SemaOverload.cpp revision aa5952c53f6c6a844a22fa2294186e16018b31e1
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static Expr *
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation()) {
42  Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc);
43  S.DefaultFunctionArrayConversion(E);
44  return E;
45}
46
47static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
48                                 bool InOverloadResolution,
49                                 StandardConversionSequence &SCS);
50static OverloadingResult
51IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
52                        UserDefinedConversionSequence& User,
53                        OverloadCandidateSet& Conversions,
54                        bool AllowExplicit);
55
56
57static ImplicitConversionSequence::CompareKind
58CompareStandardConversionSequences(Sema &S,
59                                   const StandardConversionSequence& SCS1,
60                                   const StandardConversionSequence& SCS2);
61
62static ImplicitConversionSequence::CompareKind
63CompareQualificationConversions(Sema &S,
64                                const StandardConversionSequence& SCS1,
65                                const StandardConversionSequence& SCS2);
66
67static ImplicitConversionSequence::CompareKind
68CompareDerivedToBaseConversions(Sema &S,
69                                const StandardConversionSequence& SCS1,
70                                const StandardConversionSequence& SCS2);
71
72
73
74/// GetConversionCategory - Retrieve the implicit conversion
75/// category corresponding to the given implicit conversion kind.
76ImplicitConversionCategory
77GetConversionCategory(ImplicitConversionKind Kind) {
78  static const ImplicitConversionCategory
79    Category[(int)ICK_Num_Conversion_Kinds] = {
80    ICC_Identity,
81    ICC_Lvalue_Transformation,
82    ICC_Lvalue_Transformation,
83    ICC_Lvalue_Transformation,
84    ICC_Identity,
85    ICC_Qualification_Adjustment,
86    ICC_Promotion,
87    ICC_Promotion,
88    ICC_Promotion,
89    ICC_Conversion,
90    ICC_Conversion,
91    ICC_Conversion,
92    ICC_Conversion,
93    ICC_Conversion,
94    ICC_Conversion,
95    ICC_Conversion,
96    ICC_Conversion,
97    ICC_Conversion,
98    ICC_Conversion,
99    ICC_Conversion,
100    ICC_Conversion
101  };
102  return Category[(int)Kind];
103}
104
105/// GetConversionRank - Retrieve the implicit conversion rank
106/// corresponding to the given implicit conversion kind.
107ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
108  static const ImplicitConversionRank
109    Rank[(int)ICK_Num_Conversion_Kinds] = {
110    ICR_Exact_Match,
111    ICR_Exact_Match,
112    ICR_Exact_Match,
113    ICR_Exact_Match,
114    ICR_Exact_Match,
115    ICR_Exact_Match,
116    ICR_Promotion,
117    ICR_Promotion,
118    ICR_Promotion,
119    ICR_Conversion,
120    ICR_Conversion,
121    ICR_Conversion,
122    ICR_Conversion,
123    ICR_Conversion,
124    ICR_Conversion,
125    ICR_Conversion,
126    ICR_Conversion,
127    ICR_Conversion,
128    ICR_Conversion,
129    ICR_Conversion,
130    ICR_Complex_Real_Conversion
131  };
132  return Rank[(int)Kind];
133}
134
135/// GetImplicitConversionName - Return the name of this kind of
136/// implicit conversion.
137const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
138  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
139    "No conversion",
140    "Lvalue-to-rvalue",
141    "Array-to-pointer",
142    "Function-to-pointer",
143    "Noreturn adjustment",
144    "Qualification",
145    "Integral promotion",
146    "Floating point promotion",
147    "Complex promotion",
148    "Integral conversion",
149    "Floating conversion",
150    "Complex conversion",
151    "Floating-integral conversion",
152    "Pointer conversion",
153    "Pointer-to-member conversion",
154    "Boolean conversion",
155    "Compatible-types conversion",
156    "Derived-to-base conversion",
157    "Vector conversion",
158    "Vector splat",
159    "Complex-real conversion"
160  };
161  return Name[Kind];
162}
163
164/// StandardConversionSequence - Set the standard conversion
165/// sequence to the identity conversion.
166void StandardConversionSequence::setAsIdentityConversion() {
167  First = ICK_Identity;
168  Second = ICK_Identity;
169  Third = ICK_Identity;
170  DeprecatedStringLiteralToCharPtr = false;
171  ReferenceBinding = false;
172  DirectBinding = false;
173  RRefBinding = false;
174  CopyConstructor = 0;
175}
176
177/// getRank - Retrieve the rank of this standard conversion sequence
178/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
179/// implicit conversions.
180ImplicitConversionRank StandardConversionSequence::getRank() const {
181  ImplicitConversionRank Rank = ICR_Exact_Match;
182  if  (GetConversionRank(First) > Rank)
183    Rank = GetConversionRank(First);
184  if  (GetConversionRank(Second) > Rank)
185    Rank = GetConversionRank(Second);
186  if  (GetConversionRank(Third) > Rank)
187    Rank = GetConversionRank(Third);
188  return Rank;
189}
190
191/// isPointerConversionToBool - Determines whether this conversion is
192/// a conversion of a pointer or pointer-to-member to bool. This is
193/// used as part of the ranking of standard conversion sequences
194/// (C++ 13.3.3.2p4).
195bool StandardConversionSequence::isPointerConversionToBool() const {
196  // Note that FromType has not necessarily been transformed by the
197  // array-to-pointer or function-to-pointer implicit conversions, so
198  // check for their presence as well as checking whether FromType is
199  // a pointer.
200  if (getToType(1)->isBooleanType() &&
201      (getFromType()->isPointerType() ||
202       getFromType()->isObjCObjectPointerType() ||
203       getFromType()->isBlockPointerType() ||
204       getFromType()->isNullPtrType() ||
205       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
206    return true;
207
208  return false;
209}
210
211/// isPointerConversionToVoidPointer - Determines whether this
212/// conversion is a conversion of a pointer to a void pointer. This is
213/// used as part of the ranking of standard conversion sequences (C++
214/// 13.3.3.2p4).
215bool
216StandardConversionSequence::
217isPointerConversionToVoidPointer(ASTContext& Context) const {
218  QualType FromType = getFromType();
219  QualType ToType = getToType(1);
220
221  // Note that FromType has not necessarily been transformed by the
222  // array-to-pointer implicit conversion, so check for its presence
223  // and redo the conversion to get a pointer.
224  if (First == ICK_Array_To_Pointer)
225    FromType = Context.getArrayDecayedType(FromType);
226
227  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
228    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
229      return ToPtrType->getPointeeType()->isVoidType();
230
231  return false;
232}
233
234/// DebugPrint - Print this standard conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void StandardConversionSequence::DebugPrint() const {
237  llvm::raw_ostream &OS = llvm::errs();
238  bool PrintedSomething = false;
239  if (First != ICK_Identity) {
240    OS << GetImplicitConversionName(First);
241    PrintedSomething = true;
242  }
243
244  if (Second != ICK_Identity) {
245    if (PrintedSomething) {
246      OS << " -> ";
247    }
248    OS << GetImplicitConversionName(Second);
249
250    if (CopyConstructor) {
251      OS << " (by copy constructor)";
252    } else if (DirectBinding) {
253      OS << " (direct reference binding)";
254    } else if (ReferenceBinding) {
255      OS << " (reference binding)";
256    }
257    PrintedSomething = true;
258  }
259
260  if (Third != ICK_Identity) {
261    if (PrintedSomething) {
262      OS << " -> ";
263    }
264    OS << GetImplicitConversionName(Third);
265    PrintedSomething = true;
266  }
267
268  if (!PrintedSomething) {
269    OS << "No conversions required";
270  }
271}
272
273/// DebugPrint - Print this user-defined conversion sequence to standard
274/// error. Useful for debugging overloading issues.
275void UserDefinedConversionSequence::DebugPrint() const {
276  llvm::raw_ostream &OS = llvm::errs();
277  if (Before.First || Before.Second || Before.Third) {
278    Before.DebugPrint();
279    OS << " -> ";
280  }
281  OS << '\'' << ConversionFunction << '\'';
282  if (After.First || After.Second || After.Third) {
283    OS << " -> ";
284    After.DebugPrint();
285  }
286}
287
288/// DebugPrint - Print this implicit conversion sequence to standard
289/// error. Useful for debugging overloading issues.
290void ImplicitConversionSequence::DebugPrint() const {
291  llvm::raw_ostream &OS = llvm::errs();
292  switch (ConversionKind) {
293  case StandardConversion:
294    OS << "Standard conversion: ";
295    Standard.DebugPrint();
296    break;
297  case UserDefinedConversion:
298    OS << "User-defined conversion: ";
299    UserDefined.DebugPrint();
300    break;
301  case EllipsisConversion:
302    OS << "Ellipsis conversion";
303    break;
304  case AmbiguousConversion:
305    OS << "Ambiguous conversion";
306    break;
307  case BadConversion:
308    OS << "Bad conversion";
309    break;
310  }
311
312  OS << "\n";
313}
314
315void AmbiguousConversionSequence::construct() {
316  new (&conversions()) ConversionSet();
317}
318
319void AmbiguousConversionSequence::destruct() {
320  conversions().~ConversionSet();
321}
322
323void
324AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
325  FromTypePtr = O.FromTypePtr;
326  ToTypePtr = O.ToTypePtr;
327  new (&conversions()) ConversionSet(O.conversions());
328}
329
330namespace {
331  // Structure used by OverloadCandidate::DeductionFailureInfo to store
332  // template parameter and template argument information.
333  struct DFIParamWithArguments {
334    TemplateParameter Param;
335    TemplateArgument FirstArg;
336    TemplateArgument SecondArg;
337  };
338}
339
340/// \brief Convert from Sema's representation of template deduction information
341/// to the form used in overload-candidate information.
342OverloadCandidate::DeductionFailureInfo
343static MakeDeductionFailureInfo(ASTContext &Context,
344                                Sema::TemplateDeductionResult TDK,
345                                TemplateDeductionInfo &Info) {
346  OverloadCandidate::DeductionFailureInfo Result;
347  Result.Result = static_cast<unsigned>(TDK);
348  Result.Data = 0;
349  switch (TDK) {
350  case Sema::TDK_Success:
351  case Sema::TDK_InstantiationDepth:
352  case Sema::TDK_TooManyArguments:
353  case Sema::TDK_TooFewArguments:
354    break;
355
356  case Sema::TDK_Incomplete:
357  case Sema::TDK_InvalidExplicitArguments:
358    Result.Data = Info.Param.getOpaqueValue();
359    break;
360
361  case Sema::TDK_Inconsistent:
362  case Sema::TDK_Underqualified: {
363    // FIXME: Should allocate from normal heap so that we can free this later.
364    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
365    Saved->Param = Info.Param;
366    Saved->FirstArg = Info.FirstArg;
367    Saved->SecondArg = Info.SecondArg;
368    Result.Data = Saved;
369    break;
370  }
371
372  case Sema::TDK_SubstitutionFailure:
373    Result.Data = Info.take();
374    break;
375
376  case Sema::TDK_NonDeducedMismatch:
377  case Sema::TDK_FailedOverloadResolution:
378    break;
379  }
380
381  return Result;
382}
383
384void OverloadCandidate::DeductionFailureInfo::Destroy() {
385  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
386  case Sema::TDK_Success:
387  case Sema::TDK_InstantiationDepth:
388  case Sema::TDK_Incomplete:
389  case Sema::TDK_TooManyArguments:
390  case Sema::TDK_TooFewArguments:
391  case Sema::TDK_InvalidExplicitArguments:
392    break;
393
394  case Sema::TDK_Inconsistent:
395  case Sema::TDK_Underqualified:
396    // FIXME: Destroy the data?
397    Data = 0;
398    break;
399
400  case Sema::TDK_SubstitutionFailure:
401    // FIXME: Destroy the template arugment list?
402    Data = 0;
403    break;
404
405  // Unhandled
406  case Sema::TDK_NonDeducedMismatch:
407  case Sema::TDK_FailedOverloadResolution:
408    break;
409  }
410}
411
412TemplateParameter
413OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
414  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
415  case Sema::TDK_Success:
416  case Sema::TDK_InstantiationDepth:
417  case Sema::TDK_TooManyArguments:
418  case Sema::TDK_TooFewArguments:
419  case Sema::TDK_SubstitutionFailure:
420    return TemplateParameter();
421
422  case Sema::TDK_Incomplete:
423  case Sema::TDK_InvalidExplicitArguments:
424    return TemplateParameter::getFromOpaqueValue(Data);
425
426  case Sema::TDK_Inconsistent:
427  case Sema::TDK_Underqualified:
428    return static_cast<DFIParamWithArguments*>(Data)->Param;
429
430  // Unhandled
431  case Sema::TDK_NonDeducedMismatch:
432  case Sema::TDK_FailedOverloadResolution:
433    break;
434  }
435
436  return TemplateParameter();
437}
438
439TemplateArgumentList *
440OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
441  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
442    case Sema::TDK_Success:
443    case Sema::TDK_InstantiationDepth:
444    case Sema::TDK_TooManyArguments:
445    case Sema::TDK_TooFewArguments:
446    case Sema::TDK_Incomplete:
447    case Sema::TDK_InvalidExplicitArguments:
448    case Sema::TDK_Inconsistent:
449    case Sema::TDK_Underqualified:
450      return 0;
451
452    case Sema::TDK_SubstitutionFailure:
453      return static_cast<TemplateArgumentList*>(Data);
454
455    // Unhandled
456    case Sema::TDK_NonDeducedMismatch:
457    case Sema::TDK_FailedOverloadResolution:
458      break;
459  }
460
461  return 0;
462}
463
464const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
465  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
466  case Sema::TDK_Success:
467  case Sema::TDK_InstantiationDepth:
468  case Sema::TDK_Incomplete:
469  case Sema::TDK_TooManyArguments:
470  case Sema::TDK_TooFewArguments:
471  case Sema::TDK_InvalidExplicitArguments:
472  case Sema::TDK_SubstitutionFailure:
473    return 0;
474
475  case Sema::TDK_Inconsistent:
476  case Sema::TDK_Underqualified:
477    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
478
479  // Unhandled
480  case Sema::TDK_NonDeducedMismatch:
481  case Sema::TDK_FailedOverloadResolution:
482    break;
483  }
484
485  return 0;
486}
487
488const TemplateArgument *
489OverloadCandidate::DeductionFailureInfo::getSecondArg() {
490  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
491  case Sema::TDK_Success:
492  case Sema::TDK_InstantiationDepth:
493  case Sema::TDK_Incomplete:
494  case Sema::TDK_TooManyArguments:
495  case Sema::TDK_TooFewArguments:
496  case Sema::TDK_InvalidExplicitArguments:
497  case Sema::TDK_SubstitutionFailure:
498    return 0;
499
500  case Sema::TDK_Inconsistent:
501  case Sema::TDK_Underqualified:
502    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
503
504  // Unhandled
505  case Sema::TDK_NonDeducedMismatch:
506  case Sema::TDK_FailedOverloadResolution:
507    break;
508  }
509
510  return 0;
511}
512
513void OverloadCandidateSet::clear() {
514  inherited::clear();
515  Functions.clear();
516}
517
518// IsOverload - Determine whether the given New declaration is an
519// overload of the declarations in Old. This routine returns false if
520// New and Old cannot be overloaded, e.g., if New has the same
521// signature as some function in Old (C++ 1.3.10) or if the Old
522// declarations aren't functions (or function templates) at all. When
523// it does return false, MatchedDecl will point to the decl that New
524// cannot be overloaded with.  This decl may be a UsingShadowDecl on
525// top of the underlying declaration.
526//
527// Example: Given the following input:
528//
529//   void f(int, float); // #1
530//   void f(int, int); // #2
531//   int f(int, int); // #3
532//
533// When we process #1, there is no previous declaration of "f",
534// so IsOverload will not be used.
535//
536// When we process #2, Old contains only the FunctionDecl for #1.  By
537// comparing the parameter types, we see that #1 and #2 are overloaded
538// (since they have different signatures), so this routine returns
539// false; MatchedDecl is unchanged.
540//
541// When we process #3, Old is an overload set containing #1 and #2. We
542// compare the signatures of #3 to #1 (they're overloaded, so we do
543// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
544// identical (return types of functions are not part of the
545// signature), IsOverload returns false and MatchedDecl will be set to
546// point to the FunctionDecl for #2.
547//
548// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
549// into a class by a using declaration.  The rules for whether to hide
550// shadow declarations ignore some properties which otherwise figure
551// into a function template's signature.
552Sema::OverloadKind
553Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
554                    NamedDecl *&Match, bool NewIsUsingDecl) {
555  for (LookupResult::iterator I = Old.begin(), E = Old.end();
556         I != E; ++I) {
557    NamedDecl *OldD = *I;
558
559    bool OldIsUsingDecl = false;
560    if (isa<UsingShadowDecl>(OldD)) {
561      OldIsUsingDecl = true;
562
563      // We can always introduce two using declarations into the same
564      // context, even if they have identical signatures.
565      if (NewIsUsingDecl) continue;
566
567      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
568    }
569
570    // If either declaration was introduced by a using declaration,
571    // we'll need to use slightly different rules for matching.
572    // Essentially, these rules are the normal rules, except that
573    // function templates hide function templates with different
574    // return types or template parameter lists.
575    bool UseMemberUsingDeclRules =
576      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
577
578    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
579      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
580        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
581          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
582          continue;
583        }
584
585        Match = *I;
586        return Ovl_Match;
587      }
588    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
589      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
590        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
591          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
592          continue;
593        }
594
595        Match = *I;
596        return Ovl_Match;
597      }
598    } else if (isa<UsingDecl>(OldD)) {
599      // We can overload with these, which can show up when doing
600      // redeclaration checks for UsingDecls.
601      assert(Old.getLookupKind() == LookupUsingDeclName);
602    } else if (isa<TagDecl>(OldD)) {
603      // We can always overload with tags by hiding them.
604    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
605      // Optimistically assume that an unresolved using decl will
606      // overload; if it doesn't, we'll have to diagnose during
607      // template instantiation.
608    } else {
609      // (C++ 13p1):
610      //   Only function declarations can be overloaded; object and type
611      //   declarations cannot be overloaded.
612      Match = *I;
613      return Ovl_NonFunction;
614    }
615  }
616
617  return Ovl_Overload;
618}
619
620bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
621                      bool UseUsingDeclRules) {
622  // If both of the functions are extern "C", then they are not
623  // overloads.
624  if (Old->isExternC() && New->isExternC())
625    return false;
626
627  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
628  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
629
630  // C++ [temp.fct]p2:
631  //   A function template can be overloaded with other function templates
632  //   and with normal (non-template) functions.
633  if ((OldTemplate == 0) != (NewTemplate == 0))
634    return true;
635
636  // Is the function New an overload of the function Old?
637  QualType OldQType = Context.getCanonicalType(Old->getType());
638  QualType NewQType = Context.getCanonicalType(New->getType());
639
640  // Compare the signatures (C++ 1.3.10) of the two functions to
641  // determine whether they are overloads. If we find any mismatch
642  // in the signature, they are overloads.
643
644  // If either of these functions is a K&R-style function (no
645  // prototype), then we consider them to have matching signatures.
646  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
647      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
648    return false;
649
650  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
651  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
652
653  // The signature of a function includes the types of its
654  // parameters (C++ 1.3.10), which includes the presence or absence
655  // of the ellipsis; see C++ DR 357).
656  if (OldQType != NewQType &&
657      (OldType->getNumArgs() != NewType->getNumArgs() ||
658       OldType->isVariadic() != NewType->isVariadic() ||
659       !FunctionArgTypesAreEqual(OldType, NewType)))
660    return true;
661
662  // C++ [temp.over.link]p4:
663  //   The signature of a function template consists of its function
664  //   signature, its return type and its template parameter list. The names
665  //   of the template parameters are significant only for establishing the
666  //   relationship between the template parameters and the rest of the
667  //   signature.
668  //
669  // We check the return type and template parameter lists for function
670  // templates first; the remaining checks follow.
671  //
672  // However, we don't consider either of these when deciding whether
673  // a member introduced by a shadow declaration is hidden.
674  if (!UseUsingDeclRules && NewTemplate &&
675      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
676                                       OldTemplate->getTemplateParameters(),
677                                       false, TPL_TemplateMatch) ||
678       OldType->getResultType() != NewType->getResultType()))
679    return true;
680
681  // If the function is a class member, its signature includes the
682  // cv-qualifiers (if any) on the function itself.
683  //
684  // As part of this, also check whether one of the member functions
685  // is static, in which case they are not overloads (C++
686  // 13.1p2). While not part of the definition of the signature,
687  // this check is important to determine whether these functions
688  // can be overloaded.
689  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
690  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
691  if (OldMethod && NewMethod &&
692      !OldMethod->isStatic() && !NewMethod->isStatic() &&
693      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
694    return true;
695
696  // The signatures match; this is not an overload.
697  return false;
698}
699
700/// TryImplicitConversion - Attempt to perform an implicit conversion
701/// from the given expression (Expr) to the given type (ToType). This
702/// function returns an implicit conversion sequence that can be used
703/// to perform the initialization. Given
704///
705///   void f(float f);
706///   void g(int i) { f(i); }
707///
708/// this routine would produce an implicit conversion sequence to
709/// describe the initialization of f from i, which will be a standard
710/// conversion sequence containing an lvalue-to-rvalue conversion (C++
711/// 4.1) followed by a floating-integral conversion (C++ 4.9).
712//
713/// Note that this routine only determines how the conversion can be
714/// performed; it does not actually perform the conversion. As such,
715/// it will not produce any diagnostics if no conversion is available,
716/// but will instead return an implicit conversion sequence of kind
717/// "BadConversion".
718///
719/// If @p SuppressUserConversions, then user-defined conversions are
720/// not permitted.
721/// If @p AllowExplicit, then explicit user-defined conversions are
722/// permitted.
723static ImplicitConversionSequence
724TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
725                      bool SuppressUserConversions,
726                      bool AllowExplicit,
727                      bool InOverloadResolution) {
728  ImplicitConversionSequence ICS;
729  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
730                           ICS.Standard)) {
731    ICS.setStandard();
732    return ICS;
733  }
734
735  if (!S.getLangOptions().CPlusPlus) {
736    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
737    return ICS;
738  }
739
740  // C++ [over.ics.user]p4:
741  //   A conversion of an expression of class type to the same class
742  //   type is given Exact Match rank, and a conversion of an
743  //   expression of class type to a base class of that type is
744  //   given Conversion rank, in spite of the fact that a copy/move
745  //   constructor (i.e., a user-defined conversion function) is
746  //   called for those cases.
747  QualType FromType = From->getType();
748  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
749      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
750       S.IsDerivedFrom(FromType, ToType))) {
751    ICS.setStandard();
752    ICS.Standard.setAsIdentityConversion();
753    ICS.Standard.setFromType(FromType);
754    ICS.Standard.setAllToTypes(ToType);
755
756    // We don't actually check at this point whether there is a valid
757    // copy/move constructor, since overloading just assumes that it
758    // exists. When we actually perform initialization, we'll find the
759    // appropriate constructor to copy the returned object, if needed.
760    ICS.Standard.CopyConstructor = 0;
761
762    // Determine whether this is considered a derived-to-base conversion.
763    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
764      ICS.Standard.Second = ICK_Derived_To_Base;
765
766    return ICS;
767  }
768
769  if (SuppressUserConversions) {
770    // We're not in the case above, so there is no conversion that
771    // we can perform.
772    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
773    return ICS;
774  }
775
776  // Attempt user-defined conversion.
777  OverloadCandidateSet Conversions(From->getExprLoc());
778  OverloadingResult UserDefResult
779    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
780                              AllowExplicit);
781
782  if (UserDefResult == OR_Success) {
783    ICS.setUserDefined();
784    // C++ [over.ics.user]p4:
785    //   A conversion of an expression of class type to the same class
786    //   type is given Exact Match rank, and a conversion of an
787    //   expression of class type to a base class of that type is
788    //   given Conversion rank, in spite of the fact that a copy
789    //   constructor (i.e., a user-defined conversion function) is
790    //   called for those cases.
791    if (CXXConstructorDecl *Constructor
792          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
793      QualType FromCanon
794        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
795      QualType ToCanon
796        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
797      if (Constructor->isCopyConstructor() &&
798          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
799        // Turn this into a "standard" conversion sequence, so that it
800        // gets ranked with standard conversion sequences.
801        ICS.setStandard();
802        ICS.Standard.setAsIdentityConversion();
803        ICS.Standard.setFromType(From->getType());
804        ICS.Standard.setAllToTypes(ToType);
805        ICS.Standard.CopyConstructor = Constructor;
806        if (ToCanon != FromCanon)
807          ICS.Standard.Second = ICK_Derived_To_Base;
808      }
809    }
810
811    // C++ [over.best.ics]p4:
812    //   However, when considering the argument of a user-defined
813    //   conversion function that is a candidate by 13.3.1.3 when
814    //   invoked for the copying of the temporary in the second step
815    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
816    //   13.3.1.6 in all cases, only standard conversion sequences and
817    //   ellipsis conversion sequences are allowed.
818    if (SuppressUserConversions && ICS.isUserDefined()) {
819      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
820    }
821  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
822    ICS.setAmbiguous();
823    ICS.Ambiguous.setFromType(From->getType());
824    ICS.Ambiguous.setToType(ToType);
825    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
826         Cand != Conversions.end(); ++Cand)
827      if (Cand->Viable)
828        ICS.Ambiguous.addConversion(Cand->Function);
829  } else {
830    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
831  }
832
833  return ICS;
834}
835
836bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
837                                 const InitializedEntity &Entity,
838                                 Expr *Initializer,
839                                 bool SuppressUserConversions,
840                                 bool AllowExplicitConversions,
841                                 bool InOverloadResolution) {
842  ImplicitConversionSequence ICS
843    = clang::TryImplicitConversion(*this, Initializer, Entity.getType(),
844                                   SuppressUserConversions,
845                                   AllowExplicitConversions,
846                                   InOverloadResolution);
847  if (ICS.isBad()) return true;
848
849  // Perform the actual conversion.
850  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
851  return false;
852}
853
854/// PerformImplicitConversion - Perform an implicit conversion of the
855/// expression From to the type ToType. Returns true if there was an
856/// error, false otherwise. The expression From is replaced with the
857/// converted expression. Flavor is the kind of conversion we're
858/// performing, used in the error message. If @p AllowExplicit,
859/// explicit user-defined conversions are permitted.
860bool
861Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
862                                AssignmentAction Action, bool AllowExplicit) {
863  ImplicitConversionSequence ICS;
864  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
865}
866
867bool
868Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
869                                AssignmentAction Action, bool AllowExplicit,
870                                ImplicitConversionSequence& ICS) {
871  ICS = clang::TryImplicitConversion(*this, From, ToType,
872                                     /*SuppressUserConversions=*/false,
873                                     AllowExplicit,
874                                     /*InOverloadResolution=*/false);
875  return PerformImplicitConversion(From, ToType, ICS, Action);
876}
877
878/// \brief Determine whether the conversion from FromType to ToType is a valid
879/// conversion that strips "noreturn" off the nested function type.
880static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
881                                 QualType ToType, QualType &ResultTy) {
882  if (Context.hasSameUnqualifiedType(FromType, ToType))
883    return false;
884
885  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
886  // where F adds one of the following at most once:
887  //   - a pointer
888  //   - a member pointer
889  //   - a block pointer
890  CanQualType CanTo = Context.getCanonicalType(ToType);
891  CanQualType CanFrom = Context.getCanonicalType(FromType);
892  Type::TypeClass TyClass = CanTo->getTypeClass();
893  if (TyClass != CanFrom->getTypeClass()) return false;
894  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
895    if (TyClass == Type::Pointer) {
896      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
897      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
898    } else if (TyClass == Type::BlockPointer) {
899      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
900      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
901    } else if (TyClass == Type::MemberPointer) {
902      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
903      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
904    } else {
905      return false;
906    }
907
908    TyClass = CanTo->getTypeClass();
909    if (TyClass != CanFrom->getTypeClass()) return false;
910    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
911      return false;
912  }
913
914  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
915  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
916  if (!EInfo.getNoReturn()) return false;
917
918  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
919  assert(QualType(FromFn, 0).isCanonical());
920  if (QualType(FromFn, 0) != CanTo) return false;
921
922  ResultTy = ToType;
923  return true;
924}
925
926/// \brief Determine whether the conversion from FromType to ToType is a valid
927/// vector conversion.
928///
929/// \param ICK Will be set to the vector conversion kind, if this is a vector
930/// conversion.
931static bool IsVectorConversion(ASTContext &Context, QualType FromType,
932                               QualType ToType, ImplicitConversionKind &ICK) {
933  // We need at least one of these types to be a vector type to have a vector
934  // conversion.
935  if (!ToType->isVectorType() && !FromType->isVectorType())
936    return false;
937
938  // Identical types require no conversions.
939  if (Context.hasSameUnqualifiedType(FromType, ToType))
940    return false;
941
942  // There are no conversions between extended vector types, only identity.
943  if (ToType->isExtVectorType()) {
944    // There are no conversions between extended vector types other than the
945    // identity conversion.
946    if (FromType->isExtVectorType())
947      return false;
948
949    // Vector splat from any arithmetic type to a vector.
950    if (FromType->isArithmeticType()) {
951      ICK = ICK_Vector_Splat;
952      return true;
953    }
954  }
955
956  // We can perform the conversion between vector types in the following cases:
957  // 1)vector types are equivalent AltiVec and GCC vector types
958  // 2)lax vector conversions are permitted and the vector types are of the
959  //   same size
960  if (ToType->isVectorType() && FromType->isVectorType()) {
961    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
962        (Context.getLangOptions().LaxVectorConversions &&
963         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
964      ICK = ICK_Vector_Conversion;
965      return true;
966    }
967  }
968
969  return false;
970}
971
972/// IsStandardConversion - Determines whether there is a standard
973/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
974/// expression From to the type ToType. Standard conversion sequences
975/// only consider non-class types; for conversions that involve class
976/// types, use TryImplicitConversion. If a conversion exists, SCS will
977/// contain the standard conversion sequence required to perform this
978/// conversion and this routine will return true. Otherwise, this
979/// routine will return false and the value of SCS is unspecified.
980static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
981                                 bool InOverloadResolution,
982                                 StandardConversionSequence &SCS) {
983  QualType FromType = From->getType();
984
985  // Standard conversions (C++ [conv])
986  SCS.setAsIdentityConversion();
987  SCS.DeprecatedStringLiteralToCharPtr = false;
988  SCS.IncompatibleObjC = false;
989  SCS.setFromType(FromType);
990  SCS.CopyConstructor = 0;
991
992  // There are no standard conversions for class types in C++, so
993  // abort early. When overloading in C, however, we do permit
994  if (FromType->isRecordType() || ToType->isRecordType()) {
995    if (S.getLangOptions().CPlusPlus)
996      return false;
997
998    // When we're overloading in C, we allow, as standard conversions,
999  }
1000
1001  // The first conversion can be an lvalue-to-rvalue conversion,
1002  // array-to-pointer conversion, or function-to-pointer conversion
1003  // (C++ 4p1).
1004
1005  if (FromType == S.Context.OverloadTy) {
1006    DeclAccessPair AccessPair;
1007    if (FunctionDecl *Fn
1008          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1009                                                 AccessPair)) {
1010      // We were able to resolve the address of the overloaded function,
1011      // so we can convert to the type of that function.
1012      FromType = Fn->getType();
1013      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
1014        if (!Method->isStatic()) {
1015          const Type *ClassType
1016            = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1017          FromType = S.Context.getMemberPointerType(FromType, ClassType);
1018        }
1019      }
1020
1021      // If the "from" expression takes the address of the overloaded
1022      // function, update the type of the resulting expression accordingly.
1023      if (FromType->getAs<FunctionType>())
1024        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
1025          if (UnOp->getOpcode() == UO_AddrOf)
1026            FromType = S.Context.getPointerType(FromType);
1027
1028      // Check that we've computed the proper type after overload resolution.
1029      assert(S.Context.hasSameType(FromType,
1030            S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1031    } else {
1032      return false;
1033    }
1034  }
1035  // Lvalue-to-rvalue conversion (C++ 4.1):
1036  //   An lvalue (3.10) of a non-function, non-array type T can be
1037  //   converted to an rvalue.
1038  bool argIsLValue = From->isLValue();
1039  if (argIsLValue &&
1040      !FromType->isFunctionType() && !FromType->isArrayType() &&
1041      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1042    SCS.First = ICK_Lvalue_To_Rvalue;
1043
1044    // If T is a non-class type, the type of the rvalue is the
1045    // cv-unqualified version of T. Otherwise, the type of the rvalue
1046    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1047    // just strip the qualifiers because they don't matter.
1048    FromType = FromType.getUnqualifiedType();
1049  } else if (FromType->isArrayType()) {
1050    // Array-to-pointer conversion (C++ 4.2)
1051    SCS.First = ICK_Array_To_Pointer;
1052
1053    // An lvalue or rvalue of type "array of N T" or "array of unknown
1054    // bound of T" can be converted to an rvalue of type "pointer to
1055    // T" (C++ 4.2p1).
1056    FromType = S.Context.getArrayDecayedType(FromType);
1057
1058    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1059      // This conversion is deprecated. (C++ D.4).
1060      SCS.DeprecatedStringLiteralToCharPtr = true;
1061
1062      // For the purpose of ranking in overload resolution
1063      // (13.3.3.1.1), this conversion is considered an
1064      // array-to-pointer conversion followed by a qualification
1065      // conversion (4.4). (C++ 4.2p2)
1066      SCS.Second = ICK_Identity;
1067      SCS.Third = ICK_Qualification;
1068      SCS.setAllToTypes(FromType);
1069      return true;
1070    }
1071  } else if (FromType->isFunctionType() && argIsLValue) {
1072    // Function-to-pointer conversion (C++ 4.3).
1073    SCS.First = ICK_Function_To_Pointer;
1074
1075    // An lvalue of function type T can be converted to an rvalue of
1076    // type "pointer to T." The result is a pointer to the
1077    // function. (C++ 4.3p1).
1078    FromType = S.Context.getPointerType(FromType);
1079  } else {
1080    // We don't require any conversions for the first step.
1081    SCS.First = ICK_Identity;
1082  }
1083  SCS.setToType(0, FromType);
1084
1085  // The second conversion can be an integral promotion, floating
1086  // point promotion, integral conversion, floating point conversion,
1087  // floating-integral conversion, pointer conversion,
1088  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1089  // For overloading in C, this can also be a "compatible-type"
1090  // conversion.
1091  bool IncompatibleObjC = false;
1092  ImplicitConversionKind SecondICK = ICK_Identity;
1093  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1094    // The unqualified versions of the types are the same: there's no
1095    // conversion to do.
1096    SCS.Second = ICK_Identity;
1097  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1098    // Integral promotion (C++ 4.5).
1099    SCS.Second = ICK_Integral_Promotion;
1100    FromType = ToType.getUnqualifiedType();
1101  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1102    // Floating point promotion (C++ 4.6).
1103    SCS.Second = ICK_Floating_Promotion;
1104    FromType = ToType.getUnqualifiedType();
1105  } else if (S.IsComplexPromotion(FromType, ToType)) {
1106    // Complex promotion (Clang extension)
1107    SCS.Second = ICK_Complex_Promotion;
1108    FromType = ToType.getUnqualifiedType();
1109  } else if (ToType->isBooleanType() &&
1110             (FromType->isArithmeticType() ||
1111              FromType->isAnyPointerType() ||
1112              FromType->isBlockPointerType() ||
1113              FromType->isMemberPointerType() ||
1114              FromType->isNullPtrType())) {
1115    // Boolean conversions (C++ 4.12).
1116    SCS.Second = ICK_Boolean_Conversion;
1117    FromType = S.Context.BoolTy;
1118  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1119             ToType->isIntegralType(S.Context)) {
1120    // Integral conversions (C++ 4.7).
1121    SCS.Second = ICK_Integral_Conversion;
1122    FromType = ToType.getUnqualifiedType();
1123  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1124    // Complex conversions (C99 6.3.1.6)
1125    SCS.Second = ICK_Complex_Conversion;
1126    FromType = ToType.getUnqualifiedType();
1127  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1128             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1129    // Complex-real conversions (C99 6.3.1.7)
1130    SCS.Second = ICK_Complex_Real;
1131    FromType = ToType.getUnqualifiedType();
1132  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1133    // Floating point conversions (C++ 4.8).
1134    SCS.Second = ICK_Floating_Conversion;
1135    FromType = ToType.getUnqualifiedType();
1136  } else if ((FromType->isRealFloatingType() &&
1137              ToType->isIntegralType(S.Context)) ||
1138             (FromType->isIntegralOrUnscopedEnumerationType() &&
1139              ToType->isRealFloatingType())) {
1140    // Floating-integral conversions (C++ 4.9).
1141    SCS.Second = ICK_Floating_Integral;
1142    FromType = ToType.getUnqualifiedType();
1143  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1144                                   FromType, IncompatibleObjC)) {
1145    // Pointer conversions (C++ 4.10).
1146    SCS.Second = ICK_Pointer_Conversion;
1147    SCS.IncompatibleObjC = IncompatibleObjC;
1148  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1149                                         InOverloadResolution, FromType)) {
1150    // Pointer to member conversions (4.11).
1151    SCS.Second = ICK_Pointer_Member;
1152  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1153    SCS.Second = SecondICK;
1154    FromType = ToType.getUnqualifiedType();
1155  } else if (!S.getLangOptions().CPlusPlus &&
1156             S.Context.typesAreCompatible(ToType, FromType)) {
1157    // Compatible conversions (Clang extension for C function overloading)
1158    SCS.Second = ICK_Compatible_Conversion;
1159    FromType = ToType.getUnqualifiedType();
1160  } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) {
1161    // Treat a conversion that strips "noreturn" as an identity conversion.
1162    SCS.Second = ICK_NoReturn_Adjustment;
1163  } else {
1164    // No second conversion required.
1165    SCS.Second = ICK_Identity;
1166  }
1167  SCS.setToType(1, FromType);
1168
1169  QualType CanonFrom;
1170  QualType CanonTo;
1171  // The third conversion can be a qualification conversion (C++ 4p1).
1172  if (S.IsQualificationConversion(FromType, ToType)) {
1173    SCS.Third = ICK_Qualification;
1174    FromType = ToType;
1175    CanonFrom = S.Context.getCanonicalType(FromType);
1176    CanonTo = S.Context.getCanonicalType(ToType);
1177  } else {
1178    // No conversion required
1179    SCS.Third = ICK_Identity;
1180
1181    // C++ [over.best.ics]p6:
1182    //   [...] Any difference in top-level cv-qualification is
1183    //   subsumed by the initialization itself and does not constitute
1184    //   a conversion. [...]
1185    CanonFrom = S.Context.getCanonicalType(FromType);
1186    CanonTo = S.Context.getCanonicalType(ToType);
1187    if (CanonFrom.getLocalUnqualifiedType()
1188                                       == CanonTo.getLocalUnqualifiedType() &&
1189        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1190         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1191      FromType = ToType;
1192      CanonFrom = CanonTo;
1193    }
1194  }
1195  SCS.setToType(2, FromType);
1196
1197  // If we have not converted the argument type to the parameter type,
1198  // this is a bad conversion sequence.
1199  if (CanonFrom != CanonTo)
1200    return false;
1201
1202  return true;
1203}
1204
1205/// IsIntegralPromotion - Determines whether the conversion from the
1206/// expression From (whose potentially-adjusted type is FromType) to
1207/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1208/// sets PromotedType to the promoted type.
1209bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1210  const BuiltinType *To = ToType->getAs<BuiltinType>();
1211  // All integers are built-in.
1212  if (!To) {
1213    return false;
1214  }
1215
1216  // An rvalue of type char, signed char, unsigned char, short int, or
1217  // unsigned short int can be converted to an rvalue of type int if
1218  // int can represent all the values of the source type; otherwise,
1219  // the source rvalue can be converted to an rvalue of type unsigned
1220  // int (C++ 4.5p1).
1221  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1222      !FromType->isEnumeralType()) {
1223    if (// We can promote any signed, promotable integer type to an int
1224        (FromType->isSignedIntegerType() ||
1225         // We can promote any unsigned integer type whose size is
1226         // less than int to an int.
1227         (!FromType->isSignedIntegerType() &&
1228          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1229      return To->getKind() == BuiltinType::Int;
1230    }
1231
1232    return To->getKind() == BuiltinType::UInt;
1233  }
1234
1235  // C++0x [conv.prom]p3:
1236  //   A prvalue of an unscoped enumeration type whose underlying type is not
1237  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1238  //   following types that can represent all the values of the enumeration
1239  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1240  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1241  //   long long int. If none of the types in that list can represent all the
1242  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1243  //   type can be converted to an rvalue a prvalue of the extended integer type
1244  //   with lowest integer conversion rank (4.13) greater than the rank of long
1245  //   long in which all the values of the enumeration can be represented. If
1246  //   there are two such extended types, the signed one is chosen.
1247  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1248    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1249    // provided for a scoped enumeration.
1250    if (FromEnumType->getDecl()->isScoped())
1251      return false;
1252
1253    // We have already pre-calculated the promotion type, so this is trivial.
1254    if (ToType->isIntegerType() &&
1255        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1256      return Context.hasSameUnqualifiedType(ToType,
1257                                FromEnumType->getDecl()->getPromotionType());
1258  }
1259
1260  // C++0x [conv.prom]p2:
1261  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1262  //   to an rvalue a prvalue of the first of the following types that can
1263  //   represent all the values of its underlying type: int, unsigned int,
1264  //   long int, unsigned long int, long long int, or unsigned long long int.
1265  //   If none of the types in that list can represent all the values of its
1266  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1267  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1268  //   type.
1269  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1270      ToType->isIntegerType()) {
1271    // Determine whether the type we're converting from is signed or
1272    // unsigned.
1273    bool FromIsSigned;
1274    uint64_t FromSize = Context.getTypeSize(FromType);
1275
1276    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1277    FromIsSigned = true;
1278
1279    // The types we'll try to promote to, in the appropriate
1280    // order. Try each of these types.
1281    QualType PromoteTypes[6] = {
1282      Context.IntTy, Context.UnsignedIntTy,
1283      Context.LongTy, Context.UnsignedLongTy ,
1284      Context.LongLongTy, Context.UnsignedLongLongTy
1285    };
1286    for (int Idx = 0; Idx < 6; ++Idx) {
1287      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1288      if (FromSize < ToSize ||
1289          (FromSize == ToSize &&
1290           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1291        // We found the type that we can promote to. If this is the
1292        // type we wanted, we have a promotion. Otherwise, no
1293        // promotion.
1294        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1295      }
1296    }
1297  }
1298
1299  // An rvalue for an integral bit-field (9.6) can be converted to an
1300  // rvalue of type int if int can represent all the values of the
1301  // bit-field; otherwise, it can be converted to unsigned int if
1302  // unsigned int can represent all the values of the bit-field. If
1303  // the bit-field is larger yet, no integral promotion applies to
1304  // it. If the bit-field has an enumerated type, it is treated as any
1305  // other value of that type for promotion purposes (C++ 4.5p3).
1306  // FIXME: We should delay checking of bit-fields until we actually perform the
1307  // conversion.
1308  using llvm::APSInt;
1309  if (From)
1310    if (FieldDecl *MemberDecl = From->getBitField()) {
1311      APSInt BitWidth;
1312      if (FromType->isIntegralType(Context) &&
1313          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1314        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1315        ToSize = Context.getTypeSize(ToType);
1316
1317        // Are we promoting to an int from a bitfield that fits in an int?
1318        if (BitWidth < ToSize ||
1319            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1320          return To->getKind() == BuiltinType::Int;
1321        }
1322
1323        // Are we promoting to an unsigned int from an unsigned bitfield
1324        // that fits into an unsigned int?
1325        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1326          return To->getKind() == BuiltinType::UInt;
1327        }
1328
1329        return false;
1330      }
1331    }
1332
1333  // An rvalue of type bool can be converted to an rvalue of type int,
1334  // with false becoming zero and true becoming one (C++ 4.5p4).
1335  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1336    return true;
1337  }
1338
1339  return false;
1340}
1341
1342/// IsFloatingPointPromotion - Determines whether the conversion from
1343/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1344/// returns true and sets PromotedType to the promoted type.
1345bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1346  /// An rvalue of type float can be converted to an rvalue of type
1347  /// double. (C++ 4.6p1).
1348  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1349    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1350      if (FromBuiltin->getKind() == BuiltinType::Float &&
1351          ToBuiltin->getKind() == BuiltinType::Double)
1352        return true;
1353
1354      // C99 6.3.1.5p1:
1355      //   When a float is promoted to double or long double, or a
1356      //   double is promoted to long double [...].
1357      if (!getLangOptions().CPlusPlus &&
1358          (FromBuiltin->getKind() == BuiltinType::Float ||
1359           FromBuiltin->getKind() == BuiltinType::Double) &&
1360          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1361        return true;
1362    }
1363
1364  return false;
1365}
1366
1367/// \brief Determine if a conversion is a complex promotion.
1368///
1369/// A complex promotion is defined as a complex -> complex conversion
1370/// where the conversion between the underlying real types is a
1371/// floating-point or integral promotion.
1372bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1373  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1374  if (!FromComplex)
1375    return false;
1376
1377  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1378  if (!ToComplex)
1379    return false;
1380
1381  return IsFloatingPointPromotion(FromComplex->getElementType(),
1382                                  ToComplex->getElementType()) ||
1383    IsIntegralPromotion(0, FromComplex->getElementType(),
1384                        ToComplex->getElementType());
1385}
1386
1387/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1388/// the pointer type FromPtr to a pointer to type ToPointee, with the
1389/// same type qualifiers as FromPtr has on its pointee type. ToType,
1390/// if non-empty, will be a pointer to ToType that may or may not have
1391/// the right set of qualifiers on its pointee.
1392static QualType
1393BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1394                                   QualType ToPointee, QualType ToType,
1395                                   ASTContext &Context) {
1396  assert((FromPtr->getTypeClass() == Type::Pointer ||
1397          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1398         "Invalid similarly-qualified pointer type");
1399
1400  /// \brief Conversions to 'id' subsume cv-qualifier conversions.
1401  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1402    return ToType.getUnqualifiedType();
1403
1404  QualType CanonFromPointee
1405    = Context.getCanonicalType(FromPtr->getPointeeType());
1406  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1407  Qualifiers Quals = CanonFromPointee.getQualifiers();
1408
1409  // Exact qualifier match -> return the pointer type we're converting to.
1410  if (CanonToPointee.getLocalQualifiers() == Quals) {
1411    // ToType is exactly what we need. Return it.
1412    if (!ToType.isNull())
1413      return ToType.getUnqualifiedType();
1414
1415    // Build a pointer to ToPointee. It has the right qualifiers
1416    // already.
1417    if (isa<ObjCObjectPointerType>(ToType))
1418      return Context.getObjCObjectPointerType(ToPointee);
1419    return Context.getPointerType(ToPointee);
1420  }
1421
1422  // Just build a canonical type that has the right qualifiers.
1423  QualType QualifiedCanonToPointee
1424    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1425
1426  if (isa<ObjCObjectPointerType>(ToType))
1427    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1428  return Context.getPointerType(QualifiedCanonToPointee);
1429}
1430
1431static bool isNullPointerConstantForConversion(Expr *Expr,
1432                                               bool InOverloadResolution,
1433                                               ASTContext &Context) {
1434  // Handle value-dependent integral null pointer constants correctly.
1435  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1436  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1437      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1438    return !InOverloadResolution;
1439
1440  return Expr->isNullPointerConstant(Context,
1441                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1442                                        : Expr::NPC_ValueDependentIsNull);
1443}
1444
1445/// IsPointerConversion - Determines whether the conversion of the
1446/// expression From, which has the (possibly adjusted) type FromType,
1447/// can be converted to the type ToType via a pointer conversion (C++
1448/// 4.10). If so, returns true and places the converted type (that
1449/// might differ from ToType in its cv-qualifiers at some level) into
1450/// ConvertedType.
1451///
1452/// This routine also supports conversions to and from block pointers
1453/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1454/// pointers to interfaces. FIXME: Once we've determined the
1455/// appropriate overloading rules for Objective-C, we may want to
1456/// split the Objective-C checks into a different routine; however,
1457/// GCC seems to consider all of these conversions to be pointer
1458/// conversions, so for now they live here. IncompatibleObjC will be
1459/// set if the conversion is an allowed Objective-C conversion that
1460/// should result in a warning.
1461bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1462                               bool InOverloadResolution,
1463                               QualType& ConvertedType,
1464                               bool &IncompatibleObjC) {
1465  IncompatibleObjC = false;
1466  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1467                              IncompatibleObjC))
1468    return true;
1469
1470  // Conversion from a null pointer constant to any Objective-C pointer type.
1471  if (ToType->isObjCObjectPointerType() &&
1472      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1473    ConvertedType = ToType;
1474    return true;
1475  }
1476
1477  // Blocks: Block pointers can be converted to void*.
1478  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1479      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1480    ConvertedType = ToType;
1481    return true;
1482  }
1483  // Blocks: A null pointer constant can be converted to a block
1484  // pointer type.
1485  if (ToType->isBlockPointerType() &&
1486      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1487    ConvertedType = ToType;
1488    return true;
1489  }
1490
1491  // If the left-hand-side is nullptr_t, the right side can be a null
1492  // pointer constant.
1493  if (ToType->isNullPtrType() &&
1494      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1495    ConvertedType = ToType;
1496    return true;
1497  }
1498
1499  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1500  if (!ToTypePtr)
1501    return false;
1502
1503  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1504  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1505    ConvertedType = ToType;
1506    return true;
1507  }
1508
1509  // Beyond this point, both types need to be pointers
1510  // , including objective-c pointers.
1511  QualType ToPointeeType = ToTypePtr->getPointeeType();
1512  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1513    ConvertedType = BuildSimilarlyQualifiedPointerType(
1514                                      FromType->getAs<ObjCObjectPointerType>(),
1515                                                       ToPointeeType,
1516                                                       ToType, Context);
1517    return true;
1518  }
1519  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1520  if (!FromTypePtr)
1521    return false;
1522
1523  QualType FromPointeeType = FromTypePtr->getPointeeType();
1524
1525  // If the unqualified pointee types are the same, this can't be a
1526  // pointer conversion, so don't do all of the work below.
1527  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1528    return false;
1529
1530  // An rvalue of type "pointer to cv T," where T is an object type,
1531  // can be converted to an rvalue of type "pointer to cv void" (C++
1532  // 4.10p2).
1533  if (FromPointeeType->isIncompleteOrObjectType() &&
1534      ToPointeeType->isVoidType()) {
1535    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1536                                                       ToPointeeType,
1537                                                       ToType, Context);
1538    return true;
1539  }
1540
1541  // When we're overloading in C, we allow a special kind of pointer
1542  // conversion for compatible-but-not-identical pointee types.
1543  if (!getLangOptions().CPlusPlus &&
1544      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1545    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1546                                                       ToPointeeType,
1547                                                       ToType, Context);
1548    return true;
1549  }
1550
1551  // C++ [conv.ptr]p3:
1552  //
1553  //   An rvalue of type "pointer to cv D," where D is a class type,
1554  //   can be converted to an rvalue of type "pointer to cv B," where
1555  //   B is a base class (clause 10) of D. If B is an inaccessible
1556  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1557  //   necessitates this conversion is ill-formed. The result of the
1558  //   conversion is a pointer to the base class sub-object of the
1559  //   derived class object. The null pointer value is converted to
1560  //   the null pointer value of the destination type.
1561  //
1562  // Note that we do not check for ambiguity or inaccessibility
1563  // here. That is handled by CheckPointerConversion.
1564  if (getLangOptions().CPlusPlus &&
1565      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1566      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1567      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1568      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1569    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1570                                                       ToPointeeType,
1571                                                       ToType, Context);
1572    return true;
1573  }
1574
1575  return false;
1576}
1577
1578/// isObjCPointerConversion - Determines whether this is an
1579/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1580/// with the same arguments and return values.
1581bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1582                                   QualType& ConvertedType,
1583                                   bool &IncompatibleObjC) {
1584  if (!getLangOptions().ObjC1)
1585    return false;
1586
1587  // First, we handle all conversions on ObjC object pointer types.
1588  const ObjCObjectPointerType* ToObjCPtr =
1589    ToType->getAs<ObjCObjectPointerType>();
1590  const ObjCObjectPointerType *FromObjCPtr =
1591    FromType->getAs<ObjCObjectPointerType>();
1592
1593  if (ToObjCPtr && FromObjCPtr) {
1594    // If the pointee types are the same (ignoring qualifications),
1595    // then this is not a pointer conversion.
1596    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1597                                       FromObjCPtr->getPointeeType()))
1598      return false;
1599
1600    // Objective C++: We're able to convert between "id" or "Class" and a
1601    // pointer to any interface (in both directions).
1602    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1603      ConvertedType = ToType;
1604      return true;
1605    }
1606    // Conversions with Objective-C's id<...>.
1607    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1608         ToObjCPtr->isObjCQualifiedIdType()) &&
1609        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1610                                                  /*compare=*/false)) {
1611      ConvertedType = ToType;
1612      return true;
1613    }
1614    // Objective C++: We're able to convert from a pointer to an
1615    // interface to a pointer to a different interface.
1616    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1617      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1618      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1619      if (getLangOptions().CPlusPlus && LHS && RHS &&
1620          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1621                                                FromObjCPtr->getPointeeType()))
1622        return false;
1623      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1624                                                   ToObjCPtr->getPointeeType(),
1625                                                         ToType, Context);
1626      return true;
1627    }
1628
1629    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1630      // Okay: this is some kind of implicit downcast of Objective-C
1631      // interfaces, which is permitted. However, we're going to
1632      // complain about it.
1633      IncompatibleObjC = true;
1634      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1635                                                   ToObjCPtr->getPointeeType(),
1636                                                         ToType, Context);
1637      return true;
1638    }
1639  }
1640  // Beyond this point, both types need to be C pointers or block pointers.
1641  QualType ToPointeeType;
1642  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1643    ToPointeeType = ToCPtr->getPointeeType();
1644  else if (const BlockPointerType *ToBlockPtr =
1645            ToType->getAs<BlockPointerType>()) {
1646    // Objective C++: We're able to convert from a pointer to any object
1647    // to a block pointer type.
1648    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1649      ConvertedType = ToType;
1650      return true;
1651    }
1652    ToPointeeType = ToBlockPtr->getPointeeType();
1653  }
1654  else if (FromType->getAs<BlockPointerType>() &&
1655           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1656    // Objective C++: We're able to convert from a block pointer type to a
1657    // pointer to any object.
1658    ConvertedType = ToType;
1659    return true;
1660  }
1661  else
1662    return false;
1663
1664  QualType FromPointeeType;
1665  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1666    FromPointeeType = FromCPtr->getPointeeType();
1667  else if (const BlockPointerType *FromBlockPtr =
1668           FromType->getAs<BlockPointerType>())
1669    FromPointeeType = FromBlockPtr->getPointeeType();
1670  else
1671    return false;
1672
1673  // If we have pointers to pointers, recursively check whether this
1674  // is an Objective-C conversion.
1675  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1676      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1677                              IncompatibleObjC)) {
1678    // We always complain about this conversion.
1679    IncompatibleObjC = true;
1680    ConvertedType = Context.getPointerType(ConvertedType);
1681    return true;
1682  }
1683  // Allow conversion of pointee being objective-c pointer to another one;
1684  // as in I* to id.
1685  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1686      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1687      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1688                              IncompatibleObjC)) {
1689    ConvertedType = Context.getPointerType(ConvertedType);
1690    return true;
1691  }
1692
1693  // If we have pointers to functions or blocks, check whether the only
1694  // differences in the argument and result types are in Objective-C
1695  // pointer conversions. If so, we permit the conversion (but
1696  // complain about it).
1697  const FunctionProtoType *FromFunctionType
1698    = FromPointeeType->getAs<FunctionProtoType>();
1699  const FunctionProtoType *ToFunctionType
1700    = ToPointeeType->getAs<FunctionProtoType>();
1701  if (FromFunctionType && ToFunctionType) {
1702    // If the function types are exactly the same, this isn't an
1703    // Objective-C pointer conversion.
1704    if (Context.getCanonicalType(FromPointeeType)
1705          == Context.getCanonicalType(ToPointeeType))
1706      return false;
1707
1708    // Perform the quick checks that will tell us whether these
1709    // function types are obviously different.
1710    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1711        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1712        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1713      return false;
1714
1715    bool HasObjCConversion = false;
1716    if (Context.getCanonicalType(FromFunctionType->getResultType())
1717          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1718      // Okay, the types match exactly. Nothing to do.
1719    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1720                                       ToFunctionType->getResultType(),
1721                                       ConvertedType, IncompatibleObjC)) {
1722      // Okay, we have an Objective-C pointer conversion.
1723      HasObjCConversion = true;
1724    } else {
1725      // Function types are too different. Abort.
1726      return false;
1727    }
1728
1729    // Check argument types.
1730    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1731         ArgIdx != NumArgs; ++ArgIdx) {
1732      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1733      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1734      if (Context.getCanonicalType(FromArgType)
1735            == Context.getCanonicalType(ToArgType)) {
1736        // Okay, the types match exactly. Nothing to do.
1737      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1738                                         ConvertedType, IncompatibleObjC)) {
1739        // Okay, we have an Objective-C pointer conversion.
1740        HasObjCConversion = true;
1741      } else {
1742        // Argument types are too different. Abort.
1743        return false;
1744      }
1745    }
1746
1747    if (HasObjCConversion) {
1748      // We had an Objective-C conversion. Allow this pointer
1749      // conversion, but complain about it.
1750      ConvertedType = ToType;
1751      IncompatibleObjC = true;
1752      return true;
1753    }
1754  }
1755
1756  return false;
1757}
1758
1759/// FunctionArgTypesAreEqual - This routine checks two function proto types
1760/// for equlity of their argument types. Caller has already checked that
1761/// they have same number of arguments. This routine assumes that Objective-C
1762/// pointer types which only differ in their protocol qualifiers are equal.
1763bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
1764                                    const FunctionProtoType *NewType) {
1765  if (!getLangOptions().ObjC1)
1766    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1767                      NewType->arg_type_begin());
1768
1769  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1770       N = NewType->arg_type_begin(),
1771       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1772    QualType ToType = (*O);
1773    QualType FromType = (*N);
1774    if (ToType != FromType) {
1775      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1776        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1777          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1778               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1779              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1780               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1781            continue;
1782      }
1783      else if (const ObjCObjectPointerType *PTTo =
1784                 ToType->getAs<ObjCObjectPointerType>()) {
1785        if (const ObjCObjectPointerType *PTFr =
1786              FromType->getAs<ObjCObjectPointerType>())
1787          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1788            continue;
1789      }
1790      return false;
1791    }
1792  }
1793  return true;
1794}
1795
1796/// CheckPointerConversion - Check the pointer conversion from the
1797/// expression From to the type ToType. This routine checks for
1798/// ambiguous or inaccessible derived-to-base pointer
1799/// conversions for which IsPointerConversion has already returned
1800/// true. It returns true and produces a diagnostic if there was an
1801/// error, or returns false otherwise.
1802bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1803                                  CastKind &Kind,
1804                                  CXXCastPath& BasePath,
1805                                  bool IgnoreBaseAccess) {
1806  QualType FromType = From->getType();
1807  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
1808
1809  Kind = CK_BitCast;
1810
1811  if (CXXBoolLiteralExpr* LitBool
1812                          = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
1813    if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false)
1814      Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
1815        << ToType;
1816
1817  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1818    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1819      QualType FromPointeeType = FromPtrType->getPointeeType(),
1820               ToPointeeType   = ToPtrType->getPointeeType();
1821
1822      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1823          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1824        // We must have a derived-to-base conversion. Check an
1825        // ambiguous or inaccessible conversion.
1826        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1827                                         From->getExprLoc(),
1828                                         From->getSourceRange(), &BasePath,
1829                                         IgnoreBaseAccess))
1830          return true;
1831
1832        // The conversion was successful.
1833        Kind = CK_DerivedToBase;
1834      }
1835    }
1836  if (const ObjCObjectPointerType *FromPtrType =
1837        FromType->getAs<ObjCObjectPointerType>()) {
1838    if (const ObjCObjectPointerType *ToPtrType =
1839          ToType->getAs<ObjCObjectPointerType>()) {
1840      // Objective-C++ conversions are always okay.
1841      // FIXME: We should have a different class of conversions for the
1842      // Objective-C++ implicit conversions.
1843      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1844        return false;
1845    }
1846  }
1847
1848  // We shouldn't fall into this case unless it's valid for other
1849  // reasons.
1850  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1851    Kind = CK_NullToPointer;
1852
1853  return false;
1854}
1855
1856/// IsMemberPointerConversion - Determines whether the conversion of the
1857/// expression From, which has the (possibly adjusted) type FromType, can be
1858/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1859/// If so, returns true and places the converted type (that might differ from
1860/// ToType in its cv-qualifiers at some level) into ConvertedType.
1861bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1862                                     QualType ToType,
1863                                     bool InOverloadResolution,
1864                                     QualType &ConvertedType) {
1865  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1866  if (!ToTypePtr)
1867    return false;
1868
1869  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1870  if (From->isNullPointerConstant(Context,
1871                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1872                                        : Expr::NPC_ValueDependentIsNull)) {
1873    ConvertedType = ToType;
1874    return true;
1875  }
1876
1877  // Otherwise, both types have to be member pointers.
1878  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1879  if (!FromTypePtr)
1880    return false;
1881
1882  // A pointer to member of B can be converted to a pointer to member of D,
1883  // where D is derived from B (C++ 4.11p2).
1884  QualType FromClass(FromTypePtr->getClass(), 0);
1885  QualType ToClass(ToTypePtr->getClass(), 0);
1886
1887  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
1888      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
1889      IsDerivedFrom(ToClass, FromClass)) {
1890    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1891                                                 ToClass.getTypePtr());
1892    return true;
1893  }
1894
1895  return false;
1896}
1897
1898/// CheckMemberPointerConversion - Check the member pointer conversion from the
1899/// expression From to the type ToType. This routine checks for ambiguous or
1900/// virtual or inaccessible base-to-derived member pointer conversions
1901/// for which IsMemberPointerConversion has already returned true. It returns
1902/// true and produces a diagnostic if there was an error, or returns false
1903/// otherwise.
1904bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1905                                        CastKind &Kind,
1906                                        CXXCastPath &BasePath,
1907                                        bool IgnoreBaseAccess) {
1908  QualType FromType = From->getType();
1909  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1910  if (!FromPtrType) {
1911    // This must be a null pointer to member pointer conversion
1912    assert(From->isNullPointerConstant(Context,
1913                                       Expr::NPC_ValueDependentIsNull) &&
1914           "Expr must be null pointer constant!");
1915    Kind = CK_NullToMemberPointer;
1916    return false;
1917  }
1918
1919  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1920  assert(ToPtrType && "No member pointer cast has a target type "
1921                      "that is not a member pointer.");
1922
1923  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1924  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1925
1926  // FIXME: What about dependent types?
1927  assert(FromClass->isRecordType() && "Pointer into non-class.");
1928  assert(ToClass->isRecordType() && "Pointer into non-class.");
1929
1930  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1931                     /*DetectVirtual=*/true);
1932  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1933  assert(DerivationOkay &&
1934         "Should not have been called if derivation isn't OK.");
1935  (void)DerivationOkay;
1936
1937  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1938                                  getUnqualifiedType())) {
1939    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1940    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1941      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1942    return true;
1943  }
1944
1945  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1946    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1947      << FromClass << ToClass << QualType(VBase, 0)
1948      << From->getSourceRange();
1949    return true;
1950  }
1951
1952  if (!IgnoreBaseAccess)
1953    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1954                         Paths.front(),
1955                         diag::err_downcast_from_inaccessible_base);
1956
1957  // Must be a base to derived member conversion.
1958  BuildBasePathArray(Paths, BasePath);
1959  Kind = CK_BaseToDerivedMemberPointer;
1960  return false;
1961}
1962
1963/// IsQualificationConversion - Determines whether the conversion from
1964/// an rvalue of type FromType to ToType is a qualification conversion
1965/// (C++ 4.4).
1966bool
1967Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1968  FromType = Context.getCanonicalType(FromType);
1969  ToType = Context.getCanonicalType(ToType);
1970
1971  // If FromType and ToType are the same type, this is not a
1972  // qualification conversion.
1973  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1974    return false;
1975
1976  // (C++ 4.4p4):
1977  //   A conversion can add cv-qualifiers at levels other than the first
1978  //   in multi-level pointers, subject to the following rules: [...]
1979  bool PreviousToQualsIncludeConst = true;
1980  bool UnwrappedAnyPointer = false;
1981  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
1982    // Within each iteration of the loop, we check the qualifiers to
1983    // determine if this still looks like a qualification
1984    // conversion. Then, if all is well, we unwrap one more level of
1985    // pointers or pointers-to-members and do it all again
1986    // until there are no more pointers or pointers-to-members left to
1987    // unwrap.
1988    UnwrappedAnyPointer = true;
1989
1990    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1991    //      2,j, and similarly for volatile.
1992    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1993      return false;
1994
1995    //   -- if the cv 1,j and cv 2,j are different, then const is in
1996    //      every cv for 0 < k < j.
1997    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1998        && !PreviousToQualsIncludeConst)
1999      return false;
2000
2001    // Keep track of whether all prior cv-qualifiers in the "to" type
2002    // include const.
2003    PreviousToQualsIncludeConst
2004      = PreviousToQualsIncludeConst && ToType.isConstQualified();
2005  }
2006
2007  // We are left with FromType and ToType being the pointee types
2008  // after unwrapping the original FromType and ToType the same number
2009  // of types. If we unwrapped any pointers, and if FromType and
2010  // ToType have the same unqualified type (since we checked
2011  // qualifiers above), then this is a qualification conversion.
2012  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2013}
2014
2015/// Determines whether there is a user-defined conversion sequence
2016/// (C++ [over.ics.user]) that converts expression From to the type
2017/// ToType. If such a conversion exists, User will contain the
2018/// user-defined conversion sequence that performs such a conversion
2019/// and this routine will return true. Otherwise, this routine returns
2020/// false and User is unspecified.
2021///
2022/// \param AllowExplicit  true if the conversion should consider C++0x
2023/// "explicit" conversion functions as well as non-explicit conversion
2024/// functions (C++0x [class.conv.fct]p2).
2025static OverloadingResult
2026IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2027                        UserDefinedConversionSequence& User,
2028                        OverloadCandidateSet& CandidateSet,
2029                        bool AllowExplicit) {
2030  // Whether we will only visit constructors.
2031  bool ConstructorsOnly = false;
2032
2033  // If the type we are conversion to is a class type, enumerate its
2034  // constructors.
2035  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2036    // C++ [over.match.ctor]p1:
2037    //   When objects of class type are direct-initialized (8.5), or
2038    //   copy-initialized from an expression of the same or a
2039    //   derived class type (8.5), overload resolution selects the
2040    //   constructor. [...] For copy-initialization, the candidate
2041    //   functions are all the converting constructors (12.3.1) of
2042    //   that class. The argument list is the expression-list within
2043    //   the parentheses of the initializer.
2044    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2045        (From->getType()->getAs<RecordType>() &&
2046         S.IsDerivedFrom(From->getType(), ToType)))
2047      ConstructorsOnly = true;
2048
2049    if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) {
2050      // We're not going to find any constructors.
2051    } else if (CXXRecordDecl *ToRecordDecl
2052                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2053      DeclContext::lookup_iterator Con, ConEnd;
2054      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2055           Con != ConEnd; ++Con) {
2056        NamedDecl *D = *Con;
2057        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2058
2059        // Find the constructor (which may be a template).
2060        CXXConstructorDecl *Constructor = 0;
2061        FunctionTemplateDecl *ConstructorTmpl
2062          = dyn_cast<FunctionTemplateDecl>(D);
2063        if (ConstructorTmpl)
2064          Constructor
2065            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2066        else
2067          Constructor = cast<CXXConstructorDecl>(D);
2068
2069        if (!Constructor->isInvalidDecl() &&
2070            Constructor->isConvertingConstructor(AllowExplicit)) {
2071          if (ConstructorTmpl)
2072            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2073                                           /*ExplicitArgs*/ 0,
2074                                           &From, 1, CandidateSet,
2075                                           /*SuppressUserConversions=*/
2076                                             !ConstructorsOnly);
2077          else
2078            // Allow one user-defined conversion when user specifies a
2079            // From->ToType conversion via an static cast (c-style, etc).
2080            S.AddOverloadCandidate(Constructor, FoundDecl,
2081                                   &From, 1, CandidateSet,
2082                                   /*SuppressUserConversions=*/
2083                                     !ConstructorsOnly);
2084        }
2085      }
2086    }
2087  }
2088
2089  // Enumerate conversion functions, if we're allowed to.
2090  if (ConstructorsOnly) {
2091  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2092                                   S.PDiag(0) << From->getSourceRange())) {
2093    // No conversion functions from incomplete types.
2094  } else if (const RecordType *FromRecordType
2095                                   = From->getType()->getAs<RecordType>()) {
2096    if (CXXRecordDecl *FromRecordDecl
2097         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2098      // Add all of the conversion functions as candidates.
2099      const UnresolvedSetImpl *Conversions
2100        = FromRecordDecl->getVisibleConversionFunctions();
2101      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2102             E = Conversions->end(); I != E; ++I) {
2103        DeclAccessPair FoundDecl = I.getPair();
2104        NamedDecl *D = FoundDecl.getDecl();
2105        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2106        if (isa<UsingShadowDecl>(D))
2107          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2108
2109        CXXConversionDecl *Conv;
2110        FunctionTemplateDecl *ConvTemplate;
2111        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2112          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2113        else
2114          Conv = cast<CXXConversionDecl>(D);
2115
2116        if (AllowExplicit || !Conv->isExplicit()) {
2117          if (ConvTemplate)
2118            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2119                                             ActingContext, From, ToType,
2120                                             CandidateSet);
2121          else
2122            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2123                                     From, ToType, CandidateSet);
2124        }
2125      }
2126    }
2127  }
2128
2129  OverloadCandidateSet::iterator Best;
2130  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2131  case OR_Success:
2132    // Record the standard conversion we used and the conversion function.
2133    if (CXXConstructorDecl *Constructor
2134          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2135      // C++ [over.ics.user]p1:
2136      //   If the user-defined conversion is specified by a
2137      //   constructor (12.3.1), the initial standard conversion
2138      //   sequence converts the source type to the type required by
2139      //   the argument of the constructor.
2140      //
2141      QualType ThisType = Constructor->getThisType(S.Context);
2142      if (Best->Conversions[0].isEllipsis())
2143        User.EllipsisConversion = true;
2144      else {
2145        User.Before = Best->Conversions[0].Standard;
2146        User.EllipsisConversion = false;
2147      }
2148      User.ConversionFunction = Constructor;
2149      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2150      User.After.setAsIdentityConversion();
2151      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2152      User.After.setAllToTypes(ToType);
2153      return OR_Success;
2154    } else if (CXXConversionDecl *Conversion
2155                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2156      // C++ [over.ics.user]p1:
2157      //
2158      //   [...] If the user-defined conversion is specified by a
2159      //   conversion function (12.3.2), the initial standard
2160      //   conversion sequence converts the source type to the
2161      //   implicit object parameter of the conversion function.
2162      User.Before = Best->Conversions[0].Standard;
2163      User.ConversionFunction = Conversion;
2164      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2165      User.EllipsisConversion = false;
2166
2167      // C++ [over.ics.user]p2:
2168      //   The second standard conversion sequence converts the
2169      //   result of the user-defined conversion to the target type
2170      //   for the sequence. Since an implicit conversion sequence
2171      //   is an initialization, the special rules for
2172      //   initialization by user-defined conversion apply when
2173      //   selecting the best user-defined conversion for a
2174      //   user-defined conversion sequence (see 13.3.3 and
2175      //   13.3.3.1).
2176      User.After = Best->FinalConversion;
2177      return OR_Success;
2178    } else {
2179      llvm_unreachable("Not a constructor or conversion function?");
2180      return OR_No_Viable_Function;
2181    }
2182
2183  case OR_No_Viable_Function:
2184    return OR_No_Viable_Function;
2185  case OR_Deleted:
2186    // No conversion here! We're done.
2187    return OR_Deleted;
2188
2189  case OR_Ambiguous:
2190    return OR_Ambiguous;
2191  }
2192
2193  return OR_No_Viable_Function;
2194}
2195
2196bool
2197Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2198  ImplicitConversionSequence ICS;
2199  OverloadCandidateSet CandidateSet(From->getExprLoc());
2200  OverloadingResult OvResult =
2201    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2202                            CandidateSet, false);
2203  if (OvResult == OR_Ambiguous)
2204    Diag(From->getSourceRange().getBegin(),
2205         diag::err_typecheck_ambiguous_condition)
2206          << From->getType() << ToType << From->getSourceRange();
2207  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2208    Diag(From->getSourceRange().getBegin(),
2209         diag::err_typecheck_nonviable_condition)
2210    << From->getType() << ToType << From->getSourceRange();
2211  else
2212    return false;
2213  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2214  return true;
2215}
2216
2217/// CompareImplicitConversionSequences - Compare two implicit
2218/// conversion sequences to determine whether one is better than the
2219/// other or if they are indistinguishable (C++ 13.3.3.2).
2220static ImplicitConversionSequence::CompareKind
2221CompareImplicitConversionSequences(Sema &S,
2222                                   const ImplicitConversionSequence& ICS1,
2223                                   const ImplicitConversionSequence& ICS2)
2224{
2225  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2226  // conversion sequences (as defined in 13.3.3.1)
2227  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2228  //      conversion sequence than a user-defined conversion sequence or
2229  //      an ellipsis conversion sequence, and
2230  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2231  //      conversion sequence than an ellipsis conversion sequence
2232  //      (13.3.3.1.3).
2233  //
2234  // C++0x [over.best.ics]p10:
2235  //   For the purpose of ranking implicit conversion sequences as
2236  //   described in 13.3.3.2, the ambiguous conversion sequence is
2237  //   treated as a user-defined sequence that is indistinguishable
2238  //   from any other user-defined conversion sequence.
2239  if (ICS1.getKindRank() < ICS2.getKindRank())
2240    return ImplicitConversionSequence::Better;
2241  else if (ICS2.getKindRank() < ICS1.getKindRank())
2242    return ImplicitConversionSequence::Worse;
2243
2244  // The following checks require both conversion sequences to be of
2245  // the same kind.
2246  if (ICS1.getKind() != ICS2.getKind())
2247    return ImplicitConversionSequence::Indistinguishable;
2248
2249  // Two implicit conversion sequences of the same form are
2250  // indistinguishable conversion sequences unless one of the
2251  // following rules apply: (C++ 13.3.3.2p3):
2252  if (ICS1.isStandard())
2253    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2254  else if (ICS1.isUserDefined()) {
2255    // User-defined conversion sequence U1 is a better conversion
2256    // sequence than another user-defined conversion sequence U2 if
2257    // they contain the same user-defined conversion function or
2258    // constructor and if the second standard conversion sequence of
2259    // U1 is better than the second standard conversion sequence of
2260    // U2 (C++ 13.3.3.2p3).
2261    if (ICS1.UserDefined.ConversionFunction ==
2262          ICS2.UserDefined.ConversionFunction)
2263      return CompareStandardConversionSequences(S,
2264                                                ICS1.UserDefined.After,
2265                                                ICS2.UserDefined.After);
2266  }
2267
2268  return ImplicitConversionSequence::Indistinguishable;
2269}
2270
2271static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2272  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2273    Qualifiers Quals;
2274    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2275    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2276  }
2277
2278  return Context.hasSameUnqualifiedType(T1, T2);
2279}
2280
2281// Per 13.3.3.2p3, compare the given standard conversion sequences to
2282// determine if one is a proper subset of the other.
2283static ImplicitConversionSequence::CompareKind
2284compareStandardConversionSubsets(ASTContext &Context,
2285                                 const StandardConversionSequence& SCS1,
2286                                 const StandardConversionSequence& SCS2) {
2287  ImplicitConversionSequence::CompareKind Result
2288    = ImplicitConversionSequence::Indistinguishable;
2289
2290  // the identity conversion sequence is considered to be a subsequence of
2291  // any non-identity conversion sequence
2292  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2293    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2294      return ImplicitConversionSequence::Better;
2295    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2296      return ImplicitConversionSequence::Worse;
2297  }
2298
2299  if (SCS1.Second != SCS2.Second) {
2300    if (SCS1.Second == ICK_Identity)
2301      Result = ImplicitConversionSequence::Better;
2302    else if (SCS2.Second == ICK_Identity)
2303      Result = ImplicitConversionSequence::Worse;
2304    else
2305      return ImplicitConversionSequence::Indistinguishable;
2306  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2307    return ImplicitConversionSequence::Indistinguishable;
2308
2309  if (SCS1.Third == SCS2.Third) {
2310    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2311                             : ImplicitConversionSequence::Indistinguishable;
2312  }
2313
2314  if (SCS1.Third == ICK_Identity)
2315    return Result == ImplicitConversionSequence::Worse
2316             ? ImplicitConversionSequence::Indistinguishable
2317             : ImplicitConversionSequence::Better;
2318
2319  if (SCS2.Third == ICK_Identity)
2320    return Result == ImplicitConversionSequence::Better
2321             ? ImplicitConversionSequence::Indistinguishable
2322             : ImplicitConversionSequence::Worse;
2323
2324  return ImplicitConversionSequence::Indistinguishable;
2325}
2326
2327/// CompareStandardConversionSequences - Compare two standard
2328/// conversion sequences to determine whether one is better than the
2329/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2330static ImplicitConversionSequence::CompareKind
2331CompareStandardConversionSequences(Sema &S,
2332                                   const StandardConversionSequence& SCS1,
2333                                   const StandardConversionSequence& SCS2)
2334{
2335  // Standard conversion sequence S1 is a better conversion sequence
2336  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2337
2338  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2339  //     sequences in the canonical form defined by 13.3.3.1.1,
2340  //     excluding any Lvalue Transformation; the identity conversion
2341  //     sequence is considered to be a subsequence of any
2342  //     non-identity conversion sequence) or, if not that,
2343  if (ImplicitConversionSequence::CompareKind CK
2344        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2345    return CK;
2346
2347  //  -- the rank of S1 is better than the rank of S2 (by the rules
2348  //     defined below), or, if not that,
2349  ImplicitConversionRank Rank1 = SCS1.getRank();
2350  ImplicitConversionRank Rank2 = SCS2.getRank();
2351  if (Rank1 < Rank2)
2352    return ImplicitConversionSequence::Better;
2353  else if (Rank2 < Rank1)
2354    return ImplicitConversionSequence::Worse;
2355
2356  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2357  // are indistinguishable unless one of the following rules
2358  // applies:
2359
2360  //   A conversion that is not a conversion of a pointer, or
2361  //   pointer to member, to bool is better than another conversion
2362  //   that is such a conversion.
2363  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2364    return SCS2.isPointerConversionToBool()
2365             ? ImplicitConversionSequence::Better
2366             : ImplicitConversionSequence::Worse;
2367
2368  // C++ [over.ics.rank]p4b2:
2369  //
2370  //   If class B is derived directly or indirectly from class A,
2371  //   conversion of B* to A* is better than conversion of B* to
2372  //   void*, and conversion of A* to void* is better than conversion
2373  //   of B* to void*.
2374  bool SCS1ConvertsToVoid
2375    = SCS1.isPointerConversionToVoidPointer(S.Context);
2376  bool SCS2ConvertsToVoid
2377    = SCS2.isPointerConversionToVoidPointer(S.Context);
2378  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2379    // Exactly one of the conversion sequences is a conversion to
2380    // a void pointer; it's the worse conversion.
2381    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2382                              : ImplicitConversionSequence::Worse;
2383  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2384    // Neither conversion sequence converts to a void pointer; compare
2385    // their derived-to-base conversions.
2386    if (ImplicitConversionSequence::CompareKind DerivedCK
2387          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2388      return DerivedCK;
2389  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2390    // Both conversion sequences are conversions to void
2391    // pointers. Compare the source types to determine if there's an
2392    // inheritance relationship in their sources.
2393    QualType FromType1 = SCS1.getFromType();
2394    QualType FromType2 = SCS2.getFromType();
2395
2396    // Adjust the types we're converting from via the array-to-pointer
2397    // conversion, if we need to.
2398    if (SCS1.First == ICK_Array_To_Pointer)
2399      FromType1 = S.Context.getArrayDecayedType(FromType1);
2400    if (SCS2.First == ICK_Array_To_Pointer)
2401      FromType2 = S.Context.getArrayDecayedType(FromType2);
2402
2403    QualType FromPointee1
2404      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2405    QualType FromPointee2
2406      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2407
2408    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2409      return ImplicitConversionSequence::Better;
2410    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2411      return ImplicitConversionSequence::Worse;
2412
2413    // Objective-C++: If one interface is more specific than the
2414    // other, it is the better one.
2415    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2416    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2417    if (FromIface1 && FromIface1) {
2418      if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2419        return ImplicitConversionSequence::Better;
2420      else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2421        return ImplicitConversionSequence::Worse;
2422    }
2423  }
2424
2425  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2426  // bullet 3).
2427  if (ImplicitConversionSequence::CompareKind QualCK
2428        = CompareQualificationConversions(S, SCS1, SCS2))
2429    return QualCK;
2430
2431  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2432    // C++0x [over.ics.rank]p3b4:
2433    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2434    //      implicit object parameter of a non-static member function declared
2435    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2436    //      rvalue and S2 binds an lvalue reference.
2437    // FIXME: Rvalue references. We don't know if we're dealing with the
2438    // implicit object parameter, or if the member function in this case has a
2439    // ref qualifier. (Of course, we don't have ref qualifiers yet.)
2440    if (SCS1.RRefBinding != SCS2.RRefBinding)
2441      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2442                              : ImplicitConversionSequence::Worse;
2443
2444    // C++ [over.ics.rank]p3b4:
2445    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2446    //      which the references refer are the same type except for
2447    //      top-level cv-qualifiers, and the type to which the reference
2448    //      initialized by S2 refers is more cv-qualified than the type
2449    //      to which the reference initialized by S1 refers.
2450    QualType T1 = SCS1.getToType(2);
2451    QualType T2 = SCS2.getToType(2);
2452    T1 = S.Context.getCanonicalType(T1);
2453    T2 = S.Context.getCanonicalType(T2);
2454    Qualifiers T1Quals, T2Quals;
2455    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2456    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2457    if (UnqualT1 == UnqualT2) {
2458      // If the type is an array type, promote the element qualifiers to the
2459      // type for comparison.
2460      if (isa<ArrayType>(T1) && T1Quals)
2461        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2462      if (isa<ArrayType>(T2) && T2Quals)
2463        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2464      if (T2.isMoreQualifiedThan(T1))
2465        return ImplicitConversionSequence::Better;
2466      else if (T1.isMoreQualifiedThan(T2))
2467        return ImplicitConversionSequence::Worse;
2468    }
2469  }
2470
2471  return ImplicitConversionSequence::Indistinguishable;
2472}
2473
2474/// CompareQualificationConversions - Compares two standard conversion
2475/// sequences to determine whether they can be ranked based on their
2476/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2477ImplicitConversionSequence::CompareKind
2478CompareQualificationConversions(Sema &S,
2479                                const StandardConversionSequence& SCS1,
2480                                const StandardConversionSequence& SCS2) {
2481  // C++ 13.3.3.2p3:
2482  //  -- S1 and S2 differ only in their qualification conversion and
2483  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2484  //     cv-qualification signature of type T1 is a proper subset of
2485  //     the cv-qualification signature of type T2, and S1 is not the
2486  //     deprecated string literal array-to-pointer conversion (4.2).
2487  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2488      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2489    return ImplicitConversionSequence::Indistinguishable;
2490
2491  // FIXME: the example in the standard doesn't use a qualification
2492  // conversion (!)
2493  QualType T1 = SCS1.getToType(2);
2494  QualType T2 = SCS2.getToType(2);
2495  T1 = S.Context.getCanonicalType(T1);
2496  T2 = S.Context.getCanonicalType(T2);
2497  Qualifiers T1Quals, T2Quals;
2498  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2499  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2500
2501  // If the types are the same, we won't learn anything by unwrapped
2502  // them.
2503  if (UnqualT1 == UnqualT2)
2504    return ImplicitConversionSequence::Indistinguishable;
2505
2506  // If the type is an array type, promote the element qualifiers to the type
2507  // for comparison.
2508  if (isa<ArrayType>(T1) && T1Quals)
2509    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2510  if (isa<ArrayType>(T2) && T2Quals)
2511    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2512
2513  ImplicitConversionSequence::CompareKind Result
2514    = ImplicitConversionSequence::Indistinguishable;
2515  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2516    // Within each iteration of the loop, we check the qualifiers to
2517    // determine if this still looks like a qualification
2518    // conversion. Then, if all is well, we unwrap one more level of
2519    // pointers or pointers-to-members and do it all again
2520    // until there are no more pointers or pointers-to-members left
2521    // to unwrap. This essentially mimics what
2522    // IsQualificationConversion does, but here we're checking for a
2523    // strict subset of qualifiers.
2524    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2525      // The qualifiers are the same, so this doesn't tell us anything
2526      // about how the sequences rank.
2527      ;
2528    else if (T2.isMoreQualifiedThan(T1)) {
2529      // T1 has fewer qualifiers, so it could be the better sequence.
2530      if (Result == ImplicitConversionSequence::Worse)
2531        // Neither has qualifiers that are a subset of the other's
2532        // qualifiers.
2533        return ImplicitConversionSequence::Indistinguishable;
2534
2535      Result = ImplicitConversionSequence::Better;
2536    } else if (T1.isMoreQualifiedThan(T2)) {
2537      // T2 has fewer qualifiers, so it could be the better sequence.
2538      if (Result == ImplicitConversionSequence::Better)
2539        // Neither has qualifiers that are a subset of the other's
2540        // qualifiers.
2541        return ImplicitConversionSequence::Indistinguishable;
2542
2543      Result = ImplicitConversionSequence::Worse;
2544    } else {
2545      // Qualifiers are disjoint.
2546      return ImplicitConversionSequence::Indistinguishable;
2547    }
2548
2549    // If the types after this point are equivalent, we're done.
2550    if (S.Context.hasSameUnqualifiedType(T1, T2))
2551      break;
2552  }
2553
2554  // Check that the winning standard conversion sequence isn't using
2555  // the deprecated string literal array to pointer conversion.
2556  switch (Result) {
2557  case ImplicitConversionSequence::Better:
2558    if (SCS1.DeprecatedStringLiteralToCharPtr)
2559      Result = ImplicitConversionSequence::Indistinguishable;
2560    break;
2561
2562  case ImplicitConversionSequence::Indistinguishable:
2563    break;
2564
2565  case ImplicitConversionSequence::Worse:
2566    if (SCS2.DeprecatedStringLiteralToCharPtr)
2567      Result = ImplicitConversionSequence::Indistinguishable;
2568    break;
2569  }
2570
2571  return Result;
2572}
2573
2574/// CompareDerivedToBaseConversions - Compares two standard conversion
2575/// sequences to determine whether they can be ranked based on their
2576/// various kinds of derived-to-base conversions (C++
2577/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2578/// conversions between Objective-C interface types.
2579ImplicitConversionSequence::CompareKind
2580CompareDerivedToBaseConversions(Sema &S,
2581                                const StandardConversionSequence& SCS1,
2582                                const StandardConversionSequence& SCS2) {
2583  QualType FromType1 = SCS1.getFromType();
2584  QualType ToType1 = SCS1.getToType(1);
2585  QualType FromType2 = SCS2.getFromType();
2586  QualType ToType2 = SCS2.getToType(1);
2587
2588  // Adjust the types we're converting from via the array-to-pointer
2589  // conversion, if we need to.
2590  if (SCS1.First == ICK_Array_To_Pointer)
2591    FromType1 = S.Context.getArrayDecayedType(FromType1);
2592  if (SCS2.First == ICK_Array_To_Pointer)
2593    FromType2 = S.Context.getArrayDecayedType(FromType2);
2594
2595  // Canonicalize all of the types.
2596  FromType1 = S.Context.getCanonicalType(FromType1);
2597  ToType1 = S.Context.getCanonicalType(ToType1);
2598  FromType2 = S.Context.getCanonicalType(FromType2);
2599  ToType2 = S.Context.getCanonicalType(ToType2);
2600
2601  // C++ [over.ics.rank]p4b3:
2602  //
2603  //   If class B is derived directly or indirectly from class A and
2604  //   class C is derived directly or indirectly from B,
2605  //
2606  // For Objective-C, we let A, B, and C also be Objective-C
2607  // interfaces.
2608
2609  // Compare based on pointer conversions.
2610  if (SCS1.Second == ICK_Pointer_Conversion &&
2611      SCS2.Second == ICK_Pointer_Conversion &&
2612      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2613      FromType1->isPointerType() && FromType2->isPointerType() &&
2614      ToType1->isPointerType() && ToType2->isPointerType()) {
2615    QualType FromPointee1
2616      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2617    QualType ToPointee1
2618      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2619    QualType FromPointee2
2620      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2621    QualType ToPointee2
2622      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2623
2624    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2625    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2626    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2627    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2628
2629    //   -- conversion of C* to B* is better than conversion of C* to A*,
2630    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2631      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2632        return ImplicitConversionSequence::Better;
2633      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2634        return ImplicitConversionSequence::Worse;
2635
2636      if (ToIface1 && ToIface2) {
2637        if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2638          return ImplicitConversionSequence::Better;
2639        else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2640          return ImplicitConversionSequence::Worse;
2641      }
2642    }
2643
2644    //   -- conversion of B* to A* is better than conversion of C* to A*,
2645    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2646      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2647        return ImplicitConversionSequence::Better;
2648      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2649        return ImplicitConversionSequence::Worse;
2650
2651      if (FromIface1 && FromIface2) {
2652        if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2653          return ImplicitConversionSequence::Better;
2654        else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2655          return ImplicitConversionSequence::Worse;
2656      }
2657    }
2658  }
2659
2660  // Ranking of member-pointer types.
2661  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2662      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2663      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2664    const MemberPointerType * FromMemPointer1 =
2665                                        FromType1->getAs<MemberPointerType>();
2666    const MemberPointerType * ToMemPointer1 =
2667                                          ToType1->getAs<MemberPointerType>();
2668    const MemberPointerType * FromMemPointer2 =
2669                                          FromType2->getAs<MemberPointerType>();
2670    const MemberPointerType * ToMemPointer2 =
2671                                          ToType2->getAs<MemberPointerType>();
2672    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2673    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2674    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2675    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2676    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2677    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2678    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2679    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2680    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2681    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2682      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2683        return ImplicitConversionSequence::Worse;
2684      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2685        return ImplicitConversionSequence::Better;
2686    }
2687    // conversion of B::* to C::* is better than conversion of A::* to C::*
2688    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2689      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2690        return ImplicitConversionSequence::Better;
2691      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2692        return ImplicitConversionSequence::Worse;
2693    }
2694  }
2695
2696  if (SCS1.Second == ICK_Derived_To_Base) {
2697    //   -- conversion of C to B is better than conversion of C to A,
2698    //   -- binding of an expression of type C to a reference of type
2699    //      B& is better than binding an expression of type C to a
2700    //      reference of type A&,
2701    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2702        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2703      if (S.IsDerivedFrom(ToType1, ToType2))
2704        return ImplicitConversionSequence::Better;
2705      else if (S.IsDerivedFrom(ToType2, ToType1))
2706        return ImplicitConversionSequence::Worse;
2707    }
2708
2709    //   -- conversion of B to A is better than conversion of C to A.
2710    //   -- binding of an expression of type B to a reference of type
2711    //      A& is better than binding an expression of type C to a
2712    //      reference of type A&,
2713    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2714        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2715      if (S.IsDerivedFrom(FromType2, FromType1))
2716        return ImplicitConversionSequence::Better;
2717      else if (S.IsDerivedFrom(FromType1, FromType2))
2718        return ImplicitConversionSequence::Worse;
2719    }
2720  }
2721
2722  return ImplicitConversionSequence::Indistinguishable;
2723}
2724
2725/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2726/// determine whether they are reference-related,
2727/// reference-compatible, reference-compatible with added
2728/// qualification, or incompatible, for use in C++ initialization by
2729/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2730/// type, and the first type (T1) is the pointee type of the reference
2731/// type being initialized.
2732Sema::ReferenceCompareResult
2733Sema::CompareReferenceRelationship(SourceLocation Loc,
2734                                   QualType OrigT1, QualType OrigT2,
2735                                   bool &DerivedToBase,
2736                                   bool &ObjCConversion) {
2737  assert(!OrigT1->isReferenceType() &&
2738    "T1 must be the pointee type of the reference type");
2739  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2740
2741  QualType T1 = Context.getCanonicalType(OrigT1);
2742  QualType T2 = Context.getCanonicalType(OrigT2);
2743  Qualifiers T1Quals, T2Quals;
2744  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2745  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2746
2747  // C++ [dcl.init.ref]p4:
2748  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2749  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2750  //   T1 is a base class of T2.
2751  DerivedToBase = false;
2752  ObjCConversion = false;
2753  if (UnqualT1 == UnqualT2) {
2754    // Nothing to do.
2755  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2756           IsDerivedFrom(UnqualT2, UnqualT1))
2757    DerivedToBase = true;
2758  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
2759           UnqualT2->isObjCObjectOrInterfaceType() &&
2760           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
2761    ObjCConversion = true;
2762  else
2763    return Ref_Incompatible;
2764
2765  // At this point, we know that T1 and T2 are reference-related (at
2766  // least).
2767
2768  // If the type is an array type, promote the element qualifiers to the type
2769  // for comparison.
2770  if (isa<ArrayType>(T1) && T1Quals)
2771    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2772  if (isa<ArrayType>(T2) && T2Quals)
2773    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2774
2775  // C++ [dcl.init.ref]p4:
2776  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2777  //   reference-related to T2 and cv1 is the same cv-qualification
2778  //   as, or greater cv-qualification than, cv2. For purposes of
2779  //   overload resolution, cases for which cv1 is greater
2780  //   cv-qualification than cv2 are identified as
2781  //   reference-compatible with added qualification (see 13.3.3.2).
2782  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2783    return Ref_Compatible;
2784  else if (T1.isMoreQualifiedThan(T2))
2785    return Ref_Compatible_With_Added_Qualification;
2786  else
2787    return Ref_Related;
2788}
2789
2790/// \brief Look for a user-defined conversion to an value reference-compatible
2791///        with DeclType. Return true if something definite is found.
2792static bool
2793FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
2794                         QualType DeclType, SourceLocation DeclLoc,
2795                         Expr *Init, QualType T2, bool AllowRvalues,
2796                         bool AllowExplicit) {
2797  assert(T2->isRecordType() && "Can only find conversions of record types.");
2798  CXXRecordDecl *T2RecordDecl
2799    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2800
2801  QualType ToType
2802    = AllowRvalues? DeclType->getAs<ReferenceType>()->getPointeeType()
2803                  : DeclType;
2804
2805  OverloadCandidateSet CandidateSet(DeclLoc);
2806  const UnresolvedSetImpl *Conversions
2807    = T2RecordDecl->getVisibleConversionFunctions();
2808  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2809         E = Conversions->end(); I != E; ++I) {
2810    NamedDecl *D = *I;
2811    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2812    if (isa<UsingShadowDecl>(D))
2813      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2814
2815    FunctionTemplateDecl *ConvTemplate
2816      = dyn_cast<FunctionTemplateDecl>(D);
2817    CXXConversionDecl *Conv;
2818    if (ConvTemplate)
2819      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2820    else
2821      Conv = cast<CXXConversionDecl>(D);
2822
2823    // If this is an explicit conversion, and we're not allowed to consider
2824    // explicit conversions, skip it.
2825    if (!AllowExplicit && Conv->isExplicit())
2826      continue;
2827
2828    if (AllowRvalues) {
2829      bool DerivedToBase = false;
2830      bool ObjCConversion = false;
2831      if (!ConvTemplate &&
2832          S.CompareReferenceRelationship(
2833            DeclLoc,
2834            Conv->getConversionType().getNonReferenceType()
2835              .getUnqualifiedType(),
2836            DeclType.getNonReferenceType().getUnqualifiedType(),
2837            DerivedToBase, ObjCConversion) ==
2838          Sema::Ref_Incompatible)
2839        continue;
2840    } else {
2841      // If the conversion function doesn't return a reference type,
2842      // it can't be considered for this conversion. An rvalue reference
2843      // is only acceptable if its referencee is a function type.
2844
2845      const ReferenceType *RefType =
2846        Conv->getConversionType()->getAs<ReferenceType>();
2847      if (!RefType ||
2848          (!RefType->isLValueReferenceType() &&
2849           !RefType->getPointeeType()->isFunctionType()))
2850        continue;
2851    }
2852
2853    if (ConvTemplate)
2854      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2855                                       Init, ToType, CandidateSet);
2856    else
2857      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2858                               ToType, CandidateSet);
2859  }
2860
2861  OverloadCandidateSet::iterator Best;
2862  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
2863  case OR_Success:
2864    // C++ [over.ics.ref]p1:
2865    //
2866    //   [...] If the parameter binds directly to the result of
2867    //   applying a conversion function to the argument
2868    //   expression, the implicit conversion sequence is a
2869    //   user-defined conversion sequence (13.3.3.1.2), with the
2870    //   second standard conversion sequence either an identity
2871    //   conversion or, if the conversion function returns an
2872    //   entity of a type that is a derived class of the parameter
2873    //   type, a derived-to-base Conversion.
2874    if (!Best->FinalConversion.DirectBinding)
2875      return false;
2876
2877    ICS.setUserDefined();
2878    ICS.UserDefined.Before = Best->Conversions[0].Standard;
2879    ICS.UserDefined.After = Best->FinalConversion;
2880    ICS.UserDefined.ConversionFunction = Best->Function;
2881    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
2882    ICS.UserDefined.EllipsisConversion = false;
2883    assert(ICS.UserDefined.After.ReferenceBinding &&
2884           ICS.UserDefined.After.DirectBinding &&
2885           "Expected a direct reference binding!");
2886    return true;
2887
2888  case OR_Ambiguous:
2889    ICS.setAmbiguous();
2890    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2891         Cand != CandidateSet.end(); ++Cand)
2892      if (Cand->Viable)
2893        ICS.Ambiguous.addConversion(Cand->Function);
2894    return true;
2895
2896  case OR_No_Viable_Function:
2897  case OR_Deleted:
2898    // There was no suitable conversion, or we found a deleted
2899    // conversion; continue with other checks.
2900    return false;
2901  }
2902
2903  return false;
2904}
2905
2906/// \brief Compute an implicit conversion sequence for reference
2907/// initialization.
2908static ImplicitConversionSequence
2909TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2910                 SourceLocation DeclLoc,
2911                 bool SuppressUserConversions,
2912                 bool AllowExplicit) {
2913  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2914
2915  // Most paths end in a failed conversion.
2916  ImplicitConversionSequence ICS;
2917  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2918
2919  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2920  QualType T2 = Init->getType();
2921
2922  // If the initializer is the address of an overloaded function, try
2923  // to resolve the overloaded function. If all goes well, T2 is the
2924  // type of the resulting function.
2925  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2926    DeclAccessPair Found;
2927    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2928                                                                false, Found))
2929      T2 = Fn->getType();
2930  }
2931
2932  // Compute some basic properties of the types and the initializer.
2933  bool isRValRef = DeclType->isRValueReferenceType();
2934  bool DerivedToBase = false;
2935  bool ObjCConversion = false;
2936  Expr::Classification InitCategory = Init->Classify(S.Context);
2937  Sema::ReferenceCompareResult RefRelationship
2938    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
2939                                     ObjCConversion);
2940
2941
2942  // C++0x [dcl.init.ref]p5:
2943  //   A reference to type "cv1 T1" is initialized by an expression
2944  //   of type "cv2 T2" as follows:
2945
2946  //     -- If reference is an lvalue reference and the initializer expression
2947  // The next bullet point (T1 is a function) is pretty much equivalent to this
2948  // one, so it's handled here.
2949  if (!isRValRef || T1->isFunctionType()) {
2950    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2951    //        reference-compatible with "cv2 T2," or
2952    //
2953    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2954    if (InitCategory.isLValue() &&
2955        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2956      // C++ [over.ics.ref]p1:
2957      //   When a parameter of reference type binds directly (8.5.3)
2958      //   to an argument expression, the implicit conversion sequence
2959      //   is the identity conversion, unless the argument expression
2960      //   has a type that is a derived class of the parameter type,
2961      //   in which case the implicit conversion sequence is a
2962      //   derived-to-base Conversion (13.3.3.1).
2963      ICS.setStandard();
2964      ICS.Standard.First = ICK_Identity;
2965      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
2966                         : ObjCConversion? ICK_Compatible_Conversion
2967                         : ICK_Identity;
2968      ICS.Standard.Third = ICK_Identity;
2969      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2970      ICS.Standard.setToType(0, T2);
2971      ICS.Standard.setToType(1, T1);
2972      ICS.Standard.setToType(2, T1);
2973      ICS.Standard.ReferenceBinding = true;
2974      ICS.Standard.DirectBinding = true;
2975      ICS.Standard.RRefBinding = isRValRef;
2976      ICS.Standard.CopyConstructor = 0;
2977
2978      // Nothing more to do: the inaccessibility/ambiguity check for
2979      // derived-to-base conversions is suppressed when we're
2980      // computing the implicit conversion sequence (C++
2981      // [over.best.ics]p2).
2982      return ICS;
2983    }
2984
2985    //       -- has a class type (i.e., T2 is a class type), where T1 is
2986    //          not reference-related to T2, and can be implicitly
2987    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2988    //          is reference-compatible with "cv3 T3" 92) (this
2989    //          conversion is selected by enumerating the applicable
2990    //          conversion functions (13.3.1.6) and choosing the best
2991    //          one through overload resolution (13.3)),
2992    if (!SuppressUserConversions && T2->isRecordType() &&
2993        !S.RequireCompleteType(DeclLoc, T2, 0) &&
2994        RefRelationship == Sema::Ref_Incompatible) {
2995      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
2996                                   Init, T2, /*AllowRvalues=*/false,
2997                                   AllowExplicit))
2998        return ICS;
2999    }
3000  }
3001
3002  //     -- Otherwise, the reference shall be an lvalue reference to a
3003  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3004  //        shall be an rvalue reference and the initializer expression shall be
3005  //        an rvalue or have a function type.
3006  //
3007  // We actually handle one oddity of C++ [over.ics.ref] at this
3008  // point, which is that, due to p2 (which short-circuits reference
3009  // binding by only attempting a simple conversion for non-direct
3010  // bindings) and p3's strange wording, we allow a const volatile
3011  // reference to bind to an rvalue. Hence the check for the presence
3012  // of "const" rather than checking for "const" being the only
3013  // qualifier.
3014  // This is also the point where rvalue references and lvalue inits no longer
3015  // go together.
3016  if (!isRValRef && !T1.isConstQualified())
3017    return ICS;
3018
3019  //       -- If T1 is a function type, then
3020  //          -- if T2 is the same type as T1, the reference is bound to the
3021  //             initializer expression lvalue;
3022  //          -- if T2 is a class type and the initializer expression can be
3023  //             implicitly converted to an lvalue of type T1 [...], the
3024  //             reference is bound to the function lvalue that is the result
3025  //             of the conversion;
3026  // This is the same as for the lvalue case above, so it was handled there.
3027  //          -- otherwise, the program is ill-formed.
3028  // This is the one difference to the lvalue case.
3029  if (T1->isFunctionType())
3030    return ICS;
3031
3032  //       -- Otherwise, if T2 is a class type and
3033  //          -- the initializer expression is an rvalue and "cv1 T1"
3034  //             is reference-compatible with "cv2 T2," or
3035  //
3036  //          -- T1 is not reference-related to T2 and the initializer
3037  //             expression can be implicitly converted to an rvalue
3038  //             of type "cv3 T3" (this conversion is selected by
3039  //             enumerating the applicable conversion functions
3040  //             (13.3.1.6) and choosing the best one through overload
3041  //             resolution (13.3)),
3042  //
3043  //          then the reference is bound to the initializer
3044  //          expression rvalue in the first case and to the object
3045  //          that is the result of the conversion in the second case
3046  //          (or, in either case, to the appropriate base class
3047  //          subobject of the object).
3048  if (T2->isRecordType()) {
3049    // First case: "cv1 T1" is reference-compatible with "cv2 T2". This is a
3050    // direct binding in C++0x but not in C++03.
3051    if (InitCategory.isRValue() &&
3052        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3053      ICS.setStandard();
3054      ICS.Standard.First = ICK_Identity;
3055      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3056                          : ObjCConversion? ICK_Compatible_Conversion
3057                          : ICK_Identity;
3058      ICS.Standard.Third = ICK_Identity;
3059      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3060      ICS.Standard.setToType(0, T2);
3061      ICS.Standard.setToType(1, T1);
3062      ICS.Standard.setToType(2, T1);
3063      ICS.Standard.ReferenceBinding = true;
3064      ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
3065      ICS.Standard.RRefBinding = isRValRef;
3066      ICS.Standard.CopyConstructor = 0;
3067      return ICS;
3068    }
3069
3070    // Second case: not reference-related.
3071    if (RefRelationship == Sema::Ref_Incompatible &&
3072        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3073        FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3074                                 Init, T2, /*AllowRvalues=*/true,
3075                                 AllowExplicit)) {
3076      // In the second case, if the reference is an rvalue reference
3077      // and the second standard conversion sequence of the
3078      // user-defined conversion sequence includes an lvalue-to-rvalue
3079      // conversion, the program is ill-formed.
3080      if (ICS.isUserDefined() && isRValRef &&
3081          ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3082        ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3083
3084      return ICS;
3085    }
3086  }
3087
3088  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3089  //          initialized from the initializer expression using the
3090  //          rules for a non-reference copy initialization (8.5). The
3091  //          reference is then bound to the temporary. If T1 is
3092  //          reference-related to T2, cv1 must be the same
3093  //          cv-qualification as, or greater cv-qualification than,
3094  //          cv2; otherwise, the program is ill-formed.
3095  if (RefRelationship == Sema::Ref_Related) {
3096    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3097    // we would be reference-compatible or reference-compatible with
3098    // added qualification. But that wasn't the case, so the reference
3099    // initialization fails.
3100    return ICS;
3101  }
3102
3103  // If at least one of the types is a class type, the types are not
3104  // related, and we aren't allowed any user conversions, the
3105  // reference binding fails. This case is important for breaking
3106  // recursion, since TryImplicitConversion below will attempt to
3107  // create a temporary through the use of a copy constructor.
3108  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3109      (T1->isRecordType() || T2->isRecordType()))
3110    return ICS;
3111
3112  // If T1 is reference-related to T2 and the reference is an rvalue
3113  // reference, the initializer expression shall not be an lvalue.
3114  if (RefRelationship >= Sema::Ref_Related &&
3115      isRValRef && Init->Classify(S.Context).isLValue())
3116    return ICS;
3117
3118  // C++ [over.ics.ref]p2:
3119  //   When a parameter of reference type is not bound directly to
3120  //   an argument expression, the conversion sequence is the one
3121  //   required to convert the argument expression to the
3122  //   underlying type of the reference according to
3123  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3124  //   to copy-initializing a temporary of the underlying type with
3125  //   the argument expression. Any difference in top-level
3126  //   cv-qualification is subsumed by the initialization itself
3127  //   and does not constitute a conversion.
3128  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3129                              /*AllowExplicit=*/false,
3130                              /*InOverloadResolution=*/false);
3131
3132  // Of course, that's still a reference binding.
3133  if (ICS.isStandard()) {
3134    ICS.Standard.ReferenceBinding = true;
3135    ICS.Standard.RRefBinding = isRValRef;
3136  } else if (ICS.isUserDefined()) {
3137    ICS.UserDefined.After.ReferenceBinding = true;
3138    ICS.UserDefined.After.RRefBinding = isRValRef;
3139  }
3140
3141  return ICS;
3142}
3143
3144/// TryCopyInitialization - Try to copy-initialize a value of type
3145/// ToType from the expression From. Return the implicit conversion
3146/// sequence required to pass this argument, which may be a bad
3147/// conversion sequence (meaning that the argument cannot be passed to
3148/// a parameter of this type). If @p SuppressUserConversions, then we
3149/// do not permit any user-defined conversion sequences.
3150static ImplicitConversionSequence
3151TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3152                      bool SuppressUserConversions,
3153                      bool InOverloadResolution) {
3154  if (ToType->isReferenceType())
3155    return TryReferenceInit(S, From, ToType,
3156                            /*FIXME:*/From->getLocStart(),
3157                            SuppressUserConversions,
3158                            /*AllowExplicit=*/false);
3159
3160  return TryImplicitConversion(S, From, ToType,
3161                               SuppressUserConversions,
3162                               /*AllowExplicit=*/false,
3163                               InOverloadResolution);
3164}
3165
3166/// TryObjectArgumentInitialization - Try to initialize the object
3167/// parameter of the given member function (@c Method) from the
3168/// expression @p From.
3169static ImplicitConversionSequence
3170TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3171                                CXXMethodDecl *Method,
3172                                CXXRecordDecl *ActingContext) {
3173  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3174  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3175  //                 const volatile object.
3176  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3177    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3178  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3179
3180  // Set up the conversion sequence as a "bad" conversion, to allow us
3181  // to exit early.
3182  ImplicitConversionSequence ICS;
3183
3184  // We need to have an object of class type.
3185  QualType FromType = OrigFromType;
3186  if (const PointerType *PT = FromType->getAs<PointerType>())
3187    FromType = PT->getPointeeType();
3188
3189  assert(FromType->isRecordType());
3190
3191  // The implicit object parameter is has the type "reference to cv X",
3192  // where X is the class of which the function is a member
3193  // (C++ [over.match.funcs]p4). However, when finding an implicit
3194  // conversion sequence for the argument, we are not allowed to
3195  // create temporaries or perform user-defined conversions
3196  // (C++ [over.match.funcs]p5). We perform a simplified version of
3197  // reference binding here, that allows class rvalues to bind to
3198  // non-constant references.
3199
3200  // First check the qualifiers. We don't care about lvalue-vs-rvalue
3201  // with the implicit object parameter (C++ [over.match.funcs]p5).
3202  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3203  if (ImplicitParamType.getCVRQualifiers()
3204                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3205      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3206    ICS.setBad(BadConversionSequence::bad_qualifiers,
3207               OrigFromType, ImplicitParamType);
3208    return ICS;
3209  }
3210
3211  // Check that we have either the same type or a derived type. It
3212  // affects the conversion rank.
3213  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3214  ImplicitConversionKind SecondKind;
3215  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3216    SecondKind = ICK_Identity;
3217  } else if (S.IsDerivedFrom(FromType, ClassType))
3218    SecondKind = ICK_Derived_To_Base;
3219  else {
3220    ICS.setBad(BadConversionSequence::unrelated_class,
3221               FromType, ImplicitParamType);
3222    return ICS;
3223  }
3224
3225  // Success. Mark this as a reference binding.
3226  ICS.setStandard();
3227  ICS.Standard.setAsIdentityConversion();
3228  ICS.Standard.Second = SecondKind;
3229  ICS.Standard.setFromType(FromType);
3230  ICS.Standard.setAllToTypes(ImplicitParamType);
3231  ICS.Standard.ReferenceBinding = true;
3232  ICS.Standard.DirectBinding = true;
3233  ICS.Standard.RRefBinding = false;
3234  return ICS;
3235}
3236
3237/// PerformObjectArgumentInitialization - Perform initialization of
3238/// the implicit object parameter for the given Method with the given
3239/// expression.
3240bool
3241Sema::PerformObjectArgumentInitialization(Expr *&From,
3242                                          NestedNameSpecifier *Qualifier,
3243                                          NamedDecl *FoundDecl,
3244                                          CXXMethodDecl *Method) {
3245  QualType FromRecordType, DestType;
3246  QualType ImplicitParamRecordType  =
3247    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3248
3249  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3250    FromRecordType = PT->getPointeeType();
3251    DestType = Method->getThisType(Context);
3252  } else {
3253    FromRecordType = From->getType();
3254    DestType = ImplicitParamRecordType;
3255  }
3256
3257  // Note that we always use the true parent context when performing
3258  // the actual argument initialization.
3259  ImplicitConversionSequence ICS
3260    = TryObjectArgumentInitialization(*this, From->getType(), Method,
3261                                      Method->getParent());
3262  if (ICS.isBad()) {
3263    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3264      Qualifiers FromQs = FromRecordType.getQualifiers();
3265      Qualifiers ToQs = DestType.getQualifiers();
3266      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3267      if (CVR) {
3268        Diag(From->getSourceRange().getBegin(),
3269             diag::err_member_function_call_bad_cvr)
3270          << Method->getDeclName() << FromRecordType << (CVR - 1)
3271          << From->getSourceRange();
3272        Diag(Method->getLocation(), diag::note_previous_decl)
3273          << Method->getDeclName();
3274        return true;
3275      }
3276    }
3277
3278    return Diag(From->getSourceRange().getBegin(),
3279                diag::err_implicit_object_parameter_init)
3280       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3281  }
3282
3283  if (ICS.Standard.Second == ICK_Derived_To_Base)
3284    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3285
3286  if (!Context.hasSameType(From->getType(), DestType))
3287    ImpCastExprToType(From, DestType, CK_NoOp,
3288                      From->getType()->isPointerType() ? VK_RValue : VK_LValue);
3289  return false;
3290}
3291
3292/// TryContextuallyConvertToBool - Attempt to contextually convert the
3293/// expression From to bool (C++0x [conv]p3).
3294static ImplicitConversionSequence
3295TryContextuallyConvertToBool(Sema &S, Expr *From) {
3296  // FIXME: This is pretty broken.
3297  return TryImplicitConversion(S, From, S.Context.BoolTy,
3298                               // FIXME: Are these flags correct?
3299                               /*SuppressUserConversions=*/false,
3300                               /*AllowExplicit=*/true,
3301                               /*InOverloadResolution=*/false);
3302}
3303
3304/// PerformContextuallyConvertToBool - Perform a contextual conversion
3305/// of the expression From to bool (C++0x [conv]p3).
3306bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
3307  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3308  if (!ICS.isBad())
3309    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3310
3311  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3312    return  Diag(From->getSourceRange().getBegin(),
3313                 diag::err_typecheck_bool_condition)
3314                  << From->getType() << From->getSourceRange();
3315  return true;
3316}
3317
3318/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3319/// expression From to 'id'.
3320static ImplicitConversionSequence
3321TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3322  QualType Ty = S.Context.getObjCIdType();
3323  return TryImplicitConversion(S, From, Ty,
3324                               // FIXME: Are these flags correct?
3325                               /*SuppressUserConversions=*/false,
3326                               /*AllowExplicit=*/true,
3327                               /*InOverloadResolution=*/false);
3328}
3329
3330/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3331/// of the expression From to 'id'.
3332bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
3333  QualType Ty = Context.getObjCIdType();
3334  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3335  if (!ICS.isBad())
3336    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3337  return true;
3338}
3339
3340/// \brief Attempt to convert the given expression to an integral or
3341/// enumeration type.
3342///
3343/// This routine will attempt to convert an expression of class type to an
3344/// integral or enumeration type, if that class type only has a single
3345/// conversion to an integral or enumeration type.
3346///
3347/// \param Loc The source location of the construct that requires the
3348/// conversion.
3349///
3350/// \param FromE The expression we're converting from.
3351///
3352/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3353/// have integral or enumeration type.
3354///
3355/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3356/// incomplete class type.
3357///
3358/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3359/// explicit conversion function (because no implicit conversion functions
3360/// were available). This is a recovery mode.
3361///
3362/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3363/// showing which conversion was picked.
3364///
3365/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3366/// conversion function that could convert to integral or enumeration type.
3367///
3368/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3369/// usable conversion function.
3370///
3371/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3372/// function, which may be an extension in this case.
3373///
3374/// \returns The expression, converted to an integral or enumeration type if
3375/// successful.
3376ExprResult
3377Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3378                                         const PartialDiagnostic &NotIntDiag,
3379                                       const PartialDiagnostic &IncompleteDiag,
3380                                     const PartialDiagnostic &ExplicitConvDiag,
3381                                     const PartialDiagnostic &ExplicitConvNote,
3382                                         const PartialDiagnostic &AmbigDiag,
3383                                         const PartialDiagnostic &AmbigNote,
3384                                         const PartialDiagnostic &ConvDiag) {
3385  // We can't perform any more checking for type-dependent expressions.
3386  if (From->isTypeDependent())
3387    return Owned(From);
3388
3389  // If the expression already has integral or enumeration type, we're golden.
3390  QualType T = From->getType();
3391  if (T->isIntegralOrEnumerationType())
3392    return Owned(From);
3393
3394  // FIXME: Check for missing '()' if T is a function type?
3395
3396  // If we don't have a class type in C++, there's no way we can get an
3397  // expression of integral or enumeration type.
3398  const RecordType *RecordTy = T->getAs<RecordType>();
3399  if (!RecordTy || !getLangOptions().CPlusPlus) {
3400    Diag(Loc, NotIntDiag)
3401      << T << From->getSourceRange();
3402    return Owned(From);
3403  }
3404
3405  // We must have a complete class type.
3406  if (RequireCompleteType(Loc, T, IncompleteDiag))
3407    return Owned(From);
3408
3409  // Look for a conversion to an integral or enumeration type.
3410  UnresolvedSet<4> ViableConversions;
3411  UnresolvedSet<4> ExplicitConversions;
3412  const UnresolvedSetImpl *Conversions
3413    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3414
3415  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3416                                   E = Conversions->end();
3417       I != E;
3418       ++I) {
3419    if (CXXConversionDecl *Conversion
3420          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3421      if (Conversion->getConversionType().getNonReferenceType()
3422            ->isIntegralOrEnumerationType()) {
3423        if (Conversion->isExplicit())
3424          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3425        else
3426          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3427      }
3428  }
3429
3430  switch (ViableConversions.size()) {
3431  case 0:
3432    if (ExplicitConversions.size() == 1) {
3433      DeclAccessPair Found = ExplicitConversions[0];
3434      CXXConversionDecl *Conversion
3435        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3436
3437      // The user probably meant to invoke the given explicit
3438      // conversion; use it.
3439      QualType ConvTy
3440        = Conversion->getConversionType().getNonReferenceType();
3441      std::string TypeStr;
3442      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3443
3444      Diag(Loc, ExplicitConvDiag)
3445        << T << ConvTy
3446        << FixItHint::CreateInsertion(From->getLocStart(),
3447                                      "static_cast<" + TypeStr + ">(")
3448        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3449                                      ")");
3450      Diag(Conversion->getLocation(), ExplicitConvNote)
3451        << ConvTy->isEnumeralType() << ConvTy;
3452
3453      // If we aren't in a SFINAE context, build a call to the
3454      // explicit conversion function.
3455      if (isSFINAEContext())
3456        return ExprError();
3457
3458      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3459      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3460      if (Result.isInvalid())
3461        return ExprError();
3462
3463      From = Result.get();
3464    }
3465
3466    // We'll complain below about a non-integral condition type.
3467    break;
3468
3469  case 1: {
3470    // Apply this conversion.
3471    DeclAccessPair Found = ViableConversions[0];
3472    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3473
3474    CXXConversionDecl *Conversion
3475      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3476    QualType ConvTy
3477      = Conversion->getConversionType().getNonReferenceType();
3478    if (ConvDiag.getDiagID()) {
3479      if (isSFINAEContext())
3480        return ExprError();
3481
3482      Diag(Loc, ConvDiag)
3483        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3484    }
3485
3486    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
3487                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3488    if (Result.isInvalid())
3489      return ExprError();
3490
3491    From = Result.get();
3492    break;
3493  }
3494
3495  default:
3496    Diag(Loc, AmbigDiag)
3497      << T << From->getSourceRange();
3498    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3499      CXXConversionDecl *Conv
3500        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3501      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3502      Diag(Conv->getLocation(), AmbigNote)
3503        << ConvTy->isEnumeralType() << ConvTy;
3504    }
3505    return Owned(From);
3506  }
3507
3508  if (!From->getType()->isIntegralOrEnumerationType())
3509    Diag(Loc, NotIntDiag)
3510      << From->getType() << From->getSourceRange();
3511
3512  return Owned(From);
3513}
3514
3515/// AddOverloadCandidate - Adds the given function to the set of
3516/// candidate functions, using the given function call arguments.  If
3517/// @p SuppressUserConversions, then don't allow user-defined
3518/// conversions via constructors or conversion operators.
3519///
3520/// \para PartialOverloading true if we are performing "partial" overloading
3521/// based on an incomplete set of function arguments. This feature is used by
3522/// code completion.
3523void
3524Sema::AddOverloadCandidate(FunctionDecl *Function,
3525                           DeclAccessPair FoundDecl,
3526                           Expr **Args, unsigned NumArgs,
3527                           OverloadCandidateSet& CandidateSet,
3528                           bool SuppressUserConversions,
3529                           bool PartialOverloading) {
3530  const FunctionProtoType* Proto
3531    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3532  assert(Proto && "Functions without a prototype cannot be overloaded");
3533  assert(!Function->getDescribedFunctionTemplate() &&
3534         "Use AddTemplateOverloadCandidate for function templates");
3535
3536  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3537    if (!isa<CXXConstructorDecl>(Method)) {
3538      // If we get here, it's because we're calling a member function
3539      // that is named without a member access expression (e.g.,
3540      // "this->f") that was either written explicitly or created
3541      // implicitly. This can happen with a qualified call to a member
3542      // function, e.g., X::f(). We use an empty type for the implied
3543      // object argument (C++ [over.call.func]p3), and the acting context
3544      // is irrelevant.
3545      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3546                         QualType(), Args, NumArgs, CandidateSet,
3547                         SuppressUserConversions);
3548      return;
3549    }
3550    // We treat a constructor like a non-member function, since its object
3551    // argument doesn't participate in overload resolution.
3552  }
3553
3554  if (!CandidateSet.isNewCandidate(Function))
3555    return;
3556
3557  // Overload resolution is always an unevaluated context.
3558  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3559
3560  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3561    // C++ [class.copy]p3:
3562    //   A member function template is never instantiated to perform the copy
3563    //   of a class object to an object of its class type.
3564    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3565    if (NumArgs == 1 &&
3566        Constructor->isSpecializationCopyingObject() &&
3567        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3568         IsDerivedFrom(Args[0]->getType(), ClassType)))
3569      return;
3570  }
3571
3572  // Add this candidate
3573  CandidateSet.push_back(OverloadCandidate());
3574  OverloadCandidate& Candidate = CandidateSet.back();
3575  Candidate.FoundDecl = FoundDecl;
3576  Candidate.Function = Function;
3577  Candidate.Viable = true;
3578  Candidate.IsSurrogate = false;
3579  Candidate.IgnoreObjectArgument = false;
3580  Candidate.ExplicitCallArguments = NumArgs;
3581
3582  unsigned NumArgsInProto = Proto->getNumArgs();
3583
3584  // (C++ 13.3.2p2): A candidate function having fewer than m
3585  // parameters is viable only if it has an ellipsis in its parameter
3586  // list (8.3.5).
3587  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3588      !Proto->isVariadic()) {
3589    Candidate.Viable = false;
3590    Candidate.FailureKind = ovl_fail_too_many_arguments;
3591    return;
3592  }
3593
3594  // (C++ 13.3.2p2): A candidate function having more than m parameters
3595  // is viable only if the (m+1)st parameter has a default argument
3596  // (8.3.6). For the purposes of overload resolution, the
3597  // parameter list is truncated on the right, so that there are
3598  // exactly m parameters.
3599  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3600  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3601    // Not enough arguments.
3602    Candidate.Viable = false;
3603    Candidate.FailureKind = ovl_fail_too_few_arguments;
3604    return;
3605  }
3606
3607  // Determine the implicit conversion sequences for each of the
3608  // arguments.
3609  Candidate.Conversions.resize(NumArgs);
3610  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3611    if (ArgIdx < NumArgsInProto) {
3612      // (C++ 13.3.2p3): for F to be a viable function, there shall
3613      // exist for each argument an implicit conversion sequence
3614      // (13.3.3.1) that converts that argument to the corresponding
3615      // parameter of F.
3616      QualType ParamType = Proto->getArgType(ArgIdx);
3617      Candidate.Conversions[ArgIdx]
3618        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3619                                SuppressUserConversions,
3620                                /*InOverloadResolution=*/true);
3621      if (Candidate.Conversions[ArgIdx].isBad()) {
3622        Candidate.Viable = false;
3623        Candidate.FailureKind = ovl_fail_bad_conversion;
3624        break;
3625      }
3626    } else {
3627      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3628      // argument for which there is no corresponding parameter is
3629      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3630      Candidate.Conversions[ArgIdx].setEllipsis();
3631    }
3632  }
3633}
3634
3635/// \brief Add all of the function declarations in the given function set to
3636/// the overload canddiate set.
3637void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3638                                 Expr **Args, unsigned NumArgs,
3639                                 OverloadCandidateSet& CandidateSet,
3640                                 bool SuppressUserConversions) {
3641  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3642    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3643    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3644      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3645        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3646                           cast<CXXMethodDecl>(FD)->getParent(),
3647                           Args[0]->getType(), Args + 1, NumArgs - 1,
3648                           CandidateSet, SuppressUserConversions);
3649      else
3650        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3651                             SuppressUserConversions);
3652    } else {
3653      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3654      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3655          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3656        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3657                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3658                                   /*FIXME: explicit args */ 0,
3659                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3660                                   CandidateSet,
3661                                   SuppressUserConversions);
3662      else
3663        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3664                                     /*FIXME: explicit args */ 0,
3665                                     Args, NumArgs, CandidateSet,
3666                                     SuppressUserConversions);
3667    }
3668  }
3669}
3670
3671/// AddMethodCandidate - Adds a named decl (which is some kind of
3672/// method) as a method candidate to the given overload set.
3673void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3674                              QualType ObjectType,
3675                              Expr **Args, unsigned NumArgs,
3676                              OverloadCandidateSet& CandidateSet,
3677                              bool SuppressUserConversions) {
3678  NamedDecl *Decl = FoundDecl.getDecl();
3679  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3680
3681  if (isa<UsingShadowDecl>(Decl))
3682    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3683
3684  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3685    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3686           "Expected a member function template");
3687    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3688                               /*ExplicitArgs*/ 0,
3689                               ObjectType, Args, NumArgs,
3690                               CandidateSet,
3691                               SuppressUserConversions);
3692  } else {
3693    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3694                       ObjectType, Args, NumArgs,
3695                       CandidateSet, SuppressUserConversions);
3696  }
3697}
3698
3699/// AddMethodCandidate - Adds the given C++ member function to the set
3700/// of candidate functions, using the given function call arguments
3701/// and the object argument (@c Object). For example, in a call
3702/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3703/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3704/// allow user-defined conversions via constructors or conversion
3705/// operators.
3706void
3707Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3708                         CXXRecordDecl *ActingContext, QualType ObjectType,
3709                         Expr **Args, unsigned NumArgs,
3710                         OverloadCandidateSet& CandidateSet,
3711                         bool SuppressUserConversions) {
3712  const FunctionProtoType* Proto
3713    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3714  assert(Proto && "Methods without a prototype cannot be overloaded");
3715  assert(!isa<CXXConstructorDecl>(Method) &&
3716         "Use AddOverloadCandidate for constructors");
3717
3718  if (!CandidateSet.isNewCandidate(Method))
3719    return;
3720
3721  // Overload resolution is always an unevaluated context.
3722  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3723
3724  // Add this candidate
3725  CandidateSet.push_back(OverloadCandidate());
3726  OverloadCandidate& Candidate = CandidateSet.back();
3727  Candidate.FoundDecl = FoundDecl;
3728  Candidate.Function = Method;
3729  Candidate.IsSurrogate = false;
3730  Candidate.IgnoreObjectArgument = false;
3731  Candidate.ExplicitCallArguments = NumArgs;
3732
3733  unsigned NumArgsInProto = Proto->getNumArgs();
3734
3735  // (C++ 13.3.2p2): A candidate function having fewer than m
3736  // parameters is viable only if it has an ellipsis in its parameter
3737  // list (8.3.5).
3738  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3739    Candidate.Viable = false;
3740    Candidate.FailureKind = ovl_fail_too_many_arguments;
3741    return;
3742  }
3743
3744  // (C++ 13.3.2p2): A candidate function having more than m parameters
3745  // is viable only if the (m+1)st parameter has a default argument
3746  // (8.3.6). For the purposes of overload resolution, the
3747  // parameter list is truncated on the right, so that there are
3748  // exactly m parameters.
3749  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3750  if (NumArgs < MinRequiredArgs) {
3751    // Not enough arguments.
3752    Candidate.Viable = false;
3753    Candidate.FailureKind = ovl_fail_too_few_arguments;
3754    return;
3755  }
3756
3757  Candidate.Viable = true;
3758  Candidate.Conversions.resize(NumArgs + 1);
3759
3760  if (Method->isStatic() || ObjectType.isNull())
3761    // The implicit object argument is ignored.
3762    Candidate.IgnoreObjectArgument = true;
3763  else {
3764    // Determine the implicit conversion sequence for the object
3765    // parameter.
3766    Candidate.Conversions[0]
3767      = TryObjectArgumentInitialization(*this, ObjectType, Method,
3768                                        ActingContext);
3769    if (Candidate.Conversions[0].isBad()) {
3770      Candidate.Viable = false;
3771      Candidate.FailureKind = ovl_fail_bad_conversion;
3772      return;
3773    }
3774  }
3775
3776  // Determine the implicit conversion sequences for each of the
3777  // arguments.
3778  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3779    if (ArgIdx < NumArgsInProto) {
3780      // (C++ 13.3.2p3): for F to be a viable function, there shall
3781      // exist for each argument an implicit conversion sequence
3782      // (13.3.3.1) that converts that argument to the corresponding
3783      // parameter of F.
3784      QualType ParamType = Proto->getArgType(ArgIdx);
3785      Candidate.Conversions[ArgIdx + 1]
3786        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3787                                SuppressUserConversions,
3788                                /*InOverloadResolution=*/true);
3789      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3790        Candidate.Viable = false;
3791        Candidate.FailureKind = ovl_fail_bad_conversion;
3792        break;
3793      }
3794    } else {
3795      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3796      // argument for which there is no corresponding parameter is
3797      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3798      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3799    }
3800  }
3801}
3802
3803/// \brief Add a C++ member function template as a candidate to the candidate
3804/// set, using template argument deduction to produce an appropriate member
3805/// function template specialization.
3806void
3807Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3808                                 DeclAccessPair FoundDecl,
3809                                 CXXRecordDecl *ActingContext,
3810                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3811                                 QualType ObjectType,
3812                                 Expr **Args, unsigned NumArgs,
3813                                 OverloadCandidateSet& CandidateSet,
3814                                 bool SuppressUserConversions) {
3815  if (!CandidateSet.isNewCandidate(MethodTmpl))
3816    return;
3817
3818  // C++ [over.match.funcs]p7:
3819  //   In each case where a candidate is a function template, candidate
3820  //   function template specializations are generated using template argument
3821  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3822  //   candidate functions in the usual way.113) A given name can refer to one
3823  //   or more function templates and also to a set of overloaded non-template
3824  //   functions. In such a case, the candidate functions generated from each
3825  //   function template are combined with the set of non-template candidate
3826  //   functions.
3827  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3828  FunctionDecl *Specialization = 0;
3829  if (TemplateDeductionResult Result
3830      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3831                                Args, NumArgs, Specialization, Info)) {
3832    CandidateSet.push_back(OverloadCandidate());
3833    OverloadCandidate &Candidate = CandidateSet.back();
3834    Candidate.FoundDecl = FoundDecl;
3835    Candidate.Function = MethodTmpl->getTemplatedDecl();
3836    Candidate.Viable = false;
3837    Candidate.FailureKind = ovl_fail_bad_deduction;
3838    Candidate.IsSurrogate = false;
3839    Candidate.IgnoreObjectArgument = false;
3840    Candidate.ExplicitCallArguments = NumArgs;
3841    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3842                                                          Info);
3843    return;
3844  }
3845
3846  // Add the function template specialization produced by template argument
3847  // deduction as a candidate.
3848  assert(Specialization && "Missing member function template specialization?");
3849  assert(isa<CXXMethodDecl>(Specialization) &&
3850         "Specialization is not a member function?");
3851  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3852                     ActingContext, ObjectType, Args, NumArgs,
3853                     CandidateSet, SuppressUserConversions);
3854}
3855
3856/// \brief Add a C++ function template specialization as a candidate
3857/// in the candidate set, using template argument deduction to produce
3858/// an appropriate function template specialization.
3859void
3860Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3861                                   DeclAccessPair FoundDecl,
3862                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3863                                   Expr **Args, unsigned NumArgs,
3864                                   OverloadCandidateSet& CandidateSet,
3865                                   bool SuppressUserConversions) {
3866  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3867    return;
3868
3869  // C++ [over.match.funcs]p7:
3870  //   In each case where a candidate is a function template, candidate
3871  //   function template specializations are generated using template argument
3872  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3873  //   candidate functions in the usual way.113) A given name can refer to one
3874  //   or more function templates and also to a set of overloaded non-template
3875  //   functions. In such a case, the candidate functions generated from each
3876  //   function template are combined with the set of non-template candidate
3877  //   functions.
3878  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3879  FunctionDecl *Specialization = 0;
3880  if (TemplateDeductionResult Result
3881        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3882                                  Args, NumArgs, Specialization, Info)) {
3883    CandidateSet.push_back(OverloadCandidate());
3884    OverloadCandidate &Candidate = CandidateSet.back();
3885    Candidate.FoundDecl = FoundDecl;
3886    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3887    Candidate.Viable = false;
3888    Candidate.FailureKind = ovl_fail_bad_deduction;
3889    Candidate.IsSurrogate = false;
3890    Candidate.IgnoreObjectArgument = false;
3891    Candidate.ExplicitCallArguments = NumArgs;
3892    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3893                                                          Info);
3894    return;
3895  }
3896
3897  // Add the function template specialization produced by template argument
3898  // deduction as a candidate.
3899  assert(Specialization && "Missing function template specialization?");
3900  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3901                       SuppressUserConversions);
3902}
3903
3904/// AddConversionCandidate - Add a C++ conversion function as a
3905/// candidate in the candidate set (C++ [over.match.conv],
3906/// C++ [over.match.copy]). From is the expression we're converting from,
3907/// and ToType is the type that we're eventually trying to convert to
3908/// (which may or may not be the same type as the type that the
3909/// conversion function produces).
3910void
3911Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3912                             DeclAccessPair FoundDecl,
3913                             CXXRecordDecl *ActingContext,
3914                             Expr *From, QualType ToType,
3915                             OverloadCandidateSet& CandidateSet) {
3916  assert(!Conversion->getDescribedFunctionTemplate() &&
3917         "Conversion function templates use AddTemplateConversionCandidate");
3918  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3919  if (!CandidateSet.isNewCandidate(Conversion))
3920    return;
3921
3922  // Overload resolution is always an unevaluated context.
3923  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3924
3925  // Add this candidate
3926  CandidateSet.push_back(OverloadCandidate());
3927  OverloadCandidate& Candidate = CandidateSet.back();
3928  Candidate.FoundDecl = FoundDecl;
3929  Candidate.Function = Conversion;
3930  Candidate.IsSurrogate = false;
3931  Candidate.IgnoreObjectArgument = false;
3932  Candidate.FinalConversion.setAsIdentityConversion();
3933  Candidate.FinalConversion.setFromType(ConvType);
3934  Candidate.FinalConversion.setAllToTypes(ToType);
3935  Candidate.Viable = true;
3936  Candidate.Conversions.resize(1);
3937  Candidate.ExplicitCallArguments = 1;
3938
3939  // C++ [over.match.funcs]p4:
3940  //   For conversion functions, the function is considered to be a member of
3941  //   the class of the implicit implied object argument for the purpose of
3942  //   defining the type of the implicit object parameter.
3943  //
3944  // Determine the implicit conversion sequence for the implicit
3945  // object parameter.
3946  QualType ImplicitParamType = From->getType();
3947  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
3948    ImplicitParamType = FromPtrType->getPointeeType();
3949  CXXRecordDecl *ConversionContext
3950    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
3951
3952  Candidate.Conversions[0]
3953    = TryObjectArgumentInitialization(*this, From->getType(), Conversion,
3954                                      ConversionContext);
3955
3956  if (Candidate.Conversions[0].isBad()) {
3957    Candidate.Viable = false;
3958    Candidate.FailureKind = ovl_fail_bad_conversion;
3959    return;
3960  }
3961
3962  // We won't go through a user-define type conversion function to convert a
3963  // derived to base as such conversions are given Conversion Rank. They only
3964  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3965  QualType FromCanon
3966    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3967  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3968  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3969    Candidate.Viable = false;
3970    Candidate.FailureKind = ovl_fail_trivial_conversion;
3971    return;
3972  }
3973
3974  // To determine what the conversion from the result of calling the
3975  // conversion function to the type we're eventually trying to
3976  // convert to (ToType), we need to synthesize a call to the
3977  // conversion function and attempt copy initialization from it. This
3978  // makes sure that we get the right semantics with respect to
3979  // lvalues/rvalues and the type. Fortunately, we can allocate this
3980  // call on the stack and we don't need its arguments to be
3981  // well-formed.
3982  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3983                            VK_LValue, From->getLocStart());
3984  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
3985                                Context.getPointerType(Conversion->getType()),
3986                                CK_FunctionToPointerDecay,
3987                                &ConversionRef, VK_RValue);
3988
3989  QualType CallResultType
3990    = Conversion->getConversionType().getNonLValueExprType(Context);
3991  if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) {
3992    Candidate.Viable = false;
3993    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3994    return;
3995  }
3996
3997  ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType());
3998
3999  // Note that it is safe to allocate CallExpr on the stack here because
4000  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4001  // allocator).
4002  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4003                From->getLocStart());
4004  ImplicitConversionSequence ICS =
4005    TryCopyInitialization(*this, &Call, ToType,
4006                          /*SuppressUserConversions=*/true,
4007                          /*InOverloadResolution=*/false);
4008
4009  switch (ICS.getKind()) {
4010  case ImplicitConversionSequence::StandardConversion:
4011    Candidate.FinalConversion = ICS.Standard;
4012
4013    // C++ [over.ics.user]p3:
4014    //   If the user-defined conversion is specified by a specialization of a
4015    //   conversion function template, the second standard conversion sequence
4016    //   shall have exact match rank.
4017    if (Conversion->getPrimaryTemplate() &&
4018        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4019      Candidate.Viable = false;
4020      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4021    }
4022
4023    // C++0x [dcl.init.ref]p5:
4024    //    In the second case, if the reference is an rvalue reference and
4025    //    the second standard conversion sequence of the user-defined
4026    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4027    //    program is ill-formed.
4028    if (ToType->isRValueReferenceType() &&
4029        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4030      Candidate.Viable = false;
4031      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4032    }
4033    break;
4034
4035  case ImplicitConversionSequence::BadConversion:
4036    Candidate.Viable = false;
4037    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4038    break;
4039
4040  default:
4041    assert(false &&
4042           "Can only end up with a standard conversion sequence or failure");
4043  }
4044}
4045
4046/// \brief Adds a conversion function template specialization
4047/// candidate to the overload set, using template argument deduction
4048/// to deduce the template arguments of the conversion function
4049/// template from the type that we are converting to (C++
4050/// [temp.deduct.conv]).
4051void
4052Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4053                                     DeclAccessPair FoundDecl,
4054                                     CXXRecordDecl *ActingDC,
4055                                     Expr *From, QualType ToType,
4056                                     OverloadCandidateSet &CandidateSet) {
4057  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4058         "Only conversion function templates permitted here");
4059
4060  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4061    return;
4062
4063  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4064  CXXConversionDecl *Specialization = 0;
4065  if (TemplateDeductionResult Result
4066        = DeduceTemplateArguments(FunctionTemplate, ToType,
4067                                  Specialization, Info)) {
4068    CandidateSet.push_back(OverloadCandidate());
4069    OverloadCandidate &Candidate = CandidateSet.back();
4070    Candidate.FoundDecl = FoundDecl;
4071    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4072    Candidate.Viable = false;
4073    Candidate.FailureKind = ovl_fail_bad_deduction;
4074    Candidate.IsSurrogate = false;
4075    Candidate.IgnoreObjectArgument = false;
4076    Candidate.ExplicitCallArguments = 1;
4077    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4078                                                          Info);
4079    return;
4080  }
4081
4082  // Add the conversion function template specialization produced by
4083  // template argument deduction as a candidate.
4084  assert(Specialization && "Missing function template specialization?");
4085  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4086                         CandidateSet);
4087}
4088
4089/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4090/// converts the given @c Object to a function pointer via the
4091/// conversion function @c Conversion, and then attempts to call it
4092/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4093/// the type of function that we'll eventually be calling.
4094void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4095                                 DeclAccessPair FoundDecl,
4096                                 CXXRecordDecl *ActingContext,
4097                                 const FunctionProtoType *Proto,
4098                                 QualType ObjectType,
4099                                 Expr **Args, unsigned NumArgs,
4100                                 OverloadCandidateSet& CandidateSet) {
4101  if (!CandidateSet.isNewCandidate(Conversion))
4102    return;
4103
4104  // Overload resolution is always an unevaluated context.
4105  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4106
4107  CandidateSet.push_back(OverloadCandidate());
4108  OverloadCandidate& Candidate = CandidateSet.back();
4109  Candidate.FoundDecl = FoundDecl;
4110  Candidate.Function = 0;
4111  Candidate.Surrogate = Conversion;
4112  Candidate.Viable = true;
4113  Candidate.IsSurrogate = true;
4114  Candidate.IgnoreObjectArgument = false;
4115  Candidate.Conversions.resize(NumArgs + 1);
4116  Candidate.ExplicitCallArguments = NumArgs;
4117
4118  // Determine the implicit conversion sequence for the implicit
4119  // object parameter.
4120  ImplicitConversionSequence ObjectInit
4121    = TryObjectArgumentInitialization(*this, ObjectType, Conversion,
4122                                      ActingContext);
4123  if (ObjectInit.isBad()) {
4124    Candidate.Viable = false;
4125    Candidate.FailureKind = ovl_fail_bad_conversion;
4126    Candidate.Conversions[0] = ObjectInit;
4127    return;
4128  }
4129
4130  // The first conversion is actually a user-defined conversion whose
4131  // first conversion is ObjectInit's standard conversion (which is
4132  // effectively a reference binding). Record it as such.
4133  Candidate.Conversions[0].setUserDefined();
4134  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4135  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4136  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4137  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4138    = FoundDecl.getDecl();
4139  Candidate.Conversions[0].UserDefined.After
4140    = Candidate.Conversions[0].UserDefined.Before;
4141  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4142
4143  // Find the
4144  unsigned NumArgsInProto = Proto->getNumArgs();
4145
4146  // (C++ 13.3.2p2): A candidate function having fewer than m
4147  // parameters is viable only if it has an ellipsis in its parameter
4148  // list (8.3.5).
4149  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4150    Candidate.Viable = false;
4151    Candidate.FailureKind = ovl_fail_too_many_arguments;
4152    return;
4153  }
4154
4155  // Function types don't have any default arguments, so just check if
4156  // we have enough arguments.
4157  if (NumArgs < NumArgsInProto) {
4158    // Not enough arguments.
4159    Candidate.Viable = false;
4160    Candidate.FailureKind = ovl_fail_too_few_arguments;
4161    return;
4162  }
4163
4164  // Determine the implicit conversion sequences for each of the
4165  // arguments.
4166  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4167    if (ArgIdx < NumArgsInProto) {
4168      // (C++ 13.3.2p3): for F to be a viable function, there shall
4169      // exist for each argument an implicit conversion sequence
4170      // (13.3.3.1) that converts that argument to the corresponding
4171      // parameter of F.
4172      QualType ParamType = Proto->getArgType(ArgIdx);
4173      Candidate.Conversions[ArgIdx + 1]
4174        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4175                                /*SuppressUserConversions=*/false,
4176                                /*InOverloadResolution=*/false);
4177      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4178        Candidate.Viable = false;
4179        Candidate.FailureKind = ovl_fail_bad_conversion;
4180        break;
4181      }
4182    } else {
4183      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4184      // argument for which there is no corresponding parameter is
4185      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4186      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4187    }
4188  }
4189}
4190
4191/// \brief Add overload candidates for overloaded operators that are
4192/// member functions.
4193///
4194/// Add the overloaded operator candidates that are member functions
4195/// for the operator Op that was used in an operator expression such
4196/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4197/// CandidateSet will store the added overload candidates. (C++
4198/// [over.match.oper]).
4199void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4200                                       SourceLocation OpLoc,
4201                                       Expr **Args, unsigned NumArgs,
4202                                       OverloadCandidateSet& CandidateSet,
4203                                       SourceRange OpRange) {
4204  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4205
4206  // C++ [over.match.oper]p3:
4207  //   For a unary operator @ with an operand of a type whose
4208  //   cv-unqualified version is T1, and for a binary operator @ with
4209  //   a left operand of a type whose cv-unqualified version is T1 and
4210  //   a right operand of a type whose cv-unqualified version is T2,
4211  //   three sets of candidate functions, designated member
4212  //   candidates, non-member candidates and built-in candidates, are
4213  //   constructed as follows:
4214  QualType T1 = Args[0]->getType();
4215
4216  //     -- If T1 is a class type, the set of member candidates is the
4217  //        result of the qualified lookup of T1::operator@
4218  //        (13.3.1.1.1); otherwise, the set of member candidates is
4219  //        empty.
4220  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4221    // Complete the type if it can be completed. Otherwise, we're done.
4222    if (RequireCompleteType(OpLoc, T1, PDiag()))
4223      return;
4224
4225    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4226    LookupQualifiedName(Operators, T1Rec->getDecl());
4227    Operators.suppressDiagnostics();
4228
4229    for (LookupResult::iterator Oper = Operators.begin(),
4230                             OperEnd = Operators.end();
4231         Oper != OperEnd;
4232         ++Oper)
4233      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4234                         Args + 1, NumArgs - 1, CandidateSet,
4235                         /* SuppressUserConversions = */ false);
4236  }
4237}
4238
4239/// AddBuiltinCandidate - Add a candidate for a built-in
4240/// operator. ResultTy and ParamTys are the result and parameter types
4241/// of the built-in candidate, respectively. Args and NumArgs are the
4242/// arguments being passed to the candidate. IsAssignmentOperator
4243/// should be true when this built-in candidate is an assignment
4244/// operator. NumContextualBoolArguments is the number of arguments
4245/// (at the beginning of the argument list) that will be contextually
4246/// converted to bool.
4247void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4248                               Expr **Args, unsigned NumArgs,
4249                               OverloadCandidateSet& CandidateSet,
4250                               bool IsAssignmentOperator,
4251                               unsigned NumContextualBoolArguments) {
4252  // Overload resolution is always an unevaluated context.
4253  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4254
4255  // Add this candidate
4256  CandidateSet.push_back(OverloadCandidate());
4257  OverloadCandidate& Candidate = CandidateSet.back();
4258  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4259  Candidate.Function = 0;
4260  Candidate.IsSurrogate = false;
4261  Candidate.IgnoreObjectArgument = false;
4262  Candidate.BuiltinTypes.ResultTy = ResultTy;
4263  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4264    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4265
4266  // Determine the implicit conversion sequences for each of the
4267  // arguments.
4268  Candidate.Viable = true;
4269  Candidate.Conversions.resize(NumArgs);
4270  Candidate.ExplicitCallArguments = NumArgs;
4271  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4272    // C++ [over.match.oper]p4:
4273    //   For the built-in assignment operators, conversions of the
4274    //   left operand are restricted as follows:
4275    //     -- no temporaries are introduced to hold the left operand, and
4276    //     -- no user-defined conversions are applied to the left
4277    //        operand to achieve a type match with the left-most
4278    //        parameter of a built-in candidate.
4279    //
4280    // We block these conversions by turning off user-defined
4281    // conversions, since that is the only way that initialization of
4282    // a reference to a non-class type can occur from something that
4283    // is not of the same type.
4284    if (ArgIdx < NumContextualBoolArguments) {
4285      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4286             "Contextual conversion to bool requires bool type");
4287      Candidate.Conversions[ArgIdx]
4288        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4289    } else {
4290      Candidate.Conversions[ArgIdx]
4291        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4292                                ArgIdx == 0 && IsAssignmentOperator,
4293                                /*InOverloadResolution=*/false);
4294    }
4295    if (Candidate.Conversions[ArgIdx].isBad()) {
4296      Candidate.Viable = false;
4297      Candidate.FailureKind = ovl_fail_bad_conversion;
4298      break;
4299    }
4300  }
4301}
4302
4303/// BuiltinCandidateTypeSet - A set of types that will be used for the
4304/// candidate operator functions for built-in operators (C++
4305/// [over.built]). The types are separated into pointer types and
4306/// enumeration types.
4307class BuiltinCandidateTypeSet  {
4308  /// TypeSet - A set of types.
4309  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4310
4311  /// PointerTypes - The set of pointer types that will be used in the
4312  /// built-in candidates.
4313  TypeSet PointerTypes;
4314
4315  /// MemberPointerTypes - The set of member pointer types that will be
4316  /// used in the built-in candidates.
4317  TypeSet MemberPointerTypes;
4318
4319  /// EnumerationTypes - The set of enumeration types that will be
4320  /// used in the built-in candidates.
4321  TypeSet EnumerationTypes;
4322
4323  /// \brief The set of vector types that will be used in the built-in
4324  /// candidates.
4325  TypeSet VectorTypes;
4326
4327  /// \brief A flag indicating non-record types are viable candidates
4328  bool HasNonRecordTypes;
4329
4330  /// \brief A flag indicating whether either arithmetic or enumeration types
4331  /// were present in the candidate set.
4332  bool HasArithmeticOrEnumeralTypes;
4333
4334  /// Sema - The semantic analysis instance where we are building the
4335  /// candidate type set.
4336  Sema &SemaRef;
4337
4338  /// Context - The AST context in which we will build the type sets.
4339  ASTContext &Context;
4340
4341  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4342                                               const Qualifiers &VisibleQuals);
4343  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4344
4345public:
4346  /// iterator - Iterates through the types that are part of the set.
4347  typedef TypeSet::iterator iterator;
4348
4349  BuiltinCandidateTypeSet(Sema &SemaRef)
4350    : HasNonRecordTypes(false),
4351      HasArithmeticOrEnumeralTypes(false),
4352      SemaRef(SemaRef),
4353      Context(SemaRef.Context) { }
4354
4355  void AddTypesConvertedFrom(QualType Ty,
4356                             SourceLocation Loc,
4357                             bool AllowUserConversions,
4358                             bool AllowExplicitConversions,
4359                             const Qualifiers &VisibleTypeConversionsQuals);
4360
4361  /// pointer_begin - First pointer type found;
4362  iterator pointer_begin() { return PointerTypes.begin(); }
4363
4364  /// pointer_end - Past the last pointer type found;
4365  iterator pointer_end() { return PointerTypes.end(); }
4366
4367  /// member_pointer_begin - First member pointer type found;
4368  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4369
4370  /// member_pointer_end - Past the last member pointer type found;
4371  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4372
4373  /// enumeration_begin - First enumeration type found;
4374  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4375
4376  /// enumeration_end - Past the last enumeration type found;
4377  iterator enumeration_end() { return EnumerationTypes.end(); }
4378
4379  iterator vector_begin() { return VectorTypes.begin(); }
4380  iterator vector_end() { return VectorTypes.end(); }
4381
4382  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4383  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4384};
4385
4386/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4387/// the set of pointer types along with any more-qualified variants of
4388/// that type. For example, if @p Ty is "int const *", this routine
4389/// will add "int const *", "int const volatile *", "int const
4390/// restrict *", and "int const volatile restrict *" to the set of
4391/// pointer types. Returns true if the add of @p Ty itself succeeded,
4392/// false otherwise.
4393///
4394/// FIXME: what to do about extended qualifiers?
4395bool
4396BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4397                                             const Qualifiers &VisibleQuals) {
4398
4399  // Insert this type.
4400  if (!PointerTypes.insert(Ty))
4401    return false;
4402
4403  QualType PointeeTy;
4404  const PointerType *PointerTy = Ty->getAs<PointerType>();
4405  bool buildObjCPtr = false;
4406  if (!PointerTy) {
4407    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4408      PointeeTy = PTy->getPointeeType();
4409      buildObjCPtr = true;
4410    }
4411    else
4412      assert(false && "type was not a pointer type!");
4413  }
4414  else
4415    PointeeTy = PointerTy->getPointeeType();
4416
4417  // Don't add qualified variants of arrays. For one, they're not allowed
4418  // (the qualifier would sink to the element type), and for another, the
4419  // only overload situation where it matters is subscript or pointer +- int,
4420  // and those shouldn't have qualifier variants anyway.
4421  if (PointeeTy->isArrayType())
4422    return true;
4423  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4424  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4425    BaseCVR = Array->getElementType().getCVRQualifiers();
4426  bool hasVolatile = VisibleQuals.hasVolatile();
4427  bool hasRestrict = VisibleQuals.hasRestrict();
4428
4429  // Iterate through all strict supersets of BaseCVR.
4430  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4431    if ((CVR | BaseCVR) != CVR) continue;
4432    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4433    // in the types.
4434    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4435    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4436    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4437    if (!buildObjCPtr)
4438      PointerTypes.insert(Context.getPointerType(QPointeeTy));
4439    else
4440      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
4441  }
4442
4443  return true;
4444}
4445
4446/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4447/// to the set of pointer types along with any more-qualified variants of
4448/// that type. For example, if @p Ty is "int const *", this routine
4449/// will add "int const *", "int const volatile *", "int const
4450/// restrict *", and "int const volatile restrict *" to the set of
4451/// pointer types. Returns true if the add of @p Ty itself succeeded,
4452/// false otherwise.
4453///
4454/// FIXME: what to do about extended qualifiers?
4455bool
4456BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4457    QualType Ty) {
4458  // Insert this type.
4459  if (!MemberPointerTypes.insert(Ty))
4460    return false;
4461
4462  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4463  assert(PointerTy && "type was not a member pointer type!");
4464
4465  QualType PointeeTy = PointerTy->getPointeeType();
4466  // Don't add qualified variants of arrays. For one, they're not allowed
4467  // (the qualifier would sink to the element type), and for another, the
4468  // only overload situation where it matters is subscript or pointer +- int,
4469  // and those shouldn't have qualifier variants anyway.
4470  if (PointeeTy->isArrayType())
4471    return true;
4472  const Type *ClassTy = PointerTy->getClass();
4473
4474  // Iterate through all strict supersets of the pointee type's CVR
4475  // qualifiers.
4476  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4477  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4478    if ((CVR | BaseCVR) != CVR) continue;
4479
4480    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4481    MemberPointerTypes.insert(
4482      Context.getMemberPointerType(QPointeeTy, ClassTy));
4483  }
4484
4485  return true;
4486}
4487
4488/// AddTypesConvertedFrom - Add each of the types to which the type @p
4489/// Ty can be implicit converted to the given set of @p Types. We're
4490/// primarily interested in pointer types and enumeration types. We also
4491/// take member pointer types, for the conditional operator.
4492/// AllowUserConversions is true if we should look at the conversion
4493/// functions of a class type, and AllowExplicitConversions if we
4494/// should also include the explicit conversion functions of a class
4495/// type.
4496void
4497BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4498                                               SourceLocation Loc,
4499                                               bool AllowUserConversions,
4500                                               bool AllowExplicitConversions,
4501                                               const Qualifiers &VisibleQuals) {
4502  // Only deal with canonical types.
4503  Ty = Context.getCanonicalType(Ty);
4504
4505  // Look through reference types; they aren't part of the type of an
4506  // expression for the purposes of conversions.
4507  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4508    Ty = RefTy->getPointeeType();
4509
4510  // If we're dealing with an array type, decay to the pointer.
4511  if (Ty->isArrayType())
4512    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4513
4514  // Otherwise, we don't care about qualifiers on the type.
4515  Ty = Ty.getLocalUnqualifiedType();
4516
4517  // Flag if we ever add a non-record type.
4518  const RecordType *TyRec = Ty->getAs<RecordType>();
4519  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
4520
4521  // Flag if we encounter an arithmetic type.
4522  HasArithmeticOrEnumeralTypes =
4523    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
4524
4525  if (Ty->isObjCIdType() || Ty->isObjCClassType())
4526    PointerTypes.insert(Ty);
4527  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
4528    // Insert our type, and its more-qualified variants, into the set
4529    // of types.
4530    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4531      return;
4532  } else if (Ty->isMemberPointerType()) {
4533    // Member pointers are far easier, since the pointee can't be converted.
4534    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4535      return;
4536  } else if (Ty->isEnumeralType()) {
4537    HasArithmeticOrEnumeralTypes = true;
4538    EnumerationTypes.insert(Ty);
4539  } else if (Ty->isVectorType()) {
4540    // We treat vector types as arithmetic types in many contexts as an
4541    // extension.
4542    HasArithmeticOrEnumeralTypes = true;
4543    VectorTypes.insert(Ty);
4544  } else if (AllowUserConversions && TyRec) {
4545    // No conversion functions in incomplete types.
4546    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
4547      return;
4548
4549    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4550    const UnresolvedSetImpl *Conversions
4551      = ClassDecl->getVisibleConversionFunctions();
4552    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4553           E = Conversions->end(); I != E; ++I) {
4554      NamedDecl *D = I.getDecl();
4555      if (isa<UsingShadowDecl>(D))
4556        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4557
4558      // Skip conversion function templates; they don't tell us anything
4559      // about which builtin types we can convert to.
4560      if (isa<FunctionTemplateDecl>(D))
4561        continue;
4562
4563      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4564      if (AllowExplicitConversions || !Conv->isExplicit()) {
4565        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4566                              VisibleQuals);
4567      }
4568    }
4569  }
4570}
4571
4572/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4573/// the volatile- and non-volatile-qualified assignment operators for the
4574/// given type to the candidate set.
4575static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4576                                                   QualType T,
4577                                                   Expr **Args,
4578                                                   unsigned NumArgs,
4579                                    OverloadCandidateSet &CandidateSet) {
4580  QualType ParamTypes[2];
4581
4582  // T& operator=(T&, T)
4583  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4584  ParamTypes[1] = T;
4585  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4586                        /*IsAssignmentOperator=*/true);
4587
4588  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4589    // volatile T& operator=(volatile T&, T)
4590    ParamTypes[0]
4591      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4592    ParamTypes[1] = T;
4593    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4594                          /*IsAssignmentOperator=*/true);
4595  }
4596}
4597
4598/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4599/// if any, found in visible type conversion functions found in ArgExpr's type.
4600static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4601    Qualifiers VRQuals;
4602    const RecordType *TyRec;
4603    if (const MemberPointerType *RHSMPType =
4604        ArgExpr->getType()->getAs<MemberPointerType>())
4605      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4606    else
4607      TyRec = ArgExpr->getType()->getAs<RecordType>();
4608    if (!TyRec) {
4609      // Just to be safe, assume the worst case.
4610      VRQuals.addVolatile();
4611      VRQuals.addRestrict();
4612      return VRQuals;
4613    }
4614
4615    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4616    if (!ClassDecl->hasDefinition())
4617      return VRQuals;
4618
4619    const UnresolvedSetImpl *Conversions =
4620      ClassDecl->getVisibleConversionFunctions();
4621
4622    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4623           E = Conversions->end(); I != E; ++I) {
4624      NamedDecl *D = I.getDecl();
4625      if (isa<UsingShadowDecl>(D))
4626        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4627      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4628        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4629        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4630          CanTy = ResTypeRef->getPointeeType();
4631        // Need to go down the pointer/mempointer chain and add qualifiers
4632        // as see them.
4633        bool done = false;
4634        while (!done) {
4635          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4636            CanTy = ResTypePtr->getPointeeType();
4637          else if (const MemberPointerType *ResTypeMPtr =
4638                CanTy->getAs<MemberPointerType>())
4639            CanTy = ResTypeMPtr->getPointeeType();
4640          else
4641            done = true;
4642          if (CanTy.isVolatileQualified())
4643            VRQuals.addVolatile();
4644          if (CanTy.isRestrictQualified())
4645            VRQuals.addRestrict();
4646          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4647            return VRQuals;
4648        }
4649      }
4650    }
4651    return VRQuals;
4652}
4653
4654namespace {
4655
4656/// \brief Helper class to manage the addition of builtin operator overload
4657/// candidates. It provides shared state and utility methods used throughout
4658/// the process, as well as a helper method to add each group of builtin
4659/// operator overloads from the standard to a candidate set.
4660class BuiltinOperatorOverloadBuilder {
4661  // Common instance state available to all overload candidate addition methods.
4662  Sema &S;
4663  Expr **Args;
4664  unsigned NumArgs;
4665  Qualifiers VisibleTypeConversionsQuals;
4666  bool HasArithmeticOrEnumeralCandidateType;
4667  llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
4668  OverloadCandidateSet &CandidateSet;
4669
4670  // Define some constants used to index and iterate over the arithemetic types
4671  // provided via the getArithmeticType() method below.
4672  // The "promoted arithmetic types" are the arithmetic
4673  // types are that preserved by promotion (C++ [over.built]p2).
4674  static const unsigned FirstIntegralType = 3;
4675  static const unsigned LastIntegralType = 18;
4676  static const unsigned FirstPromotedIntegralType = 3,
4677                        LastPromotedIntegralType = 9;
4678  static const unsigned FirstPromotedArithmeticType = 0,
4679                        LastPromotedArithmeticType = 9;
4680  static const unsigned NumArithmeticTypes = 18;
4681
4682  /// \brief Get the canonical type for a given arithmetic type index.
4683  CanQualType getArithmeticType(unsigned index) {
4684    assert(index < NumArithmeticTypes);
4685    static CanQualType ASTContext::* const
4686      ArithmeticTypes[NumArithmeticTypes] = {
4687      // Start of promoted types.
4688      &ASTContext::FloatTy,
4689      &ASTContext::DoubleTy,
4690      &ASTContext::LongDoubleTy,
4691
4692      // Start of integral types.
4693      &ASTContext::IntTy,
4694      &ASTContext::LongTy,
4695      &ASTContext::LongLongTy,
4696      &ASTContext::UnsignedIntTy,
4697      &ASTContext::UnsignedLongTy,
4698      &ASTContext::UnsignedLongLongTy,
4699      // End of promoted types.
4700
4701      &ASTContext::BoolTy,
4702      &ASTContext::CharTy,
4703      &ASTContext::WCharTy,
4704      &ASTContext::Char16Ty,
4705      &ASTContext::Char32Ty,
4706      &ASTContext::SignedCharTy,
4707      &ASTContext::ShortTy,
4708      &ASTContext::UnsignedCharTy,
4709      &ASTContext::UnsignedShortTy,
4710      // End of integral types.
4711      // FIXME: What about complex?
4712    };
4713    return S.Context.*ArithmeticTypes[index];
4714  }
4715
4716  /// \brief Gets the canonical type resulting from the usual arithemetic
4717  /// converions for the given arithmetic types.
4718  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
4719    // Accelerator table for performing the usual arithmetic conversions.
4720    // The rules are basically:
4721    //   - if either is floating-point, use the wider floating-point
4722    //   - if same signedness, use the higher rank
4723    //   - if same size, use unsigned of the higher rank
4724    //   - use the larger type
4725    // These rules, together with the axiom that higher ranks are
4726    // never smaller, are sufficient to precompute all of these results
4727    // *except* when dealing with signed types of higher rank.
4728    // (we could precompute SLL x UI for all known platforms, but it's
4729    // better not to make any assumptions).
4730    enum PromotedType {
4731                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
4732    };
4733    static PromotedType ConversionsTable[LastPromotedArithmeticType]
4734                                        [LastPromotedArithmeticType] = {
4735      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
4736      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
4737      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
4738      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
4739      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
4740      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
4741      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
4742      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
4743      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
4744    };
4745
4746    assert(L < LastPromotedArithmeticType);
4747    assert(R < LastPromotedArithmeticType);
4748    int Idx = ConversionsTable[L][R];
4749
4750    // Fast path: the table gives us a concrete answer.
4751    if (Idx != Dep) return getArithmeticType(Idx);
4752
4753    // Slow path: we need to compare widths.
4754    // An invariant is that the signed type has higher rank.
4755    CanQualType LT = getArithmeticType(L),
4756                RT = getArithmeticType(R);
4757    unsigned LW = S.Context.getIntWidth(LT),
4758             RW = S.Context.getIntWidth(RT);
4759
4760    // If they're different widths, use the signed type.
4761    if (LW > RW) return LT;
4762    else if (LW < RW) return RT;
4763
4764    // Otherwise, use the unsigned type of the signed type's rank.
4765    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
4766    assert(L == SLL || R == SLL);
4767    return S.Context.UnsignedLongLongTy;
4768  }
4769
4770  /// \brief Helper method to factor out the common pattern of adding overloads
4771  /// for '++' and '--' builtin operators.
4772  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
4773                                           bool HasVolatile) {
4774    QualType ParamTypes[2] = {
4775      S.Context.getLValueReferenceType(CandidateTy),
4776      S.Context.IntTy
4777    };
4778
4779    // Non-volatile version.
4780    if (NumArgs == 1)
4781      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4782    else
4783      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
4784
4785    // Use a heuristic to reduce number of builtin candidates in the set:
4786    // add volatile version only if there are conversions to a volatile type.
4787    if (HasVolatile) {
4788      ParamTypes[0] =
4789        S.Context.getLValueReferenceType(
4790          S.Context.getVolatileType(CandidateTy));
4791      if (NumArgs == 1)
4792        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4793      else
4794        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
4795    }
4796  }
4797
4798public:
4799  BuiltinOperatorOverloadBuilder(
4800    Sema &S, Expr **Args, unsigned NumArgs,
4801    Qualifiers VisibleTypeConversionsQuals,
4802    bool HasArithmeticOrEnumeralCandidateType,
4803    llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
4804    OverloadCandidateSet &CandidateSet)
4805    : S(S), Args(Args), NumArgs(NumArgs),
4806      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
4807      HasArithmeticOrEnumeralCandidateType(
4808        HasArithmeticOrEnumeralCandidateType),
4809      CandidateTypes(CandidateTypes),
4810      CandidateSet(CandidateSet) {
4811    // Validate some of our static helper constants in debug builds.
4812    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
4813           "Invalid first promoted integral type");
4814    assert(getArithmeticType(LastPromotedIntegralType - 1)
4815             == S.Context.UnsignedLongLongTy &&
4816           "Invalid last promoted integral type");
4817    assert(getArithmeticType(FirstPromotedArithmeticType)
4818             == S.Context.FloatTy &&
4819           "Invalid first promoted arithmetic type");
4820    assert(getArithmeticType(LastPromotedArithmeticType - 1)
4821             == S.Context.UnsignedLongLongTy &&
4822           "Invalid last promoted arithmetic type");
4823  }
4824
4825  // C++ [over.built]p3:
4826  //
4827  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4828  //   is either volatile or empty, there exist candidate operator
4829  //   functions of the form
4830  //
4831  //       VQ T&      operator++(VQ T&);
4832  //       T          operator++(VQ T&, int);
4833  //
4834  // C++ [over.built]p4:
4835  //
4836  //   For every pair (T, VQ), where T is an arithmetic type other
4837  //   than bool, and VQ is either volatile or empty, there exist
4838  //   candidate operator functions of the form
4839  //
4840  //       VQ T&      operator--(VQ T&);
4841  //       T          operator--(VQ T&, int);
4842  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
4843    if (!HasArithmeticOrEnumeralCandidateType)
4844      return;
4845
4846    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4847         Arith < NumArithmeticTypes; ++Arith) {
4848      addPlusPlusMinusMinusStyleOverloads(
4849        getArithmeticType(Arith),
4850        VisibleTypeConversionsQuals.hasVolatile());
4851    }
4852  }
4853
4854  // C++ [over.built]p5:
4855  //
4856  //   For every pair (T, VQ), where T is a cv-qualified or
4857  //   cv-unqualified object type, and VQ is either volatile or
4858  //   empty, there exist candidate operator functions of the form
4859  //
4860  //       T*VQ&      operator++(T*VQ&);
4861  //       T*VQ&      operator--(T*VQ&);
4862  //       T*         operator++(T*VQ&, int);
4863  //       T*         operator--(T*VQ&, int);
4864  void addPlusPlusMinusMinusPointerOverloads() {
4865    for (BuiltinCandidateTypeSet::iterator
4866              Ptr = CandidateTypes[0].pointer_begin(),
4867           PtrEnd = CandidateTypes[0].pointer_end();
4868         Ptr != PtrEnd; ++Ptr) {
4869      // Skip pointer types that aren't pointers to object types.
4870      if (!(*Ptr)->getPointeeType()->isObjectType())
4871        continue;
4872
4873      addPlusPlusMinusMinusStyleOverloads(*Ptr,
4874        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4875         VisibleTypeConversionsQuals.hasVolatile()));
4876    }
4877  }
4878
4879  // C++ [over.built]p6:
4880  //   For every cv-qualified or cv-unqualified object type T, there
4881  //   exist candidate operator functions of the form
4882  //
4883  //       T&         operator*(T*);
4884  //
4885  // C++ [over.built]p7:
4886  //   For every function type T, there exist candidate operator
4887  //   functions of the form
4888  //       T&         operator*(T*);
4889  void addUnaryStarPointerOverloads() {
4890    for (BuiltinCandidateTypeSet::iterator
4891              Ptr = CandidateTypes[0].pointer_begin(),
4892           PtrEnd = CandidateTypes[0].pointer_end();
4893         Ptr != PtrEnd; ++Ptr) {
4894      QualType ParamTy = *Ptr;
4895      QualType PointeeTy = ParamTy->getPointeeType();
4896      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
4897        continue;
4898
4899      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
4900                            &ParamTy, Args, 1, CandidateSet);
4901    }
4902  }
4903
4904  // C++ [over.built]p9:
4905  //  For every promoted arithmetic type T, there exist candidate
4906  //  operator functions of the form
4907  //
4908  //       T         operator+(T);
4909  //       T         operator-(T);
4910  void addUnaryPlusOrMinusArithmeticOverloads() {
4911    if (!HasArithmeticOrEnumeralCandidateType)
4912      return;
4913
4914    for (unsigned Arith = FirstPromotedArithmeticType;
4915         Arith < LastPromotedArithmeticType; ++Arith) {
4916      QualType ArithTy = getArithmeticType(Arith);
4917      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4918    }
4919
4920    // Extension: We also add these operators for vector types.
4921    for (BuiltinCandidateTypeSet::iterator
4922              Vec = CandidateTypes[0].vector_begin(),
4923           VecEnd = CandidateTypes[0].vector_end();
4924         Vec != VecEnd; ++Vec) {
4925      QualType VecTy = *Vec;
4926      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4927    }
4928  }
4929
4930  // C++ [over.built]p8:
4931  //   For every type T, there exist candidate operator functions of
4932  //   the form
4933  //
4934  //       T*         operator+(T*);
4935  void addUnaryPlusPointerOverloads() {
4936    for (BuiltinCandidateTypeSet::iterator
4937              Ptr = CandidateTypes[0].pointer_begin(),
4938           PtrEnd = CandidateTypes[0].pointer_end();
4939         Ptr != PtrEnd; ++Ptr) {
4940      QualType ParamTy = *Ptr;
4941      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4942    }
4943  }
4944
4945  // C++ [over.built]p10:
4946  //   For every promoted integral type T, there exist candidate
4947  //   operator functions of the form
4948  //
4949  //        T         operator~(T);
4950  void addUnaryTildePromotedIntegralOverloads() {
4951    if (!HasArithmeticOrEnumeralCandidateType)
4952      return;
4953
4954    for (unsigned Int = FirstPromotedIntegralType;
4955         Int < LastPromotedIntegralType; ++Int) {
4956      QualType IntTy = getArithmeticType(Int);
4957      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4958    }
4959
4960    // Extension: We also add this operator for vector types.
4961    for (BuiltinCandidateTypeSet::iterator
4962              Vec = CandidateTypes[0].vector_begin(),
4963           VecEnd = CandidateTypes[0].vector_end();
4964         Vec != VecEnd; ++Vec) {
4965      QualType VecTy = *Vec;
4966      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4967    }
4968  }
4969
4970  // C++ [over.match.oper]p16:
4971  //   For every pointer to member type T, there exist candidate operator
4972  //   functions of the form
4973  //
4974  //        bool operator==(T,T);
4975  //        bool operator!=(T,T);
4976  void addEqualEqualOrNotEqualMemberPointerOverloads() {
4977    /// Set of (canonical) types that we've already handled.
4978    llvm::SmallPtrSet<QualType, 8> AddedTypes;
4979
4980    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4981      for (BuiltinCandidateTypeSet::iterator
4982                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
4983             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
4984           MemPtr != MemPtrEnd;
4985           ++MemPtr) {
4986        // Don't add the same builtin candidate twice.
4987        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
4988          continue;
4989
4990        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4991        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
4992                              CandidateSet);
4993      }
4994    }
4995  }
4996
4997  // C++ [over.built]p15:
4998  //
4999  //   For every pointer or enumeration type T, there exist
5000  //   candidate operator functions of the form
5001  //
5002  //        bool       operator<(T, T);
5003  //        bool       operator>(T, T);
5004  //        bool       operator<=(T, T);
5005  //        bool       operator>=(T, T);
5006  //        bool       operator==(T, T);
5007  //        bool       operator!=(T, T);
5008  void addRelationalPointerOrEnumeralOverloads() {
5009    // C++ [over.built]p1:
5010    //   If there is a user-written candidate with the same name and parameter
5011    //   types as a built-in candidate operator function, the built-in operator
5012    //   function is hidden and is not included in the set of candidate
5013    //   functions.
5014    //
5015    // The text is actually in a note, but if we don't implement it then we end
5016    // up with ambiguities when the user provides an overloaded operator for
5017    // an enumeration type. Note that only enumeration types have this problem,
5018    // so we track which enumeration types we've seen operators for. Also, the
5019    // only other overloaded operator with enumeration argumenst, operator=,
5020    // cannot be overloaded for enumeration types, so this is the only place
5021    // where we must suppress candidates like this.
5022    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5023      UserDefinedBinaryOperators;
5024
5025    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5026      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5027          CandidateTypes[ArgIdx].enumeration_end()) {
5028        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5029                                         CEnd = CandidateSet.end();
5030             C != CEnd; ++C) {
5031          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5032            continue;
5033
5034          QualType FirstParamType =
5035            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5036          QualType SecondParamType =
5037            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5038
5039          // Skip if either parameter isn't of enumeral type.
5040          if (!FirstParamType->isEnumeralType() ||
5041              !SecondParamType->isEnumeralType())
5042            continue;
5043
5044          // Add this operator to the set of known user-defined operators.
5045          UserDefinedBinaryOperators.insert(
5046            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5047                           S.Context.getCanonicalType(SecondParamType)));
5048        }
5049      }
5050    }
5051
5052    /// Set of (canonical) types that we've already handled.
5053    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5054
5055    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5056      for (BuiltinCandidateTypeSet::iterator
5057                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5058             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5059           Ptr != PtrEnd; ++Ptr) {
5060        // Don't add the same builtin candidate twice.
5061        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5062          continue;
5063
5064        QualType ParamTypes[2] = { *Ptr, *Ptr };
5065        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5066                              CandidateSet);
5067      }
5068      for (BuiltinCandidateTypeSet::iterator
5069                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5070             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5071           Enum != EnumEnd; ++Enum) {
5072        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5073
5074        // Don't add the same builtin candidate twice, or if a user defined
5075        // candidate exists.
5076        if (!AddedTypes.insert(CanonType) ||
5077            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5078                                                            CanonType)))
5079          continue;
5080
5081        QualType ParamTypes[2] = { *Enum, *Enum };
5082        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5083                              CandidateSet);
5084      }
5085    }
5086  }
5087
5088  // C++ [over.built]p13:
5089  //
5090  //   For every cv-qualified or cv-unqualified object type T
5091  //   there exist candidate operator functions of the form
5092  //
5093  //      T*         operator+(T*, ptrdiff_t);
5094  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5095  //      T*         operator-(T*, ptrdiff_t);
5096  //      T*         operator+(ptrdiff_t, T*);
5097  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5098  //
5099  // C++ [over.built]p14:
5100  //
5101  //   For every T, where T is a pointer to object type, there
5102  //   exist candidate operator functions of the form
5103  //
5104  //      ptrdiff_t  operator-(T, T);
5105  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5106    /// Set of (canonical) types that we've already handled.
5107    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5108
5109    for (int Arg = 0; Arg < 2; ++Arg) {
5110      QualType AsymetricParamTypes[2] = {
5111        S.Context.getPointerDiffType(),
5112        S.Context.getPointerDiffType(),
5113      };
5114      for (BuiltinCandidateTypeSet::iterator
5115                Ptr = CandidateTypes[Arg].pointer_begin(),
5116             PtrEnd = CandidateTypes[Arg].pointer_end();
5117           Ptr != PtrEnd; ++Ptr) {
5118        QualType PointeeTy = (*Ptr)->getPointeeType();
5119        if (!PointeeTy->isObjectType())
5120          continue;
5121
5122        AsymetricParamTypes[Arg] = *Ptr;
5123        if (Arg == 0 || Op == OO_Plus) {
5124          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5125          // T* operator+(ptrdiff_t, T*);
5126          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5127                                CandidateSet);
5128        }
5129        if (Op == OO_Minus) {
5130          // ptrdiff_t operator-(T, T);
5131          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5132            continue;
5133
5134          QualType ParamTypes[2] = { *Ptr, *Ptr };
5135          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5136                                Args, 2, CandidateSet);
5137        }
5138      }
5139    }
5140  }
5141
5142  // C++ [over.built]p12:
5143  //
5144  //   For every pair of promoted arithmetic types L and R, there
5145  //   exist candidate operator functions of the form
5146  //
5147  //        LR         operator*(L, R);
5148  //        LR         operator/(L, R);
5149  //        LR         operator+(L, R);
5150  //        LR         operator-(L, R);
5151  //        bool       operator<(L, R);
5152  //        bool       operator>(L, R);
5153  //        bool       operator<=(L, R);
5154  //        bool       operator>=(L, R);
5155  //        bool       operator==(L, R);
5156  //        bool       operator!=(L, R);
5157  //
5158  //   where LR is the result of the usual arithmetic conversions
5159  //   between types L and R.
5160  //
5161  // C++ [over.built]p24:
5162  //
5163  //   For every pair of promoted arithmetic types L and R, there exist
5164  //   candidate operator functions of the form
5165  //
5166  //        LR       operator?(bool, L, R);
5167  //
5168  //   where LR is the result of the usual arithmetic conversions
5169  //   between types L and R.
5170  // Our candidates ignore the first parameter.
5171  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5172    if (!HasArithmeticOrEnumeralCandidateType)
5173      return;
5174
5175    for (unsigned Left = FirstPromotedArithmeticType;
5176         Left < LastPromotedArithmeticType; ++Left) {
5177      for (unsigned Right = FirstPromotedArithmeticType;
5178           Right < LastPromotedArithmeticType; ++Right) {
5179        QualType LandR[2] = { getArithmeticType(Left),
5180                              getArithmeticType(Right) };
5181        QualType Result =
5182          isComparison ? S.Context.BoolTy
5183                       : getUsualArithmeticConversions(Left, Right);
5184        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5185      }
5186    }
5187
5188    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5189    // conditional operator for vector types.
5190    for (BuiltinCandidateTypeSet::iterator
5191              Vec1 = CandidateTypes[0].vector_begin(),
5192           Vec1End = CandidateTypes[0].vector_end();
5193         Vec1 != Vec1End; ++Vec1) {
5194      for (BuiltinCandidateTypeSet::iterator
5195                Vec2 = CandidateTypes[1].vector_begin(),
5196             Vec2End = CandidateTypes[1].vector_end();
5197           Vec2 != Vec2End; ++Vec2) {
5198        QualType LandR[2] = { *Vec1, *Vec2 };
5199        QualType Result = S.Context.BoolTy;
5200        if (!isComparison) {
5201          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5202            Result = *Vec1;
5203          else
5204            Result = *Vec2;
5205        }
5206
5207        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5208      }
5209    }
5210  }
5211
5212  // C++ [over.built]p17:
5213  //
5214  //   For every pair of promoted integral types L and R, there
5215  //   exist candidate operator functions of the form
5216  //
5217  //      LR         operator%(L, R);
5218  //      LR         operator&(L, R);
5219  //      LR         operator^(L, R);
5220  //      LR         operator|(L, R);
5221  //      L          operator<<(L, R);
5222  //      L          operator>>(L, R);
5223  //
5224  //   where LR is the result of the usual arithmetic conversions
5225  //   between types L and R.
5226  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5227    if (!HasArithmeticOrEnumeralCandidateType)
5228      return;
5229
5230    for (unsigned Left = FirstPromotedIntegralType;
5231         Left < LastPromotedIntegralType; ++Left) {
5232      for (unsigned Right = FirstPromotedIntegralType;
5233           Right < LastPromotedIntegralType; ++Right) {
5234        QualType LandR[2] = { getArithmeticType(Left),
5235                              getArithmeticType(Right) };
5236        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5237            ? LandR[0]
5238            : getUsualArithmeticConversions(Left, Right);
5239        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5240      }
5241    }
5242  }
5243
5244  // C++ [over.built]p20:
5245  //
5246  //   For every pair (T, VQ), where T is an enumeration or
5247  //   pointer to member type and VQ is either volatile or
5248  //   empty, there exist candidate operator functions of the form
5249  //
5250  //        VQ T&      operator=(VQ T&, T);
5251  void addAssignmentMemberPointerOrEnumeralOverloads() {
5252    /// Set of (canonical) types that we've already handled.
5253    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5254
5255    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5256      for (BuiltinCandidateTypeSet::iterator
5257                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5258             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5259           Enum != EnumEnd; ++Enum) {
5260        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5261          continue;
5262
5263        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5264                                               CandidateSet);
5265      }
5266
5267      for (BuiltinCandidateTypeSet::iterator
5268                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5269             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5270           MemPtr != MemPtrEnd; ++MemPtr) {
5271        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5272          continue;
5273
5274        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5275                                               CandidateSet);
5276      }
5277    }
5278  }
5279
5280  // C++ [over.built]p19:
5281  //
5282  //   For every pair (T, VQ), where T is any type and VQ is either
5283  //   volatile or empty, there exist candidate operator functions
5284  //   of the form
5285  //
5286  //        T*VQ&      operator=(T*VQ&, T*);
5287  //
5288  // C++ [over.built]p21:
5289  //
5290  //   For every pair (T, VQ), where T is a cv-qualified or
5291  //   cv-unqualified object type and VQ is either volatile or
5292  //   empty, there exist candidate operator functions of the form
5293  //
5294  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5295  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5296  void addAssignmentPointerOverloads(bool isEqualOp) {
5297    /// Set of (canonical) types that we've already handled.
5298    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5299
5300    for (BuiltinCandidateTypeSet::iterator
5301              Ptr = CandidateTypes[0].pointer_begin(),
5302           PtrEnd = CandidateTypes[0].pointer_end();
5303         Ptr != PtrEnd; ++Ptr) {
5304      // If this is operator=, keep track of the builtin candidates we added.
5305      if (isEqualOp)
5306        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5307      else if (!(*Ptr)->getPointeeType()->isObjectType())
5308        continue;
5309
5310      // non-volatile version
5311      QualType ParamTypes[2] = {
5312        S.Context.getLValueReferenceType(*Ptr),
5313        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5314      };
5315      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5316                            /*IsAssigmentOperator=*/ isEqualOp);
5317
5318      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5319          VisibleTypeConversionsQuals.hasVolatile()) {
5320        // volatile version
5321        ParamTypes[0] =
5322          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5323        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5324                              /*IsAssigmentOperator=*/isEqualOp);
5325      }
5326    }
5327
5328    if (isEqualOp) {
5329      for (BuiltinCandidateTypeSet::iterator
5330                Ptr = CandidateTypes[1].pointer_begin(),
5331             PtrEnd = CandidateTypes[1].pointer_end();
5332           Ptr != PtrEnd; ++Ptr) {
5333        // Make sure we don't add the same candidate twice.
5334        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5335          continue;
5336
5337        QualType ParamTypes[2] = {
5338          S.Context.getLValueReferenceType(*Ptr),
5339          *Ptr,
5340        };
5341
5342        // non-volatile version
5343        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5344                              /*IsAssigmentOperator=*/true);
5345
5346        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5347            VisibleTypeConversionsQuals.hasVolatile()) {
5348          // volatile version
5349          ParamTypes[0] =
5350            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5351          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5352                                CandidateSet, /*IsAssigmentOperator=*/true);
5353        }
5354      }
5355    }
5356  }
5357
5358  // C++ [over.built]p18:
5359  //
5360  //   For every triple (L, VQ, R), where L is an arithmetic type,
5361  //   VQ is either volatile or empty, and R is a promoted
5362  //   arithmetic type, there exist candidate operator functions of
5363  //   the form
5364  //
5365  //        VQ L&      operator=(VQ L&, R);
5366  //        VQ L&      operator*=(VQ L&, R);
5367  //        VQ L&      operator/=(VQ L&, R);
5368  //        VQ L&      operator+=(VQ L&, R);
5369  //        VQ L&      operator-=(VQ L&, R);
5370  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5371    if (!HasArithmeticOrEnumeralCandidateType)
5372      return;
5373
5374    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5375      for (unsigned Right = FirstPromotedArithmeticType;
5376           Right < LastPromotedArithmeticType; ++Right) {
5377        QualType ParamTypes[2];
5378        ParamTypes[1] = getArithmeticType(Right);
5379
5380        // Add this built-in operator as a candidate (VQ is empty).
5381        ParamTypes[0] =
5382          S.Context.getLValueReferenceType(getArithmeticType(Left));
5383        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5384                              /*IsAssigmentOperator=*/isEqualOp);
5385
5386        // Add this built-in operator as a candidate (VQ is 'volatile').
5387        if (VisibleTypeConversionsQuals.hasVolatile()) {
5388          ParamTypes[0] =
5389            S.Context.getVolatileType(getArithmeticType(Left));
5390          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5391          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5392                                CandidateSet,
5393                                /*IsAssigmentOperator=*/isEqualOp);
5394        }
5395      }
5396    }
5397
5398    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5399    for (BuiltinCandidateTypeSet::iterator
5400              Vec1 = CandidateTypes[0].vector_begin(),
5401           Vec1End = CandidateTypes[0].vector_end();
5402         Vec1 != Vec1End; ++Vec1) {
5403      for (BuiltinCandidateTypeSet::iterator
5404                Vec2 = CandidateTypes[1].vector_begin(),
5405             Vec2End = CandidateTypes[1].vector_end();
5406           Vec2 != Vec2End; ++Vec2) {
5407        QualType ParamTypes[2];
5408        ParamTypes[1] = *Vec2;
5409        // Add this built-in operator as a candidate (VQ is empty).
5410        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5411        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5412                              /*IsAssigmentOperator=*/isEqualOp);
5413
5414        // Add this built-in operator as a candidate (VQ is 'volatile').
5415        if (VisibleTypeConversionsQuals.hasVolatile()) {
5416          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5417          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5418          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5419                                CandidateSet,
5420                                /*IsAssigmentOperator=*/isEqualOp);
5421        }
5422      }
5423    }
5424  }
5425
5426  // C++ [over.built]p22:
5427  //
5428  //   For every triple (L, VQ, R), where L is an integral type, VQ
5429  //   is either volatile or empty, and R is a promoted integral
5430  //   type, there exist candidate operator functions of the form
5431  //
5432  //        VQ L&       operator%=(VQ L&, R);
5433  //        VQ L&       operator<<=(VQ L&, R);
5434  //        VQ L&       operator>>=(VQ L&, R);
5435  //        VQ L&       operator&=(VQ L&, R);
5436  //        VQ L&       operator^=(VQ L&, R);
5437  //        VQ L&       operator|=(VQ L&, R);
5438  void addAssignmentIntegralOverloads() {
5439    if (!HasArithmeticOrEnumeralCandidateType)
5440      return;
5441
5442    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
5443      for (unsigned Right = FirstPromotedIntegralType;
5444           Right < LastPromotedIntegralType; ++Right) {
5445        QualType ParamTypes[2];
5446        ParamTypes[1] = getArithmeticType(Right);
5447
5448        // Add this built-in operator as a candidate (VQ is empty).
5449        ParamTypes[0] =
5450          S.Context.getLValueReferenceType(getArithmeticType(Left));
5451        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5452        if (VisibleTypeConversionsQuals.hasVolatile()) {
5453          // Add this built-in operator as a candidate (VQ is 'volatile').
5454          ParamTypes[0] = getArithmeticType(Left);
5455          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
5456          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5457          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5458                                CandidateSet);
5459        }
5460      }
5461    }
5462  }
5463
5464  // C++ [over.operator]p23:
5465  //
5466  //   There also exist candidate operator functions of the form
5467  //
5468  //        bool        operator!(bool);
5469  //        bool        operator&&(bool, bool);
5470  //        bool        operator||(bool, bool);
5471  void addExclaimOverload() {
5472    QualType ParamTy = S.Context.BoolTy;
5473    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
5474                          /*IsAssignmentOperator=*/false,
5475                          /*NumContextualBoolArguments=*/1);
5476  }
5477  void addAmpAmpOrPipePipeOverload() {
5478    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
5479    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
5480                          /*IsAssignmentOperator=*/false,
5481                          /*NumContextualBoolArguments=*/2);
5482  }
5483
5484  // C++ [over.built]p13:
5485  //
5486  //   For every cv-qualified or cv-unqualified object type T there
5487  //   exist candidate operator functions of the form
5488  //
5489  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
5490  //        T&         operator[](T*, ptrdiff_t);
5491  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
5492  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
5493  //        T&         operator[](ptrdiff_t, T*);
5494  void addSubscriptOverloads() {
5495    for (BuiltinCandidateTypeSet::iterator
5496              Ptr = CandidateTypes[0].pointer_begin(),
5497           PtrEnd = CandidateTypes[0].pointer_end();
5498         Ptr != PtrEnd; ++Ptr) {
5499      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
5500      QualType PointeeType = (*Ptr)->getPointeeType();
5501      if (!PointeeType->isObjectType())
5502        continue;
5503
5504      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5505
5506      // T& operator[](T*, ptrdiff_t)
5507      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5508    }
5509
5510    for (BuiltinCandidateTypeSet::iterator
5511              Ptr = CandidateTypes[1].pointer_begin(),
5512           PtrEnd = CandidateTypes[1].pointer_end();
5513         Ptr != PtrEnd; ++Ptr) {
5514      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
5515      QualType PointeeType = (*Ptr)->getPointeeType();
5516      if (!PointeeType->isObjectType())
5517        continue;
5518
5519      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5520
5521      // T& operator[](ptrdiff_t, T*)
5522      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5523    }
5524  }
5525
5526  // C++ [over.built]p11:
5527  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5528  //    C1 is the same type as C2 or is a derived class of C2, T is an object
5529  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5530  //    there exist candidate operator functions of the form
5531  //
5532  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5533  //
5534  //    where CV12 is the union of CV1 and CV2.
5535  void addArrowStarOverloads() {
5536    for (BuiltinCandidateTypeSet::iterator
5537             Ptr = CandidateTypes[0].pointer_begin(),
5538           PtrEnd = CandidateTypes[0].pointer_end();
5539         Ptr != PtrEnd; ++Ptr) {
5540      QualType C1Ty = (*Ptr);
5541      QualType C1;
5542      QualifierCollector Q1;
5543      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
5544      if (!isa<RecordType>(C1))
5545        continue;
5546      // heuristic to reduce number of builtin candidates in the set.
5547      // Add volatile/restrict version only if there are conversions to a
5548      // volatile/restrict type.
5549      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5550        continue;
5551      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5552        continue;
5553      for (BuiltinCandidateTypeSet::iterator
5554                MemPtr = CandidateTypes[1].member_pointer_begin(),
5555             MemPtrEnd = CandidateTypes[1].member_pointer_end();
5556           MemPtr != MemPtrEnd; ++MemPtr) {
5557        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5558        QualType C2 = QualType(mptr->getClass(), 0);
5559        C2 = C2.getUnqualifiedType();
5560        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
5561          break;
5562        QualType ParamTypes[2] = { *Ptr, *MemPtr };
5563        // build CV12 T&
5564        QualType T = mptr->getPointeeType();
5565        if (!VisibleTypeConversionsQuals.hasVolatile() &&
5566            T.isVolatileQualified())
5567          continue;
5568        if (!VisibleTypeConversionsQuals.hasRestrict() &&
5569            T.isRestrictQualified())
5570          continue;
5571        T = Q1.apply(S.Context, T);
5572        QualType ResultTy = S.Context.getLValueReferenceType(T);
5573        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5574      }
5575    }
5576  }
5577
5578  // Note that we don't consider the first argument, since it has been
5579  // contextually converted to bool long ago. The candidates below are
5580  // therefore added as binary.
5581  //
5582  // C++ [over.built]p25:
5583  //   For every type T, where T is a pointer, pointer-to-member, or scoped
5584  //   enumeration type, there exist candidate operator functions of the form
5585  //
5586  //        T        operator?(bool, T, T);
5587  //
5588  void addConditionalOperatorOverloads() {
5589    /// Set of (canonical) types that we've already handled.
5590    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5591
5592    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5593      for (BuiltinCandidateTypeSet::iterator
5594                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5595             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5596           Ptr != PtrEnd; ++Ptr) {
5597        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5598          continue;
5599
5600        QualType ParamTypes[2] = { *Ptr, *Ptr };
5601        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5602      }
5603
5604      for (BuiltinCandidateTypeSet::iterator
5605                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5606             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5607           MemPtr != MemPtrEnd; ++MemPtr) {
5608        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5609          continue;
5610
5611        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5612        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
5613      }
5614
5615      if (S.getLangOptions().CPlusPlus0x) {
5616        for (BuiltinCandidateTypeSet::iterator
5617                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5618               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5619             Enum != EnumEnd; ++Enum) {
5620          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
5621            continue;
5622
5623          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5624            continue;
5625
5626          QualType ParamTypes[2] = { *Enum, *Enum };
5627          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
5628        }
5629      }
5630    }
5631  }
5632};
5633
5634} // end anonymous namespace
5635
5636/// AddBuiltinOperatorCandidates - Add the appropriate built-in
5637/// operator overloads to the candidate set (C++ [over.built]), based
5638/// on the operator @p Op and the arguments given. For example, if the
5639/// operator is a binary '+', this routine might add "int
5640/// operator+(int, int)" to cover integer addition.
5641void
5642Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
5643                                   SourceLocation OpLoc,
5644                                   Expr **Args, unsigned NumArgs,
5645                                   OverloadCandidateSet& CandidateSet) {
5646  // Find all of the types that the arguments can convert to, but only
5647  // if the operator we're looking at has built-in operator candidates
5648  // that make use of these types. Also record whether we encounter non-record
5649  // candidate types or either arithmetic or enumeral candidate types.
5650  Qualifiers VisibleTypeConversionsQuals;
5651  VisibleTypeConversionsQuals.addConst();
5652  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5653    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
5654
5655  bool HasNonRecordCandidateType = false;
5656  bool HasArithmeticOrEnumeralCandidateType = false;
5657  llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
5658  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5659    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
5660    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
5661                                                 OpLoc,
5662                                                 true,
5663                                                 (Op == OO_Exclaim ||
5664                                                  Op == OO_AmpAmp ||
5665                                                  Op == OO_PipePipe),
5666                                                 VisibleTypeConversionsQuals);
5667    HasNonRecordCandidateType = HasNonRecordCandidateType ||
5668        CandidateTypes[ArgIdx].hasNonRecordTypes();
5669    HasArithmeticOrEnumeralCandidateType =
5670        HasArithmeticOrEnumeralCandidateType ||
5671        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
5672  }
5673
5674  // Exit early when no non-record types have been added to the candidate set
5675  // for any of the arguments to the operator.
5676  if (!HasNonRecordCandidateType)
5677    return;
5678
5679  // Setup an object to manage the common state for building overloads.
5680  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
5681                                           VisibleTypeConversionsQuals,
5682                                           HasArithmeticOrEnumeralCandidateType,
5683                                           CandidateTypes, CandidateSet);
5684
5685  // Dispatch over the operation to add in only those overloads which apply.
5686  switch (Op) {
5687  case OO_None:
5688  case NUM_OVERLOADED_OPERATORS:
5689    assert(false && "Expected an overloaded operator");
5690    break;
5691
5692  case OO_New:
5693  case OO_Delete:
5694  case OO_Array_New:
5695  case OO_Array_Delete:
5696  case OO_Call:
5697    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
5698    break;
5699
5700  case OO_Comma:
5701  case OO_Arrow:
5702    // C++ [over.match.oper]p3:
5703    //   -- For the operator ',', the unary operator '&', or the
5704    //      operator '->', the built-in candidates set is empty.
5705    break;
5706
5707  case OO_Plus: // '+' is either unary or binary
5708    if (NumArgs == 1)
5709      OpBuilder.addUnaryPlusPointerOverloads();
5710    // Fall through.
5711
5712  case OO_Minus: // '-' is either unary or binary
5713    if (NumArgs == 1) {
5714      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
5715    } else {
5716      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
5717      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5718    }
5719    break;
5720
5721  case OO_Star: // '*' is either unary or binary
5722    if (NumArgs == 1)
5723      OpBuilder.addUnaryStarPointerOverloads();
5724    else
5725      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5726    break;
5727
5728  case OO_Slash:
5729    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5730    break;
5731
5732  case OO_PlusPlus:
5733  case OO_MinusMinus:
5734    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
5735    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
5736    break;
5737
5738  case OO_EqualEqual:
5739  case OO_ExclaimEqual:
5740    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
5741    // Fall through.
5742
5743  case OO_Less:
5744  case OO_Greater:
5745  case OO_LessEqual:
5746  case OO_GreaterEqual:
5747    OpBuilder.addRelationalPointerOrEnumeralOverloads();
5748    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
5749    break;
5750
5751  case OO_Percent:
5752  case OO_Caret:
5753  case OO_Pipe:
5754  case OO_LessLess:
5755  case OO_GreaterGreater:
5756    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
5757    break;
5758
5759  case OO_Amp: // '&' is either unary or binary
5760    if (NumArgs == 1)
5761      // C++ [over.match.oper]p3:
5762      //   -- For the operator ',', the unary operator '&', or the
5763      //      operator '->', the built-in candidates set is empty.
5764      break;
5765
5766    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
5767    break;
5768
5769  case OO_Tilde:
5770    OpBuilder.addUnaryTildePromotedIntegralOverloads();
5771    break;
5772
5773  case OO_Equal:
5774    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
5775    // Fall through.
5776
5777  case OO_PlusEqual:
5778  case OO_MinusEqual:
5779    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
5780    // Fall through.
5781
5782  case OO_StarEqual:
5783  case OO_SlashEqual:
5784    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
5785    break;
5786
5787  case OO_PercentEqual:
5788  case OO_LessLessEqual:
5789  case OO_GreaterGreaterEqual:
5790  case OO_AmpEqual:
5791  case OO_CaretEqual:
5792  case OO_PipeEqual:
5793    OpBuilder.addAssignmentIntegralOverloads();
5794    break;
5795
5796  case OO_Exclaim:
5797    OpBuilder.addExclaimOverload();
5798    break;
5799
5800  case OO_AmpAmp:
5801  case OO_PipePipe:
5802    OpBuilder.addAmpAmpOrPipePipeOverload();
5803    break;
5804
5805  case OO_Subscript:
5806    OpBuilder.addSubscriptOverloads();
5807    break;
5808
5809  case OO_ArrowStar:
5810    OpBuilder.addArrowStarOverloads();
5811    break;
5812
5813  case OO_Conditional:
5814    OpBuilder.addConditionalOperatorOverloads();
5815    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5816    break;
5817  }
5818}
5819
5820/// \brief Add function candidates found via argument-dependent lookup
5821/// to the set of overloading candidates.
5822///
5823/// This routine performs argument-dependent name lookup based on the
5824/// given function name (which may also be an operator name) and adds
5825/// all of the overload candidates found by ADL to the overload
5826/// candidate set (C++ [basic.lookup.argdep]).
5827void
5828Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
5829                                           bool Operator,
5830                                           Expr **Args, unsigned NumArgs,
5831                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5832                                           OverloadCandidateSet& CandidateSet,
5833                                           bool PartialOverloading) {
5834  ADLResult Fns;
5835
5836  // FIXME: This approach for uniquing ADL results (and removing
5837  // redundant candidates from the set) relies on pointer-equality,
5838  // which means we need to key off the canonical decl.  However,
5839  // always going back to the canonical decl might not get us the
5840  // right set of default arguments.  What default arguments are
5841  // we supposed to consider on ADL candidates, anyway?
5842
5843  // FIXME: Pass in the explicit template arguments?
5844  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
5845
5846  // Erase all of the candidates we already knew about.
5847  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5848                                   CandEnd = CandidateSet.end();
5849       Cand != CandEnd; ++Cand)
5850    if (Cand->Function) {
5851      Fns.erase(Cand->Function);
5852      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
5853        Fns.erase(FunTmpl);
5854    }
5855
5856  // For each of the ADL candidates we found, add it to the overload
5857  // set.
5858  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
5859    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
5860    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
5861      if (ExplicitTemplateArgs)
5862        continue;
5863
5864      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
5865                           false, PartialOverloading);
5866    } else
5867      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
5868                                   FoundDecl, ExplicitTemplateArgs,
5869                                   Args, NumArgs, CandidateSet);
5870  }
5871}
5872
5873/// isBetterOverloadCandidate - Determines whether the first overload
5874/// candidate is a better candidate than the second (C++ 13.3.3p1).
5875bool
5876isBetterOverloadCandidate(Sema &S,
5877                          const OverloadCandidate &Cand1,
5878                          const OverloadCandidate &Cand2,
5879                          SourceLocation Loc,
5880                          bool UserDefinedConversion) {
5881  // Define viable functions to be better candidates than non-viable
5882  // functions.
5883  if (!Cand2.Viable)
5884    return Cand1.Viable;
5885  else if (!Cand1.Viable)
5886    return false;
5887
5888  // C++ [over.match.best]p1:
5889  //
5890  //   -- if F is a static member function, ICS1(F) is defined such
5891  //      that ICS1(F) is neither better nor worse than ICS1(G) for
5892  //      any function G, and, symmetrically, ICS1(G) is neither
5893  //      better nor worse than ICS1(F).
5894  unsigned StartArg = 0;
5895  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
5896    StartArg = 1;
5897
5898  // C++ [over.match.best]p1:
5899  //   A viable function F1 is defined to be a better function than another
5900  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
5901  //   conversion sequence than ICSi(F2), and then...
5902  unsigned NumArgs = Cand1.Conversions.size();
5903  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
5904  bool HasBetterConversion = false;
5905  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
5906    switch (CompareImplicitConversionSequences(S,
5907                                               Cand1.Conversions[ArgIdx],
5908                                               Cand2.Conversions[ArgIdx])) {
5909    case ImplicitConversionSequence::Better:
5910      // Cand1 has a better conversion sequence.
5911      HasBetterConversion = true;
5912      break;
5913
5914    case ImplicitConversionSequence::Worse:
5915      // Cand1 can't be better than Cand2.
5916      return false;
5917
5918    case ImplicitConversionSequence::Indistinguishable:
5919      // Do nothing.
5920      break;
5921    }
5922  }
5923
5924  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
5925  //       ICSj(F2), or, if not that,
5926  if (HasBetterConversion)
5927    return true;
5928
5929  //     - F1 is a non-template function and F2 is a function template
5930  //       specialization, or, if not that,
5931  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
5932      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5933    return true;
5934
5935  //   -- F1 and F2 are function template specializations, and the function
5936  //      template for F1 is more specialized than the template for F2
5937  //      according to the partial ordering rules described in 14.5.5.2, or,
5938  //      if not that,
5939  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
5940      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
5941    if (FunctionTemplateDecl *BetterTemplate
5942          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
5943                                         Cand2.Function->getPrimaryTemplate(),
5944                                         Loc,
5945                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
5946                                                             : TPOC_Call,
5947                                         Cand1.ExplicitCallArguments))
5948      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
5949  }
5950
5951  //   -- the context is an initialization by user-defined conversion
5952  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
5953  //      from the return type of F1 to the destination type (i.e.,
5954  //      the type of the entity being initialized) is a better
5955  //      conversion sequence than the standard conversion sequence
5956  //      from the return type of F2 to the destination type.
5957  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
5958      isa<CXXConversionDecl>(Cand1.Function) &&
5959      isa<CXXConversionDecl>(Cand2.Function)) {
5960    switch (CompareStandardConversionSequences(S,
5961                                               Cand1.FinalConversion,
5962                                               Cand2.FinalConversion)) {
5963    case ImplicitConversionSequence::Better:
5964      // Cand1 has a better conversion sequence.
5965      return true;
5966
5967    case ImplicitConversionSequence::Worse:
5968      // Cand1 can't be better than Cand2.
5969      return false;
5970
5971    case ImplicitConversionSequence::Indistinguishable:
5972      // Do nothing
5973      break;
5974    }
5975  }
5976
5977  return false;
5978}
5979
5980/// \brief Computes the best viable function (C++ 13.3.3)
5981/// within an overload candidate set.
5982///
5983/// \param CandidateSet the set of candidate functions.
5984///
5985/// \param Loc the location of the function name (or operator symbol) for
5986/// which overload resolution occurs.
5987///
5988/// \param Best f overload resolution was successful or found a deleted
5989/// function, Best points to the candidate function found.
5990///
5991/// \returns The result of overload resolution.
5992OverloadingResult
5993OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
5994                                         iterator &Best,
5995                                         bool UserDefinedConversion) {
5996  // Find the best viable function.
5997  Best = end();
5998  for (iterator Cand = begin(); Cand != end(); ++Cand) {
5999    if (Cand->Viable)
6000      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6001                                                     UserDefinedConversion))
6002        Best = Cand;
6003  }
6004
6005  // If we didn't find any viable functions, abort.
6006  if (Best == end())
6007    return OR_No_Viable_Function;
6008
6009  // Make sure that this function is better than every other viable
6010  // function. If not, we have an ambiguity.
6011  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6012    if (Cand->Viable &&
6013        Cand != Best &&
6014        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6015                                   UserDefinedConversion)) {
6016      Best = end();
6017      return OR_Ambiguous;
6018    }
6019  }
6020
6021  // Best is the best viable function.
6022  if (Best->Function &&
6023      (Best->Function->isDeleted() ||
6024       Best->Function->getAttr<UnavailableAttr>()))
6025    return OR_Deleted;
6026
6027  // C++ [basic.def.odr]p2:
6028  //   An overloaded function is used if it is selected by overload resolution
6029  //   when referred to from a potentially-evaluated expression. [Note: this
6030  //   covers calls to named functions (5.2.2), operator overloading
6031  //   (clause 13), user-defined conversions (12.3.2), allocation function for
6032  //   placement new (5.3.4), as well as non-default initialization (8.5).
6033  if (Best->Function)
6034    S.MarkDeclarationReferenced(Loc, Best->Function);
6035
6036  return OR_Success;
6037}
6038
6039namespace {
6040
6041enum OverloadCandidateKind {
6042  oc_function,
6043  oc_method,
6044  oc_constructor,
6045  oc_function_template,
6046  oc_method_template,
6047  oc_constructor_template,
6048  oc_implicit_default_constructor,
6049  oc_implicit_copy_constructor,
6050  oc_implicit_copy_assignment
6051};
6052
6053OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6054                                                FunctionDecl *Fn,
6055                                                std::string &Description) {
6056  bool isTemplate = false;
6057
6058  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6059    isTemplate = true;
6060    Description = S.getTemplateArgumentBindingsText(
6061      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6062  }
6063
6064  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6065    if (!Ctor->isImplicit())
6066      return isTemplate ? oc_constructor_template : oc_constructor;
6067
6068    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
6069                                     : oc_implicit_default_constructor;
6070  }
6071
6072  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6073    // This actually gets spelled 'candidate function' for now, but
6074    // it doesn't hurt to split it out.
6075    if (!Meth->isImplicit())
6076      return isTemplate ? oc_method_template : oc_method;
6077
6078    assert(Meth->isCopyAssignmentOperator()
6079           && "implicit method is not copy assignment operator?");
6080    return oc_implicit_copy_assignment;
6081  }
6082
6083  return isTemplate ? oc_function_template : oc_function;
6084}
6085
6086} // end anonymous namespace
6087
6088// Notes the location of an overload candidate.
6089void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6090  std::string FnDesc;
6091  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6092  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6093    << (unsigned) K << FnDesc;
6094}
6095
6096/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6097/// "lead" diagnostic; it will be given two arguments, the source and
6098/// target types of the conversion.
6099void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6100                                 Sema &S,
6101                                 SourceLocation CaretLoc,
6102                                 const PartialDiagnostic &PDiag) const {
6103  S.Diag(CaretLoc, PDiag)
6104    << Ambiguous.getFromType() << Ambiguous.getToType();
6105  for (AmbiguousConversionSequence::const_iterator
6106         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6107    S.NoteOverloadCandidate(*I);
6108  }
6109}
6110
6111namespace {
6112
6113void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6114  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6115  assert(Conv.isBad());
6116  assert(Cand->Function && "for now, candidate must be a function");
6117  FunctionDecl *Fn = Cand->Function;
6118
6119  // There's a conversion slot for the object argument if this is a
6120  // non-constructor method.  Note that 'I' corresponds the
6121  // conversion-slot index.
6122  bool isObjectArgument = false;
6123  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6124    if (I == 0)
6125      isObjectArgument = true;
6126    else
6127      I--;
6128  }
6129
6130  std::string FnDesc;
6131  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6132
6133  Expr *FromExpr = Conv.Bad.FromExpr;
6134  QualType FromTy = Conv.Bad.getFromType();
6135  QualType ToTy = Conv.Bad.getToType();
6136
6137  if (FromTy == S.Context.OverloadTy) {
6138    assert(FromExpr && "overload set argument came from implicit argument?");
6139    Expr *E = FromExpr->IgnoreParens();
6140    if (isa<UnaryOperator>(E))
6141      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6142    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6143
6144    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6145      << (unsigned) FnKind << FnDesc
6146      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6147      << ToTy << Name << I+1;
6148    return;
6149  }
6150
6151  // Do some hand-waving analysis to see if the non-viability is due
6152  // to a qualifier mismatch.
6153  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6154  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6155  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6156    CToTy = RT->getPointeeType();
6157  else {
6158    // TODO: detect and diagnose the full richness of const mismatches.
6159    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6160      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6161        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6162  }
6163
6164  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6165      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6166    // It is dumb that we have to do this here.
6167    while (isa<ArrayType>(CFromTy))
6168      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6169    while (isa<ArrayType>(CToTy))
6170      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6171
6172    Qualifiers FromQs = CFromTy.getQualifiers();
6173    Qualifiers ToQs = CToTy.getQualifiers();
6174
6175    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6176      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6177        << (unsigned) FnKind << FnDesc
6178        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6179        << FromTy
6180        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6181        << (unsigned) isObjectArgument << I+1;
6182      return;
6183    }
6184
6185    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6186    assert(CVR && "unexpected qualifiers mismatch");
6187
6188    if (isObjectArgument) {
6189      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6190        << (unsigned) FnKind << FnDesc
6191        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6192        << FromTy << (CVR - 1);
6193    } else {
6194      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6195        << (unsigned) FnKind << FnDesc
6196        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6197        << FromTy << (CVR - 1) << I+1;
6198    }
6199    return;
6200  }
6201
6202  // Diagnose references or pointers to incomplete types differently,
6203  // since it's far from impossible that the incompleteness triggered
6204  // the failure.
6205  QualType TempFromTy = FromTy.getNonReferenceType();
6206  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6207    TempFromTy = PTy->getPointeeType();
6208  if (TempFromTy->isIncompleteType()) {
6209    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6210      << (unsigned) FnKind << FnDesc
6211      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6212      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6213    return;
6214  }
6215
6216  // Diagnose base -> derived pointer conversions.
6217  unsigned BaseToDerivedConversion = 0;
6218  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6219    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6220      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6221                                               FromPtrTy->getPointeeType()) &&
6222          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6223          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6224          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6225                          FromPtrTy->getPointeeType()))
6226        BaseToDerivedConversion = 1;
6227    }
6228  } else if (const ObjCObjectPointerType *FromPtrTy
6229                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6230    if (const ObjCObjectPointerType *ToPtrTy
6231                                        = ToTy->getAs<ObjCObjectPointerType>())
6232      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6233        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6234          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6235                                                FromPtrTy->getPointeeType()) &&
6236              FromIface->isSuperClassOf(ToIface))
6237            BaseToDerivedConversion = 2;
6238  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6239      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6240          !FromTy->isIncompleteType() &&
6241          !ToRefTy->getPointeeType()->isIncompleteType() &&
6242          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6243        BaseToDerivedConversion = 3;
6244    }
6245
6246  if (BaseToDerivedConversion) {
6247    S.Diag(Fn->getLocation(),
6248           diag::note_ovl_candidate_bad_base_to_derived_conv)
6249      << (unsigned) FnKind << FnDesc
6250      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6251      << (BaseToDerivedConversion - 1)
6252      << FromTy << ToTy << I+1;
6253    return;
6254  }
6255
6256  // TODO: specialize more based on the kind of mismatch
6257  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
6258    << (unsigned) FnKind << FnDesc
6259    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6260    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6261}
6262
6263void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
6264                           unsigned NumFormalArgs) {
6265  // TODO: treat calls to a missing default constructor as a special case
6266
6267  FunctionDecl *Fn = Cand->Function;
6268  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
6269
6270  unsigned MinParams = Fn->getMinRequiredArguments();
6271
6272  // at least / at most / exactly
6273  unsigned mode, modeCount;
6274  if (NumFormalArgs < MinParams) {
6275    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
6276           (Cand->FailureKind == ovl_fail_bad_deduction &&
6277            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
6278    if (MinParams != FnTy->getNumArgs() ||
6279        FnTy->isVariadic() || FnTy->isTemplateVariadic())
6280      mode = 0; // "at least"
6281    else
6282      mode = 2; // "exactly"
6283    modeCount = MinParams;
6284  } else {
6285    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
6286           (Cand->FailureKind == ovl_fail_bad_deduction &&
6287            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
6288    if (MinParams != FnTy->getNumArgs())
6289      mode = 1; // "at most"
6290    else
6291      mode = 2; // "exactly"
6292    modeCount = FnTy->getNumArgs();
6293  }
6294
6295  std::string Description;
6296  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
6297
6298  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
6299    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
6300    << modeCount << NumFormalArgs;
6301}
6302
6303/// Diagnose a failed template-argument deduction.
6304void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
6305                          Expr **Args, unsigned NumArgs) {
6306  FunctionDecl *Fn = Cand->Function; // pattern
6307
6308  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
6309  NamedDecl *ParamD;
6310  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
6311  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
6312  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
6313  switch (Cand->DeductionFailure.Result) {
6314  case Sema::TDK_Success:
6315    llvm_unreachable("TDK_success while diagnosing bad deduction");
6316
6317  case Sema::TDK_Incomplete: {
6318    assert(ParamD && "no parameter found for incomplete deduction result");
6319    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
6320      << ParamD->getDeclName();
6321    return;
6322  }
6323
6324  case Sema::TDK_Underqualified: {
6325    assert(ParamD && "no parameter found for bad qualifiers deduction result");
6326    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
6327
6328    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
6329
6330    // Param will have been canonicalized, but it should just be a
6331    // qualified version of ParamD, so move the qualifiers to that.
6332    QualifierCollector Qs;
6333    Qs.strip(Param);
6334    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
6335    assert(S.Context.hasSameType(Param, NonCanonParam));
6336
6337    // Arg has also been canonicalized, but there's nothing we can do
6338    // about that.  It also doesn't matter as much, because it won't
6339    // have any template parameters in it (because deduction isn't
6340    // done on dependent types).
6341    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
6342
6343    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
6344      << ParamD->getDeclName() << Arg << NonCanonParam;
6345    return;
6346  }
6347
6348  case Sema::TDK_Inconsistent: {
6349    assert(ParamD && "no parameter found for inconsistent deduction result");
6350    int which = 0;
6351    if (isa<TemplateTypeParmDecl>(ParamD))
6352      which = 0;
6353    else if (isa<NonTypeTemplateParmDecl>(ParamD))
6354      which = 1;
6355    else {
6356      which = 2;
6357    }
6358
6359    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
6360      << which << ParamD->getDeclName()
6361      << *Cand->DeductionFailure.getFirstArg()
6362      << *Cand->DeductionFailure.getSecondArg();
6363    return;
6364  }
6365
6366  case Sema::TDK_InvalidExplicitArguments:
6367    assert(ParamD && "no parameter found for invalid explicit arguments");
6368    if (ParamD->getDeclName())
6369      S.Diag(Fn->getLocation(),
6370             diag::note_ovl_candidate_explicit_arg_mismatch_named)
6371        << ParamD->getDeclName();
6372    else {
6373      int index = 0;
6374      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
6375        index = TTP->getIndex();
6376      else if (NonTypeTemplateParmDecl *NTTP
6377                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
6378        index = NTTP->getIndex();
6379      else
6380        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
6381      S.Diag(Fn->getLocation(),
6382             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
6383        << (index + 1);
6384    }
6385    return;
6386
6387  case Sema::TDK_TooManyArguments:
6388  case Sema::TDK_TooFewArguments:
6389    DiagnoseArityMismatch(S, Cand, NumArgs);
6390    return;
6391
6392  case Sema::TDK_InstantiationDepth:
6393    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
6394    return;
6395
6396  case Sema::TDK_SubstitutionFailure: {
6397    std::string ArgString;
6398    if (TemplateArgumentList *Args
6399                            = Cand->DeductionFailure.getTemplateArgumentList())
6400      ArgString = S.getTemplateArgumentBindingsText(
6401                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
6402                                                    *Args);
6403    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
6404      << ArgString;
6405    return;
6406  }
6407
6408  // TODO: diagnose these individually, then kill off
6409  // note_ovl_candidate_bad_deduction, which is uselessly vague.
6410  case Sema::TDK_NonDeducedMismatch:
6411  case Sema::TDK_FailedOverloadResolution:
6412    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
6413    return;
6414  }
6415}
6416
6417/// Generates a 'note' diagnostic for an overload candidate.  We've
6418/// already generated a primary error at the call site.
6419///
6420/// It really does need to be a single diagnostic with its caret
6421/// pointed at the candidate declaration.  Yes, this creates some
6422/// major challenges of technical writing.  Yes, this makes pointing
6423/// out problems with specific arguments quite awkward.  It's still
6424/// better than generating twenty screens of text for every failed
6425/// overload.
6426///
6427/// It would be great to be able to express per-candidate problems
6428/// more richly for those diagnostic clients that cared, but we'd
6429/// still have to be just as careful with the default diagnostics.
6430void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
6431                           Expr **Args, unsigned NumArgs) {
6432  FunctionDecl *Fn = Cand->Function;
6433
6434  // Note deleted candidates, but only if they're viable.
6435  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
6436    std::string FnDesc;
6437    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6438
6439    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
6440      << FnKind << FnDesc << Fn->isDeleted();
6441    return;
6442  }
6443
6444  // We don't really have anything else to say about viable candidates.
6445  if (Cand->Viable) {
6446    S.NoteOverloadCandidate(Fn);
6447    return;
6448  }
6449
6450  switch (Cand->FailureKind) {
6451  case ovl_fail_too_many_arguments:
6452  case ovl_fail_too_few_arguments:
6453    return DiagnoseArityMismatch(S, Cand, NumArgs);
6454
6455  case ovl_fail_bad_deduction:
6456    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
6457
6458  case ovl_fail_trivial_conversion:
6459  case ovl_fail_bad_final_conversion:
6460  case ovl_fail_final_conversion_not_exact:
6461    return S.NoteOverloadCandidate(Fn);
6462
6463  case ovl_fail_bad_conversion: {
6464    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
6465    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
6466      if (Cand->Conversions[I].isBad())
6467        return DiagnoseBadConversion(S, Cand, I);
6468
6469    // FIXME: this currently happens when we're called from SemaInit
6470    // when user-conversion overload fails.  Figure out how to handle
6471    // those conditions and diagnose them well.
6472    return S.NoteOverloadCandidate(Fn);
6473  }
6474  }
6475}
6476
6477void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
6478  // Desugar the type of the surrogate down to a function type,
6479  // retaining as many typedefs as possible while still showing
6480  // the function type (and, therefore, its parameter types).
6481  QualType FnType = Cand->Surrogate->getConversionType();
6482  bool isLValueReference = false;
6483  bool isRValueReference = false;
6484  bool isPointer = false;
6485  if (const LValueReferenceType *FnTypeRef =
6486        FnType->getAs<LValueReferenceType>()) {
6487    FnType = FnTypeRef->getPointeeType();
6488    isLValueReference = true;
6489  } else if (const RValueReferenceType *FnTypeRef =
6490               FnType->getAs<RValueReferenceType>()) {
6491    FnType = FnTypeRef->getPointeeType();
6492    isRValueReference = true;
6493  }
6494  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
6495    FnType = FnTypePtr->getPointeeType();
6496    isPointer = true;
6497  }
6498  // Desugar down to a function type.
6499  FnType = QualType(FnType->getAs<FunctionType>(), 0);
6500  // Reconstruct the pointer/reference as appropriate.
6501  if (isPointer) FnType = S.Context.getPointerType(FnType);
6502  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
6503  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
6504
6505  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
6506    << FnType;
6507}
6508
6509void NoteBuiltinOperatorCandidate(Sema &S,
6510                                  const char *Opc,
6511                                  SourceLocation OpLoc,
6512                                  OverloadCandidate *Cand) {
6513  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
6514  std::string TypeStr("operator");
6515  TypeStr += Opc;
6516  TypeStr += "(";
6517  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
6518  if (Cand->Conversions.size() == 1) {
6519    TypeStr += ")";
6520    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
6521  } else {
6522    TypeStr += ", ";
6523    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
6524    TypeStr += ")";
6525    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
6526  }
6527}
6528
6529void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
6530                                  OverloadCandidate *Cand) {
6531  unsigned NoOperands = Cand->Conversions.size();
6532  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
6533    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
6534    if (ICS.isBad()) break; // all meaningless after first invalid
6535    if (!ICS.isAmbiguous()) continue;
6536
6537    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
6538                              S.PDiag(diag::note_ambiguous_type_conversion));
6539  }
6540}
6541
6542SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
6543  if (Cand->Function)
6544    return Cand->Function->getLocation();
6545  if (Cand->IsSurrogate)
6546    return Cand->Surrogate->getLocation();
6547  return SourceLocation();
6548}
6549
6550struct CompareOverloadCandidatesForDisplay {
6551  Sema &S;
6552  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
6553
6554  bool operator()(const OverloadCandidate *L,
6555                  const OverloadCandidate *R) {
6556    // Fast-path this check.
6557    if (L == R) return false;
6558
6559    // Order first by viability.
6560    if (L->Viable) {
6561      if (!R->Viable) return true;
6562
6563      // TODO: introduce a tri-valued comparison for overload
6564      // candidates.  Would be more worthwhile if we had a sort
6565      // that could exploit it.
6566      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
6567      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
6568    } else if (R->Viable)
6569      return false;
6570
6571    assert(L->Viable == R->Viable);
6572
6573    // Criteria by which we can sort non-viable candidates:
6574    if (!L->Viable) {
6575      // 1. Arity mismatches come after other candidates.
6576      if (L->FailureKind == ovl_fail_too_many_arguments ||
6577          L->FailureKind == ovl_fail_too_few_arguments)
6578        return false;
6579      if (R->FailureKind == ovl_fail_too_many_arguments ||
6580          R->FailureKind == ovl_fail_too_few_arguments)
6581        return true;
6582
6583      // 2. Bad conversions come first and are ordered by the number
6584      // of bad conversions and quality of good conversions.
6585      if (L->FailureKind == ovl_fail_bad_conversion) {
6586        if (R->FailureKind != ovl_fail_bad_conversion)
6587          return true;
6588
6589        // If there's any ordering between the defined conversions...
6590        // FIXME: this might not be transitive.
6591        assert(L->Conversions.size() == R->Conversions.size());
6592
6593        int leftBetter = 0;
6594        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
6595        for (unsigned E = L->Conversions.size(); I != E; ++I) {
6596          switch (CompareImplicitConversionSequences(S,
6597                                                     L->Conversions[I],
6598                                                     R->Conversions[I])) {
6599          case ImplicitConversionSequence::Better:
6600            leftBetter++;
6601            break;
6602
6603          case ImplicitConversionSequence::Worse:
6604            leftBetter--;
6605            break;
6606
6607          case ImplicitConversionSequence::Indistinguishable:
6608            break;
6609          }
6610        }
6611        if (leftBetter > 0) return true;
6612        if (leftBetter < 0) return false;
6613
6614      } else if (R->FailureKind == ovl_fail_bad_conversion)
6615        return false;
6616
6617      // TODO: others?
6618    }
6619
6620    // Sort everything else by location.
6621    SourceLocation LLoc = GetLocationForCandidate(L);
6622    SourceLocation RLoc = GetLocationForCandidate(R);
6623
6624    // Put candidates without locations (e.g. builtins) at the end.
6625    if (LLoc.isInvalid()) return false;
6626    if (RLoc.isInvalid()) return true;
6627
6628    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
6629  }
6630};
6631
6632/// CompleteNonViableCandidate - Normally, overload resolution only
6633/// computes up to the first
6634void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
6635                                Expr **Args, unsigned NumArgs) {
6636  assert(!Cand->Viable);
6637
6638  // Don't do anything on failures other than bad conversion.
6639  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
6640
6641  // Skip forward to the first bad conversion.
6642  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
6643  unsigned ConvCount = Cand->Conversions.size();
6644  while (true) {
6645    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
6646    ConvIdx++;
6647    if (Cand->Conversions[ConvIdx - 1].isBad())
6648      break;
6649  }
6650
6651  if (ConvIdx == ConvCount)
6652    return;
6653
6654  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
6655         "remaining conversion is initialized?");
6656
6657  // FIXME: this should probably be preserved from the overload
6658  // operation somehow.
6659  bool SuppressUserConversions = false;
6660
6661  const FunctionProtoType* Proto;
6662  unsigned ArgIdx = ConvIdx;
6663
6664  if (Cand->IsSurrogate) {
6665    QualType ConvType
6666      = Cand->Surrogate->getConversionType().getNonReferenceType();
6667    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6668      ConvType = ConvPtrType->getPointeeType();
6669    Proto = ConvType->getAs<FunctionProtoType>();
6670    ArgIdx--;
6671  } else if (Cand->Function) {
6672    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
6673    if (isa<CXXMethodDecl>(Cand->Function) &&
6674        !isa<CXXConstructorDecl>(Cand->Function))
6675      ArgIdx--;
6676  } else {
6677    // Builtin binary operator with a bad first conversion.
6678    assert(ConvCount <= 3);
6679    for (; ConvIdx != ConvCount; ++ConvIdx)
6680      Cand->Conversions[ConvIdx]
6681        = TryCopyInitialization(S, Args[ConvIdx],
6682                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
6683                                SuppressUserConversions,
6684                                /*InOverloadResolution*/ true);
6685    return;
6686  }
6687
6688  // Fill in the rest of the conversions.
6689  unsigned NumArgsInProto = Proto->getNumArgs();
6690  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
6691    if (ArgIdx < NumArgsInProto)
6692      Cand->Conversions[ConvIdx]
6693        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
6694                                SuppressUserConversions,
6695                                /*InOverloadResolution=*/true);
6696    else
6697      Cand->Conversions[ConvIdx].setEllipsis();
6698  }
6699}
6700
6701} // end anonymous namespace
6702
6703/// PrintOverloadCandidates - When overload resolution fails, prints
6704/// diagnostic messages containing the candidates in the candidate
6705/// set.
6706void OverloadCandidateSet::NoteCandidates(Sema &S,
6707                                          OverloadCandidateDisplayKind OCD,
6708                                          Expr **Args, unsigned NumArgs,
6709                                          const char *Opc,
6710                                          SourceLocation OpLoc) {
6711  // Sort the candidates by viability and position.  Sorting directly would
6712  // be prohibitive, so we make a set of pointers and sort those.
6713  llvm::SmallVector<OverloadCandidate*, 32> Cands;
6714  if (OCD == OCD_AllCandidates) Cands.reserve(size());
6715  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
6716    if (Cand->Viable)
6717      Cands.push_back(Cand);
6718    else if (OCD == OCD_AllCandidates) {
6719      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
6720      if (Cand->Function || Cand->IsSurrogate)
6721        Cands.push_back(Cand);
6722      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
6723      // want to list every possible builtin candidate.
6724    }
6725  }
6726
6727  std::sort(Cands.begin(), Cands.end(),
6728            CompareOverloadCandidatesForDisplay(S));
6729
6730  bool ReportedAmbiguousConversions = false;
6731
6732  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
6733  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
6734  unsigned CandsShown = 0;
6735  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
6736    OverloadCandidate *Cand = *I;
6737
6738    // Set an arbitrary limit on the number of candidate functions we'll spam
6739    // the user with.  FIXME: This limit should depend on details of the
6740    // candidate list.
6741    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
6742      break;
6743    }
6744    ++CandsShown;
6745
6746    if (Cand->Function)
6747      NoteFunctionCandidate(S, Cand, Args, NumArgs);
6748    else if (Cand->IsSurrogate)
6749      NoteSurrogateCandidate(S, Cand);
6750    else {
6751      assert(Cand->Viable &&
6752             "Non-viable built-in candidates are not added to Cands.");
6753      // Generally we only see ambiguities including viable builtin
6754      // operators if overload resolution got screwed up by an
6755      // ambiguous user-defined conversion.
6756      //
6757      // FIXME: It's quite possible for different conversions to see
6758      // different ambiguities, though.
6759      if (!ReportedAmbiguousConversions) {
6760        NoteAmbiguousUserConversions(S, OpLoc, Cand);
6761        ReportedAmbiguousConversions = true;
6762      }
6763
6764      // If this is a viable builtin, print it.
6765      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
6766    }
6767  }
6768
6769  if (I != E)
6770    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
6771}
6772
6773static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
6774  if (isa<UnresolvedLookupExpr>(E))
6775    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
6776
6777  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
6778}
6779
6780/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
6781/// an overloaded function (C++ [over.over]), where @p From is an
6782/// expression with overloaded function type and @p ToType is the type
6783/// we're trying to resolve to. For example:
6784///
6785/// @code
6786/// int f(double);
6787/// int f(int);
6788///
6789/// int (*pfd)(double) = f; // selects f(double)
6790/// @endcode
6791///
6792/// This routine returns the resulting FunctionDecl if it could be
6793/// resolved, and NULL otherwise. When @p Complain is true, this
6794/// routine will emit diagnostics if there is an error.
6795FunctionDecl *
6796Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
6797                                         bool Complain,
6798                                         DeclAccessPair &FoundResult) {
6799  QualType FunctionType = ToType;
6800  bool IsMember = false;
6801  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
6802    FunctionType = ToTypePtr->getPointeeType();
6803  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
6804    FunctionType = ToTypeRef->getPointeeType();
6805  else if (const MemberPointerType *MemTypePtr =
6806                    ToType->getAs<MemberPointerType>()) {
6807    FunctionType = MemTypePtr->getPointeeType();
6808    IsMember = true;
6809  }
6810
6811  // C++ [over.over]p1:
6812  //   [...] [Note: any redundant set of parentheses surrounding the
6813  //   overloaded function name is ignored (5.1). ]
6814  // C++ [over.over]p1:
6815  //   [...] The overloaded function name can be preceded by the &
6816  //   operator.
6817  // However, remember whether the expression has member-pointer form:
6818  // C++ [expr.unary.op]p4:
6819  //     A pointer to member is only formed when an explicit & is used
6820  //     and its operand is a qualified-id not enclosed in
6821  //     parentheses.
6822  OverloadExpr::FindResult Ovl = OverloadExpr::find(From);
6823  OverloadExpr *OvlExpr = Ovl.Expression;
6824
6825  // We expect a pointer or reference to function, or a function pointer.
6826  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
6827  if (!FunctionType->isFunctionType()) {
6828    if (Complain)
6829      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
6830        << OvlExpr->getName() << ToType;
6831
6832    return 0;
6833  }
6834
6835  // If the overload expression doesn't have the form of a pointer to
6836  // member, don't try to convert it to a pointer-to-member type.
6837  if (IsMember && !Ovl.HasFormOfMemberPointer) {
6838    if (!Complain) return 0;
6839
6840    // TODO: Should we condition this on whether any functions might
6841    // have matched, or is it more appropriate to do that in callers?
6842    // TODO: a fixit wouldn't hurt.
6843    Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
6844      << ToType << OvlExpr->getSourceRange();
6845    return 0;
6846  }
6847
6848  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
6849  if (OvlExpr->hasExplicitTemplateArgs()) {
6850    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
6851    ExplicitTemplateArgs = &ETABuffer;
6852  }
6853
6854  assert(From->getType() == Context.OverloadTy);
6855
6856  // Look through all of the overloaded functions, searching for one
6857  // whose type matches exactly.
6858  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
6859  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
6860
6861  bool FoundNonTemplateFunction = false;
6862  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6863         E = OvlExpr->decls_end(); I != E; ++I) {
6864    // Look through any using declarations to find the underlying function.
6865    NamedDecl *Fn = (*I)->getUnderlyingDecl();
6866
6867    // C++ [over.over]p3:
6868    //   Non-member functions and static member functions match
6869    //   targets of type "pointer-to-function" or "reference-to-function."
6870    //   Nonstatic member functions match targets of
6871    //   type "pointer-to-member-function."
6872    // Note that according to DR 247, the containing class does not matter.
6873
6874    if (FunctionTemplateDecl *FunctionTemplate
6875          = dyn_cast<FunctionTemplateDecl>(Fn)) {
6876      if (CXXMethodDecl *Method
6877            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
6878        // Skip non-static function templates when converting to pointer, and
6879        // static when converting to member pointer.
6880        if (Method->isStatic() == IsMember)
6881          continue;
6882      } else if (IsMember)
6883        continue;
6884
6885      // C++ [over.over]p2:
6886      //   If the name is a function template, template argument deduction is
6887      //   done (14.8.2.2), and if the argument deduction succeeds, the
6888      //   resulting template argument list is used to generate a single
6889      //   function template specialization, which is added to the set of
6890      //   overloaded functions considered.
6891      FunctionDecl *Specialization = 0;
6892      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6893      if (TemplateDeductionResult Result
6894            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
6895                                      FunctionType, Specialization, Info)) {
6896        // FIXME: make a note of the failed deduction for diagnostics.
6897        (void)Result;
6898      } else {
6899        // Template argument deduction ensures that we have an exact match.
6900        // This function template specicalization works.
6901        Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
6902        assert(FunctionType
6903                 == Context.getCanonicalType(Specialization->getType()));
6904        Matches.push_back(std::make_pair(I.getPair(), Specialization));
6905      }
6906
6907      continue;
6908    }
6909
6910    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6911      // Skip non-static functions when converting to pointer, and static
6912      // when converting to member pointer.
6913      if (Method->isStatic() == IsMember)
6914        continue;
6915
6916      // If we have explicit template arguments, skip non-templates.
6917      if (OvlExpr->hasExplicitTemplateArgs())
6918        continue;
6919    } else if (IsMember)
6920      continue;
6921
6922    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
6923      QualType ResultTy;
6924      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
6925          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
6926                               ResultTy)) {
6927        Matches.push_back(std::make_pair(I.getPair(),
6928                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
6929        FoundNonTemplateFunction = true;
6930      }
6931    }
6932  }
6933
6934  // If there were 0 or 1 matches, we're done.
6935  if (Matches.empty()) {
6936    if (Complain) {
6937      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
6938        << OvlExpr->getName() << FunctionType;
6939      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6940                                 E = OvlExpr->decls_end();
6941           I != E; ++I)
6942        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
6943          NoteOverloadCandidate(F);
6944    }
6945
6946    return 0;
6947  } else if (Matches.size() == 1) {
6948    FunctionDecl *Result = Matches[0].second;
6949    FoundResult = Matches[0].first;
6950    MarkDeclarationReferenced(From->getLocStart(), Result);
6951    if (Complain) {
6952      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
6953    }
6954    return Result;
6955  }
6956
6957  // C++ [over.over]p4:
6958  //   If more than one function is selected, [...]
6959  if (!FoundNonTemplateFunction) {
6960    //   [...] and any given function template specialization F1 is
6961    //   eliminated if the set contains a second function template
6962    //   specialization whose function template is more specialized
6963    //   than the function template of F1 according to the partial
6964    //   ordering rules of 14.5.5.2.
6965
6966    // The algorithm specified above is quadratic. We instead use a
6967    // two-pass algorithm (similar to the one used to identify the
6968    // best viable function in an overload set) that identifies the
6969    // best function template (if it exists).
6970
6971    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
6972    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6973      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
6974
6975    UnresolvedSetIterator Result =
6976        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
6977                           TPOC_Other, 0, From->getLocStart(),
6978                           PDiag(),
6979                           PDiag(diag::err_addr_ovl_ambiguous)
6980                               << Matches[0].second->getDeclName(),
6981                           PDiag(diag::note_ovl_candidate)
6982                               << (unsigned) oc_function_template);
6983    if (Result == MatchesCopy.end())
6984      return 0;
6985
6986    MarkDeclarationReferenced(From->getLocStart(), *Result);
6987    FoundResult = Matches[Result - MatchesCopy.begin()].first;
6988    if (Complain)
6989      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
6990    return cast<FunctionDecl>(*Result);
6991  }
6992
6993  //   [...] any function template specializations in the set are
6994  //   eliminated if the set also contains a non-template function, [...]
6995  for (unsigned I = 0, N = Matches.size(); I != N; ) {
6996    if (Matches[I].second->getPrimaryTemplate() == 0)
6997      ++I;
6998    else {
6999      Matches[I] = Matches[--N];
7000      Matches.set_size(N);
7001    }
7002  }
7003
7004  // [...] After such eliminations, if any, there shall remain exactly one
7005  // selected function.
7006  if (Matches.size() == 1) {
7007    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
7008    FoundResult = Matches[0].first;
7009    if (Complain)
7010      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
7011    return cast<FunctionDecl>(Matches[0].second);
7012  }
7013
7014  // FIXME: We should probably return the same thing that BestViableFunction
7015  // returns (even if we issue the diagnostics here).
7016  if (Complain) {
7017    Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
7018      << Matches[0].second->getDeclName();
7019    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7020      NoteOverloadCandidate(Matches[I].second);
7021  }
7022
7023  return 0;
7024}
7025
7026/// \brief Given an expression that refers to an overloaded function, try to
7027/// resolve that overloaded function expression down to a single function.
7028///
7029/// This routine can only resolve template-ids that refer to a single function
7030/// template, where that template-id refers to a single template whose template
7031/// arguments are either provided by the template-id or have defaults,
7032/// as described in C++0x [temp.arg.explicit]p3.
7033FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
7034  // C++ [over.over]p1:
7035  //   [...] [Note: any redundant set of parentheses surrounding the
7036  //   overloaded function name is ignored (5.1). ]
7037  // C++ [over.over]p1:
7038  //   [...] The overloaded function name can be preceded by the &
7039  //   operator.
7040
7041  if (From->getType() != Context.OverloadTy)
7042    return 0;
7043
7044  OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression;
7045
7046  // If we didn't actually find any template-ids, we're done.
7047  if (!OvlExpr->hasExplicitTemplateArgs())
7048    return 0;
7049
7050  TemplateArgumentListInfo ExplicitTemplateArgs;
7051  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7052
7053  // Look through all of the overloaded functions, searching for one
7054  // whose type matches exactly.
7055  FunctionDecl *Matched = 0;
7056  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7057         E = OvlExpr->decls_end(); I != E; ++I) {
7058    // C++0x [temp.arg.explicit]p3:
7059    //   [...] In contexts where deduction is done and fails, or in contexts
7060    //   where deduction is not done, if a template argument list is
7061    //   specified and it, along with any default template arguments,
7062    //   identifies a single function template specialization, then the
7063    //   template-id is an lvalue for the function template specialization.
7064    FunctionTemplateDecl *FunctionTemplate
7065      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7066
7067    // C++ [over.over]p2:
7068    //   If the name is a function template, template argument deduction is
7069    //   done (14.8.2.2), and if the argument deduction succeeds, the
7070    //   resulting template argument list is used to generate a single
7071    //   function template specialization, which is added to the set of
7072    //   overloaded functions considered.
7073    FunctionDecl *Specialization = 0;
7074    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7075    if (TemplateDeductionResult Result
7076          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7077                                    Specialization, Info)) {
7078      // FIXME: make a note of the failed deduction for diagnostics.
7079      (void)Result;
7080      continue;
7081    }
7082
7083    // Multiple matches; we can't resolve to a single declaration.
7084    if (Matched)
7085      return 0;
7086
7087    Matched = Specialization;
7088  }
7089
7090  return Matched;
7091}
7092
7093/// \brief Add a single candidate to the overload set.
7094static void AddOverloadedCallCandidate(Sema &S,
7095                                       DeclAccessPair FoundDecl,
7096                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
7097                                       Expr **Args, unsigned NumArgs,
7098                                       OverloadCandidateSet &CandidateSet,
7099                                       bool PartialOverloading) {
7100  NamedDecl *Callee = FoundDecl.getDecl();
7101  if (isa<UsingShadowDecl>(Callee))
7102    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
7103
7104  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
7105    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
7106    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
7107                           false, PartialOverloading);
7108    return;
7109  }
7110
7111  if (FunctionTemplateDecl *FuncTemplate
7112      = dyn_cast<FunctionTemplateDecl>(Callee)) {
7113    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
7114                                   ExplicitTemplateArgs,
7115                                   Args, NumArgs, CandidateSet);
7116    return;
7117  }
7118
7119  assert(false && "unhandled case in overloaded call candidate");
7120
7121  // do nothing?
7122}
7123
7124/// \brief Add the overload candidates named by callee and/or found by argument
7125/// dependent lookup to the given overload set.
7126void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
7127                                       Expr **Args, unsigned NumArgs,
7128                                       OverloadCandidateSet &CandidateSet,
7129                                       bool PartialOverloading) {
7130
7131#ifndef NDEBUG
7132  // Verify that ArgumentDependentLookup is consistent with the rules
7133  // in C++0x [basic.lookup.argdep]p3:
7134  //
7135  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
7136  //   and let Y be the lookup set produced by argument dependent
7137  //   lookup (defined as follows). If X contains
7138  //
7139  //     -- a declaration of a class member, or
7140  //
7141  //     -- a block-scope function declaration that is not a
7142  //        using-declaration, or
7143  //
7144  //     -- a declaration that is neither a function or a function
7145  //        template
7146  //
7147  //   then Y is empty.
7148
7149  if (ULE->requiresADL()) {
7150    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7151           E = ULE->decls_end(); I != E; ++I) {
7152      assert(!(*I)->getDeclContext()->isRecord());
7153      assert(isa<UsingShadowDecl>(*I) ||
7154             !(*I)->getDeclContext()->isFunctionOrMethod());
7155      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
7156    }
7157  }
7158#endif
7159
7160  // It would be nice to avoid this copy.
7161  TemplateArgumentListInfo TABuffer;
7162  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7163  if (ULE->hasExplicitTemplateArgs()) {
7164    ULE->copyTemplateArgumentsInto(TABuffer);
7165    ExplicitTemplateArgs = &TABuffer;
7166  }
7167
7168  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7169         E = ULE->decls_end(); I != E; ++I)
7170    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
7171                               Args, NumArgs, CandidateSet,
7172                               PartialOverloading);
7173
7174  if (ULE->requiresADL())
7175    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
7176                                         Args, NumArgs,
7177                                         ExplicitTemplateArgs,
7178                                         CandidateSet,
7179                                         PartialOverloading);
7180}
7181
7182/// Attempts to recover from a call where no functions were found.
7183///
7184/// Returns true if new candidates were found.
7185static ExprResult
7186BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
7187                      UnresolvedLookupExpr *ULE,
7188                      SourceLocation LParenLoc,
7189                      Expr **Args, unsigned NumArgs,
7190                      SourceLocation RParenLoc) {
7191
7192  CXXScopeSpec SS;
7193  if (ULE->getQualifier()) {
7194    SS.setScopeRep(ULE->getQualifier());
7195    SS.setRange(ULE->getQualifierRange());
7196  }
7197
7198  TemplateArgumentListInfo TABuffer;
7199  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7200  if (ULE->hasExplicitTemplateArgs()) {
7201    ULE->copyTemplateArgumentsInto(TABuffer);
7202    ExplicitTemplateArgs = &TABuffer;
7203  }
7204
7205  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
7206                 Sema::LookupOrdinaryName);
7207  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
7208    return ExprError();
7209
7210  assert(!R.empty() && "lookup results empty despite recovery");
7211
7212  // Build an implicit member call if appropriate.  Just drop the
7213  // casts and such from the call, we don't really care.
7214  ExprResult NewFn = ExprError();
7215  if ((*R.begin())->isCXXClassMember())
7216    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
7217                                                    ExplicitTemplateArgs);
7218  else if (ExplicitTemplateArgs)
7219    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
7220  else
7221    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
7222
7223  if (NewFn.isInvalid())
7224    return ExprError();
7225
7226  // This shouldn't cause an infinite loop because we're giving it
7227  // an expression with non-empty lookup results, which should never
7228  // end up here.
7229  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
7230                               MultiExprArg(Args, NumArgs), RParenLoc);
7231}
7232
7233/// ResolveOverloadedCallFn - Given the call expression that calls Fn
7234/// (which eventually refers to the declaration Func) and the call
7235/// arguments Args/NumArgs, attempt to resolve the function call down
7236/// to a specific function. If overload resolution succeeds, returns
7237/// the function declaration produced by overload
7238/// resolution. Otherwise, emits diagnostics, deletes all of the
7239/// arguments and Fn, and returns NULL.
7240ExprResult
7241Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
7242                              SourceLocation LParenLoc,
7243                              Expr **Args, unsigned NumArgs,
7244                              SourceLocation RParenLoc) {
7245#ifndef NDEBUG
7246  if (ULE->requiresADL()) {
7247    // To do ADL, we must have found an unqualified name.
7248    assert(!ULE->getQualifier() && "qualified name with ADL");
7249
7250    // We don't perform ADL for implicit declarations of builtins.
7251    // Verify that this was correctly set up.
7252    FunctionDecl *F;
7253    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
7254        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
7255        F->getBuiltinID() && F->isImplicit())
7256      assert(0 && "performing ADL for builtin");
7257
7258    // We don't perform ADL in C.
7259    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
7260  }
7261#endif
7262
7263  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
7264
7265  // Add the functions denoted by the callee to the set of candidate
7266  // functions, including those from argument-dependent lookup.
7267  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
7268
7269  // If we found nothing, try to recover.
7270  // AddRecoveryCallCandidates diagnoses the error itself, so we just
7271  // bailout out if it fails.
7272  if (CandidateSet.empty())
7273    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
7274                                 RParenLoc);
7275
7276  OverloadCandidateSet::iterator Best;
7277  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
7278  case OR_Success: {
7279    FunctionDecl *FDecl = Best->Function;
7280    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
7281    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
7282                      ULE->getNameLoc());
7283    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
7284    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
7285                                 RParenLoc);
7286  }
7287
7288  case OR_No_Viable_Function:
7289    Diag(Fn->getSourceRange().getBegin(),
7290         diag::err_ovl_no_viable_function_in_call)
7291      << ULE->getName() << Fn->getSourceRange();
7292    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7293    break;
7294
7295  case OR_Ambiguous:
7296    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
7297      << ULE->getName() << Fn->getSourceRange();
7298    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
7299    break;
7300
7301  case OR_Deleted:
7302    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
7303      << Best->Function->isDeleted()
7304      << ULE->getName()
7305      << Fn->getSourceRange();
7306    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7307    break;
7308  }
7309
7310  // Overload resolution failed.
7311  return ExprError();
7312}
7313
7314static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
7315  return Functions.size() > 1 ||
7316    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
7317}
7318
7319/// \brief Create a unary operation that may resolve to an overloaded
7320/// operator.
7321///
7322/// \param OpLoc The location of the operator itself (e.g., '*').
7323///
7324/// \param OpcIn The UnaryOperator::Opcode that describes this
7325/// operator.
7326///
7327/// \param Functions The set of non-member functions that will be
7328/// considered by overload resolution. The caller needs to build this
7329/// set based on the context using, e.g.,
7330/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7331/// set should not contain any member functions; those will be added
7332/// by CreateOverloadedUnaryOp().
7333///
7334/// \param input The input argument.
7335ExprResult
7336Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
7337                              const UnresolvedSetImpl &Fns,
7338                              Expr *Input) {
7339  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
7340
7341  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
7342  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
7343  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7344  // TODO: provide better source location info.
7345  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7346
7347  if (Input->getObjectKind() == OK_ObjCProperty)
7348    ConvertPropertyForRValue(Input);
7349
7350  Expr *Args[2] = { Input, 0 };
7351  unsigned NumArgs = 1;
7352
7353  // For post-increment and post-decrement, add the implicit '0' as
7354  // the second argument, so that we know this is a post-increment or
7355  // post-decrement.
7356  if (Opc == UO_PostInc || Opc == UO_PostDec) {
7357    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
7358    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
7359                                     SourceLocation());
7360    NumArgs = 2;
7361  }
7362
7363  if (Input->isTypeDependent()) {
7364    if (Fns.empty())
7365      return Owned(new (Context) UnaryOperator(Input,
7366                                               Opc,
7367                                               Context.DependentTy,
7368                                               VK_RValue, OK_Ordinary,
7369                                               OpLoc));
7370
7371    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7372    UnresolvedLookupExpr *Fn
7373      = UnresolvedLookupExpr::Create(Context, NamingClass,
7374                                     0, SourceRange(), OpNameInfo,
7375                                     /*ADL*/ true, IsOverloaded(Fns),
7376                                     Fns.begin(), Fns.end());
7377    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7378                                                   &Args[0], NumArgs,
7379                                                   Context.DependentTy,
7380                                                   VK_RValue,
7381                                                   OpLoc));
7382  }
7383
7384  // Build an empty overload set.
7385  OverloadCandidateSet CandidateSet(OpLoc);
7386
7387  // Add the candidates from the given function set.
7388  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
7389
7390  // Add operator candidates that are member functions.
7391  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7392
7393  // Add candidates from ADL.
7394  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7395                                       Args, NumArgs,
7396                                       /*ExplicitTemplateArgs*/ 0,
7397                                       CandidateSet);
7398
7399  // Add builtin operator candidates.
7400  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7401
7402  // Perform overload resolution.
7403  OverloadCandidateSet::iterator Best;
7404  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7405  case OR_Success: {
7406    // We found a built-in operator or an overloaded operator.
7407    FunctionDecl *FnDecl = Best->Function;
7408
7409    if (FnDecl) {
7410      // We matched an overloaded operator. Build a call to that
7411      // operator.
7412
7413      // Convert the arguments.
7414      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7415        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
7416
7417        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
7418                                                Best->FoundDecl, Method))
7419          return ExprError();
7420      } else {
7421        // Convert the arguments.
7422        ExprResult InputInit
7423          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7424                                                      Context,
7425                                                      FnDecl->getParamDecl(0)),
7426                                      SourceLocation(),
7427                                      Input);
7428        if (InputInit.isInvalid())
7429          return ExprError();
7430        Input = InputInit.take();
7431      }
7432
7433      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7434
7435      // Determine the result type.
7436      QualType ResultTy = FnDecl->getResultType();
7437      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7438      ResultTy = ResultTy.getNonLValueExprType(Context);
7439
7440      // Build the actual expression node.
7441      Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl);
7442
7443      Args[0] = Input;
7444      CallExpr *TheCall =
7445        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
7446                                          Args, NumArgs, ResultTy, VK, OpLoc);
7447
7448      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7449                              FnDecl))
7450        return ExprError();
7451
7452      return MaybeBindToTemporary(TheCall);
7453    } else {
7454      // We matched a built-in operator. Convert the arguments, then
7455      // break out so that we will build the appropriate built-in
7456      // operator node.
7457        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
7458                                      Best->Conversions[0], AA_Passing))
7459          return ExprError();
7460
7461        break;
7462      }
7463    }
7464
7465    case OR_No_Viable_Function:
7466      // No viable function; fall through to handling this as a
7467      // built-in operator, which will produce an error message for us.
7468      break;
7469
7470    case OR_Ambiguous:
7471      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
7472          << UnaryOperator::getOpcodeStr(Opc)
7473          << Input->getType()
7474          << Input->getSourceRange();
7475      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
7476                                  Args, NumArgs,
7477                                  UnaryOperator::getOpcodeStr(Opc), OpLoc);
7478      return ExprError();
7479
7480    case OR_Deleted:
7481      Diag(OpLoc, diag::err_ovl_deleted_oper)
7482        << Best->Function->isDeleted()
7483        << UnaryOperator::getOpcodeStr(Opc)
7484        << Input->getSourceRange();
7485      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7486      return ExprError();
7487    }
7488
7489  // Either we found no viable overloaded operator or we matched a
7490  // built-in operator. In either case, fall through to trying to
7491  // build a built-in operation.
7492  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
7493}
7494
7495/// \brief Create a binary operation that may resolve to an overloaded
7496/// operator.
7497///
7498/// \param OpLoc The location of the operator itself (e.g., '+').
7499///
7500/// \param OpcIn The BinaryOperator::Opcode that describes this
7501/// operator.
7502///
7503/// \param Functions The set of non-member functions that will be
7504/// considered by overload resolution. The caller needs to build this
7505/// set based on the context using, e.g.,
7506/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7507/// set should not contain any member functions; those will be added
7508/// by CreateOverloadedBinOp().
7509///
7510/// \param LHS Left-hand argument.
7511/// \param RHS Right-hand argument.
7512ExprResult
7513Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
7514                            unsigned OpcIn,
7515                            const UnresolvedSetImpl &Fns,
7516                            Expr *LHS, Expr *RHS) {
7517  Expr *Args[2] = { LHS, RHS };
7518  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
7519
7520  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
7521  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
7522  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7523
7524  // If either side is type-dependent, create an appropriate dependent
7525  // expression.
7526  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7527    if (Fns.empty()) {
7528      // If there are no functions to store, just build a dependent
7529      // BinaryOperator or CompoundAssignment.
7530      if (Opc <= BO_Assign || Opc > BO_OrAssign)
7531        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
7532                                                  Context.DependentTy,
7533                                                  VK_RValue, OK_Ordinary,
7534                                                  OpLoc));
7535
7536      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
7537                                                        Context.DependentTy,
7538                                                        VK_LValue,
7539                                                        OK_Ordinary,
7540                                                        Context.DependentTy,
7541                                                        Context.DependentTy,
7542                                                        OpLoc));
7543    }
7544
7545    // FIXME: save results of ADL from here?
7546    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7547    // TODO: provide better source location info in DNLoc component.
7548    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7549    UnresolvedLookupExpr *Fn
7550      = UnresolvedLookupExpr::Create(Context, NamingClass, 0, SourceRange(),
7551                                     OpNameInfo, /*ADL*/ true, IsOverloaded(Fns),
7552                                     Fns.begin(), Fns.end());
7553    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7554                                                   Args, 2,
7555                                                   Context.DependentTy,
7556                                                   VK_RValue,
7557                                                   OpLoc));
7558  }
7559
7560  // Always do property rvalue conversions on the RHS.
7561  if (Args[1]->getObjectKind() == OK_ObjCProperty)
7562    ConvertPropertyForRValue(Args[1]);
7563
7564  // The LHS is more complicated.
7565  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
7566
7567    // There's a tension for assignment operators between primitive
7568    // property assignment and the overloaded operators.
7569    if (BinaryOperator::isAssignmentOp(Opc)) {
7570      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
7571
7572      // Is the property "logically" settable?
7573      bool Settable = (PRE->isExplicitProperty() ||
7574                       PRE->getImplicitPropertySetter());
7575
7576      // To avoid gratuitously inventing semantics, use the primitive
7577      // unless it isn't.  Thoughts in case we ever really care:
7578      // - If the property isn't logically settable, we have to
7579      //   load and hope.
7580      // - If the property is settable and this is simple assignment,
7581      //   we really should use the primitive.
7582      // - If the property is settable, then we could try overloading
7583      //   on a generic lvalue of the appropriate type;  if it works
7584      //   out to a builtin candidate, we would do that same operation
7585      //   on the property, and otherwise just error.
7586      if (Settable)
7587        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7588    }
7589
7590    ConvertPropertyForRValue(Args[0]);
7591  }
7592
7593  // If this is the assignment operator, we only perform overload resolution
7594  // if the left-hand side is a class or enumeration type. This is actually
7595  // a hack. The standard requires that we do overload resolution between the
7596  // various built-in candidates, but as DR507 points out, this can lead to
7597  // problems. So we do it this way, which pretty much follows what GCC does.
7598  // Note that we go the traditional code path for compound assignment forms.
7599  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
7600    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7601
7602  // If this is the .* operator, which is not overloadable, just
7603  // create a built-in binary operator.
7604  if (Opc == BO_PtrMemD)
7605    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7606
7607  // Build an empty overload set.
7608  OverloadCandidateSet CandidateSet(OpLoc);
7609
7610  // Add the candidates from the given function set.
7611  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
7612
7613  // Add operator candidates that are member functions.
7614  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
7615
7616  // Add candidates from ADL.
7617  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7618                                       Args, 2,
7619                                       /*ExplicitTemplateArgs*/ 0,
7620                                       CandidateSet);
7621
7622  // Add builtin operator candidates.
7623  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
7624
7625  // Perform overload resolution.
7626  OverloadCandidateSet::iterator Best;
7627  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7628    case OR_Success: {
7629      // We found a built-in operator or an overloaded operator.
7630      FunctionDecl *FnDecl = Best->Function;
7631
7632      if (FnDecl) {
7633        // We matched an overloaded operator. Build a call to that
7634        // operator.
7635
7636        // Convert the arguments.
7637        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7638          // Best->Access is only meaningful for class members.
7639          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
7640
7641          ExprResult Arg1 =
7642            PerformCopyInitialization(
7643              InitializedEntity::InitializeParameter(Context,
7644                                                     FnDecl->getParamDecl(0)),
7645              SourceLocation(), Owned(Args[1]));
7646          if (Arg1.isInvalid())
7647            return ExprError();
7648
7649          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7650                                                  Best->FoundDecl, Method))
7651            return ExprError();
7652
7653          Args[1] = RHS = Arg1.takeAs<Expr>();
7654        } else {
7655          // Convert the arguments.
7656          ExprResult Arg0 = PerformCopyInitialization(
7657            InitializedEntity::InitializeParameter(Context,
7658                                                   FnDecl->getParamDecl(0)),
7659            SourceLocation(), Owned(Args[0]));
7660          if (Arg0.isInvalid())
7661            return ExprError();
7662
7663          ExprResult Arg1 =
7664            PerformCopyInitialization(
7665              InitializedEntity::InitializeParameter(Context,
7666                                                     FnDecl->getParamDecl(1)),
7667              SourceLocation(), Owned(Args[1]));
7668          if (Arg1.isInvalid())
7669            return ExprError();
7670          Args[0] = LHS = Arg0.takeAs<Expr>();
7671          Args[1] = RHS = Arg1.takeAs<Expr>();
7672        }
7673
7674        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7675
7676        // Determine the result type.
7677        QualType ResultTy = FnDecl->getResultType();
7678        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7679        ResultTy = ResultTy.getNonLValueExprType(Context);
7680
7681        // Build the actual expression node.
7682        Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
7683
7684        CXXOperatorCallExpr *TheCall =
7685          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
7686                                            Args, 2, ResultTy, VK, OpLoc);
7687
7688        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7689                                FnDecl))
7690          return ExprError();
7691
7692        return MaybeBindToTemporary(TheCall);
7693      } else {
7694        // We matched a built-in operator. Convert the arguments, then
7695        // break out so that we will build the appropriate built-in
7696        // operator node.
7697        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7698                                      Best->Conversions[0], AA_Passing) ||
7699            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7700                                      Best->Conversions[1], AA_Passing))
7701          return ExprError();
7702
7703        break;
7704      }
7705    }
7706
7707    case OR_No_Viable_Function: {
7708      // C++ [over.match.oper]p9:
7709      //   If the operator is the operator , [...] and there are no
7710      //   viable functions, then the operator is assumed to be the
7711      //   built-in operator and interpreted according to clause 5.
7712      if (Opc == BO_Comma)
7713        break;
7714
7715      // For class as left operand for assignment or compound assigment
7716      // operator do not fall through to handling in built-in, but report that
7717      // no overloaded assignment operator found
7718      ExprResult Result = ExprError();
7719      if (Args[0]->getType()->isRecordType() &&
7720          Opc >= BO_Assign && Opc <= BO_OrAssign) {
7721        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
7722             << BinaryOperator::getOpcodeStr(Opc)
7723             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7724      } else {
7725        // No viable function; try to create a built-in operation, which will
7726        // produce an error. Then, show the non-viable candidates.
7727        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7728      }
7729      assert(Result.isInvalid() &&
7730             "C++ binary operator overloading is missing candidates!");
7731      if (Result.isInvalid())
7732        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7733                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
7734      return move(Result);
7735    }
7736
7737    case OR_Ambiguous:
7738      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
7739          << BinaryOperator::getOpcodeStr(Opc)
7740          << Args[0]->getType() << Args[1]->getType()
7741          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7742      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
7743                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
7744      return ExprError();
7745
7746    case OR_Deleted:
7747      Diag(OpLoc, diag::err_ovl_deleted_oper)
7748        << Best->Function->isDeleted()
7749        << BinaryOperator::getOpcodeStr(Opc)
7750        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7751      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
7752      return ExprError();
7753  }
7754
7755  // We matched a built-in operator; build it.
7756  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7757}
7758
7759ExprResult
7760Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
7761                                         SourceLocation RLoc,
7762                                         Expr *Base, Expr *Idx) {
7763  Expr *Args[2] = { Base, Idx };
7764  DeclarationName OpName =
7765      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
7766
7767  // If either side is type-dependent, create an appropriate dependent
7768  // expression.
7769  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7770
7771    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7772    // CHECKME: no 'operator' keyword?
7773    DeclarationNameInfo OpNameInfo(OpName, LLoc);
7774    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
7775    UnresolvedLookupExpr *Fn
7776      = UnresolvedLookupExpr::Create(Context, NamingClass,
7777                                     0, SourceRange(), OpNameInfo,
7778                                     /*ADL*/ true, /*Overloaded*/ false,
7779                                     UnresolvedSetIterator(),
7780                                     UnresolvedSetIterator());
7781    // Can't add any actual overloads yet
7782
7783    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
7784                                                   Args, 2,
7785                                                   Context.DependentTy,
7786                                                   VK_RValue,
7787                                                   RLoc));
7788  }
7789
7790  if (Args[0]->getObjectKind() == OK_ObjCProperty)
7791    ConvertPropertyForRValue(Args[0]);
7792  if (Args[1]->getObjectKind() == OK_ObjCProperty)
7793    ConvertPropertyForRValue(Args[1]);
7794
7795  // Build an empty overload set.
7796  OverloadCandidateSet CandidateSet(LLoc);
7797
7798  // Subscript can only be overloaded as a member function.
7799
7800  // Add operator candidates that are member functions.
7801  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7802
7803  // Add builtin operator candidates.
7804  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7805
7806  // Perform overload resolution.
7807  OverloadCandidateSet::iterator Best;
7808  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
7809    case OR_Success: {
7810      // We found a built-in operator or an overloaded operator.
7811      FunctionDecl *FnDecl = Best->Function;
7812
7813      if (FnDecl) {
7814        // We matched an overloaded operator. Build a call to that
7815        // operator.
7816
7817        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
7818        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
7819
7820        // Convert the arguments.
7821        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
7822        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7823                                                Best->FoundDecl, Method))
7824          return ExprError();
7825
7826        // Convert the arguments.
7827        ExprResult InputInit
7828          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7829                                                      Context,
7830                                                      FnDecl->getParamDecl(0)),
7831                                      SourceLocation(),
7832                                      Owned(Args[1]));
7833        if (InputInit.isInvalid())
7834          return ExprError();
7835
7836        Args[1] = InputInit.takeAs<Expr>();
7837
7838        // Determine the result type
7839        QualType ResultTy = FnDecl->getResultType();
7840        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7841        ResultTy = ResultTy.getNonLValueExprType(Context);
7842
7843        // Build the actual expression node.
7844        Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc);
7845
7846        CXXOperatorCallExpr *TheCall =
7847          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
7848                                            FnExpr, Args, 2,
7849                                            ResultTy, VK, RLoc);
7850
7851        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
7852                                FnDecl))
7853          return ExprError();
7854
7855        return MaybeBindToTemporary(TheCall);
7856      } else {
7857        // We matched a built-in operator. Convert the arguments, then
7858        // break out so that we will build the appropriate built-in
7859        // operator node.
7860        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7861                                      Best->Conversions[0], AA_Passing) ||
7862            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7863                                      Best->Conversions[1], AA_Passing))
7864          return ExprError();
7865
7866        break;
7867      }
7868    }
7869
7870    case OR_No_Viable_Function: {
7871      if (CandidateSet.empty())
7872        Diag(LLoc, diag::err_ovl_no_oper)
7873          << Args[0]->getType() << /*subscript*/ 0
7874          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7875      else
7876        Diag(LLoc, diag::err_ovl_no_viable_subscript)
7877          << Args[0]->getType()
7878          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7879      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7880                                  "[]", LLoc);
7881      return ExprError();
7882    }
7883
7884    case OR_Ambiguous:
7885      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
7886          << "[]"
7887          << Args[0]->getType() << Args[1]->getType()
7888          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7889      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
7890                                  "[]", LLoc);
7891      return ExprError();
7892
7893    case OR_Deleted:
7894      Diag(LLoc, diag::err_ovl_deleted_oper)
7895        << Best->Function->isDeleted() << "[]"
7896        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7897      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7898                                  "[]", LLoc);
7899      return ExprError();
7900    }
7901
7902  // We matched a built-in operator; build it.
7903  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
7904}
7905
7906/// BuildCallToMemberFunction - Build a call to a member
7907/// function. MemExpr is the expression that refers to the member
7908/// function (and includes the object parameter), Args/NumArgs are the
7909/// arguments to the function call (not including the object
7910/// parameter). The caller needs to validate that the member
7911/// expression refers to a member function or an overloaded member
7912/// function.
7913ExprResult
7914Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
7915                                SourceLocation LParenLoc, Expr **Args,
7916                                unsigned NumArgs, SourceLocation RParenLoc) {
7917  // Dig out the member expression. This holds both the object
7918  // argument and the member function we're referring to.
7919  Expr *NakedMemExpr = MemExprE->IgnoreParens();
7920
7921  MemberExpr *MemExpr;
7922  CXXMethodDecl *Method = 0;
7923  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
7924  NestedNameSpecifier *Qualifier = 0;
7925  if (isa<MemberExpr>(NakedMemExpr)) {
7926    MemExpr = cast<MemberExpr>(NakedMemExpr);
7927    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
7928    FoundDecl = MemExpr->getFoundDecl();
7929    Qualifier = MemExpr->getQualifier();
7930  } else {
7931    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
7932    Qualifier = UnresExpr->getQualifier();
7933
7934    QualType ObjectType = UnresExpr->getBaseType();
7935
7936    // Add overload candidates
7937    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
7938
7939    // FIXME: avoid copy.
7940    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7941    if (UnresExpr->hasExplicitTemplateArgs()) {
7942      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7943      TemplateArgs = &TemplateArgsBuffer;
7944    }
7945
7946    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
7947           E = UnresExpr->decls_end(); I != E; ++I) {
7948
7949      NamedDecl *Func = *I;
7950      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
7951      if (isa<UsingShadowDecl>(Func))
7952        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
7953
7954      // Microsoft supports direct constructor calls.
7955      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
7956        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
7957                             CandidateSet);
7958      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
7959        // If explicit template arguments were provided, we can't call a
7960        // non-template member function.
7961        if (TemplateArgs)
7962          continue;
7963
7964        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
7965                           Args, NumArgs,
7966                           CandidateSet, /*SuppressUserConversions=*/false);
7967      } else {
7968        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
7969                                   I.getPair(), ActingDC, TemplateArgs,
7970                                   ObjectType, Args, NumArgs,
7971                                   CandidateSet,
7972                                   /*SuppressUsedConversions=*/false);
7973      }
7974    }
7975
7976    DeclarationName DeclName = UnresExpr->getMemberName();
7977
7978    OverloadCandidateSet::iterator Best;
7979    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
7980                                            Best)) {
7981    case OR_Success:
7982      Method = cast<CXXMethodDecl>(Best->Function);
7983      FoundDecl = Best->FoundDecl;
7984      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
7985      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
7986      break;
7987
7988    case OR_No_Viable_Function:
7989      Diag(UnresExpr->getMemberLoc(),
7990           diag::err_ovl_no_viable_member_function_in_call)
7991        << DeclName << MemExprE->getSourceRange();
7992      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7993      // FIXME: Leaking incoming expressions!
7994      return ExprError();
7995
7996    case OR_Ambiguous:
7997      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
7998        << DeclName << MemExprE->getSourceRange();
7999      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8000      // FIXME: Leaking incoming expressions!
8001      return ExprError();
8002
8003    case OR_Deleted:
8004      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
8005        << Best->Function->isDeleted()
8006        << DeclName << MemExprE->getSourceRange();
8007      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8008      // FIXME: Leaking incoming expressions!
8009      return ExprError();
8010    }
8011
8012    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
8013
8014    // If overload resolution picked a static member, build a
8015    // non-member call based on that function.
8016    if (Method->isStatic()) {
8017      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
8018                                   Args, NumArgs, RParenLoc);
8019    }
8020
8021    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
8022  }
8023
8024  QualType ResultType = Method->getResultType();
8025  ExprValueKind VK = Expr::getValueKindForType(ResultType);
8026  ResultType = ResultType.getNonLValueExprType(Context);
8027
8028  assert(Method && "Member call to something that isn't a method?");
8029  CXXMemberCallExpr *TheCall =
8030    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
8031                                    ResultType, VK, RParenLoc);
8032
8033  // Check for a valid return type.
8034  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
8035                          TheCall, Method))
8036    return ExprError();
8037
8038  // Convert the object argument (for a non-static member function call).
8039  // We only need to do this if there was actually an overload; otherwise
8040  // it was done at lookup.
8041  Expr *ObjectArg = MemExpr->getBase();
8042  if (!Method->isStatic() &&
8043      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
8044                                          FoundDecl, Method))
8045    return ExprError();
8046  MemExpr->setBase(ObjectArg);
8047
8048  // Convert the rest of the arguments
8049  const FunctionProtoType *Proto =
8050    Method->getType()->getAs<FunctionProtoType>();
8051  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
8052                              RParenLoc))
8053    return ExprError();
8054
8055  if (CheckFunctionCall(Method, TheCall))
8056    return ExprError();
8057
8058  return MaybeBindToTemporary(TheCall);
8059}
8060
8061/// BuildCallToObjectOfClassType - Build a call to an object of class
8062/// type (C++ [over.call.object]), which can end up invoking an
8063/// overloaded function call operator (@c operator()) or performing a
8064/// user-defined conversion on the object argument.
8065ExprResult
8066Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
8067                                   SourceLocation LParenLoc,
8068                                   Expr **Args, unsigned NumArgs,
8069                                   SourceLocation RParenLoc) {
8070  if (Object->getObjectKind() == OK_ObjCProperty)
8071    ConvertPropertyForRValue(Object);
8072
8073  assert(Object->getType()->isRecordType() && "Requires object type argument");
8074  const RecordType *Record = Object->getType()->getAs<RecordType>();
8075
8076  // C++ [over.call.object]p1:
8077  //  If the primary-expression E in the function call syntax
8078  //  evaluates to a class object of type "cv T", then the set of
8079  //  candidate functions includes at least the function call
8080  //  operators of T. The function call operators of T are obtained by
8081  //  ordinary lookup of the name operator() in the context of
8082  //  (E).operator().
8083  OverloadCandidateSet CandidateSet(LParenLoc);
8084  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
8085
8086  if (RequireCompleteType(LParenLoc, Object->getType(),
8087                          PDiag(diag::err_incomplete_object_call)
8088                          << Object->getSourceRange()))
8089    return true;
8090
8091  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
8092  LookupQualifiedName(R, Record->getDecl());
8093  R.suppressDiagnostics();
8094
8095  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8096       Oper != OperEnd; ++Oper) {
8097    AddMethodCandidate(Oper.getPair(), Object->getType(),
8098                       Args, NumArgs, CandidateSet,
8099                       /*SuppressUserConversions=*/ false);
8100  }
8101
8102  // C++ [over.call.object]p2:
8103  //   In addition, for each conversion function declared in T of the
8104  //   form
8105  //
8106  //        operator conversion-type-id () cv-qualifier;
8107  //
8108  //   where cv-qualifier is the same cv-qualification as, or a
8109  //   greater cv-qualification than, cv, and where conversion-type-id
8110  //   denotes the type "pointer to function of (P1,...,Pn) returning
8111  //   R", or the type "reference to pointer to function of
8112  //   (P1,...,Pn) returning R", or the type "reference to function
8113  //   of (P1,...,Pn) returning R", a surrogate call function [...]
8114  //   is also considered as a candidate function. Similarly,
8115  //   surrogate call functions are added to the set of candidate
8116  //   functions for each conversion function declared in an
8117  //   accessible base class provided the function is not hidden
8118  //   within T by another intervening declaration.
8119  const UnresolvedSetImpl *Conversions
8120    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
8121  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
8122         E = Conversions->end(); I != E; ++I) {
8123    NamedDecl *D = *I;
8124    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
8125    if (isa<UsingShadowDecl>(D))
8126      D = cast<UsingShadowDecl>(D)->getTargetDecl();
8127
8128    // Skip over templated conversion functions; they aren't
8129    // surrogates.
8130    if (isa<FunctionTemplateDecl>(D))
8131      continue;
8132
8133    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8134
8135    // Strip the reference type (if any) and then the pointer type (if
8136    // any) to get down to what might be a function type.
8137    QualType ConvType = Conv->getConversionType().getNonReferenceType();
8138    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8139      ConvType = ConvPtrType->getPointeeType();
8140
8141    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
8142      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
8143                            Object->getType(), Args, NumArgs,
8144                            CandidateSet);
8145  }
8146
8147  // Perform overload resolution.
8148  OverloadCandidateSet::iterator Best;
8149  switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(),
8150                             Best)) {
8151  case OR_Success:
8152    // Overload resolution succeeded; we'll build the appropriate call
8153    // below.
8154    break;
8155
8156  case OR_No_Viable_Function:
8157    if (CandidateSet.empty())
8158      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
8159        << Object->getType() << /*call*/ 1
8160        << Object->getSourceRange();
8161    else
8162      Diag(Object->getSourceRange().getBegin(),
8163           diag::err_ovl_no_viable_object_call)
8164        << Object->getType() << Object->getSourceRange();
8165    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8166    break;
8167
8168  case OR_Ambiguous:
8169    Diag(Object->getSourceRange().getBegin(),
8170         diag::err_ovl_ambiguous_object_call)
8171      << Object->getType() << Object->getSourceRange();
8172    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8173    break;
8174
8175  case OR_Deleted:
8176    Diag(Object->getSourceRange().getBegin(),
8177         diag::err_ovl_deleted_object_call)
8178      << Best->Function->isDeleted()
8179      << Object->getType() << Object->getSourceRange();
8180    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8181    break;
8182  }
8183
8184  if (Best == CandidateSet.end())
8185    return true;
8186
8187  if (Best->Function == 0) {
8188    // Since there is no function declaration, this is one of the
8189    // surrogate candidates. Dig out the conversion function.
8190    CXXConversionDecl *Conv
8191      = cast<CXXConversionDecl>(
8192                         Best->Conversions[0].UserDefined.ConversionFunction);
8193
8194    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
8195    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8196
8197    // We selected one of the surrogate functions that converts the
8198    // object parameter to a function pointer. Perform the conversion
8199    // on the object argument, then let ActOnCallExpr finish the job.
8200
8201    // Create an implicit member expr to refer to the conversion operator.
8202    // and then call it.
8203    ExprResult Call = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv);
8204    if (Call.isInvalid())
8205      return ExprError();
8206
8207    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
8208                         RParenLoc);
8209  }
8210
8211  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
8212  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8213
8214  // We found an overloaded operator(). Build a CXXOperatorCallExpr
8215  // that calls this method, using Object for the implicit object
8216  // parameter and passing along the remaining arguments.
8217  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8218  const FunctionProtoType *Proto =
8219    Method->getType()->getAs<FunctionProtoType>();
8220
8221  unsigned NumArgsInProto = Proto->getNumArgs();
8222  unsigned NumArgsToCheck = NumArgs;
8223
8224  // Build the full argument list for the method call (the
8225  // implicit object parameter is placed at the beginning of the
8226  // list).
8227  Expr **MethodArgs;
8228  if (NumArgs < NumArgsInProto) {
8229    NumArgsToCheck = NumArgsInProto;
8230    MethodArgs = new Expr*[NumArgsInProto + 1];
8231  } else {
8232    MethodArgs = new Expr*[NumArgs + 1];
8233  }
8234  MethodArgs[0] = Object;
8235  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
8236    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
8237
8238  Expr *NewFn = CreateFunctionRefExpr(*this, Method);
8239
8240  // Once we've built TheCall, all of the expressions are properly
8241  // owned.
8242  QualType ResultTy = Method->getResultType();
8243  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8244  ResultTy = ResultTy.getNonLValueExprType(Context);
8245
8246  CXXOperatorCallExpr *TheCall =
8247    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
8248                                      MethodArgs, NumArgs + 1,
8249                                      ResultTy, VK, RParenLoc);
8250  delete [] MethodArgs;
8251
8252  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
8253                          Method))
8254    return true;
8255
8256  // We may have default arguments. If so, we need to allocate more
8257  // slots in the call for them.
8258  if (NumArgs < NumArgsInProto)
8259    TheCall->setNumArgs(Context, NumArgsInProto + 1);
8260  else if (NumArgs > NumArgsInProto)
8261    NumArgsToCheck = NumArgsInProto;
8262
8263  bool IsError = false;
8264
8265  // Initialize the implicit object parameter.
8266  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
8267                                                 Best->FoundDecl, Method);
8268  TheCall->setArg(0, Object);
8269
8270
8271  // Check the argument types.
8272  for (unsigned i = 0; i != NumArgsToCheck; i++) {
8273    Expr *Arg;
8274    if (i < NumArgs) {
8275      Arg = Args[i];
8276
8277      // Pass the argument.
8278
8279      ExprResult InputInit
8280        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8281                                                    Context,
8282                                                    Method->getParamDecl(i)),
8283                                    SourceLocation(), Arg);
8284
8285      IsError |= InputInit.isInvalid();
8286      Arg = InputInit.takeAs<Expr>();
8287    } else {
8288      ExprResult DefArg
8289        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
8290      if (DefArg.isInvalid()) {
8291        IsError = true;
8292        break;
8293      }
8294
8295      Arg = DefArg.takeAs<Expr>();
8296    }
8297
8298    TheCall->setArg(i + 1, Arg);
8299  }
8300
8301  // If this is a variadic call, handle args passed through "...".
8302  if (Proto->isVariadic()) {
8303    // Promote the arguments (C99 6.5.2.2p7).
8304    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
8305      Expr *Arg = Args[i];
8306      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
8307      TheCall->setArg(i + 1, Arg);
8308    }
8309  }
8310
8311  if (IsError) return true;
8312
8313  if (CheckFunctionCall(Method, TheCall))
8314    return true;
8315
8316  return MaybeBindToTemporary(TheCall);
8317}
8318
8319/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
8320///  (if one exists), where @c Base is an expression of class type and
8321/// @c Member is the name of the member we're trying to find.
8322ExprResult
8323Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
8324  assert(Base->getType()->isRecordType() &&
8325         "left-hand side must have class type");
8326
8327  if (Base->getObjectKind() == OK_ObjCProperty)
8328    ConvertPropertyForRValue(Base);
8329
8330  SourceLocation Loc = Base->getExprLoc();
8331
8332  // C++ [over.ref]p1:
8333  //
8334  //   [...] An expression x->m is interpreted as (x.operator->())->m
8335  //   for a class object x of type T if T::operator->() exists and if
8336  //   the operator is selected as the best match function by the
8337  //   overload resolution mechanism (13.3).
8338  DeclarationName OpName =
8339    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
8340  OverloadCandidateSet CandidateSet(Loc);
8341  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
8342
8343  if (RequireCompleteType(Loc, Base->getType(),
8344                          PDiag(diag::err_typecheck_incomplete_tag)
8345                            << Base->getSourceRange()))
8346    return ExprError();
8347
8348  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
8349  LookupQualifiedName(R, BaseRecord->getDecl());
8350  R.suppressDiagnostics();
8351
8352  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8353       Oper != OperEnd; ++Oper) {
8354    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
8355                       /*SuppressUserConversions=*/false);
8356  }
8357
8358  // Perform overload resolution.
8359  OverloadCandidateSet::iterator Best;
8360  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8361  case OR_Success:
8362    // Overload resolution succeeded; we'll build the call below.
8363    break;
8364
8365  case OR_No_Viable_Function:
8366    if (CandidateSet.empty())
8367      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
8368        << Base->getType() << Base->getSourceRange();
8369    else
8370      Diag(OpLoc, diag::err_ovl_no_viable_oper)
8371        << "operator->" << Base->getSourceRange();
8372    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8373    return ExprError();
8374
8375  case OR_Ambiguous:
8376    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8377      << "->" << Base->getType() << Base->getSourceRange();
8378    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
8379    return ExprError();
8380
8381  case OR_Deleted:
8382    Diag(OpLoc,  diag::err_ovl_deleted_oper)
8383      << Best->Function->isDeleted()
8384      << "->" << Base->getSourceRange();
8385    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8386    return ExprError();
8387  }
8388
8389  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
8390  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8391
8392  // Convert the object parameter.
8393  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8394  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
8395                                          Best->FoundDecl, Method))
8396    return ExprError();
8397
8398  // Build the operator call.
8399  Expr *FnExpr = CreateFunctionRefExpr(*this, Method);
8400
8401  QualType ResultTy = Method->getResultType();
8402  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8403  ResultTy = ResultTy.getNonLValueExprType(Context);
8404  CXXOperatorCallExpr *TheCall =
8405    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
8406                                      &Base, 1, ResultTy, VK, OpLoc);
8407
8408  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
8409                          Method))
8410          return ExprError();
8411  return Owned(TheCall);
8412}
8413
8414/// FixOverloadedFunctionReference - E is an expression that refers to
8415/// a C++ overloaded function (possibly with some parentheses and
8416/// perhaps a '&' around it). We have resolved the overloaded function
8417/// to the function declaration Fn, so patch up the expression E to
8418/// refer (possibly indirectly) to Fn. Returns the new expr.
8419Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
8420                                           FunctionDecl *Fn) {
8421  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
8422    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
8423                                                   Found, Fn);
8424    if (SubExpr == PE->getSubExpr())
8425      return PE;
8426
8427    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
8428  }
8429
8430  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8431    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
8432                                                   Found, Fn);
8433    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
8434                               SubExpr->getType()) &&
8435           "Implicit cast type cannot be determined from overload");
8436    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
8437    if (SubExpr == ICE->getSubExpr())
8438      return ICE;
8439
8440    return ImplicitCastExpr::Create(Context, ICE->getType(),
8441                                    ICE->getCastKind(),
8442                                    SubExpr, 0,
8443                                    ICE->getValueKind());
8444  }
8445
8446  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
8447    assert(UnOp->getOpcode() == UO_AddrOf &&
8448           "Can only take the address of an overloaded function");
8449    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8450      if (Method->isStatic()) {
8451        // Do nothing: static member functions aren't any different
8452        // from non-member functions.
8453      } else {
8454        // Fix the sub expression, which really has to be an
8455        // UnresolvedLookupExpr holding an overloaded member function
8456        // or template.
8457        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
8458                                                       Found, Fn);
8459        if (SubExpr == UnOp->getSubExpr())
8460          return UnOp;
8461
8462        assert(isa<DeclRefExpr>(SubExpr)
8463               && "fixed to something other than a decl ref");
8464        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
8465               && "fixed to a member ref with no nested name qualifier");
8466
8467        // We have taken the address of a pointer to member
8468        // function. Perform the computation here so that we get the
8469        // appropriate pointer to member type.
8470        QualType ClassType
8471          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
8472        QualType MemPtrType
8473          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
8474
8475        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
8476                                           VK_RValue, OK_Ordinary,
8477                                           UnOp->getOperatorLoc());
8478      }
8479    }
8480    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
8481                                                   Found, Fn);
8482    if (SubExpr == UnOp->getSubExpr())
8483      return UnOp;
8484
8485    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
8486                                     Context.getPointerType(SubExpr->getType()),
8487                                       VK_RValue, OK_Ordinary,
8488                                       UnOp->getOperatorLoc());
8489  }
8490
8491  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8492    // FIXME: avoid copy.
8493    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8494    if (ULE->hasExplicitTemplateArgs()) {
8495      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
8496      TemplateArgs = &TemplateArgsBuffer;
8497    }
8498
8499    return DeclRefExpr::Create(Context,
8500                               ULE->getQualifier(),
8501                               ULE->getQualifierRange(),
8502                               Fn,
8503                               ULE->getNameLoc(),
8504                               Fn->getType(),
8505                               VK_LValue,
8506                               TemplateArgs);
8507  }
8508
8509  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
8510    // FIXME: avoid copy.
8511    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8512    if (MemExpr->hasExplicitTemplateArgs()) {
8513      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
8514      TemplateArgs = &TemplateArgsBuffer;
8515    }
8516
8517    Expr *Base;
8518
8519    // If we're filling in a static method where we used to have an
8520    // implicit member access, rewrite to a simple decl ref.
8521    if (MemExpr->isImplicitAccess()) {
8522      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
8523        return DeclRefExpr::Create(Context,
8524                                   MemExpr->getQualifier(),
8525                                   MemExpr->getQualifierRange(),
8526                                   Fn,
8527                                   MemExpr->getMemberLoc(),
8528                                   Fn->getType(),
8529                                   VK_LValue,
8530                                   TemplateArgs);
8531      } else {
8532        SourceLocation Loc = MemExpr->getMemberLoc();
8533        if (MemExpr->getQualifier())
8534          Loc = MemExpr->getQualifierRange().getBegin();
8535        Base = new (Context) CXXThisExpr(Loc,
8536                                         MemExpr->getBaseType(),
8537                                         /*isImplicit=*/true);
8538      }
8539    } else
8540      Base = MemExpr->getBase();
8541
8542    return MemberExpr::Create(Context, Base,
8543                              MemExpr->isArrow(),
8544                              MemExpr->getQualifier(),
8545                              MemExpr->getQualifierRange(),
8546                              Fn,
8547                              Found,
8548                              MemExpr->getMemberNameInfo(),
8549                              TemplateArgs,
8550                              Fn->getType(),
8551                              cast<CXXMethodDecl>(Fn)->isStatic()
8552                                ? VK_LValue : VK_RValue,
8553                              OK_Ordinary);
8554  }
8555
8556  llvm_unreachable("Invalid reference to overloaded function");
8557  return E;
8558}
8559
8560ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
8561                                                DeclAccessPair Found,
8562                                                FunctionDecl *Fn) {
8563  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
8564}
8565
8566} // end namespace clang
8567