SemaOverload.cpp revision b351a7daad4bcac7716d52aa0044a6b7c323ad0d
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28#include <cstdio> 29 30namespace clang { 31 32/// GetConversionCategory - Retrieve the implicit conversion 33/// category corresponding to the given implicit conversion kind. 34ImplicitConversionCategory 35GetConversionCategory(ImplicitConversionKind Kind) { 36 static const ImplicitConversionCategory 37 Category[(int)ICK_Num_Conversion_Kinds] = { 38 ICC_Identity, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Lvalue_Transformation, 42 ICC_Identity, 43 ICC_Qualification_Adjustment, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Promotion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion, 56 ICC_Conversion 57 }; 58 return Category[(int)Kind]; 59} 60 61/// GetConversionRank - Retrieve the implicit conversion rank 62/// corresponding to the given implicit conversion kind. 63ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 64 static const ImplicitConversionRank 65 Rank[(int)ICK_Num_Conversion_Kinds] = { 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Exact_Match, 72 ICR_Promotion, 73 ICR_Promotion, 74 ICR_Promotion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion, 84 ICR_Conversion 85 }; 86 return Rank[(int)Kind]; 87} 88 89/// GetImplicitConversionName - Return the name of this kind of 90/// implicit conversion. 91const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 92 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 93 "No conversion", 94 "Lvalue-to-rvalue", 95 "Array-to-pointer", 96 "Function-to-pointer", 97 "Noreturn adjustment", 98 "Qualification", 99 "Integral promotion", 100 "Floating point promotion", 101 "Complex promotion", 102 "Integral conversion", 103 "Floating conversion", 104 "Complex conversion", 105 "Floating-integral conversion", 106 "Complex-real conversion", 107 "Pointer conversion", 108 "Pointer-to-member conversion", 109 "Boolean conversion", 110 "Compatible-types conversion", 111 "Derived-to-base conversion" 112 }; 113 return Name[Kind]; 114} 115 116/// StandardConversionSequence - Set the standard conversion 117/// sequence to the identity conversion. 118void StandardConversionSequence::setAsIdentityConversion() { 119 First = ICK_Identity; 120 Second = ICK_Identity; 121 Third = ICK_Identity; 122 Deprecated = false; 123 ReferenceBinding = false; 124 DirectBinding = false; 125 RRefBinding = false; 126 CopyConstructor = 0; 127} 128 129/// getRank - Retrieve the rank of this standard conversion sequence 130/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 131/// implicit conversions. 132ImplicitConversionRank StandardConversionSequence::getRank() const { 133 ImplicitConversionRank Rank = ICR_Exact_Match; 134 if (GetConversionRank(First) > Rank) 135 Rank = GetConversionRank(First); 136 if (GetConversionRank(Second) > Rank) 137 Rank = GetConversionRank(Second); 138 if (GetConversionRank(Third) > Rank) 139 Rank = GetConversionRank(Third); 140 return Rank; 141} 142 143/// isPointerConversionToBool - Determines whether this conversion is 144/// a conversion of a pointer or pointer-to-member to bool. This is 145/// used as part of the ranking of standard conversion sequences 146/// (C++ 13.3.3.2p4). 147bool StandardConversionSequence::isPointerConversionToBool() const { 148 // Note that FromType has not necessarily been transformed by the 149 // array-to-pointer or function-to-pointer implicit conversions, so 150 // check for their presence as well as checking whether FromType is 151 // a pointer. 152 if (getToType()->isBooleanType() && 153 (getFromType()->isPointerType() || getFromType()->isBlockPointerType() || 154 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 155 return true; 156 157 return false; 158} 159 160/// isPointerConversionToVoidPointer - Determines whether this 161/// conversion is a conversion of a pointer to a void pointer. This is 162/// used as part of the ranking of standard conversion sequences (C++ 163/// 13.3.3.2p4). 164bool 165StandardConversionSequence:: 166isPointerConversionToVoidPointer(ASTContext& Context) const { 167 QualType FromType = getFromType(); 168 QualType ToType = getToType(); 169 170 // Note that FromType has not necessarily been transformed by the 171 // array-to-pointer implicit conversion, so check for its presence 172 // and redo the conversion to get a pointer. 173 if (First == ICK_Array_To_Pointer) 174 FromType = Context.getArrayDecayedType(FromType); 175 176 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 177 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 178 return ToPtrType->getPointeeType()->isVoidType(); 179 180 return false; 181} 182 183/// DebugPrint - Print this standard conversion sequence to standard 184/// error. Useful for debugging overloading issues. 185void StandardConversionSequence::DebugPrint() const { 186 bool PrintedSomething = false; 187 if (First != ICK_Identity) { 188 fprintf(stderr, "%s", GetImplicitConversionName(First)); 189 PrintedSomething = true; 190 } 191 192 if (Second != ICK_Identity) { 193 if (PrintedSomething) { 194 fprintf(stderr, " -> "); 195 } 196 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 197 198 if (CopyConstructor) { 199 fprintf(stderr, " (by copy constructor)"); 200 } else if (DirectBinding) { 201 fprintf(stderr, " (direct reference binding)"); 202 } else if (ReferenceBinding) { 203 fprintf(stderr, " (reference binding)"); 204 } 205 PrintedSomething = true; 206 } 207 208 if (Third != ICK_Identity) { 209 if (PrintedSomething) { 210 fprintf(stderr, " -> "); 211 } 212 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 213 PrintedSomething = true; 214 } 215 216 if (!PrintedSomething) { 217 fprintf(stderr, "No conversions required"); 218 } 219} 220 221/// DebugPrint - Print this user-defined conversion sequence to standard 222/// error. Useful for debugging overloading issues. 223void UserDefinedConversionSequence::DebugPrint() const { 224 if (Before.First || Before.Second || Before.Third) { 225 Before.DebugPrint(); 226 fprintf(stderr, " -> "); 227 } 228 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 229 if (After.First || After.Second || After.Third) { 230 fprintf(stderr, " -> "); 231 After.DebugPrint(); 232 } 233} 234 235/// DebugPrint - Print this implicit conversion sequence to standard 236/// error. Useful for debugging overloading issues. 237void ImplicitConversionSequence::DebugPrint() const { 238 switch (ConversionKind) { 239 case StandardConversion: 240 fprintf(stderr, "Standard conversion: "); 241 Standard.DebugPrint(); 242 break; 243 case UserDefinedConversion: 244 fprintf(stderr, "User-defined conversion: "); 245 UserDefined.DebugPrint(); 246 break; 247 case EllipsisConversion: 248 fprintf(stderr, "Ellipsis conversion"); 249 break; 250 case AmbiguousConversion: 251 fprintf(stderr, "Ambiguous conversion"); 252 break; 253 case BadConversion: 254 fprintf(stderr, "Bad conversion"); 255 break; 256 } 257 258 fprintf(stderr, "\n"); 259} 260 261void AmbiguousConversionSequence::construct() { 262 new (&conversions()) ConversionSet(); 263} 264 265void AmbiguousConversionSequence::destruct() { 266 conversions().~ConversionSet(); 267} 268 269void 270AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 271 FromTypePtr = O.FromTypePtr; 272 ToTypePtr = O.ToTypePtr; 273 new (&conversions()) ConversionSet(O.conversions()); 274} 275 276 277// IsOverload - Determine whether the given New declaration is an 278// overload of the declarations in Old. This routine returns false if 279// New and Old cannot be overloaded, e.g., if New has the same 280// signature as some function in Old (C++ 1.3.10) or if the Old 281// declarations aren't functions (or function templates) at all. When 282// it does return false, MatchedDecl will point to the decl that New 283// cannot be overloaded with. This decl may be a UsingShadowDecl on 284// top of the underlying declaration. 285// 286// Example: Given the following input: 287// 288// void f(int, float); // #1 289// void f(int, int); // #2 290// int f(int, int); // #3 291// 292// When we process #1, there is no previous declaration of "f", 293// so IsOverload will not be used. 294// 295// When we process #2, Old contains only the FunctionDecl for #1. By 296// comparing the parameter types, we see that #1 and #2 are overloaded 297// (since they have different signatures), so this routine returns 298// false; MatchedDecl is unchanged. 299// 300// When we process #3, Old is an overload set containing #1 and #2. We 301// compare the signatures of #3 to #1 (they're overloaded, so we do 302// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 303// identical (return types of functions are not part of the 304// signature), IsOverload returns false and MatchedDecl will be set to 305// point to the FunctionDecl for #2. 306Sema::OverloadKind 307Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 308 NamedDecl *&Match) { 309 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 310 I != E; ++I) { 311 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 312 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 313 if (!IsOverload(New, OldT->getTemplatedDecl())) { 314 Match = *I; 315 return Ovl_Match; 316 } 317 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 318 if (!IsOverload(New, OldF)) { 319 Match = *I; 320 return Ovl_Match; 321 } 322 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 323 // We can overload with these, which can show up when doing 324 // redeclaration checks for UsingDecls. 325 assert(Old.getLookupKind() == LookupUsingDeclName); 326 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 327 // Optimistically assume that an unresolved using decl will 328 // overload; if it doesn't, we'll have to diagnose during 329 // template instantiation. 330 } else { 331 // (C++ 13p1): 332 // Only function declarations can be overloaded; object and type 333 // declarations cannot be overloaded. 334 Match = *I; 335 return Ovl_NonFunction; 336 } 337 } 338 339 return Ovl_Overload; 340} 341 342bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 343 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 344 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 345 346 // C++ [temp.fct]p2: 347 // A function template can be overloaded with other function templates 348 // and with normal (non-template) functions. 349 if ((OldTemplate == 0) != (NewTemplate == 0)) 350 return true; 351 352 // Is the function New an overload of the function Old? 353 QualType OldQType = Context.getCanonicalType(Old->getType()); 354 QualType NewQType = Context.getCanonicalType(New->getType()); 355 356 // Compare the signatures (C++ 1.3.10) of the two functions to 357 // determine whether they are overloads. If we find any mismatch 358 // in the signature, they are overloads. 359 360 // If either of these functions is a K&R-style function (no 361 // prototype), then we consider them to have matching signatures. 362 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 363 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 364 return false; 365 366 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 367 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 368 369 // The signature of a function includes the types of its 370 // parameters (C++ 1.3.10), which includes the presence or absence 371 // of the ellipsis; see C++ DR 357). 372 if (OldQType != NewQType && 373 (OldType->getNumArgs() != NewType->getNumArgs() || 374 OldType->isVariadic() != NewType->isVariadic() || 375 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 376 NewType->arg_type_begin()))) 377 return true; 378 379 // C++ [temp.over.link]p4: 380 // The signature of a function template consists of its function 381 // signature, its return type and its template parameter list. The names 382 // of the template parameters are significant only for establishing the 383 // relationship between the template parameters and the rest of the 384 // signature. 385 // 386 // We check the return type and template parameter lists for function 387 // templates first; the remaining checks follow. 388 if (NewTemplate && 389 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 390 OldTemplate->getTemplateParameters(), 391 false, TPL_TemplateMatch) || 392 OldType->getResultType() != NewType->getResultType())) 393 return true; 394 395 // If the function is a class member, its signature includes the 396 // cv-qualifiers (if any) on the function itself. 397 // 398 // As part of this, also check whether one of the member functions 399 // is static, in which case they are not overloads (C++ 400 // 13.1p2). While not part of the definition of the signature, 401 // this check is important to determine whether these functions 402 // can be overloaded. 403 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 404 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 405 if (OldMethod && NewMethod && 406 !OldMethod->isStatic() && !NewMethod->isStatic() && 407 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 408 return true; 409 410 // The signatures match; this is not an overload. 411 return false; 412} 413 414/// TryImplicitConversion - Attempt to perform an implicit conversion 415/// from the given expression (Expr) to the given type (ToType). This 416/// function returns an implicit conversion sequence that can be used 417/// to perform the initialization. Given 418/// 419/// void f(float f); 420/// void g(int i) { f(i); } 421/// 422/// this routine would produce an implicit conversion sequence to 423/// describe the initialization of f from i, which will be a standard 424/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 425/// 4.1) followed by a floating-integral conversion (C++ 4.9). 426// 427/// Note that this routine only determines how the conversion can be 428/// performed; it does not actually perform the conversion. As such, 429/// it will not produce any diagnostics if no conversion is available, 430/// but will instead return an implicit conversion sequence of kind 431/// "BadConversion". 432/// 433/// If @p SuppressUserConversions, then user-defined conversions are 434/// not permitted. 435/// If @p AllowExplicit, then explicit user-defined conversions are 436/// permitted. 437/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 438/// no matter its actual lvalueness. 439/// If @p UserCast, the implicit conversion is being done for a user-specified 440/// cast. 441ImplicitConversionSequence 442Sema::TryImplicitConversion(Expr* From, QualType ToType, 443 bool SuppressUserConversions, 444 bool AllowExplicit, bool ForceRValue, 445 bool InOverloadResolution, 446 bool UserCast) { 447 ImplicitConversionSequence ICS; 448 OverloadCandidateSet Conversions; 449 OverloadingResult UserDefResult = OR_Success; 450 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 451 ICS.setStandard(); 452 else if (getLangOptions().CPlusPlus && 453 (UserDefResult = IsUserDefinedConversion(From, ToType, 454 ICS.UserDefined, 455 Conversions, 456 !SuppressUserConversions, AllowExplicit, 457 ForceRValue, UserCast)) == OR_Success) { 458 ICS.setUserDefined(); 459 // C++ [over.ics.user]p4: 460 // A conversion of an expression of class type to the same class 461 // type is given Exact Match rank, and a conversion of an 462 // expression of class type to a base class of that type is 463 // given Conversion rank, in spite of the fact that a copy 464 // constructor (i.e., a user-defined conversion function) is 465 // called for those cases. 466 if (CXXConstructorDecl *Constructor 467 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 468 QualType FromCanon 469 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 470 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 471 if (Constructor->isCopyConstructor() && 472 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 473 // Turn this into a "standard" conversion sequence, so that it 474 // gets ranked with standard conversion sequences. 475 ICS.setStandard(); 476 ICS.Standard.setAsIdentityConversion(); 477 ICS.Standard.setFromType(From->getType()); 478 ICS.Standard.setToType(ToType); 479 ICS.Standard.CopyConstructor = Constructor; 480 if (ToCanon != FromCanon) 481 ICS.Standard.Second = ICK_Derived_To_Base; 482 } 483 } 484 485 // C++ [over.best.ics]p4: 486 // However, when considering the argument of a user-defined 487 // conversion function that is a candidate by 13.3.1.3 when 488 // invoked for the copying of the temporary in the second step 489 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 490 // 13.3.1.6 in all cases, only standard conversion sequences and 491 // ellipsis conversion sequences are allowed. 492 if (SuppressUserConversions && ICS.isUserDefined()) { 493 ICS.setBad(); 494 ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType); 495 } 496 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 497 ICS.setAmbiguous(); 498 ICS.Ambiguous.setFromType(From->getType()); 499 ICS.Ambiguous.setToType(ToType); 500 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 501 Cand != Conversions.end(); ++Cand) 502 if (Cand->Viable) 503 ICS.Ambiguous.addConversion(Cand->Function); 504 } else { 505 ICS.setBad(); 506 ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType); 507 } 508 509 return ICS; 510} 511 512/// \brief Determine whether the conversion from FromType to ToType is a valid 513/// conversion that strips "noreturn" off the nested function type. 514static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 515 QualType ToType, QualType &ResultTy) { 516 if (Context.hasSameUnqualifiedType(FromType, ToType)) 517 return false; 518 519 // Strip the noreturn off the type we're converting from; noreturn can 520 // safely be removed. 521 FromType = Context.getNoReturnType(FromType, false); 522 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 523 return false; 524 525 ResultTy = FromType; 526 return true; 527} 528 529/// IsStandardConversion - Determines whether there is a standard 530/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 531/// expression From to the type ToType. Standard conversion sequences 532/// only consider non-class types; for conversions that involve class 533/// types, use TryImplicitConversion. If a conversion exists, SCS will 534/// contain the standard conversion sequence required to perform this 535/// conversion and this routine will return true. Otherwise, this 536/// routine will return false and the value of SCS is unspecified. 537bool 538Sema::IsStandardConversion(Expr* From, QualType ToType, 539 bool InOverloadResolution, 540 StandardConversionSequence &SCS) { 541 QualType FromType = From->getType(); 542 543 // Standard conversions (C++ [conv]) 544 SCS.setAsIdentityConversion(); 545 SCS.Deprecated = false; 546 SCS.IncompatibleObjC = false; 547 SCS.setFromType(FromType); 548 SCS.CopyConstructor = 0; 549 550 // There are no standard conversions for class types in C++, so 551 // abort early. When overloading in C, however, we do permit 552 if (FromType->isRecordType() || ToType->isRecordType()) { 553 if (getLangOptions().CPlusPlus) 554 return false; 555 556 // When we're overloading in C, we allow, as standard conversions, 557 } 558 559 // The first conversion can be an lvalue-to-rvalue conversion, 560 // array-to-pointer conversion, or function-to-pointer conversion 561 // (C++ 4p1). 562 563 // Lvalue-to-rvalue conversion (C++ 4.1): 564 // An lvalue (3.10) of a non-function, non-array type T can be 565 // converted to an rvalue. 566 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 567 if (argIsLvalue == Expr::LV_Valid && 568 !FromType->isFunctionType() && !FromType->isArrayType() && 569 Context.getCanonicalType(FromType) != Context.OverloadTy) { 570 SCS.First = ICK_Lvalue_To_Rvalue; 571 572 // If T is a non-class type, the type of the rvalue is the 573 // cv-unqualified version of T. Otherwise, the type of the rvalue 574 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 575 // just strip the qualifiers because they don't matter. 576 FromType = FromType.getUnqualifiedType(); 577 } else if (FromType->isArrayType()) { 578 // Array-to-pointer conversion (C++ 4.2) 579 SCS.First = ICK_Array_To_Pointer; 580 581 // An lvalue or rvalue of type "array of N T" or "array of unknown 582 // bound of T" can be converted to an rvalue of type "pointer to 583 // T" (C++ 4.2p1). 584 FromType = Context.getArrayDecayedType(FromType); 585 586 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 587 // This conversion is deprecated. (C++ D.4). 588 SCS.Deprecated = true; 589 590 // For the purpose of ranking in overload resolution 591 // (13.3.3.1.1), this conversion is considered an 592 // array-to-pointer conversion followed by a qualification 593 // conversion (4.4). (C++ 4.2p2) 594 SCS.Second = ICK_Identity; 595 SCS.Third = ICK_Qualification; 596 SCS.setToType(ToType); 597 return true; 598 } 599 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 600 // Function-to-pointer conversion (C++ 4.3). 601 SCS.First = ICK_Function_To_Pointer; 602 603 // An lvalue of function type T can be converted to an rvalue of 604 // type "pointer to T." The result is a pointer to the 605 // function. (C++ 4.3p1). 606 FromType = Context.getPointerType(FromType); 607 } else if (FunctionDecl *Fn 608 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 609 // Address of overloaded function (C++ [over.over]). 610 SCS.First = ICK_Function_To_Pointer; 611 612 // We were able to resolve the address of the overloaded function, 613 // so we can convert to the type of that function. 614 FromType = Fn->getType(); 615 if (ToType->isLValueReferenceType()) 616 FromType = Context.getLValueReferenceType(FromType); 617 else if (ToType->isRValueReferenceType()) 618 FromType = Context.getRValueReferenceType(FromType); 619 else if (ToType->isMemberPointerType()) { 620 // Resolve address only succeeds if both sides are member pointers, 621 // but it doesn't have to be the same class. See DR 247. 622 // Note that this means that the type of &Derived::fn can be 623 // Ret (Base::*)(Args) if the fn overload actually found is from the 624 // base class, even if it was brought into the derived class via a 625 // using declaration. The standard isn't clear on this issue at all. 626 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 627 FromType = Context.getMemberPointerType(FromType, 628 Context.getTypeDeclType(M->getParent()).getTypePtr()); 629 } else 630 FromType = Context.getPointerType(FromType); 631 } else { 632 // We don't require any conversions for the first step. 633 SCS.First = ICK_Identity; 634 } 635 636 // The second conversion can be an integral promotion, floating 637 // point promotion, integral conversion, floating point conversion, 638 // floating-integral conversion, pointer conversion, 639 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 640 // For overloading in C, this can also be a "compatible-type" 641 // conversion. 642 bool IncompatibleObjC = false; 643 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 644 // The unqualified versions of the types are the same: there's no 645 // conversion to do. 646 SCS.Second = ICK_Identity; 647 } else if (IsIntegralPromotion(From, FromType, ToType)) { 648 // Integral promotion (C++ 4.5). 649 SCS.Second = ICK_Integral_Promotion; 650 FromType = ToType.getUnqualifiedType(); 651 } else if (IsFloatingPointPromotion(FromType, ToType)) { 652 // Floating point promotion (C++ 4.6). 653 SCS.Second = ICK_Floating_Promotion; 654 FromType = ToType.getUnqualifiedType(); 655 } else if (IsComplexPromotion(FromType, ToType)) { 656 // Complex promotion (Clang extension) 657 SCS.Second = ICK_Complex_Promotion; 658 FromType = ToType.getUnqualifiedType(); 659 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 660 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 661 // Integral conversions (C++ 4.7). 662 SCS.Second = ICK_Integral_Conversion; 663 FromType = ToType.getUnqualifiedType(); 664 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 665 // Floating point conversions (C++ 4.8). 666 SCS.Second = ICK_Floating_Conversion; 667 FromType = ToType.getUnqualifiedType(); 668 } else if (FromType->isComplexType() && ToType->isComplexType()) { 669 // Complex conversions (C99 6.3.1.6) 670 SCS.Second = ICK_Complex_Conversion; 671 FromType = ToType.getUnqualifiedType(); 672 } else if ((FromType->isFloatingType() && 673 ToType->isIntegralType() && (!ToType->isBooleanType() && 674 !ToType->isEnumeralType())) || 675 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 676 ToType->isFloatingType())) { 677 // Floating-integral conversions (C++ 4.9). 678 SCS.Second = ICK_Floating_Integral; 679 FromType = ToType.getUnqualifiedType(); 680 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 681 (ToType->isComplexType() && FromType->isArithmeticType())) { 682 // Complex-real conversions (C99 6.3.1.7) 683 SCS.Second = ICK_Complex_Real; 684 FromType = ToType.getUnqualifiedType(); 685 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 686 FromType, IncompatibleObjC)) { 687 // Pointer conversions (C++ 4.10). 688 SCS.Second = ICK_Pointer_Conversion; 689 SCS.IncompatibleObjC = IncompatibleObjC; 690 } else if (IsMemberPointerConversion(From, FromType, ToType, 691 InOverloadResolution, FromType)) { 692 // Pointer to member conversions (4.11). 693 SCS.Second = ICK_Pointer_Member; 694 } else if (ToType->isBooleanType() && 695 (FromType->isArithmeticType() || 696 FromType->isEnumeralType() || 697 FromType->isAnyPointerType() || 698 FromType->isBlockPointerType() || 699 FromType->isMemberPointerType() || 700 FromType->isNullPtrType())) { 701 // Boolean conversions (C++ 4.12). 702 SCS.Second = ICK_Boolean_Conversion; 703 FromType = Context.BoolTy; 704 } else if (!getLangOptions().CPlusPlus && 705 Context.typesAreCompatible(ToType, FromType)) { 706 // Compatible conversions (Clang extension for C function overloading) 707 SCS.Second = ICK_Compatible_Conversion; 708 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 709 // Treat a conversion that strips "noreturn" as an identity conversion. 710 SCS.Second = ICK_NoReturn_Adjustment; 711 } else { 712 // No second conversion required. 713 SCS.Second = ICK_Identity; 714 } 715 716 QualType CanonFrom; 717 QualType CanonTo; 718 // The third conversion can be a qualification conversion (C++ 4p1). 719 if (IsQualificationConversion(FromType, ToType)) { 720 SCS.Third = ICK_Qualification; 721 FromType = ToType; 722 CanonFrom = Context.getCanonicalType(FromType); 723 CanonTo = Context.getCanonicalType(ToType); 724 } else { 725 // No conversion required 726 SCS.Third = ICK_Identity; 727 728 // C++ [over.best.ics]p6: 729 // [...] Any difference in top-level cv-qualification is 730 // subsumed by the initialization itself and does not constitute 731 // a conversion. [...] 732 CanonFrom = Context.getCanonicalType(FromType); 733 CanonTo = Context.getCanonicalType(ToType); 734 if (CanonFrom.getLocalUnqualifiedType() 735 == CanonTo.getLocalUnqualifiedType() && 736 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 737 FromType = ToType; 738 CanonFrom = CanonTo; 739 } 740 } 741 742 // If we have not converted the argument type to the parameter type, 743 // this is a bad conversion sequence. 744 if (CanonFrom != CanonTo) 745 return false; 746 747 SCS.setToType(FromType); 748 return true; 749} 750 751/// IsIntegralPromotion - Determines whether the conversion from the 752/// expression From (whose potentially-adjusted type is FromType) to 753/// ToType is an integral promotion (C++ 4.5). If so, returns true and 754/// sets PromotedType to the promoted type. 755bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 756 const BuiltinType *To = ToType->getAs<BuiltinType>(); 757 // All integers are built-in. 758 if (!To) { 759 return false; 760 } 761 762 // An rvalue of type char, signed char, unsigned char, short int, or 763 // unsigned short int can be converted to an rvalue of type int if 764 // int can represent all the values of the source type; otherwise, 765 // the source rvalue can be converted to an rvalue of type unsigned 766 // int (C++ 4.5p1). 767 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 768 if (// We can promote any signed, promotable integer type to an int 769 (FromType->isSignedIntegerType() || 770 // We can promote any unsigned integer type whose size is 771 // less than int to an int. 772 (!FromType->isSignedIntegerType() && 773 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 774 return To->getKind() == BuiltinType::Int; 775 } 776 777 return To->getKind() == BuiltinType::UInt; 778 } 779 780 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 781 // can be converted to an rvalue of the first of the following types 782 // that can represent all the values of its underlying type: int, 783 // unsigned int, long, or unsigned long (C++ 4.5p2). 784 785 // We pre-calculate the promotion type for enum types. 786 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 787 if (ToType->isIntegerType()) 788 return Context.hasSameUnqualifiedType(ToType, 789 FromEnumType->getDecl()->getPromotionType()); 790 791 if (FromType->isWideCharType() && ToType->isIntegerType()) { 792 // Determine whether the type we're converting from is signed or 793 // unsigned. 794 bool FromIsSigned; 795 uint64_t FromSize = Context.getTypeSize(FromType); 796 797 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 798 FromIsSigned = true; 799 800 // The types we'll try to promote to, in the appropriate 801 // order. Try each of these types. 802 QualType PromoteTypes[6] = { 803 Context.IntTy, Context.UnsignedIntTy, 804 Context.LongTy, Context.UnsignedLongTy , 805 Context.LongLongTy, Context.UnsignedLongLongTy 806 }; 807 for (int Idx = 0; Idx < 6; ++Idx) { 808 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 809 if (FromSize < ToSize || 810 (FromSize == ToSize && 811 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 812 // We found the type that we can promote to. If this is the 813 // type we wanted, we have a promotion. Otherwise, no 814 // promotion. 815 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 816 } 817 } 818 } 819 820 // An rvalue for an integral bit-field (9.6) can be converted to an 821 // rvalue of type int if int can represent all the values of the 822 // bit-field; otherwise, it can be converted to unsigned int if 823 // unsigned int can represent all the values of the bit-field. If 824 // the bit-field is larger yet, no integral promotion applies to 825 // it. If the bit-field has an enumerated type, it is treated as any 826 // other value of that type for promotion purposes (C++ 4.5p3). 827 // FIXME: We should delay checking of bit-fields until we actually perform the 828 // conversion. 829 using llvm::APSInt; 830 if (From) 831 if (FieldDecl *MemberDecl = From->getBitField()) { 832 APSInt BitWidth; 833 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 834 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 835 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 836 ToSize = Context.getTypeSize(ToType); 837 838 // Are we promoting to an int from a bitfield that fits in an int? 839 if (BitWidth < ToSize || 840 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 841 return To->getKind() == BuiltinType::Int; 842 } 843 844 // Are we promoting to an unsigned int from an unsigned bitfield 845 // that fits into an unsigned int? 846 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 847 return To->getKind() == BuiltinType::UInt; 848 } 849 850 return false; 851 } 852 } 853 854 // An rvalue of type bool can be converted to an rvalue of type int, 855 // with false becoming zero and true becoming one (C++ 4.5p4). 856 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 857 return true; 858 } 859 860 return false; 861} 862 863/// IsFloatingPointPromotion - Determines whether the conversion from 864/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 865/// returns true and sets PromotedType to the promoted type. 866bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 867 /// An rvalue of type float can be converted to an rvalue of type 868 /// double. (C++ 4.6p1). 869 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 870 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 871 if (FromBuiltin->getKind() == BuiltinType::Float && 872 ToBuiltin->getKind() == BuiltinType::Double) 873 return true; 874 875 // C99 6.3.1.5p1: 876 // When a float is promoted to double or long double, or a 877 // double is promoted to long double [...]. 878 if (!getLangOptions().CPlusPlus && 879 (FromBuiltin->getKind() == BuiltinType::Float || 880 FromBuiltin->getKind() == BuiltinType::Double) && 881 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 882 return true; 883 } 884 885 return false; 886} 887 888/// \brief Determine if a conversion is a complex promotion. 889/// 890/// A complex promotion is defined as a complex -> complex conversion 891/// where the conversion between the underlying real types is a 892/// floating-point or integral promotion. 893bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 894 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 895 if (!FromComplex) 896 return false; 897 898 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 899 if (!ToComplex) 900 return false; 901 902 return IsFloatingPointPromotion(FromComplex->getElementType(), 903 ToComplex->getElementType()) || 904 IsIntegralPromotion(0, FromComplex->getElementType(), 905 ToComplex->getElementType()); 906} 907 908/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 909/// the pointer type FromPtr to a pointer to type ToPointee, with the 910/// same type qualifiers as FromPtr has on its pointee type. ToType, 911/// if non-empty, will be a pointer to ToType that may or may not have 912/// the right set of qualifiers on its pointee. 913static QualType 914BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 915 QualType ToPointee, QualType ToType, 916 ASTContext &Context) { 917 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 918 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 919 Qualifiers Quals = CanonFromPointee.getQualifiers(); 920 921 // Exact qualifier match -> return the pointer type we're converting to. 922 if (CanonToPointee.getLocalQualifiers() == Quals) { 923 // ToType is exactly what we need. Return it. 924 if (!ToType.isNull()) 925 return ToType; 926 927 // Build a pointer to ToPointee. It has the right qualifiers 928 // already. 929 return Context.getPointerType(ToPointee); 930 } 931 932 // Just build a canonical type that has the right qualifiers. 933 return Context.getPointerType( 934 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 935 Quals)); 936} 937 938/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 939/// the FromType, which is an objective-c pointer, to ToType, which may or may 940/// not have the right set of qualifiers. 941static QualType 942BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 943 QualType ToType, 944 ASTContext &Context) { 945 QualType CanonFromType = Context.getCanonicalType(FromType); 946 QualType CanonToType = Context.getCanonicalType(ToType); 947 Qualifiers Quals = CanonFromType.getQualifiers(); 948 949 // Exact qualifier match -> return the pointer type we're converting to. 950 if (CanonToType.getLocalQualifiers() == Quals) 951 return ToType; 952 953 // Just build a canonical type that has the right qualifiers. 954 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 955} 956 957static bool isNullPointerConstantForConversion(Expr *Expr, 958 bool InOverloadResolution, 959 ASTContext &Context) { 960 // Handle value-dependent integral null pointer constants correctly. 961 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 962 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 963 Expr->getType()->isIntegralType()) 964 return !InOverloadResolution; 965 966 return Expr->isNullPointerConstant(Context, 967 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 968 : Expr::NPC_ValueDependentIsNull); 969} 970 971/// IsPointerConversion - Determines whether the conversion of the 972/// expression From, which has the (possibly adjusted) type FromType, 973/// can be converted to the type ToType via a pointer conversion (C++ 974/// 4.10). If so, returns true and places the converted type (that 975/// might differ from ToType in its cv-qualifiers at some level) into 976/// ConvertedType. 977/// 978/// This routine also supports conversions to and from block pointers 979/// and conversions with Objective-C's 'id', 'id<protocols...>', and 980/// pointers to interfaces. FIXME: Once we've determined the 981/// appropriate overloading rules for Objective-C, we may want to 982/// split the Objective-C checks into a different routine; however, 983/// GCC seems to consider all of these conversions to be pointer 984/// conversions, so for now they live here. IncompatibleObjC will be 985/// set if the conversion is an allowed Objective-C conversion that 986/// should result in a warning. 987bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 988 bool InOverloadResolution, 989 QualType& ConvertedType, 990 bool &IncompatibleObjC) { 991 IncompatibleObjC = false; 992 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 993 return true; 994 995 // Conversion from a null pointer constant to any Objective-C pointer type. 996 if (ToType->isObjCObjectPointerType() && 997 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 998 ConvertedType = ToType; 999 return true; 1000 } 1001 1002 // Blocks: Block pointers can be converted to void*. 1003 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1004 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1005 ConvertedType = ToType; 1006 return true; 1007 } 1008 // Blocks: A null pointer constant can be converted to a block 1009 // pointer type. 1010 if (ToType->isBlockPointerType() && 1011 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1012 ConvertedType = ToType; 1013 return true; 1014 } 1015 1016 // If the left-hand-side is nullptr_t, the right side can be a null 1017 // pointer constant. 1018 if (ToType->isNullPtrType() && 1019 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1020 ConvertedType = ToType; 1021 return true; 1022 } 1023 1024 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1025 if (!ToTypePtr) 1026 return false; 1027 1028 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1029 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1030 ConvertedType = ToType; 1031 return true; 1032 } 1033 1034 // Beyond this point, both types need to be pointers 1035 // , including objective-c pointers. 1036 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1037 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1038 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1039 ToType, Context); 1040 return true; 1041 1042 } 1043 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1044 if (!FromTypePtr) 1045 return false; 1046 1047 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1048 1049 // An rvalue of type "pointer to cv T," where T is an object type, 1050 // can be converted to an rvalue of type "pointer to cv void" (C++ 1051 // 4.10p2). 1052 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1053 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1054 ToPointeeType, 1055 ToType, Context); 1056 return true; 1057 } 1058 1059 // When we're overloading in C, we allow a special kind of pointer 1060 // conversion for compatible-but-not-identical pointee types. 1061 if (!getLangOptions().CPlusPlus && 1062 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1063 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1064 ToPointeeType, 1065 ToType, Context); 1066 return true; 1067 } 1068 1069 // C++ [conv.ptr]p3: 1070 // 1071 // An rvalue of type "pointer to cv D," where D is a class type, 1072 // can be converted to an rvalue of type "pointer to cv B," where 1073 // B is a base class (clause 10) of D. If B is an inaccessible 1074 // (clause 11) or ambiguous (10.2) base class of D, a program that 1075 // necessitates this conversion is ill-formed. The result of the 1076 // conversion is a pointer to the base class sub-object of the 1077 // derived class object. The null pointer value is converted to 1078 // the null pointer value of the destination type. 1079 // 1080 // Note that we do not check for ambiguity or inaccessibility 1081 // here. That is handled by CheckPointerConversion. 1082 if (getLangOptions().CPlusPlus && 1083 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1084 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1085 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1086 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1087 ToPointeeType, 1088 ToType, Context); 1089 return true; 1090 } 1091 1092 return false; 1093} 1094 1095/// isObjCPointerConversion - Determines whether this is an 1096/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1097/// with the same arguments and return values. 1098bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1099 QualType& ConvertedType, 1100 bool &IncompatibleObjC) { 1101 if (!getLangOptions().ObjC1) 1102 return false; 1103 1104 // First, we handle all conversions on ObjC object pointer types. 1105 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1106 const ObjCObjectPointerType *FromObjCPtr = 1107 FromType->getAs<ObjCObjectPointerType>(); 1108 1109 if (ToObjCPtr && FromObjCPtr) { 1110 // Objective C++: We're able to convert between "id" or "Class" and a 1111 // pointer to any interface (in both directions). 1112 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1113 ConvertedType = ToType; 1114 return true; 1115 } 1116 // Conversions with Objective-C's id<...>. 1117 if ((FromObjCPtr->isObjCQualifiedIdType() || 1118 ToObjCPtr->isObjCQualifiedIdType()) && 1119 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1120 /*compare=*/false)) { 1121 ConvertedType = ToType; 1122 return true; 1123 } 1124 // Objective C++: We're able to convert from a pointer to an 1125 // interface to a pointer to a different interface. 1126 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1127 ConvertedType = ToType; 1128 return true; 1129 } 1130 1131 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1132 // Okay: this is some kind of implicit downcast of Objective-C 1133 // interfaces, which is permitted. However, we're going to 1134 // complain about it. 1135 IncompatibleObjC = true; 1136 ConvertedType = FromType; 1137 return true; 1138 } 1139 } 1140 // Beyond this point, both types need to be C pointers or block pointers. 1141 QualType ToPointeeType; 1142 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1143 ToPointeeType = ToCPtr->getPointeeType(); 1144 else if (const BlockPointerType *ToBlockPtr = 1145 ToType->getAs<BlockPointerType>()) { 1146 // Objective C++: We're able to convert from a pointer to an any object 1147 // to a block pointer type. 1148 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1149 ConvertedType = ToType; 1150 return true; 1151 } 1152 ToPointeeType = ToBlockPtr->getPointeeType(); 1153 } 1154 else 1155 return false; 1156 1157 QualType FromPointeeType; 1158 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1159 FromPointeeType = FromCPtr->getPointeeType(); 1160 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1161 FromPointeeType = FromBlockPtr->getPointeeType(); 1162 else 1163 return false; 1164 1165 // If we have pointers to pointers, recursively check whether this 1166 // is an Objective-C conversion. 1167 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1168 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1169 IncompatibleObjC)) { 1170 // We always complain about this conversion. 1171 IncompatibleObjC = true; 1172 ConvertedType = ToType; 1173 return true; 1174 } 1175 // Allow conversion of pointee being objective-c pointer to another one; 1176 // as in I* to id. 1177 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1178 ToPointeeType->getAs<ObjCObjectPointerType>() && 1179 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1180 IncompatibleObjC)) { 1181 ConvertedType = ToType; 1182 return true; 1183 } 1184 1185 // If we have pointers to functions or blocks, check whether the only 1186 // differences in the argument and result types are in Objective-C 1187 // pointer conversions. If so, we permit the conversion (but 1188 // complain about it). 1189 const FunctionProtoType *FromFunctionType 1190 = FromPointeeType->getAs<FunctionProtoType>(); 1191 const FunctionProtoType *ToFunctionType 1192 = ToPointeeType->getAs<FunctionProtoType>(); 1193 if (FromFunctionType && ToFunctionType) { 1194 // If the function types are exactly the same, this isn't an 1195 // Objective-C pointer conversion. 1196 if (Context.getCanonicalType(FromPointeeType) 1197 == Context.getCanonicalType(ToPointeeType)) 1198 return false; 1199 1200 // Perform the quick checks that will tell us whether these 1201 // function types are obviously different. 1202 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1203 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1204 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1205 return false; 1206 1207 bool HasObjCConversion = false; 1208 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1209 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1210 // Okay, the types match exactly. Nothing to do. 1211 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1212 ToFunctionType->getResultType(), 1213 ConvertedType, IncompatibleObjC)) { 1214 // Okay, we have an Objective-C pointer conversion. 1215 HasObjCConversion = true; 1216 } else { 1217 // Function types are too different. Abort. 1218 return false; 1219 } 1220 1221 // Check argument types. 1222 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1223 ArgIdx != NumArgs; ++ArgIdx) { 1224 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1225 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1226 if (Context.getCanonicalType(FromArgType) 1227 == Context.getCanonicalType(ToArgType)) { 1228 // Okay, the types match exactly. Nothing to do. 1229 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1230 ConvertedType, IncompatibleObjC)) { 1231 // Okay, we have an Objective-C pointer conversion. 1232 HasObjCConversion = true; 1233 } else { 1234 // Argument types are too different. Abort. 1235 return false; 1236 } 1237 } 1238 1239 if (HasObjCConversion) { 1240 // We had an Objective-C conversion. Allow this pointer 1241 // conversion, but complain about it. 1242 ConvertedType = ToType; 1243 IncompatibleObjC = true; 1244 return true; 1245 } 1246 } 1247 1248 return false; 1249} 1250 1251/// CheckPointerConversion - Check the pointer conversion from the 1252/// expression From to the type ToType. This routine checks for 1253/// ambiguous or inaccessible derived-to-base pointer 1254/// conversions for which IsPointerConversion has already returned 1255/// true. It returns true and produces a diagnostic if there was an 1256/// error, or returns false otherwise. 1257bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1258 CastExpr::CastKind &Kind, 1259 bool IgnoreBaseAccess) { 1260 QualType FromType = From->getType(); 1261 1262 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1263 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1264 QualType FromPointeeType = FromPtrType->getPointeeType(), 1265 ToPointeeType = ToPtrType->getPointeeType(); 1266 1267 if (FromPointeeType->isRecordType() && 1268 ToPointeeType->isRecordType()) { 1269 // We must have a derived-to-base conversion. Check an 1270 // ambiguous or inaccessible conversion. 1271 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1272 From->getExprLoc(), 1273 From->getSourceRange(), 1274 IgnoreBaseAccess)) 1275 return true; 1276 1277 // The conversion was successful. 1278 Kind = CastExpr::CK_DerivedToBase; 1279 } 1280 } 1281 if (const ObjCObjectPointerType *FromPtrType = 1282 FromType->getAs<ObjCObjectPointerType>()) 1283 if (const ObjCObjectPointerType *ToPtrType = 1284 ToType->getAs<ObjCObjectPointerType>()) { 1285 // Objective-C++ conversions are always okay. 1286 // FIXME: We should have a different class of conversions for the 1287 // Objective-C++ implicit conversions. 1288 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1289 return false; 1290 1291 } 1292 return false; 1293} 1294 1295/// IsMemberPointerConversion - Determines whether the conversion of the 1296/// expression From, which has the (possibly adjusted) type FromType, can be 1297/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1298/// If so, returns true and places the converted type (that might differ from 1299/// ToType in its cv-qualifiers at some level) into ConvertedType. 1300bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1301 QualType ToType, 1302 bool InOverloadResolution, 1303 QualType &ConvertedType) { 1304 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1305 if (!ToTypePtr) 1306 return false; 1307 1308 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1309 if (From->isNullPointerConstant(Context, 1310 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1311 : Expr::NPC_ValueDependentIsNull)) { 1312 ConvertedType = ToType; 1313 return true; 1314 } 1315 1316 // Otherwise, both types have to be member pointers. 1317 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1318 if (!FromTypePtr) 1319 return false; 1320 1321 // A pointer to member of B can be converted to a pointer to member of D, 1322 // where D is derived from B (C++ 4.11p2). 1323 QualType FromClass(FromTypePtr->getClass(), 0); 1324 QualType ToClass(ToTypePtr->getClass(), 0); 1325 // FIXME: What happens when these are dependent? Is this function even called? 1326 1327 if (IsDerivedFrom(ToClass, FromClass)) { 1328 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1329 ToClass.getTypePtr()); 1330 return true; 1331 } 1332 1333 return false; 1334} 1335 1336/// CheckMemberPointerConversion - Check the member pointer conversion from the 1337/// expression From to the type ToType. This routine checks for ambiguous or 1338/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1339/// for which IsMemberPointerConversion has already returned true. It returns 1340/// true and produces a diagnostic if there was an error, or returns false 1341/// otherwise. 1342bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1343 CastExpr::CastKind &Kind, 1344 bool IgnoreBaseAccess) { 1345 (void)IgnoreBaseAccess; 1346 QualType FromType = From->getType(); 1347 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1348 if (!FromPtrType) { 1349 // This must be a null pointer to member pointer conversion 1350 assert(From->isNullPointerConstant(Context, 1351 Expr::NPC_ValueDependentIsNull) && 1352 "Expr must be null pointer constant!"); 1353 Kind = CastExpr::CK_NullToMemberPointer; 1354 return false; 1355 } 1356 1357 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1358 assert(ToPtrType && "No member pointer cast has a target type " 1359 "that is not a member pointer."); 1360 1361 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1362 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1363 1364 // FIXME: What about dependent types? 1365 assert(FromClass->isRecordType() && "Pointer into non-class."); 1366 assert(ToClass->isRecordType() && "Pointer into non-class."); 1367 1368 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1369 /*DetectVirtual=*/true); 1370 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1371 assert(DerivationOkay && 1372 "Should not have been called if derivation isn't OK."); 1373 (void)DerivationOkay; 1374 1375 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1376 getUnqualifiedType())) { 1377 // Derivation is ambiguous. Redo the check to find the exact paths. 1378 Paths.clear(); 1379 Paths.setRecordingPaths(true); 1380 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1381 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1382 (void)StillOkay; 1383 1384 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1385 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1386 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1387 return true; 1388 } 1389 1390 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1391 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1392 << FromClass << ToClass << QualType(VBase, 0) 1393 << From->getSourceRange(); 1394 return true; 1395 } 1396 1397 // Must be a base to derived member conversion. 1398 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1399 return false; 1400} 1401 1402/// IsQualificationConversion - Determines whether the conversion from 1403/// an rvalue of type FromType to ToType is a qualification conversion 1404/// (C++ 4.4). 1405bool 1406Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1407 FromType = Context.getCanonicalType(FromType); 1408 ToType = Context.getCanonicalType(ToType); 1409 1410 // If FromType and ToType are the same type, this is not a 1411 // qualification conversion. 1412 if (FromType == ToType) 1413 return false; 1414 1415 // (C++ 4.4p4): 1416 // A conversion can add cv-qualifiers at levels other than the first 1417 // in multi-level pointers, subject to the following rules: [...] 1418 bool PreviousToQualsIncludeConst = true; 1419 bool UnwrappedAnyPointer = false; 1420 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1421 // Within each iteration of the loop, we check the qualifiers to 1422 // determine if this still looks like a qualification 1423 // conversion. Then, if all is well, we unwrap one more level of 1424 // pointers or pointers-to-members and do it all again 1425 // until there are no more pointers or pointers-to-members left to 1426 // unwrap. 1427 UnwrappedAnyPointer = true; 1428 1429 // -- for every j > 0, if const is in cv 1,j then const is in cv 1430 // 2,j, and similarly for volatile. 1431 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1432 return false; 1433 1434 // -- if the cv 1,j and cv 2,j are different, then const is in 1435 // every cv for 0 < k < j. 1436 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1437 && !PreviousToQualsIncludeConst) 1438 return false; 1439 1440 // Keep track of whether all prior cv-qualifiers in the "to" type 1441 // include const. 1442 PreviousToQualsIncludeConst 1443 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1444 } 1445 1446 // We are left with FromType and ToType being the pointee types 1447 // after unwrapping the original FromType and ToType the same number 1448 // of types. If we unwrapped any pointers, and if FromType and 1449 // ToType have the same unqualified type (since we checked 1450 // qualifiers above), then this is a qualification conversion. 1451 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1452} 1453 1454/// Determines whether there is a user-defined conversion sequence 1455/// (C++ [over.ics.user]) that converts expression From to the type 1456/// ToType. If such a conversion exists, User will contain the 1457/// user-defined conversion sequence that performs such a conversion 1458/// and this routine will return true. Otherwise, this routine returns 1459/// false and User is unspecified. 1460/// 1461/// \param AllowConversionFunctions true if the conversion should 1462/// consider conversion functions at all. If false, only constructors 1463/// will be considered. 1464/// 1465/// \param AllowExplicit true if the conversion should consider C++0x 1466/// "explicit" conversion functions as well as non-explicit conversion 1467/// functions (C++0x [class.conv.fct]p2). 1468/// 1469/// \param ForceRValue true if the expression should be treated as an rvalue 1470/// for overload resolution. 1471/// \param UserCast true if looking for user defined conversion for a static 1472/// cast. 1473OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1474 UserDefinedConversionSequence& User, 1475 OverloadCandidateSet& CandidateSet, 1476 bool AllowConversionFunctions, 1477 bool AllowExplicit, 1478 bool ForceRValue, 1479 bool UserCast) { 1480 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1481 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1482 // We're not going to find any constructors. 1483 } else if (CXXRecordDecl *ToRecordDecl 1484 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1485 // C++ [over.match.ctor]p1: 1486 // When objects of class type are direct-initialized (8.5), or 1487 // copy-initialized from an expression of the same or a 1488 // derived class type (8.5), overload resolution selects the 1489 // constructor. [...] For copy-initialization, the candidate 1490 // functions are all the converting constructors (12.3.1) of 1491 // that class. The argument list is the expression-list within 1492 // the parentheses of the initializer. 1493 bool SuppressUserConversions = !UserCast; 1494 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1495 IsDerivedFrom(From->getType(), ToType)) { 1496 SuppressUserConversions = false; 1497 AllowConversionFunctions = false; 1498 } 1499 1500 DeclarationName ConstructorName 1501 = Context.DeclarationNames.getCXXConstructorName( 1502 Context.getCanonicalType(ToType).getUnqualifiedType()); 1503 DeclContext::lookup_iterator Con, ConEnd; 1504 for (llvm::tie(Con, ConEnd) 1505 = ToRecordDecl->lookup(ConstructorName); 1506 Con != ConEnd; ++Con) { 1507 // Find the constructor (which may be a template). 1508 CXXConstructorDecl *Constructor = 0; 1509 FunctionTemplateDecl *ConstructorTmpl 1510 = dyn_cast<FunctionTemplateDecl>(*Con); 1511 if (ConstructorTmpl) 1512 Constructor 1513 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1514 else 1515 Constructor = cast<CXXConstructorDecl>(*Con); 1516 1517 if (!Constructor->isInvalidDecl() && 1518 Constructor->isConvertingConstructor(AllowExplicit)) { 1519 if (ConstructorTmpl) 1520 AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0, 1521 &From, 1, CandidateSet, 1522 SuppressUserConversions, ForceRValue); 1523 else 1524 // Allow one user-defined conversion when user specifies a 1525 // From->ToType conversion via an static cast (c-style, etc). 1526 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1527 SuppressUserConversions, ForceRValue); 1528 } 1529 } 1530 } 1531 } 1532 1533 if (!AllowConversionFunctions) { 1534 // Don't allow any conversion functions to enter the overload set. 1535 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1536 PDiag(0) 1537 << From->getSourceRange())) { 1538 // No conversion functions from incomplete types. 1539 } else if (const RecordType *FromRecordType 1540 = From->getType()->getAs<RecordType>()) { 1541 if (CXXRecordDecl *FromRecordDecl 1542 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1543 // Add all of the conversion functions as candidates. 1544 const UnresolvedSetImpl *Conversions 1545 = FromRecordDecl->getVisibleConversionFunctions(); 1546 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1547 E = Conversions->end(); I != E; ++I) { 1548 NamedDecl *D = *I; 1549 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1550 if (isa<UsingShadowDecl>(D)) 1551 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1552 1553 CXXConversionDecl *Conv; 1554 FunctionTemplateDecl *ConvTemplate; 1555 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I))) 1556 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1557 else 1558 Conv = dyn_cast<CXXConversionDecl>(*I); 1559 1560 if (AllowExplicit || !Conv->isExplicit()) { 1561 if (ConvTemplate) 1562 AddTemplateConversionCandidate(ConvTemplate, ActingContext, 1563 From, ToType, CandidateSet); 1564 else 1565 AddConversionCandidate(Conv, ActingContext, From, ToType, 1566 CandidateSet); 1567 } 1568 } 1569 } 1570 } 1571 1572 OverloadCandidateSet::iterator Best; 1573 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1574 case OR_Success: 1575 // Record the standard conversion we used and the conversion function. 1576 if (CXXConstructorDecl *Constructor 1577 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1578 // C++ [over.ics.user]p1: 1579 // If the user-defined conversion is specified by a 1580 // constructor (12.3.1), the initial standard conversion 1581 // sequence converts the source type to the type required by 1582 // the argument of the constructor. 1583 // 1584 QualType ThisType = Constructor->getThisType(Context); 1585 if (Best->Conversions[0].isEllipsis()) 1586 User.EllipsisConversion = true; 1587 else { 1588 User.Before = Best->Conversions[0].Standard; 1589 User.EllipsisConversion = false; 1590 } 1591 User.ConversionFunction = Constructor; 1592 User.After.setAsIdentityConversion(); 1593 User.After.setFromType( 1594 ThisType->getAs<PointerType>()->getPointeeType()); 1595 User.After.setToType(ToType); 1596 return OR_Success; 1597 } else if (CXXConversionDecl *Conversion 1598 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1599 // C++ [over.ics.user]p1: 1600 // 1601 // [...] If the user-defined conversion is specified by a 1602 // conversion function (12.3.2), the initial standard 1603 // conversion sequence converts the source type to the 1604 // implicit object parameter of the conversion function. 1605 User.Before = Best->Conversions[0].Standard; 1606 User.ConversionFunction = Conversion; 1607 User.EllipsisConversion = false; 1608 1609 // C++ [over.ics.user]p2: 1610 // The second standard conversion sequence converts the 1611 // result of the user-defined conversion to the target type 1612 // for the sequence. Since an implicit conversion sequence 1613 // is an initialization, the special rules for 1614 // initialization by user-defined conversion apply when 1615 // selecting the best user-defined conversion for a 1616 // user-defined conversion sequence (see 13.3.3 and 1617 // 13.3.3.1). 1618 User.After = Best->FinalConversion; 1619 return OR_Success; 1620 } else { 1621 assert(false && "Not a constructor or conversion function?"); 1622 return OR_No_Viable_Function; 1623 } 1624 1625 case OR_No_Viable_Function: 1626 return OR_No_Viable_Function; 1627 case OR_Deleted: 1628 // No conversion here! We're done. 1629 return OR_Deleted; 1630 1631 case OR_Ambiguous: 1632 return OR_Ambiguous; 1633 } 1634 1635 return OR_No_Viable_Function; 1636} 1637 1638bool 1639Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1640 ImplicitConversionSequence ICS; 1641 OverloadCandidateSet CandidateSet; 1642 OverloadingResult OvResult = 1643 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1644 CandidateSet, true, false, false); 1645 if (OvResult == OR_Ambiguous) 1646 Diag(From->getSourceRange().getBegin(), 1647 diag::err_typecheck_ambiguous_condition) 1648 << From->getType() << ToType << From->getSourceRange(); 1649 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1650 Diag(From->getSourceRange().getBegin(), 1651 diag::err_typecheck_nonviable_condition) 1652 << From->getType() << ToType << From->getSourceRange(); 1653 else 1654 return false; 1655 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 1656 return true; 1657} 1658 1659/// CompareImplicitConversionSequences - Compare two implicit 1660/// conversion sequences to determine whether one is better than the 1661/// other or if they are indistinguishable (C++ 13.3.3.2). 1662ImplicitConversionSequence::CompareKind 1663Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1664 const ImplicitConversionSequence& ICS2) 1665{ 1666 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1667 // conversion sequences (as defined in 13.3.3.1) 1668 // -- a standard conversion sequence (13.3.3.1.1) is a better 1669 // conversion sequence than a user-defined conversion sequence or 1670 // an ellipsis conversion sequence, and 1671 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1672 // conversion sequence than an ellipsis conversion sequence 1673 // (13.3.3.1.3). 1674 // 1675 // C++0x [over.best.ics]p10: 1676 // For the purpose of ranking implicit conversion sequences as 1677 // described in 13.3.3.2, the ambiguous conversion sequence is 1678 // treated as a user-defined sequence that is indistinguishable 1679 // from any other user-defined conversion sequence. 1680 if (ICS1.getKind() < ICS2.getKind()) { 1681 if (!(ICS1.isUserDefined() && ICS2.isAmbiguous())) 1682 return ImplicitConversionSequence::Better; 1683 } else if (ICS2.getKind() < ICS1.getKind()) { 1684 if (!(ICS2.isUserDefined() && ICS1.isAmbiguous())) 1685 return ImplicitConversionSequence::Worse; 1686 } 1687 1688 if (ICS1.isAmbiguous() || ICS2.isAmbiguous()) 1689 return ImplicitConversionSequence::Indistinguishable; 1690 1691 // Two implicit conversion sequences of the same form are 1692 // indistinguishable conversion sequences unless one of the 1693 // following rules apply: (C++ 13.3.3.2p3): 1694 if (ICS1.isStandard()) 1695 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1696 else if (ICS1.isUserDefined()) { 1697 // User-defined conversion sequence U1 is a better conversion 1698 // sequence than another user-defined conversion sequence U2 if 1699 // they contain the same user-defined conversion function or 1700 // constructor and if the second standard conversion sequence of 1701 // U1 is better than the second standard conversion sequence of 1702 // U2 (C++ 13.3.3.2p3). 1703 if (ICS1.UserDefined.ConversionFunction == 1704 ICS2.UserDefined.ConversionFunction) 1705 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1706 ICS2.UserDefined.After); 1707 } 1708 1709 return ImplicitConversionSequence::Indistinguishable; 1710} 1711 1712/// CompareStandardConversionSequences - Compare two standard 1713/// conversion sequences to determine whether one is better than the 1714/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1715ImplicitConversionSequence::CompareKind 1716Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1717 const StandardConversionSequence& SCS2) 1718{ 1719 // Standard conversion sequence S1 is a better conversion sequence 1720 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1721 1722 // -- S1 is a proper subsequence of S2 (comparing the conversion 1723 // sequences in the canonical form defined by 13.3.3.1.1, 1724 // excluding any Lvalue Transformation; the identity conversion 1725 // sequence is considered to be a subsequence of any 1726 // non-identity conversion sequence) or, if not that, 1727 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1728 // Neither is a proper subsequence of the other. Do nothing. 1729 ; 1730 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1731 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1732 (SCS1.Second == ICK_Identity && 1733 SCS1.Third == ICK_Identity)) 1734 // SCS1 is a proper subsequence of SCS2. 1735 return ImplicitConversionSequence::Better; 1736 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1737 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1738 (SCS2.Second == ICK_Identity && 1739 SCS2.Third == ICK_Identity)) 1740 // SCS2 is a proper subsequence of SCS1. 1741 return ImplicitConversionSequence::Worse; 1742 1743 // -- the rank of S1 is better than the rank of S2 (by the rules 1744 // defined below), or, if not that, 1745 ImplicitConversionRank Rank1 = SCS1.getRank(); 1746 ImplicitConversionRank Rank2 = SCS2.getRank(); 1747 if (Rank1 < Rank2) 1748 return ImplicitConversionSequence::Better; 1749 else if (Rank2 < Rank1) 1750 return ImplicitConversionSequence::Worse; 1751 1752 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1753 // are indistinguishable unless one of the following rules 1754 // applies: 1755 1756 // A conversion that is not a conversion of a pointer, or 1757 // pointer to member, to bool is better than another conversion 1758 // that is such a conversion. 1759 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1760 return SCS2.isPointerConversionToBool() 1761 ? ImplicitConversionSequence::Better 1762 : ImplicitConversionSequence::Worse; 1763 1764 // C++ [over.ics.rank]p4b2: 1765 // 1766 // If class B is derived directly or indirectly from class A, 1767 // conversion of B* to A* is better than conversion of B* to 1768 // void*, and conversion of A* to void* is better than conversion 1769 // of B* to void*. 1770 bool SCS1ConvertsToVoid 1771 = SCS1.isPointerConversionToVoidPointer(Context); 1772 bool SCS2ConvertsToVoid 1773 = SCS2.isPointerConversionToVoidPointer(Context); 1774 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1775 // Exactly one of the conversion sequences is a conversion to 1776 // a void pointer; it's the worse conversion. 1777 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1778 : ImplicitConversionSequence::Worse; 1779 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1780 // Neither conversion sequence converts to a void pointer; compare 1781 // their derived-to-base conversions. 1782 if (ImplicitConversionSequence::CompareKind DerivedCK 1783 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1784 return DerivedCK; 1785 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1786 // Both conversion sequences are conversions to void 1787 // pointers. Compare the source types to determine if there's an 1788 // inheritance relationship in their sources. 1789 QualType FromType1 = SCS1.getFromType(); 1790 QualType FromType2 = SCS2.getFromType(); 1791 1792 // Adjust the types we're converting from via the array-to-pointer 1793 // conversion, if we need to. 1794 if (SCS1.First == ICK_Array_To_Pointer) 1795 FromType1 = Context.getArrayDecayedType(FromType1); 1796 if (SCS2.First == ICK_Array_To_Pointer) 1797 FromType2 = Context.getArrayDecayedType(FromType2); 1798 1799 QualType FromPointee1 1800 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1801 QualType FromPointee2 1802 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1803 1804 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1805 return ImplicitConversionSequence::Better; 1806 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1807 return ImplicitConversionSequence::Worse; 1808 1809 // Objective-C++: If one interface is more specific than the 1810 // other, it is the better one. 1811 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1812 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1813 if (FromIface1 && FromIface1) { 1814 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1815 return ImplicitConversionSequence::Better; 1816 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1817 return ImplicitConversionSequence::Worse; 1818 } 1819 } 1820 1821 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1822 // bullet 3). 1823 if (ImplicitConversionSequence::CompareKind QualCK 1824 = CompareQualificationConversions(SCS1, SCS2)) 1825 return QualCK; 1826 1827 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1828 // C++0x [over.ics.rank]p3b4: 1829 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1830 // implicit object parameter of a non-static member function declared 1831 // without a ref-qualifier, and S1 binds an rvalue reference to an 1832 // rvalue and S2 binds an lvalue reference. 1833 // FIXME: We don't know if we're dealing with the implicit object parameter, 1834 // or if the member function in this case has a ref qualifier. 1835 // (Of course, we don't have ref qualifiers yet.) 1836 if (SCS1.RRefBinding != SCS2.RRefBinding) 1837 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1838 : ImplicitConversionSequence::Worse; 1839 1840 // C++ [over.ics.rank]p3b4: 1841 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1842 // which the references refer are the same type except for 1843 // top-level cv-qualifiers, and the type to which the reference 1844 // initialized by S2 refers is more cv-qualified than the type 1845 // to which the reference initialized by S1 refers. 1846 QualType T1 = SCS1.getToType(); 1847 QualType T2 = SCS2.getToType(); 1848 T1 = Context.getCanonicalType(T1); 1849 T2 = Context.getCanonicalType(T2); 1850 Qualifiers T1Quals, T2Quals; 1851 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 1852 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 1853 if (UnqualT1 == UnqualT2) { 1854 // If the type is an array type, promote the element qualifiers to the type 1855 // for comparison. 1856 if (isa<ArrayType>(T1) && T1Quals) 1857 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 1858 if (isa<ArrayType>(T2) && T2Quals) 1859 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 1860 if (T2.isMoreQualifiedThan(T1)) 1861 return ImplicitConversionSequence::Better; 1862 else if (T1.isMoreQualifiedThan(T2)) 1863 return ImplicitConversionSequence::Worse; 1864 } 1865 } 1866 1867 return ImplicitConversionSequence::Indistinguishable; 1868} 1869 1870/// CompareQualificationConversions - Compares two standard conversion 1871/// sequences to determine whether they can be ranked based on their 1872/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1873ImplicitConversionSequence::CompareKind 1874Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1875 const StandardConversionSequence& SCS2) { 1876 // C++ 13.3.3.2p3: 1877 // -- S1 and S2 differ only in their qualification conversion and 1878 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1879 // cv-qualification signature of type T1 is a proper subset of 1880 // the cv-qualification signature of type T2, and S1 is not the 1881 // deprecated string literal array-to-pointer conversion (4.2). 1882 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1883 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1884 return ImplicitConversionSequence::Indistinguishable; 1885 1886 // FIXME: the example in the standard doesn't use a qualification 1887 // conversion (!) 1888 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1889 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1890 T1 = Context.getCanonicalType(T1); 1891 T2 = Context.getCanonicalType(T2); 1892 Qualifiers T1Quals, T2Quals; 1893 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 1894 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 1895 1896 // If the types are the same, we won't learn anything by unwrapped 1897 // them. 1898 if (UnqualT1 == UnqualT2) 1899 return ImplicitConversionSequence::Indistinguishable; 1900 1901 // If the type is an array type, promote the element qualifiers to the type 1902 // for comparison. 1903 if (isa<ArrayType>(T1) && T1Quals) 1904 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 1905 if (isa<ArrayType>(T2) && T2Quals) 1906 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 1907 1908 ImplicitConversionSequence::CompareKind Result 1909 = ImplicitConversionSequence::Indistinguishable; 1910 while (UnwrapSimilarPointerTypes(T1, T2)) { 1911 // Within each iteration of the loop, we check the qualifiers to 1912 // determine if this still looks like a qualification 1913 // conversion. Then, if all is well, we unwrap one more level of 1914 // pointers or pointers-to-members and do it all again 1915 // until there are no more pointers or pointers-to-members left 1916 // to unwrap. This essentially mimics what 1917 // IsQualificationConversion does, but here we're checking for a 1918 // strict subset of qualifiers. 1919 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1920 // The qualifiers are the same, so this doesn't tell us anything 1921 // about how the sequences rank. 1922 ; 1923 else if (T2.isMoreQualifiedThan(T1)) { 1924 // T1 has fewer qualifiers, so it could be the better sequence. 1925 if (Result == ImplicitConversionSequence::Worse) 1926 // Neither has qualifiers that are a subset of the other's 1927 // qualifiers. 1928 return ImplicitConversionSequence::Indistinguishable; 1929 1930 Result = ImplicitConversionSequence::Better; 1931 } else if (T1.isMoreQualifiedThan(T2)) { 1932 // T2 has fewer qualifiers, so it could be the better sequence. 1933 if (Result == ImplicitConversionSequence::Better) 1934 // Neither has qualifiers that are a subset of the other's 1935 // qualifiers. 1936 return ImplicitConversionSequence::Indistinguishable; 1937 1938 Result = ImplicitConversionSequence::Worse; 1939 } else { 1940 // Qualifiers are disjoint. 1941 return ImplicitConversionSequence::Indistinguishable; 1942 } 1943 1944 // If the types after this point are equivalent, we're done. 1945 if (Context.hasSameUnqualifiedType(T1, T2)) 1946 break; 1947 } 1948 1949 // Check that the winning standard conversion sequence isn't using 1950 // the deprecated string literal array to pointer conversion. 1951 switch (Result) { 1952 case ImplicitConversionSequence::Better: 1953 if (SCS1.Deprecated) 1954 Result = ImplicitConversionSequence::Indistinguishable; 1955 break; 1956 1957 case ImplicitConversionSequence::Indistinguishable: 1958 break; 1959 1960 case ImplicitConversionSequence::Worse: 1961 if (SCS2.Deprecated) 1962 Result = ImplicitConversionSequence::Indistinguishable; 1963 break; 1964 } 1965 1966 return Result; 1967} 1968 1969/// CompareDerivedToBaseConversions - Compares two standard conversion 1970/// sequences to determine whether they can be ranked based on their 1971/// various kinds of derived-to-base conversions (C++ 1972/// [over.ics.rank]p4b3). As part of these checks, we also look at 1973/// conversions between Objective-C interface types. 1974ImplicitConversionSequence::CompareKind 1975Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1976 const StandardConversionSequence& SCS2) { 1977 QualType FromType1 = SCS1.getFromType(); 1978 QualType ToType1 = SCS1.getToType(); 1979 QualType FromType2 = SCS2.getFromType(); 1980 QualType ToType2 = SCS2.getToType(); 1981 1982 // Adjust the types we're converting from via the array-to-pointer 1983 // conversion, if we need to. 1984 if (SCS1.First == ICK_Array_To_Pointer) 1985 FromType1 = Context.getArrayDecayedType(FromType1); 1986 if (SCS2.First == ICK_Array_To_Pointer) 1987 FromType2 = Context.getArrayDecayedType(FromType2); 1988 1989 // Canonicalize all of the types. 1990 FromType1 = Context.getCanonicalType(FromType1); 1991 ToType1 = Context.getCanonicalType(ToType1); 1992 FromType2 = Context.getCanonicalType(FromType2); 1993 ToType2 = Context.getCanonicalType(ToType2); 1994 1995 // C++ [over.ics.rank]p4b3: 1996 // 1997 // If class B is derived directly or indirectly from class A and 1998 // class C is derived directly or indirectly from B, 1999 // 2000 // For Objective-C, we let A, B, and C also be Objective-C 2001 // interfaces. 2002 2003 // Compare based on pointer conversions. 2004 if (SCS1.Second == ICK_Pointer_Conversion && 2005 SCS2.Second == ICK_Pointer_Conversion && 2006 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2007 FromType1->isPointerType() && FromType2->isPointerType() && 2008 ToType1->isPointerType() && ToType2->isPointerType()) { 2009 QualType FromPointee1 2010 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2011 QualType ToPointee1 2012 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2013 QualType FromPointee2 2014 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2015 QualType ToPointee2 2016 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2017 2018 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 2019 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 2020 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 2021 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 2022 2023 // -- conversion of C* to B* is better than conversion of C* to A*, 2024 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2025 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2026 return ImplicitConversionSequence::Better; 2027 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2028 return ImplicitConversionSequence::Worse; 2029 2030 if (ToIface1 && ToIface2) { 2031 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2032 return ImplicitConversionSequence::Better; 2033 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2034 return ImplicitConversionSequence::Worse; 2035 } 2036 } 2037 2038 // -- conversion of B* to A* is better than conversion of C* to A*, 2039 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2040 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2041 return ImplicitConversionSequence::Better; 2042 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2043 return ImplicitConversionSequence::Worse; 2044 2045 if (FromIface1 && FromIface2) { 2046 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2047 return ImplicitConversionSequence::Better; 2048 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2049 return ImplicitConversionSequence::Worse; 2050 } 2051 } 2052 } 2053 2054 // Compare based on reference bindings. 2055 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 2056 SCS1.Second == ICK_Derived_To_Base) { 2057 // -- binding of an expression of type C to a reference of type 2058 // B& is better than binding an expression of type C to a 2059 // reference of type A&, 2060 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2061 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2062 if (IsDerivedFrom(ToType1, ToType2)) 2063 return ImplicitConversionSequence::Better; 2064 else if (IsDerivedFrom(ToType2, ToType1)) 2065 return ImplicitConversionSequence::Worse; 2066 } 2067 2068 // -- binding of an expression of type B to a reference of type 2069 // A& is better than binding an expression of type C to a 2070 // reference of type A&, 2071 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2072 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2073 if (IsDerivedFrom(FromType2, FromType1)) 2074 return ImplicitConversionSequence::Better; 2075 else if (IsDerivedFrom(FromType1, FromType2)) 2076 return ImplicitConversionSequence::Worse; 2077 } 2078 } 2079 2080 // Ranking of member-pointer types. 2081 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2082 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2083 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2084 const MemberPointerType * FromMemPointer1 = 2085 FromType1->getAs<MemberPointerType>(); 2086 const MemberPointerType * ToMemPointer1 = 2087 ToType1->getAs<MemberPointerType>(); 2088 const MemberPointerType * FromMemPointer2 = 2089 FromType2->getAs<MemberPointerType>(); 2090 const MemberPointerType * ToMemPointer2 = 2091 ToType2->getAs<MemberPointerType>(); 2092 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2093 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2094 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2095 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2096 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2097 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2098 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2099 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2100 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2101 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2102 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2103 return ImplicitConversionSequence::Worse; 2104 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2105 return ImplicitConversionSequence::Better; 2106 } 2107 // conversion of B::* to C::* is better than conversion of A::* to C::* 2108 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2109 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2110 return ImplicitConversionSequence::Better; 2111 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2112 return ImplicitConversionSequence::Worse; 2113 } 2114 } 2115 2116 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 2117 SCS1.Second == ICK_Derived_To_Base) { 2118 // -- conversion of C to B is better than conversion of C to A, 2119 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2120 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2121 if (IsDerivedFrom(ToType1, ToType2)) 2122 return ImplicitConversionSequence::Better; 2123 else if (IsDerivedFrom(ToType2, ToType1)) 2124 return ImplicitConversionSequence::Worse; 2125 } 2126 2127 // -- conversion of B to A is better than conversion of C to A. 2128 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2129 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2130 if (IsDerivedFrom(FromType2, FromType1)) 2131 return ImplicitConversionSequence::Better; 2132 else if (IsDerivedFrom(FromType1, FromType2)) 2133 return ImplicitConversionSequence::Worse; 2134 } 2135 } 2136 2137 return ImplicitConversionSequence::Indistinguishable; 2138} 2139 2140/// TryCopyInitialization - Try to copy-initialize a value of type 2141/// ToType from the expression From. Return the implicit conversion 2142/// sequence required to pass this argument, which may be a bad 2143/// conversion sequence (meaning that the argument cannot be passed to 2144/// a parameter of this type). If @p SuppressUserConversions, then we 2145/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2146/// then we treat @p From as an rvalue, even if it is an lvalue. 2147ImplicitConversionSequence 2148Sema::TryCopyInitialization(Expr *From, QualType ToType, 2149 bool SuppressUserConversions, bool ForceRValue, 2150 bool InOverloadResolution) { 2151 if (ToType->isReferenceType()) { 2152 ImplicitConversionSequence ICS; 2153 ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType); 2154 CheckReferenceInit(From, ToType, 2155 /*FIXME:*/From->getLocStart(), 2156 SuppressUserConversions, 2157 /*AllowExplicit=*/false, 2158 ForceRValue, 2159 &ICS); 2160 return ICS; 2161 } else { 2162 return TryImplicitConversion(From, ToType, 2163 SuppressUserConversions, 2164 /*AllowExplicit=*/false, 2165 ForceRValue, 2166 InOverloadResolution); 2167 } 2168} 2169 2170/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2171/// the expression @p From. Returns true (and emits a diagnostic) if there was 2172/// an error, returns false if the initialization succeeded. Elidable should 2173/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2174/// differently in C++0x for this case. 2175bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2176 AssignmentAction Action, bool Elidable) { 2177 if (!getLangOptions().CPlusPlus) { 2178 // In C, argument passing is the same as performing an assignment. 2179 QualType FromType = From->getType(); 2180 2181 AssignConvertType ConvTy = 2182 CheckSingleAssignmentConstraints(ToType, From); 2183 if (ConvTy != Compatible && 2184 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2185 ConvTy = Compatible; 2186 2187 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2188 FromType, From, Action); 2189 } 2190 2191 if (ToType->isReferenceType()) 2192 return CheckReferenceInit(From, ToType, 2193 /*FIXME:*/From->getLocStart(), 2194 /*SuppressUserConversions=*/false, 2195 /*AllowExplicit=*/false, 2196 /*ForceRValue=*/false); 2197 2198 if (!PerformImplicitConversion(From, ToType, Action, 2199 /*AllowExplicit=*/false, Elidable)) 2200 return false; 2201 if (!DiagnoseMultipleUserDefinedConversion(From, ToType)) 2202 return Diag(From->getSourceRange().getBegin(), 2203 diag::err_typecheck_convert_incompatible) 2204 << ToType << From->getType() << Action << From->getSourceRange(); 2205 return true; 2206} 2207 2208/// TryObjectArgumentInitialization - Try to initialize the object 2209/// parameter of the given member function (@c Method) from the 2210/// expression @p From. 2211ImplicitConversionSequence 2212Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2213 CXXMethodDecl *Method, 2214 CXXRecordDecl *ActingContext) { 2215 QualType ClassType = Context.getTypeDeclType(ActingContext); 2216 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2217 // const volatile object. 2218 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2219 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2220 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2221 2222 // Set up the conversion sequence as a "bad" conversion, to allow us 2223 // to exit early. 2224 ImplicitConversionSequence ICS; 2225 ICS.Standard.setAsIdentityConversion(); 2226 ICS.setBad(); 2227 2228 // We need to have an object of class type. 2229 QualType FromType = OrigFromType; 2230 if (const PointerType *PT = FromType->getAs<PointerType>()) 2231 FromType = PT->getPointeeType(); 2232 2233 assert(FromType->isRecordType()); 2234 2235 // The implicit object parameter is has the type "reference to cv X", 2236 // where X is the class of which the function is a member 2237 // (C++ [over.match.funcs]p4). However, when finding an implicit 2238 // conversion sequence for the argument, we are not allowed to 2239 // create temporaries or perform user-defined conversions 2240 // (C++ [over.match.funcs]p5). We perform a simplified version of 2241 // reference binding here, that allows class rvalues to bind to 2242 // non-constant references. 2243 2244 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2245 // with the implicit object parameter (C++ [over.match.funcs]p5). 2246 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2247 if (ImplicitParamType.getCVRQualifiers() 2248 != FromTypeCanon.getLocalCVRQualifiers() && 2249 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 2250 ICS.Bad.init(BadConversionSequence::bad_qualifiers, 2251 OrigFromType, ImplicitParamType); 2252 return ICS; 2253 } 2254 2255 // Check that we have either the same type or a derived type. It 2256 // affects the conversion rank. 2257 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2258 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) 2259 ICS.Standard.Second = ICK_Identity; 2260 else if (IsDerivedFrom(FromType, ClassType)) 2261 ICS.Standard.Second = ICK_Derived_To_Base; 2262 else { 2263 ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType); 2264 return ICS; 2265 } 2266 2267 // Success. Mark this as a reference binding. 2268 ICS.setStandard(); 2269 ICS.Standard.setFromType(FromType); 2270 ICS.Standard.setToType(ImplicitParamType); 2271 ICS.Standard.ReferenceBinding = true; 2272 ICS.Standard.DirectBinding = true; 2273 ICS.Standard.RRefBinding = false; 2274 return ICS; 2275} 2276 2277/// PerformObjectArgumentInitialization - Perform initialization of 2278/// the implicit object parameter for the given Method with the given 2279/// expression. 2280bool 2281Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2282 QualType FromRecordType, DestType; 2283 QualType ImplicitParamRecordType = 2284 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2285 2286 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2287 FromRecordType = PT->getPointeeType(); 2288 DestType = Method->getThisType(Context); 2289 } else { 2290 FromRecordType = From->getType(); 2291 DestType = ImplicitParamRecordType; 2292 } 2293 2294 // Note that we always use the true parent context when performing 2295 // the actual argument initialization. 2296 ImplicitConversionSequence ICS 2297 = TryObjectArgumentInitialization(From->getType(), Method, 2298 Method->getParent()); 2299 if (ICS.isBad()) 2300 return Diag(From->getSourceRange().getBegin(), 2301 diag::err_implicit_object_parameter_init) 2302 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2303 2304 if (ICS.Standard.Second == ICK_Derived_To_Base && 2305 CheckDerivedToBaseConversion(FromRecordType, 2306 ImplicitParamRecordType, 2307 From->getSourceRange().getBegin(), 2308 From->getSourceRange())) 2309 return true; 2310 2311 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2312 /*isLvalue=*/true); 2313 return false; 2314} 2315 2316/// TryContextuallyConvertToBool - Attempt to contextually convert the 2317/// expression From to bool (C++0x [conv]p3). 2318ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2319 return TryImplicitConversion(From, Context.BoolTy, 2320 // FIXME: Are these flags correct? 2321 /*SuppressUserConversions=*/false, 2322 /*AllowExplicit=*/true, 2323 /*ForceRValue=*/false, 2324 /*InOverloadResolution=*/false); 2325} 2326 2327/// PerformContextuallyConvertToBool - Perform a contextual conversion 2328/// of the expression From to bool (C++0x [conv]p3). 2329bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2330 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2331 if (!ICS.isBad()) 2332 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 2333 2334 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2335 return Diag(From->getSourceRange().getBegin(), 2336 diag::err_typecheck_bool_condition) 2337 << From->getType() << From->getSourceRange(); 2338 return true; 2339} 2340 2341/// AddOverloadCandidate - Adds the given function to the set of 2342/// candidate functions, using the given function call arguments. If 2343/// @p SuppressUserConversions, then don't allow user-defined 2344/// conversions via constructors or conversion operators. 2345/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2346/// hacky way to implement the overloading rules for elidable copy 2347/// initialization in C++0x (C++0x 12.8p15). 2348/// 2349/// \para PartialOverloading true if we are performing "partial" overloading 2350/// based on an incomplete set of function arguments. This feature is used by 2351/// code completion. 2352void 2353Sema::AddOverloadCandidate(FunctionDecl *Function, 2354 Expr **Args, unsigned NumArgs, 2355 OverloadCandidateSet& CandidateSet, 2356 bool SuppressUserConversions, 2357 bool ForceRValue, 2358 bool PartialOverloading) { 2359 const FunctionProtoType* Proto 2360 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2361 assert(Proto && "Functions without a prototype cannot be overloaded"); 2362 assert(!Function->getDescribedFunctionTemplate() && 2363 "Use AddTemplateOverloadCandidate for function templates"); 2364 2365 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2366 if (!isa<CXXConstructorDecl>(Method)) { 2367 // If we get here, it's because we're calling a member function 2368 // that is named without a member access expression (e.g., 2369 // "this->f") that was either written explicitly or created 2370 // implicitly. This can happen with a qualified call to a member 2371 // function, e.g., X::f(). We use an empty type for the implied 2372 // object argument (C++ [over.call.func]p3), and the acting context 2373 // is irrelevant. 2374 AddMethodCandidate(Method, Method->getParent(), 2375 QualType(), Args, NumArgs, CandidateSet, 2376 SuppressUserConversions, ForceRValue); 2377 return; 2378 } 2379 // We treat a constructor like a non-member function, since its object 2380 // argument doesn't participate in overload resolution. 2381 } 2382 2383 if (!CandidateSet.isNewCandidate(Function)) 2384 return; 2385 2386 // Overload resolution is always an unevaluated context. 2387 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2388 2389 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2390 // C++ [class.copy]p3: 2391 // A member function template is never instantiated to perform the copy 2392 // of a class object to an object of its class type. 2393 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2394 if (NumArgs == 1 && 2395 Constructor->isCopyConstructorLikeSpecialization() && 2396 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType())) 2397 return; 2398 } 2399 2400 // Add this candidate 2401 CandidateSet.push_back(OverloadCandidate()); 2402 OverloadCandidate& Candidate = CandidateSet.back(); 2403 Candidate.Function = Function; 2404 Candidate.Viable = true; 2405 Candidate.IsSurrogate = false; 2406 Candidate.IgnoreObjectArgument = false; 2407 2408 unsigned NumArgsInProto = Proto->getNumArgs(); 2409 2410 // (C++ 13.3.2p2): A candidate function having fewer than m 2411 // parameters is viable only if it has an ellipsis in its parameter 2412 // list (8.3.5). 2413 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2414 !Proto->isVariadic()) { 2415 Candidate.Viable = false; 2416 Candidate.FailureKind = ovl_fail_too_many_arguments; 2417 return; 2418 } 2419 2420 // (C++ 13.3.2p2): A candidate function having more than m parameters 2421 // is viable only if the (m+1)st parameter has a default argument 2422 // (8.3.6). For the purposes of overload resolution, the 2423 // parameter list is truncated on the right, so that there are 2424 // exactly m parameters. 2425 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2426 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2427 // Not enough arguments. 2428 Candidate.Viable = false; 2429 Candidate.FailureKind = ovl_fail_too_few_arguments; 2430 return; 2431 } 2432 2433 // Determine the implicit conversion sequences for each of the 2434 // arguments. 2435 Candidate.Conversions.resize(NumArgs); 2436 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2437 if (ArgIdx < NumArgsInProto) { 2438 // (C++ 13.3.2p3): for F to be a viable function, there shall 2439 // exist for each argument an implicit conversion sequence 2440 // (13.3.3.1) that converts that argument to the corresponding 2441 // parameter of F. 2442 QualType ParamType = Proto->getArgType(ArgIdx); 2443 Candidate.Conversions[ArgIdx] 2444 = TryCopyInitialization(Args[ArgIdx], ParamType, 2445 SuppressUserConversions, ForceRValue, 2446 /*InOverloadResolution=*/true); 2447 if (Candidate.Conversions[ArgIdx].isBad()) { 2448 Candidate.Viable = false; 2449 Candidate.FailureKind = ovl_fail_bad_conversion; 2450 break; 2451 } 2452 } else { 2453 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2454 // argument for which there is no corresponding parameter is 2455 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2456 Candidate.Conversions[ArgIdx].setEllipsis(); 2457 } 2458 } 2459} 2460 2461/// \brief Add all of the function declarations in the given function set to 2462/// the overload canddiate set. 2463void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2464 Expr **Args, unsigned NumArgs, 2465 OverloadCandidateSet& CandidateSet, 2466 bool SuppressUserConversions) { 2467 for (FunctionSet::const_iterator F = Functions.begin(), 2468 FEnd = Functions.end(); 2469 F != FEnd; ++F) { 2470 // FIXME: using declarations 2471 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2472 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2473 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2474 cast<CXXMethodDecl>(FD)->getParent(), 2475 Args[0]->getType(), Args + 1, NumArgs - 1, 2476 CandidateSet, SuppressUserConversions); 2477 else 2478 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2479 SuppressUserConversions); 2480 } else { 2481 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2482 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2483 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2484 AddMethodTemplateCandidate(FunTmpl, 2485 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 2486 /*FIXME: explicit args */ 0, 2487 Args[0]->getType(), Args + 1, NumArgs - 1, 2488 CandidateSet, 2489 SuppressUserConversions); 2490 else 2491 AddTemplateOverloadCandidate(FunTmpl, 2492 /*FIXME: explicit args */ 0, 2493 Args, NumArgs, CandidateSet, 2494 SuppressUserConversions); 2495 } 2496 } 2497} 2498 2499/// AddMethodCandidate - Adds a named decl (which is some kind of 2500/// method) as a method candidate to the given overload set. 2501void Sema::AddMethodCandidate(NamedDecl *Decl, 2502 QualType ObjectType, 2503 Expr **Args, unsigned NumArgs, 2504 OverloadCandidateSet& CandidateSet, 2505 bool SuppressUserConversions, bool ForceRValue) { 2506 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 2507 2508 if (isa<UsingShadowDecl>(Decl)) 2509 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 2510 2511 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 2512 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 2513 "Expected a member function template"); 2514 AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0, 2515 ObjectType, Args, NumArgs, 2516 CandidateSet, 2517 SuppressUserConversions, 2518 ForceRValue); 2519 } else { 2520 AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext, 2521 ObjectType, Args, NumArgs, 2522 CandidateSet, SuppressUserConversions, ForceRValue); 2523 } 2524} 2525 2526/// AddMethodCandidate - Adds the given C++ member function to the set 2527/// of candidate functions, using the given function call arguments 2528/// and the object argument (@c Object). For example, in a call 2529/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2530/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2531/// allow user-defined conversions via constructors or conversion 2532/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2533/// a slightly hacky way to implement the overloading rules for elidable copy 2534/// initialization in C++0x (C++0x 12.8p15). 2535void 2536Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext, 2537 QualType ObjectType, Expr **Args, unsigned NumArgs, 2538 OverloadCandidateSet& CandidateSet, 2539 bool SuppressUserConversions, bool ForceRValue) { 2540 const FunctionProtoType* Proto 2541 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2542 assert(Proto && "Methods without a prototype cannot be overloaded"); 2543 assert(!isa<CXXConstructorDecl>(Method) && 2544 "Use AddOverloadCandidate for constructors"); 2545 2546 if (!CandidateSet.isNewCandidate(Method)) 2547 return; 2548 2549 // Overload resolution is always an unevaluated context. 2550 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2551 2552 // Add this candidate 2553 CandidateSet.push_back(OverloadCandidate()); 2554 OverloadCandidate& Candidate = CandidateSet.back(); 2555 Candidate.Function = Method; 2556 Candidate.IsSurrogate = false; 2557 Candidate.IgnoreObjectArgument = false; 2558 2559 unsigned NumArgsInProto = Proto->getNumArgs(); 2560 2561 // (C++ 13.3.2p2): A candidate function having fewer than m 2562 // parameters is viable only if it has an ellipsis in its parameter 2563 // list (8.3.5). 2564 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2565 Candidate.Viable = false; 2566 Candidate.FailureKind = ovl_fail_too_many_arguments; 2567 return; 2568 } 2569 2570 // (C++ 13.3.2p2): A candidate function having more than m parameters 2571 // is viable only if the (m+1)st parameter has a default argument 2572 // (8.3.6). For the purposes of overload resolution, the 2573 // parameter list is truncated on the right, so that there are 2574 // exactly m parameters. 2575 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2576 if (NumArgs < MinRequiredArgs) { 2577 // Not enough arguments. 2578 Candidate.Viable = false; 2579 Candidate.FailureKind = ovl_fail_too_few_arguments; 2580 return; 2581 } 2582 2583 Candidate.Viable = true; 2584 Candidate.Conversions.resize(NumArgs + 1); 2585 2586 if (Method->isStatic() || ObjectType.isNull()) 2587 // The implicit object argument is ignored. 2588 Candidate.IgnoreObjectArgument = true; 2589 else { 2590 // Determine the implicit conversion sequence for the object 2591 // parameter. 2592 Candidate.Conversions[0] 2593 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 2594 if (Candidate.Conversions[0].isBad()) { 2595 Candidate.Viable = false; 2596 Candidate.FailureKind = ovl_fail_bad_conversion; 2597 return; 2598 } 2599 } 2600 2601 // Determine the implicit conversion sequences for each of the 2602 // arguments. 2603 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2604 if (ArgIdx < NumArgsInProto) { 2605 // (C++ 13.3.2p3): for F to be a viable function, there shall 2606 // exist for each argument an implicit conversion sequence 2607 // (13.3.3.1) that converts that argument to the corresponding 2608 // parameter of F. 2609 QualType ParamType = Proto->getArgType(ArgIdx); 2610 Candidate.Conversions[ArgIdx + 1] 2611 = TryCopyInitialization(Args[ArgIdx], ParamType, 2612 SuppressUserConversions, ForceRValue, 2613 /*InOverloadResolution=*/true); 2614 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 2615 Candidate.Viable = false; 2616 Candidate.FailureKind = ovl_fail_bad_conversion; 2617 break; 2618 } 2619 } else { 2620 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2621 // argument for which there is no corresponding parameter is 2622 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2623 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 2624 } 2625 } 2626} 2627 2628/// \brief Add a C++ member function template as a candidate to the candidate 2629/// set, using template argument deduction to produce an appropriate member 2630/// function template specialization. 2631void 2632Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2633 CXXRecordDecl *ActingContext, 2634 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2635 QualType ObjectType, 2636 Expr **Args, unsigned NumArgs, 2637 OverloadCandidateSet& CandidateSet, 2638 bool SuppressUserConversions, 2639 bool ForceRValue) { 2640 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2641 return; 2642 2643 // C++ [over.match.funcs]p7: 2644 // In each case where a candidate is a function template, candidate 2645 // function template specializations are generated using template argument 2646 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2647 // candidate functions in the usual way.113) A given name can refer to one 2648 // or more function templates and also to a set of overloaded non-template 2649 // functions. In such a case, the candidate functions generated from each 2650 // function template are combined with the set of non-template candidate 2651 // functions. 2652 TemplateDeductionInfo Info(Context); 2653 FunctionDecl *Specialization = 0; 2654 if (TemplateDeductionResult Result 2655 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 2656 Args, NumArgs, Specialization, Info)) { 2657 // FIXME: Record what happened with template argument deduction, so 2658 // that we can give the user a beautiful diagnostic. 2659 (void)Result; 2660 return; 2661 } 2662 2663 // Add the function template specialization produced by template argument 2664 // deduction as a candidate. 2665 assert(Specialization && "Missing member function template specialization?"); 2666 assert(isa<CXXMethodDecl>(Specialization) && 2667 "Specialization is not a member function?"); 2668 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext, 2669 ObjectType, Args, NumArgs, 2670 CandidateSet, SuppressUserConversions, ForceRValue); 2671} 2672 2673/// \brief Add a C++ function template specialization as a candidate 2674/// in the candidate set, using template argument deduction to produce 2675/// an appropriate function template specialization. 2676void 2677Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2678 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2679 Expr **Args, unsigned NumArgs, 2680 OverloadCandidateSet& CandidateSet, 2681 bool SuppressUserConversions, 2682 bool ForceRValue) { 2683 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2684 return; 2685 2686 // C++ [over.match.funcs]p7: 2687 // In each case where a candidate is a function template, candidate 2688 // function template specializations are generated using template argument 2689 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2690 // candidate functions in the usual way.113) A given name can refer to one 2691 // or more function templates and also to a set of overloaded non-template 2692 // functions. In such a case, the candidate functions generated from each 2693 // function template are combined with the set of non-template candidate 2694 // functions. 2695 TemplateDeductionInfo Info(Context); 2696 FunctionDecl *Specialization = 0; 2697 if (TemplateDeductionResult Result 2698 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 2699 Args, NumArgs, Specialization, Info)) { 2700 // FIXME: Record what happened with template argument deduction, so 2701 // that we can give the user a beautiful diagnostic. 2702 (void) Result; 2703 2704 CandidateSet.push_back(OverloadCandidate()); 2705 OverloadCandidate &Candidate = CandidateSet.back(); 2706 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 2707 Candidate.Viable = false; 2708 Candidate.FailureKind = ovl_fail_bad_deduction; 2709 Candidate.IsSurrogate = false; 2710 Candidate.IgnoreObjectArgument = false; 2711 return; 2712 } 2713 2714 // Add the function template specialization produced by template argument 2715 // deduction as a candidate. 2716 assert(Specialization && "Missing function template specialization?"); 2717 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2718 SuppressUserConversions, ForceRValue); 2719} 2720 2721/// AddConversionCandidate - Add a C++ conversion function as a 2722/// candidate in the candidate set (C++ [over.match.conv], 2723/// C++ [over.match.copy]). From is the expression we're converting from, 2724/// and ToType is the type that we're eventually trying to convert to 2725/// (which may or may not be the same type as the type that the 2726/// conversion function produces). 2727void 2728Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2729 CXXRecordDecl *ActingContext, 2730 Expr *From, QualType ToType, 2731 OverloadCandidateSet& CandidateSet) { 2732 assert(!Conversion->getDescribedFunctionTemplate() && 2733 "Conversion function templates use AddTemplateConversionCandidate"); 2734 2735 if (!CandidateSet.isNewCandidate(Conversion)) 2736 return; 2737 2738 // Overload resolution is always an unevaluated context. 2739 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2740 2741 // Add this candidate 2742 CandidateSet.push_back(OverloadCandidate()); 2743 OverloadCandidate& Candidate = CandidateSet.back(); 2744 Candidate.Function = Conversion; 2745 Candidate.IsSurrogate = false; 2746 Candidate.IgnoreObjectArgument = false; 2747 Candidate.FinalConversion.setAsIdentityConversion(); 2748 Candidate.FinalConversion.setFromType(Conversion->getConversionType()); 2749 Candidate.FinalConversion.setToType(ToType); 2750 2751 // Determine the implicit conversion sequence for the implicit 2752 // object parameter. 2753 Candidate.Viable = true; 2754 Candidate.Conversions.resize(1); 2755 Candidate.Conversions[0] 2756 = TryObjectArgumentInitialization(From->getType(), Conversion, 2757 ActingContext); 2758 // Conversion functions to a different type in the base class is visible in 2759 // the derived class. So, a derived to base conversion should not participate 2760 // in overload resolution. 2761 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2762 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2763 if (Candidate.Conversions[0].isBad()) { 2764 Candidate.Viable = false; 2765 Candidate.FailureKind = ovl_fail_bad_conversion; 2766 return; 2767 } 2768 2769 // We won't go through a user-define type conversion function to convert a 2770 // derived to base as such conversions are given Conversion Rank. They only 2771 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2772 QualType FromCanon 2773 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2774 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2775 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2776 Candidate.Viable = false; 2777 Candidate.FailureKind = ovl_fail_bad_conversion; 2778 return; 2779 } 2780 2781 2782 // To determine what the conversion from the result of calling the 2783 // conversion function to the type we're eventually trying to 2784 // convert to (ToType), we need to synthesize a call to the 2785 // conversion function and attempt copy initialization from it. This 2786 // makes sure that we get the right semantics with respect to 2787 // lvalues/rvalues and the type. Fortunately, we can allocate this 2788 // call on the stack and we don't need its arguments to be 2789 // well-formed. 2790 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2791 From->getLocStart()); 2792 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2793 CastExpr::CK_FunctionToPointerDecay, 2794 &ConversionRef, false); 2795 2796 // Note that it is safe to allocate CallExpr on the stack here because 2797 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2798 // allocator). 2799 CallExpr Call(Context, &ConversionFn, 0, 0, 2800 Conversion->getConversionType().getNonReferenceType(), 2801 From->getLocStart()); 2802 ImplicitConversionSequence ICS = 2803 TryCopyInitialization(&Call, ToType, 2804 /*SuppressUserConversions=*/true, 2805 /*ForceRValue=*/false, 2806 /*InOverloadResolution=*/false); 2807 2808 switch (ICS.getKind()) { 2809 case ImplicitConversionSequence::StandardConversion: 2810 Candidate.FinalConversion = ICS.Standard; 2811 break; 2812 2813 case ImplicitConversionSequence::BadConversion: 2814 Candidate.Viable = false; 2815 Candidate.FailureKind = ovl_fail_bad_conversion; 2816 break; 2817 2818 default: 2819 assert(false && 2820 "Can only end up with a standard conversion sequence or failure"); 2821 } 2822} 2823 2824/// \brief Adds a conversion function template specialization 2825/// candidate to the overload set, using template argument deduction 2826/// to deduce the template arguments of the conversion function 2827/// template from the type that we are converting to (C++ 2828/// [temp.deduct.conv]). 2829void 2830Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2831 CXXRecordDecl *ActingDC, 2832 Expr *From, QualType ToType, 2833 OverloadCandidateSet &CandidateSet) { 2834 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2835 "Only conversion function templates permitted here"); 2836 2837 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2838 return; 2839 2840 TemplateDeductionInfo Info(Context); 2841 CXXConversionDecl *Specialization = 0; 2842 if (TemplateDeductionResult Result 2843 = DeduceTemplateArguments(FunctionTemplate, ToType, 2844 Specialization, Info)) { 2845 // FIXME: Record what happened with template argument deduction, so 2846 // that we can give the user a beautiful diagnostic. 2847 (void)Result; 2848 return; 2849 } 2850 2851 // Add the conversion function template specialization produced by 2852 // template argument deduction as a candidate. 2853 assert(Specialization && "Missing function template specialization?"); 2854 AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet); 2855} 2856 2857/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2858/// converts the given @c Object to a function pointer via the 2859/// conversion function @c Conversion, and then attempts to call it 2860/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2861/// the type of function that we'll eventually be calling. 2862void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2863 CXXRecordDecl *ActingContext, 2864 const FunctionProtoType *Proto, 2865 QualType ObjectType, 2866 Expr **Args, unsigned NumArgs, 2867 OverloadCandidateSet& CandidateSet) { 2868 if (!CandidateSet.isNewCandidate(Conversion)) 2869 return; 2870 2871 // Overload resolution is always an unevaluated context. 2872 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2873 2874 CandidateSet.push_back(OverloadCandidate()); 2875 OverloadCandidate& Candidate = CandidateSet.back(); 2876 Candidate.Function = 0; 2877 Candidate.Surrogate = Conversion; 2878 Candidate.Viable = true; 2879 Candidate.IsSurrogate = true; 2880 Candidate.IgnoreObjectArgument = false; 2881 Candidate.Conversions.resize(NumArgs + 1); 2882 2883 // Determine the implicit conversion sequence for the implicit 2884 // object parameter. 2885 ImplicitConversionSequence ObjectInit 2886 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 2887 if (ObjectInit.isBad()) { 2888 Candidate.Viable = false; 2889 Candidate.FailureKind = ovl_fail_bad_conversion; 2890 return; 2891 } 2892 2893 // The first conversion is actually a user-defined conversion whose 2894 // first conversion is ObjectInit's standard conversion (which is 2895 // effectively a reference binding). Record it as such. 2896 Candidate.Conversions[0].setUserDefined(); 2897 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2898 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2899 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2900 Candidate.Conversions[0].UserDefined.After 2901 = Candidate.Conversions[0].UserDefined.Before; 2902 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2903 2904 // Find the 2905 unsigned NumArgsInProto = Proto->getNumArgs(); 2906 2907 // (C++ 13.3.2p2): A candidate function having fewer than m 2908 // parameters is viable only if it has an ellipsis in its parameter 2909 // list (8.3.5). 2910 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2911 Candidate.Viable = false; 2912 Candidate.FailureKind = ovl_fail_too_many_arguments; 2913 return; 2914 } 2915 2916 // Function types don't have any default arguments, so just check if 2917 // we have enough arguments. 2918 if (NumArgs < NumArgsInProto) { 2919 // Not enough arguments. 2920 Candidate.Viable = false; 2921 Candidate.FailureKind = ovl_fail_too_few_arguments; 2922 return; 2923 } 2924 2925 // Determine the implicit conversion sequences for each of the 2926 // arguments. 2927 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2928 if (ArgIdx < NumArgsInProto) { 2929 // (C++ 13.3.2p3): for F to be a viable function, there shall 2930 // exist for each argument an implicit conversion sequence 2931 // (13.3.3.1) that converts that argument to the corresponding 2932 // parameter of F. 2933 QualType ParamType = Proto->getArgType(ArgIdx); 2934 Candidate.Conversions[ArgIdx + 1] 2935 = TryCopyInitialization(Args[ArgIdx], ParamType, 2936 /*SuppressUserConversions=*/false, 2937 /*ForceRValue=*/false, 2938 /*InOverloadResolution=*/false); 2939 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 2940 Candidate.Viable = false; 2941 Candidate.FailureKind = ovl_fail_bad_conversion; 2942 break; 2943 } 2944 } else { 2945 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2946 // argument for which there is no corresponding parameter is 2947 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2948 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 2949 } 2950 } 2951} 2952 2953// FIXME: This will eventually be removed, once we've migrated all of the 2954// operator overloading logic over to the scheme used by binary operators, which 2955// works for template instantiation. 2956void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2957 SourceLocation OpLoc, 2958 Expr **Args, unsigned NumArgs, 2959 OverloadCandidateSet& CandidateSet, 2960 SourceRange OpRange) { 2961 FunctionSet Functions; 2962 2963 QualType T1 = Args[0]->getType(); 2964 QualType T2; 2965 if (NumArgs > 1) 2966 T2 = Args[1]->getType(); 2967 2968 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2969 if (S) 2970 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2971 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2972 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2973 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2974 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2975} 2976 2977/// \brief Add overload candidates for overloaded operators that are 2978/// member functions. 2979/// 2980/// Add the overloaded operator candidates that are member functions 2981/// for the operator Op that was used in an operator expression such 2982/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2983/// CandidateSet will store the added overload candidates. (C++ 2984/// [over.match.oper]). 2985void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2986 SourceLocation OpLoc, 2987 Expr **Args, unsigned NumArgs, 2988 OverloadCandidateSet& CandidateSet, 2989 SourceRange OpRange) { 2990 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2991 2992 // C++ [over.match.oper]p3: 2993 // For a unary operator @ with an operand of a type whose 2994 // cv-unqualified version is T1, and for a binary operator @ with 2995 // a left operand of a type whose cv-unqualified version is T1 and 2996 // a right operand of a type whose cv-unqualified version is T2, 2997 // three sets of candidate functions, designated member 2998 // candidates, non-member candidates and built-in candidates, are 2999 // constructed as follows: 3000 QualType T1 = Args[0]->getType(); 3001 QualType T2; 3002 if (NumArgs > 1) 3003 T2 = Args[1]->getType(); 3004 3005 // -- If T1 is a class type, the set of member candidates is the 3006 // result of the qualified lookup of T1::operator@ 3007 // (13.3.1.1.1); otherwise, the set of member candidates is 3008 // empty. 3009 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3010 // Complete the type if it can be completed. Otherwise, we're done. 3011 if (RequireCompleteType(OpLoc, T1, PDiag())) 3012 return; 3013 3014 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3015 LookupQualifiedName(Operators, T1Rec->getDecl()); 3016 Operators.suppressDiagnostics(); 3017 3018 for (LookupResult::iterator Oper = Operators.begin(), 3019 OperEnd = Operators.end(); 3020 Oper != OperEnd; 3021 ++Oper) 3022 AddMethodCandidate(*Oper, Args[0]->getType(), 3023 Args + 1, NumArgs - 1, CandidateSet, 3024 /* SuppressUserConversions = */ false); 3025 } 3026} 3027 3028/// AddBuiltinCandidate - Add a candidate for a built-in 3029/// operator. ResultTy and ParamTys are the result and parameter types 3030/// of the built-in candidate, respectively. Args and NumArgs are the 3031/// arguments being passed to the candidate. IsAssignmentOperator 3032/// should be true when this built-in candidate is an assignment 3033/// operator. NumContextualBoolArguments is the number of arguments 3034/// (at the beginning of the argument list) that will be contextually 3035/// converted to bool. 3036void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3037 Expr **Args, unsigned NumArgs, 3038 OverloadCandidateSet& CandidateSet, 3039 bool IsAssignmentOperator, 3040 unsigned NumContextualBoolArguments) { 3041 // Overload resolution is always an unevaluated context. 3042 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3043 3044 // Add this candidate 3045 CandidateSet.push_back(OverloadCandidate()); 3046 OverloadCandidate& Candidate = CandidateSet.back(); 3047 Candidate.Function = 0; 3048 Candidate.IsSurrogate = false; 3049 Candidate.IgnoreObjectArgument = false; 3050 Candidate.BuiltinTypes.ResultTy = ResultTy; 3051 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3052 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3053 3054 // Determine the implicit conversion sequences for each of the 3055 // arguments. 3056 Candidate.Viable = true; 3057 Candidate.Conversions.resize(NumArgs); 3058 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3059 // C++ [over.match.oper]p4: 3060 // For the built-in assignment operators, conversions of the 3061 // left operand are restricted as follows: 3062 // -- no temporaries are introduced to hold the left operand, and 3063 // -- no user-defined conversions are applied to the left 3064 // operand to achieve a type match with the left-most 3065 // parameter of a built-in candidate. 3066 // 3067 // We block these conversions by turning off user-defined 3068 // conversions, since that is the only way that initialization of 3069 // a reference to a non-class type can occur from something that 3070 // is not of the same type. 3071 if (ArgIdx < NumContextualBoolArguments) { 3072 assert(ParamTys[ArgIdx] == Context.BoolTy && 3073 "Contextual conversion to bool requires bool type"); 3074 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 3075 } else { 3076 Candidate.Conversions[ArgIdx] 3077 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 3078 ArgIdx == 0 && IsAssignmentOperator, 3079 /*ForceRValue=*/false, 3080 /*InOverloadResolution=*/false); 3081 } 3082 if (Candidate.Conversions[ArgIdx].isBad()) { 3083 Candidate.Viable = false; 3084 Candidate.FailureKind = ovl_fail_bad_conversion; 3085 break; 3086 } 3087 } 3088} 3089 3090/// BuiltinCandidateTypeSet - A set of types that will be used for the 3091/// candidate operator functions for built-in operators (C++ 3092/// [over.built]). The types are separated into pointer types and 3093/// enumeration types. 3094class BuiltinCandidateTypeSet { 3095 /// TypeSet - A set of types. 3096 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3097 3098 /// PointerTypes - The set of pointer types that will be used in the 3099 /// built-in candidates. 3100 TypeSet PointerTypes; 3101 3102 /// MemberPointerTypes - The set of member pointer types that will be 3103 /// used in the built-in candidates. 3104 TypeSet MemberPointerTypes; 3105 3106 /// EnumerationTypes - The set of enumeration types that will be 3107 /// used in the built-in candidates. 3108 TypeSet EnumerationTypes; 3109 3110 /// Sema - The semantic analysis instance where we are building the 3111 /// candidate type set. 3112 Sema &SemaRef; 3113 3114 /// Context - The AST context in which we will build the type sets. 3115 ASTContext &Context; 3116 3117 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3118 const Qualifiers &VisibleQuals); 3119 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3120 3121public: 3122 /// iterator - Iterates through the types that are part of the set. 3123 typedef TypeSet::iterator iterator; 3124 3125 BuiltinCandidateTypeSet(Sema &SemaRef) 3126 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3127 3128 void AddTypesConvertedFrom(QualType Ty, 3129 SourceLocation Loc, 3130 bool AllowUserConversions, 3131 bool AllowExplicitConversions, 3132 const Qualifiers &VisibleTypeConversionsQuals); 3133 3134 /// pointer_begin - First pointer type found; 3135 iterator pointer_begin() { return PointerTypes.begin(); } 3136 3137 /// pointer_end - Past the last pointer type found; 3138 iterator pointer_end() { return PointerTypes.end(); } 3139 3140 /// member_pointer_begin - First member pointer type found; 3141 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3142 3143 /// member_pointer_end - Past the last member pointer type found; 3144 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3145 3146 /// enumeration_begin - First enumeration type found; 3147 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3148 3149 /// enumeration_end - Past the last enumeration type found; 3150 iterator enumeration_end() { return EnumerationTypes.end(); } 3151}; 3152 3153/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3154/// the set of pointer types along with any more-qualified variants of 3155/// that type. For example, if @p Ty is "int const *", this routine 3156/// will add "int const *", "int const volatile *", "int const 3157/// restrict *", and "int const volatile restrict *" to the set of 3158/// pointer types. Returns true if the add of @p Ty itself succeeded, 3159/// false otherwise. 3160/// 3161/// FIXME: what to do about extended qualifiers? 3162bool 3163BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3164 const Qualifiers &VisibleQuals) { 3165 3166 // Insert this type. 3167 if (!PointerTypes.insert(Ty)) 3168 return false; 3169 3170 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3171 assert(PointerTy && "type was not a pointer type!"); 3172 3173 QualType PointeeTy = PointerTy->getPointeeType(); 3174 // Don't add qualified variants of arrays. For one, they're not allowed 3175 // (the qualifier would sink to the element type), and for another, the 3176 // only overload situation where it matters is subscript or pointer +- int, 3177 // and those shouldn't have qualifier variants anyway. 3178 if (PointeeTy->isArrayType()) 3179 return true; 3180 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3181 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3182 BaseCVR = Array->getElementType().getCVRQualifiers(); 3183 bool hasVolatile = VisibleQuals.hasVolatile(); 3184 bool hasRestrict = VisibleQuals.hasRestrict(); 3185 3186 // Iterate through all strict supersets of BaseCVR. 3187 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3188 if ((CVR | BaseCVR) != CVR) continue; 3189 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3190 // in the types. 3191 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3192 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3193 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3194 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3195 } 3196 3197 return true; 3198} 3199 3200/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3201/// to the set of pointer types along with any more-qualified variants of 3202/// that type. For example, if @p Ty is "int const *", this routine 3203/// will add "int const *", "int const volatile *", "int const 3204/// restrict *", and "int const volatile restrict *" to the set of 3205/// pointer types. Returns true if the add of @p Ty itself succeeded, 3206/// false otherwise. 3207/// 3208/// FIXME: what to do about extended qualifiers? 3209bool 3210BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3211 QualType Ty) { 3212 // Insert this type. 3213 if (!MemberPointerTypes.insert(Ty)) 3214 return false; 3215 3216 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3217 assert(PointerTy && "type was not a member pointer type!"); 3218 3219 QualType PointeeTy = PointerTy->getPointeeType(); 3220 // Don't add qualified variants of arrays. For one, they're not allowed 3221 // (the qualifier would sink to the element type), and for another, the 3222 // only overload situation where it matters is subscript or pointer +- int, 3223 // and those shouldn't have qualifier variants anyway. 3224 if (PointeeTy->isArrayType()) 3225 return true; 3226 const Type *ClassTy = PointerTy->getClass(); 3227 3228 // Iterate through all strict supersets of the pointee type's CVR 3229 // qualifiers. 3230 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3231 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3232 if ((CVR | BaseCVR) != CVR) continue; 3233 3234 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3235 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3236 } 3237 3238 return true; 3239} 3240 3241/// AddTypesConvertedFrom - Add each of the types to which the type @p 3242/// Ty can be implicit converted to the given set of @p Types. We're 3243/// primarily interested in pointer types and enumeration types. We also 3244/// take member pointer types, for the conditional operator. 3245/// AllowUserConversions is true if we should look at the conversion 3246/// functions of a class type, and AllowExplicitConversions if we 3247/// should also include the explicit conversion functions of a class 3248/// type. 3249void 3250BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3251 SourceLocation Loc, 3252 bool AllowUserConversions, 3253 bool AllowExplicitConversions, 3254 const Qualifiers &VisibleQuals) { 3255 // Only deal with canonical types. 3256 Ty = Context.getCanonicalType(Ty); 3257 3258 // Look through reference types; they aren't part of the type of an 3259 // expression for the purposes of conversions. 3260 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3261 Ty = RefTy->getPointeeType(); 3262 3263 // We don't care about qualifiers on the type. 3264 Ty = Ty.getLocalUnqualifiedType(); 3265 3266 // If we're dealing with an array type, decay to the pointer. 3267 if (Ty->isArrayType()) 3268 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3269 3270 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3271 QualType PointeeTy = PointerTy->getPointeeType(); 3272 3273 // Insert our type, and its more-qualified variants, into the set 3274 // of types. 3275 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3276 return; 3277 } else if (Ty->isMemberPointerType()) { 3278 // Member pointers are far easier, since the pointee can't be converted. 3279 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3280 return; 3281 } else if (Ty->isEnumeralType()) { 3282 EnumerationTypes.insert(Ty); 3283 } else if (AllowUserConversions) { 3284 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3285 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3286 // No conversion functions in incomplete types. 3287 return; 3288 } 3289 3290 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3291 const UnresolvedSetImpl *Conversions 3292 = ClassDecl->getVisibleConversionFunctions(); 3293 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3294 E = Conversions->end(); I != E; ++I) { 3295 3296 // Skip conversion function templates; they don't tell us anything 3297 // about which builtin types we can convert to. 3298 if (isa<FunctionTemplateDecl>(*I)) 3299 continue; 3300 3301 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); 3302 if (AllowExplicitConversions || !Conv->isExplicit()) { 3303 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3304 VisibleQuals); 3305 } 3306 } 3307 } 3308 } 3309} 3310 3311/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3312/// the volatile- and non-volatile-qualified assignment operators for the 3313/// given type to the candidate set. 3314static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3315 QualType T, 3316 Expr **Args, 3317 unsigned NumArgs, 3318 OverloadCandidateSet &CandidateSet) { 3319 QualType ParamTypes[2]; 3320 3321 // T& operator=(T&, T) 3322 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3323 ParamTypes[1] = T; 3324 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3325 /*IsAssignmentOperator=*/true); 3326 3327 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3328 // volatile T& operator=(volatile T&, T) 3329 ParamTypes[0] 3330 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3331 ParamTypes[1] = T; 3332 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3333 /*IsAssignmentOperator=*/true); 3334 } 3335} 3336 3337/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3338/// if any, found in visible type conversion functions found in ArgExpr's type. 3339static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3340 Qualifiers VRQuals; 3341 const RecordType *TyRec; 3342 if (const MemberPointerType *RHSMPType = 3343 ArgExpr->getType()->getAs<MemberPointerType>()) 3344 TyRec = cast<RecordType>(RHSMPType->getClass()); 3345 else 3346 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3347 if (!TyRec) { 3348 // Just to be safe, assume the worst case. 3349 VRQuals.addVolatile(); 3350 VRQuals.addRestrict(); 3351 return VRQuals; 3352 } 3353 3354 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3355 const UnresolvedSetImpl *Conversions = 3356 ClassDecl->getVisibleConversionFunctions(); 3357 3358 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3359 E = Conversions->end(); I != E; ++I) { 3360 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) { 3361 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3362 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3363 CanTy = ResTypeRef->getPointeeType(); 3364 // Need to go down the pointer/mempointer chain and add qualifiers 3365 // as see them. 3366 bool done = false; 3367 while (!done) { 3368 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3369 CanTy = ResTypePtr->getPointeeType(); 3370 else if (const MemberPointerType *ResTypeMPtr = 3371 CanTy->getAs<MemberPointerType>()) 3372 CanTy = ResTypeMPtr->getPointeeType(); 3373 else 3374 done = true; 3375 if (CanTy.isVolatileQualified()) 3376 VRQuals.addVolatile(); 3377 if (CanTy.isRestrictQualified()) 3378 VRQuals.addRestrict(); 3379 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3380 return VRQuals; 3381 } 3382 } 3383 } 3384 return VRQuals; 3385} 3386 3387/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3388/// operator overloads to the candidate set (C++ [over.built]), based 3389/// on the operator @p Op and the arguments given. For example, if the 3390/// operator is a binary '+', this routine might add "int 3391/// operator+(int, int)" to cover integer addition. 3392void 3393Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3394 SourceLocation OpLoc, 3395 Expr **Args, unsigned NumArgs, 3396 OverloadCandidateSet& CandidateSet) { 3397 // The set of "promoted arithmetic types", which are the arithmetic 3398 // types are that preserved by promotion (C++ [over.built]p2). Note 3399 // that the first few of these types are the promoted integral 3400 // types; these types need to be first. 3401 // FIXME: What about complex? 3402 const unsigned FirstIntegralType = 0; 3403 const unsigned LastIntegralType = 13; 3404 const unsigned FirstPromotedIntegralType = 7, 3405 LastPromotedIntegralType = 13; 3406 const unsigned FirstPromotedArithmeticType = 7, 3407 LastPromotedArithmeticType = 16; 3408 const unsigned NumArithmeticTypes = 16; 3409 QualType ArithmeticTypes[NumArithmeticTypes] = { 3410 Context.BoolTy, Context.CharTy, Context.WCharTy, 3411// FIXME: Context.Char16Ty, Context.Char32Ty, 3412 Context.SignedCharTy, Context.ShortTy, 3413 Context.UnsignedCharTy, Context.UnsignedShortTy, 3414 Context.IntTy, Context.LongTy, Context.LongLongTy, 3415 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3416 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3417 }; 3418 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3419 "Invalid first promoted integral type"); 3420 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3421 == Context.UnsignedLongLongTy && 3422 "Invalid last promoted integral type"); 3423 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3424 "Invalid first promoted arithmetic type"); 3425 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3426 == Context.LongDoubleTy && 3427 "Invalid last promoted arithmetic type"); 3428 3429 // Find all of the types that the arguments can convert to, but only 3430 // if the operator we're looking at has built-in operator candidates 3431 // that make use of these types. 3432 Qualifiers VisibleTypeConversionsQuals; 3433 VisibleTypeConversionsQuals.addConst(); 3434 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3435 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3436 3437 BuiltinCandidateTypeSet CandidateTypes(*this); 3438 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3439 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3440 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3441 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3442 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3443 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3444 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3445 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3446 OpLoc, 3447 true, 3448 (Op == OO_Exclaim || 3449 Op == OO_AmpAmp || 3450 Op == OO_PipePipe), 3451 VisibleTypeConversionsQuals); 3452 } 3453 3454 bool isComparison = false; 3455 switch (Op) { 3456 case OO_None: 3457 case NUM_OVERLOADED_OPERATORS: 3458 assert(false && "Expected an overloaded operator"); 3459 break; 3460 3461 case OO_Star: // '*' is either unary or binary 3462 if (NumArgs == 1) 3463 goto UnaryStar; 3464 else 3465 goto BinaryStar; 3466 break; 3467 3468 case OO_Plus: // '+' is either unary or binary 3469 if (NumArgs == 1) 3470 goto UnaryPlus; 3471 else 3472 goto BinaryPlus; 3473 break; 3474 3475 case OO_Minus: // '-' is either unary or binary 3476 if (NumArgs == 1) 3477 goto UnaryMinus; 3478 else 3479 goto BinaryMinus; 3480 break; 3481 3482 case OO_Amp: // '&' is either unary or binary 3483 if (NumArgs == 1) 3484 goto UnaryAmp; 3485 else 3486 goto BinaryAmp; 3487 3488 case OO_PlusPlus: 3489 case OO_MinusMinus: 3490 // C++ [over.built]p3: 3491 // 3492 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3493 // is either volatile or empty, there exist candidate operator 3494 // functions of the form 3495 // 3496 // VQ T& operator++(VQ T&); 3497 // T operator++(VQ T&, int); 3498 // 3499 // C++ [over.built]p4: 3500 // 3501 // For every pair (T, VQ), where T is an arithmetic type other 3502 // than bool, and VQ is either volatile or empty, there exist 3503 // candidate operator functions of the form 3504 // 3505 // VQ T& operator--(VQ T&); 3506 // T operator--(VQ T&, int); 3507 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3508 Arith < NumArithmeticTypes; ++Arith) { 3509 QualType ArithTy = ArithmeticTypes[Arith]; 3510 QualType ParamTypes[2] 3511 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3512 3513 // Non-volatile version. 3514 if (NumArgs == 1) 3515 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3516 else 3517 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3518 // heuristic to reduce number of builtin candidates in the set. 3519 // Add volatile version only if there are conversions to a volatile type. 3520 if (VisibleTypeConversionsQuals.hasVolatile()) { 3521 // Volatile version 3522 ParamTypes[0] 3523 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3524 if (NumArgs == 1) 3525 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3526 else 3527 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3528 } 3529 } 3530 3531 // C++ [over.built]p5: 3532 // 3533 // For every pair (T, VQ), where T is a cv-qualified or 3534 // cv-unqualified object type, and VQ is either volatile or 3535 // empty, there exist candidate operator functions of the form 3536 // 3537 // T*VQ& operator++(T*VQ&); 3538 // T*VQ& operator--(T*VQ&); 3539 // T* operator++(T*VQ&, int); 3540 // T* operator--(T*VQ&, int); 3541 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3542 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3543 // Skip pointer types that aren't pointers to object types. 3544 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3545 continue; 3546 3547 QualType ParamTypes[2] = { 3548 Context.getLValueReferenceType(*Ptr), Context.IntTy 3549 }; 3550 3551 // Without volatile 3552 if (NumArgs == 1) 3553 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3554 else 3555 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3556 3557 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3558 VisibleTypeConversionsQuals.hasVolatile()) { 3559 // With volatile 3560 ParamTypes[0] 3561 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3562 if (NumArgs == 1) 3563 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3564 else 3565 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3566 } 3567 } 3568 break; 3569 3570 UnaryStar: 3571 // C++ [over.built]p6: 3572 // For every cv-qualified or cv-unqualified object type T, there 3573 // exist candidate operator functions of the form 3574 // 3575 // T& operator*(T*); 3576 // 3577 // C++ [over.built]p7: 3578 // For every function type T, there exist candidate operator 3579 // functions of the form 3580 // T& operator*(T*); 3581 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3582 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3583 QualType ParamTy = *Ptr; 3584 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3585 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3586 &ParamTy, Args, 1, CandidateSet); 3587 } 3588 break; 3589 3590 UnaryPlus: 3591 // C++ [over.built]p8: 3592 // For every type T, there exist candidate operator functions of 3593 // the form 3594 // 3595 // T* operator+(T*); 3596 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3597 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3598 QualType ParamTy = *Ptr; 3599 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3600 } 3601 3602 // Fall through 3603 3604 UnaryMinus: 3605 // C++ [over.built]p9: 3606 // For every promoted arithmetic type T, there exist candidate 3607 // operator functions of the form 3608 // 3609 // T operator+(T); 3610 // T operator-(T); 3611 for (unsigned Arith = FirstPromotedArithmeticType; 3612 Arith < LastPromotedArithmeticType; ++Arith) { 3613 QualType ArithTy = ArithmeticTypes[Arith]; 3614 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3615 } 3616 break; 3617 3618 case OO_Tilde: 3619 // C++ [over.built]p10: 3620 // For every promoted integral type T, there exist candidate 3621 // operator functions of the form 3622 // 3623 // T operator~(T); 3624 for (unsigned Int = FirstPromotedIntegralType; 3625 Int < LastPromotedIntegralType; ++Int) { 3626 QualType IntTy = ArithmeticTypes[Int]; 3627 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3628 } 3629 break; 3630 3631 case OO_New: 3632 case OO_Delete: 3633 case OO_Array_New: 3634 case OO_Array_Delete: 3635 case OO_Call: 3636 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3637 break; 3638 3639 case OO_Comma: 3640 UnaryAmp: 3641 case OO_Arrow: 3642 // C++ [over.match.oper]p3: 3643 // -- For the operator ',', the unary operator '&', or the 3644 // operator '->', the built-in candidates set is empty. 3645 break; 3646 3647 case OO_EqualEqual: 3648 case OO_ExclaimEqual: 3649 // C++ [over.match.oper]p16: 3650 // For every pointer to member type T, there exist candidate operator 3651 // functions of the form 3652 // 3653 // bool operator==(T,T); 3654 // bool operator!=(T,T); 3655 for (BuiltinCandidateTypeSet::iterator 3656 MemPtr = CandidateTypes.member_pointer_begin(), 3657 MemPtrEnd = CandidateTypes.member_pointer_end(); 3658 MemPtr != MemPtrEnd; 3659 ++MemPtr) { 3660 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3661 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3662 } 3663 3664 // Fall through 3665 3666 case OO_Less: 3667 case OO_Greater: 3668 case OO_LessEqual: 3669 case OO_GreaterEqual: 3670 // C++ [over.built]p15: 3671 // 3672 // For every pointer or enumeration type T, there exist 3673 // candidate operator functions of the form 3674 // 3675 // bool operator<(T, T); 3676 // bool operator>(T, T); 3677 // bool operator<=(T, T); 3678 // bool operator>=(T, T); 3679 // bool operator==(T, T); 3680 // bool operator!=(T, T); 3681 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3682 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3683 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3684 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3685 } 3686 for (BuiltinCandidateTypeSet::iterator Enum 3687 = CandidateTypes.enumeration_begin(); 3688 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3689 QualType ParamTypes[2] = { *Enum, *Enum }; 3690 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3691 } 3692 3693 // Fall through. 3694 isComparison = true; 3695 3696 BinaryPlus: 3697 BinaryMinus: 3698 if (!isComparison) { 3699 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3700 3701 // C++ [over.built]p13: 3702 // 3703 // For every cv-qualified or cv-unqualified object type T 3704 // there exist candidate operator functions of the form 3705 // 3706 // T* operator+(T*, ptrdiff_t); 3707 // T& operator[](T*, ptrdiff_t); [BELOW] 3708 // T* operator-(T*, ptrdiff_t); 3709 // T* operator+(ptrdiff_t, T*); 3710 // T& operator[](ptrdiff_t, T*); [BELOW] 3711 // 3712 // C++ [over.built]p14: 3713 // 3714 // For every T, where T is a pointer to object type, there 3715 // exist candidate operator functions of the form 3716 // 3717 // ptrdiff_t operator-(T, T); 3718 for (BuiltinCandidateTypeSet::iterator Ptr 3719 = CandidateTypes.pointer_begin(); 3720 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3721 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3722 3723 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3724 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3725 3726 if (Op == OO_Plus) { 3727 // T* operator+(ptrdiff_t, T*); 3728 ParamTypes[0] = ParamTypes[1]; 3729 ParamTypes[1] = *Ptr; 3730 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3731 } else { 3732 // ptrdiff_t operator-(T, T); 3733 ParamTypes[1] = *Ptr; 3734 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3735 Args, 2, CandidateSet); 3736 } 3737 } 3738 } 3739 // Fall through 3740 3741 case OO_Slash: 3742 BinaryStar: 3743 Conditional: 3744 // C++ [over.built]p12: 3745 // 3746 // For every pair of promoted arithmetic types L and R, there 3747 // exist candidate operator functions of the form 3748 // 3749 // LR operator*(L, R); 3750 // LR operator/(L, R); 3751 // LR operator+(L, R); 3752 // LR operator-(L, R); 3753 // bool operator<(L, R); 3754 // bool operator>(L, R); 3755 // bool operator<=(L, R); 3756 // bool operator>=(L, R); 3757 // bool operator==(L, R); 3758 // bool operator!=(L, R); 3759 // 3760 // where LR is the result of the usual arithmetic conversions 3761 // between types L and R. 3762 // 3763 // C++ [over.built]p24: 3764 // 3765 // For every pair of promoted arithmetic types L and R, there exist 3766 // candidate operator functions of the form 3767 // 3768 // LR operator?(bool, L, R); 3769 // 3770 // where LR is the result of the usual arithmetic conversions 3771 // between types L and R. 3772 // Our candidates ignore the first parameter. 3773 for (unsigned Left = FirstPromotedArithmeticType; 3774 Left < LastPromotedArithmeticType; ++Left) { 3775 for (unsigned Right = FirstPromotedArithmeticType; 3776 Right < LastPromotedArithmeticType; ++Right) { 3777 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3778 QualType Result 3779 = isComparison 3780 ? Context.BoolTy 3781 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3782 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3783 } 3784 } 3785 break; 3786 3787 case OO_Percent: 3788 BinaryAmp: 3789 case OO_Caret: 3790 case OO_Pipe: 3791 case OO_LessLess: 3792 case OO_GreaterGreater: 3793 // C++ [over.built]p17: 3794 // 3795 // For every pair of promoted integral types L and R, there 3796 // exist candidate operator functions of the form 3797 // 3798 // LR operator%(L, R); 3799 // LR operator&(L, R); 3800 // LR operator^(L, R); 3801 // LR operator|(L, R); 3802 // L operator<<(L, R); 3803 // L operator>>(L, R); 3804 // 3805 // where LR is the result of the usual arithmetic conversions 3806 // between types L and R. 3807 for (unsigned Left = FirstPromotedIntegralType; 3808 Left < LastPromotedIntegralType; ++Left) { 3809 for (unsigned Right = FirstPromotedIntegralType; 3810 Right < LastPromotedIntegralType; ++Right) { 3811 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3812 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3813 ? LandR[0] 3814 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3815 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3816 } 3817 } 3818 break; 3819 3820 case OO_Equal: 3821 // C++ [over.built]p20: 3822 // 3823 // For every pair (T, VQ), where T is an enumeration or 3824 // pointer to member type and VQ is either volatile or 3825 // empty, there exist candidate operator functions of the form 3826 // 3827 // VQ T& operator=(VQ T&, T); 3828 for (BuiltinCandidateTypeSet::iterator 3829 Enum = CandidateTypes.enumeration_begin(), 3830 EnumEnd = CandidateTypes.enumeration_end(); 3831 Enum != EnumEnd; ++Enum) 3832 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3833 CandidateSet); 3834 for (BuiltinCandidateTypeSet::iterator 3835 MemPtr = CandidateTypes.member_pointer_begin(), 3836 MemPtrEnd = CandidateTypes.member_pointer_end(); 3837 MemPtr != MemPtrEnd; ++MemPtr) 3838 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3839 CandidateSet); 3840 // Fall through. 3841 3842 case OO_PlusEqual: 3843 case OO_MinusEqual: 3844 // C++ [over.built]p19: 3845 // 3846 // For every pair (T, VQ), where T is any type and VQ is either 3847 // volatile or empty, there exist candidate operator functions 3848 // of the form 3849 // 3850 // T*VQ& operator=(T*VQ&, T*); 3851 // 3852 // C++ [over.built]p21: 3853 // 3854 // For every pair (T, VQ), where T is a cv-qualified or 3855 // cv-unqualified object type and VQ is either volatile or 3856 // empty, there exist candidate operator functions of the form 3857 // 3858 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3859 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3860 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3861 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3862 QualType ParamTypes[2]; 3863 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3864 3865 // non-volatile version 3866 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3867 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3868 /*IsAssigmentOperator=*/Op == OO_Equal); 3869 3870 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3871 VisibleTypeConversionsQuals.hasVolatile()) { 3872 // volatile version 3873 ParamTypes[0] 3874 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3875 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3876 /*IsAssigmentOperator=*/Op == OO_Equal); 3877 } 3878 } 3879 // Fall through. 3880 3881 case OO_StarEqual: 3882 case OO_SlashEqual: 3883 // C++ [over.built]p18: 3884 // 3885 // For every triple (L, VQ, R), where L is an arithmetic type, 3886 // VQ is either volatile or empty, and R is a promoted 3887 // arithmetic type, there exist candidate operator functions of 3888 // the form 3889 // 3890 // VQ L& operator=(VQ L&, R); 3891 // VQ L& operator*=(VQ L&, R); 3892 // VQ L& operator/=(VQ L&, R); 3893 // VQ L& operator+=(VQ L&, R); 3894 // VQ L& operator-=(VQ L&, R); 3895 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3896 for (unsigned Right = FirstPromotedArithmeticType; 3897 Right < LastPromotedArithmeticType; ++Right) { 3898 QualType ParamTypes[2]; 3899 ParamTypes[1] = ArithmeticTypes[Right]; 3900 3901 // Add this built-in operator as a candidate (VQ is empty). 3902 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3903 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3904 /*IsAssigmentOperator=*/Op == OO_Equal); 3905 3906 // Add this built-in operator as a candidate (VQ is 'volatile'). 3907 if (VisibleTypeConversionsQuals.hasVolatile()) { 3908 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3909 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3910 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3911 /*IsAssigmentOperator=*/Op == OO_Equal); 3912 } 3913 } 3914 } 3915 break; 3916 3917 case OO_PercentEqual: 3918 case OO_LessLessEqual: 3919 case OO_GreaterGreaterEqual: 3920 case OO_AmpEqual: 3921 case OO_CaretEqual: 3922 case OO_PipeEqual: 3923 // C++ [over.built]p22: 3924 // 3925 // For every triple (L, VQ, R), where L is an integral type, VQ 3926 // is either volatile or empty, and R is a promoted integral 3927 // type, there exist candidate operator functions of the form 3928 // 3929 // VQ L& operator%=(VQ L&, R); 3930 // VQ L& operator<<=(VQ L&, R); 3931 // VQ L& operator>>=(VQ L&, R); 3932 // VQ L& operator&=(VQ L&, R); 3933 // VQ L& operator^=(VQ L&, R); 3934 // VQ L& operator|=(VQ L&, R); 3935 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3936 for (unsigned Right = FirstPromotedIntegralType; 3937 Right < LastPromotedIntegralType; ++Right) { 3938 QualType ParamTypes[2]; 3939 ParamTypes[1] = ArithmeticTypes[Right]; 3940 3941 // Add this built-in operator as a candidate (VQ is empty). 3942 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3943 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3944 if (VisibleTypeConversionsQuals.hasVolatile()) { 3945 // Add this built-in operator as a candidate (VQ is 'volatile'). 3946 ParamTypes[0] = ArithmeticTypes[Left]; 3947 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3948 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3949 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3950 } 3951 } 3952 } 3953 break; 3954 3955 case OO_Exclaim: { 3956 // C++ [over.operator]p23: 3957 // 3958 // There also exist candidate operator functions of the form 3959 // 3960 // bool operator!(bool); 3961 // bool operator&&(bool, bool); [BELOW] 3962 // bool operator||(bool, bool); [BELOW] 3963 QualType ParamTy = Context.BoolTy; 3964 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3965 /*IsAssignmentOperator=*/false, 3966 /*NumContextualBoolArguments=*/1); 3967 break; 3968 } 3969 3970 case OO_AmpAmp: 3971 case OO_PipePipe: { 3972 // C++ [over.operator]p23: 3973 // 3974 // There also exist candidate operator functions of the form 3975 // 3976 // bool operator!(bool); [ABOVE] 3977 // bool operator&&(bool, bool); 3978 // bool operator||(bool, bool); 3979 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3980 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3981 /*IsAssignmentOperator=*/false, 3982 /*NumContextualBoolArguments=*/2); 3983 break; 3984 } 3985 3986 case OO_Subscript: 3987 // C++ [over.built]p13: 3988 // 3989 // For every cv-qualified or cv-unqualified object type T there 3990 // exist candidate operator functions of the form 3991 // 3992 // T* operator+(T*, ptrdiff_t); [ABOVE] 3993 // T& operator[](T*, ptrdiff_t); 3994 // T* operator-(T*, ptrdiff_t); [ABOVE] 3995 // T* operator+(ptrdiff_t, T*); [ABOVE] 3996 // T& operator[](ptrdiff_t, T*); 3997 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3998 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3999 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4000 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 4001 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 4002 4003 // T& operator[](T*, ptrdiff_t) 4004 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4005 4006 // T& operator[](ptrdiff_t, T*); 4007 ParamTypes[0] = ParamTypes[1]; 4008 ParamTypes[1] = *Ptr; 4009 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4010 } 4011 break; 4012 4013 case OO_ArrowStar: 4014 // C++ [over.built]p11: 4015 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 4016 // C1 is the same type as C2 or is a derived class of C2, T is an object 4017 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 4018 // there exist candidate operator functions of the form 4019 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 4020 // where CV12 is the union of CV1 and CV2. 4021 { 4022 for (BuiltinCandidateTypeSet::iterator Ptr = 4023 CandidateTypes.pointer_begin(); 4024 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4025 QualType C1Ty = (*Ptr); 4026 QualType C1; 4027 QualifierCollector Q1; 4028 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 4029 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 4030 if (!isa<RecordType>(C1)) 4031 continue; 4032 // heuristic to reduce number of builtin candidates in the set. 4033 // Add volatile/restrict version only if there are conversions to a 4034 // volatile/restrict type. 4035 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 4036 continue; 4037 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 4038 continue; 4039 } 4040 for (BuiltinCandidateTypeSet::iterator 4041 MemPtr = CandidateTypes.member_pointer_begin(), 4042 MemPtrEnd = CandidateTypes.member_pointer_end(); 4043 MemPtr != MemPtrEnd; ++MemPtr) { 4044 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 4045 QualType C2 = QualType(mptr->getClass(), 0); 4046 C2 = C2.getUnqualifiedType(); 4047 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 4048 break; 4049 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 4050 // build CV12 T& 4051 QualType T = mptr->getPointeeType(); 4052 if (!VisibleTypeConversionsQuals.hasVolatile() && 4053 T.isVolatileQualified()) 4054 continue; 4055 if (!VisibleTypeConversionsQuals.hasRestrict() && 4056 T.isRestrictQualified()) 4057 continue; 4058 T = Q1.apply(T); 4059 QualType ResultTy = Context.getLValueReferenceType(T); 4060 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4061 } 4062 } 4063 } 4064 break; 4065 4066 case OO_Conditional: 4067 // Note that we don't consider the first argument, since it has been 4068 // contextually converted to bool long ago. The candidates below are 4069 // therefore added as binary. 4070 // 4071 // C++ [over.built]p24: 4072 // For every type T, where T is a pointer or pointer-to-member type, 4073 // there exist candidate operator functions of the form 4074 // 4075 // T operator?(bool, T, T); 4076 // 4077 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 4078 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 4079 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4080 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4081 } 4082 for (BuiltinCandidateTypeSet::iterator Ptr = 4083 CandidateTypes.member_pointer_begin(), 4084 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4085 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4086 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4087 } 4088 goto Conditional; 4089 } 4090} 4091 4092/// \brief Add function candidates found via argument-dependent lookup 4093/// to the set of overloading candidates. 4094/// 4095/// This routine performs argument-dependent name lookup based on the 4096/// given function name (which may also be an operator name) and adds 4097/// all of the overload candidates found by ADL to the overload 4098/// candidate set (C++ [basic.lookup.argdep]). 4099void 4100Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4101 Expr **Args, unsigned NumArgs, 4102 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4103 OverloadCandidateSet& CandidateSet, 4104 bool PartialOverloading) { 4105 FunctionSet Functions; 4106 4107 // FIXME: Should we be trafficking in canonical function decls throughout? 4108 4109 // Record all of the function candidates that we've already 4110 // added to the overload set, so that we don't add those same 4111 // candidates a second time. 4112 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4113 CandEnd = CandidateSet.end(); 4114 Cand != CandEnd; ++Cand) 4115 if (Cand->Function) { 4116 Functions.insert(Cand->Function); 4117 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4118 Functions.insert(FunTmpl); 4119 } 4120 4121 // FIXME: Pass in the explicit template arguments? 4122 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 4123 4124 // Erase all of the candidates we already knew about. 4125 // FIXME: This is suboptimal. Is there a better way? 4126 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4127 CandEnd = CandidateSet.end(); 4128 Cand != CandEnd; ++Cand) 4129 if (Cand->Function) { 4130 Functions.erase(Cand->Function); 4131 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4132 Functions.erase(FunTmpl); 4133 } 4134 4135 // For each of the ADL candidates we found, add it to the overload 4136 // set. 4137 for (FunctionSet::iterator Func = Functions.begin(), 4138 FuncEnd = Functions.end(); 4139 Func != FuncEnd; ++Func) { 4140 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 4141 if (ExplicitTemplateArgs) 4142 continue; 4143 4144 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 4145 false, false, PartialOverloading); 4146 } else 4147 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 4148 ExplicitTemplateArgs, 4149 Args, NumArgs, CandidateSet); 4150 } 4151} 4152 4153/// isBetterOverloadCandidate - Determines whether the first overload 4154/// candidate is a better candidate than the second (C++ 13.3.3p1). 4155bool 4156Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4157 const OverloadCandidate& Cand2) { 4158 // Define viable functions to be better candidates than non-viable 4159 // functions. 4160 if (!Cand2.Viable) 4161 return Cand1.Viable; 4162 else if (!Cand1.Viable) 4163 return false; 4164 4165 // C++ [over.match.best]p1: 4166 // 4167 // -- if F is a static member function, ICS1(F) is defined such 4168 // that ICS1(F) is neither better nor worse than ICS1(G) for 4169 // any function G, and, symmetrically, ICS1(G) is neither 4170 // better nor worse than ICS1(F). 4171 unsigned StartArg = 0; 4172 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4173 StartArg = 1; 4174 4175 // C++ [over.match.best]p1: 4176 // A viable function F1 is defined to be a better function than another 4177 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4178 // conversion sequence than ICSi(F2), and then... 4179 unsigned NumArgs = Cand1.Conversions.size(); 4180 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4181 bool HasBetterConversion = false; 4182 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4183 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4184 Cand2.Conversions[ArgIdx])) { 4185 case ImplicitConversionSequence::Better: 4186 // Cand1 has a better conversion sequence. 4187 HasBetterConversion = true; 4188 break; 4189 4190 case ImplicitConversionSequence::Worse: 4191 // Cand1 can't be better than Cand2. 4192 return false; 4193 4194 case ImplicitConversionSequence::Indistinguishable: 4195 // Do nothing. 4196 break; 4197 } 4198 } 4199 4200 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4201 // ICSj(F2), or, if not that, 4202 if (HasBetterConversion) 4203 return true; 4204 4205 // - F1 is a non-template function and F2 is a function template 4206 // specialization, or, if not that, 4207 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4208 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4209 return true; 4210 4211 // -- F1 and F2 are function template specializations, and the function 4212 // template for F1 is more specialized than the template for F2 4213 // according to the partial ordering rules described in 14.5.5.2, or, 4214 // if not that, 4215 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4216 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4217 if (FunctionTemplateDecl *BetterTemplate 4218 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4219 Cand2.Function->getPrimaryTemplate(), 4220 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4221 : TPOC_Call)) 4222 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4223 4224 // -- the context is an initialization by user-defined conversion 4225 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4226 // from the return type of F1 to the destination type (i.e., 4227 // the type of the entity being initialized) is a better 4228 // conversion sequence than the standard conversion sequence 4229 // from the return type of F2 to the destination type. 4230 if (Cand1.Function && Cand2.Function && 4231 isa<CXXConversionDecl>(Cand1.Function) && 4232 isa<CXXConversionDecl>(Cand2.Function)) { 4233 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4234 Cand2.FinalConversion)) { 4235 case ImplicitConversionSequence::Better: 4236 // Cand1 has a better conversion sequence. 4237 return true; 4238 4239 case ImplicitConversionSequence::Worse: 4240 // Cand1 can't be better than Cand2. 4241 return false; 4242 4243 case ImplicitConversionSequence::Indistinguishable: 4244 // Do nothing 4245 break; 4246 } 4247 } 4248 4249 return false; 4250} 4251 4252/// \brief Computes the best viable function (C++ 13.3.3) 4253/// within an overload candidate set. 4254/// 4255/// \param CandidateSet the set of candidate functions. 4256/// 4257/// \param Loc the location of the function name (or operator symbol) for 4258/// which overload resolution occurs. 4259/// 4260/// \param Best f overload resolution was successful or found a deleted 4261/// function, Best points to the candidate function found. 4262/// 4263/// \returns The result of overload resolution. 4264OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4265 SourceLocation Loc, 4266 OverloadCandidateSet::iterator& Best) { 4267 // Find the best viable function. 4268 Best = CandidateSet.end(); 4269 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4270 Cand != CandidateSet.end(); ++Cand) { 4271 if (Cand->Viable) { 4272 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4273 Best = Cand; 4274 } 4275 } 4276 4277 // If we didn't find any viable functions, abort. 4278 if (Best == CandidateSet.end()) 4279 return OR_No_Viable_Function; 4280 4281 // Make sure that this function is better than every other viable 4282 // function. If not, we have an ambiguity. 4283 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4284 Cand != CandidateSet.end(); ++Cand) { 4285 if (Cand->Viable && 4286 Cand != Best && 4287 !isBetterOverloadCandidate(*Best, *Cand)) { 4288 Best = CandidateSet.end(); 4289 return OR_Ambiguous; 4290 } 4291 } 4292 4293 // Best is the best viable function. 4294 if (Best->Function && 4295 (Best->Function->isDeleted() || 4296 Best->Function->getAttr<UnavailableAttr>())) 4297 return OR_Deleted; 4298 4299 // C++ [basic.def.odr]p2: 4300 // An overloaded function is used if it is selected by overload resolution 4301 // when referred to from a potentially-evaluated expression. [Note: this 4302 // covers calls to named functions (5.2.2), operator overloading 4303 // (clause 13), user-defined conversions (12.3.2), allocation function for 4304 // placement new (5.3.4), as well as non-default initialization (8.5). 4305 if (Best->Function) 4306 MarkDeclarationReferenced(Loc, Best->Function); 4307 return OR_Success; 4308} 4309 4310namespace { 4311 4312enum OverloadCandidateKind { 4313 oc_function, 4314 oc_method, 4315 oc_constructor, 4316 oc_function_template, 4317 oc_method_template, 4318 oc_constructor_template, 4319 oc_implicit_default_constructor, 4320 oc_implicit_copy_constructor, 4321 oc_implicit_copy_assignment 4322}; 4323 4324OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 4325 FunctionDecl *Fn, 4326 std::string &Description) { 4327 bool isTemplate = false; 4328 4329 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 4330 isTemplate = true; 4331 Description = S.getTemplateArgumentBindingsText( 4332 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 4333 } 4334 4335 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 4336 if (!Ctor->isImplicit()) 4337 return isTemplate ? oc_constructor_template : oc_constructor; 4338 4339 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 4340 : oc_implicit_default_constructor; 4341 } 4342 4343 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 4344 // This actually gets spelled 'candidate function' for now, but 4345 // it doesn't hurt to split it out. 4346 if (!Meth->isImplicit()) 4347 return isTemplate ? oc_method_template : oc_method; 4348 4349 assert(Meth->isCopyAssignment() 4350 && "implicit method is not copy assignment operator?"); 4351 return oc_implicit_copy_assignment; 4352 } 4353 4354 return isTemplate ? oc_function_template : oc_function; 4355} 4356 4357} // end anonymous namespace 4358 4359// Notes the location of an overload candidate. 4360void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 4361 std::string FnDesc; 4362 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 4363 Diag(Fn->getLocation(), diag::note_ovl_candidate) 4364 << (unsigned) K << FnDesc; 4365} 4366 4367/// Diagnoses an ambiguous conversion. The partial diagnostic is the 4368/// "lead" diagnostic; it will be given two arguments, the source and 4369/// target types of the conversion. 4370void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 4371 SourceLocation CaretLoc, 4372 const PartialDiagnostic &PDiag) { 4373 Diag(CaretLoc, PDiag) 4374 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 4375 for (AmbiguousConversionSequence::const_iterator 4376 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 4377 NoteOverloadCandidate(*I); 4378 } 4379} 4380 4381namespace { 4382 4383void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 4384 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 4385 assert(Conv.isBad()); 4386 assert(Cand->Function && "for now, candidate must be a function"); 4387 FunctionDecl *Fn = Cand->Function; 4388 4389 // There's a conversion slot for the object argument if this is a 4390 // non-constructor method. Note that 'I' corresponds the 4391 // conversion-slot index. 4392 bool isObjectArgument = false; 4393 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 4394 if (I == 0) 4395 isObjectArgument = true; 4396 else 4397 I--; 4398 } 4399 4400 std::string FnDesc; 4401 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 4402 4403 Expr *FromExpr = Conv.Bad.FromExpr; 4404 QualType FromTy = Conv.Bad.getFromType(); 4405 QualType ToTy = Conv.Bad.getToType(); 4406 4407 // Do some hand-waving analysis to see if the non-viability is due to a 4408 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 4409 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 4410 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 4411 CToTy = RT->getPointeeType(); 4412 else { 4413 // TODO: detect and diagnose the full richness of const mismatches. 4414 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 4415 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 4416 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 4417 } 4418 4419 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 4420 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 4421 // It is dumb that we have to do this here. 4422 while (isa<ArrayType>(CFromTy)) 4423 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 4424 while (isa<ArrayType>(CToTy)) 4425 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 4426 4427 Qualifiers FromQs = CFromTy.getQualifiers(); 4428 Qualifiers ToQs = CToTy.getQualifiers(); 4429 4430 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 4431 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 4432 << (unsigned) FnKind << FnDesc 4433 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4434 << FromTy 4435 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 4436 << (unsigned) isObjectArgument << I+1; 4437 return; 4438 } 4439 4440 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 4441 assert(CVR && "unexpected qualifiers mismatch"); 4442 4443 if (isObjectArgument) { 4444 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 4445 << (unsigned) FnKind << FnDesc 4446 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4447 << FromTy << (CVR - 1); 4448 } else { 4449 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 4450 << (unsigned) FnKind << FnDesc 4451 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4452 << FromTy << (CVR - 1) << I+1; 4453 } 4454 return; 4455 } 4456 4457 // TODO: specialize more based on the kind of mismatch 4458 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 4459 << (unsigned) FnKind << FnDesc 4460 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 4461 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 4462} 4463 4464void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 4465 unsigned NumFormalArgs) { 4466 // TODO: treat calls to a missing default constructor as a special case 4467 4468 FunctionDecl *Fn = Cand->Function; 4469 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 4470 4471 unsigned MinParams = Fn->getMinRequiredArguments(); 4472 4473 // at least / at most / exactly 4474 unsigned mode, modeCount; 4475 if (NumFormalArgs < MinParams) { 4476 assert(Cand->FailureKind == ovl_fail_too_few_arguments); 4477 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 4478 mode = 0; // "at least" 4479 else 4480 mode = 2; // "exactly" 4481 modeCount = MinParams; 4482 } else { 4483 assert(Cand->FailureKind == ovl_fail_too_many_arguments); 4484 if (MinParams != FnTy->getNumArgs()) 4485 mode = 1; // "at most" 4486 else 4487 mode = 2; // "exactly" 4488 modeCount = FnTy->getNumArgs(); 4489 } 4490 4491 std::string Description; 4492 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 4493 4494 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 4495 << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs; 4496} 4497 4498void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 4499 Expr **Args, unsigned NumArgs) { 4500 FunctionDecl *Fn = Cand->Function; 4501 4502 // Note deleted candidates, but only if they're viable. 4503 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 4504 std::string FnDesc; 4505 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 4506 4507 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 4508 << FnKind << FnDesc << Fn->isDeleted(); 4509 return; 4510 } 4511 4512 // We don't really have anything else to say about viable candidates. 4513 if (Cand->Viable) { 4514 S.NoteOverloadCandidate(Fn); 4515 return; 4516 } 4517 4518 switch (Cand->FailureKind) { 4519 case ovl_fail_too_many_arguments: 4520 case ovl_fail_too_few_arguments: 4521 return DiagnoseArityMismatch(S, Cand, NumArgs); 4522 4523 case ovl_fail_bad_deduction: 4524 return S.NoteOverloadCandidate(Fn); 4525 4526 case ovl_fail_bad_conversion: 4527 for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I) 4528 if (Cand->Conversions[I].isBad()) 4529 return DiagnoseBadConversion(S, Cand, I); 4530 4531 // FIXME: this currently happens when we're called from SemaInit 4532 // when user-conversion overload fails. Figure out how to handle 4533 // those conditions and diagnose them well. 4534 return S.NoteOverloadCandidate(Fn); 4535 } 4536} 4537 4538void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 4539 // Desugar the type of the surrogate down to a function type, 4540 // retaining as many typedefs as possible while still showing 4541 // the function type (and, therefore, its parameter types). 4542 QualType FnType = Cand->Surrogate->getConversionType(); 4543 bool isLValueReference = false; 4544 bool isRValueReference = false; 4545 bool isPointer = false; 4546 if (const LValueReferenceType *FnTypeRef = 4547 FnType->getAs<LValueReferenceType>()) { 4548 FnType = FnTypeRef->getPointeeType(); 4549 isLValueReference = true; 4550 } else if (const RValueReferenceType *FnTypeRef = 4551 FnType->getAs<RValueReferenceType>()) { 4552 FnType = FnTypeRef->getPointeeType(); 4553 isRValueReference = true; 4554 } 4555 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4556 FnType = FnTypePtr->getPointeeType(); 4557 isPointer = true; 4558 } 4559 // Desugar down to a function type. 4560 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4561 // Reconstruct the pointer/reference as appropriate. 4562 if (isPointer) FnType = S.Context.getPointerType(FnType); 4563 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 4564 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 4565 4566 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 4567 << FnType; 4568} 4569 4570void NoteBuiltinOperatorCandidate(Sema &S, 4571 const char *Opc, 4572 SourceLocation OpLoc, 4573 OverloadCandidate *Cand) { 4574 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 4575 std::string TypeStr("operator"); 4576 TypeStr += Opc; 4577 TypeStr += "("; 4578 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4579 if (Cand->Conversions.size() == 1) { 4580 TypeStr += ")"; 4581 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 4582 } else { 4583 TypeStr += ", "; 4584 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4585 TypeStr += ")"; 4586 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 4587 } 4588} 4589 4590void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 4591 OverloadCandidate *Cand) { 4592 unsigned NoOperands = Cand->Conversions.size(); 4593 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4594 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4595 if (ICS.isBad()) break; // all meaningless after first invalid 4596 if (!ICS.isAmbiguous()) continue; 4597 4598 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 4599 PDiag(diag::note_ambiguous_type_conversion)); 4600 } 4601} 4602 4603SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 4604 if (Cand->Function) 4605 return Cand->Function->getLocation(); 4606 if (Cand->IsSurrogate) 4607 return Cand->Surrogate->getLocation(); 4608 return SourceLocation(); 4609} 4610 4611struct CompareOverloadCandidatesForDisplay { 4612 Sema &S; 4613 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 4614 4615 bool operator()(const OverloadCandidate *L, 4616 const OverloadCandidate *R) { 4617 // Fast-path this check. 4618 if (L == R) return false; 4619 4620 // Order first by viability. 4621 if (L->Viable) { 4622 if (!R->Viable) return true; 4623 4624 // TODO: introduce a tri-valued comparison for overload 4625 // candidates. Would be more worthwhile if we had a sort 4626 // that could exploit it. 4627 if (S.isBetterOverloadCandidate(*L, *R)) return true; 4628 if (S.isBetterOverloadCandidate(*R, *L)) return false; 4629 } else if (R->Viable) 4630 return false; 4631 4632 assert(L->Viable == R->Viable); 4633 4634 // Criteria by which we can sort non-viable candidates: 4635 if (!L->Viable) { 4636 // 1. Arity mismatches come after other candidates. 4637 if (L->FailureKind == ovl_fail_too_many_arguments || 4638 L->FailureKind == ovl_fail_too_few_arguments) 4639 return false; 4640 if (R->FailureKind == ovl_fail_too_many_arguments || 4641 R->FailureKind == ovl_fail_too_few_arguments) 4642 return true; 4643 4644 // TODO: others? 4645 } 4646 4647 // Sort everything else by location. 4648 SourceLocation LLoc = GetLocationForCandidate(L); 4649 SourceLocation RLoc = GetLocationForCandidate(R); 4650 4651 // Put candidates without locations (e.g. builtins) at the end. 4652 if (LLoc.isInvalid()) return false; 4653 if (RLoc.isInvalid()) return true; 4654 4655 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 4656 } 4657}; 4658 4659} // end anonymous namespace 4660 4661/// PrintOverloadCandidates - When overload resolution fails, prints 4662/// diagnostic messages containing the candidates in the candidate 4663/// set. 4664void 4665Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4666 OverloadCandidateDisplayKind OCD, 4667 Expr **Args, unsigned NumArgs, 4668 const char *Opc, 4669 SourceLocation OpLoc) { 4670 // Sort the candidates by viability and position. Sorting directly would 4671 // be prohibitive, so we make a set of pointers and sort those. 4672 llvm::SmallVector<OverloadCandidate*, 32> Cands; 4673 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 4674 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4675 LastCand = CandidateSet.end(); 4676 Cand != LastCand; ++Cand) 4677 if (Cand->Viable || OCD == OCD_AllCandidates) 4678 Cands.push_back(Cand); 4679 std::sort(Cands.begin(), Cands.end(), 4680 CompareOverloadCandidatesForDisplay(*this)); 4681 4682 bool ReportedAmbiguousConversions = false; 4683 4684 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 4685 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 4686 OverloadCandidate *Cand = *I; 4687 4688 if (Cand->Function) 4689 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 4690 else if (Cand->IsSurrogate) 4691 NoteSurrogateCandidate(*this, Cand); 4692 4693 // This a builtin candidate. We do not, in general, want to list 4694 // every possible builtin candidate. 4695 else if (Cand->Viable) { 4696 // Generally we only see ambiguities including viable builtin 4697 // operators if overload resolution got screwed up by an 4698 // ambiguous user-defined conversion. 4699 // 4700 // FIXME: It's quite possible for different conversions to see 4701 // different ambiguities, though. 4702 if (!ReportedAmbiguousConversions) { 4703 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 4704 ReportedAmbiguousConversions = true; 4705 } 4706 4707 // If this is a viable builtin, print it. 4708 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 4709 } 4710 } 4711} 4712 4713/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4714/// an overloaded function (C++ [over.over]), where @p From is an 4715/// expression with overloaded function type and @p ToType is the type 4716/// we're trying to resolve to. For example: 4717/// 4718/// @code 4719/// int f(double); 4720/// int f(int); 4721/// 4722/// int (*pfd)(double) = f; // selects f(double) 4723/// @endcode 4724/// 4725/// This routine returns the resulting FunctionDecl if it could be 4726/// resolved, and NULL otherwise. When @p Complain is true, this 4727/// routine will emit diagnostics if there is an error. 4728FunctionDecl * 4729Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4730 bool Complain) { 4731 QualType FunctionType = ToType; 4732 bool IsMember = false; 4733 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4734 FunctionType = ToTypePtr->getPointeeType(); 4735 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4736 FunctionType = ToTypeRef->getPointeeType(); 4737 else if (const MemberPointerType *MemTypePtr = 4738 ToType->getAs<MemberPointerType>()) { 4739 FunctionType = MemTypePtr->getPointeeType(); 4740 IsMember = true; 4741 } 4742 4743 // We only look at pointers or references to functions. 4744 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4745 if (!FunctionType->isFunctionType()) 4746 return 0; 4747 4748 // Find the actual overloaded function declaration. 4749 4750 // C++ [over.over]p1: 4751 // [...] [Note: any redundant set of parentheses surrounding the 4752 // overloaded function name is ignored (5.1). ] 4753 Expr *OvlExpr = From->IgnoreParens(); 4754 4755 // C++ [over.over]p1: 4756 // [...] The overloaded function name can be preceded by the & 4757 // operator. 4758 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4759 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4760 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4761 } 4762 4763 bool HasExplicitTemplateArgs = false; 4764 TemplateArgumentListInfo ExplicitTemplateArgs; 4765 4766 llvm::SmallVector<NamedDecl*,8> Fns; 4767 4768 // Look into the overloaded expression. 4769 if (UnresolvedLookupExpr *UL 4770 = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) { 4771 Fns.append(UL->decls_begin(), UL->decls_end()); 4772 if (UL->hasExplicitTemplateArgs()) { 4773 HasExplicitTemplateArgs = true; 4774 UL->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4775 } 4776 } else if (UnresolvedMemberExpr *ME 4777 = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) { 4778 Fns.append(ME->decls_begin(), ME->decls_end()); 4779 if (ME->hasExplicitTemplateArgs()) { 4780 HasExplicitTemplateArgs = true; 4781 ME->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4782 } 4783 } 4784 4785 // If we didn't actually find anything, we're done. 4786 if (Fns.empty()) 4787 return 0; 4788 4789 // Look through all of the overloaded functions, searching for one 4790 // whose type matches exactly. 4791 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4792 bool FoundNonTemplateFunction = false; 4793 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4794 E = Fns.end(); I != E; ++I) { 4795 // Look through any using declarations to find the underlying function. 4796 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 4797 4798 // C++ [over.over]p3: 4799 // Non-member functions and static member functions match 4800 // targets of type "pointer-to-function" or "reference-to-function." 4801 // Nonstatic member functions match targets of 4802 // type "pointer-to-member-function." 4803 // Note that according to DR 247, the containing class does not matter. 4804 4805 if (FunctionTemplateDecl *FunctionTemplate 4806 = dyn_cast<FunctionTemplateDecl>(Fn)) { 4807 if (CXXMethodDecl *Method 4808 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4809 // Skip non-static function templates when converting to pointer, and 4810 // static when converting to member pointer. 4811 if (Method->isStatic() == IsMember) 4812 continue; 4813 } else if (IsMember) 4814 continue; 4815 4816 // C++ [over.over]p2: 4817 // If the name is a function template, template argument deduction is 4818 // done (14.8.2.2), and if the argument deduction succeeds, the 4819 // resulting template argument list is used to generate a single 4820 // function template specialization, which is added to the set of 4821 // overloaded functions considered. 4822 // FIXME: We don't really want to build the specialization here, do we? 4823 FunctionDecl *Specialization = 0; 4824 TemplateDeductionInfo Info(Context); 4825 if (TemplateDeductionResult Result 4826 = DeduceTemplateArguments(FunctionTemplate, 4827 (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0), 4828 FunctionType, Specialization, Info)) { 4829 // FIXME: make a note of the failed deduction for diagnostics. 4830 (void)Result; 4831 } else { 4832 // FIXME: If the match isn't exact, shouldn't we just drop this as 4833 // a candidate? Find a testcase before changing the code. 4834 assert(FunctionType 4835 == Context.getCanonicalType(Specialization->getType())); 4836 Matches.insert( 4837 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4838 } 4839 4840 continue; 4841 } 4842 4843 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 4844 // Skip non-static functions when converting to pointer, and static 4845 // when converting to member pointer. 4846 if (Method->isStatic() == IsMember) 4847 continue; 4848 4849 // If we have explicit template arguments, skip non-templates. 4850 if (HasExplicitTemplateArgs) 4851 continue; 4852 } else if (IsMember) 4853 continue; 4854 4855 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 4856 QualType ResultTy; 4857 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 4858 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 4859 ResultTy)) { 4860 Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl())); 4861 FoundNonTemplateFunction = true; 4862 } 4863 } 4864 } 4865 4866 // If there were 0 or 1 matches, we're done. 4867 if (Matches.empty()) 4868 return 0; 4869 else if (Matches.size() == 1) { 4870 FunctionDecl *Result = *Matches.begin(); 4871 MarkDeclarationReferenced(From->getLocStart(), Result); 4872 return Result; 4873 } 4874 4875 // C++ [over.over]p4: 4876 // If more than one function is selected, [...] 4877 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4878 if (!FoundNonTemplateFunction) { 4879 // [...] and any given function template specialization F1 is 4880 // eliminated if the set contains a second function template 4881 // specialization whose function template is more specialized 4882 // than the function template of F1 according to the partial 4883 // ordering rules of 14.5.5.2. 4884 4885 // The algorithm specified above is quadratic. We instead use a 4886 // two-pass algorithm (similar to the one used to identify the 4887 // best viable function in an overload set) that identifies the 4888 // best function template (if it exists). 4889 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4890 Matches.end()); 4891 FunctionDecl *Result = 4892 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4893 TPOC_Other, From->getLocStart(), 4894 PDiag(), 4895 PDiag(diag::err_addr_ovl_ambiguous) 4896 << TemplateMatches[0]->getDeclName(), 4897 PDiag(diag::note_ovl_candidate) 4898 << (unsigned) oc_function_template); 4899 MarkDeclarationReferenced(From->getLocStart(), Result); 4900 return Result; 4901 } 4902 4903 // [...] any function template specializations in the set are 4904 // eliminated if the set also contains a non-template function, [...] 4905 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4906 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4907 if ((*M)->getPrimaryTemplate() == 0) 4908 RemainingMatches.push_back(*M); 4909 4910 // [...] After such eliminations, if any, there shall remain exactly one 4911 // selected function. 4912 if (RemainingMatches.size() == 1) { 4913 FunctionDecl *Result = RemainingMatches.front(); 4914 MarkDeclarationReferenced(From->getLocStart(), Result); 4915 return Result; 4916 } 4917 4918 // FIXME: We should probably return the same thing that BestViableFunction 4919 // returns (even if we issue the diagnostics here). 4920 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4921 << RemainingMatches[0]->getDeclName(); 4922 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4923 NoteOverloadCandidate(RemainingMatches[I]); 4924 return 0; 4925} 4926 4927/// \brief Given an expression that refers to an overloaded function, try to 4928/// resolve that overloaded function expression down to a single function. 4929/// 4930/// This routine can only resolve template-ids that refer to a single function 4931/// template, where that template-id refers to a single template whose template 4932/// arguments are either provided by the template-id or have defaults, 4933/// as described in C++0x [temp.arg.explicit]p3. 4934FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 4935 // C++ [over.over]p1: 4936 // [...] [Note: any redundant set of parentheses surrounding the 4937 // overloaded function name is ignored (5.1). ] 4938 Expr *OvlExpr = From->IgnoreParens(); 4939 4940 // C++ [over.over]p1: 4941 // [...] The overloaded function name can be preceded by the & 4942 // operator. 4943 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4944 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4945 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4946 } 4947 4948 bool HasExplicitTemplateArgs = false; 4949 TemplateArgumentListInfo ExplicitTemplateArgs; 4950 4951 llvm::SmallVector<NamedDecl*,8> Fns; 4952 4953 // Look into the overloaded expression. 4954 if (UnresolvedLookupExpr *UL 4955 = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) { 4956 Fns.append(UL->decls_begin(), UL->decls_end()); 4957 if (UL->hasExplicitTemplateArgs()) { 4958 HasExplicitTemplateArgs = true; 4959 UL->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4960 } 4961 } else if (UnresolvedMemberExpr *ME 4962 = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) { 4963 Fns.append(ME->decls_begin(), ME->decls_end()); 4964 if (ME->hasExplicitTemplateArgs()) { 4965 HasExplicitTemplateArgs = true; 4966 ME->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4967 } 4968 } 4969 4970 // If we didn't actually find any template-ids, we're done. 4971 if (Fns.empty() || !HasExplicitTemplateArgs) 4972 return 0; 4973 4974 // Look through all of the overloaded functions, searching for one 4975 // whose type matches exactly. 4976 FunctionDecl *Matched = 0; 4977 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4978 E = Fns.end(); I != E; ++I) { 4979 // C++0x [temp.arg.explicit]p3: 4980 // [...] In contexts where deduction is done and fails, or in contexts 4981 // where deduction is not done, if a template argument list is 4982 // specified and it, along with any default template arguments, 4983 // identifies a single function template specialization, then the 4984 // template-id is an lvalue for the function template specialization. 4985 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 4986 4987 // C++ [over.over]p2: 4988 // If the name is a function template, template argument deduction is 4989 // done (14.8.2.2), and if the argument deduction succeeds, the 4990 // resulting template argument list is used to generate a single 4991 // function template specialization, which is added to the set of 4992 // overloaded functions considered. 4993 FunctionDecl *Specialization = 0; 4994 TemplateDeductionInfo Info(Context); 4995 if (TemplateDeductionResult Result 4996 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 4997 Specialization, Info)) { 4998 // FIXME: make a note of the failed deduction for diagnostics. 4999 (void)Result; 5000 continue; 5001 } 5002 5003 // Multiple matches; we can't resolve to a single declaration. 5004 if (Matched) 5005 return 0; 5006 5007 Matched = Specialization; 5008 } 5009 5010 return Matched; 5011} 5012 5013/// \brief Add a single candidate to the overload set. 5014static void AddOverloadedCallCandidate(Sema &S, 5015 NamedDecl *Callee, 5016 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5017 Expr **Args, unsigned NumArgs, 5018 OverloadCandidateSet &CandidateSet, 5019 bool PartialOverloading) { 5020 if (isa<UsingShadowDecl>(Callee)) 5021 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 5022 5023 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 5024 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 5025 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 5026 PartialOverloading); 5027 return; 5028 } 5029 5030 if (FunctionTemplateDecl *FuncTemplate 5031 = dyn_cast<FunctionTemplateDecl>(Callee)) { 5032 S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs, 5033 Args, NumArgs, CandidateSet); 5034 return; 5035 } 5036 5037 assert(false && "unhandled case in overloaded call candidate"); 5038 5039 // do nothing? 5040} 5041 5042/// \brief Add the overload candidates named by callee and/or found by argument 5043/// dependent lookup to the given overload set. 5044void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 5045 Expr **Args, unsigned NumArgs, 5046 OverloadCandidateSet &CandidateSet, 5047 bool PartialOverloading) { 5048 5049#ifndef NDEBUG 5050 // Verify that ArgumentDependentLookup is consistent with the rules 5051 // in C++0x [basic.lookup.argdep]p3: 5052 // 5053 // Let X be the lookup set produced by unqualified lookup (3.4.1) 5054 // and let Y be the lookup set produced by argument dependent 5055 // lookup (defined as follows). If X contains 5056 // 5057 // -- a declaration of a class member, or 5058 // 5059 // -- a block-scope function declaration that is not a 5060 // using-declaration, or 5061 // 5062 // -- a declaration that is neither a function or a function 5063 // template 5064 // 5065 // then Y is empty. 5066 5067 if (ULE->requiresADL()) { 5068 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 5069 E = ULE->decls_end(); I != E; ++I) { 5070 assert(!(*I)->getDeclContext()->isRecord()); 5071 assert(isa<UsingShadowDecl>(*I) || 5072 !(*I)->getDeclContext()->isFunctionOrMethod()); 5073 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 5074 } 5075 } 5076#endif 5077 5078 // It would be nice to avoid this copy. 5079 TemplateArgumentListInfo TABuffer; 5080 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 5081 if (ULE->hasExplicitTemplateArgs()) { 5082 ULE->copyTemplateArgumentsInto(TABuffer); 5083 ExplicitTemplateArgs = &TABuffer; 5084 } 5085 5086 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 5087 E = ULE->decls_end(); I != E; ++I) 5088 AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs, 5089 Args, NumArgs, CandidateSet, 5090 PartialOverloading); 5091 5092 if (ULE->requiresADL()) 5093 AddArgumentDependentLookupCandidates(ULE->getName(), Args, NumArgs, 5094 ExplicitTemplateArgs, 5095 CandidateSet, 5096 PartialOverloading); 5097} 5098 5099static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 5100 Expr **Args, unsigned NumArgs) { 5101 Fn->Destroy(SemaRef.Context); 5102 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 5103 Args[Arg]->Destroy(SemaRef.Context); 5104 return SemaRef.ExprError(); 5105} 5106 5107/// Attempts to recover from a call where no functions were found. 5108/// 5109/// Returns true if new candidates were found. 5110static Sema::OwningExprResult 5111BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn, 5112 UnresolvedLookupExpr *ULE, 5113 SourceLocation LParenLoc, 5114 Expr **Args, unsigned NumArgs, 5115 SourceLocation *CommaLocs, 5116 SourceLocation RParenLoc) { 5117 5118 CXXScopeSpec SS; 5119 if (ULE->getQualifier()) { 5120 SS.setScopeRep(ULE->getQualifier()); 5121 SS.setRange(ULE->getQualifierRange()); 5122 } 5123 5124 TemplateArgumentListInfo TABuffer; 5125 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 5126 if (ULE->hasExplicitTemplateArgs()) { 5127 ULE->copyTemplateArgumentsInto(TABuffer); 5128 ExplicitTemplateArgs = &TABuffer; 5129 } 5130 5131 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 5132 Sema::LookupOrdinaryName); 5133 if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R)) 5134 return Destroy(SemaRef, Fn, Args, NumArgs); 5135 5136 assert(!R.empty() && "lookup results empty despite recovery"); 5137 5138 // Build an implicit member call if appropriate. Just drop the 5139 // casts and such from the call, we don't really care. 5140 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 5141 if ((*R.begin())->isCXXClassMember()) 5142 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 5143 else if (ExplicitTemplateArgs) 5144 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 5145 else 5146 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 5147 5148 if (NewFn.isInvalid()) 5149 return Destroy(SemaRef, Fn, Args, NumArgs); 5150 5151 Fn->Destroy(SemaRef.Context); 5152 5153 // This shouldn't cause an infinite loop because we're giving it 5154 // an expression with non-empty lookup results, which should never 5155 // end up here. 5156 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 5157 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 5158 CommaLocs, RParenLoc); 5159} 5160 5161/// ResolveOverloadedCallFn - Given the call expression that calls Fn 5162/// (which eventually refers to the declaration Func) and the call 5163/// arguments Args/NumArgs, attempt to resolve the function call down 5164/// to a specific function. If overload resolution succeeds, returns 5165/// the function declaration produced by overload 5166/// resolution. Otherwise, emits diagnostics, deletes all of the 5167/// arguments and Fn, and returns NULL. 5168Sema::OwningExprResult 5169Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE, 5170 SourceLocation LParenLoc, 5171 Expr **Args, unsigned NumArgs, 5172 SourceLocation *CommaLocs, 5173 SourceLocation RParenLoc) { 5174#ifndef NDEBUG 5175 if (ULE->requiresADL()) { 5176 // To do ADL, we must have found an unqualified name. 5177 assert(!ULE->getQualifier() && "qualified name with ADL"); 5178 5179 // We don't perform ADL for implicit declarations of builtins. 5180 // Verify that this was correctly set up. 5181 FunctionDecl *F; 5182 if (ULE->decls_begin() + 1 == ULE->decls_end() && 5183 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 5184 F->getBuiltinID() && F->isImplicit()) 5185 assert(0 && "performing ADL for builtin"); 5186 5187 // We don't perform ADL in C. 5188 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 5189 } 5190#endif 5191 5192 OverloadCandidateSet CandidateSet; 5193 5194 // Add the functions denoted by the callee to the set of candidate 5195 // functions, including those from argument-dependent lookup. 5196 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 5197 5198 // If we found nothing, try to recover. 5199 // AddRecoveryCallCandidates diagnoses the error itself, so we just 5200 // bailout out if it fails. 5201 if (CandidateSet.empty()) 5202 return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs, 5203 CommaLocs, RParenLoc); 5204 5205 OverloadCandidateSet::iterator Best; 5206 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 5207 case OR_Success: { 5208 FunctionDecl *FDecl = Best->Function; 5209 Fn = FixOverloadedFunctionReference(Fn, FDecl); 5210 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 5211 } 5212 5213 case OR_No_Viable_Function: 5214 Diag(Fn->getSourceRange().getBegin(), 5215 diag::err_ovl_no_viable_function_in_call) 5216 << ULE->getName() << Fn->getSourceRange(); 5217 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5218 break; 5219 5220 case OR_Ambiguous: 5221 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 5222 << ULE->getName() << Fn->getSourceRange(); 5223 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 5224 break; 5225 5226 case OR_Deleted: 5227 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 5228 << Best->Function->isDeleted() 5229 << ULE->getName() 5230 << Fn->getSourceRange(); 5231 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5232 break; 5233 } 5234 5235 // Overload resolution failed. Destroy all of the subexpressions and 5236 // return NULL. 5237 Fn->Destroy(Context); 5238 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 5239 Args[Arg]->Destroy(Context); 5240 return ExprError(); 5241} 5242 5243static bool IsOverloaded(const Sema::FunctionSet &Functions) { 5244 return Functions.size() > 1 || 5245 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 5246} 5247 5248/// \brief Create a unary operation that may resolve to an overloaded 5249/// operator. 5250/// 5251/// \param OpLoc The location of the operator itself (e.g., '*'). 5252/// 5253/// \param OpcIn The UnaryOperator::Opcode that describes this 5254/// operator. 5255/// 5256/// \param Functions The set of non-member functions that will be 5257/// considered by overload resolution. The caller needs to build this 5258/// set based on the context using, e.g., 5259/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 5260/// set should not contain any member functions; those will be added 5261/// by CreateOverloadedUnaryOp(). 5262/// 5263/// \param input The input argument. 5264Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 5265 unsigned OpcIn, 5266 FunctionSet &Functions, 5267 ExprArg input) { 5268 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 5269 Expr *Input = (Expr *)input.get(); 5270 5271 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 5272 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 5273 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5274 5275 Expr *Args[2] = { Input, 0 }; 5276 unsigned NumArgs = 1; 5277 5278 // For post-increment and post-decrement, add the implicit '0' as 5279 // the second argument, so that we know this is a post-increment or 5280 // post-decrement. 5281 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 5282 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 5283 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 5284 SourceLocation()); 5285 NumArgs = 2; 5286 } 5287 5288 if (Input->isTypeDependent()) { 5289 UnresolvedLookupExpr *Fn 5290 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5291 0, SourceRange(), OpName, OpLoc, 5292 /*ADL*/ true, IsOverloaded(Functions)); 5293 for (FunctionSet::iterator Func = Functions.begin(), 5294 FuncEnd = Functions.end(); 5295 Func != FuncEnd; ++Func) 5296 Fn->addDecl(*Func); 5297 5298 input.release(); 5299 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 5300 &Args[0], NumArgs, 5301 Context.DependentTy, 5302 OpLoc)); 5303 } 5304 5305 // Build an empty overload set. 5306 OverloadCandidateSet CandidateSet; 5307 5308 // Add the candidates from the given function set. 5309 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 5310 5311 // Add operator candidates that are member functions. 5312 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 5313 5314 // Add builtin operator candidates. 5315 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 5316 5317 // Perform overload resolution. 5318 OverloadCandidateSet::iterator Best; 5319 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5320 case OR_Success: { 5321 // We found a built-in operator or an overloaded operator. 5322 FunctionDecl *FnDecl = Best->Function; 5323 5324 if (FnDecl) { 5325 // We matched an overloaded operator. Build a call to that 5326 // operator. 5327 5328 // Convert the arguments. 5329 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5330 if (PerformObjectArgumentInitialization(Input, Method)) 5331 return ExprError(); 5332 } else { 5333 // Convert the arguments. 5334 OwningExprResult InputInit 5335 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 5336 FnDecl->getParamDecl(0)), 5337 SourceLocation(), 5338 move(input)); 5339 if (InputInit.isInvalid()) 5340 return ExprError(); 5341 5342 input = move(InputInit); 5343 Input = (Expr *)input.get(); 5344 } 5345 5346 // Determine the result type 5347 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 5348 5349 // Build the actual expression node. 5350 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5351 SourceLocation()); 5352 UsualUnaryConversions(FnExpr); 5353 5354 input.release(); 5355 Args[0] = Input; 5356 ExprOwningPtr<CallExpr> TheCall(this, 5357 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5358 Args, NumArgs, ResultTy, OpLoc)); 5359 5360 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5361 FnDecl)) 5362 return ExprError(); 5363 5364 return MaybeBindToTemporary(TheCall.release()); 5365 } else { 5366 // We matched a built-in operator. Convert the arguments, then 5367 // break out so that we will build the appropriate built-in 5368 // operator node. 5369 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 5370 Best->Conversions[0], AA_Passing)) 5371 return ExprError(); 5372 5373 break; 5374 } 5375 } 5376 5377 case OR_No_Viable_Function: 5378 // No viable function; fall through to handling this as a 5379 // built-in operator, which will produce an error message for us. 5380 break; 5381 5382 case OR_Ambiguous: 5383 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5384 << UnaryOperator::getOpcodeStr(Opc) 5385 << Input->getSourceRange(); 5386 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 5387 UnaryOperator::getOpcodeStr(Opc), OpLoc); 5388 return ExprError(); 5389 5390 case OR_Deleted: 5391 Diag(OpLoc, diag::err_ovl_deleted_oper) 5392 << Best->Function->isDeleted() 5393 << UnaryOperator::getOpcodeStr(Opc) 5394 << Input->getSourceRange(); 5395 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5396 return ExprError(); 5397 } 5398 5399 // Either we found no viable overloaded operator or we matched a 5400 // built-in operator. In either case, fall through to trying to 5401 // build a built-in operation. 5402 input.release(); 5403 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 5404} 5405 5406/// \brief Create a binary operation that may resolve to an overloaded 5407/// operator. 5408/// 5409/// \param OpLoc The location of the operator itself (e.g., '+'). 5410/// 5411/// \param OpcIn The BinaryOperator::Opcode that describes this 5412/// operator. 5413/// 5414/// \param Functions The set of non-member functions that will be 5415/// considered by overload resolution. The caller needs to build this 5416/// set based on the context using, e.g., 5417/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 5418/// set should not contain any member functions; those will be added 5419/// by CreateOverloadedBinOp(). 5420/// 5421/// \param LHS Left-hand argument. 5422/// \param RHS Right-hand argument. 5423Sema::OwningExprResult 5424Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 5425 unsigned OpcIn, 5426 FunctionSet &Functions, 5427 Expr *LHS, Expr *RHS) { 5428 Expr *Args[2] = { LHS, RHS }; 5429 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 5430 5431 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 5432 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 5433 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5434 5435 // If either side is type-dependent, create an appropriate dependent 5436 // expression. 5437 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5438 if (Functions.empty()) { 5439 // If there are no functions to store, just build a dependent 5440 // BinaryOperator or CompoundAssignment. 5441 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 5442 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 5443 Context.DependentTy, OpLoc)); 5444 5445 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 5446 Context.DependentTy, 5447 Context.DependentTy, 5448 Context.DependentTy, 5449 OpLoc)); 5450 } 5451 5452 UnresolvedLookupExpr *Fn 5453 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5454 0, SourceRange(), OpName, OpLoc, 5455 /* ADL */ true, IsOverloaded(Functions)); 5456 5457 for (FunctionSet::iterator Func = Functions.begin(), 5458 FuncEnd = Functions.end(); 5459 Func != FuncEnd; ++Func) 5460 Fn->addDecl(*Func); 5461 5462 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 5463 Args, 2, 5464 Context.DependentTy, 5465 OpLoc)); 5466 } 5467 5468 // If this is the .* operator, which is not overloadable, just 5469 // create a built-in binary operator. 5470 if (Opc == BinaryOperator::PtrMemD) 5471 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5472 5473 // If this is the assignment operator, we only perform overload resolution 5474 // if the left-hand side is a class or enumeration type. This is actually 5475 // a hack. The standard requires that we do overload resolution between the 5476 // various built-in candidates, but as DR507 points out, this can lead to 5477 // problems. So we do it this way, which pretty much follows what GCC does. 5478 // Note that we go the traditional code path for compound assignment forms. 5479 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 5480 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5481 5482 // Build an empty overload set. 5483 OverloadCandidateSet CandidateSet; 5484 5485 // Add the candidates from the given function set. 5486 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 5487 5488 // Add operator candidates that are member functions. 5489 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 5490 5491 // Add builtin operator candidates. 5492 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 5493 5494 // Perform overload resolution. 5495 OverloadCandidateSet::iterator Best; 5496 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5497 case OR_Success: { 5498 // We found a built-in operator or an overloaded operator. 5499 FunctionDecl *FnDecl = Best->Function; 5500 5501 if (FnDecl) { 5502 // We matched an overloaded operator. Build a call to that 5503 // operator. 5504 5505 // Convert the arguments. 5506 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5507 OwningExprResult Arg1 5508 = PerformCopyInitialization( 5509 InitializedEntity::InitializeParameter( 5510 FnDecl->getParamDecl(0)), 5511 SourceLocation(), 5512 Owned(Args[1])); 5513 if (Arg1.isInvalid()) 5514 return ExprError(); 5515 5516 if (PerformObjectArgumentInitialization(Args[0], Method)) 5517 return ExprError(); 5518 5519 Args[1] = RHS = Arg1.takeAs<Expr>(); 5520 } else { 5521 // Convert the arguments. 5522 OwningExprResult Arg0 5523 = PerformCopyInitialization( 5524 InitializedEntity::InitializeParameter( 5525 FnDecl->getParamDecl(0)), 5526 SourceLocation(), 5527 Owned(Args[0])); 5528 if (Arg0.isInvalid()) 5529 return ExprError(); 5530 5531 OwningExprResult Arg1 5532 = PerformCopyInitialization( 5533 InitializedEntity::InitializeParameter( 5534 FnDecl->getParamDecl(1)), 5535 SourceLocation(), 5536 Owned(Args[1])); 5537 if (Arg1.isInvalid()) 5538 return ExprError(); 5539 Args[0] = LHS = Arg0.takeAs<Expr>(); 5540 Args[1] = RHS = Arg1.takeAs<Expr>(); 5541 } 5542 5543 // Determine the result type 5544 QualType ResultTy 5545 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5546 ResultTy = ResultTy.getNonReferenceType(); 5547 5548 // Build the actual expression node. 5549 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5550 OpLoc); 5551 UsualUnaryConversions(FnExpr); 5552 5553 ExprOwningPtr<CXXOperatorCallExpr> 5554 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5555 Args, 2, ResultTy, 5556 OpLoc)); 5557 5558 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5559 FnDecl)) 5560 return ExprError(); 5561 5562 return MaybeBindToTemporary(TheCall.release()); 5563 } else { 5564 // We matched a built-in operator. Convert the arguments, then 5565 // break out so that we will build the appropriate built-in 5566 // operator node. 5567 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5568 Best->Conversions[0], AA_Passing) || 5569 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5570 Best->Conversions[1], AA_Passing)) 5571 return ExprError(); 5572 5573 break; 5574 } 5575 } 5576 5577 case OR_No_Viable_Function: { 5578 // C++ [over.match.oper]p9: 5579 // If the operator is the operator , [...] and there are no 5580 // viable functions, then the operator is assumed to be the 5581 // built-in operator and interpreted according to clause 5. 5582 if (Opc == BinaryOperator::Comma) 5583 break; 5584 5585 // For class as left operand for assignment or compound assigment operator 5586 // do not fall through to handling in built-in, but report that no overloaded 5587 // assignment operator found 5588 OwningExprResult Result = ExprError(); 5589 if (Args[0]->getType()->isRecordType() && 5590 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 5591 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5592 << BinaryOperator::getOpcodeStr(Opc) 5593 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5594 } else { 5595 // No viable function; try to create a built-in operation, which will 5596 // produce an error. Then, show the non-viable candidates. 5597 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5598 } 5599 assert(Result.isInvalid() && 5600 "C++ binary operator overloading is missing candidates!"); 5601 if (Result.isInvalid()) 5602 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 5603 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5604 return move(Result); 5605 } 5606 5607 case OR_Ambiguous: 5608 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5609 << BinaryOperator::getOpcodeStr(Opc) 5610 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5611 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 5612 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5613 return ExprError(); 5614 5615 case OR_Deleted: 5616 Diag(OpLoc, diag::err_ovl_deleted_oper) 5617 << Best->Function->isDeleted() 5618 << BinaryOperator::getOpcodeStr(Opc) 5619 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5620 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 5621 return ExprError(); 5622 } 5623 5624 // We matched a built-in operator; build it. 5625 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5626} 5627 5628Action::OwningExprResult 5629Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 5630 SourceLocation RLoc, 5631 ExprArg Base, ExprArg Idx) { 5632 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 5633 static_cast<Expr*>(Idx.get()) }; 5634 DeclarationName OpName = 5635 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 5636 5637 // If either side is type-dependent, create an appropriate dependent 5638 // expression. 5639 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5640 5641 UnresolvedLookupExpr *Fn 5642 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5643 0, SourceRange(), OpName, LLoc, 5644 /*ADL*/ true, /*Overloaded*/ false); 5645 // Can't add any actual overloads yet 5646 5647 Base.release(); 5648 Idx.release(); 5649 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5650 Args, 2, 5651 Context.DependentTy, 5652 RLoc)); 5653 } 5654 5655 // Build an empty overload set. 5656 OverloadCandidateSet CandidateSet; 5657 5658 // Subscript can only be overloaded as a member function. 5659 5660 // Add operator candidates that are member functions. 5661 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5662 5663 // Add builtin operator candidates. 5664 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5665 5666 // Perform overload resolution. 5667 OverloadCandidateSet::iterator Best; 5668 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5669 case OR_Success: { 5670 // We found a built-in operator or an overloaded operator. 5671 FunctionDecl *FnDecl = Best->Function; 5672 5673 if (FnDecl) { 5674 // We matched an overloaded operator. Build a call to that 5675 // operator. 5676 5677 // Convert the arguments. 5678 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5679 if (PerformObjectArgumentInitialization(Args[0], Method) || 5680 PerformCopyInitialization(Args[1], 5681 FnDecl->getParamDecl(0)->getType(), 5682 AA_Passing)) 5683 return ExprError(); 5684 5685 // Determine the result type 5686 QualType ResultTy 5687 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5688 ResultTy = ResultTy.getNonReferenceType(); 5689 5690 // Build the actual expression node. 5691 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5692 LLoc); 5693 UsualUnaryConversions(FnExpr); 5694 5695 Base.release(); 5696 Idx.release(); 5697 ExprOwningPtr<CXXOperatorCallExpr> 5698 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5699 FnExpr, Args, 2, 5700 ResultTy, RLoc)); 5701 5702 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5703 FnDecl)) 5704 return ExprError(); 5705 5706 return MaybeBindToTemporary(TheCall.release()); 5707 } else { 5708 // We matched a built-in operator. Convert the arguments, then 5709 // break out so that we will build the appropriate built-in 5710 // operator node. 5711 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5712 Best->Conversions[0], AA_Passing) || 5713 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5714 Best->Conversions[1], AA_Passing)) 5715 return ExprError(); 5716 5717 break; 5718 } 5719 } 5720 5721 case OR_No_Viable_Function: { 5722 if (CandidateSet.empty()) 5723 Diag(LLoc, diag::err_ovl_no_oper) 5724 << Args[0]->getType() << /*subscript*/ 0 5725 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5726 else 5727 Diag(LLoc, diag::err_ovl_no_viable_subscript) 5728 << Args[0]->getType() 5729 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5730 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 5731 "[]", LLoc); 5732 return ExprError(); 5733 } 5734 5735 case OR_Ambiguous: 5736 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5737 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5738 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 5739 "[]", LLoc); 5740 return ExprError(); 5741 5742 case OR_Deleted: 5743 Diag(LLoc, diag::err_ovl_deleted_oper) 5744 << Best->Function->isDeleted() << "[]" 5745 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5746 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 5747 "[]", LLoc); 5748 return ExprError(); 5749 } 5750 5751 // We matched a built-in operator; build it. 5752 Base.release(); 5753 Idx.release(); 5754 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5755 Owned(Args[1]), RLoc); 5756} 5757 5758/// BuildCallToMemberFunction - Build a call to a member 5759/// function. MemExpr is the expression that refers to the member 5760/// function (and includes the object parameter), Args/NumArgs are the 5761/// arguments to the function call (not including the object 5762/// parameter). The caller needs to validate that the member 5763/// expression refers to a member function or an overloaded member 5764/// function. 5765Sema::OwningExprResult 5766Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5767 SourceLocation LParenLoc, Expr **Args, 5768 unsigned NumArgs, SourceLocation *CommaLocs, 5769 SourceLocation RParenLoc) { 5770 // Dig out the member expression. This holds both the object 5771 // argument and the member function we're referring to. 5772 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 5773 5774 MemberExpr *MemExpr; 5775 CXXMethodDecl *Method = 0; 5776 if (isa<MemberExpr>(NakedMemExpr)) { 5777 MemExpr = cast<MemberExpr>(NakedMemExpr); 5778 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5779 } else { 5780 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 5781 5782 QualType ObjectType = UnresExpr->getBaseType(); 5783 5784 // Add overload candidates 5785 OverloadCandidateSet CandidateSet; 5786 5787 // FIXME: avoid copy. 5788 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 5789 if (UnresExpr->hasExplicitTemplateArgs()) { 5790 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 5791 TemplateArgs = &TemplateArgsBuffer; 5792 } 5793 5794 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 5795 E = UnresExpr->decls_end(); I != E; ++I) { 5796 5797 NamedDecl *Func = *I; 5798 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 5799 if (isa<UsingShadowDecl>(Func)) 5800 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 5801 5802 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 5803 // If explicit template arguments were provided, we can't call a 5804 // non-template member function. 5805 if (TemplateArgs) 5806 continue; 5807 5808 AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs, 5809 CandidateSet, /*SuppressUserConversions=*/false); 5810 } else { 5811 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 5812 ActingDC, TemplateArgs, 5813 ObjectType, Args, NumArgs, 5814 CandidateSet, 5815 /*SuppressUsedConversions=*/false); 5816 } 5817 } 5818 5819 DeclarationName DeclName = UnresExpr->getMemberName(); 5820 5821 OverloadCandidateSet::iterator Best; 5822 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 5823 case OR_Success: 5824 Method = cast<CXXMethodDecl>(Best->Function); 5825 break; 5826 5827 case OR_No_Viable_Function: 5828 Diag(UnresExpr->getMemberLoc(), 5829 diag::err_ovl_no_viable_member_function_in_call) 5830 << DeclName << MemExprE->getSourceRange(); 5831 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5832 // FIXME: Leaking incoming expressions! 5833 return ExprError(); 5834 5835 case OR_Ambiguous: 5836 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 5837 << DeclName << MemExprE->getSourceRange(); 5838 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5839 // FIXME: Leaking incoming expressions! 5840 return ExprError(); 5841 5842 case OR_Deleted: 5843 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 5844 << Best->Function->isDeleted() 5845 << DeclName << MemExprE->getSourceRange(); 5846 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5847 // FIXME: Leaking incoming expressions! 5848 return ExprError(); 5849 } 5850 5851 MemExprE = FixOverloadedFunctionReference(MemExprE, Method); 5852 5853 // If overload resolution picked a static member, build a 5854 // non-member call based on that function. 5855 if (Method->isStatic()) { 5856 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 5857 Args, NumArgs, RParenLoc); 5858 } 5859 5860 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 5861 } 5862 5863 assert(Method && "Member call to something that isn't a method?"); 5864 ExprOwningPtr<CXXMemberCallExpr> 5865 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 5866 NumArgs, 5867 Method->getResultType().getNonReferenceType(), 5868 RParenLoc)); 5869 5870 // Check for a valid return type. 5871 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5872 TheCall.get(), Method)) 5873 return ExprError(); 5874 5875 // Convert the object argument (for a non-static member function call). 5876 Expr *ObjectArg = MemExpr->getBase(); 5877 if (!Method->isStatic() && 5878 PerformObjectArgumentInitialization(ObjectArg, Method)) 5879 return ExprError(); 5880 MemExpr->setBase(ObjectArg); 5881 5882 // Convert the rest of the arguments 5883 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5884 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5885 RParenLoc)) 5886 return ExprError(); 5887 5888 if (CheckFunctionCall(Method, TheCall.get())) 5889 return ExprError(); 5890 5891 return MaybeBindToTemporary(TheCall.release()); 5892} 5893 5894/// BuildCallToObjectOfClassType - Build a call to an object of class 5895/// type (C++ [over.call.object]), which can end up invoking an 5896/// overloaded function call operator (@c operator()) or performing a 5897/// user-defined conversion on the object argument. 5898Sema::ExprResult 5899Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5900 SourceLocation LParenLoc, 5901 Expr **Args, unsigned NumArgs, 5902 SourceLocation *CommaLocs, 5903 SourceLocation RParenLoc) { 5904 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5905 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5906 5907 // C++ [over.call.object]p1: 5908 // If the primary-expression E in the function call syntax 5909 // evaluates to a class object of type "cv T", then the set of 5910 // candidate functions includes at least the function call 5911 // operators of T. The function call operators of T are obtained by 5912 // ordinary lookup of the name operator() in the context of 5913 // (E).operator(). 5914 OverloadCandidateSet CandidateSet; 5915 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5916 5917 if (RequireCompleteType(LParenLoc, Object->getType(), 5918 PartialDiagnostic(diag::err_incomplete_object_call) 5919 << Object->getSourceRange())) 5920 return true; 5921 5922 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 5923 LookupQualifiedName(R, Record->getDecl()); 5924 R.suppressDiagnostics(); 5925 5926 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5927 Oper != OperEnd; ++Oper) { 5928 AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet, 5929 /*SuppressUserConversions=*/ false); 5930 } 5931 5932 // C++ [over.call.object]p2: 5933 // In addition, for each conversion function declared in T of the 5934 // form 5935 // 5936 // operator conversion-type-id () cv-qualifier; 5937 // 5938 // where cv-qualifier is the same cv-qualification as, or a 5939 // greater cv-qualification than, cv, and where conversion-type-id 5940 // denotes the type "pointer to function of (P1,...,Pn) returning 5941 // R", or the type "reference to pointer to function of 5942 // (P1,...,Pn) returning R", or the type "reference to function 5943 // of (P1,...,Pn) returning R", a surrogate call function [...] 5944 // is also considered as a candidate function. Similarly, 5945 // surrogate call functions are added to the set of candidate 5946 // functions for each conversion function declared in an 5947 // accessible base class provided the function is not hidden 5948 // within T by another intervening declaration. 5949 const UnresolvedSetImpl *Conversions 5950 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 5951 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5952 E = Conversions->end(); I != E; ++I) { 5953 NamedDecl *D = *I; 5954 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5955 if (isa<UsingShadowDecl>(D)) 5956 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5957 5958 // Skip over templated conversion functions; they aren't 5959 // surrogates. 5960 if (isa<FunctionTemplateDecl>(D)) 5961 continue; 5962 5963 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 5964 5965 // Strip the reference type (if any) and then the pointer type (if 5966 // any) to get down to what might be a function type. 5967 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5968 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5969 ConvType = ConvPtrType->getPointeeType(); 5970 5971 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5972 AddSurrogateCandidate(Conv, ActingContext, Proto, 5973 Object->getType(), Args, NumArgs, 5974 CandidateSet); 5975 } 5976 5977 // Perform overload resolution. 5978 OverloadCandidateSet::iterator Best; 5979 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5980 case OR_Success: 5981 // Overload resolution succeeded; we'll build the appropriate call 5982 // below. 5983 break; 5984 5985 case OR_No_Viable_Function: 5986 if (CandidateSet.empty()) 5987 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 5988 << Object->getType() << /*call*/ 1 5989 << Object->getSourceRange(); 5990 else 5991 Diag(Object->getSourceRange().getBegin(), 5992 diag::err_ovl_no_viable_object_call) 5993 << Object->getType() << Object->getSourceRange(); 5994 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 5995 break; 5996 5997 case OR_Ambiguous: 5998 Diag(Object->getSourceRange().getBegin(), 5999 diag::err_ovl_ambiguous_object_call) 6000 << Object->getType() << Object->getSourceRange(); 6001 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6002 break; 6003 6004 case OR_Deleted: 6005 Diag(Object->getSourceRange().getBegin(), 6006 diag::err_ovl_deleted_object_call) 6007 << Best->Function->isDeleted() 6008 << Object->getType() << Object->getSourceRange(); 6009 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6010 break; 6011 } 6012 6013 if (Best == CandidateSet.end()) { 6014 // We had an error; delete all of the subexpressions and return 6015 // the error. 6016 Object->Destroy(Context); 6017 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6018 Args[ArgIdx]->Destroy(Context); 6019 return true; 6020 } 6021 6022 if (Best->Function == 0) { 6023 // Since there is no function declaration, this is one of the 6024 // surrogate candidates. Dig out the conversion function. 6025 CXXConversionDecl *Conv 6026 = cast<CXXConversionDecl>( 6027 Best->Conversions[0].UserDefined.ConversionFunction); 6028 6029 // We selected one of the surrogate functions that converts the 6030 // object parameter to a function pointer. Perform the conversion 6031 // on the object argument, then let ActOnCallExpr finish the job. 6032 6033 // Create an implicit member expr to refer to the conversion operator. 6034 // and then call it. 6035 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv); 6036 6037 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 6038 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 6039 CommaLocs, RParenLoc).release(); 6040 } 6041 6042 // We found an overloaded operator(). Build a CXXOperatorCallExpr 6043 // that calls this method, using Object for the implicit object 6044 // parameter and passing along the remaining arguments. 6045 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 6046 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 6047 6048 unsigned NumArgsInProto = Proto->getNumArgs(); 6049 unsigned NumArgsToCheck = NumArgs; 6050 6051 // Build the full argument list for the method call (the 6052 // implicit object parameter is placed at the beginning of the 6053 // list). 6054 Expr **MethodArgs; 6055 if (NumArgs < NumArgsInProto) { 6056 NumArgsToCheck = NumArgsInProto; 6057 MethodArgs = new Expr*[NumArgsInProto + 1]; 6058 } else { 6059 MethodArgs = new Expr*[NumArgs + 1]; 6060 } 6061 MethodArgs[0] = Object; 6062 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6063 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 6064 6065 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 6066 SourceLocation()); 6067 UsualUnaryConversions(NewFn); 6068 6069 // Once we've built TheCall, all of the expressions are properly 6070 // owned. 6071 QualType ResultTy = Method->getResultType().getNonReferenceType(); 6072 ExprOwningPtr<CXXOperatorCallExpr> 6073 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 6074 MethodArgs, NumArgs + 1, 6075 ResultTy, RParenLoc)); 6076 delete [] MethodArgs; 6077 6078 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 6079 Method)) 6080 return true; 6081 6082 // We may have default arguments. If so, we need to allocate more 6083 // slots in the call for them. 6084 if (NumArgs < NumArgsInProto) 6085 TheCall->setNumArgs(Context, NumArgsInProto + 1); 6086 else if (NumArgs > NumArgsInProto) 6087 NumArgsToCheck = NumArgsInProto; 6088 6089 bool IsError = false; 6090 6091 // Initialize the implicit object parameter. 6092 IsError |= PerformObjectArgumentInitialization(Object, Method); 6093 TheCall->setArg(0, Object); 6094 6095 6096 // Check the argument types. 6097 for (unsigned i = 0; i != NumArgsToCheck; i++) { 6098 Expr *Arg; 6099 if (i < NumArgs) { 6100 Arg = Args[i]; 6101 6102 // Pass the argument. 6103 QualType ProtoArgType = Proto->getArgType(i); 6104 IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing); 6105 } else { 6106 OwningExprResult DefArg 6107 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 6108 if (DefArg.isInvalid()) { 6109 IsError = true; 6110 break; 6111 } 6112 6113 Arg = DefArg.takeAs<Expr>(); 6114 } 6115 6116 TheCall->setArg(i + 1, Arg); 6117 } 6118 6119 // If this is a variadic call, handle args passed through "...". 6120 if (Proto->isVariadic()) { 6121 // Promote the arguments (C99 6.5.2.2p7). 6122 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 6123 Expr *Arg = Args[i]; 6124 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 6125 TheCall->setArg(i + 1, Arg); 6126 } 6127 } 6128 6129 if (IsError) return true; 6130 6131 if (CheckFunctionCall(Method, TheCall.get())) 6132 return true; 6133 6134 return MaybeBindToTemporary(TheCall.release()).release(); 6135} 6136 6137/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 6138/// (if one exists), where @c Base is an expression of class type and 6139/// @c Member is the name of the member we're trying to find. 6140Sema::OwningExprResult 6141Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 6142 Expr *Base = static_cast<Expr *>(BaseIn.get()); 6143 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 6144 6145 // C++ [over.ref]p1: 6146 // 6147 // [...] An expression x->m is interpreted as (x.operator->())->m 6148 // for a class object x of type T if T::operator->() exists and if 6149 // the operator is selected as the best match function by the 6150 // overload resolution mechanism (13.3). 6151 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 6152 OverloadCandidateSet CandidateSet; 6153 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 6154 6155 if (RequireCompleteType(Base->getLocStart(), Base->getType(), 6156 PDiag(diag::err_typecheck_incomplete_tag) 6157 << Base->getSourceRange())) 6158 return ExprError(); 6159 6160 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 6161 LookupQualifiedName(R, BaseRecord->getDecl()); 6162 R.suppressDiagnostics(); 6163 6164 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 6165 Oper != OperEnd; ++Oper) { 6166 NamedDecl *D = *Oper; 6167 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6168 if (isa<UsingShadowDecl>(D)) 6169 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6170 6171 AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext, 6172 Base->getType(), 0, 0, CandidateSet, 6173 /*SuppressUserConversions=*/false); 6174 } 6175 6176 // Perform overload resolution. 6177 OverloadCandidateSet::iterator Best; 6178 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6179 case OR_Success: 6180 // Overload resolution succeeded; we'll build the call below. 6181 break; 6182 6183 case OR_No_Viable_Function: 6184 if (CandidateSet.empty()) 6185 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 6186 << Base->getType() << Base->getSourceRange(); 6187 else 6188 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6189 << "operator->" << Base->getSourceRange(); 6190 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 6191 return ExprError(); 6192 6193 case OR_Ambiguous: 6194 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6195 << "->" << Base->getSourceRange(); 6196 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 6197 return ExprError(); 6198 6199 case OR_Deleted: 6200 Diag(OpLoc, diag::err_ovl_deleted_oper) 6201 << Best->Function->isDeleted() 6202 << "->" << Base->getSourceRange(); 6203 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 6204 return ExprError(); 6205 } 6206 6207 // Convert the object parameter. 6208 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 6209 if (PerformObjectArgumentInitialization(Base, Method)) 6210 return ExprError(); 6211 6212 // No concerns about early exits now. 6213 BaseIn.release(); 6214 6215 // Build the operator call. 6216 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 6217 SourceLocation()); 6218 UsualUnaryConversions(FnExpr); 6219 6220 QualType ResultTy = Method->getResultType().getNonReferenceType(); 6221 ExprOwningPtr<CXXOperatorCallExpr> 6222 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 6223 &Base, 1, ResultTy, OpLoc)); 6224 6225 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 6226 Method)) 6227 return ExprError(); 6228 return move(TheCall); 6229} 6230 6231/// FixOverloadedFunctionReference - E is an expression that refers to 6232/// a C++ overloaded function (possibly with some parentheses and 6233/// perhaps a '&' around it). We have resolved the overloaded function 6234/// to the function declaration Fn, so patch up the expression E to 6235/// refer (possibly indirectly) to Fn. Returns the new expr. 6236Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 6237 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 6238 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 6239 if (SubExpr == PE->getSubExpr()) 6240 return PE->Retain(); 6241 6242 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 6243 } 6244 6245 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 6246 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 6247 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 6248 SubExpr->getType()) && 6249 "Implicit cast type cannot be determined from overload"); 6250 if (SubExpr == ICE->getSubExpr()) 6251 return ICE->Retain(); 6252 6253 return new (Context) ImplicitCastExpr(ICE->getType(), 6254 ICE->getCastKind(), 6255 SubExpr, 6256 ICE->isLvalueCast()); 6257 } 6258 6259 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 6260 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 6261 "Can only take the address of an overloaded function"); 6262 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6263 if (Method->isStatic()) { 6264 // Do nothing: static member functions aren't any different 6265 // from non-member functions. 6266 } else { 6267 // Fix the sub expression, which really has to be an 6268 // UnresolvedLookupExpr holding an overloaded member function 6269 // or template. 6270 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 6271 if (SubExpr == UnOp->getSubExpr()) 6272 return UnOp->Retain(); 6273 6274 assert(isa<DeclRefExpr>(SubExpr) 6275 && "fixed to something other than a decl ref"); 6276 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 6277 && "fixed to a member ref with no nested name qualifier"); 6278 6279 // We have taken the address of a pointer to member 6280 // function. Perform the computation here so that we get the 6281 // appropriate pointer to member type. 6282 QualType ClassType 6283 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 6284 QualType MemPtrType 6285 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 6286 6287 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 6288 MemPtrType, UnOp->getOperatorLoc()); 6289 } 6290 } 6291 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 6292 if (SubExpr == UnOp->getSubExpr()) 6293 return UnOp->Retain(); 6294 6295 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 6296 Context.getPointerType(SubExpr->getType()), 6297 UnOp->getOperatorLoc()); 6298 } 6299 6300 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 6301 // FIXME: avoid copy. 6302 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6303 if (ULE->hasExplicitTemplateArgs()) { 6304 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 6305 TemplateArgs = &TemplateArgsBuffer; 6306 } 6307 6308 return DeclRefExpr::Create(Context, 6309 ULE->getQualifier(), 6310 ULE->getQualifierRange(), 6311 Fn, 6312 ULE->getNameLoc(), 6313 Fn->getType(), 6314 TemplateArgs); 6315 } 6316 6317 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 6318 // FIXME: avoid copy. 6319 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6320 if (MemExpr->hasExplicitTemplateArgs()) { 6321 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6322 TemplateArgs = &TemplateArgsBuffer; 6323 } 6324 6325 Expr *Base; 6326 6327 // If we're filling in 6328 if (MemExpr->isImplicitAccess()) { 6329 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 6330 return DeclRefExpr::Create(Context, 6331 MemExpr->getQualifier(), 6332 MemExpr->getQualifierRange(), 6333 Fn, 6334 MemExpr->getMemberLoc(), 6335 Fn->getType(), 6336 TemplateArgs); 6337 } else { 6338 SourceLocation Loc = MemExpr->getMemberLoc(); 6339 if (MemExpr->getQualifier()) 6340 Loc = MemExpr->getQualifierRange().getBegin(); 6341 Base = new (Context) CXXThisExpr(Loc, 6342 MemExpr->getBaseType(), 6343 /*isImplicit=*/true); 6344 } 6345 } else 6346 Base = MemExpr->getBase()->Retain(); 6347 6348 return MemberExpr::Create(Context, Base, 6349 MemExpr->isArrow(), 6350 MemExpr->getQualifier(), 6351 MemExpr->getQualifierRange(), 6352 Fn, 6353 MemExpr->getMemberLoc(), 6354 TemplateArgs, 6355 Fn->getType()); 6356 } 6357 6358 assert(false && "Invalid reference to overloaded function"); 6359 return E->Retain(); 6360} 6361 6362Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 6363 FunctionDecl *Fn) { 6364 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn)); 6365} 6366 6367} // end namespace clang 6368