SemaOverload.cpp revision c12c5bba6ceb6acd4e51e7a0fc03257da9cfd44e
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion 56 }; 57 return Category[(int)Kind]; 58} 59 60/// GetConversionRank - Retrieve the implicit conversion rank 61/// corresponding to the given implicit conversion kind. 62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 63 static const ImplicitConversionRank 64 Rank[(int)ICK_Num_Conversion_Kinds] = { 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Promotion, 72 ICR_Promotion, 73 ICR_Promotion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Complex_Real_Conversion 84 }; 85 return Rank[(int)Kind]; 86} 87 88/// GetImplicitConversionName - Return the name of this kind of 89/// implicit conversion. 90const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 91 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 92 "No conversion", 93 "Lvalue-to-rvalue", 94 "Array-to-pointer", 95 "Function-to-pointer", 96 "Noreturn adjustment", 97 "Qualification", 98 "Integral promotion", 99 "Floating point promotion", 100 "Complex promotion", 101 "Integral conversion", 102 "Floating conversion", 103 "Complex conversion", 104 "Floating-integral conversion", 105 "Complex-real conversion", 106 "Pointer conversion", 107 "Pointer-to-member conversion", 108 "Boolean conversion", 109 "Compatible-types conversion", 110 "Derived-to-base conversion" 111 }; 112 return Name[Kind]; 113} 114 115/// StandardConversionSequence - Set the standard conversion 116/// sequence to the identity conversion. 117void StandardConversionSequence::setAsIdentityConversion() { 118 First = ICK_Identity; 119 Second = ICK_Identity; 120 Third = ICK_Identity; 121 DeprecatedStringLiteralToCharPtr = false; 122 ReferenceBinding = false; 123 DirectBinding = false; 124 RRefBinding = false; 125 CopyConstructor = 0; 126} 127 128/// getRank - Retrieve the rank of this standard conversion sequence 129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 130/// implicit conversions. 131ImplicitConversionRank StandardConversionSequence::getRank() const { 132 ImplicitConversionRank Rank = ICR_Exact_Match; 133 if (GetConversionRank(First) > Rank) 134 Rank = GetConversionRank(First); 135 if (GetConversionRank(Second) > Rank) 136 Rank = GetConversionRank(Second); 137 if (GetConversionRank(Third) > Rank) 138 Rank = GetConversionRank(Third); 139 return Rank; 140} 141 142/// isPointerConversionToBool - Determines whether this conversion is 143/// a conversion of a pointer or pointer-to-member to bool. This is 144/// used as part of the ranking of standard conversion sequences 145/// (C++ 13.3.3.2p4). 146bool StandardConversionSequence::isPointerConversionToBool() const { 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (getToType(1)->isBooleanType() && 152 (getFromType()->isPointerType() || getFromType()->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = getFromType(); 167 QualType ToType = getToType(1); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 llvm::raw_ostream &OS = llvm::errs(); 186 bool PrintedSomething = false; 187 if (First != ICK_Identity) { 188 OS << GetImplicitConversionName(First); 189 PrintedSomething = true; 190 } 191 192 if (Second != ICK_Identity) { 193 if (PrintedSomething) { 194 OS << " -> "; 195 } 196 OS << GetImplicitConversionName(Second); 197 198 if (CopyConstructor) { 199 OS << " (by copy constructor)"; 200 } else if (DirectBinding) { 201 OS << " (direct reference binding)"; 202 } else if (ReferenceBinding) { 203 OS << " (reference binding)"; 204 } 205 PrintedSomething = true; 206 } 207 208 if (Third != ICK_Identity) { 209 if (PrintedSomething) { 210 OS << " -> "; 211 } 212 OS << GetImplicitConversionName(Third); 213 PrintedSomething = true; 214 } 215 216 if (!PrintedSomething) { 217 OS << "No conversions required"; 218 } 219} 220 221/// DebugPrint - Print this user-defined conversion sequence to standard 222/// error. Useful for debugging overloading issues. 223void UserDefinedConversionSequence::DebugPrint() const { 224 llvm::raw_ostream &OS = llvm::errs(); 225 if (Before.First || Before.Second || Before.Third) { 226 Before.DebugPrint(); 227 OS << " -> "; 228 } 229 OS << '\'' << ConversionFunction << '\''; 230 if (After.First || After.Second || After.Third) { 231 OS << " -> "; 232 After.DebugPrint(); 233 } 234} 235 236/// DebugPrint - Print this implicit conversion sequence to standard 237/// error. Useful for debugging overloading issues. 238void ImplicitConversionSequence::DebugPrint() const { 239 llvm::raw_ostream &OS = llvm::errs(); 240 switch (ConversionKind) { 241 case StandardConversion: 242 OS << "Standard conversion: "; 243 Standard.DebugPrint(); 244 break; 245 case UserDefinedConversion: 246 OS << "User-defined conversion: "; 247 UserDefined.DebugPrint(); 248 break; 249 case EllipsisConversion: 250 OS << "Ellipsis conversion"; 251 break; 252 case AmbiguousConversion: 253 OS << "Ambiguous conversion"; 254 break; 255 case BadConversion: 256 OS << "Bad conversion"; 257 break; 258 } 259 260 OS << "\n"; 261} 262 263void AmbiguousConversionSequence::construct() { 264 new (&conversions()) ConversionSet(); 265} 266 267void AmbiguousConversionSequence::destruct() { 268 conversions().~ConversionSet(); 269} 270 271void 272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 273 FromTypePtr = O.FromTypePtr; 274 ToTypePtr = O.ToTypePtr; 275 new (&conversions()) ConversionSet(O.conversions()); 276} 277 278namespace { 279 // Structure used by OverloadCandidate::DeductionFailureInfo to store 280 // template parameter and template argument information. 281 struct DFIParamWithArguments { 282 TemplateParameter Param; 283 TemplateArgument FirstArg; 284 TemplateArgument SecondArg; 285 }; 286} 287 288/// \brief Convert from Sema's representation of template deduction information 289/// to the form used in overload-candidate information. 290OverloadCandidate::DeductionFailureInfo 291static MakeDeductionFailureInfo(ASTContext &Context, 292 Sema::TemplateDeductionResult TDK, 293 Sema::TemplateDeductionInfo &Info) { 294 OverloadCandidate::DeductionFailureInfo Result; 295 Result.Result = static_cast<unsigned>(TDK); 296 Result.Data = 0; 297 switch (TDK) { 298 case Sema::TDK_Success: 299 case Sema::TDK_InstantiationDepth: 300 case Sema::TDK_TooManyArguments: 301 case Sema::TDK_TooFewArguments: 302 break; 303 304 case Sema::TDK_Incomplete: 305 case Sema::TDK_InvalidExplicitArguments: 306 Result.Data = Info.Param.getOpaqueValue(); 307 break; 308 309 case Sema::TDK_Inconsistent: 310 case Sema::TDK_InconsistentQuals: { 311 // FIXME: Should allocate from normal heap so that we can free this later. 312 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 313 Saved->Param = Info.Param; 314 Saved->FirstArg = Info.FirstArg; 315 Saved->SecondArg = Info.SecondArg; 316 Result.Data = Saved; 317 break; 318 } 319 320 case Sema::TDK_SubstitutionFailure: 321 Result.Data = Info.take(); 322 break; 323 324 case Sema::TDK_NonDeducedMismatch: 325 case Sema::TDK_FailedOverloadResolution: 326 break; 327 } 328 329 return Result; 330} 331 332void OverloadCandidate::DeductionFailureInfo::Destroy() { 333 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 334 case Sema::TDK_Success: 335 case Sema::TDK_InstantiationDepth: 336 case Sema::TDK_Incomplete: 337 case Sema::TDK_TooManyArguments: 338 case Sema::TDK_TooFewArguments: 339 case Sema::TDK_InvalidExplicitArguments: 340 break; 341 342 case Sema::TDK_Inconsistent: 343 case Sema::TDK_InconsistentQuals: 344 // FIXME: Destroy the data? 345 Data = 0; 346 break; 347 348 case Sema::TDK_SubstitutionFailure: 349 // FIXME: Destroy the template arugment list? 350 Data = 0; 351 break; 352 353 // Unhandled 354 case Sema::TDK_NonDeducedMismatch: 355 case Sema::TDK_FailedOverloadResolution: 356 break; 357 } 358} 359 360TemplateParameter 361OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 362 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 363 case Sema::TDK_Success: 364 case Sema::TDK_InstantiationDepth: 365 case Sema::TDK_TooManyArguments: 366 case Sema::TDK_TooFewArguments: 367 case Sema::TDK_SubstitutionFailure: 368 return TemplateParameter(); 369 370 case Sema::TDK_Incomplete: 371 case Sema::TDK_InvalidExplicitArguments: 372 return TemplateParameter::getFromOpaqueValue(Data); 373 374 case Sema::TDK_Inconsistent: 375 case Sema::TDK_InconsistentQuals: 376 return static_cast<DFIParamWithArguments*>(Data)->Param; 377 378 // Unhandled 379 case Sema::TDK_NonDeducedMismatch: 380 case Sema::TDK_FailedOverloadResolution: 381 break; 382 } 383 384 return TemplateParameter(); 385} 386 387TemplateArgumentList * 388OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 389 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 390 case Sema::TDK_Success: 391 case Sema::TDK_InstantiationDepth: 392 case Sema::TDK_TooManyArguments: 393 case Sema::TDK_TooFewArguments: 394 case Sema::TDK_Incomplete: 395 case Sema::TDK_InvalidExplicitArguments: 396 case Sema::TDK_Inconsistent: 397 case Sema::TDK_InconsistentQuals: 398 return 0; 399 400 case Sema::TDK_SubstitutionFailure: 401 return static_cast<TemplateArgumentList*>(Data); 402 403 // Unhandled 404 case Sema::TDK_NonDeducedMismatch: 405 case Sema::TDK_FailedOverloadResolution: 406 break; 407 } 408 409 return 0; 410} 411 412const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 413 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 414 case Sema::TDK_Success: 415 case Sema::TDK_InstantiationDepth: 416 case Sema::TDK_Incomplete: 417 case Sema::TDK_TooManyArguments: 418 case Sema::TDK_TooFewArguments: 419 case Sema::TDK_InvalidExplicitArguments: 420 case Sema::TDK_SubstitutionFailure: 421 return 0; 422 423 case Sema::TDK_Inconsistent: 424 case Sema::TDK_InconsistentQuals: 425 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 426 427 // Unhandled 428 case Sema::TDK_NonDeducedMismatch: 429 case Sema::TDK_FailedOverloadResolution: 430 break; 431 } 432 433 return 0; 434} 435 436const TemplateArgument * 437OverloadCandidate::DeductionFailureInfo::getSecondArg() { 438 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 439 case Sema::TDK_Success: 440 case Sema::TDK_InstantiationDepth: 441 case Sema::TDK_Incomplete: 442 case Sema::TDK_TooManyArguments: 443 case Sema::TDK_TooFewArguments: 444 case Sema::TDK_InvalidExplicitArguments: 445 case Sema::TDK_SubstitutionFailure: 446 return 0; 447 448 case Sema::TDK_Inconsistent: 449 case Sema::TDK_InconsistentQuals: 450 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 451 452 // Unhandled 453 case Sema::TDK_NonDeducedMismatch: 454 case Sema::TDK_FailedOverloadResolution: 455 break; 456 } 457 458 return 0; 459} 460 461void OverloadCandidateSet::clear() { 462 inherited::clear(); 463 Functions.clear(); 464} 465 466// IsOverload - Determine whether the given New declaration is an 467// overload of the declarations in Old. This routine returns false if 468// New and Old cannot be overloaded, e.g., if New has the same 469// signature as some function in Old (C++ 1.3.10) or if the Old 470// declarations aren't functions (or function templates) at all. When 471// it does return false, MatchedDecl will point to the decl that New 472// cannot be overloaded with. This decl may be a UsingShadowDecl on 473// top of the underlying declaration. 474// 475// Example: Given the following input: 476// 477// void f(int, float); // #1 478// void f(int, int); // #2 479// int f(int, int); // #3 480// 481// When we process #1, there is no previous declaration of "f", 482// so IsOverload will not be used. 483// 484// When we process #2, Old contains only the FunctionDecl for #1. By 485// comparing the parameter types, we see that #1 and #2 are overloaded 486// (since they have different signatures), so this routine returns 487// false; MatchedDecl is unchanged. 488// 489// When we process #3, Old is an overload set containing #1 and #2. We 490// compare the signatures of #3 to #1 (they're overloaded, so we do 491// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 492// identical (return types of functions are not part of the 493// signature), IsOverload returns false and MatchedDecl will be set to 494// point to the FunctionDecl for #2. 495Sema::OverloadKind 496Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 497 NamedDecl *&Match) { 498 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 499 I != E; ++I) { 500 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 501 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 502 if (!IsOverload(New, OldT->getTemplatedDecl())) { 503 Match = *I; 504 return Ovl_Match; 505 } 506 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 507 if (!IsOverload(New, OldF)) { 508 Match = *I; 509 return Ovl_Match; 510 } 511 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 512 // We can overload with these, which can show up when doing 513 // redeclaration checks for UsingDecls. 514 assert(Old.getLookupKind() == LookupUsingDeclName); 515 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 516 // Optimistically assume that an unresolved using decl will 517 // overload; if it doesn't, we'll have to diagnose during 518 // template instantiation. 519 } else { 520 // (C++ 13p1): 521 // Only function declarations can be overloaded; object and type 522 // declarations cannot be overloaded. 523 Match = *I; 524 return Ovl_NonFunction; 525 } 526 } 527 528 return Ovl_Overload; 529} 530 531bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 532 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 533 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 534 535 // C++ [temp.fct]p2: 536 // A function template can be overloaded with other function templates 537 // and with normal (non-template) functions. 538 if ((OldTemplate == 0) != (NewTemplate == 0)) 539 return true; 540 541 // Is the function New an overload of the function Old? 542 QualType OldQType = Context.getCanonicalType(Old->getType()); 543 QualType NewQType = Context.getCanonicalType(New->getType()); 544 545 // Compare the signatures (C++ 1.3.10) of the two functions to 546 // determine whether they are overloads. If we find any mismatch 547 // in the signature, they are overloads. 548 549 // If either of these functions is a K&R-style function (no 550 // prototype), then we consider them to have matching signatures. 551 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 552 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 553 return false; 554 555 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 556 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 557 558 // The signature of a function includes the types of its 559 // parameters (C++ 1.3.10), which includes the presence or absence 560 // of the ellipsis; see C++ DR 357). 561 if (OldQType != NewQType && 562 (OldType->getNumArgs() != NewType->getNumArgs() || 563 OldType->isVariadic() != NewType->isVariadic() || 564 !FunctionArgTypesAreEqual(OldType, NewType))) 565 return true; 566 567 // C++ [temp.over.link]p4: 568 // The signature of a function template consists of its function 569 // signature, its return type and its template parameter list. The names 570 // of the template parameters are significant only for establishing the 571 // relationship between the template parameters and the rest of the 572 // signature. 573 // 574 // We check the return type and template parameter lists for function 575 // templates first; the remaining checks follow. 576 if (NewTemplate && 577 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 578 OldTemplate->getTemplateParameters(), 579 false, TPL_TemplateMatch) || 580 OldType->getResultType() != NewType->getResultType())) 581 return true; 582 583 // If the function is a class member, its signature includes the 584 // cv-qualifiers (if any) on the function itself. 585 // 586 // As part of this, also check whether one of the member functions 587 // is static, in which case they are not overloads (C++ 588 // 13.1p2). While not part of the definition of the signature, 589 // this check is important to determine whether these functions 590 // can be overloaded. 591 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 592 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 593 if (OldMethod && NewMethod && 594 !OldMethod->isStatic() && !NewMethod->isStatic() && 595 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 596 return true; 597 598 // The signatures match; this is not an overload. 599 return false; 600} 601 602/// TryImplicitConversion - Attempt to perform an implicit conversion 603/// from the given expression (Expr) to the given type (ToType). This 604/// function returns an implicit conversion sequence that can be used 605/// to perform the initialization. Given 606/// 607/// void f(float f); 608/// void g(int i) { f(i); } 609/// 610/// this routine would produce an implicit conversion sequence to 611/// describe the initialization of f from i, which will be a standard 612/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 613/// 4.1) followed by a floating-integral conversion (C++ 4.9). 614// 615/// Note that this routine only determines how the conversion can be 616/// performed; it does not actually perform the conversion. As such, 617/// it will not produce any diagnostics if no conversion is available, 618/// but will instead return an implicit conversion sequence of kind 619/// "BadConversion". 620/// 621/// If @p SuppressUserConversions, then user-defined conversions are 622/// not permitted. 623/// If @p AllowExplicit, then explicit user-defined conversions are 624/// permitted. 625ImplicitConversionSequence 626Sema::TryImplicitConversion(Expr* From, QualType ToType, 627 bool SuppressUserConversions, 628 bool AllowExplicit, 629 bool InOverloadResolution) { 630 ImplicitConversionSequence ICS; 631 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { 632 ICS.setStandard(); 633 return ICS; 634 } 635 636 if (!getLangOptions().CPlusPlus) { 637 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 638 return ICS; 639 } 640 641 if (SuppressUserConversions) { 642 // C++ [over.ics.user]p4: 643 // A conversion of an expression of class type to the same class 644 // type is given Exact Match rank, and a conversion of an 645 // expression of class type to a base class of that type is 646 // given Conversion rank, in spite of the fact that a copy/move 647 // constructor (i.e., a user-defined conversion function) is 648 // called for those cases. 649 QualType FromType = From->getType(); 650 if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() || 651 !(Context.hasSameUnqualifiedType(FromType, ToType) || 652 IsDerivedFrom(FromType, ToType))) { 653 // We're not in the case above, so there is no conversion that 654 // we can perform. 655 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 656 return ICS; 657 } 658 659 ICS.setStandard(); 660 ICS.Standard.setAsIdentityConversion(); 661 ICS.Standard.setFromType(FromType); 662 ICS.Standard.setAllToTypes(ToType); 663 664 // We don't actually check at this point whether there is a valid 665 // copy/move constructor, since overloading just assumes that it 666 // exists. When we actually perform initialization, we'll find the 667 // appropriate constructor to copy the returned object, if needed. 668 ICS.Standard.CopyConstructor = 0; 669 670 // Determine whether this is considered a derived-to-base conversion. 671 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 672 ICS.Standard.Second = ICK_Derived_To_Base; 673 674 return ICS; 675 } 676 677 // Attempt user-defined conversion. 678 OverloadCandidateSet Conversions(From->getExprLoc()); 679 OverloadingResult UserDefResult 680 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, 681 AllowExplicit); 682 683 if (UserDefResult == OR_Success) { 684 ICS.setUserDefined(); 685 // C++ [over.ics.user]p4: 686 // A conversion of an expression of class type to the same class 687 // type is given Exact Match rank, and a conversion of an 688 // expression of class type to a base class of that type is 689 // given Conversion rank, in spite of the fact that a copy 690 // constructor (i.e., a user-defined conversion function) is 691 // called for those cases. 692 if (CXXConstructorDecl *Constructor 693 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 694 QualType FromCanon 695 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 696 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 697 if (Constructor->isCopyConstructor() && 698 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 699 // Turn this into a "standard" conversion sequence, so that it 700 // gets ranked with standard conversion sequences. 701 ICS.setStandard(); 702 ICS.Standard.setAsIdentityConversion(); 703 ICS.Standard.setFromType(From->getType()); 704 ICS.Standard.setAllToTypes(ToType); 705 ICS.Standard.CopyConstructor = Constructor; 706 if (ToCanon != FromCanon) 707 ICS.Standard.Second = ICK_Derived_To_Base; 708 } 709 } 710 711 // C++ [over.best.ics]p4: 712 // However, when considering the argument of a user-defined 713 // conversion function that is a candidate by 13.3.1.3 when 714 // invoked for the copying of the temporary in the second step 715 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 716 // 13.3.1.6 in all cases, only standard conversion sequences and 717 // ellipsis conversion sequences are allowed. 718 if (SuppressUserConversions && ICS.isUserDefined()) { 719 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 720 } 721 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 722 ICS.setAmbiguous(); 723 ICS.Ambiguous.setFromType(From->getType()); 724 ICS.Ambiguous.setToType(ToType); 725 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 726 Cand != Conversions.end(); ++Cand) 727 if (Cand->Viable) 728 ICS.Ambiguous.addConversion(Cand->Function); 729 } else { 730 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 731 } 732 733 return ICS; 734} 735 736/// PerformImplicitConversion - Perform an implicit conversion of the 737/// expression From to the type ToType. Returns true if there was an 738/// error, false otherwise. The expression From is replaced with the 739/// converted expression. Flavor is the kind of conversion we're 740/// performing, used in the error message. If @p AllowExplicit, 741/// explicit user-defined conversions are permitted. 742bool 743Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 744 AssignmentAction Action, bool AllowExplicit) { 745 ImplicitConversionSequence ICS; 746 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 747} 748 749bool 750Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 751 AssignmentAction Action, bool AllowExplicit, 752 ImplicitConversionSequence& ICS) { 753 ICS = TryImplicitConversion(From, ToType, 754 /*SuppressUserConversions=*/false, 755 AllowExplicit, 756 /*InOverloadResolution=*/false); 757 return PerformImplicitConversion(From, ToType, ICS, Action); 758} 759 760/// \brief Determine whether the conversion from FromType to ToType is a valid 761/// conversion that strips "noreturn" off the nested function type. 762static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 763 QualType ToType, QualType &ResultTy) { 764 if (Context.hasSameUnqualifiedType(FromType, ToType)) 765 return false; 766 767 // Strip the noreturn off the type we're converting from; noreturn can 768 // safely be removed. 769 FromType = Context.getNoReturnType(FromType, false); 770 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 771 return false; 772 773 ResultTy = FromType; 774 return true; 775} 776 777/// IsStandardConversion - Determines whether there is a standard 778/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 779/// expression From to the type ToType. Standard conversion sequences 780/// only consider non-class types; for conversions that involve class 781/// types, use TryImplicitConversion. If a conversion exists, SCS will 782/// contain the standard conversion sequence required to perform this 783/// conversion and this routine will return true. Otherwise, this 784/// routine will return false and the value of SCS is unspecified. 785bool 786Sema::IsStandardConversion(Expr* From, QualType ToType, 787 bool InOverloadResolution, 788 StandardConversionSequence &SCS) { 789 QualType FromType = From->getType(); 790 791 // Standard conversions (C++ [conv]) 792 SCS.setAsIdentityConversion(); 793 SCS.DeprecatedStringLiteralToCharPtr = false; 794 SCS.IncompatibleObjC = false; 795 SCS.setFromType(FromType); 796 SCS.CopyConstructor = 0; 797 798 // There are no standard conversions for class types in C++, so 799 // abort early. When overloading in C, however, we do permit 800 if (FromType->isRecordType() || ToType->isRecordType()) { 801 if (getLangOptions().CPlusPlus) 802 return false; 803 804 // When we're overloading in C, we allow, as standard conversions, 805 } 806 807 // The first conversion can be an lvalue-to-rvalue conversion, 808 // array-to-pointer conversion, or function-to-pointer conversion 809 // (C++ 4p1). 810 811 if (FromType == Context.OverloadTy) { 812 DeclAccessPair AccessPair; 813 if (FunctionDecl *Fn 814 = ResolveAddressOfOverloadedFunction(From, ToType, false, 815 AccessPair)) { 816 // We were able to resolve the address of the overloaded function, 817 // so we can convert to the type of that function. 818 FromType = Fn->getType(); 819 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 820 if (!Method->isStatic()) { 821 Type *ClassType 822 = Context.getTypeDeclType(Method->getParent()).getTypePtr(); 823 FromType = Context.getMemberPointerType(FromType, ClassType); 824 } 825 } 826 827 // If the "from" expression takes the address of the overloaded 828 // function, update the type of the resulting expression accordingly. 829 if (FromType->getAs<FunctionType>()) 830 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 831 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 832 FromType = Context.getPointerType(FromType); 833 834 // Check that we've computed the proper type after overload resolution. 835 assert(Context.hasSameType(FromType, 836 FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 837 } else { 838 return false; 839 } 840 } 841 // Lvalue-to-rvalue conversion (C++ 4.1): 842 // An lvalue (3.10) of a non-function, non-array type T can be 843 // converted to an rvalue. 844 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 845 if (argIsLvalue == Expr::LV_Valid && 846 !FromType->isFunctionType() && !FromType->isArrayType() && 847 Context.getCanonicalType(FromType) != Context.OverloadTy) { 848 SCS.First = ICK_Lvalue_To_Rvalue; 849 850 // If T is a non-class type, the type of the rvalue is the 851 // cv-unqualified version of T. Otherwise, the type of the rvalue 852 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 853 // just strip the qualifiers because they don't matter. 854 FromType = FromType.getUnqualifiedType(); 855 } else if (FromType->isArrayType()) { 856 // Array-to-pointer conversion (C++ 4.2) 857 SCS.First = ICK_Array_To_Pointer; 858 859 // An lvalue or rvalue of type "array of N T" or "array of unknown 860 // bound of T" can be converted to an rvalue of type "pointer to 861 // T" (C++ 4.2p1). 862 FromType = Context.getArrayDecayedType(FromType); 863 864 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 865 // This conversion is deprecated. (C++ D.4). 866 SCS.DeprecatedStringLiteralToCharPtr = true; 867 868 // For the purpose of ranking in overload resolution 869 // (13.3.3.1.1), this conversion is considered an 870 // array-to-pointer conversion followed by a qualification 871 // conversion (4.4). (C++ 4.2p2) 872 SCS.Second = ICK_Identity; 873 SCS.Third = ICK_Qualification; 874 SCS.setAllToTypes(FromType); 875 return true; 876 } 877 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 878 // Function-to-pointer conversion (C++ 4.3). 879 SCS.First = ICK_Function_To_Pointer; 880 881 // An lvalue of function type T can be converted to an rvalue of 882 // type "pointer to T." The result is a pointer to the 883 // function. (C++ 4.3p1). 884 FromType = Context.getPointerType(FromType); 885 } else { 886 // We don't require any conversions for the first step. 887 SCS.First = ICK_Identity; 888 } 889 SCS.setToType(0, FromType); 890 891 // The second conversion can be an integral promotion, floating 892 // point promotion, integral conversion, floating point conversion, 893 // floating-integral conversion, pointer conversion, 894 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 895 // For overloading in C, this can also be a "compatible-type" 896 // conversion. 897 bool IncompatibleObjC = false; 898 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 899 // The unqualified versions of the types are the same: there's no 900 // conversion to do. 901 SCS.Second = ICK_Identity; 902 } else if (IsIntegralPromotion(From, FromType, ToType)) { 903 // Integral promotion (C++ 4.5). 904 SCS.Second = ICK_Integral_Promotion; 905 FromType = ToType.getUnqualifiedType(); 906 } else if (IsFloatingPointPromotion(FromType, ToType)) { 907 // Floating point promotion (C++ 4.6). 908 SCS.Second = ICK_Floating_Promotion; 909 FromType = ToType.getUnqualifiedType(); 910 } else if (IsComplexPromotion(FromType, ToType)) { 911 // Complex promotion (Clang extension) 912 SCS.Second = ICK_Complex_Promotion; 913 FromType = ToType.getUnqualifiedType(); 914 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 915 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 916 // Integral conversions (C++ 4.7). 917 SCS.Second = ICK_Integral_Conversion; 918 FromType = ToType.getUnqualifiedType(); 919 } else if (FromType->isComplexType() && ToType->isComplexType()) { 920 // Complex conversions (C99 6.3.1.6) 921 SCS.Second = ICK_Complex_Conversion; 922 FromType = ToType.getUnqualifiedType(); 923 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 924 (ToType->isComplexType() && FromType->isArithmeticType())) { 925 // Complex-real conversions (C99 6.3.1.7) 926 SCS.Second = ICK_Complex_Real; 927 FromType = ToType.getUnqualifiedType(); 928 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 929 // Floating point conversions (C++ 4.8). 930 SCS.Second = ICK_Floating_Conversion; 931 FromType = ToType.getUnqualifiedType(); 932 } else if ((FromType->isFloatingType() && 933 ToType->isIntegralType() && (!ToType->isBooleanType() && 934 !ToType->isEnumeralType())) || 935 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 936 ToType->isFloatingType())) { 937 // Floating-integral conversions (C++ 4.9). 938 SCS.Second = ICK_Floating_Integral; 939 FromType = ToType.getUnqualifiedType(); 940 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 941 FromType, IncompatibleObjC)) { 942 // Pointer conversions (C++ 4.10). 943 SCS.Second = ICK_Pointer_Conversion; 944 SCS.IncompatibleObjC = IncompatibleObjC; 945 } else if (IsMemberPointerConversion(From, FromType, ToType, 946 InOverloadResolution, FromType)) { 947 // Pointer to member conversions (4.11). 948 SCS.Second = ICK_Pointer_Member; 949 } else if (ToType->isBooleanType() && 950 (FromType->isArithmeticType() || 951 FromType->isEnumeralType() || 952 FromType->isAnyPointerType() || 953 FromType->isBlockPointerType() || 954 FromType->isMemberPointerType() || 955 FromType->isNullPtrType())) { 956 // Boolean conversions (C++ 4.12). 957 SCS.Second = ICK_Boolean_Conversion; 958 FromType = Context.BoolTy; 959 } else if (!getLangOptions().CPlusPlus && 960 Context.typesAreCompatible(ToType, FromType)) { 961 // Compatible conversions (Clang extension for C function overloading) 962 SCS.Second = ICK_Compatible_Conversion; 963 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 964 // Treat a conversion that strips "noreturn" as an identity conversion. 965 SCS.Second = ICK_NoReturn_Adjustment; 966 } else { 967 // No second conversion required. 968 SCS.Second = ICK_Identity; 969 } 970 SCS.setToType(1, FromType); 971 972 QualType CanonFrom; 973 QualType CanonTo; 974 // The third conversion can be a qualification conversion (C++ 4p1). 975 if (IsQualificationConversion(FromType, ToType)) { 976 SCS.Third = ICK_Qualification; 977 FromType = ToType; 978 CanonFrom = Context.getCanonicalType(FromType); 979 CanonTo = Context.getCanonicalType(ToType); 980 } else { 981 // No conversion required 982 SCS.Third = ICK_Identity; 983 984 // C++ [over.best.ics]p6: 985 // [...] Any difference in top-level cv-qualification is 986 // subsumed by the initialization itself and does not constitute 987 // a conversion. [...] 988 CanonFrom = Context.getCanonicalType(FromType); 989 CanonTo = Context.getCanonicalType(ToType); 990 if (CanonFrom.getLocalUnqualifiedType() 991 == CanonTo.getLocalUnqualifiedType() && 992 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 993 FromType = ToType; 994 CanonFrom = CanonTo; 995 } 996 } 997 SCS.setToType(2, FromType); 998 999 // If we have not converted the argument type to the parameter type, 1000 // this is a bad conversion sequence. 1001 if (CanonFrom != CanonTo) 1002 return false; 1003 1004 return true; 1005} 1006 1007/// IsIntegralPromotion - Determines whether the conversion from the 1008/// expression From (whose potentially-adjusted type is FromType) to 1009/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1010/// sets PromotedType to the promoted type. 1011bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1012 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1013 // All integers are built-in. 1014 if (!To) { 1015 return false; 1016 } 1017 1018 // An rvalue of type char, signed char, unsigned char, short int, or 1019 // unsigned short int can be converted to an rvalue of type int if 1020 // int can represent all the values of the source type; otherwise, 1021 // the source rvalue can be converted to an rvalue of type unsigned 1022 // int (C++ 4.5p1). 1023 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1024 !FromType->isEnumeralType()) { 1025 if (// We can promote any signed, promotable integer type to an int 1026 (FromType->isSignedIntegerType() || 1027 // We can promote any unsigned integer type whose size is 1028 // less than int to an int. 1029 (!FromType->isSignedIntegerType() && 1030 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1031 return To->getKind() == BuiltinType::Int; 1032 } 1033 1034 return To->getKind() == BuiltinType::UInt; 1035 } 1036 1037 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 1038 // can be converted to an rvalue of the first of the following types 1039 // that can represent all the values of its underlying type: int, 1040 // unsigned int, long, or unsigned long (C++ 4.5p2). 1041 1042 // We pre-calculate the promotion type for enum types. 1043 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 1044 if (ToType->isIntegerType()) 1045 return Context.hasSameUnqualifiedType(ToType, 1046 FromEnumType->getDecl()->getPromotionType()); 1047 1048 if (FromType->isWideCharType() && ToType->isIntegerType()) { 1049 // Determine whether the type we're converting from is signed or 1050 // unsigned. 1051 bool FromIsSigned; 1052 uint64_t FromSize = Context.getTypeSize(FromType); 1053 1054 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1055 FromIsSigned = true; 1056 1057 // The types we'll try to promote to, in the appropriate 1058 // order. Try each of these types. 1059 QualType PromoteTypes[6] = { 1060 Context.IntTy, Context.UnsignedIntTy, 1061 Context.LongTy, Context.UnsignedLongTy , 1062 Context.LongLongTy, Context.UnsignedLongLongTy 1063 }; 1064 for (int Idx = 0; Idx < 6; ++Idx) { 1065 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1066 if (FromSize < ToSize || 1067 (FromSize == ToSize && 1068 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1069 // We found the type that we can promote to. If this is the 1070 // type we wanted, we have a promotion. Otherwise, no 1071 // promotion. 1072 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1073 } 1074 } 1075 } 1076 1077 // An rvalue for an integral bit-field (9.6) can be converted to an 1078 // rvalue of type int if int can represent all the values of the 1079 // bit-field; otherwise, it can be converted to unsigned int if 1080 // unsigned int can represent all the values of the bit-field. If 1081 // the bit-field is larger yet, no integral promotion applies to 1082 // it. If the bit-field has an enumerated type, it is treated as any 1083 // other value of that type for promotion purposes (C++ 4.5p3). 1084 // FIXME: We should delay checking of bit-fields until we actually perform the 1085 // conversion. 1086 using llvm::APSInt; 1087 if (From) 1088 if (FieldDecl *MemberDecl = From->getBitField()) { 1089 APSInt BitWidth; 1090 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 1091 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1092 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1093 ToSize = Context.getTypeSize(ToType); 1094 1095 // Are we promoting to an int from a bitfield that fits in an int? 1096 if (BitWidth < ToSize || 1097 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1098 return To->getKind() == BuiltinType::Int; 1099 } 1100 1101 // Are we promoting to an unsigned int from an unsigned bitfield 1102 // that fits into an unsigned int? 1103 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1104 return To->getKind() == BuiltinType::UInt; 1105 } 1106 1107 return false; 1108 } 1109 } 1110 1111 // An rvalue of type bool can be converted to an rvalue of type int, 1112 // with false becoming zero and true becoming one (C++ 4.5p4). 1113 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1114 return true; 1115 } 1116 1117 return false; 1118} 1119 1120/// IsFloatingPointPromotion - Determines whether the conversion from 1121/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1122/// returns true and sets PromotedType to the promoted type. 1123bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1124 /// An rvalue of type float can be converted to an rvalue of type 1125 /// double. (C++ 4.6p1). 1126 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1127 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1128 if (FromBuiltin->getKind() == BuiltinType::Float && 1129 ToBuiltin->getKind() == BuiltinType::Double) 1130 return true; 1131 1132 // C99 6.3.1.5p1: 1133 // When a float is promoted to double or long double, or a 1134 // double is promoted to long double [...]. 1135 if (!getLangOptions().CPlusPlus && 1136 (FromBuiltin->getKind() == BuiltinType::Float || 1137 FromBuiltin->getKind() == BuiltinType::Double) && 1138 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1139 return true; 1140 } 1141 1142 return false; 1143} 1144 1145/// \brief Determine if a conversion is a complex promotion. 1146/// 1147/// A complex promotion is defined as a complex -> complex conversion 1148/// where the conversion between the underlying real types is a 1149/// floating-point or integral promotion. 1150bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1151 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1152 if (!FromComplex) 1153 return false; 1154 1155 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1156 if (!ToComplex) 1157 return false; 1158 1159 return IsFloatingPointPromotion(FromComplex->getElementType(), 1160 ToComplex->getElementType()) || 1161 IsIntegralPromotion(0, FromComplex->getElementType(), 1162 ToComplex->getElementType()); 1163} 1164 1165/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1166/// the pointer type FromPtr to a pointer to type ToPointee, with the 1167/// same type qualifiers as FromPtr has on its pointee type. ToType, 1168/// if non-empty, will be a pointer to ToType that may or may not have 1169/// the right set of qualifiers on its pointee. 1170static QualType 1171BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 1172 QualType ToPointee, QualType ToType, 1173 ASTContext &Context) { 1174 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 1175 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1176 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1177 1178 // Exact qualifier match -> return the pointer type we're converting to. 1179 if (CanonToPointee.getLocalQualifiers() == Quals) { 1180 // ToType is exactly what we need. Return it. 1181 if (!ToType.isNull()) 1182 return ToType; 1183 1184 // Build a pointer to ToPointee. It has the right qualifiers 1185 // already. 1186 return Context.getPointerType(ToPointee); 1187 } 1188 1189 // Just build a canonical type that has the right qualifiers. 1190 return Context.getPointerType( 1191 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 1192 Quals)); 1193} 1194 1195/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 1196/// the FromType, which is an objective-c pointer, to ToType, which may or may 1197/// not have the right set of qualifiers. 1198static QualType 1199BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 1200 QualType ToType, 1201 ASTContext &Context) { 1202 QualType CanonFromType = Context.getCanonicalType(FromType); 1203 QualType CanonToType = Context.getCanonicalType(ToType); 1204 Qualifiers Quals = CanonFromType.getQualifiers(); 1205 1206 // Exact qualifier match -> return the pointer type we're converting to. 1207 if (CanonToType.getLocalQualifiers() == Quals) 1208 return ToType; 1209 1210 // Just build a canonical type that has the right qualifiers. 1211 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 1212} 1213 1214static bool isNullPointerConstantForConversion(Expr *Expr, 1215 bool InOverloadResolution, 1216 ASTContext &Context) { 1217 // Handle value-dependent integral null pointer constants correctly. 1218 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1219 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1220 Expr->getType()->isIntegralType()) 1221 return !InOverloadResolution; 1222 1223 return Expr->isNullPointerConstant(Context, 1224 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1225 : Expr::NPC_ValueDependentIsNull); 1226} 1227 1228/// IsPointerConversion - Determines whether the conversion of the 1229/// expression From, which has the (possibly adjusted) type FromType, 1230/// can be converted to the type ToType via a pointer conversion (C++ 1231/// 4.10). If so, returns true and places the converted type (that 1232/// might differ from ToType in its cv-qualifiers at some level) into 1233/// ConvertedType. 1234/// 1235/// This routine also supports conversions to and from block pointers 1236/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1237/// pointers to interfaces. FIXME: Once we've determined the 1238/// appropriate overloading rules for Objective-C, we may want to 1239/// split the Objective-C checks into a different routine; however, 1240/// GCC seems to consider all of these conversions to be pointer 1241/// conversions, so for now they live here. IncompatibleObjC will be 1242/// set if the conversion is an allowed Objective-C conversion that 1243/// should result in a warning. 1244bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1245 bool InOverloadResolution, 1246 QualType& ConvertedType, 1247 bool &IncompatibleObjC) { 1248 IncompatibleObjC = false; 1249 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1250 return true; 1251 1252 // Conversion from a null pointer constant to any Objective-C pointer type. 1253 if (ToType->isObjCObjectPointerType() && 1254 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1255 ConvertedType = ToType; 1256 return true; 1257 } 1258 1259 // Blocks: Block pointers can be converted to void*. 1260 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1261 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1262 ConvertedType = ToType; 1263 return true; 1264 } 1265 // Blocks: A null pointer constant can be converted to a block 1266 // pointer type. 1267 if (ToType->isBlockPointerType() && 1268 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1269 ConvertedType = ToType; 1270 return true; 1271 } 1272 1273 // If the left-hand-side is nullptr_t, the right side can be a null 1274 // pointer constant. 1275 if (ToType->isNullPtrType() && 1276 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1277 ConvertedType = ToType; 1278 return true; 1279 } 1280 1281 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1282 if (!ToTypePtr) 1283 return false; 1284 1285 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1286 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1287 ConvertedType = ToType; 1288 return true; 1289 } 1290 1291 // Beyond this point, both types need to be pointers 1292 // , including objective-c pointers. 1293 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1294 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1295 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1296 ToType, Context); 1297 return true; 1298 1299 } 1300 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1301 if (!FromTypePtr) 1302 return false; 1303 1304 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1305 1306 // An rvalue of type "pointer to cv T," where T is an object type, 1307 // can be converted to an rvalue of type "pointer to cv void" (C++ 1308 // 4.10p2). 1309 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1310 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1311 ToPointeeType, 1312 ToType, Context); 1313 return true; 1314 } 1315 1316 // When we're overloading in C, we allow a special kind of pointer 1317 // conversion for compatible-but-not-identical pointee types. 1318 if (!getLangOptions().CPlusPlus && 1319 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1320 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1321 ToPointeeType, 1322 ToType, Context); 1323 return true; 1324 } 1325 1326 // C++ [conv.ptr]p3: 1327 // 1328 // An rvalue of type "pointer to cv D," where D is a class type, 1329 // can be converted to an rvalue of type "pointer to cv B," where 1330 // B is a base class (clause 10) of D. If B is an inaccessible 1331 // (clause 11) or ambiguous (10.2) base class of D, a program that 1332 // necessitates this conversion is ill-formed. The result of the 1333 // conversion is a pointer to the base class sub-object of the 1334 // derived class object. The null pointer value is converted to 1335 // the null pointer value of the destination type. 1336 // 1337 // Note that we do not check for ambiguity or inaccessibility 1338 // here. That is handled by CheckPointerConversion. 1339 if (getLangOptions().CPlusPlus && 1340 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1341 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1342 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1343 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1344 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1345 ToPointeeType, 1346 ToType, Context); 1347 return true; 1348 } 1349 1350 return false; 1351} 1352 1353/// isObjCPointerConversion - Determines whether this is an 1354/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1355/// with the same arguments and return values. 1356bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1357 QualType& ConvertedType, 1358 bool &IncompatibleObjC) { 1359 if (!getLangOptions().ObjC1) 1360 return false; 1361 1362 // First, we handle all conversions on ObjC object pointer types. 1363 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1364 const ObjCObjectPointerType *FromObjCPtr = 1365 FromType->getAs<ObjCObjectPointerType>(); 1366 1367 if (ToObjCPtr && FromObjCPtr) { 1368 // Objective C++: We're able to convert between "id" or "Class" and a 1369 // pointer to any interface (in both directions). 1370 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1371 ConvertedType = ToType; 1372 return true; 1373 } 1374 // Conversions with Objective-C's id<...>. 1375 if ((FromObjCPtr->isObjCQualifiedIdType() || 1376 ToObjCPtr->isObjCQualifiedIdType()) && 1377 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1378 /*compare=*/false)) { 1379 ConvertedType = ToType; 1380 return true; 1381 } 1382 // Objective C++: We're able to convert from a pointer to an 1383 // interface to a pointer to a different interface. 1384 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1385 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1386 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1387 if (getLangOptions().CPlusPlus && LHS && RHS && 1388 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1389 FromObjCPtr->getPointeeType())) 1390 return false; 1391 ConvertedType = ToType; 1392 return true; 1393 } 1394 1395 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1396 // Okay: this is some kind of implicit downcast of Objective-C 1397 // interfaces, which is permitted. However, we're going to 1398 // complain about it. 1399 IncompatibleObjC = true; 1400 ConvertedType = FromType; 1401 return true; 1402 } 1403 } 1404 // Beyond this point, both types need to be C pointers or block pointers. 1405 QualType ToPointeeType; 1406 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1407 ToPointeeType = ToCPtr->getPointeeType(); 1408 else if (const BlockPointerType *ToBlockPtr = 1409 ToType->getAs<BlockPointerType>()) { 1410 // Objective C++: We're able to convert from a pointer to any object 1411 // to a block pointer type. 1412 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1413 ConvertedType = ToType; 1414 return true; 1415 } 1416 ToPointeeType = ToBlockPtr->getPointeeType(); 1417 } 1418 else if (FromType->getAs<BlockPointerType>() && 1419 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1420 // Objective C++: We're able to convert from a block pointer type to a 1421 // pointer to any object. 1422 ConvertedType = ToType; 1423 return true; 1424 } 1425 else 1426 return false; 1427 1428 QualType FromPointeeType; 1429 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1430 FromPointeeType = FromCPtr->getPointeeType(); 1431 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1432 FromPointeeType = FromBlockPtr->getPointeeType(); 1433 else 1434 return false; 1435 1436 // If we have pointers to pointers, recursively check whether this 1437 // is an Objective-C conversion. 1438 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1439 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1440 IncompatibleObjC)) { 1441 // We always complain about this conversion. 1442 IncompatibleObjC = true; 1443 ConvertedType = ToType; 1444 return true; 1445 } 1446 // Allow conversion of pointee being objective-c pointer to another one; 1447 // as in I* to id. 1448 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1449 ToPointeeType->getAs<ObjCObjectPointerType>() && 1450 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1451 IncompatibleObjC)) { 1452 ConvertedType = ToType; 1453 return true; 1454 } 1455 1456 // If we have pointers to functions or blocks, check whether the only 1457 // differences in the argument and result types are in Objective-C 1458 // pointer conversions. If so, we permit the conversion (but 1459 // complain about it). 1460 const FunctionProtoType *FromFunctionType 1461 = FromPointeeType->getAs<FunctionProtoType>(); 1462 const FunctionProtoType *ToFunctionType 1463 = ToPointeeType->getAs<FunctionProtoType>(); 1464 if (FromFunctionType && ToFunctionType) { 1465 // If the function types are exactly the same, this isn't an 1466 // Objective-C pointer conversion. 1467 if (Context.getCanonicalType(FromPointeeType) 1468 == Context.getCanonicalType(ToPointeeType)) 1469 return false; 1470 1471 // Perform the quick checks that will tell us whether these 1472 // function types are obviously different. 1473 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1474 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1475 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1476 return false; 1477 1478 bool HasObjCConversion = false; 1479 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1480 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1481 // Okay, the types match exactly. Nothing to do. 1482 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1483 ToFunctionType->getResultType(), 1484 ConvertedType, IncompatibleObjC)) { 1485 // Okay, we have an Objective-C pointer conversion. 1486 HasObjCConversion = true; 1487 } else { 1488 // Function types are too different. Abort. 1489 return false; 1490 } 1491 1492 // Check argument types. 1493 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1494 ArgIdx != NumArgs; ++ArgIdx) { 1495 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1496 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1497 if (Context.getCanonicalType(FromArgType) 1498 == Context.getCanonicalType(ToArgType)) { 1499 // Okay, the types match exactly. Nothing to do. 1500 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1501 ConvertedType, IncompatibleObjC)) { 1502 // Okay, we have an Objective-C pointer conversion. 1503 HasObjCConversion = true; 1504 } else { 1505 // Argument types are too different. Abort. 1506 return false; 1507 } 1508 } 1509 1510 if (HasObjCConversion) { 1511 // We had an Objective-C conversion. Allow this pointer 1512 // conversion, but complain about it. 1513 ConvertedType = ToType; 1514 IncompatibleObjC = true; 1515 return true; 1516 } 1517 } 1518 1519 return false; 1520} 1521 1522/// FunctionArgTypesAreEqual - This routine checks two function proto types 1523/// for equlity of their argument types. Caller has already checked that 1524/// they have same number of arguments. This routine assumes that Objective-C 1525/// pointer types which only differ in their protocol qualifiers are equal. 1526bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1527 FunctionProtoType* NewType){ 1528 if (!getLangOptions().ObjC1) 1529 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1530 NewType->arg_type_begin()); 1531 1532 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1533 N = NewType->arg_type_begin(), 1534 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1535 QualType ToType = (*O); 1536 QualType FromType = (*N); 1537 if (ToType != FromType) { 1538 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1539 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1540 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1541 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1542 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1543 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1544 continue; 1545 } 1546 else if (const ObjCObjectPointerType *PTTo = 1547 ToType->getAs<ObjCObjectPointerType>()) { 1548 if (const ObjCObjectPointerType *PTFr = 1549 FromType->getAs<ObjCObjectPointerType>()) 1550 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1551 continue; 1552 } 1553 return false; 1554 } 1555 } 1556 return true; 1557} 1558 1559/// CheckPointerConversion - Check the pointer conversion from the 1560/// expression From to the type ToType. This routine checks for 1561/// ambiguous or inaccessible derived-to-base pointer 1562/// conversions for which IsPointerConversion has already returned 1563/// true. It returns true and produces a diagnostic if there was an 1564/// error, or returns false otherwise. 1565bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1566 CastExpr::CastKind &Kind, 1567 CXXBaseSpecifierArray& BasePath, 1568 bool IgnoreBaseAccess) { 1569 QualType FromType = From->getType(); 1570 1571 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1572 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1573 QualType FromPointeeType = FromPtrType->getPointeeType(), 1574 ToPointeeType = ToPtrType->getPointeeType(); 1575 1576 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1577 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1578 // We must have a derived-to-base conversion. Check an 1579 // ambiguous or inaccessible conversion. 1580 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1581 From->getExprLoc(), 1582 From->getSourceRange(), &BasePath, 1583 IgnoreBaseAccess)) 1584 return true; 1585 1586 // The conversion was successful. 1587 Kind = CastExpr::CK_DerivedToBase; 1588 } 1589 } 1590 if (const ObjCObjectPointerType *FromPtrType = 1591 FromType->getAs<ObjCObjectPointerType>()) 1592 if (const ObjCObjectPointerType *ToPtrType = 1593 ToType->getAs<ObjCObjectPointerType>()) { 1594 // Objective-C++ conversions are always okay. 1595 // FIXME: We should have a different class of conversions for the 1596 // Objective-C++ implicit conversions. 1597 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1598 return false; 1599 1600 } 1601 return false; 1602} 1603 1604/// IsMemberPointerConversion - Determines whether the conversion of the 1605/// expression From, which has the (possibly adjusted) type FromType, can be 1606/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1607/// If so, returns true and places the converted type (that might differ from 1608/// ToType in its cv-qualifiers at some level) into ConvertedType. 1609bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1610 QualType ToType, 1611 bool InOverloadResolution, 1612 QualType &ConvertedType) { 1613 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1614 if (!ToTypePtr) 1615 return false; 1616 1617 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1618 if (From->isNullPointerConstant(Context, 1619 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1620 : Expr::NPC_ValueDependentIsNull)) { 1621 ConvertedType = ToType; 1622 return true; 1623 } 1624 1625 // Otherwise, both types have to be member pointers. 1626 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1627 if (!FromTypePtr) 1628 return false; 1629 1630 // A pointer to member of B can be converted to a pointer to member of D, 1631 // where D is derived from B (C++ 4.11p2). 1632 QualType FromClass(FromTypePtr->getClass(), 0); 1633 QualType ToClass(ToTypePtr->getClass(), 0); 1634 // FIXME: What happens when these are dependent? Is this function even called? 1635 1636 if (IsDerivedFrom(ToClass, FromClass)) { 1637 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1638 ToClass.getTypePtr()); 1639 return true; 1640 } 1641 1642 return false; 1643} 1644 1645/// CheckMemberPointerConversion - Check the member pointer conversion from the 1646/// expression From to the type ToType. This routine checks for ambiguous or 1647/// virtual or inaccessible base-to-derived member pointer conversions 1648/// for which IsMemberPointerConversion has already returned true. It returns 1649/// true and produces a diagnostic if there was an error, or returns false 1650/// otherwise. 1651bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1652 CastExpr::CastKind &Kind, 1653 CXXBaseSpecifierArray &BasePath, 1654 bool IgnoreBaseAccess) { 1655 QualType FromType = From->getType(); 1656 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1657 if (!FromPtrType) { 1658 // This must be a null pointer to member pointer conversion 1659 assert(From->isNullPointerConstant(Context, 1660 Expr::NPC_ValueDependentIsNull) && 1661 "Expr must be null pointer constant!"); 1662 Kind = CastExpr::CK_NullToMemberPointer; 1663 return false; 1664 } 1665 1666 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1667 assert(ToPtrType && "No member pointer cast has a target type " 1668 "that is not a member pointer."); 1669 1670 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1671 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1672 1673 // FIXME: What about dependent types? 1674 assert(FromClass->isRecordType() && "Pointer into non-class."); 1675 assert(ToClass->isRecordType() && "Pointer into non-class."); 1676 1677 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1678 /*DetectVirtual=*/true); 1679 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1680 assert(DerivationOkay && 1681 "Should not have been called if derivation isn't OK."); 1682 (void)DerivationOkay; 1683 1684 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1685 getUnqualifiedType())) { 1686 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1687 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1688 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1689 return true; 1690 } 1691 1692 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1693 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1694 << FromClass << ToClass << QualType(VBase, 0) 1695 << From->getSourceRange(); 1696 return true; 1697 } 1698 1699 if (!IgnoreBaseAccess) 1700 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1701 Paths.front(), 1702 diag::err_downcast_from_inaccessible_base); 1703 1704 // Must be a base to derived member conversion. 1705 BuildBasePathArray(Paths, BasePath); 1706 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1707 return false; 1708} 1709 1710/// IsQualificationConversion - Determines whether the conversion from 1711/// an rvalue of type FromType to ToType is a qualification conversion 1712/// (C++ 4.4). 1713bool 1714Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1715 FromType = Context.getCanonicalType(FromType); 1716 ToType = Context.getCanonicalType(ToType); 1717 1718 // If FromType and ToType are the same type, this is not a 1719 // qualification conversion. 1720 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1721 return false; 1722 1723 // (C++ 4.4p4): 1724 // A conversion can add cv-qualifiers at levels other than the first 1725 // in multi-level pointers, subject to the following rules: [...] 1726 bool PreviousToQualsIncludeConst = true; 1727 bool UnwrappedAnyPointer = false; 1728 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1729 // Within each iteration of the loop, we check the qualifiers to 1730 // determine if this still looks like a qualification 1731 // conversion. Then, if all is well, we unwrap one more level of 1732 // pointers or pointers-to-members and do it all again 1733 // until there are no more pointers or pointers-to-members left to 1734 // unwrap. 1735 UnwrappedAnyPointer = true; 1736 1737 // -- for every j > 0, if const is in cv 1,j then const is in cv 1738 // 2,j, and similarly for volatile. 1739 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1740 return false; 1741 1742 // -- if the cv 1,j and cv 2,j are different, then const is in 1743 // every cv for 0 < k < j. 1744 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1745 && !PreviousToQualsIncludeConst) 1746 return false; 1747 1748 // Keep track of whether all prior cv-qualifiers in the "to" type 1749 // include const. 1750 PreviousToQualsIncludeConst 1751 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1752 } 1753 1754 // We are left with FromType and ToType being the pointee types 1755 // after unwrapping the original FromType and ToType the same number 1756 // of types. If we unwrapped any pointers, and if FromType and 1757 // ToType have the same unqualified type (since we checked 1758 // qualifiers above), then this is a qualification conversion. 1759 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1760} 1761 1762/// Determines whether there is a user-defined conversion sequence 1763/// (C++ [over.ics.user]) that converts expression From to the type 1764/// ToType. If such a conversion exists, User will contain the 1765/// user-defined conversion sequence that performs such a conversion 1766/// and this routine will return true. Otherwise, this routine returns 1767/// false and User is unspecified. 1768/// 1769/// \param AllowExplicit true if the conversion should consider C++0x 1770/// "explicit" conversion functions as well as non-explicit conversion 1771/// functions (C++0x [class.conv.fct]p2). 1772OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1773 UserDefinedConversionSequence& User, 1774 OverloadCandidateSet& CandidateSet, 1775 bool AllowExplicit) { 1776 // Whether we will only visit constructors. 1777 bool ConstructorsOnly = false; 1778 1779 // If the type we are conversion to is a class type, enumerate its 1780 // constructors. 1781 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1782 // C++ [over.match.ctor]p1: 1783 // When objects of class type are direct-initialized (8.5), or 1784 // copy-initialized from an expression of the same or a 1785 // derived class type (8.5), overload resolution selects the 1786 // constructor. [...] For copy-initialization, the candidate 1787 // functions are all the converting constructors (12.3.1) of 1788 // that class. The argument list is the expression-list within 1789 // the parentheses of the initializer. 1790 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1791 (From->getType()->getAs<RecordType>() && 1792 IsDerivedFrom(From->getType(), ToType))) 1793 ConstructorsOnly = true; 1794 1795 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1796 // We're not going to find any constructors. 1797 } else if (CXXRecordDecl *ToRecordDecl 1798 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1799 DeclarationName ConstructorName 1800 = Context.DeclarationNames.getCXXConstructorName( 1801 Context.getCanonicalType(ToType).getUnqualifiedType()); 1802 DeclContext::lookup_iterator Con, ConEnd; 1803 for (llvm::tie(Con, ConEnd) 1804 = ToRecordDecl->lookup(ConstructorName); 1805 Con != ConEnd; ++Con) { 1806 NamedDecl *D = *Con; 1807 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 1808 1809 // Find the constructor (which may be a template). 1810 CXXConstructorDecl *Constructor = 0; 1811 FunctionTemplateDecl *ConstructorTmpl 1812 = dyn_cast<FunctionTemplateDecl>(D); 1813 if (ConstructorTmpl) 1814 Constructor 1815 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1816 else 1817 Constructor = cast<CXXConstructorDecl>(D); 1818 1819 if (!Constructor->isInvalidDecl() && 1820 Constructor->isConvertingConstructor(AllowExplicit)) { 1821 if (ConstructorTmpl) 1822 AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 1823 /*ExplicitArgs*/ 0, 1824 &From, 1, CandidateSet, 1825 /*SuppressUserConversions=*/!ConstructorsOnly); 1826 else 1827 // Allow one user-defined conversion when user specifies a 1828 // From->ToType conversion via an static cast (c-style, etc). 1829 AddOverloadCandidate(Constructor, FoundDecl, 1830 &From, 1, CandidateSet, 1831 /*SuppressUserConversions=*/!ConstructorsOnly); 1832 } 1833 } 1834 } 1835 } 1836 1837 // Enumerate conversion functions, if we're allowed to. 1838 if (ConstructorsOnly) { 1839 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1840 PDiag(0) << From->getSourceRange())) { 1841 // No conversion functions from incomplete types. 1842 } else if (const RecordType *FromRecordType 1843 = From->getType()->getAs<RecordType>()) { 1844 if (CXXRecordDecl *FromRecordDecl 1845 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1846 // Add all of the conversion functions as candidates. 1847 const UnresolvedSetImpl *Conversions 1848 = FromRecordDecl->getVisibleConversionFunctions(); 1849 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1850 E = Conversions->end(); I != E; ++I) { 1851 DeclAccessPair FoundDecl = I.getPair(); 1852 NamedDecl *D = FoundDecl.getDecl(); 1853 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1854 if (isa<UsingShadowDecl>(D)) 1855 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1856 1857 CXXConversionDecl *Conv; 1858 FunctionTemplateDecl *ConvTemplate; 1859 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 1860 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1861 else 1862 Conv = cast<CXXConversionDecl>(D); 1863 1864 if (AllowExplicit || !Conv->isExplicit()) { 1865 if (ConvTemplate) 1866 AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 1867 ActingContext, From, ToType, 1868 CandidateSet); 1869 else 1870 AddConversionCandidate(Conv, FoundDecl, ActingContext, 1871 From, ToType, CandidateSet); 1872 } 1873 } 1874 } 1875 } 1876 1877 OverloadCandidateSet::iterator Best; 1878 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1879 case OR_Success: 1880 // Record the standard conversion we used and the conversion function. 1881 if (CXXConstructorDecl *Constructor 1882 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1883 // C++ [over.ics.user]p1: 1884 // If the user-defined conversion is specified by a 1885 // constructor (12.3.1), the initial standard conversion 1886 // sequence converts the source type to the type required by 1887 // the argument of the constructor. 1888 // 1889 QualType ThisType = Constructor->getThisType(Context); 1890 if (Best->Conversions[0].isEllipsis()) 1891 User.EllipsisConversion = true; 1892 else { 1893 User.Before = Best->Conversions[0].Standard; 1894 User.EllipsisConversion = false; 1895 } 1896 User.ConversionFunction = Constructor; 1897 User.After.setAsIdentityConversion(); 1898 User.After.setFromType( 1899 ThisType->getAs<PointerType>()->getPointeeType()); 1900 User.After.setAllToTypes(ToType); 1901 return OR_Success; 1902 } else if (CXXConversionDecl *Conversion 1903 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1904 // C++ [over.ics.user]p1: 1905 // 1906 // [...] If the user-defined conversion is specified by a 1907 // conversion function (12.3.2), the initial standard 1908 // conversion sequence converts the source type to the 1909 // implicit object parameter of the conversion function. 1910 User.Before = Best->Conversions[0].Standard; 1911 User.ConversionFunction = Conversion; 1912 User.EllipsisConversion = false; 1913 1914 // C++ [over.ics.user]p2: 1915 // The second standard conversion sequence converts the 1916 // result of the user-defined conversion to the target type 1917 // for the sequence. Since an implicit conversion sequence 1918 // is an initialization, the special rules for 1919 // initialization by user-defined conversion apply when 1920 // selecting the best user-defined conversion for a 1921 // user-defined conversion sequence (see 13.3.3 and 1922 // 13.3.3.1). 1923 User.After = Best->FinalConversion; 1924 return OR_Success; 1925 } else { 1926 assert(false && "Not a constructor or conversion function?"); 1927 return OR_No_Viable_Function; 1928 } 1929 1930 case OR_No_Viable_Function: 1931 return OR_No_Viable_Function; 1932 case OR_Deleted: 1933 // No conversion here! We're done. 1934 return OR_Deleted; 1935 1936 case OR_Ambiguous: 1937 return OR_Ambiguous; 1938 } 1939 1940 return OR_No_Viable_Function; 1941} 1942 1943bool 1944Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1945 ImplicitConversionSequence ICS; 1946 OverloadCandidateSet CandidateSet(From->getExprLoc()); 1947 OverloadingResult OvResult = 1948 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1949 CandidateSet, false); 1950 if (OvResult == OR_Ambiguous) 1951 Diag(From->getSourceRange().getBegin(), 1952 diag::err_typecheck_ambiguous_condition) 1953 << From->getType() << ToType << From->getSourceRange(); 1954 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1955 Diag(From->getSourceRange().getBegin(), 1956 diag::err_typecheck_nonviable_condition) 1957 << From->getType() << ToType << From->getSourceRange(); 1958 else 1959 return false; 1960 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 1961 return true; 1962} 1963 1964/// CompareImplicitConversionSequences - Compare two implicit 1965/// conversion sequences to determine whether one is better than the 1966/// other or if they are indistinguishable (C++ 13.3.3.2). 1967ImplicitConversionSequence::CompareKind 1968Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1969 const ImplicitConversionSequence& ICS2) 1970{ 1971 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1972 // conversion sequences (as defined in 13.3.3.1) 1973 // -- a standard conversion sequence (13.3.3.1.1) is a better 1974 // conversion sequence than a user-defined conversion sequence or 1975 // an ellipsis conversion sequence, and 1976 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1977 // conversion sequence than an ellipsis conversion sequence 1978 // (13.3.3.1.3). 1979 // 1980 // C++0x [over.best.ics]p10: 1981 // For the purpose of ranking implicit conversion sequences as 1982 // described in 13.3.3.2, the ambiguous conversion sequence is 1983 // treated as a user-defined sequence that is indistinguishable 1984 // from any other user-defined conversion sequence. 1985 if (ICS1.getKindRank() < ICS2.getKindRank()) 1986 return ImplicitConversionSequence::Better; 1987 else if (ICS2.getKindRank() < ICS1.getKindRank()) 1988 return ImplicitConversionSequence::Worse; 1989 1990 // The following checks require both conversion sequences to be of 1991 // the same kind. 1992 if (ICS1.getKind() != ICS2.getKind()) 1993 return ImplicitConversionSequence::Indistinguishable; 1994 1995 // Two implicit conversion sequences of the same form are 1996 // indistinguishable conversion sequences unless one of the 1997 // following rules apply: (C++ 13.3.3.2p3): 1998 if (ICS1.isStandard()) 1999 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 2000 else if (ICS1.isUserDefined()) { 2001 // User-defined conversion sequence U1 is a better conversion 2002 // sequence than another user-defined conversion sequence U2 if 2003 // they contain the same user-defined conversion function or 2004 // constructor and if the second standard conversion sequence of 2005 // U1 is better than the second standard conversion sequence of 2006 // U2 (C++ 13.3.3.2p3). 2007 if (ICS1.UserDefined.ConversionFunction == 2008 ICS2.UserDefined.ConversionFunction) 2009 return CompareStandardConversionSequences(ICS1.UserDefined.After, 2010 ICS2.UserDefined.After); 2011 } 2012 2013 return ImplicitConversionSequence::Indistinguishable; 2014} 2015 2016// Per 13.3.3.2p3, compare the given standard conversion sequences to 2017// determine if one is a proper subset of the other. 2018static ImplicitConversionSequence::CompareKind 2019compareStandardConversionSubsets(ASTContext &Context, 2020 const StandardConversionSequence& SCS1, 2021 const StandardConversionSequence& SCS2) { 2022 ImplicitConversionSequence::CompareKind Result 2023 = ImplicitConversionSequence::Indistinguishable; 2024 2025 if (SCS1.Second != SCS2.Second) { 2026 if (SCS1.Second == ICK_Identity) 2027 Result = ImplicitConversionSequence::Better; 2028 else if (SCS2.Second == ICK_Identity) 2029 Result = ImplicitConversionSequence::Worse; 2030 else 2031 return ImplicitConversionSequence::Indistinguishable; 2032 } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1))) 2033 return ImplicitConversionSequence::Indistinguishable; 2034 2035 if (SCS1.Third == SCS2.Third) { 2036 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2037 : ImplicitConversionSequence::Indistinguishable; 2038 } 2039 2040 if (SCS1.Third == ICK_Identity) 2041 return Result == ImplicitConversionSequence::Worse 2042 ? ImplicitConversionSequence::Indistinguishable 2043 : ImplicitConversionSequence::Better; 2044 2045 if (SCS2.Third == ICK_Identity) 2046 return Result == ImplicitConversionSequence::Better 2047 ? ImplicitConversionSequence::Indistinguishable 2048 : ImplicitConversionSequence::Worse; 2049 2050 return ImplicitConversionSequence::Indistinguishable; 2051} 2052 2053/// CompareStandardConversionSequences - Compare two standard 2054/// conversion sequences to determine whether one is better than the 2055/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2056ImplicitConversionSequence::CompareKind 2057Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 2058 const StandardConversionSequence& SCS2) 2059{ 2060 // Standard conversion sequence S1 is a better conversion sequence 2061 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2062 2063 // -- S1 is a proper subsequence of S2 (comparing the conversion 2064 // sequences in the canonical form defined by 13.3.3.1.1, 2065 // excluding any Lvalue Transformation; the identity conversion 2066 // sequence is considered to be a subsequence of any 2067 // non-identity conversion sequence) or, if not that, 2068 if (ImplicitConversionSequence::CompareKind CK 2069 = compareStandardConversionSubsets(Context, SCS1, SCS2)) 2070 return CK; 2071 2072 // -- the rank of S1 is better than the rank of S2 (by the rules 2073 // defined below), or, if not that, 2074 ImplicitConversionRank Rank1 = SCS1.getRank(); 2075 ImplicitConversionRank Rank2 = SCS2.getRank(); 2076 if (Rank1 < Rank2) 2077 return ImplicitConversionSequence::Better; 2078 else if (Rank2 < Rank1) 2079 return ImplicitConversionSequence::Worse; 2080 2081 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2082 // are indistinguishable unless one of the following rules 2083 // applies: 2084 2085 // A conversion that is not a conversion of a pointer, or 2086 // pointer to member, to bool is better than another conversion 2087 // that is such a conversion. 2088 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2089 return SCS2.isPointerConversionToBool() 2090 ? ImplicitConversionSequence::Better 2091 : ImplicitConversionSequence::Worse; 2092 2093 // C++ [over.ics.rank]p4b2: 2094 // 2095 // If class B is derived directly or indirectly from class A, 2096 // conversion of B* to A* is better than conversion of B* to 2097 // void*, and conversion of A* to void* is better than conversion 2098 // of B* to void*. 2099 bool SCS1ConvertsToVoid 2100 = SCS1.isPointerConversionToVoidPointer(Context); 2101 bool SCS2ConvertsToVoid 2102 = SCS2.isPointerConversionToVoidPointer(Context); 2103 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2104 // Exactly one of the conversion sequences is a conversion to 2105 // a void pointer; it's the worse conversion. 2106 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2107 : ImplicitConversionSequence::Worse; 2108 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2109 // Neither conversion sequence converts to a void pointer; compare 2110 // their derived-to-base conversions. 2111 if (ImplicitConversionSequence::CompareKind DerivedCK 2112 = CompareDerivedToBaseConversions(SCS1, SCS2)) 2113 return DerivedCK; 2114 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2115 // Both conversion sequences are conversions to void 2116 // pointers. Compare the source types to determine if there's an 2117 // inheritance relationship in their sources. 2118 QualType FromType1 = SCS1.getFromType(); 2119 QualType FromType2 = SCS2.getFromType(); 2120 2121 // Adjust the types we're converting from via the array-to-pointer 2122 // conversion, if we need to. 2123 if (SCS1.First == ICK_Array_To_Pointer) 2124 FromType1 = Context.getArrayDecayedType(FromType1); 2125 if (SCS2.First == ICK_Array_To_Pointer) 2126 FromType2 = Context.getArrayDecayedType(FromType2); 2127 2128 QualType FromPointee1 2129 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2130 QualType FromPointee2 2131 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2132 2133 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2134 return ImplicitConversionSequence::Better; 2135 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2136 return ImplicitConversionSequence::Worse; 2137 2138 // Objective-C++: If one interface is more specific than the 2139 // other, it is the better one. 2140 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2141 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2142 if (FromIface1 && FromIface1) { 2143 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2144 return ImplicitConversionSequence::Better; 2145 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2146 return ImplicitConversionSequence::Worse; 2147 } 2148 } 2149 2150 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2151 // bullet 3). 2152 if (ImplicitConversionSequence::CompareKind QualCK 2153 = CompareQualificationConversions(SCS1, SCS2)) 2154 return QualCK; 2155 2156 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2157 // C++0x [over.ics.rank]p3b4: 2158 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2159 // implicit object parameter of a non-static member function declared 2160 // without a ref-qualifier, and S1 binds an rvalue reference to an 2161 // rvalue and S2 binds an lvalue reference. 2162 // FIXME: We don't know if we're dealing with the implicit object parameter, 2163 // or if the member function in this case has a ref qualifier. 2164 // (Of course, we don't have ref qualifiers yet.) 2165 if (SCS1.RRefBinding != SCS2.RRefBinding) 2166 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2167 : ImplicitConversionSequence::Worse; 2168 2169 // C++ [over.ics.rank]p3b4: 2170 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2171 // which the references refer are the same type except for 2172 // top-level cv-qualifiers, and the type to which the reference 2173 // initialized by S2 refers is more cv-qualified than the type 2174 // to which the reference initialized by S1 refers. 2175 QualType T1 = SCS1.getToType(2); 2176 QualType T2 = SCS2.getToType(2); 2177 T1 = Context.getCanonicalType(T1); 2178 T2 = Context.getCanonicalType(T2); 2179 Qualifiers T1Quals, T2Quals; 2180 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2181 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2182 if (UnqualT1 == UnqualT2) { 2183 // If the type is an array type, promote the element qualifiers to the type 2184 // for comparison. 2185 if (isa<ArrayType>(T1) && T1Quals) 2186 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2187 if (isa<ArrayType>(T2) && T2Quals) 2188 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2189 if (T2.isMoreQualifiedThan(T1)) 2190 return ImplicitConversionSequence::Better; 2191 else if (T1.isMoreQualifiedThan(T2)) 2192 return ImplicitConversionSequence::Worse; 2193 } 2194 } 2195 2196 return ImplicitConversionSequence::Indistinguishable; 2197} 2198 2199/// CompareQualificationConversions - Compares two standard conversion 2200/// sequences to determine whether they can be ranked based on their 2201/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2202ImplicitConversionSequence::CompareKind 2203Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 2204 const StandardConversionSequence& SCS2) { 2205 // C++ 13.3.3.2p3: 2206 // -- S1 and S2 differ only in their qualification conversion and 2207 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2208 // cv-qualification signature of type T1 is a proper subset of 2209 // the cv-qualification signature of type T2, and S1 is not the 2210 // deprecated string literal array-to-pointer conversion (4.2). 2211 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2212 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2213 return ImplicitConversionSequence::Indistinguishable; 2214 2215 // FIXME: the example in the standard doesn't use a qualification 2216 // conversion (!) 2217 QualType T1 = SCS1.getToType(2); 2218 QualType T2 = SCS2.getToType(2); 2219 T1 = Context.getCanonicalType(T1); 2220 T2 = Context.getCanonicalType(T2); 2221 Qualifiers T1Quals, T2Quals; 2222 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2223 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2224 2225 // If the types are the same, we won't learn anything by unwrapped 2226 // them. 2227 if (UnqualT1 == UnqualT2) 2228 return ImplicitConversionSequence::Indistinguishable; 2229 2230 // If the type is an array type, promote the element qualifiers to the type 2231 // for comparison. 2232 if (isa<ArrayType>(T1) && T1Quals) 2233 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2234 if (isa<ArrayType>(T2) && T2Quals) 2235 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2236 2237 ImplicitConversionSequence::CompareKind Result 2238 = ImplicitConversionSequence::Indistinguishable; 2239 while (UnwrapSimilarPointerTypes(T1, T2)) { 2240 // Within each iteration of the loop, we check the qualifiers to 2241 // determine if this still looks like a qualification 2242 // conversion. Then, if all is well, we unwrap one more level of 2243 // pointers or pointers-to-members and do it all again 2244 // until there are no more pointers or pointers-to-members left 2245 // to unwrap. This essentially mimics what 2246 // IsQualificationConversion does, but here we're checking for a 2247 // strict subset of qualifiers. 2248 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2249 // The qualifiers are the same, so this doesn't tell us anything 2250 // about how the sequences rank. 2251 ; 2252 else if (T2.isMoreQualifiedThan(T1)) { 2253 // T1 has fewer qualifiers, so it could be the better sequence. 2254 if (Result == ImplicitConversionSequence::Worse) 2255 // Neither has qualifiers that are a subset of the other's 2256 // qualifiers. 2257 return ImplicitConversionSequence::Indistinguishable; 2258 2259 Result = ImplicitConversionSequence::Better; 2260 } else if (T1.isMoreQualifiedThan(T2)) { 2261 // T2 has fewer qualifiers, so it could be the better sequence. 2262 if (Result == ImplicitConversionSequence::Better) 2263 // Neither has qualifiers that are a subset of the other's 2264 // qualifiers. 2265 return ImplicitConversionSequence::Indistinguishable; 2266 2267 Result = ImplicitConversionSequence::Worse; 2268 } else { 2269 // Qualifiers are disjoint. 2270 return ImplicitConversionSequence::Indistinguishable; 2271 } 2272 2273 // If the types after this point are equivalent, we're done. 2274 if (Context.hasSameUnqualifiedType(T1, T2)) 2275 break; 2276 } 2277 2278 // Check that the winning standard conversion sequence isn't using 2279 // the deprecated string literal array to pointer conversion. 2280 switch (Result) { 2281 case ImplicitConversionSequence::Better: 2282 if (SCS1.DeprecatedStringLiteralToCharPtr) 2283 Result = ImplicitConversionSequence::Indistinguishable; 2284 break; 2285 2286 case ImplicitConversionSequence::Indistinguishable: 2287 break; 2288 2289 case ImplicitConversionSequence::Worse: 2290 if (SCS2.DeprecatedStringLiteralToCharPtr) 2291 Result = ImplicitConversionSequence::Indistinguishable; 2292 break; 2293 } 2294 2295 return Result; 2296} 2297 2298/// CompareDerivedToBaseConversions - Compares two standard conversion 2299/// sequences to determine whether they can be ranked based on their 2300/// various kinds of derived-to-base conversions (C++ 2301/// [over.ics.rank]p4b3). As part of these checks, we also look at 2302/// conversions between Objective-C interface types. 2303ImplicitConversionSequence::CompareKind 2304Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 2305 const StandardConversionSequence& SCS2) { 2306 QualType FromType1 = SCS1.getFromType(); 2307 QualType ToType1 = SCS1.getToType(1); 2308 QualType FromType2 = SCS2.getFromType(); 2309 QualType ToType2 = SCS2.getToType(1); 2310 2311 // Adjust the types we're converting from via the array-to-pointer 2312 // conversion, if we need to. 2313 if (SCS1.First == ICK_Array_To_Pointer) 2314 FromType1 = Context.getArrayDecayedType(FromType1); 2315 if (SCS2.First == ICK_Array_To_Pointer) 2316 FromType2 = Context.getArrayDecayedType(FromType2); 2317 2318 // Canonicalize all of the types. 2319 FromType1 = Context.getCanonicalType(FromType1); 2320 ToType1 = Context.getCanonicalType(ToType1); 2321 FromType2 = Context.getCanonicalType(FromType2); 2322 ToType2 = Context.getCanonicalType(ToType2); 2323 2324 // C++ [over.ics.rank]p4b3: 2325 // 2326 // If class B is derived directly or indirectly from class A and 2327 // class C is derived directly or indirectly from B, 2328 // 2329 // For Objective-C, we let A, B, and C also be Objective-C 2330 // interfaces. 2331 2332 // Compare based on pointer conversions. 2333 if (SCS1.Second == ICK_Pointer_Conversion && 2334 SCS2.Second == ICK_Pointer_Conversion && 2335 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2336 FromType1->isPointerType() && FromType2->isPointerType() && 2337 ToType1->isPointerType() && ToType2->isPointerType()) { 2338 QualType FromPointee1 2339 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2340 QualType ToPointee1 2341 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2342 QualType FromPointee2 2343 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2344 QualType ToPointee2 2345 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2346 2347 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2348 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2349 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2350 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2351 2352 // -- conversion of C* to B* is better than conversion of C* to A*, 2353 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2354 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2355 return ImplicitConversionSequence::Better; 2356 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2357 return ImplicitConversionSequence::Worse; 2358 2359 if (ToIface1 && ToIface2) { 2360 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2361 return ImplicitConversionSequence::Better; 2362 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2363 return ImplicitConversionSequence::Worse; 2364 } 2365 } 2366 2367 // -- conversion of B* to A* is better than conversion of C* to A*, 2368 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2369 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2370 return ImplicitConversionSequence::Better; 2371 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2372 return ImplicitConversionSequence::Worse; 2373 2374 if (FromIface1 && FromIface2) { 2375 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2376 return ImplicitConversionSequence::Better; 2377 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2378 return ImplicitConversionSequence::Worse; 2379 } 2380 } 2381 } 2382 2383 // Ranking of member-pointer types. 2384 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2385 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2386 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2387 const MemberPointerType * FromMemPointer1 = 2388 FromType1->getAs<MemberPointerType>(); 2389 const MemberPointerType * ToMemPointer1 = 2390 ToType1->getAs<MemberPointerType>(); 2391 const MemberPointerType * FromMemPointer2 = 2392 FromType2->getAs<MemberPointerType>(); 2393 const MemberPointerType * ToMemPointer2 = 2394 ToType2->getAs<MemberPointerType>(); 2395 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2396 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2397 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2398 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2399 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2400 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2401 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2402 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2403 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2404 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2405 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2406 return ImplicitConversionSequence::Worse; 2407 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2408 return ImplicitConversionSequence::Better; 2409 } 2410 // conversion of B::* to C::* is better than conversion of A::* to C::* 2411 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2412 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2413 return ImplicitConversionSequence::Better; 2414 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2415 return ImplicitConversionSequence::Worse; 2416 } 2417 } 2418 2419 if (SCS1.Second == ICK_Derived_To_Base) { 2420 // -- conversion of C to B is better than conversion of C to A, 2421 // -- binding of an expression of type C to a reference of type 2422 // B& is better than binding an expression of type C to a 2423 // reference of type A&, 2424 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2425 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2426 if (IsDerivedFrom(ToType1, ToType2)) 2427 return ImplicitConversionSequence::Better; 2428 else if (IsDerivedFrom(ToType2, ToType1)) 2429 return ImplicitConversionSequence::Worse; 2430 } 2431 2432 // -- conversion of B to A is better than conversion of C to A. 2433 // -- binding of an expression of type B to a reference of type 2434 // A& is better than binding an expression of type C to a 2435 // reference of type A&, 2436 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2437 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2438 if (IsDerivedFrom(FromType2, FromType1)) 2439 return ImplicitConversionSequence::Better; 2440 else if (IsDerivedFrom(FromType1, FromType2)) 2441 return ImplicitConversionSequence::Worse; 2442 } 2443 } 2444 2445 return ImplicitConversionSequence::Indistinguishable; 2446} 2447 2448/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2449/// determine whether they are reference-related, 2450/// reference-compatible, reference-compatible with added 2451/// qualification, or incompatible, for use in C++ initialization by 2452/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2453/// type, and the first type (T1) is the pointee type of the reference 2454/// type being initialized. 2455Sema::ReferenceCompareResult 2456Sema::CompareReferenceRelationship(SourceLocation Loc, 2457 QualType OrigT1, QualType OrigT2, 2458 bool& DerivedToBase) { 2459 assert(!OrigT1->isReferenceType() && 2460 "T1 must be the pointee type of the reference type"); 2461 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2462 2463 QualType T1 = Context.getCanonicalType(OrigT1); 2464 QualType T2 = Context.getCanonicalType(OrigT2); 2465 Qualifiers T1Quals, T2Quals; 2466 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2467 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2468 2469 // C++ [dcl.init.ref]p4: 2470 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2471 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2472 // T1 is a base class of T2. 2473 if (UnqualT1 == UnqualT2) 2474 DerivedToBase = false; 2475 else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2476 IsDerivedFrom(UnqualT2, UnqualT1)) 2477 DerivedToBase = true; 2478 else 2479 return Ref_Incompatible; 2480 2481 // At this point, we know that T1 and T2 are reference-related (at 2482 // least). 2483 2484 // If the type is an array type, promote the element qualifiers to the type 2485 // for comparison. 2486 if (isa<ArrayType>(T1) && T1Quals) 2487 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2488 if (isa<ArrayType>(T2) && T2Quals) 2489 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2490 2491 // C++ [dcl.init.ref]p4: 2492 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2493 // reference-related to T2 and cv1 is the same cv-qualification 2494 // as, or greater cv-qualification than, cv2. For purposes of 2495 // overload resolution, cases for which cv1 is greater 2496 // cv-qualification than cv2 are identified as 2497 // reference-compatible with added qualification (see 13.3.3.2). 2498 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2499 return Ref_Compatible; 2500 else if (T1.isMoreQualifiedThan(T2)) 2501 return Ref_Compatible_With_Added_Qualification; 2502 else 2503 return Ref_Related; 2504} 2505 2506/// \brief Compute an implicit conversion sequence for reference 2507/// initialization. 2508static ImplicitConversionSequence 2509TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2510 SourceLocation DeclLoc, 2511 bool SuppressUserConversions, 2512 bool AllowExplicit) { 2513 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2514 2515 // Most paths end in a failed conversion. 2516 ImplicitConversionSequence ICS; 2517 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2518 2519 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2520 QualType T2 = Init->getType(); 2521 2522 // If the initializer is the address of an overloaded function, try 2523 // to resolve the overloaded function. If all goes well, T2 is the 2524 // type of the resulting function. 2525 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2526 DeclAccessPair Found; 2527 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2528 false, Found)) 2529 T2 = Fn->getType(); 2530 } 2531 2532 // Compute some basic properties of the types and the initializer. 2533 bool isRValRef = DeclType->isRValueReferenceType(); 2534 bool DerivedToBase = false; 2535 Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context); 2536 Sema::ReferenceCompareResult RefRelationship 2537 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); 2538 2539 2540 // C++ [over.ics.ref]p3: 2541 // Except for an implicit object parameter, for which see 13.3.1, 2542 // a standard conversion sequence cannot be formed if it requires 2543 // binding an lvalue reference to non-const to an rvalue or 2544 // binding an rvalue reference to an lvalue. 2545 // 2546 // FIXME: DPG doesn't trust this code. It seems far too early to 2547 // abort because of a binding of an rvalue reference to an lvalue. 2548 if (isRValRef && InitLvalue == Expr::LV_Valid) 2549 return ICS; 2550 2551 // C++0x [dcl.init.ref]p16: 2552 // A reference to type "cv1 T1" is initialized by an expression 2553 // of type "cv2 T2" as follows: 2554 2555 // -- If the initializer expression 2556 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2557 // reference-compatible with "cv2 T2," or 2558 // 2559 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2560 if (InitLvalue == Expr::LV_Valid && 2561 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2562 // C++ [over.ics.ref]p1: 2563 // When a parameter of reference type binds directly (8.5.3) 2564 // to an argument expression, the implicit conversion sequence 2565 // is the identity conversion, unless the argument expression 2566 // has a type that is a derived class of the parameter type, 2567 // in which case the implicit conversion sequence is a 2568 // derived-to-base Conversion (13.3.3.1). 2569 ICS.setStandard(); 2570 ICS.Standard.First = ICK_Identity; 2571 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2572 ICS.Standard.Third = ICK_Identity; 2573 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2574 ICS.Standard.setToType(0, T2); 2575 ICS.Standard.setToType(1, T1); 2576 ICS.Standard.setToType(2, T1); 2577 ICS.Standard.ReferenceBinding = true; 2578 ICS.Standard.DirectBinding = true; 2579 ICS.Standard.RRefBinding = false; 2580 ICS.Standard.CopyConstructor = 0; 2581 2582 // Nothing more to do: the inaccessibility/ambiguity check for 2583 // derived-to-base conversions is suppressed when we're 2584 // computing the implicit conversion sequence (C++ 2585 // [over.best.ics]p2). 2586 return ICS; 2587 } 2588 2589 // -- has a class type (i.e., T2 is a class type), where T1 is 2590 // not reference-related to T2, and can be implicitly 2591 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2592 // is reference-compatible with "cv3 T3" 92) (this 2593 // conversion is selected by enumerating the applicable 2594 // conversion functions (13.3.1.6) and choosing the best 2595 // one through overload resolution (13.3)), 2596 if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && 2597 !S.RequireCompleteType(DeclLoc, T2, 0) && 2598 RefRelationship == Sema::Ref_Incompatible) { 2599 CXXRecordDecl *T2RecordDecl 2600 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2601 2602 OverloadCandidateSet CandidateSet(DeclLoc); 2603 const UnresolvedSetImpl *Conversions 2604 = T2RecordDecl->getVisibleConversionFunctions(); 2605 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2606 E = Conversions->end(); I != E; ++I) { 2607 NamedDecl *D = *I; 2608 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2609 if (isa<UsingShadowDecl>(D)) 2610 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2611 2612 FunctionTemplateDecl *ConvTemplate 2613 = dyn_cast<FunctionTemplateDecl>(D); 2614 CXXConversionDecl *Conv; 2615 if (ConvTemplate) 2616 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2617 else 2618 Conv = cast<CXXConversionDecl>(D); 2619 2620 // If the conversion function doesn't return a reference type, 2621 // it can't be considered for this conversion. 2622 if (Conv->getConversionType()->isLValueReferenceType() && 2623 (AllowExplicit || !Conv->isExplicit())) { 2624 if (ConvTemplate) 2625 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2626 Init, DeclType, CandidateSet); 2627 else 2628 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2629 DeclType, CandidateSet); 2630 } 2631 } 2632 2633 OverloadCandidateSet::iterator Best; 2634 switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { 2635 case OR_Success: 2636 // C++ [over.ics.ref]p1: 2637 // 2638 // [...] If the parameter binds directly to the result of 2639 // applying a conversion function to the argument 2640 // expression, the implicit conversion sequence is a 2641 // user-defined conversion sequence (13.3.3.1.2), with the 2642 // second standard conversion sequence either an identity 2643 // conversion or, if the conversion function returns an 2644 // entity of a type that is a derived class of the parameter 2645 // type, a derived-to-base Conversion. 2646 if (!Best->FinalConversion.DirectBinding) 2647 break; 2648 2649 ICS.setUserDefined(); 2650 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2651 ICS.UserDefined.After = Best->FinalConversion; 2652 ICS.UserDefined.ConversionFunction = Best->Function; 2653 ICS.UserDefined.EllipsisConversion = false; 2654 assert(ICS.UserDefined.After.ReferenceBinding && 2655 ICS.UserDefined.After.DirectBinding && 2656 "Expected a direct reference binding!"); 2657 return ICS; 2658 2659 case OR_Ambiguous: 2660 ICS.setAmbiguous(); 2661 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2662 Cand != CandidateSet.end(); ++Cand) 2663 if (Cand->Viable) 2664 ICS.Ambiguous.addConversion(Cand->Function); 2665 return ICS; 2666 2667 case OR_No_Viable_Function: 2668 case OR_Deleted: 2669 // There was no suitable conversion, or we found a deleted 2670 // conversion; continue with other checks. 2671 break; 2672 } 2673 } 2674 2675 // -- Otherwise, the reference shall be to a non-volatile const 2676 // type (i.e., cv1 shall be const), or the reference shall be an 2677 // rvalue reference and the initializer expression shall be an rvalue. 2678 // 2679 // We actually handle one oddity of C++ [over.ics.ref] at this 2680 // point, which is that, due to p2 (which short-circuits reference 2681 // binding by only attempting a simple conversion for non-direct 2682 // bindings) and p3's strange wording, we allow a const volatile 2683 // reference to bind to an rvalue. Hence the check for the presence 2684 // of "const" rather than checking for "const" being the only 2685 // qualifier. 2686 if (!isRValRef && !T1.isConstQualified()) 2687 return ICS; 2688 2689 // -- if T2 is a class type and 2690 // -- the initializer expression is an rvalue and "cv1 T1" 2691 // is reference-compatible with "cv2 T2," or 2692 // 2693 // -- T1 is not reference-related to T2 and the initializer 2694 // expression can be implicitly converted to an rvalue 2695 // of type "cv3 T3" (this conversion is selected by 2696 // enumerating the applicable conversion functions 2697 // (13.3.1.6) and choosing the best one through overload 2698 // resolution (13.3)), 2699 // 2700 // then the reference is bound to the initializer 2701 // expression rvalue in the first case and to the object 2702 // that is the result of the conversion in the second case 2703 // (or, in either case, to the appropriate base class 2704 // subobject of the object). 2705 // 2706 // We're only checking the first case here, which is a direct 2707 // binding in C++0x but not in C++03. 2708 if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && 2709 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2710 ICS.setStandard(); 2711 ICS.Standard.First = ICK_Identity; 2712 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2713 ICS.Standard.Third = ICK_Identity; 2714 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2715 ICS.Standard.setToType(0, T2); 2716 ICS.Standard.setToType(1, T1); 2717 ICS.Standard.setToType(2, T1); 2718 ICS.Standard.ReferenceBinding = true; 2719 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 2720 ICS.Standard.RRefBinding = isRValRef; 2721 ICS.Standard.CopyConstructor = 0; 2722 return ICS; 2723 } 2724 2725 // -- Otherwise, a temporary of type "cv1 T1" is created and 2726 // initialized from the initializer expression using the 2727 // rules for a non-reference copy initialization (8.5). The 2728 // reference is then bound to the temporary. If T1 is 2729 // reference-related to T2, cv1 must be the same 2730 // cv-qualification as, or greater cv-qualification than, 2731 // cv2; otherwise, the program is ill-formed. 2732 if (RefRelationship == Sema::Ref_Related) { 2733 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 2734 // we would be reference-compatible or reference-compatible with 2735 // added qualification. But that wasn't the case, so the reference 2736 // initialization fails. 2737 return ICS; 2738 } 2739 2740 // If at least one of the types is a class type, the types are not 2741 // related, and we aren't allowed any user conversions, the 2742 // reference binding fails. This case is important for breaking 2743 // recursion, since TryImplicitConversion below will attempt to 2744 // create a temporary through the use of a copy constructor. 2745 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 2746 (T1->isRecordType() || T2->isRecordType())) 2747 return ICS; 2748 2749 // C++ [over.ics.ref]p2: 2750 // When a parameter of reference type is not bound directly to 2751 // an argument expression, the conversion sequence is the one 2752 // required to convert the argument expression to the 2753 // underlying type of the reference according to 2754 // 13.3.3.1. Conceptually, this conversion sequence corresponds 2755 // to copy-initializing a temporary of the underlying type with 2756 // the argument expression. Any difference in top-level 2757 // cv-qualification is subsumed by the initialization itself 2758 // and does not constitute a conversion. 2759 ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, 2760 /*AllowExplicit=*/false, 2761 /*InOverloadResolution=*/false); 2762 2763 // Of course, that's still a reference binding. 2764 if (ICS.isStandard()) { 2765 ICS.Standard.ReferenceBinding = true; 2766 ICS.Standard.RRefBinding = isRValRef; 2767 } else if (ICS.isUserDefined()) { 2768 ICS.UserDefined.After.ReferenceBinding = true; 2769 ICS.UserDefined.After.RRefBinding = isRValRef; 2770 } 2771 return ICS; 2772} 2773 2774/// TryCopyInitialization - Try to copy-initialize a value of type 2775/// ToType from the expression From. Return the implicit conversion 2776/// sequence required to pass this argument, which may be a bad 2777/// conversion sequence (meaning that the argument cannot be passed to 2778/// a parameter of this type). If @p SuppressUserConversions, then we 2779/// do not permit any user-defined conversion sequences. 2780static ImplicitConversionSequence 2781TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 2782 bool SuppressUserConversions, 2783 bool InOverloadResolution) { 2784 if (ToType->isReferenceType()) 2785 return TryReferenceInit(S, From, ToType, 2786 /*FIXME:*/From->getLocStart(), 2787 SuppressUserConversions, 2788 /*AllowExplicit=*/false); 2789 2790 return S.TryImplicitConversion(From, ToType, 2791 SuppressUserConversions, 2792 /*AllowExplicit=*/false, 2793 InOverloadResolution); 2794} 2795 2796/// TryObjectArgumentInitialization - Try to initialize the object 2797/// parameter of the given member function (@c Method) from the 2798/// expression @p From. 2799ImplicitConversionSequence 2800Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2801 CXXMethodDecl *Method, 2802 CXXRecordDecl *ActingContext) { 2803 QualType ClassType = Context.getTypeDeclType(ActingContext); 2804 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2805 // const volatile object. 2806 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2807 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2808 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2809 2810 // Set up the conversion sequence as a "bad" conversion, to allow us 2811 // to exit early. 2812 ImplicitConversionSequence ICS; 2813 2814 // We need to have an object of class type. 2815 QualType FromType = OrigFromType; 2816 if (const PointerType *PT = FromType->getAs<PointerType>()) 2817 FromType = PT->getPointeeType(); 2818 2819 assert(FromType->isRecordType()); 2820 2821 // The implicit object parameter is has the type "reference to cv X", 2822 // where X is the class of which the function is a member 2823 // (C++ [over.match.funcs]p4). However, when finding an implicit 2824 // conversion sequence for the argument, we are not allowed to 2825 // create temporaries or perform user-defined conversions 2826 // (C++ [over.match.funcs]p5). We perform a simplified version of 2827 // reference binding here, that allows class rvalues to bind to 2828 // non-constant references. 2829 2830 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2831 // with the implicit object parameter (C++ [over.match.funcs]p5). 2832 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2833 if (ImplicitParamType.getCVRQualifiers() 2834 != FromTypeCanon.getLocalCVRQualifiers() && 2835 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 2836 ICS.setBad(BadConversionSequence::bad_qualifiers, 2837 OrigFromType, ImplicitParamType); 2838 return ICS; 2839 } 2840 2841 // Check that we have either the same type or a derived type. It 2842 // affects the conversion rank. 2843 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2844 ImplicitConversionKind SecondKind; 2845 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 2846 SecondKind = ICK_Identity; 2847 } else if (IsDerivedFrom(FromType, ClassType)) 2848 SecondKind = ICK_Derived_To_Base; 2849 else { 2850 ICS.setBad(BadConversionSequence::unrelated_class, 2851 FromType, ImplicitParamType); 2852 return ICS; 2853 } 2854 2855 // Success. Mark this as a reference binding. 2856 ICS.setStandard(); 2857 ICS.Standard.setAsIdentityConversion(); 2858 ICS.Standard.Second = SecondKind; 2859 ICS.Standard.setFromType(FromType); 2860 ICS.Standard.setAllToTypes(ImplicitParamType); 2861 ICS.Standard.ReferenceBinding = true; 2862 ICS.Standard.DirectBinding = true; 2863 ICS.Standard.RRefBinding = false; 2864 return ICS; 2865} 2866 2867/// PerformObjectArgumentInitialization - Perform initialization of 2868/// the implicit object parameter for the given Method with the given 2869/// expression. 2870bool 2871Sema::PerformObjectArgumentInitialization(Expr *&From, 2872 NestedNameSpecifier *Qualifier, 2873 NamedDecl *FoundDecl, 2874 CXXMethodDecl *Method) { 2875 QualType FromRecordType, DestType; 2876 QualType ImplicitParamRecordType = 2877 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2878 2879 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2880 FromRecordType = PT->getPointeeType(); 2881 DestType = Method->getThisType(Context); 2882 } else { 2883 FromRecordType = From->getType(); 2884 DestType = ImplicitParamRecordType; 2885 } 2886 2887 // Note that we always use the true parent context when performing 2888 // the actual argument initialization. 2889 ImplicitConversionSequence ICS 2890 = TryObjectArgumentInitialization(From->getType(), Method, 2891 Method->getParent()); 2892 if (ICS.isBad()) 2893 return Diag(From->getSourceRange().getBegin(), 2894 diag::err_implicit_object_parameter_init) 2895 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2896 2897 if (ICS.Standard.Second == ICK_Derived_To_Base) 2898 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 2899 2900 if (!Context.hasSameType(From->getType(), DestType)) 2901 ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, 2902 /*isLvalue=*/!From->getType()->isPointerType()); 2903 return false; 2904} 2905 2906/// TryContextuallyConvertToBool - Attempt to contextually convert the 2907/// expression From to bool (C++0x [conv]p3). 2908ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2909 // FIXME: This is pretty broken. 2910 return TryImplicitConversion(From, Context.BoolTy, 2911 // FIXME: Are these flags correct? 2912 /*SuppressUserConversions=*/false, 2913 /*AllowExplicit=*/true, 2914 /*InOverloadResolution=*/false); 2915} 2916 2917/// PerformContextuallyConvertToBool - Perform a contextual conversion 2918/// of the expression From to bool (C++0x [conv]p3). 2919bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2920 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2921 if (!ICS.isBad()) 2922 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 2923 2924 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2925 return Diag(From->getSourceRange().getBegin(), 2926 diag::err_typecheck_bool_condition) 2927 << From->getType() << From->getSourceRange(); 2928 return true; 2929} 2930 2931/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 2932/// expression From to 'id'. 2933ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) { 2934 QualType Ty = Context.getObjCIdType(); 2935 return TryImplicitConversion(From, Ty, 2936 // FIXME: Are these flags correct? 2937 /*SuppressUserConversions=*/false, 2938 /*AllowExplicit=*/true, 2939 /*InOverloadResolution=*/false); 2940} 2941 2942/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 2943/// of the expression From to 'id'. 2944bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 2945 QualType Ty = Context.getObjCIdType(); 2946 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From); 2947 if (!ICS.isBad()) 2948 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 2949 return true; 2950} 2951 2952/// AddOverloadCandidate - Adds the given function to the set of 2953/// candidate functions, using the given function call arguments. If 2954/// @p SuppressUserConversions, then don't allow user-defined 2955/// conversions via constructors or conversion operators. 2956/// 2957/// \para PartialOverloading true if we are performing "partial" overloading 2958/// based on an incomplete set of function arguments. This feature is used by 2959/// code completion. 2960void 2961Sema::AddOverloadCandidate(FunctionDecl *Function, 2962 DeclAccessPair FoundDecl, 2963 Expr **Args, unsigned NumArgs, 2964 OverloadCandidateSet& CandidateSet, 2965 bool SuppressUserConversions, 2966 bool PartialOverloading) { 2967 const FunctionProtoType* Proto 2968 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2969 assert(Proto && "Functions without a prototype cannot be overloaded"); 2970 assert(!Function->getDescribedFunctionTemplate() && 2971 "Use AddTemplateOverloadCandidate for function templates"); 2972 2973 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2974 if (!isa<CXXConstructorDecl>(Method)) { 2975 // If we get here, it's because we're calling a member function 2976 // that is named without a member access expression (e.g., 2977 // "this->f") that was either written explicitly or created 2978 // implicitly. This can happen with a qualified call to a member 2979 // function, e.g., X::f(). We use an empty type for the implied 2980 // object argument (C++ [over.call.func]p3), and the acting context 2981 // is irrelevant. 2982 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 2983 QualType(), Args, NumArgs, CandidateSet, 2984 SuppressUserConversions); 2985 return; 2986 } 2987 // We treat a constructor like a non-member function, since its object 2988 // argument doesn't participate in overload resolution. 2989 } 2990 2991 if (!CandidateSet.isNewCandidate(Function)) 2992 return; 2993 2994 // Overload resolution is always an unevaluated context. 2995 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2996 2997 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2998 // C++ [class.copy]p3: 2999 // A member function template is never instantiated to perform the copy 3000 // of a class object to an object of its class type. 3001 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3002 if (NumArgs == 1 && 3003 Constructor->isCopyConstructorLikeSpecialization() && 3004 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3005 IsDerivedFrom(Args[0]->getType(), ClassType))) 3006 return; 3007 } 3008 3009 // Add this candidate 3010 CandidateSet.push_back(OverloadCandidate()); 3011 OverloadCandidate& Candidate = CandidateSet.back(); 3012 Candidate.FoundDecl = FoundDecl; 3013 Candidate.Function = Function; 3014 Candidate.Viable = true; 3015 Candidate.IsSurrogate = false; 3016 Candidate.IgnoreObjectArgument = false; 3017 3018 unsigned NumArgsInProto = Proto->getNumArgs(); 3019 3020 // (C++ 13.3.2p2): A candidate function having fewer than m 3021 // parameters is viable only if it has an ellipsis in its parameter 3022 // list (8.3.5). 3023 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3024 !Proto->isVariadic()) { 3025 Candidate.Viable = false; 3026 Candidate.FailureKind = ovl_fail_too_many_arguments; 3027 return; 3028 } 3029 3030 // (C++ 13.3.2p2): A candidate function having more than m parameters 3031 // is viable only if the (m+1)st parameter has a default argument 3032 // (8.3.6). For the purposes of overload resolution, the 3033 // parameter list is truncated on the right, so that there are 3034 // exactly m parameters. 3035 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3036 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3037 // Not enough arguments. 3038 Candidate.Viable = false; 3039 Candidate.FailureKind = ovl_fail_too_few_arguments; 3040 return; 3041 } 3042 3043 // Determine the implicit conversion sequences for each of the 3044 // arguments. 3045 Candidate.Conversions.resize(NumArgs); 3046 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3047 if (ArgIdx < NumArgsInProto) { 3048 // (C++ 13.3.2p3): for F to be a viable function, there shall 3049 // exist for each argument an implicit conversion sequence 3050 // (13.3.3.1) that converts that argument to the corresponding 3051 // parameter of F. 3052 QualType ParamType = Proto->getArgType(ArgIdx); 3053 Candidate.Conversions[ArgIdx] 3054 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3055 SuppressUserConversions, 3056 /*InOverloadResolution=*/true); 3057 if (Candidate.Conversions[ArgIdx].isBad()) { 3058 Candidate.Viable = false; 3059 Candidate.FailureKind = ovl_fail_bad_conversion; 3060 break; 3061 } 3062 } else { 3063 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3064 // argument for which there is no corresponding parameter is 3065 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3066 Candidate.Conversions[ArgIdx].setEllipsis(); 3067 } 3068 } 3069} 3070 3071/// \brief Add all of the function declarations in the given function set to 3072/// the overload canddiate set. 3073void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3074 Expr **Args, unsigned NumArgs, 3075 OverloadCandidateSet& CandidateSet, 3076 bool SuppressUserConversions) { 3077 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3078 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3079 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3080 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3081 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3082 cast<CXXMethodDecl>(FD)->getParent(), 3083 Args[0]->getType(), Args + 1, NumArgs - 1, 3084 CandidateSet, SuppressUserConversions); 3085 else 3086 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3087 SuppressUserConversions); 3088 } else { 3089 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3090 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3091 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3092 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3093 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3094 /*FIXME: explicit args */ 0, 3095 Args[0]->getType(), Args + 1, NumArgs - 1, 3096 CandidateSet, 3097 SuppressUserConversions); 3098 else 3099 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3100 /*FIXME: explicit args */ 0, 3101 Args, NumArgs, CandidateSet, 3102 SuppressUserConversions); 3103 } 3104 } 3105} 3106 3107/// AddMethodCandidate - Adds a named decl (which is some kind of 3108/// method) as a method candidate to the given overload set. 3109void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3110 QualType ObjectType, 3111 Expr **Args, unsigned NumArgs, 3112 OverloadCandidateSet& CandidateSet, 3113 bool SuppressUserConversions) { 3114 NamedDecl *Decl = FoundDecl.getDecl(); 3115 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3116 3117 if (isa<UsingShadowDecl>(Decl)) 3118 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3119 3120 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3121 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3122 "Expected a member function template"); 3123 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3124 /*ExplicitArgs*/ 0, 3125 ObjectType, Args, NumArgs, 3126 CandidateSet, 3127 SuppressUserConversions); 3128 } else { 3129 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3130 ObjectType, Args, NumArgs, 3131 CandidateSet, SuppressUserConversions); 3132 } 3133} 3134 3135/// AddMethodCandidate - Adds the given C++ member function to the set 3136/// of candidate functions, using the given function call arguments 3137/// and the object argument (@c Object). For example, in a call 3138/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3139/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3140/// allow user-defined conversions via constructors or conversion 3141/// operators. 3142void 3143Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3144 CXXRecordDecl *ActingContext, QualType ObjectType, 3145 Expr **Args, unsigned NumArgs, 3146 OverloadCandidateSet& CandidateSet, 3147 bool SuppressUserConversions) { 3148 const FunctionProtoType* Proto 3149 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3150 assert(Proto && "Methods without a prototype cannot be overloaded"); 3151 assert(!isa<CXXConstructorDecl>(Method) && 3152 "Use AddOverloadCandidate for constructors"); 3153 3154 if (!CandidateSet.isNewCandidate(Method)) 3155 return; 3156 3157 // Overload resolution is always an unevaluated context. 3158 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3159 3160 // Add this candidate 3161 CandidateSet.push_back(OverloadCandidate()); 3162 OverloadCandidate& Candidate = CandidateSet.back(); 3163 Candidate.FoundDecl = FoundDecl; 3164 Candidate.Function = Method; 3165 Candidate.IsSurrogate = false; 3166 Candidate.IgnoreObjectArgument = false; 3167 3168 unsigned NumArgsInProto = Proto->getNumArgs(); 3169 3170 // (C++ 13.3.2p2): A candidate function having fewer than m 3171 // parameters is viable only if it has an ellipsis in its parameter 3172 // list (8.3.5). 3173 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3174 Candidate.Viable = false; 3175 Candidate.FailureKind = ovl_fail_too_many_arguments; 3176 return; 3177 } 3178 3179 // (C++ 13.3.2p2): A candidate function having more than m parameters 3180 // is viable only if the (m+1)st parameter has a default argument 3181 // (8.3.6). For the purposes of overload resolution, the 3182 // parameter list is truncated on the right, so that there are 3183 // exactly m parameters. 3184 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3185 if (NumArgs < MinRequiredArgs) { 3186 // Not enough arguments. 3187 Candidate.Viable = false; 3188 Candidate.FailureKind = ovl_fail_too_few_arguments; 3189 return; 3190 } 3191 3192 Candidate.Viable = true; 3193 Candidate.Conversions.resize(NumArgs + 1); 3194 3195 if (Method->isStatic() || ObjectType.isNull()) 3196 // The implicit object argument is ignored. 3197 Candidate.IgnoreObjectArgument = true; 3198 else { 3199 // Determine the implicit conversion sequence for the object 3200 // parameter. 3201 Candidate.Conversions[0] 3202 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 3203 if (Candidate.Conversions[0].isBad()) { 3204 Candidate.Viable = false; 3205 Candidate.FailureKind = ovl_fail_bad_conversion; 3206 return; 3207 } 3208 } 3209 3210 // Determine the implicit conversion sequences for each of the 3211 // arguments. 3212 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3213 if (ArgIdx < NumArgsInProto) { 3214 // (C++ 13.3.2p3): for F to be a viable function, there shall 3215 // exist for each argument an implicit conversion sequence 3216 // (13.3.3.1) that converts that argument to the corresponding 3217 // parameter of F. 3218 QualType ParamType = Proto->getArgType(ArgIdx); 3219 Candidate.Conversions[ArgIdx + 1] 3220 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3221 SuppressUserConversions, 3222 /*InOverloadResolution=*/true); 3223 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3224 Candidate.Viable = false; 3225 Candidate.FailureKind = ovl_fail_bad_conversion; 3226 break; 3227 } 3228 } else { 3229 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3230 // argument for which there is no corresponding parameter is 3231 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3232 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3233 } 3234 } 3235} 3236 3237/// \brief Add a C++ member function template as a candidate to the candidate 3238/// set, using template argument deduction to produce an appropriate member 3239/// function template specialization. 3240void 3241Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3242 DeclAccessPair FoundDecl, 3243 CXXRecordDecl *ActingContext, 3244 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3245 QualType ObjectType, 3246 Expr **Args, unsigned NumArgs, 3247 OverloadCandidateSet& CandidateSet, 3248 bool SuppressUserConversions) { 3249 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3250 return; 3251 3252 // C++ [over.match.funcs]p7: 3253 // In each case where a candidate is a function template, candidate 3254 // function template specializations are generated using template argument 3255 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3256 // candidate functions in the usual way.113) A given name can refer to one 3257 // or more function templates and also to a set of overloaded non-template 3258 // functions. In such a case, the candidate functions generated from each 3259 // function template are combined with the set of non-template candidate 3260 // functions. 3261 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3262 FunctionDecl *Specialization = 0; 3263 if (TemplateDeductionResult Result 3264 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3265 Args, NumArgs, Specialization, Info)) { 3266 CandidateSet.push_back(OverloadCandidate()); 3267 OverloadCandidate &Candidate = CandidateSet.back(); 3268 Candidate.FoundDecl = FoundDecl; 3269 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3270 Candidate.Viable = false; 3271 Candidate.FailureKind = ovl_fail_bad_deduction; 3272 Candidate.IsSurrogate = false; 3273 Candidate.IgnoreObjectArgument = false; 3274 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3275 Info); 3276 return; 3277 } 3278 3279 // Add the function template specialization produced by template argument 3280 // deduction as a candidate. 3281 assert(Specialization && "Missing member function template specialization?"); 3282 assert(isa<CXXMethodDecl>(Specialization) && 3283 "Specialization is not a member function?"); 3284 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3285 ActingContext, ObjectType, Args, NumArgs, 3286 CandidateSet, SuppressUserConversions); 3287} 3288 3289/// \brief Add a C++ function template specialization as a candidate 3290/// in the candidate set, using template argument deduction to produce 3291/// an appropriate function template specialization. 3292void 3293Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3294 DeclAccessPair FoundDecl, 3295 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3296 Expr **Args, unsigned NumArgs, 3297 OverloadCandidateSet& CandidateSet, 3298 bool SuppressUserConversions) { 3299 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3300 return; 3301 3302 // C++ [over.match.funcs]p7: 3303 // In each case where a candidate is a function template, candidate 3304 // function template specializations are generated using template argument 3305 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3306 // candidate functions in the usual way.113) A given name can refer to one 3307 // or more function templates and also to a set of overloaded non-template 3308 // functions. In such a case, the candidate functions generated from each 3309 // function template are combined with the set of non-template candidate 3310 // functions. 3311 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3312 FunctionDecl *Specialization = 0; 3313 if (TemplateDeductionResult Result 3314 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3315 Args, NumArgs, Specialization, Info)) { 3316 CandidateSet.push_back(OverloadCandidate()); 3317 OverloadCandidate &Candidate = CandidateSet.back(); 3318 Candidate.FoundDecl = FoundDecl; 3319 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3320 Candidate.Viable = false; 3321 Candidate.FailureKind = ovl_fail_bad_deduction; 3322 Candidate.IsSurrogate = false; 3323 Candidate.IgnoreObjectArgument = false; 3324 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3325 Info); 3326 return; 3327 } 3328 3329 // Add the function template specialization produced by template argument 3330 // deduction as a candidate. 3331 assert(Specialization && "Missing function template specialization?"); 3332 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3333 SuppressUserConversions); 3334} 3335 3336/// AddConversionCandidate - Add a C++ conversion function as a 3337/// candidate in the candidate set (C++ [over.match.conv], 3338/// C++ [over.match.copy]). From is the expression we're converting from, 3339/// and ToType is the type that we're eventually trying to convert to 3340/// (which may or may not be the same type as the type that the 3341/// conversion function produces). 3342void 3343Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3344 DeclAccessPair FoundDecl, 3345 CXXRecordDecl *ActingContext, 3346 Expr *From, QualType ToType, 3347 OverloadCandidateSet& CandidateSet) { 3348 assert(!Conversion->getDescribedFunctionTemplate() && 3349 "Conversion function templates use AddTemplateConversionCandidate"); 3350 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3351 if (!CandidateSet.isNewCandidate(Conversion)) 3352 return; 3353 3354 // Overload resolution is always an unevaluated context. 3355 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3356 3357 // Add this candidate 3358 CandidateSet.push_back(OverloadCandidate()); 3359 OverloadCandidate& Candidate = CandidateSet.back(); 3360 Candidate.FoundDecl = FoundDecl; 3361 Candidate.Function = Conversion; 3362 Candidate.IsSurrogate = false; 3363 Candidate.IgnoreObjectArgument = false; 3364 Candidate.FinalConversion.setAsIdentityConversion(); 3365 Candidate.FinalConversion.setFromType(ConvType); 3366 Candidate.FinalConversion.setAllToTypes(ToType); 3367 3368 // Determine the implicit conversion sequence for the implicit 3369 // object parameter. 3370 Candidate.Viable = true; 3371 Candidate.Conversions.resize(1); 3372 Candidate.Conversions[0] 3373 = TryObjectArgumentInitialization(From->getType(), Conversion, 3374 ActingContext); 3375 // Conversion functions to a different type in the base class is visible in 3376 // the derived class. So, a derived to base conversion should not participate 3377 // in overload resolution. 3378 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 3379 Candidate.Conversions[0].Standard.Second = ICK_Identity; 3380 if (Candidate.Conversions[0].isBad()) { 3381 Candidate.Viable = false; 3382 Candidate.FailureKind = ovl_fail_bad_conversion; 3383 return; 3384 } 3385 3386 // We won't go through a user-define type conversion function to convert a 3387 // derived to base as such conversions are given Conversion Rank. They only 3388 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3389 QualType FromCanon 3390 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3391 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3392 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3393 Candidate.Viable = false; 3394 Candidate.FailureKind = ovl_fail_trivial_conversion; 3395 return; 3396 } 3397 3398 // To determine what the conversion from the result of calling the 3399 // conversion function to the type we're eventually trying to 3400 // convert to (ToType), we need to synthesize a call to the 3401 // conversion function and attempt copy initialization from it. This 3402 // makes sure that we get the right semantics with respect to 3403 // lvalues/rvalues and the type. Fortunately, we can allocate this 3404 // call on the stack and we don't need its arguments to be 3405 // well-formed. 3406 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3407 From->getLocStart()); 3408 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 3409 CastExpr::CK_FunctionToPointerDecay, 3410 &ConversionRef, CXXBaseSpecifierArray(), false); 3411 3412 // Note that it is safe to allocate CallExpr on the stack here because 3413 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3414 // allocator). 3415 CallExpr Call(Context, &ConversionFn, 0, 0, 3416 Conversion->getConversionType().getNonReferenceType(), 3417 From->getLocStart()); 3418 ImplicitConversionSequence ICS = 3419 TryCopyInitialization(*this, &Call, ToType, 3420 /*SuppressUserConversions=*/true, 3421 /*InOverloadResolution=*/false); 3422 3423 switch (ICS.getKind()) { 3424 case ImplicitConversionSequence::StandardConversion: 3425 Candidate.FinalConversion = ICS.Standard; 3426 3427 // C++ [over.ics.user]p3: 3428 // If the user-defined conversion is specified by a specialization of a 3429 // conversion function template, the second standard conversion sequence 3430 // shall have exact match rank. 3431 if (Conversion->getPrimaryTemplate() && 3432 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3433 Candidate.Viable = false; 3434 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3435 } 3436 3437 break; 3438 3439 case ImplicitConversionSequence::BadConversion: 3440 Candidate.Viable = false; 3441 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3442 break; 3443 3444 default: 3445 assert(false && 3446 "Can only end up with a standard conversion sequence or failure"); 3447 } 3448} 3449 3450/// \brief Adds a conversion function template specialization 3451/// candidate to the overload set, using template argument deduction 3452/// to deduce the template arguments of the conversion function 3453/// template from the type that we are converting to (C++ 3454/// [temp.deduct.conv]). 3455void 3456Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3457 DeclAccessPair FoundDecl, 3458 CXXRecordDecl *ActingDC, 3459 Expr *From, QualType ToType, 3460 OverloadCandidateSet &CandidateSet) { 3461 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3462 "Only conversion function templates permitted here"); 3463 3464 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3465 return; 3466 3467 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3468 CXXConversionDecl *Specialization = 0; 3469 if (TemplateDeductionResult Result 3470 = DeduceTemplateArguments(FunctionTemplate, ToType, 3471 Specialization, Info)) { 3472 CandidateSet.push_back(OverloadCandidate()); 3473 OverloadCandidate &Candidate = CandidateSet.back(); 3474 Candidate.FoundDecl = FoundDecl; 3475 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3476 Candidate.Viable = false; 3477 Candidate.FailureKind = ovl_fail_bad_deduction; 3478 Candidate.IsSurrogate = false; 3479 Candidate.IgnoreObjectArgument = false; 3480 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3481 Info); 3482 return; 3483 } 3484 3485 // Add the conversion function template specialization produced by 3486 // template argument deduction as a candidate. 3487 assert(Specialization && "Missing function template specialization?"); 3488 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 3489 CandidateSet); 3490} 3491 3492/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 3493/// converts the given @c Object to a function pointer via the 3494/// conversion function @c Conversion, and then attempts to call it 3495/// with the given arguments (C++ [over.call.object]p2-4). Proto is 3496/// the type of function that we'll eventually be calling. 3497void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 3498 DeclAccessPair FoundDecl, 3499 CXXRecordDecl *ActingContext, 3500 const FunctionProtoType *Proto, 3501 QualType ObjectType, 3502 Expr **Args, unsigned NumArgs, 3503 OverloadCandidateSet& CandidateSet) { 3504 if (!CandidateSet.isNewCandidate(Conversion)) 3505 return; 3506 3507 // Overload resolution is always an unevaluated context. 3508 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3509 3510 CandidateSet.push_back(OverloadCandidate()); 3511 OverloadCandidate& Candidate = CandidateSet.back(); 3512 Candidate.FoundDecl = FoundDecl; 3513 Candidate.Function = 0; 3514 Candidate.Surrogate = Conversion; 3515 Candidate.Viable = true; 3516 Candidate.IsSurrogate = true; 3517 Candidate.IgnoreObjectArgument = false; 3518 Candidate.Conversions.resize(NumArgs + 1); 3519 3520 // Determine the implicit conversion sequence for the implicit 3521 // object parameter. 3522 ImplicitConversionSequence ObjectInit 3523 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 3524 if (ObjectInit.isBad()) { 3525 Candidate.Viable = false; 3526 Candidate.FailureKind = ovl_fail_bad_conversion; 3527 Candidate.Conversions[0] = ObjectInit; 3528 return; 3529 } 3530 3531 // The first conversion is actually a user-defined conversion whose 3532 // first conversion is ObjectInit's standard conversion (which is 3533 // effectively a reference binding). Record it as such. 3534 Candidate.Conversions[0].setUserDefined(); 3535 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 3536 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 3537 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 3538 Candidate.Conversions[0].UserDefined.After 3539 = Candidate.Conversions[0].UserDefined.Before; 3540 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 3541 3542 // Find the 3543 unsigned NumArgsInProto = Proto->getNumArgs(); 3544 3545 // (C++ 13.3.2p2): A candidate function having fewer than m 3546 // parameters is viable only if it has an ellipsis in its parameter 3547 // list (8.3.5). 3548 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3549 Candidate.Viable = false; 3550 Candidate.FailureKind = ovl_fail_too_many_arguments; 3551 return; 3552 } 3553 3554 // Function types don't have any default arguments, so just check if 3555 // we have enough arguments. 3556 if (NumArgs < NumArgsInProto) { 3557 // Not enough arguments. 3558 Candidate.Viable = false; 3559 Candidate.FailureKind = ovl_fail_too_few_arguments; 3560 return; 3561 } 3562 3563 // Determine the implicit conversion sequences for each of the 3564 // arguments. 3565 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3566 if (ArgIdx < NumArgsInProto) { 3567 // (C++ 13.3.2p3): for F to be a viable function, there shall 3568 // exist for each argument an implicit conversion sequence 3569 // (13.3.3.1) that converts that argument to the corresponding 3570 // parameter of F. 3571 QualType ParamType = Proto->getArgType(ArgIdx); 3572 Candidate.Conversions[ArgIdx + 1] 3573 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3574 /*SuppressUserConversions=*/false, 3575 /*InOverloadResolution=*/false); 3576 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3577 Candidate.Viable = false; 3578 Candidate.FailureKind = ovl_fail_bad_conversion; 3579 break; 3580 } 3581 } else { 3582 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3583 // argument for which there is no corresponding parameter is 3584 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3585 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3586 } 3587 } 3588} 3589 3590/// \brief Add overload candidates for overloaded operators that are 3591/// member functions. 3592/// 3593/// Add the overloaded operator candidates that are member functions 3594/// for the operator Op that was used in an operator expression such 3595/// as "x Op y". , Args/NumArgs provides the operator arguments, and 3596/// CandidateSet will store the added overload candidates. (C++ 3597/// [over.match.oper]). 3598void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 3599 SourceLocation OpLoc, 3600 Expr **Args, unsigned NumArgs, 3601 OverloadCandidateSet& CandidateSet, 3602 SourceRange OpRange) { 3603 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3604 3605 // C++ [over.match.oper]p3: 3606 // For a unary operator @ with an operand of a type whose 3607 // cv-unqualified version is T1, and for a binary operator @ with 3608 // a left operand of a type whose cv-unqualified version is T1 and 3609 // a right operand of a type whose cv-unqualified version is T2, 3610 // three sets of candidate functions, designated member 3611 // candidates, non-member candidates and built-in candidates, are 3612 // constructed as follows: 3613 QualType T1 = Args[0]->getType(); 3614 QualType T2; 3615 if (NumArgs > 1) 3616 T2 = Args[1]->getType(); 3617 3618 // -- If T1 is a class type, the set of member candidates is the 3619 // result of the qualified lookup of T1::operator@ 3620 // (13.3.1.1.1); otherwise, the set of member candidates is 3621 // empty. 3622 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3623 // Complete the type if it can be completed. Otherwise, we're done. 3624 if (RequireCompleteType(OpLoc, T1, PDiag())) 3625 return; 3626 3627 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3628 LookupQualifiedName(Operators, T1Rec->getDecl()); 3629 Operators.suppressDiagnostics(); 3630 3631 for (LookupResult::iterator Oper = Operators.begin(), 3632 OperEnd = Operators.end(); 3633 Oper != OperEnd; 3634 ++Oper) 3635 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 3636 Args + 1, NumArgs - 1, CandidateSet, 3637 /* SuppressUserConversions = */ false); 3638 } 3639} 3640 3641/// AddBuiltinCandidate - Add a candidate for a built-in 3642/// operator. ResultTy and ParamTys are the result and parameter types 3643/// of the built-in candidate, respectively. Args and NumArgs are the 3644/// arguments being passed to the candidate. IsAssignmentOperator 3645/// should be true when this built-in candidate is an assignment 3646/// operator. NumContextualBoolArguments is the number of arguments 3647/// (at the beginning of the argument list) that will be contextually 3648/// converted to bool. 3649void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3650 Expr **Args, unsigned NumArgs, 3651 OverloadCandidateSet& CandidateSet, 3652 bool IsAssignmentOperator, 3653 unsigned NumContextualBoolArguments) { 3654 // Overload resolution is always an unevaluated context. 3655 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3656 3657 // Add this candidate 3658 CandidateSet.push_back(OverloadCandidate()); 3659 OverloadCandidate& Candidate = CandidateSet.back(); 3660 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 3661 Candidate.Function = 0; 3662 Candidate.IsSurrogate = false; 3663 Candidate.IgnoreObjectArgument = false; 3664 Candidate.BuiltinTypes.ResultTy = ResultTy; 3665 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3666 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3667 3668 // Determine the implicit conversion sequences for each of the 3669 // arguments. 3670 Candidate.Viable = true; 3671 Candidate.Conversions.resize(NumArgs); 3672 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3673 // C++ [over.match.oper]p4: 3674 // For the built-in assignment operators, conversions of the 3675 // left operand are restricted as follows: 3676 // -- no temporaries are introduced to hold the left operand, and 3677 // -- no user-defined conversions are applied to the left 3678 // operand to achieve a type match with the left-most 3679 // parameter of a built-in candidate. 3680 // 3681 // We block these conversions by turning off user-defined 3682 // conversions, since that is the only way that initialization of 3683 // a reference to a non-class type can occur from something that 3684 // is not of the same type. 3685 if (ArgIdx < NumContextualBoolArguments) { 3686 assert(ParamTys[ArgIdx] == Context.BoolTy && 3687 "Contextual conversion to bool requires bool type"); 3688 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 3689 } else { 3690 Candidate.Conversions[ArgIdx] 3691 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 3692 ArgIdx == 0 && IsAssignmentOperator, 3693 /*InOverloadResolution=*/false); 3694 } 3695 if (Candidate.Conversions[ArgIdx].isBad()) { 3696 Candidate.Viable = false; 3697 Candidate.FailureKind = ovl_fail_bad_conversion; 3698 break; 3699 } 3700 } 3701} 3702 3703/// BuiltinCandidateTypeSet - A set of types that will be used for the 3704/// candidate operator functions for built-in operators (C++ 3705/// [over.built]). The types are separated into pointer types and 3706/// enumeration types. 3707class BuiltinCandidateTypeSet { 3708 /// TypeSet - A set of types. 3709 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3710 3711 /// PointerTypes - The set of pointer types that will be used in the 3712 /// built-in candidates. 3713 TypeSet PointerTypes; 3714 3715 /// MemberPointerTypes - The set of member pointer types that will be 3716 /// used in the built-in candidates. 3717 TypeSet MemberPointerTypes; 3718 3719 /// EnumerationTypes - The set of enumeration types that will be 3720 /// used in the built-in candidates. 3721 TypeSet EnumerationTypes; 3722 3723 /// Sema - The semantic analysis instance where we are building the 3724 /// candidate type set. 3725 Sema &SemaRef; 3726 3727 /// Context - The AST context in which we will build the type sets. 3728 ASTContext &Context; 3729 3730 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3731 const Qualifiers &VisibleQuals); 3732 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3733 3734public: 3735 /// iterator - Iterates through the types that are part of the set. 3736 typedef TypeSet::iterator iterator; 3737 3738 BuiltinCandidateTypeSet(Sema &SemaRef) 3739 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3740 3741 void AddTypesConvertedFrom(QualType Ty, 3742 SourceLocation Loc, 3743 bool AllowUserConversions, 3744 bool AllowExplicitConversions, 3745 const Qualifiers &VisibleTypeConversionsQuals); 3746 3747 /// pointer_begin - First pointer type found; 3748 iterator pointer_begin() { return PointerTypes.begin(); } 3749 3750 /// pointer_end - Past the last pointer type found; 3751 iterator pointer_end() { return PointerTypes.end(); } 3752 3753 /// member_pointer_begin - First member pointer type found; 3754 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3755 3756 /// member_pointer_end - Past the last member pointer type found; 3757 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3758 3759 /// enumeration_begin - First enumeration type found; 3760 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3761 3762 /// enumeration_end - Past the last enumeration type found; 3763 iterator enumeration_end() { return EnumerationTypes.end(); } 3764}; 3765 3766/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3767/// the set of pointer types along with any more-qualified variants of 3768/// that type. For example, if @p Ty is "int const *", this routine 3769/// will add "int const *", "int const volatile *", "int const 3770/// restrict *", and "int const volatile restrict *" to the set of 3771/// pointer types. Returns true if the add of @p Ty itself succeeded, 3772/// false otherwise. 3773/// 3774/// FIXME: what to do about extended qualifiers? 3775bool 3776BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3777 const Qualifiers &VisibleQuals) { 3778 3779 // Insert this type. 3780 if (!PointerTypes.insert(Ty)) 3781 return false; 3782 3783 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3784 assert(PointerTy && "type was not a pointer type!"); 3785 3786 QualType PointeeTy = PointerTy->getPointeeType(); 3787 // Don't add qualified variants of arrays. For one, they're not allowed 3788 // (the qualifier would sink to the element type), and for another, the 3789 // only overload situation where it matters is subscript or pointer +- int, 3790 // and those shouldn't have qualifier variants anyway. 3791 if (PointeeTy->isArrayType()) 3792 return true; 3793 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3794 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3795 BaseCVR = Array->getElementType().getCVRQualifiers(); 3796 bool hasVolatile = VisibleQuals.hasVolatile(); 3797 bool hasRestrict = VisibleQuals.hasRestrict(); 3798 3799 // Iterate through all strict supersets of BaseCVR. 3800 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3801 if ((CVR | BaseCVR) != CVR) continue; 3802 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3803 // in the types. 3804 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3805 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3806 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3807 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3808 } 3809 3810 return true; 3811} 3812 3813/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3814/// to the set of pointer types along with any more-qualified variants of 3815/// that type. For example, if @p Ty is "int const *", this routine 3816/// will add "int const *", "int const volatile *", "int const 3817/// restrict *", and "int const volatile restrict *" to the set of 3818/// pointer types. Returns true if the add of @p Ty itself succeeded, 3819/// false otherwise. 3820/// 3821/// FIXME: what to do about extended qualifiers? 3822bool 3823BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3824 QualType Ty) { 3825 // Insert this type. 3826 if (!MemberPointerTypes.insert(Ty)) 3827 return false; 3828 3829 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3830 assert(PointerTy && "type was not a member pointer type!"); 3831 3832 QualType PointeeTy = PointerTy->getPointeeType(); 3833 // Don't add qualified variants of arrays. For one, they're not allowed 3834 // (the qualifier would sink to the element type), and for another, the 3835 // only overload situation where it matters is subscript or pointer +- int, 3836 // and those shouldn't have qualifier variants anyway. 3837 if (PointeeTy->isArrayType()) 3838 return true; 3839 const Type *ClassTy = PointerTy->getClass(); 3840 3841 // Iterate through all strict supersets of the pointee type's CVR 3842 // qualifiers. 3843 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3844 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3845 if ((CVR | BaseCVR) != CVR) continue; 3846 3847 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3848 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3849 } 3850 3851 return true; 3852} 3853 3854/// AddTypesConvertedFrom - Add each of the types to which the type @p 3855/// Ty can be implicit converted to the given set of @p Types. We're 3856/// primarily interested in pointer types and enumeration types. We also 3857/// take member pointer types, for the conditional operator. 3858/// AllowUserConversions is true if we should look at the conversion 3859/// functions of a class type, and AllowExplicitConversions if we 3860/// should also include the explicit conversion functions of a class 3861/// type. 3862void 3863BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3864 SourceLocation Loc, 3865 bool AllowUserConversions, 3866 bool AllowExplicitConversions, 3867 const Qualifiers &VisibleQuals) { 3868 // Only deal with canonical types. 3869 Ty = Context.getCanonicalType(Ty); 3870 3871 // Look through reference types; they aren't part of the type of an 3872 // expression for the purposes of conversions. 3873 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3874 Ty = RefTy->getPointeeType(); 3875 3876 // We don't care about qualifiers on the type. 3877 Ty = Ty.getLocalUnqualifiedType(); 3878 3879 // If we're dealing with an array type, decay to the pointer. 3880 if (Ty->isArrayType()) 3881 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3882 3883 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3884 QualType PointeeTy = PointerTy->getPointeeType(); 3885 3886 // Insert our type, and its more-qualified variants, into the set 3887 // of types. 3888 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3889 return; 3890 } else if (Ty->isMemberPointerType()) { 3891 // Member pointers are far easier, since the pointee can't be converted. 3892 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3893 return; 3894 } else if (Ty->isEnumeralType()) { 3895 EnumerationTypes.insert(Ty); 3896 } else if (AllowUserConversions) { 3897 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3898 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3899 // No conversion functions in incomplete types. 3900 return; 3901 } 3902 3903 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3904 const UnresolvedSetImpl *Conversions 3905 = ClassDecl->getVisibleConversionFunctions(); 3906 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3907 E = Conversions->end(); I != E; ++I) { 3908 NamedDecl *D = I.getDecl(); 3909 if (isa<UsingShadowDecl>(D)) 3910 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3911 3912 // Skip conversion function templates; they don't tell us anything 3913 // about which builtin types we can convert to. 3914 if (isa<FunctionTemplateDecl>(D)) 3915 continue; 3916 3917 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 3918 if (AllowExplicitConversions || !Conv->isExplicit()) { 3919 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3920 VisibleQuals); 3921 } 3922 } 3923 } 3924 } 3925} 3926 3927/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3928/// the volatile- and non-volatile-qualified assignment operators for the 3929/// given type to the candidate set. 3930static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3931 QualType T, 3932 Expr **Args, 3933 unsigned NumArgs, 3934 OverloadCandidateSet &CandidateSet) { 3935 QualType ParamTypes[2]; 3936 3937 // T& operator=(T&, T) 3938 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3939 ParamTypes[1] = T; 3940 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3941 /*IsAssignmentOperator=*/true); 3942 3943 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3944 // volatile T& operator=(volatile T&, T) 3945 ParamTypes[0] 3946 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3947 ParamTypes[1] = T; 3948 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3949 /*IsAssignmentOperator=*/true); 3950 } 3951} 3952 3953/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3954/// if any, found in visible type conversion functions found in ArgExpr's type. 3955static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3956 Qualifiers VRQuals; 3957 const RecordType *TyRec; 3958 if (const MemberPointerType *RHSMPType = 3959 ArgExpr->getType()->getAs<MemberPointerType>()) 3960 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 3961 else 3962 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3963 if (!TyRec) { 3964 // Just to be safe, assume the worst case. 3965 VRQuals.addVolatile(); 3966 VRQuals.addRestrict(); 3967 return VRQuals; 3968 } 3969 3970 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3971 if (!ClassDecl->hasDefinition()) 3972 return VRQuals; 3973 3974 const UnresolvedSetImpl *Conversions = 3975 ClassDecl->getVisibleConversionFunctions(); 3976 3977 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3978 E = Conversions->end(); I != E; ++I) { 3979 NamedDecl *D = I.getDecl(); 3980 if (isa<UsingShadowDecl>(D)) 3981 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3982 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 3983 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3984 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3985 CanTy = ResTypeRef->getPointeeType(); 3986 // Need to go down the pointer/mempointer chain and add qualifiers 3987 // as see them. 3988 bool done = false; 3989 while (!done) { 3990 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3991 CanTy = ResTypePtr->getPointeeType(); 3992 else if (const MemberPointerType *ResTypeMPtr = 3993 CanTy->getAs<MemberPointerType>()) 3994 CanTy = ResTypeMPtr->getPointeeType(); 3995 else 3996 done = true; 3997 if (CanTy.isVolatileQualified()) 3998 VRQuals.addVolatile(); 3999 if (CanTy.isRestrictQualified()) 4000 VRQuals.addRestrict(); 4001 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4002 return VRQuals; 4003 } 4004 } 4005 } 4006 return VRQuals; 4007} 4008 4009/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4010/// operator overloads to the candidate set (C++ [over.built]), based 4011/// on the operator @p Op and the arguments given. For example, if the 4012/// operator is a binary '+', this routine might add "int 4013/// operator+(int, int)" to cover integer addition. 4014void 4015Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4016 SourceLocation OpLoc, 4017 Expr **Args, unsigned NumArgs, 4018 OverloadCandidateSet& CandidateSet) { 4019 // The set of "promoted arithmetic types", which are the arithmetic 4020 // types are that preserved by promotion (C++ [over.built]p2). Note 4021 // that the first few of these types are the promoted integral 4022 // types; these types need to be first. 4023 // FIXME: What about complex? 4024 const unsigned FirstIntegralType = 0; 4025 const unsigned LastIntegralType = 13; 4026 const unsigned FirstPromotedIntegralType = 7, 4027 LastPromotedIntegralType = 13; 4028 const unsigned FirstPromotedArithmeticType = 7, 4029 LastPromotedArithmeticType = 16; 4030 const unsigned NumArithmeticTypes = 16; 4031 QualType ArithmeticTypes[NumArithmeticTypes] = { 4032 Context.BoolTy, Context.CharTy, Context.WCharTy, 4033// FIXME: Context.Char16Ty, Context.Char32Ty, 4034 Context.SignedCharTy, Context.ShortTy, 4035 Context.UnsignedCharTy, Context.UnsignedShortTy, 4036 Context.IntTy, Context.LongTy, Context.LongLongTy, 4037 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 4038 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 4039 }; 4040 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 4041 "Invalid first promoted integral type"); 4042 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4043 == Context.UnsignedLongLongTy && 4044 "Invalid last promoted integral type"); 4045 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 4046 "Invalid first promoted arithmetic type"); 4047 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4048 == Context.LongDoubleTy && 4049 "Invalid last promoted arithmetic type"); 4050 4051 // Find all of the types that the arguments can convert to, but only 4052 // if the operator we're looking at has built-in operator candidates 4053 // that make use of these types. 4054 Qualifiers VisibleTypeConversionsQuals; 4055 VisibleTypeConversionsQuals.addConst(); 4056 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4057 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4058 4059 BuiltinCandidateTypeSet CandidateTypes(*this); 4060 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 4061 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 4062 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 4063 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 4064 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 4065 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 4066 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4067 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4068 OpLoc, 4069 true, 4070 (Op == OO_Exclaim || 4071 Op == OO_AmpAmp || 4072 Op == OO_PipePipe), 4073 VisibleTypeConversionsQuals); 4074 } 4075 4076 bool isComparison = false; 4077 switch (Op) { 4078 case OO_None: 4079 case NUM_OVERLOADED_OPERATORS: 4080 assert(false && "Expected an overloaded operator"); 4081 break; 4082 4083 case OO_Star: // '*' is either unary or binary 4084 if (NumArgs == 1) 4085 goto UnaryStar; 4086 else 4087 goto BinaryStar; 4088 break; 4089 4090 case OO_Plus: // '+' is either unary or binary 4091 if (NumArgs == 1) 4092 goto UnaryPlus; 4093 else 4094 goto BinaryPlus; 4095 break; 4096 4097 case OO_Minus: // '-' is either unary or binary 4098 if (NumArgs == 1) 4099 goto UnaryMinus; 4100 else 4101 goto BinaryMinus; 4102 break; 4103 4104 case OO_Amp: // '&' is either unary or binary 4105 if (NumArgs == 1) 4106 goto UnaryAmp; 4107 else 4108 goto BinaryAmp; 4109 4110 case OO_PlusPlus: 4111 case OO_MinusMinus: 4112 // C++ [over.built]p3: 4113 // 4114 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4115 // is either volatile or empty, there exist candidate operator 4116 // functions of the form 4117 // 4118 // VQ T& operator++(VQ T&); 4119 // T operator++(VQ T&, int); 4120 // 4121 // C++ [over.built]p4: 4122 // 4123 // For every pair (T, VQ), where T is an arithmetic type other 4124 // than bool, and VQ is either volatile or empty, there exist 4125 // candidate operator functions of the form 4126 // 4127 // VQ T& operator--(VQ T&); 4128 // T operator--(VQ T&, int); 4129 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4130 Arith < NumArithmeticTypes; ++Arith) { 4131 QualType ArithTy = ArithmeticTypes[Arith]; 4132 QualType ParamTypes[2] 4133 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4134 4135 // Non-volatile version. 4136 if (NumArgs == 1) 4137 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4138 else 4139 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4140 // heuristic to reduce number of builtin candidates in the set. 4141 // Add volatile version only if there are conversions to a volatile type. 4142 if (VisibleTypeConversionsQuals.hasVolatile()) { 4143 // Volatile version 4144 ParamTypes[0] 4145 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4146 if (NumArgs == 1) 4147 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4148 else 4149 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4150 } 4151 } 4152 4153 // C++ [over.built]p5: 4154 // 4155 // For every pair (T, VQ), where T is a cv-qualified or 4156 // cv-unqualified object type, and VQ is either volatile or 4157 // empty, there exist candidate operator functions of the form 4158 // 4159 // T*VQ& operator++(T*VQ&); 4160 // T*VQ& operator--(T*VQ&); 4161 // T* operator++(T*VQ&, int); 4162 // T* operator--(T*VQ&, int); 4163 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4164 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4165 // Skip pointer types that aren't pointers to object types. 4166 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 4167 continue; 4168 4169 QualType ParamTypes[2] = { 4170 Context.getLValueReferenceType(*Ptr), Context.IntTy 4171 }; 4172 4173 // Without volatile 4174 if (NumArgs == 1) 4175 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4176 else 4177 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4178 4179 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4180 VisibleTypeConversionsQuals.hasVolatile()) { 4181 // With volatile 4182 ParamTypes[0] 4183 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4184 if (NumArgs == 1) 4185 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4186 else 4187 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4188 } 4189 } 4190 break; 4191 4192 UnaryStar: 4193 // C++ [over.built]p6: 4194 // For every cv-qualified or cv-unqualified object type T, there 4195 // exist candidate operator functions of the form 4196 // 4197 // T& operator*(T*); 4198 // 4199 // C++ [over.built]p7: 4200 // For every function type T, there exist candidate operator 4201 // functions of the form 4202 // T& operator*(T*); 4203 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4204 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4205 QualType ParamTy = *Ptr; 4206 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 4207 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4208 &ParamTy, Args, 1, CandidateSet); 4209 } 4210 break; 4211 4212 UnaryPlus: 4213 // C++ [over.built]p8: 4214 // For every type T, there exist candidate operator functions of 4215 // the form 4216 // 4217 // T* operator+(T*); 4218 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4219 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4220 QualType ParamTy = *Ptr; 4221 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4222 } 4223 4224 // Fall through 4225 4226 UnaryMinus: 4227 // C++ [over.built]p9: 4228 // For every promoted arithmetic type T, there exist candidate 4229 // operator functions of the form 4230 // 4231 // T operator+(T); 4232 // T operator-(T); 4233 for (unsigned Arith = FirstPromotedArithmeticType; 4234 Arith < LastPromotedArithmeticType; ++Arith) { 4235 QualType ArithTy = ArithmeticTypes[Arith]; 4236 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4237 } 4238 break; 4239 4240 case OO_Tilde: 4241 // C++ [over.built]p10: 4242 // For every promoted integral type T, there exist candidate 4243 // operator functions of the form 4244 // 4245 // T operator~(T); 4246 for (unsigned Int = FirstPromotedIntegralType; 4247 Int < LastPromotedIntegralType; ++Int) { 4248 QualType IntTy = ArithmeticTypes[Int]; 4249 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4250 } 4251 break; 4252 4253 case OO_New: 4254 case OO_Delete: 4255 case OO_Array_New: 4256 case OO_Array_Delete: 4257 case OO_Call: 4258 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4259 break; 4260 4261 case OO_Comma: 4262 UnaryAmp: 4263 case OO_Arrow: 4264 // C++ [over.match.oper]p3: 4265 // -- For the operator ',', the unary operator '&', or the 4266 // operator '->', the built-in candidates set is empty. 4267 break; 4268 4269 case OO_EqualEqual: 4270 case OO_ExclaimEqual: 4271 // C++ [over.match.oper]p16: 4272 // For every pointer to member type T, there exist candidate operator 4273 // functions of the form 4274 // 4275 // bool operator==(T,T); 4276 // bool operator!=(T,T); 4277 for (BuiltinCandidateTypeSet::iterator 4278 MemPtr = CandidateTypes.member_pointer_begin(), 4279 MemPtrEnd = CandidateTypes.member_pointer_end(); 4280 MemPtr != MemPtrEnd; 4281 ++MemPtr) { 4282 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4283 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4284 } 4285 4286 // Fall through 4287 4288 case OO_Less: 4289 case OO_Greater: 4290 case OO_LessEqual: 4291 case OO_GreaterEqual: 4292 // C++ [over.built]p15: 4293 // 4294 // For every pointer or enumeration type T, there exist 4295 // candidate operator functions of the form 4296 // 4297 // bool operator<(T, T); 4298 // bool operator>(T, T); 4299 // bool operator<=(T, T); 4300 // bool operator>=(T, T); 4301 // bool operator==(T, T); 4302 // bool operator!=(T, T); 4303 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4304 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4305 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4306 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4307 } 4308 for (BuiltinCandidateTypeSet::iterator Enum 4309 = CandidateTypes.enumeration_begin(); 4310 Enum != CandidateTypes.enumeration_end(); ++Enum) { 4311 QualType ParamTypes[2] = { *Enum, *Enum }; 4312 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4313 } 4314 4315 // Fall through. 4316 isComparison = true; 4317 4318 BinaryPlus: 4319 BinaryMinus: 4320 if (!isComparison) { 4321 // We didn't fall through, so we must have OO_Plus or OO_Minus. 4322 4323 // C++ [over.built]p13: 4324 // 4325 // For every cv-qualified or cv-unqualified object type T 4326 // there exist candidate operator functions of the form 4327 // 4328 // T* operator+(T*, ptrdiff_t); 4329 // T& operator[](T*, ptrdiff_t); [BELOW] 4330 // T* operator-(T*, ptrdiff_t); 4331 // T* operator+(ptrdiff_t, T*); 4332 // T& operator[](ptrdiff_t, T*); [BELOW] 4333 // 4334 // C++ [over.built]p14: 4335 // 4336 // For every T, where T is a pointer to object type, there 4337 // exist candidate operator functions of the form 4338 // 4339 // ptrdiff_t operator-(T, T); 4340 for (BuiltinCandidateTypeSet::iterator Ptr 4341 = CandidateTypes.pointer_begin(); 4342 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4343 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4344 4345 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 4346 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4347 4348 if (Op == OO_Plus) { 4349 // T* operator+(ptrdiff_t, T*); 4350 ParamTypes[0] = ParamTypes[1]; 4351 ParamTypes[1] = *Ptr; 4352 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4353 } else { 4354 // ptrdiff_t operator-(T, T); 4355 ParamTypes[1] = *Ptr; 4356 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 4357 Args, 2, CandidateSet); 4358 } 4359 } 4360 } 4361 // Fall through 4362 4363 case OO_Slash: 4364 BinaryStar: 4365 Conditional: 4366 // C++ [over.built]p12: 4367 // 4368 // For every pair of promoted arithmetic types L and R, there 4369 // exist candidate operator functions of the form 4370 // 4371 // LR operator*(L, R); 4372 // LR operator/(L, R); 4373 // LR operator+(L, R); 4374 // LR operator-(L, R); 4375 // bool operator<(L, R); 4376 // bool operator>(L, R); 4377 // bool operator<=(L, R); 4378 // bool operator>=(L, R); 4379 // bool operator==(L, R); 4380 // bool operator!=(L, R); 4381 // 4382 // where LR is the result of the usual arithmetic conversions 4383 // between types L and R. 4384 // 4385 // C++ [over.built]p24: 4386 // 4387 // For every pair of promoted arithmetic types L and R, there exist 4388 // candidate operator functions of the form 4389 // 4390 // LR operator?(bool, L, R); 4391 // 4392 // where LR is the result of the usual arithmetic conversions 4393 // between types L and R. 4394 // Our candidates ignore the first parameter. 4395 for (unsigned Left = FirstPromotedArithmeticType; 4396 Left < LastPromotedArithmeticType; ++Left) { 4397 for (unsigned Right = FirstPromotedArithmeticType; 4398 Right < LastPromotedArithmeticType; ++Right) { 4399 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4400 QualType Result 4401 = isComparison 4402 ? Context.BoolTy 4403 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4404 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4405 } 4406 } 4407 break; 4408 4409 case OO_Percent: 4410 BinaryAmp: 4411 case OO_Caret: 4412 case OO_Pipe: 4413 case OO_LessLess: 4414 case OO_GreaterGreater: 4415 // C++ [over.built]p17: 4416 // 4417 // For every pair of promoted integral types L and R, there 4418 // exist candidate operator functions of the form 4419 // 4420 // LR operator%(L, R); 4421 // LR operator&(L, R); 4422 // LR operator^(L, R); 4423 // LR operator|(L, R); 4424 // L operator<<(L, R); 4425 // L operator>>(L, R); 4426 // 4427 // where LR is the result of the usual arithmetic conversions 4428 // between types L and R. 4429 for (unsigned Left = FirstPromotedIntegralType; 4430 Left < LastPromotedIntegralType; ++Left) { 4431 for (unsigned Right = FirstPromotedIntegralType; 4432 Right < LastPromotedIntegralType; ++Right) { 4433 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4434 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 4435 ? LandR[0] 4436 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4437 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4438 } 4439 } 4440 break; 4441 4442 case OO_Equal: 4443 // C++ [over.built]p20: 4444 // 4445 // For every pair (T, VQ), where T is an enumeration or 4446 // pointer to member type and VQ is either volatile or 4447 // empty, there exist candidate operator functions of the form 4448 // 4449 // VQ T& operator=(VQ T&, T); 4450 for (BuiltinCandidateTypeSet::iterator 4451 Enum = CandidateTypes.enumeration_begin(), 4452 EnumEnd = CandidateTypes.enumeration_end(); 4453 Enum != EnumEnd; ++Enum) 4454 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 4455 CandidateSet); 4456 for (BuiltinCandidateTypeSet::iterator 4457 MemPtr = CandidateTypes.member_pointer_begin(), 4458 MemPtrEnd = CandidateTypes.member_pointer_end(); 4459 MemPtr != MemPtrEnd; ++MemPtr) 4460 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 4461 CandidateSet); 4462 // Fall through. 4463 4464 case OO_PlusEqual: 4465 case OO_MinusEqual: 4466 // C++ [over.built]p19: 4467 // 4468 // For every pair (T, VQ), where T is any type and VQ is either 4469 // volatile or empty, there exist candidate operator functions 4470 // of the form 4471 // 4472 // T*VQ& operator=(T*VQ&, T*); 4473 // 4474 // C++ [over.built]p21: 4475 // 4476 // For every pair (T, VQ), where T is a cv-qualified or 4477 // cv-unqualified object type and VQ is either volatile or 4478 // empty, there exist candidate operator functions of the form 4479 // 4480 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 4481 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 4482 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4483 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4484 QualType ParamTypes[2]; 4485 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 4486 4487 // non-volatile version 4488 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 4489 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4490 /*IsAssigmentOperator=*/Op == OO_Equal); 4491 4492 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4493 VisibleTypeConversionsQuals.hasVolatile()) { 4494 // volatile version 4495 ParamTypes[0] 4496 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4497 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4498 /*IsAssigmentOperator=*/Op == OO_Equal); 4499 } 4500 } 4501 // Fall through. 4502 4503 case OO_StarEqual: 4504 case OO_SlashEqual: 4505 // C++ [over.built]p18: 4506 // 4507 // For every triple (L, VQ, R), where L is an arithmetic type, 4508 // VQ is either volatile or empty, and R is a promoted 4509 // arithmetic type, there exist candidate operator functions of 4510 // the form 4511 // 4512 // VQ L& operator=(VQ L&, R); 4513 // VQ L& operator*=(VQ L&, R); 4514 // VQ L& operator/=(VQ L&, R); 4515 // VQ L& operator+=(VQ L&, R); 4516 // VQ L& operator-=(VQ L&, R); 4517 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 4518 for (unsigned Right = FirstPromotedArithmeticType; 4519 Right < LastPromotedArithmeticType; ++Right) { 4520 QualType ParamTypes[2]; 4521 ParamTypes[1] = ArithmeticTypes[Right]; 4522 4523 // Add this built-in operator as a candidate (VQ is empty). 4524 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4525 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4526 /*IsAssigmentOperator=*/Op == OO_Equal); 4527 4528 // Add this built-in operator as a candidate (VQ is 'volatile'). 4529 if (VisibleTypeConversionsQuals.hasVolatile()) { 4530 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 4531 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4532 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4533 /*IsAssigmentOperator=*/Op == OO_Equal); 4534 } 4535 } 4536 } 4537 break; 4538 4539 case OO_PercentEqual: 4540 case OO_LessLessEqual: 4541 case OO_GreaterGreaterEqual: 4542 case OO_AmpEqual: 4543 case OO_CaretEqual: 4544 case OO_PipeEqual: 4545 // C++ [over.built]p22: 4546 // 4547 // For every triple (L, VQ, R), where L is an integral type, VQ 4548 // is either volatile or empty, and R is a promoted integral 4549 // type, there exist candidate operator functions of the form 4550 // 4551 // VQ L& operator%=(VQ L&, R); 4552 // VQ L& operator<<=(VQ L&, R); 4553 // VQ L& operator>>=(VQ L&, R); 4554 // VQ L& operator&=(VQ L&, R); 4555 // VQ L& operator^=(VQ L&, R); 4556 // VQ L& operator|=(VQ L&, R); 4557 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 4558 for (unsigned Right = FirstPromotedIntegralType; 4559 Right < LastPromotedIntegralType; ++Right) { 4560 QualType ParamTypes[2]; 4561 ParamTypes[1] = ArithmeticTypes[Right]; 4562 4563 // Add this built-in operator as a candidate (VQ is empty). 4564 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4565 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4566 if (VisibleTypeConversionsQuals.hasVolatile()) { 4567 // Add this built-in operator as a candidate (VQ is 'volatile'). 4568 ParamTypes[0] = ArithmeticTypes[Left]; 4569 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 4570 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4571 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4572 } 4573 } 4574 } 4575 break; 4576 4577 case OO_Exclaim: { 4578 // C++ [over.operator]p23: 4579 // 4580 // There also exist candidate operator functions of the form 4581 // 4582 // bool operator!(bool); 4583 // bool operator&&(bool, bool); [BELOW] 4584 // bool operator||(bool, bool); [BELOW] 4585 QualType ParamTy = Context.BoolTy; 4586 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 4587 /*IsAssignmentOperator=*/false, 4588 /*NumContextualBoolArguments=*/1); 4589 break; 4590 } 4591 4592 case OO_AmpAmp: 4593 case OO_PipePipe: { 4594 // C++ [over.operator]p23: 4595 // 4596 // There also exist candidate operator functions of the form 4597 // 4598 // bool operator!(bool); [ABOVE] 4599 // bool operator&&(bool, bool); 4600 // bool operator||(bool, bool); 4601 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 4602 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 4603 /*IsAssignmentOperator=*/false, 4604 /*NumContextualBoolArguments=*/2); 4605 break; 4606 } 4607 4608 case OO_Subscript: 4609 // C++ [over.built]p13: 4610 // 4611 // For every cv-qualified or cv-unqualified object type T there 4612 // exist candidate operator functions of the form 4613 // 4614 // T* operator+(T*, ptrdiff_t); [ABOVE] 4615 // T& operator[](T*, ptrdiff_t); 4616 // T* operator-(T*, ptrdiff_t); [ABOVE] 4617 // T* operator+(ptrdiff_t, T*); [ABOVE] 4618 // T& operator[](ptrdiff_t, T*); 4619 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4620 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4621 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4622 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 4623 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 4624 4625 // T& operator[](T*, ptrdiff_t) 4626 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4627 4628 // T& operator[](ptrdiff_t, T*); 4629 ParamTypes[0] = ParamTypes[1]; 4630 ParamTypes[1] = *Ptr; 4631 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4632 } 4633 break; 4634 4635 case OO_ArrowStar: 4636 // C++ [over.built]p11: 4637 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 4638 // C1 is the same type as C2 or is a derived class of C2, T is an object 4639 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 4640 // there exist candidate operator functions of the form 4641 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 4642 // where CV12 is the union of CV1 and CV2. 4643 { 4644 for (BuiltinCandidateTypeSet::iterator Ptr = 4645 CandidateTypes.pointer_begin(); 4646 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4647 QualType C1Ty = (*Ptr); 4648 QualType C1; 4649 QualifierCollector Q1; 4650 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 4651 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 4652 if (!isa<RecordType>(C1)) 4653 continue; 4654 // heuristic to reduce number of builtin candidates in the set. 4655 // Add volatile/restrict version only if there are conversions to a 4656 // volatile/restrict type. 4657 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 4658 continue; 4659 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 4660 continue; 4661 } 4662 for (BuiltinCandidateTypeSet::iterator 4663 MemPtr = CandidateTypes.member_pointer_begin(), 4664 MemPtrEnd = CandidateTypes.member_pointer_end(); 4665 MemPtr != MemPtrEnd; ++MemPtr) { 4666 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 4667 QualType C2 = QualType(mptr->getClass(), 0); 4668 C2 = C2.getUnqualifiedType(); 4669 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 4670 break; 4671 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 4672 // build CV12 T& 4673 QualType T = mptr->getPointeeType(); 4674 if (!VisibleTypeConversionsQuals.hasVolatile() && 4675 T.isVolatileQualified()) 4676 continue; 4677 if (!VisibleTypeConversionsQuals.hasRestrict() && 4678 T.isRestrictQualified()) 4679 continue; 4680 T = Q1.apply(T); 4681 QualType ResultTy = Context.getLValueReferenceType(T); 4682 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4683 } 4684 } 4685 } 4686 break; 4687 4688 case OO_Conditional: 4689 // Note that we don't consider the first argument, since it has been 4690 // contextually converted to bool long ago. The candidates below are 4691 // therefore added as binary. 4692 // 4693 // C++ [over.built]p24: 4694 // For every type T, where T is a pointer or pointer-to-member type, 4695 // there exist candidate operator functions of the form 4696 // 4697 // T operator?(bool, T, T); 4698 // 4699 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 4700 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 4701 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4702 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4703 } 4704 for (BuiltinCandidateTypeSet::iterator Ptr = 4705 CandidateTypes.member_pointer_begin(), 4706 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4707 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4708 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4709 } 4710 goto Conditional; 4711 } 4712} 4713 4714/// \brief Add function candidates found via argument-dependent lookup 4715/// to the set of overloading candidates. 4716/// 4717/// This routine performs argument-dependent name lookup based on the 4718/// given function name (which may also be an operator name) and adds 4719/// all of the overload candidates found by ADL to the overload 4720/// candidate set (C++ [basic.lookup.argdep]). 4721void 4722Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4723 bool Operator, 4724 Expr **Args, unsigned NumArgs, 4725 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4726 OverloadCandidateSet& CandidateSet, 4727 bool PartialOverloading) { 4728 ADLResult Fns; 4729 4730 // FIXME: This approach for uniquing ADL results (and removing 4731 // redundant candidates from the set) relies on pointer-equality, 4732 // which means we need to key off the canonical decl. However, 4733 // always going back to the canonical decl might not get us the 4734 // right set of default arguments. What default arguments are 4735 // we supposed to consider on ADL candidates, anyway? 4736 4737 // FIXME: Pass in the explicit template arguments? 4738 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 4739 4740 // Erase all of the candidates we already knew about. 4741 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4742 CandEnd = CandidateSet.end(); 4743 Cand != CandEnd; ++Cand) 4744 if (Cand->Function) { 4745 Fns.erase(Cand->Function); 4746 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4747 Fns.erase(FunTmpl); 4748 } 4749 4750 // For each of the ADL candidates we found, add it to the overload 4751 // set. 4752 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 4753 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 4754 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 4755 if (ExplicitTemplateArgs) 4756 continue; 4757 4758 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 4759 false, PartialOverloading); 4760 } else 4761 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 4762 FoundDecl, ExplicitTemplateArgs, 4763 Args, NumArgs, CandidateSet); 4764 } 4765} 4766 4767/// isBetterOverloadCandidate - Determines whether the first overload 4768/// candidate is a better candidate than the second (C++ 13.3.3p1). 4769bool 4770Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4771 const OverloadCandidate& Cand2, 4772 SourceLocation Loc) { 4773 // Define viable functions to be better candidates than non-viable 4774 // functions. 4775 if (!Cand2.Viable) 4776 return Cand1.Viable; 4777 else if (!Cand1.Viable) 4778 return false; 4779 4780 // C++ [over.match.best]p1: 4781 // 4782 // -- if F is a static member function, ICS1(F) is defined such 4783 // that ICS1(F) is neither better nor worse than ICS1(G) for 4784 // any function G, and, symmetrically, ICS1(G) is neither 4785 // better nor worse than ICS1(F). 4786 unsigned StartArg = 0; 4787 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4788 StartArg = 1; 4789 4790 // C++ [over.match.best]p1: 4791 // A viable function F1 is defined to be a better function than another 4792 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4793 // conversion sequence than ICSi(F2), and then... 4794 unsigned NumArgs = Cand1.Conversions.size(); 4795 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4796 bool HasBetterConversion = false; 4797 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4798 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4799 Cand2.Conversions[ArgIdx])) { 4800 case ImplicitConversionSequence::Better: 4801 // Cand1 has a better conversion sequence. 4802 HasBetterConversion = true; 4803 break; 4804 4805 case ImplicitConversionSequence::Worse: 4806 // Cand1 can't be better than Cand2. 4807 return false; 4808 4809 case ImplicitConversionSequence::Indistinguishable: 4810 // Do nothing. 4811 break; 4812 } 4813 } 4814 4815 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4816 // ICSj(F2), or, if not that, 4817 if (HasBetterConversion) 4818 return true; 4819 4820 // - F1 is a non-template function and F2 is a function template 4821 // specialization, or, if not that, 4822 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4823 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4824 return true; 4825 4826 // -- F1 and F2 are function template specializations, and the function 4827 // template for F1 is more specialized than the template for F2 4828 // according to the partial ordering rules described in 14.5.5.2, or, 4829 // if not that, 4830 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4831 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4832 if (FunctionTemplateDecl *BetterTemplate 4833 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4834 Cand2.Function->getPrimaryTemplate(), 4835 Loc, 4836 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4837 : TPOC_Call)) 4838 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4839 4840 // -- the context is an initialization by user-defined conversion 4841 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4842 // from the return type of F1 to the destination type (i.e., 4843 // the type of the entity being initialized) is a better 4844 // conversion sequence than the standard conversion sequence 4845 // from the return type of F2 to the destination type. 4846 if (Cand1.Function && Cand2.Function && 4847 isa<CXXConversionDecl>(Cand1.Function) && 4848 isa<CXXConversionDecl>(Cand2.Function)) { 4849 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4850 Cand2.FinalConversion)) { 4851 case ImplicitConversionSequence::Better: 4852 // Cand1 has a better conversion sequence. 4853 return true; 4854 4855 case ImplicitConversionSequence::Worse: 4856 // Cand1 can't be better than Cand2. 4857 return false; 4858 4859 case ImplicitConversionSequence::Indistinguishable: 4860 // Do nothing 4861 break; 4862 } 4863 } 4864 4865 return false; 4866} 4867 4868/// \brief Computes the best viable function (C++ 13.3.3) 4869/// within an overload candidate set. 4870/// 4871/// \param CandidateSet the set of candidate functions. 4872/// 4873/// \param Loc the location of the function name (or operator symbol) for 4874/// which overload resolution occurs. 4875/// 4876/// \param Best f overload resolution was successful or found a deleted 4877/// function, Best points to the candidate function found. 4878/// 4879/// \returns The result of overload resolution. 4880OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4881 SourceLocation Loc, 4882 OverloadCandidateSet::iterator& Best) { 4883 // Find the best viable function. 4884 Best = CandidateSet.end(); 4885 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4886 Cand != CandidateSet.end(); ++Cand) { 4887 if (Cand->Viable) { 4888 if (Best == CandidateSet.end() || 4889 isBetterOverloadCandidate(*Cand, *Best, Loc)) 4890 Best = Cand; 4891 } 4892 } 4893 4894 // If we didn't find any viable functions, abort. 4895 if (Best == CandidateSet.end()) 4896 return OR_No_Viable_Function; 4897 4898 // Make sure that this function is better than every other viable 4899 // function. If not, we have an ambiguity. 4900 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4901 Cand != CandidateSet.end(); ++Cand) { 4902 if (Cand->Viable && 4903 Cand != Best && 4904 !isBetterOverloadCandidate(*Best, *Cand, Loc)) { 4905 Best = CandidateSet.end(); 4906 return OR_Ambiguous; 4907 } 4908 } 4909 4910 // Best is the best viable function. 4911 if (Best->Function && 4912 (Best->Function->isDeleted() || 4913 Best->Function->getAttr<UnavailableAttr>())) 4914 return OR_Deleted; 4915 4916 // C++ [basic.def.odr]p2: 4917 // An overloaded function is used if it is selected by overload resolution 4918 // when referred to from a potentially-evaluated expression. [Note: this 4919 // covers calls to named functions (5.2.2), operator overloading 4920 // (clause 13), user-defined conversions (12.3.2), allocation function for 4921 // placement new (5.3.4), as well as non-default initialization (8.5). 4922 if (Best->Function) 4923 MarkDeclarationReferenced(Loc, Best->Function); 4924 return OR_Success; 4925} 4926 4927namespace { 4928 4929enum OverloadCandidateKind { 4930 oc_function, 4931 oc_method, 4932 oc_constructor, 4933 oc_function_template, 4934 oc_method_template, 4935 oc_constructor_template, 4936 oc_implicit_default_constructor, 4937 oc_implicit_copy_constructor, 4938 oc_implicit_copy_assignment 4939}; 4940 4941OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 4942 FunctionDecl *Fn, 4943 std::string &Description) { 4944 bool isTemplate = false; 4945 4946 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 4947 isTemplate = true; 4948 Description = S.getTemplateArgumentBindingsText( 4949 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 4950 } 4951 4952 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 4953 if (!Ctor->isImplicit()) 4954 return isTemplate ? oc_constructor_template : oc_constructor; 4955 4956 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 4957 : oc_implicit_default_constructor; 4958 } 4959 4960 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 4961 // This actually gets spelled 'candidate function' for now, but 4962 // it doesn't hurt to split it out. 4963 if (!Meth->isImplicit()) 4964 return isTemplate ? oc_method_template : oc_method; 4965 4966 assert(Meth->isCopyAssignment() 4967 && "implicit method is not copy assignment operator?"); 4968 return oc_implicit_copy_assignment; 4969 } 4970 4971 return isTemplate ? oc_function_template : oc_function; 4972} 4973 4974} // end anonymous namespace 4975 4976// Notes the location of an overload candidate. 4977void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 4978 std::string FnDesc; 4979 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 4980 Diag(Fn->getLocation(), diag::note_ovl_candidate) 4981 << (unsigned) K << FnDesc; 4982} 4983 4984/// Diagnoses an ambiguous conversion. The partial diagnostic is the 4985/// "lead" diagnostic; it will be given two arguments, the source and 4986/// target types of the conversion. 4987void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 4988 SourceLocation CaretLoc, 4989 const PartialDiagnostic &PDiag) { 4990 Diag(CaretLoc, PDiag) 4991 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 4992 for (AmbiguousConversionSequence::const_iterator 4993 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 4994 NoteOverloadCandidate(*I); 4995 } 4996} 4997 4998namespace { 4999 5000void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5001 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5002 assert(Conv.isBad()); 5003 assert(Cand->Function && "for now, candidate must be a function"); 5004 FunctionDecl *Fn = Cand->Function; 5005 5006 // There's a conversion slot for the object argument if this is a 5007 // non-constructor method. Note that 'I' corresponds the 5008 // conversion-slot index. 5009 bool isObjectArgument = false; 5010 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5011 if (I == 0) 5012 isObjectArgument = true; 5013 else 5014 I--; 5015 } 5016 5017 std::string FnDesc; 5018 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5019 5020 Expr *FromExpr = Conv.Bad.FromExpr; 5021 QualType FromTy = Conv.Bad.getFromType(); 5022 QualType ToTy = Conv.Bad.getToType(); 5023 5024 if (FromTy == S.Context.OverloadTy) { 5025 assert(FromExpr && "overload set argument came from implicit argument?"); 5026 Expr *E = FromExpr->IgnoreParens(); 5027 if (isa<UnaryOperator>(E)) 5028 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5029 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5030 5031 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5032 << (unsigned) FnKind << FnDesc 5033 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5034 << ToTy << Name << I+1; 5035 return; 5036 } 5037 5038 // Do some hand-waving analysis to see if the non-viability is due 5039 // to a qualifier mismatch. 5040 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5041 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5042 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5043 CToTy = RT->getPointeeType(); 5044 else { 5045 // TODO: detect and diagnose the full richness of const mismatches. 5046 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5047 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5048 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5049 } 5050 5051 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5052 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5053 // It is dumb that we have to do this here. 5054 while (isa<ArrayType>(CFromTy)) 5055 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5056 while (isa<ArrayType>(CToTy)) 5057 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5058 5059 Qualifiers FromQs = CFromTy.getQualifiers(); 5060 Qualifiers ToQs = CToTy.getQualifiers(); 5061 5062 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5063 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5064 << (unsigned) FnKind << FnDesc 5065 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5066 << FromTy 5067 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5068 << (unsigned) isObjectArgument << I+1; 5069 return; 5070 } 5071 5072 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5073 assert(CVR && "unexpected qualifiers mismatch"); 5074 5075 if (isObjectArgument) { 5076 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5077 << (unsigned) FnKind << FnDesc 5078 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5079 << FromTy << (CVR - 1); 5080 } else { 5081 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5082 << (unsigned) FnKind << FnDesc 5083 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5084 << FromTy << (CVR - 1) << I+1; 5085 } 5086 return; 5087 } 5088 5089 // Diagnose references or pointers to incomplete types differently, 5090 // since it's far from impossible that the incompleteness triggered 5091 // the failure. 5092 QualType TempFromTy = FromTy.getNonReferenceType(); 5093 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5094 TempFromTy = PTy->getPointeeType(); 5095 if (TempFromTy->isIncompleteType()) { 5096 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5097 << (unsigned) FnKind << FnDesc 5098 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5099 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5100 return; 5101 } 5102 5103 // TODO: specialize more based on the kind of mismatch 5104 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5105 << (unsigned) FnKind << FnDesc 5106 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5107 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5108} 5109 5110void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 5111 unsigned NumFormalArgs) { 5112 // TODO: treat calls to a missing default constructor as a special case 5113 5114 FunctionDecl *Fn = Cand->Function; 5115 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 5116 5117 unsigned MinParams = Fn->getMinRequiredArguments(); 5118 5119 // at least / at most / exactly 5120 // FIXME: variadic templates "at most" should account for parameter packs 5121 unsigned mode, modeCount; 5122 if (NumFormalArgs < MinParams) { 5123 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 5124 (Cand->FailureKind == ovl_fail_bad_deduction && 5125 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 5126 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 5127 mode = 0; // "at least" 5128 else 5129 mode = 2; // "exactly" 5130 modeCount = MinParams; 5131 } else { 5132 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 5133 (Cand->FailureKind == ovl_fail_bad_deduction && 5134 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 5135 if (MinParams != FnTy->getNumArgs()) 5136 mode = 1; // "at most" 5137 else 5138 mode = 2; // "exactly" 5139 modeCount = FnTy->getNumArgs(); 5140 } 5141 5142 std::string Description; 5143 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 5144 5145 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 5146 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 5147 << modeCount << NumFormalArgs; 5148} 5149 5150/// Diagnose a failed template-argument deduction. 5151void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 5152 Expr **Args, unsigned NumArgs) { 5153 FunctionDecl *Fn = Cand->Function; // pattern 5154 5155 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 5156 NamedDecl *ParamD; 5157 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 5158 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 5159 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 5160 switch (Cand->DeductionFailure.Result) { 5161 case Sema::TDK_Success: 5162 llvm_unreachable("TDK_success while diagnosing bad deduction"); 5163 5164 case Sema::TDK_Incomplete: { 5165 assert(ParamD && "no parameter found for incomplete deduction result"); 5166 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 5167 << ParamD->getDeclName(); 5168 return; 5169 } 5170 5171 case Sema::TDK_Inconsistent: 5172 case Sema::TDK_InconsistentQuals: { 5173 assert(ParamD && "no parameter found for inconsistent deduction result"); 5174 int which = 0; 5175 if (isa<TemplateTypeParmDecl>(ParamD)) 5176 which = 0; 5177 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 5178 which = 1; 5179 else { 5180 which = 2; 5181 } 5182 5183 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 5184 << which << ParamD->getDeclName() 5185 << *Cand->DeductionFailure.getFirstArg() 5186 << *Cand->DeductionFailure.getSecondArg(); 5187 return; 5188 } 5189 5190 case Sema::TDK_InvalidExplicitArguments: 5191 assert(ParamD && "no parameter found for invalid explicit arguments"); 5192 if (ParamD->getDeclName()) 5193 S.Diag(Fn->getLocation(), 5194 diag::note_ovl_candidate_explicit_arg_mismatch_named) 5195 << ParamD->getDeclName(); 5196 else { 5197 int index = 0; 5198 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 5199 index = TTP->getIndex(); 5200 else if (NonTypeTemplateParmDecl *NTTP 5201 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 5202 index = NTTP->getIndex(); 5203 else 5204 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 5205 S.Diag(Fn->getLocation(), 5206 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 5207 << (index + 1); 5208 } 5209 return; 5210 5211 case Sema::TDK_TooManyArguments: 5212 case Sema::TDK_TooFewArguments: 5213 DiagnoseArityMismatch(S, Cand, NumArgs); 5214 return; 5215 5216 case Sema::TDK_InstantiationDepth: 5217 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 5218 return; 5219 5220 case Sema::TDK_SubstitutionFailure: { 5221 std::string ArgString; 5222 if (TemplateArgumentList *Args 5223 = Cand->DeductionFailure.getTemplateArgumentList()) 5224 ArgString = S.getTemplateArgumentBindingsText( 5225 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 5226 *Args); 5227 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 5228 << ArgString; 5229 return; 5230 } 5231 5232 // TODO: diagnose these individually, then kill off 5233 // note_ovl_candidate_bad_deduction, which is uselessly vague. 5234 case Sema::TDK_NonDeducedMismatch: 5235 case Sema::TDK_FailedOverloadResolution: 5236 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 5237 return; 5238 } 5239} 5240 5241/// Generates a 'note' diagnostic for an overload candidate. We've 5242/// already generated a primary error at the call site. 5243/// 5244/// It really does need to be a single diagnostic with its caret 5245/// pointed at the candidate declaration. Yes, this creates some 5246/// major challenges of technical writing. Yes, this makes pointing 5247/// out problems with specific arguments quite awkward. It's still 5248/// better than generating twenty screens of text for every failed 5249/// overload. 5250/// 5251/// It would be great to be able to express per-candidate problems 5252/// more richly for those diagnostic clients that cared, but we'd 5253/// still have to be just as careful with the default diagnostics. 5254void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 5255 Expr **Args, unsigned NumArgs) { 5256 FunctionDecl *Fn = Cand->Function; 5257 5258 // Note deleted candidates, but only if they're viable. 5259 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 5260 std::string FnDesc; 5261 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5262 5263 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 5264 << FnKind << FnDesc << Fn->isDeleted(); 5265 return; 5266 } 5267 5268 // We don't really have anything else to say about viable candidates. 5269 if (Cand->Viable) { 5270 S.NoteOverloadCandidate(Fn); 5271 return; 5272 } 5273 5274 switch (Cand->FailureKind) { 5275 case ovl_fail_too_many_arguments: 5276 case ovl_fail_too_few_arguments: 5277 return DiagnoseArityMismatch(S, Cand, NumArgs); 5278 5279 case ovl_fail_bad_deduction: 5280 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 5281 5282 case ovl_fail_trivial_conversion: 5283 case ovl_fail_bad_final_conversion: 5284 case ovl_fail_final_conversion_not_exact: 5285 return S.NoteOverloadCandidate(Fn); 5286 5287 case ovl_fail_bad_conversion: { 5288 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 5289 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 5290 if (Cand->Conversions[I].isBad()) 5291 return DiagnoseBadConversion(S, Cand, I); 5292 5293 // FIXME: this currently happens when we're called from SemaInit 5294 // when user-conversion overload fails. Figure out how to handle 5295 // those conditions and diagnose them well. 5296 return S.NoteOverloadCandidate(Fn); 5297 } 5298 } 5299} 5300 5301void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 5302 // Desugar the type of the surrogate down to a function type, 5303 // retaining as many typedefs as possible while still showing 5304 // the function type (and, therefore, its parameter types). 5305 QualType FnType = Cand->Surrogate->getConversionType(); 5306 bool isLValueReference = false; 5307 bool isRValueReference = false; 5308 bool isPointer = false; 5309 if (const LValueReferenceType *FnTypeRef = 5310 FnType->getAs<LValueReferenceType>()) { 5311 FnType = FnTypeRef->getPointeeType(); 5312 isLValueReference = true; 5313 } else if (const RValueReferenceType *FnTypeRef = 5314 FnType->getAs<RValueReferenceType>()) { 5315 FnType = FnTypeRef->getPointeeType(); 5316 isRValueReference = true; 5317 } 5318 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 5319 FnType = FnTypePtr->getPointeeType(); 5320 isPointer = true; 5321 } 5322 // Desugar down to a function type. 5323 FnType = QualType(FnType->getAs<FunctionType>(), 0); 5324 // Reconstruct the pointer/reference as appropriate. 5325 if (isPointer) FnType = S.Context.getPointerType(FnType); 5326 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 5327 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 5328 5329 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 5330 << FnType; 5331} 5332 5333void NoteBuiltinOperatorCandidate(Sema &S, 5334 const char *Opc, 5335 SourceLocation OpLoc, 5336 OverloadCandidate *Cand) { 5337 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 5338 std::string TypeStr("operator"); 5339 TypeStr += Opc; 5340 TypeStr += "("; 5341 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 5342 if (Cand->Conversions.size() == 1) { 5343 TypeStr += ")"; 5344 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 5345 } else { 5346 TypeStr += ", "; 5347 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 5348 TypeStr += ")"; 5349 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 5350 } 5351} 5352 5353void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 5354 OverloadCandidate *Cand) { 5355 unsigned NoOperands = Cand->Conversions.size(); 5356 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 5357 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 5358 if (ICS.isBad()) break; // all meaningless after first invalid 5359 if (!ICS.isAmbiguous()) continue; 5360 5361 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 5362 S.PDiag(diag::note_ambiguous_type_conversion)); 5363 } 5364} 5365 5366SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 5367 if (Cand->Function) 5368 return Cand->Function->getLocation(); 5369 if (Cand->IsSurrogate) 5370 return Cand->Surrogate->getLocation(); 5371 return SourceLocation(); 5372} 5373 5374struct CompareOverloadCandidatesForDisplay { 5375 Sema &S; 5376 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 5377 5378 bool operator()(const OverloadCandidate *L, 5379 const OverloadCandidate *R) { 5380 // Fast-path this check. 5381 if (L == R) return false; 5382 5383 // Order first by viability. 5384 if (L->Viable) { 5385 if (!R->Viable) return true; 5386 5387 // TODO: introduce a tri-valued comparison for overload 5388 // candidates. Would be more worthwhile if we had a sort 5389 // that could exploit it. 5390 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; 5391 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; 5392 } else if (R->Viable) 5393 return false; 5394 5395 assert(L->Viable == R->Viable); 5396 5397 // Criteria by which we can sort non-viable candidates: 5398 if (!L->Viable) { 5399 // 1. Arity mismatches come after other candidates. 5400 if (L->FailureKind == ovl_fail_too_many_arguments || 5401 L->FailureKind == ovl_fail_too_few_arguments) 5402 return false; 5403 if (R->FailureKind == ovl_fail_too_many_arguments || 5404 R->FailureKind == ovl_fail_too_few_arguments) 5405 return true; 5406 5407 // 2. Bad conversions come first and are ordered by the number 5408 // of bad conversions and quality of good conversions. 5409 if (L->FailureKind == ovl_fail_bad_conversion) { 5410 if (R->FailureKind != ovl_fail_bad_conversion) 5411 return true; 5412 5413 // If there's any ordering between the defined conversions... 5414 // FIXME: this might not be transitive. 5415 assert(L->Conversions.size() == R->Conversions.size()); 5416 5417 int leftBetter = 0; 5418 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 5419 for (unsigned E = L->Conversions.size(); I != E; ++I) { 5420 switch (S.CompareImplicitConversionSequences(L->Conversions[I], 5421 R->Conversions[I])) { 5422 case ImplicitConversionSequence::Better: 5423 leftBetter++; 5424 break; 5425 5426 case ImplicitConversionSequence::Worse: 5427 leftBetter--; 5428 break; 5429 5430 case ImplicitConversionSequence::Indistinguishable: 5431 break; 5432 } 5433 } 5434 if (leftBetter > 0) return true; 5435 if (leftBetter < 0) return false; 5436 5437 } else if (R->FailureKind == ovl_fail_bad_conversion) 5438 return false; 5439 5440 // TODO: others? 5441 } 5442 5443 // Sort everything else by location. 5444 SourceLocation LLoc = GetLocationForCandidate(L); 5445 SourceLocation RLoc = GetLocationForCandidate(R); 5446 5447 // Put candidates without locations (e.g. builtins) at the end. 5448 if (LLoc.isInvalid()) return false; 5449 if (RLoc.isInvalid()) return true; 5450 5451 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 5452 } 5453}; 5454 5455/// CompleteNonViableCandidate - Normally, overload resolution only 5456/// computes up to the first 5457void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 5458 Expr **Args, unsigned NumArgs) { 5459 assert(!Cand->Viable); 5460 5461 // Don't do anything on failures other than bad conversion. 5462 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 5463 5464 // Skip forward to the first bad conversion. 5465 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 5466 unsigned ConvCount = Cand->Conversions.size(); 5467 while (true) { 5468 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 5469 ConvIdx++; 5470 if (Cand->Conversions[ConvIdx - 1].isBad()) 5471 break; 5472 } 5473 5474 if (ConvIdx == ConvCount) 5475 return; 5476 5477 assert(!Cand->Conversions[ConvIdx].isInitialized() && 5478 "remaining conversion is initialized?"); 5479 5480 // FIXME: this should probably be preserved from the overload 5481 // operation somehow. 5482 bool SuppressUserConversions = false; 5483 5484 const FunctionProtoType* Proto; 5485 unsigned ArgIdx = ConvIdx; 5486 5487 if (Cand->IsSurrogate) { 5488 QualType ConvType 5489 = Cand->Surrogate->getConversionType().getNonReferenceType(); 5490 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5491 ConvType = ConvPtrType->getPointeeType(); 5492 Proto = ConvType->getAs<FunctionProtoType>(); 5493 ArgIdx--; 5494 } else if (Cand->Function) { 5495 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 5496 if (isa<CXXMethodDecl>(Cand->Function) && 5497 !isa<CXXConstructorDecl>(Cand->Function)) 5498 ArgIdx--; 5499 } else { 5500 // Builtin binary operator with a bad first conversion. 5501 assert(ConvCount <= 3); 5502 for (; ConvIdx != ConvCount; ++ConvIdx) 5503 Cand->Conversions[ConvIdx] 5504 = TryCopyInitialization(S, Args[ConvIdx], 5505 Cand->BuiltinTypes.ParamTypes[ConvIdx], 5506 SuppressUserConversions, 5507 /*InOverloadResolution*/ true); 5508 return; 5509 } 5510 5511 // Fill in the rest of the conversions. 5512 unsigned NumArgsInProto = Proto->getNumArgs(); 5513 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 5514 if (ArgIdx < NumArgsInProto) 5515 Cand->Conversions[ConvIdx] 5516 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 5517 SuppressUserConversions, 5518 /*InOverloadResolution=*/true); 5519 else 5520 Cand->Conversions[ConvIdx].setEllipsis(); 5521 } 5522} 5523 5524} // end anonymous namespace 5525 5526/// PrintOverloadCandidates - When overload resolution fails, prints 5527/// diagnostic messages containing the candidates in the candidate 5528/// set. 5529void 5530Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 5531 OverloadCandidateDisplayKind OCD, 5532 Expr **Args, unsigned NumArgs, 5533 const char *Opc, 5534 SourceLocation OpLoc) { 5535 // Sort the candidates by viability and position. Sorting directly would 5536 // be prohibitive, so we make a set of pointers and sort those. 5537 llvm::SmallVector<OverloadCandidate*, 32> Cands; 5538 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 5539 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5540 LastCand = CandidateSet.end(); 5541 Cand != LastCand; ++Cand) { 5542 if (Cand->Viable) 5543 Cands.push_back(Cand); 5544 else if (OCD == OCD_AllCandidates) { 5545 CompleteNonViableCandidate(*this, Cand, Args, NumArgs); 5546 Cands.push_back(Cand); 5547 } 5548 } 5549 5550 std::sort(Cands.begin(), Cands.end(), 5551 CompareOverloadCandidatesForDisplay(*this)); 5552 5553 bool ReportedAmbiguousConversions = false; 5554 5555 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 5556 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 5557 OverloadCandidate *Cand = *I; 5558 5559 if (Cand->Function) 5560 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 5561 else if (Cand->IsSurrogate) 5562 NoteSurrogateCandidate(*this, Cand); 5563 5564 // This a builtin candidate. We do not, in general, want to list 5565 // every possible builtin candidate. 5566 else if (Cand->Viable) { 5567 // Generally we only see ambiguities including viable builtin 5568 // operators if overload resolution got screwed up by an 5569 // ambiguous user-defined conversion. 5570 // 5571 // FIXME: It's quite possible for different conversions to see 5572 // different ambiguities, though. 5573 if (!ReportedAmbiguousConversions) { 5574 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 5575 ReportedAmbiguousConversions = true; 5576 } 5577 5578 // If this is a viable builtin, print it. 5579 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 5580 } 5581 } 5582} 5583 5584static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 5585 if (isa<UnresolvedLookupExpr>(E)) 5586 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 5587 5588 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 5589} 5590 5591/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 5592/// an overloaded function (C++ [over.over]), where @p From is an 5593/// expression with overloaded function type and @p ToType is the type 5594/// we're trying to resolve to. For example: 5595/// 5596/// @code 5597/// int f(double); 5598/// int f(int); 5599/// 5600/// int (*pfd)(double) = f; // selects f(double) 5601/// @endcode 5602/// 5603/// This routine returns the resulting FunctionDecl if it could be 5604/// resolved, and NULL otherwise. When @p Complain is true, this 5605/// routine will emit diagnostics if there is an error. 5606FunctionDecl * 5607Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 5608 bool Complain, 5609 DeclAccessPair &FoundResult) { 5610 QualType FunctionType = ToType; 5611 bool IsMember = false; 5612 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 5613 FunctionType = ToTypePtr->getPointeeType(); 5614 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 5615 FunctionType = ToTypeRef->getPointeeType(); 5616 else if (const MemberPointerType *MemTypePtr = 5617 ToType->getAs<MemberPointerType>()) { 5618 FunctionType = MemTypePtr->getPointeeType(); 5619 IsMember = true; 5620 } 5621 5622 // C++ [over.over]p1: 5623 // [...] [Note: any redundant set of parentheses surrounding the 5624 // overloaded function name is ignored (5.1). ] 5625 // C++ [over.over]p1: 5626 // [...] The overloaded function name can be preceded by the & 5627 // operator. 5628 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5629 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 5630 if (OvlExpr->hasExplicitTemplateArgs()) { 5631 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 5632 ExplicitTemplateArgs = &ETABuffer; 5633 } 5634 5635 // We expect a pointer or reference to function, or a function pointer. 5636 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 5637 if (!FunctionType->isFunctionType()) { 5638 if (Complain) 5639 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 5640 << OvlExpr->getName() << ToType; 5641 5642 return 0; 5643 } 5644 5645 assert(From->getType() == Context.OverloadTy); 5646 5647 // Look through all of the overloaded functions, searching for one 5648 // whose type matches exactly. 5649 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 5650 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 5651 5652 bool FoundNonTemplateFunction = false; 5653 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5654 E = OvlExpr->decls_end(); I != E; ++I) { 5655 // Look through any using declarations to find the underlying function. 5656 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 5657 5658 // C++ [over.over]p3: 5659 // Non-member functions and static member functions match 5660 // targets of type "pointer-to-function" or "reference-to-function." 5661 // Nonstatic member functions match targets of 5662 // type "pointer-to-member-function." 5663 // Note that according to DR 247, the containing class does not matter. 5664 5665 if (FunctionTemplateDecl *FunctionTemplate 5666 = dyn_cast<FunctionTemplateDecl>(Fn)) { 5667 if (CXXMethodDecl *Method 5668 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 5669 // Skip non-static function templates when converting to pointer, and 5670 // static when converting to member pointer. 5671 if (Method->isStatic() == IsMember) 5672 continue; 5673 } else if (IsMember) 5674 continue; 5675 5676 // C++ [over.over]p2: 5677 // If the name is a function template, template argument deduction is 5678 // done (14.8.2.2), and if the argument deduction succeeds, the 5679 // resulting template argument list is used to generate a single 5680 // function template specialization, which is added to the set of 5681 // overloaded functions considered. 5682 // FIXME: We don't really want to build the specialization here, do we? 5683 FunctionDecl *Specialization = 0; 5684 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 5685 if (TemplateDeductionResult Result 5686 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 5687 FunctionType, Specialization, Info)) { 5688 // FIXME: make a note of the failed deduction for diagnostics. 5689 (void)Result; 5690 } else { 5691 // FIXME: If the match isn't exact, shouldn't we just drop this as 5692 // a candidate? Find a testcase before changing the code. 5693 assert(FunctionType 5694 == Context.getCanonicalType(Specialization->getType())); 5695 Matches.push_back(std::make_pair(I.getPair(), 5696 cast<FunctionDecl>(Specialization->getCanonicalDecl()))); 5697 } 5698 5699 continue; 5700 } 5701 5702 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5703 // Skip non-static functions when converting to pointer, and static 5704 // when converting to member pointer. 5705 if (Method->isStatic() == IsMember) 5706 continue; 5707 5708 // If we have explicit template arguments, skip non-templates. 5709 if (OvlExpr->hasExplicitTemplateArgs()) 5710 continue; 5711 } else if (IsMember) 5712 continue; 5713 5714 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 5715 QualType ResultTy; 5716 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 5717 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 5718 ResultTy)) { 5719 Matches.push_back(std::make_pair(I.getPair(), 5720 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 5721 FoundNonTemplateFunction = true; 5722 } 5723 } 5724 } 5725 5726 // If there were 0 or 1 matches, we're done. 5727 if (Matches.empty()) { 5728 if (Complain) { 5729 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 5730 << OvlExpr->getName() << FunctionType; 5731 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5732 E = OvlExpr->decls_end(); 5733 I != E; ++I) 5734 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 5735 NoteOverloadCandidate(F); 5736 } 5737 5738 return 0; 5739 } else if (Matches.size() == 1) { 5740 FunctionDecl *Result = Matches[0].second; 5741 FoundResult = Matches[0].first; 5742 MarkDeclarationReferenced(From->getLocStart(), Result); 5743 if (Complain) 5744 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 5745 return Result; 5746 } 5747 5748 // C++ [over.over]p4: 5749 // If more than one function is selected, [...] 5750 if (!FoundNonTemplateFunction) { 5751 // [...] and any given function template specialization F1 is 5752 // eliminated if the set contains a second function template 5753 // specialization whose function template is more specialized 5754 // than the function template of F1 according to the partial 5755 // ordering rules of 14.5.5.2. 5756 5757 // The algorithm specified above is quadratic. We instead use a 5758 // two-pass algorithm (similar to the one used to identify the 5759 // best viable function in an overload set) that identifies the 5760 // best function template (if it exists). 5761 5762 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 5763 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 5764 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 5765 5766 UnresolvedSetIterator Result = 5767 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 5768 TPOC_Other, From->getLocStart(), 5769 PDiag(), 5770 PDiag(diag::err_addr_ovl_ambiguous) 5771 << Matches[0].second->getDeclName(), 5772 PDiag(diag::note_ovl_candidate) 5773 << (unsigned) oc_function_template); 5774 assert(Result != MatchesCopy.end() && "no most-specialized template"); 5775 MarkDeclarationReferenced(From->getLocStart(), *Result); 5776 FoundResult = Matches[Result - MatchesCopy.begin()].first; 5777 if (Complain) { 5778 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 5779 DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); 5780 } 5781 return cast<FunctionDecl>(*Result); 5782 } 5783 5784 // [...] any function template specializations in the set are 5785 // eliminated if the set also contains a non-template function, [...] 5786 for (unsigned I = 0, N = Matches.size(); I != N; ) { 5787 if (Matches[I].second->getPrimaryTemplate() == 0) 5788 ++I; 5789 else { 5790 Matches[I] = Matches[--N]; 5791 Matches.set_size(N); 5792 } 5793 } 5794 5795 // [...] After such eliminations, if any, there shall remain exactly one 5796 // selected function. 5797 if (Matches.size() == 1) { 5798 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 5799 FoundResult = Matches[0].first; 5800 if (Complain) { 5801 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 5802 DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); 5803 } 5804 return cast<FunctionDecl>(Matches[0].second); 5805 } 5806 5807 // FIXME: We should probably return the same thing that BestViableFunction 5808 // returns (even if we issue the diagnostics here). 5809 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 5810 << Matches[0].second->getDeclName(); 5811 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 5812 NoteOverloadCandidate(Matches[I].second); 5813 return 0; 5814} 5815 5816/// \brief Given an expression that refers to an overloaded function, try to 5817/// resolve that overloaded function expression down to a single function. 5818/// 5819/// This routine can only resolve template-ids that refer to a single function 5820/// template, where that template-id refers to a single template whose template 5821/// arguments are either provided by the template-id or have defaults, 5822/// as described in C++0x [temp.arg.explicit]p3. 5823FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 5824 // C++ [over.over]p1: 5825 // [...] [Note: any redundant set of parentheses surrounding the 5826 // overloaded function name is ignored (5.1). ] 5827 // C++ [over.over]p1: 5828 // [...] The overloaded function name can be preceded by the & 5829 // operator. 5830 5831 if (From->getType() != Context.OverloadTy) 5832 return 0; 5833 5834 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5835 5836 // If we didn't actually find any template-ids, we're done. 5837 if (!OvlExpr->hasExplicitTemplateArgs()) 5838 return 0; 5839 5840 TemplateArgumentListInfo ExplicitTemplateArgs; 5841 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 5842 5843 // Look through all of the overloaded functions, searching for one 5844 // whose type matches exactly. 5845 FunctionDecl *Matched = 0; 5846 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5847 E = OvlExpr->decls_end(); I != E; ++I) { 5848 // C++0x [temp.arg.explicit]p3: 5849 // [...] In contexts where deduction is done and fails, or in contexts 5850 // where deduction is not done, if a template argument list is 5851 // specified and it, along with any default template arguments, 5852 // identifies a single function template specialization, then the 5853 // template-id is an lvalue for the function template specialization. 5854 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 5855 5856 // C++ [over.over]p2: 5857 // If the name is a function template, template argument deduction is 5858 // done (14.8.2.2), and if the argument deduction succeeds, the 5859 // resulting template argument list is used to generate a single 5860 // function template specialization, which is added to the set of 5861 // overloaded functions considered. 5862 FunctionDecl *Specialization = 0; 5863 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 5864 if (TemplateDeductionResult Result 5865 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 5866 Specialization, Info)) { 5867 // FIXME: make a note of the failed deduction for diagnostics. 5868 (void)Result; 5869 continue; 5870 } 5871 5872 // Multiple matches; we can't resolve to a single declaration. 5873 if (Matched) 5874 return 0; 5875 5876 Matched = Specialization; 5877 } 5878 5879 return Matched; 5880} 5881 5882/// \brief Add a single candidate to the overload set. 5883static void AddOverloadedCallCandidate(Sema &S, 5884 DeclAccessPair FoundDecl, 5885 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5886 Expr **Args, unsigned NumArgs, 5887 OverloadCandidateSet &CandidateSet, 5888 bool PartialOverloading) { 5889 NamedDecl *Callee = FoundDecl.getDecl(); 5890 if (isa<UsingShadowDecl>(Callee)) 5891 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 5892 5893 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 5894 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 5895 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 5896 false, PartialOverloading); 5897 return; 5898 } 5899 5900 if (FunctionTemplateDecl *FuncTemplate 5901 = dyn_cast<FunctionTemplateDecl>(Callee)) { 5902 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 5903 ExplicitTemplateArgs, 5904 Args, NumArgs, CandidateSet); 5905 return; 5906 } 5907 5908 assert(false && "unhandled case in overloaded call candidate"); 5909 5910 // do nothing? 5911} 5912 5913/// \brief Add the overload candidates named by callee and/or found by argument 5914/// dependent lookup to the given overload set. 5915void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 5916 Expr **Args, unsigned NumArgs, 5917 OverloadCandidateSet &CandidateSet, 5918 bool PartialOverloading) { 5919 5920#ifndef NDEBUG 5921 // Verify that ArgumentDependentLookup is consistent with the rules 5922 // in C++0x [basic.lookup.argdep]p3: 5923 // 5924 // Let X be the lookup set produced by unqualified lookup (3.4.1) 5925 // and let Y be the lookup set produced by argument dependent 5926 // lookup (defined as follows). If X contains 5927 // 5928 // -- a declaration of a class member, or 5929 // 5930 // -- a block-scope function declaration that is not a 5931 // using-declaration, or 5932 // 5933 // -- a declaration that is neither a function or a function 5934 // template 5935 // 5936 // then Y is empty. 5937 5938 if (ULE->requiresADL()) { 5939 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 5940 E = ULE->decls_end(); I != E; ++I) { 5941 assert(!(*I)->getDeclContext()->isRecord()); 5942 assert(isa<UsingShadowDecl>(*I) || 5943 !(*I)->getDeclContext()->isFunctionOrMethod()); 5944 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 5945 } 5946 } 5947#endif 5948 5949 // It would be nice to avoid this copy. 5950 TemplateArgumentListInfo TABuffer; 5951 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 5952 if (ULE->hasExplicitTemplateArgs()) { 5953 ULE->copyTemplateArgumentsInto(TABuffer); 5954 ExplicitTemplateArgs = &TABuffer; 5955 } 5956 5957 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 5958 E = ULE->decls_end(); I != E; ++I) 5959 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 5960 Args, NumArgs, CandidateSet, 5961 PartialOverloading); 5962 5963 if (ULE->requiresADL()) 5964 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 5965 Args, NumArgs, 5966 ExplicitTemplateArgs, 5967 CandidateSet, 5968 PartialOverloading); 5969} 5970 5971static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 5972 Expr **Args, unsigned NumArgs) { 5973 Fn->Destroy(SemaRef.Context); 5974 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 5975 Args[Arg]->Destroy(SemaRef.Context); 5976 return SemaRef.ExprError(); 5977} 5978 5979/// Attempts to recover from a call where no functions were found. 5980/// 5981/// Returns true if new candidates were found. 5982static Sema::OwningExprResult 5983BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 5984 UnresolvedLookupExpr *ULE, 5985 SourceLocation LParenLoc, 5986 Expr **Args, unsigned NumArgs, 5987 SourceLocation *CommaLocs, 5988 SourceLocation RParenLoc) { 5989 5990 CXXScopeSpec SS; 5991 if (ULE->getQualifier()) { 5992 SS.setScopeRep(ULE->getQualifier()); 5993 SS.setRange(ULE->getQualifierRange()); 5994 } 5995 5996 TemplateArgumentListInfo TABuffer; 5997 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 5998 if (ULE->hasExplicitTemplateArgs()) { 5999 ULE->copyTemplateArgumentsInto(TABuffer); 6000 ExplicitTemplateArgs = &TABuffer; 6001 } 6002 6003 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6004 Sema::LookupOrdinaryName); 6005 if (SemaRef.DiagnoseEmptyLookup(S, SS, R)) 6006 return Destroy(SemaRef, Fn, Args, NumArgs); 6007 6008 assert(!R.empty() && "lookup results empty despite recovery"); 6009 6010 // Build an implicit member call if appropriate. Just drop the 6011 // casts and such from the call, we don't really care. 6012 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 6013 if ((*R.begin())->isCXXClassMember()) 6014 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6015 else if (ExplicitTemplateArgs) 6016 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6017 else 6018 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6019 6020 if (NewFn.isInvalid()) 6021 return Destroy(SemaRef, Fn, Args, NumArgs); 6022 6023 Fn->Destroy(SemaRef.Context); 6024 6025 // This shouldn't cause an infinite loop because we're giving it 6026 // an expression with non-empty lookup results, which should never 6027 // end up here. 6028 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 6029 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 6030 CommaLocs, RParenLoc); 6031} 6032 6033/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6034/// (which eventually refers to the declaration Func) and the call 6035/// arguments Args/NumArgs, attempt to resolve the function call down 6036/// to a specific function. If overload resolution succeeds, returns 6037/// the function declaration produced by overload 6038/// resolution. Otherwise, emits diagnostics, deletes all of the 6039/// arguments and Fn, and returns NULL. 6040Sema::OwningExprResult 6041Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6042 SourceLocation LParenLoc, 6043 Expr **Args, unsigned NumArgs, 6044 SourceLocation *CommaLocs, 6045 SourceLocation RParenLoc) { 6046#ifndef NDEBUG 6047 if (ULE->requiresADL()) { 6048 // To do ADL, we must have found an unqualified name. 6049 assert(!ULE->getQualifier() && "qualified name with ADL"); 6050 6051 // We don't perform ADL for implicit declarations of builtins. 6052 // Verify that this was correctly set up. 6053 FunctionDecl *F; 6054 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6055 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6056 F->getBuiltinID() && F->isImplicit()) 6057 assert(0 && "performing ADL for builtin"); 6058 6059 // We don't perform ADL in C. 6060 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6061 } 6062#endif 6063 6064 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 6065 6066 // Add the functions denoted by the callee to the set of candidate 6067 // functions, including those from argument-dependent lookup. 6068 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 6069 6070 // If we found nothing, try to recover. 6071 // AddRecoveryCallCandidates diagnoses the error itself, so we just 6072 // bailout out if it fails. 6073 if (CandidateSet.empty()) 6074 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 6075 CommaLocs, RParenLoc); 6076 6077 OverloadCandidateSet::iterator Best; 6078 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 6079 case OR_Success: { 6080 FunctionDecl *FDecl = Best->Function; 6081 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 6082 DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); 6083 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 6084 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 6085 } 6086 6087 case OR_No_Viable_Function: 6088 Diag(Fn->getSourceRange().getBegin(), 6089 diag::err_ovl_no_viable_function_in_call) 6090 << ULE->getName() << Fn->getSourceRange(); 6091 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6092 break; 6093 6094 case OR_Ambiguous: 6095 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 6096 << ULE->getName() << Fn->getSourceRange(); 6097 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6098 break; 6099 6100 case OR_Deleted: 6101 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 6102 << Best->Function->isDeleted() 6103 << ULE->getName() 6104 << Fn->getSourceRange(); 6105 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6106 break; 6107 } 6108 6109 // Overload resolution failed. Destroy all of the subexpressions and 6110 // return NULL. 6111 Fn->Destroy(Context); 6112 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6113 Args[Arg]->Destroy(Context); 6114 return ExprError(); 6115} 6116 6117static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 6118 return Functions.size() > 1 || 6119 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 6120} 6121 6122/// \brief Create a unary operation that may resolve to an overloaded 6123/// operator. 6124/// 6125/// \param OpLoc The location of the operator itself (e.g., '*'). 6126/// 6127/// \param OpcIn The UnaryOperator::Opcode that describes this 6128/// operator. 6129/// 6130/// \param Functions The set of non-member functions that will be 6131/// considered by overload resolution. The caller needs to build this 6132/// set based on the context using, e.g., 6133/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6134/// set should not contain any member functions; those will be added 6135/// by CreateOverloadedUnaryOp(). 6136/// 6137/// \param input The input argument. 6138Sema::OwningExprResult 6139Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 6140 const UnresolvedSetImpl &Fns, 6141 ExprArg input) { 6142 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 6143 Expr *Input = (Expr *)input.get(); 6144 6145 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 6146 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 6147 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6148 6149 Expr *Args[2] = { Input, 0 }; 6150 unsigned NumArgs = 1; 6151 6152 // For post-increment and post-decrement, add the implicit '0' as 6153 // the second argument, so that we know this is a post-increment or 6154 // post-decrement. 6155 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 6156 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 6157 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 6158 SourceLocation()); 6159 NumArgs = 2; 6160 } 6161 6162 if (Input->isTypeDependent()) { 6163 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6164 UnresolvedLookupExpr *Fn 6165 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6166 0, SourceRange(), OpName, OpLoc, 6167 /*ADL*/ true, IsOverloaded(Fns)); 6168 Fn->addDecls(Fns.begin(), Fns.end()); 6169 6170 input.release(); 6171 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6172 &Args[0], NumArgs, 6173 Context.DependentTy, 6174 OpLoc)); 6175 } 6176 6177 // Build an empty overload set. 6178 OverloadCandidateSet CandidateSet(OpLoc); 6179 6180 // Add the candidates from the given function set. 6181 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 6182 6183 // Add operator candidates that are member functions. 6184 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6185 6186 // Add candidates from ADL. 6187 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6188 Args, NumArgs, 6189 /*ExplicitTemplateArgs*/ 0, 6190 CandidateSet); 6191 6192 // Add builtin operator candidates. 6193 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6194 6195 // Perform overload resolution. 6196 OverloadCandidateSet::iterator Best; 6197 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6198 case OR_Success: { 6199 // We found a built-in operator or an overloaded operator. 6200 FunctionDecl *FnDecl = Best->Function; 6201 6202 if (FnDecl) { 6203 // We matched an overloaded operator. Build a call to that 6204 // operator. 6205 6206 // Convert the arguments. 6207 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6208 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 6209 6210 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 6211 Best->FoundDecl, Method)) 6212 return ExprError(); 6213 } else { 6214 // Convert the arguments. 6215 OwningExprResult InputInit 6216 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6217 FnDecl->getParamDecl(0)), 6218 SourceLocation(), 6219 move(input)); 6220 if (InputInit.isInvalid()) 6221 return ExprError(); 6222 6223 input = move(InputInit); 6224 Input = (Expr *)input.get(); 6225 } 6226 6227 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6228 6229 // Determine the result type 6230 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 6231 6232 // Build the actual expression node. 6233 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6234 SourceLocation()); 6235 UsualUnaryConversions(FnExpr); 6236 6237 input.release(); 6238 Args[0] = Input; 6239 ExprOwningPtr<CallExpr> TheCall(this, 6240 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6241 Args, NumArgs, ResultTy, OpLoc)); 6242 6243 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6244 FnDecl)) 6245 return ExprError(); 6246 6247 return MaybeBindToTemporary(TheCall.release()); 6248 } else { 6249 // We matched a built-in operator. Convert the arguments, then 6250 // break out so that we will build the appropriate built-in 6251 // operator node. 6252 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 6253 Best->Conversions[0], AA_Passing)) 6254 return ExprError(); 6255 6256 break; 6257 } 6258 } 6259 6260 case OR_No_Viable_Function: 6261 // No viable function; fall through to handling this as a 6262 // built-in operator, which will produce an error message for us. 6263 break; 6264 6265 case OR_Ambiguous: 6266 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6267 << UnaryOperator::getOpcodeStr(Opc) 6268 << Input->getSourceRange(); 6269 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 6270 UnaryOperator::getOpcodeStr(Opc), OpLoc); 6271 return ExprError(); 6272 6273 case OR_Deleted: 6274 Diag(OpLoc, diag::err_ovl_deleted_oper) 6275 << Best->Function->isDeleted() 6276 << UnaryOperator::getOpcodeStr(Opc) 6277 << Input->getSourceRange(); 6278 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6279 return ExprError(); 6280 } 6281 6282 // Either we found no viable overloaded operator or we matched a 6283 // built-in operator. In either case, fall through to trying to 6284 // build a built-in operation. 6285 input.release(); 6286 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 6287} 6288 6289/// \brief Create a binary operation that may resolve to an overloaded 6290/// operator. 6291/// 6292/// \param OpLoc The location of the operator itself (e.g., '+'). 6293/// 6294/// \param OpcIn The BinaryOperator::Opcode that describes this 6295/// operator. 6296/// 6297/// \param Functions The set of non-member functions that will be 6298/// considered by overload resolution. The caller needs to build this 6299/// set based on the context using, e.g., 6300/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6301/// set should not contain any member functions; those will be added 6302/// by CreateOverloadedBinOp(). 6303/// 6304/// \param LHS Left-hand argument. 6305/// \param RHS Right-hand argument. 6306Sema::OwningExprResult 6307Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 6308 unsigned OpcIn, 6309 const UnresolvedSetImpl &Fns, 6310 Expr *LHS, Expr *RHS) { 6311 Expr *Args[2] = { LHS, RHS }; 6312 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 6313 6314 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 6315 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 6316 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6317 6318 // If either side is type-dependent, create an appropriate dependent 6319 // expression. 6320 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6321 if (Fns.empty()) { 6322 // If there are no functions to store, just build a dependent 6323 // BinaryOperator or CompoundAssignment. 6324 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 6325 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 6326 Context.DependentTy, OpLoc)); 6327 6328 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 6329 Context.DependentTy, 6330 Context.DependentTy, 6331 Context.DependentTy, 6332 OpLoc)); 6333 } 6334 6335 // FIXME: save results of ADL from here? 6336 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6337 UnresolvedLookupExpr *Fn 6338 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6339 0, SourceRange(), OpName, OpLoc, 6340 /*ADL*/ true, IsOverloaded(Fns)); 6341 6342 Fn->addDecls(Fns.begin(), Fns.end()); 6343 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6344 Args, 2, 6345 Context.DependentTy, 6346 OpLoc)); 6347 } 6348 6349 // If this is the .* operator, which is not overloadable, just 6350 // create a built-in binary operator. 6351 if (Opc == BinaryOperator::PtrMemD) 6352 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6353 6354 // If this is the assignment operator, we only perform overload resolution 6355 // if the left-hand side is a class or enumeration type. This is actually 6356 // a hack. The standard requires that we do overload resolution between the 6357 // various built-in candidates, but as DR507 points out, this can lead to 6358 // problems. So we do it this way, which pretty much follows what GCC does. 6359 // Note that we go the traditional code path for compound assignment forms. 6360 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 6361 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6362 6363 // Build an empty overload set. 6364 OverloadCandidateSet CandidateSet(OpLoc); 6365 6366 // Add the candidates from the given function set. 6367 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 6368 6369 // Add operator candidates that are member functions. 6370 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6371 6372 // Add candidates from ADL. 6373 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6374 Args, 2, 6375 /*ExplicitTemplateArgs*/ 0, 6376 CandidateSet); 6377 6378 // Add builtin operator candidates. 6379 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6380 6381 // Perform overload resolution. 6382 OverloadCandidateSet::iterator Best; 6383 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6384 case OR_Success: { 6385 // We found a built-in operator or an overloaded operator. 6386 FunctionDecl *FnDecl = Best->Function; 6387 6388 if (FnDecl) { 6389 // We matched an overloaded operator. Build a call to that 6390 // operator. 6391 6392 // Convert the arguments. 6393 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6394 // Best->Access is only meaningful for class members. 6395 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 6396 6397 OwningExprResult Arg1 6398 = PerformCopyInitialization( 6399 InitializedEntity::InitializeParameter( 6400 FnDecl->getParamDecl(0)), 6401 SourceLocation(), 6402 Owned(Args[1])); 6403 if (Arg1.isInvalid()) 6404 return ExprError(); 6405 6406 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6407 Best->FoundDecl, Method)) 6408 return ExprError(); 6409 6410 Args[1] = RHS = Arg1.takeAs<Expr>(); 6411 } else { 6412 // Convert the arguments. 6413 OwningExprResult Arg0 6414 = PerformCopyInitialization( 6415 InitializedEntity::InitializeParameter( 6416 FnDecl->getParamDecl(0)), 6417 SourceLocation(), 6418 Owned(Args[0])); 6419 if (Arg0.isInvalid()) 6420 return ExprError(); 6421 6422 OwningExprResult Arg1 6423 = PerformCopyInitialization( 6424 InitializedEntity::InitializeParameter( 6425 FnDecl->getParamDecl(1)), 6426 SourceLocation(), 6427 Owned(Args[1])); 6428 if (Arg1.isInvalid()) 6429 return ExprError(); 6430 Args[0] = LHS = Arg0.takeAs<Expr>(); 6431 Args[1] = RHS = Arg1.takeAs<Expr>(); 6432 } 6433 6434 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6435 6436 // Determine the result type 6437 QualType ResultTy 6438 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 6439 ResultTy = ResultTy.getNonReferenceType(); 6440 6441 // Build the actual expression node. 6442 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6443 OpLoc); 6444 UsualUnaryConversions(FnExpr); 6445 6446 ExprOwningPtr<CXXOperatorCallExpr> 6447 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6448 Args, 2, ResultTy, 6449 OpLoc)); 6450 6451 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6452 FnDecl)) 6453 return ExprError(); 6454 6455 return MaybeBindToTemporary(TheCall.release()); 6456 } else { 6457 // We matched a built-in operator. Convert the arguments, then 6458 // break out so that we will build the appropriate built-in 6459 // operator node. 6460 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6461 Best->Conversions[0], AA_Passing) || 6462 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6463 Best->Conversions[1], AA_Passing)) 6464 return ExprError(); 6465 6466 break; 6467 } 6468 } 6469 6470 case OR_No_Viable_Function: { 6471 // C++ [over.match.oper]p9: 6472 // If the operator is the operator , [...] and there are no 6473 // viable functions, then the operator is assumed to be the 6474 // built-in operator and interpreted according to clause 5. 6475 if (Opc == BinaryOperator::Comma) 6476 break; 6477 6478 // For class as left operand for assignment or compound assigment operator 6479 // do not fall through to handling in built-in, but report that no overloaded 6480 // assignment operator found 6481 OwningExprResult Result = ExprError(); 6482 if (Args[0]->getType()->isRecordType() && 6483 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 6484 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6485 << BinaryOperator::getOpcodeStr(Opc) 6486 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6487 } else { 6488 // No viable function; try to create a built-in operation, which will 6489 // produce an error. Then, show the non-viable candidates. 6490 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6491 } 6492 assert(Result.isInvalid() && 6493 "C++ binary operator overloading is missing candidates!"); 6494 if (Result.isInvalid()) 6495 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6496 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6497 return move(Result); 6498 } 6499 6500 case OR_Ambiguous: 6501 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6502 << BinaryOperator::getOpcodeStr(Opc) 6503 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6504 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6505 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6506 return ExprError(); 6507 6508 case OR_Deleted: 6509 Diag(OpLoc, diag::err_ovl_deleted_oper) 6510 << Best->Function->isDeleted() 6511 << BinaryOperator::getOpcodeStr(Opc) 6512 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6513 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 6514 return ExprError(); 6515 } 6516 6517 // We matched a built-in operator; build it. 6518 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6519} 6520 6521Action::OwningExprResult 6522Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 6523 SourceLocation RLoc, 6524 ExprArg Base, ExprArg Idx) { 6525 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 6526 static_cast<Expr*>(Idx.get()) }; 6527 DeclarationName OpName = 6528 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 6529 6530 // If either side is type-dependent, create an appropriate dependent 6531 // expression. 6532 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6533 6534 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6535 UnresolvedLookupExpr *Fn 6536 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6537 0, SourceRange(), OpName, LLoc, 6538 /*ADL*/ true, /*Overloaded*/ false); 6539 // Can't add any actual overloads yet 6540 6541 Base.release(); 6542 Idx.release(); 6543 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 6544 Args, 2, 6545 Context.DependentTy, 6546 RLoc)); 6547 } 6548 6549 // Build an empty overload set. 6550 OverloadCandidateSet CandidateSet(LLoc); 6551 6552 // Subscript can only be overloaded as a member function. 6553 6554 // Add operator candidates that are member functions. 6555 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6556 6557 // Add builtin operator candidates. 6558 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6559 6560 // Perform overload resolution. 6561 OverloadCandidateSet::iterator Best; 6562 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 6563 case OR_Success: { 6564 // We found a built-in operator or an overloaded operator. 6565 FunctionDecl *FnDecl = Best->Function; 6566 6567 if (FnDecl) { 6568 // We matched an overloaded operator. Build a call to that 6569 // operator. 6570 6571 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 6572 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 6573 6574 // Convert the arguments. 6575 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 6576 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6577 Best->FoundDecl, Method)) 6578 return ExprError(); 6579 6580 // Convert the arguments. 6581 OwningExprResult InputInit 6582 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6583 FnDecl->getParamDecl(0)), 6584 SourceLocation(), 6585 Owned(Args[1])); 6586 if (InputInit.isInvalid()) 6587 return ExprError(); 6588 6589 Args[1] = InputInit.takeAs<Expr>(); 6590 6591 // Determine the result type 6592 QualType ResultTy 6593 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 6594 ResultTy = ResultTy.getNonReferenceType(); 6595 6596 // Build the actual expression node. 6597 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6598 LLoc); 6599 UsualUnaryConversions(FnExpr); 6600 6601 Base.release(); 6602 Idx.release(); 6603 ExprOwningPtr<CXXOperatorCallExpr> 6604 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 6605 FnExpr, Args, 2, 6606 ResultTy, RLoc)); 6607 6608 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 6609 FnDecl)) 6610 return ExprError(); 6611 6612 return MaybeBindToTemporary(TheCall.release()); 6613 } else { 6614 // We matched a built-in operator. Convert the arguments, then 6615 // break out so that we will build the appropriate built-in 6616 // operator node. 6617 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6618 Best->Conversions[0], AA_Passing) || 6619 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6620 Best->Conversions[1], AA_Passing)) 6621 return ExprError(); 6622 6623 break; 6624 } 6625 } 6626 6627 case OR_No_Viable_Function: { 6628 if (CandidateSet.empty()) 6629 Diag(LLoc, diag::err_ovl_no_oper) 6630 << Args[0]->getType() << /*subscript*/ 0 6631 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6632 else 6633 Diag(LLoc, diag::err_ovl_no_viable_subscript) 6634 << Args[0]->getType() 6635 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6636 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6637 "[]", LLoc); 6638 return ExprError(); 6639 } 6640 6641 case OR_Ambiguous: 6642 Diag(LLoc, diag::err_ovl_ambiguous_oper) 6643 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6644 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6645 "[]", LLoc); 6646 return ExprError(); 6647 6648 case OR_Deleted: 6649 Diag(LLoc, diag::err_ovl_deleted_oper) 6650 << Best->Function->isDeleted() << "[]" 6651 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6652 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6653 "[]", LLoc); 6654 return ExprError(); 6655 } 6656 6657 // We matched a built-in operator; build it. 6658 Base.release(); 6659 Idx.release(); 6660 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 6661 Owned(Args[1]), RLoc); 6662} 6663 6664/// BuildCallToMemberFunction - Build a call to a member 6665/// function. MemExpr is the expression that refers to the member 6666/// function (and includes the object parameter), Args/NumArgs are the 6667/// arguments to the function call (not including the object 6668/// parameter). The caller needs to validate that the member 6669/// expression refers to a member function or an overloaded member 6670/// function. 6671Sema::OwningExprResult 6672Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 6673 SourceLocation LParenLoc, Expr **Args, 6674 unsigned NumArgs, SourceLocation *CommaLocs, 6675 SourceLocation RParenLoc) { 6676 // Dig out the member expression. This holds both the object 6677 // argument and the member function we're referring to. 6678 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 6679 6680 MemberExpr *MemExpr; 6681 CXXMethodDecl *Method = 0; 6682 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 6683 NestedNameSpecifier *Qualifier = 0; 6684 if (isa<MemberExpr>(NakedMemExpr)) { 6685 MemExpr = cast<MemberExpr>(NakedMemExpr); 6686 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 6687 FoundDecl = MemExpr->getFoundDecl(); 6688 Qualifier = MemExpr->getQualifier(); 6689 } else { 6690 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 6691 Qualifier = UnresExpr->getQualifier(); 6692 6693 QualType ObjectType = UnresExpr->getBaseType(); 6694 6695 // Add overload candidates 6696 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 6697 6698 // FIXME: avoid copy. 6699 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6700 if (UnresExpr->hasExplicitTemplateArgs()) { 6701 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6702 TemplateArgs = &TemplateArgsBuffer; 6703 } 6704 6705 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 6706 E = UnresExpr->decls_end(); I != E; ++I) { 6707 6708 NamedDecl *Func = *I; 6709 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 6710 if (isa<UsingShadowDecl>(Func)) 6711 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 6712 6713 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 6714 // If explicit template arguments were provided, we can't call a 6715 // non-template member function. 6716 if (TemplateArgs) 6717 continue; 6718 6719 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 6720 Args, NumArgs, 6721 CandidateSet, /*SuppressUserConversions=*/false); 6722 } else { 6723 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 6724 I.getPair(), ActingDC, TemplateArgs, 6725 ObjectType, Args, NumArgs, 6726 CandidateSet, 6727 /*SuppressUsedConversions=*/false); 6728 } 6729 } 6730 6731 DeclarationName DeclName = UnresExpr->getMemberName(); 6732 6733 OverloadCandidateSet::iterator Best; 6734 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 6735 case OR_Success: 6736 Method = cast<CXXMethodDecl>(Best->Function); 6737 FoundDecl = Best->FoundDecl; 6738 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 6739 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 6740 break; 6741 6742 case OR_No_Viable_Function: 6743 Diag(UnresExpr->getMemberLoc(), 6744 diag::err_ovl_no_viable_member_function_in_call) 6745 << DeclName << MemExprE->getSourceRange(); 6746 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6747 // FIXME: Leaking incoming expressions! 6748 return ExprError(); 6749 6750 case OR_Ambiguous: 6751 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 6752 << DeclName << MemExprE->getSourceRange(); 6753 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6754 // FIXME: Leaking incoming expressions! 6755 return ExprError(); 6756 6757 case OR_Deleted: 6758 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 6759 << Best->Function->isDeleted() 6760 << DeclName << MemExprE->getSourceRange(); 6761 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6762 // FIXME: Leaking incoming expressions! 6763 return ExprError(); 6764 } 6765 6766 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 6767 6768 // If overload resolution picked a static member, build a 6769 // non-member call based on that function. 6770 if (Method->isStatic()) { 6771 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 6772 Args, NumArgs, RParenLoc); 6773 } 6774 6775 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 6776 } 6777 6778 assert(Method && "Member call to something that isn't a method?"); 6779 ExprOwningPtr<CXXMemberCallExpr> 6780 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 6781 NumArgs, 6782 Method->getResultType().getNonReferenceType(), 6783 RParenLoc)); 6784 6785 // Check for a valid return type. 6786 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 6787 TheCall.get(), Method)) 6788 return ExprError(); 6789 6790 // Convert the object argument (for a non-static member function call). 6791 // We only need to do this if there was actually an overload; otherwise 6792 // it was done at lookup. 6793 Expr *ObjectArg = MemExpr->getBase(); 6794 if (!Method->isStatic() && 6795 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 6796 FoundDecl, Method)) 6797 return ExprError(); 6798 MemExpr->setBase(ObjectArg); 6799 6800 // Convert the rest of the arguments 6801 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 6802 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 6803 RParenLoc)) 6804 return ExprError(); 6805 6806 if (CheckFunctionCall(Method, TheCall.get())) 6807 return ExprError(); 6808 6809 return MaybeBindToTemporary(TheCall.release()); 6810} 6811 6812/// BuildCallToObjectOfClassType - Build a call to an object of class 6813/// type (C++ [over.call.object]), which can end up invoking an 6814/// overloaded function call operator (@c operator()) or performing a 6815/// user-defined conversion on the object argument. 6816Sema::ExprResult 6817Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 6818 SourceLocation LParenLoc, 6819 Expr **Args, unsigned NumArgs, 6820 SourceLocation *CommaLocs, 6821 SourceLocation RParenLoc) { 6822 assert(Object->getType()->isRecordType() && "Requires object type argument"); 6823 const RecordType *Record = Object->getType()->getAs<RecordType>(); 6824 6825 // C++ [over.call.object]p1: 6826 // If the primary-expression E in the function call syntax 6827 // evaluates to a class object of type "cv T", then the set of 6828 // candidate functions includes at least the function call 6829 // operators of T. The function call operators of T are obtained by 6830 // ordinary lookup of the name operator() in the context of 6831 // (E).operator(). 6832 OverloadCandidateSet CandidateSet(LParenLoc); 6833 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 6834 6835 if (RequireCompleteType(LParenLoc, Object->getType(), 6836 PDiag(diag::err_incomplete_object_call) 6837 << Object->getSourceRange())) 6838 return true; 6839 6840 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 6841 LookupQualifiedName(R, Record->getDecl()); 6842 R.suppressDiagnostics(); 6843 6844 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 6845 Oper != OperEnd; ++Oper) { 6846 AddMethodCandidate(Oper.getPair(), Object->getType(), 6847 Args, NumArgs, CandidateSet, 6848 /*SuppressUserConversions=*/ false); 6849 } 6850 6851 // C++ [over.call.object]p2: 6852 // In addition, for each conversion function declared in T of the 6853 // form 6854 // 6855 // operator conversion-type-id () cv-qualifier; 6856 // 6857 // where cv-qualifier is the same cv-qualification as, or a 6858 // greater cv-qualification than, cv, and where conversion-type-id 6859 // denotes the type "pointer to function of (P1,...,Pn) returning 6860 // R", or the type "reference to pointer to function of 6861 // (P1,...,Pn) returning R", or the type "reference to function 6862 // of (P1,...,Pn) returning R", a surrogate call function [...] 6863 // is also considered as a candidate function. Similarly, 6864 // surrogate call functions are added to the set of candidate 6865 // functions for each conversion function declared in an 6866 // accessible base class provided the function is not hidden 6867 // within T by another intervening declaration. 6868 const UnresolvedSetImpl *Conversions 6869 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 6870 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 6871 E = Conversions->end(); I != E; ++I) { 6872 NamedDecl *D = *I; 6873 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6874 if (isa<UsingShadowDecl>(D)) 6875 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6876 6877 // Skip over templated conversion functions; they aren't 6878 // surrogates. 6879 if (isa<FunctionTemplateDecl>(D)) 6880 continue; 6881 6882 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 6883 6884 // Strip the reference type (if any) and then the pointer type (if 6885 // any) to get down to what might be a function type. 6886 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 6887 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6888 ConvType = ConvPtrType->getPointeeType(); 6889 6890 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 6891 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 6892 Object->getType(), Args, NumArgs, 6893 CandidateSet); 6894 } 6895 6896 // Perform overload resolution. 6897 OverloadCandidateSet::iterator Best; 6898 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 6899 case OR_Success: 6900 // Overload resolution succeeded; we'll build the appropriate call 6901 // below. 6902 break; 6903 6904 case OR_No_Viable_Function: 6905 if (CandidateSet.empty()) 6906 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 6907 << Object->getType() << /*call*/ 1 6908 << Object->getSourceRange(); 6909 else 6910 Diag(Object->getSourceRange().getBegin(), 6911 diag::err_ovl_no_viable_object_call) 6912 << Object->getType() << Object->getSourceRange(); 6913 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6914 break; 6915 6916 case OR_Ambiguous: 6917 Diag(Object->getSourceRange().getBegin(), 6918 diag::err_ovl_ambiguous_object_call) 6919 << Object->getType() << Object->getSourceRange(); 6920 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6921 break; 6922 6923 case OR_Deleted: 6924 Diag(Object->getSourceRange().getBegin(), 6925 diag::err_ovl_deleted_object_call) 6926 << Best->Function->isDeleted() 6927 << Object->getType() << Object->getSourceRange(); 6928 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6929 break; 6930 } 6931 6932 if (Best == CandidateSet.end()) { 6933 // We had an error; delete all of the subexpressions and return 6934 // the error. 6935 Object->Destroy(Context); 6936 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6937 Args[ArgIdx]->Destroy(Context); 6938 return true; 6939 } 6940 6941 if (Best->Function == 0) { 6942 // Since there is no function declaration, this is one of the 6943 // surrogate candidates. Dig out the conversion function. 6944 CXXConversionDecl *Conv 6945 = cast<CXXConversionDecl>( 6946 Best->Conversions[0].UserDefined.ConversionFunction); 6947 6948 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 6949 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 6950 6951 // We selected one of the surrogate functions that converts the 6952 // object parameter to a function pointer. Perform the conversion 6953 // on the object argument, then let ActOnCallExpr finish the job. 6954 6955 // Create an implicit member expr to refer to the conversion operator. 6956 // and then call it. 6957 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 6958 Conv); 6959 6960 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 6961 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 6962 CommaLocs, RParenLoc).result(); 6963 } 6964 6965 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 6966 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 6967 6968 // We found an overloaded operator(). Build a CXXOperatorCallExpr 6969 // that calls this method, using Object for the implicit object 6970 // parameter and passing along the remaining arguments. 6971 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 6972 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 6973 6974 unsigned NumArgsInProto = Proto->getNumArgs(); 6975 unsigned NumArgsToCheck = NumArgs; 6976 6977 // Build the full argument list for the method call (the 6978 // implicit object parameter is placed at the beginning of the 6979 // list). 6980 Expr **MethodArgs; 6981 if (NumArgs < NumArgsInProto) { 6982 NumArgsToCheck = NumArgsInProto; 6983 MethodArgs = new Expr*[NumArgsInProto + 1]; 6984 } else { 6985 MethodArgs = new Expr*[NumArgs + 1]; 6986 } 6987 MethodArgs[0] = Object; 6988 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6989 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 6990 6991 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 6992 SourceLocation()); 6993 UsualUnaryConversions(NewFn); 6994 6995 // Once we've built TheCall, all of the expressions are properly 6996 // owned. 6997 QualType ResultTy = Method->getResultType().getNonReferenceType(); 6998 ExprOwningPtr<CXXOperatorCallExpr> 6999 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7000 MethodArgs, NumArgs + 1, 7001 ResultTy, RParenLoc)); 7002 delete [] MethodArgs; 7003 7004 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 7005 Method)) 7006 return true; 7007 7008 // We may have default arguments. If so, we need to allocate more 7009 // slots in the call for them. 7010 if (NumArgs < NumArgsInProto) 7011 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7012 else if (NumArgs > NumArgsInProto) 7013 NumArgsToCheck = NumArgsInProto; 7014 7015 bool IsError = false; 7016 7017 // Initialize the implicit object parameter. 7018 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7019 Best->FoundDecl, Method); 7020 TheCall->setArg(0, Object); 7021 7022 7023 // Check the argument types. 7024 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7025 Expr *Arg; 7026 if (i < NumArgs) { 7027 Arg = Args[i]; 7028 7029 // Pass the argument. 7030 7031 OwningExprResult InputInit 7032 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7033 Method->getParamDecl(i)), 7034 SourceLocation(), Owned(Arg)); 7035 7036 IsError |= InputInit.isInvalid(); 7037 Arg = InputInit.takeAs<Expr>(); 7038 } else { 7039 OwningExprResult DefArg 7040 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7041 if (DefArg.isInvalid()) { 7042 IsError = true; 7043 break; 7044 } 7045 7046 Arg = DefArg.takeAs<Expr>(); 7047 } 7048 7049 TheCall->setArg(i + 1, Arg); 7050 } 7051 7052 // If this is a variadic call, handle args passed through "...". 7053 if (Proto->isVariadic()) { 7054 // Promote the arguments (C99 6.5.2.2p7). 7055 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7056 Expr *Arg = Args[i]; 7057 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 7058 TheCall->setArg(i + 1, Arg); 7059 } 7060 } 7061 7062 if (IsError) return true; 7063 7064 if (CheckFunctionCall(Method, TheCall.get())) 7065 return true; 7066 7067 return MaybeBindToTemporary(TheCall.release()).result(); 7068} 7069 7070/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 7071/// (if one exists), where @c Base is an expression of class type and 7072/// @c Member is the name of the member we're trying to find. 7073Sema::OwningExprResult 7074Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 7075 Expr *Base = static_cast<Expr *>(BaseIn.get()); 7076 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 7077 7078 SourceLocation Loc = Base->getExprLoc(); 7079 7080 // C++ [over.ref]p1: 7081 // 7082 // [...] An expression x->m is interpreted as (x.operator->())->m 7083 // for a class object x of type T if T::operator->() exists and if 7084 // the operator is selected as the best match function by the 7085 // overload resolution mechanism (13.3). 7086 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 7087 OverloadCandidateSet CandidateSet(Loc); 7088 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 7089 7090 if (RequireCompleteType(Loc, Base->getType(), 7091 PDiag(diag::err_typecheck_incomplete_tag) 7092 << Base->getSourceRange())) 7093 return ExprError(); 7094 7095 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 7096 LookupQualifiedName(R, BaseRecord->getDecl()); 7097 R.suppressDiagnostics(); 7098 7099 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7100 Oper != OperEnd; ++Oper) { 7101 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 7102 /*SuppressUserConversions=*/false); 7103 } 7104 7105 // Perform overload resolution. 7106 OverloadCandidateSet::iterator Best; 7107 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 7108 case OR_Success: 7109 // Overload resolution succeeded; we'll build the call below. 7110 break; 7111 7112 case OR_No_Viable_Function: 7113 if (CandidateSet.empty()) 7114 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7115 << Base->getType() << Base->getSourceRange(); 7116 else 7117 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7118 << "operator->" << Base->getSourceRange(); 7119 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7120 return ExprError(); 7121 7122 case OR_Ambiguous: 7123 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7124 << "->" << Base->getSourceRange(); 7125 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 7126 return ExprError(); 7127 7128 case OR_Deleted: 7129 Diag(OpLoc, diag::err_ovl_deleted_oper) 7130 << Best->Function->isDeleted() 7131 << "->" << Base->getSourceRange(); 7132 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7133 return ExprError(); 7134 } 7135 7136 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 7137 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7138 7139 // Convert the object parameter. 7140 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7141 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 7142 Best->FoundDecl, Method)) 7143 return ExprError(); 7144 7145 // No concerns about early exits now. 7146 BaseIn.release(); 7147 7148 // Build the operator call. 7149 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 7150 SourceLocation()); 7151 UsualUnaryConversions(FnExpr); 7152 7153 QualType ResultTy = Method->getResultType().getNonReferenceType(); 7154 ExprOwningPtr<CXXOperatorCallExpr> 7155 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 7156 &Base, 1, ResultTy, OpLoc)); 7157 7158 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 7159 Method)) 7160 return ExprError(); 7161 return move(TheCall); 7162} 7163 7164/// FixOverloadedFunctionReference - E is an expression that refers to 7165/// a C++ overloaded function (possibly with some parentheses and 7166/// perhaps a '&' around it). We have resolved the overloaded function 7167/// to the function declaration Fn, so patch up the expression E to 7168/// refer (possibly indirectly) to Fn. Returns the new expr. 7169Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 7170 FunctionDecl *Fn) { 7171 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7172 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 7173 Found, Fn); 7174 if (SubExpr == PE->getSubExpr()) 7175 return PE->Retain(); 7176 7177 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 7178 } 7179 7180 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 7181 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 7182 Found, Fn); 7183 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 7184 SubExpr->getType()) && 7185 "Implicit cast type cannot be determined from overload"); 7186 if (SubExpr == ICE->getSubExpr()) 7187 return ICE->Retain(); 7188 7189 return new (Context) ImplicitCastExpr(ICE->getType(), 7190 ICE->getCastKind(), 7191 SubExpr, CXXBaseSpecifierArray(), 7192 ICE->isLvalueCast()); 7193 } 7194 7195 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 7196 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 7197 "Can only take the address of an overloaded function"); 7198 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7199 if (Method->isStatic()) { 7200 // Do nothing: static member functions aren't any different 7201 // from non-member functions. 7202 } else { 7203 // Fix the sub expression, which really has to be an 7204 // UnresolvedLookupExpr holding an overloaded member function 7205 // or template. 7206 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7207 Found, Fn); 7208 if (SubExpr == UnOp->getSubExpr()) 7209 return UnOp->Retain(); 7210 7211 assert(isa<DeclRefExpr>(SubExpr) 7212 && "fixed to something other than a decl ref"); 7213 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 7214 && "fixed to a member ref with no nested name qualifier"); 7215 7216 // We have taken the address of a pointer to member 7217 // function. Perform the computation here so that we get the 7218 // appropriate pointer to member type. 7219 QualType ClassType 7220 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 7221 QualType MemPtrType 7222 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 7223 7224 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7225 MemPtrType, UnOp->getOperatorLoc()); 7226 } 7227 } 7228 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7229 Found, Fn); 7230 if (SubExpr == UnOp->getSubExpr()) 7231 return UnOp->Retain(); 7232 7233 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7234 Context.getPointerType(SubExpr->getType()), 7235 UnOp->getOperatorLoc()); 7236 } 7237 7238 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 7239 // FIXME: avoid copy. 7240 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7241 if (ULE->hasExplicitTemplateArgs()) { 7242 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 7243 TemplateArgs = &TemplateArgsBuffer; 7244 } 7245 7246 return DeclRefExpr::Create(Context, 7247 ULE->getQualifier(), 7248 ULE->getQualifierRange(), 7249 Fn, 7250 ULE->getNameLoc(), 7251 Fn->getType(), 7252 TemplateArgs); 7253 } 7254 7255 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 7256 // FIXME: avoid copy. 7257 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7258 if (MemExpr->hasExplicitTemplateArgs()) { 7259 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7260 TemplateArgs = &TemplateArgsBuffer; 7261 } 7262 7263 Expr *Base; 7264 7265 // If we're filling in 7266 if (MemExpr->isImplicitAccess()) { 7267 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 7268 return DeclRefExpr::Create(Context, 7269 MemExpr->getQualifier(), 7270 MemExpr->getQualifierRange(), 7271 Fn, 7272 MemExpr->getMemberLoc(), 7273 Fn->getType(), 7274 TemplateArgs); 7275 } else { 7276 SourceLocation Loc = MemExpr->getMemberLoc(); 7277 if (MemExpr->getQualifier()) 7278 Loc = MemExpr->getQualifierRange().getBegin(); 7279 Base = new (Context) CXXThisExpr(Loc, 7280 MemExpr->getBaseType(), 7281 /*isImplicit=*/true); 7282 } 7283 } else 7284 Base = MemExpr->getBase()->Retain(); 7285 7286 return MemberExpr::Create(Context, Base, 7287 MemExpr->isArrow(), 7288 MemExpr->getQualifier(), 7289 MemExpr->getQualifierRange(), 7290 Fn, 7291 Found, 7292 MemExpr->getMemberLoc(), 7293 TemplateArgs, 7294 Fn->getType()); 7295 } 7296 7297 assert(false && "Invalid reference to overloaded function"); 7298 return E->Retain(); 7299} 7300 7301Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 7302 DeclAccessPair Found, 7303 FunctionDecl *Fn) { 7304 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 7305} 7306 7307} // end namespace clang 7308