type
2370/// ToType. If such a conversion exists, User will contain the
2371/// user-defined conversion sequence that performs such a conversion
2372/// and this routine will return true. Otherwise, this routine returns
2373/// false and User is unspecified.
2374///
2375/// \param AllowExplicit  true if the conversion should consider C++0x
2376/// "explicit" conversion functions as well as non-explicit conversion
2377/// functions (C++0x [class.conv.fct]p2).
2378static OverloadingResult
2379IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2380                        UserDefinedConversionSequence& User,
2381                        OverloadCandidateSet& CandidateSet,
2382                        bool AllowExplicit) {
2383  // Whether we will only visit constructors.
2384  bool ConstructorsOnly = false;
2385
2386  // If the type we are conversion to is a class type, enumerate its
2387  // constructors.
2388  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2389    // C++ [over.match.ctor]p1:
2390    //   When objects of class type are direct-initialized (8.5), or
2391    //   copy-initialized from an expression of the same or a
2392    //   derived class type (8.5), overload resolution selects the
2393    //   constructor. [...] For copy-initialization, the candidate
2394    //   functions are all the converting constructors (12.3.1) of
2395    //   that class. The argument list is the expression-list within
2396    //   the parentheses of the initializer.
2397    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2398        (From->getType()->getAs<RecordType>() &&
2399         S.IsDerivedFrom(From->getType(), ToType)))
2400      ConstructorsOnly = true;
2401
2402    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2403    // RequireCompleteType may have returned true due to some invalid decl
2404    // during template instantiation, but ToType may be complete enough now
2405    // to try to recover.
2406    if (ToType->isIncompleteType()) {
2407      // We're not going to find any constructors.
2408    } else if (CXXRecordDecl *ToRecordDecl
2409                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2410      DeclContext::lookup_iterator Con, ConEnd;
2411      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2412           Con != ConEnd; ++Con) {
2413        NamedDecl *D = *Con;
2414        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2415
2416        // Find the constructor (which may be a template).
2417        CXXConstructorDecl *Constructor = 0;
2418        FunctionTemplateDecl *ConstructorTmpl
2419          = dyn_cast<FunctionTemplateDecl>(D);
2420        if (ConstructorTmpl)
2421          Constructor
2422            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2423        else
2424          Constructor = cast<CXXConstructorDecl>(D);
2425
2426        if (!Constructor->isInvalidDecl() &&
2427            Constructor->isConvertingConstructor(AllowExplicit)) {
2428          if (ConstructorTmpl)
2429            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2430                                           /*ExplicitArgs*/ 0,
2431                                           &From, 1, CandidateSet,
2432                                           /*SuppressUserConversions=*/
2433                                             !ConstructorsOnly);
2434          else
2435            // Allow one user-defined conversion when user specifies a
2436            // From->ToType conversion via an static cast (c-style, etc).
2437            S.AddOverloadCandidate(Constructor, FoundDecl,
2438                                   &From, 1, CandidateSet,
2439                                   /*SuppressUserConversions=*/
2440                                     !ConstructorsOnly);
2441        }
2442      }
2443    }
2444  }
2445
2446  // Enumerate conversion functions, if we're allowed to.
2447  if (ConstructorsOnly) {
2448  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2449                                   S.PDiag(0) << From->getSourceRange())) {
2450    // No conversion functions from incomplete types.
2451  } else if (const RecordType *FromRecordType
2452                                   = From->getType()->getAs<RecordType>()) {
2453    if (CXXRecordDecl *FromRecordDecl
2454         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2455      // Add all of the conversion functions as candidates.
2456      const UnresolvedSetImpl *Conversions
2457        = FromRecordDecl->getVisibleConversionFunctions();
2458      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2459             E = Conversions->end(); I != E; ++I) {
2460        DeclAccessPair FoundDecl = I.getPair();
2461        NamedDecl *D = FoundDecl.getDecl();
2462        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2463        if (isa<UsingShadowDecl>(D))
2464          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2465
2466        CXXConversionDecl *Conv;
2467        FunctionTemplateDecl *ConvTemplate;
2468        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2469          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2470        else
2471          Conv = cast<CXXConversionDecl>(D);
2472
2473        if (AllowExplicit || !Conv->isExplicit()) {
2474          if (ConvTemplate)
2475            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2476                                             ActingContext, From, ToType,
2477                                             CandidateSet);
2478          else
2479            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2480                                     From, ToType, CandidateSet);
2481        }
2482      }
2483    }
2484  }
2485
2486  OverloadCandidateSet::iterator Best;
2487  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2488  case OR_Success:
2489    // Record the standard conversion we used and the conversion function.
2490    if (CXXConstructorDecl *Constructor
2491          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2492      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2493
2494      // C++ [over.ics.user]p1:
2495      //   If the user-defined conversion is specified by a
2496      //   constructor (12.3.1), the initial standard conversion
2497      //   sequence converts the source type to the type required by
2498      //   the argument of the constructor.
2499      //
2500      QualType ThisType = Constructor->getThisType(S.Context);
2501      if (Best->Conversions[0].isEllipsis())
2502        User.EllipsisConversion = true;
2503      else {
2504        User.Before = Best->Conversions[0].Standard;
2505        User.EllipsisConversion = false;
2506      }
2507      User.ConversionFunction = Constructor;
2508      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2509      User.After.setAsIdentityConversion();
2510      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2511      User.After.setAllToTypes(ToType);
2512      return OR_Success;
2513    } else if (CXXConversionDecl *Conversion
2514                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2515      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2516
2517      // C++ [over.ics.user]p1:
2518      //
2519      //   [...] If the user-defined conversion is specified by a
2520      //   conversion function (12.3.2), the initial standard
2521      //   conversion sequence converts the source type to the
2522      //   implicit object parameter of the conversion function.
2523      User.Before = Best->Conversions[0].Standard;
2524      User.ConversionFunction = Conversion;
2525      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2526      User.EllipsisConversion = false;
2527
2528      // C++ [over.ics.user]p2:
2529      //   The second standard conversion sequence converts the
2530      //   result of the user-defined conversion to the target type
2531      //   for the sequence. Since an implicit conversion sequence
2532      //   is an initialization, the special rules for
2533      //   initialization by user-defined conversion apply when
2534      //   selecting the best user-defined conversion for a
2535      //   user-defined conversion sequence (see 13.3.3 and
2536      //   13.3.3.1).
2537      User.After = Best->FinalConversion;
2538      return OR_Success;
2539    } else {
2540      llvm_unreachable("Not a constructor or conversion function?");
2541      return OR_No_Viable_Function;
2542    }
2543
2544  case OR_No_Viable_Function:
2545    return OR_No_Viable_Function;
2546  case OR_Deleted:
2547    // No conversion here! We're done.
2548    return OR_Deleted;
2549
2550  case OR_Ambiguous:
2551    return OR_Ambiguous;
2552  }
2553
2554  return OR_No_Viable_Function;
2555}
2556
2557bool
2558Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2559  ImplicitConversionSequence ICS;
2560  OverloadCandidateSet CandidateSet(From->getExprLoc());
2561  OverloadingResult OvResult =
2562    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2563                            CandidateSet, false);
2564  if (OvResult == OR_Ambiguous)
2565    Diag(From->getSourceRange().getBegin(),
2566         diag::err_typecheck_ambiguous_condition)
2567          << From->getType() << ToType << From->getSourceRange();
2568  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2569    Diag(From->getSourceRange().getBegin(),
2570         diag::err_typecheck_nonviable_condition)
2571    << From->getType() << ToType << From->getSourceRange();
2572  else
2573    return false;
2574  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2575  return true;
2576}
2577
2578/// CompareImplicitConversionSequences - Compare two implicit
2579/// conversion sequences to determine whether one is better than the
2580/// other or if they are indistinguishable (C++ 13.3.3.2).
2581static ImplicitConversionSequence::CompareKind
2582CompareImplicitConversionSequences(Sema &S,
2583                                   const ImplicitConversionSequence& ICS1,
2584                                   const ImplicitConversionSequence& ICS2)
2585{
2586  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2587  // conversion sequences (as defined in 13.3.3.1)
2588  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2589  //      conversion sequence than a user-defined conversion sequence or
2590  //      an ellipsis conversion sequence, and
2591  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2592  //      conversion sequence than an ellipsis conversion sequence
2593  //      (13.3.3.1.3).
2594  //
2595  // C++0x [over.best.ics]p10:
2596  //   For the purpose of ranking implicit conversion sequences as
2597  //   described in 13.3.3.2, the ambiguous conversion sequence is
2598  //   treated as a user-defined sequence that is indistinguishable
2599  //   from any other user-defined conversion sequence.
2600  if (ICS1.getKindRank() < ICS2.getKindRank())
2601    return ImplicitConversionSequence::Better;
2602  else if (ICS2.getKindRank() < ICS1.getKindRank())
2603    return ImplicitConversionSequence::Worse;
2604
2605  // The following checks require both conversion sequences to be of
2606  // the same kind.
2607  if (ICS1.getKind() != ICS2.getKind())
2608    return ImplicitConversionSequence::Indistinguishable;
2609
2610  // Two implicit conversion sequences of the same form are
2611  // indistinguishable conversion sequences unless one of the
2612  // following rules apply: (C++ 13.3.3.2p3):
2613  if (ICS1.isStandard())
2614    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2615  else if (ICS1.isUserDefined()) {
2616    // User-defined conversion sequence U1 is a better conversion
2617    // sequence than another user-defined conversion sequence U2 if
2618    // they contain the same user-defined conversion function or
2619    // constructor and if the second standard conversion sequence of
2620    // U1 is better than the second standard conversion sequence of
2621    // U2 (C++ 13.3.3.2p3).
2622    if (ICS1.UserDefined.ConversionFunction ==
2623          ICS2.UserDefined.ConversionFunction)
2624      return CompareStandardConversionSequences(S,
2625                                                ICS1.UserDefined.After,
2626                                                ICS2.UserDefined.After);
2627  }
2628
2629  return ImplicitConversionSequence::Indistinguishable;
2630}
2631
2632static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2633  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2634    Qualifiers Quals;
2635    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2636    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2637  }
2638
2639  return Context.hasSameUnqualifiedType(T1, T2);
2640}
2641
2642// Per 13.3.3.2p3, compare the given standard conversion sequences to
2643// determine if one is a proper subset of the other.
2644static ImplicitConversionSequence::CompareKind
2645compareStandardConversionSubsets(ASTContext &Context,
2646                                 const StandardConversionSequence& SCS1,
2647                                 const StandardConversionSequence& SCS2) {
2648  ImplicitConversionSequence::CompareKind Result
2649    = ImplicitConversionSequence::Indistinguishable;
2650
2651  // the identity conversion sequence is considered to be a subsequence of
2652  // any non-identity conversion sequence
2653  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2654    return ImplicitConversionSequence::Better;
2655  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2656    return ImplicitConversionSequence::Worse;
2657
2658  if (SCS1.Second != SCS2.Second) {
2659    if (SCS1.Second == ICK_Identity)
2660      Result = ImplicitConversionSequence::Better;
2661    else if (SCS2.Second == ICK_Identity)
2662      Result = ImplicitConversionSequence::Worse;
2663    else
2664      return ImplicitConversionSequence::Indistinguishable;
2665  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2666    return ImplicitConversionSequence::Indistinguishable;
2667
2668  if (SCS1.Third == SCS2.Third) {
2669    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2670                             : ImplicitConversionSequence::Indistinguishable;
2671  }
2672
2673  if (SCS1.Third == ICK_Identity)
2674    return Result == ImplicitConversionSequence::Worse
2675             ? ImplicitConversionSequence::Indistinguishable
2676             : ImplicitConversionSequence::Better;
2677
2678  if (SCS2.Third == ICK_Identity)
2679    return Result == ImplicitConversionSequence::Better
2680             ? ImplicitConversionSequence::Indistinguishable
2681             : ImplicitConversionSequence::Worse;
2682
2683  return ImplicitConversionSequence::Indistinguishable;
2684}
2685
2686/// \brief Determine whether one of the given reference bindings is better
2687/// than the other based on what kind of bindings they are.
2688static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2689                                       const StandardConversionSequence &SCS2) {
2690  // C++0x [over.ics.rank]p3b4:
2691  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2692  //      implicit object parameter of a non-static member function declared
2693  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2694  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2695  //      lvalue reference to a function lvalue and S2 binds an rvalue
2696  //      reference*.
2697  //
2698  // FIXME: Rvalue references. We're going rogue with the above edits,
2699  // because the semantics in the current C++0x working paper (N3225 at the
2700  // time of this writing) break the standard definition of std::forward
2701  // and std::reference_wrapper when dealing with references to functions.
2702  // Proposed wording changes submitted to CWG for consideration.
2703  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2704      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2705    return false;
2706
2707  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2708          SCS2.IsLvalueReference) ||
2709         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2710          !SCS2.IsLvalueReference);
2711}
2712
2713/// CompareStandardConversionSequences - Compare two standard
2714/// conversion sequences to determine whether one is better than the
2715/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2716static ImplicitConversionSequence::CompareKind
2717CompareStandardConversionSequences(Sema &S,
2718                                   const StandardConversionSequence& SCS1,
2719                                   const StandardConversionSequence& SCS2)
2720{
2721  // Standard conversion sequence S1 is a better conversion sequence
2722  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2723
2724  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2725  //     sequences in the canonical form defined by 13.3.3.1.1,
2726  //     excluding any Lvalue Transformation; the identity conversion
2727  //     sequence is considered to be a subsequence of any
2728  //     non-identity conversion sequence) or, if not that,
2729  if (ImplicitConversionSequence::CompareKind CK
2730        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2731    return CK;
2732
2733  //  -- the rank of S1 is better than the rank of S2 (by the rules
2734  //     defined below), or, if not that,
2735  ImplicitConversionRank Rank1 = SCS1.getRank();
2736  ImplicitConversionRank Rank2 = SCS2.getRank();
2737  if (Rank1 < Rank2)
2738    return ImplicitConversionSequence::Better;
2739  else if (Rank2 < Rank1)
2740    return ImplicitConversionSequence::Worse;
2741
2742  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2743  // are indistinguishable unless one of the following rules
2744  // applies:
2745
2746  //   A conversion that is not a conversion of a pointer, or
2747  //   pointer to member, to bool is better than another conversion
2748  //   that is such a conversion.
2749  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2750    return SCS2.isPointerConversionToBool()
2751             ? ImplicitConversionSequence::Better
2752             : ImplicitConversionSequence::Worse;
2753
2754  // C++ [over.ics.rank]p4b2:
2755  //
2756  //   If class B is derived directly or indirectly from class A,
2757  //   conversion of B* to A* is better than conversion of B* to
2758  //   void*, and conversion of A* to void* is better than conversion
2759  //   of B* to void*.
2760  bool SCS1ConvertsToVoid
2761    = SCS1.isPointerConversionToVoidPointer(S.Context);
2762  bool SCS2ConvertsToVoid
2763    = SCS2.isPointerConversionToVoidPointer(S.Context);
2764  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2765    // Exactly one of the conversion sequences is a conversion to
2766    // a void pointer; it's the worse conversion.
2767    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2768                              : ImplicitConversionSequence::Worse;
2769  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2770    // Neither conversion sequence converts to a void pointer; compare
2771    // their derived-to-base conversions.
2772    if (ImplicitConversionSequence::CompareKind DerivedCK
2773          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2774      return DerivedCK;
2775  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
2776             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
2777    // Both conversion sequences are conversions to void
2778    // pointers. Compare the source types to determine if there's an
2779    // inheritance relationship in their sources.
2780    QualType FromType1 = SCS1.getFromType();
2781    QualType FromType2 = SCS2.getFromType();
2782
2783    // Adjust the types we're converting from via the array-to-pointer
2784    // conversion, if we need to.
2785    if (SCS1.First == ICK_Array_To_Pointer)
2786      FromType1 = S.Context.getArrayDecayedType(FromType1);
2787    if (SCS2.First == ICK_Array_To_Pointer)
2788      FromType2 = S.Context.getArrayDecayedType(FromType2);
2789
2790    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
2791    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
2792
2793    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2794      return ImplicitConversionSequence::Better;
2795    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2796      return ImplicitConversionSequence::Worse;
2797
2798    // Objective-C++: If one interface is more specific than the
2799    // other, it is the better one.
2800    const ObjCObjectPointerType* FromObjCPtr1
2801      = FromType1->getAs<ObjCObjectPointerType>();
2802    const ObjCObjectPointerType* FromObjCPtr2
2803      = FromType2->getAs<ObjCObjectPointerType>();
2804    if (FromObjCPtr1 && FromObjCPtr2) {
2805      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
2806                                                          FromObjCPtr2);
2807      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
2808                                                           FromObjCPtr1);
2809      if (AssignLeft != AssignRight) {
2810        return AssignLeft? ImplicitConversionSequence::Better
2811                         : ImplicitConversionSequence::Worse;
2812      }
2813    }
2814  }
2815
2816  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2817  // bullet 3).
2818  if (ImplicitConversionSequence::CompareKind QualCK
2819        = CompareQualificationConversions(S, SCS1, SCS2))
2820    return QualCK;
2821
2822  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2823    // Check for a better reference binding based on the kind of bindings.
2824    if (isBetterReferenceBindingKind(SCS1, SCS2))
2825      return ImplicitConversionSequence::Better;
2826    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2827      return ImplicitConversionSequence::Worse;
2828
2829    // C++ [over.ics.rank]p3b4:
2830    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2831    //      which the references refer are the same type except for
2832    //      top-level cv-qualifiers, and the type to which the reference
2833    //      initialized by S2 refers is more cv-qualified than the type
2834    //      to which the reference initialized by S1 refers.
2835    QualType T1 = SCS1.getToType(2);
2836    QualType T2 = SCS2.getToType(2);
2837    T1 = S.Context.getCanonicalType(T1);
2838    T2 = S.Context.getCanonicalType(T2);
2839    Qualifiers T1Quals, T2Quals;
2840    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2841    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2842    if (UnqualT1 == UnqualT2) {
2843      // Objective-C++ ARC: If the references refer to objects with different
2844      // lifetimes, prefer bindings that don't change lifetime.
2845      if (SCS1.ObjCLifetimeConversionBinding !=
2846                                          SCS2.ObjCLifetimeConversionBinding) {
2847        return SCS1.ObjCLifetimeConversionBinding
2848                                           ? ImplicitConversionSequence::Worse
2849                                           : ImplicitConversionSequence::Better;
2850      }
2851
2852      // If the type is an array type, promote the element qualifiers to the
2853      // type for comparison.
2854      if (isa<ArrayType>(T1) && T1Quals)
2855        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2856      if (isa<ArrayType>(T2) && T2Quals)
2857        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2858      if (T2.isMoreQualifiedThan(T1))
2859        return ImplicitConversionSequence::Better;
2860      else if (T1.isMoreQualifiedThan(T2))
2861        return ImplicitConversionSequence::Worse;
2862    }
2863  }
2864
2865  return ImplicitConversionSequence::Indistinguishable;
2866}
2867
2868/// CompareQualificationConversions - Compares two standard conversion
2869/// sequences to determine whether they can be ranked based on their
2870/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2871ImplicitConversionSequence::CompareKind
2872CompareQualificationConversions(Sema &S,
2873                                const StandardConversionSequence& SCS1,
2874                                const StandardConversionSequence& SCS2) {
2875  // C++ 13.3.3.2p3:
2876  //  -- S1 and S2 differ only in their qualification conversion and
2877  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2878  //     cv-qualification signature of type T1 is a proper subset of
2879  //     the cv-qualification signature of type T2, and S1 is not the
2880  //     deprecated string literal array-to-pointer conversion (4.2).
2881  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2882      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2883    return ImplicitConversionSequence::Indistinguishable;
2884
2885  // FIXME: the example in the standard doesn't use a qualification
2886  // conversion (!)
2887  QualType T1 = SCS1.getToType(2);
2888  QualType T2 = SCS2.getToType(2);
2889  T1 = S.Context.getCanonicalType(T1);
2890  T2 = S.Context.getCanonicalType(T2);
2891  Qualifiers T1Quals, T2Quals;
2892  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2893  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2894
2895  // If the types are the same, we won't learn anything by unwrapped
2896  // them.
2897  if (UnqualT1 == UnqualT2)
2898    return ImplicitConversionSequence::Indistinguishable;
2899
2900  // If the type is an array type, promote the element qualifiers to the type
2901  // for comparison.
2902  if (isa<ArrayType>(T1) && T1Quals)
2903    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2904  if (isa<ArrayType>(T2) && T2Quals)
2905    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2906
2907  ImplicitConversionSequence::CompareKind Result
2908    = ImplicitConversionSequence::Indistinguishable;
2909
2910  // Objective-C++ ARC:
2911  //   Prefer qualification conversions not involving a change in lifetime
2912  //   to qualification conversions that do not change lifetime.
2913  if (SCS1.QualificationIncludesObjCLifetime !=
2914                                      SCS2.QualificationIncludesObjCLifetime) {
2915    Result = SCS1.QualificationIncludesObjCLifetime
2916               ? ImplicitConversionSequence::Worse
2917               : ImplicitConversionSequence::Better;
2918  }
2919
2920  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2921    // Within each iteration of the loop, we check the qualifiers to
2922    // determine if this still looks like a qualification
2923    // conversion. Then, if all is well, we unwrap one more level of
2924    // pointers or pointers-to-members and do it all again
2925    // until there are no more pointers or pointers-to-members left
2926    // to unwrap. This essentially mimics what
2927    // IsQualificationConversion does, but here we're checking for a
2928    // strict subset of qualifiers.
2929    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2930      // The qualifiers are the same, so this doesn't tell us anything
2931      // about how the sequences rank.
2932      ;
2933    else if (T2.isMoreQualifiedThan(T1)) {
2934      // T1 has fewer qualifiers, so it could be the better sequence.
2935      if (Result == ImplicitConversionSequence::Worse)
2936        // Neither has qualifiers that are a subset of the other's
2937        // qualifiers.
2938        return ImplicitConversionSequence::Indistinguishable;
2939
2940      Result = ImplicitConversionSequence::Better;
2941    } else if (T1.isMoreQualifiedThan(T2)) {
2942      // T2 has fewer qualifiers, so it could be the better sequence.
2943      if (Result == ImplicitConversionSequence::Better)
2944        // Neither has qualifiers that are a subset of the other's
2945        // qualifiers.
2946        return ImplicitConversionSequence::Indistinguishable;
2947
2948      Result = ImplicitConversionSequence::Worse;
2949    } else {
2950      // Qualifiers are disjoint.
2951      return ImplicitConversionSequence::Indistinguishable;
2952    }
2953
2954    // If the types after this point are equivalent, we're done.
2955    if (S.Context.hasSameUnqualifiedType(T1, T2))
2956      break;
2957  }
2958
2959  // Check that the winning standard conversion sequence isn't using
2960  // the deprecated string literal array to pointer conversion.
2961  switch (Result) {
2962  case ImplicitConversionSequence::Better:
2963    if (SCS1.DeprecatedStringLiteralToCharPtr)
2964      Result = ImplicitConversionSequence::Indistinguishable;
2965    break;
2966
2967  case ImplicitConversionSequence::Indistinguishable:
2968    break;
2969
2970  case ImplicitConversionSequence::Worse:
2971    if (SCS2.DeprecatedStringLiteralToCharPtr)
2972      Result = ImplicitConversionSequence::Indistinguishable;
2973    break;
2974  }
2975
2976  return Result;
2977}
2978
2979/// CompareDerivedToBaseConversions - Compares two standard conversion
2980/// sequences to determine whether they can be ranked based on their
2981/// various kinds of derived-to-base conversions (C++
2982/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2983/// conversions between Objective-C interface types.
2984ImplicitConversionSequence::CompareKind
2985CompareDerivedToBaseConversions(Sema &S,
2986                                const StandardConversionSequence& SCS1,
2987                                const StandardConversionSequence& SCS2) {
2988  QualType FromType1 = SCS1.getFromType();
2989  QualType ToType1 = SCS1.getToType(1);
2990  QualType FromType2 = SCS2.getFromType();
2991  QualType ToType2 = SCS2.getToType(1);
2992
2993  // Adjust the types we're converting from via the array-to-pointer
2994  // conversion, if we need to.
2995  if (SCS1.First == ICK_Array_To_Pointer)
2996    FromType1 = S.Context.getArrayDecayedType(FromType1);
2997  if (SCS2.First == ICK_Array_To_Pointer)
2998    FromType2 = S.Context.getArrayDecayedType(FromType2);
2999
3000  // Canonicalize all of the types.
3001  FromType1 = S.Context.getCanonicalType(FromType1);
3002  ToType1 = S.Context.getCanonicalType(ToType1);
3003  FromType2 = S.Context.getCanonicalType(FromType2);
3004  ToType2 = S.Context.getCanonicalType(ToType2);
3005
3006  // C++ [over.ics.rank]p4b3:
3007  //
3008  //   If class B is derived directly or indirectly from class A and
3009  //   class C is derived directly or indirectly from B,
3010  //
3011  // Compare based on pointer conversions.
3012  if (SCS1.Second == ICK_Pointer_Conversion &&
3013      SCS2.Second == ICK_Pointer_Conversion &&
3014      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3015      FromType1->isPointerType() && FromType2->isPointerType() &&
3016      ToType1->isPointerType() && ToType2->isPointerType()) {
3017    QualType FromPointee1
3018      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3019    QualType ToPointee1
3020      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3021    QualType FromPointee2
3022      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3023    QualType ToPointee2
3024      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3025
3026    //   -- conversion of C* to B* is better than conversion of C* to A*,
3027    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3028      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3029        return ImplicitConversionSequence::Better;
3030      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3031        return ImplicitConversionSequence::Worse;
3032    }
3033
3034    //   -- conversion of B* to A* is better than conversion of C* to A*,
3035    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3036      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3037        return ImplicitConversionSequence::Better;
3038      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3039        return ImplicitConversionSequence::Worse;
3040    }
3041  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3042             SCS2.Second == ICK_Pointer_Conversion) {
3043    const ObjCObjectPointerType *FromPtr1
3044      = FromType1->getAs<ObjCObjectPointerType>();
3045    const ObjCObjectPointerType *FromPtr2
3046      = FromType2->getAs<ObjCObjectPointerType>();
3047    const ObjCObjectPointerType *ToPtr1
3048      = ToType1->getAs<ObjCObjectPointerType>();
3049    const ObjCObjectPointerType *ToPtr2
3050      = ToType2->getAs<ObjCObjectPointerType>();
3051
3052    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3053      // Apply the same conversion ranking rules for Objective-C pointer types
3054      // that we do for C++ pointers to class types. However, we employ the
3055      // Objective-C pseudo-subtyping relationship used for assignment of
3056      // Objective-C pointer types.
3057      bool FromAssignLeft
3058        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3059      bool FromAssignRight
3060        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3061      bool ToAssignLeft
3062        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3063      bool ToAssignRight
3064        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3065
3066      // A conversion to an a non-id object pointer type or qualified 'id'
3067      // type is better than a conversion to 'id'.
3068      if (ToPtr1->isObjCIdType() &&
3069          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3070        return ImplicitConversionSequence::Worse;
3071      if (ToPtr2->isObjCIdType() &&
3072          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3073        return ImplicitConversionSequence::Better;
3074
3075      // A conversion to a non-id object pointer type is better than a
3076      // conversion to a qualified 'id' type
3077      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3078        return ImplicitConversionSequence::Worse;
3079      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3080        return ImplicitConversionSequence::Better;
3081
3082      // A conversion to an a non-Class object pointer type or qualified 'Class'
3083      // type is better than a conversion to 'Class'.
3084      if (ToPtr1->isObjCClassType() &&
3085          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3086        return ImplicitConversionSequence::Worse;
3087      if (ToPtr2->isObjCClassType() &&
3088          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3089        return ImplicitConversionSequence::Better;
3090
3091      // A conversion to a non-Class object pointer type is better than a
3092      // conversion to a qualified 'Class' type.
3093      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3094        return ImplicitConversionSequence::Worse;
3095      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3096        return ImplicitConversionSequence::Better;
3097
3098      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3099      if (S.Context.hasSameType(FromType1, FromType2) &&
3100          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3101          (ToAssignLeft != ToAssignRight))
3102        return ToAssignLeft? ImplicitConversionSequence::Worse
3103                           : ImplicitConversionSequence::Better;
3104
3105      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3106      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3107          (FromAssignLeft != FromAssignRight))
3108        return FromAssignLeft? ImplicitConversionSequence::Better
3109        : ImplicitConversionSequence::Worse;
3110    }
3111  }
3112
3113  // Ranking of member-pointer types.
3114  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3115      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3116      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3117    const MemberPointerType * FromMemPointer1 =
3118                                        FromType1->getAs<MemberPointerType>();
3119    const MemberPointerType * ToMemPointer1 =
3120                                          ToType1->getAs<MemberPointerType>();
3121    const MemberPointerType * FromMemPointer2 =
3122                                          FromType2->getAs<MemberPointerType>();
3123    const MemberPointerType * ToMemPointer2 =
3124                                          ToType2->getAs<MemberPointerType>();
3125    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3126    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3127    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3128    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3129    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3130    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3131    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3132    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3133    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3134    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3135      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3136        return ImplicitConversionSequence::Worse;
3137      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3138        return ImplicitConversionSequence::Better;
3139    }
3140    // conversion of B::* to C::* is better than conversion of A::* to C::*
3141    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3142      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3143        return ImplicitConversionSequence::Better;
3144      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3145        return ImplicitConversionSequence::Worse;
3146    }
3147  }
3148
3149  if (SCS1.Second == ICK_Derived_To_Base) {
3150    //   -- conversion of C to B is better than conversion of C to A,
3151    //   -- binding of an expression of type C to a reference of type
3152    //      B& is better than binding an expression of type C to a
3153    //      reference of type A&,
3154    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3155        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3156      if (S.IsDerivedFrom(ToType1, ToType2))
3157        return ImplicitConversionSequence::Better;
3158      else if (S.IsDerivedFrom(ToType2, ToType1))
3159        return ImplicitConversionSequence::Worse;
3160    }
3161
3162    //   -- conversion of B to A is better than conversion of C to A.
3163    //   -- binding of an expression of type B to a reference of type
3164    //      A& is better than binding an expression of type C to a
3165    //      reference of type A&,
3166    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3167        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3168      if (S.IsDerivedFrom(FromType2, FromType1))
3169        return ImplicitConversionSequence::Better;
3170      else if (S.IsDerivedFrom(FromType1, FromType2))
3171        return ImplicitConversionSequence::Worse;
3172    }
3173  }
3174
3175  return ImplicitConversionSequence::Indistinguishable;
3176}
3177
3178/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3179/// determine whether they are reference-related,
3180/// reference-compatible, reference-compatible with added
3181/// qualification, or incompatible, for use in C++ initialization by
3182/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3183/// type, and the first type (T1) is the pointee type of the reference
3184/// type being initialized.
3185Sema::ReferenceCompareResult
3186Sema::CompareReferenceRelationship(SourceLocation Loc,
3187                                   QualType OrigT1, QualType OrigT2,
3188                                   bool &DerivedToBase,
3189                                   bool &ObjCConversion,
3190                                   bool &ObjCLifetimeConversion) {
3191  assert(!OrigT1->isReferenceType() &&
3192    "T1 must be the pointee type of the reference type");
3193  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3194
3195  QualType T1 = Context.getCanonicalType(OrigT1);
3196  QualType T2 = Context.getCanonicalType(OrigT2);
3197  Qualifiers T1Quals, T2Quals;
3198  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3199  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3200
3201  // C++ [dcl.init.ref]p4:
3202  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3203  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3204  //   T1 is a base class of T2.
3205  DerivedToBase = false;
3206  ObjCConversion = false;
3207  ObjCLifetimeConversion = false;
3208  if (UnqualT1 == UnqualT2) {
3209    // Nothing to do.
3210  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3211           IsDerivedFrom(UnqualT2, UnqualT1))
3212    DerivedToBase = true;
3213  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3214           UnqualT2->isObjCObjectOrInterfaceType() &&
3215           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3216    ObjCConversion = true;
3217  else
3218    return Ref_Incompatible;
3219
3220  // At this point, we know that T1 and T2 are reference-related (at
3221  // least).
3222
3223  // If the type is an array type, promote the element qualifiers to the type
3224  // for comparison.
3225  if (isa<ArrayType>(T1) && T1Quals)
3226    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3227  if (isa<ArrayType>(T2) && T2Quals)
3228    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3229
3230  // C++ [dcl.init.ref]p4:
3231  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3232  //   reference-related to T2 and cv1 is the same cv-qualification
3233  //   as, or greater cv-qualification than, cv2. For purposes of
3234  //   overload resolution, cases for which cv1 is greater
3235  //   cv-qualification than cv2 are identified as
3236  //   reference-compatible with added qualification (see 13.3.3.2).
3237  //
3238  // Note that we also require equivalence of Objective-C GC and address-space
3239  // qualifiers when performing these computations, so that e.g., an int in
3240  // address space 1 is not reference-compatible with an int in address
3241  // space 2.
3242  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3243      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3244    T1Quals.removeObjCLifetime();
3245    T2Quals.removeObjCLifetime();
3246    ObjCLifetimeConversion = true;
3247  }
3248
3249  if (T1Quals == T2Quals)
3250    return Ref_Compatible;
3251  else if (T1Quals.compatiblyIncludes(T2Quals))
3252    return Ref_Compatible_With_Added_Qualification;
3253  else
3254    return Ref_Related;
3255}
3256
3257/// \brief Look for a user-defined conversion to an value reference-compatible
3258///        with DeclType. Return true if something definite is found.
3259static bool
3260FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3261                         QualType DeclType, SourceLocation DeclLoc,
3262                         Expr *Init, QualType T2, bool AllowRvalues,
3263                         bool AllowExplicit) {
3264  assert(T2->isRecordType() && "Can only find conversions of record types.");
3265  CXXRecordDecl *T2RecordDecl
3266    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3267
3268  OverloadCandidateSet CandidateSet(DeclLoc);
3269  const UnresolvedSetImpl *Conversions
3270    = T2RecordDecl->getVisibleConversionFunctions();
3271  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3272         E = Conversions->end(); I != E; ++I) {
3273    NamedDecl *D = *I;
3274    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3275    if (isa<UsingShadowDecl>(D))
3276      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3277
3278    FunctionTemplateDecl *ConvTemplate
3279      = dyn_cast<FunctionTemplateDecl>(D);
3280    CXXConversionDecl *Conv;
3281    if (ConvTemplate)
3282      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3283    else
3284      Conv = cast<CXXConversionDecl>(D);
3285
3286    // If this is an explicit conversion, and we're not allowed to consider
3287    // explicit conversions, skip it.
3288    if (!AllowExplicit && Conv->isExplicit())
3289      continue;
3290
3291    if (AllowRvalues) {
3292      bool DerivedToBase = false;
3293      bool ObjCConversion = false;
3294      bool ObjCLifetimeConversion = false;
3295      if (!ConvTemplate &&
3296          S.CompareReferenceRelationship(
3297            DeclLoc,
3298            Conv->getConversionType().getNonReferenceType()
3299              .getUnqualifiedType(),
3300            DeclType.getNonReferenceType().getUnqualifiedType(),
3301            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3302          Sema::Ref_Incompatible)
3303        continue;
3304    } else {
3305      // If the conversion function doesn't return a reference type,
3306      // it can't be considered for this conversion. An rvalue reference
3307      // is only acceptable if its referencee is a function type.
3308
3309      const ReferenceType *RefType =
3310        Conv->getConversionType()->getAs<ReferenceType>();
3311      if (!RefType ||
3312          (!RefType->isLValueReferenceType() &&
3313           !RefType->getPointeeType()->isFunctionType()))
3314        continue;
3315    }
3316
3317    if (ConvTemplate)
3318      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3319                                       Init, DeclType, CandidateSet);
3320    else
3321      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3322                               DeclType, CandidateSet);
3323  }
3324
3325  OverloadCandidateSet::iterator Best;
3326  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3327  case OR_Success:
3328    // C++ [over.ics.ref]p1:
3329    //
3330    //   [...] If the parameter binds directly to the result of
3331    //   applying a conversion function to the argument
3332    //   expression, the implicit conversion sequence is a
3333    //   user-defined conversion sequence (13.3.3.1.2), with the
3334    //   second standard conversion sequence either an identity
3335    //   conversion or, if the conversion function returns an
3336    //   entity of a type that is a derived class of the parameter
3337    //   type, a derived-to-base Conversion.
3338    if (!Best->FinalConversion.DirectBinding)
3339      return false;
3340
3341    if (Best->Function)
3342      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3343    ICS.setUserDefined();
3344    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3345    ICS.UserDefined.After = Best->FinalConversion;
3346    ICS.UserDefined.ConversionFunction = Best->Function;
3347    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
3348    ICS.UserDefined.EllipsisConversion = false;
3349    assert(ICS.UserDefined.After.ReferenceBinding &&
3350           ICS.UserDefined.After.DirectBinding &&
3351           "Expected a direct reference binding!");
3352    return true;
3353
3354  case OR_Ambiguous:
3355    ICS.setAmbiguous();
3356    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3357         Cand != CandidateSet.end(); ++Cand)
3358      if (Cand->Viable)
3359        ICS.Ambiguous.addConversion(Cand->Function);
3360    return true;
3361
3362  case OR_No_Viable_Function:
3363  case OR_Deleted:
3364    // There was no suitable conversion, or we found a deleted
3365    // conversion; continue with other checks.
3366    return false;
3367  }
3368
3369  return false;
3370}
3371
3372/// \brief Compute an implicit conversion sequence for reference
3373/// initialization.
3374static ImplicitConversionSequence
3375TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3376                 SourceLocation DeclLoc,
3377                 bool SuppressUserConversions,
3378                 bool AllowExplicit) {
3379  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3380
3381  // Most paths end in a failed conversion.
3382  ImplicitConversionSequence ICS;
3383  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3384
3385  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3386  QualType T2 = Init->getType();
3387
3388  // If the initializer is the address of an overloaded function, try
3389  // to resolve the overloaded function. If all goes well, T2 is the
3390  // type of the resulting function.
3391  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3392    DeclAccessPair Found;
3393    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3394                                                                false, Found))
3395      T2 = Fn->getType();
3396  }
3397
3398  // Compute some basic properties of the types and the initializer.
3399  bool isRValRef = DeclType->isRValueReferenceType();
3400  bool DerivedToBase = false;
3401  bool ObjCConversion = false;
3402  bool ObjCLifetimeConversion = false;
3403  Expr::Classification InitCategory = Init->Classify(S.Context);
3404  Sema::ReferenceCompareResult RefRelationship
3405    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3406                                     ObjCConversion, ObjCLifetimeConversion);
3407
3408
3409  // C++0x [dcl.init.ref]p5:
3410  //   A reference to type "cv1 T1" is initialized by an expression
3411  //   of type "cv2 T2" as follows:
3412
3413  //     -- If reference is an lvalue reference and the initializer expression
3414  if (!isRValRef) {
3415    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3416    //        reference-compatible with "cv2 T2," or
3417    //
3418    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3419    if (InitCategory.isLValue() &&
3420        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3421      // C++ [over.ics.ref]p1:
3422      //   When a parameter of reference type binds directly (8.5.3)
3423      //   to an argument expression, the implicit conversion sequence
3424      //   is the identity conversion, unless the argument expression
3425      //   has a type that is a derived class of the parameter type,
3426      //   in which case the implicit conversion sequence is a
3427      //   derived-to-base Conversion (13.3.3.1).
3428      ICS.setStandard();
3429      ICS.Standard.First = ICK_Identity;
3430      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3431                         : ObjCConversion? ICK_Compatible_Conversion
3432                         : ICK_Identity;
3433      ICS.Standard.Third = ICK_Identity;
3434      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3435      ICS.Standard.setToType(0, T2);
3436      ICS.Standard.setToType(1, T1);
3437      ICS.Standard.setToType(2, T1);
3438      ICS.Standard.ReferenceBinding = true;
3439      ICS.Standard.DirectBinding = true;
3440      ICS.Standard.IsLvalueReference = !isRValRef;
3441      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3442      ICS.Standard.BindsToRvalue = false;
3443      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3444      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3445      ICS.Standard.CopyConstructor = 0;
3446
3447      // Nothing more to do: the inaccessibility/ambiguity check for
3448      // derived-to-base conversions is suppressed when we're
3449      // computing the implicit conversion sequence (C++
3450      // [over.best.ics]p2).
3451      return ICS;
3452    }
3453
3454    //       -- has a class type (i.e., T2 is a class type), where T1 is
3455    //          not reference-related to T2, and can be implicitly
3456    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3457    //          is reference-compatible with "cv3 T3" 92) (this
3458    //          conversion is selected by enumerating the applicable
3459    //          conversion functions (13.3.1.6) and choosing the best
3460    //          one through overload resolution (13.3)),
3461    if (!SuppressUserConversions && T2->isRecordType() &&
3462        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3463        RefRelationship == Sema::Ref_Incompatible) {
3464      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3465                                   Init, T2, /*AllowRvalues=*/false,
3466                                   AllowExplicit))
3467        return ICS;
3468    }
3469  }
3470
3471  //     -- Otherwise, the reference shall be an lvalue reference to a
3472  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3473  //        shall be an rvalue reference.
3474  //
3475  // We actually handle one oddity of C++ [over.ics.ref] at this
3476  // point, which is that, due to p2 (which short-circuits reference
3477  // binding by only attempting a simple conversion for non-direct
3478  // bindings) and p3's strange wording, we allow a const volatile
3479  // reference to bind to an rvalue. Hence the check for the presence
3480  // of "const" rather than checking for "const" being the only
3481  // qualifier.
3482  // This is also the point where rvalue references and lvalue inits no longer
3483  // go together.
3484  if (!isRValRef && !T1.isConstQualified())
3485    return ICS;
3486
3487  //       -- If the initializer expression
3488  //
3489  //            -- is an xvalue, class prvalue, array prvalue or function
3490  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3491  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3492      (InitCategory.isXValue() ||
3493      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3494      (InitCategory.isLValue() && T2->isFunctionType()))) {
3495    ICS.setStandard();
3496    ICS.Standard.First = ICK_Identity;
3497    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3498                      : ObjCConversion? ICK_Compatible_Conversion
3499                      : ICK_Identity;
3500    ICS.Standard.Third = ICK_Identity;
3501    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3502    ICS.Standard.setToType(0, T2);
3503    ICS.Standard.setToType(1, T1);
3504    ICS.Standard.setToType(2, T1);
3505    ICS.Standard.ReferenceBinding = true;
3506    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3507    // binding unless we're binding to a class prvalue.
3508    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3509    // allow the use of rvalue references in C++98/03 for the benefit of
3510    // standard library implementors; therefore, we need the xvalue check here.
3511    ICS.Standard.DirectBinding =
3512      S.getLangOptions().CPlusPlus0x ||
3513      (InitCategory.isPRValue() && !T2->isRecordType());
3514    ICS.Standard.IsLvalueReference = !isRValRef;
3515    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3516    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3517    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3518    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3519    ICS.Standard.CopyConstructor = 0;
3520    return ICS;
3521  }
3522
3523  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3524  //               reference-related to T2, and can be implicitly converted to
3525  //               an xvalue, class prvalue, or function lvalue of type
3526  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3527  //               "cv3 T3",
3528  //
3529  //          then the reference is bound to the value of the initializer
3530  //          expression in the first case and to the result of the conversion
3531  //          in the second case (or, in either case, to an appropriate base
3532  //          class subobject).
3533  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3534      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3535      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3536                               Init, T2, /*AllowRvalues=*/true,
3537                               AllowExplicit)) {
3538    // In the second case, if the reference is an rvalue reference
3539    // and the second standard conversion sequence of the
3540    // user-defined conversion sequence includes an lvalue-to-rvalue
3541    // conversion, the program is ill-formed.
3542    if (ICS.isUserDefined() && isRValRef &&
3543        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3544      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3545
3546    return ICS;
3547  }
3548
3549  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3550  //          initialized from the initializer expression using the
3551  //          rules for a non-reference copy initialization (8.5). The
3552  //          reference is then bound to the temporary. If T1 is
3553  //          reference-related to T2, cv1 must be the same
3554  //          cv-qualification as, or greater cv-qualification than,
3555  //          cv2; otherwise, the program is ill-formed.
3556  if (RefRelationship == Sema::Ref_Related) {
3557    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3558    // we would be reference-compatible or reference-compatible with
3559    // added qualification. But that wasn't the case, so the reference
3560    // initialization fails.
3561    //
3562    // Note that we only want to check address spaces and cvr-qualifiers here.
3563    // ObjC GC and lifetime qualifiers aren't important.
3564    Qualifiers T1Quals = T1.getQualifiers();
3565    Qualifiers T2Quals = T2.getQualifiers();
3566    T1Quals.removeObjCGCAttr();
3567    T1Quals.removeObjCLifetime();
3568    T2Quals.removeObjCGCAttr();
3569    T2Quals.removeObjCLifetime();
3570    if (!T1Quals.compatiblyIncludes(T2Quals))
3571      return ICS;
3572  }
3573
3574  // If at least one of the types is a class type, the types are not
3575  // related, and we aren't allowed any user conversions, the
3576  // reference binding fails. This case is important for breaking
3577  // recursion, since TryImplicitConversion below will attempt to
3578  // create a temporary through the use of a copy constructor.
3579  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3580      (T1->isRecordType() || T2->isRecordType()))
3581    return ICS;
3582
3583  // If T1 is reference-related to T2 and the reference is an rvalue
3584  // reference, the initializer expression shall not be an lvalue.
3585  if (RefRelationship >= Sema::Ref_Related &&
3586      isRValRef && Init->Classify(S.Context).isLValue())
3587    return ICS;
3588
3589  // C++ [over.ics.ref]p2:
3590  //   When a parameter of reference type is not bound directly to
3591  //   an argument expression, the conversion sequence is the one
3592  //   required to convert the argument expression to the
3593  //   underlying type of the reference according to
3594  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3595  //   to copy-initializing a temporary of the underlying type with
3596  //   the argument expression. Any difference in top-level
3597  //   cv-qualification is subsumed by the initialization itself
3598  //   and does not constitute a conversion.
3599  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3600                              /*AllowExplicit=*/false,
3601                              /*InOverloadResolution=*/false,
3602                              /*CStyle=*/false,
3603                              /*AllowObjCWritebackConversion=*/false);
3604
3605  // Of course, that's still a reference binding.
3606  if (ICS.isStandard()) {
3607    ICS.Standard.ReferenceBinding = true;
3608    ICS.Standard.IsLvalueReference = !isRValRef;
3609    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3610    ICS.Standard.BindsToRvalue = true;
3611    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3612    ICS.Standard.ObjCLifetimeConversionBinding = false;
3613  } else if (ICS.isUserDefined()) {
3614    ICS.UserDefined.After.ReferenceBinding = true;
3615    ICS.Standard.IsLvalueReference = !isRValRef;
3616    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3617    ICS.Standard.BindsToRvalue = true;
3618    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3619    ICS.Standard.ObjCLifetimeConversionBinding = false;
3620  }
3621
3622  return ICS;
3623}
3624
3625/// TryCopyInitialization - Try to copy-initialize a value of type
3626/// ToType from the expression From. Return the implicit conversion
3627/// sequence required to pass this argument, which may be a bad
3628/// conversion sequence (meaning that the argument cannot be passed to
3629/// a parameter of this type). If @p SuppressUserConversions, then we
3630/// do not permit any user-defined conversion sequences.
3631static ImplicitConversionSequence
3632TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3633                      bool SuppressUserConversions,
3634                      bool InOverloadResolution,
3635                      bool AllowObjCWritebackConversion) {
3636  if (ToType->isReferenceType())
3637    return TryReferenceInit(S, From, ToType,
3638                            /*FIXME:*/From->getLocStart(),
3639                            SuppressUserConversions,
3640                            /*AllowExplicit=*/false);
3641
3642  return TryImplicitConversion(S, From, ToType,
3643                               SuppressUserConversions,
3644                               /*AllowExplicit=*/false,
3645                               InOverloadResolution,
3646                               /*CStyle=*/false,
3647                               AllowObjCWritebackConversion);
3648}
3649
3650/// TryObjectArgumentInitialization - Try to initialize the object
3651/// parameter of the given member function (@c Method) from the
3652/// expression @p From.
3653static ImplicitConversionSequence
3654TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3655                                Expr::Classification FromClassification,
3656                                CXXMethodDecl *Method,
3657                                CXXRecordDecl *ActingContext) {
3658  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3659  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3660  //                 const volatile object.
3661  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3662    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3663  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3664
3665  // Set up the conversion sequence as a "bad" conversion, to allow us
3666  // to exit early.
3667  ImplicitConversionSequence ICS;
3668
3669  // We need to have an object of class type.
3670  QualType FromType = OrigFromType;
3671  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3672    FromType = PT->getPointeeType();
3673
3674    // When we had a pointer, it's implicitly dereferenced, so we
3675    // better have an lvalue.
3676    assert(FromClassification.isLValue());
3677  }
3678
3679  assert(FromType->isRecordType());
3680
3681  // C++0x [over.match.funcs]p4:
3682  //   For non-static member functions, the type of the implicit object
3683  //   parameter is
3684  //
3685  //     - "lvalue reference to cv X" for functions declared without a
3686  //        ref-qualifier or with the & ref-qualifier
3687  //     - "rvalue reference to cv X" for functions declared with the &&
3688  //        ref-qualifier
3689  //
3690  // where X is the class of which the function is a member and cv is the
3691  // cv-qualification on the member function declaration.
3692  //
3693  // However, when finding an implicit conversion sequence for the argument, we
3694  // are not allowed to create temporaries or perform user-defined conversions
3695  // (C++ [over.match.funcs]p5). We perform a simplified version of
3696  // reference binding here, that allows class rvalues to bind to
3697  // non-constant references.
3698
3699  // First check the qualifiers.
3700  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3701  if (ImplicitParamType.getCVRQualifiers()
3702                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3703      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3704    ICS.setBad(BadConversionSequence::bad_qualifiers,
3705               OrigFromType, ImplicitParamType);
3706    return ICS;
3707  }
3708
3709  // Check that we have either the same type or a derived type. It
3710  // affects the conversion rank.
3711  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3712  ImplicitConversionKind SecondKind;
3713  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3714    SecondKind = ICK_Identity;
3715  } else if (S.IsDerivedFrom(FromType, ClassType))
3716    SecondKind = ICK_Derived_To_Base;
3717  else {
3718    ICS.setBad(BadConversionSequence::unrelated_class,
3719               FromType, ImplicitParamType);
3720    return ICS;
3721  }
3722
3723  // Check the ref-qualifier.
3724  switch (Method->getRefQualifier()) {
3725  case RQ_None:
3726    // Do nothing; we don't care about lvalueness or rvalueness.
3727    break;
3728
3729  case RQ_LValue:
3730    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3731      // non-const lvalue reference cannot bind to an rvalue
3732      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3733                 ImplicitParamType);
3734      return ICS;
3735    }
3736    break;
3737
3738  case RQ_RValue:
3739    if (!FromClassification.isRValue()) {
3740      // rvalue reference cannot bind to an lvalue
3741      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3742                 ImplicitParamType);
3743      return ICS;
3744    }
3745    break;
3746  }
3747
3748  // Success. Mark this as a reference binding.
3749  ICS.setStandard();
3750  ICS.Standard.setAsIdentityConversion();
3751  ICS.Standard.Second = SecondKind;
3752  ICS.Standard.setFromType(FromType);
3753  ICS.Standard.setAllToTypes(ImplicitParamType);
3754  ICS.Standard.ReferenceBinding = true;
3755  ICS.Standard.DirectBinding = true;
3756  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3757  ICS.Standard.BindsToFunctionLvalue = false;
3758  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
3759  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
3760    = (Method->getRefQualifier() == RQ_None);
3761  return ICS;
3762}
3763
3764/// PerformObjectArgumentInitialization - Perform initialization of
3765/// the implicit object parameter for the given Method with the given
3766/// expression.
3767ExprResult
3768Sema::PerformObjectArgumentInitialization(Expr *From,
3769                                          NestedNameSpecifier *Qualifier,
3770                                          NamedDecl *FoundDecl,
3771                                          CXXMethodDecl *Method) {
3772  QualType FromRecordType, DestType;
3773  QualType ImplicitParamRecordType  =
3774    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3775
3776  Expr::Classification FromClassification;
3777  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3778    FromRecordType = PT->getPointeeType();
3779    DestType = Method->getThisType(Context);
3780    FromClassification = Expr::Classification::makeSimpleLValue();
3781  } else {
3782    FromRecordType = From->getType();
3783    DestType = ImplicitParamRecordType;
3784    FromClassification = From->Classify(Context);
3785  }
3786
3787  // Note that we always use the true parent context when performing
3788  // the actual argument initialization.
3789  ImplicitConversionSequence ICS
3790    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3791                                      Method, Method->getParent());
3792  if (ICS.isBad()) {
3793    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3794      Qualifiers FromQs = FromRecordType.getQualifiers();
3795      Qualifiers ToQs = DestType.getQualifiers();
3796      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3797      if (CVR) {
3798        Diag(From->getSourceRange().getBegin(),
3799             diag::err_member_function_call_bad_cvr)
3800          << Method->getDeclName() << FromRecordType << (CVR - 1)
3801          << From->getSourceRange();
3802        Diag(Method->getLocation(), diag::note_previous_decl)
3803          << Method->getDeclName();
3804        return ExprError();
3805      }
3806    }
3807
3808    return Diag(From->getSourceRange().getBegin(),
3809                diag::err_implicit_object_parameter_init)
3810       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3811  }
3812
3813  if (ICS.Standard.Second == ICK_Derived_To_Base) {
3814    ExprResult FromRes =
3815      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3816    if (FromRes.isInvalid())
3817      return ExprError();
3818    From = FromRes.take();
3819  }
3820
3821  if (!Context.hasSameType(From->getType(), DestType))
3822    From = ImpCastExprToType(From, DestType, CK_NoOp,
3823                      From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
3824  return Owned(From);
3825}
3826
3827/// TryContextuallyConvertToBool - Attempt to contextually convert the
3828/// expression From to bool (C++0x [conv]p3).
3829static ImplicitConversionSequence
3830TryContextuallyConvertToBool(Sema &S, Expr *From) {
3831  // FIXME: This is pretty broken.
3832  return TryImplicitConversion(S, From, S.Context.BoolTy,
3833                               // FIXME: Are these flags correct?
3834                               /*SuppressUserConversions=*/false,
3835                               /*AllowExplicit=*/true,
3836                               /*InOverloadResolution=*/false,
3837                               /*CStyle=*/false,
3838                               /*AllowObjCWritebackConversion=*/false);
3839}
3840
3841/// PerformContextuallyConvertToBool - Perform a contextual conversion
3842/// of the expression From to bool (C++0x [conv]p3).
3843ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
3844  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3845  if (!ICS.isBad())
3846    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3847
3848  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3849    return Diag(From->getSourceRange().getBegin(),
3850                diag::err_typecheck_bool_condition)
3851                  << From->getType() << From->getSourceRange();
3852  return ExprError();
3853}
3854
3855/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3856/// expression From to 'id'.
3857static ImplicitConversionSequence
3858TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3859  QualType Ty = S.Context.getObjCIdType();
3860  return TryImplicitConversion(S, From, Ty,
3861                               // FIXME: Are these flags correct?
3862                               /*SuppressUserConversions=*/false,
3863                               /*AllowExplicit=*/true,
3864                               /*InOverloadResolution=*/false,
3865                               /*CStyle=*/false,
3866                               /*AllowObjCWritebackConversion=*/false);
3867}
3868
3869/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3870/// of the expression From to 'id'.
3871ExprResult Sema::PerformContextuallyConvertToObjCId(Expr *From) {
3872  QualType Ty = Context.getObjCIdType();
3873  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3874  if (!ICS.isBad())
3875    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3876  return ExprError();
3877}
3878
3879/// \brief Attempt to convert the given expression to an integral or
3880/// enumeration type.
3881///
3882/// This routine will attempt to convert an expression of class type to an
3883/// integral or enumeration type, if that class type only has a single
3884/// conversion to an integral or enumeration type.
3885///
3886/// \param Loc The source location of the construct that requires the
3887/// conversion.
3888///
3889/// \param FromE The expression we're converting from.
3890///
3891/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3892/// have integral or enumeration type.
3893///
3894/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3895/// incomplete class type.
3896///
3897/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3898/// explicit conversion function (because no implicit conversion functions
3899/// were available). This is a recovery mode.
3900///
3901/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3902/// showing which conversion was picked.
3903///
3904/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3905/// conversion function that could convert to integral or enumeration type.
3906///
3907/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3908/// usable conversion function.
3909///
3910/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3911/// function, which may be an extension in this case.
3912///
3913/// \returns The expression, converted to an integral or enumeration type if
3914/// successful.
3915ExprResult
3916Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3917                                         const PartialDiagnostic &NotIntDiag,
3918                                       const PartialDiagnostic &IncompleteDiag,
3919                                     const PartialDiagnostic &ExplicitConvDiag,
3920                                     const PartialDiagnostic &ExplicitConvNote,
3921                                         const PartialDiagnostic &AmbigDiag,
3922                                         const PartialDiagnostic &AmbigNote,
3923                                         const PartialDiagnostic &ConvDiag) {
3924  // We can't perform any more checking for type-dependent expressions.
3925  if (From->isTypeDependent())
3926    return Owned(From);
3927
3928  // If the expression already has integral or enumeration type, we're golden.
3929  QualType T = From->getType();
3930  if (T->isIntegralOrEnumerationType())
3931    return Owned(From);
3932
3933  // FIXME: Check for missing '()' if T is a function type?
3934
3935  // If we don't have a class type in C++, there's no way we can get an
3936  // expression of integral or enumeration type.
3937  const RecordType *RecordTy = T->getAs<RecordType>();
3938  if (!RecordTy || !getLangOptions().CPlusPlus) {
3939    Diag(Loc, NotIntDiag)
3940      << T << From->getSourceRange();
3941    return Owned(From);
3942  }
3943
3944  // We must have a complete class type.
3945  if (RequireCompleteType(Loc, T, IncompleteDiag))
3946    return Owned(From);
3947
3948  // Look for a conversion to an integral or enumeration type.
3949  UnresolvedSet<4> ViableConversions;
3950  UnresolvedSet<4> ExplicitConversions;
3951  const UnresolvedSetImpl *Conversions
3952    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3953
3954  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3955                                   E = Conversions->end();
3956       I != E;
3957       ++I) {
3958    if (CXXConversionDecl *Conversion
3959          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3960      if (Conversion->getConversionType().getNonReferenceType()
3961            ->isIntegralOrEnumerationType()) {
3962        if (Conversion->isExplicit())
3963          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3964        else
3965          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3966      }
3967  }
3968
3969  switch (ViableConversions.size()) {
3970  case 0:
3971    if (ExplicitConversions.size() == 1) {
3972      DeclAccessPair Found = ExplicitConversions[0];
3973      CXXConversionDecl *Conversion
3974        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3975
3976      // The user probably meant to invoke the given explicit
3977      // conversion; use it.
3978      QualType ConvTy
3979        = Conversion->getConversionType().getNonReferenceType();
3980      std::string TypeStr;
3981      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3982
3983      Diag(Loc, ExplicitConvDiag)
3984        << T << ConvTy
3985        << FixItHint::CreateInsertion(From->getLocStart(),
3986                                      "static_cast<" + TypeStr + ">(")
3987        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3988                                      ")");
3989      Diag(Conversion->getLocation(), ExplicitConvNote)
3990        << ConvTy->isEnumeralType() << ConvTy;
3991
3992      // If we aren't in a SFINAE context, build a call to the
3993      // explicit conversion function.
3994      if (isSFINAEContext())
3995        return ExprError();
3996
3997      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3998      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3999      if (Result.isInvalid())
4000        return ExprError();
4001
4002      From = Result.get();
4003    }
4004
4005    // We'll complain below about a non-integral condition type.
4006    break;
4007
4008  case 1: {
4009    // Apply this conversion.
4010    DeclAccessPair Found = ViableConversions[0];
4011    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4012
4013    CXXConversionDecl *Conversion
4014      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4015    QualType ConvTy
4016      = Conversion->getConversionType().getNonReferenceType();
4017    if (ConvDiag.getDiagID()) {
4018      if (isSFINAEContext())
4019        return ExprError();
4020
4021      Diag(Loc, ConvDiag)
4022        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4023    }
4024
4025    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
4026                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
4027    if (Result.isInvalid())
4028      return ExprError();
4029
4030    From = Result.get();
4031    break;
4032  }
4033
4034  default:
4035    Diag(Loc, AmbigDiag)
4036      << T << From->getSourceRange();
4037    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4038      CXXConversionDecl *Conv
4039        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4040      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4041      Diag(Conv->getLocation(), AmbigNote)
4042        << ConvTy->isEnumeralType() << ConvTy;
4043    }
4044    return Owned(From);
4045  }
4046
4047  if (!From->getType()->isIntegralOrEnumerationType())
4048    Diag(Loc, NotIntDiag)
4049      << From->getType() << From->getSourceRange();
4050
4051  return Owned(From);
4052}
4053
4054/// AddOverloadCandidate - Adds the given function to the set of
4055/// candidate functions, using the given function call arguments.  If
4056/// @p SuppressUserConversions, then don't allow user-defined
4057/// conversions via constructors or conversion operators.
4058///
4059/// \para PartialOverloading true if we are performing "partial" overloading
4060/// based on an incomplete set of function arguments. This feature is used by
4061/// code completion.
4062void
4063Sema::AddOverloadCandidate(FunctionDecl *Function,
4064                           DeclAccessPair FoundDecl,
4065                           Expr **Args, unsigned NumArgs,
4066                           OverloadCandidateSet& CandidateSet,
4067                           bool SuppressUserConversions,
4068                           bool PartialOverloading) {
4069  const FunctionProtoType* Proto
4070    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4071  assert(Proto && "Functions without a prototype cannot be overloaded");
4072  assert(!Function->getDescribedFunctionTemplate() &&
4073         "Use AddTemplateOverloadCandidate for function templates");
4074
4075  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4076    if (!isa<CXXConstructorDecl>(Method)) {
4077      // If we get here, it's because we're calling a member function
4078      // that is named without a member access expression (e.g.,
4079      // "this->f") that was either written explicitly or created
4080      // implicitly. This can happen with a qualified call to a member
4081      // function, e.g., X::f(). We use an empty type for the implied
4082      // object argument (C++ [over.call.func]p3), and the acting context
4083      // is irrelevant.
4084      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
4085                         QualType(), Expr::Classification::makeSimpleLValue(),
4086                         Args, NumArgs, CandidateSet,
4087                         SuppressUserConversions);
4088      return;
4089    }
4090    // We treat a constructor like a non-member function, since its object
4091    // argument doesn't participate in overload resolution.
4092  }
4093
4094  if (!CandidateSet.isNewCandidate(Function))
4095    return;
4096
4097  // Overload resolution is always an unevaluated context.
4098  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4099
4100  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
4101    // C++ [class.copy]p3:
4102    //   A member function template is never instantiated to perform the copy
4103    //   of a class object to an object of its class type.
4104    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
4105    if (NumArgs == 1 &&
4106        Constructor->isSpecializationCopyingObject() &&
4107        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
4108         IsDerivedFrom(Args[0]->getType(), ClassType)))
4109      return;
4110  }
4111
4112  // Add this candidate
4113  CandidateSet.push_back(OverloadCandidate());
4114  OverloadCandidate& Candidate = CandidateSet.back();
4115  Candidate.FoundDecl = FoundDecl;
4116  Candidate.Function = Function;
4117  Candidate.Viable = true;
4118  Candidate.IsSurrogate = false;
4119  Candidate.IgnoreObjectArgument = false;
4120  Candidate.ExplicitCallArguments = NumArgs;
4121
4122  unsigned NumArgsInProto = Proto->getNumArgs();
4123
4124  // (C++ 13.3.2p2): A candidate function having fewer than m
4125  // parameters is viable only if it has an ellipsis in its parameter
4126  // list (8.3.5).
4127  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
4128      !Proto->isVariadic()) {
4129    Candidate.Viable = false;
4130    Candidate.FailureKind = ovl_fail_too_many_arguments;
4131    return;
4132  }
4133
4134  // (C++ 13.3.2p2): A candidate function having more than m parameters
4135  // is viable only if the (m+1)st parameter has a default argument
4136  // (8.3.6). For the purposes of overload resolution, the
4137  // parameter list is truncated on the right, so that there are
4138  // exactly m parameters.
4139  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
4140  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
4141    // Not enough arguments.
4142    Candidate.Viable = false;
4143    Candidate.FailureKind = ovl_fail_too_few_arguments;
4144    return;
4145  }
4146
4147  // Determine the implicit conversion sequences for each of the
4148  // arguments.
4149  Candidate.Conversions.resize(NumArgs);
4150  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4151    if (ArgIdx < NumArgsInProto) {
4152      // (C++ 13.3.2p3): for F to be a viable function, there shall
4153      // exist for each argument an implicit conversion sequence
4154      // (13.3.3.1) that converts that argument to the corresponding
4155      // parameter of F.
4156      QualType ParamType = Proto->getArgType(ArgIdx);
4157      Candidate.Conversions[ArgIdx]
4158        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4159                                SuppressUserConversions,
4160                                /*InOverloadResolution=*/true,
4161                                /*AllowObjCWritebackConversion=*/
4162                                  getLangOptions().ObjCAutoRefCount);
4163      if (Candidate.Conversions[ArgIdx].isBad()) {
4164        Candidate.Viable = false;
4165        Candidate.FailureKind = ovl_fail_bad_conversion;
4166        break;
4167      }
4168    } else {
4169      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4170      // argument for which there is no corresponding parameter is
4171      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4172      Candidate.Conversions[ArgIdx].setEllipsis();
4173    }
4174  }
4175}
4176
4177/// \brief Add all of the function declarations in the given function set to
4178/// the overload canddiate set.
4179void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
4180                                 Expr **Args, unsigned NumArgs,
4181                                 OverloadCandidateSet& CandidateSet,
4182                                 bool SuppressUserConversions) {
4183  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
4184    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
4185    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4186      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
4187        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
4188                           cast<CXXMethodDecl>(FD)->getParent(),
4189                           Args[0]->getType(), Args[0]->Classify(Context),
4190                           Args + 1, NumArgs - 1,
4191                           CandidateSet, SuppressUserConversions);
4192      else
4193        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
4194                             SuppressUserConversions);
4195    } else {
4196      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
4197      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
4198          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
4199        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
4200                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
4201                                   /*FIXME: explicit args */ 0,
4202                                   Args[0]->getType(),
4203                                   Args[0]->Classify(Context),
4204                                   Args + 1, NumArgs - 1,
4205                                   CandidateSet,
4206                                   SuppressUserConversions);
4207      else
4208        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
4209                                     /*FIXME: explicit args */ 0,
4210                                     Args, NumArgs, CandidateSet,
4211                                     SuppressUserConversions);
4212    }
4213  }
4214}
4215
4216/// AddMethodCandidate - Adds a named decl (which is some kind of
4217/// method) as a method candidate to the given overload set.
4218void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
4219                              QualType ObjectType,
4220                              Expr::Classification ObjectClassification,
4221                              Expr **Args, unsigned NumArgs,
4222                              OverloadCandidateSet& CandidateSet,
4223                              bool SuppressUserConversions) {
4224  NamedDecl *Decl = FoundDecl.getDecl();
4225  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4226
4227  if (isa<UsingShadowDecl>(Decl))
4228    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4229
4230  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4231    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4232           "Expected a member function template");
4233    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4234                               /*ExplicitArgs*/ 0,
4235                               ObjectType, ObjectClassification, Args, NumArgs,
4236                               CandidateSet,
4237                               SuppressUserConversions);
4238  } else {
4239    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4240                       ObjectType, ObjectClassification, Args, NumArgs,
4241                       CandidateSet, SuppressUserConversions);
4242  }
4243}
4244
4245/// AddMethodCandidate - Adds the given C++ member function to the set
4246/// of candidate functions, using the given function call arguments
4247/// and the object argument (@c Object). For example, in a call
4248/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4249/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4250/// allow user-defined conversions via constructors or conversion
4251/// operators.
4252void
4253Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4254                         CXXRecordDecl *ActingContext, QualType ObjectType,
4255                         Expr::Classification ObjectClassification,
4256                         Expr **Args, unsigned NumArgs,
4257                         OverloadCandidateSet& CandidateSet,
4258                         bool SuppressUserConversions) {
4259  const FunctionProtoType* Proto
4260    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4261  assert(Proto && "Methods without a prototype cannot be overloaded");
4262  assert(!isa<CXXConstructorDecl>(Method) &&
4263         "Use AddOverloadCandidate for constructors");
4264
4265  if (!CandidateSet.isNewCandidate(Method))
4266    return;
4267
4268  // Overload resolution is always an unevaluated context.
4269  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4270
4271  // Add this candidate
4272  CandidateSet.push_back(OverloadCandidate());
4273  OverloadCandidate& Candidate = CandidateSet.back();
4274  Candidate.FoundDecl = FoundDecl;
4275  Candidate.Function = Method;
4276  Candidate.IsSurrogate = false;
4277  Candidate.IgnoreObjectArgument = false;
4278  Candidate.ExplicitCallArguments = NumArgs;
4279
4280  unsigned NumArgsInProto = Proto->getNumArgs();
4281
4282  // (C++ 13.3.2p2): A candidate function having fewer than m
4283  // parameters is viable only if it has an ellipsis in its parameter
4284  // list (8.3.5).
4285  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4286    Candidate.Viable = false;
4287    Candidate.FailureKind = ovl_fail_too_many_arguments;
4288    return;
4289  }
4290
4291  // (C++ 13.3.2p2): A candidate function having more than m parameters
4292  // is viable only if the (m+1)st parameter has a default argument
4293  // (8.3.6). For the purposes of overload resolution, the
4294  // parameter list is truncated on the right, so that there are
4295  // exactly m parameters.
4296  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4297  if (NumArgs < MinRequiredArgs) {
4298    // Not enough arguments.
4299    Candidate.Viable = false;
4300    Candidate.FailureKind = ovl_fail_too_few_arguments;
4301    return;
4302  }
4303
4304  Candidate.Viable = true;
4305  Candidate.Conversions.resize(NumArgs + 1);
4306
4307  if (Method->isStatic() || ObjectType.isNull())
4308    // The implicit object argument is ignored.
4309    Candidate.IgnoreObjectArgument = true;
4310  else {
4311    // Determine the implicit conversion sequence for the object
4312    // parameter.
4313    Candidate.Conversions[0]
4314      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4315                                        Method, ActingContext);
4316    if (Candidate.Conversions[0].isBad()) {
4317      Candidate.Viable = false;
4318      Candidate.FailureKind = ovl_fail_bad_conversion;
4319      return;
4320    }
4321  }
4322
4323  // Determine the implicit conversion sequences for each of the
4324  // arguments.
4325  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4326    if (ArgIdx < NumArgsInProto) {
4327      // (C++ 13.3.2p3): for F to be a viable function, there shall
4328      // exist for each argument an implicit conversion sequence
4329      // (13.3.3.1) that converts that argument to the corresponding
4330      // parameter of F.
4331      QualType ParamType = Proto->getArgType(ArgIdx);
4332      Candidate.Conversions[ArgIdx + 1]
4333        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4334                                SuppressUserConversions,
4335                                /*InOverloadResolution=*/true,
4336                                /*AllowObjCWritebackConversion=*/
4337                                  getLangOptions().ObjCAutoRefCount);
4338      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4339        Candidate.Viable = false;
4340        Candidate.FailureKind = ovl_fail_bad_conversion;
4341        break;
4342      }
4343    } else {
4344      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4345      // argument for which there is no corresponding parameter is
4346      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4347      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4348    }
4349  }
4350}
4351
4352/// \brief Add a C++ member function template as a candidate to the candidate
4353/// set, using template argument deduction to produce an appropriate member
4354/// function template specialization.
4355void
4356Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4357                                 DeclAccessPair FoundDecl,
4358                                 CXXRecordDecl *ActingContext,
4359                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4360                                 QualType ObjectType,
4361                                 Expr::Classification ObjectClassification,
4362                                 Expr **Args, unsigned NumArgs,
4363                                 OverloadCandidateSet& CandidateSet,
4364                                 bool SuppressUserConversions) {
4365  if (!CandidateSet.isNewCandidate(MethodTmpl))
4366    return;
4367
4368  // C++ [over.match.funcs]p7:
4369  //   In each case where a candidate is a function template, candidate
4370  //   function template specializations are generated using template argument
4371  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4372  //   candidate functions in the usual way.113) A given name can refer to one
4373  //   or more function templates and also to a set of overloaded non-template
4374  //   functions. In such a case, the candidate functions generated from each
4375  //   function template are combined with the set of non-template candidate
4376  //   functions.
4377  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4378  FunctionDecl *Specialization = 0;
4379  if (TemplateDeductionResult Result
4380      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4381                                Args, NumArgs, Specialization, Info)) {
4382    CandidateSet.push_back(OverloadCandidate());
4383    OverloadCandidate &Candidate = CandidateSet.back();
4384    Candidate.FoundDecl = FoundDecl;
4385    Candidate.Function = MethodTmpl->getTemplatedDecl();
4386    Candidate.Viable = false;
4387    Candidate.FailureKind = ovl_fail_bad_deduction;
4388    Candidate.IsSurrogate = false;
4389    Candidate.IgnoreObjectArgument = false;
4390    Candidate.ExplicitCallArguments = NumArgs;
4391    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4392                                                          Info);
4393    return;
4394  }
4395
4396  // Add the function template specialization produced by template argument
4397  // deduction as a candidate.
4398  assert(Specialization && "Missing member function template specialization?");
4399  assert(isa<CXXMethodDecl>(Specialization) &&
4400         "Specialization is not a member function?");
4401  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4402                     ActingContext, ObjectType, ObjectClassification,
4403                     Args, NumArgs, CandidateSet, SuppressUserConversions);
4404}
4405
4406/// \brief Add a C++ function template specialization as a candidate
4407/// in the candidate set, using template argument deduction to produce
4408/// an appropriate function template specialization.
4409void
4410Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4411                                   DeclAccessPair FoundDecl,
4412                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4413                                   Expr **Args, unsigned NumArgs,
4414                                   OverloadCandidateSet& CandidateSet,
4415                                   bool SuppressUserConversions) {
4416  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4417    return;
4418
4419  // C++ [over.match.funcs]p7:
4420  //   In each case where a candidate is a function template, candidate
4421  //   function template specializations are generated using template argument
4422  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4423  //   candidate functions in the usual way.113) A given name can refer to one
4424  //   or more function templates and also to a set of overloaded non-template
4425  //   functions. In such a case, the candidate functions generated from each
4426  //   function template are combined with the set of non-template candidate
4427  //   functions.
4428  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4429  FunctionDecl *Specialization = 0;
4430  if (TemplateDeductionResult Result
4431        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4432                                  Args, NumArgs, Specialization, Info)) {
4433    CandidateSet.push_back(OverloadCandidate());
4434    OverloadCandidate &Candidate = CandidateSet.back();
4435    Candidate.FoundDecl = FoundDecl;
4436    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4437    Candidate.Viable = false;
4438    Candidate.FailureKind = ovl_fail_bad_deduction;
4439    Candidate.IsSurrogate = false;
4440    Candidate.IgnoreObjectArgument = false;
4441    Candidate.ExplicitCallArguments = NumArgs;
4442    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4443                                                          Info);
4444    return;
4445  }
4446
4447  // Add the function template specialization produced by template argument
4448  // deduction as a candidate.
4449  assert(Specialization && "Missing function template specialization?");
4450  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4451                       SuppressUserConversions);
4452}
4453
4454/// AddConversionCandidate - Add a C++ conversion function as a
4455/// candidate in the candidate set (C++ [over.match.conv],
4456/// C++ [over.match.copy]). From is the expression we're converting from,
4457/// and ToType is the type that we're eventually trying to convert to
4458/// (which may or may not be the same type as the type that the
4459/// conversion function produces).
4460void
4461Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4462                             DeclAccessPair FoundDecl,
4463                             CXXRecordDecl *ActingContext,
4464                             Expr *From, QualType ToType,
4465                             OverloadCandidateSet& CandidateSet) {
4466  assert(!Conversion->getDescribedFunctionTemplate() &&
4467         "Conversion function templates use AddTemplateConversionCandidate");
4468  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4469  if (!CandidateSet.isNewCandidate(Conversion))
4470    return;
4471
4472  // Overload resolution is always an unevaluated context.
4473  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4474
4475  // Add this candidate
4476  CandidateSet.push_back(OverloadCandidate());
4477  OverloadCandidate& Candidate = CandidateSet.back();
4478  Candidate.FoundDecl = FoundDecl;
4479  Candidate.Function = Conversion;
4480  Candidate.IsSurrogate = false;
4481  Candidate.IgnoreObjectArgument = false;
4482  Candidate.FinalConversion.setAsIdentityConversion();
4483  Candidate.FinalConversion.setFromType(ConvType);
4484  Candidate.FinalConversion.setAllToTypes(ToType);
4485  Candidate.Viable = true;
4486  Candidate.Conversions.resize(1);
4487  Candidate.ExplicitCallArguments = 1;
4488
4489  // C++ [over.match.funcs]p4:
4490  //   For conversion functions, the function is considered to be a member of
4491  //   the class of the implicit implied object argument for the purpose of
4492  //   defining the type of the implicit object parameter.
4493  //
4494  // Determine the implicit conversion sequence for the implicit
4495  // object parameter.
4496  QualType ImplicitParamType = From->getType();
4497  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4498    ImplicitParamType = FromPtrType->getPointeeType();
4499  CXXRecordDecl *ConversionContext
4500    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4501
4502  Candidate.Conversions[0]
4503    = TryObjectArgumentInitialization(*this, From->getType(),
4504                                      From->Classify(Context),
4505                                      Conversion, ConversionContext);
4506
4507  if (Candidate.Conversions[0].isBad()) {
4508    Candidate.Viable = false;
4509    Candidate.FailureKind = ovl_fail_bad_conversion;
4510    return;
4511  }
4512
4513  // We won't go through a user-define type conversion function to convert a
4514  // derived to base as such conversions are given Conversion Rank. They only
4515  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4516  QualType FromCanon
4517    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4518  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4519  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4520    Candidate.Viable = false;
4521    Candidate.FailureKind = ovl_fail_trivial_conversion;
4522    return;
4523  }
4524
4525  // To determine what the conversion from the result of calling the
4526  // conversion function to the type we're eventually trying to
4527  // convert to (ToType), we need to synthesize a call to the
4528  // conversion function and attempt copy initialization from it. This
4529  // makes sure that we get the right semantics with respect to
4530  // lvalues/rvalues and the type. Fortunately, we can allocate this
4531  // call on the stack and we don't need its arguments to be
4532  // well-formed.
4533  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4534                            VK_LValue, From->getLocStart());
4535  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4536                                Context.getPointerType(Conversion->getType()),
4537                                CK_FunctionToPointerDecay,
4538                                &ConversionRef, VK_RValue);
4539
4540  QualType ConversionType = Conversion->getConversionType();
4541  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
4542    Candidate.Viable = false;
4543    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4544    return;
4545  }
4546
4547  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
4548
4549  // Note that it is safe to allocate CallExpr on the stack here because
4550  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4551  // allocator).
4552  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
4553  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4554                From->getLocStart());
4555  ImplicitConversionSequence ICS =
4556    TryCopyInitialization(*this, &Call, ToType,
4557                          /*SuppressUserConversions=*/true,
4558                          /*InOverloadResolution=*/false,
4559                          /*AllowObjCWritebackConversion=*/false);
4560
4561  switch (ICS.getKind()) {
4562  case ImplicitConversionSequence::StandardConversion:
4563    Candidate.FinalConversion = ICS.Standard;
4564
4565    // C++ [over.ics.user]p3:
4566    //   If the user-defined conversion is specified by a specialization of a
4567    //   conversion function template, the second standard conversion sequence
4568    //   shall have exact match rank.
4569    if (Conversion->getPrimaryTemplate() &&
4570        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4571      Candidate.Viable = false;
4572      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4573    }
4574
4575    // C++0x [dcl.init.ref]p5:
4576    //    In the second case, if the reference is an rvalue reference and
4577    //    the second standard conversion sequence of the user-defined
4578    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4579    //    program is ill-formed.
4580    if (ToType->isRValueReferenceType() &&
4581        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4582      Candidate.Viable = false;
4583      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4584    }
4585    break;
4586
4587  case ImplicitConversionSequence::BadConversion:
4588    Candidate.Viable = false;
4589    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4590    break;
4591
4592  default:
4593    assert(false &&
4594           "Can only end up with a standard conversion sequence or failure");
4595  }
4596}
4597
4598/// \brief Adds a conversion function template specialization
4599/// candidate to the overload set, using template argument deduction
4600/// to deduce the template arguments of the conversion function
4601/// template from the type that we are converting to (C++
4602/// [temp.deduct.conv]).
4603void
4604Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4605                                     DeclAccessPair FoundDecl,
4606                                     CXXRecordDecl *ActingDC,
4607                                     Expr *From, QualType ToType,
4608                                     OverloadCandidateSet &CandidateSet) {
4609  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4610         "Only conversion function templates permitted here");
4611
4612  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4613    return;
4614
4615  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4616  CXXConversionDecl *Specialization = 0;
4617  if (TemplateDeductionResult Result
4618        = DeduceTemplateArguments(FunctionTemplate, ToType,
4619                                  Specialization, Info)) {
4620    CandidateSet.push_back(OverloadCandidate());
4621    OverloadCandidate &Candidate = CandidateSet.back();
4622    Candidate.FoundDecl = FoundDecl;
4623    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4624    Candidate.Viable = false;
4625    Candidate.FailureKind = ovl_fail_bad_deduction;
4626    Candidate.IsSurrogate = false;
4627    Candidate.IgnoreObjectArgument = false;
4628    Candidate.ExplicitCallArguments = 1;
4629    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4630                                                          Info);
4631    return;
4632  }
4633
4634  // Add the conversion function template specialization produced by
4635  // template argument deduction as a candidate.
4636  assert(Specialization && "Missing function template specialization?");
4637  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4638                         CandidateSet);
4639}
4640
4641/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4642/// converts the given @c Object to a function pointer via the
4643/// conversion function @c Conversion, and then attempts to call it
4644/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4645/// the type of function that we'll eventually be calling.
4646void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4647                                 DeclAccessPair FoundDecl,
4648                                 CXXRecordDecl *ActingContext,
4649                                 const FunctionProtoType *Proto,
4650                                 Expr *Object,
4651                                 Expr **Args, unsigned NumArgs,
4652                                 OverloadCandidateSet& CandidateSet) {
4653  if (!CandidateSet.isNewCandidate(Conversion))
4654    return;
4655
4656  // Overload resolution is always an unevaluated context.
4657  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4658
4659  CandidateSet.push_back(OverloadCandidate());
4660  OverloadCandidate& Candidate = CandidateSet.back();
4661  Candidate.FoundDecl = FoundDecl;
4662  Candidate.Function = 0;
4663  Candidate.Surrogate = Conversion;
4664  Candidate.Viable = true;
4665  Candidate.IsSurrogate = true;
4666  Candidate.IgnoreObjectArgument = false;
4667  Candidate.Conversions.resize(NumArgs + 1);
4668  Candidate.ExplicitCallArguments = NumArgs;
4669
4670  // Determine the implicit conversion sequence for the implicit
4671  // object parameter.
4672  ImplicitConversionSequence ObjectInit
4673    = TryObjectArgumentInitialization(*this, Object->getType(),
4674                                      Object->Classify(Context),
4675                                      Conversion, ActingContext);
4676  if (ObjectInit.isBad()) {
4677    Candidate.Viable = false;
4678    Candidate.FailureKind = ovl_fail_bad_conversion;
4679    Candidate.Conversions[0] = ObjectInit;
4680    return;
4681  }
4682
4683  // The first conversion is actually a user-defined conversion whose
4684  // first conversion is ObjectInit's standard conversion (which is
4685  // effectively a reference binding). Record it as such.
4686  Candidate.Conversions[0].setUserDefined();
4687  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4688  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4689  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4690  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4691    = FoundDecl.getDecl();
4692  Candidate.Conversions[0].UserDefined.After
4693    = Candidate.Conversions[0].UserDefined.Before;
4694  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4695
4696  // Find the
4697  unsigned NumArgsInProto = Proto->getNumArgs();
4698
4699  // (C++ 13.3.2p2): A candidate function having fewer than m
4700  // parameters is viable only if it has an ellipsis in its parameter
4701  // list (8.3.5).
4702  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4703    Candidate.Viable = false;
4704    Candidate.FailureKind = ovl_fail_too_many_arguments;
4705    return;
4706  }
4707
4708  // Function types don't have any default arguments, so just check if
4709  // we have enough arguments.
4710  if (NumArgs < NumArgsInProto) {
4711    // Not enough arguments.
4712    Candidate.Viable = false;
4713    Candidate.FailureKind = ovl_fail_too_few_arguments;
4714    return;
4715  }
4716
4717  // Determine the implicit conversion sequences for each of the
4718  // arguments.
4719  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4720    if (ArgIdx < NumArgsInProto) {
4721      // (C++ 13.3.2p3): for F to be a viable function, there shall
4722      // exist for each argument an implicit conversion sequence
4723      // (13.3.3.1) that converts that argument to the corresponding
4724      // parameter of F.
4725      QualType ParamType = Proto->getArgType(ArgIdx);
4726      Candidate.Conversions[ArgIdx + 1]
4727        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4728                                /*SuppressUserConversions=*/false,
4729                                /*InOverloadResolution=*/false,
4730                                /*AllowObjCWritebackConversion=*/
4731                                  getLangOptions().ObjCAutoRefCount);
4732      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4733        Candidate.Viable = false;
4734        Candidate.FailureKind = ovl_fail_bad_conversion;
4735        break;
4736      }
4737    } else {
4738      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4739      // argument for which there is no corresponding parameter is
4740      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4741      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4742    }
4743  }
4744}
4745
4746/// \brief Add overload candidates for overloaded operators that are
4747/// member functions.
4748///
4749/// Add the overloaded operator candidates that are member functions
4750/// for the operator Op that was used in an operator expression such
4751/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4752/// CandidateSet will store the added overload candidates. (C++
4753/// [over.match.oper]).
4754void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4755                                       SourceLocation OpLoc,
4756                                       Expr **Args, unsigned NumArgs,
4757                                       OverloadCandidateSet& CandidateSet,
4758                                       SourceRange OpRange) {
4759  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4760
4761  // C++ [over.match.oper]p3:
4762  //   For a unary operator @ with an operand of a type whose
4763  //   cv-unqualified version is T1, and for a binary operator @ with
4764  //   a left operand of a type whose cv-unqualified version is T1 and
4765  //   a right operand of a type whose cv-unqualified version is T2,
4766  //   three sets of candidate functions, designated member
4767  //   candidates, non-member candidates and built-in candidates, are
4768  //   constructed as follows:
4769  QualType T1 = Args[0]->getType();
4770
4771  //     -- If T1 is a class type, the set of member candidates is the
4772  //        result of the qualified lookup of T1::operator@
4773  //        (13.3.1.1.1); otherwise, the set of member candidates is
4774  //        empty.
4775  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4776    // Complete the type if it can be completed. Otherwise, we're done.
4777    if (RequireCompleteType(OpLoc, T1, PDiag()))
4778      return;
4779
4780    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4781    LookupQualifiedName(Operators, T1Rec->getDecl());
4782    Operators.suppressDiagnostics();
4783
4784    for (LookupResult::iterator Oper = Operators.begin(),
4785                             OperEnd = Operators.end();
4786         Oper != OperEnd;
4787         ++Oper)
4788      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4789                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4790                         CandidateSet,
4791                         /* SuppressUserConversions = */ false);
4792  }
4793}
4794
4795/// AddBuiltinCandidate - Add a candidate for a built-in
4796/// operator. ResultTy and ParamTys are the result and parameter types
4797/// of the built-in candidate, respectively. Args and NumArgs are the
4798/// arguments being passed to the candidate. IsAssignmentOperator
4799/// should be true when this built-in candidate is an assignment
4800/// operator. NumContextualBoolArguments is the number of arguments
4801/// (at the beginning of the argument list) that will be contextually
4802/// converted to bool.
4803void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4804                               Expr **Args, unsigned NumArgs,
4805                               OverloadCandidateSet& CandidateSet,
4806                               bool IsAssignmentOperator,
4807                               unsigned NumContextualBoolArguments) {
4808  // Overload resolution is always an unevaluated context.
4809  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4810
4811  // Add this candidate
4812  CandidateSet.push_back(OverloadCandidate());
4813  OverloadCandidate& Candidate = CandidateSet.back();
4814  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4815  Candidate.Function = 0;
4816  Candidate.IsSurrogate = false;
4817  Candidate.IgnoreObjectArgument = false;
4818  Candidate.BuiltinTypes.ResultTy = ResultTy;
4819  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4820    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4821
4822  // Determine the implicit conversion sequences for each of the
4823  // arguments.
4824  Candidate.Viable = true;
4825  Candidate.Conversions.resize(NumArgs);
4826  Candidate.ExplicitCallArguments = NumArgs;
4827  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4828    // C++ [over.match.oper]p4:
4829    //   For the built-in assignment operators, conversions of the
4830    //   left operand are restricted as follows:
4831    //     -- no temporaries are introduced to hold the left operand, and
4832    //     -- no user-defined conversions are applied to the left
4833    //        operand to achieve a type match with the left-most
4834    //        parameter of a built-in candidate.
4835    //
4836    // We block these conversions by turning off user-defined
4837    // conversions, since that is the only way that initialization of
4838    // a reference to a non-class type can occur from something that
4839    // is not of the same type.
4840    if (ArgIdx < NumContextualBoolArguments) {
4841      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4842             "Contextual conversion to bool requires bool type");
4843      Candidate.Conversions[ArgIdx]
4844        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4845    } else {
4846      Candidate.Conversions[ArgIdx]
4847        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4848                                ArgIdx == 0 && IsAssignmentOperator,
4849                                /*InOverloadResolution=*/false,
4850                                /*AllowObjCWritebackConversion=*/
4851                                  getLangOptions().ObjCAutoRefCount);
4852    }
4853    if (Candidate.Conversions[ArgIdx].isBad()) {
4854      Candidate.Viable = false;
4855      Candidate.FailureKind = ovl_fail_bad_conversion;
4856      break;
4857    }
4858  }
4859}
4860
4861/// BuiltinCandidateTypeSet - A set of types that will be used for the
4862/// candidate operator functions for built-in operators (C++
4863/// [over.built]). The types are separated into pointer types and
4864/// enumeration types.
4865class BuiltinCandidateTypeSet  {
4866  /// TypeSet - A set of types.
4867  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4868
4869  /// PointerTypes - The set of pointer types that will be used in the
4870  /// built-in candidates.
4871  TypeSet PointerTypes;
4872
4873  /// MemberPointerTypes - The set of member pointer types that will be
4874  /// used in the built-in candidates.
4875  TypeSet MemberPointerTypes;
4876
4877  /// EnumerationTypes - The set of enumeration types that will be
4878  /// used in the built-in candidates.
4879  TypeSet EnumerationTypes;
4880
4881  /// \brief The set of vector types that will be used in the built-in
4882  /// candidates.
4883  TypeSet VectorTypes;
4884
4885  /// \brief A flag indicating non-record types are viable candidates
4886  bool HasNonRecordTypes;
4887
4888  /// \brief A flag indicating whether either arithmetic or enumeration types
4889  /// were present in the candidate set.
4890  bool HasArithmeticOrEnumeralTypes;
4891
4892  /// \brief A flag indicating whether the nullptr type was present in the
4893  /// candidate set.
4894  bool HasNullPtrType;
4895
4896  /// Sema - The semantic analysis instance where we are building the
4897  /// candidate type set.
4898  Sema &SemaRef;
4899
4900  /// Context - The AST context in which we will build the type sets.
4901  ASTContext &Context;
4902
4903  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4904                                               const Qualifiers &VisibleQuals);
4905  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4906
4907public:
4908  /// iterator - Iterates through the types that are part of the set.
4909  typedef TypeSet::iterator iterator;
4910
4911  BuiltinCandidateTypeSet(Sema &SemaRef)
4912    : HasNonRecordTypes(false),
4913      HasArithmeticOrEnumeralTypes(false),
4914      HasNullPtrType(false),
4915      SemaRef(SemaRef),
4916      Context(SemaRef.Context) { }
4917
4918  void AddTypesConvertedFrom(QualType Ty,
4919                             SourceLocation Loc,
4920                             bool AllowUserConversions,
4921                             bool AllowExplicitConversions,
4922                             const Qualifiers &VisibleTypeConversionsQuals);
4923
4924  /// pointer_begin - First pointer type found;
4925  iterator pointer_begin() { return PointerTypes.begin(); }
4926
4927  /// pointer_end - Past the last pointer type found;
4928  iterator pointer_end() { return PointerTypes.end(); }
4929
4930  /// member_pointer_begin - First member pointer type found;
4931  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4932
4933  /// member_pointer_end - Past the last member pointer type found;
4934  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4935
4936  /// enumeration_begin - First enumeration type found;
4937  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4938
4939  /// enumeration_end - Past the last enumeration type found;
4940  iterator enumeration_end() { return EnumerationTypes.end(); }
4941
4942  iterator vector_begin() { return VectorTypes.begin(); }
4943  iterator vector_end() { return VectorTypes.end(); }
4944
4945  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4946  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4947  bool hasNullPtrType() const { return HasNullPtrType; }
4948};
4949
4950/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4951/// the set of pointer types along with any more-qualified variants of
4952/// that type. For example, if @p Ty is "int const *", this routine
4953/// will add "int const *", "int const volatile *", "int const
4954/// restrict *", and "int const volatile restrict *" to the set of
4955/// pointer types. Returns true if the add of @p Ty itself succeeded,
4956/// false otherwise.
4957///
4958/// FIXME: what to do about extended qualifiers?
4959bool
4960BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4961                                             const Qualifiers &VisibleQuals) {
4962
4963  // Insert this type.
4964  if (!PointerTypes.insert(Ty))
4965    return false;
4966
4967  QualType PointeeTy;
4968  const PointerType *PointerTy = Ty->getAs<PointerType>();
4969  bool buildObjCPtr = false;
4970  if (!PointerTy) {
4971    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4972      PointeeTy = PTy->getPointeeType();
4973      buildObjCPtr = true;
4974    }
4975    else
4976      assert(false && "type was not a pointer type!");
4977  }
4978  else
4979    PointeeTy = PointerTy->getPointeeType();
4980
4981  // Don't add qualified variants of arrays. For one, they're not allowed
4982  // (the qualifier would sink to the element type), and for another, the
4983  // only overload situation where it matters is subscript or pointer +- int,
4984  // and those shouldn't have qualifier variants anyway.
4985  if (PointeeTy->isArrayType())
4986    return true;
4987  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4988  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4989    BaseCVR = Array->getElementType().getCVRQualifiers();
4990  bool hasVolatile = VisibleQuals.hasVolatile();
4991  bool hasRestrict = VisibleQuals.hasRestrict();
4992
4993  // Iterate through all strict supersets of BaseCVR.
4994  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4995    if ((CVR | BaseCVR) != CVR) continue;
4996    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4997    // in the types.
4998    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4999    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5000    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5001    if (!buildObjCPtr)
5002      PointerTypes.insert(Context.getPointerType(QPointeeTy));
5003    else
5004      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5005  }
5006
5007  return true;
5008}
5009
5010/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5011/// to the set of pointer types along with any more-qualified variants of
5012/// that type. For example, if @p Ty is "int const *", this routine
5013/// will add "int const *", "int const volatile *", "int const
5014/// restrict *", and "int const volatile restrict *" to the set of
5015/// pointer types. Returns true if the add of @p Ty itself succeeded,
5016/// false otherwise.
5017///
5018/// FIXME: what to do about extended qualifiers?
5019bool
5020BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5021    QualType Ty) {
5022  // Insert this type.
5023  if (!MemberPointerTypes.insert(Ty))
5024    return false;
5025
5026  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5027  assert(PointerTy && "type was not a member pointer type!");
5028
5029  QualType PointeeTy = PointerTy->getPointeeType();
5030  // Don't add qualified variants of arrays. For one, they're not allowed
5031  // (the qualifier would sink to the element type), and for another, the
5032  // only overload situation where it matters is subscript or pointer +- int,
5033  // and those shouldn't have qualifier variants anyway.
5034  if (PointeeTy->isArrayType())
5035    return true;
5036  const Type *ClassTy = PointerTy->getClass();
5037
5038  // Iterate through all strict supersets of the pointee type's CVR
5039  // qualifiers.
5040  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5041  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5042    if ((CVR | BaseCVR) != CVR) continue;
5043
5044    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5045    MemberPointerTypes.insert(
5046      Context.getMemberPointerType(QPointeeTy, ClassTy));
5047  }
5048
5049  return true;
5050}
5051
5052/// AddTypesConvertedFrom - Add each of the types to which the type @p
5053/// Ty can be implicit converted to the given set of @p Types. We're
5054/// primarily interested in pointer types and enumeration types. We also
5055/// take member pointer types, for the conditional operator.
5056/// AllowUserConversions is true if we should look at the conversion
5057/// functions of a class type, and AllowExplicitConversions if we
5058/// should also include the explicit conversion functions of a class
5059/// type.
5060void
5061BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5062                                               SourceLocation Loc,
5063                                               bool AllowUserConversions,
5064                                               bool AllowExplicitConversions,
5065                                               const Qualifiers &VisibleQuals) {
5066  // Only deal with canonical types.
5067  Ty = Context.getCanonicalType(Ty);
5068
5069  // Look through reference types; they aren't part of the type of an
5070  // expression for the purposes of conversions.
5071  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5072    Ty = RefTy->getPointeeType();
5073
5074  // If we're dealing with an array type, decay to the pointer.
5075  if (Ty->isArrayType())
5076    Ty = SemaRef.Context.getArrayDecayedType(Ty);
5077
5078  // Otherwise, we don't care about qualifiers on the type.
5079  Ty = Ty.getLocalUnqualifiedType();
5080
5081  // Flag if we ever add a non-record type.
5082  const RecordType *TyRec = Ty->getAs<RecordType>();
5083  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5084
5085  // Flag if we encounter an arithmetic type.
5086  HasArithmeticOrEnumeralTypes =
5087    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
5088
5089  if (Ty->isObjCIdType() || Ty->isObjCClassType())
5090    PointerTypes.insert(Ty);
5091  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
5092    // Insert our type, and its more-qualified variants, into the set
5093    // of types.
5094    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
5095      return;
5096  } else if (Ty->isMemberPointerType()) {
5097    // Member pointers are far easier, since the pointee can't be converted.
5098    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
5099      return;
5100  } else if (Ty->isEnumeralType()) {
5101    HasArithmeticOrEnumeralTypes = true;
5102    EnumerationTypes.insert(Ty);
5103  } else if (Ty->isVectorType()) {
5104    // We treat vector types as arithmetic types in many contexts as an
5105    // extension.
5106    HasArithmeticOrEnumeralTypes = true;
5107    VectorTypes.insert(Ty);
5108  } else if (Ty->isNullPtrType()) {
5109    HasNullPtrType = true;
5110  } else if (AllowUserConversions && TyRec) {
5111    // No conversion functions in incomplete types.
5112    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
5113      return;
5114
5115    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5116    const UnresolvedSetImpl *Conversions
5117      = ClassDecl->getVisibleConversionFunctions();
5118    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5119           E = Conversions->end(); I != E; ++I) {
5120      NamedDecl *D = I.getDecl();
5121      if (isa<UsingShadowDecl>(D))
5122        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5123
5124      // Skip conversion function templates; they don't tell us anything
5125      // about which builtin types we can convert to.
5126      if (isa<FunctionTemplateDecl>(D))
5127        continue;
5128
5129      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5130      if (AllowExplicitConversions || !Conv->isExplicit()) {
5131        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
5132                              VisibleQuals);
5133      }
5134    }
5135  }
5136}
5137
5138/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
5139/// the volatile- and non-volatile-qualified assignment operators for the
5140/// given type to the candidate set.
5141static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
5142                                                   QualType T,
5143                                                   Expr **Args,
5144                                                   unsigned NumArgs,
5145                                    OverloadCandidateSet &CandidateSet) {
5146  QualType ParamTypes[2];
5147
5148  // T& operator=(T&, T)
5149  ParamTypes[0] = S.Context.getLValueReferenceType(T);
5150  ParamTypes[1] = T;
5151  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5152                        /*IsAssignmentOperator=*/true);
5153
5154  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
5155    // volatile T& operator=(volatile T&, T)
5156    ParamTypes[0]
5157      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
5158    ParamTypes[1] = T;
5159    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5160                          /*IsAssignmentOperator=*/true);
5161  }
5162}
5163
5164/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
5165/// if any, found in visible type conversion functions found in ArgExpr's type.
5166static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
5167    Qualifiers VRQuals;
5168    const RecordType *TyRec;
5169    if (const MemberPointerType *RHSMPType =
5170        ArgExpr->getType()->getAs<MemberPointerType>())
5171      TyRec = RHSMPType->getClass()->getAs<RecordType>();
5172    else
5173      TyRec = ArgExpr->getType()->getAs<RecordType>();
5174    if (!TyRec) {
5175      // Just to be safe, assume the worst case.
5176      VRQuals.addVolatile();
5177      VRQuals.addRestrict();
5178      return VRQuals;
5179    }
5180
5181    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5182    if (!ClassDecl->hasDefinition())
5183      return VRQuals;
5184
5185    const UnresolvedSetImpl *Conversions =
5186      ClassDecl->getVisibleConversionFunctions();
5187
5188    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5189           E = Conversions->end(); I != E; ++I) {
5190      NamedDecl *D = I.getDecl();
5191      if (isa<UsingShadowDecl>(D))
5192        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5193      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
5194        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
5195        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
5196          CanTy = ResTypeRef->getPointeeType();
5197        // Need to go down the pointer/mempointer chain and add qualifiers
5198        // as see them.
5199        bool done = false;
5200        while (!done) {
5201          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
5202            CanTy = ResTypePtr->getPointeeType();
5203          else if (const MemberPointerType *ResTypeMPtr =
5204                CanTy->getAs<MemberPointerType>())
5205            CanTy = ResTypeMPtr->getPointeeType();
5206          else
5207            done = true;
5208          if (CanTy.isVolatileQualified())
5209            VRQuals.addVolatile();
5210          if (CanTy.isRestrictQualified())
5211            VRQuals.addRestrict();
5212          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
5213            return VRQuals;
5214        }
5215      }
5216    }
5217    return VRQuals;
5218}
5219
5220namespace {
5221
5222/// \brief Helper class to manage the addition of builtin operator overload
5223/// candidates. It provides shared state and utility methods used throughout
5224/// the process, as well as a helper method to add each group of builtin
5225/// operator overloads from the standard to a candidate set.
5226class BuiltinOperatorOverloadBuilder {
5227  // Common instance state available to all overload candidate addition methods.
5228  Sema &S;
5229  Expr **Args;
5230  unsigned NumArgs;
5231  Qualifiers VisibleTypeConversionsQuals;
5232  bool HasArithmeticOrEnumeralCandidateType;
5233  llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
5234  OverloadCandidateSet &CandidateSet;
5235
5236  // Define some constants used to index and iterate over the arithemetic types
5237  // provided via the getArithmeticType() method below.
5238  // The "promoted arithmetic types" are the arithmetic
5239  // types are that preserved by promotion (C++ [over.built]p2).
5240  static const unsigned FirstIntegralType = 3;
5241  static const unsigned LastIntegralType = 18;
5242  static const unsigned FirstPromotedIntegralType = 3,
5243                        LastPromotedIntegralType = 9;
5244  static const unsigned FirstPromotedArithmeticType = 0,
5245                        LastPromotedArithmeticType = 9;
5246  static const unsigned NumArithmeticTypes = 18;
5247
5248  /// \brief Get the canonical type for a given arithmetic type index.
5249  CanQualType getArithmeticType(unsigned index) {
5250    assert(index < NumArithmeticTypes);
5251    static CanQualType ASTContext::* const
5252      ArithmeticTypes[NumArithmeticTypes] = {
5253      // Start of promoted types.
5254      &ASTContext::FloatTy,
5255      &ASTContext::DoubleTy,
5256      &ASTContext::LongDoubleTy,
5257
5258      // Start of integral types.
5259      &ASTContext::IntTy,
5260      &ASTContext::LongTy,
5261      &ASTContext::LongLongTy,
5262      &ASTContext::UnsignedIntTy,
5263      &ASTContext::UnsignedLongTy,
5264      &ASTContext::UnsignedLongLongTy,
5265      // End of promoted types.
5266
5267      &ASTContext::BoolTy,
5268      &ASTContext::CharTy,
5269      &ASTContext::WCharTy,
5270      &ASTContext::Char16Ty,
5271      &ASTContext::Char32Ty,
5272      &ASTContext::SignedCharTy,
5273      &ASTContext::ShortTy,
5274      &ASTContext::UnsignedCharTy,
5275      &ASTContext::UnsignedShortTy,
5276      // End of integral types.
5277      // FIXME: What about complex?
5278    };
5279    return S.Context.*ArithmeticTypes[index];
5280  }
5281
5282  /// \brief Gets the canonical type resulting from the usual arithemetic
5283  /// converions for the given arithmetic types.
5284  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5285    // Accelerator table for performing the usual arithmetic conversions.
5286    // The rules are basically:
5287    //   - if either is floating-point, use the wider floating-point
5288    //   - if same signedness, use the higher rank
5289    //   - if same size, use unsigned of the higher rank
5290    //   - use the larger type
5291    // These rules, together with the axiom that higher ranks are
5292    // never smaller, are sufficient to precompute all of these results
5293    // *except* when dealing with signed types of higher rank.
5294    // (we could precompute SLL x UI for all known platforms, but it's
5295    // better not to make any assumptions).
5296    enum PromotedType {
5297                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
5298    };
5299    static PromotedType ConversionsTable[LastPromotedArithmeticType]
5300                                        [LastPromotedArithmeticType] = {
5301      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
5302      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
5303      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5304      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
5305      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
5306      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
5307      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
5308      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
5309      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
5310    };
5311
5312    assert(L < LastPromotedArithmeticType);
5313    assert(R < LastPromotedArithmeticType);
5314    int Idx = ConversionsTable[L][R];
5315
5316    // Fast path: the table gives us a concrete answer.
5317    if (Idx != Dep) return getArithmeticType(Idx);
5318
5319    // Slow path: we need to compare widths.
5320    // An invariant is that the signed type has higher rank.
5321    CanQualType LT = getArithmeticType(L),
5322                RT = getArithmeticType(R);
5323    unsigned LW = S.Context.getIntWidth(LT),
5324             RW = S.Context.getIntWidth(RT);
5325
5326    // If they're different widths, use the signed type.
5327    if (LW > RW) return LT;
5328    else if (LW < RW) return RT;
5329
5330    // Otherwise, use the unsigned type of the signed type's rank.
5331    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5332    assert(L == SLL || R == SLL);
5333    return S.Context.UnsignedLongLongTy;
5334  }
5335
5336  /// \brief Helper method to factor out the common pattern of adding overloads
5337  /// for '++' and '--' builtin operators.
5338  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5339                                           bool HasVolatile) {
5340    QualType ParamTypes[2] = {
5341      S.Context.getLValueReferenceType(CandidateTy),
5342      S.Context.IntTy
5343    };
5344
5345    // Non-volatile version.
5346    if (NumArgs == 1)
5347      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5348    else
5349      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5350
5351    // Use a heuristic to reduce number of builtin candidates in the set:
5352    // add volatile version only if there are conversions to a volatile type.
5353    if (HasVolatile) {
5354      ParamTypes[0] =
5355        S.Context.getLValueReferenceType(
5356          S.Context.getVolatileType(CandidateTy));
5357      if (NumArgs == 1)
5358        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5359      else
5360        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5361    }
5362  }
5363
5364public:
5365  BuiltinOperatorOverloadBuilder(
5366    Sema &S, Expr **Args, unsigned NumArgs,
5367    Qualifiers VisibleTypeConversionsQuals,
5368    bool HasArithmeticOrEnumeralCandidateType,
5369    llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5370    OverloadCandidateSet &CandidateSet)
5371    : S(S), Args(Args), NumArgs(NumArgs),
5372      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5373      HasArithmeticOrEnumeralCandidateType(
5374        HasArithmeticOrEnumeralCandidateType),
5375      CandidateTypes(CandidateTypes),
5376      CandidateSet(CandidateSet) {
5377    // Validate some of our static helper constants in debug builds.
5378    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5379           "Invalid first promoted integral type");
5380    assert(getArithmeticType(LastPromotedIntegralType - 1)
5381             == S.Context.UnsignedLongLongTy &&
5382           "Invalid last promoted integral type");
5383    assert(getArithmeticType(FirstPromotedArithmeticType)
5384             == S.Context.FloatTy &&
5385           "Invalid first promoted arithmetic type");
5386    assert(getArithmeticType(LastPromotedArithmeticType - 1)
5387             == S.Context.UnsignedLongLongTy &&
5388           "Invalid last promoted arithmetic type");
5389  }
5390
5391  // C++ [over.built]p3:
5392  //
5393  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
5394  //   is either volatile or empty, there exist candidate operator
5395  //   functions of the form
5396  //
5397  //       VQ T&      operator++(VQ T&);
5398  //       T          operator++(VQ T&, int);
5399  //
5400  // C++ [over.built]p4:
5401  //
5402  //   For every pair (T, VQ), where T is an arithmetic type other
5403  //   than bool, and VQ is either volatile or empty, there exist
5404  //   candidate operator functions of the form
5405  //
5406  //       VQ T&      operator--(VQ T&);
5407  //       T          operator--(VQ T&, int);
5408  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5409    if (!HasArithmeticOrEnumeralCandidateType)
5410      return;
5411
5412    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5413         Arith < NumArithmeticTypes; ++Arith) {
5414      addPlusPlusMinusMinusStyleOverloads(
5415        getArithmeticType(Arith),
5416        VisibleTypeConversionsQuals.hasVolatile());
5417    }
5418  }
5419
5420  // C++ [over.built]p5:
5421  //
5422  //   For every pair (T, VQ), where T is a cv-qualified or
5423  //   cv-unqualified object type, and VQ is either volatile or
5424  //   empty, there exist candidate operator functions of the form
5425  //
5426  //       T*VQ&      operator++(T*VQ&);
5427  //       T*VQ&      operator--(T*VQ&);
5428  //       T*         operator++(T*VQ&, int);
5429  //       T*         operator--(T*VQ&, int);
5430  void addPlusPlusMinusMinusPointerOverloads() {
5431    for (BuiltinCandidateTypeSet::iterator
5432              Ptr = CandidateTypes[0].pointer_begin(),
5433           PtrEnd = CandidateTypes[0].pointer_end();
5434         Ptr != PtrEnd; ++Ptr) {
5435      // Skip pointer types that aren't pointers to object types.
5436      if (!(*Ptr)->getPointeeType()->isObjectType())
5437        continue;
5438
5439      addPlusPlusMinusMinusStyleOverloads(*Ptr,
5440        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5441         VisibleTypeConversionsQuals.hasVolatile()));
5442    }
5443  }
5444
5445  // C++ [over.built]p6:
5446  //   For every cv-qualified or cv-unqualified object type T, there
5447  //   exist candidate operator functions of the form
5448  //
5449  //       T&         operator*(T*);
5450  //
5451  // C++ [over.built]p7:
5452  //   For every function type T that does not have cv-qualifiers or a
5453  //   ref-qualifier, there exist candidate operator functions of the form
5454  //       T&         operator*(T*);
5455  void addUnaryStarPointerOverloads() {
5456    for (BuiltinCandidateTypeSet::iterator
5457              Ptr = CandidateTypes[0].pointer_begin(),
5458           PtrEnd = CandidateTypes[0].pointer_end();
5459         Ptr != PtrEnd; ++Ptr) {
5460      QualType ParamTy = *Ptr;
5461      QualType PointeeTy = ParamTy->getPointeeType();
5462      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5463        continue;
5464
5465      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5466        if (Proto->getTypeQuals() || Proto->getRefQualifier())
5467          continue;
5468
5469      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5470                            &ParamTy, Args, 1, CandidateSet);
5471    }
5472  }
5473
5474  // C++ [over.built]p9:
5475  //  For every promoted arithmetic type T, there exist candidate
5476  //  operator functions of the form
5477  //
5478  //       T         operator+(T);
5479  //       T         operator-(T);
5480  void addUnaryPlusOrMinusArithmeticOverloads() {
5481    if (!HasArithmeticOrEnumeralCandidateType)
5482      return;
5483
5484    for (unsigned Arith = FirstPromotedArithmeticType;
5485         Arith < LastPromotedArithmeticType; ++Arith) {
5486      QualType ArithTy = getArithmeticType(Arith);
5487      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5488    }
5489
5490    // Extension: We also add these operators for vector types.
5491    for (BuiltinCandidateTypeSet::iterator
5492              Vec = CandidateTypes[0].vector_begin(),
5493           VecEnd = CandidateTypes[0].vector_end();
5494         Vec != VecEnd; ++Vec) {
5495      QualType VecTy = *Vec;
5496      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5497    }
5498  }
5499
5500  // C++ [over.built]p8:
5501  //   For every type T, there exist candidate operator functions of
5502  //   the form
5503  //
5504  //       T*         operator+(T*);
5505  void addUnaryPlusPointerOverloads() {
5506    for (BuiltinCandidateTypeSet::iterator
5507              Ptr = CandidateTypes[0].pointer_begin(),
5508           PtrEnd = CandidateTypes[0].pointer_end();
5509         Ptr != PtrEnd; ++Ptr) {
5510      QualType ParamTy = *Ptr;
5511      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5512    }
5513  }
5514
5515  // C++ [over.built]p10:
5516  //   For every promoted integral type T, there exist candidate
5517  //   operator functions of the form
5518  //
5519  //        T         operator~(T);
5520  void addUnaryTildePromotedIntegralOverloads() {
5521    if (!HasArithmeticOrEnumeralCandidateType)
5522      return;
5523
5524    for (unsigned Int = FirstPromotedIntegralType;
5525         Int < LastPromotedIntegralType; ++Int) {
5526      QualType IntTy = getArithmeticType(Int);
5527      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5528    }
5529
5530    // Extension: We also add this operator for vector types.
5531    for (BuiltinCandidateTypeSet::iterator
5532              Vec = CandidateTypes[0].vector_begin(),
5533           VecEnd = CandidateTypes[0].vector_end();
5534         Vec != VecEnd; ++Vec) {
5535      QualType VecTy = *Vec;
5536      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5537    }
5538  }
5539
5540  // C++ [over.match.oper]p16:
5541  //   For every pointer to member type T, there exist candidate operator
5542  //   functions of the form
5543  //
5544  //        bool operator==(T,T);
5545  //        bool operator!=(T,T);
5546  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5547    /// Set of (canonical) types that we've already handled.
5548    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5549
5550    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5551      for (BuiltinCandidateTypeSet::iterator
5552                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5553             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5554           MemPtr != MemPtrEnd;
5555           ++MemPtr) {
5556        // Don't add the same builtin candidate twice.
5557        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5558          continue;
5559
5560        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5561        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5562                              CandidateSet);
5563      }
5564    }
5565  }
5566
5567  // C++ [over.built]p15:
5568  //
5569  //   For every T, where T is an enumeration type, a pointer type, or
5570  //   std::nullptr_t, there exist candidate operator functions of the form
5571  //
5572  //        bool       operator<(T, T);
5573  //        bool       operator>(T, T);
5574  //        bool       operator<=(T, T);
5575  //        bool       operator>=(T, T);
5576  //        bool       operator==(T, T);
5577  //        bool       operator!=(T, T);
5578  void addRelationalPointerOrEnumeralOverloads() {
5579    // C++ [over.built]p1:
5580    //   If there is a user-written candidate with the same name and parameter
5581    //   types as a built-in candidate operator function, the built-in operator
5582    //   function is hidden and is not included in the set of candidate
5583    //   functions.
5584    //
5585    // The text is actually in a note, but if we don't implement it then we end
5586    // up with ambiguities when the user provides an overloaded operator for
5587    // an enumeration type. Note that only enumeration types have this problem,
5588    // so we track which enumeration types we've seen operators for. Also, the
5589    // only other overloaded operator with enumeration argumenst, operator=,
5590    // cannot be overloaded for enumeration types, so this is the only place
5591    // where we must suppress candidates like this.
5592    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5593      UserDefinedBinaryOperators;
5594
5595    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5596      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5597          CandidateTypes[ArgIdx].enumeration_end()) {
5598        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5599                                         CEnd = CandidateSet.end();
5600             C != CEnd; ++C) {
5601          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5602            continue;
5603
5604          QualType FirstParamType =
5605            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5606          QualType SecondParamType =
5607            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5608
5609          // Skip if either parameter isn't of enumeral type.
5610          if (!FirstParamType->isEnumeralType() ||
5611              !SecondParamType->isEnumeralType())
5612            continue;
5613
5614          // Add this operator to the set of known user-defined operators.
5615          UserDefinedBinaryOperators.insert(
5616            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5617                           S.Context.getCanonicalType(SecondParamType)));
5618        }
5619      }
5620    }
5621
5622    /// Set of (canonical) types that we've already handled.
5623    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5624
5625    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5626      for (BuiltinCandidateTypeSet::iterator
5627                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5628             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5629           Ptr != PtrEnd; ++Ptr) {
5630        // Don't add the same builtin candidate twice.
5631        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5632          continue;
5633
5634        QualType ParamTypes[2] = { *Ptr, *Ptr };
5635        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5636                              CandidateSet);
5637      }
5638      for (BuiltinCandidateTypeSet::iterator
5639                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5640             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5641           Enum != EnumEnd; ++Enum) {
5642        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5643
5644        // Don't add the same builtin candidate twice, or if a user defined
5645        // candidate exists.
5646        if (!AddedTypes.insert(CanonType) ||
5647            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5648                                                            CanonType)))
5649          continue;
5650
5651        QualType ParamTypes[2] = { *Enum, *Enum };
5652        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5653                              CandidateSet);
5654      }
5655
5656      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
5657        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
5658        if (AddedTypes.insert(NullPtrTy) &&
5659            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
5660                                                             NullPtrTy))) {
5661          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
5662          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5663                                CandidateSet);
5664        }
5665      }
5666    }
5667  }
5668
5669  // C++ [over.built]p13:
5670  //
5671  //   For every cv-qualified or cv-unqualified object type T
5672  //   there exist candidate operator functions of the form
5673  //
5674  //      T*         operator+(T*, ptrdiff_t);
5675  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5676  //      T*         operator-(T*, ptrdiff_t);
5677  //      T*         operator+(ptrdiff_t, T*);
5678  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5679  //
5680  // C++ [over.built]p14:
5681  //
5682  //   For every T, where T is a pointer to object type, there
5683  //   exist candidate operator functions of the form
5684  //
5685  //      ptrdiff_t  operator-(T, T);
5686  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5687    /// Set of (canonical) types that we've already handled.
5688    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5689
5690    for (int Arg = 0; Arg < 2; ++Arg) {
5691      QualType AsymetricParamTypes[2] = {
5692        S.Context.getPointerDiffType(),
5693        S.Context.getPointerDiffType(),
5694      };
5695      for (BuiltinCandidateTypeSet::iterator
5696                Ptr = CandidateTypes[Arg].pointer_begin(),
5697             PtrEnd = CandidateTypes[Arg].pointer_end();
5698           Ptr != PtrEnd; ++Ptr) {
5699        QualType PointeeTy = (*Ptr)->getPointeeType();
5700        if (!PointeeTy->isObjectType())
5701          continue;
5702
5703        AsymetricParamTypes[Arg] = *Ptr;
5704        if (Arg == 0 || Op == OO_Plus) {
5705          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5706          // T* operator+(ptrdiff_t, T*);
5707          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5708                                CandidateSet);
5709        }
5710        if (Op == OO_Minus) {
5711          // ptrdiff_t operator-(T, T);
5712          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5713            continue;
5714
5715          QualType ParamTypes[2] = { *Ptr, *Ptr };
5716          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5717                                Args, 2, CandidateSet);
5718        }
5719      }
5720    }
5721  }
5722
5723  // C++ [over.built]p12:
5724  //
5725  //   For every pair of promoted arithmetic types L and R, there
5726  //   exist candidate operator functions of the form
5727  //
5728  //        LR         operator*(L, R);
5729  //        LR         operator/(L, R);
5730  //        LR         operator+(L, R);
5731  //        LR         operator-(L, R);
5732  //        bool       operator<(L, R);
5733  //        bool       operator>(L, R);
5734  //        bool       operator<=(L, R);
5735  //        bool       operator>=(L, R);
5736  //        bool       operator==(L, R);
5737  //        bool       operator!=(L, R);
5738  //
5739  //   where LR is the result of the usual arithmetic conversions
5740  //   between types L and R.
5741  //
5742  // C++ [over.built]p24:
5743  //
5744  //   For every pair of promoted arithmetic types L and R, there exist
5745  //   candidate operator functions of the form
5746  //
5747  //        LR       operator?(bool, L, R);
5748  //
5749  //   where LR is the result of the usual arithmetic conversions
5750  //   between types L and R.
5751  // Our candidates ignore the first parameter.
5752  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5753    if (!HasArithmeticOrEnumeralCandidateType)
5754      return;
5755
5756    for (unsigned Left = FirstPromotedArithmeticType;
5757         Left < LastPromotedArithmeticType; ++Left) {
5758      for (unsigned Right = FirstPromotedArithmeticType;
5759           Right < LastPromotedArithmeticType; ++Right) {
5760        QualType LandR[2] = { getArithmeticType(Left),
5761                              getArithmeticType(Right) };
5762        QualType Result =
5763          isComparison ? S.Context.BoolTy
5764                       : getUsualArithmeticConversions(Left, Right);
5765        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5766      }
5767    }
5768
5769    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5770    // conditional operator for vector types.
5771    for (BuiltinCandidateTypeSet::iterator
5772              Vec1 = CandidateTypes[0].vector_begin(),
5773           Vec1End = CandidateTypes[0].vector_end();
5774         Vec1 != Vec1End; ++Vec1) {
5775      for (BuiltinCandidateTypeSet::iterator
5776                Vec2 = CandidateTypes[1].vector_begin(),
5777             Vec2End = CandidateTypes[1].vector_end();
5778           Vec2 != Vec2End; ++Vec2) {
5779        QualType LandR[2] = { *Vec1, *Vec2 };
5780        QualType Result = S.Context.BoolTy;
5781        if (!isComparison) {
5782          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5783            Result = *Vec1;
5784          else
5785            Result = *Vec2;
5786        }
5787
5788        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5789      }
5790    }
5791  }
5792
5793  // C++ [over.built]p17:
5794  //
5795  //   For every pair of promoted integral types L and R, there
5796  //   exist candidate operator functions of the form
5797  //
5798  //      LR         operator%(L, R);
5799  //      LR         operator&(L, R);
5800  //      LR         operator^(L, R);
5801  //      LR         operator|(L, R);
5802  //      L          operator<<(L, R);
5803  //      L          operator>>(L, R);
5804  //
5805  //   where LR is the result of the usual arithmetic conversions
5806  //   between types L and R.
5807  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5808    if (!HasArithmeticOrEnumeralCandidateType)
5809      return;
5810
5811    for (unsigned Left = FirstPromotedIntegralType;
5812         Left < LastPromotedIntegralType; ++Left) {
5813      for (unsigned Right = FirstPromotedIntegralType;
5814           Right < LastPromotedIntegralType; ++Right) {
5815        QualType LandR[2] = { getArithmeticType(Left),
5816                              getArithmeticType(Right) };
5817        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5818            ? LandR[0]
5819            : getUsualArithmeticConversions(Left, Right);
5820        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5821      }
5822    }
5823  }
5824
5825  // C++ [over.built]p20:
5826  //
5827  //   For every pair (T, VQ), where T is an enumeration or
5828  //   pointer to member type and VQ is either volatile or
5829  //   empty, there exist candidate operator functions of the form
5830  //
5831  //        VQ T&      operator=(VQ T&, T);
5832  void addAssignmentMemberPointerOrEnumeralOverloads() {
5833    /// Set of (canonical) types that we've already handled.
5834    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5835
5836    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5837      for (BuiltinCandidateTypeSet::iterator
5838                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5839             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5840           Enum != EnumEnd; ++Enum) {
5841        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5842          continue;
5843
5844        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5845                                               CandidateSet);
5846      }
5847
5848      for (BuiltinCandidateTypeSet::iterator
5849                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5850             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5851           MemPtr != MemPtrEnd; ++MemPtr) {
5852        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5853          continue;
5854
5855        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5856                                               CandidateSet);
5857      }
5858    }
5859  }
5860
5861  // C++ [over.built]p19:
5862  //
5863  //   For every pair (T, VQ), where T is any type and VQ is either
5864  //   volatile or empty, there exist candidate operator functions
5865  //   of the form
5866  //
5867  //        T*VQ&      operator=(T*VQ&, T*);
5868  //
5869  // C++ [over.built]p21:
5870  //
5871  //   For every pair (T, VQ), where T is a cv-qualified or
5872  //   cv-unqualified object type and VQ is either volatile or
5873  //   empty, there exist candidate operator functions of the form
5874  //
5875  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5876  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5877  void addAssignmentPointerOverloads(bool isEqualOp) {
5878    /// Set of (canonical) types that we've already handled.
5879    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5880
5881    for (BuiltinCandidateTypeSet::iterator
5882              Ptr = CandidateTypes[0].pointer_begin(),
5883           PtrEnd = CandidateTypes[0].pointer_end();
5884         Ptr != PtrEnd; ++Ptr) {
5885      // If this is operator=, keep track of the builtin candidates we added.
5886      if (isEqualOp)
5887        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5888      else if (!(*Ptr)->getPointeeType()->isObjectType())
5889        continue;
5890
5891      // non-volatile version
5892      QualType ParamTypes[2] = {
5893        S.Context.getLValueReferenceType(*Ptr),
5894        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5895      };
5896      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5897                            /*IsAssigmentOperator=*/ isEqualOp);
5898
5899      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5900          VisibleTypeConversionsQuals.hasVolatile()) {
5901        // volatile version
5902        ParamTypes[0] =
5903          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5904        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5905                              /*IsAssigmentOperator=*/isEqualOp);
5906      }
5907    }
5908
5909    if (isEqualOp) {
5910      for (BuiltinCandidateTypeSet::iterator
5911                Ptr = CandidateTypes[1].pointer_begin(),
5912             PtrEnd = CandidateTypes[1].pointer_end();
5913           Ptr != PtrEnd; ++Ptr) {
5914        // Make sure we don't add the same candidate twice.
5915        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5916          continue;
5917
5918        QualType ParamTypes[2] = {
5919          S.Context.getLValueReferenceType(*Ptr),
5920          *Ptr,
5921        };
5922
5923        // non-volatile version
5924        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5925                              /*IsAssigmentOperator=*/true);
5926
5927        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5928            VisibleTypeConversionsQuals.hasVolatile()) {
5929          // volatile version
5930          ParamTypes[0] =
5931            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5932          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5933                                CandidateSet, /*IsAssigmentOperator=*/true);
5934        }
5935      }
5936    }
5937  }
5938
5939  // C++ [over.built]p18:
5940  //
5941  //   For every triple (L, VQ, R), where L is an arithmetic type,
5942  //   VQ is either volatile or empty, and R is a promoted
5943  //   arithmetic type, there exist candidate operator functions of
5944  //   the form
5945  //
5946  //        VQ L&      operator=(VQ L&, R);
5947  //        VQ L&      operator*=(VQ L&, R);
5948  //        VQ L&      operator/=(VQ L&, R);
5949  //        VQ L&      operator+=(VQ L&, R);
5950  //        VQ L&      operator-=(VQ L&, R);
5951  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5952    if (!HasArithmeticOrEnumeralCandidateType)
5953      return;
5954
5955    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5956      for (unsigned Right = FirstPromotedArithmeticType;
5957           Right < LastPromotedArithmeticType; ++Right) {
5958        QualType ParamTypes[2];
5959        ParamTypes[1] = getArithmeticType(Right);
5960
5961        // Add this built-in operator as a candidate (VQ is empty).
5962        ParamTypes[0] =
5963          S.Context.getLValueReferenceType(getArithmeticType(Left));
5964        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5965                              /*IsAssigmentOperator=*/isEqualOp);
5966
5967        // Add this built-in operator as a candidate (VQ is 'volatile').
5968        if (VisibleTypeConversionsQuals.hasVolatile()) {
5969          ParamTypes[0] =
5970            S.Context.getVolatileType(getArithmeticType(Left));
5971          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5972          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5973                                CandidateSet,
5974                                /*IsAssigmentOperator=*/isEqualOp);
5975        }
5976      }
5977    }
5978
5979    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5980    for (BuiltinCandidateTypeSet::iterator
5981              Vec1 = CandidateTypes[0].vector_begin(),
5982           Vec1End = CandidateTypes[0].vector_end();
5983         Vec1 != Vec1End; ++Vec1) {
5984      for (BuiltinCandidateTypeSet::iterator
5985                Vec2 = CandidateTypes[1].vector_begin(),
5986             Vec2End = CandidateTypes[1].vector_end();
5987           Vec2 != Vec2End; ++Vec2) {
5988        QualType ParamTypes[2];
5989        ParamTypes[1] = *Vec2;
5990        // Add this built-in operator as a candidate (VQ is empty).
5991        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5992        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5993                              /*IsAssigmentOperator=*/isEqualOp);
5994
5995        // Add this built-in operator as a candidate (VQ is 'volatile').
5996        if (VisibleTypeConversionsQuals.hasVolatile()) {
5997          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5998          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5999          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6000                                CandidateSet,
6001                                /*IsAssigmentOperator=*/isEqualOp);
6002        }
6003      }
6004    }
6005  }
6006
6007  // C++ [over.built]p22:
6008  //
6009  //   For every triple (L, VQ, R), where L is an integral type, VQ
6010  //   is either volatile or empty, and R is a promoted integral
6011  //   type, there exist candidate operator functions of the form
6012  //
6013  //        VQ L&       operator%=(VQ L&, R);
6014  //        VQ L&       operator<<=(VQ L&, R);
6015  //        VQ L&       operator>>=(VQ L&, R);
6016  //        VQ L&       operator&=(VQ L&, R);
6017  //        VQ L&       operator^=(VQ L&, R);
6018  //        VQ L&       operator|=(VQ L&, R);
6019  void addAssignmentIntegralOverloads() {
6020    if (!HasArithmeticOrEnumeralCandidateType)
6021      return;
6022
6023    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6024      for (unsigned Right = FirstPromotedIntegralType;
6025           Right < LastPromotedIntegralType; ++Right) {
6026        QualType ParamTypes[2];
6027        ParamTypes[1] = getArithmeticType(Right);
6028
6029        // Add this built-in operator as a candidate (VQ is empty).
6030        ParamTypes[0] =
6031          S.Context.getLValueReferenceType(getArithmeticType(Left));
6032        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6033        if (VisibleTypeConversionsQuals.hasVolatile()) {
6034          // Add this built-in operator as a candidate (VQ is 'volatile').
6035          ParamTypes[0] = getArithmeticType(Left);
6036          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6037          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6038          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6039                                CandidateSet);
6040        }
6041      }
6042    }
6043  }
6044
6045  // C++ [over.operator]p23:
6046  //
6047  //   There also exist candidate operator functions of the form
6048  //
6049  //        bool        operator!(bool);
6050  //        bool        operator&&(bool, bool);
6051  //        bool        operator||(bool, bool);
6052  void addExclaimOverload() {
6053    QualType ParamTy = S.Context.BoolTy;
6054    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6055                          /*IsAssignmentOperator=*/false,
6056                          /*NumContextualBoolArguments=*/1);
6057  }
6058  void addAmpAmpOrPipePipeOverload() {
6059    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6060    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6061                          /*IsAssignmentOperator=*/false,
6062                          /*NumContextualBoolArguments=*/2);
6063  }
6064
6065  // C++ [over.built]p13:
6066  //
6067  //   For every cv-qualified or cv-unqualified object type T there
6068  //   exist candidate operator functions of the form
6069  //
6070  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
6071  //        T&         operator[](T*, ptrdiff_t);
6072  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
6073  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
6074  //        T&         operator[](ptrdiff_t, T*);
6075  void addSubscriptOverloads() {
6076    for (BuiltinCandidateTypeSet::iterator
6077              Ptr = CandidateTypes[0].pointer_begin(),
6078           PtrEnd = CandidateTypes[0].pointer_end();
6079         Ptr != PtrEnd; ++Ptr) {
6080      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6081      QualType PointeeType = (*Ptr)->getPointeeType();
6082      if (!PointeeType->isObjectType())
6083        continue;
6084
6085      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6086
6087      // T& operator[](T*, ptrdiff_t)
6088      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6089    }
6090
6091    for (BuiltinCandidateTypeSet::iterator
6092              Ptr = CandidateTypes[1].pointer_begin(),
6093           PtrEnd = CandidateTypes[1].pointer_end();
6094         Ptr != PtrEnd; ++Ptr) {
6095      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
6096      QualType PointeeType = (*Ptr)->getPointeeType();
6097      if (!PointeeType->isObjectType())
6098        continue;
6099
6100      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6101
6102      // T& operator[](ptrdiff_t, T*)
6103      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6104    }
6105  }
6106
6107  // C++ [over.built]p11:
6108  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
6109  //    C1 is the same type as C2 or is a derived class of C2, T is an object
6110  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
6111  //    there exist candidate operator functions of the form
6112  //
6113  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
6114  //
6115  //    where CV12 is the union of CV1 and CV2.
6116  void addArrowStarOverloads() {
6117    for (BuiltinCandidateTypeSet::iterator
6118             Ptr = CandidateTypes[0].pointer_begin(),
6119           PtrEnd = CandidateTypes[0].pointer_end();
6120         Ptr != PtrEnd; ++Ptr) {
6121      QualType C1Ty = (*Ptr);
6122      QualType C1;
6123      QualifierCollector Q1;
6124      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
6125      if (!isa<RecordType>(C1))
6126        continue;
6127      // heuristic to reduce number of builtin candidates in the set.
6128      // Add volatile/restrict version only if there are conversions to a
6129      // volatile/restrict type.
6130      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
6131        continue;
6132      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
6133        continue;
6134      for (BuiltinCandidateTypeSet::iterator
6135                MemPtr = CandidateTypes[1].member_pointer_begin(),
6136             MemPtrEnd = CandidateTypes[1].member_pointer_end();
6137           MemPtr != MemPtrEnd; ++MemPtr) {
6138        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
6139        QualType C2 = QualType(mptr->getClass(), 0);
6140        C2 = C2.getUnqualifiedType();
6141        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
6142          break;
6143        QualType ParamTypes[2] = { *Ptr, *MemPtr };
6144        // build CV12 T&
6145        QualType T = mptr->getPointeeType();
6146        if (!VisibleTypeConversionsQuals.hasVolatile() &&
6147            T.isVolatileQualified())
6148          continue;
6149        if (!VisibleTypeConversionsQuals.hasRestrict() &&
6150            T.isRestrictQualified())
6151          continue;
6152        T = Q1.apply(S.Context, T);
6153        QualType ResultTy = S.Context.getLValueReferenceType(T);
6154        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6155      }
6156    }
6157  }
6158
6159  // Note that we don't consider the first argument, since it has been
6160  // contextually converted to bool long ago. The candidates below are
6161  // therefore added as binary.
6162  //
6163  // C++ [over.built]p25:
6164  //   For every type T, where T is a pointer, pointer-to-member, or scoped
6165  //   enumeration type, there exist candidate operator functions of the form
6166  //
6167  //        T        operator?(bool, T, T);
6168  //
6169  void addConditionalOperatorOverloads() {
6170    /// Set of (canonical) types that we've already handled.
6171    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6172
6173    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6174      for (BuiltinCandidateTypeSet::iterator
6175                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6176             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6177           Ptr != PtrEnd; ++Ptr) {
6178        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6179          continue;
6180
6181        QualType ParamTypes[2] = { *Ptr, *Ptr };
6182        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
6183      }
6184
6185      for (BuiltinCandidateTypeSet::iterator
6186                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6187             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6188           MemPtr != MemPtrEnd; ++MemPtr) {
6189        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6190          continue;
6191
6192        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6193        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
6194      }
6195
6196      if (S.getLangOptions().CPlusPlus0x) {
6197        for (BuiltinCandidateTypeSet::iterator
6198                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6199               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6200             Enum != EnumEnd; ++Enum) {
6201          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
6202            continue;
6203
6204          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6205            continue;
6206
6207          QualType ParamTypes[2] = { *Enum, *Enum };
6208          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
6209        }
6210      }
6211    }
6212  }
6213};
6214
6215} // end anonymous namespace
6216
6217/// AddBuiltinOperatorCandidates - Add the appropriate built-in
6218/// operator overloads to the candidate set (C++ [over.built]), based
6219/// on the operator @p Op and the arguments given. For example, if the
6220/// operator is a binary '+', this routine might add "int
6221/// operator+(int, int)" to cover integer addition.
6222void
6223Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
6224                                   SourceLocation OpLoc,
6225                                   Expr **Args, unsigned NumArgs,
6226                                   OverloadCandidateSet& CandidateSet) {
6227  // Find all of the types that the arguments can convert to, but only
6228  // if the operator we're looking at has built-in operator candidates
6229  // that make use of these types. Also record whether we encounter non-record
6230  // candidate types or either arithmetic or enumeral candidate types.
6231  Qualifiers VisibleTypeConversionsQuals;
6232  VisibleTypeConversionsQuals.addConst();
6233  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6234    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
6235
6236  bool HasNonRecordCandidateType = false;
6237  bool HasArithmeticOrEnumeralCandidateType = false;
6238  llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
6239  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6240    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
6241    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
6242                                                 OpLoc,
6243                                                 true,
6244                                                 (Op == OO_Exclaim ||
6245                                                  Op == OO_AmpAmp ||
6246                                                  Op == OO_PipePipe),
6247                                                 VisibleTypeConversionsQuals);
6248    HasNonRecordCandidateType = HasNonRecordCandidateType ||
6249        CandidateTypes[ArgIdx].hasNonRecordTypes();
6250    HasArithmeticOrEnumeralCandidateType =
6251        HasArithmeticOrEnumeralCandidateType ||
6252        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6253  }
6254
6255  // Exit early when no non-record types have been added to the candidate set
6256  // for any of the arguments to the operator.
6257  if (!HasNonRecordCandidateType)
6258    return;
6259
6260  // Setup an object to manage the common state for building overloads.
6261  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6262                                           VisibleTypeConversionsQuals,
6263                                           HasArithmeticOrEnumeralCandidateType,
6264                                           CandidateTypes, CandidateSet);
6265
6266  // Dispatch over the operation to add in only those overloads which apply.
6267  switch (Op) {
6268  case OO_None:
6269  case NUM_OVERLOADED_OPERATORS:
6270    assert(false && "Expected an overloaded operator");
6271    break;
6272
6273  case OO_New:
6274  case OO_Delete:
6275  case OO_Array_New:
6276  case OO_Array_Delete:
6277  case OO_Call:
6278    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
6279    break;
6280
6281  case OO_Comma:
6282  case OO_Arrow:
6283    // C++ [over.match.oper]p3:
6284    //   -- For the operator ',', the unary operator '&', or the
6285    //      operator '->', the built-in candidates set is empty.
6286    break;
6287
6288  case OO_Plus: // '+' is either unary or binary
6289    if (NumArgs == 1)
6290      OpBuilder.addUnaryPlusPointerOverloads();
6291    // Fall through.
6292
6293  case OO_Minus: // '-' is either unary or binary
6294    if (NumArgs == 1) {
6295      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6296    } else {
6297      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6298      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6299    }
6300    break;
6301
6302  case OO_Star: // '*' is either unary or binary
6303    if (NumArgs == 1)
6304      OpBuilder.addUnaryStarPointerOverloads();
6305    else
6306      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6307    break;
6308
6309  case OO_Slash:
6310    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6311    break;
6312
6313  case OO_PlusPlus:
6314  case OO_MinusMinus:
6315    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6316    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6317    break;
6318
6319  case OO_EqualEqual:
6320  case OO_ExclaimEqual:
6321    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6322    // Fall through.
6323
6324  case OO_Less:
6325  case OO_Greater:
6326  case OO_LessEqual:
6327  case OO_GreaterEqual:
6328    OpBuilder.addRelationalPointerOrEnumeralOverloads();
6329    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6330    break;
6331
6332  case OO_Percent:
6333  case OO_Caret:
6334  case OO_Pipe:
6335  case OO_LessLess:
6336  case OO_GreaterGreater:
6337    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6338    break;
6339
6340  case OO_Amp: // '&' is either unary or binary
6341    if (NumArgs == 1)
6342      // C++ [over.match.oper]p3:
6343      //   -- For the operator ',', the unary operator '&', or the
6344      //      operator '->', the built-in candidates set is empty.
6345      break;
6346
6347    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6348    break;
6349
6350  case OO_Tilde:
6351    OpBuilder.addUnaryTildePromotedIntegralOverloads();
6352    break;
6353
6354  case OO_Equal:
6355    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6356    // Fall through.
6357
6358  case OO_PlusEqual:
6359  case OO_MinusEqual:
6360    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6361    // Fall through.
6362
6363  case OO_StarEqual:
6364  case OO_SlashEqual:
6365    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6366    break;
6367
6368  case OO_PercentEqual:
6369  case OO_LessLessEqual:
6370  case OO_GreaterGreaterEqual:
6371  case OO_AmpEqual:
6372  case OO_CaretEqual:
6373  case OO_PipeEqual:
6374    OpBuilder.addAssignmentIntegralOverloads();
6375    break;
6376
6377  case OO_Exclaim:
6378    OpBuilder.addExclaimOverload();
6379    break;
6380
6381  case OO_AmpAmp:
6382  case OO_PipePipe:
6383    OpBuilder.addAmpAmpOrPipePipeOverload();
6384    break;
6385
6386  case OO_Subscript:
6387    OpBuilder.addSubscriptOverloads();
6388    break;
6389
6390  case OO_ArrowStar:
6391    OpBuilder.addArrowStarOverloads();
6392    break;
6393
6394  case OO_Conditional:
6395    OpBuilder.addConditionalOperatorOverloads();
6396    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6397    break;
6398  }
6399}
6400
6401/// \brief Add function candidates found via argument-dependent lookup
6402/// to the set of overloading candidates.
6403///
6404/// This routine performs argument-dependent name lookup based on the
6405/// given function name (which may also be an operator name) and adds
6406/// all of the overload candidates found by ADL to the overload
6407/// candidate set (C++ [basic.lookup.argdep]).
6408void
6409Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6410                                           bool Operator,
6411                                           Expr **Args, unsigned NumArgs,
6412                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
6413                                           OverloadCandidateSet& CandidateSet,
6414                                           bool PartialOverloading,
6415                                           bool StdNamespaceIsAssociated) {
6416  ADLResult Fns;
6417
6418  // FIXME: This approach for uniquing ADL results (and removing
6419  // redundant candidates from the set) relies on pointer-equality,
6420  // which means we need to key off the canonical decl.  However,
6421  // always going back to the canonical decl might not get us the
6422  // right set of default arguments.  What default arguments are
6423  // we supposed to consider on ADL candidates, anyway?
6424
6425  // FIXME: Pass in the explicit template arguments?
6426  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6427                          StdNamespaceIsAssociated);
6428
6429  // Erase all of the candidates we already knew about.
6430  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6431                                   CandEnd = CandidateSet.end();
6432       Cand != CandEnd; ++Cand)
6433    if (Cand->Function) {
6434      Fns.erase(Cand->Function);
6435      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6436        Fns.erase(FunTmpl);
6437    }
6438
6439  // For each of the ADL candidates we found, add it to the overload
6440  // set.
6441  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6442    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6443    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6444      if (ExplicitTemplateArgs)
6445        continue;
6446
6447      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6448                           false, PartialOverloading);
6449    } else
6450      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6451                                   FoundDecl, ExplicitTemplateArgs,
6452                                   Args, NumArgs, CandidateSet);
6453  }
6454}
6455
6456/// isBetterOverloadCandidate - Determines whether the first overload
6457/// candidate is a better candidate than the second (C++ 13.3.3p1).
6458bool
6459isBetterOverloadCandidate(Sema &S,
6460                          const OverloadCandidate &Cand1,
6461                          const OverloadCandidate &Cand2,
6462                          SourceLocation Loc,
6463                          bool UserDefinedConversion) {
6464  // Define viable functions to be better candidates than non-viable
6465  // functions.
6466  if (!Cand2.Viable)
6467    return Cand1.Viable;
6468  else if (!Cand1.Viable)
6469    return false;
6470
6471  // C++ [over.match.best]p1:
6472  //
6473  //   -- if F is a static member function, ICS1(F) is defined such
6474  //      that ICS1(F) is neither better nor worse than ICS1(G) for
6475  //      any function G, and, symmetrically, ICS1(G) is neither
6476  //      better nor worse than ICS1(F).
6477  unsigned StartArg = 0;
6478  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6479    StartArg = 1;
6480
6481  // C++ [over.match.best]p1:
6482  //   A viable function F1 is defined to be a better function than another
6483  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
6484  //   conversion sequence than ICSi(F2), and then...
6485  unsigned NumArgs = Cand1.Conversions.size();
6486  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6487  bool HasBetterConversion = false;
6488  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6489    switch (CompareImplicitConversionSequences(S,
6490                                               Cand1.Conversions[ArgIdx],
6491                                               Cand2.Conversions[ArgIdx])) {
6492    case ImplicitConversionSequence::Better:
6493      // Cand1 has a better conversion sequence.
6494      HasBetterConversion = true;
6495      break;
6496
6497    case ImplicitConversionSequence::Worse:
6498      // Cand1 can't be better than Cand2.
6499      return false;
6500
6501    case ImplicitConversionSequence::Indistinguishable:
6502      // Do nothing.
6503      break;
6504    }
6505  }
6506
6507  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6508  //       ICSj(F2), or, if not that,
6509  if (HasBetterConversion)
6510    return true;
6511
6512  //     - F1 is a non-template function and F2 is a function template
6513  //       specialization, or, if not that,
6514  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6515      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6516    return true;
6517
6518  //   -- F1 and F2 are function template specializations, and the function
6519  //      template for F1 is more specialized than the template for F2
6520  //      according to the partial ordering rules described in 14.5.5.2, or,
6521  //      if not that,
6522  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6523      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6524    if (FunctionTemplateDecl *BetterTemplate
6525          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6526                                         Cand2.Function->getPrimaryTemplate(),
6527                                         Loc,
6528                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6529                                                             : TPOC_Call,
6530                                         Cand1.ExplicitCallArguments))
6531      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6532  }
6533
6534  //   -- the context is an initialization by user-defined conversion
6535  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6536  //      from the return type of F1 to the destination type (i.e.,
6537  //      the type of the entity being initialized) is a better
6538  //      conversion sequence than the standard conversion sequence
6539  //      from the return type of F2 to the destination type.
6540  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6541      isa<CXXConversionDecl>(Cand1.Function) &&
6542      isa<CXXConversionDecl>(Cand2.Function)) {
6543    switch (CompareStandardConversionSequences(S,
6544                                               Cand1.FinalConversion,
6545                                               Cand2.FinalConversion)) {
6546    case ImplicitConversionSequence::Better:
6547      // Cand1 has a better conversion sequence.
6548      return true;
6549
6550    case ImplicitConversionSequence::Worse:
6551      // Cand1 can't be better than Cand2.
6552      return false;
6553
6554    case ImplicitConversionSequence::Indistinguishable:
6555      // Do nothing
6556      break;
6557    }
6558  }
6559
6560  return false;
6561}
6562
6563/// \brief Computes the best viable function (C++ 13.3.3)
6564/// within an overload candidate set.
6565///
6566/// \param CandidateSet the set of candidate functions.
6567///
6568/// \param Loc the location of the function name (or operator symbol) for
6569/// which overload resolution occurs.
6570///
6571/// \param Best f overload resolution was successful or found a deleted
6572/// function, Best points to the candidate function found.
6573///
6574/// \returns The result of overload resolution.
6575OverloadingResult
6576OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6577                                         iterator &Best,
6578                                         bool UserDefinedConversion) {
6579  // Find the best viable function.
6580  Best = end();
6581  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6582    if (Cand->Viable)
6583      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6584                                                     UserDefinedConversion))
6585        Best = Cand;
6586  }
6587
6588  // If we didn't find any viable functions, abort.
6589  if (Best == end())
6590    return OR_No_Viable_Function;
6591
6592  // Make sure that this function is better than every other viable
6593  // function. If not, we have an ambiguity.
6594  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6595    if (Cand->Viable &&
6596        Cand != Best &&
6597        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6598                                   UserDefinedConversion)) {
6599      Best = end();
6600      return OR_Ambiguous;
6601    }
6602  }
6603
6604  // Best is the best viable function.
6605  if (Best->Function &&
6606      (Best->Function->isDeleted() ||
6607       S.isFunctionConsideredUnavailable(Best->Function)))
6608    return OR_Deleted;
6609
6610  return OR_Success;
6611}
6612
6613namespace {
6614
6615enum OverloadCandidateKind {
6616  oc_function,
6617  oc_method,
6618  oc_constructor,
6619  oc_function_template,
6620  oc_method_template,
6621  oc_constructor_template,
6622  oc_implicit_default_constructor,
6623  oc_implicit_copy_constructor,
6624  oc_implicit_move_constructor,
6625  oc_implicit_copy_assignment,
6626  oc_implicit_move_assignment,
6627  oc_implicit_inherited_constructor
6628};
6629
6630OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6631                                                FunctionDecl *Fn,
6632                                                std::string &Description) {
6633  bool isTemplate = false;
6634
6635  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6636    isTemplate = true;
6637    Description = S.getTemplateArgumentBindingsText(
6638      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6639  }
6640
6641  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6642    if (!Ctor->isImplicit())
6643      return isTemplate ? oc_constructor_template : oc_constructor;
6644
6645    if (Ctor->getInheritedConstructor())
6646      return oc_implicit_inherited_constructor;
6647
6648    if (Ctor->isDefaultConstructor())
6649      return oc_implicit_default_constructor;
6650
6651    if (Ctor->isMoveConstructor())
6652      return oc_implicit_move_constructor;
6653
6654    assert(Ctor->isCopyConstructor() &&
6655           "unexpected sort of implicit constructor");
6656    return oc_implicit_copy_constructor;
6657  }
6658
6659  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6660    // This actually gets spelled 'candidate function' for now, but
6661    // it doesn't hurt to split it out.
6662    if (!Meth->isImplicit())
6663      return isTemplate ? oc_method_template : oc_method;
6664
6665    if (Meth->isMoveAssignmentOperator())
6666      return oc_implicit_move_assignment;
6667
6668    assert(Meth->isCopyAssignmentOperator()
6669           && "implicit method is not copy assignment operator?");
6670    return oc_implicit_copy_assignment;
6671  }
6672
6673  return isTemplate ? oc_function_template : oc_function;
6674}
6675
6676void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
6677  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
6678  if (!Ctor) return;
6679
6680  Ctor = Ctor->getInheritedConstructor();
6681  if (!Ctor) return;
6682
6683  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
6684}
6685
6686} // end anonymous namespace
6687
6688// Notes the location of an overload candidate.
6689void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6690  std::string FnDesc;
6691  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6692  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6693    << (unsigned) K << FnDesc;
6694  MaybeEmitInheritedConstructorNote(*this, Fn);
6695}
6696
6697//Notes the location of all overload candidates designated through
6698// OverloadedExpr
6699void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
6700  assert(OverloadedExpr->getType() == Context.OverloadTy);
6701
6702  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
6703  OverloadExpr *OvlExpr = Ovl.Expression;
6704
6705  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6706                            IEnd = OvlExpr->decls_end();
6707       I != IEnd; ++I) {
6708    if (FunctionTemplateDecl *FunTmpl =
6709                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6710      NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
6711    } else if (FunctionDecl *Fun
6712                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
6713      NoteOverloadCandidate(Fun);
6714    }
6715  }
6716}
6717
6718/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6719/// "lead" diagnostic; it will be given two arguments, the source and
6720/// target types of the conversion.
6721void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6722                                 Sema &S,
6723                                 SourceLocation CaretLoc,
6724                                 const PartialDiagnostic &PDiag) const {
6725  S.Diag(CaretLoc, PDiag)
6726    << Ambiguous.getFromType() << Ambiguous.getToType();
6727  for (AmbiguousConversionSequence::const_iterator
6728         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6729    S.NoteOverloadCandidate(*I);
6730  }
6731}
6732
6733namespace {
6734
6735/// Try to find a fix for the bad conversion. Populate the ConvFix structure
6736/// on success. Produces the hints for the following cases:
6737/// - The user forgot to apply * or & operator to one or more arguments.
6738static bool TryToFixBadConversion(Sema &S,
6739                                  const ImplicitConversionSequence &Conv,
6740                                  OverloadCandidate::FixInfo &ConvFix) {
6741  assert(Conv.isBad() && "Only try to fix a bad conversion.");
6742
6743  const Expr *Arg = Conv.Bad.FromExpr;
6744  if (!Arg)
6745    return false;
6746
6747  // The conversion is from argument type to parameter type.
6748  const CanQualType FromQTy = S.Context.getCanonicalType(Conv.Bad
6749                                                         .getFromType());
6750  const CanQualType ToQTy = S.Context.getCanonicalType(Conv.Bad.getToType());
6751  const SourceLocation Begin = Arg->getSourceRange().getBegin();
6752  const SourceLocation End = S.PP.getLocForEndOfToken(Arg->getSourceRange()
6753                                                      .getEnd());
6754  bool NeedParen = true;
6755  if (isa<ParenExpr>(Arg) || isa<DeclRefExpr>(Arg))
6756    NeedParen = false;
6757
6758  // Check if the argument needs to be dereferenced
6759  // (type * -> type) or (type * -> type &).
6760  if (const PointerType *FromPtrTy = dyn_cast<PointerType>(FromQTy)) {
6761    // Try to construct an implicit conversion from argument type to the
6762    // parameter type.
6763    OpaqueValueExpr TmpExpr(Arg->getExprLoc(), FromPtrTy->getPointeeType(),
6764                            VK_LValue);
6765    ImplicitConversionSequence ICS =
6766      TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
6767
6768    if (!ICS.isBad()) {
6769      // Do not suggest dereferencing a Null pointer.
6770      if (Arg->IgnoreParenCasts()->
6771          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6772        return false;
6773
6774      if (NeedParen) {
6775        ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "*("));
6776        ConvFix.Hints.push_back(FixItHint::CreateInsertion(End, ")"));
6777      } else {
6778        ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "*"));
6779      }
6780      ConvFix.NumConversionsFixed++;
6781      if (ConvFix.NumConversionsFixed == 1)
6782        ConvFix.Kind = OFIK_Dereference;
6783      return true;
6784    }
6785  }
6786
6787  // Check if the pointer to the argument needs to be passed
6788  // (type -> type *) or (type & -> type *).
6789  if (isa<PointerType>(ToQTy)) {
6790    // Only suggest taking address of L-values.
6791    if (!Arg->isLValue())
6792      return false;
6793
6794    OpaqueValueExpr TmpExpr(Arg->getExprLoc(),
6795                            S.Context.getPointerType(FromQTy), VK_RValue);
6796    ImplicitConversionSequence ICS =
6797      TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
6798    if (!ICS.isBad()) {
6799      if (NeedParen) {
6800        ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "&("));
6801        ConvFix.Hints.push_back(FixItHint::CreateInsertion(End, ")"));
6802      } else {
6803        ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "&"));
6804      }
6805      ConvFix.NumConversionsFixed++;
6806      if (ConvFix.NumConversionsFixed == 1)
6807        ConvFix.Kind = OFIK_TakeAddress;
6808      return true;
6809    }
6810  }
6811  return false;
6812}
6813
6814void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6815  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6816  assert(Conv.isBad());
6817  assert(Cand->Function && "for now, candidate must be a function");
6818  FunctionDecl *Fn = Cand->Function;
6819
6820  // There's a conversion slot for the object argument if this is a
6821  // non-constructor method.  Note that 'I' corresponds the
6822  // conversion-slot index.
6823  bool isObjectArgument = false;
6824  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6825    if (I == 0)
6826      isObjectArgument = true;
6827    else
6828      I--;
6829  }
6830
6831  std::string FnDesc;
6832  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6833
6834  Expr *FromExpr = Conv.Bad.FromExpr;
6835  QualType FromTy = Conv.Bad.getFromType();
6836  QualType ToTy = Conv.Bad.getToType();
6837
6838  if (FromTy == S.Context.OverloadTy) {
6839    assert(FromExpr && "overload set argument came from implicit argument?");
6840    Expr *E = FromExpr->IgnoreParens();
6841    if (isa<UnaryOperator>(E))
6842      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6843    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6844
6845    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6846      << (unsigned) FnKind << FnDesc
6847      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6848      << ToTy << Name << I+1;
6849    MaybeEmitInheritedConstructorNote(S, Fn);
6850    return;
6851  }
6852
6853  // Do some hand-waving analysis to see if the non-viability is due
6854  // to a qualifier mismatch.
6855  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6856  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6857  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6858    CToTy = RT->getPointeeType();
6859  else {
6860    // TODO: detect and diagnose the full richness of const mismatches.
6861    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6862      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6863        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6864  }
6865
6866  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6867      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6868    // It is dumb that we have to do this here.
6869    while (isa<ArrayType>(CFromTy))
6870      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6871    while (isa<ArrayType>(CToTy))
6872      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6873
6874    Qualifiers FromQs = CFromTy.getQualifiers();
6875    Qualifiers ToQs = CToTy.getQualifiers();
6876
6877    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6878      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6879        << (unsigned) FnKind << FnDesc
6880        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6881        << FromTy
6882        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6883        << (unsigned) isObjectArgument << I+1;
6884      MaybeEmitInheritedConstructorNote(S, Fn);
6885      return;
6886    }
6887
6888    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
6889      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
6890        << (unsigned) FnKind << FnDesc
6891        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6892        << FromTy
6893        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
6894        << (unsigned) isObjectArgument << I+1;
6895      MaybeEmitInheritedConstructorNote(S, Fn);
6896      return;
6897    }
6898
6899    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
6900      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
6901      << (unsigned) FnKind << FnDesc
6902      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6903      << FromTy
6904      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
6905      << (unsigned) isObjectArgument << I+1;
6906      MaybeEmitInheritedConstructorNote(S, Fn);
6907      return;
6908    }
6909
6910    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6911    assert(CVR && "unexpected qualifiers mismatch");
6912
6913    if (isObjectArgument) {
6914      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6915        << (unsigned) FnKind << FnDesc
6916        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6917        << FromTy << (CVR - 1);
6918    } else {
6919      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6920        << (unsigned) FnKind << FnDesc
6921        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6922        << FromTy << (CVR - 1) << I+1;
6923    }
6924    MaybeEmitInheritedConstructorNote(S, Fn);
6925    return;
6926  }
6927
6928  // Diagnose references or pointers to incomplete types differently,
6929  // since it's far from impossible that the incompleteness triggered
6930  // the failure.
6931  QualType TempFromTy = FromTy.getNonReferenceType();
6932  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6933    TempFromTy = PTy->getPointeeType();
6934  if (TempFromTy->isIncompleteType()) {
6935    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6936      << (unsigned) FnKind << FnDesc
6937      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6938      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6939    MaybeEmitInheritedConstructorNote(S, Fn);
6940    return;
6941  }
6942
6943  // Diagnose base -> derived pointer conversions.
6944  unsigned BaseToDerivedConversion = 0;
6945  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6946    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6947      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6948                                               FromPtrTy->getPointeeType()) &&
6949          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6950          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6951          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6952                          FromPtrTy->getPointeeType()))
6953        BaseToDerivedConversion = 1;
6954    }
6955  } else if (const ObjCObjectPointerType *FromPtrTy
6956                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6957    if (const ObjCObjectPointerType *ToPtrTy
6958                                        = ToTy->getAs<ObjCObjectPointerType>())
6959      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6960        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6961          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6962                                                FromPtrTy->getPointeeType()) &&
6963              FromIface->isSuperClassOf(ToIface))
6964            BaseToDerivedConversion = 2;
6965  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6966      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6967          !FromTy->isIncompleteType() &&
6968          !ToRefTy->getPointeeType()->isIncompleteType() &&
6969          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6970        BaseToDerivedConversion = 3;
6971    }
6972
6973  if (BaseToDerivedConversion) {
6974    S.Diag(Fn->getLocation(),
6975           diag::note_ovl_candidate_bad_base_to_derived_conv)
6976      << (unsigned) FnKind << FnDesc
6977      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6978      << (BaseToDerivedConversion - 1)
6979      << FromTy << ToTy << I+1;
6980    MaybeEmitInheritedConstructorNote(S, Fn);
6981    return;
6982  }
6983
6984  if (isa<ObjCObjectPointerType>(CFromTy) &&
6985      isa<PointerType>(CToTy)) {
6986      Qualifiers FromQs = CFromTy.getQualifiers();
6987      Qualifiers ToQs = CToTy.getQualifiers();
6988      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
6989        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
6990        << (unsigned) FnKind << FnDesc
6991        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6992        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6993        MaybeEmitInheritedConstructorNote(S, Fn);
6994        return;
6995      }
6996  }
6997
6998  // TODO: specialize more based on the kind of mismatch
6999  // Emit the generic diagnostic and, optionally, add the hints to it.
7000  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
7001  FDiag << (unsigned) FnKind << FnDesc
7002    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7003    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
7004    << (unsigned) (Cand->Fix.Kind);
7005
7006  // If we can fix the conversion, suggest the FixIts.
7007  for (llvm::SmallVector<FixItHint, 4>::iterator
7008      HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end();
7009      HI != HE; ++HI)
7010    FDiag << *HI;
7011  S.Diag(Fn->getLocation(), FDiag);
7012
7013  MaybeEmitInheritedConstructorNote(S, Fn);
7014}
7015
7016void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
7017                           unsigned NumFormalArgs) {
7018  // TODO: treat calls to a missing default constructor as a special case
7019
7020  FunctionDecl *Fn = Cand->Function;
7021  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
7022
7023  unsigned MinParams = Fn->getMinRequiredArguments();
7024
7025  // With invalid overloaded operators, it's possible that we think we
7026  // have an arity mismatch when it fact it looks like we have the
7027  // right number of arguments, because only overloaded operators have
7028  // the weird behavior of overloading member and non-member functions.
7029  // Just don't report anything.
7030  if (Fn->isInvalidDecl() &&
7031      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
7032    return;
7033
7034  // at least / at most / exactly
7035  unsigned mode, modeCount;
7036  if (NumFormalArgs < MinParams) {
7037    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
7038           (Cand->FailureKind == ovl_fail_bad_deduction &&
7039            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
7040    if (MinParams != FnTy->getNumArgs() ||
7041        FnTy->isVariadic() || FnTy->isTemplateVariadic())
7042      mode = 0; // "at least"
7043    else
7044      mode = 2; // "exactly"
7045    modeCount = MinParams;
7046  } else {
7047    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
7048           (Cand->FailureKind == ovl_fail_bad_deduction &&
7049            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
7050    if (MinParams != FnTy->getNumArgs())
7051      mode = 1; // "at most"
7052    else
7053      mode = 2; // "exactly"
7054    modeCount = FnTy->getNumArgs();
7055  }
7056
7057  std::string Description;
7058  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
7059
7060  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
7061    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
7062    << modeCount << NumFormalArgs;
7063  MaybeEmitInheritedConstructorNote(S, Fn);
7064}
7065
7066/// Diagnose a failed template-argument deduction.
7067void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
7068                          Expr **Args, unsigned NumArgs) {
7069  FunctionDecl *Fn = Cand->Function; // pattern
7070
7071  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7072  NamedDecl *ParamD;
7073  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7074  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7075  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7076  switch (Cand->DeductionFailure.Result) {
7077  case Sema::TDK_Success:
7078    llvm_unreachable("TDK_success while diagnosing bad deduction");
7079
7080  case Sema::TDK_Incomplete: {
7081    assert(ParamD && "no parameter found for incomplete deduction result");
7082    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7083      << ParamD->getDeclName();
7084    MaybeEmitInheritedConstructorNote(S, Fn);
7085    return;
7086  }
7087
7088  case Sema::TDK_Underqualified: {
7089    assert(ParamD && "no parameter found for bad qualifiers deduction result");
7090    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7091
7092    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7093
7094    // Param will have been canonicalized, but it should just be a
7095    // qualified version of ParamD, so move the qualifiers to that.
7096    QualifierCollector Qs;
7097    Qs.strip(Param);
7098    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7099    assert(S.Context.hasSameType(Param, NonCanonParam));
7100
7101    // Arg has also been canonicalized, but there's nothing we can do
7102    // about that.  It also doesn't matter as much, because it won't
7103    // have any template parameters in it (because deduction isn't
7104    // done on dependent types).
7105    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7106
7107    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7108      << ParamD->getDeclName() << Arg << NonCanonParam;
7109    MaybeEmitInheritedConstructorNote(S, Fn);
7110    return;
7111  }
7112
7113  case Sema::TDK_Inconsistent: {
7114    assert(ParamD && "no parameter found for inconsistent deduction result");
7115    int which = 0;
7116    if (isa<TemplateTypeParmDecl>(ParamD))
7117      which = 0;
7118    else if (isa<NonTypeTemplateParmDecl>(ParamD))
7119      which = 1;
7120    else {
7121      which = 2;
7122    }
7123
7124    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7125      << which << ParamD->getDeclName()
7126      << *Cand->DeductionFailure.getFirstArg()
7127      << *Cand->DeductionFailure.getSecondArg();
7128    MaybeEmitInheritedConstructorNote(S, Fn);
7129    return;
7130  }
7131
7132  case Sema::TDK_InvalidExplicitArguments:
7133    assert(ParamD && "no parameter found for invalid explicit arguments");
7134    if (ParamD->getDeclName())
7135      S.Diag(Fn->getLocation(),
7136             diag::note_ovl_candidate_explicit_arg_mismatch_named)
7137        << ParamD->getDeclName();
7138    else {
7139      int index = 0;
7140      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7141        index = TTP->getIndex();
7142      else if (NonTypeTemplateParmDecl *NTTP
7143                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7144        index = NTTP->getIndex();
7145      else
7146        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7147      S.Diag(Fn->getLocation(),
7148             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7149        << (index + 1);
7150    }
7151    MaybeEmitInheritedConstructorNote(S, Fn);
7152    return;
7153
7154  case Sema::TDK_TooManyArguments:
7155  case Sema::TDK_TooFewArguments:
7156    DiagnoseArityMismatch(S, Cand, NumArgs);
7157    return;
7158
7159  case Sema::TDK_InstantiationDepth:
7160    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
7161    MaybeEmitInheritedConstructorNote(S, Fn);
7162    return;
7163
7164  case Sema::TDK_SubstitutionFailure: {
7165    std::string ArgString;
7166    if (TemplateArgumentList *Args
7167                            = Cand->DeductionFailure.getTemplateArgumentList())
7168      ArgString = S.getTemplateArgumentBindingsText(
7169                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
7170                                                    *Args);
7171    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
7172      << ArgString;
7173    MaybeEmitInheritedConstructorNote(S, Fn);
7174    return;
7175  }
7176
7177  // TODO: diagnose these individually, then kill off
7178  // note_ovl_candidate_bad_deduction, which is uselessly vague.
7179  case Sema::TDK_NonDeducedMismatch:
7180  case Sema::TDK_FailedOverloadResolution:
7181    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
7182    MaybeEmitInheritedConstructorNote(S, Fn);
7183    return;
7184  }
7185}
7186
7187/// Generates a 'note' diagnostic for an overload candidate.  We've
7188/// already generated a primary error at the call site.
7189///
7190/// It really does need to be a single diagnostic with its caret
7191/// pointed at the candidate declaration.  Yes, this creates some
7192/// major challenges of technical writing.  Yes, this makes pointing
7193/// out problems with specific arguments quite awkward.  It's still
7194/// better than generating twenty screens of text for every failed
7195/// overload.
7196///
7197/// It would be great to be able to express per-candidate problems
7198/// more richly for those diagnostic clients that cared, but we'd
7199/// still have to be just as careful with the default diagnostics.
7200void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
7201                           Expr **Args, unsigned NumArgs) {
7202  FunctionDecl *Fn = Cand->Function;
7203
7204  // Note deleted candidates, but only if they're viable.
7205  if (Cand->Viable && (Fn->isDeleted() ||
7206      S.isFunctionConsideredUnavailable(Fn))) {
7207    std::string FnDesc;
7208    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7209
7210    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
7211      << FnKind << FnDesc << Fn->isDeleted();
7212    MaybeEmitInheritedConstructorNote(S, Fn);
7213    return;
7214  }
7215
7216  // We don't really have anything else to say about viable candidates.
7217  if (Cand->Viable) {
7218    S.NoteOverloadCandidate(Fn);
7219    return;
7220  }
7221
7222  switch (Cand->FailureKind) {
7223  case ovl_fail_too_many_arguments:
7224  case ovl_fail_too_few_arguments:
7225    return DiagnoseArityMismatch(S, Cand, NumArgs);
7226
7227  case ovl_fail_bad_deduction:
7228    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
7229
7230  case ovl_fail_trivial_conversion:
7231  case ovl_fail_bad_final_conversion:
7232  case ovl_fail_final_conversion_not_exact:
7233    return S.NoteOverloadCandidate(Fn);
7234
7235  case ovl_fail_bad_conversion: {
7236    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
7237    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
7238      if (Cand->Conversions[I].isBad())
7239        return DiagnoseBadConversion(S, Cand, I);
7240
7241    // FIXME: this currently happens when we're called from SemaInit
7242    // when user-conversion overload fails.  Figure out how to handle
7243    // those conditions and diagnose them well.
7244    return S.NoteOverloadCandidate(Fn);
7245  }
7246  }
7247}
7248
7249void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
7250  // Desugar the type of the surrogate down to a function type,
7251  // retaining as many typedefs as possible while still showing
7252  // the function type (and, therefore, its parameter types).
7253  QualType FnType = Cand->Surrogate->getConversionType();
7254  bool isLValueReference = false;
7255  bool isRValueReference = false;
7256  bool isPointer = false;
7257  if (const LValueReferenceType *FnTypeRef =
7258        FnType->getAs<LValueReferenceType>()) {
7259    FnType = FnTypeRef->getPointeeType();
7260    isLValueReference = true;
7261  } else if (const RValueReferenceType *FnTypeRef =
7262               FnType->getAs<RValueReferenceType>()) {
7263    FnType = FnTypeRef->getPointeeType();
7264    isRValueReference = true;
7265  }
7266  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
7267    FnType = FnTypePtr->getPointeeType();
7268    isPointer = true;
7269  }
7270  // Desugar down to a function type.
7271  FnType = QualType(FnType->getAs<FunctionType>(), 0);
7272  // Reconstruct the pointer/reference as appropriate.
7273  if (isPointer) FnType = S.Context.getPointerType(FnType);
7274  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
7275  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
7276
7277  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
7278    << FnType;
7279  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
7280}
7281
7282void NoteBuiltinOperatorCandidate(Sema &S,
7283                                  const char *Opc,
7284                                  SourceLocation OpLoc,
7285                                  OverloadCandidate *Cand) {
7286  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
7287  std::string TypeStr("operator");
7288  TypeStr += Opc;
7289  TypeStr += "(";
7290  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
7291  if (Cand->Conversions.size() == 1) {
7292    TypeStr += ")";
7293    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
7294  } else {
7295    TypeStr += ", ";
7296    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
7297    TypeStr += ")";
7298    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
7299  }
7300}
7301
7302void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
7303                                  OverloadCandidate *Cand) {
7304  unsigned NoOperands = Cand->Conversions.size();
7305  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
7306    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
7307    if (ICS.isBad()) break; // all meaningless after first invalid
7308    if (!ICS.isAmbiguous()) continue;
7309
7310    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
7311                              S.PDiag(diag::note_ambiguous_type_conversion));
7312  }
7313}
7314
7315SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
7316  if (Cand->Function)
7317    return Cand->Function->getLocation();
7318  if (Cand->IsSurrogate)
7319    return Cand->Surrogate->getLocation();
7320  return SourceLocation();
7321}
7322
7323struct CompareOverloadCandidatesForDisplay {
7324  Sema &S;
7325  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
7326
7327  bool operator()(const OverloadCandidate *L,
7328                  const OverloadCandidate *R) {
7329    // Fast-path this check.
7330    if (L == R) return false;
7331
7332    // Order first by viability.
7333    if (L->Viable) {
7334      if (!R->Viable) return true;
7335
7336      // TODO: introduce a tri-valued comparison for overload
7337      // candidates.  Would be more worthwhile if we had a sort
7338      // that could exploit it.
7339      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
7340      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
7341    } else if (R->Viable)
7342      return false;
7343
7344    assert(L->Viable == R->Viable);
7345
7346    // Criteria by which we can sort non-viable candidates:
7347    if (!L->Viable) {
7348      // 1. Arity mismatches come after other candidates.
7349      if (L->FailureKind == ovl_fail_too_many_arguments ||
7350          L->FailureKind == ovl_fail_too_few_arguments)
7351        return false;
7352      if (R->FailureKind == ovl_fail_too_many_arguments ||
7353          R->FailureKind == ovl_fail_too_few_arguments)
7354        return true;
7355
7356      // 2. Bad conversions come first and are ordered by the number
7357      // of bad conversions and quality of good conversions.
7358      if (L->FailureKind == ovl_fail_bad_conversion) {
7359        if (R->FailureKind != ovl_fail_bad_conversion)
7360          return true;
7361
7362        // The conversion that can be fixed with a smaller number of changes,
7363        // comes first.
7364        unsigned numLFixes = L->Fix.NumConversionsFixed;
7365        unsigned numRFixes = R->Fix.NumConversionsFixed;
7366        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
7367        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
7368        if (numLFixes != numRFixes)
7369          if (numLFixes < numRFixes)
7370            return true;
7371          else
7372            return false;
7373
7374        // If there's any ordering between the defined conversions...
7375        // FIXME: this might not be transitive.
7376        assert(L->Conversions.size() == R->Conversions.size());
7377
7378        int leftBetter = 0;
7379        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
7380        for (unsigned E = L->Conversions.size(); I != E; ++I) {
7381          switch (CompareImplicitConversionSequences(S,
7382                                                     L->Conversions[I],
7383                                                     R->Conversions[I])) {
7384          case ImplicitConversionSequence::Better:
7385            leftBetter++;
7386            break;
7387
7388          case ImplicitConversionSequence::Worse:
7389            leftBetter--;
7390            break;
7391
7392          case ImplicitConversionSequence::Indistinguishable:
7393            break;
7394          }
7395        }
7396        if (leftBetter > 0) return true;
7397        if (leftBetter < 0) return false;
7398
7399      } else if (R->FailureKind == ovl_fail_bad_conversion)
7400        return false;
7401
7402      // TODO: others?
7403    }
7404
7405    // Sort everything else by location.
7406    SourceLocation LLoc = GetLocationForCandidate(L);
7407    SourceLocation RLoc = GetLocationForCandidate(R);
7408
7409    // Put candidates without locations (e.g. builtins) at the end.
7410    if (LLoc.isInvalid()) return false;
7411    if (RLoc.isInvalid()) return true;
7412
7413    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7414  }
7415};
7416
7417/// CompleteNonViableCandidate - Normally, overload resolution only
7418/// computes up to the first. Produces the FixIt set if possible.
7419void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7420                                Expr **Args, unsigned NumArgs) {
7421  assert(!Cand->Viable);
7422
7423  // Don't do anything on failures other than bad conversion.
7424  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7425
7426  // We only want the FixIts if all the arguments can be corrected.
7427  bool Unfixable = false;
7428
7429  // Skip forward to the first bad conversion.
7430  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7431  unsigned ConvCount = Cand->Conversions.size();
7432  while (true) {
7433    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7434    ConvIdx++;
7435    if (Cand->Conversions[ConvIdx - 1].isBad()) {
7436      if ((Unfixable = !TryToFixBadConversion(S, Cand->Conversions[ConvIdx - 1],
7437                                                 Cand->Fix)))
7438        Cand->Fix.Hints.clear();
7439      break;
7440    }
7441  }
7442
7443  if (ConvIdx == ConvCount)
7444    return;
7445
7446  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7447         "remaining conversion is initialized?");
7448
7449  // FIXME: this should probably be preserved from the overload
7450  // operation somehow.
7451  bool SuppressUserConversions = false;
7452
7453  const FunctionProtoType* Proto;
7454  unsigned ArgIdx = ConvIdx;
7455
7456  if (Cand->IsSurrogate) {
7457    QualType ConvType
7458      = Cand->Surrogate->getConversionType().getNonReferenceType();
7459    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7460      ConvType = ConvPtrType->getPointeeType();
7461    Proto = ConvType->getAs<FunctionProtoType>();
7462    ArgIdx--;
7463  } else if (Cand->Function) {
7464    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7465    if (isa<CXXMethodDecl>(Cand->Function) &&
7466        !isa<CXXConstructorDecl>(Cand->Function))
7467      ArgIdx--;
7468  } else {
7469    // Builtin binary operator with a bad first conversion.
7470    assert(ConvCount <= 3);
7471    for (; ConvIdx != ConvCount; ++ConvIdx)
7472      Cand->Conversions[ConvIdx]
7473        = TryCopyInitialization(S, Args[ConvIdx],
7474                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
7475                                SuppressUserConversions,
7476                                /*InOverloadResolution*/ true,
7477                                /*AllowObjCWritebackConversion=*/
7478                                  S.getLangOptions().ObjCAutoRefCount);
7479    return;
7480  }
7481
7482  // Fill in the rest of the conversions.
7483  unsigned NumArgsInProto = Proto->getNumArgs();
7484  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7485    if (ArgIdx < NumArgsInProto) {
7486      Cand->Conversions[ConvIdx]
7487        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7488                                SuppressUserConversions,
7489                                /*InOverloadResolution=*/true,
7490                                /*AllowObjCWritebackConversion=*/
7491                                  S.getLangOptions().ObjCAutoRefCount);
7492      // Store the FixIt in the candidate if it exists.
7493      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
7494        Unfixable = !TryToFixBadConversion(S, Cand->Conversions[ConvIdx],
7495                                              Cand->Fix);
7496    }
7497    else
7498      Cand->Conversions[ConvIdx].setEllipsis();
7499  }
7500
7501  if (Unfixable) {
7502    Cand->Fix.Hints.clear();
7503    Cand->Fix.NumConversionsFixed = 0;
7504  }
7505}
7506
7507} // end anonymous namespace
7508
7509/// PrintOverloadCandidates - When overload resolution fails, prints
7510/// diagnostic messages containing the candidates in the candidate
7511/// set.
7512void OverloadCandidateSet::NoteCandidates(Sema &S,
7513                                          OverloadCandidateDisplayKind OCD,
7514                                          Expr **Args, unsigned NumArgs,
7515                                          const char *Opc,
7516                                          SourceLocation OpLoc) {
7517  // Sort the candidates by viability and position.  Sorting directly would
7518  // be prohibitive, so we make a set of pointers and sort those.
7519  llvm::SmallVector<OverloadCandidate*, 32> Cands;
7520  if (OCD == OCD_AllCandidates) Cands.reserve(size());
7521  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7522    if (Cand->Viable)
7523      Cands.push_back(Cand);
7524    else if (OCD == OCD_AllCandidates) {
7525      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7526      if (Cand->Function || Cand->IsSurrogate)
7527        Cands.push_back(Cand);
7528      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
7529      // want to list every possible builtin candidate.
7530    }
7531  }
7532
7533  std::sort(Cands.begin(), Cands.end(),
7534            CompareOverloadCandidatesForDisplay(S));
7535
7536  bool ReportedAmbiguousConversions = false;
7537
7538  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7539  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
7540  unsigned CandsShown = 0;
7541  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7542    OverloadCandidate *Cand = *I;
7543
7544    // Set an arbitrary limit on the number of candidate functions we'll spam
7545    // the user with.  FIXME: This limit should depend on details of the
7546    // candidate list.
7547    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
7548      break;
7549    }
7550    ++CandsShown;
7551
7552    if (Cand->Function)
7553      NoteFunctionCandidate(S, Cand, Args, NumArgs);
7554    else if (Cand->IsSurrogate)
7555      NoteSurrogateCandidate(S, Cand);
7556    else {
7557      assert(Cand->Viable &&
7558             "Non-viable built-in candidates are not added to Cands.");
7559      // Generally we only see ambiguities including viable builtin
7560      // operators if overload resolution got screwed up by an
7561      // ambiguous user-defined conversion.
7562      //
7563      // FIXME: It's quite possible for different conversions to see
7564      // different ambiguities, though.
7565      if (!ReportedAmbiguousConversions) {
7566        NoteAmbiguousUserConversions(S, OpLoc, Cand);
7567        ReportedAmbiguousConversions = true;
7568      }
7569
7570      // If this is a viable builtin, print it.
7571      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7572    }
7573  }
7574
7575  if (I != E)
7576    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7577}
7578
7579// [PossiblyAFunctionType]  -->   [Return]
7580// NonFunctionType --> NonFunctionType
7581// R (A) --> R(A)
7582// R (*)(A) --> R (A)
7583// R (&)(A) --> R (A)
7584// R (S::*)(A) --> R (A)
7585QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7586  QualType Ret = PossiblyAFunctionType;
7587  if (const PointerType *ToTypePtr =
7588    PossiblyAFunctionType->getAs<PointerType>())
7589    Ret = ToTypePtr->getPointeeType();
7590  else if (const ReferenceType *ToTypeRef =
7591    PossiblyAFunctionType->getAs<ReferenceType>())
7592    Ret = ToTypeRef->getPointeeType();
7593  else if (const MemberPointerType *MemTypePtr =
7594    PossiblyAFunctionType->getAs<MemberPointerType>())
7595    Ret = MemTypePtr->getPointeeType();
7596  Ret =
7597    Context.getCanonicalType(Ret).getUnqualifiedType();
7598  return Ret;
7599}
7600
7601// A helper class to help with address of function resolution
7602// - allows us to avoid passing around all those ugly parameters
7603class AddressOfFunctionResolver
7604{
7605  Sema& S;
7606  Expr* SourceExpr;
7607  const QualType& TargetType;
7608  QualType TargetFunctionType; // Extracted function type from target type
7609
7610  bool Complain;
7611  //DeclAccessPair& ResultFunctionAccessPair;
7612  ASTContext& Context;
7613
7614  bool TargetTypeIsNonStaticMemberFunction;
7615  bool FoundNonTemplateFunction;
7616
7617  OverloadExpr::FindResult OvlExprInfo;
7618  OverloadExpr *OvlExpr;
7619  TemplateArgumentListInfo OvlExplicitTemplateArgs;
7620  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7621
7622public:
7623  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7624                            const QualType& TargetType, bool Complain)
7625    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7626      Complain(Complain), Context(S.getASTContext()),
7627      TargetTypeIsNonStaticMemberFunction(
7628                                    !!TargetType->getAs<MemberPointerType>()),
7629      FoundNonTemplateFunction(false),
7630      OvlExprInfo(OverloadExpr::find(SourceExpr)),
7631      OvlExpr(OvlExprInfo.Expression)
7632  {
7633    ExtractUnqualifiedFunctionTypeFromTargetType();
7634
7635    if (!TargetFunctionType->isFunctionType()) {
7636      if (OvlExpr->hasExplicitTemplateArgs()) {
7637        DeclAccessPair dap;
7638        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7639                                            OvlExpr, false, &dap) ) {
7640
7641          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7642            if (!Method->isStatic()) {
7643              // If the target type is a non-function type and the function
7644              // found is a non-static member function, pretend as if that was
7645              // the target, it's the only possible type to end up with.
7646              TargetTypeIsNonStaticMemberFunction = true;
7647
7648              // And skip adding the function if its not in the proper form.
7649              // We'll diagnose this due to an empty set of functions.
7650              if (!OvlExprInfo.HasFormOfMemberPointer)
7651                return;
7652            }
7653          }
7654
7655          Matches.push_back(std::make_pair(dap,Fn));
7656        }
7657      }
7658      return;
7659    }
7660
7661    if (OvlExpr->hasExplicitTemplateArgs())
7662      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7663
7664    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7665      // C++ [over.over]p4:
7666      //   If more than one function is selected, [...]
7667      if (Matches.size() > 1) {
7668        if (FoundNonTemplateFunction)
7669          EliminateAllTemplateMatches();
7670        else
7671          EliminateAllExceptMostSpecializedTemplate();
7672      }
7673    }
7674  }
7675
7676private:
7677  bool isTargetTypeAFunction() const {
7678    return TargetFunctionType->isFunctionType();
7679  }
7680
7681  // [ToType]     [Return]
7682
7683  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7684  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7685  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
7686  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7687    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7688  }
7689
7690  // return true if any matching specializations were found
7691  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
7692                                   const DeclAccessPair& CurAccessFunPair) {
7693    if (CXXMethodDecl *Method
7694              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
7695      // Skip non-static function templates when converting to pointer, and
7696      // static when converting to member pointer.
7697      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7698        return false;
7699    }
7700    else if (TargetTypeIsNonStaticMemberFunction)
7701      return false;
7702
7703    // C++ [over.over]p2:
7704    //   If the name is a function template, template argument deduction is
7705    //   done (14.8.2.2), and if the argument deduction succeeds, the
7706    //   resulting template argument list is used to generate a single
7707    //   function template specialization, which is added to the set of
7708    //   overloaded functions considered.
7709    FunctionDecl *Specialization = 0;
7710    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7711    if (Sema::TemplateDeductionResult Result
7712          = S.DeduceTemplateArguments(FunctionTemplate,
7713                                      &OvlExplicitTemplateArgs,
7714                                      TargetFunctionType, Specialization,
7715                                      Info)) {
7716      // FIXME: make a note of the failed deduction for diagnostics.
7717      (void)Result;
7718      return false;
7719    }
7720
7721    // Template argument deduction ensures that we have an exact match.
7722    // This function template specicalization works.
7723    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
7724    assert(TargetFunctionType
7725                      == Context.getCanonicalType(Specialization->getType()));
7726    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
7727    return true;
7728  }
7729
7730  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
7731                                      const DeclAccessPair& CurAccessFunPair) {
7732    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7733      // Skip non-static functions when converting to pointer, and static
7734      // when converting to member pointer.
7735      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7736        return false;
7737    }
7738    else if (TargetTypeIsNonStaticMemberFunction)
7739      return false;
7740
7741    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
7742      QualType ResultTy;
7743      if (Context.hasSameUnqualifiedType(TargetFunctionType,
7744                                         FunDecl->getType()) ||
7745          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
7746                                 ResultTy)) {
7747        Matches.push_back(std::make_pair(CurAccessFunPair,
7748          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7749        FoundNonTemplateFunction = true;
7750        return true;
7751      }
7752    }
7753
7754    return false;
7755  }
7756
7757  bool FindAllFunctionsThatMatchTargetTypeExactly() {
7758    bool Ret = false;
7759
7760    // If the overload expression doesn't have the form of a pointer to
7761    // member, don't try to convert it to a pointer-to-member type.
7762    if (IsInvalidFormOfPointerToMemberFunction())
7763      return false;
7764
7765    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7766                               E = OvlExpr->decls_end();
7767         I != E; ++I) {
7768      // Look through any using declarations to find the underlying function.
7769      NamedDecl *Fn = (*I)->getUnderlyingDecl();
7770
7771      // C++ [over.over]p3:
7772      //   Non-member functions and static member functions match
7773      //   targets of type "pointer-to-function" or "reference-to-function."
7774      //   Nonstatic member functions match targets of
7775      //   type "pointer-to-member-function."
7776      // Note that according to DR 247, the containing class does not matter.
7777      if (FunctionTemplateDecl *FunctionTemplate
7778                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
7779        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
7780          Ret = true;
7781      }
7782      // If we have explicit template arguments supplied, skip non-templates.
7783      else if (!OvlExpr->hasExplicitTemplateArgs() &&
7784               AddMatchingNonTemplateFunction(Fn, I.getPair()))
7785        Ret = true;
7786    }
7787    assert(Ret || Matches.empty());
7788    return Ret;
7789  }
7790
7791  void EliminateAllExceptMostSpecializedTemplate() {
7792    //   [...] and any given function template specialization F1 is
7793    //   eliminated if the set contains a second function template
7794    //   specialization whose function template is more specialized
7795    //   than the function template of F1 according to the partial
7796    //   ordering rules of 14.5.5.2.
7797
7798    // The algorithm specified above is quadratic. We instead use a
7799    // two-pass algorithm (similar to the one used to identify the
7800    // best viable function in an overload set) that identifies the
7801    // best function template (if it exists).
7802
7803    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7804    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7805      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7806
7807    UnresolvedSetIterator Result =
7808      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7809                           TPOC_Other, 0, SourceExpr->getLocStart(),
7810                           S.PDiag(),
7811                           S.PDiag(diag::err_addr_ovl_ambiguous)
7812                             << Matches[0].second->getDeclName(),
7813                           S.PDiag(diag::note_ovl_candidate)
7814                             << (unsigned) oc_function_template,
7815                           Complain);
7816
7817    if (Result != MatchesCopy.end()) {
7818      // Make it the first and only element
7819      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
7820      Matches[0].second = cast<FunctionDecl>(*Result);
7821      Matches.resize(1);
7822    }
7823  }
7824
7825  void EliminateAllTemplateMatches() {
7826    //   [...] any function template specializations in the set are
7827    //   eliminated if the set also contains a non-template function, [...]
7828    for (unsigned I = 0, N = Matches.size(); I != N; ) {
7829      if (Matches[I].second->getPrimaryTemplate() == 0)
7830        ++I;
7831      else {
7832        Matches[I] = Matches[--N];
7833        Matches.set_size(N);
7834      }
7835    }
7836  }
7837
7838public:
7839  void ComplainNoMatchesFound() const {
7840    assert(Matches.empty());
7841    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
7842        << OvlExpr->getName() << TargetFunctionType
7843        << OvlExpr->getSourceRange();
7844    S.NoteAllOverloadCandidates(OvlExpr);
7845  }
7846
7847  bool IsInvalidFormOfPointerToMemberFunction() const {
7848    return TargetTypeIsNonStaticMemberFunction &&
7849      !OvlExprInfo.HasFormOfMemberPointer;
7850  }
7851
7852  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
7853      // TODO: Should we condition this on whether any functions might
7854      // have matched, or is it more appropriate to do that in callers?
7855      // TODO: a fixit wouldn't hurt.
7856      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
7857        << TargetType << OvlExpr->getSourceRange();
7858  }
7859
7860  void ComplainOfInvalidConversion() const {
7861    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
7862      << OvlExpr->getName() << TargetType;
7863  }
7864
7865  void ComplainMultipleMatchesFound() const {
7866    assert(Matches.size() > 1);
7867    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
7868      << OvlExpr->getName()
7869      << OvlExpr->getSourceRange();
7870    S.NoteAllOverloadCandidates(OvlExpr);
7871  }
7872
7873  int getNumMatches() const { return Matches.size(); }
7874
7875  FunctionDecl* getMatchingFunctionDecl() const {
7876    if (Matches.size() != 1) return 0;
7877    return Matches[0].second;
7878  }
7879
7880  const DeclAccessPair* getMatchingFunctionAccessPair() const {
7881    if (Matches.size() != 1) return 0;
7882    return &Matches[0].first;
7883  }
7884};
7885
7886/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
7887/// an overloaded function (C++ [over.over]), where @p From is an
7888/// expression with overloaded function type and @p ToType is the type
7889/// we're trying to resolve to. For example:
7890///
7891/// @code
7892/// int f(double);
7893/// int f(int);
7894///
7895/// int (*pfd)(double) = f; // selects f(double)
7896/// @endcode
7897///
7898/// This routine returns the resulting FunctionDecl if it could be
7899/// resolved, and NULL otherwise. When @p Complain is true, this
7900/// routine will emit diagnostics if there is an error.
7901FunctionDecl *
7902Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
7903                                    bool Complain,
7904                                    DeclAccessPair &FoundResult) {
7905
7906  assert(AddressOfExpr->getType() == Context.OverloadTy);
7907
7908  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
7909  int NumMatches = Resolver.getNumMatches();
7910  FunctionDecl* Fn = 0;
7911  if ( NumMatches == 0 && Complain) {
7912    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
7913      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
7914    else
7915      Resolver.ComplainNoMatchesFound();
7916  }
7917  else if (NumMatches > 1 && Complain)
7918    Resolver.ComplainMultipleMatchesFound();
7919  else if (NumMatches == 1) {
7920    Fn = Resolver.getMatchingFunctionDecl();
7921    assert(Fn);
7922    FoundResult = *Resolver.getMatchingFunctionAccessPair();
7923    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
7924    if (Complain)
7925      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
7926  }
7927
7928  return Fn;
7929}
7930
7931/// \brief Given an expression that refers to an overloaded function, try to
7932/// resolve that overloaded function expression down to a single function.
7933///
7934/// This routine can only resolve template-ids that refer to a single function
7935/// template, where that template-id refers to a single template whose template
7936/// arguments are either provided by the template-id or have defaults,
7937/// as described in C++0x [temp.arg.explicit]p3.
7938FunctionDecl *
7939Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
7940                                                  bool Complain,
7941                                                  DeclAccessPair *FoundResult) {
7942  // C++ [over.over]p1:
7943  //   [...] [Note: any redundant set of parentheses surrounding the
7944  //   overloaded function name is ignored (5.1). ]
7945  // C++ [over.over]p1:
7946  //   [...] The overloaded function name can be preceded by the &
7947  //   operator.
7948
7949  // If we didn't actually find any template-ids, we're done.
7950  if (!ovl->hasExplicitTemplateArgs())
7951    return 0;
7952
7953  TemplateArgumentListInfo ExplicitTemplateArgs;
7954  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7955
7956  // Look through all of the overloaded functions, searching for one
7957  // whose type matches exactly.
7958  FunctionDecl *Matched = 0;
7959  for (UnresolvedSetIterator I = ovl->decls_begin(),
7960         E = ovl->decls_end(); I != E; ++I) {
7961    // C++0x [temp.arg.explicit]p3:
7962    //   [...] In contexts where deduction is done and fails, or in contexts
7963    //   where deduction is not done, if a template argument list is
7964    //   specified and it, along with any default template arguments,
7965    //   identifies a single function template specialization, then the
7966    //   template-id is an lvalue for the function template specialization.
7967    FunctionTemplateDecl *FunctionTemplate
7968      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7969
7970    // C++ [over.over]p2:
7971    //   If the name is a function template, template argument deduction is
7972    //   done (14.8.2.2), and if the argument deduction succeeds, the
7973    //   resulting template argument list is used to generate a single
7974    //   function template specialization, which is added to the set of
7975    //   overloaded functions considered.
7976    FunctionDecl *Specialization = 0;
7977    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
7978    if (TemplateDeductionResult Result
7979          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7980                                    Specialization, Info)) {
7981      // FIXME: make a note of the failed deduction for diagnostics.
7982      (void)Result;
7983      continue;
7984    }
7985
7986    assert(Specialization && "no specialization and no error?");
7987
7988    // Multiple matches; we can't resolve to a single declaration.
7989    if (Matched) {
7990      if (Complain) {
7991        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
7992          << ovl->getName();
7993        NoteAllOverloadCandidates(ovl);
7994      }
7995      return 0;
7996    }
7997
7998    Matched = Specialization;
7999    if (FoundResult) *FoundResult = I.getPair();
8000  }
8001
8002  return Matched;
8003}
8004
8005
8006
8007
8008// Resolve and fix an overloaded expression that
8009// can be resolved because it identifies a single function
8010// template specialization
8011// Last three arguments should only be supplied if Complain = true
8012ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
8013             Expr *SrcExpr, bool doFunctionPointerConverion, bool complain,
8014                                  const SourceRange& OpRangeForComplaining,
8015                                           QualType DestTypeForComplaining,
8016                                            unsigned DiagIDForComplaining) {
8017  assert(SrcExpr->getType() == Context.OverloadTy);
8018
8019  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr);
8020
8021  DeclAccessPair found;
8022  ExprResult SingleFunctionExpression;
8023  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
8024                           ovl.Expression, /*complain*/ false, &found)) {
8025    if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin()))
8026      return ExprError();
8027
8028    // It is only correct to resolve to an instance method if we're
8029    // resolving a form that's permitted to be a pointer to member.
8030    // Otherwise we'll end up making a bound member expression, which
8031    // is illegal in all the contexts we resolve like this.
8032    if (!ovl.HasFormOfMemberPointer &&
8033        isa<CXXMethodDecl>(fn) &&
8034        cast<CXXMethodDecl>(fn)->isInstance()) {
8035      if (complain) {
8036        Diag(ovl.Expression->getExprLoc(),
8037             diag::err_invalid_use_of_bound_member_func)
8038          << ovl.Expression->getSourceRange();
8039        // TODO: I believe we only end up here if there's a mix of
8040        // static and non-static candidates (otherwise the expression
8041        // would have 'bound member' type, not 'overload' type).
8042        // Ideally we would note which candidate was chosen and why
8043        // the static candidates were rejected.
8044      }
8045
8046      return ExprError();
8047    }
8048
8049    // Fix the expresion to refer to 'fn'.
8050    SingleFunctionExpression =
8051      Owned(FixOverloadedFunctionReference(SrcExpr, found, fn));
8052
8053    // If desired, do function-to-pointer decay.
8054    if (doFunctionPointerConverion)
8055      SingleFunctionExpression =
8056        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
8057  }
8058
8059  if (!SingleFunctionExpression.isUsable()) {
8060    if (complain) {
8061      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
8062        << ovl.Expression->getName()
8063        << DestTypeForComplaining
8064        << OpRangeForComplaining
8065        << ovl.Expression->getQualifierLoc().getSourceRange();
8066      NoteAllOverloadCandidates(SrcExpr);
8067    }
8068    return ExprError();
8069  }
8070
8071  return SingleFunctionExpression;
8072}
8073
8074/// \brief Add a single candidate to the overload set.
8075static void AddOverloadedCallCandidate(Sema &S,
8076                                       DeclAccessPair FoundDecl,
8077                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
8078                                       Expr **Args, unsigned NumArgs,
8079                                       OverloadCandidateSet &CandidateSet,
8080                                       bool PartialOverloading,
8081                                       bool KnownValid) {
8082  NamedDecl *Callee = FoundDecl.getDecl();
8083  if (isa<UsingShadowDecl>(Callee))
8084    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
8085
8086  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
8087    if (ExplicitTemplateArgs) {
8088      assert(!KnownValid && "Explicit template arguments?");
8089      return;
8090    }
8091    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
8092                           false, PartialOverloading);
8093    return;
8094  }
8095
8096  if (FunctionTemplateDecl *FuncTemplate
8097      = dyn_cast<FunctionTemplateDecl>(Callee)) {
8098    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
8099                                   ExplicitTemplateArgs,
8100                                   Args, NumArgs, CandidateSet);
8101    return;
8102  }
8103
8104  assert(!KnownValid && "unhandled case in overloaded call candidate");
8105}
8106
8107/// \brief Add the overload candidates named by callee and/or found by argument
8108/// dependent lookup to the given overload set.
8109void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
8110                                       Expr **Args, unsigned NumArgs,
8111                                       OverloadCandidateSet &CandidateSet,
8112                                       bool PartialOverloading) {
8113
8114#ifndef NDEBUG
8115  // Verify that ArgumentDependentLookup is consistent with the rules
8116  // in C++0x [basic.lookup.argdep]p3:
8117  //
8118  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
8119  //   and let Y be the lookup set produced by argument dependent
8120  //   lookup (defined as follows). If X contains
8121  //
8122  //     -- a declaration of a class member, or
8123  //
8124  //     -- a block-scope function declaration that is not a
8125  //        using-declaration, or
8126  //
8127  //     -- a declaration that is neither a function or a function
8128  //        template
8129  //
8130  //   then Y is empty.
8131
8132  if (ULE->requiresADL()) {
8133    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8134           E = ULE->decls_end(); I != E; ++I) {
8135      assert(!(*I)->getDeclContext()->isRecord());
8136      assert(isa<UsingShadowDecl>(*I) ||
8137             !(*I)->getDeclContext()->isFunctionOrMethod());
8138      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
8139    }
8140  }
8141#endif
8142
8143  // It would be nice to avoid this copy.
8144  TemplateArgumentListInfo TABuffer;
8145  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8146  if (ULE->hasExplicitTemplateArgs()) {
8147    ULE->copyTemplateArgumentsInto(TABuffer);
8148    ExplicitTemplateArgs = &TABuffer;
8149  }
8150
8151  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8152         E = ULE->decls_end(); I != E; ++I)
8153    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
8154                               Args, NumArgs, CandidateSet,
8155                               PartialOverloading, /*KnownValid*/ true);
8156
8157  if (ULE->requiresADL())
8158    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
8159                                         Args, NumArgs,
8160                                         ExplicitTemplateArgs,
8161                                         CandidateSet,
8162                                         PartialOverloading,
8163                                         ULE->isStdAssociatedNamespace());
8164}
8165
8166/// Attempt to recover from an ill-formed use of a non-dependent name in a
8167/// template, where the non-dependent name was declared after the template
8168/// was defined. This is common in code written for a compilers which do not
8169/// correctly implement two-stage name lookup.
8170///
8171/// Returns true if a viable candidate was found and a diagnostic was issued.
8172static bool
8173DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
8174                       const CXXScopeSpec &SS, LookupResult &R,
8175                       TemplateArgumentListInfo *ExplicitTemplateArgs,
8176                       Expr **Args, unsigned NumArgs) {
8177  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
8178    return false;
8179
8180  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
8181    SemaRef.LookupQualifiedName(R, DC);
8182
8183    if (!R.empty()) {
8184      R.suppressDiagnostics();
8185
8186      if (isa<CXXRecordDecl>(DC)) {
8187        // Don't diagnose names we find in classes; we get much better
8188        // diagnostics for these from DiagnoseEmptyLookup.
8189        R.clear();
8190        return false;
8191      }
8192
8193      OverloadCandidateSet Candidates(FnLoc);
8194      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8195        AddOverloadedCallCandidate(SemaRef, I.getPair(),
8196                                   ExplicitTemplateArgs, Args, NumArgs,
8197                                   Candidates, false, /*KnownValid*/ false);
8198
8199      OverloadCandidateSet::iterator Best;
8200      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
8201        // No viable functions. Don't bother the user with notes for functions
8202        // which don't work and shouldn't be found anyway.
8203        R.clear();
8204        return false;
8205      }
8206
8207      // Find the namespaces where ADL would have looked, and suggest
8208      // declaring the function there instead.
8209      Sema::AssociatedNamespaceSet AssociatedNamespaces;
8210      Sema::AssociatedClassSet AssociatedClasses;
8211      SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
8212                                                 AssociatedNamespaces,
8213                                                 AssociatedClasses);
8214      // Never suggest declaring a function within namespace 'std'.
8215      Sema::AssociatedNamespaceSet SuggestedNamespaces;
8216      if (DeclContext *Std = SemaRef.getStdNamespace()) {
8217        for (Sema::AssociatedNamespaceSet::iterator
8218               it = AssociatedNamespaces.begin(),
8219               end = AssociatedNamespaces.end(); it != end; ++it) {
8220          if (!Std->Encloses(*it))
8221            SuggestedNamespaces.insert(*it);
8222        }
8223      } else {
8224        // Lacking the 'std::' namespace, use all of the associated namespaces.
8225        SuggestedNamespaces = AssociatedNamespaces;
8226      }
8227
8228      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
8229        << R.getLookupName();
8230      if (SuggestedNamespaces.empty()) {
8231        SemaRef.Diag(Best->Function->getLocation(),
8232                     diag::note_not_found_by_two_phase_lookup)
8233          << R.getLookupName() << 0;
8234      } else if (SuggestedNamespaces.size() == 1) {
8235        SemaRef.Diag(Best->Function->getLocation(),
8236                     diag::note_not_found_by_two_phase_lookup)
8237          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
8238      } else {
8239        // FIXME: It would be useful to list the associated namespaces here,
8240        // but the diagnostics infrastructure doesn't provide a way to produce
8241        // a localized representation of a list of items.
8242        SemaRef.Diag(Best->Function->getLocation(),
8243                     diag::note_not_found_by_two_phase_lookup)
8244          << R.getLookupName() << 2;
8245      }
8246
8247      // Try to recover by calling this function.
8248      return true;
8249    }
8250
8251    R.clear();
8252  }
8253
8254  return false;
8255}
8256
8257/// Attempt to recover from ill-formed use of a non-dependent operator in a
8258/// template, where the non-dependent operator was declared after the template
8259/// was defined.
8260///
8261/// Returns true if a viable candidate was found and a diagnostic was issued.
8262static bool
8263DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
8264                               SourceLocation OpLoc,
8265                               Expr **Args, unsigned NumArgs) {
8266  DeclarationName OpName =
8267    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
8268  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
8269  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
8270                                /*ExplicitTemplateArgs=*/0, Args, NumArgs);
8271}
8272
8273/// Attempts to recover from a call where no functions were found.
8274///
8275/// Returns true if new candidates were found.
8276static ExprResult
8277BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
8278                      UnresolvedLookupExpr *ULE,
8279                      SourceLocation LParenLoc,
8280                      Expr **Args, unsigned NumArgs,
8281                      SourceLocation RParenLoc,
8282                      bool EmptyLookup) {
8283
8284  CXXScopeSpec SS;
8285  SS.Adopt(ULE->getQualifierLoc());
8286
8287  TemplateArgumentListInfo TABuffer;
8288  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8289  if (ULE->hasExplicitTemplateArgs()) {
8290    ULE->copyTemplateArgumentsInto(TABuffer);
8291    ExplicitTemplateArgs = &TABuffer;
8292  }
8293
8294  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
8295                 Sema::LookupOrdinaryName);
8296  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
8297                              ExplicitTemplateArgs, Args, NumArgs) &&
8298      (!EmptyLookup ||
8299       SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)))
8300    return ExprError();
8301
8302  assert(!R.empty() && "lookup results empty despite recovery");
8303
8304  // Build an implicit member call if appropriate.  Just drop the
8305  // casts and such from the call, we don't really care.
8306  ExprResult NewFn = ExprError();
8307  if ((*R.begin())->isCXXClassMember())
8308    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
8309                                                    ExplicitTemplateArgs);
8310  else if (ExplicitTemplateArgs)
8311    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
8312  else
8313    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
8314
8315  if (NewFn.isInvalid())
8316    return ExprError();
8317
8318  // This shouldn't cause an infinite loop because we're giving it
8319  // an expression with viable lookup results, which should never
8320  // end up here.
8321  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
8322                               MultiExprArg(Args, NumArgs), RParenLoc);
8323}
8324
8325/// ResolveOverloadedCallFn - Given the call expression that calls Fn
8326/// (which eventually refers to the declaration Func) and the call
8327/// arguments Args/NumArgs, attempt to resolve the function call down
8328/// to a specific function. If overload resolution succeeds, returns
8329/// the function declaration produced by overload
8330/// resolution. Otherwise, emits diagnostics, deletes all of the
8331/// arguments and Fn, and returns NULL.
8332ExprResult
8333Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
8334                              SourceLocation LParenLoc,
8335                              Expr **Args, unsigned NumArgs,
8336                              SourceLocation RParenLoc,
8337                              Expr *ExecConfig) {
8338#ifndef NDEBUG
8339  if (ULE->requiresADL()) {
8340    // To do ADL, we must have found an unqualified name.
8341    assert(!ULE->getQualifier() && "qualified name with ADL");
8342
8343    // We don't perform ADL for implicit declarations of builtins.
8344    // Verify that this was correctly set up.
8345    FunctionDecl *F;
8346    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
8347        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
8348        F->getBuiltinID() && F->isImplicit())
8349      assert(0 && "performing ADL for builtin");
8350
8351    // We don't perform ADL in C.
8352    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
8353  } else
8354    assert(!ULE->isStdAssociatedNamespace() &&
8355           "std is associated namespace but not doing ADL");
8356#endif
8357
8358  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
8359
8360  // Add the functions denoted by the callee to the set of candidate
8361  // functions, including those from argument-dependent lookup.
8362  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
8363
8364  // If we found nothing, try to recover.
8365  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
8366  // out if it fails.
8367  if (CandidateSet.empty())
8368    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
8369                                 RParenLoc, /*EmptyLookup=*/true);
8370
8371  OverloadCandidateSet::iterator Best;
8372  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
8373  case OR_Success: {
8374    FunctionDecl *FDecl = Best->Function;
8375    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
8376    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
8377    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
8378                      ULE->getNameLoc());
8379    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
8380    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
8381                                 ExecConfig);
8382  }
8383
8384  case OR_No_Viable_Function: {
8385    // Try to recover by looking for viable functions which the user might
8386    // have meant to call.
8387    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
8388                                                Args, NumArgs, RParenLoc,
8389                                                /*EmptyLookup=*/false);
8390    if (!Recovery.isInvalid())
8391      return Recovery;
8392
8393    Diag(Fn->getSourceRange().getBegin(),
8394         diag::err_ovl_no_viable_function_in_call)
8395      << ULE->getName() << Fn->getSourceRange();
8396    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8397    break;
8398  }
8399
8400  case OR_Ambiguous:
8401    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
8402      << ULE->getName() << Fn->getSourceRange();
8403    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8404    break;
8405
8406  case OR_Deleted:
8407    {
8408      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
8409        << Best->Function->isDeleted()
8410        << ULE->getName()
8411        << getDeletedOrUnavailableSuffix(Best->Function)
8412        << Fn->getSourceRange();
8413      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8414    }
8415    break;
8416  }
8417
8418  // Overload resolution failed.
8419  return ExprError();
8420}
8421
8422static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
8423  return Functions.size() > 1 ||
8424    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
8425}
8426
8427/// \brief Create a unary operation that may resolve to an overloaded
8428/// operator.
8429///
8430/// \param OpLoc The location of the operator itself (e.g., '*').
8431///
8432/// \param OpcIn The UnaryOperator::Opcode that describes this
8433/// operator.
8434///
8435/// \param Functions The set of non-member functions that will be
8436/// considered by overload resolution. The caller needs to build this
8437/// set based on the context using, e.g.,
8438/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8439/// set should not contain any member functions; those will be added
8440/// by CreateOverloadedUnaryOp().
8441///
8442/// \param input The input argument.
8443ExprResult
8444Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
8445                              const UnresolvedSetImpl &Fns,
8446                              Expr *Input) {
8447  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
8448
8449  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
8450  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
8451  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8452  // TODO: provide better source location info.
8453  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8454
8455  if (Input->getObjectKind() == OK_ObjCProperty) {
8456    ExprResult Result = ConvertPropertyForRValue(Input);
8457    if (Result.isInvalid())
8458      return ExprError();
8459    Input = Result.take();
8460  }
8461
8462  Expr *Args[2] = { Input, 0 };
8463  unsigned NumArgs = 1;
8464
8465  // For post-increment and post-decrement, add the implicit '0' as
8466  // the second argument, so that we know this is a post-increment or
8467  // post-decrement.
8468  if (Opc == UO_PostInc || Opc == UO_PostDec) {
8469    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
8470    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
8471                                     SourceLocation());
8472    NumArgs = 2;
8473  }
8474
8475  if (Input->isTypeDependent()) {
8476    if (Fns.empty())
8477      return Owned(new (Context) UnaryOperator(Input,
8478                                               Opc,
8479                                               Context.DependentTy,
8480                                               VK_RValue, OK_Ordinary,
8481                                               OpLoc));
8482
8483    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8484    UnresolvedLookupExpr *Fn
8485      = UnresolvedLookupExpr::Create(Context, NamingClass,
8486                                     NestedNameSpecifierLoc(), OpNameInfo,
8487                                     /*ADL*/ true, IsOverloaded(Fns),
8488                                     Fns.begin(), Fns.end());
8489    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8490                                                  &Args[0], NumArgs,
8491                                                   Context.DependentTy,
8492                                                   VK_RValue,
8493                                                   OpLoc));
8494  }
8495
8496  // Build an empty overload set.
8497  OverloadCandidateSet CandidateSet(OpLoc);
8498
8499  // Add the candidates from the given function set.
8500  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
8501
8502  // Add operator candidates that are member functions.
8503  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8504
8505  // Add candidates from ADL.
8506  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8507                                       Args, NumArgs,
8508                                       /*ExplicitTemplateArgs*/ 0,
8509                                       CandidateSet);
8510
8511  // Add builtin operator candidates.
8512  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8513
8514  // Perform overload resolution.
8515  OverloadCandidateSet::iterator Best;
8516  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8517  case OR_Success: {
8518    // We found a built-in operator or an overloaded operator.
8519    FunctionDecl *FnDecl = Best->Function;
8520
8521    if (FnDecl) {
8522      // We matched an overloaded operator. Build a call to that
8523      // operator.
8524
8525      MarkDeclarationReferenced(OpLoc, FnDecl);
8526
8527      // Convert the arguments.
8528      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8529        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
8530
8531        ExprResult InputRes =
8532          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
8533                                              Best->FoundDecl, Method);
8534        if (InputRes.isInvalid())
8535          return ExprError();
8536        Input = InputRes.take();
8537      } else {
8538        // Convert the arguments.
8539        ExprResult InputInit
8540          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8541                                                      Context,
8542                                                      FnDecl->getParamDecl(0)),
8543                                      SourceLocation(),
8544                                      Input);
8545        if (InputInit.isInvalid())
8546          return ExprError();
8547        Input = InputInit.take();
8548      }
8549
8550      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8551
8552      // Determine the result type.
8553      QualType ResultTy = FnDecl->getResultType();
8554      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8555      ResultTy = ResultTy.getNonLValueExprType(Context);
8556
8557      // Build the actual expression node.
8558      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl);
8559      if (FnExpr.isInvalid())
8560        return ExprError();
8561
8562      Args[0] = Input;
8563      CallExpr *TheCall =
8564        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8565                                          Args, NumArgs, ResultTy, VK, OpLoc);
8566
8567      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8568                              FnDecl))
8569        return ExprError();
8570
8571      return MaybeBindToTemporary(TheCall);
8572    } else {
8573      // We matched a built-in operator. Convert the arguments, then
8574      // break out so that we will build the appropriate built-in
8575      // operator node.
8576      ExprResult InputRes =
8577        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8578                                  Best->Conversions[0], AA_Passing);
8579      if (InputRes.isInvalid())
8580        return ExprError();
8581      Input = InputRes.take();
8582      break;
8583    }
8584  }
8585
8586  case OR_No_Viable_Function:
8587    // This is an erroneous use of an operator which can be overloaded by
8588    // a non-member function. Check for non-member operators which were
8589    // defined too late to be candidates.
8590    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
8591      // FIXME: Recover by calling the found function.
8592      return ExprError();
8593
8594    // No viable function; fall through to handling this as a
8595    // built-in operator, which will produce an error message for us.
8596    break;
8597
8598  case OR_Ambiguous:
8599    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8600        << UnaryOperator::getOpcodeStr(Opc)
8601        << Input->getType()
8602        << Input->getSourceRange();
8603    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
8604                                Args, NumArgs,
8605                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8606    return ExprError();
8607
8608  case OR_Deleted:
8609    Diag(OpLoc, diag::err_ovl_deleted_oper)
8610      << Best->Function->isDeleted()
8611      << UnaryOperator::getOpcodeStr(Opc)
8612      << getDeletedOrUnavailableSuffix(Best->Function)
8613      << Input->getSourceRange();
8614    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8615    return ExprError();
8616  }
8617
8618  // Either we found no viable overloaded operator or we matched a
8619  // built-in operator. In either case, fall through to trying to
8620  // build a built-in operation.
8621  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8622}
8623
8624/// \brief Create a binary operation that may resolve to an overloaded
8625/// operator.
8626///
8627/// \param OpLoc The location of the operator itself (e.g., '+').
8628///
8629/// \param OpcIn The BinaryOperator::Opcode that describes this
8630/// operator.
8631///
8632/// \param Functions The set of non-member functions that will be
8633/// considered by overload resolution. The caller needs to build this
8634/// set based on the context using, e.g.,
8635/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8636/// set should not contain any member functions; those will be added
8637/// by CreateOverloadedBinOp().
8638///
8639/// \param LHS Left-hand argument.
8640/// \param RHS Right-hand argument.
8641ExprResult
8642Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8643                            unsigned OpcIn,
8644                            const UnresolvedSetImpl &Fns,
8645                            Expr *LHS, Expr *RHS) {
8646  Expr *Args[2] = { LHS, RHS };
8647  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
8648
8649  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
8650  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
8651  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8652
8653  // If either side is type-dependent, create an appropriate dependent
8654  // expression.
8655  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8656    if (Fns.empty()) {
8657      // If there are no functions to store, just build a dependent
8658      // BinaryOperator or CompoundAssignment.
8659      if (Opc <= BO_Assign || Opc > BO_OrAssign)
8660        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
8661                                                  Context.DependentTy,
8662                                                  VK_RValue, OK_Ordinary,
8663                                                  OpLoc));
8664
8665      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
8666                                                        Context.DependentTy,
8667                                                        VK_LValue,
8668                                                        OK_Ordinary,
8669                                                        Context.DependentTy,
8670                                                        Context.DependentTy,
8671                                                        OpLoc));
8672    }
8673
8674    // FIXME: save results of ADL from here?
8675    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8676    // TODO: provide better source location info in DNLoc component.
8677    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8678    UnresolvedLookupExpr *Fn
8679      = UnresolvedLookupExpr::Create(Context, NamingClass,
8680                                     NestedNameSpecifierLoc(), OpNameInfo,
8681                                     /*ADL*/ true, IsOverloaded(Fns),
8682                                     Fns.begin(), Fns.end());
8683    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8684                                                   Args, 2,
8685                                                   Context.DependentTy,
8686                                                   VK_RValue,
8687                                                   OpLoc));
8688  }
8689
8690  // Always do property rvalue conversions on the RHS.
8691  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8692    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8693    if (Result.isInvalid())
8694      return ExprError();
8695    Args[1] = Result.take();
8696  }
8697
8698  // The LHS is more complicated.
8699  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8700
8701    // There's a tension for assignment operators between primitive
8702    // property assignment and the overloaded operators.
8703    if (BinaryOperator::isAssignmentOp(Opc)) {
8704      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
8705
8706      // Is the property "logically" settable?
8707      bool Settable = (PRE->isExplicitProperty() ||
8708                       PRE->getImplicitPropertySetter());
8709
8710      // To avoid gratuitously inventing semantics, use the primitive
8711      // unless it isn't.  Thoughts in case we ever really care:
8712      // - If the property isn't logically settable, we have to
8713      //   load and hope.
8714      // - If the property is settable and this is simple assignment,
8715      //   we really should use the primitive.
8716      // - If the property is settable, then we could try overloading
8717      //   on a generic lvalue of the appropriate type;  if it works
8718      //   out to a builtin candidate, we would do that same operation
8719      //   on the property, and otherwise just error.
8720      if (Settable)
8721        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8722    }
8723
8724    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8725    if (Result.isInvalid())
8726      return ExprError();
8727    Args[0] = Result.take();
8728  }
8729
8730  // If this is the assignment operator, we only perform overload resolution
8731  // if the left-hand side is a class or enumeration type. This is actually
8732  // a hack. The standard requires that we do overload resolution between the
8733  // various built-in candidates, but as DR507 points out, this can lead to
8734  // problems. So we do it this way, which pretty much follows what GCC does.
8735  // Note that we go the traditional code path for compound assignment forms.
8736  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
8737    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8738
8739  // If this is the .* operator, which is not overloadable, just
8740  // create a built-in binary operator.
8741  if (Opc == BO_PtrMemD)
8742    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8743
8744  // Build an empty overload set.
8745  OverloadCandidateSet CandidateSet(OpLoc);
8746
8747  // Add the candidates from the given function set.
8748  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
8749
8750  // Add operator candidates that are member functions.
8751  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8752
8753  // Add candidates from ADL.
8754  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8755                                       Args, 2,
8756                                       /*ExplicitTemplateArgs*/ 0,
8757                                       CandidateSet);
8758
8759  // Add builtin operator candidates.
8760  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8761
8762  // Perform overload resolution.
8763  OverloadCandidateSet::iterator Best;
8764  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8765    case OR_Success: {
8766      // We found a built-in operator or an overloaded operator.
8767      FunctionDecl *FnDecl = Best->Function;
8768
8769      if (FnDecl) {
8770        // We matched an overloaded operator. Build a call to that
8771        // operator.
8772
8773        MarkDeclarationReferenced(OpLoc, FnDecl);
8774
8775        // Convert the arguments.
8776        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8777          // Best->Access is only meaningful for class members.
8778          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
8779
8780          ExprResult Arg1 =
8781            PerformCopyInitialization(
8782              InitializedEntity::InitializeParameter(Context,
8783                                                     FnDecl->getParamDecl(0)),
8784              SourceLocation(), Owned(Args[1]));
8785          if (Arg1.isInvalid())
8786            return ExprError();
8787
8788          ExprResult Arg0 =
8789            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8790                                                Best->FoundDecl, Method);
8791          if (Arg0.isInvalid())
8792            return ExprError();
8793          Args[0] = Arg0.takeAs<Expr>();
8794          Args[1] = RHS = Arg1.takeAs<Expr>();
8795        } else {
8796          // Convert the arguments.
8797          ExprResult Arg0 = PerformCopyInitialization(
8798            InitializedEntity::InitializeParameter(Context,
8799                                                   FnDecl->getParamDecl(0)),
8800            SourceLocation(), Owned(Args[0]));
8801          if (Arg0.isInvalid())
8802            return ExprError();
8803
8804          ExprResult Arg1 =
8805            PerformCopyInitialization(
8806              InitializedEntity::InitializeParameter(Context,
8807                                                     FnDecl->getParamDecl(1)),
8808              SourceLocation(), Owned(Args[1]));
8809          if (Arg1.isInvalid())
8810            return ExprError();
8811          Args[0] = LHS = Arg0.takeAs<Expr>();
8812          Args[1] = RHS = Arg1.takeAs<Expr>();
8813        }
8814
8815        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8816
8817        // Determine the result type.
8818        QualType ResultTy = FnDecl->getResultType();
8819        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8820        ResultTy = ResultTy.getNonLValueExprType(Context);
8821
8822        // Build the actual expression node.
8823        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
8824        if (FnExpr.isInvalid())
8825          return ExprError();
8826
8827        CXXOperatorCallExpr *TheCall =
8828          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8829                                            Args, 2, ResultTy, VK, OpLoc);
8830
8831        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8832                                FnDecl))
8833          return ExprError();
8834
8835        return MaybeBindToTemporary(TheCall);
8836      } else {
8837        // We matched a built-in operator. Convert the arguments, then
8838        // break out so that we will build the appropriate built-in
8839        // operator node.
8840        ExprResult ArgsRes0 =
8841          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8842                                    Best->Conversions[0], AA_Passing);
8843        if (ArgsRes0.isInvalid())
8844          return ExprError();
8845        Args[0] = ArgsRes0.take();
8846
8847        ExprResult ArgsRes1 =
8848          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8849                                    Best->Conversions[1], AA_Passing);
8850        if (ArgsRes1.isInvalid())
8851          return ExprError();
8852        Args[1] = ArgsRes1.take();
8853        break;
8854      }
8855    }
8856
8857    case OR_No_Viable_Function: {
8858      // C++ [over.match.oper]p9:
8859      //   If the operator is the operator , [...] and there are no
8860      //   viable functions, then the operator is assumed to be the
8861      //   built-in operator and interpreted according to clause 5.
8862      if (Opc == BO_Comma)
8863        break;
8864
8865      // For class as left operand for assignment or compound assigment
8866      // operator do not fall through to handling in built-in, but report that
8867      // no overloaded assignment operator found
8868      ExprResult Result = ExprError();
8869      if (Args[0]->getType()->isRecordType() &&
8870          Opc >= BO_Assign && Opc <= BO_OrAssign) {
8871        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
8872             << BinaryOperator::getOpcodeStr(Opc)
8873             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8874      } else {
8875        // This is an erroneous use of an operator which can be overloaded by
8876        // a non-member function. Check for non-member operators which were
8877        // defined too late to be candidates.
8878        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
8879          // FIXME: Recover by calling the found function.
8880          return ExprError();
8881
8882        // No viable function; try to create a built-in operation, which will
8883        // produce an error. Then, show the non-viable candidates.
8884        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8885      }
8886      assert(Result.isInvalid() &&
8887             "C++ binary operator overloading is missing candidates!");
8888      if (Result.isInvalid())
8889        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8890                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
8891      return move(Result);
8892    }
8893
8894    case OR_Ambiguous:
8895      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
8896          << BinaryOperator::getOpcodeStr(Opc)
8897          << Args[0]->getType() << Args[1]->getType()
8898          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8899      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8900                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
8901      return ExprError();
8902
8903    case OR_Deleted:
8904      Diag(OpLoc, diag::err_ovl_deleted_oper)
8905        << Best->Function->isDeleted()
8906        << BinaryOperator::getOpcodeStr(Opc)
8907        << getDeletedOrUnavailableSuffix(Best->Function)
8908        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8909      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
8910      return ExprError();
8911  }
8912
8913  // We matched a built-in operator; build it.
8914  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8915}
8916
8917ExprResult
8918Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
8919                                         SourceLocation RLoc,
8920                                         Expr *Base, Expr *Idx) {
8921  Expr *Args[2] = { Base, Idx };
8922  DeclarationName OpName =
8923      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
8924
8925  // If either side is type-dependent, create an appropriate dependent
8926  // expression.
8927  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8928
8929    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8930    // CHECKME: no 'operator' keyword?
8931    DeclarationNameInfo OpNameInfo(OpName, LLoc);
8932    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
8933    UnresolvedLookupExpr *Fn
8934      = UnresolvedLookupExpr::Create(Context, NamingClass,
8935                                     NestedNameSpecifierLoc(), OpNameInfo,
8936                                     /*ADL*/ true, /*Overloaded*/ false,
8937                                     UnresolvedSetIterator(),
8938                                     UnresolvedSetIterator());
8939    // Can't add any actual overloads yet
8940
8941    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
8942                                                   Args, 2,
8943                                                   Context.DependentTy,
8944                                                   VK_RValue,
8945                                                   RLoc));
8946  }
8947
8948  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8949    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8950    if (Result.isInvalid())
8951      return ExprError();
8952    Args[0] = Result.take();
8953  }
8954  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8955    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8956    if (Result.isInvalid())
8957      return ExprError();
8958    Args[1] = Result.take();
8959  }
8960
8961  // Build an empty overload set.
8962  OverloadCandidateSet CandidateSet(LLoc);
8963
8964  // Subscript can only be overloaded as a member function.
8965
8966  // Add operator candidates that are member functions.
8967  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8968
8969  // Add builtin operator candidates.
8970  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8971
8972  // Perform overload resolution.
8973  OverloadCandidateSet::iterator Best;
8974  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
8975    case OR_Success: {
8976      // We found a built-in operator or an overloaded operator.
8977      FunctionDecl *FnDecl = Best->Function;
8978
8979      if (FnDecl) {
8980        // We matched an overloaded operator. Build a call to that
8981        // operator.
8982
8983        MarkDeclarationReferenced(LLoc, FnDecl);
8984
8985        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
8986        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
8987
8988        // Convert the arguments.
8989        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
8990        ExprResult Arg0 =
8991          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8992                                              Best->FoundDecl, Method);
8993        if (Arg0.isInvalid())
8994          return ExprError();
8995        Args[0] = Arg0.take();
8996
8997        // Convert the arguments.
8998        ExprResult InputInit
8999          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9000                                                      Context,
9001                                                      FnDecl->getParamDecl(0)),
9002                                      SourceLocation(),
9003                                      Owned(Args[1]));
9004        if (InputInit.isInvalid())
9005          return ExprError();
9006
9007        Args[1] = InputInit.takeAs<Expr>();
9008
9009        // Determine the result type
9010        QualType ResultTy = FnDecl->getResultType();
9011        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9012        ResultTy = ResultTy.getNonLValueExprType(Context);
9013
9014        // Build the actual expression node.
9015        DeclarationNameLoc LocInfo;
9016        LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
9017        LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
9018        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc, LocInfo);
9019        if (FnExpr.isInvalid())
9020          return ExprError();
9021
9022        CXXOperatorCallExpr *TheCall =
9023          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
9024                                            FnExpr.take(), Args, 2,
9025                                            ResultTy, VK, RLoc);
9026
9027        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
9028                                FnDecl))
9029          return ExprError();
9030
9031        return MaybeBindToTemporary(TheCall);
9032      } else {
9033        // We matched a built-in operator. Convert the arguments, then
9034        // break out so that we will build the appropriate built-in
9035        // operator node.
9036        ExprResult ArgsRes0 =
9037          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9038                                    Best->Conversions[0], AA_Passing);
9039        if (ArgsRes0.isInvalid())
9040          return ExprError();
9041        Args[0] = ArgsRes0.take();
9042
9043        ExprResult ArgsRes1 =
9044          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9045                                    Best->Conversions[1], AA_Passing);
9046        if (ArgsRes1.isInvalid())
9047          return ExprError();
9048        Args[1] = ArgsRes1.take();
9049
9050        break;
9051      }
9052    }
9053
9054    case OR_No_Viable_Function: {
9055      if (CandidateSet.empty())
9056        Diag(LLoc, diag::err_ovl_no_oper)
9057          << Args[0]->getType() << /*subscript*/ 0
9058          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9059      else
9060        Diag(LLoc, diag::err_ovl_no_viable_subscript)
9061          << Args[0]->getType()
9062          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9063      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9064                                  "[]", LLoc);
9065      return ExprError();
9066    }
9067
9068    case OR_Ambiguous:
9069      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
9070          << "[]"
9071          << Args[0]->getType() << Args[1]->getType()
9072          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9073      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9074                                  "[]", LLoc);
9075      return ExprError();
9076
9077    case OR_Deleted:
9078      Diag(LLoc, diag::err_ovl_deleted_oper)
9079        << Best->Function->isDeleted() << "[]"
9080        << getDeletedOrUnavailableSuffix(Best->Function)
9081        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9082      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9083                                  "[]", LLoc);
9084      return ExprError();
9085    }
9086
9087  // We matched a built-in operator; build it.
9088  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
9089}
9090
9091/// BuildCallToMemberFunction - Build a call to a member
9092/// function. MemExpr is the expression that refers to the member
9093/// function (and includes the object parameter), Args/NumArgs are the
9094/// arguments to the function call (not including the object
9095/// parameter). The caller needs to validate that the member
9096/// expression refers to a non-static member function or an overloaded
9097/// member function.
9098ExprResult
9099Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
9100                                SourceLocation LParenLoc, Expr **Args,
9101                                unsigned NumArgs, SourceLocation RParenLoc) {
9102  assert(MemExprE->getType() == Context.BoundMemberTy ||
9103         MemExprE->getType() == Context.OverloadTy);
9104
9105  // Dig out the member expression. This holds both the object
9106  // argument and the member function we're referring to.
9107  Expr *NakedMemExpr = MemExprE->IgnoreParens();
9108
9109  // Determine whether this is a call to a pointer-to-member function.
9110  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
9111    assert(op->getType() == Context.BoundMemberTy);
9112    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
9113
9114    QualType fnType =
9115      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
9116
9117    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
9118    QualType resultType = proto->getCallResultType(Context);
9119    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
9120
9121    // Check that the object type isn't more qualified than the
9122    // member function we're calling.
9123    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
9124
9125    QualType objectType = op->getLHS()->getType();
9126    if (op->getOpcode() == BO_PtrMemI)
9127      objectType = objectType->castAs<PointerType>()->getPointeeType();
9128    Qualifiers objectQuals = objectType.getQualifiers();
9129
9130    Qualifiers difference = objectQuals - funcQuals;
9131    difference.removeObjCGCAttr();
9132    difference.removeAddressSpace();
9133    if (difference) {
9134      std::string qualsString = difference.getAsString();
9135      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
9136        << fnType.getUnqualifiedType()
9137        << qualsString
9138        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
9139    }
9140
9141    CXXMemberCallExpr *call
9142      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9143                                        resultType, valueKind, RParenLoc);
9144
9145    if (CheckCallReturnType(proto->getResultType(),
9146                            op->getRHS()->getSourceRange().getBegin(),
9147                            call, 0))
9148      return ExprError();
9149
9150    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
9151      return ExprError();
9152
9153    return MaybeBindToTemporary(call);
9154  }
9155
9156  MemberExpr *MemExpr;
9157  CXXMethodDecl *Method = 0;
9158  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
9159  NestedNameSpecifier *Qualifier = 0;
9160  if (isa<MemberExpr>(NakedMemExpr)) {
9161    MemExpr = cast<MemberExpr>(NakedMemExpr);
9162    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
9163    FoundDecl = MemExpr->getFoundDecl();
9164    Qualifier = MemExpr->getQualifier();
9165  } else {
9166    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
9167    Qualifier = UnresExpr->getQualifier();
9168
9169    QualType ObjectType = UnresExpr->getBaseType();
9170    Expr::Classification ObjectClassification
9171      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
9172                            : UnresExpr->getBase()->Classify(Context);
9173
9174    // Add overload candidates
9175    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
9176
9177    // FIXME: avoid copy.
9178    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9179    if (UnresExpr->hasExplicitTemplateArgs()) {
9180      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9181      TemplateArgs = &TemplateArgsBuffer;
9182    }
9183
9184    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
9185           E = UnresExpr->decls_end(); I != E; ++I) {
9186
9187      NamedDecl *Func = *I;
9188      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
9189      if (isa<UsingShadowDecl>(Func))
9190        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
9191
9192
9193      // Microsoft supports direct constructor calls.
9194      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
9195        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
9196                             CandidateSet);
9197      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
9198        // If explicit template arguments were provided, we can't call a
9199        // non-template member function.
9200        if (TemplateArgs)
9201          continue;
9202
9203        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
9204                           ObjectClassification,
9205                           Args, NumArgs, CandidateSet,
9206                           /*SuppressUserConversions=*/false);
9207      } else {
9208        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
9209                                   I.getPair(), ActingDC, TemplateArgs,
9210                                   ObjectType,  ObjectClassification,
9211                                   Args, NumArgs, CandidateSet,
9212                                   /*SuppressUsedConversions=*/false);
9213      }
9214    }
9215
9216    DeclarationName DeclName = UnresExpr->getMemberName();
9217
9218    OverloadCandidateSet::iterator Best;
9219    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
9220                                            Best)) {
9221    case OR_Success:
9222      Method = cast<CXXMethodDecl>(Best->Function);
9223      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
9224      FoundDecl = Best->FoundDecl;
9225      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
9226      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
9227      break;
9228
9229    case OR_No_Viable_Function:
9230      Diag(UnresExpr->getMemberLoc(),
9231           diag::err_ovl_no_viable_member_function_in_call)
9232        << DeclName << MemExprE->getSourceRange();
9233      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9234      // FIXME: Leaking incoming expressions!
9235      return ExprError();
9236
9237    case OR_Ambiguous:
9238      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
9239        << DeclName << MemExprE->getSourceRange();
9240      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9241      // FIXME: Leaking incoming expressions!
9242      return ExprError();
9243
9244    case OR_Deleted:
9245      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
9246        << Best->Function->isDeleted()
9247        << DeclName
9248        << getDeletedOrUnavailableSuffix(Best->Function)
9249        << MemExprE->getSourceRange();
9250      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9251      // FIXME: Leaking incoming expressions!
9252      return ExprError();
9253    }
9254
9255    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
9256
9257    // If overload resolution picked a static member, build a
9258    // non-member call based on that function.
9259    if (Method->isStatic()) {
9260      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
9261                                   Args, NumArgs, RParenLoc);
9262    }
9263
9264    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
9265  }
9266
9267  QualType ResultType = Method->getResultType();
9268  ExprValueKind VK = Expr::getValueKindForType(ResultType);
9269  ResultType = ResultType.getNonLValueExprType(Context);
9270
9271  assert(Method && "Member call to something that isn't a method?");
9272  CXXMemberCallExpr *TheCall =
9273    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9274                                    ResultType, VK, RParenLoc);
9275
9276  // Check for a valid return type.
9277  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
9278                          TheCall, Method))
9279    return ExprError();
9280
9281  // Convert the object argument (for a non-static member function call).
9282  // We only need to do this if there was actually an overload; otherwise
9283  // it was done at lookup.
9284  if (!Method->isStatic()) {
9285    ExprResult ObjectArg =
9286      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
9287                                          FoundDecl, Method);
9288    if (ObjectArg.isInvalid())
9289      return ExprError();
9290    MemExpr->setBase(ObjectArg.take());
9291  }
9292
9293  // Convert the rest of the arguments
9294  const FunctionProtoType *Proto =
9295    Method->getType()->getAs<FunctionProtoType>();
9296  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
9297                              RParenLoc))
9298    return ExprError();
9299
9300  if (CheckFunctionCall(Method, TheCall))
9301    return ExprError();
9302
9303  if ((isa<CXXConstructorDecl>(CurContext) ||
9304       isa<CXXDestructorDecl>(CurContext)) &&
9305      TheCall->getMethodDecl()->isPure()) {
9306    const CXXMethodDecl *MD = TheCall->getMethodDecl();
9307
9308    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
9309      Diag(MemExpr->getLocStart(),
9310           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
9311        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
9312        << MD->getParent()->getDeclName();
9313
9314      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
9315    }
9316  }
9317  return MaybeBindToTemporary(TheCall);
9318}
9319
9320/// BuildCallToObjectOfClassType - Build a call to an object of class
9321/// type (C++ [over.call.object]), which can end up invoking an
9322/// overloaded function call operator (@c operator()) or performing a
9323/// user-defined conversion on the object argument.
9324ExprResult
9325Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
9326                                   SourceLocation LParenLoc,
9327                                   Expr **Args, unsigned NumArgs,
9328                                   SourceLocation RParenLoc) {
9329  ExprResult Object = Owned(Obj);
9330  if (Object.get()->getObjectKind() == OK_ObjCProperty) {
9331    Object = ConvertPropertyForRValue(Object.take());
9332    if (Object.isInvalid())
9333      return ExprError();
9334  }
9335
9336  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
9337  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
9338
9339  // C++ [over.call.object]p1:
9340  //  If the primary-expression E in the function call syntax
9341  //  evaluates to a class object of type "cv T", then the set of
9342  //  candidate functions includes at least the function call
9343  //  operators of T. The function call operators of T are obtained by
9344  //  ordinary lookup of the name operator() in the context of
9345  //  (E).operator().
9346  OverloadCandidateSet CandidateSet(LParenLoc);
9347  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
9348
9349  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
9350                          PDiag(diag::err_incomplete_object_call)
9351                          << Object.get()->getSourceRange()))
9352    return true;
9353
9354  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
9355  LookupQualifiedName(R, Record->getDecl());
9356  R.suppressDiagnostics();
9357
9358  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9359       Oper != OperEnd; ++Oper) {
9360    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
9361                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
9362                       /*SuppressUserConversions=*/ false);
9363  }
9364
9365  // C++ [over.call.object]p2:
9366  //   In addition, for each conversion function declared in T of the
9367  //   form
9368  //
9369  //        operator conversion-type-id () cv-qualifier;
9370  //
9371  //   where cv-qualifier is the same cv-qualification as, or a
9372  //   greater cv-qualification than, cv, and where conversion-type-id
9373  //   denotes the type "pointer to function of (P1,...,Pn) returning
9374  //   R", or the type "reference to pointer to function of
9375  //   (P1,...,Pn) returning R", or the type "reference to function
9376  //   of (P1,...,Pn) returning R", a surrogate call function [...]
9377  //   is also considered as a candidate function. Similarly,
9378  //   surrogate call functions are added to the set of candidate
9379  //   functions for each conversion function declared in an
9380  //   accessible base class provided the function is not hidden
9381  //   within T by another intervening declaration.
9382  const UnresolvedSetImpl *Conversions
9383    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
9384  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
9385         E = Conversions->end(); I != E; ++I) {
9386    NamedDecl *D = *I;
9387    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
9388    if (isa<UsingShadowDecl>(D))
9389      D = cast<UsingShadowDecl>(D)->getTargetDecl();
9390
9391    // Skip over templated conversion functions; they aren't
9392    // surrogates.
9393    if (isa<FunctionTemplateDecl>(D))
9394      continue;
9395
9396    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
9397
9398    // Strip the reference type (if any) and then the pointer type (if
9399    // any) to get down to what might be a function type.
9400    QualType ConvType = Conv->getConversionType().getNonReferenceType();
9401    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9402      ConvType = ConvPtrType->getPointeeType();
9403
9404    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
9405      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
9406                            Object.get(), Args, NumArgs, CandidateSet);
9407  }
9408
9409  // Perform overload resolution.
9410  OverloadCandidateSet::iterator Best;
9411  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
9412                             Best)) {
9413  case OR_Success:
9414    // Overload resolution succeeded; we'll build the appropriate call
9415    // below.
9416    break;
9417
9418  case OR_No_Viable_Function:
9419    if (CandidateSet.empty())
9420      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
9421        << Object.get()->getType() << /*call*/ 1
9422        << Object.get()->getSourceRange();
9423    else
9424      Diag(Object.get()->getSourceRange().getBegin(),
9425           diag::err_ovl_no_viable_object_call)
9426        << Object.get()->getType() << Object.get()->getSourceRange();
9427    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9428    break;
9429
9430  case OR_Ambiguous:
9431    Diag(Object.get()->getSourceRange().getBegin(),
9432         diag::err_ovl_ambiguous_object_call)
9433      << Object.get()->getType() << Object.get()->getSourceRange();
9434    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9435    break;
9436
9437  case OR_Deleted:
9438    Diag(Object.get()->getSourceRange().getBegin(),
9439         diag::err_ovl_deleted_object_call)
9440      << Best->Function->isDeleted()
9441      << Object.get()->getType()
9442      << getDeletedOrUnavailableSuffix(Best->Function)
9443      << Object.get()->getSourceRange();
9444    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9445    break;
9446  }
9447
9448  if (Best == CandidateSet.end())
9449    return true;
9450
9451  if (Best->Function == 0) {
9452    // Since there is no function declaration, this is one of the
9453    // surrogate candidates. Dig out the conversion function.
9454    CXXConversionDecl *Conv
9455      = cast<CXXConversionDecl>(
9456                         Best->Conversions[0].UserDefined.ConversionFunction);
9457
9458    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9459    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9460
9461    // We selected one of the surrogate functions that converts the
9462    // object parameter to a function pointer. Perform the conversion
9463    // on the object argument, then let ActOnCallExpr finish the job.
9464
9465    // Create an implicit member expr to refer to the conversion operator.
9466    // and then call it.
9467    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv);
9468    if (Call.isInvalid())
9469      return ExprError();
9470
9471    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
9472                         RParenLoc);
9473  }
9474
9475  MarkDeclarationReferenced(LParenLoc, Best->Function);
9476  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9477  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9478
9479  // We found an overloaded operator(). Build a CXXOperatorCallExpr
9480  // that calls this method, using Object for the implicit object
9481  // parameter and passing along the remaining arguments.
9482  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9483  const FunctionProtoType *Proto =
9484    Method->getType()->getAs<FunctionProtoType>();
9485
9486  unsigned NumArgsInProto = Proto->getNumArgs();
9487  unsigned NumArgsToCheck = NumArgs;
9488
9489  // Build the full argument list for the method call (the
9490  // implicit object parameter is placed at the beginning of the
9491  // list).
9492  Expr **MethodArgs;
9493  if (NumArgs < NumArgsInProto) {
9494    NumArgsToCheck = NumArgsInProto;
9495    MethodArgs = new Expr*[NumArgsInProto + 1];
9496  } else {
9497    MethodArgs = new Expr*[NumArgs + 1];
9498  }
9499  MethodArgs[0] = Object.get();
9500  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
9501    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
9502
9503  ExprResult NewFn = CreateFunctionRefExpr(*this, Method);
9504  if (NewFn.isInvalid())
9505    return true;
9506
9507  // Once we've built TheCall, all of the expressions are properly
9508  // owned.
9509  QualType ResultTy = Method->getResultType();
9510  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9511  ResultTy = ResultTy.getNonLValueExprType(Context);
9512
9513  CXXOperatorCallExpr *TheCall =
9514    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
9515                                      MethodArgs, NumArgs + 1,
9516                                      ResultTy, VK, RParenLoc);
9517  delete [] MethodArgs;
9518
9519  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
9520                          Method))
9521    return true;
9522
9523  // We may have default arguments. If so, we need to allocate more
9524  // slots in the call for them.
9525  if (NumArgs < NumArgsInProto)
9526    TheCall->setNumArgs(Context, NumArgsInProto + 1);
9527  else if (NumArgs > NumArgsInProto)
9528    NumArgsToCheck = NumArgsInProto;
9529
9530  bool IsError = false;
9531
9532  // Initialize the implicit object parameter.
9533  ExprResult ObjRes =
9534    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
9535                                        Best->FoundDecl, Method);
9536  if (ObjRes.isInvalid())
9537    IsError = true;
9538  else
9539    Object = move(ObjRes);
9540  TheCall->setArg(0, Object.take());
9541
9542  // Check the argument types.
9543  for (unsigned i = 0; i != NumArgsToCheck; i++) {
9544    Expr *Arg;
9545    if (i < NumArgs) {
9546      Arg = Args[i];
9547
9548      // Pass the argument.
9549
9550      ExprResult InputInit
9551        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9552                                                    Context,
9553                                                    Method->getParamDecl(i)),
9554                                    SourceLocation(), Arg);
9555
9556      IsError |= InputInit.isInvalid();
9557      Arg = InputInit.takeAs<Expr>();
9558    } else {
9559      ExprResult DefArg
9560        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
9561      if (DefArg.isInvalid()) {
9562        IsError = true;
9563        break;
9564      }
9565
9566      Arg = DefArg.takeAs<Expr>();
9567    }
9568
9569    TheCall->setArg(i + 1, Arg);
9570  }
9571
9572  // If this is a variadic call, handle args passed through "...".
9573  if (Proto->isVariadic()) {
9574    // Promote the arguments (C99 6.5.2.2p7).
9575    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
9576      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
9577      IsError |= Arg.isInvalid();
9578      TheCall->setArg(i + 1, Arg.take());
9579    }
9580  }
9581
9582  if (IsError) return true;
9583
9584  if (CheckFunctionCall(Method, TheCall))
9585    return true;
9586
9587  return MaybeBindToTemporary(TheCall);
9588}
9589
9590/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
9591///  (if one exists), where @c Base is an expression of class type and
9592/// @c Member is the name of the member we're trying to find.
9593ExprResult
9594Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
9595  assert(Base->getType()->isRecordType() &&
9596         "left-hand side must have class type");
9597
9598  if (Base->getObjectKind() == OK_ObjCProperty) {
9599    ExprResult Result = ConvertPropertyForRValue(Base);
9600    if (Result.isInvalid())
9601      return ExprError();
9602    Base = Result.take();
9603  }
9604
9605  SourceLocation Loc = Base->getExprLoc();
9606
9607  // C++ [over.ref]p1:
9608  //
9609  //   [...] An expression x->m is interpreted as (x.operator->())->m
9610  //   for a class object x of type T if T::operator->() exists and if
9611  //   the operator is selected as the best match function by the
9612  //   overload resolution mechanism (13.3).
9613  DeclarationName OpName =
9614    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
9615  OverloadCandidateSet CandidateSet(Loc);
9616  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
9617
9618  if (RequireCompleteType(Loc, Base->getType(),
9619                          PDiag(diag::err_typecheck_incomplete_tag)
9620                            << Base->getSourceRange()))
9621    return ExprError();
9622
9623  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
9624  LookupQualifiedName(R, BaseRecord->getDecl());
9625  R.suppressDiagnostics();
9626
9627  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9628       Oper != OperEnd; ++Oper) {
9629    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
9630                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
9631  }
9632
9633  // Perform overload resolution.
9634  OverloadCandidateSet::iterator Best;
9635  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9636  case OR_Success:
9637    // Overload resolution succeeded; we'll build the call below.
9638    break;
9639
9640  case OR_No_Viable_Function:
9641    if (CandidateSet.empty())
9642      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
9643        << Base->getType() << Base->getSourceRange();
9644    else
9645      Diag(OpLoc, diag::err_ovl_no_viable_oper)
9646        << "operator->" << Base->getSourceRange();
9647    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9648    return ExprError();
9649
9650  case OR_Ambiguous:
9651    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9652      << "->" << Base->getType() << Base->getSourceRange();
9653    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
9654    return ExprError();
9655
9656  case OR_Deleted:
9657    Diag(OpLoc,  diag::err_ovl_deleted_oper)
9658      << Best->Function->isDeleted()
9659      << "->"
9660      << getDeletedOrUnavailableSuffix(Best->Function)
9661      << Base->getSourceRange();
9662    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9663    return ExprError();
9664  }
9665
9666  MarkDeclarationReferenced(OpLoc, Best->Function);
9667  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
9668  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9669
9670  // Convert the object parameter.
9671  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9672  ExprResult BaseResult =
9673    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
9674                                        Best->FoundDecl, Method);
9675  if (BaseResult.isInvalid())
9676    return ExprError();
9677  Base = BaseResult.take();
9678
9679  // Build the operator call.
9680  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method);
9681  if (FnExpr.isInvalid())
9682    return ExprError();
9683
9684  QualType ResultTy = Method->getResultType();
9685  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9686  ResultTy = ResultTy.getNonLValueExprType(Context);
9687  CXXOperatorCallExpr *TheCall =
9688    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
9689                                      &Base, 1, ResultTy, VK, OpLoc);
9690
9691  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
9692                          Method))
9693          return ExprError();
9694
9695  return MaybeBindToTemporary(TheCall);
9696}
9697
9698/// FixOverloadedFunctionReference - E is an expression that refers to
9699/// a C++ overloaded function (possibly with some parentheses and
9700/// perhaps a '&' around it). We have resolved the overloaded function
9701/// to the function declaration Fn, so patch up the expression E to
9702/// refer (possibly indirectly) to Fn. Returns the new expr.
9703Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
9704                                           FunctionDecl *Fn) {
9705  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
9706    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
9707                                                   Found, Fn);
9708    if (SubExpr == PE->getSubExpr())
9709      return PE;
9710
9711    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
9712  }
9713
9714  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9715    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
9716                                                   Found, Fn);
9717    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
9718                               SubExpr->getType()) &&
9719           "Implicit cast type cannot be determined from overload");
9720    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
9721    if (SubExpr == ICE->getSubExpr())
9722      return ICE;
9723
9724    return ImplicitCastExpr::Create(Context, ICE->getType(),
9725                                    ICE->getCastKind(),
9726                                    SubExpr, 0,
9727                                    ICE->getValueKind());
9728  }
9729
9730  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
9731    assert(UnOp->getOpcode() == UO_AddrOf &&
9732           "Can only take the address of an overloaded function");
9733    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9734      if (Method->isStatic()) {
9735        // Do nothing: static member functions aren't any different
9736        // from non-member functions.
9737      } else {
9738        // Fix the sub expression, which really has to be an
9739        // UnresolvedLookupExpr holding an overloaded member function
9740        // or template.
9741        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9742                                                       Found, Fn);
9743        if (SubExpr == UnOp->getSubExpr())
9744          return UnOp;
9745
9746        assert(isa<DeclRefExpr>(SubExpr)
9747               && "fixed to something other than a decl ref");
9748        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
9749               && "fixed to a member ref with no nested name qualifier");
9750
9751        // We have taken the address of a pointer to member
9752        // function. Perform the computation here so that we get the
9753        // appropriate pointer to member type.
9754        QualType ClassType
9755          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
9756        QualType MemPtrType
9757          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
9758
9759        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
9760                                           VK_RValue, OK_Ordinary,
9761                                           UnOp->getOperatorLoc());
9762      }
9763    }
9764    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9765                                                   Found, Fn);
9766    if (SubExpr == UnOp->getSubExpr())
9767      return UnOp;
9768
9769    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
9770                                     Context.getPointerType(SubExpr->getType()),
9771                                       VK_RValue, OK_Ordinary,
9772                                       UnOp->getOperatorLoc());
9773  }
9774
9775  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9776    // FIXME: avoid copy.
9777    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9778    if (ULE->hasExplicitTemplateArgs()) {
9779      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
9780      TemplateArgs = &TemplateArgsBuffer;
9781    }
9782
9783    return DeclRefExpr::Create(Context,
9784                               ULE->getQualifierLoc(),
9785                               Fn,
9786                               ULE->getNameLoc(),
9787                               Fn->getType(),
9788                               VK_LValue,
9789                               Found.getDecl(),
9790                               TemplateArgs);
9791  }
9792
9793  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
9794    // FIXME: avoid copy.
9795    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9796    if (MemExpr->hasExplicitTemplateArgs()) {
9797      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9798      TemplateArgs = &TemplateArgsBuffer;
9799    }
9800
9801    Expr *Base;
9802
9803    // If we're filling in a static method where we used to have an
9804    // implicit member access, rewrite to a simple decl ref.
9805    if (MemExpr->isImplicitAccess()) {
9806      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9807        return DeclRefExpr::Create(Context,
9808                                   MemExpr->getQualifierLoc(),
9809                                   Fn,
9810                                   MemExpr->getMemberLoc(),
9811                                   Fn->getType(),
9812                                   VK_LValue,
9813                                   Found.getDecl(),
9814                                   TemplateArgs);
9815      } else {
9816        SourceLocation Loc = MemExpr->getMemberLoc();
9817        if (MemExpr->getQualifier())
9818          Loc = MemExpr->getQualifierLoc().getBeginLoc();
9819        Base = new (Context) CXXThisExpr(Loc,
9820                                         MemExpr->getBaseType(),
9821                                         /*isImplicit=*/true);
9822      }
9823    } else
9824      Base = MemExpr->getBase();
9825
9826    ExprValueKind valueKind;
9827    QualType type;
9828    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9829      valueKind = VK_LValue;
9830      type = Fn->getType();
9831    } else {
9832      valueKind = VK_RValue;
9833      type = Context.BoundMemberTy;
9834    }
9835
9836    return MemberExpr::Create(Context, Base,
9837                              MemExpr->isArrow(),
9838                              MemExpr->getQualifierLoc(),
9839                              Fn,
9840                              Found,
9841                              MemExpr->getMemberNameInfo(),
9842                              TemplateArgs,
9843                              type, valueKind, OK_Ordinary);
9844  }
9845
9846  llvm_unreachable("Invalid reference to overloaded function");
9847  return E;
9848}
9849
9850ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
9851                                                DeclAccessPair Found,
9852                                                FunctionDecl *Fn) {
9853  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
9854}
9855
9856} // end namespace clang
9857