SemaOverload.cpp revision a6dc7eff27a8c59bee42809270971931b811dd44
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static ExprResult 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates, 41 SourceLocation Loc = SourceLocation(), 42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 43 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(), 44 VK_LValue, Loc, LocInfo); 45 if (HadMultipleCandidates) 46 DRE->setHadMultipleCandidates(true); 47 ExprResult E = S.Owned(DRE); 48 E = S.DefaultFunctionArrayConversion(E.take()); 49 if (E.isInvalid()) 50 return ExprError(); 51 return move(E); 52} 53 54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 55 bool InOverloadResolution, 56 StandardConversionSequence &SCS, 57 bool CStyle, 58 bool AllowObjCWritebackConversion); 59 60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 61 QualType &ToType, 62 bool InOverloadResolution, 63 StandardConversionSequence &SCS, 64 bool CStyle); 65static OverloadingResult 66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 67 UserDefinedConversionSequence& User, 68 OverloadCandidateSet& Conversions, 69 bool AllowExplicit); 70 71 72static ImplicitConversionSequence::CompareKind 73CompareStandardConversionSequences(Sema &S, 74 const StandardConversionSequence& SCS1, 75 const StandardConversionSequence& SCS2); 76 77static ImplicitConversionSequence::CompareKind 78CompareQualificationConversions(Sema &S, 79 const StandardConversionSequence& SCS1, 80 const StandardConversionSequence& SCS2); 81 82static ImplicitConversionSequence::CompareKind 83CompareDerivedToBaseConversions(Sema &S, 84 const StandardConversionSequence& SCS1, 85 const StandardConversionSequence& SCS2); 86 87 88 89/// GetConversionCategory - Retrieve the implicit conversion 90/// category corresponding to the given implicit conversion kind. 91ImplicitConversionCategory 92GetConversionCategory(ImplicitConversionKind Kind) { 93 static const ImplicitConversionCategory 94 Category[(int)ICK_Num_Conversion_Kinds] = { 95 ICC_Identity, 96 ICC_Lvalue_Transformation, 97 ICC_Lvalue_Transformation, 98 ICC_Lvalue_Transformation, 99 ICC_Identity, 100 ICC_Qualification_Adjustment, 101 ICC_Promotion, 102 ICC_Promotion, 103 ICC_Promotion, 104 ICC_Conversion, 105 ICC_Conversion, 106 ICC_Conversion, 107 ICC_Conversion, 108 ICC_Conversion, 109 ICC_Conversion, 110 ICC_Conversion, 111 ICC_Conversion, 112 ICC_Conversion, 113 ICC_Conversion, 114 ICC_Conversion, 115 ICC_Conversion, 116 ICC_Conversion 117 }; 118 return Category[(int)Kind]; 119} 120 121/// GetConversionRank - Retrieve the implicit conversion rank 122/// corresponding to the given implicit conversion kind. 123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 124 static const ImplicitConversionRank 125 Rank[(int)ICK_Num_Conversion_Kinds] = { 126 ICR_Exact_Match, 127 ICR_Exact_Match, 128 ICR_Exact_Match, 129 ICR_Exact_Match, 130 ICR_Exact_Match, 131 ICR_Exact_Match, 132 ICR_Promotion, 133 ICR_Promotion, 134 ICR_Promotion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Conversion, 146 ICR_Complex_Real_Conversion, 147 ICR_Conversion, 148 ICR_Conversion, 149 ICR_Writeback_Conversion 150 }; 151 return Rank[(int)Kind]; 152} 153 154/// GetImplicitConversionName - Return the name of this kind of 155/// implicit conversion. 156const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 157 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 158 "No conversion", 159 "Lvalue-to-rvalue", 160 "Array-to-pointer", 161 "Function-to-pointer", 162 "Noreturn adjustment", 163 "Qualification", 164 "Integral promotion", 165 "Floating point promotion", 166 "Complex promotion", 167 "Integral conversion", 168 "Floating conversion", 169 "Complex conversion", 170 "Floating-integral conversion", 171 "Pointer conversion", 172 "Pointer-to-member conversion", 173 "Boolean conversion", 174 "Compatible-types conversion", 175 "Derived-to-base conversion", 176 "Vector conversion", 177 "Vector splat", 178 "Complex-real conversion", 179 "Block Pointer conversion", 180 "Transparent Union Conversion" 181 "Writeback conversion" 182 }; 183 return Name[Kind]; 184} 185 186/// StandardConversionSequence - Set the standard conversion 187/// sequence to the identity conversion. 188void StandardConversionSequence::setAsIdentityConversion() { 189 First = ICK_Identity; 190 Second = ICK_Identity; 191 Third = ICK_Identity; 192 DeprecatedStringLiteralToCharPtr = false; 193 QualificationIncludesObjCLifetime = false; 194 ReferenceBinding = false; 195 DirectBinding = false; 196 IsLvalueReference = true; 197 BindsToFunctionLvalue = false; 198 BindsToRvalue = false; 199 BindsImplicitObjectArgumentWithoutRefQualifier = false; 200 ObjCLifetimeConversionBinding = false; 201 CopyConstructor = 0; 202} 203 204/// getRank - Retrieve the rank of this standard conversion sequence 205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 206/// implicit conversions. 207ImplicitConversionRank StandardConversionSequence::getRank() const { 208 ImplicitConversionRank Rank = ICR_Exact_Match; 209 if (GetConversionRank(First) > Rank) 210 Rank = GetConversionRank(First); 211 if (GetConversionRank(Second) > Rank) 212 Rank = GetConversionRank(Second); 213 if (GetConversionRank(Third) > Rank) 214 Rank = GetConversionRank(Third); 215 return Rank; 216} 217 218/// isPointerConversionToBool - Determines whether this conversion is 219/// a conversion of a pointer or pointer-to-member to bool. This is 220/// used as part of the ranking of standard conversion sequences 221/// (C++ 13.3.3.2p4). 222bool StandardConversionSequence::isPointerConversionToBool() const { 223 // Note that FromType has not necessarily been transformed by the 224 // array-to-pointer or function-to-pointer implicit conversions, so 225 // check for their presence as well as checking whether FromType is 226 // a pointer. 227 if (getToType(1)->isBooleanType() && 228 (getFromType()->isPointerType() || 229 getFromType()->isObjCObjectPointerType() || 230 getFromType()->isBlockPointerType() || 231 getFromType()->isNullPtrType() || 232 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 233 return true; 234 235 return false; 236} 237 238/// isPointerConversionToVoidPointer - Determines whether this 239/// conversion is a conversion of a pointer to a void pointer. This is 240/// used as part of the ranking of standard conversion sequences (C++ 241/// 13.3.3.2p4). 242bool 243StandardConversionSequence:: 244isPointerConversionToVoidPointer(ASTContext& Context) const { 245 QualType FromType = getFromType(); 246 QualType ToType = getToType(1); 247 248 // Note that FromType has not necessarily been transformed by the 249 // array-to-pointer implicit conversion, so check for its presence 250 // and redo the conversion to get a pointer. 251 if (First == ICK_Array_To_Pointer) 252 FromType = Context.getArrayDecayedType(FromType); 253 254 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 255 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 256 return ToPtrType->getPointeeType()->isVoidType(); 257 258 return false; 259} 260 261/// DebugPrint - Print this standard conversion sequence to standard 262/// error. Useful for debugging overloading issues. 263void StandardConversionSequence::DebugPrint() const { 264 raw_ostream &OS = llvm::errs(); 265 bool PrintedSomething = false; 266 if (First != ICK_Identity) { 267 OS << GetImplicitConversionName(First); 268 PrintedSomething = true; 269 } 270 271 if (Second != ICK_Identity) { 272 if (PrintedSomething) { 273 OS << " -> "; 274 } 275 OS << GetImplicitConversionName(Second); 276 277 if (CopyConstructor) { 278 OS << " (by copy constructor)"; 279 } else if (DirectBinding) { 280 OS << " (direct reference binding)"; 281 } else if (ReferenceBinding) { 282 OS << " (reference binding)"; 283 } 284 PrintedSomething = true; 285 } 286 287 if (Third != ICK_Identity) { 288 if (PrintedSomething) { 289 OS << " -> "; 290 } 291 OS << GetImplicitConversionName(Third); 292 PrintedSomething = true; 293 } 294 295 if (!PrintedSomething) { 296 OS << "No conversions required"; 297 } 298} 299 300/// DebugPrint - Print this user-defined conversion sequence to standard 301/// error. Useful for debugging overloading issues. 302void UserDefinedConversionSequence::DebugPrint() const { 303 raw_ostream &OS = llvm::errs(); 304 if (Before.First || Before.Second || Before.Third) { 305 Before.DebugPrint(); 306 OS << " -> "; 307 } 308 if (ConversionFunction) 309 OS << '\'' << *ConversionFunction << '\''; 310 else 311 OS << "aggregate initialization"; 312 if (After.First || After.Second || After.Third) { 313 OS << " -> "; 314 After.DebugPrint(); 315 } 316} 317 318/// DebugPrint - Print this implicit conversion sequence to standard 319/// error. Useful for debugging overloading issues. 320void ImplicitConversionSequence::DebugPrint() const { 321 raw_ostream &OS = llvm::errs(); 322 switch (ConversionKind) { 323 case StandardConversion: 324 OS << "Standard conversion: "; 325 Standard.DebugPrint(); 326 break; 327 case UserDefinedConversion: 328 OS << "User-defined conversion: "; 329 UserDefined.DebugPrint(); 330 break; 331 case EllipsisConversion: 332 OS << "Ellipsis conversion"; 333 break; 334 case AmbiguousConversion: 335 OS << "Ambiguous conversion"; 336 break; 337 case BadConversion: 338 OS << "Bad conversion"; 339 break; 340 } 341 342 OS << "\n"; 343} 344 345void AmbiguousConversionSequence::construct() { 346 new (&conversions()) ConversionSet(); 347} 348 349void AmbiguousConversionSequence::destruct() { 350 conversions().~ConversionSet(); 351} 352 353void 354AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 355 FromTypePtr = O.FromTypePtr; 356 ToTypePtr = O.ToTypePtr; 357 new (&conversions()) ConversionSet(O.conversions()); 358} 359 360namespace { 361 // Structure used by OverloadCandidate::DeductionFailureInfo to store 362 // template parameter and template argument information. 363 struct DFIParamWithArguments { 364 TemplateParameter Param; 365 TemplateArgument FirstArg; 366 TemplateArgument SecondArg; 367 }; 368} 369 370/// \brief Convert from Sema's representation of template deduction information 371/// to the form used in overload-candidate information. 372OverloadCandidate::DeductionFailureInfo 373static MakeDeductionFailureInfo(ASTContext &Context, 374 Sema::TemplateDeductionResult TDK, 375 TemplateDeductionInfo &Info) { 376 OverloadCandidate::DeductionFailureInfo Result; 377 Result.Result = static_cast<unsigned>(TDK); 378 Result.Data = 0; 379 switch (TDK) { 380 case Sema::TDK_Success: 381 case Sema::TDK_InstantiationDepth: 382 case Sema::TDK_TooManyArguments: 383 case Sema::TDK_TooFewArguments: 384 break; 385 386 case Sema::TDK_Incomplete: 387 case Sema::TDK_InvalidExplicitArguments: 388 Result.Data = Info.Param.getOpaqueValue(); 389 break; 390 391 case Sema::TDK_Inconsistent: 392 case Sema::TDK_Underqualified: { 393 // FIXME: Should allocate from normal heap so that we can free this later. 394 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 395 Saved->Param = Info.Param; 396 Saved->FirstArg = Info.FirstArg; 397 Saved->SecondArg = Info.SecondArg; 398 Result.Data = Saved; 399 break; 400 } 401 402 case Sema::TDK_SubstitutionFailure: 403 Result.Data = Info.take(); 404 break; 405 406 case Sema::TDK_NonDeducedMismatch: 407 case Sema::TDK_FailedOverloadResolution: 408 break; 409 } 410 411 return Result; 412} 413 414void OverloadCandidate::DeductionFailureInfo::Destroy() { 415 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 416 case Sema::TDK_Success: 417 case Sema::TDK_InstantiationDepth: 418 case Sema::TDK_Incomplete: 419 case Sema::TDK_TooManyArguments: 420 case Sema::TDK_TooFewArguments: 421 case Sema::TDK_InvalidExplicitArguments: 422 break; 423 424 case Sema::TDK_Inconsistent: 425 case Sema::TDK_Underqualified: 426 // FIXME: Destroy the data? 427 Data = 0; 428 break; 429 430 case Sema::TDK_SubstitutionFailure: 431 // FIXME: Destroy the template arugment list? 432 Data = 0; 433 break; 434 435 // Unhandled 436 case Sema::TDK_NonDeducedMismatch: 437 case Sema::TDK_FailedOverloadResolution: 438 break; 439 } 440} 441 442TemplateParameter 443OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 444 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 445 case Sema::TDK_Success: 446 case Sema::TDK_InstantiationDepth: 447 case Sema::TDK_TooManyArguments: 448 case Sema::TDK_TooFewArguments: 449 case Sema::TDK_SubstitutionFailure: 450 return TemplateParameter(); 451 452 case Sema::TDK_Incomplete: 453 case Sema::TDK_InvalidExplicitArguments: 454 return TemplateParameter::getFromOpaqueValue(Data); 455 456 case Sema::TDK_Inconsistent: 457 case Sema::TDK_Underqualified: 458 return static_cast<DFIParamWithArguments*>(Data)->Param; 459 460 // Unhandled 461 case Sema::TDK_NonDeducedMismatch: 462 case Sema::TDK_FailedOverloadResolution: 463 break; 464 } 465 466 return TemplateParameter(); 467} 468 469TemplateArgumentList * 470OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 471 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 472 case Sema::TDK_Success: 473 case Sema::TDK_InstantiationDepth: 474 case Sema::TDK_TooManyArguments: 475 case Sema::TDK_TooFewArguments: 476 case Sema::TDK_Incomplete: 477 case Sema::TDK_InvalidExplicitArguments: 478 case Sema::TDK_Inconsistent: 479 case Sema::TDK_Underqualified: 480 return 0; 481 482 case Sema::TDK_SubstitutionFailure: 483 return static_cast<TemplateArgumentList*>(Data); 484 485 // Unhandled 486 case Sema::TDK_NonDeducedMismatch: 487 case Sema::TDK_FailedOverloadResolution: 488 break; 489 } 490 491 return 0; 492} 493 494const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 495 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 496 case Sema::TDK_Success: 497 case Sema::TDK_InstantiationDepth: 498 case Sema::TDK_Incomplete: 499 case Sema::TDK_TooManyArguments: 500 case Sema::TDK_TooFewArguments: 501 case Sema::TDK_InvalidExplicitArguments: 502 case Sema::TDK_SubstitutionFailure: 503 return 0; 504 505 case Sema::TDK_Inconsistent: 506 case Sema::TDK_Underqualified: 507 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 508 509 // Unhandled 510 case Sema::TDK_NonDeducedMismatch: 511 case Sema::TDK_FailedOverloadResolution: 512 break; 513 } 514 515 return 0; 516} 517 518const TemplateArgument * 519OverloadCandidate::DeductionFailureInfo::getSecondArg() { 520 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 521 case Sema::TDK_Success: 522 case Sema::TDK_InstantiationDepth: 523 case Sema::TDK_Incomplete: 524 case Sema::TDK_TooManyArguments: 525 case Sema::TDK_TooFewArguments: 526 case Sema::TDK_InvalidExplicitArguments: 527 case Sema::TDK_SubstitutionFailure: 528 return 0; 529 530 case Sema::TDK_Inconsistent: 531 case Sema::TDK_Underqualified: 532 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 533 534 // Unhandled 535 case Sema::TDK_NonDeducedMismatch: 536 case Sema::TDK_FailedOverloadResolution: 537 break; 538 } 539 540 return 0; 541} 542 543void OverloadCandidateSet::clear() { 544 inherited::clear(); 545 Functions.clear(); 546} 547 548namespace { 549 class UnbridgedCastsSet { 550 struct Entry { 551 Expr **Addr; 552 Expr *Saved; 553 }; 554 SmallVector<Entry, 2> Entries; 555 556 public: 557 void save(Sema &S, Expr *&E) { 558 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 559 Entry entry = { &E, E }; 560 Entries.push_back(entry); 561 E = S.stripARCUnbridgedCast(E); 562 } 563 564 void restore() { 565 for (SmallVectorImpl<Entry>::iterator 566 i = Entries.begin(), e = Entries.end(); i != e; ++i) 567 *i->Addr = i->Saved; 568 } 569 }; 570} 571 572/// checkPlaceholderForOverload - Do any interesting placeholder-like 573/// preprocessing on the given expression. 574/// 575/// \param unbridgedCasts a collection to which to add unbridged casts; 576/// without this, they will be immediately diagnosed as errors 577/// 578/// Return true on unrecoverable error. 579static bool checkPlaceholderForOverload(Sema &S, Expr *&E, 580 UnbridgedCastsSet *unbridgedCasts = 0) { 581 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 582 // We can't handle overloaded expressions here because overload 583 // resolution might reasonably tweak them. 584 if (placeholder->getKind() == BuiltinType::Overload) return false; 585 586 // If the context potentially accepts unbridged ARC casts, strip 587 // the unbridged cast and add it to the collection for later restoration. 588 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 589 unbridgedCasts) { 590 unbridgedCasts->save(S, E); 591 return false; 592 } 593 594 // Go ahead and check everything else. 595 ExprResult result = S.CheckPlaceholderExpr(E); 596 if (result.isInvalid()) 597 return true; 598 599 E = result.take(); 600 return false; 601 } 602 603 // Nothing to do. 604 return false; 605} 606 607/// checkArgPlaceholdersForOverload - Check a set of call operands for 608/// placeholders. 609static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args, 610 unsigned numArgs, 611 UnbridgedCastsSet &unbridged) { 612 for (unsigned i = 0; i != numArgs; ++i) 613 if (checkPlaceholderForOverload(S, args[i], &unbridged)) 614 return true; 615 616 return false; 617} 618 619// IsOverload - Determine whether the given New declaration is an 620// overload of the declarations in Old. This routine returns false if 621// New and Old cannot be overloaded, e.g., if New has the same 622// signature as some function in Old (C++ 1.3.10) or if the Old 623// declarations aren't functions (or function templates) at all. When 624// it does return false, MatchedDecl will point to the decl that New 625// cannot be overloaded with. This decl may be a UsingShadowDecl on 626// top of the underlying declaration. 627// 628// Example: Given the following input: 629// 630// void f(int, float); // #1 631// void f(int, int); // #2 632// int f(int, int); // #3 633// 634// When we process #1, there is no previous declaration of "f", 635// so IsOverload will not be used. 636// 637// When we process #2, Old contains only the FunctionDecl for #1. By 638// comparing the parameter types, we see that #1 and #2 are overloaded 639// (since they have different signatures), so this routine returns 640// false; MatchedDecl is unchanged. 641// 642// When we process #3, Old is an overload set containing #1 and #2. We 643// compare the signatures of #3 to #1 (they're overloaded, so we do 644// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 645// identical (return types of functions are not part of the 646// signature), IsOverload returns false and MatchedDecl will be set to 647// point to the FunctionDecl for #2. 648// 649// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 650// into a class by a using declaration. The rules for whether to hide 651// shadow declarations ignore some properties which otherwise figure 652// into a function template's signature. 653Sema::OverloadKind 654Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 655 NamedDecl *&Match, bool NewIsUsingDecl) { 656 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 657 I != E; ++I) { 658 NamedDecl *OldD = *I; 659 660 bool OldIsUsingDecl = false; 661 if (isa<UsingShadowDecl>(OldD)) { 662 OldIsUsingDecl = true; 663 664 // We can always introduce two using declarations into the same 665 // context, even if they have identical signatures. 666 if (NewIsUsingDecl) continue; 667 668 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 669 } 670 671 // If either declaration was introduced by a using declaration, 672 // we'll need to use slightly different rules for matching. 673 // Essentially, these rules are the normal rules, except that 674 // function templates hide function templates with different 675 // return types or template parameter lists. 676 bool UseMemberUsingDeclRules = 677 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 678 679 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 680 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 681 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 682 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 683 continue; 684 } 685 686 Match = *I; 687 return Ovl_Match; 688 } 689 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 690 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 691 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 692 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 693 continue; 694 } 695 696 Match = *I; 697 return Ovl_Match; 698 } 699 } else if (isa<UsingDecl>(OldD)) { 700 // We can overload with these, which can show up when doing 701 // redeclaration checks for UsingDecls. 702 assert(Old.getLookupKind() == LookupUsingDeclName); 703 } else if (isa<TagDecl>(OldD)) { 704 // We can always overload with tags by hiding them. 705 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 706 // Optimistically assume that an unresolved using decl will 707 // overload; if it doesn't, we'll have to diagnose during 708 // template instantiation. 709 } else { 710 // (C++ 13p1): 711 // Only function declarations can be overloaded; object and type 712 // declarations cannot be overloaded. 713 Match = *I; 714 return Ovl_NonFunction; 715 } 716 } 717 718 return Ovl_Overload; 719} 720 721bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 722 bool UseUsingDeclRules) { 723 // If both of the functions are extern "C", then they are not 724 // overloads. 725 if (Old->isExternC() && New->isExternC()) 726 return false; 727 728 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 729 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 730 731 // C++ [temp.fct]p2: 732 // A function template can be overloaded with other function templates 733 // and with normal (non-template) functions. 734 if ((OldTemplate == 0) != (NewTemplate == 0)) 735 return true; 736 737 // Is the function New an overload of the function Old? 738 QualType OldQType = Context.getCanonicalType(Old->getType()); 739 QualType NewQType = Context.getCanonicalType(New->getType()); 740 741 // Compare the signatures (C++ 1.3.10) of the two functions to 742 // determine whether they are overloads. If we find any mismatch 743 // in the signature, they are overloads. 744 745 // If either of these functions is a K&R-style function (no 746 // prototype), then we consider them to have matching signatures. 747 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 748 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 749 return false; 750 751 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 752 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 753 754 // The signature of a function includes the types of its 755 // parameters (C++ 1.3.10), which includes the presence or absence 756 // of the ellipsis; see C++ DR 357). 757 if (OldQType != NewQType && 758 (OldType->getNumArgs() != NewType->getNumArgs() || 759 OldType->isVariadic() != NewType->isVariadic() || 760 !FunctionArgTypesAreEqual(OldType, NewType))) 761 return true; 762 763 // C++ [temp.over.link]p4: 764 // The signature of a function template consists of its function 765 // signature, its return type and its template parameter list. The names 766 // of the template parameters are significant only for establishing the 767 // relationship between the template parameters and the rest of the 768 // signature. 769 // 770 // We check the return type and template parameter lists for function 771 // templates first; the remaining checks follow. 772 // 773 // However, we don't consider either of these when deciding whether 774 // a member introduced by a shadow declaration is hidden. 775 if (!UseUsingDeclRules && NewTemplate && 776 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 777 OldTemplate->getTemplateParameters(), 778 false, TPL_TemplateMatch) || 779 OldType->getResultType() != NewType->getResultType())) 780 return true; 781 782 // If the function is a class member, its signature includes the 783 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 784 // 785 // As part of this, also check whether one of the member functions 786 // is static, in which case they are not overloads (C++ 787 // 13.1p2). While not part of the definition of the signature, 788 // this check is important to determine whether these functions 789 // can be overloaded. 790 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 791 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 792 if (OldMethod && NewMethod && 793 !OldMethod->isStatic() && !NewMethod->isStatic() && 794 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 795 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 796 if (!UseUsingDeclRules && 797 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 798 (OldMethod->getRefQualifier() == RQ_None || 799 NewMethod->getRefQualifier() == RQ_None)) { 800 // C++0x [over.load]p2: 801 // - Member function declarations with the same name and the same 802 // parameter-type-list as well as member function template 803 // declarations with the same name, the same parameter-type-list, and 804 // the same template parameter lists cannot be overloaded if any of 805 // them, but not all, have a ref-qualifier (8.3.5). 806 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 807 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 808 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 809 } 810 811 return true; 812 } 813 814 // The signatures match; this is not an overload. 815 return false; 816} 817 818/// \brief Checks availability of the function depending on the current 819/// function context. Inside an unavailable function, unavailability is ignored. 820/// 821/// \returns true if \arg FD is unavailable and current context is inside 822/// an available function, false otherwise. 823bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 824 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); 825} 826 827/// TryImplicitConversion - Attempt to perform an implicit conversion 828/// from the given expression (Expr) to the given type (ToType). This 829/// function returns an implicit conversion sequence that can be used 830/// to perform the initialization. Given 831/// 832/// void f(float f); 833/// void g(int i) { f(i); } 834/// 835/// this routine would produce an implicit conversion sequence to 836/// describe the initialization of f from i, which will be a standard 837/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 838/// 4.1) followed by a floating-integral conversion (C++ 4.9). 839// 840/// Note that this routine only determines how the conversion can be 841/// performed; it does not actually perform the conversion. As such, 842/// it will not produce any diagnostics if no conversion is available, 843/// but will instead return an implicit conversion sequence of kind 844/// "BadConversion". 845/// 846/// If @p SuppressUserConversions, then user-defined conversions are 847/// not permitted. 848/// If @p AllowExplicit, then explicit user-defined conversions are 849/// permitted. 850/// 851/// \param AllowObjCWritebackConversion Whether we allow the Objective-C 852/// writeback conversion, which allows __autoreleasing id* parameters to 853/// be initialized with __strong id* or __weak id* arguments. 854static ImplicitConversionSequence 855TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 856 bool SuppressUserConversions, 857 bool AllowExplicit, 858 bool InOverloadResolution, 859 bool CStyle, 860 bool AllowObjCWritebackConversion) { 861 ImplicitConversionSequence ICS; 862 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 863 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 864 ICS.setStandard(); 865 return ICS; 866 } 867 868 if (!S.getLangOptions().CPlusPlus) { 869 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 870 return ICS; 871 } 872 873 // C++ [over.ics.user]p4: 874 // A conversion of an expression of class type to the same class 875 // type is given Exact Match rank, and a conversion of an 876 // expression of class type to a base class of that type is 877 // given Conversion rank, in spite of the fact that a copy/move 878 // constructor (i.e., a user-defined conversion function) is 879 // called for those cases. 880 QualType FromType = From->getType(); 881 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 882 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 883 S.IsDerivedFrom(FromType, ToType))) { 884 ICS.setStandard(); 885 ICS.Standard.setAsIdentityConversion(); 886 ICS.Standard.setFromType(FromType); 887 ICS.Standard.setAllToTypes(ToType); 888 889 // We don't actually check at this point whether there is a valid 890 // copy/move constructor, since overloading just assumes that it 891 // exists. When we actually perform initialization, we'll find the 892 // appropriate constructor to copy the returned object, if needed. 893 ICS.Standard.CopyConstructor = 0; 894 895 // Determine whether this is considered a derived-to-base conversion. 896 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 897 ICS.Standard.Second = ICK_Derived_To_Base; 898 899 return ICS; 900 } 901 902 if (SuppressUserConversions) { 903 // We're not in the case above, so there is no conversion that 904 // we can perform. 905 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 906 return ICS; 907 } 908 909 // Attempt user-defined conversion. 910 OverloadCandidateSet Conversions(From->getExprLoc()); 911 OverloadingResult UserDefResult 912 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 913 AllowExplicit); 914 915 if (UserDefResult == OR_Success) { 916 ICS.setUserDefined(); 917 // C++ [over.ics.user]p4: 918 // A conversion of an expression of class type to the same class 919 // type is given Exact Match rank, and a conversion of an 920 // expression of class type to a base class of that type is 921 // given Conversion rank, in spite of the fact that a copy 922 // constructor (i.e., a user-defined conversion function) is 923 // called for those cases. 924 if (CXXConstructorDecl *Constructor 925 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 926 QualType FromCanon 927 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 928 QualType ToCanon 929 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 930 if (Constructor->isCopyConstructor() && 931 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 932 // Turn this into a "standard" conversion sequence, so that it 933 // gets ranked with standard conversion sequences. 934 ICS.setStandard(); 935 ICS.Standard.setAsIdentityConversion(); 936 ICS.Standard.setFromType(From->getType()); 937 ICS.Standard.setAllToTypes(ToType); 938 ICS.Standard.CopyConstructor = Constructor; 939 if (ToCanon != FromCanon) 940 ICS.Standard.Second = ICK_Derived_To_Base; 941 } 942 } 943 944 // C++ [over.best.ics]p4: 945 // However, when considering the argument of a user-defined 946 // conversion function that is a candidate by 13.3.1.3 when 947 // invoked for the copying of the temporary in the second step 948 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 949 // 13.3.1.6 in all cases, only standard conversion sequences and 950 // ellipsis conversion sequences are allowed. 951 if (SuppressUserConversions && ICS.isUserDefined()) { 952 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 953 } 954 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 955 ICS.setAmbiguous(); 956 ICS.Ambiguous.setFromType(From->getType()); 957 ICS.Ambiguous.setToType(ToType); 958 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 959 Cand != Conversions.end(); ++Cand) 960 if (Cand->Viable) 961 ICS.Ambiguous.addConversion(Cand->Function); 962 } else { 963 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 964 } 965 966 return ICS; 967} 968 969ImplicitConversionSequence 970Sema::TryImplicitConversion(Expr *From, QualType ToType, 971 bool SuppressUserConversions, 972 bool AllowExplicit, 973 bool InOverloadResolution, 974 bool CStyle, 975 bool AllowObjCWritebackConversion) { 976 return clang::TryImplicitConversion(*this, From, ToType, 977 SuppressUserConversions, AllowExplicit, 978 InOverloadResolution, CStyle, 979 AllowObjCWritebackConversion); 980} 981 982/// PerformImplicitConversion - Perform an implicit conversion of the 983/// expression From to the type ToType. Returns the 984/// converted expression. Flavor is the kind of conversion we're 985/// performing, used in the error message. If @p AllowExplicit, 986/// explicit user-defined conversions are permitted. 987ExprResult 988Sema::PerformImplicitConversion(Expr *From, QualType ToType, 989 AssignmentAction Action, bool AllowExplicit) { 990 ImplicitConversionSequence ICS; 991 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 992} 993 994ExprResult 995Sema::PerformImplicitConversion(Expr *From, QualType ToType, 996 AssignmentAction Action, bool AllowExplicit, 997 ImplicitConversionSequence& ICS) { 998 if (checkPlaceholderForOverload(*this, From)) 999 return ExprError(); 1000 1001 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1002 bool AllowObjCWritebackConversion 1003 = getLangOptions().ObjCAutoRefCount && 1004 (Action == AA_Passing || Action == AA_Sending); 1005 1006 ICS = clang::TryImplicitConversion(*this, From, ToType, 1007 /*SuppressUserConversions=*/false, 1008 AllowExplicit, 1009 /*InOverloadResolution=*/false, 1010 /*CStyle=*/false, 1011 AllowObjCWritebackConversion); 1012 return PerformImplicitConversion(From, ToType, ICS, Action); 1013} 1014 1015/// \brief Determine whether the conversion from FromType to ToType is a valid 1016/// conversion that strips "noreturn" off the nested function type. 1017bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, 1018 QualType &ResultTy) { 1019 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1020 return false; 1021 1022 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1023 // where F adds one of the following at most once: 1024 // - a pointer 1025 // - a member pointer 1026 // - a block pointer 1027 CanQualType CanTo = Context.getCanonicalType(ToType); 1028 CanQualType CanFrom = Context.getCanonicalType(FromType); 1029 Type::TypeClass TyClass = CanTo->getTypeClass(); 1030 if (TyClass != CanFrom->getTypeClass()) return false; 1031 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1032 if (TyClass == Type::Pointer) { 1033 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 1034 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 1035 } else if (TyClass == Type::BlockPointer) { 1036 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 1037 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 1038 } else if (TyClass == Type::MemberPointer) { 1039 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 1040 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 1041 } else { 1042 return false; 1043 } 1044 1045 TyClass = CanTo->getTypeClass(); 1046 if (TyClass != CanFrom->getTypeClass()) return false; 1047 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1048 return false; 1049 } 1050 1051 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 1052 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 1053 if (!EInfo.getNoReturn()) return false; 1054 1055 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 1056 assert(QualType(FromFn, 0).isCanonical()); 1057 if (QualType(FromFn, 0) != CanTo) return false; 1058 1059 ResultTy = ToType; 1060 return true; 1061} 1062 1063/// \brief Determine whether the conversion from FromType to ToType is a valid 1064/// vector conversion. 1065/// 1066/// \param ICK Will be set to the vector conversion kind, if this is a vector 1067/// conversion. 1068static bool IsVectorConversion(ASTContext &Context, QualType FromType, 1069 QualType ToType, ImplicitConversionKind &ICK) { 1070 // We need at least one of these types to be a vector type to have a vector 1071 // conversion. 1072 if (!ToType->isVectorType() && !FromType->isVectorType()) 1073 return false; 1074 1075 // Identical types require no conversions. 1076 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1077 return false; 1078 1079 // There are no conversions between extended vector types, only identity. 1080 if (ToType->isExtVectorType()) { 1081 // There are no conversions between extended vector types other than the 1082 // identity conversion. 1083 if (FromType->isExtVectorType()) 1084 return false; 1085 1086 // Vector splat from any arithmetic type to a vector. 1087 if (FromType->isArithmeticType()) { 1088 ICK = ICK_Vector_Splat; 1089 return true; 1090 } 1091 } 1092 1093 // We can perform the conversion between vector types in the following cases: 1094 // 1)vector types are equivalent AltiVec and GCC vector types 1095 // 2)lax vector conversions are permitted and the vector types are of the 1096 // same size 1097 if (ToType->isVectorType() && FromType->isVectorType()) { 1098 if (Context.areCompatibleVectorTypes(FromType, ToType) || 1099 (Context.getLangOptions().LaxVectorConversions && 1100 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 1101 ICK = ICK_Vector_Conversion; 1102 return true; 1103 } 1104 } 1105 1106 return false; 1107} 1108 1109/// IsStandardConversion - Determines whether there is a standard 1110/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1111/// expression From to the type ToType. Standard conversion sequences 1112/// only consider non-class types; for conversions that involve class 1113/// types, use TryImplicitConversion. If a conversion exists, SCS will 1114/// contain the standard conversion sequence required to perform this 1115/// conversion and this routine will return true. Otherwise, this 1116/// routine will return false and the value of SCS is unspecified. 1117static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1118 bool InOverloadResolution, 1119 StandardConversionSequence &SCS, 1120 bool CStyle, 1121 bool AllowObjCWritebackConversion) { 1122 QualType FromType = From->getType(); 1123 1124 // Standard conversions (C++ [conv]) 1125 SCS.setAsIdentityConversion(); 1126 SCS.DeprecatedStringLiteralToCharPtr = false; 1127 SCS.IncompatibleObjC = false; 1128 SCS.setFromType(FromType); 1129 SCS.CopyConstructor = 0; 1130 1131 // There are no standard conversions for class types in C++, so 1132 // abort early. When overloading in C, however, we do permit 1133 if (FromType->isRecordType() || ToType->isRecordType()) { 1134 if (S.getLangOptions().CPlusPlus) 1135 return false; 1136 1137 // When we're overloading in C, we allow, as standard conversions, 1138 } 1139 1140 // The first conversion can be an lvalue-to-rvalue conversion, 1141 // array-to-pointer conversion, or function-to-pointer conversion 1142 // (C++ 4p1). 1143 1144 if (FromType == S.Context.OverloadTy) { 1145 DeclAccessPair AccessPair; 1146 if (FunctionDecl *Fn 1147 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1148 AccessPair)) { 1149 // We were able to resolve the address of the overloaded function, 1150 // so we can convert to the type of that function. 1151 FromType = Fn->getType(); 1152 1153 // we can sometimes resolve &foo<int> regardless of ToType, so check 1154 // if the type matches (identity) or we are converting to bool 1155 if (!S.Context.hasSameUnqualifiedType( 1156 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1157 QualType resultTy; 1158 // if the function type matches except for [[noreturn]], it's ok 1159 if (!S.IsNoReturnConversion(FromType, 1160 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1161 // otherwise, only a boolean conversion is standard 1162 if (!ToType->isBooleanType()) 1163 return false; 1164 } 1165 1166 // Check if the "from" expression is taking the address of an overloaded 1167 // function and recompute the FromType accordingly. Take advantage of the 1168 // fact that non-static member functions *must* have such an address-of 1169 // expression. 1170 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1171 if (Method && !Method->isStatic()) { 1172 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1173 "Non-unary operator on non-static member address"); 1174 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1175 == UO_AddrOf && 1176 "Non-address-of operator on non-static member address"); 1177 const Type *ClassType 1178 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1179 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1180 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1181 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1182 UO_AddrOf && 1183 "Non-address-of operator for overloaded function expression"); 1184 FromType = S.Context.getPointerType(FromType); 1185 } 1186 1187 // Check that we've computed the proper type after overload resolution. 1188 assert(S.Context.hasSameType( 1189 FromType, 1190 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1191 } else { 1192 return false; 1193 } 1194 } 1195 // Lvalue-to-rvalue conversion (C++11 4.1): 1196 // A glvalue (3.10) of a non-function, non-array type T can 1197 // be converted to a prvalue. 1198 bool argIsLValue = From->isGLValue(); 1199 if (argIsLValue && 1200 !FromType->isFunctionType() && !FromType->isArrayType() && 1201 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1202 SCS.First = ICK_Lvalue_To_Rvalue; 1203 1204 // If T is a non-class type, the type of the rvalue is the 1205 // cv-unqualified version of T. Otherwise, the type of the rvalue 1206 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1207 // just strip the qualifiers because they don't matter. 1208 FromType = FromType.getUnqualifiedType(); 1209 } else if (FromType->isArrayType()) { 1210 // Array-to-pointer conversion (C++ 4.2) 1211 SCS.First = ICK_Array_To_Pointer; 1212 1213 // An lvalue or rvalue of type "array of N T" or "array of unknown 1214 // bound of T" can be converted to an rvalue of type "pointer to 1215 // T" (C++ 4.2p1). 1216 FromType = S.Context.getArrayDecayedType(FromType); 1217 1218 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1219 // This conversion is deprecated. (C++ D.4). 1220 SCS.DeprecatedStringLiteralToCharPtr = true; 1221 1222 // For the purpose of ranking in overload resolution 1223 // (13.3.3.1.1), this conversion is considered an 1224 // array-to-pointer conversion followed by a qualification 1225 // conversion (4.4). (C++ 4.2p2) 1226 SCS.Second = ICK_Identity; 1227 SCS.Third = ICK_Qualification; 1228 SCS.QualificationIncludesObjCLifetime = false; 1229 SCS.setAllToTypes(FromType); 1230 return true; 1231 } 1232 } else if (FromType->isFunctionType() && argIsLValue) { 1233 // Function-to-pointer conversion (C++ 4.3). 1234 SCS.First = ICK_Function_To_Pointer; 1235 1236 // An lvalue of function type T can be converted to an rvalue of 1237 // type "pointer to T." The result is a pointer to the 1238 // function. (C++ 4.3p1). 1239 FromType = S.Context.getPointerType(FromType); 1240 } else { 1241 // We don't require any conversions for the first step. 1242 SCS.First = ICK_Identity; 1243 } 1244 SCS.setToType(0, FromType); 1245 1246 // The second conversion can be an integral promotion, floating 1247 // point promotion, integral conversion, floating point conversion, 1248 // floating-integral conversion, pointer conversion, 1249 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1250 // For overloading in C, this can also be a "compatible-type" 1251 // conversion. 1252 bool IncompatibleObjC = false; 1253 ImplicitConversionKind SecondICK = ICK_Identity; 1254 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1255 // The unqualified versions of the types are the same: there's no 1256 // conversion to do. 1257 SCS.Second = ICK_Identity; 1258 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1259 // Integral promotion (C++ 4.5). 1260 SCS.Second = ICK_Integral_Promotion; 1261 FromType = ToType.getUnqualifiedType(); 1262 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1263 // Floating point promotion (C++ 4.6). 1264 SCS.Second = ICK_Floating_Promotion; 1265 FromType = ToType.getUnqualifiedType(); 1266 } else if (S.IsComplexPromotion(FromType, ToType)) { 1267 // Complex promotion (Clang extension) 1268 SCS.Second = ICK_Complex_Promotion; 1269 FromType = ToType.getUnqualifiedType(); 1270 } else if (ToType->isBooleanType() && 1271 (FromType->isArithmeticType() || 1272 FromType->isAnyPointerType() || 1273 FromType->isBlockPointerType() || 1274 FromType->isMemberPointerType() || 1275 FromType->isNullPtrType())) { 1276 // Boolean conversions (C++ 4.12). 1277 SCS.Second = ICK_Boolean_Conversion; 1278 FromType = S.Context.BoolTy; 1279 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1280 ToType->isIntegralType(S.Context)) { 1281 // Integral conversions (C++ 4.7). 1282 SCS.Second = ICK_Integral_Conversion; 1283 FromType = ToType.getUnqualifiedType(); 1284 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1285 // Complex conversions (C99 6.3.1.6) 1286 SCS.Second = ICK_Complex_Conversion; 1287 FromType = ToType.getUnqualifiedType(); 1288 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1289 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1290 // Complex-real conversions (C99 6.3.1.7) 1291 SCS.Second = ICK_Complex_Real; 1292 FromType = ToType.getUnqualifiedType(); 1293 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1294 // Floating point conversions (C++ 4.8). 1295 SCS.Second = ICK_Floating_Conversion; 1296 FromType = ToType.getUnqualifiedType(); 1297 } else if ((FromType->isRealFloatingType() && 1298 ToType->isIntegralType(S.Context)) || 1299 (FromType->isIntegralOrUnscopedEnumerationType() && 1300 ToType->isRealFloatingType())) { 1301 // Floating-integral conversions (C++ 4.9). 1302 SCS.Second = ICK_Floating_Integral; 1303 FromType = ToType.getUnqualifiedType(); 1304 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1305 SCS.Second = ICK_Block_Pointer_Conversion; 1306 } else if (AllowObjCWritebackConversion && 1307 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1308 SCS.Second = ICK_Writeback_Conversion; 1309 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1310 FromType, IncompatibleObjC)) { 1311 // Pointer conversions (C++ 4.10). 1312 SCS.Second = ICK_Pointer_Conversion; 1313 SCS.IncompatibleObjC = IncompatibleObjC; 1314 FromType = FromType.getUnqualifiedType(); 1315 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1316 InOverloadResolution, FromType)) { 1317 // Pointer to member conversions (4.11). 1318 SCS.Second = ICK_Pointer_Member; 1319 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1320 SCS.Second = SecondICK; 1321 FromType = ToType.getUnqualifiedType(); 1322 } else if (!S.getLangOptions().CPlusPlus && 1323 S.Context.typesAreCompatible(ToType, FromType)) { 1324 // Compatible conversions (Clang extension for C function overloading) 1325 SCS.Second = ICK_Compatible_Conversion; 1326 FromType = ToType.getUnqualifiedType(); 1327 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { 1328 // Treat a conversion that strips "noreturn" as an identity conversion. 1329 SCS.Second = ICK_NoReturn_Adjustment; 1330 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1331 InOverloadResolution, 1332 SCS, CStyle)) { 1333 SCS.Second = ICK_TransparentUnionConversion; 1334 FromType = ToType; 1335 } else { 1336 // No second conversion required. 1337 SCS.Second = ICK_Identity; 1338 } 1339 SCS.setToType(1, FromType); 1340 1341 QualType CanonFrom; 1342 QualType CanonTo; 1343 // The third conversion can be a qualification conversion (C++ 4p1). 1344 bool ObjCLifetimeConversion; 1345 if (S.IsQualificationConversion(FromType, ToType, CStyle, 1346 ObjCLifetimeConversion)) { 1347 SCS.Third = ICK_Qualification; 1348 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1349 FromType = ToType; 1350 CanonFrom = S.Context.getCanonicalType(FromType); 1351 CanonTo = S.Context.getCanonicalType(ToType); 1352 } else { 1353 // No conversion required 1354 SCS.Third = ICK_Identity; 1355 1356 // C++ [over.best.ics]p6: 1357 // [...] Any difference in top-level cv-qualification is 1358 // subsumed by the initialization itself and does not constitute 1359 // a conversion. [...] 1360 CanonFrom = S.Context.getCanonicalType(FromType); 1361 CanonTo = S.Context.getCanonicalType(ToType); 1362 if (CanonFrom.getLocalUnqualifiedType() 1363 == CanonTo.getLocalUnqualifiedType() && 1364 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1365 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() 1366 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { 1367 FromType = ToType; 1368 CanonFrom = CanonTo; 1369 } 1370 } 1371 SCS.setToType(2, FromType); 1372 1373 // If we have not converted the argument type to the parameter type, 1374 // this is a bad conversion sequence. 1375 if (CanonFrom != CanonTo) 1376 return false; 1377 1378 return true; 1379} 1380 1381static bool 1382IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1383 QualType &ToType, 1384 bool InOverloadResolution, 1385 StandardConversionSequence &SCS, 1386 bool CStyle) { 1387 1388 const RecordType *UT = ToType->getAsUnionType(); 1389 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1390 return false; 1391 // The field to initialize within the transparent union. 1392 RecordDecl *UD = UT->getDecl(); 1393 // It's compatible if the expression matches any of the fields. 1394 for (RecordDecl::field_iterator it = UD->field_begin(), 1395 itend = UD->field_end(); 1396 it != itend; ++it) { 1397 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1398 CStyle, /*ObjCWritebackConversion=*/false)) { 1399 ToType = it->getType(); 1400 return true; 1401 } 1402 } 1403 return false; 1404} 1405 1406/// IsIntegralPromotion - Determines whether the conversion from the 1407/// expression From (whose potentially-adjusted type is FromType) to 1408/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1409/// sets PromotedType to the promoted type. 1410bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1411 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1412 // All integers are built-in. 1413 if (!To) { 1414 return false; 1415 } 1416 1417 // An rvalue of type char, signed char, unsigned char, short int, or 1418 // unsigned short int can be converted to an rvalue of type int if 1419 // int can represent all the values of the source type; otherwise, 1420 // the source rvalue can be converted to an rvalue of type unsigned 1421 // int (C++ 4.5p1). 1422 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1423 !FromType->isEnumeralType()) { 1424 if (// We can promote any signed, promotable integer type to an int 1425 (FromType->isSignedIntegerType() || 1426 // We can promote any unsigned integer type whose size is 1427 // less than int to an int. 1428 (!FromType->isSignedIntegerType() && 1429 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1430 return To->getKind() == BuiltinType::Int; 1431 } 1432 1433 return To->getKind() == BuiltinType::UInt; 1434 } 1435 1436 // C++0x [conv.prom]p3: 1437 // A prvalue of an unscoped enumeration type whose underlying type is not 1438 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1439 // following types that can represent all the values of the enumeration 1440 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1441 // unsigned int, long int, unsigned long int, long long int, or unsigned 1442 // long long int. If none of the types in that list can represent all the 1443 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1444 // type can be converted to an rvalue a prvalue of the extended integer type 1445 // with lowest integer conversion rank (4.13) greater than the rank of long 1446 // long in which all the values of the enumeration can be represented. If 1447 // there are two such extended types, the signed one is chosen. 1448 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1449 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1450 // provided for a scoped enumeration. 1451 if (FromEnumType->getDecl()->isScoped()) 1452 return false; 1453 1454 // We have already pre-calculated the promotion type, so this is trivial. 1455 if (ToType->isIntegerType() && 1456 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1457 return Context.hasSameUnqualifiedType(ToType, 1458 FromEnumType->getDecl()->getPromotionType()); 1459 } 1460 1461 // C++0x [conv.prom]p2: 1462 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1463 // to an rvalue a prvalue of the first of the following types that can 1464 // represent all the values of its underlying type: int, unsigned int, 1465 // long int, unsigned long int, long long int, or unsigned long long int. 1466 // If none of the types in that list can represent all the values of its 1467 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1468 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1469 // type. 1470 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1471 ToType->isIntegerType()) { 1472 // Determine whether the type we're converting from is signed or 1473 // unsigned. 1474 bool FromIsSigned = FromType->isSignedIntegerType(); 1475 uint64_t FromSize = Context.getTypeSize(FromType); 1476 1477 // The types we'll try to promote to, in the appropriate 1478 // order. Try each of these types. 1479 QualType PromoteTypes[6] = { 1480 Context.IntTy, Context.UnsignedIntTy, 1481 Context.LongTy, Context.UnsignedLongTy , 1482 Context.LongLongTy, Context.UnsignedLongLongTy 1483 }; 1484 for (int Idx = 0; Idx < 6; ++Idx) { 1485 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1486 if (FromSize < ToSize || 1487 (FromSize == ToSize && 1488 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1489 // We found the type that we can promote to. If this is the 1490 // type we wanted, we have a promotion. Otherwise, no 1491 // promotion. 1492 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1493 } 1494 } 1495 } 1496 1497 // An rvalue for an integral bit-field (9.6) can be converted to an 1498 // rvalue of type int if int can represent all the values of the 1499 // bit-field; otherwise, it can be converted to unsigned int if 1500 // unsigned int can represent all the values of the bit-field. If 1501 // the bit-field is larger yet, no integral promotion applies to 1502 // it. If the bit-field has an enumerated type, it is treated as any 1503 // other value of that type for promotion purposes (C++ 4.5p3). 1504 // FIXME: We should delay checking of bit-fields until we actually perform the 1505 // conversion. 1506 using llvm::APSInt; 1507 if (From) 1508 if (FieldDecl *MemberDecl = From->getBitField()) { 1509 APSInt BitWidth; 1510 if (FromType->isIntegralType(Context) && 1511 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1512 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1513 ToSize = Context.getTypeSize(ToType); 1514 1515 // Are we promoting to an int from a bitfield that fits in an int? 1516 if (BitWidth < ToSize || 1517 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1518 return To->getKind() == BuiltinType::Int; 1519 } 1520 1521 // Are we promoting to an unsigned int from an unsigned bitfield 1522 // that fits into an unsigned int? 1523 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1524 return To->getKind() == BuiltinType::UInt; 1525 } 1526 1527 return false; 1528 } 1529 } 1530 1531 // An rvalue of type bool can be converted to an rvalue of type int, 1532 // with false becoming zero and true becoming one (C++ 4.5p4). 1533 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1534 return true; 1535 } 1536 1537 return false; 1538} 1539 1540/// IsFloatingPointPromotion - Determines whether the conversion from 1541/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1542/// returns true and sets PromotedType to the promoted type. 1543bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1544 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1545 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1546 /// An rvalue of type float can be converted to an rvalue of type 1547 /// double. (C++ 4.6p1). 1548 if (FromBuiltin->getKind() == BuiltinType::Float && 1549 ToBuiltin->getKind() == BuiltinType::Double) 1550 return true; 1551 1552 // C99 6.3.1.5p1: 1553 // When a float is promoted to double or long double, or a 1554 // double is promoted to long double [...]. 1555 if (!getLangOptions().CPlusPlus && 1556 (FromBuiltin->getKind() == BuiltinType::Float || 1557 FromBuiltin->getKind() == BuiltinType::Double) && 1558 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1559 return true; 1560 1561 // Half can be promoted to float. 1562 if (FromBuiltin->getKind() == BuiltinType::Half && 1563 ToBuiltin->getKind() == BuiltinType::Float) 1564 return true; 1565 } 1566 1567 return false; 1568} 1569 1570/// \brief Determine if a conversion is a complex promotion. 1571/// 1572/// A complex promotion is defined as a complex -> complex conversion 1573/// where the conversion between the underlying real types is a 1574/// floating-point or integral promotion. 1575bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1576 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1577 if (!FromComplex) 1578 return false; 1579 1580 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1581 if (!ToComplex) 1582 return false; 1583 1584 return IsFloatingPointPromotion(FromComplex->getElementType(), 1585 ToComplex->getElementType()) || 1586 IsIntegralPromotion(0, FromComplex->getElementType(), 1587 ToComplex->getElementType()); 1588} 1589 1590/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1591/// the pointer type FromPtr to a pointer to type ToPointee, with the 1592/// same type qualifiers as FromPtr has on its pointee type. ToType, 1593/// if non-empty, will be a pointer to ToType that may or may not have 1594/// the right set of qualifiers on its pointee. 1595/// 1596static QualType 1597BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1598 QualType ToPointee, QualType ToType, 1599 ASTContext &Context, 1600 bool StripObjCLifetime = false) { 1601 assert((FromPtr->getTypeClass() == Type::Pointer || 1602 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1603 "Invalid similarly-qualified pointer type"); 1604 1605 /// Conversions to 'id' subsume cv-qualifier conversions. 1606 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1607 return ToType.getUnqualifiedType(); 1608 1609 QualType CanonFromPointee 1610 = Context.getCanonicalType(FromPtr->getPointeeType()); 1611 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1612 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1613 1614 if (StripObjCLifetime) 1615 Quals.removeObjCLifetime(); 1616 1617 // Exact qualifier match -> return the pointer type we're converting to. 1618 if (CanonToPointee.getLocalQualifiers() == Quals) { 1619 // ToType is exactly what we need. Return it. 1620 if (!ToType.isNull()) 1621 return ToType.getUnqualifiedType(); 1622 1623 // Build a pointer to ToPointee. It has the right qualifiers 1624 // already. 1625 if (isa<ObjCObjectPointerType>(ToType)) 1626 return Context.getObjCObjectPointerType(ToPointee); 1627 return Context.getPointerType(ToPointee); 1628 } 1629 1630 // Just build a canonical type that has the right qualifiers. 1631 QualType QualifiedCanonToPointee 1632 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1633 1634 if (isa<ObjCObjectPointerType>(ToType)) 1635 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1636 return Context.getPointerType(QualifiedCanonToPointee); 1637} 1638 1639static bool isNullPointerConstantForConversion(Expr *Expr, 1640 bool InOverloadResolution, 1641 ASTContext &Context) { 1642 // Handle value-dependent integral null pointer constants correctly. 1643 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1644 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1645 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1646 return !InOverloadResolution; 1647 1648 return Expr->isNullPointerConstant(Context, 1649 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1650 : Expr::NPC_ValueDependentIsNull); 1651} 1652 1653/// IsPointerConversion - Determines whether the conversion of the 1654/// expression From, which has the (possibly adjusted) type FromType, 1655/// can be converted to the type ToType via a pointer conversion (C++ 1656/// 4.10). If so, returns true and places the converted type (that 1657/// might differ from ToType in its cv-qualifiers at some level) into 1658/// ConvertedType. 1659/// 1660/// This routine also supports conversions to and from block pointers 1661/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1662/// pointers to interfaces. FIXME: Once we've determined the 1663/// appropriate overloading rules for Objective-C, we may want to 1664/// split the Objective-C checks into a different routine; however, 1665/// GCC seems to consider all of these conversions to be pointer 1666/// conversions, so for now they live here. IncompatibleObjC will be 1667/// set if the conversion is an allowed Objective-C conversion that 1668/// should result in a warning. 1669bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1670 bool InOverloadResolution, 1671 QualType& ConvertedType, 1672 bool &IncompatibleObjC) { 1673 IncompatibleObjC = false; 1674 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1675 IncompatibleObjC)) 1676 return true; 1677 1678 // Conversion from a null pointer constant to any Objective-C pointer type. 1679 if (ToType->isObjCObjectPointerType() && 1680 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1681 ConvertedType = ToType; 1682 return true; 1683 } 1684 1685 // Blocks: Block pointers can be converted to void*. 1686 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1687 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1688 ConvertedType = ToType; 1689 return true; 1690 } 1691 // Blocks: A null pointer constant can be converted to a block 1692 // pointer type. 1693 if (ToType->isBlockPointerType() && 1694 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1695 ConvertedType = ToType; 1696 return true; 1697 } 1698 1699 // If the left-hand-side is nullptr_t, the right side can be a null 1700 // pointer constant. 1701 if (ToType->isNullPtrType() && 1702 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1703 ConvertedType = ToType; 1704 return true; 1705 } 1706 1707 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1708 if (!ToTypePtr) 1709 return false; 1710 1711 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1712 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1713 ConvertedType = ToType; 1714 return true; 1715 } 1716 1717 // Beyond this point, both types need to be pointers 1718 // , including objective-c pointers. 1719 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1720 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 1721 !getLangOptions().ObjCAutoRefCount) { 1722 ConvertedType = BuildSimilarlyQualifiedPointerType( 1723 FromType->getAs<ObjCObjectPointerType>(), 1724 ToPointeeType, 1725 ToType, Context); 1726 return true; 1727 } 1728 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1729 if (!FromTypePtr) 1730 return false; 1731 1732 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1733 1734 // If the unqualified pointee types are the same, this can't be a 1735 // pointer conversion, so don't do all of the work below. 1736 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1737 return false; 1738 1739 // An rvalue of type "pointer to cv T," where T is an object type, 1740 // can be converted to an rvalue of type "pointer to cv void" (C++ 1741 // 4.10p2). 1742 if (FromPointeeType->isIncompleteOrObjectType() && 1743 ToPointeeType->isVoidType()) { 1744 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1745 ToPointeeType, 1746 ToType, Context, 1747 /*StripObjCLifetime=*/true); 1748 return true; 1749 } 1750 1751 // MSVC allows implicit function to void* type conversion. 1752 if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() && 1753 ToPointeeType->isVoidType()) { 1754 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1755 ToPointeeType, 1756 ToType, Context); 1757 return true; 1758 } 1759 1760 // When we're overloading in C, we allow a special kind of pointer 1761 // conversion for compatible-but-not-identical pointee types. 1762 if (!getLangOptions().CPlusPlus && 1763 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1764 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1765 ToPointeeType, 1766 ToType, Context); 1767 return true; 1768 } 1769 1770 // C++ [conv.ptr]p3: 1771 // 1772 // An rvalue of type "pointer to cv D," where D is a class type, 1773 // can be converted to an rvalue of type "pointer to cv B," where 1774 // B is a base class (clause 10) of D. If B is an inaccessible 1775 // (clause 11) or ambiguous (10.2) base class of D, a program that 1776 // necessitates this conversion is ill-formed. The result of the 1777 // conversion is a pointer to the base class sub-object of the 1778 // derived class object. The null pointer value is converted to 1779 // the null pointer value of the destination type. 1780 // 1781 // Note that we do not check for ambiguity or inaccessibility 1782 // here. That is handled by CheckPointerConversion. 1783 if (getLangOptions().CPlusPlus && 1784 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1785 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1786 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1787 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1788 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1789 ToPointeeType, 1790 ToType, Context); 1791 return true; 1792 } 1793 1794 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 1795 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 1796 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1797 ToPointeeType, 1798 ToType, Context); 1799 return true; 1800 } 1801 1802 return false; 1803} 1804 1805/// \brief Adopt the given qualifiers for the given type. 1806static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 1807 Qualifiers TQs = T.getQualifiers(); 1808 1809 // Check whether qualifiers already match. 1810 if (TQs == Qs) 1811 return T; 1812 1813 if (Qs.compatiblyIncludes(TQs)) 1814 return Context.getQualifiedType(T, Qs); 1815 1816 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 1817} 1818 1819/// isObjCPointerConversion - Determines whether this is an 1820/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1821/// with the same arguments and return values. 1822bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1823 QualType& ConvertedType, 1824 bool &IncompatibleObjC) { 1825 if (!getLangOptions().ObjC1) 1826 return false; 1827 1828 // The set of qualifiers on the type we're converting from. 1829 Qualifiers FromQualifiers = FromType.getQualifiers(); 1830 1831 // First, we handle all conversions on ObjC object pointer types. 1832 const ObjCObjectPointerType* ToObjCPtr = 1833 ToType->getAs<ObjCObjectPointerType>(); 1834 const ObjCObjectPointerType *FromObjCPtr = 1835 FromType->getAs<ObjCObjectPointerType>(); 1836 1837 if (ToObjCPtr && FromObjCPtr) { 1838 // If the pointee types are the same (ignoring qualifications), 1839 // then this is not a pointer conversion. 1840 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1841 FromObjCPtr->getPointeeType())) 1842 return false; 1843 1844 // Check for compatible 1845 // Objective C++: We're able to convert between "id" or "Class" and a 1846 // pointer to any interface (in both directions). 1847 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1848 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1849 return true; 1850 } 1851 // Conversions with Objective-C's id<...>. 1852 if ((FromObjCPtr->isObjCQualifiedIdType() || 1853 ToObjCPtr->isObjCQualifiedIdType()) && 1854 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1855 /*compare=*/false)) { 1856 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1857 return true; 1858 } 1859 // Objective C++: We're able to convert from a pointer to an 1860 // interface to a pointer to a different interface. 1861 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1862 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1863 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1864 if (getLangOptions().CPlusPlus && LHS && RHS && 1865 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1866 FromObjCPtr->getPointeeType())) 1867 return false; 1868 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1869 ToObjCPtr->getPointeeType(), 1870 ToType, Context); 1871 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1872 return true; 1873 } 1874 1875 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1876 // Okay: this is some kind of implicit downcast of Objective-C 1877 // interfaces, which is permitted. However, we're going to 1878 // complain about it. 1879 IncompatibleObjC = true; 1880 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1881 ToObjCPtr->getPointeeType(), 1882 ToType, Context); 1883 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1884 return true; 1885 } 1886 } 1887 // Beyond this point, both types need to be C pointers or block pointers. 1888 QualType ToPointeeType; 1889 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1890 ToPointeeType = ToCPtr->getPointeeType(); 1891 else if (const BlockPointerType *ToBlockPtr = 1892 ToType->getAs<BlockPointerType>()) { 1893 // Objective C++: We're able to convert from a pointer to any object 1894 // to a block pointer type. 1895 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1896 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1897 return true; 1898 } 1899 ToPointeeType = ToBlockPtr->getPointeeType(); 1900 } 1901 else if (FromType->getAs<BlockPointerType>() && 1902 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1903 // Objective C++: We're able to convert from a block pointer type to a 1904 // pointer to any object. 1905 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1906 return true; 1907 } 1908 else 1909 return false; 1910 1911 QualType FromPointeeType; 1912 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1913 FromPointeeType = FromCPtr->getPointeeType(); 1914 else if (const BlockPointerType *FromBlockPtr = 1915 FromType->getAs<BlockPointerType>()) 1916 FromPointeeType = FromBlockPtr->getPointeeType(); 1917 else 1918 return false; 1919 1920 // If we have pointers to pointers, recursively check whether this 1921 // is an Objective-C conversion. 1922 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1923 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1924 IncompatibleObjC)) { 1925 // We always complain about this conversion. 1926 IncompatibleObjC = true; 1927 ConvertedType = Context.getPointerType(ConvertedType); 1928 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1929 return true; 1930 } 1931 // Allow conversion of pointee being objective-c pointer to another one; 1932 // as in I* to id. 1933 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1934 ToPointeeType->getAs<ObjCObjectPointerType>() && 1935 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1936 IncompatibleObjC)) { 1937 1938 ConvertedType = Context.getPointerType(ConvertedType); 1939 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1940 return true; 1941 } 1942 1943 // If we have pointers to functions or blocks, check whether the only 1944 // differences in the argument and result types are in Objective-C 1945 // pointer conversions. If so, we permit the conversion (but 1946 // complain about it). 1947 const FunctionProtoType *FromFunctionType 1948 = FromPointeeType->getAs<FunctionProtoType>(); 1949 const FunctionProtoType *ToFunctionType 1950 = ToPointeeType->getAs<FunctionProtoType>(); 1951 if (FromFunctionType && ToFunctionType) { 1952 // If the function types are exactly the same, this isn't an 1953 // Objective-C pointer conversion. 1954 if (Context.getCanonicalType(FromPointeeType) 1955 == Context.getCanonicalType(ToPointeeType)) 1956 return false; 1957 1958 // Perform the quick checks that will tell us whether these 1959 // function types are obviously different. 1960 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1961 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1962 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1963 return false; 1964 1965 bool HasObjCConversion = false; 1966 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1967 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1968 // Okay, the types match exactly. Nothing to do. 1969 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1970 ToFunctionType->getResultType(), 1971 ConvertedType, IncompatibleObjC)) { 1972 // Okay, we have an Objective-C pointer conversion. 1973 HasObjCConversion = true; 1974 } else { 1975 // Function types are too different. Abort. 1976 return false; 1977 } 1978 1979 // Check argument types. 1980 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1981 ArgIdx != NumArgs; ++ArgIdx) { 1982 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1983 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1984 if (Context.getCanonicalType(FromArgType) 1985 == Context.getCanonicalType(ToArgType)) { 1986 // Okay, the types match exactly. Nothing to do. 1987 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1988 ConvertedType, IncompatibleObjC)) { 1989 // Okay, we have an Objective-C pointer conversion. 1990 HasObjCConversion = true; 1991 } else { 1992 // Argument types are too different. Abort. 1993 return false; 1994 } 1995 } 1996 1997 if (HasObjCConversion) { 1998 // We had an Objective-C conversion. Allow this pointer 1999 // conversion, but complain about it. 2000 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2001 IncompatibleObjC = true; 2002 return true; 2003 } 2004 } 2005 2006 return false; 2007} 2008 2009/// \brief Determine whether this is an Objective-C writeback conversion, 2010/// used for parameter passing when performing automatic reference counting. 2011/// 2012/// \param FromType The type we're converting form. 2013/// 2014/// \param ToType The type we're converting to. 2015/// 2016/// \param ConvertedType The type that will be produced after applying 2017/// this conversion. 2018bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2019 QualType &ConvertedType) { 2020 if (!getLangOptions().ObjCAutoRefCount || 2021 Context.hasSameUnqualifiedType(FromType, ToType)) 2022 return false; 2023 2024 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2025 QualType ToPointee; 2026 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2027 ToPointee = ToPointer->getPointeeType(); 2028 else 2029 return false; 2030 2031 Qualifiers ToQuals = ToPointee.getQualifiers(); 2032 if (!ToPointee->isObjCLifetimeType() || 2033 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2034 !ToQuals.withoutObjCGLifetime().empty()) 2035 return false; 2036 2037 // Argument must be a pointer to __strong to __weak. 2038 QualType FromPointee; 2039 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2040 FromPointee = FromPointer->getPointeeType(); 2041 else 2042 return false; 2043 2044 Qualifiers FromQuals = FromPointee.getQualifiers(); 2045 if (!FromPointee->isObjCLifetimeType() || 2046 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2047 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2048 return false; 2049 2050 // Make sure that we have compatible qualifiers. 2051 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2052 if (!ToQuals.compatiblyIncludes(FromQuals)) 2053 return false; 2054 2055 // Remove qualifiers from the pointee type we're converting from; they 2056 // aren't used in the compatibility check belong, and we'll be adding back 2057 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2058 FromPointee = FromPointee.getUnqualifiedType(); 2059 2060 // The unqualified form of the pointee types must be compatible. 2061 ToPointee = ToPointee.getUnqualifiedType(); 2062 bool IncompatibleObjC; 2063 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2064 FromPointee = ToPointee; 2065 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2066 IncompatibleObjC)) 2067 return false; 2068 2069 /// \brief Construct the type we're converting to, which is a pointer to 2070 /// __autoreleasing pointee. 2071 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2072 ConvertedType = Context.getPointerType(FromPointee); 2073 return true; 2074} 2075 2076bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2077 QualType& ConvertedType) { 2078 QualType ToPointeeType; 2079 if (const BlockPointerType *ToBlockPtr = 2080 ToType->getAs<BlockPointerType>()) 2081 ToPointeeType = ToBlockPtr->getPointeeType(); 2082 else 2083 return false; 2084 2085 QualType FromPointeeType; 2086 if (const BlockPointerType *FromBlockPtr = 2087 FromType->getAs<BlockPointerType>()) 2088 FromPointeeType = FromBlockPtr->getPointeeType(); 2089 else 2090 return false; 2091 // We have pointer to blocks, check whether the only 2092 // differences in the argument and result types are in Objective-C 2093 // pointer conversions. If so, we permit the conversion. 2094 2095 const FunctionProtoType *FromFunctionType 2096 = FromPointeeType->getAs<FunctionProtoType>(); 2097 const FunctionProtoType *ToFunctionType 2098 = ToPointeeType->getAs<FunctionProtoType>(); 2099 2100 if (!FromFunctionType || !ToFunctionType) 2101 return false; 2102 2103 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2104 return true; 2105 2106 // Perform the quick checks that will tell us whether these 2107 // function types are obviously different. 2108 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2109 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2110 return false; 2111 2112 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2113 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2114 if (FromEInfo != ToEInfo) 2115 return false; 2116 2117 bool IncompatibleObjC = false; 2118 if (Context.hasSameType(FromFunctionType->getResultType(), 2119 ToFunctionType->getResultType())) { 2120 // Okay, the types match exactly. Nothing to do. 2121 } else { 2122 QualType RHS = FromFunctionType->getResultType(); 2123 QualType LHS = ToFunctionType->getResultType(); 2124 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && 2125 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2126 LHS = LHS.getUnqualifiedType(); 2127 2128 if (Context.hasSameType(RHS,LHS)) { 2129 // OK exact match. 2130 } else if (isObjCPointerConversion(RHS, LHS, 2131 ConvertedType, IncompatibleObjC)) { 2132 if (IncompatibleObjC) 2133 return false; 2134 // Okay, we have an Objective-C pointer conversion. 2135 } 2136 else 2137 return false; 2138 } 2139 2140 // Check argument types. 2141 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2142 ArgIdx != NumArgs; ++ArgIdx) { 2143 IncompatibleObjC = false; 2144 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2145 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2146 if (Context.hasSameType(FromArgType, ToArgType)) { 2147 // Okay, the types match exactly. Nothing to do. 2148 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2149 ConvertedType, IncompatibleObjC)) { 2150 if (IncompatibleObjC) 2151 return false; 2152 // Okay, we have an Objective-C pointer conversion. 2153 } else 2154 // Argument types are too different. Abort. 2155 return false; 2156 } 2157 if (LangOpts.ObjCAutoRefCount && 2158 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 2159 ToFunctionType)) 2160 return false; 2161 2162 ConvertedType = ToType; 2163 return true; 2164} 2165 2166enum { 2167 ft_default, 2168 ft_different_class, 2169 ft_parameter_arity, 2170 ft_parameter_mismatch, 2171 ft_return_type, 2172 ft_qualifer_mismatch 2173}; 2174 2175/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2176/// function types. Catches different number of parameter, mismatch in 2177/// parameter types, and different return types. 2178void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2179 QualType FromType, QualType ToType) { 2180 // If either type is not valid, include no extra info. 2181 if (FromType.isNull() || ToType.isNull()) { 2182 PDiag << ft_default; 2183 return; 2184 } 2185 2186 // Get the function type from the pointers. 2187 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2188 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), 2189 *ToMember = ToType->getAs<MemberPointerType>(); 2190 if (FromMember->getClass() != ToMember->getClass()) { 2191 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2192 << QualType(FromMember->getClass(), 0); 2193 return; 2194 } 2195 FromType = FromMember->getPointeeType(); 2196 ToType = ToMember->getPointeeType(); 2197 } 2198 2199 if (FromType->isPointerType()) 2200 FromType = FromType->getPointeeType(); 2201 if (ToType->isPointerType()) 2202 ToType = ToType->getPointeeType(); 2203 2204 // Remove references. 2205 FromType = FromType.getNonReferenceType(); 2206 ToType = ToType.getNonReferenceType(); 2207 2208 // Don't print extra info for non-specialized template functions. 2209 if (FromType->isInstantiationDependentType() && 2210 !FromType->getAs<TemplateSpecializationType>()) { 2211 PDiag << ft_default; 2212 return; 2213 } 2214 2215 // No extra info for same types. 2216 if (Context.hasSameType(FromType, ToType)) { 2217 PDiag << ft_default; 2218 return; 2219 } 2220 2221 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(), 2222 *ToFunction = ToType->getAs<FunctionProtoType>(); 2223 2224 // Both types need to be function types. 2225 if (!FromFunction || !ToFunction) { 2226 PDiag << ft_default; 2227 return; 2228 } 2229 2230 if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) { 2231 PDiag << ft_parameter_arity << ToFunction->getNumArgs() 2232 << FromFunction->getNumArgs(); 2233 return; 2234 } 2235 2236 // Handle different parameter types. 2237 unsigned ArgPos; 2238 if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2239 PDiag << ft_parameter_mismatch << ArgPos + 1 2240 << ToFunction->getArgType(ArgPos) 2241 << FromFunction->getArgType(ArgPos); 2242 return; 2243 } 2244 2245 // Handle different return type. 2246 if (!Context.hasSameType(FromFunction->getResultType(), 2247 ToFunction->getResultType())) { 2248 PDiag << ft_return_type << ToFunction->getResultType() 2249 << FromFunction->getResultType(); 2250 return; 2251 } 2252 2253 unsigned FromQuals = FromFunction->getTypeQuals(), 2254 ToQuals = ToFunction->getTypeQuals(); 2255 if (FromQuals != ToQuals) { 2256 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; 2257 return; 2258 } 2259 2260 // Unable to find a difference, so add no extra info. 2261 PDiag << ft_default; 2262} 2263 2264/// FunctionArgTypesAreEqual - This routine checks two function proto types 2265/// for equlity of their argument types. Caller has already checked that 2266/// they have same number of arguments. This routine assumes that Objective-C 2267/// pointer types which only differ in their protocol qualifiers are equal. 2268/// If the parameters are different, ArgPos will have the the parameter index 2269/// of the first different parameter. 2270bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 2271 const FunctionProtoType *NewType, 2272 unsigned *ArgPos) { 2273 if (!getLangOptions().ObjC1) { 2274 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2275 N = NewType->arg_type_begin(), 2276 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2277 if (!Context.hasSameType(*O, *N)) { 2278 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2279 return false; 2280 } 2281 } 2282 return true; 2283 } 2284 2285 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2286 N = NewType->arg_type_begin(), 2287 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2288 QualType ToType = (*O); 2289 QualType FromType = (*N); 2290 if (!Context.hasSameType(ToType, FromType)) { 2291 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 2292 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 2293 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 2294 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 2295 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 2296 PTFr->getPointeeType()->isObjCQualifiedClassType())) 2297 continue; 2298 } 2299 else if (const ObjCObjectPointerType *PTTo = 2300 ToType->getAs<ObjCObjectPointerType>()) { 2301 if (const ObjCObjectPointerType *PTFr = 2302 FromType->getAs<ObjCObjectPointerType>()) 2303 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 2304 continue; 2305 } 2306 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2307 return false; 2308 } 2309 } 2310 return true; 2311} 2312 2313/// CheckPointerConversion - Check the pointer conversion from the 2314/// expression From to the type ToType. This routine checks for 2315/// ambiguous or inaccessible derived-to-base pointer 2316/// conversions for which IsPointerConversion has already returned 2317/// true. It returns true and produces a diagnostic if there was an 2318/// error, or returns false otherwise. 2319bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2320 CastKind &Kind, 2321 CXXCastPath& BasePath, 2322 bool IgnoreBaseAccess) { 2323 QualType FromType = From->getType(); 2324 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2325 2326 Kind = CK_BitCast; 2327 2328 if (!IsCStyleOrFunctionalCast && 2329 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) && 2330 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2331 DiagRuntimeBehavior(From->getExprLoc(), From, 2332 PDiag(diag::warn_impcast_bool_to_null_pointer) 2333 << ToType << From->getSourceRange()); 2334 2335 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2336 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 2337 QualType FromPointeeType = FromPtrType->getPointeeType(), 2338 ToPointeeType = ToPtrType->getPointeeType(); 2339 2340 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2341 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2342 // We must have a derived-to-base conversion. Check an 2343 // ambiguous or inaccessible conversion. 2344 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 2345 From->getExprLoc(), 2346 From->getSourceRange(), &BasePath, 2347 IgnoreBaseAccess)) 2348 return true; 2349 2350 // The conversion was successful. 2351 Kind = CK_DerivedToBase; 2352 } 2353 } 2354 } else if (const ObjCObjectPointerType *ToPtrType = 2355 ToType->getAs<ObjCObjectPointerType>()) { 2356 if (const ObjCObjectPointerType *FromPtrType = 2357 FromType->getAs<ObjCObjectPointerType>()) { 2358 // Objective-C++ conversions are always okay. 2359 // FIXME: We should have a different class of conversions for the 2360 // Objective-C++ implicit conversions. 2361 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2362 return false; 2363 } else if (FromType->isBlockPointerType()) { 2364 Kind = CK_BlockPointerToObjCPointerCast; 2365 } else { 2366 Kind = CK_CPointerToObjCPointerCast; 2367 } 2368 } else if (ToType->isBlockPointerType()) { 2369 if (!FromType->isBlockPointerType()) 2370 Kind = CK_AnyPointerToBlockPointerCast; 2371 } 2372 2373 // We shouldn't fall into this case unless it's valid for other 2374 // reasons. 2375 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2376 Kind = CK_NullToPointer; 2377 2378 return false; 2379} 2380 2381/// IsMemberPointerConversion - Determines whether the conversion of the 2382/// expression From, which has the (possibly adjusted) type FromType, can be 2383/// converted to the type ToType via a member pointer conversion (C++ 4.11). 2384/// If so, returns true and places the converted type (that might differ from 2385/// ToType in its cv-qualifiers at some level) into ConvertedType. 2386bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2387 QualType ToType, 2388 bool InOverloadResolution, 2389 QualType &ConvertedType) { 2390 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2391 if (!ToTypePtr) 2392 return false; 2393 2394 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2395 if (From->isNullPointerConstant(Context, 2396 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2397 : Expr::NPC_ValueDependentIsNull)) { 2398 ConvertedType = ToType; 2399 return true; 2400 } 2401 2402 // Otherwise, both types have to be member pointers. 2403 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2404 if (!FromTypePtr) 2405 return false; 2406 2407 // A pointer to member of B can be converted to a pointer to member of D, 2408 // where D is derived from B (C++ 4.11p2). 2409 QualType FromClass(FromTypePtr->getClass(), 0); 2410 QualType ToClass(ToTypePtr->getClass(), 0); 2411 2412 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2413 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 2414 IsDerivedFrom(ToClass, FromClass)) { 2415 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2416 ToClass.getTypePtr()); 2417 return true; 2418 } 2419 2420 return false; 2421} 2422 2423/// CheckMemberPointerConversion - Check the member pointer conversion from the 2424/// expression From to the type ToType. This routine checks for ambiguous or 2425/// virtual or inaccessible base-to-derived member pointer conversions 2426/// for which IsMemberPointerConversion has already returned true. It returns 2427/// true and produces a diagnostic if there was an error, or returns false 2428/// otherwise. 2429bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2430 CastKind &Kind, 2431 CXXCastPath &BasePath, 2432 bool IgnoreBaseAccess) { 2433 QualType FromType = From->getType(); 2434 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2435 if (!FromPtrType) { 2436 // This must be a null pointer to member pointer conversion 2437 assert(From->isNullPointerConstant(Context, 2438 Expr::NPC_ValueDependentIsNull) && 2439 "Expr must be null pointer constant!"); 2440 Kind = CK_NullToMemberPointer; 2441 return false; 2442 } 2443 2444 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2445 assert(ToPtrType && "No member pointer cast has a target type " 2446 "that is not a member pointer."); 2447 2448 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2449 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2450 2451 // FIXME: What about dependent types? 2452 assert(FromClass->isRecordType() && "Pointer into non-class."); 2453 assert(ToClass->isRecordType() && "Pointer into non-class."); 2454 2455 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2456 /*DetectVirtual=*/true); 2457 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2458 assert(DerivationOkay && 2459 "Should not have been called if derivation isn't OK."); 2460 (void)DerivationOkay; 2461 2462 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2463 getUnqualifiedType())) { 2464 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2465 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2466 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2467 return true; 2468 } 2469 2470 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2471 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2472 << FromClass << ToClass << QualType(VBase, 0) 2473 << From->getSourceRange(); 2474 return true; 2475 } 2476 2477 if (!IgnoreBaseAccess) 2478 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2479 Paths.front(), 2480 diag::err_downcast_from_inaccessible_base); 2481 2482 // Must be a base to derived member conversion. 2483 BuildBasePathArray(Paths, BasePath); 2484 Kind = CK_BaseToDerivedMemberPointer; 2485 return false; 2486} 2487 2488/// IsQualificationConversion - Determines whether the conversion from 2489/// an rvalue of type FromType to ToType is a qualification conversion 2490/// (C++ 4.4). 2491/// 2492/// \param ObjCLifetimeConversion Output parameter that will be set to indicate 2493/// when the qualification conversion involves a change in the Objective-C 2494/// object lifetime. 2495bool 2496Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2497 bool CStyle, bool &ObjCLifetimeConversion) { 2498 FromType = Context.getCanonicalType(FromType); 2499 ToType = Context.getCanonicalType(ToType); 2500 ObjCLifetimeConversion = false; 2501 2502 // If FromType and ToType are the same type, this is not a 2503 // qualification conversion. 2504 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2505 return false; 2506 2507 // (C++ 4.4p4): 2508 // A conversion can add cv-qualifiers at levels other than the first 2509 // in multi-level pointers, subject to the following rules: [...] 2510 bool PreviousToQualsIncludeConst = true; 2511 bool UnwrappedAnyPointer = false; 2512 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2513 // Within each iteration of the loop, we check the qualifiers to 2514 // determine if this still looks like a qualification 2515 // conversion. Then, if all is well, we unwrap one more level of 2516 // pointers or pointers-to-members and do it all again 2517 // until there are no more pointers or pointers-to-members left to 2518 // unwrap. 2519 UnwrappedAnyPointer = true; 2520 2521 Qualifiers FromQuals = FromType.getQualifiers(); 2522 Qualifiers ToQuals = ToType.getQualifiers(); 2523 2524 // Objective-C ARC: 2525 // Check Objective-C lifetime conversions. 2526 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 2527 UnwrappedAnyPointer) { 2528 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 2529 ObjCLifetimeConversion = true; 2530 FromQuals.removeObjCLifetime(); 2531 ToQuals.removeObjCLifetime(); 2532 } else { 2533 // Qualification conversions cannot cast between different 2534 // Objective-C lifetime qualifiers. 2535 return false; 2536 } 2537 } 2538 2539 // Allow addition/removal of GC attributes but not changing GC attributes. 2540 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 2541 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 2542 FromQuals.removeObjCGCAttr(); 2543 ToQuals.removeObjCGCAttr(); 2544 } 2545 2546 // -- for every j > 0, if const is in cv 1,j then const is in cv 2547 // 2,j, and similarly for volatile. 2548 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 2549 return false; 2550 2551 // -- if the cv 1,j and cv 2,j are different, then const is in 2552 // every cv for 0 < k < j. 2553 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 2554 && !PreviousToQualsIncludeConst) 2555 return false; 2556 2557 // Keep track of whether all prior cv-qualifiers in the "to" type 2558 // include const. 2559 PreviousToQualsIncludeConst 2560 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 2561 } 2562 2563 // We are left with FromType and ToType being the pointee types 2564 // after unwrapping the original FromType and ToType the same number 2565 // of types. If we unwrapped any pointers, and if FromType and 2566 // ToType have the same unqualified type (since we checked 2567 // qualifiers above), then this is a qualification conversion. 2568 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2569} 2570 2571/// Determines whether there is a user-defined conversion sequence 2572/// (C++ [over.ics.user]) that converts expression From to the type 2573/// ToType. If such a conversion exists, User will contain the 2574/// user-defined conversion sequence that performs such a conversion 2575/// and this routine will return true. Otherwise, this routine returns 2576/// false and User is unspecified. 2577/// 2578/// \param AllowExplicit true if the conversion should consider C++0x 2579/// "explicit" conversion functions as well as non-explicit conversion 2580/// functions (C++0x [class.conv.fct]p2). 2581static OverloadingResult 2582IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2583 UserDefinedConversionSequence& User, 2584 OverloadCandidateSet& CandidateSet, 2585 bool AllowExplicit) { 2586 // Whether we will only visit constructors. 2587 bool ConstructorsOnly = false; 2588 2589 // If the type we are conversion to is a class type, enumerate its 2590 // constructors. 2591 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2592 // C++ [over.match.ctor]p1: 2593 // When objects of class type are direct-initialized (8.5), or 2594 // copy-initialized from an expression of the same or a 2595 // derived class type (8.5), overload resolution selects the 2596 // constructor. [...] For copy-initialization, the candidate 2597 // functions are all the converting constructors (12.3.1) of 2598 // that class. The argument list is the expression-list within 2599 // the parentheses of the initializer. 2600 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2601 (From->getType()->getAs<RecordType>() && 2602 S.IsDerivedFrom(From->getType(), ToType))) 2603 ConstructorsOnly = true; 2604 2605 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()); 2606 // RequireCompleteType may have returned true due to some invalid decl 2607 // during template instantiation, but ToType may be complete enough now 2608 // to try to recover. 2609 if (ToType->isIncompleteType()) { 2610 // We're not going to find any constructors. 2611 } else if (CXXRecordDecl *ToRecordDecl 2612 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2613 DeclContext::lookup_iterator Con, ConEnd; 2614 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2615 Con != ConEnd; ++Con) { 2616 NamedDecl *D = *Con; 2617 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2618 2619 // Find the constructor (which may be a template). 2620 CXXConstructorDecl *Constructor = 0; 2621 FunctionTemplateDecl *ConstructorTmpl 2622 = dyn_cast<FunctionTemplateDecl>(D); 2623 if (ConstructorTmpl) 2624 Constructor 2625 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2626 else 2627 Constructor = cast<CXXConstructorDecl>(D); 2628 2629 if (!Constructor->isInvalidDecl() && 2630 Constructor->isConvertingConstructor(AllowExplicit)) { 2631 if (ConstructorTmpl) 2632 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2633 /*ExplicitArgs*/ 0, 2634 &From, 1, CandidateSet, 2635 /*SuppressUserConversions=*/ 2636 !ConstructorsOnly); 2637 else 2638 // Allow one user-defined conversion when user specifies a 2639 // From->ToType conversion via an static cast (c-style, etc). 2640 S.AddOverloadCandidate(Constructor, FoundDecl, 2641 &From, 1, CandidateSet, 2642 /*SuppressUserConversions=*/ 2643 !ConstructorsOnly); 2644 } 2645 } 2646 } 2647 } 2648 2649 // Enumerate conversion functions, if we're allowed to. 2650 if (ConstructorsOnly) { 2651 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2652 S.PDiag(0) << From->getSourceRange())) { 2653 // No conversion functions from incomplete types. 2654 } else if (const RecordType *FromRecordType 2655 = From->getType()->getAs<RecordType>()) { 2656 if (CXXRecordDecl *FromRecordDecl 2657 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2658 // Add all of the conversion functions as candidates. 2659 const UnresolvedSetImpl *Conversions 2660 = FromRecordDecl->getVisibleConversionFunctions(); 2661 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2662 E = Conversions->end(); I != E; ++I) { 2663 DeclAccessPair FoundDecl = I.getPair(); 2664 NamedDecl *D = FoundDecl.getDecl(); 2665 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2666 if (isa<UsingShadowDecl>(D)) 2667 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2668 2669 CXXConversionDecl *Conv; 2670 FunctionTemplateDecl *ConvTemplate; 2671 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2672 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2673 else 2674 Conv = cast<CXXConversionDecl>(D); 2675 2676 if (AllowExplicit || !Conv->isExplicit()) { 2677 if (ConvTemplate) 2678 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2679 ActingContext, From, ToType, 2680 CandidateSet); 2681 else 2682 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2683 From, ToType, CandidateSet); 2684 } 2685 } 2686 } 2687 } 2688 2689 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2690 2691 OverloadCandidateSet::iterator Best; 2692 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2693 case OR_Success: 2694 // Record the standard conversion we used and the conversion function. 2695 if (CXXConstructorDecl *Constructor 2696 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2697 S.MarkDeclarationReferenced(From->getLocStart(), Constructor); 2698 2699 // C++ [over.ics.user]p1: 2700 // If the user-defined conversion is specified by a 2701 // constructor (12.3.1), the initial standard conversion 2702 // sequence converts the source type to the type required by 2703 // the argument of the constructor. 2704 // 2705 QualType ThisType = Constructor->getThisType(S.Context); 2706 if (Best->Conversions[0].isEllipsis()) 2707 User.EllipsisConversion = true; 2708 else { 2709 User.Before = Best->Conversions[0].Standard; 2710 User.EllipsisConversion = false; 2711 } 2712 User.HadMultipleCandidates = HadMultipleCandidates; 2713 User.ConversionFunction = Constructor; 2714 User.FoundConversionFunction = Best->FoundDecl; 2715 User.After.setAsIdentityConversion(); 2716 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2717 User.After.setAllToTypes(ToType); 2718 return OR_Success; 2719 } else if (CXXConversionDecl *Conversion 2720 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2721 S.MarkDeclarationReferenced(From->getLocStart(), Conversion); 2722 2723 // C++ [over.ics.user]p1: 2724 // 2725 // [...] If the user-defined conversion is specified by a 2726 // conversion function (12.3.2), the initial standard 2727 // conversion sequence converts the source type to the 2728 // implicit object parameter of the conversion function. 2729 User.Before = Best->Conversions[0].Standard; 2730 User.HadMultipleCandidates = HadMultipleCandidates; 2731 User.ConversionFunction = Conversion; 2732 User.FoundConversionFunction = Best->FoundDecl; 2733 User.EllipsisConversion = false; 2734 2735 // C++ [over.ics.user]p2: 2736 // The second standard conversion sequence converts the 2737 // result of the user-defined conversion to the target type 2738 // for the sequence. Since an implicit conversion sequence 2739 // is an initialization, the special rules for 2740 // initialization by user-defined conversion apply when 2741 // selecting the best user-defined conversion for a 2742 // user-defined conversion sequence (see 13.3.3 and 2743 // 13.3.3.1). 2744 User.After = Best->FinalConversion; 2745 return OR_Success; 2746 } else { 2747 llvm_unreachable("Not a constructor or conversion function?"); 2748 return OR_No_Viable_Function; 2749 } 2750 2751 case OR_No_Viable_Function: 2752 return OR_No_Viable_Function; 2753 case OR_Deleted: 2754 // No conversion here! We're done. 2755 return OR_Deleted; 2756 2757 case OR_Ambiguous: 2758 return OR_Ambiguous; 2759 } 2760 2761 return OR_No_Viable_Function; 2762} 2763 2764bool 2765Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2766 ImplicitConversionSequence ICS; 2767 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2768 OverloadingResult OvResult = 2769 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2770 CandidateSet, false); 2771 if (OvResult == OR_Ambiguous) 2772 Diag(From->getSourceRange().getBegin(), 2773 diag::err_typecheck_ambiguous_condition) 2774 << From->getType() << ToType << From->getSourceRange(); 2775 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2776 Diag(From->getSourceRange().getBegin(), 2777 diag::err_typecheck_nonviable_condition) 2778 << From->getType() << ToType << From->getSourceRange(); 2779 else 2780 return false; 2781 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2782 return true; 2783} 2784 2785/// CompareImplicitConversionSequences - Compare two implicit 2786/// conversion sequences to determine whether one is better than the 2787/// other or if they are indistinguishable (C++ 13.3.3.2). 2788static ImplicitConversionSequence::CompareKind 2789CompareImplicitConversionSequences(Sema &S, 2790 const ImplicitConversionSequence& ICS1, 2791 const ImplicitConversionSequence& ICS2) 2792{ 2793 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2794 // conversion sequences (as defined in 13.3.3.1) 2795 // -- a standard conversion sequence (13.3.3.1.1) is a better 2796 // conversion sequence than a user-defined conversion sequence or 2797 // an ellipsis conversion sequence, and 2798 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2799 // conversion sequence than an ellipsis conversion sequence 2800 // (13.3.3.1.3). 2801 // 2802 // C++0x [over.best.ics]p10: 2803 // For the purpose of ranking implicit conversion sequences as 2804 // described in 13.3.3.2, the ambiguous conversion sequence is 2805 // treated as a user-defined sequence that is indistinguishable 2806 // from any other user-defined conversion sequence. 2807 if (ICS1.getKindRank() < ICS2.getKindRank()) 2808 return ImplicitConversionSequence::Better; 2809 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2810 return ImplicitConversionSequence::Worse; 2811 2812 // The following checks require both conversion sequences to be of 2813 // the same kind. 2814 if (ICS1.getKind() != ICS2.getKind()) 2815 return ImplicitConversionSequence::Indistinguishable; 2816 2817 ImplicitConversionSequence::CompareKind Result = 2818 ImplicitConversionSequence::Indistinguishable; 2819 2820 // Two implicit conversion sequences of the same form are 2821 // indistinguishable conversion sequences unless one of the 2822 // following rules apply: (C++ 13.3.3.2p3): 2823 if (ICS1.isStandard()) 2824 Result = CompareStandardConversionSequences(S, 2825 ICS1.Standard, ICS2.Standard); 2826 else if (ICS1.isUserDefined()) { 2827 // User-defined conversion sequence U1 is a better conversion 2828 // sequence than another user-defined conversion sequence U2 if 2829 // they contain the same user-defined conversion function or 2830 // constructor and if the second standard conversion sequence of 2831 // U1 is better than the second standard conversion sequence of 2832 // U2 (C++ 13.3.3.2p3). 2833 if (ICS1.UserDefined.ConversionFunction == 2834 ICS2.UserDefined.ConversionFunction) 2835 Result = CompareStandardConversionSequences(S, 2836 ICS1.UserDefined.After, 2837 ICS2.UserDefined.After); 2838 } 2839 2840 // List-initialization sequence L1 is a better conversion sequence than 2841 // list-initialization sequence L2 if L1 converts to std::initializer_list<X> 2842 // for some X and L2 does not. 2843 if (Result == ImplicitConversionSequence::Indistinguishable && 2844 ICS1.isListInitializationSequence() && 2845 ICS2.isListInitializationSequence()) { 2846 // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't. 2847 } 2848 2849 return Result; 2850} 2851 2852static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2853 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2854 Qualifiers Quals; 2855 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2856 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2857 } 2858 2859 return Context.hasSameUnqualifiedType(T1, T2); 2860} 2861 2862// Per 13.3.3.2p3, compare the given standard conversion sequences to 2863// determine if one is a proper subset of the other. 2864static ImplicitConversionSequence::CompareKind 2865compareStandardConversionSubsets(ASTContext &Context, 2866 const StandardConversionSequence& SCS1, 2867 const StandardConversionSequence& SCS2) { 2868 ImplicitConversionSequence::CompareKind Result 2869 = ImplicitConversionSequence::Indistinguishable; 2870 2871 // the identity conversion sequence is considered to be a subsequence of 2872 // any non-identity conversion sequence 2873 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2874 return ImplicitConversionSequence::Better; 2875 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2876 return ImplicitConversionSequence::Worse; 2877 2878 if (SCS1.Second != SCS2.Second) { 2879 if (SCS1.Second == ICK_Identity) 2880 Result = ImplicitConversionSequence::Better; 2881 else if (SCS2.Second == ICK_Identity) 2882 Result = ImplicitConversionSequence::Worse; 2883 else 2884 return ImplicitConversionSequence::Indistinguishable; 2885 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2886 return ImplicitConversionSequence::Indistinguishable; 2887 2888 if (SCS1.Third == SCS2.Third) { 2889 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2890 : ImplicitConversionSequence::Indistinguishable; 2891 } 2892 2893 if (SCS1.Third == ICK_Identity) 2894 return Result == ImplicitConversionSequence::Worse 2895 ? ImplicitConversionSequence::Indistinguishable 2896 : ImplicitConversionSequence::Better; 2897 2898 if (SCS2.Third == ICK_Identity) 2899 return Result == ImplicitConversionSequence::Better 2900 ? ImplicitConversionSequence::Indistinguishable 2901 : ImplicitConversionSequence::Worse; 2902 2903 return ImplicitConversionSequence::Indistinguishable; 2904} 2905 2906/// \brief Determine whether one of the given reference bindings is better 2907/// than the other based on what kind of bindings they are. 2908static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 2909 const StandardConversionSequence &SCS2) { 2910 // C++0x [over.ics.rank]p3b4: 2911 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2912 // implicit object parameter of a non-static member function declared 2913 // without a ref-qualifier, and *either* S1 binds an rvalue reference 2914 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 2915 // lvalue reference to a function lvalue and S2 binds an rvalue 2916 // reference*. 2917 // 2918 // FIXME: Rvalue references. We're going rogue with the above edits, 2919 // because the semantics in the current C++0x working paper (N3225 at the 2920 // time of this writing) break the standard definition of std::forward 2921 // and std::reference_wrapper when dealing with references to functions. 2922 // Proposed wording changes submitted to CWG for consideration. 2923 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 2924 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 2925 return false; 2926 2927 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 2928 SCS2.IsLvalueReference) || 2929 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 2930 !SCS2.IsLvalueReference); 2931} 2932 2933/// CompareStandardConversionSequences - Compare two standard 2934/// conversion sequences to determine whether one is better than the 2935/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2936static ImplicitConversionSequence::CompareKind 2937CompareStandardConversionSequences(Sema &S, 2938 const StandardConversionSequence& SCS1, 2939 const StandardConversionSequence& SCS2) 2940{ 2941 // Standard conversion sequence S1 is a better conversion sequence 2942 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2943 2944 // -- S1 is a proper subsequence of S2 (comparing the conversion 2945 // sequences in the canonical form defined by 13.3.3.1.1, 2946 // excluding any Lvalue Transformation; the identity conversion 2947 // sequence is considered to be a subsequence of any 2948 // non-identity conversion sequence) or, if not that, 2949 if (ImplicitConversionSequence::CompareKind CK 2950 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2951 return CK; 2952 2953 // -- the rank of S1 is better than the rank of S2 (by the rules 2954 // defined below), or, if not that, 2955 ImplicitConversionRank Rank1 = SCS1.getRank(); 2956 ImplicitConversionRank Rank2 = SCS2.getRank(); 2957 if (Rank1 < Rank2) 2958 return ImplicitConversionSequence::Better; 2959 else if (Rank2 < Rank1) 2960 return ImplicitConversionSequence::Worse; 2961 2962 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2963 // are indistinguishable unless one of the following rules 2964 // applies: 2965 2966 // A conversion that is not a conversion of a pointer, or 2967 // pointer to member, to bool is better than another conversion 2968 // that is such a conversion. 2969 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2970 return SCS2.isPointerConversionToBool() 2971 ? ImplicitConversionSequence::Better 2972 : ImplicitConversionSequence::Worse; 2973 2974 // C++ [over.ics.rank]p4b2: 2975 // 2976 // If class B is derived directly or indirectly from class A, 2977 // conversion of B* to A* is better than conversion of B* to 2978 // void*, and conversion of A* to void* is better than conversion 2979 // of B* to void*. 2980 bool SCS1ConvertsToVoid 2981 = SCS1.isPointerConversionToVoidPointer(S.Context); 2982 bool SCS2ConvertsToVoid 2983 = SCS2.isPointerConversionToVoidPointer(S.Context); 2984 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2985 // Exactly one of the conversion sequences is a conversion to 2986 // a void pointer; it's the worse conversion. 2987 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2988 : ImplicitConversionSequence::Worse; 2989 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2990 // Neither conversion sequence converts to a void pointer; compare 2991 // their derived-to-base conversions. 2992 if (ImplicitConversionSequence::CompareKind DerivedCK 2993 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2994 return DerivedCK; 2995 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 2996 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 2997 // Both conversion sequences are conversions to void 2998 // pointers. Compare the source types to determine if there's an 2999 // inheritance relationship in their sources. 3000 QualType FromType1 = SCS1.getFromType(); 3001 QualType FromType2 = SCS2.getFromType(); 3002 3003 // Adjust the types we're converting from via the array-to-pointer 3004 // conversion, if we need to. 3005 if (SCS1.First == ICK_Array_To_Pointer) 3006 FromType1 = S.Context.getArrayDecayedType(FromType1); 3007 if (SCS2.First == ICK_Array_To_Pointer) 3008 FromType2 = S.Context.getArrayDecayedType(FromType2); 3009 3010 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 3011 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 3012 3013 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3014 return ImplicitConversionSequence::Better; 3015 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3016 return ImplicitConversionSequence::Worse; 3017 3018 // Objective-C++: If one interface is more specific than the 3019 // other, it is the better one. 3020 const ObjCObjectPointerType* FromObjCPtr1 3021 = FromType1->getAs<ObjCObjectPointerType>(); 3022 const ObjCObjectPointerType* FromObjCPtr2 3023 = FromType2->getAs<ObjCObjectPointerType>(); 3024 if (FromObjCPtr1 && FromObjCPtr2) { 3025 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 3026 FromObjCPtr2); 3027 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 3028 FromObjCPtr1); 3029 if (AssignLeft != AssignRight) { 3030 return AssignLeft? ImplicitConversionSequence::Better 3031 : ImplicitConversionSequence::Worse; 3032 } 3033 } 3034 } 3035 3036 // Compare based on qualification conversions (C++ 13.3.3.2p3, 3037 // bullet 3). 3038 if (ImplicitConversionSequence::CompareKind QualCK 3039 = CompareQualificationConversions(S, SCS1, SCS2)) 3040 return QualCK; 3041 3042 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 3043 // Check for a better reference binding based on the kind of bindings. 3044 if (isBetterReferenceBindingKind(SCS1, SCS2)) 3045 return ImplicitConversionSequence::Better; 3046 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 3047 return ImplicitConversionSequence::Worse; 3048 3049 // C++ [over.ics.rank]p3b4: 3050 // -- S1 and S2 are reference bindings (8.5.3), and the types to 3051 // which the references refer are the same type except for 3052 // top-level cv-qualifiers, and the type to which the reference 3053 // initialized by S2 refers is more cv-qualified than the type 3054 // to which the reference initialized by S1 refers. 3055 QualType T1 = SCS1.getToType(2); 3056 QualType T2 = SCS2.getToType(2); 3057 T1 = S.Context.getCanonicalType(T1); 3058 T2 = S.Context.getCanonicalType(T2); 3059 Qualifiers T1Quals, T2Quals; 3060 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3061 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3062 if (UnqualT1 == UnqualT2) { 3063 // Objective-C++ ARC: If the references refer to objects with different 3064 // lifetimes, prefer bindings that don't change lifetime. 3065 if (SCS1.ObjCLifetimeConversionBinding != 3066 SCS2.ObjCLifetimeConversionBinding) { 3067 return SCS1.ObjCLifetimeConversionBinding 3068 ? ImplicitConversionSequence::Worse 3069 : ImplicitConversionSequence::Better; 3070 } 3071 3072 // If the type is an array type, promote the element qualifiers to the 3073 // type for comparison. 3074 if (isa<ArrayType>(T1) && T1Quals) 3075 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3076 if (isa<ArrayType>(T2) && T2Quals) 3077 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3078 if (T2.isMoreQualifiedThan(T1)) 3079 return ImplicitConversionSequence::Better; 3080 else if (T1.isMoreQualifiedThan(T2)) 3081 return ImplicitConversionSequence::Worse; 3082 } 3083 } 3084 3085 // In Microsoft mode, prefer an integral conversion to a 3086 // floating-to-integral conversion if the integral conversion 3087 // is between types of the same size. 3088 // For example: 3089 // void f(float); 3090 // void f(int); 3091 // int main { 3092 // long a; 3093 // f(a); 3094 // } 3095 // Here, MSVC will call f(int) instead of generating a compile error 3096 // as clang will do in standard mode. 3097 if (S.getLangOptions().MicrosoftMode && 3098 SCS1.Second == ICK_Integral_Conversion && 3099 SCS2.Second == ICK_Floating_Integral && 3100 S.Context.getTypeSize(SCS1.getFromType()) == 3101 S.Context.getTypeSize(SCS1.getToType(2))) 3102 return ImplicitConversionSequence::Better; 3103 3104 return ImplicitConversionSequence::Indistinguishable; 3105} 3106 3107/// CompareQualificationConversions - Compares two standard conversion 3108/// sequences to determine whether they can be ranked based on their 3109/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 3110ImplicitConversionSequence::CompareKind 3111CompareQualificationConversions(Sema &S, 3112 const StandardConversionSequence& SCS1, 3113 const StandardConversionSequence& SCS2) { 3114 // C++ 13.3.3.2p3: 3115 // -- S1 and S2 differ only in their qualification conversion and 3116 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 3117 // cv-qualification signature of type T1 is a proper subset of 3118 // the cv-qualification signature of type T2, and S1 is not the 3119 // deprecated string literal array-to-pointer conversion (4.2). 3120 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 3121 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 3122 return ImplicitConversionSequence::Indistinguishable; 3123 3124 // FIXME: the example in the standard doesn't use a qualification 3125 // conversion (!) 3126 QualType T1 = SCS1.getToType(2); 3127 QualType T2 = SCS2.getToType(2); 3128 T1 = S.Context.getCanonicalType(T1); 3129 T2 = S.Context.getCanonicalType(T2); 3130 Qualifiers T1Quals, T2Quals; 3131 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3132 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3133 3134 // If the types are the same, we won't learn anything by unwrapped 3135 // them. 3136 if (UnqualT1 == UnqualT2) 3137 return ImplicitConversionSequence::Indistinguishable; 3138 3139 // If the type is an array type, promote the element qualifiers to the type 3140 // for comparison. 3141 if (isa<ArrayType>(T1) && T1Quals) 3142 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3143 if (isa<ArrayType>(T2) && T2Quals) 3144 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3145 3146 ImplicitConversionSequence::CompareKind Result 3147 = ImplicitConversionSequence::Indistinguishable; 3148 3149 // Objective-C++ ARC: 3150 // Prefer qualification conversions not involving a change in lifetime 3151 // to qualification conversions that do not change lifetime. 3152 if (SCS1.QualificationIncludesObjCLifetime != 3153 SCS2.QualificationIncludesObjCLifetime) { 3154 Result = SCS1.QualificationIncludesObjCLifetime 3155 ? ImplicitConversionSequence::Worse 3156 : ImplicitConversionSequence::Better; 3157 } 3158 3159 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 3160 // Within each iteration of the loop, we check the qualifiers to 3161 // determine if this still looks like a qualification 3162 // conversion. Then, if all is well, we unwrap one more level of 3163 // pointers or pointers-to-members and do it all again 3164 // until there are no more pointers or pointers-to-members left 3165 // to unwrap. This essentially mimics what 3166 // IsQualificationConversion does, but here we're checking for a 3167 // strict subset of qualifiers. 3168 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 3169 // The qualifiers are the same, so this doesn't tell us anything 3170 // about how the sequences rank. 3171 ; 3172 else if (T2.isMoreQualifiedThan(T1)) { 3173 // T1 has fewer qualifiers, so it could be the better sequence. 3174 if (Result == ImplicitConversionSequence::Worse) 3175 // Neither has qualifiers that are a subset of the other's 3176 // qualifiers. 3177 return ImplicitConversionSequence::Indistinguishable; 3178 3179 Result = ImplicitConversionSequence::Better; 3180 } else if (T1.isMoreQualifiedThan(T2)) { 3181 // T2 has fewer qualifiers, so it could be the better sequence. 3182 if (Result == ImplicitConversionSequence::Better) 3183 // Neither has qualifiers that are a subset of the other's 3184 // qualifiers. 3185 return ImplicitConversionSequence::Indistinguishable; 3186 3187 Result = ImplicitConversionSequence::Worse; 3188 } else { 3189 // Qualifiers are disjoint. 3190 return ImplicitConversionSequence::Indistinguishable; 3191 } 3192 3193 // If the types after this point are equivalent, we're done. 3194 if (S.Context.hasSameUnqualifiedType(T1, T2)) 3195 break; 3196 } 3197 3198 // Check that the winning standard conversion sequence isn't using 3199 // the deprecated string literal array to pointer conversion. 3200 switch (Result) { 3201 case ImplicitConversionSequence::Better: 3202 if (SCS1.DeprecatedStringLiteralToCharPtr) 3203 Result = ImplicitConversionSequence::Indistinguishable; 3204 break; 3205 3206 case ImplicitConversionSequence::Indistinguishable: 3207 break; 3208 3209 case ImplicitConversionSequence::Worse: 3210 if (SCS2.DeprecatedStringLiteralToCharPtr) 3211 Result = ImplicitConversionSequence::Indistinguishable; 3212 break; 3213 } 3214 3215 return Result; 3216} 3217 3218/// CompareDerivedToBaseConversions - Compares two standard conversion 3219/// sequences to determine whether they can be ranked based on their 3220/// various kinds of derived-to-base conversions (C++ 3221/// [over.ics.rank]p4b3). As part of these checks, we also look at 3222/// conversions between Objective-C interface types. 3223ImplicitConversionSequence::CompareKind 3224CompareDerivedToBaseConversions(Sema &S, 3225 const StandardConversionSequence& SCS1, 3226 const StandardConversionSequence& SCS2) { 3227 QualType FromType1 = SCS1.getFromType(); 3228 QualType ToType1 = SCS1.getToType(1); 3229 QualType FromType2 = SCS2.getFromType(); 3230 QualType ToType2 = SCS2.getToType(1); 3231 3232 // Adjust the types we're converting from via the array-to-pointer 3233 // conversion, if we need to. 3234 if (SCS1.First == ICK_Array_To_Pointer) 3235 FromType1 = S.Context.getArrayDecayedType(FromType1); 3236 if (SCS2.First == ICK_Array_To_Pointer) 3237 FromType2 = S.Context.getArrayDecayedType(FromType2); 3238 3239 // Canonicalize all of the types. 3240 FromType1 = S.Context.getCanonicalType(FromType1); 3241 ToType1 = S.Context.getCanonicalType(ToType1); 3242 FromType2 = S.Context.getCanonicalType(FromType2); 3243 ToType2 = S.Context.getCanonicalType(ToType2); 3244 3245 // C++ [over.ics.rank]p4b3: 3246 // 3247 // If class B is derived directly or indirectly from class A and 3248 // class C is derived directly or indirectly from B, 3249 // 3250 // Compare based on pointer conversions. 3251 if (SCS1.Second == ICK_Pointer_Conversion && 3252 SCS2.Second == ICK_Pointer_Conversion && 3253 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 3254 FromType1->isPointerType() && FromType2->isPointerType() && 3255 ToType1->isPointerType() && ToType2->isPointerType()) { 3256 QualType FromPointee1 3257 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3258 QualType ToPointee1 3259 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3260 QualType FromPointee2 3261 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3262 QualType ToPointee2 3263 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3264 3265 // -- conversion of C* to B* is better than conversion of C* to A*, 3266 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3267 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3268 return ImplicitConversionSequence::Better; 3269 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3270 return ImplicitConversionSequence::Worse; 3271 } 3272 3273 // -- conversion of B* to A* is better than conversion of C* to A*, 3274 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 3275 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3276 return ImplicitConversionSequence::Better; 3277 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3278 return ImplicitConversionSequence::Worse; 3279 } 3280 } else if (SCS1.Second == ICK_Pointer_Conversion && 3281 SCS2.Second == ICK_Pointer_Conversion) { 3282 const ObjCObjectPointerType *FromPtr1 3283 = FromType1->getAs<ObjCObjectPointerType>(); 3284 const ObjCObjectPointerType *FromPtr2 3285 = FromType2->getAs<ObjCObjectPointerType>(); 3286 const ObjCObjectPointerType *ToPtr1 3287 = ToType1->getAs<ObjCObjectPointerType>(); 3288 const ObjCObjectPointerType *ToPtr2 3289 = ToType2->getAs<ObjCObjectPointerType>(); 3290 3291 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 3292 // Apply the same conversion ranking rules for Objective-C pointer types 3293 // that we do for C++ pointers to class types. However, we employ the 3294 // Objective-C pseudo-subtyping relationship used for assignment of 3295 // Objective-C pointer types. 3296 bool FromAssignLeft 3297 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 3298 bool FromAssignRight 3299 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 3300 bool ToAssignLeft 3301 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 3302 bool ToAssignRight 3303 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 3304 3305 // A conversion to an a non-id object pointer type or qualified 'id' 3306 // type is better than a conversion to 'id'. 3307 if (ToPtr1->isObjCIdType() && 3308 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 3309 return ImplicitConversionSequence::Worse; 3310 if (ToPtr2->isObjCIdType() && 3311 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 3312 return ImplicitConversionSequence::Better; 3313 3314 // A conversion to a non-id object pointer type is better than a 3315 // conversion to a qualified 'id' type 3316 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 3317 return ImplicitConversionSequence::Worse; 3318 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 3319 return ImplicitConversionSequence::Better; 3320 3321 // A conversion to an a non-Class object pointer type or qualified 'Class' 3322 // type is better than a conversion to 'Class'. 3323 if (ToPtr1->isObjCClassType() && 3324 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 3325 return ImplicitConversionSequence::Worse; 3326 if (ToPtr2->isObjCClassType() && 3327 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 3328 return ImplicitConversionSequence::Better; 3329 3330 // A conversion to a non-Class object pointer type is better than a 3331 // conversion to a qualified 'Class' type. 3332 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 3333 return ImplicitConversionSequence::Worse; 3334 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 3335 return ImplicitConversionSequence::Better; 3336 3337 // -- "conversion of C* to B* is better than conversion of C* to A*," 3338 if (S.Context.hasSameType(FromType1, FromType2) && 3339 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 3340 (ToAssignLeft != ToAssignRight)) 3341 return ToAssignLeft? ImplicitConversionSequence::Worse 3342 : ImplicitConversionSequence::Better; 3343 3344 // -- "conversion of B* to A* is better than conversion of C* to A*," 3345 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 3346 (FromAssignLeft != FromAssignRight)) 3347 return FromAssignLeft? ImplicitConversionSequence::Better 3348 : ImplicitConversionSequence::Worse; 3349 } 3350 } 3351 3352 // Ranking of member-pointer types. 3353 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 3354 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 3355 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 3356 const MemberPointerType * FromMemPointer1 = 3357 FromType1->getAs<MemberPointerType>(); 3358 const MemberPointerType * ToMemPointer1 = 3359 ToType1->getAs<MemberPointerType>(); 3360 const MemberPointerType * FromMemPointer2 = 3361 FromType2->getAs<MemberPointerType>(); 3362 const MemberPointerType * ToMemPointer2 = 3363 ToType2->getAs<MemberPointerType>(); 3364 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 3365 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 3366 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 3367 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 3368 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 3369 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 3370 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 3371 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 3372 // conversion of A::* to B::* is better than conversion of A::* to C::*, 3373 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3374 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3375 return ImplicitConversionSequence::Worse; 3376 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3377 return ImplicitConversionSequence::Better; 3378 } 3379 // conversion of B::* to C::* is better than conversion of A::* to C::* 3380 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 3381 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3382 return ImplicitConversionSequence::Better; 3383 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3384 return ImplicitConversionSequence::Worse; 3385 } 3386 } 3387 3388 if (SCS1.Second == ICK_Derived_To_Base) { 3389 // -- conversion of C to B is better than conversion of C to A, 3390 // -- binding of an expression of type C to a reference of type 3391 // B& is better than binding an expression of type C to a 3392 // reference of type A&, 3393 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3394 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3395 if (S.IsDerivedFrom(ToType1, ToType2)) 3396 return ImplicitConversionSequence::Better; 3397 else if (S.IsDerivedFrom(ToType2, ToType1)) 3398 return ImplicitConversionSequence::Worse; 3399 } 3400 3401 // -- conversion of B to A is better than conversion of C to A. 3402 // -- binding of an expression of type B to a reference of type 3403 // A& is better than binding an expression of type C to a 3404 // reference of type A&, 3405 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3406 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3407 if (S.IsDerivedFrom(FromType2, FromType1)) 3408 return ImplicitConversionSequence::Better; 3409 else if (S.IsDerivedFrom(FromType1, FromType2)) 3410 return ImplicitConversionSequence::Worse; 3411 } 3412 } 3413 3414 return ImplicitConversionSequence::Indistinguishable; 3415} 3416 3417/// CompareReferenceRelationship - Compare the two types T1 and T2 to 3418/// determine whether they are reference-related, 3419/// reference-compatible, reference-compatible with added 3420/// qualification, or incompatible, for use in C++ initialization by 3421/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 3422/// type, and the first type (T1) is the pointee type of the reference 3423/// type being initialized. 3424Sema::ReferenceCompareResult 3425Sema::CompareReferenceRelationship(SourceLocation Loc, 3426 QualType OrigT1, QualType OrigT2, 3427 bool &DerivedToBase, 3428 bool &ObjCConversion, 3429 bool &ObjCLifetimeConversion) { 3430 assert(!OrigT1->isReferenceType() && 3431 "T1 must be the pointee type of the reference type"); 3432 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 3433 3434 QualType T1 = Context.getCanonicalType(OrigT1); 3435 QualType T2 = Context.getCanonicalType(OrigT2); 3436 Qualifiers T1Quals, T2Quals; 3437 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 3438 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 3439 3440 // C++ [dcl.init.ref]p4: 3441 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 3442 // reference-related to "cv2 T2" if T1 is the same type as T2, or 3443 // T1 is a base class of T2. 3444 DerivedToBase = false; 3445 ObjCConversion = false; 3446 ObjCLifetimeConversion = false; 3447 if (UnqualT1 == UnqualT2) { 3448 // Nothing to do. 3449 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 3450 IsDerivedFrom(UnqualT2, UnqualT1)) 3451 DerivedToBase = true; 3452 else if (UnqualT1->isObjCObjectOrInterfaceType() && 3453 UnqualT2->isObjCObjectOrInterfaceType() && 3454 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 3455 ObjCConversion = true; 3456 else 3457 return Ref_Incompatible; 3458 3459 // At this point, we know that T1 and T2 are reference-related (at 3460 // least). 3461 3462 // If the type is an array type, promote the element qualifiers to the type 3463 // for comparison. 3464 if (isa<ArrayType>(T1) && T1Quals) 3465 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 3466 if (isa<ArrayType>(T2) && T2Quals) 3467 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 3468 3469 // C++ [dcl.init.ref]p4: 3470 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 3471 // reference-related to T2 and cv1 is the same cv-qualification 3472 // as, or greater cv-qualification than, cv2. For purposes of 3473 // overload resolution, cases for which cv1 is greater 3474 // cv-qualification than cv2 are identified as 3475 // reference-compatible with added qualification (see 13.3.3.2). 3476 // 3477 // Note that we also require equivalence of Objective-C GC and address-space 3478 // qualifiers when performing these computations, so that e.g., an int in 3479 // address space 1 is not reference-compatible with an int in address 3480 // space 2. 3481 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 3482 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 3483 T1Quals.removeObjCLifetime(); 3484 T2Quals.removeObjCLifetime(); 3485 ObjCLifetimeConversion = true; 3486 } 3487 3488 if (T1Quals == T2Quals) 3489 return Ref_Compatible; 3490 else if (T1Quals.compatiblyIncludes(T2Quals)) 3491 return Ref_Compatible_With_Added_Qualification; 3492 else 3493 return Ref_Related; 3494} 3495 3496/// \brief Look for a user-defined conversion to an value reference-compatible 3497/// with DeclType. Return true if something definite is found. 3498static bool 3499FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 3500 QualType DeclType, SourceLocation DeclLoc, 3501 Expr *Init, QualType T2, bool AllowRvalues, 3502 bool AllowExplicit) { 3503 assert(T2->isRecordType() && "Can only find conversions of record types."); 3504 CXXRecordDecl *T2RecordDecl 3505 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3506 3507 OverloadCandidateSet CandidateSet(DeclLoc); 3508 const UnresolvedSetImpl *Conversions 3509 = T2RecordDecl->getVisibleConversionFunctions(); 3510 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3511 E = Conversions->end(); I != E; ++I) { 3512 NamedDecl *D = *I; 3513 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3514 if (isa<UsingShadowDecl>(D)) 3515 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3516 3517 FunctionTemplateDecl *ConvTemplate 3518 = dyn_cast<FunctionTemplateDecl>(D); 3519 CXXConversionDecl *Conv; 3520 if (ConvTemplate) 3521 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3522 else 3523 Conv = cast<CXXConversionDecl>(D); 3524 3525 // If this is an explicit conversion, and we're not allowed to consider 3526 // explicit conversions, skip it. 3527 if (!AllowExplicit && Conv->isExplicit()) 3528 continue; 3529 3530 if (AllowRvalues) { 3531 bool DerivedToBase = false; 3532 bool ObjCConversion = false; 3533 bool ObjCLifetimeConversion = false; 3534 3535 // If we are initializing an rvalue reference, don't permit conversion 3536 // functions that return lvalues. 3537 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 3538 const ReferenceType *RefType 3539 = Conv->getConversionType()->getAs<LValueReferenceType>(); 3540 if (RefType && !RefType->getPointeeType()->isFunctionType()) 3541 continue; 3542 } 3543 3544 if (!ConvTemplate && 3545 S.CompareReferenceRelationship( 3546 DeclLoc, 3547 Conv->getConversionType().getNonReferenceType() 3548 .getUnqualifiedType(), 3549 DeclType.getNonReferenceType().getUnqualifiedType(), 3550 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 3551 Sema::Ref_Incompatible) 3552 continue; 3553 } else { 3554 // If the conversion function doesn't return a reference type, 3555 // it can't be considered for this conversion. An rvalue reference 3556 // is only acceptable if its referencee is a function type. 3557 3558 const ReferenceType *RefType = 3559 Conv->getConversionType()->getAs<ReferenceType>(); 3560 if (!RefType || 3561 (!RefType->isLValueReferenceType() && 3562 !RefType->getPointeeType()->isFunctionType())) 3563 continue; 3564 } 3565 3566 if (ConvTemplate) 3567 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 3568 Init, DeclType, CandidateSet); 3569 else 3570 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 3571 DeclType, CandidateSet); 3572 } 3573 3574 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3575 3576 OverloadCandidateSet::iterator Best; 3577 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3578 case OR_Success: 3579 // C++ [over.ics.ref]p1: 3580 // 3581 // [...] If the parameter binds directly to the result of 3582 // applying a conversion function to the argument 3583 // expression, the implicit conversion sequence is a 3584 // user-defined conversion sequence (13.3.3.1.2), with the 3585 // second standard conversion sequence either an identity 3586 // conversion or, if the conversion function returns an 3587 // entity of a type that is a derived class of the parameter 3588 // type, a derived-to-base Conversion. 3589 if (!Best->FinalConversion.DirectBinding) 3590 return false; 3591 3592 if (Best->Function) 3593 S.MarkDeclarationReferenced(DeclLoc, Best->Function); 3594 ICS.setUserDefined(); 3595 ICS.UserDefined.Before = Best->Conversions[0].Standard; 3596 ICS.UserDefined.After = Best->FinalConversion; 3597 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 3598 ICS.UserDefined.ConversionFunction = Best->Function; 3599 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 3600 ICS.UserDefined.EllipsisConversion = false; 3601 assert(ICS.UserDefined.After.ReferenceBinding && 3602 ICS.UserDefined.After.DirectBinding && 3603 "Expected a direct reference binding!"); 3604 return true; 3605 3606 case OR_Ambiguous: 3607 ICS.setAmbiguous(); 3608 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3609 Cand != CandidateSet.end(); ++Cand) 3610 if (Cand->Viable) 3611 ICS.Ambiguous.addConversion(Cand->Function); 3612 return true; 3613 3614 case OR_No_Viable_Function: 3615 case OR_Deleted: 3616 // There was no suitable conversion, or we found a deleted 3617 // conversion; continue with other checks. 3618 return false; 3619 } 3620 3621 return false; 3622} 3623 3624/// \brief Compute an implicit conversion sequence for reference 3625/// initialization. 3626static ImplicitConversionSequence 3627TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 3628 SourceLocation DeclLoc, 3629 bool SuppressUserConversions, 3630 bool AllowExplicit) { 3631 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 3632 3633 // Most paths end in a failed conversion. 3634 ImplicitConversionSequence ICS; 3635 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3636 3637 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 3638 QualType T2 = Init->getType(); 3639 3640 // If the initializer is the address of an overloaded function, try 3641 // to resolve the overloaded function. If all goes well, T2 is the 3642 // type of the resulting function. 3643 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3644 DeclAccessPair Found; 3645 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 3646 false, Found)) 3647 T2 = Fn->getType(); 3648 } 3649 3650 // Compute some basic properties of the types and the initializer. 3651 bool isRValRef = DeclType->isRValueReferenceType(); 3652 bool DerivedToBase = false; 3653 bool ObjCConversion = false; 3654 bool ObjCLifetimeConversion = false; 3655 Expr::Classification InitCategory = Init->Classify(S.Context); 3656 Sema::ReferenceCompareResult RefRelationship 3657 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 3658 ObjCConversion, ObjCLifetimeConversion); 3659 3660 3661 // C++0x [dcl.init.ref]p5: 3662 // A reference to type "cv1 T1" is initialized by an expression 3663 // of type "cv2 T2" as follows: 3664 3665 // -- If reference is an lvalue reference and the initializer expression 3666 if (!isRValRef) { 3667 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 3668 // reference-compatible with "cv2 T2," or 3669 // 3670 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 3671 if (InitCategory.isLValue() && 3672 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3673 // C++ [over.ics.ref]p1: 3674 // When a parameter of reference type binds directly (8.5.3) 3675 // to an argument expression, the implicit conversion sequence 3676 // is the identity conversion, unless the argument expression 3677 // has a type that is a derived class of the parameter type, 3678 // in which case the implicit conversion sequence is a 3679 // derived-to-base Conversion (13.3.3.1). 3680 ICS.setStandard(); 3681 ICS.Standard.First = ICK_Identity; 3682 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3683 : ObjCConversion? ICK_Compatible_Conversion 3684 : ICK_Identity; 3685 ICS.Standard.Third = ICK_Identity; 3686 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3687 ICS.Standard.setToType(0, T2); 3688 ICS.Standard.setToType(1, T1); 3689 ICS.Standard.setToType(2, T1); 3690 ICS.Standard.ReferenceBinding = true; 3691 ICS.Standard.DirectBinding = true; 3692 ICS.Standard.IsLvalueReference = !isRValRef; 3693 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3694 ICS.Standard.BindsToRvalue = false; 3695 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3696 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3697 ICS.Standard.CopyConstructor = 0; 3698 3699 // Nothing more to do: the inaccessibility/ambiguity check for 3700 // derived-to-base conversions is suppressed when we're 3701 // computing the implicit conversion sequence (C++ 3702 // [over.best.ics]p2). 3703 return ICS; 3704 } 3705 3706 // -- has a class type (i.e., T2 is a class type), where T1 is 3707 // not reference-related to T2, and can be implicitly 3708 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3709 // is reference-compatible with "cv3 T3" 92) (this 3710 // conversion is selected by enumerating the applicable 3711 // conversion functions (13.3.1.6) and choosing the best 3712 // one through overload resolution (13.3)), 3713 if (!SuppressUserConversions && T2->isRecordType() && 3714 !S.RequireCompleteType(DeclLoc, T2, 0) && 3715 RefRelationship == Sema::Ref_Incompatible) { 3716 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3717 Init, T2, /*AllowRvalues=*/false, 3718 AllowExplicit)) 3719 return ICS; 3720 } 3721 } 3722 3723 // -- Otherwise, the reference shall be an lvalue reference to a 3724 // non-volatile const type (i.e., cv1 shall be const), or the reference 3725 // shall be an rvalue reference. 3726 // 3727 // We actually handle one oddity of C++ [over.ics.ref] at this 3728 // point, which is that, due to p2 (which short-circuits reference 3729 // binding by only attempting a simple conversion for non-direct 3730 // bindings) and p3's strange wording, we allow a const volatile 3731 // reference to bind to an rvalue. Hence the check for the presence 3732 // of "const" rather than checking for "const" being the only 3733 // qualifier. 3734 // This is also the point where rvalue references and lvalue inits no longer 3735 // go together. 3736 if (!isRValRef && !T1.isConstQualified()) 3737 return ICS; 3738 3739 // -- If the initializer expression 3740 // 3741 // -- is an xvalue, class prvalue, array prvalue or function 3742 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 3743 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3744 (InitCategory.isXValue() || 3745 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3746 (InitCategory.isLValue() && T2->isFunctionType()))) { 3747 ICS.setStandard(); 3748 ICS.Standard.First = ICK_Identity; 3749 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3750 : ObjCConversion? ICK_Compatible_Conversion 3751 : ICK_Identity; 3752 ICS.Standard.Third = ICK_Identity; 3753 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3754 ICS.Standard.setToType(0, T2); 3755 ICS.Standard.setToType(1, T1); 3756 ICS.Standard.setToType(2, T1); 3757 ICS.Standard.ReferenceBinding = true; 3758 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3759 // binding unless we're binding to a class prvalue. 3760 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3761 // allow the use of rvalue references in C++98/03 for the benefit of 3762 // standard library implementors; therefore, we need the xvalue check here. 3763 ICS.Standard.DirectBinding = 3764 S.getLangOptions().CPlusPlus0x || 3765 (InitCategory.isPRValue() && !T2->isRecordType()); 3766 ICS.Standard.IsLvalueReference = !isRValRef; 3767 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3768 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3769 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3770 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3771 ICS.Standard.CopyConstructor = 0; 3772 return ICS; 3773 } 3774 3775 // -- has a class type (i.e., T2 is a class type), where T1 is not 3776 // reference-related to T2, and can be implicitly converted to 3777 // an xvalue, class prvalue, or function lvalue of type 3778 // "cv3 T3", where "cv1 T1" is reference-compatible with 3779 // "cv3 T3", 3780 // 3781 // then the reference is bound to the value of the initializer 3782 // expression in the first case and to the result of the conversion 3783 // in the second case (or, in either case, to an appropriate base 3784 // class subobject). 3785 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3786 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3787 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3788 Init, T2, /*AllowRvalues=*/true, 3789 AllowExplicit)) { 3790 // In the second case, if the reference is an rvalue reference 3791 // and the second standard conversion sequence of the 3792 // user-defined conversion sequence includes an lvalue-to-rvalue 3793 // conversion, the program is ill-formed. 3794 if (ICS.isUserDefined() && isRValRef && 3795 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3796 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3797 3798 return ICS; 3799 } 3800 3801 // -- Otherwise, a temporary of type "cv1 T1" is created and 3802 // initialized from the initializer expression using the 3803 // rules for a non-reference copy initialization (8.5). The 3804 // reference is then bound to the temporary. If T1 is 3805 // reference-related to T2, cv1 must be the same 3806 // cv-qualification as, or greater cv-qualification than, 3807 // cv2; otherwise, the program is ill-formed. 3808 if (RefRelationship == Sema::Ref_Related) { 3809 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3810 // we would be reference-compatible or reference-compatible with 3811 // added qualification. But that wasn't the case, so the reference 3812 // initialization fails. 3813 // 3814 // Note that we only want to check address spaces and cvr-qualifiers here. 3815 // ObjC GC and lifetime qualifiers aren't important. 3816 Qualifiers T1Quals = T1.getQualifiers(); 3817 Qualifiers T2Quals = T2.getQualifiers(); 3818 T1Quals.removeObjCGCAttr(); 3819 T1Quals.removeObjCLifetime(); 3820 T2Quals.removeObjCGCAttr(); 3821 T2Quals.removeObjCLifetime(); 3822 if (!T1Quals.compatiblyIncludes(T2Quals)) 3823 return ICS; 3824 } 3825 3826 // If at least one of the types is a class type, the types are not 3827 // related, and we aren't allowed any user conversions, the 3828 // reference binding fails. This case is important for breaking 3829 // recursion, since TryImplicitConversion below will attempt to 3830 // create a temporary through the use of a copy constructor. 3831 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3832 (T1->isRecordType() || T2->isRecordType())) 3833 return ICS; 3834 3835 // If T1 is reference-related to T2 and the reference is an rvalue 3836 // reference, the initializer expression shall not be an lvalue. 3837 if (RefRelationship >= Sema::Ref_Related && 3838 isRValRef && Init->Classify(S.Context).isLValue()) 3839 return ICS; 3840 3841 // C++ [over.ics.ref]p2: 3842 // When a parameter of reference type is not bound directly to 3843 // an argument expression, the conversion sequence is the one 3844 // required to convert the argument expression to the 3845 // underlying type of the reference according to 3846 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3847 // to copy-initializing a temporary of the underlying type with 3848 // the argument expression. Any difference in top-level 3849 // cv-qualification is subsumed by the initialization itself 3850 // and does not constitute a conversion. 3851 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3852 /*AllowExplicit=*/false, 3853 /*InOverloadResolution=*/false, 3854 /*CStyle=*/false, 3855 /*AllowObjCWritebackConversion=*/false); 3856 3857 // Of course, that's still a reference binding. 3858 if (ICS.isStandard()) { 3859 ICS.Standard.ReferenceBinding = true; 3860 ICS.Standard.IsLvalueReference = !isRValRef; 3861 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3862 ICS.Standard.BindsToRvalue = true; 3863 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3864 ICS.Standard.ObjCLifetimeConversionBinding = false; 3865 } else if (ICS.isUserDefined()) { 3866 // Don't allow rvalue references to bind to lvalues. 3867 if (DeclType->isRValueReferenceType()) { 3868 if (const ReferenceType *RefType 3869 = ICS.UserDefined.ConversionFunction->getResultType() 3870 ->getAs<LValueReferenceType>()) { 3871 if (!RefType->getPointeeType()->isFunctionType()) { 3872 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, 3873 DeclType); 3874 return ICS; 3875 } 3876 } 3877 } 3878 3879 ICS.UserDefined.After.ReferenceBinding = true; 3880 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 3881 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType(); 3882 ICS.UserDefined.After.BindsToRvalue = true; 3883 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3884 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 3885 } 3886 3887 return ICS; 3888} 3889 3890static ImplicitConversionSequence 3891TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3892 bool SuppressUserConversions, 3893 bool InOverloadResolution, 3894 bool AllowObjCWritebackConversion); 3895 3896/// TryListConversion - Try to copy-initialize a value of type ToType from the 3897/// initializer list From. 3898static ImplicitConversionSequence 3899TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 3900 bool SuppressUserConversions, 3901 bool InOverloadResolution, 3902 bool AllowObjCWritebackConversion) { 3903 // C++11 [over.ics.list]p1: 3904 // When an argument is an initializer list, it is not an expression and 3905 // special rules apply for converting it to a parameter type. 3906 3907 ImplicitConversionSequence Result; 3908 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 3909 Result.setListInitializationSequence(); 3910 3911 // C++11 [over.ics.list]p2: 3912 // If the parameter type is std::initializer_list<X> or "array of X" and 3913 // all the elements can be implicitly converted to X, the implicit 3914 // conversion sequence is the worst conversion necessary to convert an 3915 // element of the list to X. 3916 // FIXME: Recognize std::initializer_list. 3917 // FIXME: Arrays don't make sense until we can deal with references. 3918 if (ToType->isArrayType()) 3919 return Result; 3920 3921 // C++11 [over.ics.list]p3: 3922 // Otherwise, if the parameter is a non-aggregate class X and overload 3923 // resolution chooses a single best constructor [...] the implicit 3924 // conversion sequence is a user-defined conversion sequence. If multiple 3925 // constructors are viable but none is better than the others, the 3926 // implicit conversion sequence is a user-defined conversion sequence. 3927 // FIXME: Implement this. 3928 if (ToType->isRecordType() && !ToType->isAggregateType()) 3929 return Result; 3930 3931 // C++11 [over.ics.list]p4: 3932 // Otherwise, if the parameter has an aggregate type which can be 3933 // initialized from the initializer list [...] the implicit conversion 3934 // sequence is a user-defined conversion sequence. 3935 if (ToType->isAggregateType()) { 3936 // Type is an aggregate, argument is an init list. At this point it comes 3937 // down to checking whether the initialization works. 3938 // FIXME: Find out whether this parameter is consumed or not. 3939 InitializedEntity Entity = 3940 InitializedEntity::InitializeParameter(S.Context, ToType, 3941 /*Consumed=*/false); 3942 if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) { 3943 Result.setUserDefined(); 3944 Result.UserDefined.Before.setAsIdentityConversion(); 3945 // Initializer lists don't have a type. 3946 Result.UserDefined.Before.setFromType(QualType()); 3947 Result.UserDefined.Before.setAllToTypes(QualType()); 3948 3949 Result.UserDefined.After.setAsIdentityConversion(); 3950 Result.UserDefined.After.setFromType(ToType); 3951 Result.UserDefined.After.setAllToTypes(ToType); 3952 } 3953 return Result; 3954 } 3955 3956 // C++11 [over.ics.list]p5: 3957 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 3958 if (ToType->isReferenceType()) { 3959 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 3960 // mention initializer lists in any way. So we go by what list- 3961 // initialization would do and try to extrapolate from that. 3962 3963 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); 3964 3965 // If the initializer list has a single element that is reference-related 3966 // to the parameter type, we initialize the reference from that. 3967 if (From->getNumInits() == 1) { 3968 Expr *Init = From->getInit(0); 3969 3970 QualType T2 = Init->getType(); 3971 3972 // If the initializer is the address of an overloaded function, try 3973 // to resolve the overloaded function. If all goes well, T2 is the 3974 // type of the resulting function. 3975 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3976 DeclAccessPair Found; 3977 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 3978 Init, ToType, false, Found)) 3979 T2 = Fn->getType(); 3980 } 3981 3982 // Compute some basic properties of the types and the initializer. 3983 bool dummy1 = false; 3984 bool dummy2 = false; 3985 bool dummy3 = false; 3986 Sema::ReferenceCompareResult RefRelationship 3987 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, 3988 dummy2, dummy3); 3989 3990 if (RefRelationship >= Sema::Ref_Related) 3991 return TryReferenceInit(S, Init, ToType, 3992 /*FIXME:*/From->getLocStart(), 3993 SuppressUserConversions, 3994 /*AllowExplicit=*/false); 3995 } 3996 3997 // Otherwise, we bind the reference to a temporary created from the 3998 // initializer list. 3999 Result = TryListConversion(S, From, T1, SuppressUserConversions, 4000 InOverloadResolution, 4001 AllowObjCWritebackConversion); 4002 if (Result.isFailure()) 4003 return Result; 4004 assert(!Result.isEllipsis() && 4005 "Sub-initialization cannot result in ellipsis conversion."); 4006 4007 // Can we even bind to a temporary? 4008 if (ToType->isRValueReferenceType() || 4009 (T1.isConstQualified() && !T1.isVolatileQualified())) { 4010 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 4011 Result.UserDefined.After; 4012 SCS.ReferenceBinding = true; 4013 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 4014 SCS.BindsToRvalue = true; 4015 SCS.BindsToFunctionLvalue = false; 4016 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4017 SCS.ObjCLifetimeConversionBinding = false; 4018 } else 4019 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 4020 From, ToType); 4021 return Result; 4022 } 4023 4024 // C++11 [over.ics.list]p6: 4025 // Otherwise, if the parameter type is not a class: 4026 if (!ToType->isRecordType()) { 4027 // - if the initializer list has one element, the implicit conversion 4028 // sequence is the one required to convert the element to the 4029 // parameter type. 4030 // FIXME: Catch narrowing here? 4031 unsigned NumInits = From->getNumInits(); 4032 if (NumInits == 1) 4033 Result = TryCopyInitialization(S, From->getInit(0), ToType, 4034 SuppressUserConversions, 4035 InOverloadResolution, 4036 AllowObjCWritebackConversion); 4037 // - if the initializer list has no elements, the implicit conversion 4038 // sequence is the identity conversion. 4039 else if (NumInits == 0) { 4040 Result.setStandard(); 4041 Result.Standard.setAsIdentityConversion(); 4042 } 4043 return Result; 4044 } 4045 4046 // C++11 [over.ics.list]p7: 4047 // In all cases other than those enumerated above, no conversion is possible 4048 return Result; 4049} 4050 4051/// TryCopyInitialization - Try to copy-initialize a value of type 4052/// ToType from the expression From. Return the implicit conversion 4053/// sequence required to pass this argument, which may be a bad 4054/// conversion sequence (meaning that the argument cannot be passed to 4055/// a parameter of this type). If @p SuppressUserConversions, then we 4056/// do not permit any user-defined conversion sequences. 4057static ImplicitConversionSequence 4058TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4059 bool SuppressUserConversions, 4060 bool InOverloadResolution, 4061 bool AllowObjCWritebackConversion) { 4062 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 4063 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 4064 InOverloadResolution,AllowObjCWritebackConversion); 4065 4066 if (ToType->isReferenceType()) 4067 return TryReferenceInit(S, From, ToType, 4068 /*FIXME:*/From->getLocStart(), 4069 SuppressUserConversions, 4070 /*AllowExplicit=*/false); 4071 4072 return TryImplicitConversion(S, From, ToType, 4073 SuppressUserConversions, 4074 /*AllowExplicit=*/false, 4075 InOverloadResolution, 4076 /*CStyle=*/false, 4077 AllowObjCWritebackConversion); 4078} 4079 4080static bool TryCopyInitialization(const CanQualType FromQTy, 4081 const CanQualType ToQTy, 4082 Sema &S, 4083 SourceLocation Loc, 4084 ExprValueKind FromVK) { 4085 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 4086 ImplicitConversionSequence ICS = 4087 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 4088 4089 return !ICS.isBad(); 4090} 4091 4092/// TryObjectArgumentInitialization - Try to initialize the object 4093/// parameter of the given member function (@c Method) from the 4094/// expression @p From. 4095static ImplicitConversionSequence 4096TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 4097 Expr::Classification FromClassification, 4098 CXXMethodDecl *Method, 4099 CXXRecordDecl *ActingContext) { 4100 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 4101 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 4102 // const volatile object. 4103 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 4104 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 4105 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 4106 4107 // Set up the conversion sequence as a "bad" conversion, to allow us 4108 // to exit early. 4109 ImplicitConversionSequence ICS; 4110 4111 // We need to have an object of class type. 4112 QualType FromType = OrigFromType; 4113 if (const PointerType *PT = FromType->getAs<PointerType>()) { 4114 FromType = PT->getPointeeType(); 4115 4116 // When we had a pointer, it's implicitly dereferenced, so we 4117 // better have an lvalue. 4118 assert(FromClassification.isLValue()); 4119 } 4120 4121 assert(FromType->isRecordType()); 4122 4123 // C++0x [over.match.funcs]p4: 4124 // For non-static member functions, the type of the implicit object 4125 // parameter is 4126 // 4127 // - "lvalue reference to cv X" for functions declared without a 4128 // ref-qualifier or with the & ref-qualifier 4129 // - "rvalue reference to cv X" for functions declared with the && 4130 // ref-qualifier 4131 // 4132 // where X is the class of which the function is a member and cv is the 4133 // cv-qualification on the member function declaration. 4134 // 4135 // However, when finding an implicit conversion sequence for the argument, we 4136 // are not allowed to create temporaries or perform user-defined conversions 4137 // (C++ [over.match.funcs]p5). We perform a simplified version of 4138 // reference binding here, that allows class rvalues to bind to 4139 // non-constant references. 4140 4141 // First check the qualifiers. 4142 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 4143 if (ImplicitParamType.getCVRQualifiers() 4144 != FromTypeCanon.getLocalCVRQualifiers() && 4145 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 4146 ICS.setBad(BadConversionSequence::bad_qualifiers, 4147 OrigFromType, ImplicitParamType); 4148 return ICS; 4149 } 4150 4151 // Check that we have either the same type or a derived type. It 4152 // affects the conversion rank. 4153 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 4154 ImplicitConversionKind SecondKind; 4155 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 4156 SecondKind = ICK_Identity; 4157 } else if (S.IsDerivedFrom(FromType, ClassType)) 4158 SecondKind = ICK_Derived_To_Base; 4159 else { 4160 ICS.setBad(BadConversionSequence::unrelated_class, 4161 FromType, ImplicitParamType); 4162 return ICS; 4163 } 4164 4165 // Check the ref-qualifier. 4166 switch (Method->getRefQualifier()) { 4167 case RQ_None: 4168 // Do nothing; we don't care about lvalueness or rvalueness. 4169 break; 4170 4171 case RQ_LValue: 4172 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 4173 // non-const lvalue reference cannot bind to an rvalue 4174 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 4175 ImplicitParamType); 4176 return ICS; 4177 } 4178 break; 4179 4180 case RQ_RValue: 4181 if (!FromClassification.isRValue()) { 4182 // rvalue reference cannot bind to an lvalue 4183 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 4184 ImplicitParamType); 4185 return ICS; 4186 } 4187 break; 4188 } 4189 4190 // Success. Mark this as a reference binding. 4191 ICS.setStandard(); 4192 ICS.Standard.setAsIdentityConversion(); 4193 ICS.Standard.Second = SecondKind; 4194 ICS.Standard.setFromType(FromType); 4195 ICS.Standard.setAllToTypes(ImplicitParamType); 4196 ICS.Standard.ReferenceBinding = true; 4197 ICS.Standard.DirectBinding = true; 4198 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 4199 ICS.Standard.BindsToFunctionLvalue = false; 4200 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 4201 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 4202 = (Method->getRefQualifier() == RQ_None); 4203 return ICS; 4204} 4205 4206/// PerformObjectArgumentInitialization - Perform initialization of 4207/// the implicit object parameter for the given Method with the given 4208/// expression. 4209ExprResult 4210Sema::PerformObjectArgumentInitialization(Expr *From, 4211 NestedNameSpecifier *Qualifier, 4212 NamedDecl *FoundDecl, 4213 CXXMethodDecl *Method) { 4214 QualType FromRecordType, DestType; 4215 QualType ImplicitParamRecordType = 4216 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 4217 4218 Expr::Classification FromClassification; 4219 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 4220 FromRecordType = PT->getPointeeType(); 4221 DestType = Method->getThisType(Context); 4222 FromClassification = Expr::Classification::makeSimpleLValue(); 4223 } else { 4224 FromRecordType = From->getType(); 4225 DestType = ImplicitParamRecordType; 4226 FromClassification = From->Classify(Context); 4227 } 4228 4229 // Note that we always use the true parent context when performing 4230 // the actual argument initialization. 4231 ImplicitConversionSequence ICS 4232 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 4233 Method, Method->getParent()); 4234 if (ICS.isBad()) { 4235 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 4236 Qualifiers FromQs = FromRecordType.getQualifiers(); 4237 Qualifiers ToQs = DestType.getQualifiers(); 4238 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 4239 if (CVR) { 4240 Diag(From->getSourceRange().getBegin(), 4241 diag::err_member_function_call_bad_cvr) 4242 << Method->getDeclName() << FromRecordType << (CVR - 1) 4243 << From->getSourceRange(); 4244 Diag(Method->getLocation(), diag::note_previous_decl) 4245 << Method->getDeclName(); 4246 return ExprError(); 4247 } 4248 } 4249 4250 return Diag(From->getSourceRange().getBegin(), 4251 diag::err_implicit_object_parameter_init) 4252 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 4253 } 4254 4255 if (ICS.Standard.Second == ICK_Derived_To_Base) { 4256 ExprResult FromRes = 4257 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 4258 if (FromRes.isInvalid()) 4259 return ExprError(); 4260 From = FromRes.take(); 4261 } 4262 4263 if (!Context.hasSameType(From->getType(), DestType)) 4264 From = ImpCastExprToType(From, DestType, CK_NoOp, 4265 From->getValueKind()).take(); 4266 return Owned(From); 4267} 4268 4269/// TryContextuallyConvertToBool - Attempt to contextually convert the 4270/// expression From to bool (C++0x [conv]p3). 4271static ImplicitConversionSequence 4272TryContextuallyConvertToBool(Sema &S, Expr *From) { 4273 // FIXME: This is pretty broken. 4274 return TryImplicitConversion(S, From, S.Context.BoolTy, 4275 // FIXME: Are these flags correct? 4276 /*SuppressUserConversions=*/false, 4277 /*AllowExplicit=*/true, 4278 /*InOverloadResolution=*/false, 4279 /*CStyle=*/false, 4280 /*AllowObjCWritebackConversion=*/false); 4281} 4282 4283/// PerformContextuallyConvertToBool - Perform a contextual conversion 4284/// of the expression From to bool (C++0x [conv]p3). 4285ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 4286 if (checkPlaceholderForOverload(*this, From)) 4287 return ExprError(); 4288 4289 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 4290 if (!ICS.isBad()) 4291 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 4292 4293 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 4294 return Diag(From->getSourceRange().getBegin(), 4295 diag::err_typecheck_bool_condition) 4296 << From->getType() << From->getSourceRange(); 4297 return ExprError(); 4298} 4299 4300/// dropPointerConversions - If the given standard conversion sequence 4301/// involves any pointer conversions, remove them. This may change 4302/// the result type of the conversion sequence. 4303static void dropPointerConversion(StandardConversionSequence &SCS) { 4304 if (SCS.Second == ICK_Pointer_Conversion) { 4305 SCS.Second = ICK_Identity; 4306 SCS.Third = ICK_Identity; 4307 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 4308 } 4309} 4310 4311/// TryContextuallyConvertToObjCPointer - Attempt to contextually 4312/// convert the expression From to an Objective-C pointer type. 4313static ImplicitConversionSequence 4314TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 4315 // Do an implicit conversion to 'id'. 4316 QualType Ty = S.Context.getObjCIdType(); 4317 ImplicitConversionSequence ICS 4318 = TryImplicitConversion(S, From, Ty, 4319 // FIXME: Are these flags correct? 4320 /*SuppressUserConversions=*/false, 4321 /*AllowExplicit=*/true, 4322 /*InOverloadResolution=*/false, 4323 /*CStyle=*/false, 4324 /*AllowObjCWritebackConversion=*/false); 4325 4326 // Strip off any final conversions to 'id'. 4327 switch (ICS.getKind()) { 4328 case ImplicitConversionSequence::BadConversion: 4329 case ImplicitConversionSequence::AmbiguousConversion: 4330 case ImplicitConversionSequence::EllipsisConversion: 4331 break; 4332 4333 case ImplicitConversionSequence::UserDefinedConversion: 4334 dropPointerConversion(ICS.UserDefined.After); 4335 break; 4336 4337 case ImplicitConversionSequence::StandardConversion: 4338 dropPointerConversion(ICS.Standard); 4339 break; 4340 } 4341 4342 return ICS; 4343} 4344 4345/// PerformContextuallyConvertToObjCPointer - Perform a contextual 4346/// conversion of the expression From to an Objective-C pointer type. 4347ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 4348 if (checkPlaceholderForOverload(*this, From)) 4349 return ExprError(); 4350 4351 QualType Ty = Context.getObjCIdType(); 4352 ImplicitConversionSequence ICS = 4353 TryContextuallyConvertToObjCPointer(*this, From); 4354 if (!ICS.isBad()) 4355 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 4356 return ExprError(); 4357} 4358 4359/// \brief Attempt to convert the given expression to an integral or 4360/// enumeration type. 4361/// 4362/// This routine will attempt to convert an expression of class type to an 4363/// integral or enumeration type, if that class type only has a single 4364/// conversion to an integral or enumeration type. 4365/// 4366/// \param Loc The source location of the construct that requires the 4367/// conversion. 4368/// 4369/// \param FromE The expression we're converting from. 4370/// 4371/// \param NotIntDiag The diagnostic to be emitted if the expression does not 4372/// have integral or enumeration type. 4373/// 4374/// \param IncompleteDiag The diagnostic to be emitted if the expression has 4375/// incomplete class type. 4376/// 4377/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 4378/// explicit conversion function (because no implicit conversion functions 4379/// were available). This is a recovery mode. 4380/// 4381/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 4382/// showing which conversion was picked. 4383/// 4384/// \param AmbigDiag The diagnostic to be emitted if there is more than one 4385/// conversion function that could convert to integral or enumeration type. 4386/// 4387/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 4388/// usable conversion function. 4389/// 4390/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 4391/// function, which may be an extension in this case. 4392/// 4393/// \returns The expression, converted to an integral or enumeration type if 4394/// successful. 4395ExprResult 4396Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 4397 const PartialDiagnostic &NotIntDiag, 4398 const PartialDiagnostic &IncompleteDiag, 4399 const PartialDiagnostic &ExplicitConvDiag, 4400 const PartialDiagnostic &ExplicitConvNote, 4401 const PartialDiagnostic &AmbigDiag, 4402 const PartialDiagnostic &AmbigNote, 4403 const PartialDiagnostic &ConvDiag) { 4404 // We can't perform any more checking for type-dependent expressions. 4405 if (From->isTypeDependent()) 4406 return Owned(From); 4407 4408 // If the expression already has integral or enumeration type, we're golden. 4409 QualType T = From->getType(); 4410 if (T->isIntegralOrEnumerationType()) 4411 return Owned(From); 4412 4413 // FIXME: Check for missing '()' if T is a function type? 4414 4415 // If we don't have a class type in C++, there's no way we can get an 4416 // expression of integral or enumeration type. 4417 const RecordType *RecordTy = T->getAs<RecordType>(); 4418 if (!RecordTy || !getLangOptions().CPlusPlus) { 4419 Diag(Loc, NotIntDiag) 4420 << T << From->getSourceRange(); 4421 return Owned(From); 4422 } 4423 4424 // We must have a complete class type. 4425 if (RequireCompleteType(Loc, T, IncompleteDiag)) 4426 return Owned(From); 4427 4428 // Look for a conversion to an integral or enumeration type. 4429 UnresolvedSet<4> ViableConversions; 4430 UnresolvedSet<4> ExplicitConversions; 4431 const UnresolvedSetImpl *Conversions 4432 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 4433 4434 bool HadMultipleCandidates = (Conversions->size() > 1); 4435 4436 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4437 E = Conversions->end(); 4438 I != E; 4439 ++I) { 4440 if (CXXConversionDecl *Conversion 4441 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 4442 if (Conversion->getConversionType().getNonReferenceType() 4443 ->isIntegralOrEnumerationType()) { 4444 if (Conversion->isExplicit()) 4445 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 4446 else 4447 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 4448 } 4449 } 4450 4451 switch (ViableConversions.size()) { 4452 case 0: 4453 if (ExplicitConversions.size() == 1) { 4454 DeclAccessPair Found = ExplicitConversions[0]; 4455 CXXConversionDecl *Conversion 4456 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4457 4458 // The user probably meant to invoke the given explicit 4459 // conversion; use it. 4460 QualType ConvTy 4461 = Conversion->getConversionType().getNonReferenceType(); 4462 std::string TypeStr; 4463 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy()); 4464 4465 Diag(Loc, ExplicitConvDiag) 4466 << T << ConvTy 4467 << FixItHint::CreateInsertion(From->getLocStart(), 4468 "static_cast<" + TypeStr + ">(") 4469 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 4470 ")"); 4471 Diag(Conversion->getLocation(), ExplicitConvNote) 4472 << ConvTy->isEnumeralType() << ConvTy; 4473 4474 // If we aren't in a SFINAE context, build a call to the 4475 // explicit conversion function. 4476 if (isSFINAEContext()) 4477 return ExprError(); 4478 4479 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4480 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 4481 HadMultipleCandidates); 4482 if (Result.isInvalid()) 4483 return ExprError(); 4484 // Record usage of conversion in an implicit cast. 4485 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 4486 CK_UserDefinedConversion, 4487 Result.get(), 0, 4488 Result.get()->getValueKind()); 4489 } 4490 4491 // We'll complain below about a non-integral condition type. 4492 break; 4493 4494 case 1: { 4495 // Apply this conversion. 4496 DeclAccessPair Found = ViableConversions[0]; 4497 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4498 4499 CXXConversionDecl *Conversion 4500 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4501 QualType ConvTy 4502 = Conversion->getConversionType().getNonReferenceType(); 4503 if (ConvDiag.getDiagID()) { 4504 if (isSFINAEContext()) 4505 return ExprError(); 4506 4507 Diag(Loc, ConvDiag) 4508 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 4509 } 4510 4511 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 4512 HadMultipleCandidates); 4513 if (Result.isInvalid()) 4514 return ExprError(); 4515 // Record usage of conversion in an implicit cast. 4516 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 4517 CK_UserDefinedConversion, 4518 Result.get(), 0, 4519 Result.get()->getValueKind()); 4520 break; 4521 } 4522 4523 default: 4524 Diag(Loc, AmbigDiag) 4525 << T << From->getSourceRange(); 4526 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 4527 CXXConversionDecl *Conv 4528 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 4529 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 4530 Diag(Conv->getLocation(), AmbigNote) 4531 << ConvTy->isEnumeralType() << ConvTy; 4532 } 4533 return Owned(From); 4534 } 4535 4536 if (!From->getType()->isIntegralOrEnumerationType()) 4537 Diag(Loc, NotIntDiag) 4538 << From->getType() << From->getSourceRange(); 4539 4540 return Owned(From); 4541} 4542 4543/// AddOverloadCandidate - Adds the given function to the set of 4544/// candidate functions, using the given function call arguments. If 4545/// @p SuppressUserConversions, then don't allow user-defined 4546/// conversions via constructors or conversion operators. 4547/// 4548/// \para PartialOverloading true if we are performing "partial" overloading 4549/// based on an incomplete set of function arguments. This feature is used by 4550/// code completion. 4551void 4552Sema::AddOverloadCandidate(FunctionDecl *Function, 4553 DeclAccessPair FoundDecl, 4554 Expr **Args, unsigned NumArgs, 4555 OverloadCandidateSet& CandidateSet, 4556 bool SuppressUserConversions, 4557 bool PartialOverloading) { 4558 const FunctionProtoType* Proto 4559 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 4560 assert(Proto && "Functions without a prototype cannot be overloaded"); 4561 assert(!Function->getDescribedFunctionTemplate() && 4562 "Use AddTemplateOverloadCandidate for function templates"); 4563 4564 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 4565 if (!isa<CXXConstructorDecl>(Method)) { 4566 // If we get here, it's because we're calling a member function 4567 // that is named without a member access expression (e.g., 4568 // "this->f") that was either written explicitly or created 4569 // implicitly. This can happen with a qualified call to a member 4570 // function, e.g., X::f(). We use an empty type for the implied 4571 // object argument (C++ [over.call.func]p3), and the acting context 4572 // is irrelevant. 4573 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 4574 QualType(), Expr::Classification::makeSimpleLValue(), 4575 Args, NumArgs, CandidateSet, 4576 SuppressUserConversions); 4577 return; 4578 } 4579 // We treat a constructor like a non-member function, since its object 4580 // argument doesn't participate in overload resolution. 4581 } 4582 4583 if (!CandidateSet.isNewCandidate(Function)) 4584 return; 4585 4586 // Overload resolution is always an unevaluated context. 4587 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4588 4589 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 4590 // C++ [class.copy]p3: 4591 // A member function template is never instantiated to perform the copy 4592 // of a class object to an object of its class type. 4593 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 4594 if (NumArgs == 1 && 4595 Constructor->isSpecializationCopyingObject() && 4596 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 4597 IsDerivedFrom(Args[0]->getType(), ClassType))) 4598 return; 4599 } 4600 4601 // Add this candidate 4602 CandidateSet.push_back(OverloadCandidate()); 4603 OverloadCandidate& Candidate = CandidateSet.back(); 4604 Candidate.FoundDecl = FoundDecl; 4605 Candidate.Function = Function; 4606 Candidate.Viable = true; 4607 Candidate.IsSurrogate = false; 4608 Candidate.IgnoreObjectArgument = false; 4609 Candidate.ExplicitCallArguments = NumArgs; 4610 4611 unsigned NumArgsInProto = Proto->getNumArgs(); 4612 4613 // (C++ 13.3.2p2): A candidate function having fewer than m 4614 // parameters is viable only if it has an ellipsis in its parameter 4615 // list (8.3.5). 4616 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 4617 !Proto->isVariadic()) { 4618 Candidate.Viable = false; 4619 Candidate.FailureKind = ovl_fail_too_many_arguments; 4620 return; 4621 } 4622 4623 // (C++ 13.3.2p2): A candidate function having more than m parameters 4624 // is viable only if the (m+1)st parameter has a default argument 4625 // (8.3.6). For the purposes of overload resolution, the 4626 // parameter list is truncated on the right, so that there are 4627 // exactly m parameters. 4628 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 4629 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 4630 // Not enough arguments. 4631 Candidate.Viable = false; 4632 Candidate.FailureKind = ovl_fail_too_few_arguments; 4633 return; 4634 } 4635 4636 // (CUDA B.1): Check for invalid calls between targets. 4637 if (getLangOptions().CUDA) 4638 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 4639 if (CheckCUDATarget(Caller, Function)) { 4640 Candidate.Viable = false; 4641 Candidate.FailureKind = ovl_fail_bad_target; 4642 return; 4643 } 4644 4645 // Determine the implicit conversion sequences for each of the 4646 // arguments. 4647 Candidate.Conversions.resize(NumArgs); 4648 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4649 if (ArgIdx < NumArgsInProto) { 4650 // (C++ 13.3.2p3): for F to be a viable function, there shall 4651 // exist for each argument an implicit conversion sequence 4652 // (13.3.3.1) that converts that argument to the corresponding 4653 // parameter of F. 4654 QualType ParamType = Proto->getArgType(ArgIdx); 4655 Candidate.Conversions[ArgIdx] 4656 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4657 SuppressUserConversions, 4658 /*InOverloadResolution=*/true, 4659 /*AllowObjCWritebackConversion=*/ 4660 getLangOptions().ObjCAutoRefCount); 4661 if (Candidate.Conversions[ArgIdx].isBad()) { 4662 Candidate.Viable = false; 4663 Candidate.FailureKind = ovl_fail_bad_conversion; 4664 break; 4665 } 4666 } else { 4667 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4668 // argument for which there is no corresponding parameter is 4669 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4670 Candidate.Conversions[ArgIdx].setEllipsis(); 4671 } 4672 } 4673} 4674 4675/// \brief Add all of the function declarations in the given function set to 4676/// the overload canddiate set. 4677void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 4678 Expr **Args, unsigned NumArgs, 4679 OverloadCandidateSet& CandidateSet, 4680 bool SuppressUserConversions) { 4681 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 4682 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 4683 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4684 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 4685 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 4686 cast<CXXMethodDecl>(FD)->getParent(), 4687 Args[0]->getType(), Args[0]->Classify(Context), 4688 Args + 1, NumArgs - 1, 4689 CandidateSet, SuppressUserConversions); 4690 else 4691 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 4692 SuppressUserConversions); 4693 } else { 4694 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 4695 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 4696 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 4697 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 4698 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 4699 /*FIXME: explicit args */ 0, 4700 Args[0]->getType(), 4701 Args[0]->Classify(Context), 4702 Args + 1, NumArgs - 1, 4703 CandidateSet, 4704 SuppressUserConversions); 4705 else 4706 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 4707 /*FIXME: explicit args */ 0, 4708 Args, NumArgs, CandidateSet, 4709 SuppressUserConversions); 4710 } 4711 } 4712} 4713 4714/// AddMethodCandidate - Adds a named decl (which is some kind of 4715/// method) as a method candidate to the given overload set. 4716void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 4717 QualType ObjectType, 4718 Expr::Classification ObjectClassification, 4719 Expr **Args, unsigned NumArgs, 4720 OverloadCandidateSet& CandidateSet, 4721 bool SuppressUserConversions) { 4722 NamedDecl *Decl = FoundDecl.getDecl(); 4723 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 4724 4725 if (isa<UsingShadowDecl>(Decl)) 4726 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 4727 4728 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 4729 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 4730 "Expected a member function template"); 4731 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 4732 /*ExplicitArgs*/ 0, 4733 ObjectType, ObjectClassification, Args, NumArgs, 4734 CandidateSet, 4735 SuppressUserConversions); 4736 } else { 4737 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 4738 ObjectType, ObjectClassification, Args, NumArgs, 4739 CandidateSet, SuppressUserConversions); 4740 } 4741} 4742 4743/// AddMethodCandidate - Adds the given C++ member function to the set 4744/// of candidate functions, using the given function call arguments 4745/// and the object argument (@c Object). For example, in a call 4746/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 4747/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 4748/// allow user-defined conversions via constructors or conversion 4749/// operators. 4750void 4751Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 4752 CXXRecordDecl *ActingContext, QualType ObjectType, 4753 Expr::Classification ObjectClassification, 4754 Expr **Args, unsigned NumArgs, 4755 OverloadCandidateSet& CandidateSet, 4756 bool SuppressUserConversions) { 4757 const FunctionProtoType* Proto 4758 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 4759 assert(Proto && "Methods without a prototype cannot be overloaded"); 4760 assert(!isa<CXXConstructorDecl>(Method) && 4761 "Use AddOverloadCandidate for constructors"); 4762 4763 if (!CandidateSet.isNewCandidate(Method)) 4764 return; 4765 4766 // Overload resolution is always an unevaluated context. 4767 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4768 4769 // Add this candidate 4770 CandidateSet.push_back(OverloadCandidate()); 4771 OverloadCandidate& Candidate = CandidateSet.back(); 4772 Candidate.FoundDecl = FoundDecl; 4773 Candidate.Function = Method; 4774 Candidate.IsSurrogate = false; 4775 Candidate.IgnoreObjectArgument = false; 4776 Candidate.ExplicitCallArguments = NumArgs; 4777 4778 unsigned NumArgsInProto = Proto->getNumArgs(); 4779 4780 // (C++ 13.3.2p2): A candidate function having fewer than m 4781 // parameters is viable only if it has an ellipsis in its parameter 4782 // list (8.3.5). 4783 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4784 Candidate.Viable = false; 4785 Candidate.FailureKind = ovl_fail_too_many_arguments; 4786 return; 4787 } 4788 4789 // (C++ 13.3.2p2): A candidate function having more than m parameters 4790 // is viable only if the (m+1)st parameter has a default argument 4791 // (8.3.6). For the purposes of overload resolution, the 4792 // parameter list is truncated on the right, so that there are 4793 // exactly m parameters. 4794 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 4795 if (NumArgs < MinRequiredArgs) { 4796 // Not enough arguments. 4797 Candidate.Viable = false; 4798 Candidate.FailureKind = ovl_fail_too_few_arguments; 4799 return; 4800 } 4801 4802 Candidate.Viable = true; 4803 Candidate.Conversions.resize(NumArgs + 1); 4804 4805 if (Method->isStatic() || ObjectType.isNull()) 4806 // The implicit object argument is ignored. 4807 Candidate.IgnoreObjectArgument = true; 4808 else { 4809 // Determine the implicit conversion sequence for the object 4810 // parameter. 4811 Candidate.Conversions[0] 4812 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 4813 Method, ActingContext); 4814 if (Candidate.Conversions[0].isBad()) { 4815 Candidate.Viable = false; 4816 Candidate.FailureKind = ovl_fail_bad_conversion; 4817 return; 4818 } 4819 } 4820 4821 // Determine the implicit conversion sequences for each of the 4822 // arguments. 4823 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4824 if (ArgIdx < NumArgsInProto) { 4825 // (C++ 13.3.2p3): for F to be a viable function, there shall 4826 // exist for each argument an implicit conversion sequence 4827 // (13.3.3.1) that converts that argument to the corresponding 4828 // parameter of F. 4829 QualType ParamType = Proto->getArgType(ArgIdx); 4830 Candidate.Conversions[ArgIdx + 1] 4831 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4832 SuppressUserConversions, 4833 /*InOverloadResolution=*/true, 4834 /*AllowObjCWritebackConversion=*/ 4835 getLangOptions().ObjCAutoRefCount); 4836 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4837 Candidate.Viable = false; 4838 Candidate.FailureKind = ovl_fail_bad_conversion; 4839 break; 4840 } 4841 } else { 4842 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4843 // argument for which there is no corresponding parameter is 4844 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4845 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4846 } 4847 } 4848} 4849 4850/// \brief Add a C++ member function template as a candidate to the candidate 4851/// set, using template argument deduction to produce an appropriate member 4852/// function template specialization. 4853void 4854Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 4855 DeclAccessPair FoundDecl, 4856 CXXRecordDecl *ActingContext, 4857 TemplateArgumentListInfo *ExplicitTemplateArgs, 4858 QualType ObjectType, 4859 Expr::Classification ObjectClassification, 4860 Expr **Args, unsigned NumArgs, 4861 OverloadCandidateSet& CandidateSet, 4862 bool SuppressUserConversions) { 4863 if (!CandidateSet.isNewCandidate(MethodTmpl)) 4864 return; 4865 4866 // C++ [over.match.funcs]p7: 4867 // In each case where a candidate is a function template, candidate 4868 // function template specializations are generated using template argument 4869 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4870 // candidate functions in the usual way.113) A given name can refer to one 4871 // or more function templates and also to a set of overloaded non-template 4872 // functions. In such a case, the candidate functions generated from each 4873 // function template are combined with the set of non-template candidate 4874 // functions. 4875 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4876 FunctionDecl *Specialization = 0; 4877 if (TemplateDeductionResult Result 4878 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 4879 Args, NumArgs, Specialization, Info)) { 4880 CandidateSet.push_back(OverloadCandidate()); 4881 OverloadCandidate &Candidate = CandidateSet.back(); 4882 Candidate.FoundDecl = FoundDecl; 4883 Candidate.Function = MethodTmpl->getTemplatedDecl(); 4884 Candidate.Viable = false; 4885 Candidate.FailureKind = ovl_fail_bad_deduction; 4886 Candidate.IsSurrogate = false; 4887 Candidate.IgnoreObjectArgument = false; 4888 Candidate.ExplicitCallArguments = NumArgs; 4889 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4890 Info); 4891 return; 4892 } 4893 4894 // Add the function template specialization produced by template argument 4895 // deduction as a candidate. 4896 assert(Specialization && "Missing member function template specialization?"); 4897 assert(isa<CXXMethodDecl>(Specialization) && 4898 "Specialization is not a member function?"); 4899 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 4900 ActingContext, ObjectType, ObjectClassification, 4901 Args, NumArgs, CandidateSet, SuppressUserConversions); 4902} 4903 4904/// \brief Add a C++ function template specialization as a candidate 4905/// in the candidate set, using template argument deduction to produce 4906/// an appropriate function template specialization. 4907void 4908Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 4909 DeclAccessPair FoundDecl, 4910 TemplateArgumentListInfo *ExplicitTemplateArgs, 4911 Expr **Args, unsigned NumArgs, 4912 OverloadCandidateSet& CandidateSet, 4913 bool SuppressUserConversions) { 4914 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4915 return; 4916 4917 // C++ [over.match.funcs]p7: 4918 // In each case where a candidate is a function template, candidate 4919 // function template specializations are generated using template argument 4920 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4921 // candidate functions in the usual way.113) A given name can refer to one 4922 // or more function templates and also to a set of overloaded non-template 4923 // functions. In such a case, the candidate functions generated from each 4924 // function template are combined with the set of non-template candidate 4925 // functions. 4926 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4927 FunctionDecl *Specialization = 0; 4928 if (TemplateDeductionResult Result 4929 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4930 Args, NumArgs, Specialization, Info)) { 4931 CandidateSet.push_back(OverloadCandidate()); 4932 OverloadCandidate &Candidate = CandidateSet.back(); 4933 Candidate.FoundDecl = FoundDecl; 4934 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4935 Candidate.Viable = false; 4936 Candidate.FailureKind = ovl_fail_bad_deduction; 4937 Candidate.IsSurrogate = false; 4938 Candidate.IgnoreObjectArgument = false; 4939 Candidate.ExplicitCallArguments = NumArgs; 4940 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4941 Info); 4942 return; 4943 } 4944 4945 // Add the function template specialization produced by template argument 4946 // deduction as a candidate. 4947 assert(Specialization && "Missing function template specialization?"); 4948 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 4949 SuppressUserConversions); 4950} 4951 4952/// AddConversionCandidate - Add a C++ conversion function as a 4953/// candidate in the candidate set (C++ [over.match.conv], 4954/// C++ [over.match.copy]). From is the expression we're converting from, 4955/// and ToType is the type that we're eventually trying to convert to 4956/// (which may or may not be the same type as the type that the 4957/// conversion function produces). 4958void 4959Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 4960 DeclAccessPair FoundDecl, 4961 CXXRecordDecl *ActingContext, 4962 Expr *From, QualType ToType, 4963 OverloadCandidateSet& CandidateSet) { 4964 assert(!Conversion->getDescribedFunctionTemplate() && 4965 "Conversion function templates use AddTemplateConversionCandidate"); 4966 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 4967 if (!CandidateSet.isNewCandidate(Conversion)) 4968 return; 4969 4970 // Overload resolution is always an unevaluated context. 4971 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4972 4973 // Add this candidate 4974 CandidateSet.push_back(OverloadCandidate()); 4975 OverloadCandidate& Candidate = CandidateSet.back(); 4976 Candidate.FoundDecl = FoundDecl; 4977 Candidate.Function = Conversion; 4978 Candidate.IsSurrogate = false; 4979 Candidate.IgnoreObjectArgument = false; 4980 Candidate.FinalConversion.setAsIdentityConversion(); 4981 Candidate.FinalConversion.setFromType(ConvType); 4982 Candidate.FinalConversion.setAllToTypes(ToType); 4983 Candidate.Viable = true; 4984 Candidate.Conversions.resize(1); 4985 Candidate.ExplicitCallArguments = 1; 4986 4987 // C++ [over.match.funcs]p4: 4988 // For conversion functions, the function is considered to be a member of 4989 // the class of the implicit implied object argument for the purpose of 4990 // defining the type of the implicit object parameter. 4991 // 4992 // Determine the implicit conversion sequence for the implicit 4993 // object parameter. 4994 QualType ImplicitParamType = From->getType(); 4995 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 4996 ImplicitParamType = FromPtrType->getPointeeType(); 4997 CXXRecordDecl *ConversionContext 4998 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 4999 5000 Candidate.Conversions[0] 5001 = TryObjectArgumentInitialization(*this, From->getType(), 5002 From->Classify(Context), 5003 Conversion, ConversionContext); 5004 5005 if (Candidate.Conversions[0].isBad()) { 5006 Candidate.Viable = false; 5007 Candidate.FailureKind = ovl_fail_bad_conversion; 5008 return; 5009 } 5010 5011 // We won't go through a user-define type conversion function to convert a 5012 // derived to base as such conversions are given Conversion Rank. They only 5013 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 5014 QualType FromCanon 5015 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 5016 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 5017 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 5018 Candidate.Viable = false; 5019 Candidate.FailureKind = ovl_fail_trivial_conversion; 5020 return; 5021 } 5022 5023 // To determine what the conversion from the result of calling the 5024 // conversion function to the type we're eventually trying to 5025 // convert to (ToType), we need to synthesize a call to the 5026 // conversion function and attempt copy initialization from it. This 5027 // makes sure that we get the right semantics with respect to 5028 // lvalues/rvalues and the type. Fortunately, we can allocate this 5029 // call on the stack and we don't need its arguments to be 5030 // well-formed. 5031 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 5032 VK_LValue, From->getLocStart()); 5033 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 5034 Context.getPointerType(Conversion->getType()), 5035 CK_FunctionToPointerDecay, 5036 &ConversionRef, VK_RValue); 5037 5038 QualType ConversionType = Conversion->getConversionType(); 5039 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { 5040 Candidate.Viable = false; 5041 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5042 return; 5043 } 5044 5045 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 5046 5047 // Note that it is safe to allocate CallExpr on the stack here because 5048 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 5049 // allocator). 5050 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 5051 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 5052 From->getLocStart()); 5053 ImplicitConversionSequence ICS = 5054 TryCopyInitialization(*this, &Call, ToType, 5055 /*SuppressUserConversions=*/true, 5056 /*InOverloadResolution=*/false, 5057 /*AllowObjCWritebackConversion=*/false); 5058 5059 switch (ICS.getKind()) { 5060 case ImplicitConversionSequence::StandardConversion: 5061 Candidate.FinalConversion = ICS.Standard; 5062 5063 // C++ [over.ics.user]p3: 5064 // If the user-defined conversion is specified by a specialization of a 5065 // conversion function template, the second standard conversion sequence 5066 // shall have exact match rank. 5067 if (Conversion->getPrimaryTemplate() && 5068 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 5069 Candidate.Viable = false; 5070 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 5071 } 5072 5073 // C++0x [dcl.init.ref]p5: 5074 // In the second case, if the reference is an rvalue reference and 5075 // the second standard conversion sequence of the user-defined 5076 // conversion sequence includes an lvalue-to-rvalue conversion, the 5077 // program is ill-formed. 5078 if (ToType->isRValueReferenceType() && 5079 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5080 Candidate.Viable = false; 5081 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5082 } 5083 break; 5084 5085 case ImplicitConversionSequence::BadConversion: 5086 Candidate.Viable = false; 5087 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5088 break; 5089 5090 default: 5091 llvm_unreachable( 5092 "Can only end up with a standard conversion sequence or failure"); 5093 } 5094} 5095 5096/// \brief Adds a conversion function template specialization 5097/// candidate to the overload set, using template argument deduction 5098/// to deduce the template arguments of the conversion function 5099/// template from the type that we are converting to (C++ 5100/// [temp.deduct.conv]). 5101void 5102Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 5103 DeclAccessPair FoundDecl, 5104 CXXRecordDecl *ActingDC, 5105 Expr *From, QualType ToType, 5106 OverloadCandidateSet &CandidateSet) { 5107 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 5108 "Only conversion function templates permitted here"); 5109 5110 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5111 return; 5112 5113 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5114 CXXConversionDecl *Specialization = 0; 5115 if (TemplateDeductionResult Result 5116 = DeduceTemplateArguments(FunctionTemplate, ToType, 5117 Specialization, Info)) { 5118 CandidateSet.push_back(OverloadCandidate()); 5119 OverloadCandidate &Candidate = CandidateSet.back(); 5120 Candidate.FoundDecl = FoundDecl; 5121 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5122 Candidate.Viable = false; 5123 Candidate.FailureKind = ovl_fail_bad_deduction; 5124 Candidate.IsSurrogate = false; 5125 Candidate.IgnoreObjectArgument = false; 5126 Candidate.ExplicitCallArguments = 1; 5127 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5128 Info); 5129 return; 5130 } 5131 5132 // Add the conversion function template specialization produced by 5133 // template argument deduction as a candidate. 5134 assert(Specialization && "Missing function template specialization?"); 5135 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 5136 CandidateSet); 5137} 5138 5139/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 5140/// converts the given @c Object to a function pointer via the 5141/// conversion function @c Conversion, and then attempts to call it 5142/// with the given arguments (C++ [over.call.object]p2-4). Proto is 5143/// the type of function that we'll eventually be calling. 5144void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 5145 DeclAccessPair FoundDecl, 5146 CXXRecordDecl *ActingContext, 5147 const FunctionProtoType *Proto, 5148 Expr *Object, 5149 Expr **Args, unsigned NumArgs, 5150 OverloadCandidateSet& CandidateSet) { 5151 if (!CandidateSet.isNewCandidate(Conversion)) 5152 return; 5153 5154 // Overload resolution is always an unevaluated context. 5155 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5156 5157 CandidateSet.push_back(OverloadCandidate()); 5158 OverloadCandidate& Candidate = CandidateSet.back(); 5159 Candidate.FoundDecl = FoundDecl; 5160 Candidate.Function = 0; 5161 Candidate.Surrogate = Conversion; 5162 Candidate.Viable = true; 5163 Candidate.IsSurrogate = true; 5164 Candidate.IgnoreObjectArgument = false; 5165 Candidate.Conversions.resize(NumArgs + 1); 5166 Candidate.ExplicitCallArguments = NumArgs; 5167 5168 // Determine the implicit conversion sequence for the implicit 5169 // object parameter. 5170 ImplicitConversionSequence ObjectInit 5171 = TryObjectArgumentInitialization(*this, Object->getType(), 5172 Object->Classify(Context), 5173 Conversion, ActingContext); 5174 if (ObjectInit.isBad()) { 5175 Candidate.Viable = false; 5176 Candidate.FailureKind = ovl_fail_bad_conversion; 5177 Candidate.Conversions[0] = ObjectInit; 5178 return; 5179 } 5180 5181 // The first conversion is actually a user-defined conversion whose 5182 // first conversion is ObjectInit's standard conversion (which is 5183 // effectively a reference binding). Record it as such. 5184 Candidate.Conversions[0].setUserDefined(); 5185 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 5186 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 5187 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 5188 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 5189 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 5190 Candidate.Conversions[0].UserDefined.After 5191 = Candidate.Conversions[0].UserDefined.Before; 5192 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 5193 5194 // Find the 5195 unsigned NumArgsInProto = Proto->getNumArgs(); 5196 5197 // (C++ 13.3.2p2): A candidate function having fewer than m 5198 // parameters is viable only if it has an ellipsis in its parameter 5199 // list (8.3.5). 5200 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 5201 Candidate.Viable = false; 5202 Candidate.FailureKind = ovl_fail_too_many_arguments; 5203 return; 5204 } 5205 5206 // Function types don't have any default arguments, so just check if 5207 // we have enough arguments. 5208 if (NumArgs < NumArgsInProto) { 5209 // Not enough arguments. 5210 Candidate.Viable = false; 5211 Candidate.FailureKind = ovl_fail_too_few_arguments; 5212 return; 5213 } 5214 5215 // Determine the implicit conversion sequences for each of the 5216 // arguments. 5217 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5218 if (ArgIdx < NumArgsInProto) { 5219 // (C++ 13.3.2p3): for F to be a viable function, there shall 5220 // exist for each argument an implicit conversion sequence 5221 // (13.3.3.1) that converts that argument to the corresponding 5222 // parameter of F. 5223 QualType ParamType = Proto->getArgType(ArgIdx); 5224 Candidate.Conversions[ArgIdx + 1] 5225 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5226 /*SuppressUserConversions=*/false, 5227 /*InOverloadResolution=*/false, 5228 /*AllowObjCWritebackConversion=*/ 5229 getLangOptions().ObjCAutoRefCount); 5230 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5231 Candidate.Viable = false; 5232 Candidate.FailureKind = ovl_fail_bad_conversion; 5233 break; 5234 } 5235 } else { 5236 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5237 // argument for which there is no corresponding parameter is 5238 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5239 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5240 } 5241 } 5242} 5243 5244/// \brief Add overload candidates for overloaded operators that are 5245/// member functions. 5246/// 5247/// Add the overloaded operator candidates that are member functions 5248/// for the operator Op that was used in an operator expression such 5249/// as "x Op y". , Args/NumArgs provides the operator arguments, and 5250/// CandidateSet will store the added overload candidates. (C++ 5251/// [over.match.oper]). 5252void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 5253 SourceLocation OpLoc, 5254 Expr **Args, unsigned NumArgs, 5255 OverloadCandidateSet& CandidateSet, 5256 SourceRange OpRange) { 5257 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5258 5259 // C++ [over.match.oper]p3: 5260 // For a unary operator @ with an operand of a type whose 5261 // cv-unqualified version is T1, and for a binary operator @ with 5262 // a left operand of a type whose cv-unqualified version is T1 and 5263 // a right operand of a type whose cv-unqualified version is T2, 5264 // three sets of candidate functions, designated member 5265 // candidates, non-member candidates and built-in candidates, are 5266 // constructed as follows: 5267 QualType T1 = Args[0]->getType(); 5268 5269 // -- If T1 is a class type, the set of member candidates is the 5270 // result of the qualified lookup of T1::operator@ 5271 // (13.3.1.1.1); otherwise, the set of member candidates is 5272 // empty. 5273 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 5274 // Complete the type if it can be completed. Otherwise, we're done. 5275 if (RequireCompleteType(OpLoc, T1, PDiag())) 5276 return; 5277 5278 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 5279 LookupQualifiedName(Operators, T1Rec->getDecl()); 5280 Operators.suppressDiagnostics(); 5281 5282 for (LookupResult::iterator Oper = Operators.begin(), 5283 OperEnd = Operators.end(); 5284 Oper != OperEnd; 5285 ++Oper) 5286 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 5287 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 5288 CandidateSet, 5289 /* SuppressUserConversions = */ false); 5290 } 5291} 5292 5293/// AddBuiltinCandidate - Add a candidate for a built-in 5294/// operator. ResultTy and ParamTys are the result and parameter types 5295/// of the built-in candidate, respectively. Args and NumArgs are the 5296/// arguments being passed to the candidate. IsAssignmentOperator 5297/// should be true when this built-in candidate is an assignment 5298/// operator. NumContextualBoolArguments is the number of arguments 5299/// (at the beginning of the argument list) that will be contextually 5300/// converted to bool. 5301void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 5302 Expr **Args, unsigned NumArgs, 5303 OverloadCandidateSet& CandidateSet, 5304 bool IsAssignmentOperator, 5305 unsigned NumContextualBoolArguments) { 5306 // Overload resolution is always an unevaluated context. 5307 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5308 5309 // Add this candidate 5310 CandidateSet.push_back(OverloadCandidate()); 5311 OverloadCandidate& Candidate = CandidateSet.back(); 5312 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 5313 Candidate.Function = 0; 5314 Candidate.IsSurrogate = false; 5315 Candidate.IgnoreObjectArgument = false; 5316 Candidate.BuiltinTypes.ResultTy = ResultTy; 5317 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5318 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 5319 5320 // Determine the implicit conversion sequences for each of the 5321 // arguments. 5322 Candidate.Viable = true; 5323 Candidate.Conversions.resize(NumArgs); 5324 Candidate.ExplicitCallArguments = NumArgs; 5325 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5326 // C++ [over.match.oper]p4: 5327 // For the built-in assignment operators, conversions of the 5328 // left operand are restricted as follows: 5329 // -- no temporaries are introduced to hold the left operand, and 5330 // -- no user-defined conversions are applied to the left 5331 // operand to achieve a type match with the left-most 5332 // parameter of a built-in candidate. 5333 // 5334 // We block these conversions by turning off user-defined 5335 // conversions, since that is the only way that initialization of 5336 // a reference to a non-class type can occur from something that 5337 // is not of the same type. 5338 if (ArgIdx < NumContextualBoolArguments) { 5339 assert(ParamTys[ArgIdx] == Context.BoolTy && 5340 "Contextual conversion to bool requires bool type"); 5341 Candidate.Conversions[ArgIdx] 5342 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 5343 } else { 5344 Candidate.Conversions[ArgIdx] 5345 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 5346 ArgIdx == 0 && IsAssignmentOperator, 5347 /*InOverloadResolution=*/false, 5348 /*AllowObjCWritebackConversion=*/ 5349 getLangOptions().ObjCAutoRefCount); 5350 } 5351 if (Candidate.Conversions[ArgIdx].isBad()) { 5352 Candidate.Viable = false; 5353 Candidate.FailureKind = ovl_fail_bad_conversion; 5354 break; 5355 } 5356 } 5357} 5358 5359/// BuiltinCandidateTypeSet - A set of types that will be used for the 5360/// candidate operator functions for built-in operators (C++ 5361/// [over.built]). The types are separated into pointer types and 5362/// enumeration types. 5363class BuiltinCandidateTypeSet { 5364 /// TypeSet - A set of types. 5365 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 5366 5367 /// PointerTypes - The set of pointer types that will be used in the 5368 /// built-in candidates. 5369 TypeSet PointerTypes; 5370 5371 /// MemberPointerTypes - The set of member pointer types that will be 5372 /// used in the built-in candidates. 5373 TypeSet MemberPointerTypes; 5374 5375 /// EnumerationTypes - The set of enumeration types that will be 5376 /// used in the built-in candidates. 5377 TypeSet EnumerationTypes; 5378 5379 /// \brief The set of vector types that will be used in the built-in 5380 /// candidates. 5381 TypeSet VectorTypes; 5382 5383 /// \brief A flag indicating non-record types are viable candidates 5384 bool HasNonRecordTypes; 5385 5386 /// \brief A flag indicating whether either arithmetic or enumeration types 5387 /// were present in the candidate set. 5388 bool HasArithmeticOrEnumeralTypes; 5389 5390 /// \brief A flag indicating whether the nullptr type was present in the 5391 /// candidate set. 5392 bool HasNullPtrType; 5393 5394 /// Sema - The semantic analysis instance where we are building the 5395 /// candidate type set. 5396 Sema &SemaRef; 5397 5398 /// Context - The AST context in which we will build the type sets. 5399 ASTContext &Context; 5400 5401 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5402 const Qualifiers &VisibleQuals); 5403 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 5404 5405public: 5406 /// iterator - Iterates through the types that are part of the set. 5407 typedef TypeSet::iterator iterator; 5408 5409 BuiltinCandidateTypeSet(Sema &SemaRef) 5410 : HasNonRecordTypes(false), 5411 HasArithmeticOrEnumeralTypes(false), 5412 HasNullPtrType(false), 5413 SemaRef(SemaRef), 5414 Context(SemaRef.Context) { } 5415 5416 void AddTypesConvertedFrom(QualType Ty, 5417 SourceLocation Loc, 5418 bool AllowUserConversions, 5419 bool AllowExplicitConversions, 5420 const Qualifiers &VisibleTypeConversionsQuals); 5421 5422 /// pointer_begin - First pointer type found; 5423 iterator pointer_begin() { return PointerTypes.begin(); } 5424 5425 /// pointer_end - Past the last pointer type found; 5426 iterator pointer_end() { return PointerTypes.end(); } 5427 5428 /// member_pointer_begin - First member pointer type found; 5429 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 5430 5431 /// member_pointer_end - Past the last member pointer type found; 5432 iterator member_pointer_end() { return MemberPointerTypes.end(); } 5433 5434 /// enumeration_begin - First enumeration type found; 5435 iterator enumeration_begin() { return EnumerationTypes.begin(); } 5436 5437 /// enumeration_end - Past the last enumeration type found; 5438 iterator enumeration_end() { return EnumerationTypes.end(); } 5439 5440 iterator vector_begin() { return VectorTypes.begin(); } 5441 iterator vector_end() { return VectorTypes.end(); } 5442 5443 bool hasNonRecordTypes() { return HasNonRecordTypes; } 5444 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 5445 bool hasNullPtrType() const { return HasNullPtrType; } 5446}; 5447 5448/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 5449/// the set of pointer types along with any more-qualified variants of 5450/// that type. For example, if @p Ty is "int const *", this routine 5451/// will add "int const *", "int const volatile *", "int const 5452/// restrict *", and "int const volatile restrict *" to the set of 5453/// pointer types. Returns true if the add of @p Ty itself succeeded, 5454/// false otherwise. 5455/// 5456/// FIXME: what to do about extended qualifiers? 5457bool 5458BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5459 const Qualifiers &VisibleQuals) { 5460 5461 // Insert this type. 5462 if (!PointerTypes.insert(Ty)) 5463 return false; 5464 5465 QualType PointeeTy; 5466 const PointerType *PointerTy = Ty->getAs<PointerType>(); 5467 bool buildObjCPtr = false; 5468 if (!PointerTy) { 5469 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 5470 PointeeTy = PTy->getPointeeType(); 5471 buildObjCPtr = true; 5472 } 5473 else 5474 llvm_unreachable("type was not a pointer type!"); 5475 } 5476 else 5477 PointeeTy = PointerTy->getPointeeType(); 5478 5479 // Don't add qualified variants of arrays. For one, they're not allowed 5480 // (the qualifier would sink to the element type), and for another, the 5481 // only overload situation where it matters is subscript or pointer +- int, 5482 // and those shouldn't have qualifier variants anyway. 5483 if (PointeeTy->isArrayType()) 5484 return true; 5485 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5486 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 5487 BaseCVR = Array->getElementType().getCVRQualifiers(); 5488 bool hasVolatile = VisibleQuals.hasVolatile(); 5489 bool hasRestrict = VisibleQuals.hasRestrict(); 5490 5491 // Iterate through all strict supersets of BaseCVR. 5492 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5493 if ((CVR | BaseCVR) != CVR) continue; 5494 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 5495 // in the types. 5496 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 5497 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 5498 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5499 if (!buildObjCPtr) 5500 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 5501 else 5502 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 5503 } 5504 5505 return true; 5506} 5507 5508/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 5509/// to the set of pointer types along with any more-qualified variants of 5510/// that type. For example, if @p Ty is "int const *", this routine 5511/// will add "int const *", "int const volatile *", "int const 5512/// restrict *", and "int const volatile restrict *" to the set of 5513/// pointer types. Returns true if the add of @p Ty itself succeeded, 5514/// false otherwise. 5515/// 5516/// FIXME: what to do about extended qualifiers? 5517bool 5518BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 5519 QualType Ty) { 5520 // Insert this type. 5521 if (!MemberPointerTypes.insert(Ty)) 5522 return false; 5523 5524 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 5525 assert(PointerTy && "type was not a member pointer type!"); 5526 5527 QualType PointeeTy = PointerTy->getPointeeType(); 5528 // Don't add qualified variants of arrays. For one, they're not allowed 5529 // (the qualifier would sink to the element type), and for another, the 5530 // only overload situation where it matters is subscript or pointer +- int, 5531 // and those shouldn't have qualifier variants anyway. 5532 if (PointeeTy->isArrayType()) 5533 return true; 5534 const Type *ClassTy = PointerTy->getClass(); 5535 5536 // Iterate through all strict supersets of the pointee type's CVR 5537 // qualifiers. 5538 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5539 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5540 if ((CVR | BaseCVR) != CVR) continue; 5541 5542 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5543 MemberPointerTypes.insert( 5544 Context.getMemberPointerType(QPointeeTy, ClassTy)); 5545 } 5546 5547 return true; 5548} 5549 5550/// AddTypesConvertedFrom - Add each of the types to which the type @p 5551/// Ty can be implicit converted to the given set of @p Types. We're 5552/// primarily interested in pointer types and enumeration types. We also 5553/// take member pointer types, for the conditional operator. 5554/// AllowUserConversions is true if we should look at the conversion 5555/// functions of a class type, and AllowExplicitConversions if we 5556/// should also include the explicit conversion functions of a class 5557/// type. 5558void 5559BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 5560 SourceLocation Loc, 5561 bool AllowUserConversions, 5562 bool AllowExplicitConversions, 5563 const Qualifiers &VisibleQuals) { 5564 // Only deal with canonical types. 5565 Ty = Context.getCanonicalType(Ty); 5566 5567 // Look through reference types; they aren't part of the type of an 5568 // expression for the purposes of conversions. 5569 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 5570 Ty = RefTy->getPointeeType(); 5571 5572 // If we're dealing with an array type, decay to the pointer. 5573 if (Ty->isArrayType()) 5574 Ty = SemaRef.Context.getArrayDecayedType(Ty); 5575 5576 // Otherwise, we don't care about qualifiers on the type. 5577 Ty = Ty.getLocalUnqualifiedType(); 5578 5579 // Flag if we ever add a non-record type. 5580 const RecordType *TyRec = Ty->getAs<RecordType>(); 5581 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 5582 5583 // Flag if we encounter an arithmetic type. 5584 HasArithmeticOrEnumeralTypes = 5585 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 5586 5587 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 5588 PointerTypes.insert(Ty); 5589 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 5590 // Insert our type, and its more-qualified variants, into the set 5591 // of types. 5592 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 5593 return; 5594 } else if (Ty->isMemberPointerType()) { 5595 // Member pointers are far easier, since the pointee can't be converted. 5596 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 5597 return; 5598 } else if (Ty->isEnumeralType()) { 5599 HasArithmeticOrEnumeralTypes = true; 5600 EnumerationTypes.insert(Ty); 5601 } else if (Ty->isVectorType()) { 5602 // We treat vector types as arithmetic types in many contexts as an 5603 // extension. 5604 HasArithmeticOrEnumeralTypes = true; 5605 VectorTypes.insert(Ty); 5606 } else if (Ty->isNullPtrType()) { 5607 HasNullPtrType = true; 5608 } else if (AllowUserConversions && TyRec) { 5609 // No conversion functions in incomplete types. 5610 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 5611 return; 5612 5613 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 5614 const UnresolvedSetImpl *Conversions 5615 = ClassDecl->getVisibleConversionFunctions(); 5616 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5617 E = Conversions->end(); I != E; ++I) { 5618 NamedDecl *D = I.getDecl(); 5619 if (isa<UsingShadowDecl>(D)) 5620 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5621 5622 // Skip conversion function templates; they don't tell us anything 5623 // about which builtin types we can convert to. 5624 if (isa<FunctionTemplateDecl>(D)) 5625 continue; 5626 5627 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 5628 if (AllowExplicitConversions || !Conv->isExplicit()) { 5629 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 5630 VisibleQuals); 5631 } 5632 } 5633 } 5634} 5635 5636/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 5637/// the volatile- and non-volatile-qualified assignment operators for the 5638/// given type to the candidate set. 5639static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 5640 QualType T, 5641 Expr **Args, 5642 unsigned NumArgs, 5643 OverloadCandidateSet &CandidateSet) { 5644 QualType ParamTypes[2]; 5645 5646 // T& operator=(T&, T) 5647 ParamTypes[0] = S.Context.getLValueReferenceType(T); 5648 ParamTypes[1] = T; 5649 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5650 /*IsAssignmentOperator=*/true); 5651 5652 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 5653 // volatile T& operator=(volatile T&, T) 5654 ParamTypes[0] 5655 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 5656 ParamTypes[1] = T; 5657 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5658 /*IsAssignmentOperator=*/true); 5659 } 5660} 5661 5662/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 5663/// if any, found in visible type conversion functions found in ArgExpr's type. 5664static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 5665 Qualifiers VRQuals; 5666 const RecordType *TyRec; 5667 if (const MemberPointerType *RHSMPType = 5668 ArgExpr->getType()->getAs<MemberPointerType>()) 5669 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 5670 else 5671 TyRec = ArgExpr->getType()->getAs<RecordType>(); 5672 if (!TyRec) { 5673 // Just to be safe, assume the worst case. 5674 VRQuals.addVolatile(); 5675 VRQuals.addRestrict(); 5676 return VRQuals; 5677 } 5678 5679 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 5680 if (!ClassDecl->hasDefinition()) 5681 return VRQuals; 5682 5683 const UnresolvedSetImpl *Conversions = 5684 ClassDecl->getVisibleConversionFunctions(); 5685 5686 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5687 E = Conversions->end(); I != E; ++I) { 5688 NamedDecl *D = I.getDecl(); 5689 if (isa<UsingShadowDecl>(D)) 5690 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5691 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 5692 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 5693 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 5694 CanTy = ResTypeRef->getPointeeType(); 5695 // Need to go down the pointer/mempointer chain and add qualifiers 5696 // as see them. 5697 bool done = false; 5698 while (!done) { 5699 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 5700 CanTy = ResTypePtr->getPointeeType(); 5701 else if (const MemberPointerType *ResTypeMPtr = 5702 CanTy->getAs<MemberPointerType>()) 5703 CanTy = ResTypeMPtr->getPointeeType(); 5704 else 5705 done = true; 5706 if (CanTy.isVolatileQualified()) 5707 VRQuals.addVolatile(); 5708 if (CanTy.isRestrictQualified()) 5709 VRQuals.addRestrict(); 5710 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 5711 return VRQuals; 5712 } 5713 } 5714 } 5715 return VRQuals; 5716} 5717 5718namespace { 5719 5720/// \brief Helper class to manage the addition of builtin operator overload 5721/// candidates. It provides shared state and utility methods used throughout 5722/// the process, as well as a helper method to add each group of builtin 5723/// operator overloads from the standard to a candidate set. 5724class BuiltinOperatorOverloadBuilder { 5725 // Common instance state available to all overload candidate addition methods. 5726 Sema &S; 5727 Expr **Args; 5728 unsigned NumArgs; 5729 Qualifiers VisibleTypeConversionsQuals; 5730 bool HasArithmeticOrEnumeralCandidateType; 5731 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 5732 OverloadCandidateSet &CandidateSet; 5733 5734 // Define some constants used to index and iterate over the arithemetic types 5735 // provided via the getArithmeticType() method below. 5736 // The "promoted arithmetic types" are the arithmetic 5737 // types are that preserved by promotion (C++ [over.built]p2). 5738 static const unsigned FirstIntegralType = 3; 5739 static const unsigned LastIntegralType = 18; 5740 static const unsigned FirstPromotedIntegralType = 3, 5741 LastPromotedIntegralType = 9; 5742 static const unsigned FirstPromotedArithmeticType = 0, 5743 LastPromotedArithmeticType = 9; 5744 static const unsigned NumArithmeticTypes = 18; 5745 5746 /// \brief Get the canonical type for a given arithmetic type index. 5747 CanQualType getArithmeticType(unsigned index) { 5748 assert(index < NumArithmeticTypes); 5749 static CanQualType ASTContext::* const 5750 ArithmeticTypes[NumArithmeticTypes] = { 5751 // Start of promoted types. 5752 &ASTContext::FloatTy, 5753 &ASTContext::DoubleTy, 5754 &ASTContext::LongDoubleTy, 5755 5756 // Start of integral types. 5757 &ASTContext::IntTy, 5758 &ASTContext::LongTy, 5759 &ASTContext::LongLongTy, 5760 &ASTContext::UnsignedIntTy, 5761 &ASTContext::UnsignedLongTy, 5762 &ASTContext::UnsignedLongLongTy, 5763 // End of promoted types. 5764 5765 &ASTContext::BoolTy, 5766 &ASTContext::CharTy, 5767 &ASTContext::WCharTy, 5768 &ASTContext::Char16Ty, 5769 &ASTContext::Char32Ty, 5770 &ASTContext::SignedCharTy, 5771 &ASTContext::ShortTy, 5772 &ASTContext::UnsignedCharTy, 5773 &ASTContext::UnsignedShortTy, 5774 // End of integral types. 5775 // FIXME: What about complex? 5776 }; 5777 return S.Context.*ArithmeticTypes[index]; 5778 } 5779 5780 /// \brief Gets the canonical type resulting from the usual arithemetic 5781 /// converions for the given arithmetic types. 5782 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 5783 // Accelerator table for performing the usual arithmetic conversions. 5784 // The rules are basically: 5785 // - if either is floating-point, use the wider floating-point 5786 // - if same signedness, use the higher rank 5787 // - if same size, use unsigned of the higher rank 5788 // - use the larger type 5789 // These rules, together with the axiom that higher ranks are 5790 // never smaller, are sufficient to precompute all of these results 5791 // *except* when dealing with signed types of higher rank. 5792 // (we could precompute SLL x UI for all known platforms, but it's 5793 // better not to make any assumptions). 5794 enum PromotedType { 5795 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 5796 }; 5797 static PromotedType ConversionsTable[LastPromotedArithmeticType] 5798 [LastPromotedArithmeticType] = { 5799 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 5800 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 5801 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 5802 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 5803 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 5804 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 5805 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 5806 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 5807 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 5808 }; 5809 5810 assert(L < LastPromotedArithmeticType); 5811 assert(R < LastPromotedArithmeticType); 5812 int Idx = ConversionsTable[L][R]; 5813 5814 // Fast path: the table gives us a concrete answer. 5815 if (Idx != Dep) return getArithmeticType(Idx); 5816 5817 // Slow path: we need to compare widths. 5818 // An invariant is that the signed type has higher rank. 5819 CanQualType LT = getArithmeticType(L), 5820 RT = getArithmeticType(R); 5821 unsigned LW = S.Context.getIntWidth(LT), 5822 RW = S.Context.getIntWidth(RT); 5823 5824 // If they're different widths, use the signed type. 5825 if (LW > RW) return LT; 5826 else if (LW < RW) return RT; 5827 5828 // Otherwise, use the unsigned type of the signed type's rank. 5829 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 5830 assert(L == SLL || R == SLL); 5831 return S.Context.UnsignedLongLongTy; 5832 } 5833 5834 /// \brief Helper method to factor out the common pattern of adding overloads 5835 /// for '++' and '--' builtin operators. 5836 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 5837 bool HasVolatile) { 5838 QualType ParamTypes[2] = { 5839 S.Context.getLValueReferenceType(CandidateTy), 5840 S.Context.IntTy 5841 }; 5842 5843 // Non-volatile version. 5844 if (NumArgs == 1) 5845 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5846 else 5847 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5848 5849 // Use a heuristic to reduce number of builtin candidates in the set: 5850 // add volatile version only if there are conversions to a volatile type. 5851 if (HasVolatile) { 5852 ParamTypes[0] = 5853 S.Context.getLValueReferenceType( 5854 S.Context.getVolatileType(CandidateTy)); 5855 if (NumArgs == 1) 5856 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5857 else 5858 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5859 } 5860 } 5861 5862public: 5863 BuiltinOperatorOverloadBuilder( 5864 Sema &S, Expr **Args, unsigned NumArgs, 5865 Qualifiers VisibleTypeConversionsQuals, 5866 bool HasArithmeticOrEnumeralCandidateType, 5867 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 5868 OverloadCandidateSet &CandidateSet) 5869 : S(S), Args(Args), NumArgs(NumArgs), 5870 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 5871 HasArithmeticOrEnumeralCandidateType( 5872 HasArithmeticOrEnumeralCandidateType), 5873 CandidateTypes(CandidateTypes), 5874 CandidateSet(CandidateSet) { 5875 // Validate some of our static helper constants in debug builds. 5876 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 5877 "Invalid first promoted integral type"); 5878 assert(getArithmeticType(LastPromotedIntegralType - 1) 5879 == S.Context.UnsignedLongLongTy && 5880 "Invalid last promoted integral type"); 5881 assert(getArithmeticType(FirstPromotedArithmeticType) 5882 == S.Context.FloatTy && 5883 "Invalid first promoted arithmetic type"); 5884 assert(getArithmeticType(LastPromotedArithmeticType - 1) 5885 == S.Context.UnsignedLongLongTy && 5886 "Invalid last promoted arithmetic type"); 5887 } 5888 5889 // C++ [over.built]p3: 5890 // 5891 // For every pair (T, VQ), where T is an arithmetic type, and VQ 5892 // is either volatile or empty, there exist candidate operator 5893 // functions of the form 5894 // 5895 // VQ T& operator++(VQ T&); 5896 // T operator++(VQ T&, int); 5897 // 5898 // C++ [over.built]p4: 5899 // 5900 // For every pair (T, VQ), where T is an arithmetic type other 5901 // than bool, and VQ is either volatile or empty, there exist 5902 // candidate operator functions of the form 5903 // 5904 // VQ T& operator--(VQ T&); 5905 // T operator--(VQ T&, int); 5906 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 5907 if (!HasArithmeticOrEnumeralCandidateType) 5908 return; 5909 5910 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 5911 Arith < NumArithmeticTypes; ++Arith) { 5912 addPlusPlusMinusMinusStyleOverloads( 5913 getArithmeticType(Arith), 5914 VisibleTypeConversionsQuals.hasVolatile()); 5915 } 5916 } 5917 5918 // C++ [over.built]p5: 5919 // 5920 // For every pair (T, VQ), where T is a cv-qualified or 5921 // cv-unqualified object type, and VQ is either volatile or 5922 // empty, there exist candidate operator functions of the form 5923 // 5924 // T*VQ& operator++(T*VQ&); 5925 // T*VQ& operator--(T*VQ&); 5926 // T* operator++(T*VQ&, int); 5927 // T* operator--(T*VQ&, int); 5928 void addPlusPlusMinusMinusPointerOverloads() { 5929 for (BuiltinCandidateTypeSet::iterator 5930 Ptr = CandidateTypes[0].pointer_begin(), 5931 PtrEnd = CandidateTypes[0].pointer_end(); 5932 Ptr != PtrEnd; ++Ptr) { 5933 // Skip pointer types that aren't pointers to object types. 5934 if (!(*Ptr)->getPointeeType()->isObjectType()) 5935 continue; 5936 5937 addPlusPlusMinusMinusStyleOverloads(*Ptr, 5938 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5939 VisibleTypeConversionsQuals.hasVolatile())); 5940 } 5941 } 5942 5943 // C++ [over.built]p6: 5944 // For every cv-qualified or cv-unqualified object type T, there 5945 // exist candidate operator functions of the form 5946 // 5947 // T& operator*(T*); 5948 // 5949 // C++ [over.built]p7: 5950 // For every function type T that does not have cv-qualifiers or a 5951 // ref-qualifier, there exist candidate operator functions of the form 5952 // T& operator*(T*); 5953 void addUnaryStarPointerOverloads() { 5954 for (BuiltinCandidateTypeSet::iterator 5955 Ptr = CandidateTypes[0].pointer_begin(), 5956 PtrEnd = CandidateTypes[0].pointer_end(); 5957 Ptr != PtrEnd; ++Ptr) { 5958 QualType ParamTy = *Ptr; 5959 QualType PointeeTy = ParamTy->getPointeeType(); 5960 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 5961 continue; 5962 5963 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 5964 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 5965 continue; 5966 5967 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 5968 &ParamTy, Args, 1, CandidateSet); 5969 } 5970 } 5971 5972 // C++ [over.built]p9: 5973 // For every promoted arithmetic type T, there exist candidate 5974 // operator functions of the form 5975 // 5976 // T operator+(T); 5977 // T operator-(T); 5978 void addUnaryPlusOrMinusArithmeticOverloads() { 5979 if (!HasArithmeticOrEnumeralCandidateType) 5980 return; 5981 5982 for (unsigned Arith = FirstPromotedArithmeticType; 5983 Arith < LastPromotedArithmeticType; ++Arith) { 5984 QualType ArithTy = getArithmeticType(Arith); 5985 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 5986 } 5987 5988 // Extension: We also add these operators for vector types. 5989 for (BuiltinCandidateTypeSet::iterator 5990 Vec = CandidateTypes[0].vector_begin(), 5991 VecEnd = CandidateTypes[0].vector_end(); 5992 Vec != VecEnd; ++Vec) { 5993 QualType VecTy = *Vec; 5994 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5995 } 5996 } 5997 5998 // C++ [over.built]p8: 5999 // For every type T, there exist candidate operator functions of 6000 // the form 6001 // 6002 // T* operator+(T*); 6003 void addUnaryPlusPointerOverloads() { 6004 for (BuiltinCandidateTypeSet::iterator 6005 Ptr = CandidateTypes[0].pointer_begin(), 6006 PtrEnd = CandidateTypes[0].pointer_end(); 6007 Ptr != PtrEnd; ++Ptr) { 6008 QualType ParamTy = *Ptr; 6009 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 6010 } 6011 } 6012 6013 // C++ [over.built]p10: 6014 // For every promoted integral type T, there exist candidate 6015 // operator functions of the form 6016 // 6017 // T operator~(T); 6018 void addUnaryTildePromotedIntegralOverloads() { 6019 if (!HasArithmeticOrEnumeralCandidateType) 6020 return; 6021 6022 for (unsigned Int = FirstPromotedIntegralType; 6023 Int < LastPromotedIntegralType; ++Int) { 6024 QualType IntTy = getArithmeticType(Int); 6025 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 6026 } 6027 6028 // Extension: We also add this operator for vector types. 6029 for (BuiltinCandidateTypeSet::iterator 6030 Vec = CandidateTypes[0].vector_begin(), 6031 VecEnd = CandidateTypes[0].vector_end(); 6032 Vec != VecEnd; ++Vec) { 6033 QualType VecTy = *Vec; 6034 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6035 } 6036 } 6037 6038 // C++ [over.match.oper]p16: 6039 // For every pointer to member type T, there exist candidate operator 6040 // functions of the form 6041 // 6042 // bool operator==(T,T); 6043 // bool operator!=(T,T); 6044 void addEqualEqualOrNotEqualMemberPointerOverloads() { 6045 /// Set of (canonical) types that we've already handled. 6046 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6047 6048 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6049 for (BuiltinCandidateTypeSet::iterator 6050 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6051 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6052 MemPtr != MemPtrEnd; 6053 ++MemPtr) { 6054 // Don't add the same builtin candidate twice. 6055 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6056 continue; 6057 6058 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6059 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6060 CandidateSet); 6061 } 6062 } 6063 } 6064 6065 // C++ [over.built]p15: 6066 // 6067 // For every T, where T is an enumeration type, a pointer type, or 6068 // std::nullptr_t, there exist candidate operator functions of the form 6069 // 6070 // bool operator<(T, T); 6071 // bool operator>(T, T); 6072 // bool operator<=(T, T); 6073 // bool operator>=(T, T); 6074 // bool operator==(T, T); 6075 // bool operator!=(T, T); 6076 void addRelationalPointerOrEnumeralOverloads() { 6077 // C++ [over.built]p1: 6078 // If there is a user-written candidate with the same name and parameter 6079 // types as a built-in candidate operator function, the built-in operator 6080 // function is hidden and is not included in the set of candidate 6081 // functions. 6082 // 6083 // The text is actually in a note, but if we don't implement it then we end 6084 // up with ambiguities when the user provides an overloaded operator for 6085 // an enumeration type. Note that only enumeration types have this problem, 6086 // so we track which enumeration types we've seen operators for. Also, the 6087 // only other overloaded operator with enumeration argumenst, operator=, 6088 // cannot be overloaded for enumeration types, so this is the only place 6089 // where we must suppress candidates like this. 6090 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 6091 UserDefinedBinaryOperators; 6092 6093 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6094 if (CandidateTypes[ArgIdx].enumeration_begin() != 6095 CandidateTypes[ArgIdx].enumeration_end()) { 6096 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 6097 CEnd = CandidateSet.end(); 6098 C != CEnd; ++C) { 6099 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 6100 continue; 6101 6102 QualType FirstParamType = 6103 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 6104 QualType SecondParamType = 6105 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 6106 6107 // Skip if either parameter isn't of enumeral type. 6108 if (!FirstParamType->isEnumeralType() || 6109 !SecondParamType->isEnumeralType()) 6110 continue; 6111 6112 // Add this operator to the set of known user-defined operators. 6113 UserDefinedBinaryOperators.insert( 6114 std::make_pair(S.Context.getCanonicalType(FirstParamType), 6115 S.Context.getCanonicalType(SecondParamType))); 6116 } 6117 } 6118 } 6119 6120 /// Set of (canonical) types that we've already handled. 6121 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6122 6123 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6124 for (BuiltinCandidateTypeSet::iterator 6125 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6126 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6127 Ptr != PtrEnd; ++Ptr) { 6128 // Don't add the same builtin candidate twice. 6129 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6130 continue; 6131 6132 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6133 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6134 CandidateSet); 6135 } 6136 for (BuiltinCandidateTypeSet::iterator 6137 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6138 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6139 Enum != EnumEnd; ++Enum) { 6140 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 6141 6142 // Don't add the same builtin candidate twice, or if a user defined 6143 // candidate exists. 6144 if (!AddedTypes.insert(CanonType) || 6145 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 6146 CanonType))) 6147 continue; 6148 6149 QualType ParamTypes[2] = { *Enum, *Enum }; 6150 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6151 CandidateSet); 6152 } 6153 6154 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 6155 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 6156 if (AddedTypes.insert(NullPtrTy) && 6157 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 6158 NullPtrTy))) { 6159 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 6160 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6161 CandidateSet); 6162 } 6163 } 6164 } 6165 } 6166 6167 // C++ [over.built]p13: 6168 // 6169 // For every cv-qualified or cv-unqualified object type T 6170 // there exist candidate operator functions of the form 6171 // 6172 // T* operator+(T*, ptrdiff_t); 6173 // T& operator[](T*, ptrdiff_t); [BELOW] 6174 // T* operator-(T*, ptrdiff_t); 6175 // T* operator+(ptrdiff_t, T*); 6176 // T& operator[](ptrdiff_t, T*); [BELOW] 6177 // 6178 // C++ [over.built]p14: 6179 // 6180 // For every T, where T is a pointer to object type, there 6181 // exist candidate operator functions of the form 6182 // 6183 // ptrdiff_t operator-(T, T); 6184 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 6185 /// Set of (canonical) types that we've already handled. 6186 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6187 6188 for (int Arg = 0; Arg < 2; ++Arg) { 6189 QualType AsymetricParamTypes[2] = { 6190 S.Context.getPointerDiffType(), 6191 S.Context.getPointerDiffType(), 6192 }; 6193 for (BuiltinCandidateTypeSet::iterator 6194 Ptr = CandidateTypes[Arg].pointer_begin(), 6195 PtrEnd = CandidateTypes[Arg].pointer_end(); 6196 Ptr != PtrEnd; ++Ptr) { 6197 QualType PointeeTy = (*Ptr)->getPointeeType(); 6198 if (!PointeeTy->isObjectType()) 6199 continue; 6200 6201 AsymetricParamTypes[Arg] = *Ptr; 6202 if (Arg == 0 || Op == OO_Plus) { 6203 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 6204 // T* operator+(ptrdiff_t, T*); 6205 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 6206 CandidateSet); 6207 } 6208 if (Op == OO_Minus) { 6209 // ptrdiff_t operator-(T, T); 6210 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6211 continue; 6212 6213 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6214 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 6215 Args, 2, CandidateSet); 6216 } 6217 } 6218 } 6219 } 6220 6221 // C++ [over.built]p12: 6222 // 6223 // For every pair of promoted arithmetic types L and R, there 6224 // exist candidate operator functions of the form 6225 // 6226 // LR operator*(L, R); 6227 // LR operator/(L, R); 6228 // LR operator+(L, R); 6229 // LR operator-(L, R); 6230 // bool operator<(L, R); 6231 // bool operator>(L, R); 6232 // bool operator<=(L, R); 6233 // bool operator>=(L, R); 6234 // bool operator==(L, R); 6235 // bool operator!=(L, R); 6236 // 6237 // where LR is the result of the usual arithmetic conversions 6238 // between types L and R. 6239 // 6240 // C++ [over.built]p24: 6241 // 6242 // For every pair of promoted arithmetic types L and R, there exist 6243 // candidate operator functions of the form 6244 // 6245 // LR operator?(bool, L, R); 6246 // 6247 // where LR is the result of the usual arithmetic conversions 6248 // between types L and R. 6249 // Our candidates ignore the first parameter. 6250 void addGenericBinaryArithmeticOverloads(bool isComparison) { 6251 if (!HasArithmeticOrEnumeralCandidateType) 6252 return; 6253 6254 for (unsigned Left = FirstPromotedArithmeticType; 6255 Left < LastPromotedArithmeticType; ++Left) { 6256 for (unsigned Right = FirstPromotedArithmeticType; 6257 Right < LastPromotedArithmeticType; ++Right) { 6258 QualType LandR[2] = { getArithmeticType(Left), 6259 getArithmeticType(Right) }; 6260 QualType Result = 6261 isComparison ? S.Context.BoolTy 6262 : getUsualArithmeticConversions(Left, Right); 6263 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6264 } 6265 } 6266 6267 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 6268 // conditional operator for vector types. 6269 for (BuiltinCandidateTypeSet::iterator 6270 Vec1 = CandidateTypes[0].vector_begin(), 6271 Vec1End = CandidateTypes[0].vector_end(); 6272 Vec1 != Vec1End; ++Vec1) { 6273 for (BuiltinCandidateTypeSet::iterator 6274 Vec2 = CandidateTypes[1].vector_begin(), 6275 Vec2End = CandidateTypes[1].vector_end(); 6276 Vec2 != Vec2End; ++Vec2) { 6277 QualType LandR[2] = { *Vec1, *Vec2 }; 6278 QualType Result = S.Context.BoolTy; 6279 if (!isComparison) { 6280 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 6281 Result = *Vec1; 6282 else 6283 Result = *Vec2; 6284 } 6285 6286 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6287 } 6288 } 6289 } 6290 6291 // C++ [over.built]p17: 6292 // 6293 // For every pair of promoted integral types L and R, there 6294 // exist candidate operator functions of the form 6295 // 6296 // LR operator%(L, R); 6297 // LR operator&(L, R); 6298 // LR operator^(L, R); 6299 // LR operator|(L, R); 6300 // L operator<<(L, R); 6301 // L operator>>(L, R); 6302 // 6303 // where LR is the result of the usual arithmetic conversions 6304 // between types L and R. 6305 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 6306 if (!HasArithmeticOrEnumeralCandidateType) 6307 return; 6308 6309 for (unsigned Left = FirstPromotedIntegralType; 6310 Left < LastPromotedIntegralType; ++Left) { 6311 for (unsigned Right = FirstPromotedIntegralType; 6312 Right < LastPromotedIntegralType; ++Right) { 6313 QualType LandR[2] = { getArithmeticType(Left), 6314 getArithmeticType(Right) }; 6315 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 6316 ? LandR[0] 6317 : getUsualArithmeticConversions(Left, Right); 6318 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6319 } 6320 } 6321 } 6322 6323 // C++ [over.built]p20: 6324 // 6325 // For every pair (T, VQ), where T is an enumeration or 6326 // pointer to member type and VQ is either volatile or 6327 // empty, there exist candidate operator functions of the form 6328 // 6329 // VQ T& operator=(VQ T&, T); 6330 void addAssignmentMemberPointerOrEnumeralOverloads() { 6331 /// Set of (canonical) types that we've already handled. 6332 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6333 6334 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 6335 for (BuiltinCandidateTypeSet::iterator 6336 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6337 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6338 Enum != EnumEnd; ++Enum) { 6339 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 6340 continue; 6341 6342 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 6343 CandidateSet); 6344 } 6345 6346 for (BuiltinCandidateTypeSet::iterator 6347 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6348 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6349 MemPtr != MemPtrEnd; ++MemPtr) { 6350 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6351 continue; 6352 6353 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 6354 CandidateSet); 6355 } 6356 } 6357 } 6358 6359 // C++ [over.built]p19: 6360 // 6361 // For every pair (T, VQ), where T is any type and VQ is either 6362 // volatile or empty, there exist candidate operator functions 6363 // of the form 6364 // 6365 // T*VQ& operator=(T*VQ&, T*); 6366 // 6367 // C++ [over.built]p21: 6368 // 6369 // For every pair (T, VQ), where T is a cv-qualified or 6370 // cv-unqualified object type and VQ is either volatile or 6371 // empty, there exist candidate operator functions of the form 6372 // 6373 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 6374 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 6375 void addAssignmentPointerOverloads(bool isEqualOp) { 6376 /// Set of (canonical) types that we've already handled. 6377 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6378 6379 for (BuiltinCandidateTypeSet::iterator 6380 Ptr = CandidateTypes[0].pointer_begin(), 6381 PtrEnd = CandidateTypes[0].pointer_end(); 6382 Ptr != PtrEnd; ++Ptr) { 6383 // If this is operator=, keep track of the builtin candidates we added. 6384 if (isEqualOp) 6385 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 6386 else if (!(*Ptr)->getPointeeType()->isObjectType()) 6387 continue; 6388 6389 // non-volatile version 6390 QualType ParamTypes[2] = { 6391 S.Context.getLValueReferenceType(*Ptr), 6392 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 6393 }; 6394 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6395 /*IsAssigmentOperator=*/ isEqualOp); 6396 6397 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6398 VisibleTypeConversionsQuals.hasVolatile()) { 6399 // volatile version 6400 ParamTypes[0] = 6401 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6402 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6403 /*IsAssigmentOperator=*/isEqualOp); 6404 } 6405 } 6406 6407 if (isEqualOp) { 6408 for (BuiltinCandidateTypeSet::iterator 6409 Ptr = CandidateTypes[1].pointer_begin(), 6410 PtrEnd = CandidateTypes[1].pointer_end(); 6411 Ptr != PtrEnd; ++Ptr) { 6412 // Make sure we don't add the same candidate twice. 6413 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6414 continue; 6415 6416 QualType ParamTypes[2] = { 6417 S.Context.getLValueReferenceType(*Ptr), 6418 *Ptr, 6419 }; 6420 6421 // non-volatile version 6422 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6423 /*IsAssigmentOperator=*/true); 6424 6425 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6426 VisibleTypeConversionsQuals.hasVolatile()) { 6427 // volatile version 6428 ParamTypes[0] = 6429 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6430 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6431 CandidateSet, /*IsAssigmentOperator=*/true); 6432 } 6433 } 6434 } 6435 } 6436 6437 // C++ [over.built]p18: 6438 // 6439 // For every triple (L, VQ, R), where L is an arithmetic type, 6440 // VQ is either volatile or empty, and R is a promoted 6441 // arithmetic type, there exist candidate operator functions of 6442 // the form 6443 // 6444 // VQ L& operator=(VQ L&, R); 6445 // VQ L& operator*=(VQ L&, R); 6446 // VQ L& operator/=(VQ L&, R); 6447 // VQ L& operator+=(VQ L&, R); 6448 // VQ L& operator-=(VQ L&, R); 6449 void addAssignmentArithmeticOverloads(bool isEqualOp) { 6450 if (!HasArithmeticOrEnumeralCandidateType) 6451 return; 6452 6453 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 6454 for (unsigned Right = FirstPromotedArithmeticType; 6455 Right < LastPromotedArithmeticType; ++Right) { 6456 QualType ParamTypes[2]; 6457 ParamTypes[1] = getArithmeticType(Right); 6458 6459 // Add this built-in operator as a candidate (VQ is empty). 6460 ParamTypes[0] = 6461 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6462 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6463 /*IsAssigmentOperator=*/isEqualOp); 6464 6465 // Add this built-in operator as a candidate (VQ is 'volatile'). 6466 if (VisibleTypeConversionsQuals.hasVolatile()) { 6467 ParamTypes[0] = 6468 S.Context.getVolatileType(getArithmeticType(Left)); 6469 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6470 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6471 CandidateSet, 6472 /*IsAssigmentOperator=*/isEqualOp); 6473 } 6474 } 6475 } 6476 6477 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 6478 for (BuiltinCandidateTypeSet::iterator 6479 Vec1 = CandidateTypes[0].vector_begin(), 6480 Vec1End = CandidateTypes[0].vector_end(); 6481 Vec1 != Vec1End; ++Vec1) { 6482 for (BuiltinCandidateTypeSet::iterator 6483 Vec2 = CandidateTypes[1].vector_begin(), 6484 Vec2End = CandidateTypes[1].vector_end(); 6485 Vec2 != Vec2End; ++Vec2) { 6486 QualType ParamTypes[2]; 6487 ParamTypes[1] = *Vec2; 6488 // Add this built-in operator as a candidate (VQ is empty). 6489 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 6490 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6491 /*IsAssigmentOperator=*/isEqualOp); 6492 6493 // Add this built-in operator as a candidate (VQ is 'volatile'). 6494 if (VisibleTypeConversionsQuals.hasVolatile()) { 6495 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 6496 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6497 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6498 CandidateSet, 6499 /*IsAssigmentOperator=*/isEqualOp); 6500 } 6501 } 6502 } 6503 } 6504 6505 // C++ [over.built]p22: 6506 // 6507 // For every triple (L, VQ, R), where L is an integral type, VQ 6508 // is either volatile or empty, and R is a promoted integral 6509 // type, there exist candidate operator functions of the form 6510 // 6511 // VQ L& operator%=(VQ L&, R); 6512 // VQ L& operator<<=(VQ L&, R); 6513 // VQ L& operator>>=(VQ L&, R); 6514 // VQ L& operator&=(VQ L&, R); 6515 // VQ L& operator^=(VQ L&, R); 6516 // VQ L& operator|=(VQ L&, R); 6517 void addAssignmentIntegralOverloads() { 6518 if (!HasArithmeticOrEnumeralCandidateType) 6519 return; 6520 6521 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 6522 for (unsigned Right = FirstPromotedIntegralType; 6523 Right < LastPromotedIntegralType; ++Right) { 6524 QualType ParamTypes[2]; 6525 ParamTypes[1] = getArithmeticType(Right); 6526 6527 // Add this built-in operator as a candidate (VQ is empty). 6528 ParamTypes[0] = 6529 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6530 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 6531 if (VisibleTypeConversionsQuals.hasVolatile()) { 6532 // Add this built-in operator as a candidate (VQ is 'volatile'). 6533 ParamTypes[0] = getArithmeticType(Left); 6534 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 6535 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6536 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6537 CandidateSet); 6538 } 6539 } 6540 } 6541 } 6542 6543 // C++ [over.operator]p23: 6544 // 6545 // There also exist candidate operator functions of the form 6546 // 6547 // bool operator!(bool); 6548 // bool operator&&(bool, bool); 6549 // bool operator||(bool, bool); 6550 void addExclaimOverload() { 6551 QualType ParamTy = S.Context.BoolTy; 6552 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 6553 /*IsAssignmentOperator=*/false, 6554 /*NumContextualBoolArguments=*/1); 6555 } 6556 void addAmpAmpOrPipePipeOverload() { 6557 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 6558 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 6559 /*IsAssignmentOperator=*/false, 6560 /*NumContextualBoolArguments=*/2); 6561 } 6562 6563 // C++ [over.built]p13: 6564 // 6565 // For every cv-qualified or cv-unqualified object type T there 6566 // exist candidate operator functions of the form 6567 // 6568 // T* operator+(T*, ptrdiff_t); [ABOVE] 6569 // T& operator[](T*, ptrdiff_t); 6570 // T* operator-(T*, ptrdiff_t); [ABOVE] 6571 // T* operator+(ptrdiff_t, T*); [ABOVE] 6572 // T& operator[](ptrdiff_t, T*); 6573 void addSubscriptOverloads() { 6574 for (BuiltinCandidateTypeSet::iterator 6575 Ptr = CandidateTypes[0].pointer_begin(), 6576 PtrEnd = CandidateTypes[0].pointer_end(); 6577 Ptr != PtrEnd; ++Ptr) { 6578 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 6579 QualType PointeeType = (*Ptr)->getPointeeType(); 6580 if (!PointeeType->isObjectType()) 6581 continue; 6582 6583 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 6584 6585 // T& operator[](T*, ptrdiff_t) 6586 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6587 } 6588 6589 for (BuiltinCandidateTypeSet::iterator 6590 Ptr = CandidateTypes[1].pointer_begin(), 6591 PtrEnd = CandidateTypes[1].pointer_end(); 6592 Ptr != PtrEnd; ++Ptr) { 6593 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 6594 QualType PointeeType = (*Ptr)->getPointeeType(); 6595 if (!PointeeType->isObjectType()) 6596 continue; 6597 6598 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 6599 6600 // T& operator[](ptrdiff_t, T*) 6601 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6602 } 6603 } 6604 6605 // C++ [over.built]p11: 6606 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 6607 // C1 is the same type as C2 or is a derived class of C2, T is an object 6608 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 6609 // there exist candidate operator functions of the form 6610 // 6611 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 6612 // 6613 // where CV12 is the union of CV1 and CV2. 6614 void addArrowStarOverloads() { 6615 for (BuiltinCandidateTypeSet::iterator 6616 Ptr = CandidateTypes[0].pointer_begin(), 6617 PtrEnd = CandidateTypes[0].pointer_end(); 6618 Ptr != PtrEnd; ++Ptr) { 6619 QualType C1Ty = (*Ptr); 6620 QualType C1; 6621 QualifierCollector Q1; 6622 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 6623 if (!isa<RecordType>(C1)) 6624 continue; 6625 // heuristic to reduce number of builtin candidates in the set. 6626 // Add volatile/restrict version only if there are conversions to a 6627 // volatile/restrict type. 6628 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 6629 continue; 6630 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 6631 continue; 6632 for (BuiltinCandidateTypeSet::iterator 6633 MemPtr = CandidateTypes[1].member_pointer_begin(), 6634 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 6635 MemPtr != MemPtrEnd; ++MemPtr) { 6636 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 6637 QualType C2 = QualType(mptr->getClass(), 0); 6638 C2 = C2.getUnqualifiedType(); 6639 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 6640 break; 6641 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 6642 // build CV12 T& 6643 QualType T = mptr->getPointeeType(); 6644 if (!VisibleTypeConversionsQuals.hasVolatile() && 6645 T.isVolatileQualified()) 6646 continue; 6647 if (!VisibleTypeConversionsQuals.hasRestrict() && 6648 T.isRestrictQualified()) 6649 continue; 6650 T = Q1.apply(S.Context, T); 6651 QualType ResultTy = S.Context.getLValueReferenceType(T); 6652 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6653 } 6654 } 6655 } 6656 6657 // Note that we don't consider the first argument, since it has been 6658 // contextually converted to bool long ago. The candidates below are 6659 // therefore added as binary. 6660 // 6661 // C++ [over.built]p25: 6662 // For every type T, where T is a pointer, pointer-to-member, or scoped 6663 // enumeration type, there exist candidate operator functions of the form 6664 // 6665 // T operator?(bool, T, T); 6666 // 6667 void addConditionalOperatorOverloads() { 6668 /// Set of (canonical) types that we've already handled. 6669 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6670 6671 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 6672 for (BuiltinCandidateTypeSet::iterator 6673 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6674 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6675 Ptr != PtrEnd; ++Ptr) { 6676 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6677 continue; 6678 6679 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6680 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 6681 } 6682 6683 for (BuiltinCandidateTypeSet::iterator 6684 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6685 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6686 MemPtr != MemPtrEnd; ++MemPtr) { 6687 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6688 continue; 6689 6690 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6691 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 6692 } 6693 6694 if (S.getLangOptions().CPlusPlus0x) { 6695 for (BuiltinCandidateTypeSet::iterator 6696 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6697 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6698 Enum != EnumEnd; ++Enum) { 6699 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 6700 continue; 6701 6702 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 6703 continue; 6704 6705 QualType ParamTypes[2] = { *Enum, *Enum }; 6706 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 6707 } 6708 } 6709 } 6710 } 6711}; 6712 6713} // end anonymous namespace 6714 6715/// AddBuiltinOperatorCandidates - Add the appropriate built-in 6716/// operator overloads to the candidate set (C++ [over.built]), based 6717/// on the operator @p Op and the arguments given. For example, if the 6718/// operator is a binary '+', this routine might add "int 6719/// operator+(int, int)" to cover integer addition. 6720void 6721Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 6722 SourceLocation OpLoc, 6723 Expr **Args, unsigned NumArgs, 6724 OverloadCandidateSet& CandidateSet) { 6725 // Find all of the types that the arguments can convert to, but only 6726 // if the operator we're looking at has built-in operator candidates 6727 // that make use of these types. Also record whether we encounter non-record 6728 // candidate types or either arithmetic or enumeral candidate types. 6729 Qualifiers VisibleTypeConversionsQuals; 6730 VisibleTypeConversionsQuals.addConst(); 6731 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6732 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 6733 6734 bool HasNonRecordCandidateType = false; 6735 bool HasArithmeticOrEnumeralCandidateType = false; 6736 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 6737 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6738 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 6739 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 6740 OpLoc, 6741 true, 6742 (Op == OO_Exclaim || 6743 Op == OO_AmpAmp || 6744 Op == OO_PipePipe), 6745 VisibleTypeConversionsQuals); 6746 HasNonRecordCandidateType = HasNonRecordCandidateType || 6747 CandidateTypes[ArgIdx].hasNonRecordTypes(); 6748 HasArithmeticOrEnumeralCandidateType = 6749 HasArithmeticOrEnumeralCandidateType || 6750 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 6751 } 6752 6753 // Exit early when no non-record types have been added to the candidate set 6754 // for any of the arguments to the operator. 6755 // 6756 // We can't exit early for !, ||, or &&, since there we have always have 6757 // 'bool' overloads. 6758 if (!HasNonRecordCandidateType && 6759 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 6760 return; 6761 6762 // Setup an object to manage the common state for building overloads. 6763 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 6764 VisibleTypeConversionsQuals, 6765 HasArithmeticOrEnumeralCandidateType, 6766 CandidateTypes, CandidateSet); 6767 6768 // Dispatch over the operation to add in only those overloads which apply. 6769 switch (Op) { 6770 case OO_None: 6771 case NUM_OVERLOADED_OPERATORS: 6772 llvm_unreachable("Expected an overloaded operator"); 6773 6774 case OO_New: 6775 case OO_Delete: 6776 case OO_Array_New: 6777 case OO_Array_Delete: 6778 case OO_Call: 6779 llvm_unreachable( 6780 "Special operators don't use AddBuiltinOperatorCandidates"); 6781 6782 case OO_Comma: 6783 case OO_Arrow: 6784 // C++ [over.match.oper]p3: 6785 // -- For the operator ',', the unary operator '&', or the 6786 // operator '->', the built-in candidates set is empty. 6787 break; 6788 6789 case OO_Plus: // '+' is either unary or binary 6790 if (NumArgs == 1) 6791 OpBuilder.addUnaryPlusPointerOverloads(); 6792 // Fall through. 6793 6794 case OO_Minus: // '-' is either unary or binary 6795 if (NumArgs == 1) { 6796 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 6797 } else { 6798 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 6799 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6800 } 6801 break; 6802 6803 case OO_Star: // '*' is either unary or binary 6804 if (NumArgs == 1) 6805 OpBuilder.addUnaryStarPointerOverloads(); 6806 else 6807 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6808 break; 6809 6810 case OO_Slash: 6811 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6812 break; 6813 6814 case OO_PlusPlus: 6815 case OO_MinusMinus: 6816 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 6817 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 6818 break; 6819 6820 case OO_EqualEqual: 6821 case OO_ExclaimEqual: 6822 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 6823 // Fall through. 6824 6825 case OO_Less: 6826 case OO_Greater: 6827 case OO_LessEqual: 6828 case OO_GreaterEqual: 6829 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 6830 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 6831 break; 6832 6833 case OO_Percent: 6834 case OO_Caret: 6835 case OO_Pipe: 6836 case OO_LessLess: 6837 case OO_GreaterGreater: 6838 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6839 break; 6840 6841 case OO_Amp: // '&' is either unary or binary 6842 if (NumArgs == 1) 6843 // C++ [over.match.oper]p3: 6844 // -- For the operator ',', the unary operator '&', or the 6845 // operator '->', the built-in candidates set is empty. 6846 break; 6847 6848 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6849 break; 6850 6851 case OO_Tilde: 6852 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 6853 break; 6854 6855 case OO_Equal: 6856 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 6857 // Fall through. 6858 6859 case OO_PlusEqual: 6860 case OO_MinusEqual: 6861 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 6862 // Fall through. 6863 6864 case OO_StarEqual: 6865 case OO_SlashEqual: 6866 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 6867 break; 6868 6869 case OO_PercentEqual: 6870 case OO_LessLessEqual: 6871 case OO_GreaterGreaterEqual: 6872 case OO_AmpEqual: 6873 case OO_CaretEqual: 6874 case OO_PipeEqual: 6875 OpBuilder.addAssignmentIntegralOverloads(); 6876 break; 6877 6878 case OO_Exclaim: 6879 OpBuilder.addExclaimOverload(); 6880 break; 6881 6882 case OO_AmpAmp: 6883 case OO_PipePipe: 6884 OpBuilder.addAmpAmpOrPipePipeOverload(); 6885 break; 6886 6887 case OO_Subscript: 6888 OpBuilder.addSubscriptOverloads(); 6889 break; 6890 6891 case OO_ArrowStar: 6892 OpBuilder.addArrowStarOverloads(); 6893 break; 6894 6895 case OO_Conditional: 6896 OpBuilder.addConditionalOperatorOverloads(); 6897 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6898 break; 6899 } 6900} 6901 6902/// \brief Add function candidates found via argument-dependent lookup 6903/// to the set of overloading candidates. 6904/// 6905/// This routine performs argument-dependent name lookup based on the 6906/// given function name (which may also be an operator name) and adds 6907/// all of the overload candidates found by ADL to the overload 6908/// candidate set (C++ [basic.lookup.argdep]). 6909void 6910Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 6911 bool Operator, 6912 Expr **Args, unsigned NumArgs, 6913 TemplateArgumentListInfo *ExplicitTemplateArgs, 6914 OverloadCandidateSet& CandidateSet, 6915 bool PartialOverloading, 6916 bool StdNamespaceIsAssociated) { 6917 ADLResult Fns; 6918 6919 // FIXME: This approach for uniquing ADL results (and removing 6920 // redundant candidates from the set) relies on pointer-equality, 6921 // which means we need to key off the canonical decl. However, 6922 // always going back to the canonical decl might not get us the 6923 // right set of default arguments. What default arguments are 6924 // we supposed to consider on ADL candidates, anyway? 6925 6926 // FIXME: Pass in the explicit template arguments? 6927 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns, 6928 StdNamespaceIsAssociated); 6929 6930 // Erase all of the candidates we already knew about. 6931 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 6932 CandEnd = CandidateSet.end(); 6933 Cand != CandEnd; ++Cand) 6934 if (Cand->Function) { 6935 Fns.erase(Cand->Function); 6936 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 6937 Fns.erase(FunTmpl); 6938 } 6939 6940 // For each of the ADL candidates we found, add it to the overload 6941 // set. 6942 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 6943 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 6944 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 6945 if (ExplicitTemplateArgs) 6946 continue; 6947 6948 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 6949 false, PartialOverloading); 6950 } else 6951 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 6952 FoundDecl, ExplicitTemplateArgs, 6953 Args, NumArgs, CandidateSet); 6954 } 6955} 6956 6957/// isBetterOverloadCandidate - Determines whether the first overload 6958/// candidate is a better candidate than the second (C++ 13.3.3p1). 6959bool 6960isBetterOverloadCandidate(Sema &S, 6961 const OverloadCandidate &Cand1, 6962 const OverloadCandidate &Cand2, 6963 SourceLocation Loc, 6964 bool UserDefinedConversion) { 6965 // Define viable functions to be better candidates than non-viable 6966 // functions. 6967 if (!Cand2.Viable) 6968 return Cand1.Viable; 6969 else if (!Cand1.Viable) 6970 return false; 6971 6972 // C++ [over.match.best]p1: 6973 // 6974 // -- if F is a static member function, ICS1(F) is defined such 6975 // that ICS1(F) is neither better nor worse than ICS1(G) for 6976 // any function G, and, symmetrically, ICS1(G) is neither 6977 // better nor worse than ICS1(F). 6978 unsigned StartArg = 0; 6979 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 6980 StartArg = 1; 6981 6982 // C++ [over.match.best]p1: 6983 // A viable function F1 is defined to be a better function than another 6984 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 6985 // conversion sequence than ICSi(F2), and then... 6986 unsigned NumArgs = Cand1.Conversions.size(); 6987 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 6988 bool HasBetterConversion = false; 6989 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 6990 switch (CompareImplicitConversionSequences(S, 6991 Cand1.Conversions[ArgIdx], 6992 Cand2.Conversions[ArgIdx])) { 6993 case ImplicitConversionSequence::Better: 6994 // Cand1 has a better conversion sequence. 6995 HasBetterConversion = true; 6996 break; 6997 6998 case ImplicitConversionSequence::Worse: 6999 // Cand1 can't be better than Cand2. 7000 return false; 7001 7002 case ImplicitConversionSequence::Indistinguishable: 7003 // Do nothing. 7004 break; 7005 } 7006 } 7007 7008 // -- for some argument j, ICSj(F1) is a better conversion sequence than 7009 // ICSj(F2), or, if not that, 7010 if (HasBetterConversion) 7011 return true; 7012 7013 // - F1 is a non-template function and F2 is a function template 7014 // specialization, or, if not that, 7015 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 7016 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 7017 return true; 7018 7019 // -- F1 and F2 are function template specializations, and the function 7020 // template for F1 is more specialized than the template for F2 7021 // according to the partial ordering rules described in 14.5.5.2, or, 7022 // if not that, 7023 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 7024 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 7025 if (FunctionTemplateDecl *BetterTemplate 7026 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 7027 Cand2.Function->getPrimaryTemplate(), 7028 Loc, 7029 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 7030 : TPOC_Call, 7031 Cand1.ExplicitCallArguments)) 7032 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 7033 } 7034 7035 // -- the context is an initialization by user-defined conversion 7036 // (see 8.5, 13.3.1.5) and the standard conversion sequence 7037 // from the return type of F1 to the destination type (i.e., 7038 // the type of the entity being initialized) is a better 7039 // conversion sequence than the standard conversion sequence 7040 // from the return type of F2 to the destination type. 7041 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 7042 isa<CXXConversionDecl>(Cand1.Function) && 7043 isa<CXXConversionDecl>(Cand2.Function)) { 7044 switch (CompareStandardConversionSequences(S, 7045 Cand1.FinalConversion, 7046 Cand2.FinalConversion)) { 7047 case ImplicitConversionSequence::Better: 7048 // Cand1 has a better conversion sequence. 7049 return true; 7050 7051 case ImplicitConversionSequence::Worse: 7052 // Cand1 can't be better than Cand2. 7053 return false; 7054 7055 case ImplicitConversionSequence::Indistinguishable: 7056 // Do nothing 7057 break; 7058 } 7059 } 7060 7061 return false; 7062} 7063 7064/// \brief Computes the best viable function (C++ 13.3.3) 7065/// within an overload candidate set. 7066/// 7067/// \param CandidateSet the set of candidate functions. 7068/// 7069/// \param Loc the location of the function name (or operator symbol) for 7070/// which overload resolution occurs. 7071/// 7072/// \param Best f overload resolution was successful or found a deleted 7073/// function, Best points to the candidate function found. 7074/// 7075/// \returns The result of overload resolution. 7076OverloadingResult 7077OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 7078 iterator &Best, 7079 bool UserDefinedConversion) { 7080 // Find the best viable function. 7081 Best = end(); 7082 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7083 if (Cand->Viable) 7084 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 7085 UserDefinedConversion)) 7086 Best = Cand; 7087 } 7088 7089 // If we didn't find any viable functions, abort. 7090 if (Best == end()) 7091 return OR_No_Viable_Function; 7092 7093 // Make sure that this function is better than every other viable 7094 // function. If not, we have an ambiguity. 7095 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7096 if (Cand->Viable && 7097 Cand != Best && 7098 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 7099 UserDefinedConversion)) { 7100 Best = end(); 7101 return OR_Ambiguous; 7102 } 7103 } 7104 7105 // Best is the best viable function. 7106 if (Best->Function && 7107 (Best->Function->isDeleted() || 7108 S.isFunctionConsideredUnavailable(Best->Function))) 7109 return OR_Deleted; 7110 7111 return OR_Success; 7112} 7113 7114namespace { 7115 7116enum OverloadCandidateKind { 7117 oc_function, 7118 oc_method, 7119 oc_constructor, 7120 oc_function_template, 7121 oc_method_template, 7122 oc_constructor_template, 7123 oc_implicit_default_constructor, 7124 oc_implicit_copy_constructor, 7125 oc_implicit_move_constructor, 7126 oc_implicit_copy_assignment, 7127 oc_implicit_move_assignment, 7128 oc_implicit_inherited_constructor 7129}; 7130 7131OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 7132 FunctionDecl *Fn, 7133 std::string &Description) { 7134 bool isTemplate = false; 7135 7136 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 7137 isTemplate = true; 7138 Description = S.getTemplateArgumentBindingsText( 7139 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 7140 } 7141 7142 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 7143 if (!Ctor->isImplicit()) 7144 return isTemplate ? oc_constructor_template : oc_constructor; 7145 7146 if (Ctor->getInheritedConstructor()) 7147 return oc_implicit_inherited_constructor; 7148 7149 if (Ctor->isDefaultConstructor()) 7150 return oc_implicit_default_constructor; 7151 7152 if (Ctor->isMoveConstructor()) 7153 return oc_implicit_move_constructor; 7154 7155 assert(Ctor->isCopyConstructor() && 7156 "unexpected sort of implicit constructor"); 7157 return oc_implicit_copy_constructor; 7158 } 7159 7160 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 7161 // This actually gets spelled 'candidate function' for now, but 7162 // it doesn't hurt to split it out. 7163 if (!Meth->isImplicit()) 7164 return isTemplate ? oc_method_template : oc_method; 7165 7166 if (Meth->isMoveAssignmentOperator()) 7167 return oc_implicit_move_assignment; 7168 7169 assert(Meth->isCopyAssignmentOperator() 7170 && "implicit method is not copy assignment operator?"); 7171 return oc_implicit_copy_assignment; 7172 } 7173 7174 return isTemplate ? oc_function_template : oc_function; 7175} 7176 7177void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 7178 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 7179 if (!Ctor) return; 7180 7181 Ctor = Ctor->getInheritedConstructor(); 7182 if (!Ctor) return; 7183 7184 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 7185} 7186 7187} // end anonymous namespace 7188 7189// Notes the location of an overload candidate. 7190void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) { 7191 std::string FnDesc; 7192 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 7193 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 7194 << (unsigned) K << FnDesc; 7195 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 7196 Diag(Fn->getLocation(), PD); 7197 MaybeEmitInheritedConstructorNote(*this, Fn); 7198} 7199 7200//Notes the location of all overload candidates designated through 7201// OverloadedExpr 7202void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) { 7203 assert(OverloadedExpr->getType() == Context.OverloadTy); 7204 7205 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 7206 OverloadExpr *OvlExpr = Ovl.Expression; 7207 7208 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7209 IEnd = OvlExpr->decls_end(); 7210 I != IEnd; ++I) { 7211 if (FunctionTemplateDecl *FunTmpl = 7212 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 7213 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType); 7214 } else if (FunctionDecl *Fun 7215 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 7216 NoteOverloadCandidate(Fun, DestType); 7217 } 7218 } 7219} 7220 7221/// Diagnoses an ambiguous conversion. The partial diagnostic is the 7222/// "lead" diagnostic; it will be given two arguments, the source and 7223/// target types of the conversion. 7224void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 7225 Sema &S, 7226 SourceLocation CaretLoc, 7227 const PartialDiagnostic &PDiag) const { 7228 S.Diag(CaretLoc, PDiag) 7229 << Ambiguous.getFromType() << Ambiguous.getToType(); 7230 for (AmbiguousConversionSequence::const_iterator 7231 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 7232 S.NoteOverloadCandidate(*I); 7233 } 7234} 7235 7236namespace { 7237 7238void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 7239 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 7240 assert(Conv.isBad()); 7241 assert(Cand->Function && "for now, candidate must be a function"); 7242 FunctionDecl *Fn = Cand->Function; 7243 7244 // There's a conversion slot for the object argument if this is a 7245 // non-constructor method. Note that 'I' corresponds the 7246 // conversion-slot index. 7247 bool isObjectArgument = false; 7248 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 7249 if (I == 0) 7250 isObjectArgument = true; 7251 else 7252 I--; 7253 } 7254 7255 std::string FnDesc; 7256 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 7257 7258 Expr *FromExpr = Conv.Bad.FromExpr; 7259 QualType FromTy = Conv.Bad.getFromType(); 7260 QualType ToTy = Conv.Bad.getToType(); 7261 7262 if (FromTy == S.Context.OverloadTy) { 7263 assert(FromExpr && "overload set argument came from implicit argument?"); 7264 Expr *E = FromExpr->IgnoreParens(); 7265 if (isa<UnaryOperator>(E)) 7266 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 7267 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 7268 7269 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 7270 << (unsigned) FnKind << FnDesc 7271 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7272 << ToTy << Name << I+1; 7273 MaybeEmitInheritedConstructorNote(S, Fn); 7274 return; 7275 } 7276 7277 // Do some hand-waving analysis to see if the non-viability is due 7278 // to a qualifier mismatch. 7279 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 7280 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 7281 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 7282 CToTy = RT->getPointeeType(); 7283 else { 7284 // TODO: detect and diagnose the full richness of const mismatches. 7285 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 7286 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 7287 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 7288 } 7289 7290 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 7291 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 7292 // It is dumb that we have to do this here. 7293 while (isa<ArrayType>(CFromTy)) 7294 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 7295 while (isa<ArrayType>(CToTy)) 7296 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 7297 7298 Qualifiers FromQs = CFromTy.getQualifiers(); 7299 Qualifiers ToQs = CToTy.getQualifiers(); 7300 7301 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 7302 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 7303 << (unsigned) FnKind << FnDesc 7304 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7305 << FromTy 7306 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 7307 << (unsigned) isObjectArgument << I+1; 7308 MaybeEmitInheritedConstructorNote(S, Fn); 7309 return; 7310 } 7311 7312 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 7313 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 7314 << (unsigned) FnKind << FnDesc 7315 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7316 << FromTy 7317 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 7318 << (unsigned) isObjectArgument << I+1; 7319 MaybeEmitInheritedConstructorNote(S, Fn); 7320 return; 7321 } 7322 7323 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 7324 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 7325 << (unsigned) FnKind << FnDesc 7326 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7327 << FromTy 7328 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 7329 << (unsigned) isObjectArgument << I+1; 7330 MaybeEmitInheritedConstructorNote(S, Fn); 7331 return; 7332 } 7333 7334 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 7335 assert(CVR && "unexpected qualifiers mismatch"); 7336 7337 if (isObjectArgument) { 7338 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 7339 << (unsigned) FnKind << FnDesc 7340 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7341 << FromTy << (CVR - 1); 7342 } else { 7343 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 7344 << (unsigned) FnKind << FnDesc 7345 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7346 << FromTy << (CVR - 1) << I+1; 7347 } 7348 MaybeEmitInheritedConstructorNote(S, Fn); 7349 return; 7350 } 7351 7352 // Special diagnostic for failure to convert an initializer list, since 7353 // telling the user that it has type void is not useful. 7354 if (FromExpr && isa<InitListExpr>(FromExpr)) { 7355 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 7356 << (unsigned) FnKind << FnDesc 7357 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7358 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7359 MaybeEmitInheritedConstructorNote(S, Fn); 7360 return; 7361 } 7362 7363 // Diagnose references or pointers to incomplete types differently, 7364 // since it's far from impossible that the incompleteness triggered 7365 // the failure. 7366 QualType TempFromTy = FromTy.getNonReferenceType(); 7367 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 7368 TempFromTy = PTy->getPointeeType(); 7369 if (TempFromTy->isIncompleteType()) { 7370 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 7371 << (unsigned) FnKind << FnDesc 7372 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7373 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7374 MaybeEmitInheritedConstructorNote(S, Fn); 7375 return; 7376 } 7377 7378 // Diagnose base -> derived pointer conversions. 7379 unsigned BaseToDerivedConversion = 0; 7380 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 7381 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 7382 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 7383 FromPtrTy->getPointeeType()) && 7384 !FromPtrTy->getPointeeType()->isIncompleteType() && 7385 !ToPtrTy->getPointeeType()->isIncompleteType() && 7386 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 7387 FromPtrTy->getPointeeType())) 7388 BaseToDerivedConversion = 1; 7389 } 7390 } else if (const ObjCObjectPointerType *FromPtrTy 7391 = FromTy->getAs<ObjCObjectPointerType>()) { 7392 if (const ObjCObjectPointerType *ToPtrTy 7393 = ToTy->getAs<ObjCObjectPointerType>()) 7394 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 7395 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 7396 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 7397 FromPtrTy->getPointeeType()) && 7398 FromIface->isSuperClassOf(ToIface)) 7399 BaseToDerivedConversion = 2; 7400 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 7401 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 7402 !FromTy->isIncompleteType() && 7403 !ToRefTy->getPointeeType()->isIncompleteType() && 7404 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 7405 BaseToDerivedConversion = 3; 7406 } 7407 7408 if (BaseToDerivedConversion) { 7409 S.Diag(Fn->getLocation(), 7410 diag::note_ovl_candidate_bad_base_to_derived_conv) 7411 << (unsigned) FnKind << FnDesc 7412 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7413 << (BaseToDerivedConversion - 1) 7414 << FromTy << ToTy << I+1; 7415 MaybeEmitInheritedConstructorNote(S, Fn); 7416 return; 7417 } 7418 7419 if (isa<ObjCObjectPointerType>(CFromTy) && 7420 isa<PointerType>(CToTy)) { 7421 Qualifiers FromQs = CFromTy.getQualifiers(); 7422 Qualifiers ToQs = CToTy.getQualifiers(); 7423 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 7424 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 7425 << (unsigned) FnKind << FnDesc 7426 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7427 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7428 MaybeEmitInheritedConstructorNote(S, Fn); 7429 return; 7430 } 7431 } 7432 7433 // Emit the generic diagnostic and, optionally, add the hints to it. 7434 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 7435 FDiag << (unsigned) FnKind << FnDesc 7436 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7437 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 7438 << (unsigned) (Cand->Fix.Kind); 7439 7440 // If we can fix the conversion, suggest the FixIts. 7441 for (SmallVector<FixItHint, 1>::iterator 7442 HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end(); 7443 HI != HE; ++HI) 7444 FDiag << *HI; 7445 S.Diag(Fn->getLocation(), FDiag); 7446 7447 MaybeEmitInheritedConstructorNote(S, Fn); 7448} 7449 7450void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 7451 unsigned NumFormalArgs) { 7452 // TODO: treat calls to a missing default constructor as a special case 7453 7454 FunctionDecl *Fn = Cand->Function; 7455 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 7456 7457 unsigned MinParams = Fn->getMinRequiredArguments(); 7458 7459 // With invalid overloaded operators, it's possible that we think we 7460 // have an arity mismatch when it fact it looks like we have the 7461 // right number of arguments, because only overloaded operators have 7462 // the weird behavior of overloading member and non-member functions. 7463 // Just don't report anything. 7464 if (Fn->isInvalidDecl() && 7465 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 7466 return; 7467 7468 // at least / at most / exactly 7469 unsigned mode, modeCount; 7470 if (NumFormalArgs < MinParams) { 7471 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 7472 (Cand->FailureKind == ovl_fail_bad_deduction && 7473 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 7474 if (MinParams != FnTy->getNumArgs() || 7475 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 7476 mode = 0; // "at least" 7477 else 7478 mode = 2; // "exactly" 7479 modeCount = MinParams; 7480 } else { 7481 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 7482 (Cand->FailureKind == ovl_fail_bad_deduction && 7483 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 7484 if (MinParams != FnTy->getNumArgs()) 7485 mode = 1; // "at most" 7486 else 7487 mode = 2; // "exactly" 7488 modeCount = FnTy->getNumArgs(); 7489 } 7490 7491 std::string Description; 7492 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 7493 7494 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 7495 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 7496 << modeCount << NumFormalArgs; 7497 MaybeEmitInheritedConstructorNote(S, Fn); 7498} 7499 7500/// Diagnose a failed template-argument deduction. 7501void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 7502 Expr **Args, unsigned NumArgs) { 7503 FunctionDecl *Fn = Cand->Function; // pattern 7504 7505 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 7506 NamedDecl *ParamD; 7507 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 7508 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 7509 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 7510 switch (Cand->DeductionFailure.Result) { 7511 case Sema::TDK_Success: 7512 llvm_unreachable("TDK_success while diagnosing bad deduction"); 7513 7514 case Sema::TDK_Incomplete: { 7515 assert(ParamD && "no parameter found for incomplete deduction result"); 7516 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 7517 << ParamD->getDeclName(); 7518 MaybeEmitInheritedConstructorNote(S, Fn); 7519 return; 7520 } 7521 7522 case Sema::TDK_Underqualified: { 7523 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 7524 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 7525 7526 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 7527 7528 // Param will have been canonicalized, but it should just be a 7529 // qualified version of ParamD, so move the qualifiers to that. 7530 QualifierCollector Qs; 7531 Qs.strip(Param); 7532 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 7533 assert(S.Context.hasSameType(Param, NonCanonParam)); 7534 7535 // Arg has also been canonicalized, but there's nothing we can do 7536 // about that. It also doesn't matter as much, because it won't 7537 // have any template parameters in it (because deduction isn't 7538 // done on dependent types). 7539 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 7540 7541 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 7542 << ParamD->getDeclName() << Arg << NonCanonParam; 7543 MaybeEmitInheritedConstructorNote(S, Fn); 7544 return; 7545 } 7546 7547 case Sema::TDK_Inconsistent: { 7548 assert(ParamD && "no parameter found for inconsistent deduction result"); 7549 int which = 0; 7550 if (isa<TemplateTypeParmDecl>(ParamD)) 7551 which = 0; 7552 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 7553 which = 1; 7554 else { 7555 which = 2; 7556 } 7557 7558 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 7559 << which << ParamD->getDeclName() 7560 << *Cand->DeductionFailure.getFirstArg() 7561 << *Cand->DeductionFailure.getSecondArg(); 7562 MaybeEmitInheritedConstructorNote(S, Fn); 7563 return; 7564 } 7565 7566 case Sema::TDK_InvalidExplicitArguments: 7567 assert(ParamD && "no parameter found for invalid explicit arguments"); 7568 if (ParamD->getDeclName()) 7569 S.Diag(Fn->getLocation(), 7570 diag::note_ovl_candidate_explicit_arg_mismatch_named) 7571 << ParamD->getDeclName(); 7572 else { 7573 int index = 0; 7574 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 7575 index = TTP->getIndex(); 7576 else if (NonTypeTemplateParmDecl *NTTP 7577 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 7578 index = NTTP->getIndex(); 7579 else 7580 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 7581 S.Diag(Fn->getLocation(), 7582 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 7583 << (index + 1); 7584 } 7585 MaybeEmitInheritedConstructorNote(S, Fn); 7586 return; 7587 7588 case Sema::TDK_TooManyArguments: 7589 case Sema::TDK_TooFewArguments: 7590 DiagnoseArityMismatch(S, Cand, NumArgs); 7591 return; 7592 7593 case Sema::TDK_InstantiationDepth: 7594 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 7595 MaybeEmitInheritedConstructorNote(S, Fn); 7596 return; 7597 7598 case Sema::TDK_SubstitutionFailure: { 7599 std::string ArgString; 7600 if (TemplateArgumentList *Args 7601 = Cand->DeductionFailure.getTemplateArgumentList()) 7602 ArgString = S.getTemplateArgumentBindingsText( 7603 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 7604 *Args); 7605 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 7606 << ArgString; 7607 MaybeEmitInheritedConstructorNote(S, Fn); 7608 return; 7609 } 7610 7611 // TODO: diagnose these individually, then kill off 7612 // note_ovl_candidate_bad_deduction, which is uselessly vague. 7613 case Sema::TDK_NonDeducedMismatch: 7614 case Sema::TDK_FailedOverloadResolution: 7615 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 7616 MaybeEmitInheritedConstructorNote(S, Fn); 7617 return; 7618 } 7619} 7620 7621/// CUDA: diagnose an invalid call across targets. 7622void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 7623 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 7624 FunctionDecl *Callee = Cand->Function; 7625 7626 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 7627 CalleeTarget = S.IdentifyCUDATarget(Callee); 7628 7629 std::string FnDesc; 7630 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc); 7631 7632 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 7633 << (unsigned) FnKind << CalleeTarget << CallerTarget; 7634} 7635 7636/// Generates a 'note' diagnostic for an overload candidate. We've 7637/// already generated a primary error at the call site. 7638/// 7639/// It really does need to be a single diagnostic with its caret 7640/// pointed at the candidate declaration. Yes, this creates some 7641/// major challenges of technical writing. Yes, this makes pointing 7642/// out problems with specific arguments quite awkward. It's still 7643/// better than generating twenty screens of text for every failed 7644/// overload. 7645/// 7646/// It would be great to be able to express per-candidate problems 7647/// more richly for those diagnostic clients that cared, but we'd 7648/// still have to be just as careful with the default diagnostics. 7649void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 7650 Expr **Args, unsigned NumArgs) { 7651 FunctionDecl *Fn = Cand->Function; 7652 7653 // Note deleted candidates, but only if they're viable. 7654 if (Cand->Viable && (Fn->isDeleted() || 7655 S.isFunctionConsideredUnavailable(Fn))) { 7656 std::string FnDesc; 7657 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 7658 7659 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 7660 << FnKind << FnDesc << Fn->isDeleted(); 7661 MaybeEmitInheritedConstructorNote(S, Fn); 7662 return; 7663 } 7664 7665 // We don't really have anything else to say about viable candidates. 7666 if (Cand->Viable) { 7667 S.NoteOverloadCandidate(Fn); 7668 return; 7669 } 7670 7671 switch (Cand->FailureKind) { 7672 case ovl_fail_too_many_arguments: 7673 case ovl_fail_too_few_arguments: 7674 return DiagnoseArityMismatch(S, Cand, NumArgs); 7675 7676 case ovl_fail_bad_deduction: 7677 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 7678 7679 case ovl_fail_trivial_conversion: 7680 case ovl_fail_bad_final_conversion: 7681 case ovl_fail_final_conversion_not_exact: 7682 return S.NoteOverloadCandidate(Fn); 7683 7684 case ovl_fail_bad_conversion: { 7685 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 7686 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 7687 if (Cand->Conversions[I].isBad()) 7688 return DiagnoseBadConversion(S, Cand, I); 7689 7690 // FIXME: this currently happens when we're called from SemaInit 7691 // when user-conversion overload fails. Figure out how to handle 7692 // those conditions and diagnose them well. 7693 return S.NoteOverloadCandidate(Fn); 7694 } 7695 7696 case ovl_fail_bad_target: 7697 return DiagnoseBadTarget(S, Cand); 7698 } 7699} 7700 7701void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 7702 // Desugar the type of the surrogate down to a function type, 7703 // retaining as many typedefs as possible while still showing 7704 // the function type (and, therefore, its parameter types). 7705 QualType FnType = Cand->Surrogate->getConversionType(); 7706 bool isLValueReference = false; 7707 bool isRValueReference = false; 7708 bool isPointer = false; 7709 if (const LValueReferenceType *FnTypeRef = 7710 FnType->getAs<LValueReferenceType>()) { 7711 FnType = FnTypeRef->getPointeeType(); 7712 isLValueReference = true; 7713 } else if (const RValueReferenceType *FnTypeRef = 7714 FnType->getAs<RValueReferenceType>()) { 7715 FnType = FnTypeRef->getPointeeType(); 7716 isRValueReference = true; 7717 } 7718 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 7719 FnType = FnTypePtr->getPointeeType(); 7720 isPointer = true; 7721 } 7722 // Desugar down to a function type. 7723 FnType = QualType(FnType->getAs<FunctionType>(), 0); 7724 // Reconstruct the pointer/reference as appropriate. 7725 if (isPointer) FnType = S.Context.getPointerType(FnType); 7726 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 7727 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 7728 7729 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 7730 << FnType; 7731 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 7732} 7733 7734void NoteBuiltinOperatorCandidate(Sema &S, 7735 const char *Opc, 7736 SourceLocation OpLoc, 7737 OverloadCandidate *Cand) { 7738 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 7739 std::string TypeStr("operator"); 7740 TypeStr += Opc; 7741 TypeStr += "("; 7742 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 7743 if (Cand->Conversions.size() == 1) { 7744 TypeStr += ")"; 7745 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 7746 } else { 7747 TypeStr += ", "; 7748 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 7749 TypeStr += ")"; 7750 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 7751 } 7752} 7753 7754void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 7755 OverloadCandidate *Cand) { 7756 unsigned NoOperands = Cand->Conversions.size(); 7757 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 7758 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 7759 if (ICS.isBad()) break; // all meaningless after first invalid 7760 if (!ICS.isAmbiguous()) continue; 7761 7762 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 7763 S.PDiag(diag::note_ambiguous_type_conversion)); 7764 } 7765} 7766 7767SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 7768 if (Cand->Function) 7769 return Cand->Function->getLocation(); 7770 if (Cand->IsSurrogate) 7771 return Cand->Surrogate->getLocation(); 7772 return SourceLocation(); 7773} 7774 7775static unsigned 7776RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) { 7777 switch ((Sema::TemplateDeductionResult)DFI.Result) { 7778 case Sema::TDK_Success: 7779 llvm_unreachable("TDK_success while diagnosing bad deduction"); 7780 7781 case Sema::TDK_Incomplete: 7782 return 1; 7783 7784 case Sema::TDK_Underqualified: 7785 case Sema::TDK_Inconsistent: 7786 return 2; 7787 7788 case Sema::TDK_SubstitutionFailure: 7789 case Sema::TDK_NonDeducedMismatch: 7790 return 3; 7791 7792 case Sema::TDK_InstantiationDepth: 7793 case Sema::TDK_FailedOverloadResolution: 7794 return 4; 7795 7796 case Sema::TDK_InvalidExplicitArguments: 7797 return 5; 7798 7799 case Sema::TDK_TooManyArguments: 7800 case Sema::TDK_TooFewArguments: 7801 return 6; 7802 } 7803 llvm_unreachable("Unhandled deduction result"); 7804} 7805 7806struct CompareOverloadCandidatesForDisplay { 7807 Sema &S; 7808 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 7809 7810 bool operator()(const OverloadCandidate *L, 7811 const OverloadCandidate *R) { 7812 // Fast-path this check. 7813 if (L == R) return false; 7814 7815 // Order first by viability. 7816 if (L->Viable) { 7817 if (!R->Viable) return true; 7818 7819 // TODO: introduce a tri-valued comparison for overload 7820 // candidates. Would be more worthwhile if we had a sort 7821 // that could exploit it. 7822 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 7823 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 7824 } else if (R->Viable) 7825 return false; 7826 7827 assert(L->Viable == R->Viable); 7828 7829 // Criteria by which we can sort non-viable candidates: 7830 if (!L->Viable) { 7831 // 1. Arity mismatches come after other candidates. 7832 if (L->FailureKind == ovl_fail_too_many_arguments || 7833 L->FailureKind == ovl_fail_too_few_arguments) 7834 return false; 7835 if (R->FailureKind == ovl_fail_too_many_arguments || 7836 R->FailureKind == ovl_fail_too_few_arguments) 7837 return true; 7838 7839 // 2. Bad conversions come first and are ordered by the number 7840 // of bad conversions and quality of good conversions. 7841 if (L->FailureKind == ovl_fail_bad_conversion) { 7842 if (R->FailureKind != ovl_fail_bad_conversion) 7843 return true; 7844 7845 // The conversion that can be fixed with a smaller number of changes, 7846 // comes first. 7847 unsigned numLFixes = L->Fix.NumConversionsFixed; 7848 unsigned numRFixes = R->Fix.NumConversionsFixed; 7849 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 7850 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 7851 if (numLFixes != numRFixes) { 7852 if (numLFixes < numRFixes) 7853 return true; 7854 else 7855 return false; 7856 } 7857 7858 // If there's any ordering between the defined conversions... 7859 // FIXME: this might not be transitive. 7860 assert(L->Conversions.size() == R->Conversions.size()); 7861 7862 int leftBetter = 0; 7863 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 7864 for (unsigned E = L->Conversions.size(); I != E; ++I) { 7865 switch (CompareImplicitConversionSequences(S, 7866 L->Conversions[I], 7867 R->Conversions[I])) { 7868 case ImplicitConversionSequence::Better: 7869 leftBetter++; 7870 break; 7871 7872 case ImplicitConversionSequence::Worse: 7873 leftBetter--; 7874 break; 7875 7876 case ImplicitConversionSequence::Indistinguishable: 7877 break; 7878 } 7879 } 7880 if (leftBetter > 0) return true; 7881 if (leftBetter < 0) return false; 7882 7883 } else if (R->FailureKind == ovl_fail_bad_conversion) 7884 return false; 7885 7886 if (L->FailureKind == ovl_fail_bad_deduction) { 7887 if (R->FailureKind != ovl_fail_bad_deduction) 7888 return true; 7889 7890 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 7891 return RankDeductionFailure(L->DeductionFailure) 7892 < RankDeductionFailure(R->DeductionFailure); 7893 } else if (R->FailureKind == ovl_fail_bad_deduction) 7894 return false; 7895 7896 // TODO: others? 7897 } 7898 7899 // Sort everything else by location. 7900 SourceLocation LLoc = GetLocationForCandidate(L); 7901 SourceLocation RLoc = GetLocationForCandidate(R); 7902 7903 // Put candidates without locations (e.g. builtins) at the end. 7904 if (LLoc.isInvalid()) return false; 7905 if (RLoc.isInvalid()) return true; 7906 7907 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 7908 } 7909}; 7910 7911/// CompleteNonViableCandidate - Normally, overload resolution only 7912/// computes up to the first. Produces the FixIt set if possible. 7913void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 7914 Expr **Args, unsigned NumArgs) { 7915 assert(!Cand->Viable); 7916 7917 // Don't do anything on failures other than bad conversion. 7918 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 7919 7920 // We only want the FixIts if all the arguments can be corrected. 7921 bool Unfixable = false; 7922 // Use a implicit copy initialization to check conversion fixes. 7923 Cand->Fix.setConversionChecker(TryCopyInitialization); 7924 7925 // Skip forward to the first bad conversion. 7926 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 7927 unsigned ConvCount = Cand->Conversions.size(); 7928 while (true) { 7929 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 7930 ConvIdx++; 7931 if (Cand->Conversions[ConvIdx - 1].isBad()) { 7932 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); 7933 break; 7934 } 7935 } 7936 7937 if (ConvIdx == ConvCount) 7938 return; 7939 7940 assert(!Cand->Conversions[ConvIdx].isInitialized() && 7941 "remaining conversion is initialized?"); 7942 7943 // FIXME: this should probably be preserved from the overload 7944 // operation somehow. 7945 bool SuppressUserConversions = false; 7946 7947 const FunctionProtoType* Proto; 7948 unsigned ArgIdx = ConvIdx; 7949 7950 if (Cand->IsSurrogate) { 7951 QualType ConvType 7952 = Cand->Surrogate->getConversionType().getNonReferenceType(); 7953 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7954 ConvType = ConvPtrType->getPointeeType(); 7955 Proto = ConvType->getAs<FunctionProtoType>(); 7956 ArgIdx--; 7957 } else if (Cand->Function) { 7958 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 7959 if (isa<CXXMethodDecl>(Cand->Function) && 7960 !isa<CXXConstructorDecl>(Cand->Function)) 7961 ArgIdx--; 7962 } else { 7963 // Builtin binary operator with a bad first conversion. 7964 assert(ConvCount <= 3); 7965 for (; ConvIdx != ConvCount; ++ConvIdx) 7966 Cand->Conversions[ConvIdx] 7967 = TryCopyInitialization(S, Args[ConvIdx], 7968 Cand->BuiltinTypes.ParamTypes[ConvIdx], 7969 SuppressUserConversions, 7970 /*InOverloadResolution*/ true, 7971 /*AllowObjCWritebackConversion=*/ 7972 S.getLangOptions().ObjCAutoRefCount); 7973 return; 7974 } 7975 7976 // Fill in the rest of the conversions. 7977 unsigned NumArgsInProto = Proto->getNumArgs(); 7978 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 7979 if (ArgIdx < NumArgsInProto) { 7980 Cand->Conversions[ConvIdx] 7981 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 7982 SuppressUserConversions, 7983 /*InOverloadResolution=*/true, 7984 /*AllowObjCWritebackConversion=*/ 7985 S.getLangOptions().ObjCAutoRefCount); 7986 // Store the FixIt in the candidate if it exists. 7987 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 7988 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 7989 } 7990 else 7991 Cand->Conversions[ConvIdx].setEllipsis(); 7992 } 7993} 7994 7995} // end anonymous namespace 7996 7997/// PrintOverloadCandidates - When overload resolution fails, prints 7998/// diagnostic messages containing the candidates in the candidate 7999/// set. 8000void OverloadCandidateSet::NoteCandidates(Sema &S, 8001 OverloadCandidateDisplayKind OCD, 8002 Expr **Args, unsigned NumArgs, 8003 const char *Opc, 8004 SourceLocation OpLoc) { 8005 // Sort the candidates by viability and position. Sorting directly would 8006 // be prohibitive, so we make a set of pointers and sort those. 8007 SmallVector<OverloadCandidate*, 32> Cands; 8008 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 8009 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 8010 if (Cand->Viable) 8011 Cands.push_back(Cand); 8012 else if (OCD == OCD_AllCandidates) { 8013 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 8014 if (Cand->Function || Cand->IsSurrogate) 8015 Cands.push_back(Cand); 8016 // Otherwise, this a non-viable builtin candidate. We do not, in general, 8017 // want to list every possible builtin candidate. 8018 } 8019 } 8020 8021 std::sort(Cands.begin(), Cands.end(), 8022 CompareOverloadCandidatesForDisplay(S)); 8023 8024 bool ReportedAmbiguousConversions = false; 8025 8026 SmallVectorImpl<OverloadCandidate*>::iterator I, E; 8027 const DiagnosticsEngine::OverloadsShown ShowOverloads = 8028 S.Diags.getShowOverloads(); 8029 unsigned CandsShown = 0; 8030 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 8031 OverloadCandidate *Cand = *I; 8032 8033 // Set an arbitrary limit on the number of candidate functions we'll spam 8034 // the user with. FIXME: This limit should depend on details of the 8035 // candidate list. 8036 if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) { 8037 break; 8038 } 8039 ++CandsShown; 8040 8041 if (Cand->Function) 8042 NoteFunctionCandidate(S, Cand, Args, NumArgs); 8043 else if (Cand->IsSurrogate) 8044 NoteSurrogateCandidate(S, Cand); 8045 else { 8046 assert(Cand->Viable && 8047 "Non-viable built-in candidates are not added to Cands."); 8048 // Generally we only see ambiguities including viable builtin 8049 // operators if overload resolution got screwed up by an 8050 // ambiguous user-defined conversion. 8051 // 8052 // FIXME: It's quite possible for different conversions to see 8053 // different ambiguities, though. 8054 if (!ReportedAmbiguousConversions) { 8055 NoteAmbiguousUserConversions(S, OpLoc, Cand); 8056 ReportedAmbiguousConversions = true; 8057 } 8058 8059 // If this is a viable builtin, print it. 8060 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 8061 } 8062 } 8063 8064 if (I != E) 8065 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 8066} 8067 8068// [PossiblyAFunctionType] --> [Return] 8069// NonFunctionType --> NonFunctionType 8070// R (A) --> R(A) 8071// R (*)(A) --> R (A) 8072// R (&)(A) --> R (A) 8073// R (S::*)(A) --> R (A) 8074QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 8075 QualType Ret = PossiblyAFunctionType; 8076 if (const PointerType *ToTypePtr = 8077 PossiblyAFunctionType->getAs<PointerType>()) 8078 Ret = ToTypePtr->getPointeeType(); 8079 else if (const ReferenceType *ToTypeRef = 8080 PossiblyAFunctionType->getAs<ReferenceType>()) 8081 Ret = ToTypeRef->getPointeeType(); 8082 else if (const MemberPointerType *MemTypePtr = 8083 PossiblyAFunctionType->getAs<MemberPointerType>()) 8084 Ret = MemTypePtr->getPointeeType(); 8085 Ret = 8086 Context.getCanonicalType(Ret).getUnqualifiedType(); 8087 return Ret; 8088} 8089 8090// A helper class to help with address of function resolution 8091// - allows us to avoid passing around all those ugly parameters 8092class AddressOfFunctionResolver 8093{ 8094 Sema& S; 8095 Expr* SourceExpr; 8096 const QualType& TargetType; 8097 QualType TargetFunctionType; // Extracted function type from target type 8098 8099 bool Complain; 8100 //DeclAccessPair& ResultFunctionAccessPair; 8101 ASTContext& Context; 8102 8103 bool TargetTypeIsNonStaticMemberFunction; 8104 bool FoundNonTemplateFunction; 8105 8106 OverloadExpr::FindResult OvlExprInfo; 8107 OverloadExpr *OvlExpr; 8108 TemplateArgumentListInfo OvlExplicitTemplateArgs; 8109 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 8110 8111public: 8112 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 8113 const QualType& TargetType, bool Complain) 8114 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 8115 Complain(Complain), Context(S.getASTContext()), 8116 TargetTypeIsNonStaticMemberFunction( 8117 !!TargetType->getAs<MemberPointerType>()), 8118 FoundNonTemplateFunction(false), 8119 OvlExprInfo(OverloadExpr::find(SourceExpr)), 8120 OvlExpr(OvlExprInfo.Expression) 8121 { 8122 ExtractUnqualifiedFunctionTypeFromTargetType(); 8123 8124 if (!TargetFunctionType->isFunctionType()) { 8125 if (OvlExpr->hasExplicitTemplateArgs()) { 8126 DeclAccessPair dap; 8127 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 8128 OvlExpr, false, &dap) ) { 8129 8130 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8131 if (!Method->isStatic()) { 8132 // If the target type is a non-function type and the function 8133 // found is a non-static member function, pretend as if that was 8134 // the target, it's the only possible type to end up with. 8135 TargetTypeIsNonStaticMemberFunction = true; 8136 8137 // And skip adding the function if its not in the proper form. 8138 // We'll diagnose this due to an empty set of functions. 8139 if (!OvlExprInfo.HasFormOfMemberPointer) 8140 return; 8141 } 8142 } 8143 8144 Matches.push_back(std::make_pair(dap,Fn)); 8145 } 8146 } 8147 return; 8148 } 8149 8150 if (OvlExpr->hasExplicitTemplateArgs()) 8151 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 8152 8153 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 8154 // C++ [over.over]p4: 8155 // If more than one function is selected, [...] 8156 if (Matches.size() > 1) { 8157 if (FoundNonTemplateFunction) 8158 EliminateAllTemplateMatches(); 8159 else 8160 EliminateAllExceptMostSpecializedTemplate(); 8161 } 8162 } 8163 } 8164 8165private: 8166 bool isTargetTypeAFunction() const { 8167 return TargetFunctionType->isFunctionType(); 8168 } 8169 8170 // [ToType] [Return] 8171 8172 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 8173 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 8174 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 8175 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 8176 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 8177 } 8178 8179 // return true if any matching specializations were found 8180 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 8181 const DeclAccessPair& CurAccessFunPair) { 8182 if (CXXMethodDecl *Method 8183 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 8184 // Skip non-static function templates when converting to pointer, and 8185 // static when converting to member pointer. 8186 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 8187 return false; 8188 } 8189 else if (TargetTypeIsNonStaticMemberFunction) 8190 return false; 8191 8192 // C++ [over.over]p2: 8193 // If the name is a function template, template argument deduction is 8194 // done (14.8.2.2), and if the argument deduction succeeds, the 8195 // resulting template argument list is used to generate a single 8196 // function template specialization, which is added to the set of 8197 // overloaded functions considered. 8198 FunctionDecl *Specialization = 0; 8199 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 8200 if (Sema::TemplateDeductionResult Result 8201 = S.DeduceTemplateArguments(FunctionTemplate, 8202 &OvlExplicitTemplateArgs, 8203 TargetFunctionType, Specialization, 8204 Info)) { 8205 // FIXME: make a note of the failed deduction for diagnostics. 8206 (void)Result; 8207 return false; 8208 } 8209 8210 // Template argument deduction ensures that we have an exact match. 8211 // This function template specicalization works. 8212 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 8213 assert(TargetFunctionType 8214 == Context.getCanonicalType(Specialization->getType())); 8215 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 8216 return true; 8217 } 8218 8219 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 8220 const DeclAccessPair& CurAccessFunPair) { 8221 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8222 // Skip non-static functions when converting to pointer, and static 8223 // when converting to member pointer. 8224 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 8225 return false; 8226 } 8227 else if (TargetTypeIsNonStaticMemberFunction) 8228 return false; 8229 8230 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 8231 if (S.getLangOptions().CUDA) 8232 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 8233 if (S.CheckCUDATarget(Caller, FunDecl)) 8234 return false; 8235 8236 QualType ResultTy; 8237 if (Context.hasSameUnqualifiedType(TargetFunctionType, 8238 FunDecl->getType()) || 8239 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, 8240 ResultTy)) { 8241 Matches.push_back(std::make_pair(CurAccessFunPair, 8242 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 8243 FoundNonTemplateFunction = true; 8244 return true; 8245 } 8246 } 8247 8248 return false; 8249 } 8250 8251 bool FindAllFunctionsThatMatchTargetTypeExactly() { 8252 bool Ret = false; 8253 8254 // If the overload expression doesn't have the form of a pointer to 8255 // member, don't try to convert it to a pointer-to-member type. 8256 if (IsInvalidFormOfPointerToMemberFunction()) 8257 return false; 8258 8259 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 8260 E = OvlExpr->decls_end(); 8261 I != E; ++I) { 8262 // Look through any using declarations to find the underlying function. 8263 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 8264 8265 // C++ [over.over]p3: 8266 // Non-member functions and static member functions match 8267 // targets of type "pointer-to-function" or "reference-to-function." 8268 // Nonstatic member functions match targets of 8269 // type "pointer-to-member-function." 8270 // Note that according to DR 247, the containing class does not matter. 8271 if (FunctionTemplateDecl *FunctionTemplate 8272 = dyn_cast<FunctionTemplateDecl>(Fn)) { 8273 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 8274 Ret = true; 8275 } 8276 // If we have explicit template arguments supplied, skip non-templates. 8277 else if (!OvlExpr->hasExplicitTemplateArgs() && 8278 AddMatchingNonTemplateFunction(Fn, I.getPair())) 8279 Ret = true; 8280 } 8281 assert(Ret || Matches.empty()); 8282 return Ret; 8283 } 8284 8285 void EliminateAllExceptMostSpecializedTemplate() { 8286 // [...] and any given function template specialization F1 is 8287 // eliminated if the set contains a second function template 8288 // specialization whose function template is more specialized 8289 // than the function template of F1 according to the partial 8290 // ordering rules of 14.5.5.2. 8291 8292 // The algorithm specified above is quadratic. We instead use a 8293 // two-pass algorithm (similar to the one used to identify the 8294 // best viable function in an overload set) that identifies the 8295 // best function template (if it exists). 8296 8297 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 8298 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 8299 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 8300 8301 UnresolvedSetIterator Result = 8302 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 8303 TPOC_Other, 0, SourceExpr->getLocStart(), 8304 S.PDiag(), 8305 S.PDiag(diag::err_addr_ovl_ambiguous) 8306 << Matches[0].second->getDeclName(), 8307 S.PDiag(diag::note_ovl_candidate) 8308 << (unsigned) oc_function_template, 8309 Complain, TargetFunctionType); 8310 8311 if (Result != MatchesCopy.end()) { 8312 // Make it the first and only element 8313 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 8314 Matches[0].second = cast<FunctionDecl>(*Result); 8315 Matches.resize(1); 8316 } 8317 } 8318 8319 void EliminateAllTemplateMatches() { 8320 // [...] any function template specializations in the set are 8321 // eliminated if the set also contains a non-template function, [...] 8322 for (unsigned I = 0, N = Matches.size(); I != N; ) { 8323 if (Matches[I].second->getPrimaryTemplate() == 0) 8324 ++I; 8325 else { 8326 Matches[I] = Matches[--N]; 8327 Matches.set_size(N); 8328 } 8329 } 8330 } 8331 8332public: 8333 void ComplainNoMatchesFound() const { 8334 assert(Matches.empty()); 8335 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 8336 << OvlExpr->getName() << TargetFunctionType 8337 << OvlExpr->getSourceRange(); 8338 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 8339 } 8340 8341 bool IsInvalidFormOfPointerToMemberFunction() const { 8342 return TargetTypeIsNonStaticMemberFunction && 8343 !OvlExprInfo.HasFormOfMemberPointer; 8344 } 8345 8346 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 8347 // TODO: Should we condition this on whether any functions might 8348 // have matched, or is it more appropriate to do that in callers? 8349 // TODO: a fixit wouldn't hurt. 8350 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 8351 << TargetType << OvlExpr->getSourceRange(); 8352 } 8353 8354 void ComplainOfInvalidConversion() const { 8355 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 8356 << OvlExpr->getName() << TargetType; 8357 } 8358 8359 void ComplainMultipleMatchesFound() const { 8360 assert(Matches.size() > 1); 8361 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 8362 << OvlExpr->getName() 8363 << OvlExpr->getSourceRange(); 8364 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 8365 } 8366 8367 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 8368 8369 int getNumMatches() const { return Matches.size(); } 8370 8371 FunctionDecl* getMatchingFunctionDecl() const { 8372 if (Matches.size() != 1) return 0; 8373 return Matches[0].second; 8374 } 8375 8376 const DeclAccessPair* getMatchingFunctionAccessPair() const { 8377 if (Matches.size() != 1) return 0; 8378 return &Matches[0].first; 8379 } 8380}; 8381 8382/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 8383/// an overloaded function (C++ [over.over]), where @p From is an 8384/// expression with overloaded function type and @p ToType is the type 8385/// we're trying to resolve to. For example: 8386/// 8387/// @code 8388/// int f(double); 8389/// int f(int); 8390/// 8391/// int (*pfd)(double) = f; // selects f(double) 8392/// @endcode 8393/// 8394/// This routine returns the resulting FunctionDecl if it could be 8395/// resolved, and NULL otherwise. When @p Complain is true, this 8396/// routine will emit diagnostics if there is an error. 8397FunctionDecl * 8398Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 8399 QualType TargetType, 8400 bool Complain, 8401 DeclAccessPair &FoundResult, 8402 bool *pHadMultipleCandidates) { 8403 assert(AddressOfExpr->getType() == Context.OverloadTy); 8404 8405 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 8406 Complain); 8407 int NumMatches = Resolver.getNumMatches(); 8408 FunctionDecl* Fn = 0; 8409 if (NumMatches == 0 && Complain) { 8410 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 8411 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 8412 else 8413 Resolver.ComplainNoMatchesFound(); 8414 } 8415 else if (NumMatches > 1 && Complain) 8416 Resolver.ComplainMultipleMatchesFound(); 8417 else if (NumMatches == 1) { 8418 Fn = Resolver.getMatchingFunctionDecl(); 8419 assert(Fn); 8420 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 8421 MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn); 8422 if (Complain) 8423 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 8424 } 8425 8426 if (pHadMultipleCandidates) 8427 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 8428 return Fn; 8429} 8430 8431/// \brief Given an expression that refers to an overloaded function, try to 8432/// resolve that overloaded function expression down to a single function. 8433/// 8434/// This routine can only resolve template-ids that refer to a single function 8435/// template, where that template-id refers to a single template whose template 8436/// arguments are either provided by the template-id or have defaults, 8437/// as described in C++0x [temp.arg.explicit]p3. 8438FunctionDecl * 8439Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 8440 bool Complain, 8441 DeclAccessPair *FoundResult) { 8442 // C++ [over.over]p1: 8443 // [...] [Note: any redundant set of parentheses surrounding the 8444 // overloaded function name is ignored (5.1). ] 8445 // C++ [over.over]p1: 8446 // [...] The overloaded function name can be preceded by the & 8447 // operator. 8448 8449 // If we didn't actually find any template-ids, we're done. 8450 if (!ovl->hasExplicitTemplateArgs()) 8451 return 0; 8452 8453 TemplateArgumentListInfo ExplicitTemplateArgs; 8454 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 8455 8456 // Look through all of the overloaded functions, searching for one 8457 // whose type matches exactly. 8458 FunctionDecl *Matched = 0; 8459 for (UnresolvedSetIterator I = ovl->decls_begin(), 8460 E = ovl->decls_end(); I != E; ++I) { 8461 // C++0x [temp.arg.explicit]p3: 8462 // [...] In contexts where deduction is done and fails, or in contexts 8463 // where deduction is not done, if a template argument list is 8464 // specified and it, along with any default template arguments, 8465 // identifies a single function template specialization, then the 8466 // template-id is an lvalue for the function template specialization. 8467 FunctionTemplateDecl *FunctionTemplate 8468 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 8469 8470 // C++ [over.over]p2: 8471 // If the name is a function template, template argument deduction is 8472 // done (14.8.2.2), and if the argument deduction succeeds, the 8473 // resulting template argument list is used to generate a single 8474 // function template specialization, which is added to the set of 8475 // overloaded functions considered. 8476 FunctionDecl *Specialization = 0; 8477 TemplateDeductionInfo Info(Context, ovl->getNameLoc()); 8478 if (TemplateDeductionResult Result 8479 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 8480 Specialization, Info)) { 8481 // FIXME: make a note of the failed deduction for diagnostics. 8482 (void)Result; 8483 continue; 8484 } 8485 8486 assert(Specialization && "no specialization and no error?"); 8487 8488 // Multiple matches; we can't resolve to a single declaration. 8489 if (Matched) { 8490 if (Complain) { 8491 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 8492 << ovl->getName(); 8493 NoteAllOverloadCandidates(ovl); 8494 } 8495 return 0; 8496 } 8497 8498 Matched = Specialization; 8499 if (FoundResult) *FoundResult = I.getPair(); 8500 } 8501 8502 return Matched; 8503} 8504 8505 8506 8507 8508// Resolve and fix an overloaded expression that can be resolved 8509// because it identifies a single function template specialization. 8510// 8511// Last three arguments should only be supplied if Complain = true 8512// 8513// Return true if it was logically possible to so resolve the 8514// expression, regardless of whether or not it succeeded. Always 8515// returns true if 'complain' is set. 8516bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 8517 ExprResult &SrcExpr, bool doFunctionPointerConverion, 8518 bool complain, const SourceRange& OpRangeForComplaining, 8519 QualType DestTypeForComplaining, 8520 unsigned DiagIDForComplaining) { 8521 assert(SrcExpr.get()->getType() == Context.OverloadTy); 8522 8523 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 8524 8525 DeclAccessPair found; 8526 ExprResult SingleFunctionExpression; 8527 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 8528 ovl.Expression, /*complain*/ false, &found)) { 8529 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) { 8530 SrcExpr = ExprError(); 8531 return true; 8532 } 8533 8534 // It is only correct to resolve to an instance method if we're 8535 // resolving a form that's permitted to be a pointer to member. 8536 // Otherwise we'll end up making a bound member expression, which 8537 // is illegal in all the contexts we resolve like this. 8538 if (!ovl.HasFormOfMemberPointer && 8539 isa<CXXMethodDecl>(fn) && 8540 cast<CXXMethodDecl>(fn)->isInstance()) { 8541 if (!complain) return false; 8542 8543 Diag(ovl.Expression->getExprLoc(), 8544 diag::err_bound_member_function) 8545 << 0 << ovl.Expression->getSourceRange(); 8546 8547 // TODO: I believe we only end up here if there's a mix of 8548 // static and non-static candidates (otherwise the expression 8549 // would have 'bound member' type, not 'overload' type). 8550 // Ideally we would note which candidate was chosen and why 8551 // the static candidates were rejected. 8552 SrcExpr = ExprError(); 8553 return true; 8554 } 8555 8556 // Fix the expresion to refer to 'fn'. 8557 SingleFunctionExpression = 8558 Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn)); 8559 8560 // If desired, do function-to-pointer decay. 8561 if (doFunctionPointerConverion) { 8562 SingleFunctionExpression = 8563 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); 8564 if (SingleFunctionExpression.isInvalid()) { 8565 SrcExpr = ExprError(); 8566 return true; 8567 } 8568 } 8569 } 8570 8571 if (!SingleFunctionExpression.isUsable()) { 8572 if (complain) { 8573 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 8574 << ovl.Expression->getName() 8575 << DestTypeForComplaining 8576 << OpRangeForComplaining 8577 << ovl.Expression->getQualifierLoc().getSourceRange(); 8578 NoteAllOverloadCandidates(SrcExpr.get()); 8579 8580 SrcExpr = ExprError(); 8581 return true; 8582 } 8583 8584 return false; 8585 } 8586 8587 SrcExpr = SingleFunctionExpression; 8588 return true; 8589} 8590 8591/// \brief Add a single candidate to the overload set. 8592static void AddOverloadedCallCandidate(Sema &S, 8593 DeclAccessPair FoundDecl, 8594 TemplateArgumentListInfo *ExplicitTemplateArgs, 8595 Expr **Args, unsigned NumArgs, 8596 OverloadCandidateSet &CandidateSet, 8597 bool PartialOverloading, 8598 bool KnownValid) { 8599 NamedDecl *Callee = FoundDecl.getDecl(); 8600 if (isa<UsingShadowDecl>(Callee)) 8601 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 8602 8603 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 8604 if (ExplicitTemplateArgs) { 8605 assert(!KnownValid && "Explicit template arguments?"); 8606 return; 8607 } 8608 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 8609 false, PartialOverloading); 8610 return; 8611 } 8612 8613 if (FunctionTemplateDecl *FuncTemplate 8614 = dyn_cast<FunctionTemplateDecl>(Callee)) { 8615 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 8616 ExplicitTemplateArgs, 8617 Args, NumArgs, CandidateSet); 8618 return; 8619 } 8620 8621 assert(!KnownValid && "unhandled case in overloaded call candidate"); 8622} 8623 8624/// \brief Add the overload candidates named by callee and/or found by argument 8625/// dependent lookup to the given overload set. 8626void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 8627 Expr **Args, unsigned NumArgs, 8628 OverloadCandidateSet &CandidateSet, 8629 bool PartialOverloading) { 8630 8631#ifndef NDEBUG 8632 // Verify that ArgumentDependentLookup is consistent with the rules 8633 // in C++0x [basic.lookup.argdep]p3: 8634 // 8635 // Let X be the lookup set produced by unqualified lookup (3.4.1) 8636 // and let Y be the lookup set produced by argument dependent 8637 // lookup (defined as follows). If X contains 8638 // 8639 // -- a declaration of a class member, or 8640 // 8641 // -- a block-scope function declaration that is not a 8642 // using-declaration, or 8643 // 8644 // -- a declaration that is neither a function or a function 8645 // template 8646 // 8647 // then Y is empty. 8648 8649 if (ULE->requiresADL()) { 8650 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 8651 E = ULE->decls_end(); I != E; ++I) { 8652 assert(!(*I)->getDeclContext()->isRecord()); 8653 assert(isa<UsingShadowDecl>(*I) || 8654 !(*I)->getDeclContext()->isFunctionOrMethod()); 8655 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 8656 } 8657 } 8658#endif 8659 8660 // It would be nice to avoid this copy. 8661 TemplateArgumentListInfo TABuffer; 8662 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 8663 if (ULE->hasExplicitTemplateArgs()) { 8664 ULE->copyTemplateArgumentsInto(TABuffer); 8665 ExplicitTemplateArgs = &TABuffer; 8666 } 8667 8668 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 8669 E = ULE->decls_end(); I != E; ++I) 8670 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 8671 Args, NumArgs, CandidateSet, 8672 PartialOverloading, /*KnownValid*/ true); 8673 8674 if (ULE->requiresADL()) 8675 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 8676 Args, NumArgs, 8677 ExplicitTemplateArgs, 8678 CandidateSet, 8679 PartialOverloading, 8680 ULE->isStdAssociatedNamespace()); 8681} 8682 8683/// Attempt to recover from an ill-formed use of a non-dependent name in a 8684/// template, where the non-dependent name was declared after the template 8685/// was defined. This is common in code written for a compilers which do not 8686/// correctly implement two-stage name lookup. 8687/// 8688/// Returns true if a viable candidate was found and a diagnostic was issued. 8689static bool 8690DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 8691 const CXXScopeSpec &SS, LookupResult &R, 8692 TemplateArgumentListInfo *ExplicitTemplateArgs, 8693 Expr **Args, unsigned NumArgs) { 8694 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) 8695 return false; 8696 8697 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 8698 SemaRef.LookupQualifiedName(R, DC); 8699 8700 if (!R.empty()) { 8701 R.suppressDiagnostics(); 8702 8703 if (isa<CXXRecordDecl>(DC)) { 8704 // Don't diagnose names we find in classes; we get much better 8705 // diagnostics for these from DiagnoseEmptyLookup. 8706 R.clear(); 8707 return false; 8708 } 8709 8710 OverloadCandidateSet Candidates(FnLoc); 8711 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 8712 AddOverloadedCallCandidate(SemaRef, I.getPair(), 8713 ExplicitTemplateArgs, Args, NumArgs, 8714 Candidates, false, /*KnownValid*/ false); 8715 8716 OverloadCandidateSet::iterator Best; 8717 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 8718 // No viable functions. Don't bother the user with notes for functions 8719 // which don't work and shouldn't be found anyway. 8720 R.clear(); 8721 return false; 8722 } 8723 8724 // Find the namespaces where ADL would have looked, and suggest 8725 // declaring the function there instead. 8726 Sema::AssociatedNamespaceSet AssociatedNamespaces; 8727 Sema::AssociatedClassSet AssociatedClasses; 8728 SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs, 8729 AssociatedNamespaces, 8730 AssociatedClasses); 8731 // Never suggest declaring a function within namespace 'std'. 8732 Sema::AssociatedNamespaceSet SuggestedNamespaces; 8733 if (DeclContext *Std = SemaRef.getStdNamespace()) { 8734 for (Sema::AssociatedNamespaceSet::iterator 8735 it = AssociatedNamespaces.begin(), 8736 end = AssociatedNamespaces.end(); it != end; ++it) { 8737 if (!Std->Encloses(*it)) 8738 SuggestedNamespaces.insert(*it); 8739 } 8740 } else { 8741 // Lacking the 'std::' namespace, use all of the associated namespaces. 8742 SuggestedNamespaces = AssociatedNamespaces; 8743 } 8744 8745 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 8746 << R.getLookupName(); 8747 if (SuggestedNamespaces.empty()) { 8748 SemaRef.Diag(Best->Function->getLocation(), 8749 diag::note_not_found_by_two_phase_lookup) 8750 << R.getLookupName() << 0; 8751 } else if (SuggestedNamespaces.size() == 1) { 8752 SemaRef.Diag(Best->Function->getLocation(), 8753 diag::note_not_found_by_two_phase_lookup) 8754 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 8755 } else { 8756 // FIXME: It would be useful to list the associated namespaces here, 8757 // but the diagnostics infrastructure doesn't provide a way to produce 8758 // a localized representation of a list of items. 8759 SemaRef.Diag(Best->Function->getLocation(), 8760 diag::note_not_found_by_two_phase_lookup) 8761 << R.getLookupName() << 2; 8762 } 8763 8764 // Try to recover by calling this function. 8765 return true; 8766 } 8767 8768 R.clear(); 8769 } 8770 8771 return false; 8772} 8773 8774/// Attempt to recover from ill-formed use of a non-dependent operator in a 8775/// template, where the non-dependent operator was declared after the template 8776/// was defined. 8777/// 8778/// Returns true if a viable candidate was found and a diagnostic was issued. 8779static bool 8780DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 8781 SourceLocation OpLoc, 8782 Expr **Args, unsigned NumArgs) { 8783 DeclarationName OpName = 8784 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 8785 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 8786 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 8787 /*ExplicitTemplateArgs=*/0, Args, NumArgs); 8788} 8789 8790/// Attempts to recover from a call where no functions were found. 8791/// 8792/// Returns true if new candidates were found. 8793static ExprResult 8794BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 8795 UnresolvedLookupExpr *ULE, 8796 SourceLocation LParenLoc, 8797 Expr **Args, unsigned NumArgs, 8798 SourceLocation RParenLoc, 8799 bool EmptyLookup) { 8800 8801 CXXScopeSpec SS; 8802 SS.Adopt(ULE->getQualifierLoc()); 8803 8804 TemplateArgumentListInfo TABuffer; 8805 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 8806 if (ULE->hasExplicitTemplateArgs()) { 8807 ULE->copyTemplateArgumentsInto(TABuffer); 8808 ExplicitTemplateArgs = &TABuffer; 8809 } 8810 8811 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 8812 Sema::LookupOrdinaryName); 8813 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 8814 ExplicitTemplateArgs, Args, NumArgs) && 8815 (!EmptyLookup || 8816 SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression, 8817 ExplicitTemplateArgs, Args, NumArgs))) 8818 return ExprError(); 8819 8820 assert(!R.empty() && "lookup results empty despite recovery"); 8821 8822 // Build an implicit member call if appropriate. Just drop the 8823 // casts and such from the call, we don't really care. 8824 ExprResult NewFn = ExprError(); 8825 if ((*R.begin())->isCXXClassMember()) 8826 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, 8827 ExplicitTemplateArgs); 8828 else if (ExplicitTemplateArgs) 8829 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 8830 else 8831 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 8832 8833 if (NewFn.isInvalid()) 8834 return ExprError(); 8835 8836 // This shouldn't cause an infinite loop because we're giving it 8837 // an expression with viable lookup results, which should never 8838 // end up here. 8839 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 8840 MultiExprArg(Args, NumArgs), RParenLoc); 8841} 8842 8843/// ResolveOverloadedCallFn - Given the call expression that calls Fn 8844/// (which eventually refers to the declaration Func) and the call 8845/// arguments Args/NumArgs, attempt to resolve the function call down 8846/// to a specific function. If overload resolution succeeds, returns 8847/// the function declaration produced by overload 8848/// resolution. Otherwise, emits diagnostics, deletes all of the 8849/// arguments and Fn, and returns NULL. 8850ExprResult 8851Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 8852 SourceLocation LParenLoc, 8853 Expr **Args, unsigned NumArgs, 8854 SourceLocation RParenLoc, 8855 Expr *ExecConfig) { 8856#ifndef NDEBUG 8857 if (ULE->requiresADL()) { 8858 // To do ADL, we must have found an unqualified name. 8859 assert(!ULE->getQualifier() && "qualified name with ADL"); 8860 8861 // We don't perform ADL for implicit declarations of builtins. 8862 // Verify that this was correctly set up. 8863 FunctionDecl *F; 8864 if (ULE->decls_begin() + 1 == ULE->decls_end() && 8865 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 8866 F->getBuiltinID() && F->isImplicit()) 8867 llvm_unreachable("performing ADL for builtin"); 8868 8869 // We don't perform ADL in C. 8870 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 8871 } else 8872 assert(!ULE->isStdAssociatedNamespace() && 8873 "std is associated namespace but not doing ADL"); 8874#endif 8875 8876 UnbridgedCastsSet UnbridgedCasts; 8877 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 8878 return ExprError(); 8879 8880 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 8881 8882 // Add the functions denoted by the callee to the set of candidate 8883 // functions, including those from argument-dependent lookup. 8884 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 8885 8886 // If we found nothing, try to recover. 8887 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail 8888 // out if it fails. 8889 if (CandidateSet.empty()) { 8890 // In Microsoft mode, if we are inside a template class member function then 8891 // create a type dependent CallExpr. The goal is to postpone name lookup 8892 // to instantiation time to be able to search into type dependent base 8893 // classes. 8894 if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() && 8895 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 8896 CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs, 8897 Context.DependentTy, VK_RValue, 8898 RParenLoc); 8899 CE->setTypeDependent(true); 8900 return Owned(CE); 8901 } 8902 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 8903 RParenLoc, /*EmptyLookup=*/true); 8904 } 8905 8906 UnbridgedCasts.restore(); 8907 8908 OverloadCandidateSet::iterator Best; 8909 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 8910 case OR_Success: { 8911 FunctionDecl *FDecl = Best->Function; 8912 MarkDeclarationReferenced(Fn->getExprLoc(), FDecl); 8913 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 8914 DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()); 8915 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 8916 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, 8917 ExecConfig); 8918 } 8919 8920 case OR_No_Viable_Function: { 8921 // Try to recover by looking for viable functions which the user might 8922 // have meant to call. 8923 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, 8924 Args, NumArgs, RParenLoc, 8925 /*EmptyLookup=*/false); 8926 if (!Recovery.isInvalid()) 8927 return Recovery; 8928 8929 Diag(Fn->getSourceRange().getBegin(), 8930 diag::err_ovl_no_viable_function_in_call) 8931 << ULE->getName() << Fn->getSourceRange(); 8932 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8933 break; 8934 } 8935 8936 case OR_Ambiguous: 8937 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 8938 << ULE->getName() << Fn->getSourceRange(); 8939 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 8940 break; 8941 8942 case OR_Deleted: 8943 { 8944 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 8945 << Best->Function->isDeleted() 8946 << ULE->getName() 8947 << getDeletedOrUnavailableSuffix(Best->Function) 8948 << Fn->getSourceRange(); 8949 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8950 8951 // We emitted an error for the unvailable/deleted function call but keep 8952 // the call in the AST. 8953 FunctionDecl *FDecl = Best->Function; 8954 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 8955 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 8956 RParenLoc, ExecConfig); 8957 } 8958 break; 8959 } 8960 8961 // Overload resolution failed. 8962 return ExprError(); 8963} 8964 8965static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 8966 return Functions.size() > 1 || 8967 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 8968} 8969 8970/// \brief Create a unary operation that may resolve to an overloaded 8971/// operator. 8972/// 8973/// \param OpLoc The location of the operator itself (e.g., '*'). 8974/// 8975/// \param OpcIn The UnaryOperator::Opcode that describes this 8976/// operator. 8977/// 8978/// \param Functions The set of non-member functions that will be 8979/// considered by overload resolution. The caller needs to build this 8980/// set based on the context using, e.g., 8981/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 8982/// set should not contain any member functions; those will be added 8983/// by CreateOverloadedUnaryOp(). 8984/// 8985/// \param input The input argument. 8986ExprResult 8987Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 8988 const UnresolvedSetImpl &Fns, 8989 Expr *Input) { 8990 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 8991 8992 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 8993 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 8994 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 8995 // TODO: provide better source location info. 8996 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 8997 8998 if (checkPlaceholderForOverload(*this, Input)) 8999 return ExprError(); 9000 9001 Expr *Args[2] = { Input, 0 }; 9002 unsigned NumArgs = 1; 9003 9004 // For post-increment and post-decrement, add the implicit '0' as 9005 // the second argument, so that we know this is a post-increment or 9006 // post-decrement. 9007 if (Opc == UO_PostInc || Opc == UO_PostDec) { 9008 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 9009 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 9010 SourceLocation()); 9011 NumArgs = 2; 9012 } 9013 9014 if (Input->isTypeDependent()) { 9015 if (Fns.empty()) 9016 return Owned(new (Context) UnaryOperator(Input, 9017 Opc, 9018 Context.DependentTy, 9019 VK_RValue, OK_Ordinary, 9020 OpLoc)); 9021 9022 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9023 UnresolvedLookupExpr *Fn 9024 = UnresolvedLookupExpr::Create(Context, NamingClass, 9025 NestedNameSpecifierLoc(), OpNameInfo, 9026 /*ADL*/ true, IsOverloaded(Fns), 9027 Fns.begin(), Fns.end()); 9028 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9029 &Args[0], NumArgs, 9030 Context.DependentTy, 9031 VK_RValue, 9032 OpLoc)); 9033 } 9034 9035 // Build an empty overload set. 9036 OverloadCandidateSet CandidateSet(OpLoc); 9037 9038 // Add the candidates from the given function set. 9039 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 9040 9041 // Add operator candidates that are member functions. 9042 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 9043 9044 // Add candidates from ADL. 9045 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 9046 Args, NumArgs, 9047 /*ExplicitTemplateArgs*/ 0, 9048 CandidateSet); 9049 9050 // Add builtin operator candidates. 9051 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 9052 9053 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9054 9055 // Perform overload resolution. 9056 OverloadCandidateSet::iterator Best; 9057 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9058 case OR_Success: { 9059 // We found a built-in operator or an overloaded operator. 9060 FunctionDecl *FnDecl = Best->Function; 9061 9062 if (FnDecl) { 9063 // We matched an overloaded operator. Build a call to that 9064 // operator. 9065 9066 MarkDeclarationReferenced(OpLoc, FnDecl); 9067 9068 // Convert the arguments. 9069 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 9070 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 9071 9072 ExprResult InputRes = 9073 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 9074 Best->FoundDecl, Method); 9075 if (InputRes.isInvalid()) 9076 return ExprError(); 9077 Input = InputRes.take(); 9078 } else { 9079 // Convert the arguments. 9080 ExprResult InputInit 9081 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9082 Context, 9083 FnDecl->getParamDecl(0)), 9084 SourceLocation(), 9085 Input); 9086 if (InputInit.isInvalid()) 9087 return ExprError(); 9088 Input = InputInit.take(); 9089 } 9090 9091 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9092 9093 // Determine the result type. 9094 QualType ResultTy = FnDecl->getResultType(); 9095 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9096 ResultTy = ResultTy.getNonLValueExprType(Context); 9097 9098 // Build the actual expression node. 9099 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9100 HadMultipleCandidates); 9101 if (FnExpr.isInvalid()) 9102 return ExprError(); 9103 9104 Args[0] = Input; 9105 CallExpr *TheCall = 9106 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 9107 Args, NumArgs, ResultTy, VK, OpLoc); 9108 9109 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 9110 FnDecl)) 9111 return ExprError(); 9112 9113 return MaybeBindToTemporary(TheCall); 9114 } else { 9115 // We matched a built-in operator. Convert the arguments, then 9116 // break out so that we will build the appropriate built-in 9117 // operator node. 9118 ExprResult InputRes = 9119 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 9120 Best->Conversions[0], AA_Passing); 9121 if (InputRes.isInvalid()) 9122 return ExprError(); 9123 Input = InputRes.take(); 9124 break; 9125 } 9126 } 9127 9128 case OR_No_Viable_Function: 9129 // This is an erroneous use of an operator which can be overloaded by 9130 // a non-member function. Check for non-member operators which were 9131 // defined too late to be candidates. 9132 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs)) 9133 // FIXME: Recover by calling the found function. 9134 return ExprError(); 9135 9136 // No viable function; fall through to handling this as a 9137 // built-in operator, which will produce an error message for us. 9138 break; 9139 9140 case OR_Ambiguous: 9141 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 9142 << UnaryOperator::getOpcodeStr(Opc) 9143 << Input->getType() 9144 << Input->getSourceRange(); 9145 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs, 9146 UnaryOperator::getOpcodeStr(Opc), OpLoc); 9147 return ExprError(); 9148 9149 case OR_Deleted: 9150 Diag(OpLoc, diag::err_ovl_deleted_oper) 9151 << Best->Function->isDeleted() 9152 << UnaryOperator::getOpcodeStr(Opc) 9153 << getDeletedOrUnavailableSuffix(Best->Function) 9154 << Input->getSourceRange(); 9155 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs, 9156 UnaryOperator::getOpcodeStr(Opc), OpLoc); 9157 return ExprError(); 9158 } 9159 9160 // Either we found no viable overloaded operator or we matched a 9161 // built-in operator. In either case, fall through to trying to 9162 // build a built-in operation. 9163 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 9164} 9165 9166/// \brief Create a binary operation that may resolve to an overloaded 9167/// operator. 9168/// 9169/// \param OpLoc The location of the operator itself (e.g., '+'). 9170/// 9171/// \param OpcIn The BinaryOperator::Opcode that describes this 9172/// operator. 9173/// 9174/// \param Functions The set of non-member functions that will be 9175/// considered by overload resolution. The caller needs to build this 9176/// set based on the context using, e.g., 9177/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 9178/// set should not contain any member functions; those will be added 9179/// by CreateOverloadedBinOp(). 9180/// 9181/// \param LHS Left-hand argument. 9182/// \param RHS Right-hand argument. 9183ExprResult 9184Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 9185 unsigned OpcIn, 9186 const UnresolvedSetImpl &Fns, 9187 Expr *LHS, Expr *RHS) { 9188 Expr *Args[2] = { LHS, RHS }; 9189 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 9190 9191 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 9192 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 9193 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 9194 9195 // If either side is type-dependent, create an appropriate dependent 9196 // expression. 9197 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 9198 if (Fns.empty()) { 9199 // If there are no functions to store, just build a dependent 9200 // BinaryOperator or CompoundAssignment. 9201 if (Opc <= BO_Assign || Opc > BO_OrAssign) 9202 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 9203 Context.DependentTy, 9204 VK_RValue, OK_Ordinary, 9205 OpLoc)); 9206 9207 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 9208 Context.DependentTy, 9209 VK_LValue, 9210 OK_Ordinary, 9211 Context.DependentTy, 9212 Context.DependentTy, 9213 OpLoc)); 9214 } 9215 9216 // FIXME: save results of ADL from here? 9217 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9218 // TODO: provide better source location info in DNLoc component. 9219 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 9220 UnresolvedLookupExpr *Fn 9221 = UnresolvedLookupExpr::Create(Context, NamingClass, 9222 NestedNameSpecifierLoc(), OpNameInfo, 9223 /*ADL*/ true, IsOverloaded(Fns), 9224 Fns.begin(), Fns.end()); 9225 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9226 Args, 2, 9227 Context.DependentTy, 9228 VK_RValue, 9229 OpLoc)); 9230 } 9231 9232 // Always do placeholder-like conversions on the RHS. 9233 if (checkPlaceholderForOverload(*this, Args[1])) 9234 return ExprError(); 9235 9236 // Do placeholder-like conversion on the LHS; note that we should 9237 // not get here with a PseudoObject LHS. 9238 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 9239 if (checkPlaceholderForOverload(*this, Args[0])) 9240 return ExprError(); 9241 9242 // If this is the assignment operator, we only perform overload resolution 9243 // if the left-hand side is a class or enumeration type. This is actually 9244 // a hack. The standard requires that we do overload resolution between the 9245 // various built-in candidates, but as DR507 points out, this can lead to 9246 // problems. So we do it this way, which pretty much follows what GCC does. 9247 // Note that we go the traditional code path for compound assignment forms. 9248 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 9249 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9250 9251 // If this is the .* operator, which is not overloadable, just 9252 // create a built-in binary operator. 9253 if (Opc == BO_PtrMemD) 9254 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9255 9256 // Build an empty overload set. 9257 OverloadCandidateSet CandidateSet(OpLoc); 9258 9259 // Add the candidates from the given function set. 9260 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 9261 9262 // Add operator candidates that are member functions. 9263 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 9264 9265 // Add candidates from ADL. 9266 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 9267 Args, 2, 9268 /*ExplicitTemplateArgs*/ 0, 9269 CandidateSet); 9270 9271 // Add builtin operator candidates. 9272 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 9273 9274 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9275 9276 // Perform overload resolution. 9277 OverloadCandidateSet::iterator Best; 9278 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9279 case OR_Success: { 9280 // We found a built-in operator or an overloaded operator. 9281 FunctionDecl *FnDecl = Best->Function; 9282 9283 if (FnDecl) { 9284 // We matched an overloaded operator. Build a call to that 9285 // operator. 9286 9287 MarkDeclarationReferenced(OpLoc, FnDecl); 9288 9289 // Convert the arguments. 9290 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 9291 // Best->Access is only meaningful for class members. 9292 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 9293 9294 ExprResult Arg1 = 9295 PerformCopyInitialization( 9296 InitializedEntity::InitializeParameter(Context, 9297 FnDecl->getParamDecl(0)), 9298 SourceLocation(), Owned(Args[1])); 9299 if (Arg1.isInvalid()) 9300 return ExprError(); 9301 9302 ExprResult Arg0 = 9303 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 9304 Best->FoundDecl, Method); 9305 if (Arg0.isInvalid()) 9306 return ExprError(); 9307 Args[0] = Arg0.takeAs<Expr>(); 9308 Args[1] = RHS = Arg1.takeAs<Expr>(); 9309 } else { 9310 // Convert the arguments. 9311 ExprResult Arg0 = PerformCopyInitialization( 9312 InitializedEntity::InitializeParameter(Context, 9313 FnDecl->getParamDecl(0)), 9314 SourceLocation(), Owned(Args[0])); 9315 if (Arg0.isInvalid()) 9316 return ExprError(); 9317 9318 ExprResult Arg1 = 9319 PerformCopyInitialization( 9320 InitializedEntity::InitializeParameter(Context, 9321 FnDecl->getParamDecl(1)), 9322 SourceLocation(), Owned(Args[1])); 9323 if (Arg1.isInvalid()) 9324 return ExprError(); 9325 Args[0] = LHS = Arg0.takeAs<Expr>(); 9326 Args[1] = RHS = Arg1.takeAs<Expr>(); 9327 } 9328 9329 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9330 9331 // Determine the result type. 9332 QualType ResultTy = FnDecl->getResultType(); 9333 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9334 ResultTy = ResultTy.getNonLValueExprType(Context); 9335 9336 // Build the actual expression node. 9337 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9338 HadMultipleCandidates, OpLoc); 9339 if (FnExpr.isInvalid()) 9340 return ExprError(); 9341 9342 CXXOperatorCallExpr *TheCall = 9343 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 9344 Args, 2, ResultTy, VK, OpLoc); 9345 9346 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 9347 FnDecl)) 9348 return ExprError(); 9349 9350 return MaybeBindToTemporary(TheCall); 9351 } else { 9352 // We matched a built-in operator. Convert the arguments, then 9353 // break out so that we will build the appropriate built-in 9354 // operator node. 9355 ExprResult ArgsRes0 = 9356 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 9357 Best->Conversions[0], AA_Passing); 9358 if (ArgsRes0.isInvalid()) 9359 return ExprError(); 9360 Args[0] = ArgsRes0.take(); 9361 9362 ExprResult ArgsRes1 = 9363 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 9364 Best->Conversions[1], AA_Passing); 9365 if (ArgsRes1.isInvalid()) 9366 return ExprError(); 9367 Args[1] = ArgsRes1.take(); 9368 break; 9369 } 9370 } 9371 9372 case OR_No_Viable_Function: { 9373 // C++ [over.match.oper]p9: 9374 // If the operator is the operator , [...] and there are no 9375 // viable functions, then the operator is assumed to be the 9376 // built-in operator and interpreted according to clause 5. 9377 if (Opc == BO_Comma) 9378 break; 9379 9380 // For class as left operand for assignment or compound assigment 9381 // operator do not fall through to handling in built-in, but report that 9382 // no overloaded assignment operator found 9383 ExprResult Result = ExprError(); 9384 if (Args[0]->getType()->isRecordType() && 9385 Opc >= BO_Assign && Opc <= BO_OrAssign) { 9386 Diag(OpLoc, diag::err_ovl_no_viable_oper) 9387 << BinaryOperator::getOpcodeStr(Opc) 9388 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9389 } else { 9390 // This is an erroneous use of an operator which can be overloaded by 9391 // a non-member function. Check for non-member operators which were 9392 // defined too late to be candidates. 9393 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2)) 9394 // FIXME: Recover by calling the found function. 9395 return ExprError(); 9396 9397 // No viable function; try to create a built-in operation, which will 9398 // produce an error. Then, show the non-viable candidates. 9399 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9400 } 9401 assert(Result.isInvalid() && 9402 "C++ binary operator overloading is missing candidates!"); 9403 if (Result.isInvalid()) 9404 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9405 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9406 return move(Result); 9407 } 9408 9409 case OR_Ambiguous: 9410 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 9411 << BinaryOperator::getOpcodeStr(Opc) 9412 << Args[0]->getType() << Args[1]->getType() 9413 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9414 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 9415 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9416 return ExprError(); 9417 9418 case OR_Deleted: 9419 Diag(OpLoc, diag::err_ovl_deleted_oper) 9420 << Best->Function->isDeleted() 9421 << BinaryOperator::getOpcodeStr(Opc) 9422 << getDeletedOrUnavailableSuffix(Best->Function) 9423 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9424 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9425 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9426 return ExprError(); 9427 } 9428 9429 // We matched a built-in operator; build it. 9430 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9431} 9432 9433ExprResult 9434Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 9435 SourceLocation RLoc, 9436 Expr *Base, Expr *Idx) { 9437 Expr *Args[2] = { Base, Idx }; 9438 DeclarationName OpName = 9439 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 9440 9441 // If either side is type-dependent, create an appropriate dependent 9442 // expression. 9443 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 9444 9445 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9446 // CHECKME: no 'operator' keyword? 9447 DeclarationNameInfo OpNameInfo(OpName, LLoc); 9448 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 9449 UnresolvedLookupExpr *Fn 9450 = UnresolvedLookupExpr::Create(Context, NamingClass, 9451 NestedNameSpecifierLoc(), OpNameInfo, 9452 /*ADL*/ true, /*Overloaded*/ false, 9453 UnresolvedSetIterator(), 9454 UnresolvedSetIterator()); 9455 // Can't add any actual overloads yet 9456 9457 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 9458 Args, 2, 9459 Context.DependentTy, 9460 VK_RValue, 9461 RLoc)); 9462 } 9463 9464 // Handle placeholders on both operands. 9465 if (checkPlaceholderForOverload(*this, Args[0])) 9466 return ExprError(); 9467 if (checkPlaceholderForOverload(*this, Args[1])) 9468 return ExprError(); 9469 9470 // Build an empty overload set. 9471 OverloadCandidateSet CandidateSet(LLoc); 9472 9473 // Subscript can only be overloaded as a member function. 9474 9475 // Add operator candidates that are member functions. 9476 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 9477 9478 // Add builtin operator candidates. 9479 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 9480 9481 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9482 9483 // Perform overload resolution. 9484 OverloadCandidateSet::iterator Best; 9485 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 9486 case OR_Success: { 9487 // We found a built-in operator or an overloaded operator. 9488 FunctionDecl *FnDecl = Best->Function; 9489 9490 if (FnDecl) { 9491 // We matched an overloaded operator. Build a call to that 9492 // operator. 9493 9494 MarkDeclarationReferenced(LLoc, FnDecl); 9495 9496 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 9497 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 9498 9499 // Convert the arguments. 9500 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 9501 ExprResult Arg0 = 9502 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 9503 Best->FoundDecl, Method); 9504 if (Arg0.isInvalid()) 9505 return ExprError(); 9506 Args[0] = Arg0.take(); 9507 9508 // Convert the arguments. 9509 ExprResult InputInit 9510 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9511 Context, 9512 FnDecl->getParamDecl(0)), 9513 SourceLocation(), 9514 Owned(Args[1])); 9515 if (InputInit.isInvalid()) 9516 return ExprError(); 9517 9518 Args[1] = InputInit.takeAs<Expr>(); 9519 9520 // Determine the result type 9521 QualType ResultTy = FnDecl->getResultType(); 9522 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9523 ResultTy = ResultTy.getNonLValueExprType(Context); 9524 9525 // Build the actual expression node. 9526 DeclarationNameLoc LocInfo; 9527 LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding(); 9528 LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding(); 9529 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9530 HadMultipleCandidates, 9531 LLoc, LocInfo); 9532 if (FnExpr.isInvalid()) 9533 return ExprError(); 9534 9535 CXXOperatorCallExpr *TheCall = 9536 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 9537 FnExpr.take(), Args, 2, 9538 ResultTy, VK, RLoc); 9539 9540 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 9541 FnDecl)) 9542 return ExprError(); 9543 9544 return MaybeBindToTemporary(TheCall); 9545 } else { 9546 // We matched a built-in operator. Convert the arguments, then 9547 // break out so that we will build the appropriate built-in 9548 // operator node. 9549 ExprResult ArgsRes0 = 9550 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 9551 Best->Conversions[0], AA_Passing); 9552 if (ArgsRes0.isInvalid()) 9553 return ExprError(); 9554 Args[0] = ArgsRes0.take(); 9555 9556 ExprResult ArgsRes1 = 9557 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 9558 Best->Conversions[1], AA_Passing); 9559 if (ArgsRes1.isInvalid()) 9560 return ExprError(); 9561 Args[1] = ArgsRes1.take(); 9562 9563 break; 9564 } 9565 } 9566 9567 case OR_No_Viable_Function: { 9568 if (CandidateSet.empty()) 9569 Diag(LLoc, diag::err_ovl_no_oper) 9570 << Args[0]->getType() << /*subscript*/ 0 9571 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9572 else 9573 Diag(LLoc, diag::err_ovl_no_viable_subscript) 9574 << Args[0]->getType() 9575 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9576 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9577 "[]", LLoc); 9578 return ExprError(); 9579 } 9580 9581 case OR_Ambiguous: 9582 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 9583 << "[]" 9584 << Args[0]->getType() << Args[1]->getType() 9585 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9586 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 9587 "[]", LLoc); 9588 return ExprError(); 9589 9590 case OR_Deleted: 9591 Diag(LLoc, diag::err_ovl_deleted_oper) 9592 << Best->Function->isDeleted() << "[]" 9593 << getDeletedOrUnavailableSuffix(Best->Function) 9594 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9595 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9596 "[]", LLoc); 9597 return ExprError(); 9598 } 9599 9600 // We matched a built-in operator; build it. 9601 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 9602} 9603 9604/// BuildCallToMemberFunction - Build a call to a member 9605/// function. MemExpr is the expression that refers to the member 9606/// function (and includes the object parameter), Args/NumArgs are the 9607/// arguments to the function call (not including the object 9608/// parameter). The caller needs to validate that the member 9609/// expression refers to a non-static member function or an overloaded 9610/// member function. 9611ExprResult 9612Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 9613 SourceLocation LParenLoc, Expr **Args, 9614 unsigned NumArgs, SourceLocation RParenLoc) { 9615 assert(MemExprE->getType() == Context.BoundMemberTy || 9616 MemExprE->getType() == Context.OverloadTy); 9617 9618 // Dig out the member expression. This holds both the object 9619 // argument and the member function we're referring to. 9620 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 9621 9622 // Determine whether this is a call to a pointer-to-member function. 9623 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 9624 assert(op->getType() == Context.BoundMemberTy); 9625 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 9626 9627 QualType fnType = 9628 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 9629 9630 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 9631 QualType resultType = proto->getCallResultType(Context); 9632 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); 9633 9634 // Check that the object type isn't more qualified than the 9635 // member function we're calling. 9636 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 9637 9638 QualType objectType = op->getLHS()->getType(); 9639 if (op->getOpcode() == BO_PtrMemI) 9640 objectType = objectType->castAs<PointerType>()->getPointeeType(); 9641 Qualifiers objectQuals = objectType.getQualifiers(); 9642 9643 Qualifiers difference = objectQuals - funcQuals; 9644 difference.removeObjCGCAttr(); 9645 difference.removeAddressSpace(); 9646 if (difference) { 9647 std::string qualsString = difference.getAsString(); 9648 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 9649 << fnType.getUnqualifiedType() 9650 << qualsString 9651 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 9652 } 9653 9654 CXXMemberCallExpr *call 9655 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 9656 resultType, valueKind, RParenLoc); 9657 9658 if (CheckCallReturnType(proto->getResultType(), 9659 op->getRHS()->getSourceRange().getBegin(), 9660 call, 0)) 9661 return ExprError(); 9662 9663 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) 9664 return ExprError(); 9665 9666 return MaybeBindToTemporary(call); 9667 } 9668 9669 UnbridgedCastsSet UnbridgedCasts; 9670 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 9671 return ExprError(); 9672 9673 MemberExpr *MemExpr; 9674 CXXMethodDecl *Method = 0; 9675 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 9676 NestedNameSpecifier *Qualifier = 0; 9677 if (isa<MemberExpr>(NakedMemExpr)) { 9678 MemExpr = cast<MemberExpr>(NakedMemExpr); 9679 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 9680 FoundDecl = MemExpr->getFoundDecl(); 9681 Qualifier = MemExpr->getQualifier(); 9682 UnbridgedCasts.restore(); 9683 } else { 9684 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 9685 Qualifier = UnresExpr->getQualifier(); 9686 9687 QualType ObjectType = UnresExpr->getBaseType(); 9688 Expr::Classification ObjectClassification 9689 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 9690 : UnresExpr->getBase()->Classify(Context); 9691 9692 // Add overload candidates 9693 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 9694 9695 // FIXME: avoid copy. 9696 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9697 if (UnresExpr->hasExplicitTemplateArgs()) { 9698 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 9699 TemplateArgs = &TemplateArgsBuffer; 9700 } 9701 9702 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 9703 E = UnresExpr->decls_end(); I != E; ++I) { 9704 9705 NamedDecl *Func = *I; 9706 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 9707 if (isa<UsingShadowDecl>(Func)) 9708 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 9709 9710 9711 // Microsoft supports direct constructor calls. 9712 if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 9713 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 9714 CandidateSet); 9715 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 9716 // If explicit template arguments were provided, we can't call a 9717 // non-template member function. 9718 if (TemplateArgs) 9719 continue; 9720 9721 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 9722 ObjectClassification, 9723 Args, NumArgs, CandidateSet, 9724 /*SuppressUserConversions=*/false); 9725 } else { 9726 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 9727 I.getPair(), ActingDC, TemplateArgs, 9728 ObjectType, ObjectClassification, 9729 Args, NumArgs, CandidateSet, 9730 /*SuppressUsedConversions=*/false); 9731 } 9732 } 9733 9734 DeclarationName DeclName = UnresExpr->getMemberName(); 9735 9736 UnbridgedCasts.restore(); 9737 9738 OverloadCandidateSet::iterator Best; 9739 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 9740 Best)) { 9741 case OR_Success: 9742 Method = cast<CXXMethodDecl>(Best->Function); 9743 MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method); 9744 FoundDecl = Best->FoundDecl; 9745 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 9746 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 9747 break; 9748 9749 case OR_No_Viable_Function: 9750 Diag(UnresExpr->getMemberLoc(), 9751 diag::err_ovl_no_viable_member_function_in_call) 9752 << DeclName << MemExprE->getSourceRange(); 9753 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9754 // FIXME: Leaking incoming expressions! 9755 return ExprError(); 9756 9757 case OR_Ambiguous: 9758 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 9759 << DeclName << MemExprE->getSourceRange(); 9760 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9761 // FIXME: Leaking incoming expressions! 9762 return ExprError(); 9763 9764 case OR_Deleted: 9765 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 9766 << Best->Function->isDeleted() 9767 << DeclName 9768 << getDeletedOrUnavailableSuffix(Best->Function) 9769 << MemExprE->getSourceRange(); 9770 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9771 // FIXME: Leaking incoming expressions! 9772 return ExprError(); 9773 } 9774 9775 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 9776 9777 // If overload resolution picked a static member, build a 9778 // non-member call based on that function. 9779 if (Method->isStatic()) { 9780 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 9781 Args, NumArgs, RParenLoc); 9782 } 9783 9784 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 9785 } 9786 9787 QualType ResultType = Method->getResultType(); 9788 ExprValueKind VK = Expr::getValueKindForType(ResultType); 9789 ResultType = ResultType.getNonLValueExprType(Context); 9790 9791 assert(Method && "Member call to something that isn't a method?"); 9792 CXXMemberCallExpr *TheCall = 9793 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 9794 ResultType, VK, RParenLoc); 9795 9796 // Check for a valid return type. 9797 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 9798 TheCall, Method)) 9799 return ExprError(); 9800 9801 // Convert the object argument (for a non-static member function call). 9802 // We only need to do this if there was actually an overload; otherwise 9803 // it was done at lookup. 9804 if (!Method->isStatic()) { 9805 ExprResult ObjectArg = 9806 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 9807 FoundDecl, Method); 9808 if (ObjectArg.isInvalid()) 9809 return ExprError(); 9810 MemExpr->setBase(ObjectArg.take()); 9811 } 9812 9813 // Convert the rest of the arguments 9814 const FunctionProtoType *Proto = 9815 Method->getType()->getAs<FunctionProtoType>(); 9816 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 9817 RParenLoc)) 9818 return ExprError(); 9819 9820 if (CheckFunctionCall(Method, TheCall)) 9821 return ExprError(); 9822 9823 if ((isa<CXXConstructorDecl>(CurContext) || 9824 isa<CXXDestructorDecl>(CurContext)) && 9825 TheCall->getMethodDecl()->isPure()) { 9826 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 9827 9828 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { 9829 Diag(MemExpr->getLocStart(), 9830 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 9831 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 9832 << MD->getParent()->getDeclName(); 9833 9834 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 9835 } 9836 } 9837 return MaybeBindToTemporary(TheCall); 9838} 9839 9840/// BuildCallToObjectOfClassType - Build a call to an object of class 9841/// type (C++ [over.call.object]), which can end up invoking an 9842/// overloaded function call operator (@c operator()) or performing a 9843/// user-defined conversion on the object argument. 9844ExprResult 9845Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 9846 SourceLocation LParenLoc, 9847 Expr **Args, unsigned NumArgs, 9848 SourceLocation RParenLoc) { 9849 if (checkPlaceholderForOverload(*this, Obj)) 9850 return ExprError(); 9851 ExprResult Object = Owned(Obj); 9852 9853 UnbridgedCastsSet UnbridgedCasts; 9854 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 9855 return ExprError(); 9856 9857 assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); 9858 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 9859 9860 // C++ [over.call.object]p1: 9861 // If the primary-expression E in the function call syntax 9862 // evaluates to a class object of type "cv T", then the set of 9863 // candidate functions includes at least the function call 9864 // operators of T. The function call operators of T are obtained by 9865 // ordinary lookup of the name operator() in the context of 9866 // (E).operator(). 9867 OverloadCandidateSet CandidateSet(LParenLoc); 9868 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 9869 9870 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 9871 PDiag(diag::err_incomplete_object_call) 9872 << Object.get()->getSourceRange())) 9873 return true; 9874 9875 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 9876 LookupQualifiedName(R, Record->getDecl()); 9877 R.suppressDiagnostics(); 9878 9879 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 9880 Oper != OperEnd; ++Oper) { 9881 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 9882 Object.get()->Classify(Context), Args, NumArgs, CandidateSet, 9883 /*SuppressUserConversions=*/ false); 9884 } 9885 9886 // C++ [over.call.object]p2: 9887 // In addition, for each (non-explicit in C++0x) conversion function 9888 // declared in T of the form 9889 // 9890 // operator conversion-type-id () cv-qualifier; 9891 // 9892 // where cv-qualifier is the same cv-qualification as, or a 9893 // greater cv-qualification than, cv, and where conversion-type-id 9894 // denotes the type "pointer to function of (P1,...,Pn) returning 9895 // R", or the type "reference to pointer to function of 9896 // (P1,...,Pn) returning R", or the type "reference to function 9897 // of (P1,...,Pn) returning R", a surrogate call function [...] 9898 // is also considered as a candidate function. Similarly, 9899 // surrogate call functions are added to the set of candidate 9900 // functions for each conversion function declared in an 9901 // accessible base class provided the function is not hidden 9902 // within T by another intervening declaration. 9903 const UnresolvedSetImpl *Conversions 9904 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 9905 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 9906 E = Conversions->end(); I != E; ++I) { 9907 NamedDecl *D = *I; 9908 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 9909 if (isa<UsingShadowDecl>(D)) 9910 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 9911 9912 // Skip over templated conversion functions; they aren't 9913 // surrogates. 9914 if (isa<FunctionTemplateDecl>(D)) 9915 continue; 9916 9917 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 9918 if (!Conv->isExplicit()) { 9919 // Strip the reference type (if any) and then the pointer type (if 9920 // any) to get down to what might be a function type. 9921 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 9922 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 9923 ConvType = ConvPtrType->getPointeeType(); 9924 9925 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 9926 { 9927 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 9928 Object.get(), Args, NumArgs, CandidateSet); 9929 } 9930 } 9931 } 9932 9933 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9934 9935 // Perform overload resolution. 9936 OverloadCandidateSet::iterator Best; 9937 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 9938 Best)) { 9939 case OR_Success: 9940 // Overload resolution succeeded; we'll build the appropriate call 9941 // below. 9942 break; 9943 9944 case OR_No_Viable_Function: 9945 if (CandidateSet.empty()) 9946 Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper) 9947 << Object.get()->getType() << /*call*/ 1 9948 << Object.get()->getSourceRange(); 9949 else 9950 Diag(Object.get()->getSourceRange().getBegin(), 9951 diag::err_ovl_no_viable_object_call) 9952 << Object.get()->getType() << Object.get()->getSourceRange(); 9953 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9954 break; 9955 9956 case OR_Ambiguous: 9957 Diag(Object.get()->getSourceRange().getBegin(), 9958 diag::err_ovl_ambiguous_object_call) 9959 << Object.get()->getType() << Object.get()->getSourceRange(); 9960 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 9961 break; 9962 9963 case OR_Deleted: 9964 Diag(Object.get()->getSourceRange().getBegin(), 9965 diag::err_ovl_deleted_object_call) 9966 << Best->Function->isDeleted() 9967 << Object.get()->getType() 9968 << getDeletedOrUnavailableSuffix(Best->Function) 9969 << Object.get()->getSourceRange(); 9970 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9971 break; 9972 } 9973 9974 if (Best == CandidateSet.end()) 9975 return true; 9976 9977 UnbridgedCasts.restore(); 9978 9979 if (Best->Function == 0) { 9980 // Since there is no function declaration, this is one of the 9981 // surrogate candidates. Dig out the conversion function. 9982 CXXConversionDecl *Conv 9983 = cast<CXXConversionDecl>( 9984 Best->Conversions[0].UserDefined.ConversionFunction); 9985 9986 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 9987 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 9988 9989 // We selected one of the surrogate functions that converts the 9990 // object parameter to a function pointer. Perform the conversion 9991 // on the object argument, then let ActOnCallExpr finish the job. 9992 9993 // Create an implicit member expr to refer to the conversion operator. 9994 // and then call it. 9995 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 9996 Conv, HadMultipleCandidates); 9997 if (Call.isInvalid()) 9998 return ExprError(); 9999 // Record usage of conversion in an implicit cast. 10000 Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(), 10001 CK_UserDefinedConversion, 10002 Call.get(), 0, VK_RValue)); 10003 10004 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 10005 RParenLoc); 10006 } 10007 10008 MarkDeclarationReferenced(LParenLoc, Best->Function); 10009 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 10010 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 10011 10012 // We found an overloaded operator(). Build a CXXOperatorCallExpr 10013 // that calls this method, using Object for the implicit object 10014 // parameter and passing along the remaining arguments. 10015 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10016 const FunctionProtoType *Proto = 10017 Method->getType()->getAs<FunctionProtoType>(); 10018 10019 unsigned NumArgsInProto = Proto->getNumArgs(); 10020 unsigned NumArgsToCheck = NumArgs; 10021 10022 // Build the full argument list for the method call (the 10023 // implicit object parameter is placed at the beginning of the 10024 // list). 10025 Expr **MethodArgs; 10026 if (NumArgs < NumArgsInProto) { 10027 NumArgsToCheck = NumArgsInProto; 10028 MethodArgs = new Expr*[NumArgsInProto + 1]; 10029 } else { 10030 MethodArgs = new Expr*[NumArgs + 1]; 10031 } 10032 MethodArgs[0] = Object.get(); 10033 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 10034 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 10035 10036 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, 10037 HadMultipleCandidates); 10038 if (NewFn.isInvalid()) 10039 return true; 10040 10041 // Once we've built TheCall, all of the expressions are properly 10042 // owned. 10043 QualType ResultTy = Method->getResultType(); 10044 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10045 ResultTy = ResultTy.getNonLValueExprType(Context); 10046 10047 CXXOperatorCallExpr *TheCall = 10048 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), 10049 MethodArgs, NumArgs + 1, 10050 ResultTy, VK, RParenLoc); 10051 delete [] MethodArgs; 10052 10053 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 10054 Method)) 10055 return true; 10056 10057 // We may have default arguments. If so, we need to allocate more 10058 // slots in the call for them. 10059 if (NumArgs < NumArgsInProto) 10060 TheCall->setNumArgs(Context, NumArgsInProto + 1); 10061 else if (NumArgs > NumArgsInProto) 10062 NumArgsToCheck = NumArgsInProto; 10063 10064 bool IsError = false; 10065 10066 // Initialize the implicit object parameter. 10067 ExprResult ObjRes = 10068 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, 10069 Best->FoundDecl, Method); 10070 if (ObjRes.isInvalid()) 10071 IsError = true; 10072 else 10073 Object = move(ObjRes); 10074 TheCall->setArg(0, Object.take()); 10075 10076 // Check the argument types. 10077 for (unsigned i = 0; i != NumArgsToCheck; i++) { 10078 Expr *Arg; 10079 if (i < NumArgs) { 10080 Arg = Args[i]; 10081 10082 // Pass the argument. 10083 10084 ExprResult InputInit 10085 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 10086 Context, 10087 Method->getParamDecl(i)), 10088 SourceLocation(), Arg); 10089 10090 IsError |= InputInit.isInvalid(); 10091 Arg = InputInit.takeAs<Expr>(); 10092 } else { 10093 ExprResult DefArg 10094 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 10095 if (DefArg.isInvalid()) { 10096 IsError = true; 10097 break; 10098 } 10099 10100 Arg = DefArg.takeAs<Expr>(); 10101 } 10102 10103 TheCall->setArg(i + 1, Arg); 10104 } 10105 10106 // If this is a variadic call, handle args passed through "...". 10107 if (Proto->isVariadic()) { 10108 // Promote the arguments (C99 6.5.2.2p7). 10109 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 10110 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 10111 IsError |= Arg.isInvalid(); 10112 TheCall->setArg(i + 1, Arg.take()); 10113 } 10114 } 10115 10116 if (IsError) return true; 10117 10118 if (CheckFunctionCall(Method, TheCall)) 10119 return true; 10120 10121 return MaybeBindToTemporary(TheCall); 10122} 10123 10124/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 10125/// (if one exists), where @c Base is an expression of class type and 10126/// @c Member is the name of the member we're trying to find. 10127ExprResult 10128Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 10129 assert(Base->getType()->isRecordType() && 10130 "left-hand side must have class type"); 10131 10132 if (checkPlaceholderForOverload(*this, Base)) 10133 return ExprError(); 10134 10135 SourceLocation Loc = Base->getExprLoc(); 10136 10137 // C++ [over.ref]p1: 10138 // 10139 // [...] An expression x->m is interpreted as (x.operator->())->m 10140 // for a class object x of type T if T::operator->() exists and if 10141 // the operator is selected as the best match function by the 10142 // overload resolution mechanism (13.3). 10143 DeclarationName OpName = 10144 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 10145 OverloadCandidateSet CandidateSet(Loc); 10146 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 10147 10148 if (RequireCompleteType(Loc, Base->getType(), 10149 PDiag(diag::err_typecheck_incomplete_tag) 10150 << Base->getSourceRange())) 10151 return ExprError(); 10152 10153 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 10154 LookupQualifiedName(R, BaseRecord->getDecl()); 10155 R.suppressDiagnostics(); 10156 10157 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 10158 Oper != OperEnd; ++Oper) { 10159 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 10160 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 10161 } 10162 10163 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10164 10165 // Perform overload resolution. 10166 OverloadCandidateSet::iterator Best; 10167 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 10168 case OR_Success: 10169 // Overload resolution succeeded; we'll build the call below. 10170 break; 10171 10172 case OR_No_Viable_Function: 10173 if (CandidateSet.empty()) 10174 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 10175 << Base->getType() << Base->getSourceRange(); 10176 else 10177 Diag(OpLoc, diag::err_ovl_no_viable_oper) 10178 << "operator->" << Base->getSourceRange(); 10179 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 10180 return ExprError(); 10181 10182 case OR_Ambiguous: 10183 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 10184 << "->" << Base->getType() << Base->getSourceRange(); 10185 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 10186 return ExprError(); 10187 10188 case OR_Deleted: 10189 Diag(OpLoc, diag::err_ovl_deleted_oper) 10190 << Best->Function->isDeleted() 10191 << "->" 10192 << getDeletedOrUnavailableSuffix(Best->Function) 10193 << Base->getSourceRange(); 10194 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 10195 return ExprError(); 10196 } 10197 10198 MarkDeclarationReferenced(OpLoc, Best->Function); 10199 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 10200 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 10201 10202 // Convert the object parameter. 10203 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10204 ExprResult BaseResult = 10205 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 10206 Best->FoundDecl, Method); 10207 if (BaseResult.isInvalid()) 10208 return ExprError(); 10209 Base = BaseResult.take(); 10210 10211 // Build the operator call. 10212 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, 10213 HadMultipleCandidates); 10214 if (FnExpr.isInvalid()) 10215 return ExprError(); 10216 10217 QualType ResultTy = Method->getResultType(); 10218 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10219 ResultTy = ResultTy.getNonLValueExprType(Context); 10220 CXXOperatorCallExpr *TheCall = 10221 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), 10222 &Base, 1, ResultTy, VK, OpLoc); 10223 10224 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 10225 Method)) 10226 return ExprError(); 10227 10228 return MaybeBindToTemporary(TheCall); 10229} 10230 10231/// FixOverloadedFunctionReference - E is an expression that refers to 10232/// a C++ overloaded function (possibly with some parentheses and 10233/// perhaps a '&' around it). We have resolved the overloaded function 10234/// to the function declaration Fn, so patch up the expression E to 10235/// refer (possibly indirectly) to Fn. Returns the new expr. 10236Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 10237 FunctionDecl *Fn) { 10238 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 10239 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 10240 Found, Fn); 10241 if (SubExpr == PE->getSubExpr()) 10242 return PE; 10243 10244 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 10245 } 10246 10247 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10248 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 10249 Found, Fn); 10250 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 10251 SubExpr->getType()) && 10252 "Implicit cast type cannot be determined from overload"); 10253 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 10254 if (SubExpr == ICE->getSubExpr()) 10255 return ICE; 10256 10257 return ImplicitCastExpr::Create(Context, ICE->getType(), 10258 ICE->getCastKind(), 10259 SubExpr, 0, 10260 ICE->getValueKind()); 10261 } 10262 10263 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 10264 assert(UnOp->getOpcode() == UO_AddrOf && 10265 "Can only take the address of an overloaded function"); 10266 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 10267 if (Method->isStatic()) { 10268 // Do nothing: static member functions aren't any different 10269 // from non-member functions. 10270 } else { 10271 // Fix the sub expression, which really has to be an 10272 // UnresolvedLookupExpr holding an overloaded member function 10273 // or template. 10274 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 10275 Found, Fn); 10276 if (SubExpr == UnOp->getSubExpr()) 10277 return UnOp; 10278 10279 assert(isa<DeclRefExpr>(SubExpr) 10280 && "fixed to something other than a decl ref"); 10281 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 10282 && "fixed to a member ref with no nested name qualifier"); 10283 10284 // We have taken the address of a pointer to member 10285 // function. Perform the computation here so that we get the 10286 // appropriate pointer to member type. 10287 QualType ClassType 10288 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 10289 QualType MemPtrType 10290 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 10291 10292 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 10293 VK_RValue, OK_Ordinary, 10294 UnOp->getOperatorLoc()); 10295 } 10296 } 10297 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 10298 Found, Fn); 10299 if (SubExpr == UnOp->getSubExpr()) 10300 return UnOp; 10301 10302 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 10303 Context.getPointerType(SubExpr->getType()), 10304 VK_RValue, OK_Ordinary, 10305 UnOp->getOperatorLoc()); 10306 } 10307 10308 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 10309 // FIXME: avoid copy. 10310 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10311 if (ULE->hasExplicitTemplateArgs()) { 10312 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 10313 TemplateArgs = &TemplateArgsBuffer; 10314 } 10315 10316 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 10317 ULE->getQualifierLoc(), 10318 Fn, 10319 ULE->getNameLoc(), 10320 Fn->getType(), 10321 VK_LValue, 10322 Found.getDecl(), 10323 TemplateArgs); 10324 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 10325 return DRE; 10326 } 10327 10328 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 10329 // FIXME: avoid copy. 10330 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10331 if (MemExpr->hasExplicitTemplateArgs()) { 10332 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 10333 TemplateArgs = &TemplateArgsBuffer; 10334 } 10335 10336 Expr *Base; 10337 10338 // If we're filling in a static method where we used to have an 10339 // implicit member access, rewrite to a simple decl ref. 10340 if (MemExpr->isImplicitAccess()) { 10341 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 10342 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 10343 MemExpr->getQualifierLoc(), 10344 Fn, 10345 MemExpr->getMemberLoc(), 10346 Fn->getType(), 10347 VK_LValue, 10348 Found.getDecl(), 10349 TemplateArgs); 10350 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 10351 return DRE; 10352 } else { 10353 SourceLocation Loc = MemExpr->getMemberLoc(); 10354 if (MemExpr->getQualifier()) 10355 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 10356 Base = new (Context) CXXThisExpr(Loc, 10357 MemExpr->getBaseType(), 10358 /*isImplicit=*/true); 10359 } 10360 } else 10361 Base = MemExpr->getBase(); 10362 10363 ExprValueKind valueKind; 10364 QualType type; 10365 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 10366 valueKind = VK_LValue; 10367 type = Fn->getType(); 10368 } else { 10369 valueKind = VK_RValue; 10370 type = Context.BoundMemberTy; 10371 } 10372 10373 MemberExpr *ME = MemberExpr::Create(Context, Base, 10374 MemExpr->isArrow(), 10375 MemExpr->getQualifierLoc(), 10376 Fn, 10377 Found, 10378 MemExpr->getMemberNameInfo(), 10379 TemplateArgs, 10380 type, valueKind, OK_Ordinary); 10381 ME->setHadMultipleCandidates(true); 10382 return ME; 10383 } 10384 10385 llvm_unreachable("Invalid reference to overloaded function"); 10386 return E; 10387} 10388 10389ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 10390 DeclAccessPair Found, 10391 FunctionDecl *Fn) { 10392 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 10393} 10394 10395} // end namespace clang 10396