SemaOverload.cpp revision 957b4dfd64bce51be396048e6c10485229f4bc7b
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion,
56    ICC_Conversion,
57    ICC_Conversion
58  };
59  return Category[(int)Kind];
60}
61
62/// GetConversionRank - Retrieve the implicit conversion rank
63/// corresponding to the given implicit conversion kind.
64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
65  static const ImplicitConversionRank
66    Rank[(int)ICK_Num_Conversion_Kinds] = {
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Exact_Match,
72    ICR_Exact_Match,
73    ICR_Promotion,
74    ICR_Promotion,
75    ICR_Promotion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion,
84    ICR_Conversion,
85    ICR_Conversion,
86    ICR_Conversion,
87    ICR_Complex_Real_Conversion
88  };
89  return Rank[(int)Kind];
90}
91
92/// GetImplicitConversionName - Return the name of this kind of
93/// implicit conversion.
94const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
95  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
96    "No conversion",
97    "Lvalue-to-rvalue",
98    "Array-to-pointer",
99    "Function-to-pointer",
100    "Noreturn adjustment",
101    "Qualification",
102    "Integral promotion",
103    "Floating point promotion",
104    "Complex promotion",
105    "Integral conversion",
106    "Floating conversion",
107    "Complex conversion",
108    "Floating-integral conversion",
109    "Pointer conversion",
110    "Pointer-to-member conversion",
111    "Boolean conversion",
112    "Compatible-types conversion",
113    "Derived-to-base conversion",
114    "Vector conversion",
115    "Vector splat",
116    "Complex-real conversion"
117  };
118  return Name[Kind];
119}
120
121/// StandardConversionSequence - Set the standard conversion
122/// sequence to the identity conversion.
123void StandardConversionSequence::setAsIdentityConversion() {
124  First = ICK_Identity;
125  Second = ICK_Identity;
126  Third = ICK_Identity;
127  DeprecatedStringLiteralToCharPtr = false;
128  ReferenceBinding = false;
129  DirectBinding = false;
130  RRefBinding = false;
131  CopyConstructor = 0;
132}
133
134/// getRank - Retrieve the rank of this standard conversion sequence
135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
136/// implicit conversions.
137ImplicitConversionRank StandardConversionSequence::getRank() const {
138  ImplicitConversionRank Rank = ICR_Exact_Match;
139  if  (GetConversionRank(First) > Rank)
140    Rank = GetConversionRank(First);
141  if  (GetConversionRank(Second) > Rank)
142    Rank = GetConversionRank(Second);
143  if  (GetConversionRank(Third) > Rank)
144    Rank = GetConversionRank(Third);
145  return Rank;
146}
147
148/// isPointerConversionToBool - Determines whether this conversion is
149/// a conversion of a pointer or pointer-to-member to bool. This is
150/// used as part of the ranking of standard conversion sequences
151/// (C++ 13.3.3.2p4).
152bool StandardConversionSequence::isPointerConversionToBool() const {
153  // Note that FromType has not necessarily been transformed by the
154  // array-to-pointer or function-to-pointer implicit conversions, so
155  // check for their presence as well as checking whether FromType is
156  // a pointer.
157  if (getToType(1)->isBooleanType() &&
158      (getFromType()->isPointerType() ||
159       getFromType()->isObjCObjectPointerType() ||
160       getFromType()->isBlockPointerType() ||
161       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
162    return true;
163
164  return false;
165}
166
167/// isPointerConversionToVoidPointer - Determines whether this
168/// conversion is a conversion of a pointer to a void pointer. This is
169/// used as part of the ranking of standard conversion sequences (C++
170/// 13.3.3.2p4).
171bool
172StandardConversionSequence::
173isPointerConversionToVoidPointer(ASTContext& Context) const {
174  QualType FromType = getFromType();
175  QualType ToType = getToType(1);
176
177  // Note that FromType has not necessarily been transformed by the
178  // array-to-pointer implicit conversion, so check for its presence
179  // and redo the conversion to get a pointer.
180  if (First == ICK_Array_To_Pointer)
181    FromType = Context.getArrayDecayedType(FromType);
182
183  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
184    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
185      return ToPtrType->getPointeeType()->isVoidType();
186
187  return false;
188}
189
190/// DebugPrint - Print this standard conversion sequence to standard
191/// error. Useful for debugging overloading issues.
192void StandardConversionSequence::DebugPrint() const {
193  llvm::raw_ostream &OS = llvm::errs();
194  bool PrintedSomething = false;
195  if (First != ICK_Identity) {
196    OS << GetImplicitConversionName(First);
197    PrintedSomething = true;
198  }
199
200  if (Second != ICK_Identity) {
201    if (PrintedSomething) {
202      OS << " -> ";
203    }
204    OS << GetImplicitConversionName(Second);
205
206    if (CopyConstructor) {
207      OS << " (by copy constructor)";
208    } else if (DirectBinding) {
209      OS << " (direct reference binding)";
210    } else if (ReferenceBinding) {
211      OS << " (reference binding)";
212    }
213    PrintedSomething = true;
214  }
215
216  if (Third != ICK_Identity) {
217    if (PrintedSomething) {
218      OS << " -> ";
219    }
220    OS << GetImplicitConversionName(Third);
221    PrintedSomething = true;
222  }
223
224  if (!PrintedSomething) {
225    OS << "No conversions required";
226  }
227}
228
229/// DebugPrint - Print this user-defined conversion sequence to standard
230/// error. Useful for debugging overloading issues.
231void UserDefinedConversionSequence::DebugPrint() const {
232  llvm::raw_ostream &OS = llvm::errs();
233  if (Before.First || Before.Second || Before.Third) {
234    Before.DebugPrint();
235    OS << " -> ";
236  }
237  OS << '\'' << ConversionFunction << '\'';
238  if (After.First || After.Second || After.Third) {
239    OS << " -> ";
240    After.DebugPrint();
241  }
242}
243
244/// DebugPrint - Print this implicit conversion sequence to standard
245/// error. Useful for debugging overloading issues.
246void ImplicitConversionSequence::DebugPrint() const {
247  llvm::raw_ostream &OS = llvm::errs();
248  switch (ConversionKind) {
249  case StandardConversion:
250    OS << "Standard conversion: ";
251    Standard.DebugPrint();
252    break;
253  case UserDefinedConversion:
254    OS << "User-defined conversion: ";
255    UserDefined.DebugPrint();
256    break;
257  case EllipsisConversion:
258    OS << "Ellipsis conversion";
259    break;
260  case AmbiguousConversion:
261    OS << "Ambiguous conversion";
262    break;
263  case BadConversion:
264    OS << "Bad conversion";
265    break;
266  }
267
268  OS << "\n";
269}
270
271void AmbiguousConversionSequence::construct() {
272  new (&conversions()) ConversionSet();
273}
274
275void AmbiguousConversionSequence::destruct() {
276  conversions().~ConversionSet();
277}
278
279void
280AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
281  FromTypePtr = O.FromTypePtr;
282  ToTypePtr = O.ToTypePtr;
283  new (&conversions()) ConversionSet(O.conversions());
284}
285
286namespace {
287  // Structure used by OverloadCandidate::DeductionFailureInfo to store
288  // template parameter and template argument information.
289  struct DFIParamWithArguments {
290    TemplateParameter Param;
291    TemplateArgument FirstArg;
292    TemplateArgument SecondArg;
293  };
294}
295
296/// \brief Convert from Sema's representation of template deduction information
297/// to the form used in overload-candidate information.
298OverloadCandidate::DeductionFailureInfo
299static MakeDeductionFailureInfo(ASTContext &Context,
300                                Sema::TemplateDeductionResult TDK,
301                                Sema::TemplateDeductionInfo &Info) {
302  OverloadCandidate::DeductionFailureInfo Result;
303  Result.Result = static_cast<unsigned>(TDK);
304  Result.Data = 0;
305  switch (TDK) {
306  case Sema::TDK_Success:
307  case Sema::TDK_InstantiationDepth:
308  case Sema::TDK_TooManyArguments:
309  case Sema::TDK_TooFewArguments:
310    break;
311
312  case Sema::TDK_Incomplete:
313  case Sema::TDK_InvalidExplicitArguments:
314    Result.Data = Info.Param.getOpaqueValue();
315    break;
316
317  case Sema::TDK_Inconsistent:
318  case Sema::TDK_Underqualified: {
319    // FIXME: Should allocate from normal heap so that we can free this later.
320    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
321    Saved->Param = Info.Param;
322    Saved->FirstArg = Info.FirstArg;
323    Saved->SecondArg = Info.SecondArg;
324    Result.Data = Saved;
325    break;
326  }
327
328  case Sema::TDK_SubstitutionFailure:
329    Result.Data = Info.take();
330    break;
331
332  case Sema::TDK_NonDeducedMismatch:
333  case Sema::TDK_FailedOverloadResolution:
334    break;
335  }
336
337  return Result;
338}
339
340void OverloadCandidate::DeductionFailureInfo::Destroy() {
341  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
342  case Sema::TDK_Success:
343  case Sema::TDK_InstantiationDepth:
344  case Sema::TDK_Incomplete:
345  case Sema::TDK_TooManyArguments:
346  case Sema::TDK_TooFewArguments:
347  case Sema::TDK_InvalidExplicitArguments:
348    break;
349
350  case Sema::TDK_Inconsistent:
351  case Sema::TDK_Underqualified:
352    // FIXME: Destroy the data?
353    Data = 0;
354    break;
355
356  case Sema::TDK_SubstitutionFailure:
357    // FIXME: Destroy the template arugment list?
358    Data = 0;
359    break;
360
361  // Unhandled
362  case Sema::TDK_NonDeducedMismatch:
363  case Sema::TDK_FailedOverloadResolution:
364    break;
365  }
366}
367
368TemplateParameter
369OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
370  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
371  case Sema::TDK_Success:
372  case Sema::TDK_InstantiationDepth:
373  case Sema::TDK_TooManyArguments:
374  case Sema::TDK_TooFewArguments:
375  case Sema::TDK_SubstitutionFailure:
376    return TemplateParameter();
377
378  case Sema::TDK_Incomplete:
379  case Sema::TDK_InvalidExplicitArguments:
380    return TemplateParameter::getFromOpaqueValue(Data);
381
382  case Sema::TDK_Inconsistent:
383  case Sema::TDK_Underqualified:
384    return static_cast<DFIParamWithArguments*>(Data)->Param;
385
386  // Unhandled
387  case Sema::TDK_NonDeducedMismatch:
388  case Sema::TDK_FailedOverloadResolution:
389    break;
390  }
391
392  return TemplateParameter();
393}
394
395TemplateArgumentList *
396OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
397  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
398    case Sema::TDK_Success:
399    case Sema::TDK_InstantiationDepth:
400    case Sema::TDK_TooManyArguments:
401    case Sema::TDK_TooFewArguments:
402    case Sema::TDK_Incomplete:
403    case Sema::TDK_InvalidExplicitArguments:
404    case Sema::TDK_Inconsistent:
405    case Sema::TDK_Underqualified:
406      return 0;
407
408    case Sema::TDK_SubstitutionFailure:
409      return static_cast<TemplateArgumentList*>(Data);
410
411    // Unhandled
412    case Sema::TDK_NonDeducedMismatch:
413    case Sema::TDK_FailedOverloadResolution:
414      break;
415  }
416
417  return 0;
418}
419
420const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
421  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
422  case Sema::TDK_Success:
423  case Sema::TDK_InstantiationDepth:
424  case Sema::TDK_Incomplete:
425  case Sema::TDK_TooManyArguments:
426  case Sema::TDK_TooFewArguments:
427  case Sema::TDK_InvalidExplicitArguments:
428  case Sema::TDK_SubstitutionFailure:
429    return 0;
430
431  case Sema::TDK_Inconsistent:
432  case Sema::TDK_Underqualified:
433    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
434
435  // Unhandled
436  case Sema::TDK_NonDeducedMismatch:
437  case Sema::TDK_FailedOverloadResolution:
438    break;
439  }
440
441  return 0;
442}
443
444const TemplateArgument *
445OverloadCandidate::DeductionFailureInfo::getSecondArg() {
446  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
447  case Sema::TDK_Success:
448  case Sema::TDK_InstantiationDepth:
449  case Sema::TDK_Incomplete:
450  case Sema::TDK_TooManyArguments:
451  case Sema::TDK_TooFewArguments:
452  case Sema::TDK_InvalidExplicitArguments:
453  case Sema::TDK_SubstitutionFailure:
454    return 0;
455
456  case Sema::TDK_Inconsistent:
457  case Sema::TDK_Underqualified:
458    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
459
460  // Unhandled
461  case Sema::TDK_NonDeducedMismatch:
462  case Sema::TDK_FailedOverloadResolution:
463    break;
464  }
465
466  return 0;
467}
468
469void OverloadCandidateSet::clear() {
470  inherited::clear();
471  Functions.clear();
472}
473
474// IsOverload - Determine whether the given New declaration is an
475// overload of the declarations in Old. This routine returns false if
476// New and Old cannot be overloaded, e.g., if New has the same
477// signature as some function in Old (C++ 1.3.10) or if the Old
478// declarations aren't functions (or function templates) at all. When
479// it does return false, MatchedDecl will point to the decl that New
480// cannot be overloaded with.  This decl may be a UsingShadowDecl on
481// top of the underlying declaration.
482//
483// Example: Given the following input:
484//
485//   void f(int, float); // #1
486//   void f(int, int); // #2
487//   int f(int, int); // #3
488//
489// When we process #1, there is no previous declaration of "f",
490// so IsOverload will not be used.
491//
492// When we process #2, Old contains only the FunctionDecl for #1.  By
493// comparing the parameter types, we see that #1 and #2 are overloaded
494// (since they have different signatures), so this routine returns
495// false; MatchedDecl is unchanged.
496//
497// When we process #3, Old is an overload set containing #1 and #2. We
498// compare the signatures of #3 to #1 (they're overloaded, so we do
499// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
500// identical (return types of functions are not part of the
501// signature), IsOverload returns false and MatchedDecl will be set to
502// point to the FunctionDecl for #2.
503//
504// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
505// into a class by a using declaration.  The rules for whether to hide
506// shadow declarations ignore some properties which otherwise figure
507// into a function template's signature.
508Sema::OverloadKind
509Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
510                    NamedDecl *&Match, bool NewIsUsingDecl) {
511  for (LookupResult::iterator I = Old.begin(), E = Old.end();
512         I != E; ++I) {
513    NamedDecl *OldD = *I;
514
515    bool OldIsUsingDecl = false;
516    if (isa<UsingShadowDecl>(OldD)) {
517      OldIsUsingDecl = true;
518
519      // We can always introduce two using declarations into the same
520      // context, even if they have identical signatures.
521      if (NewIsUsingDecl) continue;
522
523      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
524    }
525
526    // If either declaration was introduced by a using declaration,
527    // we'll need to use slightly different rules for matching.
528    // Essentially, these rules are the normal rules, except that
529    // function templates hide function templates with different
530    // return types or template parameter lists.
531    bool UseMemberUsingDeclRules =
532      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
533
534    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
535      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
536        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
537          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
538          continue;
539        }
540
541        Match = *I;
542        return Ovl_Match;
543      }
544    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
545      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
546        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
547          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
548          continue;
549        }
550
551        Match = *I;
552        return Ovl_Match;
553      }
554    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
555      // We can overload with these, which can show up when doing
556      // redeclaration checks for UsingDecls.
557      assert(Old.getLookupKind() == LookupUsingDeclName);
558    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
559      // Optimistically assume that an unresolved using decl will
560      // overload; if it doesn't, we'll have to diagnose during
561      // template instantiation.
562    } else {
563      // (C++ 13p1):
564      //   Only function declarations can be overloaded; object and type
565      //   declarations cannot be overloaded.
566      Match = *I;
567      return Ovl_NonFunction;
568    }
569  }
570
571  return Ovl_Overload;
572}
573
574bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
575                      bool UseUsingDeclRules) {
576  // If both of the functions are extern "C", then they are not
577  // overloads.
578  if (Old->isExternC() && New->isExternC())
579    return false;
580
581  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
582  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
583
584  // C++ [temp.fct]p2:
585  //   A function template can be overloaded with other function templates
586  //   and with normal (non-template) functions.
587  if ((OldTemplate == 0) != (NewTemplate == 0))
588    return true;
589
590  // Is the function New an overload of the function Old?
591  QualType OldQType = Context.getCanonicalType(Old->getType());
592  QualType NewQType = Context.getCanonicalType(New->getType());
593
594  // Compare the signatures (C++ 1.3.10) of the two functions to
595  // determine whether they are overloads. If we find any mismatch
596  // in the signature, they are overloads.
597
598  // If either of these functions is a K&R-style function (no
599  // prototype), then we consider them to have matching signatures.
600  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
601      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
602    return false;
603
604  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
605  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
606
607  // The signature of a function includes the types of its
608  // parameters (C++ 1.3.10), which includes the presence or absence
609  // of the ellipsis; see C++ DR 357).
610  if (OldQType != NewQType &&
611      (OldType->getNumArgs() != NewType->getNumArgs() ||
612       OldType->isVariadic() != NewType->isVariadic() ||
613       !FunctionArgTypesAreEqual(OldType, NewType)))
614    return true;
615
616  // C++ [temp.over.link]p4:
617  //   The signature of a function template consists of its function
618  //   signature, its return type and its template parameter list. The names
619  //   of the template parameters are significant only for establishing the
620  //   relationship between the template parameters and the rest of the
621  //   signature.
622  //
623  // We check the return type and template parameter lists for function
624  // templates first; the remaining checks follow.
625  //
626  // However, we don't consider either of these when deciding whether
627  // a member introduced by a shadow declaration is hidden.
628  if (!UseUsingDeclRules && NewTemplate &&
629      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
630                                       OldTemplate->getTemplateParameters(),
631                                       false, TPL_TemplateMatch) ||
632       OldType->getResultType() != NewType->getResultType()))
633    return true;
634
635  // If the function is a class member, its signature includes the
636  // cv-qualifiers (if any) on the function itself.
637  //
638  // As part of this, also check whether one of the member functions
639  // is static, in which case they are not overloads (C++
640  // 13.1p2). While not part of the definition of the signature,
641  // this check is important to determine whether these functions
642  // can be overloaded.
643  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
644  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
645  if (OldMethod && NewMethod &&
646      !OldMethod->isStatic() && !NewMethod->isStatic() &&
647      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
648    return true;
649
650  // The signatures match; this is not an overload.
651  return false;
652}
653
654/// TryImplicitConversion - Attempt to perform an implicit conversion
655/// from the given expression (Expr) to the given type (ToType). This
656/// function returns an implicit conversion sequence that can be used
657/// to perform the initialization. Given
658///
659///   void f(float f);
660///   void g(int i) { f(i); }
661///
662/// this routine would produce an implicit conversion sequence to
663/// describe the initialization of f from i, which will be a standard
664/// conversion sequence containing an lvalue-to-rvalue conversion (C++
665/// 4.1) followed by a floating-integral conversion (C++ 4.9).
666//
667/// Note that this routine only determines how the conversion can be
668/// performed; it does not actually perform the conversion. As such,
669/// it will not produce any diagnostics if no conversion is available,
670/// but will instead return an implicit conversion sequence of kind
671/// "BadConversion".
672///
673/// If @p SuppressUserConversions, then user-defined conversions are
674/// not permitted.
675/// If @p AllowExplicit, then explicit user-defined conversions are
676/// permitted.
677ImplicitConversionSequence
678Sema::TryImplicitConversion(Expr* From, QualType ToType,
679                            bool SuppressUserConversions,
680                            bool AllowExplicit,
681                            bool InOverloadResolution) {
682  ImplicitConversionSequence ICS;
683  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
684    ICS.setStandard();
685    return ICS;
686  }
687
688  if (!getLangOptions().CPlusPlus) {
689    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
690    return ICS;
691  }
692
693  // C++ [over.ics.user]p4:
694  //   A conversion of an expression of class type to the same class
695  //   type is given Exact Match rank, and a conversion of an
696  //   expression of class type to a base class of that type is
697  //   given Conversion rank, in spite of the fact that a copy/move
698  //   constructor (i.e., a user-defined conversion function) is
699  //   called for those cases.
700  QualType FromType = From->getType();
701  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
702      (Context.hasSameUnqualifiedType(FromType, ToType) ||
703       IsDerivedFrom(FromType, ToType))) {
704    ICS.setStandard();
705    ICS.Standard.setAsIdentityConversion();
706    ICS.Standard.setFromType(FromType);
707    ICS.Standard.setAllToTypes(ToType);
708
709    // We don't actually check at this point whether there is a valid
710    // copy/move constructor, since overloading just assumes that it
711    // exists. When we actually perform initialization, we'll find the
712    // appropriate constructor to copy the returned object, if needed.
713    ICS.Standard.CopyConstructor = 0;
714
715    // Determine whether this is considered a derived-to-base conversion.
716    if (!Context.hasSameUnqualifiedType(FromType, ToType))
717      ICS.Standard.Second = ICK_Derived_To_Base;
718
719    return ICS;
720  }
721
722  if (SuppressUserConversions) {
723    // We're not in the case above, so there is no conversion that
724    // we can perform.
725    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
726    return ICS;
727  }
728
729  // Attempt user-defined conversion.
730  OverloadCandidateSet Conversions(From->getExprLoc());
731  OverloadingResult UserDefResult
732    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
733                              AllowExplicit);
734
735  if (UserDefResult == OR_Success) {
736    ICS.setUserDefined();
737    // C++ [over.ics.user]p4:
738    //   A conversion of an expression of class type to the same class
739    //   type is given Exact Match rank, and a conversion of an
740    //   expression of class type to a base class of that type is
741    //   given Conversion rank, in spite of the fact that a copy
742    //   constructor (i.e., a user-defined conversion function) is
743    //   called for those cases.
744    if (CXXConstructorDecl *Constructor
745          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
746      QualType FromCanon
747        = Context.getCanonicalType(From->getType().getUnqualifiedType());
748      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
749      if (Constructor->isCopyConstructor() &&
750          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
751        // Turn this into a "standard" conversion sequence, so that it
752        // gets ranked with standard conversion sequences.
753        ICS.setStandard();
754        ICS.Standard.setAsIdentityConversion();
755        ICS.Standard.setFromType(From->getType());
756        ICS.Standard.setAllToTypes(ToType);
757        ICS.Standard.CopyConstructor = Constructor;
758        if (ToCanon != FromCanon)
759          ICS.Standard.Second = ICK_Derived_To_Base;
760      }
761    }
762
763    // C++ [over.best.ics]p4:
764    //   However, when considering the argument of a user-defined
765    //   conversion function that is a candidate by 13.3.1.3 when
766    //   invoked for the copying of the temporary in the second step
767    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
768    //   13.3.1.6 in all cases, only standard conversion sequences and
769    //   ellipsis conversion sequences are allowed.
770    if (SuppressUserConversions && ICS.isUserDefined()) {
771      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
772    }
773  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
774    ICS.setAmbiguous();
775    ICS.Ambiguous.setFromType(From->getType());
776    ICS.Ambiguous.setToType(ToType);
777    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
778         Cand != Conversions.end(); ++Cand)
779      if (Cand->Viable)
780        ICS.Ambiguous.addConversion(Cand->Function);
781  } else {
782    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
783  }
784
785  return ICS;
786}
787
788/// PerformImplicitConversion - Perform an implicit conversion of the
789/// expression From to the type ToType. Returns true if there was an
790/// error, false otherwise. The expression From is replaced with the
791/// converted expression. Flavor is the kind of conversion we're
792/// performing, used in the error message. If @p AllowExplicit,
793/// explicit user-defined conversions are permitted.
794bool
795Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
796                                AssignmentAction Action, bool AllowExplicit) {
797  ImplicitConversionSequence ICS;
798  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
799}
800
801bool
802Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
803                                AssignmentAction Action, bool AllowExplicit,
804                                ImplicitConversionSequence& ICS) {
805  ICS = TryImplicitConversion(From, ToType,
806                              /*SuppressUserConversions=*/false,
807                              AllowExplicit,
808                              /*InOverloadResolution=*/false);
809  return PerformImplicitConversion(From, ToType, ICS, Action);
810}
811
812/// \brief Determine whether the conversion from FromType to ToType is a valid
813/// conversion that strips "noreturn" off the nested function type.
814static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
815                                 QualType ToType, QualType &ResultTy) {
816  if (Context.hasSameUnqualifiedType(FromType, ToType))
817    return false;
818
819  // Strip the noreturn off the type we're converting from; noreturn can
820  // safely be removed.
821  FromType = Context.getNoReturnType(FromType, false);
822  if (!Context.hasSameUnqualifiedType(FromType, ToType))
823    return false;
824
825  ResultTy = FromType;
826  return true;
827}
828
829/// \brief Determine whether the conversion from FromType to ToType is a valid
830/// vector conversion.
831///
832/// \param ICK Will be set to the vector conversion kind, if this is a vector
833/// conversion.
834static bool IsVectorConversion(ASTContext &Context, QualType FromType,
835                               QualType ToType, ImplicitConversionKind &ICK) {
836  // We need at least one of these types to be a vector type to have a vector
837  // conversion.
838  if (!ToType->isVectorType() && !FromType->isVectorType())
839    return false;
840
841  // Identical types require no conversions.
842  if (Context.hasSameUnqualifiedType(FromType, ToType))
843    return false;
844
845  // There are no conversions between extended vector types, only identity.
846  if (ToType->isExtVectorType()) {
847    // There are no conversions between extended vector types other than the
848    // identity conversion.
849    if (FromType->isExtVectorType())
850      return false;
851
852    // Vector splat from any arithmetic type to a vector.
853    if (FromType->isArithmeticType()) {
854      ICK = ICK_Vector_Splat;
855      return true;
856    }
857  }
858
859  // We can perform the conversion between vector types in the following cases:
860  // 1)vector types are equivalent AltiVec and GCC vector types
861  // 2)lax vector conversions are permitted and the vector types are of the
862  //   same size
863  if (ToType->isVectorType() && FromType->isVectorType()) {
864    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
865        (Context.getLangOptions().LaxVectorConversions &&
866         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
867      ICK = ICK_Vector_Conversion;
868      return true;
869    }
870  }
871
872  return false;
873}
874
875/// IsStandardConversion - Determines whether there is a standard
876/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
877/// expression From to the type ToType. Standard conversion sequences
878/// only consider non-class types; for conversions that involve class
879/// types, use TryImplicitConversion. If a conversion exists, SCS will
880/// contain the standard conversion sequence required to perform this
881/// conversion and this routine will return true. Otherwise, this
882/// routine will return false and the value of SCS is unspecified.
883bool
884Sema::IsStandardConversion(Expr* From, QualType ToType,
885                           bool InOverloadResolution,
886                           StandardConversionSequence &SCS) {
887  QualType FromType = From->getType();
888
889  // Standard conversions (C++ [conv])
890  SCS.setAsIdentityConversion();
891  SCS.DeprecatedStringLiteralToCharPtr = false;
892  SCS.IncompatibleObjC = false;
893  SCS.setFromType(FromType);
894  SCS.CopyConstructor = 0;
895
896  // There are no standard conversions for class types in C++, so
897  // abort early. When overloading in C, however, we do permit
898  if (FromType->isRecordType() || ToType->isRecordType()) {
899    if (getLangOptions().CPlusPlus)
900      return false;
901
902    // When we're overloading in C, we allow, as standard conversions,
903  }
904
905  // The first conversion can be an lvalue-to-rvalue conversion,
906  // array-to-pointer conversion, or function-to-pointer conversion
907  // (C++ 4p1).
908
909  if (FromType == Context.OverloadTy) {
910    DeclAccessPair AccessPair;
911    if (FunctionDecl *Fn
912          = ResolveAddressOfOverloadedFunction(From, ToType, false,
913                                               AccessPair)) {
914      // We were able to resolve the address of the overloaded function,
915      // so we can convert to the type of that function.
916      FromType = Fn->getType();
917      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
918        if (!Method->isStatic()) {
919          Type *ClassType
920            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
921          FromType = Context.getMemberPointerType(FromType, ClassType);
922        }
923      }
924
925      // If the "from" expression takes the address of the overloaded
926      // function, update the type of the resulting expression accordingly.
927      if (FromType->getAs<FunctionType>())
928        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
929          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
930            FromType = Context.getPointerType(FromType);
931
932      // Check that we've computed the proper type after overload resolution.
933      assert(Context.hasSameType(FromType,
934              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
935    } else {
936      return false;
937    }
938  }
939  // Lvalue-to-rvalue conversion (C++ 4.1):
940  //   An lvalue (3.10) of a non-function, non-array type T can be
941  //   converted to an rvalue.
942  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
943  if (argIsLvalue == Expr::LV_Valid &&
944      !FromType->isFunctionType() && !FromType->isArrayType() &&
945      Context.getCanonicalType(FromType) != Context.OverloadTy) {
946    SCS.First = ICK_Lvalue_To_Rvalue;
947
948    // If T is a non-class type, the type of the rvalue is the
949    // cv-unqualified version of T. Otherwise, the type of the rvalue
950    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
951    // just strip the qualifiers because they don't matter.
952    FromType = FromType.getUnqualifiedType();
953  } else if (FromType->isArrayType()) {
954    // Array-to-pointer conversion (C++ 4.2)
955    SCS.First = ICK_Array_To_Pointer;
956
957    // An lvalue or rvalue of type "array of N T" or "array of unknown
958    // bound of T" can be converted to an rvalue of type "pointer to
959    // T" (C++ 4.2p1).
960    FromType = Context.getArrayDecayedType(FromType);
961
962    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
963      // This conversion is deprecated. (C++ D.4).
964      SCS.DeprecatedStringLiteralToCharPtr = true;
965
966      // For the purpose of ranking in overload resolution
967      // (13.3.3.1.1), this conversion is considered an
968      // array-to-pointer conversion followed by a qualification
969      // conversion (4.4). (C++ 4.2p2)
970      SCS.Second = ICK_Identity;
971      SCS.Third = ICK_Qualification;
972      SCS.setAllToTypes(FromType);
973      return true;
974    }
975  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
976    // Function-to-pointer conversion (C++ 4.3).
977    SCS.First = ICK_Function_To_Pointer;
978
979    // An lvalue of function type T can be converted to an rvalue of
980    // type "pointer to T." The result is a pointer to the
981    // function. (C++ 4.3p1).
982    FromType = Context.getPointerType(FromType);
983  } else {
984    // We don't require any conversions for the first step.
985    SCS.First = ICK_Identity;
986  }
987  SCS.setToType(0, FromType);
988
989  // The second conversion can be an integral promotion, floating
990  // point promotion, integral conversion, floating point conversion,
991  // floating-integral conversion, pointer conversion,
992  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
993  // For overloading in C, this can also be a "compatible-type"
994  // conversion.
995  bool IncompatibleObjC = false;
996  ImplicitConversionKind SecondICK = ICK_Identity;
997  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
998    // The unqualified versions of the types are the same: there's no
999    // conversion to do.
1000    SCS.Second = ICK_Identity;
1001  } else if (IsIntegralPromotion(From, FromType, ToType)) {
1002    // Integral promotion (C++ 4.5).
1003    SCS.Second = ICK_Integral_Promotion;
1004    FromType = ToType.getUnqualifiedType();
1005  } else if (IsFloatingPointPromotion(FromType, ToType)) {
1006    // Floating point promotion (C++ 4.6).
1007    SCS.Second = ICK_Floating_Promotion;
1008    FromType = ToType.getUnqualifiedType();
1009  } else if (IsComplexPromotion(FromType, ToType)) {
1010    // Complex promotion (Clang extension)
1011    SCS.Second = ICK_Complex_Promotion;
1012    FromType = ToType.getUnqualifiedType();
1013  } else if (FromType->isIntegralOrEnumerationType() &&
1014             ToType->isIntegralType(Context)) {
1015    // Integral conversions (C++ 4.7).
1016    SCS.Second = ICK_Integral_Conversion;
1017    FromType = ToType.getUnqualifiedType();
1018  } else if (FromType->isComplexType() && ToType->isComplexType()) {
1019    // Complex conversions (C99 6.3.1.6)
1020    SCS.Second = ICK_Complex_Conversion;
1021    FromType = ToType.getUnqualifiedType();
1022  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
1023             (ToType->isComplexType() && FromType->isArithmeticType())) {
1024    // Complex-real conversions (C99 6.3.1.7)
1025    SCS.Second = ICK_Complex_Real;
1026    FromType = ToType.getUnqualifiedType();
1027  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1028    // Floating point conversions (C++ 4.8).
1029    SCS.Second = ICK_Floating_Conversion;
1030    FromType = ToType.getUnqualifiedType();
1031  } else if ((FromType->isRealFloatingType() &&
1032              ToType->isIntegralType(Context) && !ToType->isBooleanType()) ||
1033             (FromType->isIntegralOrEnumerationType() &&
1034              ToType->isRealFloatingType())) {
1035    // Floating-integral conversions (C++ 4.9).
1036    SCS.Second = ICK_Floating_Integral;
1037    FromType = ToType.getUnqualifiedType();
1038  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1039                                 FromType, IncompatibleObjC)) {
1040    // Pointer conversions (C++ 4.10).
1041    SCS.Second = ICK_Pointer_Conversion;
1042    SCS.IncompatibleObjC = IncompatibleObjC;
1043  } else if (IsMemberPointerConversion(From, FromType, ToType,
1044                                       InOverloadResolution, FromType)) {
1045    // Pointer to member conversions (4.11).
1046    SCS.Second = ICK_Pointer_Member;
1047  } else if (ToType->isBooleanType() &&
1048             (FromType->isArithmeticType() ||
1049              FromType->isEnumeralType() ||
1050              FromType->isAnyPointerType() ||
1051              FromType->isBlockPointerType() ||
1052              FromType->isMemberPointerType() ||
1053              FromType->isNullPtrType())) {
1054    // Boolean conversions (C++ 4.12).
1055    SCS.Second = ICK_Boolean_Conversion;
1056    FromType = Context.BoolTy;
1057  } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) {
1058    SCS.Second = SecondICK;
1059    FromType = ToType.getUnqualifiedType();
1060  } else if (!getLangOptions().CPlusPlus &&
1061             Context.typesAreCompatible(ToType, FromType)) {
1062    // Compatible conversions (Clang extension for C function overloading)
1063    SCS.Second = ICK_Compatible_Conversion;
1064    FromType = ToType.getUnqualifiedType();
1065  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
1066    // Treat a conversion that strips "noreturn" as an identity conversion.
1067    SCS.Second = ICK_NoReturn_Adjustment;
1068  } else {
1069    // No second conversion required.
1070    SCS.Second = ICK_Identity;
1071  }
1072  SCS.setToType(1, FromType);
1073
1074  QualType CanonFrom;
1075  QualType CanonTo;
1076  // The third conversion can be a qualification conversion (C++ 4p1).
1077  if (IsQualificationConversion(FromType, ToType)) {
1078    SCS.Third = ICK_Qualification;
1079    FromType = ToType;
1080    CanonFrom = Context.getCanonicalType(FromType);
1081    CanonTo = Context.getCanonicalType(ToType);
1082  } else {
1083    // No conversion required
1084    SCS.Third = ICK_Identity;
1085
1086    // C++ [over.best.ics]p6:
1087    //   [...] Any difference in top-level cv-qualification is
1088    //   subsumed by the initialization itself and does not constitute
1089    //   a conversion. [...]
1090    CanonFrom = Context.getCanonicalType(FromType);
1091    CanonTo = Context.getCanonicalType(ToType);
1092    if (CanonFrom.getLocalUnqualifiedType()
1093                                       == CanonTo.getLocalUnqualifiedType() &&
1094        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1095         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1096      FromType = ToType;
1097      CanonFrom = CanonTo;
1098    }
1099  }
1100  SCS.setToType(2, FromType);
1101
1102  // If we have not converted the argument type to the parameter type,
1103  // this is a bad conversion sequence.
1104  if (CanonFrom != CanonTo)
1105    return false;
1106
1107  return true;
1108}
1109
1110/// IsIntegralPromotion - Determines whether the conversion from the
1111/// expression From (whose potentially-adjusted type is FromType) to
1112/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1113/// sets PromotedType to the promoted type.
1114bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1115  const BuiltinType *To = ToType->getAs<BuiltinType>();
1116  // All integers are built-in.
1117  if (!To) {
1118    return false;
1119  }
1120
1121  // An rvalue of type char, signed char, unsigned char, short int, or
1122  // unsigned short int can be converted to an rvalue of type int if
1123  // int can represent all the values of the source type; otherwise,
1124  // the source rvalue can be converted to an rvalue of type unsigned
1125  // int (C++ 4.5p1).
1126  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1127      !FromType->isEnumeralType()) {
1128    if (// We can promote any signed, promotable integer type to an int
1129        (FromType->isSignedIntegerType() ||
1130         // We can promote any unsigned integer type whose size is
1131         // less than int to an int.
1132         (!FromType->isSignedIntegerType() &&
1133          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1134      return To->getKind() == BuiltinType::Int;
1135    }
1136
1137    return To->getKind() == BuiltinType::UInt;
1138  }
1139
1140  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
1141  // can be converted to an rvalue of the first of the following types
1142  // that can represent all the values of its underlying type: int,
1143  // unsigned int, long, or unsigned long (C++ 4.5p2).
1144
1145  // We pre-calculate the promotion type for enum types.
1146  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
1147    if (ToType->isIntegerType())
1148      return Context.hasSameUnqualifiedType(ToType,
1149                                FromEnumType->getDecl()->getPromotionType());
1150
1151  if (FromType->isWideCharType() && ToType->isIntegerType()) {
1152    // Determine whether the type we're converting from is signed or
1153    // unsigned.
1154    bool FromIsSigned;
1155    uint64_t FromSize = Context.getTypeSize(FromType);
1156
1157    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1158    FromIsSigned = true;
1159
1160    // The types we'll try to promote to, in the appropriate
1161    // order. Try each of these types.
1162    QualType PromoteTypes[6] = {
1163      Context.IntTy, Context.UnsignedIntTy,
1164      Context.LongTy, Context.UnsignedLongTy ,
1165      Context.LongLongTy, Context.UnsignedLongLongTy
1166    };
1167    for (int Idx = 0; Idx < 6; ++Idx) {
1168      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1169      if (FromSize < ToSize ||
1170          (FromSize == ToSize &&
1171           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1172        // We found the type that we can promote to. If this is the
1173        // type we wanted, we have a promotion. Otherwise, no
1174        // promotion.
1175        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1176      }
1177    }
1178  }
1179
1180  // An rvalue for an integral bit-field (9.6) can be converted to an
1181  // rvalue of type int if int can represent all the values of the
1182  // bit-field; otherwise, it can be converted to unsigned int if
1183  // unsigned int can represent all the values of the bit-field. If
1184  // the bit-field is larger yet, no integral promotion applies to
1185  // it. If the bit-field has an enumerated type, it is treated as any
1186  // other value of that type for promotion purposes (C++ 4.5p3).
1187  // FIXME: We should delay checking of bit-fields until we actually perform the
1188  // conversion.
1189  using llvm::APSInt;
1190  if (From)
1191    if (FieldDecl *MemberDecl = From->getBitField()) {
1192      APSInt BitWidth;
1193      if (FromType->isIntegralType(Context) &&
1194          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1195        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1196        ToSize = Context.getTypeSize(ToType);
1197
1198        // Are we promoting to an int from a bitfield that fits in an int?
1199        if (BitWidth < ToSize ||
1200            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1201          return To->getKind() == BuiltinType::Int;
1202        }
1203
1204        // Are we promoting to an unsigned int from an unsigned bitfield
1205        // that fits into an unsigned int?
1206        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1207          return To->getKind() == BuiltinType::UInt;
1208        }
1209
1210        return false;
1211      }
1212    }
1213
1214  // An rvalue of type bool can be converted to an rvalue of type int,
1215  // with false becoming zero and true becoming one (C++ 4.5p4).
1216  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1217    return true;
1218  }
1219
1220  return false;
1221}
1222
1223/// IsFloatingPointPromotion - Determines whether the conversion from
1224/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1225/// returns true and sets PromotedType to the promoted type.
1226bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1227  /// An rvalue of type float can be converted to an rvalue of type
1228  /// double. (C++ 4.6p1).
1229  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1230    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1231      if (FromBuiltin->getKind() == BuiltinType::Float &&
1232          ToBuiltin->getKind() == BuiltinType::Double)
1233        return true;
1234
1235      // C99 6.3.1.5p1:
1236      //   When a float is promoted to double or long double, or a
1237      //   double is promoted to long double [...].
1238      if (!getLangOptions().CPlusPlus &&
1239          (FromBuiltin->getKind() == BuiltinType::Float ||
1240           FromBuiltin->getKind() == BuiltinType::Double) &&
1241          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1242        return true;
1243    }
1244
1245  return false;
1246}
1247
1248/// \brief Determine if a conversion is a complex promotion.
1249///
1250/// A complex promotion is defined as a complex -> complex conversion
1251/// where the conversion between the underlying real types is a
1252/// floating-point or integral promotion.
1253bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1254  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1255  if (!FromComplex)
1256    return false;
1257
1258  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1259  if (!ToComplex)
1260    return false;
1261
1262  return IsFloatingPointPromotion(FromComplex->getElementType(),
1263                                  ToComplex->getElementType()) ||
1264    IsIntegralPromotion(0, FromComplex->getElementType(),
1265                        ToComplex->getElementType());
1266}
1267
1268/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1269/// the pointer type FromPtr to a pointer to type ToPointee, with the
1270/// same type qualifiers as FromPtr has on its pointee type. ToType,
1271/// if non-empty, will be a pointer to ToType that may or may not have
1272/// the right set of qualifiers on its pointee.
1273static QualType
1274BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
1275                                   QualType ToPointee, QualType ToType,
1276                                   ASTContext &Context) {
1277  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
1278  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1279  Qualifiers Quals = CanonFromPointee.getQualifiers();
1280
1281  // Exact qualifier match -> return the pointer type we're converting to.
1282  if (CanonToPointee.getLocalQualifiers() == Quals) {
1283    // ToType is exactly what we need. Return it.
1284    if (!ToType.isNull())
1285      return ToType.getUnqualifiedType();
1286
1287    // Build a pointer to ToPointee. It has the right qualifiers
1288    // already.
1289    return Context.getPointerType(ToPointee);
1290  }
1291
1292  // Just build a canonical type that has the right qualifiers.
1293  return Context.getPointerType(
1294         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1295                                  Quals));
1296}
1297
1298/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1299/// the FromType, which is an objective-c pointer, to ToType, which may or may
1300/// not have the right set of qualifiers.
1301static QualType
1302BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1303                                             QualType ToType,
1304                                             ASTContext &Context) {
1305  QualType CanonFromType = Context.getCanonicalType(FromType);
1306  QualType CanonToType = Context.getCanonicalType(ToType);
1307  Qualifiers Quals = CanonFromType.getQualifiers();
1308
1309  // Exact qualifier match -> return the pointer type we're converting to.
1310  if (CanonToType.getLocalQualifiers() == Quals)
1311    return ToType;
1312
1313  // Just build a canonical type that has the right qualifiers.
1314  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1315}
1316
1317static bool isNullPointerConstantForConversion(Expr *Expr,
1318                                               bool InOverloadResolution,
1319                                               ASTContext &Context) {
1320  // Handle value-dependent integral null pointer constants correctly.
1321  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1322  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1323      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1324    return !InOverloadResolution;
1325
1326  return Expr->isNullPointerConstant(Context,
1327                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1328                                        : Expr::NPC_ValueDependentIsNull);
1329}
1330
1331/// IsPointerConversion - Determines whether the conversion of the
1332/// expression From, which has the (possibly adjusted) type FromType,
1333/// can be converted to the type ToType via a pointer conversion (C++
1334/// 4.10). If so, returns true and places the converted type (that
1335/// might differ from ToType in its cv-qualifiers at some level) into
1336/// ConvertedType.
1337///
1338/// This routine also supports conversions to and from block pointers
1339/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1340/// pointers to interfaces. FIXME: Once we've determined the
1341/// appropriate overloading rules for Objective-C, we may want to
1342/// split the Objective-C checks into a different routine; however,
1343/// GCC seems to consider all of these conversions to be pointer
1344/// conversions, so for now they live here. IncompatibleObjC will be
1345/// set if the conversion is an allowed Objective-C conversion that
1346/// should result in a warning.
1347bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1348                               bool InOverloadResolution,
1349                               QualType& ConvertedType,
1350                               bool &IncompatibleObjC) {
1351  IncompatibleObjC = false;
1352  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1353    return true;
1354
1355  // Conversion from a null pointer constant to any Objective-C pointer type.
1356  if (ToType->isObjCObjectPointerType() &&
1357      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1358    ConvertedType = ToType;
1359    return true;
1360  }
1361
1362  // Blocks: Block pointers can be converted to void*.
1363  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1364      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1365    ConvertedType = ToType;
1366    return true;
1367  }
1368  // Blocks: A null pointer constant can be converted to a block
1369  // pointer type.
1370  if (ToType->isBlockPointerType() &&
1371      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1372    ConvertedType = ToType;
1373    return true;
1374  }
1375
1376  // If the left-hand-side is nullptr_t, the right side can be a null
1377  // pointer constant.
1378  if (ToType->isNullPtrType() &&
1379      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1380    ConvertedType = ToType;
1381    return true;
1382  }
1383
1384  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1385  if (!ToTypePtr)
1386    return false;
1387
1388  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1389  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1390    ConvertedType = ToType;
1391    return true;
1392  }
1393
1394  // Beyond this point, both types need to be pointers
1395  // , including objective-c pointers.
1396  QualType ToPointeeType = ToTypePtr->getPointeeType();
1397  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1398    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1399                                                       ToType, Context);
1400    return true;
1401
1402  }
1403  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1404  if (!FromTypePtr)
1405    return false;
1406
1407  QualType FromPointeeType = FromTypePtr->getPointeeType();
1408
1409  // If the unqualified pointee types are the same, this can't be a
1410  // pointer conversion, so don't do all of the work below.
1411  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1412    return false;
1413
1414  // An rvalue of type "pointer to cv T," where T is an object type,
1415  // can be converted to an rvalue of type "pointer to cv void" (C++
1416  // 4.10p2).
1417  if (FromPointeeType->isIncompleteOrObjectType() &&
1418      ToPointeeType->isVoidType()) {
1419    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1420                                                       ToPointeeType,
1421                                                       ToType, Context);
1422    return true;
1423  }
1424
1425  // When we're overloading in C, we allow a special kind of pointer
1426  // conversion for compatible-but-not-identical pointee types.
1427  if (!getLangOptions().CPlusPlus &&
1428      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1429    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1430                                                       ToPointeeType,
1431                                                       ToType, Context);
1432    return true;
1433  }
1434
1435  // C++ [conv.ptr]p3:
1436  //
1437  //   An rvalue of type "pointer to cv D," where D is a class type,
1438  //   can be converted to an rvalue of type "pointer to cv B," where
1439  //   B is a base class (clause 10) of D. If B is an inaccessible
1440  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1441  //   necessitates this conversion is ill-formed. The result of the
1442  //   conversion is a pointer to the base class sub-object of the
1443  //   derived class object. The null pointer value is converted to
1444  //   the null pointer value of the destination type.
1445  //
1446  // Note that we do not check for ambiguity or inaccessibility
1447  // here. That is handled by CheckPointerConversion.
1448  if (getLangOptions().CPlusPlus &&
1449      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1450      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1451      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1452      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1453    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1454                                                       ToPointeeType,
1455                                                       ToType, Context);
1456    return true;
1457  }
1458
1459  return false;
1460}
1461
1462/// isObjCPointerConversion - Determines whether this is an
1463/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1464/// with the same arguments and return values.
1465bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1466                                   QualType& ConvertedType,
1467                                   bool &IncompatibleObjC) {
1468  if (!getLangOptions().ObjC1)
1469    return false;
1470
1471  // First, we handle all conversions on ObjC object pointer types.
1472  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1473  const ObjCObjectPointerType *FromObjCPtr =
1474    FromType->getAs<ObjCObjectPointerType>();
1475
1476  if (ToObjCPtr && FromObjCPtr) {
1477    // Objective C++: We're able to convert between "id" or "Class" and a
1478    // pointer to any interface (in both directions).
1479    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1480      ConvertedType = ToType;
1481      return true;
1482    }
1483    // Conversions with Objective-C's id<...>.
1484    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1485         ToObjCPtr->isObjCQualifiedIdType()) &&
1486        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1487                                                  /*compare=*/false)) {
1488      ConvertedType = ToType;
1489      return true;
1490    }
1491    // Objective C++: We're able to convert from a pointer to an
1492    // interface to a pointer to a different interface.
1493    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1494      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1495      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1496      if (getLangOptions().CPlusPlus && LHS && RHS &&
1497          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1498                                                FromObjCPtr->getPointeeType()))
1499        return false;
1500      ConvertedType = ToType;
1501      return true;
1502    }
1503
1504    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1505      // Okay: this is some kind of implicit downcast of Objective-C
1506      // interfaces, which is permitted. However, we're going to
1507      // complain about it.
1508      IncompatibleObjC = true;
1509      ConvertedType = FromType;
1510      return true;
1511    }
1512  }
1513  // Beyond this point, both types need to be C pointers or block pointers.
1514  QualType ToPointeeType;
1515  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1516    ToPointeeType = ToCPtr->getPointeeType();
1517  else if (const BlockPointerType *ToBlockPtr =
1518            ToType->getAs<BlockPointerType>()) {
1519    // Objective C++: We're able to convert from a pointer to any object
1520    // to a block pointer type.
1521    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1522      ConvertedType = ToType;
1523      return true;
1524    }
1525    ToPointeeType = ToBlockPtr->getPointeeType();
1526  }
1527  else if (FromType->getAs<BlockPointerType>() &&
1528           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1529    // Objective C++: We're able to convert from a block pointer type to a
1530    // pointer to any object.
1531    ConvertedType = ToType;
1532    return true;
1533  }
1534  else
1535    return false;
1536
1537  QualType FromPointeeType;
1538  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1539    FromPointeeType = FromCPtr->getPointeeType();
1540  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1541    FromPointeeType = FromBlockPtr->getPointeeType();
1542  else
1543    return false;
1544
1545  // If we have pointers to pointers, recursively check whether this
1546  // is an Objective-C conversion.
1547  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1548      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1549                              IncompatibleObjC)) {
1550    // We always complain about this conversion.
1551    IncompatibleObjC = true;
1552    ConvertedType = ToType;
1553    return true;
1554  }
1555  // Allow conversion of pointee being objective-c pointer to another one;
1556  // as in I* to id.
1557  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1558      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1559      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1560                              IncompatibleObjC)) {
1561    ConvertedType = ToType;
1562    return true;
1563  }
1564
1565  // If we have pointers to functions or blocks, check whether the only
1566  // differences in the argument and result types are in Objective-C
1567  // pointer conversions. If so, we permit the conversion (but
1568  // complain about it).
1569  const FunctionProtoType *FromFunctionType
1570    = FromPointeeType->getAs<FunctionProtoType>();
1571  const FunctionProtoType *ToFunctionType
1572    = ToPointeeType->getAs<FunctionProtoType>();
1573  if (FromFunctionType && ToFunctionType) {
1574    // If the function types are exactly the same, this isn't an
1575    // Objective-C pointer conversion.
1576    if (Context.getCanonicalType(FromPointeeType)
1577          == Context.getCanonicalType(ToPointeeType))
1578      return false;
1579
1580    // Perform the quick checks that will tell us whether these
1581    // function types are obviously different.
1582    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1583        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1584        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1585      return false;
1586
1587    bool HasObjCConversion = false;
1588    if (Context.getCanonicalType(FromFunctionType->getResultType())
1589          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1590      // Okay, the types match exactly. Nothing to do.
1591    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1592                                       ToFunctionType->getResultType(),
1593                                       ConvertedType, IncompatibleObjC)) {
1594      // Okay, we have an Objective-C pointer conversion.
1595      HasObjCConversion = true;
1596    } else {
1597      // Function types are too different. Abort.
1598      return false;
1599    }
1600
1601    // Check argument types.
1602    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1603         ArgIdx != NumArgs; ++ArgIdx) {
1604      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1605      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1606      if (Context.getCanonicalType(FromArgType)
1607            == Context.getCanonicalType(ToArgType)) {
1608        // Okay, the types match exactly. Nothing to do.
1609      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1610                                         ConvertedType, IncompatibleObjC)) {
1611        // Okay, we have an Objective-C pointer conversion.
1612        HasObjCConversion = true;
1613      } else {
1614        // Argument types are too different. Abort.
1615        return false;
1616      }
1617    }
1618
1619    if (HasObjCConversion) {
1620      // We had an Objective-C conversion. Allow this pointer
1621      // conversion, but complain about it.
1622      ConvertedType = ToType;
1623      IncompatibleObjC = true;
1624      return true;
1625    }
1626  }
1627
1628  return false;
1629}
1630
1631/// FunctionArgTypesAreEqual - This routine checks two function proto types
1632/// for equlity of their argument types. Caller has already checked that
1633/// they have same number of arguments. This routine assumes that Objective-C
1634/// pointer types which only differ in their protocol qualifiers are equal.
1635bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,
1636                            FunctionProtoType*  NewType){
1637  if (!getLangOptions().ObjC1)
1638    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1639                      NewType->arg_type_begin());
1640
1641  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1642       N = NewType->arg_type_begin(),
1643       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1644    QualType ToType = (*O);
1645    QualType FromType = (*N);
1646    if (ToType != FromType) {
1647      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1648        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1649          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1650               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1651              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1652               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1653            continue;
1654      }
1655      else if (const ObjCObjectPointerType *PTTo =
1656                 ToType->getAs<ObjCObjectPointerType>()) {
1657        if (const ObjCObjectPointerType *PTFr =
1658              FromType->getAs<ObjCObjectPointerType>())
1659          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1660            continue;
1661      }
1662      return false;
1663    }
1664  }
1665  return true;
1666}
1667
1668/// CheckPointerConversion - Check the pointer conversion from the
1669/// expression From to the type ToType. This routine checks for
1670/// ambiguous or inaccessible derived-to-base pointer
1671/// conversions for which IsPointerConversion has already returned
1672/// true. It returns true and produces a diagnostic if there was an
1673/// error, or returns false otherwise.
1674bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1675                                  CastExpr::CastKind &Kind,
1676                                  CXXCastPath& BasePath,
1677                                  bool IgnoreBaseAccess) {
1678  QualType FromType = From->getType();
1679
1680  if (CXXBoolLiteralExpr* LitBool
1681                          = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
1682    if (LitBool->getValue() == false)
1683      Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
1684        << ToType;
1685
1686  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1687    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1688      QualType FromPointeeType = FromPtrType->getPointeeType(),
1689               ToPointeeType   = ToPtrType->getPointeeType();
1690
1691      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1692          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1693        // We must have a derived-to-base conversion. Check an
1694        // ambiguous or inaccessible conversion.
1695        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1696                                         From->getExprLoc(),
1697                                         From->getSourceRange(), &BasePath,
1698                                         IgnoreBaseAccess))
1699          return true;
1700
1701        // The conversion was successful.
1702        Kind = CastExpr::CK_DerivedToBase;
1703      }
1704    }
1705  if (const ObjCObjectPointerType *FromPtrType =
1706        FromType->getAs<ObjCObjectPointerType>())
1707    if (const ObjCObjectPointerType *ToPtrType =
1708          ToType->getAs<ObjCObjectPointerType>()) {
1709      // Objective-C++ conversions are always okay.
1710      // FIXME: We should have a different class of conversions for the
1711      // Objective-C++ implicit conversions.
1712      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1713        return false;
1714
1715  }
1716  return false;
1717}
1718
1719/// IsMemberPointerConversion - Determines whether the conversion of the
1720/// expression From, which has the (possibly adjusted) type FromType, can be
1721/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1722/// If so, returns true and places the converted type (that might differ from
1723/// ToType in its cv-qualifiers at some level) into ConvertedType.
1724bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1725                                     QualType ToType,
1726                                     bool InOverloadResolution,
1727                                     QualType &ConvertedType) {
1728  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1729  if (!ToTypePtr)
1730    return false;
1731
1732  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1733  if (From->isNullPointerConstant(Context,
1734                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1735                                        : Expr::NPC_ValueDependentIsNull)) {
1736    ConvertedType = ToType;
1737    return true;
1738  }
1739
1740  // Otherwise, both types have to be member pointers.
1741  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1742  if (!FromTypePtr)
1743    return false;
1744
1745  // A pointer to member of B can be converted to a pointer to member of D,
1746  // where D is derived from B (C++ 4.11p2).
1747  QualType FromClass(FromTypePtr->getClass(), 0);
1748  QualType ToClass(ToTypePtr->getClass(), 0);
1749  // FIXME: What happens when these are dependent? Is this function even called?
1750
1751  if (IsDerivedFrom(ToClass, FromClass)) {
1752    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1753                                                 ToClass.getTypePtr());
1754    return true;
1755  }
1756
1757  return false;
1758}
1759
1760/// CheckMemberPointerConversion - Check the member pointer conversion from the
1761/// expression From to the type ToType. This routine checks for ambiguous or
1762/// virtual or inaccessible base-to-derived member pointer conversions
1763/// for which IsMemberPointerConversion has already returned true. It returns
1764/// true and produces a diagnostic if there was an error, or returns false
1765/// otherwise.
1766bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1767                                        CastExpr::CastKind &Kind,
1768                                        CXXCastPath &BasePath,
1769                                        bool IgnoreBaseAccess) {
1770  QualType FromType = From->getType();
1771  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1772  if (!FromPtrType) {
1773    // This must be a null pointer to member pointer conversion
1774    assert(From->isNullPointerConstant(Context,
1775                                       Expr::NPC_ValueDependentIsNull) &&
1776           "Expr must be null pointer constant!");
1777    Kind = CastExpr::CK_NullToMemberPointer;
1778    return false;
1779  }
1780
1781  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1782  assert(ToPtrType && "No member pointer cast has a target type "
1783                      "that is not a member pointer.");
1784
1785  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1786  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1787
1788  // FIXME: What about dependent types?
1789  assert(FromClass->isRecordType() && "Pointer into non-class.");
1790  assert(ToClass->isRecordType() && "Pointer into non-class.");
1791
1792  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1793                     /*DetectVirtual=*/true);
1794  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1795  assert(DerivationOkay &&
1796         "Should not have been called if derivation isn't OK.");
1797  (void)DerivationOkay;
1798
1799  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1800                                  getUnqualifiedType())) {
1801    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1802    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1803      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1804    return true;
1805  }
1806
1807  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1808    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1809      << FromClass << ToClass << QualType(VBase, 0)
1810      << From->getSourceRange();
1811    return true;
1812  }
1813
1814  if (!IgnoreBaseAccess)
1815    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1816                         Paths.front(),
1817                         diag::err_downcast_from_inaccessible_base);
1818
1819  // Must be a base to derived member conversion.
1820  BuildBasePathArray(Paths, BasePath);
1821  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1822  return false;
1823}
1824
1825/// IsQualificationConversion - Determines whether the conversion from
1826/// an rvalue of type FromType to ToType is a qualification conversion
1827/// (C++ 4.4).
1828bool
1829Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1830  FromType = Context.getCanonicalType(FromType);
1831  ToType = Context.getCanonicalType(ToType);
1832
1833  // If FromType and ToType are the same type, this is not a
1834  // qualification conversion.
1835  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1836    return false;
1837
1838  // (C++ 4.4p4):
1839  //   A conversion can add cv-qualifiers at levels other than the first
1840  //   in multi-level pointers, subject to the following rules: [...]
1841  bool PreviousToQualsIncludeConst = true;
1842  bool UnwrappedAnyPointer = false;
1843  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
1844    // Within each iteration of the loop, we check the qualifiers to
1845    // determine if this still looks like a qualification
1846    // conversion. Then, if all is well, we unwrap one more level of
1847    // pointers or pointers-to-members and do it all again
1848    // until there are no more pointers or pointers-to-members left to
1849    // unwrap.
1850    UnwrappedAnyPointer = true;
1851
1852    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1853    //      2,j, and similarly for volatile.
1854    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1855      return false;
1856
1857    //   -- if the cv 1,j and cv 2,j are different, then const is in
1858    //      every cv for 0 < k < j.
1859    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1860        && !PreviousToQualsIncludeConst)
1861      return false;
1862
1863    // Keep track of whether all prior cv-qualifiers in the "to" type
1864    // include const.
1865    PreviousToQualsIncludeConst
1866      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1867  }
1868
1869  // We are left with FromType and ToType being the pointee types
1870  // after unwrapping the original FromType and ToType the same number
1871  // of types. If we unwrapped any pointers, and if FromType and
1872  // ToType have the same unqualified type (since we checked
1873  // qualifiers above), then this is a qualification conversion.
1874  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1875}
1876
1877/// Determines whether there is a user-defined conversion sequence
1878/// (C++ [over.ics.user]) that converts expression From to the type
1879/// ToType. If such a conversion exists, User will contain the
1880/// user-defined conversion sequence that performs such a conversion
1881/// and this routine will return true. Otherwise, this routine returns
1882/// false and User is unspecified.
1883///
1884/// \param AllowExplicit  true if the conversion should consider C++0x
1885/// "explicit" conversion functions as well as non-explicit conversion
1886/// functions (C++0x [class.conv.fct]p2).
1887OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1888                                          UserDefinedConversionSequence& User,
1889                                           OverloadCandidateSet& CandidateSet,
1890                                                bool AllowExplicit) {
1891  // Whether we will only visit constructors.
1892  bool ConstructorsOnly = false;
1893
1894  // If the type we are conversion to is a class type, enumerate its
1895  // constructors.
1896  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1897    // C++ [over.match.ctor]p1:
1898    //   When objects of class type are direct-initialized (8.5), or
1899    //   copy-initialized from an expression of the same or a
1900    //   derived class type (8.5), overload resolution selects the
1901    //   constructor. [...] For copy-initialization, the candidate
1902    //   functions are all the converting constructors (12.3.1) of
1903    //   that class. The argument list is the expression-list within
1904    //   the parentheses of the initializer.
1905    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1906        (From->getType()->getAs<RecordType>() &&
1907         IsDerivedFrom(From->getType(), ToType)))
1908      ConstructorsOnly = true;
1909
1910    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1911      // We're not going to find any constructors.
1912    } else if (CXXRecordDecl *ToRecordDecl
1913                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1914      DeclContext::lookup_iterator Con, ConEnd;
1915      for (llvm::tie(Con, ConEnd) = LookupConstructors(ToRecordDecl);
1916           Con != ConEnd; ++Con) {
1917        NamedDecl *D = *Con;
1918        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1919
1920        // Find the constructor (which may be a template).
1921        CXXConstructorDecl *Constructor = 0;
1922        FunctionTemplateDecl *ConstructorTmpl
1923          = dyn_cast<FunctionTemplateDecl>(D);
1924        if (ConstructorTmpl)
1925          Constructor
1926            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1927        else
1928          Constructor = cast<CXXConstructorDecl>(D);
1929
1930        if (!Constructor->isInvalidDecl() &&
1931            Constructor->isConvertingConstructor(AllowExplicit)) {
1932          if (ConstructorTmpl)
1933            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1934                                         /*ExplicitArgs*/ 0,
1935                                         &From, 1, CandidateSet,
1936                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1937          else
1938            // Allow one user-defined conversion when user specifies a
1939            // From->ToType conversion via an static cast (c-style, etc).
1940            AddOverloadCandidate(Constructor, FoundDecl,
1941                                 &From, 1, CandidateSet,
1942                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1943        }
1944      }
1945    }
1946  }
1947
1948  // Enumerate conversion functions, if we're allowed to.
1949  if (ConstructorsOnly) {
1950  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1951                          PDiag(0) << From->getSourceRange())) {
1952    // No conversion functions from incomplete types.
1953  } else if (const RecordType *FromRecordType
1954                                   = From->getType()->getAs<RecordType>()) {
1955    if (CXXRecordDecl *FromRecordDecl
1956         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1957      // Add all of the conversion functions as candidates.
1958      const UnresolvedSetImpl *Conversions
1959        = FromRecordDecl->getVisibleConversionFunctions();
1960      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1961             E = Conversions->end(); I != E; ++I) {
1962        DeclAccessPair FoundDecl = I.getPair();
1963        NamedDecl *D = FoundDecl.getDecl();
1964        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1965        if (isa<UsingShadowDecl>(D))
1966          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1967
1968        CXXConversionDecl *Conv;
1969        FunctionTemplateDecl *ConvTemplate;
1970        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1971          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1972        else
1973          Conv = cast<CXXConversionDecl>(D);
1974
1975        if (AllowExplicit || !Conv->isExplicit()) {
1976          if (ConvTemplate)
1977            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1978                                           ActingContext, From, ToType,
1979                                           CandidateSet);
1980          else
1981            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1982                                   From, ToType, CandidateSet);
1983        }
1984      }
1985    }
1986  }
1987
1988  OverloadCandidateSet::iterator Best;
1989  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1990    case OR_Success:
1991      // Record the standard conversion we used and the conversion function.
1992      if (CXXConstructorDecl *Constructor
1993            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1994        // C++ [over.ics.user]p1:
1995        //   If the user-defined conversion is specified by a
1996        //   constructor (12.3.1), the initial standard conversion
1997        //   sequence converts the source type to the type required by
1998        //   the argument of the constructor.
1999        //
2000        QualType ThisType = Constructor->getThisType(Context);
2001        if (Best->Conversions[0].isEllipsis())
2002          User.EllipsisConversion = true;
2003        else {
2004          User.Before = Best->Conversions[0].Standard;
2005          User.EllipsisConversion = false;
2006        }
2007        User.ConversionFunction = Constructor;
2008        User.After.setAsIdentityConversion();
2009        User.After.setFromType(
2010          ThisType->getAs<PointerType>()->getPointeeType());
2011        User.After.setAllToTypes(ToType);
2012        return OR_Success;
2013      } else if (CXXConversionDecl *Conversion
2014                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
2015        // C++ [over.ics.user]p1:
2016        //
2017        //   [...] If the user-defined conversion is specified by a
2018        //   conversion function (12.3.2), the initial standard
2019        //   conversion sequence converts the source type to the
2020        //   implicit object parameter of the conversion function.
2021        User.Before = Best->Conversions[0].Standard;
2022        User.ConversionFunction = Conversion;
2023        User.EllipsisConversion = false;
2024
2025        // C++ [over.ics.user]p2:
2026        //   The second standard conversion sequence converts the
2027        //   result of the user-defined conversion to the target type
2028        //   for the sequence. Since an implicit conversion sequence
2029        //   is an initialization, the special rules for
2030        //   initialization by user-defined conversion apply when
2031        //   selecting the best user-defined conversion for a
2032        //   user-defined conversion sequence (see 13.3.3 and
2033        //   13.3.3.1).
2034        User.After = Best->FinalConversion;
2035        return OR_Success;
2036      } else {
2037        assert(false && "Not a constructor or conversion function?");
2038        return OR_No_Viable_Function;
2039      }
2040
2041    case OR_No_Viable_Function:
2042      return OR_No_Viable_Function;
2043    case OR_Deleted:
2044      // No conversion here! We're done.
2045      return OR_Deleted;
2046
2047    case OR_Ambiguous:
2048      return OR_Ambiguous;
2049    }
2050
2051  return OR_No_Viable_Function;
2052}
2053
2054bool
2055Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2056  ImplicitConversionSequence ICS;
2057  OverloadCandidateSet CandidateSet(From->getExprLoc());
2058  OverloadingResult OvResult =
2059    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
2060                            CandidateSet, false);
2061  if (OvResult == OR_Ambiguous)
2062    Diag(From->getSourceRange().getBegin(),
2063         diag::err_typecheck_ambiguous_condition)
2064          << From->getType() << ToType << From->getSourceRange();
2065  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2066    Diag(From->getSourceRange().getBegin(),
2067         diag::err_typecheck_nonviable_condition)
2068    << From->getType() << ToType << From->getSourceRange();
2069  else
2070    return false;
2071  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
2072  return true;
2073}
2074
2075/// CompareImplicitConversionSequences - Compare two implicit
2076/// conversion sequences to determine whether one is better than the
2077/// other or if they are indistinguishable (C++ 13.3.3.2).
2078ImplicitConversionSequence::CompareKind
2079Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
2080                                         const ImplicitConversionSequence& ICS2)
2081{
2082  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2083  // conversion sequences (as defined in 13.3.3.1)
2084  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2085  //      conversion sequence than a user-defined conversion sequence or
2086  //      an ellipsis conversion sequence, and
2087  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2088  //      conversion sequence than an ellipsis conversion sequence
2089  //      (13.3.3.1.3).
2090  //
2091  // C++0x [over.best.ics]p10:
2092  //   For the purpose of ranking implicit conversion sequences as
2093  //   described in 13.3.3.2, the ambiguous conversion sequence is
2094  //   treated as a user-defined sequence that is indistinguishable
2095  //   from any other user-defined conversion sequence.
2096  if (ICS1.getKindRank() < ICS2.getKindRank())
2097    return ImplicitConversionSequence::Better;
2098  else if (ICS2.getKindRank() < ICS1.getKindRank())
2099    return ImplicitConversionSequence::Worse;
2100
2101  // The following checks require both conversion sequences to be of
2102  // the same kind.
2103  if (ICS1.getKind() != ICS2.getKind())
2104    return ImplicitConversionSequence::Indistinguishable;
2105
2106  // Two implicit conversion sequences of the same form are
2107  // indistinguishable conversion sequences unless one of the
2108  // following rules apply: (C++ 13.3.3.2p3):
2109  if (ICS1.isStandard())
2110    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
2111  else if (ICS1.isUserDefined()) {
2112    // User-defined conversion sequence U1 is a better conversion
2113    // sequence than another user-defined conversion sequence U2 if
2114    // they contain the same user-defined conversion function or
2115    // constructor and if the second standard conversion sequence of
2116    // U1 is better than the second standard conversion sequence of
2117    // U2 (C++ 13.3.3.2p3).
2118    if (ICS1.UserDefined.ConversionFunction ==
2119          ICS2.UserDefined.ConversionFunction)
2120      return CompareStandardConversionSequences(ICS1.UserDefined.After,
2121                                                ICS2.UserDefined.After);
2122  }
2123
2124  return ImplicitConversionSequence::Indistinguishable;
2125}
2126
2127static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2128  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2129    Qualifiers Quals;
2130    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2131    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2132  }
2133
2134  return Context.hasSameUnqualifiedType(T1, T2);
2135}
2136
2137// Per 13.3.3.2p3, compare the given standard conversion sequences to
2138// determine if one is a proper subset of the other.
2139static ImplicitConversionSequence::CompareKind
2140compareStandardConversionSubsets(ASTContext &Context,
2141                                 const StandardConversionSequence& SCS1,
2142                                 const StandardConversionSequence& SCS2) {
2143  ImplicitConversionSequence::CompareKind Result
2144    = ImplicitConversionSequence::Indistinguishable;
2145
2146  // the identity conversion sequence is considered to be a subsequence of
2147  // any non-identity conversion sequence
2148  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2149    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2150      return ImplicitConversionSequence::Better;
2151    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2152      return ImplicitConversionSequence::Worse;
2153  }
2154
2155  if (SCS1.Second != SCS2.Second) {
2156    if (SCS1.Second == ICK_Identity)
2157      Result = ImplicitConversionSequence::Better;
2158    else if (SCS2.Second == ICK_Identity)
2159      Result = ImplicitConversionSequence::Worse;
2160    else
2161      return ImplicitConversionSequence::Indistinguishable;
2162  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2163    return ImplicitConversionSequence::Indistinguishable;
2164
2165  if (SCS1.Third == SCS2.Third) {
2166    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2167                             : ImplicitConversionSequence::Indistinguishable;
2168  }
2169
2170  if (SCS1.Third == ICK_Identity)
2171    return Result == ImplicitConversionSequence::Worse
2172             ? ImplicitConversionSequence::Indistinguishable
2173             : ImplicitConversionSequence::Better;
2174
2175  if (SCS2.Third == ICK_Identity)
2176    return Result == ImplicitConversionSequence::Better
2177             ? ImplicitConversionSequence::Indistinguishable
2178             : ImplicitConversionSequence::Worse;
2179
2180  return ImplicitConversionSequence::Indistinguishable;
2181}
2182
2183/// CompareStandardConversionSequences - Compare two standard
2184/// conversion sequences to determine whether one is better than the
2185/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2186ImplicitConversionSequence::CompareKind
2187Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
2188                                         const StandardConversionSequence& SCS2)
2189{
2190  // Standard conversion sequence S1 is a better conversion sequence
2191  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2192
2193  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2194  //     sequences in the canonical form defined by 13.3.3.1.1,
2195  //     excluding any Lvalue Transformation; the identity conversion
2196  //     sequence is considered to be a subsequence of any
2197  //     non-identity conversion sequence) or, if not that,
2198  if (ImplicitConversionSequence::CompareKind CK
2199        = compareStandardConversionSubsets(Context, SCS1, SCS2))
2200    return CK;
2201
2202  //  -- the rank of S1 is better than the rank of S2 (by the rules
2203  //     defined below), or, if not that,
2204  ImplicitConversionRank Rank1 = SCS1.getRank();
2205  ImplicitConversionRank Rank2 = SCS2.getRank();
2206  if (Rank1 < Rank2)
2207    return ImplicitConversionSequence::Better;
2208  else if (Rank2 < Rank1)
2209    return ImplicitConversionSequence::Worse;
2210
2211  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2212  // are indistinguishable unless one of the following rules
2213  // applies:
2214
2215  //   A conversion that is not a conversion of a pointer, or
2216  //   pointer to member, to bool is better than another conversion
2217  //   that is such a conversion.
2218  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2219    return SCS2.isPointerConversionToBool()
2220             ? ImplicitConversionSequence::Better
2221             : ImplicitConversionSequence::Worse;
2222
2223  // C++ [over.ics.rank]p4b2:
2224  //
2225  //   If class B is derived directly or indirectly from class A,
2226  //   conversion of B* to A* is better than conversion of B* to
2227  //   void*, and conversion of A* to void* is better than conversion
2228  //   of B* to void*.
2229  bool SCS1ConvertsToVoid
2230    = SCS1.isPointerConversionToVoidPointer(Context);
2231  bool SCS2ConvertsToVoid
2232    = SCS2.isPointerConversionToVoidPointer(Context);
2233  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2234    // Exactly one of the conversion sequences is a conversion to
2235    // a void pointer; it's the worse conversion.
2236    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2237                              : ImplicitConversionSequence::Worse;
2238  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2239    // Neither conversion sequence converts to a void pointer; compare
2240    // their derived-to-base conversions.
2241    if (ImplicitConversionSequence::CompareKind DerivedCK
2242          = CompareDerivedToBaseConversions(SCS1, SCS2))
2243      return DerivedCK;
2244  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2245    // Both conversion sequences are conversions to void
2246    // pointers. Compare the source types to determine if there's an
2247    // inheritance relationship in their sources.
2248    QualType FromType1 = SCS1.getFromType();
2249    QualType FromType2 = SCS2.getFromType();
2250
2251    // Adjust the types we're converting from via the array-to-pointer
2252    // conversion, if we need to.
2253    if (SCS1.First == ICK_Array_To_Pointer)
2254      FromType1 = Context.getArrayDecayedType(FromType1);
2255    if (SCS2.First == ICK_Array_To_Pointer)
2256      FromType2 = Context.getArrayDecayedType(FromType2);
2257
2258    QualType FromPointee1
2259      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2260    QualType FromPointee2
2261      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2262
2263    if (IsDerivedFrom(FromPointee2, FromPointee1))
2264      return ImplicitConversionSequence::Better;
2265    else if (IsDerivedFrom(FromPointee1, FromPointee2))
2266      return ImplicitConversionSequence::Worse;
2267
2268    // Objective-C++: If one interface is more specific than the
2269    // other, it is the better one.
2270    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2271    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2272    if (FromIface1 && FromIface1) {
2273      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2274        return ImplicitConversionSequence::Better;
2275      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2276        return ImplicitConversionSequence::Worse;
2277    }
2278  }
2279
2280  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2281  // bullet 3).
2282  if (ImplicitConversionSequence::CompareKind QualCK
2283        = CompareQualificationConversions(SCS1, SCS2))
2284    return QualCK;
2285
2286  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2287    // C++0x [over.ics.rank]p3b4:
2288    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2289    //      implicit object parameter of a non-static member function declared
2290    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2291    //      rvalue and S2 binds an lvalue reference.
2292    // FIXME: We don't know if we're dealing with the implicit object parameter,
2293    // or if the member function in this case has a ref qualifier.
2294    // (Of course, we don't have ref qualifiers yet.)
2295    if (SCS1.RRefBinding != SCS2.RRefBinding)
2296      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2297                              : ImplicitConversionSequence::Worse;
2298
2299    // C++ [over.ics.rank]p3b4:
2300    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2301    //      which the references refer are the same type except for
2302    //      top-level cv-qualifiers, and the type to which the reference
2303    //      initialized by S2 refers is more cv-qualified than the type
2304    //      to which the reference initialized by S1 refers.
2305    QualType T1 = SCS1.getToType(2);
2306    QualType T2 = SCS2.getToType(2);
2307    T1 = Context.getCanonicalType(T1);
2308    T2 = Context.getCanonicalType(T2);
2309    Qualifiers T1Quals, T2Quals;
2310    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2311    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2312    if (UnqualT1 == UnqualT2) {
2313      // If the type is an array type, promote the element qualifiers to the type
2314      // for comparison.
2315      if (isa<ArrayType>(T1) && T1Quals)
2316        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2317      if (isa<ArrayType>(T2) && T2Quals)
2318        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2319      if (T2.isMoreQualifiedThan(T1))
2320        return ImplicitConversionSequence::Better;
2321      else if (T1.isMoreQualifiedThan(T2))
2322        return ImplicitConversionSequence::Worse;
2323    }
2324  }
2325
2326  return ImplicitConversionSequence::Indistinguishable;
2327}
2328
2329/// CompareQualificationConversions - Compares two standard conversion
2330/// sequences to determine whether they can be ranked based on their
2331/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2332ImplicitConversionSequence::CompareKind
2333Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
2334                                      const StandardConversionSequence& SCS2) {
2335  // C++ 13.3.3.2p3:
2336  //  -- S1 and S2 differ only in their qualification conversion and
2337  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2338  //     cv-qualification signature of type T1 is a proper subset of
2339  //     the cv-qualification signature of type T2, and S1 is not the
2340  //     deprecated string literal array-to-pointer conversion (4.2).
2341  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2342      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2343    return ImplicitConversionSequence::Indistinguishable;
2344
2345  // FIXME: the example in the standard doesn't use a qualification
2346  // conversion (!)
2347  QualType T1 = SCS1.getToType(2);
2348  QualType T2 = SCS2.getToType(2);
2349  T1 = Context.getCanonicalType(T1);
2350  T2 = Context.getCanonicalType(T2);
2351  Qualifiers T1Quals, T2Quals;
2352  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2353  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2354
2355  // If the types are the same, we won't learn anything by unwrapped
2356  // them.
2357  if (UnqualT1 == UnqualT2)
2358    return ImplicitConversionSequence::Indistinguishable;
2359
2360  // If the type is an array type, promote the element qualifiers to the type
2361  // for comparison.
2362  if (isa<ArrayType>(T1) && T1Quals)
2363    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2364  if (isa<ArrayType>(T2) && T2Quals)
2365    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2366
2367  ImplicitConversionSequence::CompareKind Result
2368    = ImplicitConversionSequence::Indistinguishable;
2369  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2370    // Within each iteration of the loop, we check the qualifiers to
2371    // determine if this still looks like a qualification
2372    // conversion. Then, if all is well, we unwrap one more level of
2373    // pointers or pointers-to-members and do it all again
2374    // until there are no more pointers or pointers-to-members left
2375    // to unwrap. This essentially mimics what
2376    // IsQualificationConversion does, but here we're checking for a
2377    // strict subset of qualifiers.
2378    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2379      // The qualifiers are the same, so this doesn't tell us anything
2380      // about how the sequences rank.
2381      ;
2382    else if (T2.isMoreQualifiedThan(T1)) {
2383      // T1 has fewer qualifiers, so it could be the better sequence.
2384      if (Result == ImplicitConversionSequence::Worse)
2385        // Neither has qualifiers that are a subset of the other's
2386        // qualifiers.
2387        return ImplicitConversionSequence::Indistinguishable;
2388
2389      Result = ImplicitConversionSequence::Better;
2390    } else if (T1.isMoreQualifiedThan(T2)) {
2391      // T2 has fewer qualifiers, so it could be the better sequence.
2392      if (Result == ImplicitConversionSequence::Better)
2393        // Neither has qualifiers that are a subset of the other's
2394        // qualifiers.
2395        return ImplicitConversionSequence::Indistinguishable;
2396
2397      Result = ImplicitConversionSequence::Worse;
2398    } else {
2399      // Qualifiers are disjoint.
2400      return ImplicitConversionSequence::Indistinguishable;
2401    }
2402
2403    // If the types after this point are equivalent, we're done.
2404    if (Context.hasSameUnqualifiedType(T1, T2))
2405      break;
2406  }
2407
2408  // Check that the winning standard conversion sequence isn't using
2409  // the deprecated string literal array to pointer conversion.
2410  switch (Result) {
2411  case ImplicitConversionSequence::Better:
2412    if (SCS1.DeprecatedStringLiteralToCharPtr)
2413      Result = ImplicitConversionSequence::Indistinguishable;
2414    break;
2415
2416  case ImplicitConversionSequence::Indistinguishable:
2417    break;
2418
2419  case ImplicitConversionSequence::Worse:
2420    if (SCS2.DeprecatedStringLiteralToCharPtr)
2421      Result = ImplicitConversionSequence::Indistinguishable;
2422    break;
2423  }
2424
2425  return Result;
2426}
2427
2428/// CompareDerivedToBaseConversions - Compares two standard conversion
2429/// sequences to determine whether they can be ranked based on their
2430/// various kinds of derived-to-base conversions (C++
2431/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2432/// conversions between Objective-C interface types.
2433ImplicitConversionSequence::CompareKind
2434Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2435                                      const StandardConversionSequence& SCS2) {
2436  QualType FromType1 = SCS1.getFromType();
2437  QualType ToType1 = SCS1.getToType(1);
2438  QualType FromType2 = SCS2.getFromType();
2439  QualType ToType2 = SCS2.getToType(1);
2440
2441  // Adjust the types we're converting from via the array-to-pointer
2442  // conversion, if we need to.
2443  if (SCS1.First == ICK_Array_To_Pointer)
2444    FromType1 = Context.getArrayDecayedType(FromType1);
2445  if (SCS2.First == ICK_Array_To_Pointer)
2446    FromType2 = Context.getArrayDecayedType(FromType2);
2447
2448  // Canonicalize all of the types.
2449  FromType1 = Context.getCanonicalType(FromType1);
2450  ToType1 = Context.getCanonicalType(ToType1);
2451  FromType2 = Context.getCanonicalType(FromType2);
2452  ToType2 = Context.getCanonicalType(ToType2);
2453
2454  // C++ [over.ics.rank]p4b3:
2455  //
2456  //   If class B is derived directly or indirectly from class A and
2457  //   class C is derived directly or indirectly from B,
2458  //
2459  // For Objective-C, we let A, B, and C also be Objective-C
2460  // interfaces.
2461
2462  // Compare based on pointer conversions.
2463  if (SCS1.Second == ICK_Pointer_Conversion &&
2464      SCS2.Second == ICK_Pointer_Conversion &&
2465      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2466      FromType1->isPointerType() && FromType2->isPointerType() &&
2467      ToType1->isPointerType() && ToType2->isPointerType()) {
2468    QualType FromPointee1
2469      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2470    QualType ToPointee1
2471      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2472    QualType FromPointee2
2473      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2474    QualType ToPointee2
2475      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2476
2477    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2478    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2479    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2480    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2481
2482    //   -- conversion of C* to B* is better than conversion of C* to A*,
2483    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2484      if (IsDerivedFrom(ToPointee1, ToPointee2))
2485        return ImplicitConversionSequence::Better;
2486      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2487        return ImplicitConversionSequence::Worse;
2488
2489      if (ToIface1 && ToIface2) {
2490        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2491          return ImplicitConversionSequence::Better;
2492        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2493          return ImplicitConversionSequence::Worse;
2494      }
2495    }
2496
2497    //   -- conversion of B* to A* is better than conversion of C* to A*,
2498    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2499      if (IsDerivedFrom(FromPointee2, FromPointee1))
2500        return ImplicitConversionSequence::Better;
2501      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2502        return ImplicitConversionSequence::Worse;
2503
2504      if (FromIface1 && FromIface2) {
2505        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2506          return ImplicitConversionSequence::Better;
2507        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2508          return ImplicitConversionSequence::Worse;
2509      }
2510    }
2511  }
2512
2513  // Ranking of member-pointer types.
2514  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2515      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2516      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2517    const MemberPointerType * FromMemPointer1 =
2518                                        FromType1->getAs<MemberPointerType>();
2519    const MemberPointerType * ToMemPointer1 =
2520                                          ToType1->getAs<MemberPointerType>();
2521    const MemberPointerType * FromMemPointer2 =
2522                                          FromType2->getAs<MemberPointerType>();
2523    const MemberPointerType * ToMemPointer2 =
2524                                          ToType2->getAs<MemberPointerType>();
2525    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2526    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2527    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2528    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2529    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2530    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2531    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2532    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2533    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2534    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2535      if (IsDerivedFrom(ToPointee1, ToPointee2))
2536        return ImplicitConversionSequence::Worse;
2537      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2538        return ImplicitConversionSequence::Better;
2539    }
2540    // conversion of B::* to C::* is better than conversion of A::* to C::*
2541    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2542      if (IsDerivedFrom(FromPointee1, FromPointee2))
2543        return ImplicitConversionSequence::Better;
2544      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2545        return ImplicitConversionSequence::Worse;
2546    }
2547  }
2548
2549  if (SCS1.Second == ICK_Derived_To_Base) {
2550    //   -- conversion of C to B is better than conversion of C to A,
2551    //   -- binding of an expression of type C to a reference of type
2552    //      B& is better than binding an expression of type C to a
2553    //      reference of type A&,
2554    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2555        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2556      if (IsDerivedFrom(ToType1, ToType2))
2557        return ImplicitConversionSequence::Better;
2558      else if (IsDerivedFrom(ToType2, ToType1))
2559        return ImplicitConversionSequence::Worse;
2560    }
2561
2562    //   -- conversion of B to A is better than conversion of C to A.
2563    //   -- binding of an expression of type B to a reference of type
2564    //      A& is better than binding an expression of type C to a
2565    //      reference of type A&,
2566    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2567        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2568      if (IsDerivedFrom(FromType2, FromType1))
2569        return ImplicitConversionSequence::Better;
2570      else if (IsDerivedFrom(FromType1, FromType2))
2571        return ImplicitConversionSequence::Worse;
2572    }
2573  }
2574
2575  return ImplicitConversionSequence::Indistinguishable;
2576}
2577
2578/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2579/// determine whether they are reference-related,
2580/// reference-compatible, reference-compatible with added
2581/// qualification, or incompatible, for use in C++ initialization by
2582/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2583/// type, and the first type (T1) is the pointee type of the reference
2584/// type being initialized.
2585Sema::ReferenceCompareResult
2586Sema::CompareReferenceRelationship(SourceLocation Loc,
2587                                   QualType OrigT1, QualType OrigT2,
2588                                   bool &DerivedToBase,
2589                                   bool &ObjCConversion) {
2590  assert(!OrigT1->isReferenceType() &&
2591    "T1 must be the pointee type of the reference type");
2592  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2593
2594  QualType T1 = Context.getCanonicalType(OrigT1);
2595  QualType T2 = Context.getCanonicalType(OrigT2);
2596  Qualifiers T1Quals, T2Quals;
2597  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2598  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2599
2600  // C++ [dcl.init.ref]p4:
2601  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2602  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2603  //   T1 is a base class of T2.
2604  DerivedToBase = false;
2605  ObjCConversion = false;
2606  if (UnqualT1 == UnqualT2) {
2607    // Nothing to do.
2608  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2609           IsDerivedFrom(UnqualT2, UnqualT1))
2610    DerivedToBase = true;
2611  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
2612           UnqualT2->isObjCObjectOrInterfaceType() &&
2613           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
2614    ObjCConversion = true;
2615  else
2616    return Ref_Incompatible;
2617
2618  // At this point, we know that T1 and T2 are reference-related (at
2619  // least).
2620
2621  // If the type is an array type, promote the element qualifiers to the type
2622  // for comparison.
2623  if (isa<ArrayType>(T1) && T1Quals)
2624    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2625  if (isa<ArrayType>(T2) && T2Quals)
2626    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2627
2628  // C++ [dcl.init.ref]p4:
2629  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2630  //   reference-related to T2 and cv1 is the same cv-qualification
2631  //   as, or greater cv-qualification than, cv2. For purposes of
2632  //   overload resolution, cases for which cv1 is greater
2633  //   cv-qualification than cv2 are identified as
2634  //   reference-compatible with added qualification (see 13.3.3.2).
2635  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2636    return Ref_Compatible;
2637  else if (T1.isMoreQualifiedThan(T2))
2638    return Ref_Compatible_With_Added_Qualification;
2639  else
2640    return Ref_Related;
2641}
2642
2643/// \brief Look for a user-defined conversion to an value reference-compatible
2644///        with DeclType. Return true if something definite is found.
2645static bool
2646FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
2647                         QualType DeclType, SourceLocation DeclLoc,
2648                         Expr *Init, QualType T2, bool AllowRvalues,
2649                         bool AllowExplicit) {
2650  assert(T2->isRecordType() && "Can only find conversions of record types.");
2651  CXXRecordDecl *T2RecordDecl
2652    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2653
2654  QualType ToType
2655    = AllowRvalues? DeclType->getAs<ReferenceType>()->getPointeeType()
2656                  : DeclType;
2657
2658  OverloadCandidateSet CandidateSet(DeclLoc);
2659  const UnresolvedSetImpl *Conversions
2660    = T2RecordDecl->getVisibleConversionFunctions();
2661  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2662         E = Conversions->end(); I != E; ++I) {
2663    NamedDecl *D = *I;
2664    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2665    if (isa<UsingShadowDecl>(D))
2666      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2667
2668    FunctionTemplateDecl *ConvTemplate
2669      = dyn_cast<FunctionTemplateDecl>(D);
2670    CXXConversionDecl *Conv;
2671    if (ConvTemplate)
2672      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2673    else
2674      Conv = cast<CXXConversionDecl>(D);
2675
2676    // If this is an explicit conversion, and we're not allowed to consider
2677    // explicit conversions, skip it.
2678    if (!AllowExplicit && Conv->isExplicit())
2679      continue;
2680
2681    if (AllowRvalues) {
2682      bool DerivedToBase = false;
2683      bool ObjCConversion = false;
2684      if (!ConvTemplate &&
2685          S.CompareReferenceRelationship(DeclLoc,
2686                                         Conv->getConversionType().getNonReferenceType().getUnqualifiedType(),
2687                                         DeclType.getNonReferenceType().getUnqualifiedType(),
2688                                         DerivedToBase, ObjCConversion)
2689            == Sema::Ref_Incompatible)
2690        continue;
2691    } else {
2692      // If the conversion function doesn't return a reference type,
2693      // it can't be considered for this conversion. An rvalue reference
2694      // is only acceptable if its referencee is a function type.
2695
2696      const ReferenceType *RefType =
2697        Conv->getConversionType()->getAs<ReferenceType>();
2698      if (!RefType ||
2699          (!RefType->isLValueReferenceType() &&
2700           !RefType->getPointeeType()->isFunctionType()))
2701        continue;
2702    }
2703
2704    if (ConvTemplate)
2705      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2706                                       Init, ToType, CandidateSet);
2707    else
2708      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2709                               ToType, CandidateSet);
2710  }
2711
2712  OverloadCandidateSet::iterator Best;
2713  switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2714  case OR_Success:
2715    // C++ [over.ics.ref]p1:
2716    //
2717    //   [...] If the parameter binds directly to the result of
2718    //   applying a conversion function to the argument
2719    //   expression, the implicit conversion sequence is a
2720    //   user-defined conversion sequence (13.3.3.1.2), with the
2721    //   second standard conversion sequence either an identity
2722    //   conversion or, if the conversion function returns an
2723    //   entity of a type that is a derived class of the parameter
2724    //   type, a derived-to-base Conversion.
2725    if (!Best->FinalConversion.DirectBinding)
2726      return false;
2727
2728    ICS.setUserDefined();
2729    ICS.UserDefined.Before = Best->Conversions[0].Standard;
2730    ICS.UserDefined.After = Best->FinalConversion;
2731    ICS.UserDefined.ConversionFunction = Best->Function;
2732    ICS.UserDefined.EllipsisConversion = false;
2733    assert(ICS.UserDefined.After.ReferenceBinding &&
2734           ICS.UserDefined.After.DirectBinding &&
2735           "Expected a direct reference binding!");
2736    return true;
2737
2738  case OR_Ambiguous:
2739    ICS.setAmbiguous();
2740    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2741         Cand != CandidateSet.end(); ++Cand)
2742      if (Cand->Viable)
2743        ICS.Ambiguous.addConversion(Cand->Function);
2744    return true;
2745
2746  case OR_No_Viable_Function:
2747  case OR_Deleted:
2748    // There was no suitable conversion, or we found a deleted
2749    // conversion; continue with other checks.
2750    return false;
2751  }
2752
2753  return false;
2754}
2755
2756/// \brief Compute an implicit conversion sequence for reference
2757/// initialization.
2758static ImplicitConversionSequence
2759TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2760                 SourceLocation DeclLoc,
2761                 bool SuppressUserConversions,
2762                 bool AllowExplicit) {
2763  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2764
2765  // Most paths end in a failed conversion.
2766  ImplicitConversionSequence ICS;
2767  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2768
2769  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2770  QualType T2 = Init->getType();
2771
2772  // If the initializer is the address of an overloaded function, try
2773  // to resolve the overloaded function. If all goes well, T2 is the
2774  // type of the resulting function.
2775  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2776    DeclAccessPair Found;
2777    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2778                                                                false, Found))
2779      T2 = Fn->getType();
2780  }
2781
2782  // Compute some basic properties of the types and the initializer.
2783  bool isRValRef = DeclType->isRValueReferenceType();
2784  bool DerivedToBase = false;
2785  bool ObjCConversion = false;
2786  Expr::Classification InitCategory = Init->Classify(S.Context);
2787  Sema::ReferenceCompareResult RefRelationship
2788    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
2789                                     ObjCConversion);
2790
2791
2792  // C++0x [dcl.init.ref]p5:
2793  //   A reference to type "cv1 T1" is initialized by an expression
2794  //   of type "cv2 T2" as follows:
2795
2796  //     -- If reference is an lvalue reference and the initializer expression
2797  // The next bullet point (T1 is a function) is pretty much equivalent to this
2798  // one, so it's handled here.
2799  if (!isRValRef || T1->isFunctionType()) {
2800    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2801    //        reference-compatible with "cv2 T2," or
2802    //
2803    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2804    if (InitCategory.isLValue() &&
2805        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2806      // C++ [over.ics.ref]p1:
2807      //   When a parameter of reference type binds directly (8.5.3)
2808      //   to an argument expression, the implicit conversion sequence
2809      //   is the identity conversion, unless the argument expression
2810      //   has a type that is a derived class of the parameter type,
2811      //   in which case the implicit conversion sequence is a
2812      //   derived-to-base Conversion (13.3.3.1).
2813      ICS.setStandard();
2814      ICS.Standard.First = ICK_Identity;
2815      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
2816                         : ObjCConversion? ICK_Compatible_Conversion
2817                         : ICK_Identity;
2818      ICS.Standard.Third = ICK_Identity;
2819      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2820      ICS.Standard.setToType(0, T2);
2821      ICS.Standard.setToType(1, T1);
2822      ICS.Standard.setToType(2, T1);
2823      ICS.Standard.ReferenceBinding = true;
2824      ICS.Standard.DirectBinding = true;
2825      ICS.Standard.RRefBinding = isRValRef;
2826      ICS.Standard.CopyConstructor = 0;
2827
2828      // Nothing more to do: the inaccessibility/ambiguity check for
2829      // derived-to-base conversions is suppressed when we're
2830      // computing the implicit conversion sequence (C++
2831      // [over.best.ics]p2).
2832      return ICS;
2833    }
2834
2835    //       -- has a class type (i.e., T2 is a class type), where T1 is
2836    //          not reference-related to T2, and can be implicitly
2837    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2838    //          is reference-compatible with "cv3 T3" 92) (this
2839    //          conversion is selected by enumerating the applicable
2840    //          conversion functions (13.3.1.6) and choosing the best
2841    //          one through overload resolution (13.3)),
2842    if (!SuppressUserConversions && T2->isRecordType() &&
2843        !S.RequireCompleteType(DeclLoc, T2, 0) &&
2844        RefRelationship == Sema::Ref_Incompatible) {
2845      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
2846                                   Init, T2, /*AllowRvalues=*/false,
2847                                   AllowExplicit))
2848        return ICS;
2849    }
2850  }
2851
2852  //     -- Otherwise, the reference shall be an lvalue reference to a
2853  //        non-volatile const type (i.e., cv1 shall be const), or the reference
2854  //        shall be an rvalue reference and the initializer expression shall be
2855  //        an rvalue or have a function type.
2856  //
2857  // We actually handle one oddity of C++ [over.ics.ref] at this
2858  // point, which is that, due to p2 (which short-circuits reference
2859  // binding by only attempting a simple conversion for non-direct
2860  // bindings) and p3's strange wording, we allow a const volatile
2861  // reference to bind to an rvalue. Hence the check for the presence
2862  // of "const" rather than checking for "const" being the only
2863  // qualifier.
2864  // This is also the point where rvalue references and lvalue inits no longer
2865  // go together.
2866  if ((!isRValRef && !T1.isConstQualified()) ||
2867      (isRValRef && InitCategory.isLValue()))
2868    return ICS;
2869
2870  //       -- If T1 is a function type, then
2871  //          -- if T2 is the same type as T1, the reference is bound to the
2872  //             initializer expression lvalue;
2873  //          -- if T2 is a class type and the initializer expression can be
2874  //             implicitly converted to an lvalue of type T1 [...], the
2875  //             reference is bound to the function lvalue that is the result
2876  //             of the conversion;
2877  // This is the same as for the lvalue case above, so it was handled there.
2878  //          -- otherwise, the program is ill-formed.
2879  // This is the one difference to the lvalue case.
2880  if (T1->isFunctionType())
2881    return ICS;
2882
2883  //       -- Otherwise, if T2 is a class type and
2884  //          -- the initializer expression is an rvalue and "cv1 T1"
2885  //             is reference-compatible with "cv2 T2," or
2886  //
2887  //          -- T1 is not reference-related to T2 and the initializer
2888  //             expression can be implicitly converted to an rvalue
2889  //             of type "cv3 T3" (this conversion is selected by
2890  //             enumerating the applicable conversion functions
2891  //             (13.3.1.6) and choosing the best one through overload
2892  //             resolution (13.3)),
2893  //
2894  //          then the reference is bound to the initializer
2895  //          expression rvalue in the first case and to the object
2896  //          that is the result of the conversion in the second case
2897  //          (or, in either case, to the appropriate base class
2898  //          subobject of the object).
2899  if (T2->isRecordType()) {
2900    // First case: "cv1 T1" is reference-compatible with "cv2 T2". This is a
2901    // direct binding in C++0x but not in C++03.
2902    if (InitCategory.isRValue() &&
2903        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2904      ICS.setStandard();
2905      ICS.Standard.First = ICK_Identity;
2906      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
2907                          : ObjCConversion? ICK_Compatible_Conversion
2908                          : ICK_Identity;
2909      ICS.Standard.Third = ICK_Identity;
2910      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2911      ICS.Standard.setToType(0, T2);
2912      ICS.Standard.setToType(1, T1);
2913      ICS.Standard.setToType(2, T1);
2914      ICS.Standard.ReferenceBinding = true;
2915      ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2916      ICS.Standard.RRefBinding = isRValRef;
2917      ICS.Standard.CopyConstructor = 0;
2918      return ICS;
2919    }
2920
2921    // Second case: not reference-related.
2922    if (RefRelationship == Sema::Ref_Incompatible &&
2923        !S.RequireCompleteType(DeclLoc, T2, 0) &&
2924        FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
2925                                 Init, T2, /*AllowRvalues=*/true,
2926                                 AllowExplicit))
2927      return ICS;
2928  }
2929
2930  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2931  //          initialized from the initializer expression using the
2932  //          rules for a non-reference copy initialization (8.5). The
2933  //          reference is then bound to the temporary. If T1 is
2934  //          reference-related to T2, cv1 must be the same
2935  //          cv-qualification as, or greater cv-qualification than,
2936  //          cv2; otherwise, the program is ill-formed.
2937  if (RefRelationship == Sema::Ref_Related) {
2938    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2939    // we would be reference-compatible or reference-compatible with
2940    // added qualification. But that wasn't the case, so the reference
2941    // initialization fails.
2942    return ICS;
2943  }
2944
2945  // If at least one of the types is a class type, the types are not
2946  // related, and we aren't allowed any user conversions, the
2947  // reference binding fails. This case is important for breaking
2948  // recursion, since TryImplicitConversion below will attempt to
2949  // create a temporary through the use of a copy constructor.
2950  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2951      (T1->isRecordType() || T2->isRecordType()))
2952    return ICS;
2953
2954  // C++ [over.ics.ref]p2:
2955  //   When a parameter of reference type is not bound directly to
2956  //   an argument expression, the conversion sequence is the one
2957  //   required to convert the argument expression to the
2958  //   underlying type of the reference according to
2959  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2960  //   to copy-initializing a temporary of the underlying type with
2961  //   the argument expression. Any difference in top-level
2962  //   cv-qualification is subsumed by the initialization itself
2963  //   and does not constitute a conversion.
2964  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2965                                /*AllowExplicit=*/false,
2966                                /*InOverloadResolution=*/false);
2967
2968  // Of course, that's still a reference binding.
2969  if (ICS.isStandard()) {
2970    ICS.Standard.ReferenceBinding = true;
2971    ICS.Standard.RRefBinding = isRValRef;
2972  } else if (ICS.isUserDefined()) {
2973    ICS.UserDefined.After.ReferenceBinding = true;
2974    ICS.UserDefined.After.RRefBinding = isRValRef;
2975  }
2976  return ICS;
2977}
2978
2979/// TryCopyInitialization - Try to copy-initialize a value of type
2980/// ToType from the expression From. Return the implicit conversion
2981/// sequence required to pass this argument, which may be a bad
2982/// conversion sequence (meaning that the argument cannot be passed to
2983/// a parameter of this type). If @p SuppressUserConversions, then we
2984/// do not permit any user-defined conversion sequences.
2985static ImplicitConversionSequence
2986TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2987                      bool SuppressUserConversions,
2988                      bool InOverloadResolution) {
2989  if (ToType->isReferenceType())
2990    return TryReferenceInit(S, From, ToType,
2991                            /*FIXME:*/From->getLocStart(),
2992                            SuppressUserConversions,
2993                            /*AllowExplicit=*/false);
2994
2995  return S.TryImplicitConversion(From, ToType,
2996                                 SuppressUserConversions,
2997                                 /*AllowExplicit=*/false,
2998                                 InOverloadResolution);
2999}
3000
3001/// TryObjectArgumentInitialization - Try to initialize the object
3002/// parameter of the given member function (@c Method) from the
3003/// expression @p From.
3004ImplicitConversionSequence
3005Sema::TryObjectArgumentInitialization(QualType OrigFromType,
3006                                      CXXMethodDecl *Method,
3007                                      CXXRecordDecl *ActingContext) {
3008  QualType ClassType = Context.getTypeDeclType(ActingContext);
3009  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3010  //                 const volatile object.
3011  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3012    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3013  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
3014
3015  // Set up the conversion sequence as a "bad" conversion, to allow us
3016  // to exit early.
3017  ImplicitConversionSequence ICS;
3018
3019  // We need to have an object of class type.
3020  QualType FromType = OrigFromType;
3021  if (const PointerType *PT = FromType->getAs<PointerType>())
3022    FromType = PT->getPointeeType();
3023
3024  assert(FromType->isRecordType());
3025
3026  // The implicit object parameter is has the type "reference to cv X",
3027  // where X is the class of which the function is a member
3028  // (C++ [over.match.funcs]p4). However, when finding an implicit
3029  // conversion sequence for the argument, we are not allowed to
3030  // create temporaries or perform user-defined conversions
3031  // (C++ [over.match.funcs]p5). We perform a simplified version of
3032  // reference binding here, that allows class rvalues to bind to
3033  // non-constant references.
3034
3035  // First check the qualifiers. We don't care about lvalue-vs-rvalue
3036  // with the implicit object parameter (C++ [over.match.funcs]p5).
3037  QualType FromTypeCanon = Context.getCanonicalType(FromType);
3038  if (ImplicitParamType.getCVRQualifiers()
3039                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3040      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3041    ICS.setBad(BadConversionSequence::bad_qualifiers,
3042               OrigFromType, ImplicitParamType);
3043    return ICS;
3044  }
3045
3046  // Check that we have either the same type or a derived type. It
3047  // affects the conversion rank.
3048  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
3049  ImplicitConversionKind SecondKind;
3050  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3051    SecondKind = ICK_Identity;
3052  } else if (IsDerivedFrom(FromType, ClassType))
3053    SecondKind = ICK_Derived_To_Base;
3054  else {
3055    ICS.setBad(BadConversionSequence::unrelated_class,
3056               FromType, ImplicitParamType);
3057    return ICS;
3058  }
3059
3060  // Success. Mark this as a reference binding.
3061  ICS.setStandard();
3062  ICS.Standard.setAsIdentityConversion();
3063  ICS.Standard.Second = SecondKind;
3064  ICS.Standard.setFromType(FromType);
3065  ICS.Standard.setAllToTypes(ImplicitParamType);
3066  ICS.Standard.ReferenceBinding = true;
3067  ICS.Standard.DirectBinding = true;
3068  ICS.Standard.RRefBinding = false;
3069  return ICS;
3070}
3071
3072/// PerformObjectArgumentInitialization - Perform initialization of
3073/// the implicit object parameter for the given Method with the given
3074/// expression.
3075bool
3076Sema::PerformObjectArgumentInitialization(Expr *&From,
3077                                          NestedNameSpecifier *Qualifier,
3078                                          NamedDecl *FoundDecl,
3079                                          CXXMethodDecl *Method) {
3080  QualType FromRecordType, DestType;
3081  QualType ImplicitParamRecordType  =
3082    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3083
3084  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3085    FromRecordType = PT->getPointeeType();
3086    DestType = Method->getThisType(Context);
3087  } else {
3088    FromRecordType = From->getType();
3089    DestType = ImplicitParamRecordType;
3090  }
3091
3092  // Note that we always use the true parent context when performing
3093  // the actual argument initialization.
3094  ImplicitConversionSequence ICS
3095    = TryObjectArgumentInitialization(From->getType(), Method,
3096                                      Method->getParent());
3097  if (ICS.isBad())
3098    return Diag(From->getSourceRange().getBegin(),
3099                diag::err_implicit_object_parameter_init)
3100       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3101
3102  if (ICS.Standard.Second == ICK_Derived_To_Base)
3103    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3104
3105  if (!Context.hasSameType(From->getType(), DestType))
3106    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
3107                      From->getType()->isPointerType() ?
3108                          ImplicitCastExpr::RValue : ImplicitCastExpr::LValue);
3109  return false;
3110}
3111
3112/// TryContextuallyConvertToBool - Attempt to contextually convert the
3113/// expression From to bool (C++0x [conv]p3).
3114ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
3115  // FIXME: This is pretty broken.
3116  return TryImplicitConversion(From, Context.BoolTy,
3117                               // FIXME: Are these flags correct?
3118                               /*SuppressUserConversions=*/false,
3119                               /*AllowExplicit=*/true,
3120                               /*InOverloadResolution=*/false);
3121}
3122
3123/// PerformContextuallyConvertToBool - Perform a contextual conversion
3124/// of the expression From to bool (C++0x [conv]p3).
3125bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
3126  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
3127  if (!ICS.isBad())
3128    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3129
3130  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3131    return  Diag(From->getSourceRange().getBegin(),
3132                 diag::err_typecheck_bool_condition)
3133                  << From->getType() << From->getSourceRange();
3134  return true;
3135}
3136
3137/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3138/// expression From to 'id'.
3139ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
3140  QualType Ty = Context.getObjCIdType();
3141  return TryImplicitConversion(From, Ty,
3142                                 // FIXME: Are these flags correct?
3143                                 /*SuppressUserConversions=*/false,
3144                                 /*AllowExplicit=*/true,
3145                                 /*InOverloadResolution=*/false);
3146}
3147
3148/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3149/// of the expression From to 'id'.
3150bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
3151  QualType Ty = Context.getObjCIdType();
3152  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
3153  if (!ICS.isBad())
3154    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3155  return true;
3156}
3157
3158/// \brief Attempt to convert the given expression to an integral or
3159/// enumeration type.
3160///
3161/// This routine will attempt to convert an expression of class type to an
3162/// integral or enumeration type, if that class type only has a single
3163/// conversion to an integral or enumeration type.
3164///
3165/// \param Loc The source location of the construct that requires the
3166/// conversion.
3167///
3168/// \param FromE The expression we're converting from.
3169///
3170/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3171/// have integral or enumeration type.
3172///
3173/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3174/// incomplete class type.
3175///
3176/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3177/// explicit conversion function (because no implicit conversion functions
3178/// were available). This is a recovery mode.
3179///
3180/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3181/// showing which conversion was picked.
3182///
3183/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3184/// conversion function that could convert to integral or enumeration type.
3185///
3186/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3187/// usable conversion function.
3188///
3189/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3190/// function, which may be an extension in this case.
3191///
3192/// \returns The expression, converted to an integral or enumeration type if
3193/// successful.
3194Sema::OwningExprResult
3195Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, ExprArg FromE,
3196                                         const PartialDiagnostic &NotIntDiag,
3197                                       const PartialDiagnostic &IncompleteDiag,
3198                                     const PartialDiagnostic &ExplicitConvDiag,
3199                                     const PartialDiagnostic &ExplicitConvNote,
3200                                         const PartialDiagnostic &AmbigDiag,
3201                                         const PartialDiagnostic &AmbigNote,
3202                                         const PartialDiagnostic &ConvDiag) {
3203  Expr *From = static_cast<Expr *>(FromE.get());
3204
3205  // We can't perform any more checking for type-dependent expressions.
3206  if (From->isTypeDependent())
3207    return move(FromE);
3208
3209  // If the expression already has integral or enumeration type, we're golden.
3210  QualType T = From->getType();
3211  if (T->isIntegralOrEnumerationType())
3212    return move(FromE);
3213
3214  // FIXME: Check for missing '()' if T is a function type?
3215
3216  // If we don't have a class type in C++, there's no way we can get an
3217  // expression of integral or enumeration type.
3218  const RecordType *RecordTy = T->getAs<RecordType>();
3219  if (!RecordTy || !getLangOptions().CPlusPlus) {
3220    Diag(Loc, NotIntDiag)
3221      << T << From->getSourceRange();
3222    return move(FromE);
3223  }
3224
3225  // We must have a complete class type.
3226  if (RequireCompleteType(Loc, T, IncompleteDiag))
3227    return move(FromE);
3228
3229  // Look for a conversion to an integral or enumeration type.
3230  UnresolvedSet<4> ViableConversions;
3231  UnresolvedSet<4> ExplicitConversions;
3232  const UnresolvedSetImpl *Conversions
3233    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3234
3235  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3236                                   E = Conversions->end();
3237       I != E;
3238       ++I) {
3239    if (CXXConversionDecl *Conversion
3240          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3241      if (Conversion->getConversionType().getNonReferenceType()
3242            ->isIntegralOrEnumerationType()) {
3243        if (Conversion->isExplicit())
3244          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3245        else
3246          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3247      }
3248  }
3249
3250  switch (ViableConversions.size()) {
3251  case 0:
3252    if (ExplicitConversions.size() == 1) {
3253      DeclAccessPair Found = ExplicitConversions[0];
3254      CXXConversionDecl *Conversion
3255        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3256
3257      // The user probably meant to invoke the given explicit
3258      // conversion; use it.
3259      QualType ConvTy
3260        = Conversion->getConversionType().getNonReferenceType();
3261      std::string TypeStr;
3262      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3263
3264      Diag(Loc, ExplicitConvDiag)
3265        << T << ConvTy
3266        << FixItHint::CreateInsertion(From->getLocStart(),
3267                                      "static_cast<" + TypeStr + ">(")
3268        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3269                                      ")");
3270      Diag(Conversion->getLocation(), ExplicitConvNote)
3271        << ConvTy->isEnumeralType() << ConvTy;
3272
3273      // If we aren't in a SFINAE context, build a call to the
3274      // explicit conversion function.
3275      if (isSFINAEContext())
3276        return ExprError();
3277
3278      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3279      From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, Conversion);
3280      FromE = Owned(From);
3281    }
3282
3283    // We'll complain below about a non-integral condition type.
3284    break;
3285
3286  case 1: {
3287    // Apply this conversion.
3288    DeclAccessPair Found = ViableConversions[0];
3289    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3290
3291    CXXConversionDecl *Conversion
3292      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3293    QualType ConvTy
3294      = Conversion->getConversionType().getNonReferenceType();
3295    if (ConvDiag.getDiagID()) {
3296      if (isSFINAEContext())
3297        return ExprError();
3298
3299      Diag(Loc, ConvDiag)
3300        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3301    }
3302
3303    From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found,
3304                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3305    FromE = Owned(From);
3306    break;
3307  }
3308
3309  default:
3310    Diag(Loc, AmbigDiag)
3311      << T << From->getSourceRange();
3312    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3313      CXXConversionDecl *Conv
3314        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3315      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3316      Diag(Conv->getLocation(), AmbigNote)
3317        << ConvTy->isEnumeralType() << ConvTy;
3318    }
3319    return move(FromE);
3320  }
3321
3322  if (!From->getType()->isIntegralOrEnumerationType())
3323    Diag(Loc, NotIntDiag)
3324      << From->getType() << From->getSourceRange();
3325
3326  return move(FromE);
3327}
3328
3329/// AddOverloadCandidate - Adds the given function to the set of
3330/// candidate functions, using the given function call arguments.  If
3331/// @p SuppressUserConversions, then don't allow user-defined
3332/// conversions via constructors or conversion operators.
3333///
3334/// \para PartialOverloading true if we are performing "partial" overloading
3335/// based on an incomplete set of function arguments. This feature is used by
3336/// code completion.
3337void
3338Sema::AddOverloadCandidate(FunctionDecl *Function,
3339                           DeclAccessPair FoundDecl,
3340                           Expr **Args, unsigned NumArgs,
3341                           OverloadCandidateSet& CandidateSet,
3342                           bool SuppressUserConversions,
3343                           bool PartialOverloading) {
3344  const FunctionProtoType* Proto
3345    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3346  assert(Proto && "Functions without a prototype cannot be overloaded");
3347  assert(!Function->getDescribedFunctionTemplate() &&
3348         "Use AddTemplateOverloadCandidate for function templates");
3349
3350  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3351    if (!isa<CXXConstructorDecl>(Method)) {
3352      // If we get here, it's because we're calling a member function
3353      // that is named without a member access expression (e.g.,
3354      // "this->f") that was either written explicitly or created
3355      // implicitly. This can happen with a qualified call to a member
3356      // function, e.g., X::f(). We use an empty type for the implied
3357      // object argument (C++ [over.call.func]p3), and the acting context
3358      // is irrelevant.
3359      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3360                         QualType(), Args, NumArgs, CandidateSet,
3361                         SuppressUserConversions);
3362      return;
3363    }
3364    // We treat a constructor like a non-member function, since its object
3365    // argument doesn't participate in overload resolution.
3366  }
3367
3368  if (!CandidateSet.isNewCandidate(Function))
3369    return;
3370
3371  // Overload resolution is always an unevaluated context.
3372  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3373
3374  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3375    // C++ [class.copy]p3:
3376    //   A member function template is never instantiated to perform the copy
3377    //   of a class object to an object of its class type.
3378    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3379    if (NumArgs == 1 &&
3380        Constructor->isCopyConstructorLikeSpecialization() &&
3381        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3382         IsDerivedFrom(Args[0]->getType(), ClassType)))
3383      return;
3384  }
3385
3386  // Add this candidate
3387  CandidateSet.push_back(OverloadCandidate());
3388  OverloadCandidate& Candidate = CandidateSet.back();
3389  Candidate.FoundDecl = FoundDecl;
3390  Candidate.Function = Function;
3391  Candidate.Viable = true;
3392  Candidate.IsSurrogate = false;
3393  Candidate.IgnoreObjectArgument = false;
3394
3395  unsigned NumArgsInProto = Proto->getNumArgs();
3396
3397  // (C++ 13.3.2p2): A candidate function having fewer than m
3398  // parameters is viable only if it has an ellipsis in its parameter
3399  // list (8.3.5).
3400  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3401      !Proto->isVariadic()) {
3402    Candidate.Viable = false;
3403    Candidate.FailureKind = ovl_fail_too_many_arguments;
3404    return;
3405  }
3406
3407  // (C++ 13.3.2p2): A candidate function having more than m parameters
3408  // is viable only if the (m+1)st parameter has a default argument
3409  // (8.3.6). For the purposes of overload resolution, the
3410  // parameter list is truncated on the right, so that there are
3411  // exactly m parameters.
3412  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3413  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3414    // Not enough arguments.
3415    Candidate.Viable = false;
3416    Candidate.FailureKind = ovl_fail_too_few_arguments;
3417    return;
3418  }
3419
3420  // Determine the implicit conversion sequences for each of the
3421  // arguments.
3422  Candidate.Conversions.resize(NumArgs);
3423  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3424    if (ArgIdx < NumArgsInProto) {
3425      // (C++ 13.3.2p3): for F to be a viable function, there shall
3426      // exist for each argument an implicit conversion sequence
3427      // (13.3.3.1) that converts that argument to the corresponding
3428      // parameter of F.
3429      QualType ParamType = Proto->getArgType(ArgIdx);
3430      Candidate.Conversions[ArgIdx]
3431        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3432                                SuppressUserConversions,
3433                                /*InOverloadResolution=*/true);
3434      if (Candidate.Conversions[ArgIdx].isBad()) {
3435        Candidate.Viable = false;
3436        Candidate.FailureKind = ovl_fail_bad_conversion;
3437        break;
3438      }
3439    } else {
3440      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3441      // argument for which there is no corresponding parameter is
3442      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3443      Candidate.Conversions[ArgIdx].setEllipsis();
3444    }
3445  }
3446}
3447
3448/// \brief Add all of the function declarations in the given function set to
3449/// the overload canddiate set.
3450void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3451                                 Expr **Args, unsigned NumArgs,
3452                                 OverloadCandidateSet& CandidateSet,
3453                                 bool SuppressUserConversions) {
3454  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3455    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3456    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3457      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3458        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3459                           cast<CXXMethodDecl>(FD)->getParent(),
3460                           Args[0]->getType(), Args + 1, NumArgs - 1,
3461                           CandidateSet, SuppressUserConversions);
3462      else
3463        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3464                             SuppressUserConversions);
3465    } else {
3466      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3467      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3468          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3469        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3470                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3471                                   /*FIXME: explicit args */ 0,
3472                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3473                                   CandidateSet,
3474                                   SuppressUserConversions);
3475      else
3476        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3477                                     /*FIXME: explicit args */ 0,
3478                                     Args, NumArgs, CandidateSet,
3479                                     SuppressUserConversions);
3480    }
3481  }
3482}
3483
3484/// AddMethodCandidate - Adds a named decl (which is some kind of
3485/// method) as a method candidate to the given overload set.
3486void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3487                              QualType ObjectType,
3488                              Expr **Args, unsigned NumArgs,
3489                              OverloadCandidateSet& CandidateSet,
3490                              bool SuppressUserConversions) {
3491  NamedDecl *Decl = FoundDecl.getDecl();
3492  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3493
3494  if (isa<UsingShadowDecl>(Decl))
3495    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3496
3497  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3498    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3499           "Expected a member function template");
3500    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3501                               /*ExplicitArgs*/ 0,
3502                               ObjectType, Args, NumArgs,
3503                               CandidateSet,
3504                               SuppressUserConversions);
3505  } else {
3506    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3507                       ObjectType, Args, NumArgs,
3508                       CandidateSet, SuppressUserConversions);
3509  }
3510}
3511
3512/// AddMethodCandidate - Adds the given C++ member function to the set
3513/// of candidate functions, using the given function call arguments
3514/// and the object argument (@c Object). For example, in a call
3515/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3516/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3517/// allow user-defined conversions via constructors or conversion
3518/// operators.
3519void
3520Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3521                         CXXRecordDecl *ActingContext, QualType ObjectType,
3522                         Expr **Args, unsigned NumArgs,
3523                         OverloadCandidateSet& CandidateSet,
3524                         bool SuppressUserConversions) {
3525  const FunctionProtoType* Proto
3526    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3527  assert(Proto && "Methods without a prototype cannot be overloaded");
3528  assert(!isa<CXXConstructorDecl>(Method) &&
3529         "Use AddOverloadCandidate for constructors");
3530
3531  if (!CandidateSet.isNewCandidate(Method))
3532    return;
3533
3534  // Overload resolution is always an unevaluated context.
3535  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3536
3537  // Add this candidate
3538  CandidateSet.push_back(OverloadCandidate());
3539  OverloadCandidate& Candidate = CandidateSet.back();
3540  Candidate.FoundDecl = FoundDecl;
3541  Candidate.Function = Method;
3542  Candidate.IsSurrogate = false;
3543  Candidate.IgnoreObjectArgument = false;
3544
3545  unsigned NumArgsInProto = Proto->getNumArgs();
3546
3547  // (C++ 13.3.2p2): A candidate function having fewer than m
3548  // parameters is viable only if it has an ellipsis in its parameter
3549  // list (8.3.5).
3550  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3551    Candidate.Viable = false;
3552    Candidate.FailureKind = ovl_fail_too_many_arguments;
3553    return;
3554  }
3555
3556  // (C++ 13.3.2p2): A candidate function having more than m parameters
3557  // is viable only if the (m+1)st parameter has a default argument
3558  // (8.3.6). For the purposes of overload resolution, the
3559  // parameter list is truncated on the right, so that there are
3560  // exactly m parameters.
3561  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3562  if (NumArgs < MinRequiredArgs) {
3563    // Not enough arguments.
3564    Candidate.Viable = false;
3565    Candidate.FailureKind = ovl_fail_too_few_arguments;
3566    return;
3567  }
3568
3569  Candidate.Viable = true;
3570  Candidate.Conversions.resize(NumArgs + 1);
3571
3572  if (Method->isStatic() || ObjectType.isNull())
3573    // The implicit object argument is ignored.
3574    Candidate.IgnoreObjectArgument = true;
3575  else {
3576    // Determine the implicit conversion sequence for the object
3577    // parameter.
3578    Candidate.Conversions[0]
3579      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
3580    if (Candidate.Conversions[0].isBad()) {
3581      Candidate.Viable = false;
3582      Candidate.FailureKind = ovl_fail_bad_conversion;
3583      return;
3584    }
3585  }
3586
3587  // Determine the implicit conversion sequences for each of the
3588  // arguments.
3589  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3590    if (ArgIdx < NumArgsInProto) {
3591      // (C++ 13.3.2p3): for F to be a viable function, there shall
3592      // exist for each argument an implicit conversion sequence
3593      // (13.3.3.1) that converts that argument to the corresponding
3594      // parameter of F.
3595      QualType ParamType = Proto->getArgType(ArgIdx);
3596      Candidate.Conversions[ArgIdx + 1]
3597        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3598                                SuppressUserConversions,
3599                                /*InOverloadResolution=*/true);
3600      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3601        Candidate.Viable = false;
3602        Candidate.FailureKind = ovl_fail_bad_conversion;
3603        break;
3604      }
3605    } else {
3606      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3607      // argument for which there is no corresponding parameter is
3608      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3609      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3610    }
3611  }
3612}
3613
3614/// \brief Add a C++ member function template as a candidate to the candidate
3615/// set, using template argument deduction to produce an appropriate member
3616/// function template specialization.
3617void
3618Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3619                                 DeclAccessPair FoundDecl,
3620                                 CXXRecordDecl *ActingContext,
3621                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3622                                 QualType ObjectType,
3623                                 Expr **Args, unsigned NumArgs,
3624                                 OverloadCandidateSet& CandidateSet,
3625                                 bool SuppressUserConversions) {
3626  if (!CandidateSet.isNewCandidate(MethodTmpl))
3627    return;
3628
3629  // C++ [over.match.funcs]p7:
3630  //   In each case where a candidate is a function template, candidate
3631  //   function template specializations are generated using template argument
3632  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3633  //   candidate functions in the usual way.113) A given name can refer to one
3634  //   or more function templates and also to a set of overloaded non-template
3635  //   functions. In such a case, the candidate functions generated from each
3636  //   function template are combined with the set of non-template candidate
3637  //   functions.
3638  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3639  FunctionDecl *Specialization = 0;
3640  if (TemplateDeductionResult Result
3641      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3642                                Args, NumArgs, Specialization, Info)) {
3643    CandidateSet.push_back(OverloadCandidate());
3644    OverloadCandidate &Candidate = CandidateSet.back();
3645    Candidate.FoundDecl = FoundDecl;
3646    Candidate.Function = MethodTmpl->getTemplatedDecl();
3647    Candidate.Viable = false;
3648    Candidate.FailureKind = ovl_fail_bad_deduction;
3649    Candidate.IsSurrogate = false;
3650    Candidate.IgnoreObjectArgument = false;
3651    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3652                                                          Info);
3653    return;
3654  }
3655
3656  // Add the function template specialization produced by template argument
3657  // deduction as a candidate.
3658  assert(Specialization && "Missing member function template specialization?");
3659  assert(isa<CXXMethodDecl>(Specialization) &&
3660         "Specialization is not a member function?");
3661  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3662                     ActingContext, ObjectType, Args, NumArgs,
3663                     CandidateSet, SuppressUserConversions);
3664}
3665
3666/// \brief Add a C++ function template specialization as a candidate
3667/// in the candidate set, using template argument deduction to produce
3668/// an appropriate function template specialization.
3669void
3670Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3671                                   DeclAccessPair FoundDecl,
3672                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3673                                   Expr **Args, unsigned NumArgs,
3674                                   OverloadCandidateSet& CandidateSet,
3675                                   bool SuppressUserConversions) {
3676  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3677    return;
3678
3679  // C++ [over.match.funcs]p7:
3680  //   In each case where a candidate is a function template, candidate
3681  //   function template specializations are generated using template argument
3682  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3683  //   candidate functions in the usual way.113) A given name can refer to one
3684  //   or more function templates and also to a set of overloaded non-template
3685  //   functions. In such a case, the candidate functions generated from each
3686  //   function template are combined with the set of non-template candidate
3687  //   functions.
3688  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3689  FunctionDecl *Specialization = 0;
3690  if (TemplateDeductionResult Result
3691        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3692                                  Args, NumArgs, Specialization, Info)) {
3693    CandidateSet.push_back(OverloadCandidate());
3694    OverloadCandidate &Candidate = CandidateSet.back();
3695    Candidate.FoundDecl = FoundDecl;
3696    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3697    Candidate.Viable = false;
3698    Candidate.FailureKind = ovl_fail_bad_deduction;
3699    Candidate.IsSurrogate = false;
3700    Candidate.IgnoreObjectArgument = false;
3701    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3702                                                          Info);
3703    return;
3704  }
3705
3706  // Add the function template specialization produced by template argument
3707  // deduction as a candidate.
3708  assert(Specialization && "Missing function template specialization?");
3709  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3710                       SuppressUserConversions);
3711}
3712
3713/// AddConversionCandidate - Add a C++ conversion function as a
3714/// candidate in the candidate set (C++ [over.match.conv],
3715/// C++ [over.match.copy]). From is the expression we're converting from,
3716/// and ToType is the type that we're eventually trying to convert to
3717/// (which may or may not be the same type as the type that the
3718/// conversion function produces).
3719void
3720Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3721                             DeclAccessPair FoundDecl,
3722                             CXXRecordDecl *ActingContext,
3723                             Expr *From, QualType ToType,
3724                             OverloadCandidateSet& CandidateSet) {
3725  assert(!Conversion->getDescribedFunctionTemplate() &&
3726         "Conversion function templates use AddTemplateConversionCandidate");
3727  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3728  if (!CandidateSet.isNewCandidate(Conversion))
3729    return;
3730
3731  // Overload resolution is always an unevaluated context.
3732  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3733
3734  // Add this candidate
3735  CandidateSet.push_back(OverloadCandidate());
3736  OverloadCandidate& Candidate = CandidateSet.back();
3737  Candidate.FoundDecl = FoundDecl;
3738  Candidate.Function = Conversion;
3739  Candidate.IsSurrogate = false;
3740  Candidate.IgnoreObjectArgument = false;
3741  Candidate.FinalConversion.setAsIdentityConversion();
3742  Candidate.FinalConversion.setFromType(ConvType);
3743  Candidate.FinalConversion.setAllToTypes(ToType);
3744  Candidate.Viable = true;
3745  Candidate.Conversions.resize(1);
3746
3747  // C++ [over.match.funcs]p4:
3748  //   For conversion functions, the function is considered to be a member of
3749  //   the class of the implicit implied object argument for the purpose of
3750  //   defining the type of the implicit object parameter.
3751  //
3752  // Determine the implicit conversion sequence for the implicit
3753  // object parameter.
3754  QualType ImplicitParamType = From->getType();
3755  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
3756    ImplicitParamType = FromPtrType->getPointeeType();
3757  CXXRecordDecl *ConversionContext
3758    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
3759
3760  Candidate.Conversions[0]
3761    = TryObjectArgumentInitialization(From->getType(), Conversion,
3762                                      ConversionContext);
3763
3764  if (Candidate.Conversions[0].isBad()) {
3765    Candidate.Viable = false;
3766    Candidate.FailureKind = ovl_fail_bad_conversion;
3767    return;
3768  }
3769
3770  // We won't go through a user-define type conversion function to convert a
3771  // derived to base as such conversions are given Conversion Rank. They only
3772  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3773  QualType FromCanon
3774    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3775  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3776  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3777    Candidate.Viable = false;
3778    Candidate.FailureKind = ovl_fail_trivial_conversion;
3779    return;
3780  }
3781
3782  // To determine what the conversion from the result of calling the
3783  // conversion function to the type we're eventually trying to
3784  // convert to (ToType), we need to synthesize a call to the
3785  // conversion function and attempt copy initialization from it. This
3786  // makes sure that we get the right semantics with respect to
3787  // lvalues/rvalues and the type. Fortunately, we can allocate this
3788  // call on the stack and we don't need its arguments to be
3789  // well-formed.
3790  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3791                            From->getLocStart());
3792  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
3793                                Context.getPointerType(Conversion->getType()),
3794                                CastExpr::CK_FunctionToPointerDecay,
3795                                &ConversionRef, ImplicitCastExpr::RValue);
3796
3797  // Note that it is safe to allocate CallExpr on the stack here because
3798  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3799  // allocator).
3800  CallExpr Call(Context, &ConversionFn, 0, 0,
3801                Conversion->getConversionType().getNonLValueExprType(Context),
3802                From->getLocStart());
3803  ImplicitConversionSequence ICS =
3804    TryCopyInitialization(*this, &Call, ToType,
3805                          /*SuppressUserConversions=*/true,
3806                          /*InOverloadResolution=*/false);
3807
3808  switch (ICS.getKind()) {
3809  case ImplicitConversionSequence::StandardConversion:
3810    Candidate.FinalConversion = ICS.Standard;
3811
3812    // C++ [over.ics.user]p3:
3813    //   If the user-defined conversion is specified by a specialization of a
3814    //   conversion function template, the second standard conversion sequence
3815    //   shall have exact match rank.
3816    if (Conversion->getPrimaryTemplate() &&
3817        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3818      Candidate.Viable = false;
3819      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3820    }
3821
3822    break;
3823
3824  case ImplicitConversionSequence::BadConversion:
3825    Candidate.Viable = false;
3826    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3827    break;
3828
3829  default:
3830    assert(false &&
3831           "Can only end up with a standard conversion sequence or failure");
3832  }
3833}
3834
3835/// \brief Adds a conversion function template specialization
3836/// candidate to the overload set, using template argument deduction
3837/// to deduce the template arguments of the conversion function
3838/// template from the type that we are converting to (C++
3839/// [temp.deduct.conv]).
3840void
3841Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3842                                     DeclAccessPair FoundDecl,
3843                                     CXXRecordDecl *ActingDC,
3844                                     Expr *From, QualType ToType,
3845                                     OverloadCandidateSet &CandidateSet) {
3846  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3847         "Only conversion function templates permitted here");
3848
3849  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3850    return;
3851
3852  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3853  CXXConversionDecl *Specialization = 0;
3854  if (TemplateDeductionResult Result
3855        = DeduceTemplateArguments(FunctionTemplate, ToType,
3856                                  Specialization, Info)) {
3857    CandidateSet.push_back(OverloadCandidate());
3858    OverloadCandidate &Candidate = CandidateSet.back();
3859    Candidate.FoundDecl = FoundDecl;
3860    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3861    Candidate.Viable = false;
3862    Candidate.FailureKind = ovl_fail_bad_deduction;
3863    Candidate.IsSurrogate = false;
3864    Candidate.IgnoreObjectArgument = false;
3865    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3866                                                          Info);
3867    return;
3868  }
3869
3870  // Add the conversion function template specialization produced by
3871  // template argument deduction as a candidate.
3872  assert(Specialization && "Missing function template specialization?");
3873  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3874                         CandidateSet);
3875}
3876
3877/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3878/// converts the given @c Object to a function pointer via the
3879/// conversion function @c Conversion, and then attempts to call it
3880/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3881/// the type of function that we'll eventually be calling.
3882void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3883                                 DeclAccessPair FoundDecl,
3884                                 CXXRecordDecl *ActingContext,
3885                                 const FunctionProtoType *Proto,
3886                                 QualType ObjectType,
3887                                 Expr **Args, unsigned NumArgs,
3888                                 OverloadCandidateSet& CandidateSet) {
3889  if (!CandidateSet.isNewCandidate(Conversion))
3890    return;
3891
3892  // Overload resolution is always an unevaluated context.
3893  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3894
3895  CandidateSet.push_back(OverloadCandidate());
3896  OverloadCandidate& Candidate = CandidateSet.back();
3897  Candidate.FoundDecl = FoundDecl;
3898  Candidate.Function = 0;
3899  Candidate.Surrogate = Conversion;
3900  Candidate.Viable = true;
3901  Candidate.IsSurrogate = true;
3902  Candidate.IgnoreObjectArgument = false;
3903  Candidate.Conversions.resize(NumArgs + 1);
3904
3905  // Determine the implicit conversion sequence for the implicit
3906  // object parameter.
3907  ImplicitConversionSequence ObjectInit
3908    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3909  if (ObjectInit.isBad()) {
3910    Candidate.Viable = false;
3911    Candidate.FailureKind = ovl_fail_bad_conversion;
3912    Candidate.Conversions[0] = ObjectInit;
3913    return;
3914  }
3915
3916  // The first conversion is actually a user-defined conversion whose
3917  // first conversion is ObjectInit's standard conversion (which is
3918  // effectively a reference binding). Record it as such.
3919  Candidate.Conversions[0].setUserDefined();
3920  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3921  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3922  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3923  Candidate.Conversions[0].UserDefined.After
3924    = Candidate.Conversions[0].UserDefined.Before;
3925  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3926
3927  // Find the
3928  unsigned NumArgsInProto = Proto->getNumArgs();
3929
3930  // (C++ 13.3.2p2): A candidate function having fewer than m
3931  // parameters is viable only if it has an ellipsis in its parameter
3932  // list (8.3.5).
3933  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3934    Candidate.Viable = false;
3935    Candidate.FailureKind = ovl_fail_too_many_arguments;
3936    return;
3937  }
3938
3939  // Function types don't have any default arguments, so just check if
3940  // we have enough arguments.
3941  if (NumArgs < NumArgsInProto) {
3942    // Not enough arguments.
3943    Candidate.Viable = false;
3944    Candidate.FailureKind = ovl_fail_too_few_arguments;
3945    return;
3946  }
3947
3948  // Determine the implicit conversion sequences for each of the
3949  // arguments.
3950  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3951    if (ArgIdx < NumArgsInProto) {
3952      // (C++ 13.3.2p3): for F to be a viable function, there shall
3953      // exist for each argument an implicit conversion sequence
3954      // (13.3.3.1) that converts that argument to the corresponding
3955      // parameter of F.
3956      QualType ParamType = Proto->getArgType(ArgIdx);
3957      Candidate.Conversions[ArgIdx + 1]
3958        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3959                                /*SuppressUserConversions=*/false,
3960                                /*InOverloadResolution=*/false);
3961      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3962        Candidate.Viable = false;
3963        Candidate.FailureKind = ovl_fail_bad_conversion;
3964        break;
3965      }
3966    } else {
3967      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3968      // argument for which there is no corresponding parameter is
3969      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3970      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3971    }
3972  }
3973}
3974
3975/// \brief Add overload candidates for overloaded operators that are
3976/// member functions.
3977///
3978/// Add the overloaded operator candidates that are member functions
3979/// for the operator Op that was used in an operator expression such
3980/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3981/// CandidateSet will store the added overload candidates. (C++
3982/// [over.match.oper]).
3983void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3984                                       SourceLocation OpLoc,
3985                                       Expr **Args, unsigned NumArgs,
3986                                       OverloadCandidateSet& CandidateSet,
3987                                       SourceRange OpRange) {
3988  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3989
3990  // C++ [over.match.oper]p3:
3991  //   For a unary operator @ with an operand of a type whose
3992  //   cv-unqualified version is T1, and for a binary operator @ with
3993  //   a left operand of a type whose cv-unqualified version is T1 and
3994  //   a right operand of a type whose cv-unqualified version is T2,
3995  //   three sets of candidate functions, designated member
3996  //   candidates, non-member candidates and built-in candidates, are
3997  //   constructed as follows:
3998  QualType T1 = Args[0]->getType();
3999
4000  //     -- If T1 is a class type, the set of member candidates is the
4001  //        result of the qualified lookup of T1::operator@
4002  //        (13.3.1.1.1); otherwise, the set of member candidates is
4003  //        empty.
4004  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4005    // Complete the type if it can be completed. Otherwise, we're done.
4006    if (RequireCompleteType(OpLoc, T1, PDiag()))
4007      return;
4008
4009    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4010    LookupQualifiedName(Operators, T1Rec->getDecl());
4011    Operators.suppressDiagnostics();
4012
4013    for (LookupResult::iterator Oper = Operators.begin(),
4014                             OperEnd = Operators.end();
4015         Oper != OperEnd;
4016         ++Oper)
4017      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4018                         Args + 1, NumArgs - 1, CandidateSet,
4019                         /* SuppressUserConversions = */ false);
4020  }
4021}
4022
4023/// AddBuiltinCandidate - Add a candidate for a built-in
4024/// operator. ResultTy and ParamTys are the result and parameter types
4025/// of the built-in candidate, respectively. Args and NumArgs are the
4026/// arguments being passed to the candidate. IsAssignmentOperator
4027/// should be true when this built-in candidate is an assignment
4028/// operator. NumContextualBoolArguments is the number of arguments
4029/// (at the beginning of the argument list) that will be contextually
4030/// converted to bool.
4031void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4032                               Expr **Args, unsigned NumArgs,
4033                               OverloadCandidateSet& CandidateSet,
4034                               bool IsAssignmentOperator,
4035                               unsigned NumContextualBoolArguments) {
4036  // Overload resolution is always an unevaluated context.
4037  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
4038
4039  // Add this candidate
4040  CandidateSet.push_back(OverloadCandidate());
4041  OverloadCandidate& Candidate = CandidateSet.back();
4042  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4043  Candidate.Function = 0;
4044  Candidate.IsSurrogate = false;
4045  Candidate.IgnoreObjectArgument = false;
4046  Candidate.BuiltinTypes.ResultTy = ResultTy;
4047  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4048    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4049
4050  // Determine the implicit conversion sequences for each of the
4051  // arguments.
4052  Candidate.Viable = true;
4053  Candidate.Conversions.resize(NumArgs);
4054  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4055    // C++ [over.match.oper]p4:
4056    //   For the built-in assignment operators, conversions of the
4057    //   left operand are restricted as follows:
4058    //     -- no temporaries are introduced to hold the left operand, and
4059    //     -- no user-defined conversions are applied to the left
4060    //        operand to achieve a type match with the left-most
4061    //        parameter of a built-in candidate.
4062    //
4063    // We block these conversions by turning off user-defined
4064    // conversions, since that is the only way that initialization of
4065    // a reference to a non-class type can occur from something that
4066    // is not of the same type.
4067    if (ArgIdx < NumContextualBoolArguments) {
4068      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4069             "Contextual conversion to bool requires bool type");
4070      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
4071    } else {
4072      Candidate.Conversions[ArgIdx]
4073        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4074                                ArgIdx == 0 && IsAssignmentOperator,
4075                                /*InOverloadResolution=*/false);
4076    }
4077    if (Candidate.Conversions[ArgIdx].isBad()) {
4078      Candidate.Viable = false;
4079      Candidate.FailureKind = ovl_fail_bad_conversion;
4080      break;
4081    }
4082  }
4083}
4084
4085/// BuiltinCandidateTypeSet - A set of types that will be used for the
4086/// candidate operator functions for built-in operators (C++
4087/// [over.built]). The types are separated into pointer types and
4088/// enumeration types.
4089class BuiltinCandidateTypeSet  {
4090  /// TypeSet - A set of types.
4091  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4092
4093  /// PointerTypes - The set of pointer types that will be used in the
4094  /// built-in candidates.
4095  TypeSet PointerTypes;
4096
4097  /// MemberPointerTypes - The set of member pointer types that will be
4098  /// used in the built-in candidates.
4099  TypeSet MemberPointerTypes;
4100
4101  /// EnumerationTypes - The set of enumeration types that will be
4102  /// used in the built-in candidates.
4103  TypeSet EnumerationTypes;
4104
4105  /// \brief The set of vector types that will be used in the built-in
4106  /// candidates.
4107  TypeSet VectorTypes;
4108
4109  /// Sema - The semantic analysis instance where we are building the
4110  /// candidate type set.
4111  Sema &SemaRef;
4112
4113  /// Context - The AST context in which we will build the type sets.
4114  ASTContext &Context;
4115
4116  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4117                                               const Qualifiers &VisibleQuals);
4118  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4119
4120public:
4121  /// iterator - Iterates through the types that are part of the set.
4122  typedef TypeSet::iterator iterator;
4123
4124  BuiltinCandidateTypeSet(Sema &SemaRef)
4125    : SemaRef(SemaRef), Context(SemaRef.Context) { }
4126
4127  void AddTypesConvertedFrom(QualType Ty,
4128                             SourceLocation Loc,
4129                             bool AllowUserConversions,
4130                             bool AllowExplicitConversions,
4131                             const Qualifiers &VisibleTypeConversionsQuals);
4132
4133  /// pointer_begin - First pointer type found;
4134  iterator pointer_begin() { return PointerTypes.begin(); }
4135
4136  /// pointer_end - Past the last pointer type found;
4137  iterator pointer_end() { return PointerTypes.end(); }
4138
4139  /// member_pointer_begin - First member pointer type found;
4140  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4141
4142  /// member_pointer_end - Past the last member pointer type found;
4143  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4144
4145  /// enumeration_begin - First enumeration type found;
4146  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4147
4148  /// enumeration_end - Past the last enumeration type found;
4149  iterator enumeration_end() { return EnumerationTypes.end(); }
4150
4151  iterator vector_begin() { return VectorTypes.begin(); }
4152  iterator vector_end() { return VectorTypes.end(); }
4153};
4154
4155/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4156/// the set of pointer types along with any more-qualified variants of
4157/// that type. For example, if @p Ty is "int const *", this routine
4158/// will add "int const *", "int const volatile *", "int const
4159/// restrict *", and "int const volatile restrict *" to the set of
4160/// pointer types. Returns true if the add of @p Ty itself succeeded,
4161/// false otherwise.
4162///
4163/// FIXME: what to do about extended qualifiers?
4164bool
4165BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4166                                             const Qualifiers &VisibleQuals) {
4167
4168  // Insert this type.
4169  if (!PointerTypes.insert(Ty))
4170    return false;
4171
4172  QualType PointeeTy;
4173  const PointerType *PointerTy = Ty->getAs<PointerType>();
4174  bool buildObjCPtr = false;
4175  if (!PointerTy) {
4176    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4177      PointeeTy = PTy->getPointeeType();
4178      buildObjCPtr = true;
4179    }
4180    else
4181      assert(false && "type was not a pointer type!");
4182  }
4183  else
4184    PointeeTy = PointerTy->getPointeeType();
4185
4186  // Don't add qualified variants of arrays. For one, they're not allowed
4187  // (the qualifier would sink to the element type), and for another, the
4188  // only overload situation where it matters is subscript or pointer +- int,
4189  // and those shouldn't have qualifier variants anyway.
4190  if (PointeeTy->isArrayType())
4191    return true;
4192  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4193  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4194    BaseCVR = Array->getElementType().getCVRQualifiers();
4195  bool hasVolatile = VisibleQuals.hasVolatile();
4196  bool hasRestrict = VisibleQuals.hasRestrict();
4197
4198  // Iterate through all strict supersets of BaseCVR.
4199  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4200    if ((CVR | BaseCVR) != CVR) continue;
4201    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4202    // in the types.
4203    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4204    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4205    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4206    if (!buildObjCPtr)
4207      PointerTypes.insert(Context.getPointerType(QPointeeTy));
4208    else
4209      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
4210  }
4211
4212  return true;
4213}
4214
4215/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4216/// to the set of pointer types along with any more-qualified variants of
4217/// that type. For example, if @p Ty is "int const *", this routine
4218/// will add "int const *", "int const volatile *", "int const
4219/// restrict *", and "int const volatile restrict *" to the set of
4220/// pointer types. Returns true if the add of @p Ty itself succeeded,
4221/// false otherwise.
4222///
4223/// FIXME: what to do about extended qualifiers?
4224bool
4225BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4226    QualType Ty) {
4227  // Insert this type.
4228  if (!MemberPointerTypes.insert(Ty))
4229    return false;
4230
4231  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4232  assert(PointerTy && "type was not a member pointer type!");
4233
4234  QualType PointeeTy = PointerTy->getPointeeType();
4235  // Don't add qualified variants of arrays. For one, they're not allowed
4236  // (the qualifier would sink to the element type), and for another, the
4237  // only overload situation where it matters is subscript or pointer +- int,
4238  // and those shouldn't have qualifier variants anyway.
4239  if (PointeeTy->isArrayType())
4240    return true;
4241  const Type *ClassTy = PointerTy->getClass();
4242
4243  // Iterate through all strict supersets of the pointee type's CVR
4244  // qualifiers.
4245  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4246  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4247    if ((CVR | BaseCVR) != CVR) continue;
4248
4249    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4250    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
4251  }
4252
4253  return true;
4254}
4255
4256/// AddTypesConvertedFrom - Add each of the types to which the type @p
4257/// Ty can be implicit converted to the given set of @p Types. We're
4258/// primarily interested in pointer types and enumeration types. We also
4259/// take member pointer types, for the conditional operator.
4260/// AllowUserConversions is true if we should look at the conversion
4261/// functions of a class type, and AllowExplicitConversions if we
4262/// should also include the explicit conversion functions of a class
4263/// type.
4264void
4265BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4266                                               SourceLocation Loc,
4267                                               bool AllowUserConversions,
4268                                               bool AllowExplicitConversions,
4269                                               const Qualifiers &VisibleQuals) {
4270  // Only deal with canonical types.
4271  Ty = Context.getCanonicalType(Ty);
4272
4273  // Look through reference types; they aren't part of the type of an
4274  // expression for the purposes of conversions.
4275  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4276    Ty = RefTy->getPointeeType();
4277
4278  // We don't care about qualifiers on the type.
4279  Ty = Ty.getLocalUnqualifiedType();
4280
4281  // If we're dealing with an array type, decay to the pointer.
4282  if (Ty->isArrayType())
4283    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4284  if (Ty->isObjCIdType() || Ty->isObjCClassType())
4285    PointerTypes.insert(Ty);
4286  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
4287    // Insert our type, and its more-qualified variants, into the set
4288    // of types.
4289    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4290      return;
4291  } else if (Ty->isMemberPointerType()) {
4292    // Member pointers are far easier, since the pointee can't be converted.
4293    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4294      return;
4295  } else if (Ty->isEnumeralType()) {
4296    EnumerationTypes.insert(Ty);
4297  } else if (Ty->isVectorType()) {
4298    VectorTypes.insert(Ty);
4299  } else if (AllowUserConversions) {
4300    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
4301      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
4302        // No conversion functions in incomplete types.
4303        return;
4304      }
4305
4306      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4307      const UnresolvedSetImpl *Conversions
4308        = ClassDecl->getVisibleConversionFunctions();
4309      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4310             E = Conversions->end(); I != E; ++I) {
4311        NamedDecl *D = I.getDecl();
4312        if (isa<UsingShadowDecl>(D))
4313          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4314
4315        // Skip conversion function templates; they don't tell us anything
4316        // about which builtin types we can convert to.
4317        if (isa<FunctionTemplateDecl>(D))
4318          continue;
4319
4320        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4321        if (AllowExplicitConversions || !Conv->isExplicit()) {
4322          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4323                                VisibleQuals);
4324        }
4325      }
4326    }
4327  }
4328}
4329
4330/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4331/// the volatile- and non-volatile-qualified assignment operators for the
4332/// given type to the candidate set.
4333static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4334                                                   QualType T,
4335                                                   Expr **Args,
4336                                                   unsigned NumArgs,
4337                                    OverloadCandidateSet &CandidateSet) {
4338  QualType ParamTypes[2];
4339
4340  // T& operator=(T&, T)
4341  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4342  ParamTypes[1] = T;
4343  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4344                        /*IsAssignmentOperator=*/true);
4345
4346  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4347    // volatile T& operator=(volatile T&, T)
4348    ParamTypes[0]
4349      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4350    ParamTypes[1] = T;
4351    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4352                          /*IsAssignmentOperator=*/true);
4353  }
4354}
4355
4356/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4357/// if any, found in visible type conversion functions found in ArgExpr's type.
4358static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4359    Qualifiers VRQuals;
4360    const RecordType *TyRec;
4361    if (const MemberPointerType *RHSMPType =
4362        ArgExpr->getType()->getAs<MemberPointerType>())
4363      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4364    else
4365      TyRec = ArgExpr->getType()->getAs<RecordType>();
4366    if (!TyRec) {
4367      // Just to be safe, assume the worst case.
4368      VRQuals.addVolatile();
4369      VRQuals.addRestrict();
4370      return VRQuals;
4371    }
4372
4373    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4374    if (!ClassDecl->hasDefinition())
4375      return VRQuals;
4376
4377    const UnresolvedSetImpl *Conversions =
4378      ClassDecl->getVisibleConversionFunctions();
4379
4380    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4381           E = Conversions->end(); I != E; ++I) {
4382      NamedDecl *D = I.getDecl();
4383      if (isa<UsingShadowDecl>(D))
4384        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4385      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4386        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4387        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4388          CanTy = ResTypeRef->getPointeeType();
4389        // Need to go down the pointer/mempointer chain and add qualifiers
4390        // as see them.
4391        bool done = false;
4392        while (!done) {
4393          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4394            CanTy = ResTypePtr->getPointeeType();
4395          else if (const MemberPointerType *ResTypeMPtr =
4396                CanTy->getAs<MemberPointerType>())
4397            CanTy = ResTypeMPtr->getPointeeType();
4398          else
4399            done = true;
4400          if (CanTy.isVolatileQualified())
4401            VRQuals.addVolatile();
4402          if (CanTy.isRestrictQualified())
4403            VRQuals.addRestrict();
4404          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4405            return VRQuals;
4406        }
4407      }
4408    }
4409    return VRQuals;
4410}
4411
4412/// AddBuiltinOperatorCandidates - Add the appropriate built-in
4413/// operator overloads to the candidate set (C++ [over.built]), based
4414/// on the operator @p Op and the arguments given. For example, if the
4415/// operator is a binary '+', this routine might add "int
4416/// operator+(int, int)" to cover integer addition.
4417void
4418Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
4419                                   SourceLocation OpLoc,
4420                                   Expr **Args, unsigned NumArgs,
4421                                   OverloadCandidateSet& CandidateSet) {
4422  // The set of "promoted arithmetic types", which are the arithmetic
4423  // types are that preserved by promotion (C++ [over.built]p2). Note
4424  // that the first few of these types are the promoted integral
4425  // types; these types need to be first.
4426  // FIXME: What about complex?
4427  const unsigned FirstIntegralType = 0;
4428  const unsigned LastIntegralType = 13;
4429  const unsigned FirstPromotedIntegralType = 7,
4430                 LastPromotedIntegralType = 13;
4431  const unsigned FirstPromotedArithmeticType = 7,
4432                 LastPromotedArithmeticType = 16;
4433  const unsigned NumArithmeticTypes = 16;
4434  QualType ArithmeticTypes[NumArithmeticTypes] = {
4435    Context.BoolTy, Context.CharTy, Context.WCharTy,
4436// FIXME:   Context.Char16Ty, Context.Char32Ty,
4437    Context.SignedCharTy, Context.ShortTy,
4438    Context.UnsignedCharTy, Context.UnsignedShortTy,
4439    Context.IntTy, Context.LongTy, Context.LongLongTy,
4440    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
4441    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
4442  };
4443  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
4444         "Invalid first promoted integral type");
4445  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
4446           == Context.UnsignedLongLongTy &&
4447         "Invalid last promoted integral type");
4448  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
4449         "Invalid first promoted arithmetic type");
4450  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
4451            == Context.LongDoubleTy &&
4452         "Invalid last promoted arithmetic type");
4453
4454  // Find all of the types that the arguments can convert to, but only
4455  // if the operator we're looking at has built-in operator candidates
4456  // that make use of these types.
4457  Qualifiers VisibleTypeConversionsQuals;
4458  VisibleTypeConversionsQuals.addConst();
4459  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4460    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
4461
4462  BuiltinCandidateTypeSet CandidateTypes(*this);
4463  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4464    CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
4465                                         OpLoc,
4466                                         true,
4467                                         (Op == OO_Exclaim ||
4468                                          Op == OO_AmpAmp ||
4469                                          Op == OO_PipePipe),
4470                                         VisibleTypeConversionsQuals);
4471
4472  bool isComparison = false;
4473  switch (Op) {
4474  case OO_None:
4475  case NUM_OVERLOADED_OPERATORS:
4476    assert(false && "Expected an overloaded operator");
4477    break;
4478
4479  case OO_Star: // '*' is either unary or binary
4480    if (NumArgs == 1)
4481      goto UnaryStar;
4482    else
4483      goto BinaryStar;
4484    break;
4485
4486  case OO_Plus: // '+' is either unary or binary
4487    if (NumArgs == 1)
4488      goto UnaryPlus;
4489    else
4490      goto BinaryPlus;
4491    break;
4492
4493  case OO_Minus: // '-' is either unary or binary
4494    if (NumArgs == 1)
4495      goto UnaryMinus;
4496    else
4497      goto BinaryMinus;
4498    break;
4499
4500  case OO_Amp: // '&' is either unary or binary
4501    if (NumArgs == 1)
4502      goto UnaryAmp;
4503    else
4504      goto BinaryAmp;
4505
4506  case OO_PlusPlus:
4507  case OO_MinusMinus:
4508    // C++ [over.built]p3:
4509    //
4510    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4511    //   is either volatile or empty, there exist candidate operator
4512    //   functions of the form
4513    //
4514    //       VQ T&      operator++(VQ T&);
4515    //       T          operator++(VQ T&, int);
4516    //
4517    // C++ [over.built]p4:
4518    //
4519    //   For every pair (T, VQ), where T is an arithmetic type other
4520    //   than bool, and VQ is either volatile or empty, there exist
4521    //   candidate operator functions of the form
4522    //
4523    //       VQ T&      operator--(VQ T&);
4524    //       T          operator--(VQ T&, int);
4525    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4526         Arith < NumArithmeticTypes; ++Arith) {
4527      QualType ArithTy = ArithmeticTypes[Arith];
4528      QualType ParamTypes[2]
4529        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
4530
4531      // Non-volatile version.
4532      if (NumArgs == 1)
4533        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4534      else
4535        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4536      // heuristic to reduce number of builtin candidates in the set.
4537      // Add volatile version only if there are conversions to a volatile type.
4538      if (VisibleTypeConversionsQuals.hasVolatile()) {
4539        // Volatile version
4540        ParamTypes[0]
4541          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
4542        if (NumArgs == 1)
4543          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4544        else
4545          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4546      }
4547    }
4548
4549    // C++ [over.built]p5:
4550    //
4551    //   For every pair (T, VQ), where T is a cv-qualified or
4552    //   cv-unqualified object type, and VQ is either volatile or
4553    //   empty, there exist candidate operator functions of the form
4554    //
4555    //       T*VQ&      operator++(T*VQ&);
4556    //       T*VQ&      operator--(T*VQ&);
4557    //       T*         operator++(T*VQ&, int);
4558    //       T*         operator--(T*VQ&, int);
4559    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4560         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4561      // Skip pointer types that aren't pointers to object types.
4562      if (!(*Ptr)->getPointeeType()->isIncompleteOrObjectType())
4563        continue;
4564
4565      QualType ParamTypes[2] = {
4566        Context.getLValueReferenceType(*Ptr), Context.IntTy
4567      };
4568
4569      // Without volatile
4570      if (NumArgs == 1)
4571        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4572      else
4573        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4574
4575      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4576          VisibleTypeConversionsQuals.hasVolatile()) {
4577        // With volatile
4578        ParamTypes[0]
4579          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4580        if (NumArgs == 1)
4581          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4582        else
4583          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4584      }
4585    }
4586    break;
4587
4588  UnaryStar:
4589    // C++ [over.built]p6:
4590    //   For every cv-qualified or cv-unqualified object type T, there
4591    //   exist candidate operator functions of the form
4592    //
4593    //       T&         operator*(T*);
4594    //
4595    // C++ [over.built]p7:
4596    //   For every function type T, there exist candidate operator
4597    //   functions of the form
4598    //       T&         operator*(T*);
4599    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4600         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4601      QualType ParamTy = *Ptr;
4602      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
4603      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
4604                          &ParamTy, Args, 1, CandidateSet);
4605    }
4606    break;
4607
4608  UnaryPlus:
4609    // C++ [over.built]p8:
4610    //   For every type T, there exist candidate operator functions of
4611    //   the form
4612    //
4613    //       T*         operator+(T*);
4614    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4615         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4616      QualType ParamTy = *Ptr;
4617      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4618    }
4619
4620    // Fall through
4621
4622  UnaryMinus:
4623    // C++ [over.built]p9:
4624    //  For every promoted arithmetic type T, there exist candidate
4625    //  operator functions of the form
4626    //
4627    //       T         operator+(T);
4628    //       T         operator-(T);
4629    for (unsigned Arith = FirstPromotedArithmeticType;
4630         Arith < LastPromotedArithmeticType; ++Arith) {
4631      QualType ArithTy = ArithmeticTypes[Arith];
4632      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4633    }
4634
4635    // Extension: We also add these operators for vector types.
4636    for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
4637                                        VecEnd = CandidateTypes.vector_end();
4638         Vec != VecEnd; ++Vec) {
4639      QualType VecTy = *Vec;
4640      AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4641    }
4642    break;
4643
4644  case OO_Tilde:
4645    // C++ [over.built]p10:
4646    //   For every promoted integral type T, there exist candidate
4647    //   operator functions of the form
4648    //
4649    //        T         operator~(T);
4650    for (unsigned Int = FirstPromotedIntegralType;
4651         Int < LastPromotedIntegralType; ++Int) {
4652      QualType IntTy = ArithmeticTypes[Int];
4653      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4654    }
4655
4656    // Extension: We also add this operator for vector types.
4657    for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
4658                                        VecEnd = CandidateTypes.vector_end();
4659         Vec != VecEnd; ++Vec) {
4660      QualType VecTy = *Vec;
4661      AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4662    }
4663    break;
4664
4665  case OO_New:
4666  case OO_Delete:
4667  case OO_Array_New:
4668  case OO_Array_Delete:
4669  case OO_Call:
4670    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4671    break;
4672
4673  case OO_Comma:
4674  UnaryAmp:
4675  case OO_Arrow:
4676    // C++ [over.match.oper]p3:
4677    //   -- For the operator ',', the unary operator '&', or the
4678    //      operator '->', the built-in candidates set is empty.
4679    break;
4680
4681  case OO_EqualEqual:
4682  case OO_ExclaimEqual:
4683    // C++ [over.match.oper]p16:
4684    //   For every pointer to member type T, there exist candidate operator
4685    //   functions of the form
4686    //
4687    //        bool operator==(T,T);
4688    //        bool operator!=(T,T);
4689    for (BuiltinCandidateTypeSet::iterator
4690           MemPtr = CandidateTypes.member_pointer_begin(),
4691           MemPtrEnd = CandidateTypes.member_pointer_end();
4692         MemPtr != MemPtrEnd;
4693         ++MemPtr) {
4694      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4695      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4696    }
4697
4698    // Fall through
4699
4700  case OO_Less:
4701  case OO_Greater:
4702  case OO_LessEqual:
4703  case OO_GreaterEqual:
4704    // C++ [over.built]p15:
4705    //
4706    //   For every pointer or enumeration type T, there exist
4707    //   candidate operator functions of the form
4708    //
4709    //        bool       operator<(T, T);
4710    //        bool       operator>(T, T);
4711    //        bool       operator<=(T, T);
4712    //        bool       operator>=(T, T);
4713    //        bool       operator==(T, T);
4714    //        bool       operator!=(T, T);
4715    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4716         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4717      QualType ParamTypes[2] = { *Ptr, *Ptr };
4718      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4719    }
4720    for (BuiltinCandidateTypeSet::iterator Enum
4721           = CandidateTypes.enumeration_begin();
4722         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4723      QualType ParamTypes[2] = { *Enum, *Enum };
4724      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4725    }
4726
4727    // Fall through.
4728    isComparison = true;
4729
4730  BinaryPlus:
4731  BinaryMinus:
4732    if (!isComparison) {
4733      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4734
4735      // C++ [over.built]p13:
4736      //
4737      //   For every cv-qualified or cv-unqualified object type T
4738      //   there exist candidate operator functions of the form
4739      //
4740      //      T*         operator+(T*, ptrdiff_t);
4741      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4742      //      T*         operator-(T*, ptrdiff_t);
4743      //      T*         operator+(ptrdiff_t, T*);
4744      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4745      //
4746      // C++ [over.built]p14:
4747      //
4748      //   For every T, where T is a pointer to object type, there
4749      //   exist candidate operator functions of the form
4750      //
4751      //      ptrdiff_t  operator-(T, T);
4752      for (BuiltinCandidateTypeSet::iterator Ptr
4753             = CandidateTypes.pointer_begin();
4754           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4755        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4756
4757        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4758        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4759
4760        if (Op == OO_Plus) {
4761          // T* operator+(ptrdiff_t, T*);
4762          ParamTypes[0] = ParamTypes[1];
4763          ParamTypes[1] = *Ptr;
4764          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4765        } else {
4766          // ptrdiff_t operator-(T, T);
4767          ParamTypes[1] = *Ptr;
4768          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4769                              Args, 2, CandidateSet);
4770        }
4771      }
4772    }
4773    // Fall through
4774
4775  case OO_Slash:
4776  BinaryStar:
4777  Conditional:
4778    // C++ [over.built]p12:
4779    //
4780    //   For every pair of promoted arithmetic types L and R, there
4781    //   exist candidate operator functions of the form
4782    //
4783    //        LR         operator*(L, R);
4784    //        LR         operator/(L, R);
4785    //        LR         operator+(L, R);
4786    //        LR         operator-(L, R);
4787    //        bool       operator<(L, R);
4788    //        bool       operator>(L, R);
4789    //        bool       operator<=(L, R);
4790    //        bool       operator>=(L, R);
4791    //        bool       operator==(L, R);
4792    //        bool       operator!=(L, R);
4793    //
4794    //   where LR is the result of the usual arithmetic conversions
4795    //   between types L and R.
4796    //
4797    // C++ [over.built]p24:
4798    //
4799    //   For every pair of promoted arithmetic types L and R, there exist
4800    //   candidate operator functions of the form
4801    //
4802    //        LR       operator?(bool, L, R);
4803    //
4804    //   where LR is the result of the usual arithmetic conversions
4805    //   between types L and R.
4806    // Our candidates ignore the first parameter.
4807    for (unsigned Left = FirstPromotedArithmeticType;
4808         Left < LastPromotedArithmeticType; ++Left) {
4809      for (unsigned Right = FirstPromotedArithmeticType;
4810           Right < LastPromotedArithmeticType; ++Right) {
4811        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4812        QualType Result
4813          = isComparison
4814          ? Context.BoolTy
4815          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4816        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4817      }
4818    }
4819
4820    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
4821    // conditional operator for vector types.
4822    for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
4823         Vec1End = CandidateTypes.vector_end();
4824         Vec1 != Vec1End; ++Vec1)
4825      for (BuiltinCandidateTypeSet::iterator
4826           Vec2 = CandidateTypes.vector_begin(),
4827           Vec2End = CandidateTypes.vector_end();
4828           Vec2 != Vec2End; ++Vec2) {
4829        QualType LandR[2] = { *Vec1, *Vec2 };
4830        QualType Result;
4831        if (isComparison)
4832          Result = Context.BoolTy;
4833        else {
4834          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
4835            Result = *Vec1;
4836          else
4837            Result = *Vec2;
4838        }
4839
4840        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4841      }
4842
4843    break;
4844
4845  case OO_Percent:
4846  BinaryAmp:
4847  case OO_Caret:
4848  case OO_Pipe:
4849  case OO_LessLess:
4850  case OO_GreaterGreater:
4851    // C++ [over.built]p17:
4852    //
4853    //   For every pair of promoted integral types L and R, there
4854    //   exist candidate operator functions of the form
4855    //
4856    //      LR         operator%(L, R);
4857    //      LR         operator&(L, R);
4858    //      LR         operator^(L, R);
4859    //      LR         operator|(L, R);
4860    //      L          operator<<(L, R);
4861    //      L          operator>>(L, R);
4862    //
4863    //   where LR is the result of the usual arithmetic conversions
4864    //   between types L and R.
4865    for (unsigned Left = FirstPromotedIntegralType;
4866         Left < LastPromotedIntegralType; ++Left) {
4867      for (unsigned Right = FirstPromotedIntegralType;
4868           Right < LastPromotedIntegralType; ++Right) {
4869        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4870        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4871            ? LandR[0]
4872            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4873        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4874      }
4875    }
4876    break;
4877
4878  case OO_Equal:
4879    // C++ [over.built]p20:
4880    //
4881    //   For every pair (T, VQ), where T is an enumeration or
4882    //   pointer to member type and VQ is either volatile or
4883    //   empty, there exist candidate operator functions of the form
4884    //
4885    //        VQ T&      operator=(VQ T&, T);
4886    for (BuiltinCandidateTypeSet::iterator
4887           Enum = CandidateTypes.enumeration_begin(),
4888           EnumEnd = CandidateTypes.enumeration_end();
4889         Enum != EnumEnd; ++Enum)
4890      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4891                                             CandidateSet);
4892    for (BuiltinCandidateTypeSet::iterator
4893           MemPtr = CandidateTypes.member_pointer_begin(),
4894         MemPtrEnd = CandidateTypes.member_pointer_end();
4895         MemPtr != MemPtrEnd; ++MemPtr)
4896      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4897                                             CandidateSet);
4898
4899    // Fall through.
4900
4901  case OO_PlusEqual:
4902  case OO_MinusEqual:
4903    // C++ [over.built]p19:
4904    //
4905    //   For every pair (T, VQ), where T is any type and VQ is either
4906    //   volatile or empty, there exist candidate operator functions
4907    //   of the form
4908    //
4909    //        T*VQ&      operator=(T*VQ&, T*);
4910    //
4911    // C++ [over.built]p21:
4912    //
4913    //   For every pair (T, VQ), where T is a cv-qualified or
4914    //   cv-unqualified object type and VQ is either volatile or
4915    //   empty, there exist candidate operator functions of the form
4916    //
4917    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4918    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4919    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4920         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4921      QualType ParamTypes[2];
4922      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4923
4924      // non-volatile version
4925      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4926      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4927                          /*IsAssigmentOperator=*/Op == OO_Equal);
4928
4929      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4930          VisibleTypeConversionsQuals.hasVolatile()) {
4931        // volatile version
4932        ParamTypes[0]
4933          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4934        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4935                            /*IsAssigmentOperator=*/Op == OO_Equal);
4936      }
4937    }
4938    // Fall through.
4939
4940  case OO_StarEqual:
4941  case OO_SlashEqual:
4942    // C++ [over.built]p18:
4943    //
4944    //   For every triple (L, VQ, R), where L is an arithmetic type,
4945    //   VQ is either volatile or empty, and R is a promoted
4946    //   arithmetic type, there exist candidate operator functions of
4947    //   the form
4948    //
4949    //        VQ L&      operator=(VQ L&, R);
4950    //        VQ L&      operator*=(VQ L&, R);
4951    //        VQ L&      operator/=(VQ L&, R);
4952    //        VQ L&      operator+=(VQ L&, R);
4953    //        VQ L&      operator-=(VQ L&, R);
4954    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4955      for (unsigned Right = FirstPromotedArithmeticType;
4956           Right < LastPromotedArithmeticType; ++Right) {
4957        QualType ParamTypes[2];
4958        ParamTypes[1] = ArithmeticTypes[Right];
4959
4960        // Add this built-in operator as a candidate (VQ is empty).
4961        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4962        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4963                            /*IsAssigmentOperator=*/Op == OO_Equal);
4964
4965        // Add this built-in operator as a candidate (VQ is 'volatile').
4966        if (VisibleTypeConversionsQuals.hasVolatile()) {
4967          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4968          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4969          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4970                              /*IsAssigmentOperator=*/Op == OO_Equal);
4971        }
4972      }
4973    }
4974
4975    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
4976    for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
4977                                        Vec1End = CandidateTypes.vector_end();
4978         Vec1 != Vec1End; ++Vec1)
4979      for (BuiltinCandidateTypeSet::iterator
4980                Vec2 = CandidateTypes.vector_begin(),
4981             Vec2End = CandidateTypes.vector_end();
4982           Vec2 != Vec2End; ++Vec2) {
4983        QualType ParamTypes[2];
4984        ParamTypes[1] = *Vec2;
4985        // Add this built-in operator as a candidate (VQ is empty).
4986        ParamTypes[0] = Context.getLValueReferenceType(*Vec1);
4987        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4988                            /*IsAssigmentOperator=*/Op == OO_Equal);
4989
4990        // Add this built-in operator as a candidate (VQ is 'volatile').
4991        if (VisibleTypeConversionsQuals.hasVolatile()) {
4992          ParamTypes[0] = Context.getVolatileType(*Vec1);
4993          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4994          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4995                              /*IsAssigmentOperator=*/Op == OO_Equal);
4996        }
4997      }
4998    break;
4999
5000  case OO_PercentEqual:
5001  case OO_LessLessEqual:
5002  case OO_GreaterGreaterEqual:
5003  case OO_AmpEqual:
5004  case OO_CaretEqual:
5005  case OO_PipeEqual:
5006    // C++ [over.built]p22:
5007    //
5008    //   For every triple (L, VQ, R), where L is an integral type, VQ
5009    //   is either volatile or empty, and R is a promoted integral
5010    //   type, there exist candidate operator functions of the form
5011    //
5012    //        VQ L&       operator%=(VQ L&, R);
5013    //        VQ L&       operator<<=(VQ L&, R);
5014    //        VQ L&       operator>>=(VQ L&, R);
5015    //        VQ L&       operator&=(VQ L&, R);
5016    //        VQ L&       operator^=(VQ L&, R);
5017    //        VQ L&       operator|=(VQ L&, R);
5018    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
5019      for (unsigned Right = FirstPromotedIntegralType;
5020           Right < LastPromotedIntegralType; ++Right) {
5021        QualType ParamTypes[2];
5022        ParamTypes[1] = ArithmeticTypes[Right];
5023
5024        // Add this built-in operator as a candidate (VQ is empty).
5025        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
5026        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5027        if (VisibleTypeConversionsQuals.hasVolatile()) {
5028          // Add this built-in operator as a candidate (VQ is 'volatile').
5029          ParamTypes[0] = ArithmeticTypes[Left];
5030          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
5031          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
5032          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5033        }
5034      }
5035    }
5036    break;
5037
5038  case OO_Exclaim: {
5039    // C++ [over.operator]p23:
5040    //
5041    //   There also exist candidate operator functions of the form
5042    //
5043    //        bool        operator!(bool);
5044    //        bool        operator&&(bool, bool);     [BELOW]
5045    //        bool        operator||(bool, bool);     [BELOW]
5046    QualType ParamTy = Context.BoolTy;
5047    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
5048                        /*IsAssignmentOperator=*/false,
5049                        /*NumContextualBoolArguments=*/1);
5050    break;
5051  }
5052
5053  case OO_AmpAmp:
5054  case OO_PipePipe: {
5055    // C++ [over.operator]p23:
5056    //
5057    //   There also exist candidate operator functions of the form
5058    //
5059    //        bool        operator!(bool);            [ABOVE]
5060    //        bool        operator&&(bool, bool);
5061    //        bool        operator||(bool, bool);
5062    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
5063    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
5064                        /*IsAssignmentOperator=*/false,
5065                        /*NumContextualBoolArguments=*/2);
5066    break;
5067  }
5068
5069  case OO_Subscript:
5070    // C++ [over.built]p13:
5071    //
5072    //   For every cv-qualified or cv-unqualified object type T there
5073    //   exist candidate operator functions of the form
5074    //
5075    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
5076    //        T&         operator[](T*, ptrdiff_t);
5077    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
5078    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
5079    //        T&         operator[](ptrdiff_t, T*);
5080    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
5081         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
5082      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
5083      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
5084      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
5085
5086      // T& operator[](T*, ptrdiff_t)
5087      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5088
5089      // T& operator[](ptrdiff_t, T*);
5090      ParamTypes[0] = ParamTypes[1];
5091      ParamTypes[1] = *Ptr;
5092      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5093    }
5094    break;
5095
5096  case OO_ArrowStar:
5097    // C++ [over.built]p11:
5098    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5099    //    C1 is the same type as C2 or is a derived class of C2, T is an object
5100    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5101    //    there exist candidate operator functions of the form
5102    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5103    //    where CV12 is the union of CV1 and CV2.
5104    {
5105      for (BuiltinCandidateTypeSet::iterator Ptr =
5106             CandidateTypes.pointer_begin();
5107           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
5108        QualType C1Ty = (*Ptr);
5109        QualType C1;
5110        QualifierCollector Q1;
5111        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
5112          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
5113          if (!isa<RecordType>(C1))
5114            continue;
5115          // heuristic to reduce number of builtin candidates in the set.
5116          // Add volatile/restrict version only if there are conversions to a
5117          // volatile/restrict type.
5118          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5119            continue;
5120          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5121            continue;
5122        }
5123        for (BuiltinCandidateTypeSet::iterator
5124             MemPtr = CandidateTypes.member_pointer_begin(),
5125             MemPtrEnd = CandidateTypes.member_pointer_end();
5126             MemPtr != MemPtrEnd; ++MemPtr) {
5127          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5128          QualType C2 = QualType(mptr->getClass(), 0);
5129          C2 = C2.getUnqualifiedType();
5130          if (C1 != C2 && !IsDerivedFrom(C1, C2))
5131            break;
5132          QualType ParamTypes[2] = { *Ptr, *MemPtr };
5133          // build CV12 T&
5134          QualType T = mptr->getPointeeType();
5135          if (!VisibleTypeConversionsQuals.hasVolatile() &&
5136              T.isVolatileQualified())
5137            continue;
5138          if (!VisibleTypeConversionsQuals.hasRestrict() &&
5139              T.isRestrictQualified())
5140            continue;
5141          T = Q1.apply(T);
5142          QualType ResultTy = Context.getLValueReferenceType(T);
5143          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5144        }
5145      }
5146    }
5147    break;
5148
5149  case OO_Conditional:
5150    // Note that we don't consider the first argument, since it has been
5151    // contextually converted to bool long ago. The candidates below are
5152    // therefore added as binary.
5153    //
5154    // C++ [over.built]p24:
5155    //   For every type T, where T is a pointer or pointer-to-member type,
5156    //   there exist candidate operator functions of the form
5157    //
5158    //        T        operator?(bool, T, T);
5159    //
5160    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
5161         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
5162      QualType ParamTypes[2] = { *Ptr, *Ptr };
5163      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5164    }
5165    for (BuiltinCandidateTypeSet::iterator Ptr =
5166           CandidateTypes.member_pointer_begin(),
5167         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
5168      QualType ParamTypes[2] = { *Ptr, *Ptr };
5169      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5170    }
5171    goto Conditional;
5172  }
5173}
5174
5175/// \brief Add function candidates found via argument-dependent lookup
5176/// to the set of overloading candidates.
5177///
5178/// This routine performs argument-dependent name lookup based on the
5179/// given function name (which may also be an operator name) and adds
5180/// all of the overload candidates found by ADL to the overload
5181/// candidate set (C++ [basic.lookup.argdep]).
5182void
5183Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
5184                                           bool Operator,
5185                                           Expr **Args, unsigned NumArgs,
5186                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5187                                           OverloadCandidateSet& CandidateSet,
5188                                           bool PartialOverloading) {
5189  ADLResult Fns;
5190
5191  // FIXME: This approach for uniquing ADL results (and removing
5192  // redundant candidates from the set) relies on pointer-equality,
5193  // which means we need to key off the canonical decl.  However,
5194  // always going back to the canonical decl might not get us the
5195  // right set of default arguments.  What default arguments are
5196  // we supposed to consider on ADL candidates, anyway?
5197
5198  // FIXME: Pass in the explicit template arguments?
5199  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
5200
5201  // Erase all of the candidates we already knew about.
5202  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5203                                   CandEnd = CandidateSet.end();
5204       Cand != CandEnd; ++Cand)
5205    if (Cand->Function) {
5206      Fns.erase(Cand->Function);
5207      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
5208        Fns.erase(FunTmpl);
5209    }
5210
5211  // For each of the ADL candidates we found, add it to the overload
5212  // set.
5213  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
5214    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
5215    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
5216      if (ExplicitTemplateArgs)
5217        continue;
5218
5219      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
5220                           false, PartialOverloading);
5221    } else
5222      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
5223                                   FoundDecl, ExplicitTemplateArgs,
5224                                   Args, NumArgs, CandidateSet);
5225  }
5226}
5227
5228/// isBetterOverloadCandidate - Determines whether the first overload
5229/// candidate is a better candidate than the second (C++ 13.3.3p1).
5230bool
5231Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
5232                                const OverloadCandidate& Cand2,
5233                                SourceLocation Loc) {
5234  // Define viable functions to be better candidates than non-viable
5235  // functions.
5236  if (!Cand2.Viable)
5237    return Cand1.Viable;
5238  else if (!Cand1.Viable)
5239    return false;
5240
5241  // C++ [over.match.best]p1:
5242  //
5243  //   -- if F is a static member function, ICS1(F) is defined such
5244  //      that ICS1(F) is neither better nor worse than ICS1(G) for
5245  //      any function G, and, symmetrically, ICS1(G) is neither
5246  //      better nor worse than ICS1(F).
5247  unsigned StartArg = 0;
5248  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
5249    StartArg = 1;
5250
5251  // C++ [over.match.best]p1:
5252  //   A viable function F1 is defined to be a better function than another
5253  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
5254  //   conversion sequence than ICSi(F2), and then...
5255  unsigned NumArgs = Cand1.Conversions.size();
5256  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
5257  bool HasBetterConversion = false;
5258  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
5259    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
5260                                               Cand2.Conversions[ArgIdx])) {
5261    case ImplicitConversionSequence::Better:
5262      // Cand1 has a better conversion sequence.
5263      HasBetterConversion = true;
5264      break;
5265
5266    case ImplicitConversionSequence::Worse:
5267      // Cand1 can't be better than Cand2.
5268      return false;
5269
5270    case ImplicitConversionSequence::Indistinguishable:
5271      // Do nothing.
5272      break;
5273    }
5274  }
5275
5276  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
5277  //       ICSj(F2), or, if not that,
5278  if (HasBetterConversion)
5279    return true;
5280
5281  //     - F1 is a non-template function and F2 is a function template
5282  //       specialization, or, if not that,
5283  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
5284      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5285    return true;
5286
5287  //   -- F1 and F2 are function template specializations, and the function
5288  //      template for F1 is more specialized than the template for F2
5289  //      according to the partial ordering rules described in 14.5.5.2, or,
5290  //      if not that,
5291  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
5292      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5293    if (FunctionTemplateDecl *BetterTemplate
5294          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
5295                                       Cand2.Function->getPrimaryTemplate(),
5296                                       Loc,
5297                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
5298                                                             : TPOC_Call))
5299      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
5300
5301  //   -- the context is an initialization by user-defined conversion
5302  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
5303  //      from the return type of F1 to the destination type (i.e.,
5304  //      the type of the entity being initialized) is a better
5305  //      conversion sequence than the standard conversion sequence
5306  //      from the return type of F2 to the destination type.
5307  if (Cand1.Function && Cand2.Function &&
5308      isa<CXXConversionDecl>(Cand1.Function) &&
5309      isa<CXXConversionDecl>(Cand2.Function)) {
5310    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
5311                                               Cand2.FinalConversion)) {
5312    case ImplicitConversionSequence::Better:
5313      // Cand1 has a better conversion sequence.
5314      return true;
5315
5316    case ImplicitConversionSequence::Worse:
5317      // Cand1 can't be better than Cand2.
5318      return false;
5319
5320    case ImplicitConversionSequence::Indistinguishable:
5321      // Do nothing
5322      break;
5323    }
5324  }
5325
5326  return false;
5327}
5328
5329/// \brief Computes the best viable function (C++ 13.3.3)
5330/// within an overload candidate set.
5331///
5332/// \param CandidateSet the set of candidate functions.
5333///
5334/// \param Loc the location of the function name (or operator symbol) for
5335/// which overload resolution occurs.
5336///
5337/// \param Best f overload resolution was successful or found a deleted
5338/// function, Best points to the candidate function found.
5339///
5340/// \returns The result of overload resolution.
5341OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
5342                                           SourceLocation Loc,
5343                                        OverloadCandidateSet::iterator& Best) {
5344  // Find the best viable function.
5345  Best = CandidateSet.end();
5346  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
5347       Cand != CandidateSet.end(); ++Cand) {
5348    if (Cand->Viable) {
5349      if (Best == CandidateSet.end() ||
5350          isBetterOverloadCandidate(*Cand, *Best, Loc))
5351        Best = Cand;
5352    }
5353  }
5354
5355  // If we didn't find any viable functions, abort.
5356  if (Best == CandidateSet.end())
5357    return OR_No_Viable_Function;
5358
5359  // Make sure that this function is better than every other viable
5360  // function. If not, we have an ambiguity.
5361  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
5362       Cand != CandidateSet.end(); ++Cand) {
5363    if (Cand->Viable &&
5364        Cand != Best &&
5365        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
5366      Best = CandidateSet.end();
5367      return OR_Ambiguous;
5368    }
5369  }
5370
5371  // Best is the best viable function.
5372  if (Best->Function &&
5373      (Best->Function->isDeleted() ||
5374       Best->Function->getAttr<UnavailableAttr>()))
5375    return OR_Deleted;
5376
5377  // C++ [basic.def.odr]p2:
5378  //   An overloaded function is used if it is selected by overload resolution
5379  //   when referred to from a potentially-evaluated expression. [Note: this
5380  //   covers calls to named functions (5.2.2), operator overloading
5381  //   (clause 13), user-defined conversions (12.3.2), allocation function for
5382  //   placement new (5.3.4), as well as non-default initialization (8.5).
5383  if (Best->Function)
5384    MarkDeclarationReferenced(Loc, Best->Function);
5385  return OR_Success;
5386}
5387
5388namespace {
5389
5390enum OverloadCandidateKind {
5391  oc_function,
5392  oc_method,
5393  oc_constructor,
5394  oc_function_template,
5395  oc_method_template,
5396  oc_constructor_template,
5397  oc_implicit_default_constructor,
5398  oc_implicit_copy_constructor,
5399  oc_implicit_copy_assignment
5400};
5401
5402OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
5403                                                FunctionDecl *Fn,
5404                                                std::string &Description) {
5405  bool isTemplate = false;
5406
5407  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
5408    isTemplate = true;
5409    Description = S.getTemplateArgumentBindingsText(
5410      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
5411  }
5412
5413  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
5414    if (!Ctor->isImplicit())
5415      return isTemplate ? oc_constructor_template : oc_constructor;
5416
5417    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
5418                                     : oc_implicit_default_constructor;
5419  }
5420
5421  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
5422    // This actually gets spelled 'candidate function' for now, but
5423    // it doesn't hurt to split it out.
5424    if (!Meth->isImplicit())
5425      return isTemplate ? oc_method_template : oc_method;
5426
5427    assert(Meth->isCopyAssignment()
5428           && "implicit method is not copy assignment operator?");
5429    return oc_implicit_copy_assignment;
5430  }
5431
5432  return isTemplate ? oc_function_template : oc_function;
5433}
5434
5435} // end anonymous namespace
5436
5437// Notes the location of an overload candidate.
5438void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
5439  std::string FnDesc;
5440  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
5441  Diag(Fn->getLocation(), diag::note_ovl_candidate)
5442    << (unsigned) K << FnDesc;
5443}
5444
5445/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
5446/// "lead" diagnostic; it will be given two arguments, the source and
5447/// target types of the conversion.
5448void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
5449                                       SourceLocation CaretLoc,
5450                                       const PartialDiagnostic &PDiag) {
5451  Diag(CaretLoc, PDiag)
5452    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
5453  for (AmbiguousConversionSequence::const_iterator
5454         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
5455    NoteOverloadCandidate(*I);
5456  }
5457}
5458
5459namespace {
5460
5461void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
5462  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
5463  assert(Conv.isBad());
5464  assert(Cand->Function && "for now, candidate must be a function");
5465  FunctionDecl *Fn = Cand->Function;
5466
5467  // There's a conversion slot for the object argument if this is a
5468  // non-constructor method.  Note that 'I' corresponds the
5469  // conversion-slot index.
5470  bool isObjectArgument = false;
5471  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
5472    if (I == 0)
5473      isObjectArgument = true;
5474    else
5475      I--;
5476  }
5477
5478  std::string FnDesc;
5479  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5480
5481  Expr *FromExpr = Conv.Bad.FromExpr;
5482  QualType FromTy = Conv.Bad.getFromType();
5483  QualType ToTy = Conv.Bad.getToType();
5484
5485  if (FromTy == S.Context.OverloadTy) {
5486    assert(FromExpr && "overload set argument came from implicit argument?");
5487    Expr *E = FromExpr->IgnoreParens();
5488    if (isa<UnaryOperator>(E))
5489      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
5490    DeclarationName Name = cast<OverloadExpr>(E)->getName();
5491
5492    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
5493      << (unsigned) FnKind << FnDesc
5494      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5495      << ToTy << Name << I+1;
5496    return;
5497  }
5498
5499  // Do some hand-waving analysis to see if the non-viability is due
5500  // to a qualifier mismatch.
5501  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
5502  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
5503  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
5504    CToTy = RT->getPointeeType();
5505  else {
5506    // TODO: detect and diagnose the full richness of const mismatches.
5507    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
5508      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
5509        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
5510  }
5511
5512  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
5513      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
5514    // It is dumb that we have to do this here.
5515    while (isa<ArrayType>(CFromTy))
5516      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
5517    while (isa<ArrayType>(CToTy))
5518      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
5519
5520    Qualifiers FromQs = CFromTy.getQualifiers();
5521    Qualifiers ToQs = CToTy.getQualifiers();
5522
5523    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
5524      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
5525        << (unsigned) FnKind << FnDesc
5526        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5527        << FromTy
5528        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
5529        << (unsigned) isObjectArgument << I+1;
5530      return;
5531    }
5532
5533    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5534    assert(CVR && "unexpected qualifiers mismatch");
5535
5536    if (isObjectArgument) {
5537      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
5538        << (unsigned) FnKind << FnDesc
5539        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5540        << FromTy << (CVR - 1);
5541    } else {
5542      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
5543        << (unsigned) FnKind << FnDesc
5544        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5545        << FromTy << (CVR - 1) << I+1;
5546    }
5547    return;
5548  }
5549
5550  // Diagnose references or pointers to incomplete types differently,
5551  // since it's far from impossible that the incompleteness triggered
5552  // the failure.
5553  QualType TempFromTy = FromTy.getNonReferenceType();
5554  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
5555    TempFromTy = PTy->getPointeeType();
5556  if (TempFromTy->isIncompleteType()) {
5557    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
5558      << (unsigned) FnKind << FnDesc
5559      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5560      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5561    return;
5562  }
5563
5564  // Diagnose base -> derived pointer conversions.
5565  unsigned BaseToDerivedConversion = 0;
5566  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
5567    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
5568      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
5569                                               FromPtrTy->getPointeeType()) &&
5570          !FromPtrTy->getPointeeType()->isIncompleteType() &&
5571          !ToPtrTy->getPointeeType()->isIncompleteType() &&
5572          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
5573                          FromPtrTy->getPointeeType()))
5574        BaseToDerivedConversion = 1;
5575    }
5576  } else if (const ObjCObjectPointerType *FromPtrTy
5577                                    = FromTy->getAs<ObjCObjectPointerType>()) {
5578    if (const ObjCObjectPointerType *ToPtrTy
5579                                        = ToTy->getAs<ObjCObjectPointerType>())
5580      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
5581        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
5582          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
5583                                                FromPtrTy->getPointeeType()) &&
5584              FromIface->isSuperClassOf(ToIface))
5585            BaseToDerivedConversion = 2;
5586  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
5587      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
5588          !FromTy->isIncompleteType() &&
5589          !ToRefTy->getPointeeType()->isIncompleteType() &&
5590          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
5591        BaseToDerivedConversion = 3;
5592    }
5593
5594  if (BaseToDerivedConversion) {
5595    S.Diag(Fn->getLocation(),
5596           diag::note_ovl_candidate_bad_base_to_derived_conv)
5597      << (unsigned) FnKind << FnDesc
5598      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5599      << (BaseToDerivedConversion - 1)
5600      << FromTy << ToTy << I+1;
5601    return;
5602  }
5603
5604  // TODO: specialize more based on the kind of mismatch
5605  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
5606    << (unsigned) FnKind << FnDesc
5607    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5608    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5609}
5610
5611void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
5612                           unsigned NumFormalArgs) {
5613  // TODO: treat calls to a missing default constructor as a special case
5614
5615  FunctionDecl *Fn = Cand->Function;
5616  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
5617
5618  unsigned MinParams = Fn->getMinRequiredArguments();
5619
5620  // at least / at most / exactly
5621  // FIXME: variadic templates "at most" should account for parameter packs
5622  unsigned mode, modeCount;
5623  if (NumFormalArgs < MinParams) {
5624    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
5625           (Cand->FailureKind == ovl_fail_bad_deduction &&
5626            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
5627    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
5628      mode = 0; // "at least"
5629    else
5630      mode = 2; // "exactly"
5631    modeCount = MinParams;
5632  } else {
5633    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
5634           (Cand->FailureKind == ovl_fail_bad_deduction &&
5635            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
5636    if (MinParams != FnTy->getNumArgs())
5637      mode = 1; // "at most"
5638    else
5639      mode = 2; // "exactly"
5640    modeCount = FnTy->getNumArgs();
5641  }
5642
5643  std::string Description;
5644  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
5645
5646  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
5647    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
5648    << modeCount << NumFormalArgs;
5649}
5650
5651/// Diagnose a failed template-argument deduction.
5652void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
5653                          Expr **Args, unsigned NumArgs) {
5654  FunctionDecl *Fn = Cand->Function; // pattern
5655
5656  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
5657  NamedDecl *ParamD;
5658  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
5659  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
5660  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
5661  switch (Cand->DeductionFailure.Result) {
5662  case Sema::TDK_Success:
5663    llvm_unreachable("TDK_success while diagnosing bad deduction");
5664
5665  case Sema::TDK_Incomplete: {
5666    assert(ParamD && "no parameter found for incomplete deduction result");
5667    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
5668      << ParamD->getDeclName();
5669    return;
5670  }
5671
5672  case Sema::TDK_Underqualified: {
5673    assert(ParamD && "no parameter found for bad qualifiers deduction result");
5674    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
5675
5676    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
5677
5678    // Param will have been canonicalized, but it should just be a
5679    // qualified version of ParamD, so move the qualifiers to that.
5680    QualifierCollector Qs(S.Context);
5681    Qs.strip(Param);
5682    QualType NonCanonParam = Qs.apply(TParam->getTypeForDecl());
5683    assert(S.Context.hasSameType(Param, NonCanonParam));
5684
5685    // Arg has also been canonicalized, but there's nothing we can do
5686    // about that.  It also doesn't matter as much, because it won't
5687    // have any template parameters in it (because deduction isn't
5688    // done on dependent types).
5689    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
5690
5691    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
5692      << ParamD->getDeclName() << Arg << NonCanonParam;
5693    return;
5694  }
5695
5696  case Sema::TDK_Inconsistent: {
5697    assert(ParamD && "no parameter found for inconsistent deduction result");
5698    int which = 0;
5699    if (isa<TemplateTypeParmDecl>(ParamD))
5700      which = 0;
5701    else if (isa<NonTypeTemplateParmDecl>(ParamD))
5702      which = 1;
5703    else {
5704      which = 2;
5705    }
5706
5707    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
5708      << which << ParamD->getDeclName()
5709      << *Cand->DeductionFailure.getFirstArg()
5710      << *Cand->DeductionFailure.getSecondArg();
5711    return;
5712  }
5713
5714  case Sema::TDK_InvalidExplicitArguments:
5715    assert(ParamD && "no parameter found for invalid explicit arguments");
5716    if (ParamD->getDeclName())
5717      S.Diag(Fn->getLocation(),
5718             diag::note_ovl_candidate_explicit_arg_mismatch_named)
5719        << ParamD->getDeclName();
5720    else {
5721      int index = 0;
5722      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
5723        index = TTP->getIndex();
5724      else if (NonTypeTemplateParmDecl *NTTP
5725                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
5726        index = NTTP->getIndex();
5727      else
5728        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
5729      S.Diag(Fn->getLocation(),
5730             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
5731        << (index + 1);
5732    }
5733    return;
5734
5735  case Sema::TDK_TooManyArguments:
5736  case Sema::TDK_TooFewArguments:
5737    DiagnoseArityMismatch(S, Cand, NumArgs);
5738    return;
5739
5740  case Sema::TDK_InstantiationDepth:
5741    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
5742    return;
5743
5744  case Sema::TDK_SubstitutionFailure: {
5745    std::string ArgString;
5746    if (TemplateArgumentList *Args
5747                            = Cand->DeductionFailure.getTemplateArgumentList())
5748      ArgString = S.getTemplateArgumentBindingsText(
5749                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
5750                                                    *Args);
5751    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
5752      << ArgString;
5753    return;
5754  }
5755
5756  // TODO: diagnose these individually, then kill off
5757  // note_ovl_candidate_bad_deduction, which is uselessly vague.
5758  case Sema::TDK_NonDeducedMismatch:
5759  case Sema::TDK_FailedOverloadResolution:
5760    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
5761    return;
5762  }
5763}
5764
5765/// Generates a 'note' diagnostic for an overload candidate.  We've
5766/// already generated a primary error at the call site.
5767///
5768/// It really does need to be a single diagnostic with its caret
5769/// pointed at the candidate declaration.  Yes, this creates some
5770/// major challenges of technical writing.  Yes, this makes pointing
5771/// out problems with specific arguments quite awkward.  It's still
5772/// better than generating twenty screens of text for every failed
5773/// overload.
5774///
5775/// It would be great to be able to express per-candidate problems
5776/// more richly for those diagnostic clients that cared, but we'd
5777/// still have to be just as careful with the default diagnostics.
5778void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
5779                           Expr **Args, unsigned NumArgs) {
5780  FunctionDecl *Fn = Cand->Function;
5781
5782  // Note deleted candidates, but only if they're viable.
5783  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
5784    std::string FnDesc;
5785    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5786
5787    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
5788      << FnKind << FnDesc << Fn->isDeleted();
5789    return;
5790  }
5791
5792  // We don't really have anything else to say about viable candidates.
5793  if (Cand->Viable) {
5794    S.NoteOverloadCandidate(Fn);
5795    return;
5796  }
5797
5798  switch (Cand->FailureKind) {
5799  case ovl_fail_too_many_arguments:
5800  case ovl_fail_too_few_arguments:
5801    return DiagnoseArityMismatch(S, Cand, NumArgs);
5802
5803  case ovl_fail_bad_deduction:
5804    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
5805
5806  case ovl_fail_trivial_conversion:
5807  case ovl_fail_bad_final_conversion:
5808  case ovl_fail_final_conversion_not_exact:
5809    return S.NoteOverloadCandidate(Fn);
5810
5811  case ovl_fail_bad_conversion: {
5812    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
5813    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
5814      if (Cand->Conversions[I].isBad())
5815        return DiagnoseBadConversion(S, Cand, I);
5816
5817    // FIXME: this currently happens when we're called from SemaInit
5818    // when user-conversion overload fails.  Figure out how to handle
5819    // those conditions and diagnose them well.
5820    return S.NoteOverloadCandidate(Fn);
5821  }
5822  }
5823}
5824
5825void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
5826  // Desugar the type of the surrogate down to a function type,
5827  // retaining as many typedefs as possible while still showing
5828  // the function type (and, therefore, its parameter types).
5829  QualType FnType = Cand->Surrogate->getConversionType();
5830  bool isLValueReference = false;
5831  bool isRValueReference = false;
5832  bool isPointer = false;
5833  if (const LValueReferenceType *FnTypeRef =
5834        FnType->getAs<LValueReferenceType>()) {
5835    FnType = FnTypeRef->getPointeeType();
5836    isLValueReference = true;
5837  } else if (const RValueReferenceType *FnTypeRef =
5838               FnType->getAs<RValueReferenceType>()) {
5839    FnType = FnTypeRef->getPointeeType();
5840    isRValueReference = true;
5841  }
5842  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5843    FnType = FnTypePtr->getPointeeType();
5844    isPointer = true;
5845  }
5846  // Desugar down to a function type.
5847  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5848  // Reconstruct the pointer/reference as appropriate.
5849  if (isPointer) FnType = S.Context.getPointerType(FnType);
5850  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5851  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5852
5853  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5854    << FnType;
5855}
5856
5857void NoteBuiltinOperatorCandidate(Sema &S,
5858                                  const char *Opc,
5859                                  SourceLocation OpLoc,
5860                                  OverloadCandidate *Cand) {
5861  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5862  std::string TypeStr("operator");
5863  TypeStr += Opc;
5864  TypeStr += "(";
5865  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5866  if (Cand->Conversions.size() == 1) {
5867    TypeStr += ")";
5868    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5869  } else {
5870    TypeStr += ", ";
5871    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5872    TypeStr += ")";
5873    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5874  }
5875}
5876
5877void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5878                                  OverloadCandidate *Cand) {
5879  unsigned NoOperands = Cand->Conversions.size();
5880  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5881    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5882    if (ICS.isBad()) break; // all meaningless after first invalid
5883    if (!ICS.isAmbiguous()) continue;
5884
5885    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5886                              S.PDiag(diag::note_ambiguous_type_conversion));
5887  }
5888}
5889
5890SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5891  if (Cand->Function)
5892    return Cand->Function->getLocation();
5893  if (Cand->IsSurrogate)
5894    return Cand->Surrogate->getLocation();
5895  return SourceLocation();
5896}
5897
5898struct CompareOverloadCandidatesForDisplay {
5899  Sema &S;
5900  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5901
5902  bool operator()(const OverloadCandidate *L,
5903                  const OverloadCandidate *R) {
5904    // Fast-path this check.
5905    if (L == R) return false;
5906
5907    // Order first by viability.
5908    if (L->Viable) {
5909      if (!R->Viable) return true;
5910
5911      // TODO: introduce a tri-valued comparison for overload
5912      // candidates.  Would be more worthwhile if we had a sort
5913      // that could exploit it.
5914      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5915      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5916    } else if (R->Viable)
5917      return false;
5918
5919    assert(L->Viable == R->Viable);
5920
5921    // Criteria by which we can sort non-viable candidates:
5922    if (!L->Viable) {
5923      // 1. Arity mismatches come after other candidates.
5924      if (L->FailureKind == ovl_fail_too_many_arguments ||
5925          L->FailureKind == ovl_fail_too_few_arguments)
5926        return false;
5927      if (R->FailureKind == ovl_fail_too_many_arguments ||
5928          R->FailureKind == ovl_fail_too_few_arguments)
5929        return true;
5930
5931      // 2. Bad conversions come first and are ordered by the number
5932      // of bad conversions and quality of good conversions.
5933      if (L->FailureKind == ovl_fail_bad_conversion) {
5934        if (R->FailureKind != ovl_fail_bad_conversion)
5935          return true;
5936
5937        // If there's any ordering between the defined conversions...
5938        // FIXME: this might not be transitive.
5939        assert(L->Conversions.size() == R->Conversions.size());
5940
5941        int leftBetter = 0;
5942        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5943        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5944          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5945                                                       R->Conversions[I])) {
5946          case ImplicitConversionSequence::Better:
5947            leftBetter++;
5948            break;
5949
5950          case ImplicitConversionSequence::Worse:
5951            leftBetter--;
5952            break;
5953
5954          case ImplicitConversionSequence::Indistinguishable:
5955            break;
5956          }
5957        }
5958        if (leftBetter > 0) return true;
5959        if (leftBetter < 0) return false;
5960
5961      } else if (R->FailureKind == ovl_fail_bad_conversion)
5962        return false;
5963
5964      // TODO: others?
5965    }
5966
5967    // Sort everything else by location.
5968    SourceLocation LLoc = GetLocationForCandidate(L);
5969    SourceLocation RLoc = GetLocationForCandidate(R);
5970
5971    // Put candidates without locations (e.g. builtins) at the end.
5972    if (LLoc.isInvalid()) return false;
5973    if (RLoc.isInvalid()) return true;
5974
5975    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5976  }
5977};
5978
5979/// CompleteNonViableCandidate - Normally, overload resolution only
5980/// computes up to the first
5981void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5982                                Expr **Args, unsigned NumArgs) {
5983  assert(!Cand->Viable);
5984
5985  // Don't do anything on failures other than bad conversion.
5986  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5987
5988  // Skip forward to the first bad conversion.
5989  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5990  unsigned ConvCount = Cand->Conversions.size();
5991  while (true) {
5992    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5993    ConvIdx++;
5994    if (Cand->Conversions[ConvIdx - 1].isBad())
5995      break;
5996  }
5997
5998  if (ConvIdx == ConvCount)
5999    return;
6000
6001  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
6002         "remaining conversion is initialized?");
6003
6004  // FIXME: this should probably be preserved from the overload
6005  // operation somehow.
6006  bool SuppressUserConversions = false;
6007
6008  const FunctionProtoType* Proto;
6009  unsigned ArgIdx = ConvIdx;
6010
6011  if (Cand->IsSurrogate) {
6012    QualType ConvType
6013      = Cand->Surrogate->getConversionType().getNonReferenceType();
6014    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6015      ConvType = ConvPtrType->getPointeeType();
6016    Proto = ConvType->getAs<FunctionProtoType>();
6017    ArgIdx--;
6018  } else if (Cand->Function) {
6019    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
6020    if (isa<CXXMethodDecl>(Cand->Function) &&
6021        !isa<CXXConstructorDecl>(Cand->Function))
6022      ArgIdx--;
6023  } else {
6024    // Builtin binary operator with a bad first conversion.
6025    assert(ConvCount <= 3);
6026    for (; ConvIdx != ConvCount; ++ConvIdx)
6027      Cand->Conversions[ConvIdx]
6028        = TryCopyInitialization(S, Args[ConvIdx],
6029                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
6030                                SuppressUserConversions,
6031                                /*InOverloadResolution*/ true);
6032    return;
6033  }
6034
6035  // Fill in the rest of the conversions.
6036  unsigned NumArgsInProto = Proto->getNumArgs();
6037  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
6038    if (ArgIdx < NumArgsInProto)
6039      Cand->Conversions[ConvIdx]
6040        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
6041                                SuppressUserConversions,
6042                                /*InOverloadResolution=*/true);
6043    else
6044      Cand->Conversions[ConvIdx].setEllipsis();
6045  }
6046}
6047
6048} // end anonymous namespace
6049
6050/// PrintOverloadCandidates - When overload resolution fails, prints
6051/// diagnostic messages containing the candidates in the candidate
6052/// set.
6053void
6054Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
6055                              OverloadCandidateDisplayKind OCD,
6056                              Expr **Args, unsigned NumArgs,
6057                              const char *Opc,
6058                              SourceLocation OpLoc) {
6059  // Sort the candidates by viability and position.  Sorting directly would
6060  // be prohibitive, so we make a set of pointers and sort those.
6061  llvm::SmallVector<OverloadCandidate*, 32> Cands;
6062  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
6063  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6064                                  LastCand = CandidateSet.end();
6065       Cand != LastCand; ++Cand) {
6066    if (Cand->Viable)
6067      Cands.push_back(Cand);
6068    else if (OCD == OCD_AllCandidates) {
6069      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
6070      if (Cand->Function || Cand->IsSurrogate)
6071        Cands.push_back(Cand);
6072      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
6073      // want to list every possible builtin candidate.
6074    }
6075  }
6076
6077  std::sort(Cands.begin(), Cands.end(),
6078            CompareOverloadCandidatesForDisplay(*this));
6079
6080  bool ReportedAmbiguousConversions = false;
6081
6082  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
6083  const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads();
6084  unsigned CandsShown = 0;
6085  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
6086    OverloadCandidate *Cand = *I;
6087
6088    // Set an arbitrary limit on the number of candidate functions we'll spam
6089    // the user with.  FIXME: This limit should depend on details of the
6090    // candidate list.
6091    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
6092      break;
6093    }
6094    ++CandsShown;
6095
6096    if (Cand->Function)
6097      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
6098    else if (Cand->IsSurrogate)
6099      NoteSurrogateCandidate(*this, Cand);
6100    else {
6101      assert(Cand->Viable &&
6102             "Non-viable built-in candidates are not added to Cands.");
6103      // Generally we only see ambiguities including viable builtin
6104      // operators if overload resolution got screwed up by an
6105      // ambiguous user-defined conversion.
6106      //
6107      // FIXME: It's quite possible for different conversions to see
6108      // different ambiguities, though.
6109      if (!ReportedAmbiguousConversions) {
6110        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
6111        ReportedAmbiguousConversions = true;
6112      }
6113
6114      // If this is a viable builtin, print it.
6115      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
6116    }
6117  }
6118
6119  if (I != E)
6120    Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
6121}
6122
6123static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
6124  if (isa<UnresolvedLookupExpr>(E))
6125    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
6126
6127  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
6128}
6129
6130/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
6131/// an overloaded function (C++ [over.over]), where @p From is an
6132/// expression with overloaded function type and @p ToType is the type
6133/// we're trying to resolve to. For example:
6134///
6135/// @code
6136/// int f(double);
6137/// int f(int);
6138///
6139/// int (*pfd)(double) = f; // selects f(double)
6140/// @endcode
6141///
6142/// This routine returns the resulting FunctionDecl if it could be
6143/// resolved, and NULL otherwise. When @p Complain is true, this
6144/// routine will emit diagnostics if there is an error.
6145FunctionDecl *
6146Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
6147                                         bool Complain,
6148                                         DeclAccessPair &FoundResult) {
6149  QualType FunctionType = ToType;
6150  bool IsMember = false;
6151  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
6152    FunctionType = ToTypePtr->getPointeeType();
6153  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
6154    FunctionType = ToTypeRef->getPointeeType();
6155  else if (const MemberPointerType *MemTypePtr =
6156                    ToType->getAs<MemberPointerType>()) {
6157    FunctionType = MemTypePtr->getPointeeType();
6158    IsMember = true;
6159  }
6160
6161  // C++ [over.over]p1:
6162  //   [...] [Note: any redundant set of parentheses surrounding the
6163  //   overloaded function name is ignored (5.1). ]
6164  // C++ [over.over]p1:
6165  //   [...] The overloaded function name can be preceded by the &
6166  //   operator.
6167  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
6168  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
6169  if (OvlExpr->hasExplicitTemplateArgs()) {
6170    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
6171    ExplicitTemplateArgs = &ETABuffer;
6172  }
6173
6174  // We expect a pointer or reference to function, or a function pointer.
6175  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
6176  if (!FunctionType->isFunctionType()) {
6177    if (Complain)
6178      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
6179        << OvlExpr->getName() << ToType;
6180
6181    return 0;
6182  }
6183
6184  assert(From->getType() == Context.OverloadTy);
6185
6186  // Look through all of the overloaded functions, searching for one
6187  // whose type matches exactly.
6188  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
6189  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
6190
6191  bool FoundNonTemplateFunction = false;
6192  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6193         E = OvlExpr->decls_end(); I != E; ++I) {
6194    // Look through any using declarations to find the underlying function.
6195    NamedDecl *Fn = (*I)->getUnderlyingDecl();
6196
6197    // C++ [over.over]p3:
6198    //   Non-member functions and static member functions match
6199    //   targets of type "pointer-to-function" or "reference-to-function."
6200    //   Nonstatic member functions match targets of
6201    //   type "pointer-to-member-function."
6202    // Note that according to DR 247, the containing class does not matter.
6203
6204    if (FunctionTemplateDecl *FunctionTemplate
6205          = dyn_cast<FunctionTemplateDecl>(Fn)) {
6206      if (CXXMethodDecl *Method
6207            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
6208        // Skip non-static function templates when converting to pointer, and
6209        // static when converting to member pointer.
6210        if (Method->isStatic() == IsMember)
6211          continue;
6212      } else if (IsMember)
6213        continue;
6214
6215      // C++ [over.over]p2:
6216      //   If the name is a function template, template argument deduction is
6217      //   done (14.8.2.2), and if the argument deduction succeeds, the
6218      //   resulting template argument list is used to generate a single
6219      //   function template specialization, which is added to the set of
6220      //   overloaded functions considered.
6221      // FIXME: We don't really want to build the specialization here, do we?
6222      FunctionDecl *Specialization = 0;
6223      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6224      if (TemplateDeductionResult Result
6225            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
6226                                      FunctionType, Specialization, Info)) {
6227        // FIXME: make a note of the failed deduction for diagnostics.
6228        (void)Result;
6229      } else {
6230        // FIXME: If the match isn't exact, shouldn't we just drop this as
6231        // a candidate? Find a testcase before changing the code.
6232        assert(FunctionType
6233                 == Context.getCanonicalType(Specialization->getType()));
6234        Matches.push_back(std::make_pair(I.getPair(),
6235                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
6236      }
6237
6238      continue;
6239    }
6240
6241    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6242      // Skip non-static functions when converting to pointer, and static
6243      // when converting to member pointer.
6244      if (Method->isStatic() == IsMember)
6245        continue;
6246
6247      // If we have explicit template arguments, skip non-templates.
6248      if (OvlExpr->hasExplicitTemplateArgs())
6249        continue;
6250    } else if (IsMember)
6251      continue;
6252
6253    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
6254      QualType ResultTy;
6255      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
6256          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
6257                               ResultTy)) {
6258        Matches.push_back(std::make_pair(I.getPair(),
6259                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
6260        FoundNonTemplateFunction = true;
6261      }
6262    }
6263  }
6264
6265  // If there were 0 or 1 matches, we're done.
6266  if (Matches.empty()) {
6267    if (Complain) {
6268      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
6269        << OvlExpr->getName() << FunctionType;
6270      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6271                                 E = OvlExpr->decls_end();
6272           I != E; ++I)
6273        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
6274          NoteOverloadCandidate(F);
6275    }
6276
6277    return 0;
6278  } else if (Matches.size() == 1) {
6279    FunctionDecl *Result = Matches[0].second;
6280    FoundResult = Matches[0].first;
6281    MarkDeclarationReferenced(From->getLocStart(), Result);
6282    if (Complain)
6283      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
6284    return Result;
6285  }
6286
6287  // C++ [over.over]p4:
6288  //   If more than one function is selected, [...]
6289  if (!FoundNonTemplateFunction) {
6290    //   [...] and any given function template specialization F1 is
6291    //   eliminated if the set contains a second function template
6292    //   specialization whose function template is more specialized
6293    //   than the function template of F1 according to the partial
6294    //   ordering rules of 14.5.5.2.
6295
6296    // The algorithm specified above is quadratic. We instead use a
6297    // two-pass algorithm (similar to the one used to identify the
6298    // best viable function in an overload set) that identifies the
6299    // best function template (if it exists).
6300
6301    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
6302    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6303      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
6304
6305    UnresolvedSetIterator Result =
6306        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
6307                           TPOC_Other, From->getLocStart(),
6308                           PDiag(),
6309                           PDiag(diag::err_addr_ovl_ambiguous)
6310                               << Matches[0].second->getDeclName(),
6311                           PDiag(diag::note_ovl_candidate)
6312                               << (unsigned) oc_function_template);
6313    assert(Result != MatchesCopy.end() && "no most-specialized template");
6314    MarkDeclarationReferenced(From->getLocStart(), *Result);
6315    FoundResult = Matches[Result - MatchesCopy.begin()].first;
6316    if (Complain) {
6317      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
6318      DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
6319    }
6320    return cast<FunctionDecl>(*Result);
6321  }
6322
6323  //   [...] any function template specializations in the set are
6324  //   eliminated if the set also contains a non-template function, [...]
6325  for (unsigned I = 0, N = Matches.size(); I != N; ) {
6326    if (Matches[I].second->getPrimaryTemplate() == 0)
6327      ++I;
6328    else {
6329      Matches[I] = Matches[--N];
6330      Matches.set_size(N);
6331    }
6332  }
6333
6334  // [...] After such eliminations, if any, there shall remain exactly one
6335  // selected function.
6336  if (Matches.size() == 1) {
6337    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
6338    FoundResult = Matches[0].first;
6339    if (Complain) {
6340      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
6341      DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
6342    }
6343    return cast<FunctionDecl>(Matches[0].second);
6344  }
6345
6346  // FIXME: We should probably return the same thing that BestViableFunction
6347  // returns (even if we issue the diagnostics here).
6348  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
6349    << Matches[0].second->getDeclName();
6350  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6351    NoteOverloadCandidate(Matches[I].second);
6352  return 0;
6353}
6354
6355/// \brief Given an expression that refers to an overloaded function, try to
6356/// resolve that overloaded function expression down to a single function.
6357///
6358/// This routine can only resolve template-ids that refer to a single function
6359/// template, where that template-id refers to a single template whose template
6360/// arguments are either provided by the template-id or have defaults,
6361/// as described in C++0x [temp.arg.explicit]p3.
6362FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
6363  // C++ [over.over]p1:
6364  //   [...] [Note: any redundant set of parentheses surrounding the
6365  //   overloaded function name is ignored (5.1). ]
6366  // C++ [over.over]p1:
6367  //   [...] The overloaded function name can be preceded by the &
6368  //   operator.
6369
6370  if (From->getType() != Context.OverloadTy)
6371    return 0;
6372
6373  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
6374
6375  // If we didn't actually find any template-ids, we're done.
6376  if (!OvlExpr->hasExplicitTemplateArgs())
6377    return 0;
6378
6379  TemplateArgumentListInfo ExplicitTemplateArgs;
6380  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
6381
6382  // Look through all of the overloaded functions, searching for one
6383  // whose type matches exactly.
6384  FunctionDecl *Matched = 0;
6385  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6386         E = OvlExpr->decls_end(); I != E; ++I) {
6387    // C++0x [temp.arg.explicit]p3:
6388    //   [...] In contexts where deduction is done and fails, or in contexts
6389    //   where deduction is not done, if a template argument list is
6390    //   specified and it, along with any default template arguments,
6391    //   identifies a single function template specialization, then the
6392    //   template-id is an lvalue for the function template specialization.
6393    FunctionTemplateDecl *FunctionTemplate
6394      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
6395
6396    // C++ [over.over]p2:
6397    //   If the name is a function template, template argument deduction is
6398    //   done (14.8.2.2), and if the argument deduction succeeds, the
6399    //   resulting template argument list is used to generate a single
6400    //   function template specialization, which is added to the set of
6401    //   overloaded functions considered.
6402    FunctionDecl *Specialization = 0;
6403    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6404    if (TemplateDeductionResult Result
6405          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
6406                                    Specialization, Info)) {
6407      // FIXME: make a note of the failed deduction for diagnostics.
6408      (void)Result;
6409      continue;
6410    }
6411
6412    // Multiple matches; we can't resolve to a single declaration.
6413    if (Matched)
6414      return 0;
6415
6416    Matched = Specialization;
6417  }
6418
6419  return Matched;
6420}
6421
6422/// \brief Add a single candidate to the overload set.
6423static void AddOverloadedCallCandidate(Sema &S,
6424                                       DeclAccessPair FoundDecl,
6425                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
6426                                       Expr **Args, unsigned NumArgs,
6427                                       OverloadCandidateSet &CandidateSet,
6428                                       bool PartialOverloading) {
6429  NamedDecl *Callee = FoundDecl.getDecl();
6430  if (isa<UsingShadowDecl>(Callee))
6431    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
6432
6433  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
6434    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
6435    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
6436                           false, PartialOverloading);
6437    return;
6438  }
6439
6440  if (FunctionTemplateDecl *FuncTemplate
6441      = dyn_cast<FunctionTemplateDecl>(Callee)) {
6442    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
6443                                   ExplicitTemplateArgs,
6444                                   Args, NumArgs, CandidateSet);
6445    return;
6446  }
6447
6448  assert(false && "unhandled case in overloaded call candidate");
6449
6450  // do nothing?
6451}
6452
6453/// \brief Add the overload candidates named by callee and/or found by argument
6454/// dependent lookup to the given overload set.
6455void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
6456                                       Expr **Args, unsigned NumArgs,
6457                                       OverloadCandidateSet &CandidateSet,
6458                                       bool PartialOverloading) {
6459
6460#ifndef NDEBUG
6461  // Verify that ArgumentDependentLookup is consistent with the rules
6462  // in C++0x [basic.lookup.argdep]p3:
6463  //
6464  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
6465  //   and let Y be the lookup set produced by argument dependent
6466  //   lookup (defined as follows). If X contains
6467  //
6468  //     -- a declaration of a class member, or
6469  //
6470  //     -- a block-scope function declaration that is not a
6471  //        using-declaration, or
6472  //
6473  //     -- a declaration that is neither a function or a function
6474  //        template
6475  //
6476  //   then Y is empty.
6477
6478  if (ULE->requiresADL()) {
6479    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6480           E = ULE->decls_end(); I != E; ++I) {
6481      assert(!(*I)->getDeclContext()->isRecord());
6482      assert(isa<UsingShadowDecl>(*I) ||
6483             !(*I)->getDeclContext()->isFunctionOrMethod());
6484      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
6485    }
6486  }
6487#endif
6488
6489  // It would be nice to avoid this copy.
6490  TemplateArgumentListInfo TABuffer;
6491  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6492  if (ULE->hasExplicitTemplateArgs()) {
6493    ULE->copyTemplateArgumentsInto(TABuffer);
6494    ExplicitTemplateArgs = &TABuffer;
6495  }
6496
6497  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6498         E = ULE->decls_end(); I != E; ++I)
6499    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
6500                               Args, NumArgs, CandidateSet,
6501                               PartialOverloading);
6502
6503  if (ULE->requiresADL())
6504    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
6505                                         Args, NumArgs,
6506                                         ExplicitTemplateArgs,
6507                                         CandidateSet,
6508                                         PartialOverloading);
6509}
6510
6511/// Attempts to recover from a call where no functions were found.
6512///
6513/// Returns true if new candidates were found.
6514static Sema::OwningExprResult
6515BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
6516                      UnresolvedLookupExpr *ULE,
6517                      SourceLocation LParenLoc,
6518                      Expr **Args, unsigned NumArgs,
6519                      SourceLocation *CommaLocs,
6520                      SourceLocation RParenLoc) {
6521
6522  CXXScopeSpec SS;
6523  if (ULE->getQualifier()) {
6524    SS.setScopeRep(ULE->getQualifier());
6525    SS.setRange(ULE->getQualifierRange());
6526  }
6527
6528  TemplateArgumentListInfo TABuffer;
6529  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6530  if (ULE->hasExplicitTemplateArgs()) {
6531    ULE->copyTemplateArgumentsInto(TABuffer);
6532    ExplicitTemplateArgs = &TABuffer;
6533  }
6534
6535  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
6536                 Sema::LookupOrdinaryName);
6537  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
6538    return SemaRef.ExprError();
6539
6540  assert(!R.empty() && "lookup results empty despite recovery");
6541
6542  // Build an implicit member call if appropriate.  Just drop the
6543  // casts and such from the call, we don't really care.
6544  Sema::OwningExprResult NewFn = SemaRef.ExprError();
6545  if ((*R.begin())->isCXXClassMember())
6546    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
6547  else if (ExplicitTemplateArgs)
6548    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
6549  else
6550    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
6551
6552  if (NewFn.isInvalid())
6553    return SemaRef.ExprError();
6554
6555  // This shouldn't cause an infinite loop because we're giving it
6556  // an expression with non-empty lookup results, which should never
6557  // end up here.
6558  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
6559                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
6560                               CommaLocs, RParenLoc);
6561}
6562
6563/// ResolveOverloadedCallFn - Given the call expression that calls Fn
6564/// (which eventually refers to the declaration Func) and the call
6565/// arguments Args/NumArgs, attempt to resolve the function call down
6566/// to a specific function. If overload resolution succeeds, returns
6567/// the function declaration produced by overload
6568/// resolution. Otherwise, emits diagnostics, deletes all of the
6569/// arguments and Fn, and returns NULL.
6570Sema::OwningExprResult
6571Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
6572                              SourceLocation LParenLoc,
6573                              Expr **Args, unsigned NumArgs,
6574                              SourceLocation *CommaLocs,
6575                              SourceLocation RParenLoc) {
6576#ifndef NDEBUG
6577  if (ULE->requiresADL()) {
6578    // To do ADL, we must have found an unqualified name.
6579    assert(!ULE->getQualifier() && "qualified name with ADL");
6580
6581    // We don't perform ADL for implicit declarations of builtins.
6582    // Verify that this was correctly set up.
6583    FunctionDecl *F;
6584    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
6585        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
6586        F->getBuiltinID() && F->isImplicit())
6587      assert(0 && "performing ADL for builtin");
6588
6589    // We don't perform ADL in C.
6590    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
6591  }
6592#endif
6593
6594  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
6595
6596  // Add the functions denoted by the callee to the set of candidate
6597  // functions, including those from argument-dependent lookup.
6598  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
6599
6600  // If we found nothing, try to recover.
6601  // AddRecoveryCallCandidates diagnoses the error itself, so we just
6602  // bailout out if it fails.
6603  if (CandidateSet.empty())
6604    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
6605                                 CommaLocs, RParenLoc);
6606
6607  OverloadCandidateSet::iterator Best;
6608  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
6609  case OR_Success: {
6610    FunctionDecl *FDecl = Best->Function;
6611    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
6612    DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
6613    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
6614    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
6615  }
6616
6617  case OR_No_Viable_Function:
6618    Diag(Fn->getSourceRange().getBegin(),
6619         diag::err_ovl_no_viable_function_in_call)
6620      << ULE->getName() << Fn->getSourceRange();
6621    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6622    break;
6623
6624  case OR_Ambiguous:
6625    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
6626      << ULE->getName() << Fn->getSourceRange();
6627    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6628    break;
6629
6630  case OR_Deleted:
6631    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
6632      << Best->Function->isDeleted()
6633      << ULE->getName()
6634      << Fn->getSourceRange();
6635    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6636    break;
6637  }
6638
6639  // Overload resolution failed.
6640  return ExprError();
6641}
6642
6643static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
6644  return Functions.size() > 1 ||
6645    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
6646}
6647
6648/// \brief Create a unary operation that may resolve to an overloaded
6649/// operator.
6650///
6651/// \param OpLoc The location of the operator itself (e.g., '*').
6652///
6653/// \param OpcIn The UnaryOperator::Opcode that describes this
6654/// operator.
6655///
6656/// \param Functions The set of non-member functions that will be
6657/// considered by overload resolution. The caller needs to build this
6658/// set based on the context using, e.g.,
6659/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6660/// set should not contain any member functions; those will be added
6661/// by CreateOverloadedUnaryOp().
6662///
6663/// \param input The input argument.
6664Sema::OwningExprResult
6665Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
6666                              const UnresolvedSetImpl &Fns,
6667                              ExprArg input) {
6668  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6669  Expr *Input = (Expr *)input.get();
6670
6671  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
6672  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
6673  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6674  // TODO: provide better source location info.
6675  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
6676
6677  Expr *Args[2] = { Input, 0 };
6678  unsigned NumArgs = 1;
6679
6680  // For post-increment and post-decrement, add the implicit '0' as
6681  // the second argument, so that we know this is a post-increment or
6682  // post-decrement.
6683  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
6684    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
6685    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
6686                                           SourceLocation());
6687    NumArgs = 2;
6688  }
6689
6690  if (Input->isTypeDependent()) {
6691    if (Fns.empty())
6692      return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(),
6693                                               Opc,
6694                                               Context.DependentTy,
6695                                               OpLoc));
6696
6697    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6698    UnresolvedLookupExpr *Fn
6699      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6700                                     0, SourceRange(), OpNameInfo,
6701                                     /*ADL*/ true, IsOverloaded(Fns),
6702                                     Fns.begin(), Fns.end());
6703    input.release();
6704    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6705                                                   &Args[0], NumArgs,
6706                                                   Context.DependentTy,
6707                                                   OpLoc));
6708  }
6709
6710  // Build an empty overload set.
6711  OverloadCandidateSet CandidateSet(OpLoc);
6712
6713  // Add the candidates from the given function set.
6714  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
6715
6716  // Add operator candidates that are member functions.
6717  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6718
6719  // Add candidates from ADL.
6720  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6721                                       Args, NumArgs,
6722                                       /*ExplicitTemplateArgs*/ 0,
6723                                       CandidateSet);
6724
6725  // Add builtin operator candidates.
6726  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6727
6728  // Perform overload resolution.
6729  OverloadCandidateSet::iterator Best;
6730  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6731  case OR_Success: {
6732    // We found a built-in operator or an overloaded operator.
6733    FunctionDecl *FnDecl = Best->Function;
6734
6735    if (FnDecl) {
6736      // We matched an overloaded operator. Build a call to that
6737      // operator.
6738
6739      // Convert the arguments.
6740      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6741        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
6742
6743        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
6744                                                Best->FoundDecl, Method))
6745          return ExprError();
6746      } else {
6747        // Convert the arguments.
6748        OwningExprResult InputInit
6749          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6750                                                      FnDecl->getParamDecl(0)),
6751                                      SourceLocation(),
6752                                      move(input));
6753        if (InputInit.isInvalid())
6754          return ExprError();
6755
6756        input = move(InputInit);
6757        Input = (Expr *)input.get();
6758      }
6759
6760      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6761
6762      // Determine the result type
6763      QualType ResultTy = FnDecl->getCallResultType();
6764
6765      // Build the actual expression node.
6766      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6767                                               SourceLocation());
6768      UsualUnaryConversions(FnExpr);
6769
6770      input.release();
6771      Args[0] = Input;
6772      ExprOwningPtr<CallExpr> TheCall(this,
6773        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6774                                          Args, NumArgs, ResultTy, OpLoc));
6775
6776      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6777                              FnDecl))
6778        return ExprError();
6779
6780      return MaybeBindToTemporary(TheCall.release());
6781    } else {
6782      // We matched a built-in operator. Convert the arguments, then
6783      // break out so that we will build the appropriate built-in
6784      // operator node.
6785        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
6786                                      Best->Conversions[0], AA_Passing))
6787          return ExprError();
6788
6789        break;
6790      }
6791    }
6792
6793    case OR_No_Viable_Function:
6794      // No viable function; fall through to handling this as a
6795      // built-in operator, which will produce an error message for us.
6796      break;
6797
6798    case OR_Ambiguous:
6799      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6800          << UnaryOperator::getOpcodeStr(Opc)
6801          << Input->getSourceRange();
6802      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
6803                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
6804      return ExprError();
6805
6806    case OR_Deleted:
6807      Diag(OpLoc, diag::err_ovl_deleted_oper)
6808        << Best->Function->isDeleted()
6809        << UnaryOperator::getOpcodeStr(Opc)
6810        << Input->getSourceRange();
6811      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6812      return ExprError();
6813    }
6814
6815  // Either we found no viable overloaded operator or we matched a
6816  // built-in operator. In either case, fall through to trying to
6817  // build a built-in operation.
6818  input.release();
6819  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
6820}
6821
6822/// \brief Create a binary operation that may resolve to an overloaded
6823/// operator.
6824///
6825/// \param OpLoc The location of the operator itself (e.g., '+').
6826///
6827/// \param OpcIn The BinaryOperator::Opcode that describes this
6828/// operator.
6829///
6830/// \param Functions The set of non-member functions that will be
6831/// considered by overload resolution. The caller needs to build this
6832/// set based on the context using, e.g.,
6833/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6834/// set should not contain any member functions; those will be added
6835/// by CreateOverloadedBinOp().
6836///
6837/// \param LHS Left-hand argument.
6838/// \param RHS Right-hand argument.
6839Sema::OwningExprResult
6840Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
6841                            unsigned OpcIn,
6842                            const UnresolvedSetImpl &Fns,
6843                            Expr *LHS, Expr *RHS) {
6844  Expr *Args[2] = { LHS, RHS };
6845  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
6846
6847  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
6848  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
6849  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6850
6851  // If either side is type-dependent, create an appropriate dependent
6852  // expression.
6853  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6854    if (Fns.empty()) {
6855      // If there are no functions to store, just build a dependent
6856      // BinaryOperator or CompoundAssignment.
6857      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6858        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6859                                                  Context.DependentTy, OpLoc));
6860
6861      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6862                                                        Context.DependentTy,
6863                                                        Context.DependentTy,
6864                                                        Context.DependentTy,
6865                                                        OpLoc));
6866    }
6867
6868    // FIXME: save results of ADL from here?
6869    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6870    // TODO: provide better source location info in DNLoc component.
6871    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
6872    UnresolvedLookupExpr *Fn
6873      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6874                                     0, SourceRange(), OpNameInfo,
6875                                     /*ADL*/ true, IsOverloaded(Fns),
6876                                     Fns.begin(), Fns.end());
6877    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6878                                                   Args, 2,
6879                                                   Context.DependentTy,
6880                                                   OpLoc));
6881  }
6882
6883  // If this is the .* operator, which is not overloadable, just
6884  // create a built-in binary operator.
6885  if (Opc == BinaryOperator::PtrMemD)
6886    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6887
6888  // If this is the assignment operator, we only perform overload resolution
6889  // if the left-hand side is a class or enumeration type. This is actually
6890  // a hack. The standard requires that we do overload resolution between the
6891  // various built-in candidates, but as DR507 points out, this can lead to
6892  // problems. So we do it this way, which pretty much follows what GCC does.
6893  // Note that we go the traditional code path for compound assignment forms.
6894  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6895    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6896
6897  // Build an empty overload set.
6898  OverloadCandidateSet CandidateSet(OpLoc);
6899
6900  // Add the candidates from the given function set.
6901  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6902
6903  // Add operator candidates that are member functions.
6904  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6905
6906  // Add candidates from ADL.
6907  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6908                                       Args, 2,
6909                                       /*ExplicitTemplateArgs*/ 0,
6910                                       CandidateSet);
6911
6912  // Add builtin operator candidates.
6913  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6914
6915  // Perform overload resolution.
6916  OverloadCandidateSet::iterator Best;
6917  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6918    case OR_Success: {
6919      // We found a built-in operator or an overloaded operator.
6920      FunctionDecl *FnDecl = Best->Function;
6921
6922      if (FnDecl) {
6923        // We matched an overloaded operator. Build a call to that
6924        // operator.
6925
6926        // Convert the arguments.
6927        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6928          // Best->Access is only meaningful for class members.
6929          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6930
6931          OwningExprResult Arg1
6932            = PerformCopyInitialization(
6933                                        InitializedEntity::InitializeParameter(
6934                                                        FnDecl->getParamDecl(0)),
6935                                        SourceLocation(),
6936                                        Owned(Args[1]));
6937          if (Arg1.isInvalid())
6938            return ExprError();
6939
6940          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6941                                                  Best->FoundDecl, Method))
6942            return ExprError();
6943
6944          Args[1] = RHS = Arg1.takeAs<Expr>();
6945        } else {
6946          // Convert the arguments.
6947          OwningExprResult Arg0
6948            = PerformCopyInitialization(
6949                                        InitializedEntity::InitializeParameter(
6950                                                        FnDecl->getParamDecl(0)),
6951                                        SourceLocation(),
6952                                        Owned(Args[0]));
6953          if (Arg0.isInvalid())
6954            return ExprError();
6955
6956          OwningExprResult Arg1
6957            = PerformCopyInitialization(
6958                                        InitializedEntity::InitializeParameter(
6959                                                        FnDecl->getParamDecl(1)),
6960                                        SourceLocation(),
6961                                        Owned(Args[1]));
6962          if (Arg1.isInvalid())
6963            return ExprError();
6964          Args[0] = LHS = Arg0.takeAs<Expr>();
6965          Args[1] = RHS = Arg1.takeAs<Expr>();
6966        }
6967
6968        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6969
6970        // Determine the result type
6971        QualType ResultTy
6972          = FnDecl->getType()->getAs<FunctionType>()
6973                                                ->getCallResultType(Context);
6974
6975        // Build the actual expression node.
6976        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6977                                                 OpLoc);
6978        UsualUnaryConversions(FnExpr);
6979
6980        ExprOwningPtr<CXXOperatorCallExpr>
6981          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6982                                                          Args, 2, ResultTy,
6983                                                          OpLoc));
6984
6985        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6986                                FnDecl))
6987          return ExprError();
6988
6989        return MaybeBindToTemporary(TheCall.release());
6990      } else {
6991        // We matched a built-in operator. Convert the arguments, then
6992        // break out so that we will build the appropriate built-in
6993        // operator node.
6994        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6995                                      Best->Conversions[0], AA_Passing) ||
6996            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6997                                      Best->Conversions[1], AA_Passing))
6998          return ExprError();
6999
7000        break;
7001      }
7002    }
7003
7004    case OR_No_Viable_Function: {
7005      // C++ [over.match.oper]p9:
7006      //   If the operator is the operator , [...] and there are no
7007      //   viable functions, then the operator is assumed to be the
7008      //   built-in operator and interpreted according to clause 5.
7009      if (Opc == BinaryOperator::Comma)
7010        break;
7011
7012      // For class as left operand for assignment or compound assigment operator
7013      // do not fall through to handling in built-in, but report that no overloaded
7014      // assignment operator found
7015      OwningExprResult Result = ExprError();
7016      if (Args[0]->getType()->isRecordType() &&
7017          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
7018        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
7019             << BinaryOperator::getOpcodeStr(Opc)
7020             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7021      } else {
7022        // No viable function; try to create a built-in operation, which will
7023        // produce an error. Then, show the non-viable candidates.
7024        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7025      }
7026      assert(Result.isInvalid() &&
7027             "C++ binary operator overloading is missing candidates!");
7028      if (Result.isInvalid())
7029        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
7030                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
7031      return move(Result);
7032    }
7033
7034    case OR_Ambiguous:
7035      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7036          << BinaryOperator::getOpcodeStr(Opc)
7037          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7038      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
7039                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
7040      return ExprError();
7041
7042    case OR_Deleted:
7043      Diag(OpLoc, diag::err_ovl_deleted_oper)
7044        << Best->Function->isDeleted()
7045        << BinaryOperator::getOpcodeStr(Opc)
7046        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7047      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
7048      return ExprError();
7049  }
7050
7051  // We matched a built-in operator; build it.
7052  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7053}
7054
7055Action::OwningExprResult
7056Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
7057                                         SourceLocation RLoc,
7058                                         ExprArg Base, ExprArg Idx) {
7059  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
7060                    static_cast<Expr*>(Idx.get()) };
7061  DeclarationName OpName =
7062      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
7063
7064  // If either side is type-dependent, create an appropriate dependent
7065  // expression.
7066  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7067
7068    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7069    // CHECKME: no 'operator' keyword?
7070    DeclarationNameInfo OpNameInfo(OpName, LLoc);
7071    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
7072    UnresolvedLookupExpr *Fn
7073      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
7074                                     0, SourceRange(), OpNameInfo,
7075                                     /*ADL*/ true, /*Overloaded*/ false,
7076                                     UnresolvedSetIterator(),
7077                                     UnresolvedSetIterator());
7078    // Can't add any actual overloads yet
7079
7080    Base.release();
7081    Idx.release();
7082    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
7083                                                   Args, 2,
7084                                                   Context.DependentTy,
7085                                                   RLoc));
7086  }
7087
7088  // Build an empty overload set.
7089  OverloadCandidateSet CandidateSet(LLoc);
7090
7091  // Subscript can only be overloaded as a member function.
7092
7093  // Add operator candidates that are member functions.
7094  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7095
7096  // Add builtin operator candidates.
7097  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7098
7099  // Perform overload resolution.
7100  OverloadCandidateSet::iterator Best;
7101  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
7102    case OR_Success: {
7103      // We found a built-in operator or an overloaded operator.
7104      FunctionDecl *FnDecl = Best->Function;
7105
7106      if (FnDecl) {
7107        // We matched an overloaded operator. Build a call to that
7108        // operator.
7109
7110        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
7111        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
7112
7113        // Convert the arguments.
7114        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
7115        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7116                                                Best->FoundDecl, Method))
7117          return ExprError();
7118
7119        // Convert the arguments.
7120        OwningExprResult InputInit
7121          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7122                                                      FnDecl->getParamDecl(0)),
7123                                      SourceLocation(),
7124                                      Owned(Args[1]));
7125        if (InputInit.isInvalid())
7126          return ExprError();
7127
7128        Args[1] = InputInit.takeAs<Expr>();
7129
7130        // Determine the result type
7131        QualType ResultTy
7132          = FnDecl->getType()->getAs<FunctionType>()
7133                                                  ->getCallResultType(Context);
7134
7135        // Build the actual expression node.
7136        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
7137                                                 LLoc);
7138        UsualUnaryConversions(FnExpr);
7139
7140        Base.release();
7141        Idx.release();
7142        ExprOwningPtr<CXXOperatorCallExpr>
7143          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
7144                                                          FnExpr, Args, 2,
7145                                                          ResultTy, RLoc));
7146
7147        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
7148                                FnDecl))
7149          return ExprError();
7150
7151        return MaybeBindToTemporary(TheCall.release());
7152      } else {
7153        // We matched a built-in operator. Convert the arguments, then
7154        // break out so that we will build the appropriate built-in
7155        // operator node.
7156        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7157                                      Best->Conversions[0], AA_Passing) ||
7158            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7159                                      Best->Conversions[1], AA_Passing))
7160          return ExprError();
7161
7162        break;
7163      }
7164    }
7165
7166    case OR_No_Viable_Function: {
7167      if (CandidateSet.empty())
7168        Diag(LLoc, diag::err_ovl_no_oper)
7169          << Args[0]->getType() << /*subscript*/ 0
7170          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7171      else
7172        Diag(LLoc, diag::err_ovl_no_viable_subscript)
7173          << Args[0]->getType()
7174          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7175      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
7176                              "[]", LLoc);
7177      return ExprError();
7178    }
7179
7180    case OR_Ambiguous:
7181      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
7182          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7183      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
7184                              "[]", LLoc);
7185      return ExprError();
7186
7187    case OR_Deleted:
7188      Diag(LLoc, diag::err_ovl_deleted_oper)
7189        << Best->Function->isDeleted() << "[]"
7190        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7191      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
7192                              "[]", LLoc);
7193      return ExprError();
7194    }
7195
7196  // We matched a built-in operator; build it.
7197  Base.release();
7198  Idx.release();
7199  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
7200                                         Owned(Args[1]), RLoc);
7201}
7202
7203/// BuildCallToMemberFunction - Build a call to a member
7204/// function. MemExpr is the expression that refers to the member
7205/// function (and includes the object parameter), Args/NumArgs are the
7206/// arguments to the function call (not including the object
7207/// parameter). The caller needs to validate that the member
7208/// expression refers to a member function or an overloaded member
7209/// function.
7210Sema::OwningExprResult
7211Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
7212                                SourceLocation LParenLoc, Expr **Args,
7213                                unsigned NumArgs, SourceLocation *CommaLocs,
7214                                SourceLocation RParenLoc) {
7215  // Dig out the member expression. This holds both the object
7216  // argument and the member function we're referring to.
7217  Expr *NakedMemExpr = MemExprE->IgnoreParens();
7218
7219  MemberExpr *MemExpr;
7220  CXXMethodDecl *Method = 0;
7221  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
7222  NestedNameSpecifier *Qualifier = 0;
7223  if (isa<MemberExpr>(NakedMemExpr)) {
7224    MemExpr = cast<MemberExpr>(NakedMemExpr);
7225    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
7226    FoundDecl = MemExpr->getFoundDecl();
7227    Qualifier = MemExpr->getQualifier();
7228  } else {
7229    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
7230    Qualifier = UnresExpr->getQualifier();
7231
7232    QualType ObjectType = UnresExpr->getBaseType();
7233
7234    // Add overload candidates
7235    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
7236
7237    // FIXME: avoid copy.
7238    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7239    if (UnresExpr->hasExplicitTemplateArgs()) {
7240      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7241      TemplateArgs = &TemplateArgsBuffer;
7242    }
7243
7244    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
7245           E = UnresExpr->decls_end(); I != E; ++I) {
7246
7247      NamedDecl *Func = *I;
7248      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
7249      if (isa<UsingShadowDecl>(Func))
7250        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
7251
7252      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
7253        // If explicit template arguments were provided, we can't call a
7254        // non-template member function.
7255        if (TemplateArgs)
7256          continue;
7257
7258        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
7259                           Args, NumArgs,
7260                           CandidateSet, /*SuppressUserConversions=*/false);
7261      } else {
7262        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
7263                                   I.getPair(), ActingDC, TemplateArgs,
7264                                   ObjectType, Args, NumArgs,
7265                                   CandidateSet,
7266                                   /*SuppressUsedConversions=*/false);
7267      }
7268    }
7269
7270    DeclarationName DeclName = UnresExpr->getMemberName();
7271
7272    OverloadCandidateSet::iterator Best;
7273    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
7274    case OR_Success:
7275      Method = cast<CXXMethodDecl>(Best->Function);
7276      FoundDecl = Best->FoundDecl;
7277      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
7278      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
7279      break;
7280
7281    case OR_No_Viable_Function:
7282      Diag(UnresExpr->getMemberLoc(),
7283           diag::err_ovl_no_viable_member_function_in_call)
7284        << DeclName << MemExprE->getSourceRange();
7285      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7286      // FIXME: Leaking incoming expressions!
7287      return ExprError();
7288
7289    case OR_Ambiguous:
7290      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
7291        << DeclName << MemExprE->getSourceRange();
7292      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7293      // FIXME: Leaking incoming expressions!
7294      return ExprError();
7295
7296    case OR_Deleted:
7297      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
7298        << Best->Function->isDeleted()
7299        << DeclName << MemExprE->getSourceRange();
7300      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7301      // FIXME: Leaking incoming expressions!
7302      return ExprError();
7303    }
7304
7305    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
7306
7307    // If overload resolution picked a static member, build a
7308    // non-member call based on that function.
7309    if (Method->isStatic()) {
7310      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
7311                                   Args, NumArgs, RParenLoc);
7312    }
7313
7314    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
7315  }
7316
7317  assert(Method && "Member call to something that isn't a method?");
7318  ExprOwningPtr<CXXMemberCallExpr>
7319    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
7320                                                  NumArgs,
7321                                  Method->getCallResultType(),
7322                                  RParenLoc));
7323
7324  // Check for a valid return type.
7325  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
7326                          TheCall.get(), Method))
7327    return ExprError();
7328
7329  // Convert the object argument (for a non-static member function call).
7330  // We only need to do this if there was actually an overload; otherwise
7331  // it was done at lookup.
7332  Expr *ObjectArg = MemExpr->getBase();
7333  if (!Method->isStatic() &&
7334      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
7335                                          FoundDecl, Method))
7336    return ExprError();
7337  MemExpr->setBase(ObjectArg);
7338
7339  // Convert the rest of the arguments
7340  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7341  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
7342                              RParenLoc))
7343    return ExprError();
7344
7345  if (CheckFunctionCall(Method, TheCall.get()))
7346    return ExprError();
7347
7348  return MaybeBindToTemporary(TheCall.release());
7349}
7350
7351/// BuildCallToObjectOfClassType - Build a call to an object of class
7352/// type (C++ [over.call.object]), which can end up invoking an
7353/// overloaded function call operator (@c operator()) or performing a
7354/// user-defined conversion on the object argument.
7355Sema::ExprResult
7356Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
7357                                   SourceLocation LParenLoc,
7358                                   Expr **Args, unsigned NumArgs,
7359                                   SourceLocation *CommaLocs,
7360                                   SourceLocation RParenLoc) {
7361  assert(Object->getType()->isRecordType() && "Requires object type argument");
7362  const RecordType *Record = Object->getType()->getAs<RecordType>();
7363
7364  // C++ [over.call.object]p1:
7365  //  If the primary-expression E in the function call syntax
7366  //  evaluates to a class object of type "cv T", then the set of
7367  //  candidate functions includes at least the function call
7368  //  operators of T. The function call operators of T are obtained by
7369  //  ordinary lookup of the name operator() in the context of
7370  //  (E).operator().
7371  OverloadCandidateSet CandidateSet(LParenLoc);
7372  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
7373
7374  if (RequireCompleteType(LParenLoc, Object->getType(),
7375                          PDiag(diag::err_incomplete_object_call)
7376                          << Object->getSourceRange()))
7377    return true;
7378
7379  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
7380  LookupQualifiedName(R, Record->getDecl());
7381  R.suppressDiagnostics();
7382
7383  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7384       Oper != OperEnd; ++Oper) {
7385    AddMethodCandidate(Oper.getPair(), Object->getType(),
7386                       Args, NumArgs, CandidateSet,
7387                       /*SuppressUserConversions=*/ false);
7388  }
7389
7390  // C++ [over.call.object]p2:
7391  //   In addition, for each conversion function declared in T of the
7392  //   form
7393  //
7394  //        operator conversion-type-id () cv-qualifier;
7395  //
7396  //   where cv-qualifier is the same cv-qualification as, or a
7397  //   greater cv-qualification than, cv, and where conversion-type-id
7398  //   denotes the type "pointer to function of (P1,...,Pn) returning
7399  //   R", or the type "reference to pointer to function of
7400  //   (P1,...,Pn) returning R", or the type "reference to function
7401  //   of (P1,...,Pn) returning R", a surrogate call function [...]
7402  //   is also considered as a candidate function. Similarly,
7403  //   surrogate call functions are added to the set of candidate
7404  //   functions for each conversion function declared in an
7405  //   accessible base class provided the function is not hidden
7406  //   within T by another intervening declaration.
7407  const UnresolvedSetImpl *Conversions
7408    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
7409  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
7410         E = Conversions->end(); I != E; ++I) {
7411    NamedDecl *D = *I;
7412    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
7413    if (isa<UsingShadowDecl>(D))
7414      D = cast<UsingShadowDecl>(D)->getTargetDecl();
7415
7416    // Skip over templated conversion functions; they aren't
7417    // surrogates.
7418    if (isa<FunctionTemplateDecl>(D))
7419      continue;
7420
7421    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7422
7423    // Strip the reference type (if any) and then the pointer type (if
7424    // any) to get down to what might be a function type.
7425    QualType ConvType = Conv->getConversionType().getNonReferenceType();
7426    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7427      ConvType = ConvPtrType->getPointeeType();
7428
7429    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
7430      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
7431                            Object->getType(), Args, NumArgs,
7432                            CandidateSet);
7433  }
7434
7435  // Perform overload resolution.
7436  OverloadCandidateSet::iterator Best;
7437  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
7438  case OR_Success:
7439    // Overload resolution succeeded; we'll build the appropriate call
7440    // below.
7441    break;
7442
7443  case OR_No_Viable_Function:
7444    if (CandidateSet.empty())
7445      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
7446        << Object->getType() << /*call*/ 1
7447        << Object->getSourceRange();
7448    else
7449      Diag(Object->getSourceRange().getBegin(),
7450           diag::err_ovl_no_viable_object_call)
7451        << Object->getType() << Object->getSourceRange();
7452    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7453    break;
7454
7455  case OR_Ambiguous:
7456    Diag(Object->getSourceRange().getBegin(),
7457         diag::err_ovl_ambiguous_object_call)
7458      << Object->getType() << Object->getSourceRange();
7459    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
7460    break;
7461
7462  case OR_Deleted:
7463    Diag(Object->getSourceRange().getBegin(),
7464         diag::err_ovl_deleted_object_call)
7465      << Best->Function->isDeleted()
7466      << Object->getType() << Object->getSourceRange();
7467    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7468    break;
7469  }
7470
7471  if (Best == CandidateSet.end())
7472    return true;
7473
7474  if (Best->Function == 0) {
7475    // Since there is no function declaration, this is one of the
7476    // surrogate candidates. Dig out the conversion function.
7477    CXXConversionDecl *Conv
7478      = cast<CXXConversionDecl>(
7479                         Best->Conversions[0].UserDefined.ConversionFunction);
7480
7481    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7482    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7483
7484    // We selected one of the surrogate functions that converts the
7485    // object parameter to a function pointer. Perform the conversion
7486    // on the object argument, then let ActOnCallExpr finish the job.
7487
7488    // Create an implicit member expr to refer to the conversion operator.
7489    // and then call it.
7490    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
7491                                                   Conv);
7492
7493    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
7494                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
7495                         CommaLocs, RParenLoc).result();
7496  }
7497
7498  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7499  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7500
7501  // We found an overloaded operator(). Build a CXXOperatorCallExpr
7502  // that calls this method, using Object for the implicit object
7503  // parameter and passing along the remaining arguments.
7504  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7505  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7506
7507  unsigned NumArgsInProto = Proto->getNumArgs();
7508  unsigned NumArgsToCheck = NumArgs;
7509
7510  // Build the full argument list for the method call (the
7511  // implicit object parameter is placed at the beginning of the
7512  // list).
7513  Expr **MethodArgs;
7514  if (NumArgs < NumArgsInProto) {
7515    NumArgsToCheck = NumArgsInProto;
7516    MethodArgs = new Expr*[NumArgsInProto + 1];
7517  } else {
7518    MethodArgs = new Expr*[NumArgs + 1];
7519  }
7520  MethodArgs[0] = Object;
7521  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7522    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
7523
7524  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
7525                                          SourceLocation());
7526  UsualUnaryConversions(NewFn);
7527
7528  // Once we've built TheCall, all of the expressions are properly
7529  // owned.
7530  QualType ResultTy = Method->getCallResultType();
7531  ExprOwningPtr<CXXOperatorCallExpr>
7532    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
7533                                                    MethodArgs, NumArgs + 1,
7534                                                    ResultTy, RParenLoc));
7535  delete [] MethodArgs;
7536
7537  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
7538                          Method))
7539    return true;
7540
7541  // We may have default arguments. If so, we need to allocate more
7542  // slots in the call for them.
7543  if (NumArgs < NumArgsInProto)
7544    TheCall->setNumArgs(Context, NumArgsInProto + 1);
7545  else if (NumArgs > NumArgsInProto)
7546    NumArgsToCheck = NumArgsInProto;
7547
7548  bool IsError = false;
7549
7550  // Initialize the implicit object parameter.
7551  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
7552                                                 Best->FoundDecl, Method);
7553  TheCall->setArg(0, Object);
7554
7555
7556  // Check the argument types.
7557  for (unsigned i = 0; i != NumArgsToCheck; i++) {
7558    Expr *Arg;
7559    if (i < NumArgs) {
7560      Arg = Args[i];
7561
7562      // Pass the argument.
7563
7564      OwningExprResult InputInit
7565        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7566                                                    Method->getParamDecl(i)),
7567                                    SourceLocation(), Owned(Arg));
7568
7569      IsError |= InputInit.isInvalid();
7570      Arg = InputInit.takeAs<Expr>();
7571    } else {
7572      OwningExprResult DefArg
7573        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
7574      if (DefArg.isInvalid()) {
7575        IsError = true;
7576        break;
7577      }
7578
7579      Arg = DefArg.takeAs<Expr>();
7580    }
7581
7582    TheCall->setArg(i + 1, Arg);
7583  }
7584
7585  // If this is a variadic call, handle args passed through "...".
7586  if (Proto->isVariadic()) {
7587    // Promote the arguments (C99 6.5.2.2p7).
7588    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
7589      Expr *Arg = Args[i];
7590      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
7591      TheCall->setArg(i + 1, Arg);
7592    }
7593  }
7594
7595  if (IsError) return true;
7596
7597  if (CheckFunctionCall(Method, TheCall.get()))
7598    return true;
7599
7600  return MaybeBindToTemporary(TheCall.release()).result();
7601}
7602
7603/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
7604///  (if one exists), where @c Base is an expression of class type and
7605/// @c Member is the name of the member we're trying to find.
7606Sema::OwningExprResult
7607Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
7608  Expr *Base = static_cast<Expr *>(BaseIn.get());
7609  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
7610
7611  SourceLocation Loc = Base->getExprLoc();
7612
7613  // C++ [over.ref]p1:
7614  //
7615  //   [...] An expression x->m is interpreted as (x.operator->())->m
7616  //   for a class object x of type T if T::operator->() exists and if
7617  //   the operator is selected as the best match function by the
7618  //   overload resolution mechanism (13.3).
7619  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
7620  OverloadCandidateSet CandidateSet(Loc);
7621  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
7622
7623  if (RequireCompleteType(Loc, Base->getType(),
7624                          PDiag(diag::err_typecheck_incomplete_tag)
7625                            << Base->getSourceRange()))
7626    return ExprError();
7627
7628  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
7629  LookupQualifiedName(R, BaseRecord->getDecl());
7630  R.suppressDiagnostics();
7631
7632  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7633       Oper != OperEnd; ++Oper) {
7634    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
7635                       /*SuppressUserConversions=*/false);
7636  }
7637
7638  // Perform overload resolution.
7639  OverloadCandidateSet::iterator Best;
7640  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
7641  case OR_Success:
7642    // Overload resolution succeeded; we'll build the call below.
7643    break;
7644
7645  case OR_No_Viable_Function:
7646    if (CandidateSet.empty())
7647      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7648        << Base->getType() << Base->getSourceRange();
7649    else
7650      Diag(OpLoc, diag::err_ovl_no_viable_oper)
7651        << "operator->" << Base->getSourceRange();
7652    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7653    return ExprError();
7654
7655  case OR_Ambiguous:
7656    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7657      << "->" << Base->getSourceRange();
7658    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
7659    return ExprError();
7660
7661  case OR_Deleted:
7662    Diag(OpLoc,  diag::err_ovl_deleted_oper)
7663      << Best->Function->isDeleted()
7664      << "->" << Base->getSourceRange();
7665    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7666    return ExprError();
7667  }
7668
7669  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
7670  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7671
7672  // Convert the object parameter.
7673  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7674  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
7675                                          Best->FoundDecl, Method))
7676    return ExprError();
7677
7678  // No concerns about early exits now.
7679  BaseIn.release();
7680
7681  // Build the operator call.
7682  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
7683                                           SourceLocation());
7684  UsualUnaryConversions(FnExpr);
7685
7686  QualType ResultTy = Method->getCallResultType();
7687  ExprOwningPtr<CXXOperatorCallExpr>
7688    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
7689                                                    &Base, 1, ResultTy, OpLoc));
7690
7691  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
7692                          Method))
7693          return ExprError();
7694  return move(TheCall);
7695}
7696
7697/// FixOverloadedFunctionReference - E is an expression that refers to
7698/// a C++ overloaded function (possibly with some parentheses and
7699/// perhaps a '&' around it). We have resolved the overloaded function
7700/// to the function declaration Fn, so patch up the expression E to
7701/// refer (possibly indirectly) to Fn. Returns the new expr.
7702Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
7703                                           FunctionDecl *Fn) {
7704  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7705    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
7706                                                   Found, Fn);
7707    if (SubExpr == PE->getSubExpr())
7708      return PE->Retain();
7709
7710    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
7711  }
7712
7713  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7714    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
7715                                                   Found, Fn);
7716    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
7717                               SubExpr->getType()) &&
7718           "Implicit cast type cannot be determined from overload");
7719    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
7720    if (SubExpr == ICE->getSubExpr())
7721      return ICE->Retain();
7722
7723    return ImplicitCastExpr::Create(Context, ICE->getType(),
7724                                    ICE->getCastKind(),
7725                                    SubExpr, 0,
7726                                    ICE->getCategory());
7727  }
7728
7729  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
7730    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
7731           "Can only take the address of an overloaded function");
7732    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7733      if (Method->isStatic()) {
7734        // Do nothing: static member functions aren't any different
7735        // from non-member functions.
7736      } else {
7737        // Fix the sub expression, which really has to be an
7738        // UnresolvedLookupExpr holding an overloaded member function
7739        // or template.
7740        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7741                                                       Found, Fn);
7742        if (SubExpr == UnOp->getSubExpr())
7743          return UnOp->Retain();
7744
7745        assert(isa<DeclRefExpr>(SubExpr)
7746               && "fixed to something other than a decl ref");
7747        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
7748               && "fixed to a member ref with no nested name qualifier");
7749
7750        // We have taken the address of a pointer to member
7751        // function. Perform the computation here so that we get the
7752        // appropriate pointer to member type.
7753        QualType ClassType
7754          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
7755        QualType MemPtrType
7756          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
7757
7758        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7759                                           MemPtrType, UnOp->getOperatorLoc());
7760      }
7761    }
7762    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7763                                                   Found, Fn);
7764    if (SubExpr == UnOp->getSubExpr())
7765      return UnOp->Retain();
7766
7767    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7768                                     Context.getPointerType(SubExpr->getType()),
7769                                       UnOp->getOperatorLoc());
7770  }
7771
7772  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
7773    // FIXME: avoid copy.
7774    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7775    if (ULE->hasExplicitTemplateArgs()) {
7776      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
7777      TemplateArgs = &TemplateArgsBuffer;
7778    }
7779
7780    return DeclRefExpr::Create(Context,
7781                               ULE->getQualifier(),
7782                               ULE->getQualifierRange(),
7783                               Fn,
7784                               ULE->getNameLoc(),
7785                               Fn->getType(),
7786                               TemplateArgs);
7787  }
7788
7789  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
7790    // FIXME: avoid copy.
7791    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7792    if (MemExpr->hasExplicitTemplateArgs()) {
7793      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7794      TemplateArgs = &TemplateArgsBuffer;
7795    }
7796
7797    Expr *Base;
7798
7799    // If we're filling in
7800    if (MemExpr->isImplicitAccess()) {
7801      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
7802        return DeclRefExpr::Create(Context,
7803                                   MemExpr->getQualifier(),
7804                                   MemExpr->getQualifierRange(),
7805                                   Fn,
7806                                   MemExpr->getMemberLoc(),
7807                                   Fn->getType(),
7808                                   TemplateArgs);
7809      } else {
7810        SourceLocation Loc = MemExpr->getMemberLoc();
7811        if (MemExpr->getQualifier())
7812          Loc = MemExpr->getQualifierRange().getBegin();
7813        Base = new (Context) CXXThisExpr(Loc,
7814                                         MemExpr->getBaseType(),
7815                                         /*isImplicit=*/true);
7816      }
7817    } else
7818      Base = MemExpr->getBase()->Retain();
7819
7820    return MemberExpr::Create(Context, Base,
7821                              MemExpr->isArrow(),
7822                              MemExpr->getQualifier(),
7823                              MemExpr->getQualifierRange(),
7824                              Fn,
7825                              Found,
7826                              MemExpr->getMemberNameInfo(),
7827                              TemplateArgs,
7828                              Fn->getType());
7829  }
7830
7831  assert(false && "Invalid reference to overloaded function");
7832  return E->Retain();
7833}
7834
7835Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
7836                                                          DeclAccessPair Found,
7837                                                            FunctionDecl *Fn) {
7838  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
7839}
7840
7841} // end namespace clang
7842