SemaOverload.cpp revision b1bdc6232d7b4d8574b5436982435ad57f429a91
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion 56 }; 57 return Category[(int)Kind]; 58} 59 60/// GetConversionRank - Retrieve the implicit conversion rank 61/// corresponding to the given implicit conversion kind. 62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 63 static const ImplicitConversionRank 64 Rank[(int)ICK_Num_Conversion_Kinds] = { 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Promotion, 72 ICR_Promotion, 73 ICR_Promotion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion 84 }; 85 return Rank[(int)Kind]; 86} 87 88/// GetImplicitConversionName - Return the name of this kind of 89/// implicit conversion. 90const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 91 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 92 "No conversion", 93 "Lvalue-to-rvalue", 94 "Array-to-pointer", 95 "Function-to-pointer", 96 "Noreturn adjustment", 97 "Qualification", 98 "Integral promotion", 99 "Floating point promotion", 100 "Complex promotion", 101 "Integral conversion", 102 "Floating conversion", 103 "Complex conversion", 104 "Floating-integral conversion", 105 "Complex-real conversion", 106 "Pointer conversion", 107 "Pointer-to-member conversion", 108 "Boolean conversion", 109 "Compatible-types conversion", 110 "Derived-to-base conversion" 111 }; 112 return Name[Kind]; 113} 114 115/// StandardConversionSequence - Set the standard conversion 116/// sequence to the identity conversion. 117void StandardConversionSequence::setAsIdentityConversion() { 118 First = ICK_Identity; 119 Second = ICK_Identity; 120 Third = ICK_Identity; 121 Deprecated = false; 122 ReferenceBinding = false; 123 DirectBinding = false; 124 RRefBinding = false; 125 CopyConstructor = 0; 126} 127 128/// getRank - Retrieve the rank of this standard conversion sequence 129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 130/// implicit conversions. 131ImplicitConversionRank StandardConversionSequence::getRank() const { 132 ImplicitConversionRank Rank = ICR_Exact_Match; 133 if (GetConversionRank(First) > Rank) 134 Rank = GetConversionRank(First); 135 if (GetConversionRank(Second) > Rank) 136 Rank = GetConversionRank(Second); 137 if (GetConversionRank(Third) > Rank) 138 Rank = GetConversionRank(Third); 139 return Rank; 140} 141 142/// isPointerConversionToBool - Determines whether this conversion is 143/// a conversion of a pointer or pointer-to-member to bool. This is 144/// used as part of the ranking of standard conversion sequences 145/// (C++ 13.3.3.2p4). 146bool StandardConversionSequence::isPointerConversionToBool() const { 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (getToType(1)->isBooleanType() && 152 (getFromType()->isPointerType() || getFromType()->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = getFromType(); 167 QualType ToType = getToType(1); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 llvm::raw_ostream &OS = llvm::errs(); 186 bool PrintedSomething = false; 187 if (First != ICK_Identity) { 188 OS << GetImplicitConversionName(First); 189 PrintedSomething = true; 190 } 191 192 if (Second != ICK_Identity) { 193 if (PrintedSomething) { 194 OS << " -> "; 195 } 196 OS << GetImplicitConversionName(Second); 197 198 if (CopyConstructor) { 199 OS << " (by copy constructor)"; 200 } else if (DirectBinding) { 201 OS << " (direct reference binding)"; 202 } else if (ReferenceBinding) { 203 OS << " (reference binding)"; 204 } 205 PrintedSomething = true; 206 } 207 208 if (Third != ICK_Identity) { 209 if (PrintedSomething) { 210 OS << " -> "; 211 } 212 OS << GetImplicitConversionName(Third); 213 PrintedSomething = true; 214 } 215 216 if (!PrintedSomething) { 217 OS << "No conversions required"; 218 } 219} 220 221/// DebugPrint - Print this user-defined conversion sequence to standard 222/// error. Useful for debugging overloading issues. 223void UserDefinedConversionSequence::DebugPrint() const { 224 llvm::raw_ostream &OS = llvm::errs(); 225 if (Before.First || Before.Second || Before.Third) { 226 Before.DebugPrint(); 227 OS << " -> "; 228 } 229 OS << "'" << ConversionFunction->getNameAsString() << "'"; 230 if (After.First || After.Second || After.Third) { 231 OS << " -> "; 232 After.DebugPrint(); 233 } 234} 235 236/// DebugPrint - Print this implicit conversion sequence to standard 237/// error. Useful for debugging overloading issues. 238void ImplicitConversionSequence::DebugPrint() const { 239 llvm::raw_ostream &OS = llvm::errs(); 240 switch (ConversionKind) { 241 case StandardConversion: 242 OS << "Standard conversion: "; 243 Standard.DebugPrint(); 244 break; 245 case UserDefinedConversion: 246 OS << "User-defined conversion: "; 247 UserDefined.DebugPrint(); 248 break; 249 case EllipsisConversion: 250 OS << "Ellipsis conversion"; 251 break; 252 case AmbiguousConversion: 253 OS << "Ambiguous conversion"; 254 break; 255 case BadConversion: 256 OS << "Bad conversion"; 257 break; 258 } 259 260 OS << "\n"; 261} 262 263void AmbiguousConversionSequence::construct() { 264 new (&conversions()) ConversionSet(); 265} 266 267void AmbiguousConversionSequence::destruct() { 268 conversions().~ConversionSet(); 269} 270 271void 272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 273 FromTypePtr = O.FromTypePtr; 274 ToTypePtr = O.ToTypePtr; 275 new (&conversions()) ConversionSet(O.conversions()); 276} 277 278 279// IsOverload - Determine whether the given New declaration is an 280// overload of the declarations in Old. This routine returns false if 281// New and Old cannot be overloaded, e.g., if New has the same 282// signature as some function in Old (C++ 1.3.10) or if the Old 283// declarations aren't functions (or function templates) at all. When 284// it does return false, MatchedDecl will point to the decl that New 285// cannot be overloaded with. This decl may be a UsingShadowDecl on 286// top of the underlying declaration. 287// 288// Example: Given the following input: 289// 290// void f(int, float); // #1 291// void f(int, int); // #2 292// int f(int, int); // #3 293// 294// When we process #1, there is no previous declaration of "f", 295// so IsOverload will not be used. 296// 297// When we process #2, Old contains only the FunctionDecl for #1. By 298// comparing the parameter types, we see that #1 and #2 are overloaded 299// (since they have different signatures), so this routine returns 300// false; MatchedDecl is unchanged. 301// 302// When we process #3, Old is an overload set containing #1 and #2. We 303// compare the signatures of #3 to #1 (they're overloaded, so we do 304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 305// identical (return types of functions are not part of the 306// signature), IsOverload returns false and MatchedDecl will be set to 307// point to the FunctionDecl for #2. 308Sema::OverloadKind 309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 310 NamedDecl *&Match) { 311 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 312 I != E; ++I) { 313 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 314 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 315 if (!IsOverload(New, OldT->getTemplatedDecl())) { 316 Match = *I; 317 return Ovl_Match; 318 } 319 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 320 if (!IsOverload(New, OldF)) { 321 Match = *I; 322 return Ovl_Match; 323 } 324 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 325 // We can overload with these, which can show up when doing 326 // redeclaration checks for UsingDecls. 327 assert(Old.getLookupKind() == LookupUsingDeclName); 328 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 329 // Optimistically assume that an unresolved using decl will 330 // overload; if it doesn't, we'll have to diagnose during 331 // template instantiation. 332 } else { 333 // (C++ 13p1): 334 // Only function declarations can be overloaded; object and type 335 // declarations cannot be overloaded. 336 Match = *I; 337 return Ovl_NonFunction; 338 } 339 } 340 341 return Ovl_Overload; 342} 343 344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 345 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 346 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 347 348 // C++ [temp.fct]p2: 349 // A function template can be overloaded with other function templates 350 // and with normal (non-template) functions. 351 if ((OldTemplate == 0) != (NewTemplate == 0)) 352 return true; 353 354 // Is the function New an overload of the function Old? 355 QualType OldQType = Context.getCanonicalType(Old->getType()); 356 QualType NewQType = Context.getCanonicalType(New->getType()); 357 358 // Compare the signatures (C++ 1.3.10) of the two functions to 359 // determine whether they are overloads. If we find any mismatch 360 // in the signature, they are overloads. 361 362 // If either of these functions is a K&R-style function (no 363 // prototype), then we consider them to have matching signatures. 364 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 365 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 366 return false; 367 368 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 369 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 370 371 // The signature of a function includes the types of its 372 // parameters (C++ 1.3.10), which includes the presence or absence 373 // of the ellipsis; see C++ DR 357). 374 if (OldQType != NewQType && 375 (OldType->getNumArgs() != NewType->getNumArgs() || 376 OldType->isVariadic() != NewType->isVariadic() || 377 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 378 NewType->arg_type_begin()))) 379 return true; 380 381 // C++ [temp.over.link]p4: 382 // The signature of a function template consists of its function 383 // signature, its return type and its template parameter list. The names 384 // of the template parameters are significant only for establishing the 385 // relationship between the template parameters and the rest of the 386 // signature. 387 // 388 // We check the return type and template parameter lists for function 389 // templates first; the remaining checks follow. 390 if (NewTemplate && 391 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 392 OldTemplate->getTemplateParameters(), 393 false, TPL_TemplateMatch) || 394 OldType->getResultType() != NewType->getResultType())) 395 return true; 396 397 // If the function is a class member, its signature includes the 398 // cv-qualifiers (if any) on the function itself. 399 // 400 // As part of this, also check whether one of the member functions 401 // is static, in which case they are not overloads (C++ 402 // 13.1p2). While not part of the definition of the signature, 403 // this check is important to determine whether these functions 404 // can be overloaded. 405 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 406 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 407 if (OldMethod && NewMethod && 408 !OldMethod->isStatic() && !NewMethod->isStatic() && 409 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 410 return true; 411 412 // The signatures match; this is not an overload. 413 return false; 414} 415 416/// TryImplicitConversion - Attempt to perform an implicit conversion 417/// from the given expression (Expr) to the given type (ToType). This 418/// function returns an implicit conversion sequence that can be used 419/// to perform the initialization. Given 420/// 421/// void f(float f); 422/// void g(int i) { f(i); } 423/// 424/// this routine would produce an implicit conversion sequence to 425/// describe the initialization of f from i, which will be a standard 426/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 427/// 4.1) followed by a floating-integral conversion (C++ 4.9). 428// 429/// Note that this routine only determines how the conversion can be 430/// performed; it does not actually perform the conversion. As such, 431/// it will not produce any diagnostics if no conversion is available, 432/// but will instead return an implicit conversion sequence of kind 433/// "BadConversion". 434/// 435/// If @p SuppressUserConversions, then user-defined conversions are 436/// not permitted. 437/// If @p AllowExplicit, then explicit user-defined conversions are 438/// permitted. 439/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 440/// no matter its actual lvalueness. 441/// If @p UserCast, the implicit conversion is being done for a user-specified 442/// cast. 443ImplicitConversionSequence 444Sema::TryImplicitConversion(Expr* From, QualType ToType, 445 bool SuppressUserConversions, 446 bool AllowExplicit, bool ForceRValue, 447 bool InOverloadResolution, 448 bool UserCast) { 449 ImplicitConversionSequence ICS; 450 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { 451 ICS.setStandard(); 452 return ICS; 453 } 454 455 if (!getLangOptions().CPlusPlus) { 456 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 457 return ICS; 458 } 459 460 OverloadCandidateSet Conversions(From->getExprLoc()); 461 OverloadingResult UserDefResult 462 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, 463 !SuppressUserConversions, AllowExplicit, 464 ForceRValue, UserCast); 465 466 if (UserDefResult == OR_Success) { 467 ICS.setUserDefined(); 468 // C++ [over.ics.user]p4: 469 // A conversion of an expression of class type to the same class 470 // type is given Exact Match rank, and a conversion of an 471 // expression of class type to a base class of that type is 472 // given Conversion rank, in spite of the fact that a copy 473 // constructor (i.e., a user-defined conversion function) is 474 // called for those cases. 475 if (CXXConstructorDecl *Constructor 476 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 477 QualType FromCanon 478 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 479 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 480 if (Constructor->isCopyConstructor() && 481 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 482 // Turn this into a "standard" conversion sequence, so that it 483 // gets ranked with standard conversion sequences. 484 ICS.setStandard(); 485 ICS.Standard.setAsIdentityConversion(); 486 ICS.Standard.setFromType(From->getType()); 487 ICS.Standard.setAllToTypes(ToType); 488 ICS.Standard.CopyConstructor = Constructor; 489 if (ToCanon != FromCanon) 490 ICS.Standard.Second = ICK_Derived_To_Base; 491 } 492 } 493 494 // C++ [over.best.ics]p4: 495 // However, when considering the argument of a user-defined 496 // conversion function that is a candidate by 13.3.1.3 when 497 // invoked for the copying of the temporary in the second step 498 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 499 // 13.3.1.6 in all cases, only standard conversion sequences and 500 // ellipsis conversion sequences are allowed. 501 if (SuppressUserConversions && ICS.isUserDefined()) { 502 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 503 } 504 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 505 ICS.setAmbiguous(); 506 ICS.Ambiguous.setFromType(From->getType()); 507 ICS.Ambiguous.setToType(ToType); 508 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 509 Cand != Conversions.end(); ++Cand) 510 if (Cand->Viable) 511 ICS.Ambiguous.addConversion(Cand->Function); 512 } else { 513 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 514 } 515 516 return ICS; 517} 518 519/// \brief Determine whether the conversion from FromType to ToType is a valid 520/// conversion that strips "noreturn" off the nested function type. 521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 522 QualType ToType, QualType &ResultTy) { 523 if (Context.hasSameUnqualifiedType(FromType, ToType)) 524 return false; 525 526 // Strip the noreturn off the type we're converting from; noreturn can 527 // safely be removed. 528 FromType = Context.getNoReturnType(FromType, false); 529 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 530 return false; 531 532 ResultTy = FromType; 533 return true; 534} 535 536/// IsStandardConversion - Determines whether there is a standard 537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 538/// expression From to the type ToType. Standard conversion sequences 539/// only consider non-class types; for conversions that involve class 540/// types, use TryImplicitConversion. If a conversion exists, SCS will 541/// contain the standard conversion sequence required to perform this 542/// conversion and this routine will return true. Otherwise, this 543/// routine will return false and the value of SCS is unspecified. 544bool 545Sema::IsStandardConversion(Expr* From, QualType ToType, 546 bool InOverloadResolution, 547 StandardConversionSequence &SCS) { 548 QualType FromType = From->getType(); 549 550 // Standard conversions (C++ [conv]) 551 SCS.setAsIdentityConversion(); 552 SCS.Deprecated = false; 553 SCS.IncompatibleObjC = false; 554 SCS.setFromType(FromType); 555 SCS.CopyConstructor = 0; 556 557 // There are no standard conversions for class types in C++, so 558 // abort early. When overloading in C, however, we do permit 559 if (FromType->isRecordType() || ToType->isRecordType()) { 560 if (getLangOptions().CPlusPlus) 561 return false; 562 563 // When we're overloading in C, we allow, as standard conversions, 564 } 565 566 // The first conversion can be an lvalue-to-rvalue conversion, 567 // array-to-pointer conversion, or function-to-pointer conversion 568 // (C++ 4p1). 569 570 // Lvalue-to-rvalue conversion (C++ 4.1): 571 // An lvalue (3.10) of a non-function, non-array type T can be 572 // converted to an rvalue. 573 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 574 if (argIsLvalue == Expr::LV_Valid && 575 !FromType->isFunctionType() && !FromType->isArrayType() && 576 Context.getCanonicalType(FromType) != Context.OverloadTy) { 577 SCS.First = ICK_Lvalue_To_Rvalue; 578 579 // If T is a non-class type, the type of the rvalue is the 580 // cv-unqualified version of T. Otherwise, the type of the rvalue 581 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 582 // just strip the qualifiers because they don't matter. 583 FromType = FromType.getUnqualifiedType(); 584 } else if (FromType->isArrayType()) { 585 // Array-to-pointer conversion (C++ 4.2) 586 SCS.First = ICK_Array_To_Pointer; 587 588 // An lvalue or rvalue of type "array of N T" or "array of unknown 589 // bound of T" can be converted to an rvalue of type "pointer to 590 // T" (C++ 4.2p1). 591 FromType = Context.getArrayDecayedType(FromType); 592 593 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 594 // This conversion is deprecated. (C++ D.4). 595 SCS.Deprecated = true; 596 597 // For the purpose of ranking in overload resolution 598 // (13.3.3.1.1), this conversion is considered an 599 // array-to-pointer conversion followed by a qualification 600 // conversion (4.4). (C++ 4.2p2) 601 SCS.Second = ICK_Identity; 602 SCS.Third = ICK_Qualification; 603 SCS.setAllToTypes(FromType); 604 return true; 605 } 606 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 607 // Function-to-pointer conversion (C++ 4.3). 608 SCS.First = ICK_Function_To_Pointer; 609 610 // An lvalue of function type T can be converted to an rvalue of 611 // type "pointer to T." The result is a pointer to the 612 // function. (C++ 4.3p1). 613 FromType = Context.getPointerType(FromType); 614 } else if (FunctionDecl *Fn 615 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 616 // Address of overloaded function (C++ [over.over]). 617 SCS.First = ICK_Function_To_Pointer; 618 619 // We were able to resolve the address of the overloaded function, 620 // so we can convert to the type of that function. 621 FromType = Fn->getType(); 622 if (ToType->isLValueReferenceType()) 623 FromType = Context.getLValueReferenceType(FromType); 624 else if (ToType->isRValueReferenceType()) 625 FromType = Context.getRValueReferenceType(FromType); 626 else if (ToType->isMemberPointerType()) { 627 // Resolve address only succeeds if both sides are member pointers, 628 // but it doesn't have to be the same class. See DR 247. 629 // Note that this means that the type of &Derived::fn can be 630 // Ret (Base::*)(Args) if the fn overload actually found is from the 631 // base class, even if it was brought into the derived class via a 632 // using declaration. The standard isn't clear on this issue at all. 633 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 634 FromType = Context.getMemberPointerType(FromType, 635 Context.getTypeDeclType(M->getParent()).getTypePtr()); 636 } else 637 FromType = Context.getPointerType(FromType); 638 } else { 639 // We don't require any conversions for the first step. 640 SCS.First = ICK_Identity; 641 } 642 SCS.setToType(0, FromType); 643 644 // The second conversion can be an integral promotion, floating 645 // point promotion, integral conversion, floating point conversion, 646 // floating-integral conversion, pointer conversion, 647 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 648 // For overloading in C, this can also be a "compatible-type" 649 // conversion. 650 bool IncompatibleObjC = false; 651 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 652 // The unqualified versions of the types are the same: there's no 653 // conversion to do. 654 SCS.Second = ICK_Identity; 655 } else if (IsIntegralPromotion(From, FromType, ToType)) { 656 // Integral promotion (C++ 4.5). 657 SCS.Second = ICK_Integral_Promotion; 658 FromType = ToType.getUnqualifiedType(); 659 } else if (IsFloatingPointPromotion(FromType, ToType)) { 660 // Floating point promotion (C++ 4.6). 661 SCS.Second = ICK_Floating_Promotion; 662 FromType = ToType.getUnqualifiedType(); 663 } else if (IsComplexPromotion(FromType, ToType)) { 664 // Complex promotion (Clang extension) 665 SCS.Second = ICK_Complex_Promotion; 666 FromType = ToType.getUnqualifiedType(); 667 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 668 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 669 // Integral conversions (C++ 4.7). 670 SCS.Second = ICK_Integral_Conversion; 671 FromType = ToType.getUnqualifiedType(); 672 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 673 // Floating point conversions (C++ 4.8). 674 SCS.Second = ICK_Floating_Conversion; 675 FromType = ToType.getUnqualifiedType(); 676 } else if (FromType->isComplexType() && ToType->isComplexType()) { 677 // Complex conversions (C99 6.3.1.6) 678 SCS.Second = ICK_Complex_Conversion; 679 FromType = ToType.getUnqualifiedType(); 680 } else if ((FromType->isFloatingType() && 681 ToType->isIntegralType() && (!ToType->isBooleanType() && 682 !ToType->isEnumeralType())) || 683 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 684 ToType->isFloatingType())) { 685 // Floating-integral conversions (C++ 4.9). 686 SCS.Second = ICK_Floating_Integral; 687 FromType = ToType.getUnqualifiedType(); 688 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 689 (ToType->isComplexType() && FromType->isArithmeticType())) { 690 // Complex-real conversions (C99 6.3.1.7) 691 SCS.Second = ICK_Complex_Real; 692 FromType = ToType.getUnqualifiedType(); 693 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 694 FromType, IncompatibleObjC)) { 695 // Pointer conversions (C++ 4.10). 696 SCS.Second = ICK_Pointer_Conversion; 697 SCS.IncompatibleObjC = IncompatibleObjC; 698 } else if (IsMemberPointerConversion(From, FromType, ToType, 699 InOverloadResolution, FromType)) { 700 // Pointer to member conversions (4.11). 701 SCS.Second = ICK_Pointer_Member; 702 } else if (ToType->isBooleanType() && 703 (FromType->isArithmeticType() || 704 FromType->isEnumeralType() || 705 FromType->isAnyPointerType() || 706 FromType->isBlockPointerType() || 707 FromType->isMemberPointerType() || 708 FromType->isNullPtrType())) { 709 // Boolean conversions (C++ 4.12). 710 SCS.Second = ICK_Boolean_Conversion; 711 FromType = Context.BoolTy; 712 } else if (!getLangOptions().CPlusPlus && 713 Context.typesAreCompatible(ToType, FromType)) { 714 // Compatible conversions (Clang extension for C function overloading) 715 SCS.Second = ICK_Compatible_Conversion; 716 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 717 // Treat a conversion that strips "noreturn" as an identity conversion. 718 SCS.Second = ICK_NoReturn_Adjustment; 719 } else { 720 // No second conversion required. 721 SCS.Second = ICK_Identity; 722 } 723 SCS.setToType(1, FromType); 724 725 QualType CanonFrom; 726 QualType CanonTo; 727 // The third conversion can be a qualification conversion (C++ 4p1). 728 if (IsQualificationConversion(FromType, ToType)) { 729 SCS.Third = ICK_Qualification; 730 FromType = ToType; 731 CanonFrom = Context.getCanonicalType(FromType); 732 CanonTo = Context.getCanonicalType(ToType); 733 } else { 734 // No conversion required 735 SCS.Third = ICK_Identity; 736 737 // C++ [over.best.ics]p6: 738 // [...] Any difference in top-level cv-qualification is 739 // subsumed by the initialization itself and does not constitute 740 // a conversion. [...] 741 CanonFrom = Context.getCanonicalType(FromType); 742 CanonTo = Context.getCanonicalType(ToType); 743 if (CanonFrom.getLocalUnqualifiedType() 744 == CanonTo.getLocalUnqualifiedType() && 745 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 746 FromType = ToType; 747 CanonFrom = CanonTo; 748 } 749 } 750 SCS.setToType(2, FromType); 751 752 // If we have not converted the argument type to the parameter type, 753 // this is a bad conversion sequence. 754 if (CanonFrom != CanonTo) 755 return false; 756 757 return true; 758} 759 760/// IsIntegralPromotion - Determines whether the conversion from the 761/// expression From (whose potentially-adjusted type is FromType) to 762/// ToType is an integral promotion (C++ 4.5). If so, returns true and 763/// sets PromotedType to the promoted type. 764bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 765 const BuiltinType *To = ToType->getAs<BuiltinType>(); 766 // All integers are built-in. 767 if (!To) { 768 return false; 769 } 770 771 // An rvalue of type char, signed char, unsigned char, short int, or 772 // unsigned short int can be converted to an rvalue of type int if 773 // int can represent all the values of the source type; otherwise, 774 // the source rvalue can be converted to an rvalue of type unsigned 775 // int (C++ 4.5p1). 776 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 777 !FromType->isEnumeralType()) { 778 if (// We can promote any signed, promotable integer type to an int 779 (FromType->isSignedIntegerType() || 780 // We can promote any unsigned integer type whose size is 781 // less than int to an int. 782 (!FromType->isSignedIntegerType() && 783 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 784 return To->getKind() == BuiltinType::Int; 785 } 786 787 return To->getKind() == BuiltinType::UInt; 788 } 789 790 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 791 // can be converted to an rvalue of the first of the following types 792 // that can represent all the values of its underlying type: int, 793 // unsigned int, long, or unsigned long (C++ 4.5p2). 794 795 // We pre-calculate the promotion type for enum types. 796 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 797 if (ToType->isIntegerType()) 798 return Context.hasSameUnqualifiedType(ToType, 799 FromEnumType->getDecl()->getPromotionType()); 800 801 if (FromType->isWideCharType() && ToType->isIntegerType()) { 802 // Determine whether the type we're converting from is signed or 803 // unsigned. 804 bool FromIsSigned; 805 uint64_t FromSize = Context.getTypeSize(FromType); 806 807 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 808 FromIsSigned = true; 809 810 // The types we'll try to promote to, in the appropriate 811 // order. Try each of these types. 812 QualType PromoteTypes[6] = { 813 Context.IntTy, Context.UnsignedIntTy, 814 Context.LongTy, Context.UnsignedLongTy , 815 Context.LongLongTy, Context.UnsignedLongLongTy 816 }; 817 for (int Idx = 0; Idx < 6; ++Idx) { 818 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 819 if (FromSize < ToSize || 820 (FromSize == ToSize && 821 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 822 // We found the type that we can promote to. If this is the 823 // type we wanted, we have a promotion. Otherwise, no 824 // promotion. 825 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 826 } 827 } 828 } 829 830 // An rvalue for an integral bit-field (9.6) can be converted to an 831 // rvalue of type int if int can represent all the values of the 832 // bit-field; otherwise, it can be converted to unsigned int if 833 // unsigned int can represent all the values of the bit-field. If 834 // the bit-field is larger yet, no integral promotion applies to 835 // it. If the bit-field has an enumerated type, it is treated as any 836 // other value of that type for promotion purposes (C++ 4.5p3). 837 // FIXME: We should delay checking of bit-fields until we actually perform the 838 // conversion. 839 using llvm::APSInt; 840 if (From) 841 if (FieldDecl *MemberDecl = From->getBitField()) { 842 APSInt BitWidth; 843 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 844 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 845 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 846 ToSize = Context.getTypeSize(ToType); 847 848 // Are we promoting to an int from a bitfield that fits in an int? 849 if (BitWidth < ToSize || 850 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 851 return To->getKind() == BuiltinType::Int; 852 } 853 854 // Are we promoting to an unsigned int from an unsigned bitfield 855 // that fits into an unsigned int? 856 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 857 return To->getKind() == BuiltinType::UInt; 858 } 859 860 return false; 861 } 862 } 863 864 // An rvalue of type bool can be converted to an rvalue of type int, 865 // with false becoming zero and true becoming one (C++ 4.5p4). 866 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 867 return true; 868 } 869 870 return false; 871} 872 873/// IsFloatingPointPromotion - Determines whether the conversion from 874/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 875/// returns true and sets PromotedType to the promoted type. 876bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 877 /// An rvalue of type float can be converted to an rvalue of type 878 /// double. (C++ 4.6p1). 879 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 880 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 881 if (FromBuiltin->getKind() == BuiltinType::Float && 882 ToBuiltin->getKind() == BuiltinType::Double) 883 return true; 884 885 // C99 6.3.1.5p1: 886 // When a float is promoted to double or long double, or a 887 // double is promoted to long double [...]. 888 if (!getLangOptions().CPlusPlus && 889 (FromBuiltin->getKind() == BuiltinType::Float || 890 FromBuiltin->getKind() == BuiltinType::Double) && 891 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 892 return true; 893 } 894 895 return false; 896} 897 898/// \brief Determine if a conversion is a complex promotion. 899/// 900/// A complex promotion is defined as a complex -> complex conversion 901/// where the conversion between the underlying real types is a 902/// floating-point or integral promotion. 903bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 904 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 905 if (!FromComplex) 906 return false; 907 908 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 909 if (!ToComplex) 910 return false; 911 912 return IsFloatingPointPromotion(FromComplex->getElementType(), 913 ToComplex->getElementType()) || 914 IsIntegralPromotion(0, FromComplex->getElementType(), 915 ToComplex->getElementType()); 916} 917 918/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 919/// the pointer type FromPtr to a pointer to type ToPointee, with the 920/// same type qualifiers as FromPtr has on its pointee type. ToType, 921/// if non-empty, will be a pointer to ToType that may or may not have 922/// the right set of qualifiers on its pointee. 923static QualType 924BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 925 QualType ToPointee, QualType ToType, 926 ASTContext &Context) { 927 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 928 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 929 Qualifiers Quals = CanonFromPointee.getQualifiers(); 930 931 // Exact qualifier match -> return the pointer type we're converting to. 932 if (CanonToPointee.getLocalQualifiers() == Quals) { 933 // ToType is exactly what we need. Return it. 934 if (!ToType.isNull()) 935 return ToType; 936 937 // Build a pointer to ToPointee. It has the right qualifiers 938 // already. 939 return Context.getPointerType(ToPointee); 940 } 941 942 // Just build a canonical type that has the right qualifiers. 943 return Context.getPointerType( 944 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 945 Quals)); 946} 947 948/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 949/// the FromType, which is an objective-c pointer, to ToType, which may or may 950/// not have the right set of qualifiers. 951static QualType 952BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 953 QualType ToType, 954 ASTContext &Context) { 955 QualType CanonFromType = Context.getCanonicalType(FromType); 956 QualType CanonToType = Context.getCanonicalType(ToType); 957 Qualifiers Quals = CanonFromType.getQualifiers(); 958 959 // Exact qualifier match -> return the pointer type we're converting to. 960 if (CanonToType.getLocalQualifiers() == Quals) 961 return ToType; 962 963 // Just build a canonical type that has the right qualifiers. 964 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 965} 966 967static bool isNullPointerConstantForConversion(Expr *Expr, 968 bool InOverloadResolution, 969 ASTContext &Context) { 970 // Handle value-dependent integral null pointer constants correctly. 971 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 972 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 973 Expr->getType()->isIntegralType()) 974 return !InOverloadResolution; 975 976 return Expr->isNullPointerConstant(Context, 977 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 978 : Expr::NPC_ValueDependentIsNull); 979} 980 981/// IsPointerConversion - Determines whether the conversion of the 982/// expression From, which has the (possibly adjusted) type FromType, 983/// can be converted to the type ToType via a pointer conversion (C++ 984/// 4.10). If so, returns true and places the converted type (that 985/// might differ from ToType in its cv-qualifiers at some level) into 986/// ConvertedType. 987/// 988/// This routine also supports conversions to and from block pointers 989/// and conversions with Objective-C's 'id', 'id<protocols...>', and 990/// pointers to interfaces. FIXME: Once we've determined the 991/// appropriate overloading rules for Objective-C, we may want to 992/// split the Objective-C checks into a different routine; however, 993/// GCC seems to consider all of these conversions to be pointer 994/// conversions, so for now they live here. IncompatibleObjC will be 995/// set if the conversion is an allowed Objective-C conversion that 996/// should result in a warning. 997bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 998 bool InOverloadResolution, 999 QualType& ConvertedType, 1000 bool &IncompatibleObjC) { 1001 IncompatibleObjC = false; 1002 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1003 return true; 1004 1005 // Conversion from a null pointer constant to any Objective-C pointer type. 1006 if (ToType->isObjCObjectPointerType() && 1007 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1008 ConvertedType = ToType; 1009 return true; 1010 } 1011 1012 // Blocks: Block pointers can be converted to void*. 1013 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1014 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1015 ConvertedType = ToType; 1016 return true; 1017 } 1018 // Blocks: A null pointer constant can be converted to a block 1019 // pointer type. 1020 if (ToType->isBlockPointerType() && 1021 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1022 ConvertedType = ToType; 1023 return true; 1024 } 1025 1026 // If the left-hand-side is nullptr_t, the right side can be a null 1027 // pointer constant. 1028 if (ToType->isNullPtrType() && 1029 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1030 ConvertedType = ToType; 1031 return true; 1032 } 1033 1034 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1035 if (!ToTypePtr) 1036 return false; 1037 1038 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1039 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1040 ConvertedType = ToType; 1041 return true; 1042 } 1043 1044 // Beyond this point, both types need to be pointers 1045 // , including objective-c pointers. 1046 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1047 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1048 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1049 ToType, Context); 1050 return true; 1051 1052 } 1053 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1054 if (!FromTypePtr) 1055 return false; 1056 1057 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1058 1059 // An rvalue of type "pointer to cv T," where T is an object type, 1060 // can be converted to an rvalue of type "pointer to cv void" (C++ 1061 // 4.10p2). 1062 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1063 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1064 ToPointeeType, 1065 ToType, Context); 1066 return true; 1067 } 1068 1069 // When we're overloading in C, we allow a special kind of pointer 1070 // conversion for compatible-but-not-identical pointee types. 1071 if (!getLangOptions().CPlusPlus && 1072 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1073 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1074 ToPointeeType, 1075 ToType, Context); 1076 return true; 1077 } 1078 1079 // C++ [conv.ptr]p3: 1080 // 1081 // An rvalue of type "pointer to cv D," where D is a class type, 1082 // can be converted to an rvalue of type "pointer to cv B," where 1083 // B is a base class (clause 10) of D. If B is an inaccessible 1084 // (clause 11) or ambiguous (10.2) base class of D, a program that 1085 // necessitates this conversion is ill-formed. The result of the 1086 // conversion is a pointer to the base class sub-object of the 1087 // derived class object. The null pointer value is converted to 1088 // the null pointer value of the destination type. 1089 // 1090 // Note that we do not check for ambiguity or inaccessibility 1091 // here. That is handled by CheckPointerConversion. 1092 if (getLangOptions().CPlusPlus && 1093 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1094 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1095 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1096 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1097 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1098 ToPointeeType, 1099 ToType, Context); 1100 return true; 1101 } 1102 1103 return false; 1104} 1105 1106/// isObjCPointerConversion - Determines whether this is an 1107/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1108/// with the same arguments and return values. 1109bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1110 QualType& ConvertedType, 1111 bool &IncompatibleObjC) { 1112 if (!getLangOptions().ObjC1) 1113 return false; 1114 1115 // First, we handle all conversions on ObjC object pointer types. 1116 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1117 const ObjCObjectPointerType *FromObjCPtr = 1118 FromType->getAs<ObjCObjectPointerType>(); 1119 1120 if (ToObjCPtr && FromObjCPtr) { 1121 // Objective C++: We're able to convert between "id" or "Class" and a 1122 // pointer to any interface (in both directions). 1123 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1124 ConvertedType = ToType; 1125 return true; 1126 } 1127 // Conversions with Objective-C's id<...>. 1128 if ((FromObjCPtr->isObjCQualifiedIdType() || 1129 ToObjCPtr->isObjCQualifiedIdType()) && 1130 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1131 /*compare=*/false)) { 1132 ConvertedType = ToType; 1133 return true; 1134 } 1135 // Objective C++: We're able to convert from a pointer to an 1136 // interface to a pointer to a different interface. 1137 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1138 ConvertedType = ToType; 1139 return true; 1140 } 1141 1142 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1143 // Okay: this is some kind of implicit downcast of Objective-C 1144 // interfaces, which is permitted. However, we're going to 1145 // complain about it. 1146 IncompatibleObjC = true; 1147 ConvertedType = FromType; 1148 return true; 1149 } 1150 } 1151 // Beyond this point, both types need to be C pointers or block pointers. 1152 QualType ToPointeeType; 1153 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1154 ToPointeeType = ToCPtr->getPointeeType(); 1155 else if (const BlockPointerType *ToBlockPtr = 1156 ToType->getAs<BlockPointerType>()) { 1157 // Objective C++: We're able to convert from a pointer to any object 1158 // to a block pointer type. 1159 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1160 ConvertedType = ToType; 1161 return true; 1162 } 1163 ToPointeeType = ToBlockPtr->getPointeeType(); 1164 } 1165 else if (FromType->getAs<BlockPointerType>() && 1166 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1167 // Objective C++: We're able to convert from a block pointer type to a 1168 // pointer to any object. 1169 ConvertedType = ToType; 1170 return true; 1171 } 1172 else 1173 return false; 1174 1175 QualType FromPointeeType; 1176 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1177 FromPointeeType = FromCPtr->getPointeeType(); 1178 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1179 FromPointeeType = FromBlockPtr->getPointeeType(); 1180 else 1181 return false; 1182 1183 // If we have pointers to pointers, recursively check whether this 1184 // is an Objective-C conversion. 1185 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1186 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1187 IncompatibleObjC)) { 1188 // We always complain about this conversion. 1189 IncompatibleObjC = true; 1190 ConvertedType = ToType; 1191 return true; 1192 } 1193 // Allow conversion of pointee being objective-c pointer to another one; 1194 // as in I* to id. 1195 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1196 ToPointeeType->getAs<ObjCObjectPointerType>() && 1197 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1198 IncompatibleObjC)) { 1199 ConvertedType = ToType; 1200 return true; 1201 } 1202 1203 // If we have pointers to functions or blocks, check whether the only 1204 // differences in the argument and result types are in Objective-C 1205 // pointer conversions. If so, we permit the conversion (but 1206 // complain about it). 1207 const FunctionProtoType *FromFunctionType 1208 = FromPointeeType->getAs<FunctionProtoType>(); 1209 const FunctionProtoType *ToFunctionType 1210 = ToPointeeType->getAs<FunctionProtoType>(); 1211 if (FromFunctionType && ToFunctionType) { 1212 // If the function types are exactly the same, this isn't an 1213 // Objective-C pointer conversion. 1214 if (Context.getCanonicalType(FromPointeeType) 1215 == Context.getCanonicalType(ToPointeeType)) 1216 return false; 1217 1218 // Perform the quick checks that will tell us whether these 1219 // function types are obviously different. 1220 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1221 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1222 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1223 return false; 1224 1225 bool HasObjCConversion = false; 1226 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1227 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1228 // Okay, the types match exactly. Nothing to do. 1229 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1230 ToFunctionType->getResultType(), 1231 ConvertedType, IncompatibleObjC)) { 1232 // Okay, we have an Objective-C pointer conversion. 1233 HasObjCConversion = true; 1234 } else { 1235 // Function types are too different. Abort. 1236 return false; 1237 } 1238 1239 // Check argument types. 1240 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1241 ArgIdx != NumArgs; ++ArgIdx) { 1242 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1243 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1244 if (Context.getCanonicalType(FromArgType) 1245 == Context.getCanonicalType(ToArgType)) { 1246 // Okay, the types match exactly. Nothing to do. 1247 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1248 ConvertedType, IncompatibleObjC)) { 1249 // Okay, we have an Objective-C pointer conversion. 1250 HasObjCConversion = true; 1251 } else { 1252 // Argument types are too different. Abort. 1253 return false; 1254 } 1255 } 1256 1257 if (HasObjCConversion) { 1258 // We had an Objective-C conversion. Allow this pointer 1259 // conversion, but complain about it. 1260 ConvertedType = ToType; 1261 IncompatibleObjC = true; 1262 return true; 1263 } 1264 } 1265 1266 return false; 1267} 1268 1269/// CheckPointerConversion - Check the pointer conversion from the 1270/// expression From to the type ToType. This routine checks for 1271/// ambiguous or inaccessible derived-to-base pointer 1272/// conversions for which IsPointerConversion has already returned 1273/// true. It returns true and produces a diagnostic if there was an 1274/// error, or returns false otherwise. 1275bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1276 CastExpr::CastKind &Kind, 1277 bool IgnoreBaseAccess) { 1278 QualType FromType = From->getType(); 1279 1280 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1281 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1282 QualType FromPointeeType = FromPtrType->getPointeeType(), 1283 ToPointeeType = ToPtrType->getPointeeType(); 1284 1285 if (FromPointeeType->isRecordType() && 1286 ToPointeeType->isRecordType()) { 1287 // We must have a derived-to-base conversion. Check an 1288 // ambiguous or inaccessible conversion. 1289 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1290 From->getExprLoc(), 1291 From->getSourceRange(), 1292 IgnoreBaseAccess)) 1293 return true; 1294 1295 // The conversion was successful. 1296 Kind = CastExpr::CK_DerivedToBase; 1297 } 1298 } 1299 if (const ObjCObjectPointerType *FromPtrType = 1300 FromType->getAs<ObjCObjectPointerType>()) 1301 if (const ObjCObjectPointerType *ToPtrType = 1302 ToType->getAs<ObjCObjectPointerType>()) { 1303 // Objective-C++ conversions are always okay. 1304 // FIXME: We should have a different class of conversions for the 1305 // Objective-C++ implicit conversions. 1306 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1307 return false; 1308 1309 } 1310 return false; 1311} 1312 1313/// IsMemberPointerConversion - Determines whether the conversion of the 1314/// expression From, which has the (possibly adjusted) type FromType, can be 1315/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1316/// If so, returns true and places the converted type (that might differ from 1317/// ToType in its cv-qualifiers at some level) into ConvertedType. 1318bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1319 QualType ToType, 1320 bool InOverloadResolution, 1321 QualType &ConvertedType) { 1322 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1323 if (!ToTypePtr) 1324 return false; 1325 1326 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1327 if (From->isNullPointerConstant(Context, 1328 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1329 : Expr::NPC_ValueDependentIsNull)) { 1330 ConvertedType = ToType; 1331 return true; 1332 } 1333 1334 // Otherwise, both types have to be member pointers. 1335 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1336 if (!FromTypePtr) 1337 return false; 1338 1339 // A pointer to member of B can be converted to a pointer to member of D, 1340 // where D is derived from B (C++ 4.11p2). 1341 QualType FromClass(FromTypePtr->getClass(), 0); 1342 QualType ToClass(ToTypePtr->getClass(), 0); 1343 // FIXME: What happens when these are dependent? Is this function even called? 1344 1345 if (IsDerivedFrom(ToClass, FromClass)) { 1346 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1347 ToClass.getTypePtr()); 1348 return true; 1349 } 1350 1351 return false; 1352} 1353 1354/// CheckMemberPointerConversion - Check the member pointer conversion from the 1355/// expression From to the type ToType. This routine checks for ambiguous or 1356/// virtual or inaccessible base-to-derived member pointer conversions 1357/// for which IsMemberPointerConversion has already returned true. It returns 1358/// true and produces a diagnostic if there was an error, or returns false 1359/// otherwise. 1360bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1361 CastExpr::CastKind &Kind, 1362 bool IgnoreBaseAccess) { 1363 QualType FromType = From->getType(); 1364 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1365 if (!FromPtrType) { 1366 // This must be a null pointer to member pointer conversion 1367 assert(From->isNullPointerConstant(Context, 1368 Expr::NPC_ValueDependentIsNull) && 1369 "Expr must be null pointer constant!"); 1370 Kind = CastExpr::CK_NullToMemberPointer; 1371 return false; 1372 } 1373 1374 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1375 assert(ToPtrType && "No member pointer cast has a target type " 1376 "that is not a member pointer."); 1377 1378 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1379 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1380 1381 // FIXME: What about dependent types? 1382 assert(FromClass->isRecordType() && "Pointer into non-class."); 1383 assert(ToClass->isRecordType() && "Pointer into non-class."); 1384 1385 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true, 1386 /*DetectVirtual=*/true); 1387 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1388 assert(DerivationOkay && 1389 "Should not have been called if derivation isn't OK."); 1390 (void)DerivationOkay; 1391 1392 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1393 getUnqualifiedType())) { 1394 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1395 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1396 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1397 return true; 1398 } 1399 1400 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1401 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1402 << FromClass << ToClass << QualType(VBase, 0) 1403 << From->getSourceRange(); 1404 return true; 1405 } 1406 1407 if (!IgnoreBaseAccess) 1408 CheckBaseClassAccess(From->getExprLoc(), /*BaseToDerived*/ true, 1409 FromClass, ToClass, Paths.front()); 1410 1411 // Must be a base to derived member conversion. 1412 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1413 return false; 1414} 1415 1416/// IsQualificationConversion - Determines whether the conversion from 1417/// an rvalue of type FromType to ToType is a qualification conversion 1418/// (C++ 4.4). 1419bool 1420Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1421 FromType = Context.getCanonicalType(FromType); 1422 ToType = Context.getCanonicalType(ToType); 1423 1424 // If FromType and ToType are the same type, this is not a 1425 // qualification conversion. 1426 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1427 return false; 1428 1429 // (C++ 4.4p4): 1430 // A conversion can add cv-qualifiers at levels other than the first 1431 // in multi-level pointers, subject to the following rules: [...] 1432 bool PreviousToQualsIncludeConst = true; 1433 bool UnwrappedAnyPointer = false; 1434 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1435 // Within each iteration of the loop, we check the qualifiers to 1436 // determine if this still looks like a qualification 1437 // conversion. Then, if all is well, we unwrap one more level of 1438 // pointers or pointers-to-members and do it all again 1439 // until there are no more pointers or pointers-to-members left to 1440 // unwrap. 1441 UnwrappedAnyPointer = true; 1442 1443 // -- for every j > 0, if const is in cv 1,j then const is in cv 1444 // 2,j, and similarly for volatile. 1445 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1446 return false; 1447 1448 // -- if the cv 1,j and cv 2,j are different, then const is in 1449 // every cv for 0 < k < j. 1450 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1451 && !PreviousToQualsIncludeConst) 1452 return false; 1453 1454 // Keep track of whether all prior cv-qualifiers in the "to" type 1455 // include const. 1456 PreviousToQualsIncludeConst 1457 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1458 } 1459 1460 // We are left with FromType and ToType being the pointee types 1461 // after unwrapping the original FromType and ToType the same number 1462 // of types. If we unwrapped any pointers, and if FromType and 1463 // ToType have the same unqualified type (since we checked 1464 // qualifiers above), then this is a qualification conversion. 1465 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1466} 1467 1468/// Determines whether there is a user-defined conversion sequence 1469/// (C++ [over.ics.user]) that converts expression From to the type 1470/// ToType. If such a conversion exists, User will contain the 1471/// user-defined conversion sequence that performs such a conversion 1472/// and this routine will return true. Otherwise, this routine returns 1473/// false and User is unspecified. 1474/// 1475/// \param AllowConversionFunctions true if the conversion should 1476/// consider conversion functions at all. If false, only constructors 1477/// will be considered. 1478/// 1479/// \param AllowExplicit true if the conversion should consider C++0x 1480/// "explicit" conversion functions as well as non-explicit conversion 1481/// functions (C++0x [class.conv.fct]p2). 1482/// 1483/// \param ForceRValue true if the expression should be treated as an rvalue 1484/// for overload resolution. 1485/// \param UserCast true if looking for user defined conversion for a static 1486/// cast. 1487OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1488 UserDefinedConversionSequence& User, 1489 OverloadCandidateSet& CandidateSet, 1490 bool AllowConversionFunctions, 1491 bool AllowExplicit, 1492 bool ForceRValue, 1493 bool UserCast) { 1494 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1495 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1496 // We're not going to find any constructors. 1497 } else if (CXXRecordDecl *ToRecordDecl 1498 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1499 // C++ [over.match.ctor]p1: 1500 // When objects of class type are direct-initialized (8.5), or 1501 // copy-initialized from an expression of the same or a 1502 // derived class type (8.5), overload resolution selects the 1503 // constructor. [...] For copy-initialization, the candidate 1504 // functions are all the converting constructors (12.3.1) of 1505 // that class. The argument list is the expression-list within 1506 // the parentheses of the initializer. 1507 bool SuppressUserConversions = !UserCast; 1508 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1509 IsDerivedFrom(From->getType(), ToType)) { 1510 SuppressUserConversions = false; 1511 AllowConversionFunctions = false; 1512 } 1513 1514 DeclarationName ConstructorName 1515 = Context.DeclarationNames.getCXXConstructorName( 1516 Context.getCanonicalType(ToType).getUnqualifiedType()); 1517 DeclContext::lookup_iterator Con, ConEnd; 1518 for (llvm::tie(Con, ConEnd) 1519 = ToRecordDecl->lookup(ConstructorName); 1520 Con != ConEnd; ++Con) { 1521 // Find the constructor (which may be a template). 1522 CXXConstructorDecl *Constructor = 0; 1523 FunctionTemplateDecl *ConstructorTmpl 1524 = dyn_cast<FunctionTemplateDecl>(*Con); 1525 if (ConstructorTmpl) 1526 Constructor 1527 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1528 else 1529 Constructor = cast<CXXConstructorDecl>(*Con); 1530 1531 if (!Constructor->isInvalidDecl() && 1532 Constructor->isConvertingConstructor(AllowExplicit)) { 1533 if (ConstructorTmpl) 1534 AddTemplateOverloadCandidate(ConstructorTmpl, 1535 ConstructorTmpl->getAccess(), 1536 /*ExplicitArgs*/ 0, 1537 &From, 1, CandidateSet, 1538 SuppressUserConversions, ForceRValue); 1539 else 1540 // Allow one user-defined conversion when user specifies a 1541 // From->ToType conversion via an static cast (c-style, etc). 1542 AddOverloadCandidate(Constructor, Constructor->getAccess(), 1543 &From, 1, CandidateSet, 1544 SuppressUserConversions, ForceRValue); 1545 } 1546 } 1547 } 1548 } 1549 1550 if (!AllowConversionFunctions) { 1551 // Don't allow any conversion functions to enter the overload set. 1552 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1553 PDiag(0) 1554 << From->getSourceRange())) { 1555 // No conversion functions from incomplete types. 1556 } else if (const RecordType *FromRecordType 1557 = From->getType()->getAs<RecordType>()) { 1558 if (CXXRecordDecl *FromRecordDecl 1559 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1560 // Add all of the conversion functions as candidates. 1561 const UnresolvedSetImpl *Conversions 1562 = FromRecordDecl->getVisibleConversionFunctions(); 1563 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1564 E = Conversions->end(); I != E; ++I) { 1565 NamedDecl *D = *I; 1566 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1567 if (isa<UsingShadowDecl>(D)) 1568 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1569 1570 CXXConversionDecl *Conv; 1571 FunctionTemplateDecl *ConvTemplate; 1572 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I))) 1573 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1574 else 1575 Conv = dyn_cast<CXXConversionDecl>(*I); 1576 1577 if (AllowExplicit || !Conv->isExplicit()) { 1578 if (ConvTemplate) 1579 AddTemplateConversionCandidate(ConvTemplate, I.getAccess(), 1580 ActingContext, From, ToType, 1581 CandidateSet); 1582 else 1583 AddConversionCandidate(Conv, I.getAccess(), ActingContext, 1584 From, ToType, CandidateSet); 1585 } 1586 } 1587 } 1588 } 1589 1590 OverloadCandidateSet::iterator Best; 1591 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1592 case OR_Success: 1593 // Record the standard conversion we used and the conversion function. 1594 if (CXXConstructorDecl *Constructor 1595 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1596 // C++ [over.ics.user]p1: 1597 // If the user-defined conversion is specified by a 1598 // constructor (12.3.1), the initial standard conversion 1599 // sequence converts the source type to the type required by 1600 // the argument of the constructor. 1601 // 1602 QualType ThisType = Constructor->getThisType(Context); 1603 if (Best->Conversions[0].isEllipsis()) 1604 User.EllipsisConversion = true; 1605 else { 1606 User.Before = Best->Conversions[0].Standard; 1607 User.EllipsisConversion = false; 1608 } 1609 User.ConversionFunction = Constructor; 1610 User.After.setAsIdentityConversion(); 1611 User.After.setFromType( 1612 ThisType->getAs<PointerType>()->getPointeeType()); 1613 User.After.setAllToTypes(ToType); 1614 return OR_Success; 1615 } else if (CXXConversionDecl *Conversion 1616 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1617 // C++ [over.ics.user]p1: 1618 // 1619 // [...] If the user-defined conversion is specified by a 1620 // conversion function (12.3.2), the initial standard 1621 // conversion sequence converts the source type to the 1622 // implicit object parameter of the conversion function. 1623 User.Before = Best->Conversions[0].Standard; 1624 User.ConversionFunction = Conversion; 1625 User.EllipsisConversion = false; 1626 1627 // C++ [over.ics.user]p2: 1628 // The second standard conversion sequence converts the 1629 // result of the user-defined conversion to the target type 1630 // for the sequence. Since an implicit conversion sequence 1631 // is an initialization, the special rules for 1632 // initialization by user-defined conversion apply when 1633 // selecting the best user-defined conversion for a 1634 // user-defined conversion sequence (see 13.3.3 and 1635 // 13.3.3.1). 1636 User.After = Best->FinalConversion; 1637 return OR_Success; 1638 } else { 1639 assert(false && "Not a constructor or conversion function?"); 1640 return OR_No_Viable_Function; 1641 } 1642 1643 case OR_No_Viable_Function: 1644 return OR_No_Viable_Function; 1645 case OR_Deleted: 1646 // No conversion here! We're done. 1647 return OR_Deleted; 1648 1649 case OR_Ambiguous: 1650 return OR_Ambiguous; 1651 } 1652 1653 return OR_No_Viable_Function; 1654} 1655 1656bool 1657Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1658 ImplicitConversionSequence ICS; 1659 OverloadCandidateSet CandidateSet(From->getExprLoc()); 1660 OverloadingResult OvResult = 1661 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1662 CandidateSet, true, false, false); 1663 if (OvResult == OR_Ambiguous) 1664 Diag(From->getSourceRange().getBegin(), 1665 diag::err_typecheck_ambiguous_condition) 1666 << From->getType() << ToType << From->getSourceRange(); 1667 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1668 Diag(From->getSourceRange().getBegin(), 1669 diag::err_typecheck_nonviable_condition) 1670 << From->getType() << ToType << From->getSourceRange(); 1671 else 1672 return false; 1673 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 1674 return true; 1675} 1676 1677/// CompareImplicitConversionSequences - Compare two implicit 1678/// conversion sequences to determine whether one is better than the 1679/// other or if they are indistinguishable (C++ 13.3.3.2). 1680ImplicitConversionSequence::CompareKind 1681Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1682 const ImplicitConversionSequence& ICS2) 1683{ 1684 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1685 // conversion sequences (as defined in 13.3.3.1) 1686 // -- a standard conversion sequence (13.3.3.1.1) is a better 1687 // conversion sequence than a user-defined conversion sequence or 1688 // an ellipsis conversion sequence, and 1689 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1690 // conversion sequence than an ellipsis conversion sequence 1691 // (13.3.3.1.3). 1692 // 1693 // C++0x [over.best.ics]p10: 1694 // For the purpose of ranking implicit conversion sequences as 1695 // described in 13.3.3.2, the ambiguous conversion sequence is 1696 // treated as a user-defined sequence that is indistinguishable 1697 // from any other user-defined conversion sequence. 1698 if (ICS1.getKind() < ICS2.getKind()) { 1699 if (!(ICS1.isUserDefined() && ICS2.isAmbiguous())) 1700 return ImplicitConversionSequence::Better; 1701 } else if (ICS2.getKind() < ICS1.getKind()) { 1702 if (!(ICS2.isUserDefined() && ICS1.isAmbiguous())) 1703 return ImplicitConversionSequence::Worse; 1704 } 1705 1706 if (ICS1.isAmbiguous() || ICS2.isAmbiguous()) 1707 return ImplicitConversionSequence::Indistinguishable; 1708 1709 // Two implicit conversion sequences of the same form are 1710 // indistinguishable conversion sequences unless one of the 1711 // following rules apply: (C++ 13.3.3.2p3): 1712 if (ICS1.isStandard()) 1713 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1714 else if (ICS1.isUserDefined()) { 1715 // User-defined conversion sequence U1 is a better conversion 1716 // sequence than another user-defined conversion sequence U2 if 1717 // they contain the same user-defined conversion function or 1718 // constructor and if the second standard conversion sequence of 1719 // U1 is better than the second standard conversion sequence of 1720 // U2 (C++ 13.3.3.2p3). 1721 if (ICS1.UserDefined.ConversionFunction == 1722 ICS2.UserDefined.ConversionFunction) 1723 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1724 ICS2.UserDefined.After); 1725 } 1726 1727 return ImplicitConversionSequence::Indistinguishable; 1728} 1729 1730// Per 13.3.3.2p3, compare the given standard conversion sequences to 1731// determine if one is a proper subset of the other. 1732static ImplicitConversionSequence::CompareKind 1733compareStandardConversionSubsets(ASTContext &Context, 1734 const StandardConversionSequence& SCS1, 1735 const StandardConversionSequence& SCS2) { 1736 ImplicitConversionSequence::CompareKind Result 1737 = ImplicitConversionSequence::Indistinguishable; 1738 1739 if (SCS1.Second != SCS2.Second) { 1740 if (SCS1.Second == ICK_Identity) 1741 Result = ImplicitConversionSequence::Better; 1742 else if (SCS2.Second == ICK_Identity) 1743 Result = ImplicitConversionSequence::Worse; 1744 else 1745 return ImplicitConversionSequence::Indistinguishable; 1746 } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1))) 1747 return ImplicitConversionSequence::Indistinguishable; 1748 1749 if (SCS1.Third == SCS2.Third) { 1750 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 1751 : ImplicitConversionSequence::Indistinguishable; 1752 } 1753 1754 if (SCS1.Third == ICK_Identity) 1755 return Result == ImplicitConversionSequence::Worse 1756 ? ImplicitConversionSequence::Indistinguishable 1757 : ImplicitConversionSequence::Better; 1758 1759 if (SCS2.Third == ICK_Identity) 1760 return Result == ImplicitConversionSequence::Better 1761 ? ImplicitConversionSequence::Indistinguishable 1762 : ImplicitConversionSequence::Worse; 1763 1764 return ImplicitConversionSequence::Indistinguishable; 1765} 1766 1767/// CompareStandardConversionSequences - Compare two standard 1768/// conversion sequences to determine whether one is better than the 1769/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1770ImplicitConversionSequence::CompareKind 1771Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1772 const StandardConversionSequence& SCS2) 1773{ 1774 // Standard conversion sequence S1 is a better conversion sequence 1775 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1776 1777 // -- S1 is a proper subsequence of S2 (comparing the conversion 1778 // sequences in the canonical form defined by 13.3.3.1.1, 1779 // excluding any Lvalue Transformation; the identity conversion 1780 // sequence is considered to be a subsequence of any 1781 // non-identity conversion sequence) or, if not that, 1782 if (ImplicitConversionSequence::CompareKind CK 1783 = compareStandardConversionSubsets(Context, SCS1, SCS2)) 1784 return CK; 1785 1786 // -- the rank of S1 is better than the rank of S2 (by the rules 1787 // defined below), or, if not that, 1788 ImplicitConversionRank Rank1 = SCS1.getRank(); 1789 ImplicitConversionRank Rank2 = SCS2.getRank(); 1790 if (Rank1 < Rank2) 1791 return ImplicitConversionSequence::Better; 1792 else if (Rank2 < Rank1) 1793 return ImplicitConversionSequence::Worse; 1794 1795 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1796 // are indistinguishable unless one of the following rules 1797 // applies: 1798 1799 // A conversion that is not a conversion of a pointer, or 1800 // pointer to member, to bool is better than another conversion 1801 // that is such a conversion. 1802 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1803 return SCS2.isPointerConversionToBool() 1804 ? ImplicitConversionSequence::Better 1805 : ImplicitConversionSequence::Worse; 1806 1807 // C++ [over.ics.rank]p4b2: 1808 // 1809 // If class B is derived directly or indirectly from class A, 1810 // conversion of B* to A* is better than conversion of B* to 1811 // void*, and conversion of A* to void* is better than conversion 1812 // of B* to void*. 1813 bool SCS1ConvertsToVoid 1814 = SCS1.isPointerConversionToVoidPointer(Context); 1815 bool SCS2ConvertsToVoid 1816 = SCS2.isPointerConversionToVoidPointer(Context); 1817 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1818 // Exactly one of the conversion sequences is a conversion to 1819 // a void pointer; it's the worse conversion. 1820 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1821 : ImplicitConversionSequence::Worse; 1822 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1823 // Neither conversion sequence converts to a void pointer; compare 1824 // their derived-to-base conversions. 1825 if (ImplicitConversionSequence::CompareKind DerivedCK 1826 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1827 return DerivedCK; 1828 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1829 // Both conversion sequences are conversions to void 1830 // pointers. Compare the source types to determine if there's an 1831 // inheritance relationship in their sources. 1832 QualType FromType1 = SCS1.getFromType(); 1833 QualType FromType2 = SCS2.getFromType(); 1834 1835 // Adjust the types we're converting from via the array-to-pointer 1836 // conversion, if we need to. 1837 if (SCS1.First == ICK_Array_To_Pointer) 1838 FromType1 = Context.getArrayDecayedType(FromType1); 1839 if (SCS2.First == ICK_Array_To_Pointer) 1840 FromType2 = Context.getArrayDecayedType(FromType2); 1841 1842 QualType FromPointee1 1843 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1844 QualType FromPointee2 1845 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1846 1847 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1848 return ImplicitConversionSequence::Better; 1849 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1850 return ImplicitConversionSequence::Worse; 1851 1852 // Objective-C++: If one interface is more specific than the 1853 // other, it is the better one. 1854 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1855 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1856 if (FromIface1 && FromIface1) { 1857 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1858 return ImplicitConversionSequence::Better; 1859 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1860 return ImplicitConversionSequence::Worse; 1861 } 1862 } 1863 1864 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1865 // bullet 3). 1866 if (ImplicitConversionSequence::CompareKind QualCK 1867 = CompareQualificationConversions(SCS1, SCS2)) 1868 return QualCK; 1869 1870 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1871 // C++0x [over.ics.rank]p3b4: 1872 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1873 // implicit object parameter of a non-static member function declared 1874 // without a ref-qualifier, and S1 binds an rvalue reference to an 1875 // rvalue and S2 binds an lvalue reference. 1876 // FIXME: We don't know if we're dealing with the implicit object parameter, 1877 // or if the member function in this case has a ref qualifier. 1878 // (Of course, we don't have ref qualifiers yet.) 1879 if (SCS1.RRefBinding != SCS2.RRefBinding) 1880 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1881 : ImplicitConversionSequence::Worse; 1882 1883 // C++ [over.ics.rank]p3b4: 1884 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1885 // which the references refer are the same type except for 1886 // top-level cv-qualifiers, and the type to which the reference 1887 // initialized by S2 refers is more cv-qualified than the type 1888 // to which the reference initialized by S1 refers. 1889 QualType T1 = SCS1.getToType(2); 1890 QualType T2 = SCS2.getToType(2); 1891 T1 = Context.getCanonicalType(T1); 1892 T2 = Context.getCanonicalType(T2); 1893 Qualifiers T1Quals, T2Quals; 1894 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 1895 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 1896 if (UnqualT1 == UnqualT2) { 1897 // If the type is an array type, promote the element qualifiers to the type 1898 // for comparison. 1899 if (isa<ArrayType>(T1) && T1Quals) 1900 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 1901 if (isa<ArrayType>(T2) && T2Quals) 1902 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 1903 if (T2.isMoreQualifiedThan(T1)) 1904 return ImplicitConversionSequence::Better; 1905 else if (T1.isMoreQualifiedThan(T2)) 1906 return ImplicitConversionSequence::Worse; 1907 } 1908 } 1909 1910 return ImplicitConversionSequence::Indistinguishable; 1911} 1912 1913/// CompareQualificationConversions - Compares two standard conversion 1914/// sequences to determine whether they can be ranked based on their 1915/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1916ImplicitConversionSequence::CompareKind 1917Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1918 const StandardConversionSequence& SCS2) { 1919 // C++ 13.3.3.2p3: 1920 // -- S1 and S2 differ only in their qualification conversion and 1921 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1922 // cv-qualification signature of type T1 is a proper subset of 1923 // the cv-qualification signature of type T2, and S1 is not the 1924 // deprecated string literal array-to-pointer conversion (4.2). 1925 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1926 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1927 return ImplicitConversionSequence::Indistinguishable; 1928 1929 // FIXME: the example in the standard doesn't use a qualification 1930 // conversion (!) 1931 QualType T1 = SCS1.getToType(2); 1932 QualType T2 = SCS2.getToType(2); 1933 T1 = Context.getCanonicalType(T1); 1934 T2 = Context.getCanonicalType(T2); 1935 Qualifiers T1Quals, T2Quals; 1936 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 1937 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 1938 1939 // If the types are the same, we won't learn anything by unwrapped 1940 // them. 1941 if (UnqualT1 == UnqualT2) 1942 return ImplicitConversionSequence::Indistinguishable; 1943 1944 // If the type is an array type, promote the element qualifiers to the type 1945 // for comparison. 1946 if (isa<ArrayType>(T1) && T1Quals) 1947 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 1948 if (isa<ArrayType>(T2) && T2Quals) 1949 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 1950 1951 ImplicitConversionSequence::CompareKind Result 1952 = ImplicitConversionSequence::Indistinguishable; 1953 while (UnwrapSimilarPointerTypes(T1, T2)) { 1954 // Within each iteration of the loop, we check the qualifiers to 1955 // determine if this still looks like a qualification 1956 // conversion. Then, if all is well, we unwrap one more level of 1957 // pointers or pointers-to-members and do it all again 1958 // until there are no more pointers or pointers-to-members left 1959 // to unwrap. This essentially mimics what 1960 // IsQualificationConversion does, but here we're checking for a 1961 // strict subset of qualifiers. 1962 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1963 // The qualifiers are the same, so this doesn't tell us anything 1964 // about how the sequences rank. 1965 ; 1966 else if (T2.isMoreQualifiedThan(T1)) { 1967 // T1 has fewer qualifiers, so it could be the better sequence. 1968 if (Result == ImplicitConversionSequence::Worse) 1969 // Neither has qualifiers that are a subset of the other's 1970 // qualifiers. 1971 return ImplicitConversionSequence::Indistinguishable; 1972 1973 Result = ImplicitConversionSequence::Better; 1974 } else if (T1.isMoreQualifiedThan(T2)) { 1975 // T2 has fewer qualifiers, so it could be the better sequence. 1976 if (Result == ImplicitConversionSequence::Better) 1977 // Neither has qualifiers that are a subset of the other's 1978 // qualifiers. 1979 return ImplicitConversionSequence::Indistinguishable; 1980 1981 Result = ImplicitConversionSequence::Worse; 1982 } else { 1983 // Qualifiers are disjoint. 1984 return ImplicitConversionSequence::Indistinguishable; 1985 } 1986 1987 // If the types after this point are equivalent, we're done. 1988 if (Context.hasSameUnqualifiedType(T1, T2)) 1989 break; 1990 } 1991 1992 // Check that the winning standard conversion sequence isn't using 1993 // the deprecated string literal array to pointer conversion. 1994 switch (Result) { 1995 case ImplicitConversionSequence::Better: 1996 if (SCS1.Deprecated) 1997 Result = ImplicitConversionSequence::Indistinguishable; 1998 break; 1999 2000 case ImplicitConversionSequence::Indistinguishable: 2001 break; 2002 2003 case ImplicitConversionSequence::Worse: 2004 if (SCS2.Deprecated) 2005 Result = ImplicitConversionSequence::Indistinguishable; 2006 break; 2007 } 2008 2009 return Result; 2010} 2011 2012/// CompareDerivedToBaseConversions - Compares two standard conversion 2013/// sequences to determine whether they can be ranked based on their 2014/// various kinds of derived-to-base conversions (C++ 2015/// [over.ics.rank]p4b3). As part of these checks, we also look at 2016/// conversions between Objective-C interface types. 2017ImplicitConversionSequence::CompareKind 2018Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 2019 const StandardConversionSequence& SCS2) { 2020 QualType FromType1 = SCS1.getFromType(); 2021 QualType ToType1 = SCS1.getToType(1); 2022 QualType FromType2 = SCS2.getFromType(); 2023 QualType ToType2 = SCS2.getToType(1); 2024 2025 // Adjust the types we're converting from via the array-to-pointer 2026 // conversion, if we need to. 2027 if (SCS1.First == ICK_Array_To_Pointer) 2028 FromType1 = Context.getArrayDecayedType(FromType1); 2029 if (SCS2.First == ICK_Array_To_Pointer) 2030 FromType2 = Context.getArrayDecayedType(FromType2); 2031 2032 // Canonicalize all of the types. 2033 FromType1 = Context.getCanonicalType(FromType1); 2034 ToType1 = Context.getCanonicalType(ToType1); 2035 FromType2 = Context.getCanonicalType(FromType2); 2036 ToType2 = Context.getCanonicalType(ToType2); 2037 2038 // C++ [over.ics.rank]p4b3: 2039 // 2040 // If class B is derived directly or indirectly from class A and 2041 // class C is derived directly or indirectly from B, 2042 // 2043 // For Objective-C, we let A, B, and C also be Objective-C 2044 // interfaces. 2045 2046 // Compare based on pointer conversions. 2047 if (SCS1.Second == ICK_Pointer_Conversion && 2048 SCS2.Second == ICK_Pointer_Conversion && 2049 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2050 FromType1->isPointerType() && FromType2->isPointerType() && 2051 ToType1->isPointerType() && ToType2->isPointerType()) { 2052 QualType FromPointee1 2053 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2054 QualType ToPointee1 2055 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2056 QualType FromPointee2 2057 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2058 QualType ToPointee2 2059 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2060 2061 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 2062 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 2063 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 2064 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 2065 2066 // -- conversion of C* to B* is better than conversion of C* to A*, 2067 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2068 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2069 return ImplicitConversionSequence::Better; 2070 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2071 return ImplicitConversionSequence::Worse; 2072 2073 if (ToIface1 && ToIface2) { 2074 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2075 return ImplicitConversionSequence::Better; 2076 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2077 return ImplicitConversionSequence::Worse; 2078 } 2079 } 2080 2081 // -- conversion of B* to A* is better than conversion of C* to A*, 2082 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2083 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2084 return ImplicitConversionSequence::Better; 2085 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2086 return ImplicitConversionSequence::Worse; 2087 2088 if (FromIface1 && FromIface2) { 2089 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2090 return ImplicitConversionSequence::Better; 2091 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2092 return ImplicitConversionSequence::Worse; 2093 } 2094 } 2095 } 2096 2097 // Compare based on reference bindings. 2098 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 2099 SCS1.Second == ICK_Derived_To_Base) { 2100 // -- binding of an expression of type C to a reference of type 2101 // B& is better than binding an expression of type C to a 2102 // reference of type A&, 2103 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2104 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2105 if (IsDerivedFrom(ToType1, ToType2)) 2106 return ImplicitConversionSequence::Better; 2107 else if (IsDerivedFrom(ToType2, ToType1)) 2108 return ImplicitConversionSequence::Worse; 2109 } 2110 2111 // -- binding of an expression of type B to a reference of type 2112 // A& is better than binding an expression of type C to a 2113 // reference of type A&, 2114 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2115 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2116 if (IsDerivedFrom(FromType2, FromType1)) 2117 return ImplicitConversionSequence::Better; 2118 else if (IsDerivedFrom(FromType1, FromType2)) 2119 return ImplicitConversionSequence::Worse; 2120 } 2121 } 2122 2123 // Ranking of member-pointer types. 2124 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2125 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2126 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2127 const MemberPointerType * FromMemPointer1 = 2128 FromType1->getAs<MemberPointerType>(); 2129 const MemberPointerType * ToMemPointer1 = 2130 ToType1->getAs<MemberPointerType>(); 2131 const MemberPointerType * FromMemPointer2 = 2132 FromType2->getAs<MemberPointerType>(); 2133 const MemberPointerType * ToMemPointer2 = 2134 ToType2->getAs<MemberPointerType>(); 2135 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2136 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2137 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2138 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2139 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2140 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2141 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2142 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2143 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2144 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2145 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2146 return ImplicitConversionSequence::Worse; 2147 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2148 return ImplicitConversionSequence::Better; 2149 } 2150 // conversion of B::* to C::* is better than conversion of A::* to C::* 2151 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2152 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2153 return ImplicitConversionSequence::Better; 2154 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2155 return ImplicitConversionSequence::Worse; 2156 } 2157 } 2158 2159 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 2160 SCS1.Second == ICK_Derived_To_Base) { 2161 // -- conversion of C to B is better than conversion of C to A, 2162 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2163 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2164 if (IsDerivedFrom(ToType1, ToType2)) 2165 return ImplicitConversionSequence::Better; 2166 else if (IsDerivedFrom(ToType2, ToType1)) 2167 return ImplicitConversionSequence::Worse; 2168 } 2169 2170 // -- conversion of B to A is better than conversion of C to A. 2171 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2172 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2173 if (IsDerivedFrom(FromType2, FromType1)) 2174 return ImplicitConversionSequence::Better; 2175 else if (IsDerivedFrom(FromType1, FromType2)) 2176 return ImplicitConversionSequence::Worse; 2177 } 2178 } 2179 2180 return ImplicitConversionSequence::Indistinguishable; 2181} 2182 2183/// TryCopyInitialization - Try to copy-initialize a value of type 2184/// ToType from the expression From. Return the implicit conversion 2185/// sequence required to pass this argument, which may be a bad 2186/// conversion sequence (meaning that the argument cannot be passed to 2187/// a parameter of this type). If @p SuppressUserConversions, then we 2188/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2189/// then we treat @p From as an rvalue, even if it is an lvalue. 2190ImplicitConversionSequence 2191Sema::TryCopyInitialization(Expr *From, QualType ToType, 2192 bool SuppressUserConversions, bool ForceRValue, 2193 bool InOverloadResolution) { 2194 if (ToType->isReferenceType()) { 2195 ImplicitConversionSequence ICS; 2196 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 2197 CheckReferenceInit(From, ToType, 2198 /*FIXME:*/From->getLocStart(), 2199 SuppressUserConversions, 2200 /*AllowExplicit=*/false, 2201 ForceRValue, 2202 &ICS); 2203 return ICS; 2204 } else { 2205 return TryImplicitConversion(From, ToType, 2206 SuppressUserConversions, 2207 /*AllowExplicit=*/false, 2208 ForceRValue, 2209 InOverloadResolution); 2210 } 2211} 2212 2213/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2214/// the expression @p From. Returns true (and emits a diagnostic) if there was 2215/// an error, returns false if the initialization succeeded. Elidable should 2216/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2217/// differently in C++0x for this case. 2218bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2219 AssignmentAction Action, bool Elidable) { 2220 if (!getLangOptions().CPlusPlus) { 2221 // In C, argument passing is the same as performing an assignment. 2222 QualType FromType = From->getType(); 2223 2224 AssignConvertType ConvTy = 2225 CheckSingleAssignmentConstraints(ToType, From); 2226 if (ConvTy != Compatible && 2227 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2228 ConvTy = Compatible; 2229 2230 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2231 FromType, From, Action); 2232 } 2233 2234 if (ToType->isReferenceType()) 2235 return CheckReferenceInit(From, ToType, 2236 /*FIXME:*/From->getLocStart(), 2237 /*SuppressUserConversions=*/false, 2238 /*AllowExplicit=*/false, 2239 /*ForceRValue=*/false); 2240 2241 if (!PerformImplicitConversion(From, ToType, Action, 2242 /*AllowExplicit=*/false, Elidable)) 2243 return false; 2244 if (!DiagnoseMultipleUserDefinedConversion(From, ToType)) 2245 return Diag(From->getSourceRange().getBegin(), 2246 diag::err_typecheck_convert_incompatible) 2247 << ToType << From->getType() << Action << From->getSourceRange(); 2248 return true; 2249} 2250 2251/// TryObjectArgumentInitialization - Try to initialize the object 2252/// parameter of the given member function (@c Method) from the 2253/// expression @p From. 2254ImplicitConversionSequence 2255Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2256 CXXMethodDecl *Method, 2257 CXXRecordDecl *ActingContext) { 2258 QualType ClassType = Context.getTypeDeclType(ActingContext); 2259 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2260 // const volatile object. 2261 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2262 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2263 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2264 2265 // Set up the conversion sequence as a "bad" conversion, to allow us 2266 // to exit early. 2267 ImplicitConversionSequence ICS; 2268 2269 // We need to have an object of class type. 2270 QualType FromType = OrigFromType; 2271 if (const PointerType *PT = FromType->getAs<PointerType>()) 2272 FromType = PT->getPointeeType(); 2273 2274 assert(FromType->isRecordType()); 2275 2276 // The implicit object parameter is has the type "reference to cv X", 2277 // where X is the class of which the function is a member 2278 // (C++ [over.match.funcs]p4). However, when finding an implicit 2279 // conversion sequence for the argument, we are not allowed to 2280 // create temporaries or perform user-defined conversions 2281 // (C++ [over.match.funcs]p5). We perform a simplified version of 2282 // reference binding here, that allows class rvalues to bind to 2283 // non-constant references. 2284 2285 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2286 // with the implicit object parameter (C++ [over.match.funcs]p5). 2287 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2288 if (ImplicitParamType.getCVRQualifiers() 2289 != FromTypeCanon.getLocalCVRQualifiers() && 2290 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 2291 ICS.setBad(BadConversionSequence::bad_qualifiers, 2292 OrigFromType, ImplicitParamType); 2293 return ICS; 2294 } 2295 2296 // Check that we have either the same type or a derived type. It 2297 // affects the conversion rank. 2298 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2299 ImplicitConversionKind SecondKind; 2300 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 2301 SecondKind = ICK_Identity; 2302 } else if (IsDerivedFrom(FromType, ClassType)) 2303 SecondKind = ICK_Derived_To_Base; 2304 else { 2305 ICS.setBad(BadConversionSequence::unrelated_class, 2306 FromType, ImplicitParamType); 2307 return ICS; 2308 } 2309 2310 // Success. Mark this as a reference binding. 2311 ICS.setStandard(); 2312 ICS.Standard.setAsIdentityConversion(); 2313 ICS.Standard.Second = SecondKind; 2314 ICS.Standard.setFromType(FromType); 2315 ICS.Standard.setAllToTypes(ImplicitParamType); 2316 ICS.Standard.ReferenceBinding = true; 2317 ICS.Standard.DirectBinding = true; 2318 ICS.Standard.RRefBinding = false; 2319 return ICS; 2320} 2321 2322/// PerformObjectArgumentInitialization - Perform initialization of 2323/// the implicit object parameter for the given Method with the given 2324/// expression. 2325bool 2326Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2327 QualType FromRecordType, DestType; 2328 QualType ImplicitParamRecordType = 2329 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2330 2331 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2332 FromRecordType = PT->getPointeeType(); 2333 DestType = Method->getThisType(Context); 2334 } else { 2335 FromRecordType = From->getType(); 2336 DestType = ImplicitParamRecordType; 2337 } 2338 2339 // Note that we always use the true parent context when performing 2340 // the actual argument initialization. 2341 ImplicitConversionSequence ICS 2342 = TryObjectArgumentInitialization(From->getType(), Method, 2343 Method->getParent()); 2344 if (ICS.isBad()) 2345 return Diag(From->getSourceRange().getBegin(), 2346 diag::err_implicit_object_parameter_init) 2347 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2348 2349 if (ICS.Standard.Second == ICK_Derived_To_Base && 2350 CheckDerivedToBaseConversion(FromRecordType, 2351 ImplicitParamRecordType, 2352 From->getSourceRange().getBegin(), 2353 From->getSourceRange())) 2354 return true; 2355 2356 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2357 /*isLvalue=*/true); 2358 return false; 2359} 2360 2361/// TryContextuallyConvertToBool - Attempt to contextually convert the 2362/// expression From to bool (C++0x [conv]p3). 2363ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2364 return TryImplicitConversion(From, Context.BoolTy, 2365 // FIXME: Are these flags correct? 2366 /*SuppressUserConversions=*/false, 2367 /*AllowExplicit=*/true, 2368 /*ForceRValue=*/false, 2369 /*InOverloadResolution=*/false); 2370} 2371 2372/// PerformContextuallyConvertToBool - Perform a contextual conversion 2373/// of the expression From to bool (C++0x [conv]p3). 2374bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2375 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2376 if (!ICS.isBad()) 2377 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 2378 2379 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2380 return Diag(From->getSourceRange().getBegin(), 2381 diag::err_typecheck_bool_condition) 2382 << From->getType() << From->getSourceRange(); 2383 return true; 2384} 2385 2386/// AddOverloadCandidate - Adds the given function to the set of 2387/// candidate functions, using the given function call arguments. If 2388/// @p SuppressUserConversions, then don't allow user-defined 2389/// conversions via constructors or conversion operators. 2390/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2391/// hacky way to implement the overloading rules for elidable copy 2392/// initialization in C++0x (C++0x 12.8p15). 2393/// 2394/// \para PartialOverloading true if we are performing "partial" overloading 2395/// based on an incomplete set of function arguments. This feature is used by 2396/// code completion. 2397void 2398Sema::AddOverloadCandidate(FunctionDecl *Function, 2399 AccessSpecifier Access, 2400 Expr **Args, unsigned NumArgs, 2401 OverloadCandidateSet& CandidateSet, 2402 bool SuppressUserConversions, 2403 bool ForceRValue, 2404 bool PartialOverloading) { 2405 const FunctionProtoType* Proto 2406 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2407 assert(Proto && "Functions without a prototype cannot be overloaded"); 2408 assert(!Function->getDescribedFunctionTemplate() && 2409 "Use AddTemplateOverloadCandidate for function templates"); 2410 2411 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2412 if (!isa<CXXConstructorDecl>(Method)) { 2413 // If we get here, it's because we're calling a member function 2414 // that is named without a member access expression (e.g., 2415 // "this->f") that was either written explicitly or created 2416 // implicitly. This can happen with a qualified call to a member 2417 // function, e.g., X::f(). We use an empty type for the implied 2418 // object argument (C++ [over.call.func]p3), and the acting context 2419 // is irrelevant. 2420 AddMethodCandidate(Method, Access, Method->getParent(), 2421 QualType(), Args, NumArgs, CandidateSet, 2422 SuppressUserConversions, ForceRValue); 2423 return; 2424 } 2425 // We treat a constructor like a non-member function, since its object 2426 // argument doesn't participate in overload resolution. 2427 } 2428 2429 if (!CandidateSet.isNewCandidate(Function)) 2430 return; 2431 2432 // Overload resolution is always an unevaluated context. 2433 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2434 2435 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2436 // C++ [class.copy]p3: 2437 // A member function template is never instantiated to perform the copy 2438 // of a class object to an object of its class type. 2439 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2440 if (NumArgs == 1 && 2441 Constructor->isCopyConstructorLikeSpecialization() && 2442 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 2443 IsDerivedFrom(Args[0]->getType(), ClassType))) 2444 return; 2445 } 2446 2447 // Add this candidate 2448 CandidateSet.push_back(OverloadCandidate()); 2449 OverloadCandidate& Candidate = CandidateSet.back(); 2450 Candidate.Function = Function; 2451 Candidate.Access = Access; 2452 Candidate.Viable = true; 2453 Candidate.IsSurrogate = false; 2454 Candidate.IgnoreObjectArgument = false; 2455 2456 unsigned NumArgsInProto = Proto->getNumArgs(); 2457 2458 // (C++ 13.3.2p2): A candidate function having fewer than m 2459 // parameters is viable only if it has an ellipsis in its parameter 2460 // list (8.3.5). 2461 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2462 !Proto->isVariadic()) { 2463 Candidate.Viable = false; 2464 Candidate.FailureKind = ovl_fail_too_many_arguments; 2465 return; 2466 } 2467 2468 // (C++ 13.3.2p2): A candidate function having more than m parameters 2469 // is viable only if the (m+1)st parameter has a default argument 2470 // (8.3.6). For the purposes of overload resolution, the 2471 // parameter list is truncated on the right, so that there are 2472 // exactly m parameters. 2473 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2474 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2475 // Not enough arguments. 2476 Candidate.Viable = false; 2477 Candidate.FailureKind = ovl_fail_too_few_arguments; 2478 return; 2479 } 2480 2481 // Determine the implicit conversion sequences for each of the 2482 // arguments. 2483 Candidate.Conversions.resize(NumArgs); 2484 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2485 if (ArgIdx < NumArgsInProto) { 2486 // (C++ 13.3.2p3): for F to be a viable function, there shall 2487 // exist for each argument an implicit conversion sequence 2488 // (13.3.3.1) that converts that argument to the corresponding 2489 // parameter of F. 2490 QualType ParamType = Proto->getArgType(ArgIdx); 2491 Candidate.Conversions[ArgIdx] 2492 = TryCopyInitialization(Args[ArgIdx], ParamType, 2493 SuppressUserConversions, ForceRValue, 2494 /*InOverloadResolution=*/true); 2495 if (Candidate.Conversions[ArgIdx].isBad()) { 2496 Candidate.Viable = false; 2497 Candidate.FailureKind = ovl_fail_bad_conversion; 2498 break; 2499 } 2500 } else { 2501 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2502 // argument for which there is no corresponding parameter is 2503 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2504 Candidate.Conversions[ArgIdx].setEllipsis(); 2505 } 2506 } 2507} 2508 2509/// \brief Add all of the function declarations in the given function set to 2510/// the overload canddiate set. 2511void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 2512 Expr **Args, unsigned NumArgs, 2513 OverloadCandidateSet& CandidateSet, 2514 bool SuppressUserConversions) { 2515 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 2516 // FIXME: using declarations 2517 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2518 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2519 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(), 2520 cast<CXXMethodDecl>(FD)->getParent(), 2521 Args[0]->getType(), Args + 1, NumArgs - 1, 2522 CandidateSet, SuppressUserConversions); 2523 else 2524 AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet, 2525 SuppressUserConversions); 2526 } else { 2527 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2528 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2529 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2530 AddMethodTemplateCandidate(FunTmpl, F.getAccess(), 2531 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 2532 /*FIXME: explicit args */ 0, 2533 Args[0]->getType(), Args + 1, NumArgs - 1, 2534 CandidateSet, 2535 SuppressUserConversions); 2536 else 2537 AddTemplateOverloadCandidate(FunTmpl, AS_none, 2538 /*FIXME: explicit args */ 0, 2539 Args, NumArgs, CandidateSet, 2540 SuppressUserConversions); 2541 } 2542 } 2543} 2544 2545/// AddMethodCandidate - Adds a named decl (which is some kind of 2546/// method) as a method candidate to the given overload set. 2547void Sema::AddMethodCandidate(NamedDecl *Decl, 2548 AccessSpecifier Access, 2549 QualType ObjectType, 2550 Expr **Args, unsigned NumArgs, 2551 OverloadCandidateSet& CandidateSet, 2552 bool SuppressUserConversions, bool ForceRValue) { 2553 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 2554 2555 if (isa<UsingShadowDecl>(Decl)) 2556 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 2557 2558 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 2559 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 2560 "Expected a member function template"); 2561 AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0, 2562 ObjectType, Args, NumArgs, 2563 CandidateSet, 2564 SuppressUserConversions, 2565 ForceRValue); 2566 } else { 2567 AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext, 2568 ObjectType, Args, NumArgs, 2569 CandidateSet, SuppressUserConversions, ForceRValue); 2570 } 2571} 2572 2573/// AddMethodCandidate - Adds the given C++ member function to the set 2574/// of candidate functions, using the given function call arguments 2575/// and the object argument (@c Object). For example, in a call 2576/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2577/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2578/// allow user-defined conversions via constructors or conversion 2579/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2580/// a slightly hacky way to implement the overloading rules for elidable copy 2581/// initialization in C++0x (C++0x 12.8p15). 2582void 2583Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access, 2584 CXXRecordDecl *ActingContext, QualType ObjectType, 2585 Expr **Args, unsigned NumArgs, 2586 OverloadCandidateSet& CandidateSet, 2587 bool SuppressUserConversions, bool ForceRValue) { 2588 const FunctionProtoType* Proto 2589 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2590 assert(Proto && "Methods without a prototype cannot be overloaded"); 2591 assert(!isa<CXXConstructorDecl>(Method) && 2592 "Use AddOverloadCandidate for constructors"); 2593 2594 if (!CandidateSet.isNewCandidate(Method)) 2595 return; 2596 2597 // Overload resolution is always an unevaluated context. 2598 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2599 2600 // Add this candidate 2601 CandidateSet.push_back(OverloadCandidate()); 2602 OverloadCandidate& Candidate = CandidateSet.back(); 2603 Candidate.Function = Method; 2604 Candidate.Access = Access; 2605 Candidate.IsSurrogate = false; 2606 Candidate.IgnoreObjectArgument = false; 2607 2608 unsigned NumArgsInProto = Proto->getNumArgs(); 2609 2610 // (C++ 13.3.2p2): A candidate function having fewer than m 2611 // parameters is viable only if it has an ellipsis in its parameter 2612 // list (8.3.5). 2613 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2614 Candidate.Viable = false; 2615 Candidate.FailureKind = ovl_fail_too_many_arguments; 2616 return; 2617 } 2618 2619 // (C++ 13.3.2p2): A candidate function having more than m parameters 2620 // is viable only if the (m+1)st parameter has a default argument 2621 // (8.3.6). For the purposes of overload resolution, the 2622 // parameter list is truncated on the right, so that there are 2623 // exactly m parameters. 2624 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2625 if (NumArgs < MinRequiredArgs) { 2626 // Not enough arguments. 2627 Candidate.Viable = false; 2628 Candidate.FailureKind = ovl_fail_too_few_arguments; 2629 return; 2630 } 2631 2632 Candidate.Viable = true; 2633 Candidate.Conversions.resize(NumArgs + 1); 2634 2635 if (Method->isStatic() || ObjectType.isNull()) 2636 // The implicit object argument is ignored. 2637 Candidate.IgnoreObjectArgument = true; 2638 else { 2639 // Determine the implicit conversion sequence for the object 2640 // parameter. 2641 Candidate.Conversions[0] 2642 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 2643 if (Candidate.Conversions[0].isBad()) { 2644 Candidate.Viable = false; 2645 Candidate.FailureKind = ovl_fail_bad_conversion; 2646 return; 2647 } 2648 } 2649 2650 // Determine the implicit conversion sequences for each of the 2651 // arguments. 2652 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2653 if (ArgIdx < NumArgsInProto) { 2654 // (C++ 13.3.2p3): for F to be a viable function, there shall 2655 // exist for each argument an implicit conversion sequence 2656 // (13.3.3.1) that converts that argument to the corresponding 2657 // parameter of F. 2658 QualType ParamType = Proto->getArgType(ArgIdx); 2659 Candidate.Conversions[ArgIdx + 1] 2660 = TryCopyInitialization(Args[ArgIdx], ParamType, 2661 SuppressUserConversions, ForceRValue, 2662 /*InOverloadResolution=*/true); 2663 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 2664 Candidate.Viable = false; 2665 Candidate.FailureKind = ovl_fail_bad_conversion; 2666 break; 2667 } 2668 } else { 2669 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2670 // argument for which there is no corresponding parameter is 2671 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2672 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 2673 } 2674 } 2675} 2676 2677/// \brief Add a C++ member function template as a candidate to the candidate 2678/// set, using template argument deduction to produce an appropriate member 2679/// function template specialization. 2680void 2681Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2682 AccessSpecifier Access, 2683 CXXRecordDecl *ActingContext, 2684 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2685 QualType ObjectType, 2686 Expr **Args, unsigned NumArgs, 2687 OverloadCandidateSet& CandidateSet, 2688 bool SuppressUserConversions, 2689 bool ForceRValue) { 2690 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2691 return; 2692 2693 // C++ [over.match.funcs]p7: 2694 // In each case where a candidate is a function template, candidate 2695 // function template specializations are generated using template argument 2696 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2697 // candidate functions in the usual way.113) A given name can refer to one 2698 // or more function templates and also to a set of overloaded non-template 2699 // functions. In such a case, the candidate functions generated from each 2700 // function template are combined with the set of non-template candidate 2701 // functions. 2702 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 2703 FunctionDecl *Specialization = 0; 2704 if (TemplateDeductionResult Result 2705 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 2706 Args, NumArgs, Specialization, Info)) { 2707 // FIXME: Record what happened with template argument deduction, so 2708 // that we can give the user a beautiful diagnostic. 2709 (void)Result; 2710 return; 2711 } 2712 2713 // Add the function template specialization produced by template argument 2714 // deduction as a candidate. 2715 assert(Specialization && "Missing member function template specialization?"); 2716 assert(isa<CXXMethodDecl>(Specialization) && 2717 "Specialization is not a member function?"); 2718 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access, 2719 ActingContext, ObjectType, Args, NumArgs, 2720 CandidateSet, SuppressUserConversions, ForceRValue); 2721} 2722 2723/// \brief Add a C++ function template specialization as a candidate 2724/// in the candidate set, using template argument deduction to produce 2725/// an appropriate function template specialization. 2726void 2727Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2728 AccessSpecifier Access, 2729 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2730 Expr **Args, unsigned NumArgs, 2731 OverloadCandidateSet& CandidateSet, 2732 bool SuppressUserConversions, 2733 bool ForceRValue) { 2734 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2735 return; 2736 2737 // C++ [over.match.funcs]p7: 2738 // In each case where a candidate is a function template, candidate 2739 // function template specializations are generated using template argument 2740 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2741 // candidate functions in the usual way.113) A given name can refer to one 2742 // or more function templates and also to a set of overloaded non-template 2743 // functions. In such a case, the candidate functions generated from each 2744 // function template are combined with the set of non-template candidate 2745 // functions. 2746 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 2747 FunctionDecl *Specialization = 0; 2748 if (TemplateDeductionResult Result 2749 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 2750 Args, NumArgs, Specialization, Info)) { 2751 CandidateSet.push_back(OverloadCandidate()); 2752 OverloadCandidate &Candidate = CandidateSet.back(); 2753 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 2754 Candidate.Access = Access; 2755 Candidate.Viable = false; 2756 Candidate.FailureKind = ovl_fail_bad_deduction; 2757 Candidate.IsSurrogate = false; 2758 Candidate.IgnoreObjectArgument = false; 2759 2760 // TODO: record more information about failed template arguments 2761 Candidate.DeductionFailure.Result = Result; 2762 Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue(); 2763 return; 2764 } 2765 2766 // Add the function template specialization produced by template argument 2767 // deduction as a candidate. 2768 assert(Specialization && "Missing function template specialization?"); 2769 AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet, 2770 SuppressUserConversions, ForceRValue); 2771} 2772 2773/// AddConversionCandidate - Add a C++ conversion function as a 2774/// candidate in the candidate set (C++ [over.match.conv], 2775/// C++ [over.match.copy]). From is the expression we're converting from, 2776/// and ToType is the type that we're eventually trying to convert to 2777/// (which may or may not be the same type as the type that the 2778/// conversion function produces). 2779void 2780Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2781 AccessSpecifier Access, 2782 CXXRecordDecl *ActingContext, 2783 Expr *From, QualType ToType, 2784 OverloadCandidateSet& CandidateSet) { 2785 assert(!Conversion->getDescribedFunctionTemplate() && 2786 "Conversion function templates use AddTemplateConversionCandidate"); 2787 2788 if (!CandidateSet.isNewCandidate(Conversion)) 2789 return; 2790 2791 // Overload resolution is always an unevaluated context. 2792 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2793 2794 // Add this candidate 2795 CandidateSet.push_back(OverloadCandidate()); 2796 OverloadCandidate& Candidate = CandidateSet.back(); 2797 Candidate.Function = Conversion; 2798 Candidate.Access = Access; 2799 Candidate.IsSurrogate = false; 2800 Candidate.IgnoreObjectArgument = false; 2801 Candidate.FinalConversion.setAsIdentityConversion(); 2802 Candidate.FinalConversion.setFromType(Conversion->getConversionType()); 2803 Candidate.FinalConversion.setAllToTypes(ToType); 2804 2805 // Determine the implicit conversion sequence for the implicit 2806 // object parameter. 2807 Candidate.Viable = true; 2808 Candidate.Conversions.resize(1); 2809 Candidate.Conversions[0] 2810 = TryObjectArgumentInitialization(From->getType(), Conversion, 2811 ActingContext); 2812 // Conversion functions to a different type in the base class is visible in 2813 // the derived class. So, a derived to base conversion should not participate 2814 // in overload resolution. 2815 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2816 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2817 if (Candidate.Conversions[0].isBad()) { 2818 Candidate.Viable = false; 2819 Candidate.FailureKind = ovl_fail_bad_conversion; 2820 return; 2821 } 2822 2823 // We won't go through a user-define type conversion function to convert a 2824 // derived to base as such conversions are given Conversion Rank. They only 2825 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2826 QualType FromCanon 2827 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2828 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2829 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2830 Candidate.Viable = false; 2831 Candidate.FailureKind = ovl_fail_trivial_conversion; 2832 return; 2833 } 2834 2835 2836 // To determine what the conversion from the result of calling the 2837 // conversion function to the type we're eventually trying to 2838 // convert to (ToType), we need to synthesize a call to the 2839 // conversion function and attempt copy initialization from it. This 2840 // makes sure that we get the right semantics with respect to 2841 // lvalues/rvalues and the type. Fortunately, we can allocate this 2842 // call on the stack and we don't need its arguments to be 2843 // well-formed. 2844 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2845 From->getLocStart()); 2846 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2847 CastExpr::CK_FunctionToPointerDecay, 2848 &ConversionRef, false); 2849 2850 // Note that it is safe to allocate CallExpr on the stack here because 2851 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2852 // allocator). 2853 CallExpr Call(Context, &ConversionFn, 0, 0, 2854 Conversion->getConversionType().getNonReferenceType(), 2855 From->getLocStart()); 2856 ImplicitConversionSequence ICS = 2857 TryCopyInitialization(&Call, ToType, 2858 /*SuppressUserConversions=*/true, 2859 /*ForceRValue=*/false, 2860 /*InOverloadResolution=*/false); 2861 2862 switch (ICS.getKind()) { 2863 case ImplicitConversionSequence::StandardConversion: 2864 Candidate.FinalConversion = ICS.Standard; 2865 break; 2866 2867 case ImplicitConversionSequence::BadConversion: 2868 Candidate.Viable = false; 2869 Candidate.FailureKind = ovl_fail_bad_final_conversion; 2870 break; 2871 2872 default: 2873 assert(false && 2874 "Can only end up with a standard conversion sequence or failure"); 2875 } 2876} 2877 2878/// \brief Adds a conversion function template specialization 2879/// candidate to the overload set, using template argument deduction 2880/// to deduce the template arguments of the conversion function 2881/// template from the type that we are converting to (C++ 2882/// [temp.deduct.conv]). 2883void 2884Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2885 AccessSpecifier Access, 2886 CXXRecordDecl *ActingDC, 2887 Expr *From, QualType ToType, 2888 OverloadCandidateSet &CandidateSet) { 2889 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2890 "Only conversion function templates permitted here"); 2891 2892 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2893 return; 2894 2895 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 2896 CXXConversionDecl *Specialization = 0; 2897 if (TemplateDeductionResult Result 2898 = DeduceTemplateArguments(FunctionTemplate, ToType, 2899 Specialization, Info)) { 2900 // FIXME: Record what happened with template argument deduction, so 2901 // that we can give the user a beautiful diagnostic. 2902 (void)Result; 2903 return; 2904 } 2905 2906 // Add the conversion function template specialization produced by 2907 // template argument deduction as a candidate. 2908 assert(Specialization && "Missing function template specialization?"); 2909 AddConversionCandidate(Specialization, Access, ActingDC, From, ToType, 2910 CandidateSet); 2911} 2912 2913/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2914/// converts the given @c Object to a function pointer via the 2915/// conversion function @c Conversion, and then attempts to call it 2916/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2917/// the type of function that we'll eventually be calling. 2918void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2919 AccessSpecifier Access, 2920 CXXRecordDecl *ActingContext, 2921 const FunctionProtoType *Proto, 2922 QualType ObjectType, 2923 Expr **Args, unsigned NumArgs, 2924 OverloadCandidateSet& CandidateSet) { 2925 if (!CandidateSet.isNewCandidate(Conversion)) 2926 return; 2927 2928 // Overload resolution is always an unevaluated context. 2929 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2930 2931 CandidateSet.push_back(OverloadCandidate()); 2932 OverloadCandidate& Candidate = CandidateSet.back(); 2933 Candidate.Function = 0; 2934 Candidate.Access = Access; 2935 Candidate.Surrogate = Conversion; 2936 Candidate.Viable = true; 2937 Candidate.IsSurrogate = true; 2938 Candidate.IgnoreObjectArgument = false; 2939 Candidate.Conversions.resize(NumArgs + 1); 2940 2941 // Determine the implicit conversion sequence for the implicit 2942 // object parameter. 2943 ImplicitConversionSequence ObjectInit 2944 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 2945 if (ObjectInit.isBad()) { 2946 Candidate.Viable = false; 2947 Candidate.FailureKind = ovl_fail_bad_conversion; 2948 Candidate.Conversions[0] = ObjectInit; 2949 return; 2950 } 2951 2952 // The first conversion is actually a user-defined conversion whose 2953 // first conversion is ObjectInit's standard conversion (which is 2954 // effectively a reference binding). Record it as such. 2955 Candidate.Conversions[0].setUserDefined(); 2956 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2957 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2958 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2959 Candidate.Conversions[0].UserDefined.After 2960 = Candidate.Conversions[0].UserDefined.Before; 2961 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2962 2963 // Find the 2964 unsigned NumArgsInProto = Proto->getNumArgs(); 2965 2966 // (C++ 13.3.2p2): A candidate function having fewer than m 2967 // parameters is viable only if it has an ellipsis in its parameter 2968 // list (8.3.5). 2969 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2970 Candidate.Viable = false; 2971 Candidate.FailureKind = ovl_fail_too_many_arguments; 2972 return; 2973 } 2974 2975 // Function types don't have any default arguments, so just check if 2976 // we have enough arguments. 2977 if (NumArgs < NumArgsInProto) { 2978 // Not enough arguments. 2979 Candidate.Viable = false; 2980 Candidate.FailureKind = ovl_fail_too_few_arguments; 2981 return; 2982 } 2983 2984 // Determine the implicit conversion sequences for each of the 2985 // arguments. 2986 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2987 if (ArgIdx < NumArgsInProto) { 2988 // (C++ 13.3.2p3): for F to be a viable function, there shall 2989 // exist for each argument an implicit conversion sequence 2990 // (13.3.3.1) that converts that argument to the corresponding 2991 // parameter of F. 2992 QualType ParamType = Proto->getArgType(ArgIdx); 2993 Candidate.Conversions[ArgIdx + 1] 2994 = TryCopyInitialization(Args[ArgIdx], ParamType, 2995 /*SuppressUserConversions=*/false, 2996 /*ForceRValue=*/false, 2997 /*InOverloadResolution=*/false); 2998 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 2999 Candidate.Viable = false; 3000 Candidate.FailureKind = ovl_fail_bad_conversion; 3001 break; 3002 } 3003 } else { 3004 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3005 // argument for which there is no corresponding parameter is 3006 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3007 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3008 } 3009 } 3010} 3011 3012// FIXME: This will eventually be removed, once we've migrated all of the 3013// operator overloading logic over to the scheme used by binary operators, which 3014// works for template instantiation. 3015void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 3016 SourceLocation OpLoc, 3017 Expr **Args, unsigned NumArgs, 3018 OverloadCandidateSet& CandidateSet, 3019 SourceRange OpRange) { 3020 UnresolvedSet<16> Fns; 3021 3022 QualType T1 = Args[0]->getType(); 3023 QualType T2; 3024 if (NumArgs > 1) 3025 T2 = Args[1]->getType(); 3026 3027 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3028 if (S) 3029 LookupOverloadedOperatorName(Op, S, T1, T2, Fns); 3030 AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false); 3031 AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0, 3032 CandidateSet); 3033 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 3034 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 3035} 3036 3037/// \brief Add overload candidates for overloaded operators that are 3038/// member functions. 3039/// 3040/// Add the overloaded operator candidates that are member functions 3041/// for the operator Op that was used in an operator expression such 3042/// as "x Op y". , Args/NumArgs provides the operator arguments, and 3043/// CandidateSet will store the added overload candidates. (C++ 3044/// [over.match.oper]). 3045void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 3046 SourceLocation OpLoc, 3047 Expr **Args, unsigned NumArgs, 3048 OverloadCandidateSet& CandidateSet, 3049 SourceRange OpRange) { 3050 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3051 3052 // C++ [over.match.oper]p3: 3053 // For a unary operator @ with an operand of a type whose 3054 // cv-unqualified version is T1, and for a binary operator @ with 3055 // a left operand of a type whose cv-unqualified version is T1 and 3056 // a right operand of a type whose cv-unqualified version is T2, 3057 // three sets of candidate functions, designated member 3058 // candidates, non-member candidates and built-in candidates, are 3059 // constructed as follows: 3060 QualType T1 = Args[0]->getType(); 3061 QualType T2; 3062 if (NumArgs > 1) 3063 T2 = Args[1]->getType(); 3064 3065 // -- If T1 is a class type, the set of member candidates is the 3066 // result of the qualified lookup of T1::operator@ 3067 // (13.3.1.1.1); otherwise, the set of member candidates is 3068 // empty. 3069 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3070 // Complete the type if it can be completed. Otherwise, we're done. 3071 if (RequireCompleteType(OpLoc, T1, PDiag())) 3072 return; 3073 3074 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3075 LookupQualifiedName(Operators, T1Rec->getDecl()); 3076 Operators.suppressDiagnostics(); 3077 3078 for (LookupResult::iterator Oper = Operators.begin(), 3079 OperEnd = Operators.end(); 3080 Oper != OperEnd; 3081 ++Oper) 3082 AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(), 3083 Args + 1, NumArgs - 1, CandidateSet, 3084 /* SuppressUserConversions = */ false); 3085 } 3086} 3087 3088/// AddBuiltinCandidate - Add a candidate for a built-in 3089/// operator. ResultTy and ParamTys are the result and parameter types 3090/// of the built-in candidate, respectively. Args and NumArgs are the 3091/// arguments being passed to the candidate. IsAssignmentOperator 3092/// should be true when this built-in candidate is an assignment 3093/// operator. NumContextualBoolArguments is the number of arguments 3094/// (at the beginning of the argument list) that will be contextually 3095/// converted to bool. 3096void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3097 Expr **Args, unsigned NumArgs, 3098 OverloadCandidateSet& CandidateSet, 3099 bool IsAssignmentOperator, 3100 unsigned NumContextualBoolArguments) { 3101 // Overload resolution is always an unevaluated context. 3102 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3103 3104 // Add this candidate 3105 CandidateSet.push_back(OverloadCandidate()); 3106 OverloadCandidate& Candidate = CandidateSet.back(); 3107 Candidate.Function = 0; 3108 Candidate.Access = AS_none; 3109 Candidate.IsSurrogate = false; 3110 Candidate.IgnoreObjectArgument = false; 3111 Candidate.BuiltinTypes.ResultTy = ResultTy; 3112 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3113 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3114 3115 // Determine the implicit conversion sequences for each of the 3116 // arguments. 3117 Candidate.Viable = true; 3118 Candidate.Conversions.resize(NumArgs); 3119 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3120 // C++ [over.match.oper]p4: 3121 // For the built-in assignment operators, conversions of the 3122 // left operand are restricted as follows: 3123 // -- no temporaries are introduced to hold the left operand, and 3124 // -- no user-defined conversions are applied to the left 3125 // operand to achieve a type match with the left-most 3126 // parameter of a built-in candidate. 3127 // 3128 // We block these conversions by turning off user-defined 3129 // conversions, since that is the only way that initialization of 3130 // a reference to a non-class type can occur from something that 3131 // is not of the same type. 3132 if (ArgIdx < NumContextualBoolArguments) { 3133 assert(ParamTys[ArgIdx] == Context.BoolTy && 3134 "Contextual conversion to bool requires bool type"); 3135 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 3136 } else { 3137 Candidate.Conversions[ArgIdx] 3138 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 3139 ArgIdx == 0 && IsAssignmentOperator, 3140 /*ForceRValue=*/false, 3141 /*InOverloadResolution=*/false); 3142 } 3143 if (Candidate.Conversions[ArgIdx].isBad()) { 3144 Candidate.Viable = false; 3145 Candidate.FailureKind = ovl_fail_bad_conversion; 3146 break; 3147 } 3148 } 3149} 3150 3151/// BuiltinCandidateTypeSet - A set of types that will be used for the 3152/// candidate operator functions for built-in operators (C++ 3153/// [over.built]). The types are separated into pointer types and 3154/// enumeration types. 3155class BuiltinCandidateTypeSet { 3156 /// TypeSet - A set of types. 3157 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3158 3159 /// PointerTypes - The set of pointer types that will be used in the 3160 /// built-in candidates. 3161 TypeSet PointerTypes; 3162 3163 /// MemberPointerTypes - The set of member pointer types that will be 3164 /// used in the built-in candidates. 3165 TypeSet MemberPointerTypes; 3166 3167 /// EnumerationTypes - The set of enumeration types that will be 3168 /// used in the built-in candidates. 3169 TypeSet EnumerationTypes; 3170 3171 /// Sema - The semantic analysis instance where we are building the 3172 /// candidate type set. 3173 Sema &SemaRef; 3174 3175 /// Context - The AST context in which we will build the type sets. 3176 ASTContext &Context; 3177 3178 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3179 const Qualifiers &VisibleQuals); 3180 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3181 3182public: 3183 /// iterator - Iterates through the types that are part of the set. 3184 typedef TypeSet::iterator iterator; 3185 3186 BuiltinCandidateTypeSet(Sema &SemaRef) 3187 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3188 3189 void AddTypesConvertedFrom(QualType Ty, 3190 SourceLocation Loc, 3191 bool AllowUserConversions, 3192 bool AllowExplicitConversions, 3193 const Qualifiers &VisibleTypeConversionsQuals); 3194 3195 /// pointer_begin - First pointer type found; 3196 iterator pointer_begin() { return PointerTypes.begin(); } 3197 3198 /// pointer_end - Past the last pointer type found; 3199 iterator pointer_end() { return PointerTypes.end(); } 3200 3201 /// member_pointer_begin - First member pointer type found; 3202 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3203 3204 /// member_pointer_end - Past the last member pointer type found; 3205 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3206 3207 /// enumeration_begin - First enumeration type found; 3208 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3209 3210 /// enumeration_end - Past the last enumeration type found; 3211 iterator enumeration_end() { return EnumerationTypes.end(); } 3212}; 3213 3214/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3215/// the set of pointer types along with any more-qualified variants of 3216/// that type. For example, if @p Ty is "int const *", this routine 3217/// will add "int const *", "int const volatile *", "int const 3218/// restrict *", and "int const volatile restrict *" to the set of 3219/// pointer types. Returns true if the add of @p Ty itself succeeded, 3220/// false otherwise. 3221/// 3222/// FIXME: what to do about extended qualifiers? 3223bool 3224BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3225 const Qualifiers &VisibleQuals) { 3226 3227 // Insert this type. 3228 if (!PointerTypes.insert(Ty)) 3229 return false; 3230 3231 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3232 assert(PointerTy && "type was not a pointer type!"); 3233 3234 QualType PointeeTy = PointerTy->getPointeeType(); 3235 // Don't add qualified variants of arrays. For one, they're not allowed 3236 // (the qualifier would sink to the element type), and for another, the 3237 // only overload situation where it matters is subscript or pointer +- int, 3238 // and those shouldn't have qualifier variants anyway. 3239 if (PointeeTy->isArrayType()) 3240 return true; 3241 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3242 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3243 BaseCVR = Array->getElementType().getCVRQualifiers(); 3244 bool hasVolatile = VisibleQuals.hasVolatile(); 3245 bool hasRestrict = VisibleQuals.hasRestrict(); 3246 3247 // Iterate through all strict supersets of BaseCVR. 3248 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3249 if ((CVR | BaseCVR) != CVR) continue; 3250 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3251 // in the types. 3252 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3253 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3254 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3255 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3256 } 3257 3258 return true; 3259} 3260 3261/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3262/// to the set of pointer types along with any more-qualified variants of 3263/// that type. For example, if @p Ty is "int const *", this routine 3264/// will add "int const *", "int const volatile *", "int const 3265/// restrict *", and "int const volatile restrict *" to the set of 3266/// pointer types. Returns true if the add of @p Ty itself succeeded, 3267/// false otherwise. 3268/// 3269/// FIXME: what to do about extended qualifiers? 3270bool 3271BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3272 QualType Ty) { 3273 // Insert this type. 3274 if (!MemberPointerTypes.insert(Ty)) 3275 return false; 3276 3277 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3278 assert(PointerTy && "type was not a member pointer type!"); 3279 3280 QualType PointeeTy = PointerTy->getPointeeType(); 3281 // Don't add qualified variants of arrays. For one, they're not allowed 3282 // (the qualifier would sink to the element type), and for another, the 3283 // only overload situation where it matters is subscript or pointer +- int, 3284 // and those shouldn't have qualifier variants anyway. 3285 if (PointeeTy->isArrayType()) 3286 return true; 3287 const Type *ClassTy = PointerTy->getClass(); 3288 3289 // Iterate through all strict supersets of the pointee type's CVR 3290 // qualifiers. 3291 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3292 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3293 if ((CVR | BaseCVR) != CVR) continue; 3294 3295 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3296 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3297 } 3298 3299 return true; 3300} 3301 3302/// AddTypesConvertedFrom - Add each of the types to which the type @p 3303/// Ty can be implicit converted to the given set of @p Types. We're 3304/// primarily interested in pointer types and enumeration types. We also 3305/// take member pointer types, for the conditional operator. 3306/// AllowUserConversions is true if we should look at the conversion 3307/// functions of a class type, and AllowExplicitConversions if we 3308/// should also include the explicit conversion functions of a class 3309/// type. 3310void 3311BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3312 SourceLocation Loc, 3313 bool AllowUserConversions, 3314 bool AllowExplicitConversions, 3315 const Qualifiers &VisibleQuals) { 3316 // Only deal with canonical types. 3317 Ty = Context.getCanonicalType(Ty); 3318 3319 // Look through reference types; they aren't part of the type of an 3320 // expression for the purposes of conversions. 3321 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3322 Ty = RefTy->getPointeeType(); 3323 3324 // We don't care about qualifiers on the type. 3325 Ty = Ty.getLocalUnqualifiedType(); 3326 3327 // If we're dealing with an array type, decay to the pointer. 3328 if (Ty->isArrayType()) 3329 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3330 3331 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3332 QualType PointeeTy = PointerTy->getPointeeType(); 3333 3334 // Insert our type, and its more-qualified variants, into the set 3335 // of types. 3336 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3337 return; 3338 } else if (Ty->isMemberPointerType()) { 3339 // Member pointers are far easier, since the pointee can't be converted. 3340 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3341 return; 3342 } else if (Ty->isEnumeralType()) { 3343 EnumerationTypes.insert(Ty); 3344 } else if (AllowUserConversions) { 3345 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3346 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3347 // No conversion functions in incomplete types. 3348 return; 3349 } 3350 3351 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3352 const UnresolvedSetImpl *Conversions 3353 = ClassDecl->getVisibleConversionFunctions(); 3354 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3355 E = Conversions->end(); I != E; ++I) { 3356 3357 // Skip conversion function templates; they don't tell us anything 3358 // about which builtin types we can convert to. 3359 if (isa<FunctionTemplateDecl>(*I)) 3360 continue; 3361 3362 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); 3363 if (AllowExplicitConversions || !Conv->isExplicit()) { 3364 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3365 VisibleQuals); 3366 } 3367 } 3368 } 3369 } 3370} 3371 3372/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3373/// the volatile- and non-volatile-qualified assignment operators for the 3374/// given type to the candidate set. 3375static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3376 QualType T, 3377 Expr **Args, 3378 unsigned NumArgs, 3379 OverloadCandidateSet &CandidateSet) { 3380 QualType ParamTypes[2]; 3381 3382 // T& operator=(T&, T) 3383 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3384 ParamTypes[1] = T; 3385 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3386 /*IsAssignmentOperator=*/true); 3387 3388 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3389 // volatile T& operator=(volatile T&, T) 3390 ParamTypes[0] 3391 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3392 ParamTypes[1] = T; 3393 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3394 /*IsAssignmentOperator=*/true); 3395 } 3396} 3397 3398/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3399/// if any, found in visible type conversion functions found in ArgExpr's type. 3400static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3401 Qualifiers VRQuals; 3402 const RecordType *TyRec; 3403 if (const MemberPointerType *RHSMPType = 3404 ArgExpr->getType()->getAs<MemberPointerType>()) 3405 TyRec = cast<RecordType>(RHSMPType->getClass()); 3406 else 3407 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3408 if (!TyRec) { 3409 // Just to be safe, assume the worst case. 3410 VRQuals.addVolatile(); 3411 VRQuals.addRestrict(); 3412 return VRQuals; 3413 } 3414 3415 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3416 if (!ClassDecl->hasDefinition()) 3417 return VRQuals; 3418 3419 const UnresolvedSetImpl *Conversions = 3420 ClassDecl->getVisibleConversionFunctions(); 3421 3422 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3423 E = Conversions->end(); I != E; ++I) { 3424 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) { 3425 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3426 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3427 CanTy = ResTypeRef->getPointeeType(); 3428 // Need to go down the pointer/mempointer chain and add qualifiers 3429 // as see them. 3430 bool done = false; 3431 while (!done) { 3432 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3433 CanTy = ResTypePtr->getPointeeType(); 3434 else if (const MemberPointerType *ResTypeMPtr = 3435 CanTy->getAs<MemberPointerType>()) 3436 CanTy = ResTypeMPtr->getPointeeType(); 3437 else 3438 done = true; 3439 if (CanTy.isVolatileQualified()) 3440 VRQuals.addVolatile(); 3441 if (CanTy.isRestrictQualified()) 3442 VRQuals.addRestrict(); 3443 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3444 return VRQuals; 3445 } 3446 } 3447 } 3448 return VRQuals; 3449} 3450 3451/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3452/// operator overloads to the candidate set (C++ [over.built]), based 3453/// on the operator @p Op and the arguments given. For example, if the 3454/// operator is a binary '+', this routine might add "int 3455/// operator+(int, int)" to cover integer addition. 3456void 3457Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3458 SourceLocation OpLoc, 3459 Expr **Args, unsigned NumArgs, 3460 OverloadCandidateSet& CandidateSet) { 3461 // The set of "promoted arithmetic types", which are the arithmetic 3462 // types are that preserved by promotion (C++ [over.built]p2). Note 3463 // that the first few of these types are the promoted integral 3464 // types; these types need to be first. 3465 // FIXME: What about complex? 3466 const unsigned FirstIntegralType = 0; 3467 const unsigned LastIntegralType = 13; 3468 const unsigned FirstPromotedIntegralType = 7, 3469 LastPromotedIntegralType = 13; 3470 const unsigned FirstPromotedArithmeticType = 7, 3471 LastPromotedArithmeticType = 16; 3472 const unsigned NumArithmeticTypes = 16; 3473 QualType ArithmeticTypes[NumArithmeticTypes] = { 3474 Context.BoolTy, Context.CharTy, Context.WCharTy, 3475// FIXME: Context.Char16Ty, Context.Char32Ty, 3476 Context.SignedCharTy, Context.ShortTy, 3477 Context.UnsignedCharTy, Context.UnsignedShortTy, 3478 Context.IntTy, Context.LongTy, Context.LongLongTy, 3479 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3480 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3481 }; 3482 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3483 "Invalid first promoted integral type"); 3484 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3485 == Context.UnsignedLongLongTy && 3486 "Invalid last promoted integral type"); 3487 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3488 "Invalid first promoted arithmetic type"); 3489 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3490 == Context.LongDoubleTy && 3491 "Invalid last promoted arithmetic type"); 3492 3493 // Find all of the types that the arguments can convert to, but only 3494 // if the operator we're looking at has built-in operator candidates 3495 // that make use of these types. 3496 Qualifiers VisibleTypeConversionsQuals; 3497 VisibleTypeConversionsQuals.addConst(); 3498 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3499 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3500 3501 BuiltinCandidateTypeSet CandidateTypes(*this); 3502 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3503 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3504 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3505 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3506 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3507 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3508 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3509 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3510 OpLoc, 3511 true, 3512 (Op == OO_Exclaim || 3513 Op == OO_AmpAmp || 3514 Op == OO_PipePipe), 3515 VisibleTypeConversionsQuals); 3516 } 3517 3518 bool isComparison = false; 3519 switch (Op) { 3520 case OO_None: 3521 case NUM_OVERLOADED_OPERATORS: 3522 assert(false && "Expected an overloaded operator"); 3523 break; 3524 3525 case OO_Star: // '*' is either unary or binary 3526 if (NumArgs == 1) 3527 goto UnaryStar; 3528 else 3529 goto BinaryStar; 3530 break; 3531 3532 case OO_Plus: // '+' is either unary or binary 3533 if (NumArgs == 1) 3534 goto UnaryPlus; 3535 else 3536 goto BinaryPlus; 3537 break; 3538 3539 case OO_Minus: // '-' is either unary or binary 3540 if (NumArgs == 1) 3541 goto UnaryMinus; 3542 else 3543 goto BinaryMinus; 3544 break; 3545 3546 case OO_Amp: // '&' is either unary or binary 3547 if (NumArgs == 1) 3548 goto UnaryAmp; 3549 else 3550 goto BinaryAmp; 3551 3552 case OO_PlusPlus: 3553 case OO_MinusMinus: 3554 // C++ [over.built]p3: 3555 // 3556 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3557 // is either volatile or empty, there exist candidate operator 3558 // functions of the form 3559 // 3560 // VQ T& operator++(VQ T&); 3561 // T operator++(VQ T&, int); 3562 // 3563 // C++ [over.built]p4: 3564 // 3565 // For every pair (T, VQ), where T is an arithmetic type other 3566 // than bool, and VQ is either volatile or empty, there exist 3567 // candidate operator functions of the form 3568 // 3569 // VQ T& operator--(VQ T&); 3570 // T operator--(VQ T&, int); 3571 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3572 Arith < NumArithmeticTypes; ++Arith) { 3573 QualType ArithTy = ArithmeticTypes[Arith]; 3574 QualType ParamTypes[2] 3575 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3576 3577 // Non-volatile version. 3578 if (NumArgs == 1) 3579 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3580 else 3581 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3582 // heuristic to reduce number of builtin candidates in the set. 3583 // Add volatile version only if there are conversions to a volatile type. 3584 if (VisibleTypeConversionsQuals.hasVolatile()) { 3585 // Volatile version 3586 ParamTypes[0] 3587 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3588 if (NumArgs == 1) 3589 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3590 else 3591 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3592 } 3593 } 3594 3595 // C++ [over.built]p5: 3596 // 3597 // For every pair (T, VQ), where T is a cv-qualified or 3598 // cv-unqualified object type, and VQ is either volatile or 3599 // empty, there exist candidate operator functions of the form 3600 // 3601 // T*VQ& operator++(T*VQ&); 3602 // T*VQ& operator--(T*VQ&); 3603 // T* operator++(T*VQ&, int); 3604 // T* operator--(T*VQ&, int); 3605 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3606 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3607 // Skip pointer types that aren't pointers to object types. 3608 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3609 continue; 3610 3611 QualType ParamTypes[2] = { 3612 Context.getLValueReferenceType(*Ptr), Context.IntTy 3613 }; 3614 3615 // Without volatile 3616 if (NumArgs == 1) 3617 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3618 else 3619 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3620 3621 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3622 VisibleTypeConversionsQuals.hasVolatile()) { 3623 // With volatile 3624 ParamTypes[0] 3625 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3626 if (NumArgs == 1) 3627 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3628 else 3629 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3630 } 3631 } 3632 break; 3633 3634 UnaryStar: 3635 // C++ [over.built]p6: 3636 // For every cv-qualified or cv-unqualified object type T, there 3637 // exist candidate operator functions of the form 3638 // 3639 // T& operator*(T*); 3640 // 3641 // C++ [over.built]p7: 3642 // For every function type T, there exist candidate operator 3643 // functions of the form 3644 // T& operator*(T*); 3645 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3646 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3647 QualType ParamTy = *Ptr; 3648 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3649 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3650 &ParamTy, Args, 1, CandidateSet); 3651 } 3652 break; 3653 3654 UnaryPlus: 3655 // C++ [over.built]p8: 3656 // For every type T, there exist candidate operator functions of 3657 // the form 3658 // 3659 // T* operator+(T*); 3660 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3661 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3662 QualType ParamTy = *Ptr; 3663 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3664 } 3665 3666 // Fall through 3667 3668 UnaryMinus: 3669 // C++ [over.built]p9: 3670 // For every promoted arithmetic type T, there exist candidate 3671 // operator functions of the form 3672 // 3673 // T operator+(T); 3674 // T operator-(T); 3675 for (unsigned Arith = FirstPromotedArithmeticType; 3676 Arith < LastPromotedArithmeticType; ++Arith) { 3677 QualType ArithTy = ArithmeticTypes[Arith]; 3678 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3679 } 3680 break; 3681 3682 case OO_Tilde: 3683 // C++ [over.built]p10: 3684 // For every promoted integral type T, there exist candidate 3685 // operator functions of the form 3686 // 3687 // T operator~(T); 3688 for (unsigned Int = FirstPromotedIntegralType; 3689 Int < LastPromotedIntegralType; ++Int) { 3690 QualType IntTy = ArithmeticTypes[Int]; 3691 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3692 } 3693 break; 3694 3695 case OO_New: 3696 case OO_Delete: 3697 case OO_Array_New: 3698 case OO_Array_Delete: 3699 case OO_Call: 3700 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3701 break; 3702 3703 case OO_Comma: 3704 UnaryAmp: 3705 case OO_Arrow: 3706 // C++ [over.match.oper]p3: 3707 // -- For the operator ',', the unary operator '&', or the 3708 // operator '->', the built-in candidates set is empty. 3709 break; 3710 3711 case OO_EqualEqual: 3712 case OO_ExclaimEqual: 3713 // C++ [over.match.oper]p16: 3714 // For every pointer to member type T, there exist candidate operator 3715 // functions of the form 3716 // 3717 // bool operator==(T,T); 3718 // bool operator!=(T,T); 3719 for (BuiltinCandidateTypeSet::iterator 3720 MemPtr = CandidateTypes.member_pointer_begin(), 3721 MemPtrEnd = CandidateTypes.member_pointer_end(); 3722 MemPtr != MemPtrEnd; 3723 ++MemPtr) { 3724 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3725 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3726 } 3727 3728 // Fall through 3729 3730 case OO_Less: 3731 case OO_Greater: 3732 case OO_LessEqual: 3733 case OO_GreaterEqual: 3734 // C++ [over.built]p15: 3735 // 3736 // For every pointer or enumeration type T, there exist 3737 // candidate operator functions of the form 3738 // 3739 // bool operator<(T, T); 3740 // bool operator>(T, T); 3741 // bool operator<=(T, T); 3742 // bool operator>=(T, T); 3743 // bool operator==(T, T); 3744 // bool operator!=(T, T); 3745 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3746 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3747 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3748 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3749 } 3750 for (BuiltinCandidateTypeSet::iterator Enum 3751 = CandidateTypes.enumeration_begin(); 3752 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3753 QualType ParamTypes[2] = { *Enum, *Enum }; 3754 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3755 } 3756 3757 // Fall through. 3758 isComparison = true; 3759 3760 BinaryPlus: 3761 BinaryMinus: 3762 if (!isComparison) { 3763 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3764 3765 // C++ [over.built]p13: 3766 // 3767 // For every cv-qualified or cv-unqualified object type T 3768 // there exist candidate operator functions of the form 3769 // 3770 // T* operator+(T*, ptrdiff_t); 3771 // T& operator[](T*, ptrdiff_t); [BELOW] 3772 // T* operator-(T*, ptrdiff_t); 3773 // T* operator+(ptrdiff_t, T*); 3774 // T& operator[](ptrdiff_t, T*); [BELOW] 3775 // 3776 // C++ [over.built]p14: 3777 // 3778 // For every T, where T is a pointer to object type, there 3779 // exist candidate operator functions of the form 3780 // 3781 // ptrdiff_t operator-(T, T); 3782 for (BuiltinCandidateTypeSet::iterator Ptr 3783 = CandidateTypes.pointer_begin(); 3784 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3785 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3786 3787 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3788 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3789 3790 if (Op == OO_Plus) { 3791 // T* operator+(ptrdiff_t, T*); 3792 ParamTypes[0] = ParamTypes[1]; 3793 ParamTypes[1] = *Ptr; 3794 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3795 } else { 3796 // ptrdiff_t operator-(T, T); 3797 ParamTypes[1] = *Ptr; 3798 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3799 Args, 2, CandidateSet); 3800 } 3801 } 3802 } 3803 // Fall through 3804 3805 case OO_Slash: 3806 BinaryStar: 3807 Conditional: 3808 // C++ [over.built]p12: 3809 // 3810 // For every pair of promoted arithmetic types L and R, there 3811 // exist candidate operator functions of the form 3812 // 3813 // LR operator*(L, R); 3814 // LR operator/(L, R); 3815 // LR operator+(L, R); 3816 // LR operator-(L, R); 3817 // bool operator<(L, R); 3818 // bool operator>(L, R); 3819 // bool operator<=(L, R); 3820 // bool operator>=(L, R); 3821 // bool operator==(L, R); 3822 // bool operator!=(L, R); 3823 // 3824 // where LR is the result of the usual arithmetic conversions 3825 // between types L and R. 3826 // 3827 // C++ [over.built]p24: 3828 // 3829 // For every pair of promoted arithmetic types L and R, there exist 3830 // candidate operator functions of the form 3831 // 3832 // LR operator?(bool, L, R); 3833 // 3834 // where LR is the result of the usual arithmetic conversions 3835 // between types L and R. 3836 // Our candidates ignore the first parameter. 3837 for (unsigned Left = FirstPromotedArithmeticType; 3838 Left < LastPromotedArithmeticType; ++Left) { 3839 for (unsigned Right = FirstPromotedArithmeticType; 3840 Right < LastPromotedArithmeticType; ++Right) { 3841 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3842 QualType Result 3843 = isComparison 3844 ? Context.BoolTy 3845 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3846 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3847 } 3848 } 3849 break; 3850 3851 case OO_Percent: 3852 BinaryAmp: 3853 case OO_Caret: 3854 case OO_Pipe: 3855 case OO_LessLess: 3856 case OO_GreaterGreater: 3857 // C++ [over.built]p17: 3858 // 3859 // For every pair of promoted integral types L and R, there 3860 // exist candidate operator functions of the form 3861 // 3862 // LR operator%(L, R); 3863 // LR operator&(L, R); 3864 // LR operator^(L, R); 3865 // LR operator|(L, R); 3866 // L operator<<(L, R); 3867 // L operator>>(L, R); 3868 // 3869 // where LR is the result of the usual arithmetic conversions 3870 // between types L and R. 3871 for (unsigned Left = FirstPromotedIntegralType; 3872 Left < LastPromotedIntegralType; ++Left) { 3873 for (unsigned Right = FirstPromotedIntegralType; 3874 Right < LastPromotedIntegralType; ++Right) { 3875 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3876 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3877 ? LandR[0] 3878 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3879 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3880 } 3881 } 3882 break; 3883 3884 case OO_Equal: 3885 // C++ [over.built]p20: 3886 // 3887 // For every pair (T, VQ), where T is an enumeration or 3888 // pointer to member type and VQ is either volatile or 3889 // empty, there exist candidate operator functions of the form 3890 // 3891 // VQ T& operator=(VQ T&, T); 3892 for (BuiltinCandidateTypeSet::iterator 3893 Enum = CandidateTypes.enumeration_begin(), 3894 EnumEnd = CandidateTypes.enumeration_end(); 3895 Enum != EnumEnd; ++Enum) 3896 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3897 CandidateSet); 3898 for (BuiltinCandidateTypeSet::iterator 3899 MemPtr = CandidateTypes.member_pointer_begin(), 3900 MemPtrEnd = CandidateTypes.member_pointer_end(); 3901 MemPtr != MemPtrEnd; ++MemPtr) 3902 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3903 CandidateSet); 3904 // Fall through. 3905 3906 case OO_PlusEqual: 3907 case OO_MinusEqual: 3908 // C++ [over.built]p19: 3909 // 3910 // For every pair (T, VQ), where T is any type and VQ is either 3911 // volatile or empty, there exist candidate operator functions 3912 // of the form 3913 // 3914 // T*VQ& operator=(T*VQ&, T*); 3915 // 3916 // C++ [over.built]p21: 3917 // 3918 // For every pair (T, VQ), where T is a cv-qualified or 3919 // cv-unqualified object type and VQ is either volatile or 3920 // empty, there exist candidate operator functions of the form 3921 // 3922 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3923 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3924 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3925 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3926 QualType ParamTypes[2]; 3927 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3928 3929 // non-volatile version 3930 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3931 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3932 /*IsAssigmentOperator=*/Op == OO_Equal); 3933 3934 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3935 VisibleTypeConversionsQuals.hasVolatile()) { 3936 // volatile version 3937 ParamTypes[0] 3938 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3939 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3940 /*IsAssigmentOperator=*/Op == OO_Equal); 3941 } 3942 } 3943 // Fall through. 3944 3945 case OO_StarEqual: 3946 case OO_SlashEqual: 3947 // C++ [over.built]p18: 3948 // 3949 // For every triple (L, VQ, R), where L is an arithmetic type, 3950 // VQ is either volatile or empty, and R is a promoted 3951 // arithmetic type, there exist candidate operator functions of 3952 // the form 3953 // 3954 // VQ L& operator=(VQ L&, R); 3955 // VQ L& operator*=(VQ L&, R); 3956 // VQ L& operator/=(VQ L&, R); 3957 // VQ L& operator+=(VQ L&, R); 3958 // VQ L& operator-=(VQ L&, R); 3959 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3960 for (unsigned Right = FirstPromotedArithmeticType; 3961 Right < LastPromotedArithmeticType; ++Right) { 3962 QualType ParamTypes[2]; 3963 ParamTypes[1] = ArithmeticTypes[Right]; 3964 3965 // Add this built-in operator as a candidate (VQ is empty). 3966 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3967 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3968 /*IsAssigmentOperator=*/Op == OO_Equal); 3969 3970 // Add this built-in operator as a candidate (VQ is 'volatile'). 3971 if (VisibleTypeConversionsQuals.hasVolatile()) { 3972 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3973 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3974 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3975 /*IsAssigmentOperator=*/Op == OO_Equal); 3976 } 3977 } 3978 } 3979 break; 3980 3981 case OO_PercentEqual: 3982 case OO_LessLessEqual: 3983 case OO_GreaterGreaterEqual: 3984 case OO_AmpEqual: 3985 case OO_CaretEqual: 3986 case OO_PipeEqual: 3987 // C++ [over.built]p22: 3988 // 3989 // For every triple (L, VQ, R), where L is an integral type, VQ 3990 // is either volatile or empty, and R is a promoted integral 3991 // type, there exist candidate operator functions of the form 3992 // 3993 // VQ L& operator%=(VQ L&, R); 3994 // VQ L& operator<<=(VQ L&, R); 3995 // VQ L& operator>>=(VQ L&, R); 3996 // VQ L& operator&=(VQ L&, R); 3997 // VQ L& operator^=(VQ L&, R); 3998 // VQ L& operator|=(VQ L&, R); 3999 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 4000 for (unsigned Right = FirstPromotedIntegralType; 4001 Right < LastPromotedIntegralType; ++Right) { 4002 QualType ParamTypes[2]; 4003 ParamTypes[1] = ArithmeticTypes[Right]; 4004 4005 // Add this built-in operator as a candidate (VQ is empty). 4006 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4007 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4008 if (VisibleTypeConversionsQuals.hasVolatile()) { 4009 // Add this built-in operator as a candidate (VQ is 'volatile'). 4010 ParamTypes[0] = ArithmeticTypes[Left]; 4011 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 4012 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4013 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4014 } 4015 } 4016 } 4017 break; 4018 4019 case OO_Exclaim: { 4020 // C++ [over.operator]p23: 4021 // 4022 // There also exist candidate operator functions of the form 4023 // 4024 // bool operator!(bool); 4025 // bool operator&&(bool, bool); [BELOW] 4026 // bool operator||(bool, bool); [BELOW] 4027 QualType ParamTy = Context.BoolTy; 4028 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 4029 /*IsAssignmentOperator=*/false, 4030 /*NumContextualBoolArguments=*/1); 4031 break; 4032 } 4033 4034 case OO_AmpAmp: 4035 case OO_PipePipe: { 4036 // C++ [over.operator]p23: 4037 // 4038 // There also exist candidate operator functions of the form 4039 // 4040 // bool operator!(bool); [ABOVE] 4041 // bool operator&&(bool, bool); 4042 // bool operator||(bool, bool); 4043 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 4044 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 4045 /*IsAssignmentOperator=*/false, 4046 /*NumContextualBoolArguments=*/2); 4047 break; 4048 } 4049 4050 case OO_Subscript: 4051 // C++ [over.built]p13: 4052 // 4053 // For every cv-qualified or cv-unqualified object type T there 4054 // exist candidate operator functions of the form 4055 // 4056 // T* operator+(T*, ptrdiff_t); [ABOVE] 4057 // T& operator[](T*, ptrdiff_t); 4058 // T* operator-(T*, ptrdiff_t); [ABOVE] 4059 // T* operator+(ptrdiff_t, T*); [ABOVE] 4060 // T& operator[](ptrdiff_t, T*); 4061 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4062 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4063 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4064 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 4065 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 4066 4067 // T& operator[](T*, ptrdiff_t) 4068 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4069 4070 // T& operator[](ptrdiff_t, T*); 4071 ParamTypes[0] = ParamTypes[1]; 4072 ParamTypes[1] = *Ptr; 4073 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4074 } 4075 break; 4076 4077 case OO_ArrowStar: 4078 // C++ [over.built]p11: 4079 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 4080 // C1 is the same type as C2 or is a derived class of C2, T is an object 4081 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 4082 // there exist candidate operator functions of the form 4083 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 4084 // where CV12 is the union of CV1 and CV2. 4085 { 4086 for (BuiltinCandidateTypeSet::iterator Ptr = 4087 CandidateTypes.pointer_begin(); 4088 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4089 QualType C1Ty = (*Ptr); 4090 QualType C1; 4091 QualifierCollector Q1; 4092 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 4093 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 4094 if (!isa<RecordType>(C1)) 4095 continue; 4096 // heuristic to reduce number of builtin candidates in the set. 4097 // Add volatile/restrict version only if there are conversions to a 4098 // volatile/restrict type. 4099 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 4100 continue; 4101 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 4102 continue; 4103 } 4104 for (BuiltinCandidateTypeSet::iterator 4105 MemPtr = CandidateTypes.member_pointer_begin(), 4106 MemPtrEnd = CandidateTypes.member_pointer_end(); 4107 MemPtr != MemPtrEnd; ++MemPtr) { 4108 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 4109 QualType C2 = QualType(mptr->getClass(), 0); 4110 C2 = C2.getUnqualifiedType(); 4111 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 4112 break; 4113 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 4114 // build CV12 T& 4115 QualType T = mptr->getPointeeType(); 4116 if (!VisibleTypeConversionsQuals.hasVolatile() && 4117 T.isVolatileQualified()) 4118 continue; 4119 if (!VisibleTypeConversionsQuals.hasRestrict() && 4120 T.isRestrictQualified()) 4121 continue; 4122 T = Q1.apply(T); 4123 QualType ResultTy = Context.getLValueReferenceType(T); 4124 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4125 } 4126 } 4127 } 4128 break; 4129 4130 case OO_Conditional: 4131 // Note that we don't consider the first argument, since it has been 4132 // contextually converted to bool long ago. The candidates below are 4133 // therefore added as binary. 4134 // 4135 // C++ [over.built]p24: 4136 // For every type T, where T is a pointer or pointer-to-member type, 4137 // there exist candidate operator functions of the form 4138 // 4139 // T operator?(bool, T, T); 4140 // 4141 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 4142 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 4143 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4144 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4145 } 4146 for (BuiltinCandidateTypeSet::iterator Ptr = 4147 CandidateTypes.member_pointer_begin(), 4148 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4149 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4150 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4151 } 4152 goto Conditional; 4153 } 4154} 4155 4156/// \brief Add function candidates found via argument-dependent lookup 4157/// to the set of overloading candidates. 4158/// 4159/// This routine performs argument-dependent name lookup based on the 4160/// given function name (which may also be an operator name) and adds 4161/// all of the overload candidates found by ADL to the overload 4162/// candidate set (C++ [basic.lookup.argdep]). 4163void 4164Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4165 bool Operator, 4166 Expr **Args, unsigned NumArgs, 4167 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4168 OverloadCandidateSet& CandidateSet, 4169 bool PartialOverloading) { 4170 ADLResult Fns; 4171 4172 // FIXME: This approach for uniquing ADL results (and removing 4173 // redundant candidates from the set) relies on pointer-equality, 4174 // which means we need to key off the canonical decl. However, 4175 // always going back to the canonical decl might not get us the 4176 // right set of default arguments. What default arguments are 4177 // we supposed to consider on ADL candidates, anyway? 4178 4179 // FIXME: Pass in the explicit template arguments? 4180 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 4181 4182 // Erase all of the candidates we already knew about. 4183 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4184 CandEnd = CandidateSet.end(); 4185 Cand != CandEnd; ++Cand) 4186 if (Cand->Function) { 4187 Fns.erase(Cand->Function); 4188 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4189 Fns.erase(FunTmpl); 4190 } 4191 4192 // For each of the ADL candidates we found, add it to the overload 4193 // set. 4194 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 4195 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 4196 if (ExplicitTemplateArgs) 4197 continue; 4198 4199 AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet, 4200 false, false, PartialOverloading); 4201 } else 4202 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 4203 AS_none, ExplicitTemplateArgs, 4204 Args, NumArgs, CandidateSet); 4205 } 4206} 4207 4208/// isBetterOverloadCandidate - Determines whether the first overload 4209/// candidate is a better candidate than the second (C++ 13.3.3p1). 4210bool 4211Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4212 const OverloadCandidate& Cand2, 4213 SourceLocation Loc) { 4214 // Define viable functions to be better candidates than non-viable 4215 // functions. 4216 if (!Cand2.Viable) 4217 return Cand1.Viable; 4218 else if (!Cand1.Viable) 4219 return false; 4220 4221 // C++ [over.match.best]p1: 4222 // 4223 // -- if F is a static member function, ICS1(F) is defined such 4224 // that ICS1(F) is neither better nor worse than ICS1(G) for 4225 // any function G, and, symmetrically, ICS1(G) is neither 4226 // better nor worse than ICS1(F). 4227 unsigned StartArg = 0; 4228 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4229 StartArg = 1; 4230 4231 // C++ [over.match.best]p1: 4232 // A viable function F1 is defined to be a better function than another 4233 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4234 // conversion sequence than ICSi(F2), and then... 4235 unsigned NumArgs = Cand1.Conversions.size(); 4236 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4237 bool HasBetterConversion = false; 4238 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4239 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4240 Cand2.Conversions[ArgIdx])) { 4241 case ImplicitConversionSequence::Better: 4242 // Cand1 has a better conversion sequence. 4243 HasBetterConversion = true; 4244 break; 4245 4246 case ImplicitConversionSequence::Worse: 4247 // Cand1 can't be better than Cand2. 4248 return false; 4249 4250 case ImplicitConversionSequence::Indistinguishable: 4251 // Do nothing. 4252 break; 4253 } 4254 } 4255 4256 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4257 // ICSj(F2), or, if not that, 4258 if (HasBetterConversion) 4259 return true; 4260 4261 // - F1 is a non-template function and F2 is a function template 4262 // specialization, or, if not that, 4263 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4264 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4265 return true; 4266 4267 // -- F1 and F2 are function template specializations, and the function 4268 // template for F1 is more specialized than the template for F2 4269 // according to the partial ordering rules described in 14.5.5.2, or, 4270 // if not that, 4271 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4272 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4273 if (FunctionTemplateDecl *BetterTemplate 4274 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4275 Cand2.Function->getPrimaryTemplate(), 4276 Loc, 4277 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4278 : TPOC_Call)) 4279 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4280 4281 // -- the context is an initialization by user-defined conversion 4282 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4283 // from the return type of F1 to the destination type (i.e., 4284 // the type of the entity being initialized) is a better 4285 // conversion sequence than the standard conversion sequence 4286 // from the return type of F2 to the destination type. 4287 if (Cand1.Function && Cand2.Function && 4288 isa<CXXConversionDecl>(Cand1.Function) && 4289 isa<CXXConversionDecl>(Cand2.Function)) { 4290 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4291 Cand2.FinalConversion)) { 4292 case ImplicitConversionSequence::Better: 4293 // Cand1 has a better conversion sequence. 4294 return true; 4295 4296 case ImplicitConversionSequence::Worse: 4297 // Cand1 can't be better than Cand2. 4298 return false; 4299 4300 case ImplicitConversionSequence::Indistinguishable: 4301 // Do nothing 4302 break; 4303 } 4304 } 4305 4306 return false; 4307} 4308 4309/// \brief Computes the best viable function (C++ 13.3.3) 4310/// within an overload candidate set. 4311/// 4312/// \param CandidateSet the set of candidate functions. 4313/// 4314/// \param Loc the location of the function name (or operator symbol) for 4315/// which overload resolution occurs. 4316/// 4317/// \param Best f overload resolution was successful or found a deleted 4318/// function, Best points to the candidate function found. 4319/// 4320/// \returns The result of overload resolution. 4321OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4322 SourceLocation Loc, 4323 OverloadCandidateSet::iterator& Best) { 4324 // Find the best viable function. 4325 Best = CandidateSet.end(); 4326 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4327 Cand != CandidateSet.end(); ++Cand) { 4328 if (Cand->Viable) { 4329 if (Best == CandidateSet.end() || 4330 isBetterOverloadCandidate(*Cand, *Best, Loc)) 4331 Best = Cand; 4332 } 4333 } 4334 4335 // If we didn't find any viable functions, abort. 4336 if (Best == CandidateSet.end()) 4337 return OR_No_Viable_Function; 4338 4339 // Make sure that this function is better than every other viable 4340 // function. If not, we have an ambiguity. 4341 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4342 Cand != CandidateSet.end(); ++Cand) { 4343 if (Cand->Viable && 4344 Cand != Best && 4345 !isBetterOverloadCandidate(*Best, *Cand, Loc)) { 4346 Best = CandidateSet.end(); 4347 return OR_Ambiguous; 4348 } 4349 } 4350 4351 // Best is the best viable function. 4352 if (Best->Function && 4353 (Best->Function->isDeleted() || 4354 Best->Function->getAttr<UnavailableAttr>())) 4355 return OR_Deleted; 4356 4357 // C++ [basic.def.odr]p2: 4358 // An overloaded function is used if it is selected by overload resolution 4359 // when referred to from a potentially-evaluated expression. [Note: this 4360 // covers calls to named functions (5.2.2), operator overloading 4361 // (clause 13), user-defined conversions (12.3.2), allocation function for 4362 // placement new (5.3.4), as well as non-default initialization (8.5). 4363 if (Best->Function) 4364 MarkDeclarationReferenced(Loc, Best->Function); 4365 return OR_Success; 4366} 4367 4368namespace { 4369 4370enum OverloadCandidateKind { 4371 oc_function, 4372 oc_method, 4373 oc_constructor, 4374 oc_function_template, 4375 oc_method_template, 4376 oc_constructor_template, 4377 oc_implicit_default_constructor, 4378 oc_implicit_copy_constructor, 4379 oc_implicit_copy_assignment 4380}; 4381 4382OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 4383 FunctionDecl *Fn, 4384 std::string &Description) { 4385 bool isTemplate = false; 4386 4387 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 4388 isTemplate = true; 4389 Description = S.getTemplateArgumentBindingsText( 4390 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 4391 } 4392 4393 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 4394 if (!Ctor->isImplicit()) 4395 return isTemplate ? oc_constructor_template : oc_constructor; 4396 4397 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 4398 : oc_implicit_default_constructor; 4399 } 4400 4401 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 4402 // This actually gets spelled 'candidate function' for now, but 4403 // it doesn't hurt to split it out. 4404 if (!Meth->isImplicit()) 4405 return isTemplate ? oc_method_template : oc_method; 4406 4407 assert(Meth->isCopyAssignment() 4408 && "implicit method is not copy assignment operator?"); 4409 return oc_implicit_copy_assignment; 4410 } 4411 4412 return isTemplate ? oc_function_template : oc_function; 4413} 4414 4415} // end anonymous namespace 4416 4417// Notes the location of an overload candidate. 4418void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 4419 std::string FnDesc; 4420 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 4421 Diag(Fn->getLocation(), diag::note_ovl_candidate) 4422 << (unsigned) K << FnDesc; 4423} 4424 4425/// Diagnoses an ambiguous conversion. The partial diagnostic is the 4426/// "lead" diagnostic; it will be given two arguments, the source and 4427/// target types of the conversion. 4428void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 4429 SourceLocation CaretLoc, 4430 const PartialDiagnostic &PDiag) { 4431 Diag(CaretLoc, PDiag) 4432 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 4433 for (AmbiguousConversionSequence::const_iterator 4434 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 4435 NoteOverloadCandidate(*I); 4436 } 4437} 4438 4439namespace { 4440 4441void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 4442 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 4443 assert(Conv.isBad()); 4444 assert(Cand->Function && "for now, candidate must be a function"); 4445 FunctionDecl *Fn = Cand->Function; 4446 4447 // There's a conversion slot for the object argument if this is a 4448 // non-constructor method. Note that 'I' corresponds the 4449 // conversion-slot index. 4450 bool isObjectArgument = false; 4451 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 4452 if (I == 0) 4453 isObjectArgument = true; 4454 else 4455 I--; 4456 } 4457 4458 std::string FnDesc; 4459 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 4460 4461 Expr *FromExpr = Conv.Bad.FromExpr; 4462 QualType FromTy = Conv.Bad.getFromType(); 4463 QualType ToTy = Conv.Bad.getToType(); 4464 4465 if (FromTy == S.Context.OverloadTy) { 4466 assert(FromExpr && "overload set argument came from implicit argument?"); 4467 Expr *E = FromExpr->IgnoreParens(); 4468 if (isa<UnaryOperator>(E)) 4469 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 4470 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 4471 4472 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 4473 << (unsigned) FnKind << FnDesc 4474 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4475 << ToTy << Name << I+1; 4476 return; 4477 } 4478 4479 // Do some hand-waving analysis to see if the non-viability is due 4480 // to a qualifier mismatch. 4481 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 4482 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 4483 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 4484 CToTy = RT->getPointeeType(); 4485 else { 4486 // TODO: detect and diagnose the full richness of const mismatches. 4487 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 4488 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 4489 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 4490 } 4491 4492 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 4493 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 4494 // It is dumb that we have to do this here. 4495 while (isa<ArrayType>(CFromTy)) 4496 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 4497 while (isa<ArrayType>(CToTy)) 4498 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 4499 4500 Qualifiers FromQs = CFromTy.getQualifiers(); 4501 Qualifiers ToQs = CToTy.getQualifiers(); 4502 4503 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 4504 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 4505 << (unsigned) FnKind << FnDesc 4506 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4507 << FromTy 4508 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 4509 << (unsigned) isObjectArgument << I+1; 4510 return; 4511 } 4512 4513 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 4514 assert(CVR && "unexpected qualifiers mismatch"); 4515 4516 if (isObjectArgument) { 4517 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 4518 << (unsigned) FnKind << FnDesc 4519 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4520 << FromTy << (CVR - 1); 4521 } else { 4522 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 4523 << (unsigned) FnKind << FnDesc 4524 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4525 << FromTy << (CVR - 1) << I+1; 4526 } 4527 return; 4528 } 4529 4530 // Diagnose references or pointers to incomplete types differently, 4531 // since it's far from impossible that the incompleteness triggered 4532 // the failure. 4533 QualType TempFromTy = FromTy.getNonReferenceType(); 4534 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 4535 TempFromTy = PTy->getPointeeType(); 4536 if (TempFromTy->isIncompleteType()) { 4537 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 4538 << (unsigned) FnKind << FnDesc 4539 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4540 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 4541 return; 4542 } 4543 4544 // TODO: specialize more based on the kind of mismatch 4545 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 4546 << (unsigned) FnKind << FnDesc 4547 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4548 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 4549} 4550 4551void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 4552 unsigned NumFormalArgs) { 4553 // TODO: treat calls to a missing default constructor as a special case 4554 4555 FunctionDecl *Fn = Cand->Function; 4556 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 4557 4558 unsigned MinParams = Fn->getMinRequiredArguments(); 4559 4560 // at least / at most / exactly 4561 unsigned mode, modeCount; 4562 if (NumFormalArgs < MinParams) { 4563 assert(Cand->FailureKind == ovl_fail_too_few_arguments); 4564 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 4565 mode = 0; // "at least" 4566 else 4567 mode = 2; // "exactly" 4568 modeCount = MinParams; 4569 } else { 4570 assert(Cand->FailureKind == ovl_fail_too_many_arguments); 4571 if (MinParams != FnTy->getNumArgs()) 4572 mode = 1; // "at most" 4573 else 4574 mode = 2; // "exactly" 4575 modeCount = FnTy->getNumArgs(); 4576 } 4577 4578 std::string Description; 4579 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 4580 4581 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 4582 << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs; 4583} 4584 4585/// Diagnose a failed template-argument deduction. 4586void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 4587 Expr **Args, unsigned NumArgs) { 4588 FunctionDecl *Fn = Cand->Function; // pattern 4589 4590 TemplateParameter Param = TemplateParameter::getFromOpaqueValue( 4591 Cand->DeductionFailure.TemplateParameter); 4592 4593 switch (Cand->DeductionFailure.Result) { 4594 case Sema::TDK_Success: 4595 llvm_unreachable("TDK_success while diagnosing bad deduction"); 4596 4597 case Sema::TDK_Incomplete: { 4598 NamedDecl *ParamD; 4599 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 4600 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 4601 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 4602 assert(ParamD && "no parameter found for incomplete deduction result"); 4603 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 4604 << ParamD->getDeclName(); 4605 return; 4606 } 4607 4608 // TODO: diagnose these individually, then kill off 4609 // note_ovl_candidate_bad_deduction, which is uselessly vague. 4610 case Sema::TDK_InstantiationDepth: 4611 case Sema::TDK_Inconsistent: 4612 case Sema::TDK_InconsistentQuals: 4613 case Sema::TDK_SubstitutionFailure: 4614 case Sema::TDK_NonDeducedMismatch: 4615 case Sema::TDK_TooManyArguments: 4616 case Sema::TDK_TooFewArguments: 4617 case Sema::TDK_InvalidExplicitArguments: 4618 case Sema::TDK_FailedOverloadResolution: 4619 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 4620 return; 4621 } 4622} 4623 4624/// Generates a 'note' diagnostic for an overload candidate. We've 4625/// already generated a primary error at the call site. 4626/// 4627/// It really does need to be a single diagnostic with its caret 4628/// pointed at the candidate declaration. Yes, this creates some 4629/// major challenges of technical writing. Yes, this makes pointing 4630/// out problems with specific arguments quite awkward. It's still 4631/// better than generating twenty screens of text for every failed 4632/// overload. 4633/// 4634/// It would be great to be able to express per-candidate problems 4635/// more richly for those diagnostic clients that cared, but we'd 4636/// still have to be just as careful with the default diagnostics. 4637void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 4638 Expr **Args, unsigned NumArgs) { 4639 FunctionDecl *Fn = Cand->Function; 4640 4641 // Note deleted candidates, but only if they're viable. 4642 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 4643 std::string FnDesc; 4644 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 4645 4646 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 4647 << FnKind << FnDesc << Fn->isDeleted(); 4648 return; 4649 } 4650 4651 // We don't really have anything else to say about viable candidates. 4652 if (Cand->Viable) { 4653 S.NoteOverloadCandidate(Fn); 4654 return; 4655 } 4656 4657 switch (Cand->FailureKind) { 4658 case ovl_fail_too_many_arguments: 4659 case ovl_fail_too_few_arguments: 4660 return DiagnoseArityMismatch(S, Cand, NumArgs); 4661 4662 case ovl_fail_bad_deduction: 4663 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 4664 4665 case ovl_fail_trivial_conversion: 4666 case ovl_fail_bad_final_conversion: 4667 return S.NoteOverloadCandidate(Fn); 4668 4669 case ovl_fail_bad_conversion: { 4670 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 4671 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 4672 if (Cand->Conversions[I].isBad()) 4673 return DiagnoseBadConversion(S, Cand, I); 4674 4675 // FIXME: this currently happens when we're called from SemaInit 4676 // when user-conversion overload fails. Figure out how to handle 4677 // those conditions and diagnose them well. 4678 return S.NoteOverloadCandidate(Fn); 4679 } 4680 } 4681} 4682 4683void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 4684 // Desugar the type of the surrogate down to a function type, 4685 // retaining as many typedefs as possible while still showing 4686 // the function type (and, therefore, its parameter types). 4687 QualType FnType = Cand->Surrogate->getConversionType(); 4688 bool isLValueReference = false; 4689 bool isRValueReference = false; 4690 bool isPointer = false; 4691 if (const LValueReferenceType *FnTypeRef = 4692 FnType->getAs<LValueReferenceType>()) { 4693 FnType = FnTypeRef->getPointeeType(); 4694 isLValueReference = true; 4695 } else if (const RValueReferenceType *FnTypeRef = 4696 FnType->getAs<RValueReferenceType>()) { 4697 FnType = FnTypeRef->getPointeeType(); 4698 isRValueReference = true; 4699 } 4700 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4701 FnType = FnTypePtr->getPointeeType(); 4702 isPointer = true; 4703 } 4704 // Desugar down to a function type. 4705 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4706 // Reconstruct the pointer/reference as appropriate. 4707 if (isPointer) FnType = S.Context.getPointerType(FnType); 4708 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 4709 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 4710 4711 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 4712 << FnType; 4713} 4714 4715void NoteBuiltinOperatorCandidate(Sema &S, 4716 const char *Opc, 4717 SourceLocation OpLoc, 4718 OverloadCandidate *Cand) { 4719 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 4720 std::string TypeStr("operator"); 4721 TypeStr += Opc; 4722 TypeStr += "("; 4723 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4724 if (Cand->Conversions.size() == 1) { 4725 TypeStr += ")"; 4726 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 4727 } else { 4728 TypeStr += ", "; 4729 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4730 TypeStr += ")"; 4731 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 4732 } 4733} 4734 4735void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 4736 OverloadCandidate *Cand) { 4737 unsigned NoOperands = Cand->Conversions.size(); 4738 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4739 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4740 if (ICS.isBad()) break; // all meaningless after first invalid 4741 if (!ICS.isAmbiguous()) continue; 4742 4743 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 4744 PDiag(diag::note_ambiguous_type_conversion)); 4745 } 4746} 4747 4748SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 4749 if (Cand->Function) 4750 return Cand->Function->getLocation(); 4751 if (Cand->IsSurrogate) 4752 return Cand->Surrogate->getLocation(); 4753 return SourceLocation(); 4754} 4755 4756struct CompareOverloadCandidatesForDisplay { 4757 Sema &S; 4758 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 4759 4760 bool operator()(const OverloadCandidate *L, 4761 const OverloadCandidate *R) { 4762 // Fast-path this check. 4763 if (L == R) return false; 4764 4765 // Order first by viability. 4766 if (L->Viable) { 4767 if (!R->Viable) return true; 4768 4769 // TODO: introduce a tri-valued comparison for overload 4770 // candidates. Would be more worthwhile if we had a sort 4771 // that could exploit it. 4772 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; 4773 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; 4774 } else if (R->Viable) 4775 return false; 4776 4777 assert(L->Viable == R->Viable); 4778 4779 // Criteria by which we can sort non-viable candidates: 4780 if (!L->Viable) { 4781 // 1. Arity mismatches come after other candidates. 4782 if (L->FailureKind == ovl_fail_too_many_arguments || 4783 L->FailureKind == ovl_fail_too_few_arguments) 4784 return false; 4785 if (R->FailureKind == ovl_fail_too_many_arguments || 4786 R->FailureKind == ovl_fail_too_few_arguments) 4787 return true; 4788 4789 // 2. Bad conversions come first and are ordered by the number 4790 // of bad conversions and quality of good conversions. 4791 if (L->FailureKind == ovl_fail_bad_conversion) { 4792 if (R->FailureKind != ovl_fail_bad_conversion) 4793 return true; 4794 4795 // If there's any ordering between the defined conversions... 4796 // FIXME: this might not be transitive. 4797 assert(L->Conversions.size() == R->Conversions.size()); 4798 4799 int leftBetter = 0; 4800 for (unsigned I = 0, E = L->Conversions.size(); I != E; ++I) { 4801 switch (S.CompareImplicitConversionSequences(L->Conversions[I], 4802 R->Conversions[I])) { 4803 case ImplicitConversionSequence::Better: 4804 leftBetter++; 4805 break; 4806 4807 case ImplicitConversionSequence::Worse: 4808 leftBetter--; 4809 break; 4810 4811 case ImplicitConversionSequence::Indistinguishable: 4812 break; 4813 } 4814 } 4815 if (leftBetter > 0) return true; 4816 if (leftBetter < 0) return false; 4817 4818 } else if (R->FailureKind == ovl_fail_bad_conversion) 4819 return false; 4820 4821 // TODO: others? 4822 } 4823 4824 // Sort everything else by location. 4825 SourceLocation LLoc = GetLocationForCandidate(L); 4826 SourceLocation RLoc = GetLocationForCandidate(R); 4827 4828 // Put candidates without locations (e.g. builtins) at the end. 4829 if (LLoc.isInvalid()) return false; 4830 if (RLoc.isInvalid()) return true; 4831 4832 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 4833 } 4834}; 4835 4836/// CompleteNonViableCandidate - Normally, overload resolution only 4837/// computes up to the first 4838void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 4839 Expr **Args, unsigned NumArgs) { 4840 assert(!Cand->Viable); 4841 4842 // Don't do anything on failures other than bad conversion. 4843 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 4844 4845 // Skip forward to the first bad conversion. 4846 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 4847 unsigned ConvCount = Cand->Conversions.size(); 4848 while (true) { 4849 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 4850 ConvIdx++; 4851 if (Cand->Conversions[ConvIdx - 1].isBad()) 4852 break; 4853 } 4854 4855 if (ConvIdx == ConvCount) 4856 return; 4857 4858 assert(!Cand->Conversions[ConvIdx].isInitialized() && 4859 "remaining conversion is initialized?"); 4860 4861 // FIXME: these should probably be preserved from the overload 4862 // operation somehow. 4863 bool SuppressUserConversions = false; 4864 bool ForceRValue = false; 4865 4866 const FunctionProtoType* Proto; 4867 unsigned ArgIdx = ConvIdx; 4868 4869 if (Cand->IsSurrogate) { 4870 QualType ConvType 4871 = Cand->Surrogate->getConversionType().getNonReferenceType(); 4872 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 4873 ConvType = ConvPtrType->getPointeeType(); 4874 Proto = ConvType->getAs<FunctionProtoType>(); 4875 ArgIdx--; 4876 } else if (Cand->Function) { 4877 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 4878 if (isa<CXXMethodDecl>(Cand->Function) && 4879 !isa<CXXConstructorDecl>(Cand->Function)) 4880 ArgIdx--; 4881 } else { 4882 // Builtin binary operator with a bad first conversion. 4883 assert(ConvCount <= 3); 4884 for (; ConvIdx != ConvCount; ++ConvIdx) 4885 Cand->Conversions[ConvIdx] 4886 = S.TryCopyInitialization(Args[ConvIdx], 4887 Cand->BuiltinTypes.ParamTypes[ConvIdx], 4888 SuppressUserConversions, ForceRValue, 4889 /*InOverloadResolution*/ true); 4890 return; 4891 } 4892 4893 // Fill in the rest of the conversions. 4894 unsigned NumArgsInProto = Proto->getNumArgs(); 4895 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 4896 if (ArgIdx < NumArgsInProto) 4897 Cand->Conversions[ConvIdx] 4898 = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx), 4899 SuppressUserConversions, ForceRValue, 4900 /*InOverloadResolution=*/true); 4901 else 4902 Cand->Conversions[ConvIdx].setEllipsis(); 4903 } 4904} 4905 4906} // end anonymous namespace 4907 4908/// PrintOverloadCandidates - When overload resolution fails, prints 4909/// diagnostic messages containing the candidates in the candidate 4910/// set. 4911void 4912Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4913 OverloadCandidateDisplayKind OCD, 4914 Expr **Args, unsigned NumArgs, 4915 const char *Opc, 4916 SourceLocation OpLoc) { 4917 // Sort the candidates by viability and position. Sorting directly would 4918 // be prohibitive, so we make a set of pointers and sort those. 4919 llvm::SmallVector<OverloadCandidate*, 32> Cands; 4920 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 4921 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4922 LastCand = CandidateSet.end(); 4923 Cand != LastCand; ++Cand) { 4924 if (Cand->Viable) 4925 Cands.push_back(Cand); 4926 else if (OCD == OCD_AllCandidates) { 4927 CompleteNonViableCandidate(*this, Cand, Args, NumArgs); 4928 Cands.push_back(Cand); 4929 } 4930 } 4931 4932 std::sort(Cands.begin(), Cands.end(), 4933 CompareOverloadCandidatesForDisplay(*this)); 4934 4935 bool ReportedAmbiguousConversions = false; 4936 4937 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 4938 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 4939 OverloadCandidate *Cand = *I; 4940 4941 if (Cand->Function) 4942 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 4943 else if (Cand->IsSurrogate) 4944 NoteSurrogateCandidate(*this, Cand); 4945 4946 // This a builtin candidate. We do not, in general, want to list 4947 // every possible builtin candidate. 4948 else if (Cand->Viable) { 4949 // Generally we only see ambiguities including viable builtin 4950 // operators if overload resolution got screwed up by an 4951 // ambiguous user-defined conversion. 4952 // 4953 // FIXME: It's quite possible for different conversions to see 4954 // different ambiguities, though. 4955 if (!ReportedAmbiguousConversions) { 4956 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 4957 ReportedAmbiguousConversions = true; 4958 } 4959 4960 // If this is a viable builtin, print it. 4961 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 4962 } 4963 } 4964} 4965 4966static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D, 4967 AccessSpecifier AS) { 4968 if (isa<UnresolvedLookupExpr>(E)) 4969 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS); 4970 4971 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS); 4972} 4973 4974/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4975/// an overloaded function (C++ [over.over]), where @p From is an 4976/// expression with overloaded function type and @p ToType is the type 4977/// we're trying to resolve to. For example: 4978/// 4979/// @code 4980/// int f(double); 4981/// int f(int); 4982/// 4983/// int (*pfd)(double) = f; // selects f(double) 4984/// @endcode 4985/// 4986/// This routine returns the resulting FunctionDecl if it could be 4987/// resolved, and NULL otherwise. When @p Complain is true, this 4988/// routine will emit diagnostics if there is an error. 4989FunctionDecl * 4990Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4991 bool Complain) { 4992 QualType FunctionType = ToType; 4993 bool IsMember = false; 4994 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4995 FunctionType = ToTypePtr->getPointeeType(); 4996 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4997 FunctionType = ToTypeRef->getPointeeType(); 4998 else if (const MemberPointerType *MemTypePtr = 4999 ToType->getAs<MemberPointerType>()) { 5000 FunctionType = MemTypePtr->getPointeeType(); 5001 IsMember = true; 5002 } 5003 5004 // We only look at pointers or references to functions. 5005 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 5006 if (!FunctionType->isFunctionType()) 5007 return 0; 5008 5009 // Find the actual overloaded function declaration. 5010 if (From->getType() != Context.OverloadTy) 5011 return 0; 5012 5013 // C++ [over.over]p1: 5014 // [...] [Note: any redundant set of parentheses surrounding the 5015 // overloaded function name is ignored (5.1). ] 5016 // C++ [over.over]p1: 5017 // [...] The overloaded function name can be preceded by the & 5018 // operator. 5019 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5020 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 5021 if (OvlExpr->hasExplicitTemplateArgs()) { 5022 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 5023 ExplicitTemplateArgs = &ETABuffer; 5024 } 5025 5026 // Look through all of the overloaded functions, searching for one 5027 // whose type matches exactly. 5028 UnresolvedSet<4> Matches; // contains only FunctionDecls 5029 bool FoundNonTemplateFunction = false; 5030 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5031 E = OvlExpr->decls_end(); I != E; ++I) { 5032 // Look through any using declarations to find the underlying function. 5033 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 5034 5035 // C++ [over.over]p3: 5036 // Non-member functions and static member functions match 5037 // targets of type "pointer-to-function" or "reference-to-function." 5038 // Nonstatic member functions match targets of 5039 // type "pointer-to-member-function." 5040 // Note that according to DR 247, the containing class does not matter. 5041 5042 if (FunctionTemplateDecl *FunctionTemplate 5043 = dyn_cast<FunctionTemplateDecl>(Fn)) { 5044 if (CXXMethodDecl *Method 5045 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 5046 // Skip non-static function templates when converting to pointer, and 5047 // static when converting to member pointer. 5048 if (Method->isStatic() == IsMember) 5049 continue; 5050 } else if (IsMember) 5051 continue; 5052 5053 // C++ [over.over]p2: 5054 // If the name is a function template, template argument deduction is 5055 // done (14.8.2.2), and if the argument deduction succeeds, the 5056 // resulting template argument list is used to generate a single 5057 // function template specialization, which is added to the set of 5058 // overloaded functions considered. 5059 // FIXME: We don't really want to build the specialization here, do we? 5060 FunctionDecl *Specialization = 0; 5061 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 5062 if (TemplateDeductionResult Result 5063 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 5064 FunctionType, Specialization, Info)) { 5065 // FIXME: make a note of the failed deduction for diagnostics. 5066 (void)Result; 5067 } else { 5068 // FIXME: If the match isn't exact, shouldn't we just drop this as 5069 // a candidate? Find a testcase before changing the code. 5070 assert(FunctionType 5071 == Context.getCanonicalType(Specialization->getType())); 5072 Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()), 5073 I.getAccess()); 5074 } 5075 5076 continue; 5077 } 5078 5079 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5080 // Skip non-static functions when converting to pointer, and static 5081 // when converting to member pointer. 5082 if (Method->isStatic() == IsMember) 5083 continue; 5084 5085 // If we have explicit template arguments, skip non-templates. 5086 if (OvlExpr->hasExplicitTemplateArgs()) 5087 continue; 5088 } else if (IsMember) 5089 continue; 5090 5091 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 5092 QualType ResultTy; 5093 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 5094 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 5095 ResultTy)) { 5096 Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()), 5097 I.getAccess()); 5098 FoundNonTemplateFunction = true; 5099 } 5100 } 5101 } 5102 5103 // If there were 0 or 1 matches, we're done. 5104 if (Matches.empty()) 5105 return 0; 5106 else if (Matches.size() == 1) { 5107 FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin()); 5108 MarkDeclarationReferenced(From->getLocStart(), Result); 5109 if (Complain) 5110 CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess()); 5111 return Result; 5112 } 5113 5114 // C++ [over.over]p4: 5115 // If more than one function is selected, [...] 5116 if (!FoundNonTemplateFunction) { 5117 // [...] and any given function template specialization F1 is 5118 // eliminated if the set contains a second function template 5119 // specialization whose function template is more specialized 5120 // than the function template of F1 according to the partial 5121 // ordering rules of 14.5.5.2. 5122 5123 // The algorithm specified above is quadratic. We instead use a 5124 // two-pass algorithm (similar to the one used to identify the 5125 // best viable function in an overload set) that identifies the 5126 // best function template (if it exists). 5127 5128 UnresolvedSetIterator Result = 5129 getMostSpecialized(Matches.begin(), Matches.end(), 5130 TPOC_Other, From->getLocStart(), 5131 PDiag(), 5132 PDiag(diag::err_addr_ovl_ambiguous) 5133 << Matches[0]->getDeclName(), 5134 PDiag(diag::note_ovl_candidate) 5135 << (unsigned) oc_function_template); 5136 assert(Result != Matches.end() && "no most-specialized template"); 5137 MarkDeclarationReferenced(From->getLocStart(), *Result); 5138 if (Complain) 5139 CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess()); 5140 return cast<FunctionDecl>(*Result); 5141 } 5142 5143 // [...] any function template specializations in the set are 5144 // eliminated if the set also contains a non-template function, [...] 5145 for (unsigned I = 0, N = Matches.size(); I != N; ) { 5146 if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0) 5147 ++I; 5148 else { 5149 Matches.erase(I); 5150 --N; 5151 } 5152 } 5153 5154 // [...] After such eliminations, if any, there shall remain exactly one 5155 // selected function. 5156 if (Matches.size() == 1) { 5157 UnresolvedSetIterator Match = Matches.begin(); 5158 MarkDeclarationReferenced(From->getLocStart(), *Match); 5159 if (Complain) 5160 CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess()); 5161 return cast<FunctionDecl>(*Match); 5162 } 5163 5164 // FIXME: We should probably return the same thing that BestViableFunction 5165 // returns (even if we issue the diagnostics here). 5166 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 5167 << Matches[0]->getDeclName(); 5168 for (UnresolvedSetIterator I = Matches.begin(), 5169 E = Matches.end(); I != E; ++I) 5170 NoteOverloadCandidate(cast<FunctionDecl>(*I)); 5171 return 0; 5172} 5173 5174/// \brief Given an expression that refers to an overloaded function, try to 5175/// resolve that overloaded function expression down to a single function. 5176/// 5177/// This routine can only resolve template-ids that refer to a single function 5178/// template, where that template-id refers to a single template whose template 5179/// arguments are either provided by the template-id or have defaults, 5180/// as described in C++0x [temp.arg.explicit]p3. 5181FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 5182 // C++ [over.over]p1: 5183 // [...] [Note: any redundant set of parentheses surrounding the 5184 // overloaded function name is ignored (5.1). ] 5185 // C++ [over.over]p1: 5186 // [...] The overloaded function name can be preceded by the & 5187 // operator. 5188 5189 if (From->getType() != Context.OverloadTy) 5190 return 0; 5191 5192 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5193 5194 // If we didn't actually find any template-ids, we're done. 5195 if (!OvlExpr->hasExplicitTemplateArgs()) 5196 return 0; 5197 5198 TemplateArgumentListInfo ExplicitTemplateArgs; 5199 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 5200 5201 // Look through all of the overloaded functions, searching for one 5202 // whose type matches exactly. 5203 FunctionDecl *Matched = 0; 5204 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5205 E = OvlExpr->decls_end(); I != E; ++I) { 5206 // C++0x [temp.arg.explicit]p3: 5207 // [...] In contexts where deduction is done and fails, or in contexts 5208 // where deduction is not done, if a template argument list is 5209 // specified and it, along with any default template arguments, 5210 // identifies a single function template specialization, then the 5211 // template-id is an lvalue for the function template specialization. 5212 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 5213 5214 // C++ [over.over]p2: 5215 // If the name is a function template, template argument deduction is 5216 // done (14.8.2.2), and if the argument deduction succeeds, the 5217 // resulting template argument list is used to generate a single 5218 // function template specialization, which is added to the set of 5219 // overloaded functions considered. 5220 FunctionDecl *Specialization = 0; 5221 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 5222 if (TemplateDeductionResult Result 5223 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 5224 Specialization, Info)) { 5225 // FIXME: make a note of the failed deduction for diagnostics. 5226 (void)Result; 5227 continue; 5228 } 5229 5230 // Multiple matches; we can't resolve to a single declaration. 5231 if (Matched) 5232 return 0; 5233 5234 Matched = Specialization; 5235 } 5236 5237 return Matched; 5238} 5239 5240/// \brief Add a single candidate to the overload set. 5241static void AddOverloadedCallCandidate(Sema &S, 5242 NamedDecl *Callee, 5243 AccessSpecifier Access, 5244 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5245 Expr **Args, unsigned NumArgs, 5246 OverloadCandidateSet &CandidateSet, 5247 bool PartialOverloading) { 5248 if (isa<UsingShadowDecl>(Callee)) 5249 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 5250 5251 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 5252 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 5253 S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet, 5254 false, false, PartialOverloading); 5255 return; 5256 } 5257 5258 if (FunctionTemplateDecl *FuncTemplate 5259 = dyn_cast<FunctionTemplateDecl>(Callee)) { 5260 S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs, 5261 Args, NumArgs, CandidateSet); 5262 return; 5263 } 5264 5265 assert(false && "unhandled case in overloaded call candidate"); 5266 5267 // do nothing? 5268} 5269 5270/// \brief Add the overload candidates named by callee and/or found by argument 5271/// dependent lookup to the given overload set. 5272void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 5273 Expr **Args, unsigned NumArgs, 5274 OverloadCandidateSet &CandidateSet, 5275 bool PartialOverloading) { 5276 5277#ifndef NDEBUG 5278 // Verify that ArgumentDependentLookup is consistent with the rules 5279 // in C++0x [basic.lookup.argdep]p3: 5280 // 5281 // Let X be the lookup set produced by unqualified lookup (3.4.1) 5282 // and let Y be the lookup set produced by argument dependent 5283 // lookup (defined as follows). If X contains 5284 // 5285 // -- a declaration of a class member, or 5286 // 5287 // -- a block-scope function declaration that is not a 5288 // using-declaration, or 5289 // 5290 // -- a declaration that is neither a function or a function 5291 // template 5292 // 5293 // then Y is empty. 5294 5295 if (ULE->requiresADL()) { 5296 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 5297 E = ULE->decls_end(); I != E; ++I) { 5298 assert(!(*I)->getDeclContext()->isRecord()); 5299 assert(isa<UsingShadowDecl>(*I) || 5300 !(*I)->getDeclContext()->isFunctionOrMethod()); 5301 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 5302 } 5303 } 5304#endif 5305 5306 // It would be nice to avoid this copy. 5307 TemplateArgumentListInfo TABuffer; 5308 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 5309 if (ULE->hasExplicitTemplateArgs()) { 5310 ULE->copyTemplateArgumentsInto(TABuffer); 5311 ExplicitTemplateArgs = &TABuffer; 5312 } 5313 5314 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 5315 E = ULE->decls_end(); I != E; ++I) 5316 AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs, 5317 Args, NumArgs, CandidateSet, 5318 PartialOverloading); 5319 5320 if (ULE->requiresADL()) 5321 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 5322 Args, NumArgs, 5323 ExplicitTemplateArgs, 5324 CandidateSet, 5325 PartialOverloading); 5326} 5327 5328static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 5329 Expr **Args, unsigned NumArgs) { 5330 Fn->Destroy(SemaRef.Context); 5331 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 5332 Args[Arg]->Destroy(SemaRef.Context); 5333 return SemaRef.ExprError(); 5334} 5335 5336/// Attempts to recover from a call where no functions were found. 5337/// 5338/// Returns true if new candidates were found. 5339static Sema::OwningExprResult 5340BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn, 5341 UnresolvedLookupExpr *ULE, 5342 SourceLocation LParenLoc, 5343 Expr **Args, unsigned NumArgs, 5344 SourceLocation *CommaLocs, 5345 SourceLocation RParenLoc) { 5346 5347 CXXScopeSpec SS; 5348 if (ULE->getQualifier()) { 5349 SS.setScopeRep(ULE->getQualifier()); 5350 SS.setRange(ULE->getQualifierRange()); 5351 } 5352 5353 TemplateArgumentListInfo TABuffer; 5354 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 5355 if (ULE->hasExplicitTemplateArgs()) { 5356 ULE->copyTemplateArgumentsInto(TABuffer); 5357 ExplicitTemplateArgs = &TABuffer; 5358 } 5359 5360 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 5361 Sema::LookupOrdinaryName); 5362 if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R)) 5363 return Destroy(SemaRef, Fn, Args, NumArgs); 5364 5365 assert(!R.empty() && "lookup results empty despite recovery"); 5366 5367 // Build an implicit member call if appropriate. Just drop the 5368 // casts and such from the call, we don't really care. 5369 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 5370 if ((*R.begin())->isCXXClassMember()) 5371 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 5372 else if (ExplicitTemplateArgs) 5373 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 5374 else 5375 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 5376 5377 if (NewFn.isInvalid()) 5378 return Destroy(SemaRef, Fn, Args, NumArgs); 5379 5380 Fn->Destroy(SemaRef.Context); 5381 5382 // This shouldn't cause an infinite loop because we're giving it 5383 // an expression with non-empty lookup results, which should never 5384 // end up here. 5385 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 5386 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 5387 CommaLocs, RParenLoc); 5388} 5389 5390/// ResolveOverloadedCallFn - Given the call expression that calls Fn 5391/// (which eventually refers to the declaration Func) and the call 5392/// arguments Args/NumArgs, attempt to resolve the function call down 5393/// to a specific function. If overload resolution succeeds, returns 5394/// the function declaration produced by overload 5395/// resolution. Otherwise, emits diagnostics, deletes all of the 5396/// arguments and Fn, and returns NULL. 5397Sema::OwningExprResult 5398Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE, 5399 SourceLocation LParenLoc, 5400 Expr **Args, unsigned NumArgs, 5401 SourceLocation *CommaLocs, 5402 SourceLocation RParenLoc) { 5403#ifndef NDEBUG 5404 if (ULE->requiresADL()) { 5405 // To do ADL, we must have found an unqualified name. 5406 assert(!ULE->getQualifier() && "qualified name with ADL"); 5407 5408 // We don't perform ADL for implicit declarations of builtins. 5409 // Verify that this was correctly set up. 5410 FunctionDecl *F; 5411 if (ULE->decls_begin() + 1 == ULE->decls_end() && 5412 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 5413 F->getBuiltinID() && F->isImplicit()) 5414 assert(0 && "performing ADL for builtin"); 5415 5416 // We don't perform ADL in C. 5417 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 5418 } 5419#endif 5420 5421 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 5422 5423 // Add the functions denoted by the callee to the set of candidate 5424 // functions, including those from argument-dependent lookup. 5425 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 5426 5427 // If we found nothing, try to recover. 5428 // AddRecoveryCallCandidates diagnoses the error itself, so we just 5429 // bailout out if it fails. 5430 if (CandidateSet.empty()) 5431 return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs, 5432 CommaLocs, RParenLoc); 5433 5434 OverloadCandidateSet::iterator Best; 5435 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 5436 case OR_Success: { 5437 FunctionDecl *FDecl = Best->Function; 5438 CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess()); 5439 Fn = FixOverloadedFunctionReference(Fn, FDecl); 5440 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 5441 } 5442 5443 case OR_No_Viable_Function: 5444 Diag(Fn->getSourceRange().getBegin(), 5445 diag::err_ovl_no_viable_function_in_call) 5446 << ULE->getName() << Fn->getSourceRange(); 5447 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5448 break; 5449 5450 case OR_Ambiguous: 5451 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 5452 << ULE->getName() << Fn->getSourceRange(); 5453 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 5454 break; 5455 5456 case OR_Deleted: 5457 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 5458 << Best->Function->isDeleted() 5459 << ULE->getName() 5460 << Fn->getSourceRange(); 5461 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5462 break; 5463 } 5464 5465 // Overload resolution failed. Destroy all of the subexpressions and 5466 // return NULL. 5467 Fn->Destroy(Context); 5468 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 5469 Args[Arg]->Destroy(Context); 5470 return ExprError(); 5471} 5472 5473static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 5474 return Functions.size() > 1 || 5475 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 5476} 5477 5478/// \brief Create a unary operation that may resolve to an overloaded 5479/// operator. 5480/// 5481/// \param OpLoc The location of the operator itself (e.g., '*'). 5482/// 5483/// \param OpcIn The UnaryOperator::Opcode that describes this 5484/// operator. 5485/// 5486/// \param Functions The set of non-member functions that will be 5487/// considered by overload resolution. The caller needs to build this 5488/// set based on the context using, e.g., 5489/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 5490/// set should not contain any member functions; those will be added 5491/// by CreateOverloadedUnaryOp(). 5492/// 5493/// \param input The input argument. 5494Sema::OwningExprResult 5495Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 5496 const UnresolvedSetImpl &Fns, 5497 ExprArg input) { 5498 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 5499 Expr *Input = (Expr *)input.get(); 5500 5501 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 5502 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 5503 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5504 5505 Expr *Args[2] = { Input, 0 }; 5506 unsigned NumArgs = 1; 5507 5508 // For post-increment and post-decrement, add the implicit '0' as 5509 // the second argument, so that we know this is a post-increment or 5510 // post-decrement. 5511 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 5512 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 5513 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 5514 SourceLocation()); 5515 NumArgs = 2; 5516 } 5517 5518 if (Input->isTypeDependent()) { 5519 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 5520 UnresolvedLookupExpr *Fn 5521 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 5522 0, SourceRange(), OpName, OpLoc, 5523 /*ADL*/ true, IsOverloaded(Fns)); 5524 Fn->addDecls(Fns.begin(), Fns.end()); 5525 5526 input.release(); 5527 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 5528 &Args[0], NumArgs, 5529 Context.DependentTy, 5530 OpLoc)); 5531 } 5532 5533 // Build an empty overload set. 5534 OverloadCandidateSet CandidateSet(OpLoc); 5535 5536 // Add the candidates from the given function set. 5537 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 5538 5539 // Add operator candidates that are member functions. 5540 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 5541 5542 // Add candidates from ADL. 5543 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 5544 Args, NumArgs, 5545 /*ExplicitTemplateArgs*/ 0, 5546 CandidateSet); 5547 5548 // Add builtin operator candidates. 5549 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 5550 5551 // Perform overload resolution. 5552 OverloadCandidateSet::iterator Best; 5553 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5554 case OR_Success: { 5555 // We found a built-in operator or an overloaded operator. 5556 FunctionDecl *FnDecl = Best->Function; 5557 5558 if (FnDecl) { 5559 // We matched an overloaded operator. Build a call to that 5560 // operator. 5561 5562 // Convert the arguments. 5563 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5564 CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess()); 5565 5566 if (PerformObjectArgumentInitialization(Input, Method)) 5567 return ExprError(); 5568 } else { 5569 // Convert the arguments. 5570 OwningExprResult InputInit 5571 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 5572 FnDecl->getParamDecl(0)), 5573 SourceLocation(), 5574 move(input)); 5575 if (InputInit.isInvalid()) 5576 return ExprError(); 5577 5578 input = move(InputInit); 5579 Input = (Expr *)input.get(); 5580 } 5581 5582 // Determine the result type 5583 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 5584 5585 // Build the actual expression node. 5586 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5587 SourceLocation()); 5588 UsualUnaryConversions(FnExpr); 5589 5590 input.release(); 5591 Args[0] = Input; 5592 ExprOwningPtr<CallExpr> TheCall(this, 5593 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5594 Args, NumArgs, ResultTy, OpLoc)); 5595 5596 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5597 FnDecl)) 5598 return ExprError(); 5599 5600 return MaybeBindToTemporary(TheCall.release()); 5601 } else { 5602 // We matched a built-in operator. Convert the arguments, then 5603 // break out so that we will build the appropriate built-in 5604 // operator node. 5605 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 5606 Best->Conversions[0], AA_Passing)) 5607 return ExprError(); 5608 5609 break; 5610 } 5611 } 5612 5613 case OR_No_Viable_Function: 5614 // No viable function; fall through to handling this as a 5615 // built-in operator, which will produce an error message for us. 5616 break; 5617 5618 case OR_Ambiguous: 5619 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5620 << UnaryOperator::getOpcodeStr(Opc) 5621 << Input->getSourceRange(); 5622 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 5623 UnaryOperator::getOpcodeStr(Opc), OpLoc); 5624 return ExprError(); 5625 5626 case OR_Deleted: 5627 Diag(OpLoc, diag::err_ovl_deleted_oper) 5628 << Best->Function->isDeleted() 5629 << UnaryOperator::getOpcodeStr(Opc) 5630 << Input->getSourceRange(); 5631 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5632 return ExprError(); 5633 } 5634 5635 // Either we found no viable overloaded operator or we matched a 5636 // built-in operator. In either case, fall through to trying to 5637 // build a built-in operation. 5638 input.release(); 5639 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 5640} 5641 5642/// \brief Create a binary operation that may resolve to an overloaded 5643/// operator. 5644/// 5645/// \param OpLoc The location of the operator itself (e.g., '+'). 5646/// 5647/// \param OpcIn The BinaryOperator::Opcode that describes this 5648/// operator. 5649/// 5650/// \param Functions The set of non-member functions that will be 5651/// considered by overload resolution. The caller needs to build this 5652/// set based on the context using, e.g., 5653/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 5654/// set should not contain any member functions; those will be added 5655/// by CreateOverloadedBinOp(). 5656/// 5657/// \param LHS Left-hand argument. 5658/// \param RHS Right-hand argument. 5659Sema::OwningExprResult 5660Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 5661 unsigned OpcIn, 5662 const UnresolvedSetImpl &Fns, 5663 Expr *LHS, Expr *RHS) { 5664 Expr *Args[2] = { LHS, RHS }; 5665 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 5666 5667 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 5668 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 5669 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5670 5671 // If either side is type-dependent, create an appropriate dependent 5672 // expression. 5673 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5674 if (Fns.empty()) { 5675 // If there are no functions to store, just build a dependent 5676 // BinaryOperator or CompoundAssignment. 5677 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 5678 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 5679 Context.DependentTy, OpLoc)); 5680 5681 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 5682 Context.DependentTy, 5683 Context.DependentTy, 5684 Context.DependentTy, 5685 OpLoc)); 5686 } 5687 5688 // FIXME: save results of ADL from here? 5689 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 5690 UnresolvedLookupExpr *Fn 5691 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 5692 0, SourceRange(), OpName, OpLoc, 5693 /*ADL*/ true, IsOverloaded(Fns)); 5694 5695 Fn->addDecls(Fns.begin(), Fns.end()); 5696 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 5697 Args, 2, 5698 Context.DependentTy, 5699 OpLoc)); 5700 } 5701 5702 // If this is the .* operator, which is not overloadable, just 5703 // create a built-in binary operator. 5704 if (Opc == BinaryOperator::PtrMemD) 5705 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5706 5707 // If this is the assignment operator, we only perform overload resolution 5708 // if the left-hand side is a class or enumeration type. This is actually 5709 // a hack. The standard requires that we do overload resolution between the 5710 // various built-in candidates, but as DR507 points out, this can lead to 5711 // problems. So we do it this way, which pretty much follows what GCC does. 5712 // Note that we go the traditional code path for compound assignment forms. 5713 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 5714 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5715 5716 // Build an empty overload set. 5717 OverloadCandidateSet CandidateSet(OpLoc); 5718 5719 // Add the candidates from the given function set. 5720 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 5721 5722 // Add operator candidates that are member functions. 5723 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 5724 5725 // Add candidates from ADL. 5726 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 5727 Args, 2, 5728 /*ExplicitTemplateArgs*/ 0, 5729 CandidateSet); 5730 5731 // Add builtin operator candidates. 5732 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 5733 5734 // Perform overload resolution. 5735 OverloadCandidateSet::iterator Best; 5736 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5737 case OR_Success: { 5738 // We found a built-in operator or an overloaded operator. 5739 FunctionDecl *FnDecl = Best->Function; 5740 5741 if (FnDecl) { 5742 // We matched an overloaded operator. Build a call to that 5743 // operator. 5744 5745 // Convert the arguments. 5746 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5747 // Best->Access is only meaningful for class members. 5748 CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess()); 5749 5750 OwningExprResult Arg1 5751 = PerformCopyInitialization( 5752 InitializedEntity::InitializeParameter( 5753 FnDecl->getParamDecl(0)), 5754 SourceLocation(), 5755 Owned(Args[1])); 5756 if (Arg1.isInvalid()) 5757 return ExprError(); 5758 5759 if (PerformObjectArgumentInitialization(Args[0], Method)) 5760 return ExprError(); 5761 5762 Args[1] = RHS = Arg1.takeAs<Expr>(); 5763 } else { 5764 // Convert the arguments. 5765 OwningExprResult Arg0 5766 = PerformCopyInitialization( 5767 InitializedEntity::InitializeParameter( 5768 FnDecl->getParamDecl(0)), 5769 SourceLocation(), 5770 Owned(Args[0])); 5771 if (Arg0.isInvalid()) 5772 return ExprError(); 5773 5774 OwningExprResult Arg1 5775 = PerformCopyInitialization( 5776 InitializedEntity::InitializeParameter( 5777 FnDecl->getParamDecl(1)), 5778 SourceLocation(), 5779 Owned(Args[1])); 5780 if (Arg1.isInvalid()) 5781 return ExprError(); 5782 Args[0] = LHS = Arg0.takeAs<Expr>(); 5783 Args[1] = RHS = Arg1.takeAs<Expr>(); 5784 } 5785 5786 // Determine the result type 5787 QualType ResultTy 5788 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5789 ResultTy = ResultTy.getNonReferenceType(); 5790 5791 // Build the actual expression node. 5792 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5793 OpLoc); 5794 UsualUnaryConversions(FnExpr); 5795 5796 ExprOwningPtr<CXXOperatorCallExpr> 5797 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5798 Args, 2, ResultTy, 5799 OpLoc)); 5800 5801 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5802 FnDecl)) 5803 return ExprError(); 5804 5805 return MaybeBindToTemporary(TheCall.release()); 5806 } else { 5807 // We matched a built-in operator. Convert the arguments, then 5808 // break out so that we will build the appropriate built-in 5809 // operator node. 5810 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5811 Best->Conversions[0], AA_Passing) || 5812 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5813 Best->Conversions[1], AA_Passing)) 5814 return ExprError(); 5815 5816 break; 5817 } 5818 } 5819 5820 case OR_No_Viable_Function: { 5821 // C++ [over.match.oper]p9: 5822 // If the operator is the operator , [...] and there are no 5823 // viable functions, then the operator is assumed to be the 5824 // built-in operator and interpreted according to clause 5. 5825 if (Opc == BinaryOperator::Comma) 5826 break; 5827 5828 // For class as left operand for assignment or compound assigment operator 5829 // do not fall through to handling in built-in, but report that no overloaded 5830 // assignment operator found 5831 OwningExprResult Result = ExprError(); 5832 if (Args[0]->getType()->isRecordType() && 5833 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 5834 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5835 << BinaryOperator::getOpcodeStr(Opc) 5836 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5837 } else { 5838 // No viable function; try to create a built-in operation, which will 5839 // produce an error. Then, show the non-viable candidates. 5840 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5841 } 5842 assert(Result.isInvalid() && 5843 "C++ binary operator overloading is missing candidates!"); 5844 if (Result.isInvalid()) 5845 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 5846 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5847 return move(Result); 5848 } 5849 5850 case OR_Ambiguous: 5851 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5852 << BinaryOperator::getOpcodeStr(Opc) 5853 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5854 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 5855 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5856 return ExprError(); 5857 5858 case OR_Deleted: 5859 Diag(OpLoc, diag::err_ovl_deleted_oper) 5860 << Best->Function->isDeleted() 5861 << BinaryOperator::getOpcodeStr(Opc) 5862 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5863 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 5864 return ExprError(); 5865 } 5866 5867 // We matched a built-in operator; build it. 5868 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5869} 5870 5871Action::OwningExprResult 5872Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 5873 SourceLocation RLoc, 5874 ExprArg Base, ExprArg Idx) { 5875 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 5876 static_cast<Expr*>(Idx.get()) }; 5877 DeclarationName OpName = 5878 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 5879 5880 // If either side is type-dependent, create an appropriate dependent 5881 // expression. 5882 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5883 5884 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 5885 UnresolvedLookupExpr *Fn 5886 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 5887 0, SourceRange(), OpName, LLoc, 5888 /*ADL*/ true, /*Overloaded*/ false); 5889 // Can't add any actual overloads yet 5890 5891 Base.release(); 5892 Idx.release(); 5893 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5894 Args, 2, 5895 Context.DependentTy, 5896 RLoc)); 5897 } 5898 5899 // Build an empty overload set. 5900 OverloadCandidateSet CandidateSet(LLoc); 5901 5902 // Subscript can only be overloaded as a member function. 5903 5904 // Add operator candidates that are member functions. 5905 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5906 5907 // Add builtin operator candidates. 5908 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5909 5910 // Perform overload resolution. 5911 OverloadCandidateSet::iterator Best; 5912 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5913 case OR_Success: { 5914 // We found a built-in operator or an overloaded operator. 5915 FunctionDecl *FnDecl = Best->Function; 5916 5917 if (FnDecl) { 5918 // We matched an overloaded operator. Build a call to that 5919 // operator. 5920 5921 CheckMemberOperatorAccess(LLoc, Args[0], FnDecl, Best->getAccess()); 5922 5923 // Convert the arguments. 5924 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5925 if (PerformObjectArgumentInitialization(Args[0], Method)) 5926 return ExprError(); 5927 5928 // Convert the arguments. 5929 OwningExprResult InputInit 5930 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 5931 FnDecl->getParamDecl(0)), 5932 SourceLocation(), 5933 Owned(Args[1])); 5934 if (InputInit.isInvalid()) 5935 return ExprError(); 5936 5937 Args[1] = InputInit.takeAs<Expr>(); 5938 5939 // Determine the result type 5940 QualType ResultTy 5941 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5942 ResultTy = ResultTy.getNonReferenceType(); 5943 5944 // Build the actual expression node. 5945 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5946 LLoc); 5947 UsualUnaryConversions(FnExpr); 5948 5949 Base.release(); 5950 Idx.release(); 5951 ExprOwningPtr<CXXOperatorCallExpr> 5952 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5953 FnExpr, Args, 2, 5954 ResultTy, RLoc)); 5955 5956 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5957 FnDecl)) 5958 return ExprError(); 5959 5960 return MaybeBindToTemporary(TheCall.release()); 5961 } else { 5962 // We matched a built-in operator. Convert the arguments, then 5963 // break out so that we will build the appropriate built-in 5964 // operator node. 5965 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5966 Best->Conversions[0], AA_Passing) || 5967 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5968 Best->Conversions[1], AA_Passing)) 5969 return ExprError(); 5970 5971 break; 5972 } 5973 } 5974 5975 case OR_No_Viable_Function: { 5976 if (CandidateSet.empty()) 5977 Diag(LLoc, diag::err_ovl_no_oper) 5978 << Args[0]->getType() << /*subscript*/ 0 5979 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5980 else 5981 Diag(LLoc, diag::err_ovl_no_viable_subscript) 5982 << Args[0]->getType() 5983 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5984 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 5985 "[]", LLoc); 5986 return ExprError(); 5987 } 5988 5989 case OR_Ambiguous: 5990 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5991 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5992 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 5993 "[]", LLoc); 5994 return ExprError(); 5995 5996 case OR_Deleted: 5997 Diag(LLoc, diag::err_ovl_deleted_oper) 5998 << Best->Function->isDeleted() << "[]" 5999 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6000 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6001 "[]", LLoc); 6002 return ExprError(); 6003 } 6004 6005 // We matched a built-in operator; build it. 6006 Base.release(); 6007 Idx.release(); 6008 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 6009 Owned(Args[1]), RLoc); 6010} 6011 6012/// BuildCallToMemberFunction - Build a call to a member 6013/// function. MemExpr is the expression that refers to the member 6014/// function (and includes the object parameter), Args/NumArgs are the 6015/// arguments to the function call (not including the object 6016/// parameter). The caller needs to validate that the member 6017/// expression refers to a member function or an overloaded member 6018/// function. 6019Sema::OwningExprResult 6020Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 6021 SourceLocation LParenLoc, Expr **Args, 6022 unsigned NumArgs, SourceLocation *CommaLocs, 6023 SourceLocation RParenLoc) { 6024 // Dig out the member expression. This holds both the object 6025 // argument and the member function we're referring to. 6026 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 6027 6028 MemberExpr *MemExpr; 6029 CXXMethodDecl *Method = 0; 6030 if (isa<MemberExpr>(NakedMemExpr)) { 6031 MemExpr = cast<MemberExpr>(NakedMemExpr); 6032 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 6033 } else { 6034 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 6035 6036 QualType ObjectType = UnresExpr->getBaseType(); 6037 6038 // Add overload candidates 6039 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 6040 6041 // FIXME: avoid copy. 6042 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6043 if (UnresExpr->hasExplicitTemplateArgs()) { 6044 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6045 TemplateArgs = &TemplateArgsBuffer; 6046 } 6047 6048 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 6049 E = UnresExpr->decls_end(); I != E; ++I) { 6050 6051 NamedDecl *Func = *I; 6052 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 6053 if (isa<UsingShadowDecl>(Func)) 6054 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 6055 6056 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 6057 // If explicit template arguments were provided, we can't call a 6058 // non-template member function. 6059 if (TemplateArgs) 6060 continue; 6061 6062 AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType, 6063 Args, NumArgs, 6064 CandidateSet, /*SuppressUserConversions=*/false); 6065 } else { 6066 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 6067 I.getAccess(), ActingDC, TemplateArgs, 6068 ObjectType, Args, NumArgs, 6069 CandidateSet, 6070 /*SuppressUsedConversions=*/false); 6071 } 6072 } 6073 6074 DeclarationName DeclName = UnresExpr->getMemberName(); 6075 6076 OverloadCandidateSet::iterator Best; 6077 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 6078 case OR_Success: 6079 Method = cast<CXXMethodDecl>(Best->Function); 6080 CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess()); 6081 break; 6082 6083 case OR_No_Viable_Function: 6084 Diag(UnresExpr->getMemberLoc(), 6085 diag::err_ovl_no_viable_member_function_in_call) 6086 << DeclName << MemExprE->getSourceRange(); 6087 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6088 // FIXME: Leaking incoming expressions! 6089 return ExprError(); 6090 6091 case OR_Ambiguous: 6092 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 6093 << DeclName << MemExprE->getSourceRange(); 6094 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6095 // FIXME: Leaking incoming expressions! 6096 return ExprError(); 6097 6098 case OR_Deleted: 6099 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 6100 << Best->Function->isDeleted() 6101 << DeclName << MemExprE->getSourceRange(); 6102 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6103 // FIXME: Leaking incoming expressions! 6104 return ExprError(); 6105 } 6106 6107 MemExprE = FixOverloadedFunctionReference(MemExprE, Method); 6108 6109 // If overload resolution picked a static member, build a 6110 // non-member call based on that function. 6111 if (Method->isStatic()) { 6112 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 6113 Args, NumArgs, RParenLoc); 6114 } 6115 6116 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 6117 } 6118 6119 assert(Method && "Member call to something that isn't a method?"); 6120 ExprOwningPtr<CXXMemberCallExpr> 6121 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 6122 NumArgs, 6123 Method->getResultType().getNonReferenceType(), 6124 RParenLoc)); 6125 6126 // Check for a valid return type. 6127 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 6128 TheCall.get(), Method)) 6129 return ExprError(); 6130 6131 // Convert the object argument (for a non-static member function call). 6132 Expr *ObjectArg = MemExpr->getBase(); 6133 if (!Method->isStatic() && 6134 PerformObjectArgumentInitialization(ObjectArg, Method)) 6135 return ExprError(); 6136 MemExpr->setBase(ObjectArg); 6137 6138 // Convert the rest of the arguments 6139 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 6140 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 6141 RParenLoc)) 6142 return ExprError(); 6143 6144 if (CheckFunctionCall(Method, TheCall.get())) 6145 return ExprError(); 6146 6147 return MaybeBindToTemporary(TheCall.release()); 6148} 6149 6150/// BuildCallToObjectOfClassType - Build a call to an object of class 6151/// type (C++ [over.call.object]), which can end up invoking an 6152/// overloaded function call operator (@c operator()) or performing a 6153/// user-defined conversion on the object argument. 6154Sema::ExprResult 6155Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 6156 SourceLocation LParenLoc, 6157 Expr **Args, unsigned NumArgs, 6158 SourceLocation *CommaLocs, 6159 SourceLocation RParenLoc) { 6160 assert(Object->getType()->isRecordType() && "Requires object type argument"); 6161 const RecordType *Record = Object->getType()->getAs<RecordType>(); 6162 6163 // C++ [over.call.object]p1: 6164 // If the primary-expression E in the function call syntax 6165 // evaluates to a class object of type "cv T", then the set of 6166 // candidate functions includes at least the function call 6167 // operators of T. The function call operators of T are obtained by 6168 // ordinary lookup of the name operator() in the context of 6169 // (E).operator(). 6170 OverloadCandidateSet CandidateSet(LParenLoc); 6171 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 6172 6173 if (RequireCompleteType(LParenLoc, Object->getType(), 6174 PartialDiagnostic(diag::err_incomplete_object_call) 6175 << Object->getSourceRange())) 6176 return true; 6177 6178 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 6179 LookupQualifiedName(R, Record->getDecl()); 6180 R.suppressDiagnostics(); 6181 6182 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 6183 Oper != OperEnd; ++Oper) { 6184 AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(), 6185 Args, NumArgs, CandidateSet, 6186 /*SuppressUserConversions=*/ false); 6187 } 6188 6189 // C++ [over.call.object]p2: 6190 // In addition, for each conversion function declared in T of the 6191 // form 6192 // 6193 // operator conversion-type-id () cv-qualifier; 6194 // 6195 // where cv-qualifier is the same cv-qualification as, or a 6196 // greater cv-qualification than, cv, and where conversion-type-id 6197 // denotes the type "pointer to function of (P1,...,Pn) returning 6198 // R", or the type "reference to pointer to function of 6199 // (P1,...,Pn) returning R", or the type "reference to function 6200 // of (P1,...,Pn) returning R", a surrogate call function [...] 6201 // is also considered as a candidate function. Similarly, 6202 // surrogate call functions are added to the set of candidate 6203 // functions for each conversion function declared in an 6204 // accessible base class provided the function is not hidden 6205 // within T by another intervening declaration. 6206 const UnresolvedSetImpl *Conversions 6207 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 6208 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 6209 E = Conversions->end(); I != E; ++I) { 6210 NamedDecl *D = *I; 6211 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6212 if (isa<UsingShadowDecl>(D)) 6213 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6214 6215 // Skip over templated conversion functions; they aren't 6216 // surrogates. 6217 if (isa<FunctionTemplateDecl>(D)) 6218 continue; 6219 6220 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 6221 6222 // Strip the reference type (if any) and then the pointer type (if 6223 // any) to get down to what might be a function type. 6224 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 6225 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6226 ConvType = ConvPtrType->getPointeeType(); 6227 6228 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 6229 AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto, 6230 Object->getType(), Args, NumArgs, 6231 CandidateSet); 6232 } 6233 6234 // Perform overload resolution. 6235 OverloadCandidateSet::iterator Best; 6236 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 6237 case OR_Success: 6238 // Overload resolution succeeded; we'll build the appropriate call 6239 // below. 6240 break; 6241 6242 case OR_No_Viable_Function: 6243 if (CandidateSet.empty()) 6244 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 6245 << Object->getType() << /*call*/ 1 6246 << Object->getSourceRange(); 6247 else 6248 Diag(Object->getSourceRange().getBegin(), 6249 diag::err_ovl_no_viable_object_call) 6250 << Object->getType() << Object->getSourceRange(); 6251 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6252 break; 6253 6254 case OR_Ambiguous: 6255 Diag(Object->getSourceRange().getBegin(), 6256 diag::err_ovl_ambiguous_object_call) 6257 << Object->getType() << Object->getSourceRange(); 6258 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6259 break; 6260 6261 case OR_Deleted: 6262 Diag(Object->getSourceRange().getBegin(), 6263 diag::err_ovl_deleted_object_call) 6264 << Best->Function->isDeleted() 6265 << Object->getType() << Object->getSourceRange(); 6266 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6267 break; 6268 } 6269 6270 if (Best == CandidateSet.end()) { 6271 // We had an error; delete all of the subexpressions and return 6272 // the error. 6273 Object->Destroy(Context); 6274 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6275 Args[ArgIdx]->Destroy(Context); 6276 return true; 6277 } 6278 6279 if (Best->Function == 0) { 6280 // Since there is no function declaration, this is one of the 6281 // surrogate candidates. Dig out the conversion function. 6282 CXXConversionDecl *Conv 6283 = cast<CXXConversionDecl>( 6284 Best->Conversions[0].UserDefined.ConversionFunction); 6285 6286 CheckMemberOperatorAccess(LParenLoc, Object, Conv, Best->getAccess()); 6287 6288 // We selected one of the surrogate functions that converts the 6289 // object parameter to a function pointer. Perform the conversion 6290 // on the object argument, then let ActOnCallExpr finish the job. 6291 6292 // Create an implicit member expr to refer to the conversion operator. 6293 // and then call it. 6294 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv); 6295 6296 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 6297 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 6298 CommaLocs, RParenLoc).release(); 6299 } 6300 6301 CheckMemberOperatorAccess(LParenLoc, Object, 6302 Best->Function, Best->getAccess()); 6303 6304 // We found an overloaded operator(). Build a CXXOperatorCallExpr 6305 // that calls this method, using Object for the implicit object 6306 // parameter and passing along the remaining arguments. 6307 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 6308 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 6309 6310 unsigned NumArgsInProto = Proto->getNumArgs(); 6311 unsigned NumArgsToCheck = NumArgs; 6312 6313 // Build the full argument list for the method call (the 6314 // implicit object parameter is placed at the beginning of the 6315 // list). 6316 Expr **MethodArgs; 6317 if (NumArgs < NumArgsInProto) { 6318 NumArgsToCheck = NumArgsInProto; 6319 MethodArgs = new Expr*[NumArgsInProto + 1]; 6320 } else { 6321 MethodArgs = new Expr*[NumArgs + 1]; 6322 } 6323 MethodArgs[0] = Object; 6324 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6325 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 6326 6327 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 6328 SourceLocation()); 6329 UsualUnaryConversions(NewFn); 6330 6331 // Once we've built TheCall, all of the expressions are properly 6332 // owned. 6333 QualType ResultTy = Method->getResultType().getNonReferenceType(); 6334 ExprOwningPtr<CXXOperatorCallExpr> 6335 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 6336 MethodArgs, NumArgs + 1, 6337 ResultTy, RParenLoc)); 6338 delete [] MethodArgs; 6339 6340 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 6341 Method)) 6342 return true; 6343 6344 // We may have default arguments. If so, we need to allocate more 6345 // slots in the call for them. 6346 if (NumArgs < NumArgsInProto) 6347 TheCall->setNumArgs(Context, NumArgsInProto + 1); 6348 else if (NumArgs > NumArgsInProto) 6349 NumArgsToCheck = NumArgsInProto; 6350 6351 bool IsError = false; 6352 6353 // Initialize the implicit object parameter. 6354 IsError |= PerformObjectArgumentInitialization(Object, Method); 6355 TheCall->setArg(0, Object); 6356 6357 6358 // Check the argument types. 6359 for (unsigned i = 0; i != NumArgsToCheck; i++) { 6360 Expr *Arg; 6361 if (i < NumArgs) { 6362 Arg = Args[i]; 6363 6364 // Pass the argument. 6365 6366 OwningExprResult InputInit 6367 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6368 Method->getParamDecl(i)), 6369 SourceLocation(), Owned(Arg)); 6370 6371 IsError |= InputInit.isInvalid(); 6372 Arg = InputInit.takeAs<Expr>(); 6373 } else { 6374 OwningExprResult DefArg 6375 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 6376 if (DefArg.isInvalid()) { 6377 IsError = true; 6378 break; 6379 } 6380 6381 Arg = DefArg.takeAs<Expr>(); 6382 } 6383 6384 TheCall->setArg(i + 1, Arg); 6385 } 6386 6387 // If this is a variadic call, handle args passed through "...". 6388 if (Proto->isVariadic()) { 6389 // Promote the arguments (C99 6.5.2.2p7). 6390 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 6391 Expr *Arg = Args[i]; 6392 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 6393 TheCall->setArg(i + 1, Arg); 6394 } 6395 } 6396 6397 if (IsError) return true; 6398 6399 if (CheckFunctionCall(Method, TheCall.get())) 6400 return true; 6401 6402 return MaybeBindToTemporary(TheCall.release()).release(); 6403} 6404 6405/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 6406/// (if one exists), where @c Base is an expression of class type and 6407/// @c Member is the name of the member we're trying to find. 6408Sema::OwningExprResult 6409Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 6410 Expr *Base = static_cast<Expr *>(BaseIn.get()); 6411 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 6412 6413 SourceLocation Loc = Base->getExprLoc(); 6414 6415 // C++ [over.ref]p1: 6416 // 6417 // [...] An expression x->m is interpreted as (x.operator->())->m 6418 // for a class object x of type T if T::operator->() exists and if 6419 // the operator is selected as the best match function by the 6420 // overload resolution mechanism (13.3). 6421 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 6422 OverloadCandidateSet CandidateSet(Loc); 6423 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 6424 6425 if (RequireCompleteType(Loc, Base->getType(), 6426 PDiag(diag::err_typecheck_incomplete_tag) 6427 << Base->getSourceRange())) 6428 return ExprError(); 6429 6430 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 6431 LookupQualifiedName(R, BaseRecord->getDecl()); 6432 R.suppressDiagnostics(); 6433 6434 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 6435 Oper != OperEnd; ++Oper) { 6436 NamedDecl *D = *Oper; 6437 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6438 if (isa<UsingShadowDecl>(D)) 6439 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6440 6441 AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext, 6442 Base->getType(), 0, 0, CandidateSet, 6443 /*SuppressUserConversions=*/false); 6444 } 6445 6446 // Perform overload resolution. 6447 OverloadCandidateSet::iterator Best; 6448 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6449 case OR_Success: 6450 // Overload resolution succeeded; we'll build the call below. 6451 break; 6452 6453 case OR_No_Viable_Function: 6454 if (CandidateSet.empty()) 6455 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 6456 << Base->getType() << Base->getSourceRange(); 6457 else 6458 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6459 << "operator->" << Base->getSourceRange(); 6460 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 6461 return ExprError(); 6462 6463 case OR_Ambiguous: 6464 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6465 << "->" << Base->getSourceRange(); 6466 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 6467 return ExprError(); 6468 6469 case OR_Deleted: 6470 Diag(OpLoc, diag::err_ovl_deleted_oper) 6471 << Best->Function->isDeleted() 6472 << "->" << Base->getSourceRange(); 6473 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 6474 return ExprError(); 6475 } 6476 6477 // Convert the object parameter. 6478 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 6479 if (PerformObjectArgumentInitialization(Base, Method)) 6480 return ExprError(); 6481 6482 // No concerns about early exits now. 6483 BaseIn.release(); 6484 6485 // Build the operator call. 6486 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 6487 SourceLocation()); 6488 UsualUnaryConversions(FnExpr); 6489 6490 QualType ResultTy = Method->getResultType().getNonReferenceType(); 6491 ExprOwningPtr<CXXOperatorCallExpr> 6492 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 6493 &Base, 1, ResultTy, OpLoc)); 6494 6495 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 6496 Method)) 6497 return ExprError(); 6498 return move(TheCall); 6499} 6500 6501/// FixOverloadedFunctionReference - E is an expression that refers to 6502/// a C++ overloaded function (possibly with some parentheses and 6503/// perhaps a '&' around it). We have resolved the overloaded function 6504/// to the function declaration Fn, so patch up the expression E to 6505/// refer (possibly indirectly) to Fn. Returns the new expr. 6506Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 6507 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 6508 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 6509 if (SubExpr == PE->getSubExpr()) 6510 return PE->Retain(); 6511 6512 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 6513 } 6514 6515 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 6516 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 6517 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 6518 SubExpr->getType()) && 6519 "Implicit cast type cannot be determined from overload"); 6520 if (SubExpr == ICE->getSubExpr()) 6521 return ICE->Retain(); 6522 6523 return new (Context) ImplicitCastExpr(ICE->getType(), 6524 ICE->getCastKind(), 6525 SubExpr, 6526 ICE->isLvalueCast()); 6527 } 6528 6529 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 6530 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 6531 "Can only take the address of an overloaded function"); 6532 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6533 if (Method->isStatic()) { 6534 // Do nothing: static member functions aren't any different 6535 // from non-member functions. 6536 } else { 6537 // Fix the sub expression, which really has to be an 6538 // UnresolvedLookupExpr holding an overloaded member function 6539 // or template. 6540 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 6541 if (SubExpr == UnOp->getSubExpr()) 6542 return UnOp->Retain(); 6543 6544 assert(isa<DeclRefExpr>(SubExpr) 6545 && "fixed to something other than a decl ref"); 6546 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 6547 && "fixed to a member ref with no nested name qualifier"); 6548 6549 // We have taken the address of a pointer to member 6550 // function. Perform the computation here so that we get the 6551 // appropriate pointer to member type. 6552 QualType ClassType 6553 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 6554 QualType MemPtrType 6555 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 6556 6557 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 6558 MemPtrType, UnOp->getOperatorLoc()); 6559 } 6560 } 6561 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 6562 if (SubExpr == UnOp->getSubExpr()) 6563 return UnOp->Retain(); 6564 6565 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 6566 Context.getPointerType(SubExpr->getType()), 6567 UnOp->getOperatorLoc()); 6568 } 6569 6570 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 6571 // FIXME: avoid copy. 6572 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6573 if (ULE->hasExplicitTemplateArgs()) { 6574 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 6575 TemplateArgs = &TemplateArgsBuffer; 6576 } 6577 6578 return DeclRefExpr::Create(Context, 6579 ULE->getQualifier(), 6580 ULE->getQualifierRange(), 6581 Fn, 6582 ULE->getNameLoc(), 6583 Fn->getType(), 6584 TemplateArgs); 6585 } 6586 6587 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 6588 // FIXME: avoid copy. 6589 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6590 if (MemExpr->hasExplicitTemplateArgs()) { 6591 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6592 TemplateArgs = &TemplateArgsBuffer; 6593 } 6594 6595 Expr *Base; 6596 6597 // If we're filling in 6598 if (MemExpr->isImplicitAccess()) { 6599 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 6600 return DeclRefExpr::Create(Context, 6601 MemExpr->getQualifier(), 6602 MemExpr->getQualifierRange(), 6603 Fn, 6604 MemExpr->getMemberLoc(), 6605 Fn->getType(), 6606 TemplateArgs); 6607 } else { 6608 SourceLocation Loc = MemExpr->getMemberLoc(); 6609 if (MemExpr->getQualifier()) 6610 Loc = MemExpr->getQualifierRange().getBegin(); 6611 Base = new (Context) CXXThisExpr(Loc, 6612 MemExpr->getBaseType(), 6613 /*isImplicit=*/true); 6614 } 6615 } else 6616 Base = MemExpr->getBase()->Retain(); 6617 6618 return MemberExpr::Create(Context, Base, 6619 MemExpr->isArrow(), 6620 MemExpr->getQualifier(), 6621 MemExpr->getQualifierRange(), 6622 Fn, 6623 MemExpr->getMemberLoc(), 6624 TemplateArgs, 6625 Fn->getType()); 6626 } 6627 6628 assert(false && "Invalid reference to overloaded function"); 6629 return E->Retain(); 6630} 6631 6632Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 6633 FunctionDecl *Fn) { 6634 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn)); 6635} 6636 6637} // end namespace clang 6638