SemaOverload.cpp revision c373d48502ca7683ab55385f5bd624d778eb288d
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType()->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType();
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  OverloadCandidateSet Conversions;
451  OverloadingResult UserDefResult = OR_Success;
452  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
453    ICS.setStandard();
454  else if (getLangOptions().CPlusPlus &&
455           (UserDefResult = IsUserDefinedConversion(From, ToType,
456                                   ICS.UserDefined,
457                                   Conversions,
458                                   !SuppressUserConversions, AllowExplicit,
459				   ForceRValue, UserCast)) == OR_Success) {
460    ICS.setUserDefined();
461    // C++ [over.ics.user]p4:
462    //   A conversion of an expression of class type to the same class
463    //   type is given Exact Match rank, and a conversion of an
464    //   expression of class type to a base class of that type is
465    //   given Conversion rank, in spite of the fact that a copy
466    //   constructor (i.e., a user-defined conversion function) is
467    //   called for those cases.
468    if (CXXConstructorDecl *Constructor
469          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
470      QualType FromCanon
471        = Context.getCanonicalType(From->getType().getUnqualifiedType());
472      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
473      if (Constructor->isCopyConstructor() &&
474          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
475        // Turn this into a "standard" conversion sequence, so that it
476        // gets ranked with standard conversion sequences.
477        ICS.setStandard();
478        ICS.Standard.setAsIdentityConversion();
479        ICS.Standard.setFromType(From->getType());
480        ICS.Standard.setToType(ToType);
481        ICS.Standard.CopyConstructor = Constructor;
482        if (ToCanon != FromCanon)
483          ICS.Standard.Second = ICK_Derived_To_Base;
484      }
485    }
486
487    // C++ [over.best.ics]p4:
488    //   However, when considering the argument of a user-defined
489    //   conversion function that is a candidate by 13.3.1.3 when
490    //   invoked for the copying of the temporary in the second step
491    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
492    //   13.3.1.6 in all cases, only standard conversion sequences and
493    //   ellipsis conversion sequences are allowed.
494    if (SuppressUserConversions && ICS.isUserDefined()) {
495      ICS.setBad();
496      ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType);
497    }
498  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
499    ICS.setAmbiguous();
500    ICS.Ambiguous.setFromType(From->getType());
501    ICS.Ambiguous.setToType(ToType);
502    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
503         Cand != Conversions.end(); ++Cand)
504      if (Cand->Viable)
505        ICS.Ambiguous.addConversion(Cand->Function);
506  } else {
507    ICS.setBad();
508    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
509  }
510
511  return ICS;
512}
513
514/// \brief Determine whether the conversion from FromType to ToType is a valid
515/// conversion that strips "noreturn" off the nested function type.
516static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
517                                 QualType ToType, QualType &ResultTy) {
518  if (Context.hasSameUnqualifiedType(FromType, ToType))
519    return false;
520
521  // Strip the noreturn off the type we're converting from; noreturn can
522  // safely be removed.
523  FromType = Context.getNoReturnType(FromType, false);
524  if (!Context.hasSameUnqualifiedType(FromType, ToType))
525    return false;
526
527  ResultTy = FromType;
528  return true;
529}
530
531/// IsStandardConversion - Determines whether there is a standard
532/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
533/// expression From to the type ToType. Standard conversion sequences
534/// only consider non-class types; for conversions that involve class
535/// types, use TryImplicitConversion. If a conversion exists, SCS will
536/// contain the standard conversion sequence required to perform this
537/// conversion and this routine will return true. Otherwise, this
538/// routine will return false and the value of SCS is unspecified.
539bool
540Sema::IsStandardConversion(Expr* From, QualType ToType,
541                           bool InOverloadResolution,
542                           StandardConversionSequence &SCS) {
543  QualType FromType = From->getType();
544
545  // Standard conversions (C++ [conv])
546  SCS.setAsIdentityConversion();
547  SCS.Deprecated = false;
548  SCS.IncompatibleObjC = false;
549  SCS.setFromType(FromType);
550  SCS.CopyConstructor = 0;
551
552  // There are no standard conversions for class types in C++, so
553  // abort early. When overloading in C, however, we do permit
554  if (FromType->isRecordType() || ToType->isRecordType()) {
555    if (getLangOptions().CPlusPlus)
556      return false;
557
558    // When we're overloading in C, we allow, as standard conversions,
559  }
560
561  // The first conversion can be an lvalue-to-rvalue conversion,
562  // array-to-pointer conversion, or function-to-pointer conversion
563  // (C++ 4p1).
564
565  // Lvalue-to-rvalue conversion (C++ 4.1):
566  //   An lvalue (3.10) of a non-function, non-array type T can be
567  //   converted to an rvalue.
568  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
569  if (argIsLvalue == Expr::LV_Valid &&
570      !FromType->isFunctionType() && !FromType->isArrayType() &&
571      Context.getCanonicalType(FromType) != Context.OverloadTy) {
572    SCS.First = ICK_Lvalue_To_Rvalue;
573
574    // If T is a non-class type, the type of the rvalue is the
575    // cv-unqualified version of T. Otherwise, the type of the rvalue
576    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
577    // just strip the qualifiers because they don't matter.
578    FromType = FromType.getUnqualifiedType();
579  } else if (FromType->isArrayType()) {
580    // Array-to-pointer conversion (C++ 4.2)
581    SCS.First = ICK_Array_To_Pointer;
582
583    // An lvalue or rvalue of type "array of N T" or "array of unknown
584    // bound of T" can be converted to an rvalue of type "pointer to
585    // T" (C++ 4.2p1).
586    FromType = Context.getArrayDecayedType(FromType);
587
588    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
589      // This conversion is deprecated. (C++ D.4).
590      SCS.Deprecated = true;
591
592      // For the purpose of ranking in overload resolution
593      // (13.3.3.1.1), this conversion is considered an
594      // array-to-pointer conversion followed by a qualification
595      // conversion (4.4). (C++ 4.2p2)
596      SCS.Second = ICK_Identity;
597      SCS.Third = ICK_Qualification;
598      SCS.setToType(ToType);
599      return true;
600    }
601  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
602    // Function-to-pointer conversion (C++ 4.3).
603    SCS.First = ICK_Function_To_Pointer;
604
605    // An lvalue of function type T can be converted to an rvalue of
606    // type "pointer to T." The result is a pointer to the
607    // function. (C++ 4.3p1).
608    FromType = Context.getPointerType(FromType);
609  } else if (FunctionDecl *Fn
610               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
611    // Address of overloaded function (C++ [over.over]).
612    SCS.First = ICK_Function_To_Pointer;
613
614    // We were able to resolve the address of the overloaded function,
615    // so we can convert to the type of that function.
616    FromType = Fn->getType();
617    if (ToType->isLValueReferenceType())
618      FromType = Context.getLValueReferenceType(FromType);
619    else if (ToType->isRValueReferenceType())
620      FromType = Context.getRValueReferenceType(FromType);
621    else if (ToType->isMemberPointerType()) {
622      // Resolve address only succeeds if both sides are member pointers,
623      // but it doesn't have to be the same class. See DR 247.
624      // Note that this means that the type of &Derived::fn can be
625      // Ret (Base::*)(Args) if the fn overload actually found is from the
626      // base class, even if it was brought into the derived class via a
627      // using declaration. The standard isn't clear on this issue at all.
628      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
629      FromType = Context.getMemberPointerType(FromType,
630                    Context.getTypeDeclType(M->getParent()).getTypePtr());
631    } else
632      FromType = Context.getPointerType(FromType);
633  } else {
634    // We don't require any conversions for the first step.
635    SCS.First = ICK_Identity;
636  }
637
638  // The second conversion can be an integral promotion, floating
639  // point promotion, integral conversion, floating point conversion,
640  // floating-integral conversion, pointer conversion,
641  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
642  // For overloading in C, this can also be a "compatible-type"
643  // conversion.
644  bool IncompatibleObjC = false;
645  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
646    // The unqualified versions of the types are the same: there's no
647    // conversion to do.
648    SCS.Second = ICK_Identity;
649  } else if (IsIntegralPromotion(From, FromType, ToType)) {
650    // Integral promotion (C++ 4.5).
651    SCS.Second = ICK_Integral_Promotion;
652    FromType = ToType.getUnqualifiedType();
653  } else if (IsFloatingPointPromotion(FromType, ToType)) {
654    // Floating point promotion (C++ 4.6).
655    SCS.Second = ICK_Floating_Promotion;
656    FromType = ToType.getUnqualifiedType();
657  } else if (IsComplexPromotion(FromType, ToType)) {
658    // Complex promotion (Clang extension)
659    SCS.Second = ICK_Complex_Promotion;
660    FromType = ToType.getUnqualifiedType();
661  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
662           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
663    // Integral conversions (C++ 4.7).
664    SCS.Second = ICK_Integral_Conversion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
667    // Floating point conversions (C++ 4.8).
668    SCS.Second = ICK_Floating_Conversion;
669    FromType = ToType.getUnqualifiedType();
670  } else if (FromType->isComplexType() && ToType->isComplexType()) {
671    // Complex conversions (C99 6.3.1.6)
672    SCS.Second = ICK_Complex_Conversion;
673    FromType = ToType.getUnqualifiedType();
674  } else if ((FromType->isFloatingType() &&
675              ToType->isIntegralType() && (!ToType->isBooleanType() &&
676                                           !ToType->isEnumeralType())) ||
677             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
678              ToType->isFloatingType())) {
679    // Floating-integral conversions (C++ 4.9).
680    SCS.Second = ICK_Floating_Integral;
681    FromType = ToType.getUnqualifiedType();
682  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
683             (ToType->isComplexType() && FromType->isArithmeticType())) {
684    // Complex-real conversions (C99 6.3.1.7)
685    SCS.Second = ICK_Complex_Real;
686    FromType = ToType.getUnqualifiedType();
687  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
688                                 FromType, IncompatibleObjC)) {
689    // Pointer conversions (C++ 4.10).
690    SCS.Second = ICK_Pointer_Conversion;
691    SCS.IncompatibleObjC = IncompatibleObjC;
692  } else if (IsMemberPointerConversion(From, FromType, ToType,
693                                       InOverloadResolution, FromType)) {
694    // Pointer to member conversions (4.11).
695    SCS.Second = ICK_Pointer_Member;
696  } else if (ToType->isBooleanType() &&
697             (FromType->isArithmeticType() ||
698              FromType->isEnumeralType() ||
699              FromType->isAnyPointerType() ||
700              FromType->isBlockPointerType() ||
701              FromType->isMemberPointerType() ||
702              FromType->isNullPtrType())) {
703    // Boolean conversions (C++ 4.12).
704    SCS.Second = ICK_Boolean_Conversion;
705    FromType = Context.BoolTy;
706  } else if (!getLangOptions().CPlusPlus &&
707             Context.typesAreCompatible(ToType, FromType)) {
708    // Compatible conversions (Clang extension for C function overloading)
709    SCS.Second = ICK_Compatible_Conversion;
710  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
711    // Treat a conversion that strips "noreturn" as an identity conversion.
712    SCS.Second = ICK_NoReturn_Adjustment;
713  } else {
714    // No second conversion required.
715    SCS.Second = ICK_Identity;
716  }
717
718  QualType CanonFrom;
719  QualType CanonTo;
720  // The third conversion can be a qualification conversion (C++ 4p1).
721  if (IsQualificationConversion(FromType, ToType)) {
722    SCS.Third = ICK_Qualification;
723    FromType = ToType;
724    CanonFrom = Context.getCanonicalType(FromType);
725    CanonTo = Context.getCanonicalType(ToType);
726  } else {
727    // No conversion required
728    SCS.Third = ICK_Identity;
729
730    // C++ [over.best.ics]p6:
731    //   [...] Any difference in top-level cv-qualification is
732    //   subsumed by the initialization itself and does not constitute
733    //   a conversion. [...]
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736    if (CanonFrom.getLocalUnqualifiedType()
737                                       == CanonTo.getLocalUnqualifiedType() &&
738        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
739      FromType = ToType;
740      CanonFrom = CanonTo;
741    }
742  }
743
744  // If we have not converted the argument type to the parameter type,
745  // this is a bad conversion sequence.
746  if (CanonFrom != CanonTo)
747    return false;
748
749  SCS.setToType(FromType);
750  return true;
751}
752
753/// IsIntegralPromotion - Determines whether the conversion from the
754/// expression From (whose potentially-adjusted type is FromType) to
755/// ToType is an integral promotion (C++ 4.5). If so, returns true and
756/// sets PromotedType to the promoted type.
757bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
758  const BuiltinType *To = ToType->getAs<BuiltinType>();
759  // All integers are built-in.
760  if (!To) {
761    return false;
762  }
763
764  // An rvalue of type char, signed char, unsigned char, short int, or
765  // unsigned short int can be converted to an rvalue of type int if
766  // int can represent all the values of the source type; otherwise,
767  // the source rvalue can be converted to an rvalue of type unsigned
768  // int (C++ 4.5p1).
769  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
770    if (// We can promote any signed, promotable integer type to an int
771        (FromType->isSignedIntegerType() ||
772         // We can promote any unsigned integer type whose size is
773         // less than int to an int.
774         (!FromType->isSignedIntegerType() &&
775          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
776      return To->getKind() == BuiltinType::Int;
777    }
778
779    return To->getKind() == BuiltinType::UInt;
780  }
781
782  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
783  // can be converted to an rvalue of the first of the following types
784  // that can represent all the values of its underlying type: int,
785  // unsigned int, long, or unsigned long (C++ 4.5p2).
786
787  // We pre-calculate the promotion type for enum types.
788  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
789    if (ToType->isIntegerType())
790      return Context.hasSameUnqualifiedType(ToType,
791                                FromEnumType->getDecl()->getPromotionType());
792
793  if (FromType->isWideCharType() && ToType->isIntegerType()) {
794    // Determine whether the type we're converting from is signed or
795    // unsigned.
796    bool FromIsSigned;
797    uint64_t FromSize = Context.getTypeSize(FromType);
798
799    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
800    FromIsSigned = true;
801
802    // The types we'll try to promote to, in the appropriate
803    // order. Try each of these types.
804    QualType PromoteTypes[6] = {
805      Context.IntTy, Context.UnsignedIntTy,
806      Context.LongTy, Context.UnsignedLongTy ,
807      Context.LongLongTy, Context.UnsignedLongLongTy
808    };
809    for (int Idx = 0; Idx < 6; ++Idx) {
810      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
811      if (FromSize < ToSize ||
812          (FromSize == ToSize &&
813           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
814        // We found the type that we can promote to. If this is the
815        // type we wanted, we have a promotion. Otherwise, no
816        // promotion.
817        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
818      }
819    }
820  }
821
822  // An rvalue for an integral bit-field (9.6) can be converted to an
823  // rvalue of type int if int can represent all the values of the
824  // bit-field; otherwise, it can be converted to unsigned int if
825  // unsigned int can represent all the values of the bit-field. If
826  // the bit-field is larger yet, no integral promotion applies to
827  // it. If the bit-field has an enumerated type, it is treated as any
828  // other value of that type for promotion purposes (C++ 4.5p3).
829  // FIXME: We should delay checking of bit-fields until we actually perform the
830  // conversion.
831  using llvm::APSInt;
832  if (From)
833    if (FieldDecl *MemberDecl = From->getBitField()) {
834      APSInt BitWidth;
835      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
836          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
837        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
838        ToSize = Context.getTypeSize(ToType);
839
840        // Are we promoting to an int from a bitfield that fits in an int?
841        if (BitWidth < ToSize ||
842            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
843          return To->getKind() == BuiltinType::Int;
844        }
845
846        // Are we promoting to an unsigned int from an unsigned bitfield
847        // that fits into an unsigned int?
848        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
849          return To->getKind() == BuiltinType::UInt;
850        }
851
852        return false;
853      }
854    }
855
856  // An rvalue of type bool can be converted to an rvalue of type int,
857  // with false becoming zero and true becoming one (C++ 4.5p4).
858  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
859    return true;
860  }
861
862  return false;
863}
864
865/// IsFloatingPointPromotion - Determines whether the conversion from
866/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
867/// returns true and sets PromotedType to the promoted type.
868bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
869  /// An rvalue of type float can be converted to an rvalue of type
870  /// double. (C++ 4.6p1).
871  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
872    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
873      if (FromBuiltin->getKind() == BuiltinType::Float &&
874          ToBuiltin->getKind() == BuiltinType::Double)
875        return true;
876
877      // C99 6.3.1.5p1:
878      //   When a float is promoted to double or long double, or a
879      //   double is promoted to long double [...].
880      if (!getLangOptions().CPlusPlus &&
881          (FromBuiltin->getKind() == BuiltinType::Float ||
882           FromBuiltin->getKind() == BuiltinType::Double) &&
883          (ToBuiltin->getKind() == BuiltinType::LongDouble))
884        return true;
885    }
886
887  return false;
888}
889
890/// \brief Determine if a conversion is a complex promotion.
891///
892/// A complex promotion is defined as a complex -> complex conversion
893/// where the conversion between the underlying real types is a
894/// floating-point or integral promotion.
895bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
896  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
897  if (!FromComplex)
898    return false;
899
900  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
901  if (!ToComplex)
902    return false;
903
904  return IsFloatingPointPromotion(FromComplex->getElementType(),
905                                  ToComplex->getElementType()) ||
906    IsIntegralPromotion(0, FromComplex->getElementType(),
907                        ToComplex->getElementType());
908}
909
910/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
911/// the pointer type FromPtr to a pointer to type ToPointee, with the
912/// same type qualifiers as FromPtr has on its pointee type. ToType,
913/// if non-empty, will be a pointer to ToType that may or may not have
914/// the right set of qualifiers on its pointee.
915static QualType
916BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
917                                   QualType ToPointee, QualType ToType,
918                                   ASTContext &Context) {
919  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
920  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
921  Qualifiers Quals = CanonFromPointee.getQualifiers();
922
923  // Exact qualifier match -> return the pointer type we're converting to.
924  if (CanonToPointee.getLocalQualifiers() == Quals) {
925    // ToType is exactly what we need. Return it.
926    if (!ToType.isNull())
927      return ToType;
928
929    // Build a pointer to ToPointee. It has the right qualifiers
930    // already.
931    return Context.getPointerType(ToPointee);
932  }
933
934  // Just build a canonical type that has the right qualifiers.
935  return Context.getPointerType(
936         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
937                                  Quals));
938}
939
940/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
941/// the FromType, which is an objective-c pointer, to ToType, which may or may
942/// not have the right set of qualifiers.
943static QualType
944BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
945                                             QualType ToType,
946                                             ASTContext &Context) {
947  QualType CanonFromType = Context.getCanonicalType(FromType);
948  QualType CanonToType = Context.getCanonicalType(ToType);
949  Qualifiers Quals = CanonFromType.getQualifiers();
950
951  // Exact qualifier match -> return the pointer type we're converting to.
952  if (CanonToType.getLocalQualifiers() == Quals)
953    return ToType;
954
955  // Just build a canonical type that has the right qualifiers.
956  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
957}
958
959static bool isNullPointerConstantForConversion(Expr *Expr,
960                                               bool InOverloadResolution,
961                                               ASTContext &Context) {
962  // Handle value-dependent integral null pointer constants correctly.
963  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
964  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
965      Expr->getType()->isIntegralType())
966    return !InOverloadResolution;
967
968  return Expr->isNullPointerConstant(Context,
969                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
970                                        : Expr::NPC_ValueDependentIsNull);
971}
972
973/// IsPointerConversion - Determines whether the conversion of the
974/// expression From, which has the (possibly adjusted) type FromType,
975/// can be converted to the type ToType via a pointer conversion (C++
976/// 4.10). If so, returns true and places the converted type (that
977/// might differ from ToType in its cv-qualifiers at some level) into
978/// ConvertedType.
979///
980/// This routine also supports conversions to and from block pointers
981/// and conversions with Objective-C's 'id', 'id<protocols...>', and
982/// pointers to interfaces. FIXME: Once we've determined the
983/// appropriate overloading rules for Objective-C, we may want to
984/// split the Objective-C checks into a different routine; however,
985/// GCC seems to consider all of these conversions to be pointer
986/// conversions, so for now they live here. IncompatibleObjC will be
987/// set if the conversion is an allowed Objective-C conversion that
988/// should result in a warning.
989bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
990                               bool InOverloadResolution,
991                               QualType& ConvertedType,
992                               bool &IncompatibleObjC) {
993  IncompatibleObjC = false;
994  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
995    return true;
996
997  // Conversion from a null pointer constant to any Objective-C pointer type.
998  if (ToType->isObjCObjectPointerType() &&
999      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1000    ConvertedType = ToType;
1001    return true;
1002  }
1003
1004  // Blocks: Block pointers can be converted to void*.
1005  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1006      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1007    ConvertedType = ToType;
1008    return true;
1009  }
1010  // Blocks: A null pointer constant can be converted to a block
1011  // pointer type.
1012  if (ToType->isBlockPointerType() &&
1013      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1014    ConvertedType = ToType;
1015    return true;
1016  }
1017
1018  // If the left-hand-side is nullptr_t, the right side can be a null
1019  // pointer constant.
1020  if (ToType->isNullPtrType() &&
1021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1022    ConvertedType = ToType;
1023    return true;
1024  }
1025
1026  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1027  if (!ToTypePtr)
1028    return false;
1029
1030  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1031  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1032    ConvertedType = ToType;
1033    return true;
1034  }
1035
1036  // Beyond this point, both types need to be pointers
1037  // , including objective-c pointers.
1038  QualType ToPointeeType = ToTypePtr->getPointeeType();
1039  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1040    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1041                                                       ToType, Context);
1042    return true;
1043
1044  }
1045  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1046  if (!FromTypePtr)
1047    return false;
1048
1049  QualType FromPointeeType = FromTypePtr->getPointeeType();
1050
1051  // An rvalue of type "pointer to cv T," where T is an object type,
1052  // can be converted to an rvalue of type "pointer to cv void" (C++
1053  // 4.10p2).
1054  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1055    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1056                                                       ToPointeeType,
1057                                                       ToType, Context);
1058    return true;
1059  }
1060
1061  // When we're overloading in C, we allow a special kind of pointer
1062  // conversion for compatible-but-not-identical pointee types.
1063  if (!getLangOptions().CPlusPlus &&
1064      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1065    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1066                                                       ToPointeeType,
1067                                                       ToType, Context);
1068    return true;
1069  }
1070
1071  // C++ [conv.ptr]p3:
1072  //
1073  //   An rvalue of type "pointer to cv D," where D is a class type,
1074  //   can be converted to an rvalue of type "pointer to cv B," where
1075  //   B is a base class (clause 10) of D. If B is an inaccessible
1076  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1077  //   necessitates this conversion is ill-formed. The result of the
1078  //   conversion is a pointer to the base class sub-object of the
1079  //   derived class object. The null pointer value is converted to
1080  //   the null pointer value of the destination type.
1081  //
1082  // Note that we do not check for ambiguity or inaccessibility
1083  // here. That is handled by CheckPointerConversion.
1084  if (getLangOptions().CPlusPlus &&
1085      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1086      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1087      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1088    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1089                                                       ToPointeeType,
1090                                                       ToType, Context);
1091    return true;
1092  }
1093
1094  return false;
1095}
1096
1097/// isObjCPointerConversion - Determines whether this is an
1098/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1099/// with the same arguments and return values.
1100bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1101                                   QualType& ConvertedType,
1102                                   bool &IncompatibleObjC) {
1103  if (!getLangOptions().ObjC1)
1104    return false;
1105
1106  // First, we handle all conversions on ObjC object pointer types.
1107  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1108  const ObjCObjectPointerType *FromObjCPtr =
1109    FromType->getAs<ObjCObjectPointerType>();
1110
1111  if (ToObjCPtr && FromObjCPtr) {
1112    // Objective C++: We're able to convert between "id" or "Class" and a
1113    // pointer to any interface (in both directions).
1114    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1115      ConvertedType = ToType;
1116      return true;
1117    }
1118    // Conversions with Objective-C's id<...>.
1119    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1120         ToObjCPtr->isObjCQualifiedIdType()) &&
1121        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1122                                                  /*compare=*/false)) {
1123      ConvertedType = ToType;
1124      return true;
1125    }
1126    // Objective C++: We're able to convert from a pointer to an
1127    // interface to a pointer to a different interface.
1128    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1129      ConvertedType = ToType;
1130      return true;
1131    }
1132
1133    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1134      // Okay: this is some kind of implicit downcast of Objective-C
1135      // interfaces, which is permitted. However, we're going to
1136      // complain about it.
1137      IncompatibleObjC = true;
1138      ConvertedType = FromType;
1139      return true;
1140    }
1141  }
1142  // Beyond this point, both types need to be C pointers or block pointers.
1143  QualType ToPointeeType;
1144  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1145    ToPointeeType = ToCPtr->getPointeeType();
1146  else if (const BlockPointerType *ToBlockPtr =
1147            ToType->getAs<BlockPointerType>()) {
1148    // Objective C++: We're able to convert from a pointer to any object
1149    // to a block pointer type.
1150    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1151      ConvertedType = ToType;
1152      return true;
1153    }
1154    ToPointeeType = ToBlockPtr->getPointeeType();
1155  }
1156  else if (FromType->getAs<BlockPointerType>() &&
1157           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1158    // Objective C++: We're able to convert from a block pointer type to a
1159    // pointer to any object.
1160    ConvertedType = ToType;
1161    return true;
1162  }
1163  else
1164    return false;
1165
1166  QualType FromPointeeType;
1167  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1168    FromPointeeType = FromCPtr->getPointeeType();
1169  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1170    FromPointeeType = FromBlockPtr->getPointeeType();
1171  else
1172    return false;
1173
1174  // If we have pointers to pointers, recursively check whether this
1175  // is an Objective-C conversion.
1176  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1177      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1178                              IncompatibleObjC)) {
1179    // We always complain about this conversion.
1180    IncompatibleObjC = true;
1181    ConvertedType = ToType;
1182    return true;
1183  }
1184  // Allow conversion of pointee being objective-c pointer to another one;
1185  // as in I* to id.
1186  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1187      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1188      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1189                              IncompatibleObjC)) {
1190    ConvertedType = ToType;
1191    return true;
1192  }
1193
1194  // If we have pointers to functions or blocks, check whether the only
1195  // differences in the argument and result types are in Objective-C
1196  // pointer conversions. If so, we permit the conversion (but
1197  // complain about it).
1198  const FunctionProtoType *FromFunctionType
1199    = FromPointeeType->getAs<FunctionProtoType>();
1200  const FunctionProtoType *ToFunctionType
1201    = ToPointeeType->getAs<FunctionProtoType>();
1202  if (FromFunctionType && ToFunctionType) {
1203    // If the function types are exactly the same, this isn't an
1204    // Objective-C pointer conversion.
1205    if (Context.getCanonicalType(FromPointeeType)
1206          == Context.getCanonicalType(ToPointeeType))
1207      return false;
1208
1209    // Perform the quick checks that will tell us whether these
1210    // function types are obviously different.
1211    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1212        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1213        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1214      return false;
1215
1216    bool HasObjCConversion = false;
1217    if (Context.getCanonicalType(FromFunctionType->getResultType())
1218          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1219      // Okay, the types match exactly. Nothing to do.
1220    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1221                                       ToFunctionType->getResultType(),
1222                                       ConvertedType, IncompatibleObjC)) {
1223      // Okay, we have an Objective-C pointer conversion.
1224      HasObjCConversion = true;
1225    } else {
1226      // Function types are too different. Abort.
1227      return false;
1228    }
1229
1230    // Check argument types.
1231    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1232         ArgIdx != NumArgs; ++ArgIdx) {
1233      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1234      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1235      if (Context.getCanonicalType(FromArgType)
1236            == Context.getCanonicalType(ToArgType)) {
1237        // Okay, the types match exactly. Nothing to do.
1238      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1239                                         ConvertedType, IncompatibleObjC)) {
1240        // Okay, we have an Objective-C pointer conversion.
1241        HasObjCConversion = true;
1242      } else {
1243        // Argument types are too different. Abort.
1244        return false;
1245      }
1246    }
1247
1248    if (HasObjCConversion) {
1249      // We had an Objective-C conversion. Allow this pointer
1250      // conversion, but complain about it.
1251      ConvertedType = ToType;
1252      IncompatibleObjC = true;
1253      return true;
1254    }
1255  }
1256
1257  return false;
1258}
1259
1260/// CheckPointerConversion - Check the pointer conversion from the
1261/// expression From to the type ToType. This routine checks for
1262/// ambiguous or inaccessible derived-to-base pointer
1263/// conversions for which IsPointerConversion has already returned
1264/// true. It returns true and produces a diagnostic if there was an
1265/// error, or returns false otherwise.
1266bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1267                                  CastExpr::CastKind &Kind,
1268                                  bool IgnoreBaseAccess) {
1269  QualType FromType = From->getType();
1270
1271  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1272    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1273      QualType FromPointeeType = FromPtrType->getPointeeType(),
1274               ToPointeeType   = ToPtrType->getPointeeType();
1275
1276      if (FromPointeeType->isRecordType() &&
1277          ToPointeeType->isRecordType()) {
1278        // We must have a derived-to-base conversion. Check an
1279        // ambiguous or inaccessible conversion.
1280        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1281                                         From->getExprLoc(),
1282                                         From->getSourceRange(),
1283                                         IgnoreBaseAccess))
1284          return true;
1285
1286        // The conversion was successful.
1287        Kind = CastExpr::CK_DerivedToBase;
1288      }
1289    }
1290  if (const ObjCObjectPointerType *FromPtrType =
1291        FromType->getAs<ObjCObjectPointerType>())
1292    if (const ObjCObjectPointerType *ToPtrType =
1293          ToType->getAs<ObjCObjectPointerType>()) {
1294      // Objective-C++ conversions are always okay.
1295      // FIXME: We should have a different class of conversions for the
1296      // Objective-C++ implicit conversions.
1297      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1298        return false;
1299
1300  }
1301  return false;
1302}
1303
1304/// IsMemberPointerConversion - Determines whether the conversion of the
1305/// expression From, which has the (possibly adjusted) type FromType, can be
1306/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1307/// If so, returns true and places the converted type (that might differ from
1308/// ToType in its cv-qualifiers at some level) into ConvertedType.
1309bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1310                                     QualType ToType,
1311                                     bool InOverloadResolution,
1312                                     QualType &ConvertedType) {
1313  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1314  if (!ToTypePtr)
1315    return false;
1316
1317  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1318  if (From->isNullPointerConstant(Context,
1319                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1320                                        : Expr::NPC_ValueDependentIsNull)) {
1321    ConvertedType = ToType;
1322    return true;
1323  }
1324
1325  // Otherwise, both types have to be member pointers.
1326  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1327  if (!FromTypePtr)
1328    return false;
1329
1330  // A pointer to member of B can be converted to a pointer to member of D,
1331  // where D is derived from B (C++ 4.11p2).
1332  QualType FromClass(FromTypePtr->getClass(), 0);
1333  QualType ToClass(ToTypePtr->getClass(), 0);
1334  // FIXME: What happens when these are dependent? Is this function even called?
1335
1336  if (IsDerivedFrom(ToClass, FromClass)) {
1337    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1338                                                 ToClass.getTypePtr());
1339    return true;
1340  }
1341
1342  return false;
1343}
1344
1345/// CheckMemberPointerConversion - Check the member pointer conversion from the
1346/// expression From to the type ToType. This routine checks for ambiguous or
1347/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1348/// for which IsMemberPointerConversion has already returned true. It returns
1349/// true and produces a diagnostic if there was an error, or returns false
1350/// otherwise.
1351bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1352                                        CastExpr::CastKind &Kind,
1353                                        bool IgnoreBaseAccess) {
1354  (void)IgnoreBaseAccess;
1355  QualType FromType = From->getType();
1356  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1357  if (!FromPtrType) {
1358    // This must be a null pointer to member pointer conversion
1359    assert(From->isNullPointerConstant(Context,
1360                                       Expr::NPC_ValueDependentIsNull) &&
1361           "Expr must be null pointer constant!");
1362    Kind = CastExpr::CK_NullToMemberPointer;
1363    return false;
1364  }
1365
1366  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1367  assert(ToPtrType && "No member pointer cast has a target type "
1368                      "that is not a member pointer.");
1369
1370  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1371  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1372
1373  // FIXME: What about dependent types?
1374  assert(FromClass->isRecordType() && "Pointer into non-class.");
1375  assert(ToClass->isRecordType() && "Pointer into non-class.");
1376
1377  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1378                     /*DetectVirtual=*/true);
1379  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1380  assert(DerivationOkay &&
1381         "Should not have been called if derivation isn't OK.");
1382  (void)DerivationOkay;
1383
1384  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1385                                  getUnqualifiedType())) {
1386    // Derivation is ambiguous. Redo the check to find the exact paths.
1387    Paths.clear();
1388    Paths.setRecordingPaths(true);
1389    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1390    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1391    (void)StillOkay;
1392
1393    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1394    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1395      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1396    return true;
1397  }
1398
1399  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1400    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1401      << FromClass << ToClass << QualType(VBase, 0)
1402      << From->getSourceRange();
1403    return true;
1404  }
1405
1406  // Must be a base to derived member conversion.
1407  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1408  return false;
1409}
1410
1411/// IsQualificationConversion - Determines whether the conversion from
1412/// an rvalue of type FromType to ToType is a qualification conversion
1413/// (C++ 4.4).
1414bool
1415Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1416  FromType = Context.getCanonicalType(FromType);
1417  ToType = Context.getCanonicalType(ToType);
1418
1419  // If FromType and ToType are the same type, this is not a
1420  // qualification conversion.
1421  if (FromType == ToType)
1422    return false;
1423
1424  // (C++ 4.4p4):
1425  //   A conversion can add cv-qualifiers at levels other than the first
1426  //   in multi-level pointers, subject to the following rules: [...]
1427  bool PreviousToQualsIncludeConst = true;
1428  bool UnwrappedAnyPointer = false;
1429  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1430    // Within each iteration of the loop, we check the qualifiers to
1431    // determine if this still looks like a qualification
1432    // conversion. Then, if all is well, we unwrap one more level of
1433    // pointers or pointers-to-members and do it all again
1434    // until there are no more pointers or pointers-to-members left to
1435    // unwrap.
1436    UnwrappedAnyPointer = true;
1437
1438    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1439    //      2,j, and similarly for volatile.
1440    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1441      return false;
1442
1443    //   -- if the cv 1,j and cv 2,j are different, then const is in
1444    //      every cv for 0 < k < j.
1445    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1446        && !PreviousToQualsIncludeConst)
1447      return false;
1448
1449    // Keep track of whether all prior cv-qualifiers in the "to" type
1450    // include const.
1451    PreviousToQualsIncludeConst
1452      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1453  }
1454
1455  // We are left with FromType and ToType being the pointee types
1456  // after unwrapping the original FromType and ToType the same number
1457  // of types. If we unwrapped any pointers, and if FromType and
1458  // ToType have the same unqualified type (since we checked
1459  // qualifiers above), then this is a qualification conversion.
1460  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1461}
1462
1463/// Determines whether there is a user-defined conversion sequence
1464/// (C++ [over.ics.user]) that converts expression From to the type
1465/// ToType. If such a conversion exists, User will contain the
1466/// user-defined conversion sequence that performs such a conversion
1467/// and this routine will return true. Otherwise, this routine returns
1468/// false and User is unspecified.
1469///
1470/// \param AllowConversionFunctions true if the conversion should
1471/// consider conversion functions at all. If false, only constructors
1472/// will be considered.
1473///
1474/// \param AllowExplicit  true if the conversion should consider C++0x
1475/// "explicit" conversion functions as well as non-explicit conversion
1476/// functions (C++0x [class.conv.fct]p2).
1477///
1478/// \param ForceRValue  true if the expression should be treated as an rvalue
1479/// for overload resolution.
1480/// \param UserCast true if looking for user defined conversion for a static
1481/// cast.
1482OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1483                                          UserDefinedConversionSequence& User,
1484                                            OverloadCandidateSet& CandidateSet,
1485                                                bool AllowConversionFunctions,
1486                                                bool AllowExplicit,
1487                                                bool ForceRValue,
1488                                                bool UserCast) {
1489  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1490    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1491      // We're not going to find any constructors.
1492    } else if (CXXRecordDecl *ToRecordDecl
1493                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1494      // C++ [over.match.ctor]p1:
1495      //   When objects of class type are direct-initialized (8.5), or
1496      //   copy-initialized from an expression of the same or a
1497      //   derived class type (8.5), overload resolution selects the
1498      //   constructor. [...] For copy-initialization, the candidate
1499      //   functions are all the converting constructors (12.3.1) of
1500      //   that class. The argument list is the expression-list within
1501      //   the parentheses of the initializer.
1502      bool SuppressUserConversions = !UserCast;
1503      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1504          IsDerivedFrom(From->getType(), ToType)) {
1505        SuppressUserConversions = false;
1506        AllowConversionFunctions = false;
1507      }
1508
1509      DeclarationName ConstructorName
1510        = Context.DeclarationNames.getCXXConstructorName(
1511                          Context.getCanonicalType(ToType).getUnqualifiedType());
1512      DeclContext::lookup_iterator Con, ConEnd;
1513      for (llvm::tie(Con, ConEnd)
1514             = ToRecordDecl->lookup(ConstructorName);
1515           Con != ConEnd; ++Con) {
1516        // Find the constructor (which may be a template).
1517        CXXConstructorDecl *Constructor = 0;
1518        FunctionTemplateDecl *ConstructorTmpl
1519          = dyn_cast<FunctionTemplateDecl>(*Con);
1520        if (ConstructorTmpl)
1521          Constructor
1522            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1523        else
1524          Constructor = cast<CXXConstructorDecl>(*Con);
1525
1526        if (!Constructor->isInvalidDecl() &&
1527            Constructor->isConvertingConstructor(AllowExplicit)) {
1528          if (ConstructorTmpl)
1529            AddTemplateOverloadCandidate(ConstructorTmpl,
1530                                         ConstructorTmpl->getAccess(),
1531                                         /*ExplicitArgs*/ 0,
1532                                         &From, 1, CandidateSet,
1533                                         SuppressUserConversions, ForceRValue);
1534          else
1535            // Allow one user-defined conversion when user specifies a
1536            // From->ToType conversion via an static cast (c-style, etc).
1537            AddOverloadCandidate(Constructor, Constructor->getAccess(),
1538                                 &From, 1, CandidateSet,
1539                                 SuppressUserConversions, ForceRValue);
1540        }
1541      }
1542    }
1543  }
1544
1545  if (!AllowConversionFunctions) {
1546    // Don't allow any conversion functions to enter the overload set.
1547  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1548                                 PDiag(0)
1549                                   << From->getSourceRange())) {
1550    // No conversion functions from incomplete types.
1551  } else if (const RecordType *FromRecordType
1552               = From->getType()->getAs<RecordType>()) {
1553    if (CXXRecordDecl *FromRecordDecl
1554         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1555      // Add all of the conversion functions as candidates.
1556      const UnresolvedSetImpl *Conversions
1557        = FromRecordDecl->getVisibleConversionFunctions();
1558      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1559             E = Conversions->end(); I != E; ++I) {
1560        NamedDecl *D = *I;
1561        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1562        if (isa<UsingShadowDecl>(D))
1563          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1564
1565        CXXConversionDecl *Conv;
1566        FunctionTemplateDecl *ConvTemplate;
1567        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1568          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1569        else
1570          Conv = dyn_cast<CXXConversionDecl>(*I);
1571
1572        if (AllowExplicit || !Conv->isExplicit()) {
1573          if (ConvTemplate)
1574            AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
1575                                           ActingContext, From, ToType,
1576                                           CandidateSet);
1577          else
1578            AddConversionCandidate(Conv, I.getAccess(), ActingContext,
1579                                   From, ToType, CandidateSet);
1580        }
1581      }
1582    }
1583  }
1584
1585  OverloadCandidateSet::iterator Best;
1586  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1587    case OR_Success:
1588      // Record the standard conversion we used and the conversion function.
1589      if (CXXConstructorDecl *Constructor
1590            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1591        // C++ [over.ics.user]p1:
1592        //   If the user-defined conversion is specified by a
1593        //   constructor (12.3.1), the initial standard conversion
1594        //   sequence converts the source type to the type required by
1595        //   the argument of the constructor.
1596        //
1597        QualType ThisType = Constructor->getThisType(Context);
1598        if (Best->Conversions[0].isEllipsis())
1599          User.EllipsisConversion = true;
1600        else {
1601          User.Before = Best->Conversions[0].Standard;
1602          User.EllipsisConversion = false;
1603        }
1604        User.ConversionFunction = Constructor;
1605        User.After.setAsIdentityConversion();
1606        User.After.setFromType(
1607          ThisType->getAs<PointerType>()->getPointeeType());
1608        User.After.setToType(ToType);
1609        return OR_Success;
1610      } else if (CXXConversionDecl *Conversion
1611                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1612        // C++ [over.ics.user]p1:
1613        //
1614        //   [...] If the user-defined conversion is specified by a
1615        //   conversion function (12.3.2), the initial standard
1616        //   conversion sequence converts the source type to the
1617        //   implicit object parameter of the conversion function.
1618        User.Before = Best->Conversions[0].Standard;
1619        User.ConversionFunction = Conversion;
1620        User.EllipsisConversion = false;
1621
1622        // C++ [over.ics.user]p2:
1623        //   The second standard conversion sequence converts the
1624        //   result of the user-defined conversion to the target type
1625        //   for the sequence. Since an implicit conversion sequence
1626        //   is an initialization, the special rules for
1627        //   initialization by user-defined conversion apply when
1628        //   selecting the best user-defined conversion for a
1629        //   user-defined conversion sequence (see 13.3.3 and
1630        //   13.3.3.1).
1631        User.After = Best->FinalConversion;
1632        return OR_Success;
1633      } else {
1634        assert(false && "Not a constructor or conversion function?");
1635        return OR_No_Viable_Function;
1636      }
1637
1638    case OR_No_Viable_Function:
1639      return OR_No_Viable_Function;
1640    case OR_Deleted:
1641      // No conversion here! We're done.
1642      return OR_Deleted;
1643
1644    case OR_Ambiguous:
1645      return OR_Ambiguous;
1646    }
1647
1648  return OR_No_Viable_Function;
1649}
1650
1651bool
1652Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1653  ImplicitConversionSequence ICS;
1654  OverloadCandidateSet CandidateSet;
1655  OverloadingResult OvResult =
1656    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1657                            CandidateSet, true, false, false);
1658  if (OvResult == OR_Ambiguous)
1659    Diag(From->getSourceRange().getBegin(),
1660         diag::err_typecheck_ambiguous_condition)
1661          << From->getType() << ToType << From->getSourceRange();
1662  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1663    Diag(From->getSourceRange().getBegin(),
1664         diag::err_typecheck_nonviable_condition)
1665    << From->getType() << ToType << From->getSourceRange();
1666  else
1667    return false;
1668  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1669  return true;
1670}
1671
1672/// CompareImplicitConversionSequences - Compare two implicit
1673/// conversion sequences to determine whether one is better than the
1674/// other or if they are indistinguishable (C++ 13.3.3.2).
1675ImplicitConversionSequence::CompareKind
1676Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1677                                         const ImplicitConversionSequence& ICS2)
1678{
1679  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1680  // conversion sequences (as defined in 13.3.3.1)
1681  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1682  //      conversion sequence than a user-defined conversion sequence or
1683  //      an ellipsis conversion sequence, and
1684  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1685  //      conversion sequence than an ellipsis conversion sequence
1686  //      (13.3.3.1.3).
1687  //
1688  // C++0x [over.best.ics]p10:
1689  //   For the purpose of ranking implicit conversion sequences as
1690  //   described in 13.3.3.2, the ambiguous conversion sequence is
1691  //   treated as a user-defined sequence that is indistinguishable
1692  //   from any other user-defined conversion sequence.
1693  if (ICS1.getKind() < ICS2.getKind()) {
1694    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1695      return ImplicitConversionSequence::Better;
1696  } else if (ICS2.getKind() < ICS1.getKind()) {
1697    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1698      return ImplicitConversionSequence::Worse;
1699  }
1700
1701  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1702    return ImplicitConversionSequence::Indistinguishable;
1703
1704  // Two implicit conversion sequences of the same form are
1705  // indistinguishable conversion sequences unless one of the
1706  // following rules apply: (C++ 13.3.3.2p3):
1707  if (ICS1.isStandard())
1708    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1709  else if (ICS1.isUserDefined()) {
1710    // User-defined conversion sequence U1 is a better conversion
1711    // sequence than another user-defined conversion sequence U2 if
1712    // they contain the same user-defined conversion function or
1713    // constructor and if the second standard conversion sequence of
1714    // U1 is better than the second standard conversion sequence of
1715    // U2 (C++ 13.3.3.2p3).
1716    if (ICS1.UserDefined.ConversionFunction ==
1717          ICS2.UserDefined.ConversionFunction)
1718      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1719                                                ICS2.UserDefined.After);
1720  }
1721
1722  return ImplicitConversionSequence::Indistinguishable;
1723}
1724
1725/// CompareStandardConversionSequences - Compare two standard
1726/// conversion sequences to determine whether one is better than the
1727/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1728ImplicitConversionSequence::CompareKind
1729Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1730                                         const StandardConversionSequence& SCS2)
1731{
1732  // Standard conversion sequence S1 is a better conversion sequence
1733  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1734
1735  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1736  //     sequences in the canonical form defined by 13.3.3.1.1,
1737  //     excluding any Lvalue Transformation; the identity conversion
1738  //     sequence is considered to be a subsequence of any
1739  //     non-identity conversion sequence) or, if not that,
1740  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1741    // Neither is a proper subsequence of the other. Do nothing.
1742    ;
1743  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1744           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1745           (SCS1.Second == ICK_Identity &&
1746            SCS1.Third == ICK_Identity))
1747    // SCS1 is a proper subsequence of SCS2.
1748    return ImplicitConversionSequence::Better;
1749  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1750           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1751           (SCS2.Second == ICK_Identity &&
1752            SCS2.Third == ICK_Identity))
1753    // SCS2 is a proper subsequence of SCS1.
1754    return ImplicitConversionSequence::Worse;
1755
1756  //  -- the rank of S1 is better than the rank of S2 (by the rules
1757  //     defined below), or, if not that,
1758  ImplicitConversionRank Rank1 = SCS1.getRank();
1759  ImplicitConversionRank Rank2 = SCS2.getRank();
1760  if (Rank1 < Rank2)
1761    return ImplicitConversionSequence::Better;
1762  else if (Rank2 < Rank1)
1763    return ImplicitConversionSequence::Worse;
1764
1765  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1766  // are indistinguishable unless one of the following rules
1767  // applies:
1768
1769  //   A conversion that is not a conversion of a pointer, or
1770  //   pointer to member, to bool is better than another conversion
1771  //   that is such a conversion.
1772  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1773    return SCS2.isPointerConversionToBool()
1774             ? ImplicitConversionSequence::Better
1775             : ImplicitConversionSequence::Worse;
1776
1777  // C++ [over.ics.rank]p4b2:
1778  //
1779  //   If class B is derived directly or indirectly from class A,
1780  //   conversion of B* to A* is better than conversion of B* to
1781  //   void*, and conversion of A* to void* is better than conversion
1782  //   of B* to void*.
1783  bool SCS1ConvertsToVoid
1784    = SCS1.isPointerConversionToVoidPointer(Context);
1785  bool SCS2ConvertsToVoid
1786    = SCS2.isPointerConversionToVoidPointer(Context);
1787  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1788    // Exactly one of the conversion sequences is a conversion to
1789    // a void pointer; it's the worse conversion.
1790    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1791                              : ImplicitConversionSequence::Worse;
1792  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1793    // Neither conversion sequence converts to a void pointer; compare
1794    // their derived-to-base conversions.
1795    if (ImplicitConversionSequence::CompareKind DerivedCK
1796          = CompareDerivedToBaseConversions(SCS1, SCS2))
1797      return DerivedCK;
1798  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1799    // Both conversion sequences are conversions to void
1800    // pointers. Compare the source types to determine if there's an
1801    // inheritance relationship in their sources.
1802    QualType FromType1 = SCS1.getFromType();
1803    QualType FromType2 = SCS2.getFromType();
1804
1805    // Adjust the types we're converting from via the array-to-pointer
1806    // conversion, if we need to.
1807    if (SCS1.First == ICK_Array_To_Pointer)
1808      FromType1 = Context.getArrayDecayedType(FromType1);
1809    if (SCS2.First == ICK_Array_To_Pointer)
1810      FromType2 = Context.getArrayDecayedType(FromType2);
1811
1812    QualType FromPointee1
1813      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1814    QualType FromPointee2
1815      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1816
1817    if (IsDerivedFrom(FromPointee2, FromPointee1))
1818      return ImplicitConversionSequence::Better;
1819    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1820      return ImplicitConversionSequence::Worse;
1821
1822    // Objective-C++: If one interface is more specific than the
1823    // other, it is the better one.
1824    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1825    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1826    if (FromIface1 && FromIface1) {
1827      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1828        return ImplicitConversionSequence::Better;
1829      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1830        return ImplicitConversionSequence::Worse;
1831    }
1832  }
1833
1834  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1835  // bullet 3).
1836  if (ImplicitConversionSequence::CompareKind QualCK
1837        = CompareQualificationConversions(SCS1, SCS2))
1838    return QualCK;
1839
1840  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1841    // C++0x [over.ics.rank]p3b4:
1842    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1843    //      implicit object parameter of a non-static member function declared
1844    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1845    //      rvalue and S2 binds an lvalue reference.
1846    // FIXME: We don't know if we're dealing with the implicit object parameter,
1847    // or if the member function in this case has a ref qualifier.
1848    // (Of course, we don't have ref qualifiers yet.)
1849    if (SCS1.RRefBinding != SCS2.RRefBinding)
1850      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1851                              : ImplicitConversionSequence::Worse;
1852
1853    // C++ [over.ics.rank]p3b4:
1854    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1855    //      which the references refer are the same type except for
1856    //      top-level cv-qualifiers, and the type to which the reference
1857    //      initialized by S2 refers is more cv-qualified than the type
1858    //      to which the reference initialized by S1 refers.
1859    QualType T1 = SCS1.getToType();
1860    QualType T2 = SCS2.getToType();
1861    T1 = Context.getCanonicalType(T1);
1862    T2 = Context.getCanonicalType(T2);
1863    Qualifiers T1Quals, T2Quals;
1864    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1865    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1866    if (UnqualT1 == UnqualT2) {
1867      // If the type is an array type, promote the element qualifiers to the type
1868      // for comparison.
1869      if (isa<ArrayType>(T1) && T1Quals)
1870        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1871      if (isa<ArrayType>(T2) && T2Quals)
1872        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1873      if (T2.isMoreQualifiedThan(T1))
1874        return ImplicitConversionSequence::Better;
1875      else if (T1.isMoreQualifiedThan(T2))
1876        return ImplicitConversionSequence::Worse;
1877    }
1878  }
1879
1880  return ImplicitConversionSequence::Indistinguishable;
1881}
1882
1883/// CompareQualificationConversions - Compares two standard conversion
1884/// sequences to determine whether they can be ranked based on their
1885/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1886ImplicitConversionSequence::CompareKind
1887Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1888                                      const StandardConversionSequence& SCS2) {
1889  // C++ 13.3.3.2p3:
1890  //  -- S1 and S2 differ only in their qualification conversion and
1891  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1892  //     cv-qualification signature of type T1 is a proper subset of
1893  //     the cv-qualification signature of type T2, and S1 is not the
1894  //     deprecated string literal array-to-pointer conversion (4.2).
1895  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1896      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1897    return ImplicitConversionSequence::Indistinguishable;
1898
1899  // FIXME: the example in the standard doesn't use a qualification
1900  // conversion (!)
1901  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1902  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1903  T1 = Context.getCanonicalType(T1);
1904  T2 = Context.getCanonicalType(T2);
1905  Qualifiers T1Quals, T2Quals;
1906  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1907  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1908
1909  // If the types are the same, we won't learn anything by unwrapped
1910  // them.
1911  if (UnqualT1 == UnqualT2)
1912    return ImplicitConversionSequence::Indistinguishable;
1913
1914  // If the type is an array type, promote the element qualifiers to the type
1915  // for comparison.
1916  if (isa<ArrayType>(T1) && T1Quals)
1917    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1918  if (isa<ArrayType>(T2) && T2Quals)
1919    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1920
1921  ImplicitConversionSequence::CompareKind Result
1922    = ImplicitConversionSequence::Indistinguishable;
1923  while (UnwrapSimilarPointerTypes(T1, T2)) {
1924    // Within each iteration of the loop, we check the qualifiers to
1925    // determine if this still looks like a qualification
1926    // conversion. Then, if all is well, we unwrap one more level of
1927    // pointers or pointers-to-members and do it all again
1928    // until there are no more pointers or pointers-to-members left
1929    // to unwrap. This essentially mimics what
1930    // IsQualificationConversion does, but here we're checking for a
1931    // strict subset of qualifiers.
1932    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1933      // The qualifiers are the same, so this doesn't tell us anything
1934      // about how the sequences rank.
1935      ;
1936    else if (T2.isMoreQualifiedThan(T1)) {
1937      // T1 has fewer qualifiers, so it could be the better sequence.
1938      if (Result == ImplicitConversionSequence::Worse)
1939        // Neither has qualifiers that are a subset of the other's
1940        // qualifiers.
1941        return ImplicitConversionSequence::Indistinguishable;
1942
1943      Result = ImplicitConversionSequence::Better;
1944    } else if (T1.isMoreQualifiedThan(T2)) {
1945      // T2 has fewer qualifiers, so it could be the better sequence.
1946      if (Result == ImplicitConversionSequence::Better)
1947        // Neither has qualifiers that are a subset of the other's
1948        // qualifiers.
1949        return ImplicitConversionSequence::Indistinguishable;
1950
1951      Result = ImplicitConversionSequence::Worse;
1952    } else {
1953      // Qualifiers are disjoint.
1954      return ImplicitConversionSequence::Indistinguishable;
1955    }
1956
1957    // If the types after this point are equivalent, we're done.
1958    if (Context.hasSameUnqualifiedType(T1, T2))
1959      break;
1960  }
1961
1962  // Check that the winning standard conversion sequence isn't using
1963  // the deprecated string literal array to pointer conversion.
1964  switch (Result) {
1965  case ImplicitConversionSequence::Better:
1966    if (SCS1.Deprecated)
1967      Result = ImplicitConversionSequence::Indistinguishable;
1968    break;
1969
1970  case ImplicitConversionSequence::Indistinguishable:
1971    break;
1972
1973  case ImplicitConversionSequence::Worse:
1974    if (SCS2.Deprecated)
1975      Result = ImplicitConversionSequence::Indistinguishable;
1976    break;
1977  }
1978
1979  return Result;
1980}
1981
1982/// CompareDerivedToBaseConversions - Compares two standard conversion
1983/// sequences to determine whether they can be ranked based on their
1984/// various kinds of derived-to-base conversions (C++
1985/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1986/// conversions between Objective-C interface types.
1987ImplicitConversionSequence::CompareKind
1988Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1989                                      const StandardConversionSequence& SCS2) {
1990  QualType FromType1 = SCS1.getFromType();
1991  QualType ToType1 = SCS1.getToType();
1992  QualType FromType2 = SCS2.getFromType();
1993  QualType ToType2 = SCS2.getToType();
1994
1995  // Adjust the types we're converting from via the array-to-pointer
1996  // conversion, if we need to.
1997  if (SCS1.First == ICK_Array_To_Pointer)
1998    FromType1 = Context.getArrayDecayedType(FromType1);
1999  if (SCS2.First == ICK_Array_To_Pointer)
2000    FromType2 = Context.getArrayDecayedType(FromType2);
2001
2002  // Canonicalize all of the types.
2003  FromType1 = Context.getCanonicalType(FromType1);
2004  ToType1 = Context.getCanonicalType(ToType1);
2005  FromType2 = Context.getCanonicalType(FromType2);
2006  ToType2 = Context.getCanonicalType(ToType2);
2007
2008  // C++ [over.ics.rank]p4b3:
2009  //
2010  //   If class B is derived directly or indirectly from class A and
2011  //   class C is derived directly or indirectly from B,
2012  //
2013  // For Objective-C, we let A, B, and C also be Objective-C
2014  // interfaces.
2015
2016  // Compare based on pointer conversions.
2017  if (SCS1.Second == ICK_Pointer_Conversion &&
2018      SCS2.Second == ICK_Pointer_Conversion &&
2019      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2020      FromType1->isPointerType() && FromType2->isPointerType() &&
2021      ToType1->isPointerType() && ToType2->isPointerType()) {
2022    QualType FromPointee1
2023      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2024    QualType ToPointee1
2025      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2026    QualType FromPointee2
2027      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2028    QualType ToPointee2
2029      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2030
2031    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2032    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2033    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2034    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2035
2036    //   -- conversion of C* to B* is better than conversion of C* to A*,
2037    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2038      if (IsDerivedFrom(ToPointee1, ToPointee2))
2039        return ImplicitConversionSequence::Better;
2040      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2041        return ImplicitConversionSequence::Worse;
2042
2043      if (ToIface1 && ToIface2) {
2044        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2045          return ImplicitConversionSequence::Better;
2046        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2047          return ImplicitConversionSequence::Worse;
2048      }
2049    }
2050
2051    //   -- conversion of B* to A* is better than conversion of C* to A*,
2052    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2053      if (IsDerivedFrom(FromPointee2, FromPointee1))
2054        return ImplicitConversionSequence::Better;
2055      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2056        return ImplicitConversionSequence::Worse;
2057
2058      if (FromIface1 && FromIface2) {
2059        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2060          return ImplicitConversionSequence::Better;
2061        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2062          return ImplicitConversionSequence::Worse;
2063      }
2064    }
2065  }
2066
2067  // Compare based on reference bindings.
2068  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
2069      SCS1.Second == ICK_Derived_To_Base) {
2070    //   -- binding of an expression of type C to a reference of type
2071    //      B& is better than binding an expression of type C to a
2072    //      reference of type A&,
2073    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2074        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2075      if (IsDerivedFrom(ToType1, ToType2))
2076        return ImplicitConversionSequence::Better;
2077      else if (IsDerivedFrom(ToType2, ToType1))
2078        return ImplicitConversionSequence::Worse;
2079    }
2080
2081    //   -- binding of an expression of type B to a reference of type
2082    //      A& is better than binding an expression of type C to a
2083    //      reference of type A&,
2084    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2085        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2086      if (IsDerivedFrom(FromType2, FromType1))
2087        return ImplicitConversionSequence::Better;
2088      else if (IsDerivedFrom(FromType1, FromType2))
2089        return ImplicitConversionSequence::Worse;
2090    }
2091  }
2092
2093  // Ranking of member-pointer types.
2094  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2095      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2096      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2097    const MemberPointerType * FromMemPointer1 =
2098                                        FromType1->getAs<MemberPointerType>();
2099    const MemberPointerType * ToMemPointer1 =
2100                                          ToType1->getAs<MemberPointerType>();
2101    const MemberPointerType * FromMemPointer2 =
2102                                          FromType2->getAs<MemberPointerType>();
2103    const MemberPointerType * ToMemPointer2 =
2104                                          ToType2->getAs<MemberPointerType>();
2105    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2106    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2107    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2108    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2109    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2110    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2111    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2112    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2113    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2114    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2115      if (IsDerivedFrom(ToPointee1, ToPointee2))
2116        return ImplicitConversionSequence::Worse;
2117      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2118        return ImplicitConversionSequence::Better;
2119    }
2120    // conversion of B::* to C::* is better than conversion of A::* to C::*
2121    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2122      if (IsDerivedFrom(FromPointee1, FromPointee2))
2123        return ImplicitConversionSequence::Better;
2124      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2125        return ImplicitConversionSequence::Worse;
2126    }
2127  }
2128
2129  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2130      SCS1.Second == ICK_Derived_To_Base) {
2131    //   -- conversion of C to B is better than conversion of C to A,
2132    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2133        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2134      if (IsDerivedFrom(ToType1, ToType2))
2135        return ImplicitConversionSequence::Better;
2136      else if (IsDerivedFrom(ToType2, ToType1))
2137        return ImplicitConversionSequence::Worse;
2138    }
2139
2140    //   -- conversion of B to A is better than conversion of C to A.
2141    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2142        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2143      if (IsDerivedFrom(FromType2, FromType1))
2144        return ImplicitConversionSequence::Better;
2145      else if (IsDerivedFrom(FromType1, FromType2))
2146        return ImplicitConversionSequence::Worse;
2147    }
2148  }
2149
2150  return ImplicitConversionSequence::Indistinguishable;
2151}
2152
2153/// TryCopyInitialization - Try to copy-initialize a value of type
2154/// ToType from the expression From. Return the implicit conversion
2155/// sequence required to pass this argument, which may be a bad
2156/// conversion sequence (meaning that the argument cannot be passed to
2157/// a parameter of this type). If @p SuppressUserConversions, then we
2158/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2159/// then we treat @p From as an rvalue, even if it is an lvalue.
2160ImplicitConversionSequence
2161Sema::TryCopyInitialization(Expr *From, QualType ToType,
2162                            bool SuppressUserConversions, bool ForceRValue,
2163                            bool InOverloadResolution) {
2164  if (ToType->isReferenceType()) {
2165    ImplicitConversionSequence ICS;
2166    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
2167    CheckReferenceInit(From, ToType,
2168                       /*FIXME:*/From->getLocStart(),
2169                       SuppressUserConversions,
2170                       /*AllowExplicit=*/false,
2171                       ForceRValue,
2172                       &ICS);
2173    return ICS;
2174  } else {
2175    return TryImplicitConversion(From, ToType,
2176                                 SuppressUserConversions,
2177                                 /*AllowExplicit=*/false,
2178                                 ForceRValue,
2179                                 InOverloadResolution);
2180  }
2181}
2182
2183/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2184/// the expression @p From. Returns true (and emits a diagnostic) if there was
2185/// an error, returns false if the initialization succeeded. Elidable should
2186/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2187/// differently in C++0x for this case.
2188bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2189                                     AssignmentAction Action, bool Elidable) {
2190  if (!getLangOptions().CPlusPlus) {
2191    // In C, argument passing is the same as performing an assignment.
2192    QualType FromType = From->getType();
2193
2194    AssignConvertType ConvTy =
2195      CheckSingleAssignmentConstraints(ToType, From);
2196    if (ConvTy != Compatible &&
2197        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2198      ConvTy = Compatible;
2199
2200    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2201                                    FromType, From, Action);
2202  }
2203
2204  if (ToType->isReferenceType())
2205    return CheckReferenceInit(From, ToType,
2206                              /*FIXME:*/From->getLocStart(),
2207                              /*SuppressUserConversions=*/false,
2208                              /*AllowExplicit=*/false,
2209                              /*ForceRValue=*/false);
2210
2211  if (!PerformImplicitConversion(From, ToType, Action,
2212                                 /*AllowExplicit=*/false, Elidable))
2213    return false;
2214  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2215    return Diag(From->getSourceRange().getBegin(),
2216                diag::err_typecheck_convert_incompatible)
2217      << ToType << From->getType() << Action << From->getSourceRange();
2218  return true;
2219}
2220
2221/// TryObjectArgumentInitialization - Try to initialize the object
2222/// parameter of the given member function (@c Method) from the
2223/// expression @p From.
2224ImplicitConversionSequence
2225Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2226                                      CXXMethodDecl *Method,
2227                                      CXXRecordDecl *ActingContext) {
2228  QualType ClassType = Context.getTypeDeclType(ActingContext);
2229  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2230  //                 const volatile object.
2231  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2232    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2233  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2234
2235  // Set up the conversion sequence as a "bad" conversion, to allow us
2236  // to exit early.
2237  ImplicitConversionSequence ICS;
2238  ICS.Standard.setAsIdentityConversion();
2239  ICS.setBad();
2240
2241  // We need to have an object of class type.
2242  QualType FromType = OrigFromType;
2243  if (const PointerType *PT = FromType->getAs<PointerType>())
2244    FromType = PT->getPointeeType();
2245
2246  assert(FromType->isRecordType());
2247
2248  // The implicit object parameter is has the type "reference to cv X",
2249  // where X is the class of which the function is a member
2250  // (C++ [over.match.funcs]p4). However, when finding an implicit
2251  // conversion sequence for the argument, we are not allowed to
2252  // create temporaries or perform user-defined conversions
2253  // (C++ [over.match.funcs]p5). We perform a simplified version of
2254  // reference binding here, that allows class rvalues to bind to
2255  // non-constant references.
2256
2257  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2258  // with the implicit object parameter (C++ [over.match.funcs]p5).
2259  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2260  if (ImplicitParamType.getCVRQualifiers()
2261                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2262      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2263    ICS.Bad.init(BadConversionSequence::bad_qualifiers,
2264                 OrigFromType, ImplicitParamType);
2265    return ICS;
2266  }
2267
2268  // Check that we have either the same type or a derived type. It
2269  // affects the conversion rank.
2270  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2271  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2272    ICS.Standard.Second = ICK_Identity;
2273  else if (IsDerivedFrom(FromType, ClassType))
2274    ICS.Standard.Second = ICK_Derived_To_Base;
2275  else {
2276    ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType);
2277    return ICS;
2278  }
2279
2280  // Success. Mark this as a reference binding.
2281  ICS.setStandard();
2282  ICS.Standard.setFromType(FromType);
2283  ICS.Standard.setToType(ImplicitParamType);
2284  ICS.Standard.ReferenceBinding = true;
2285  ICS.Standard.DirectBinding = true;
2286  ICS.Standard.RRefBinding = false;
2287  return ICS;
2288}
2289
2290/// PerformObjectArgumentInitialization - Perform initialization of
2291/// the implicit object parameter for the given Method with the given
2292/// expression.
2293bool
2294Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2295  QualType FromRecordType, DestType;
2296  QualType ImplicitParamRecordType  =
2297    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2298
2299  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2300    FromRecordType = PT->getPointeeType();
2301    DestType = Method->getThisType(Context);
2302  } else {
2303    FromRecordType = From->getType();
2304    DestType = ImplicitParamRecordType;
2305  }
2306
2307  // Note that we always use the true parent context when performing
2308  // the actual argument initialization.
2309  ImplicitConversionSequence ICS
2310    = TryObjectArgumentInitialization(From->getType(), Method,
2311                                      Method->getParent());
2312  if (ICS.isBad())
2313    return Diag(From->getSourceRange().getBegin(),
2314                diag::err_implicit_object_parameter_init)
2315       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2316
2317  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2318      CheckDerivedToBaseConversion(FromRecordType,
2319                                   ImplicitParamRecordType,
2320                                   From->getSourceRange().getBegin(),
2321                                   From->getSourceRange()))
2322    return true;
2323
2324  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2325                    /*isLvalue=*/true);
2326  return false;
2327}
2328
2329/// TryContextuallyConvertToBool - Attempt to contextually convert the
2330/// expression From to bool (C++0x [conv]p3).
2331ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2332  return TryImplicitConversion(From, Context.BoolTy,
2333                               // FIXME: Are these flags correct?
2334                               /*SuppressUserConversions=*/false,
2335                               /*AllowExplicit=*/true,
2336                               /*ForceRValue=*/false,
2337                               /*InOverloadResolution=*/false);
2338}
2339
2340/// PerformContextuallyConvertToBool - Perform a contextual conversion
2341/// of the expression From to bool (C++0x [conv]p3).
2342bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2343  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2344  if (!ICS.isBad())
2345    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2346
2347  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2348    return  Diag(From->getSourceRange().getBegin(),
2349                 diag::err_typecheck_bool_condition)
2350                  << From->getType() << From->getSourceRange();
2351  return true;
2352}
2353
2354/// AddOverloadCandidate - Adds the given function to the set of
2355/// candidate functions, using the given function call arguments.  If
2356/// @p SuppressUserConversions, then don't allow user-defined
2357/// conversions via constructors or conversion operators.
2358/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2359/// hacky way to implement the overloading rules for elidable copy
2360/// initialization in C++0x (C++0x 12.8p15).
2361///
2362/// \para PartialOverloading true if we are performing "partial" overloading
2363/// based on an incomplete set of function arguments. This feature is used by
2364/// code completion.
2365void
2366Sema::AddOverloadCandidate(FunctionDecl *Function,
2367                           AccessSpecifier Access,
2368                           Expr **Args, unsigned NumArgs,
2369                           OverloadCandidateSet& CandidateSet,
2370                           bool SuppressUserConversions,
2371                           bool ForceRValue,
2372                           bool PartialOverloading) {
2373  const FunctionProtoType* Proto
2374    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2375  assert(Proto && "Functions without a prototype cannot be overloaded");
2376  assert(!Function->getDescribedFunctionTemplate() &&
2377         "Use AddTemplateOverloadCandidate for function templates");
2378
2379  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2380    if (!isa<CXXConstructorDecl>(Method)) {
2381      // If we get here, it's because we're calling a member function
2382      // that is named without a member access expression (e.g.,
2383      // "this->f") that was either written explicitly or created
2384      // implicitly. This can happen with a qualified call to a member
2385      // function, e.g., X::f(). We use an empty type for the implied
2386      // object argument (C++ [over.call.func]p3), and the acting context
2387      // is irrelevant.
2388      AddMethodCandidate(Method, Access, Method->getParent(),
2389                         QualType(), Args, NumArgs, CandidateSet,
2390                         SuppressUserConversions, ForceRValue);
2391      return;
2392    }
2393    // We treat a constructor like a non-member function, since its object
2394    // argument doesn't participate in overload resolution.
2395  }
2396
2397  if (!CandidateSet.isNewCandidate(Function))
2398    return;
2399
2400  // Overload resolution is always an unevaluated context.
2401  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2402
2403  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2404    // C++ [class.copy]p3:
2405    //   A member function template is never instantiated to perform the copy
2406    //   of a class object to an object of its class type.
2407    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2408    if (NumArgs == 1 &&
2409        Constructor->isCopyConstructorLikeSpecialization() &&
2410        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2411      return;
2412  }
2413
2414  // Add this candidate
2415  CandidateSet.push_back(OverloadCandidate());
2416  OverloadCandidate& Candidate = CandidateSet.back();
2417  Candidate.Function = Function;
2418  Candidate.Access = Access;
2419  Candidate.Viable = true;
2420  Candidate.IsSurrogate = false;
2421  Candidate.IgnoreObjectArgument = false;
2422
2423  unsigned NumArgsInProto = Proto->getNumArgs();
2424
2425  // (C++ 13.3.2p2): A candidate function having fewer than m
2426  // parameters is viable only if it has an ellipsis in its parameter
2427  // list (8.3.5).
2428  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2429      !Proto->isVariadic()) {
2430    Candidate.Viable = false;
2431    Candidate.FailureKind = ovl_fail_too_many_arguments;
2432    return;
2433  }
2434
2435  // (C++ 13.3.2p2): A candidate function having more than m parameters
2436  // is viable only if the (m+1)st parameter has a default argument
2437  // (8.3.6). For the purposes of overload resolution, the
2438  // parameter list is truncated on the right, so that there are
2439  // exactly m parameters.
2440  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2441  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2442    // Not enough arguments.
2443    Candidate.Viable = false;
2444    Candidate.FailureKind = ovl_fail_too_few_arguments;
2445    return;
2446  }
2447
2448  // Determine the implicit conversion sequences for each of the
2449  // arguments.
2450  Candidate.Conversions.resize(NumArgs);
2451  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2452    if (ArgIdx < NumArgsInProto) {
2453      // (C++ 13.3.2p3): for F to be a viable function, there shall
2454      // exist for each argument an implicit conversion sequence
2455      // (13.3.3.1) that converts that argument to the corresponding
2456      // parameter of F.
2457      QualType ParamType = Proto->getArgType(ArgIdx);
2458      Candidate.Conversions[ArgIdx]
2459        = TryCopyInitialization(Args[ArgIdx], ParamType,
2460                                SuppressUserConversions, ForceRValue,
2461                                /*InOverloadResolution=*/true);
2462      if (Candidate.Conversions[ArgIdx].isBad()) {
2463        Candidate.Viable = false;
2464        Candidate.FailureKind = ovl_fail_bad_conversion;
2465        break;
2466      }
2467    } else {
2468      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2469      // argument for which there is no corresponding parameter is
2470      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2471      Candidate.Conversions[ArgIdx].setEllipsis();
2472    }
2473  }
2474}
2475
2476/// \brief Add all of the function declarations in the given function set to
2477/// the overload canddiate set.
2478void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2479                                 Expr **Args, unsigned NumArgs,
2480                                 OverloadCandidateSet& CandidateSet,
2481                                 bool SuppressUserConversions) {
2482  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2483    // FIXME: using declarations
2484    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2485      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2486        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
2487                           cast<CXXMethodDecl>(FD)->getParent(),
2488                           Args[0]->getType(), Args + 1, NumArgs - 1,
2489                           CandidateSet, SuppressUserConversions);
2490      else
2491        AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
2492                             SuppressUserConversions);
2493    } else {
2494      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2495      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2496          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2497        AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
2498                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2499                                   /*FIXME: explicit args */ 0,
2500                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2501                                   CandidateSet,
2502                                   SuppressUserConversions);
2503      else
2504        AddTemplateOverloadCandidate(FunTmpl, AS_none,
2505                                     /*FIXME: explicit args */ 0,
2506                                     Args, NumArgs, CandidateSet,
2507                                     SuppressUserConversions);
2508    }
2509  }
2510}
2511
2512/// AddMethodCandidate - Adds a named decl (which is some kind of
2513/// method) as a method candidate to the given overload set.
2514void Sema::AddMethodCandidate(NamedDecl *Decl,
2515                              AccessSpecifier Access,
2516                              QualType ObjectType,
2517                              Expr **Args, unsigned NumArgs,
2518                              OverloadCandidateSet& CandidateSet,
2519                              bool SuppressUserConversions, bool ForceRValue) {
2520  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2521
2522  if (isa<UsingShadowDecl>(Decl))
2523    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2524
2525  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2526    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2527           "Expected a member function template");
2528    AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
2529                               ObjectType, Args, NumArgs,
2530                               CandidateSet,
2531                               SuppressUserConversions,
2532                               ForceRValue);
2533  } else {
2534    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
2535                       ObjectType, Args, NumArgs,
2536                       CandidateSet, SuppressUserConversions, ForceRValue);
2537  }
2538}
2539
2540/// AddMethodCandidate - Adds the given C++ member function to the set
2541/// of candidate functions, using the given function call arguments
2542/// and the object argument (@c Object). For example, in a call
2543/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2544/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2545/// allow user-defined conversions via constructors or conversion
2546/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2547/// a slightly hacky way to implement the overloading rules for elidable copy
2548/// initialization in C++0x (C++0x 12.8p15).
2549void
2550Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
2551                         CXXRecordDecl *ActingContext, QualType ObjectType,
2552                         Expr **Args, unsigned NumArgs,
2553                         OverloadCandidateSet& CandidateSet,
2554                         bool SuppressUserConversions, bool ForceRValue) {
2555  const FunctionProtoType* Proto
2556    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2557  assert(Proto && "Methods without a prototype cannot be overloaded");
2558  assert(!isa<CXXConstructorDecl>(Method) &&
2559         "Use AddOverloadCandidate for constructors");
2560
2561  if (!CandidateSet.isNewCandidate(Method))
2562    return;
2563
2564  // Overload resolution is always an unevaluated context.
2565  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2566
2567  // Add this candidate
2568  CandidateSet.push_back(OverloadCandidate());
2569  OverloadCandidate& Candidate = CandidateSet.back();
2570  Candidate.Function = Method;
2571  Candidate.Access = Access;
2572  Candidate.IsSurrogate = false;
2573  Candidate.IgnoreObjectArgument = false;
2574
2575  unsigned NumArgsInProto = Proto->getNumArgs();
2576
2577  // (C++ 13.3.2p2): A candidate function having fewer than m
2578  // parameters is viable only if it has an ellipsis in its parameter
2579  // list (8.3.5).
2580  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2581    Candidate.Viable = false;
2582    Candidate.FailureKind = ovl_fail_too_many_arguments;
2583    return;
2584  }
2585
2586  // (C++ 13.3.2p2): A candidate function having more than m parameters
2587  // is viable only if the (m+1)st parameter has a default argument
2588  // (8.3.6). For the purposes of overload resolution, the
2589  // parameter list is truncated on the right, so that there are
2590  // exactly m parameters.
2591  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2592  if (NumArgs < MinRequiredArgs) {
2593    // Not enough arguments.
2594    Candidate.Viable = false;
2595    Candidate.FailureKind = ovl_fail_too_few_arguments;
2596    return;
2597  }
2598
2599  Candidate.Viable = true;
2600  Candidate.Conversions.resize(NumArgs + 1);
2601
2602  if (Method->isStatic() || ObjectType.isNull())
2603    // The implicit object argument is ignored.
2604    Candidate.IgnoreObjectArgument = true;
2605  else {
2606    // Determine the implicit conversion sequence for the object
2607    // parameter.
2608    Candidate.Conversions[0]
2609      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2610    if (Candidate.Conversions[0].isBad()) {
2611      Candidate.Viable = false;
2612      Candidate.FailureKind = ovl_fail_bad_conversion;
2613      return;
2614    }
2615  }
2616
2617  // Determine the implicit conversion sequences for each of the
2618  // arguments.
2619  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2620    if (ArgIdx < NumArgsInProto) {
2621      // (C++ 13.3.2p3): for F to be a viable function, there shall
2622      // exist for each argument an implicit conversion sequence
2623      // (13.3.3.1) that converts that argument to the corresponding
2624      // parameter of F.
2625      QualType ParamType = Proto->getArgType(ArgIdx);
2626      Candidate.Conversions[ArgIdx + 1]
2627        = TryCopyInitialization(Args[ArgIdx], ParamType,
2628                                SuppressUserConversions, ForceRValue,
2629                                /*InOverloadResolution=*/true);
2630      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2631        Candidate.Viable = false;
2632        Candidate.FailureKind = ovl_fail_bad_conversion;
2633        break;
2634      }
2635    } else {
2636      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2637      // argument for which there is no corresponding parameter is
2638      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2639      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2640    }
2641  }
2642}
2643
2644/// \brief Add a C++ member function template as a candidate to the candidate
2645/// set, using template argument deduction to produce an appropriate member
2646/// function template specialization.
2647void
2648Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2649                                 AccessSpecifier Access,
2650                                 CXXRecordDecl *ActingContext,
2651                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2652                                 QualType ObjectType,
2653                                 Expr **Args, unsigned NumArgs,
2654                                 OverloadCandidateSet& CandidateSet,
2655                                 bool SuppressUserConversions,
2656                                 bool ForceRValue) {
2657  if (!CandidateSet.isNewCandidate(MethodTmpl))
2658    return;
2659
2660  // C++ [over.match.funcs]p7:
2661  //   In each case where a candidate is a function template, candidate
2662  //   function template specializations are generated using template argument
2663  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2664  //   candidate functions in the usual way.113) A given name can refer to one
2665  //   or more function templates and also to a set of overloaded non-template
2666  //   functions. In such a case, the candidate functions generated from each
2667  //   function template are combined with the set of non-template candidate
2668  //   functions.
2669  TemplateDeductionInfo Info(Context);
2670  FunctionDecl *Specialization = 0;
2671  if (TemplateDeductionResult Result
2672      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2673                                Args, NumArgs, Specialization, Info)) {
2674        // FIXME: Record what happened with template argument deduction, so
2675        // that we can give the user a beautiful diagnostic.
2676        (void)Result;
2677        return;
2678      }
2679
2680  // Add the function template specialization produced by template argument
2681  // deduction as a candidate.
2682  assert(Specialization && "Missing member function template specialization?");
2683  assert(isa<CXXMethodDecl>(Specialization) &&
2684         "Specialization is not a member function?");
2685  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
2686                     ActingContext, ObjectType, Args, NumArgs,
2687                     CandidateSet, SuppressUserConversions, ForceRValue);
2688}
2689
2690/// \brief Add a C++ function template specialization as a candidate
2691/// in the candidate set, using template argument deduction to produce
2692/// an appropriate function template specialization.
2693void
2694Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2695                                   AccessSpecifier Access,
2696                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2697                                   Expr **Args, unsigned NumArgs,
2698                                   OverloadCandidateSet& CandidateSet,
2699                                   bool SuppressUserConversions,
2700                                   bool ForceRValue) {
2701  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2702    return;
2703
2704  // C++ [over.match.funcs]p7:
2705  //   In each case where a candidate is a function template, candidate
2706  //   function template specializations are generated using template argument
2707  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2708  //   candidate functions in the usual way.113) A given name can refer to one
2709  //   or more function templates and also to a set of overloaded non-template
2710  //   functions. In such a case, the candidate functions generated from each
2711  //   function template are combined with the set of non-template candidate
2712  //   functions.
2713  TemplateDeductionInfo Info(Context);
2714  FunctionDecl *Specialization = 0;
2715  if (TemplateDeductionResult Result
2716        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2717                                  Args, NumArgs, Specialization, Info)) {
2718    // FIXME: Record what happened with template argument deduction, so
2719    // that we can give the user a beautiful diagnostic.
2720    (void) Result;
2721
2722    CandidateSet.push_back(OverloadCandidate());
2723    OverloadCandidate &Candidate = CandidateSet.back();
2724    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2725    Candidate.Access = Access;
2726    Candidate.Viable = false;
2727    Candidate.FailureKind = ovl_fail_bad_deduction;
2728    Candidate.IsSurrogate = false;
2729    Candidate.IgnoreObjectArgument = false;
2730    return;
2731  }
2732
2733  // Add the function template specialization produced by template argument
2734  // deduction as a candidate.
2735  assert(Specialization && "Missing function template specialization?");
2736  AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
2737                       SuppressUserConversions, ForceRValue);
2738}
2739
2740/// AddConversionCandidate - Add a C++ conversion function as a
2741/// candidate in the candidate set (C++ [over.match.conv],
2742/// C++ [over.match.copy]). From is the expression we're converting from,
2743/// and ToType is the type that we're eventually trying to convert to
2744/// (which may or may not be the same type as the type that the
2745/// conversion function produces).
2746void
2747Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2748                             AccessSpecifier Access,
2749                             CXXRecordDecl *ActingContext,
2750                             Expr *From, QualType ToType,
2751                             OverloadCandidateSet& CandidateSet) {
2752  assert(!Conversion->getDescribedFunctionTemplate() &&
2753         "Conversion function templates use AddTemplateConversionCandidate");
2754
2755  if (!CandidateSet.isNewCandidate(Conversion))
2756    return;
2757
2758  // Overload resolution is always an unevaluated context.
2759  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2760
2761  // Add this candidate
2762  CandidateSet.push_back(OverloadCandidate());
2763  OverloadCandidate& Candidate = CandidateSet.back();
2764  Candidate.Function = Conversion;
2765  Candidate.Access = Access;
2766  Candidate.IsSurrogate = false;
2767  Candidate.IgnoreObjectArgument = false;
2768  Candidate.FinalConversion.setAsIdentityConversion();
2769  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2770  Candidate.FinalConversion.setToType(ToType);
2771
2772  // Determine the implicit conversion sequence for the implicit
2773  // object parameter.
2774  Candidate.Viable = true;
2775  Candidate.Conversions.resize(1);
2776  Candidate.Conversions[0]
2777    = TryObjectArgumentInitialization(From->getType(), Conversion,
2778                                      ActingContext);
2779  // Conversion functions to a different type in the base class is visible in
2780  // the derived class.  So, a derived to base conversion should not participate
2781  // in overload resolution.
2782  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2783    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2784  if (Candidate.Conversions[0].isBad()) {
2785    Candidate.Viable = false;
2786    Candidate.FailureKind = ovl_fail_bad_conversion;
2787    return;
2788  }
2789
2790  // We won't go through a user-define type conversion function to convert a
2791  // derived to base as such conversions are given Conversion Rank. They only
2792  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2793  QualType FromCanon
2794    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2795  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2796  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2797    Candidate.Viable = false;
2798    Candidate.FailureKind = ovl_fail_trivial_conversion;
2799    return;
2800  }
2801
2802
2803  // To determine what the conversion from the result of calling the
2804  // conversion function to the type we're eventually trying to
2805  // convert to (ToType), we need to synthesize a call to the
2806  // conversion function and attempt copy initialization from it. This
2807  // makes sure that we get the right semantics with respect to
2808  // lvalues/rvalues and the type. Fortunately, we can allocate this
2809  // call on the stack and we don't need its arguments to be
2810  // well-formed.
2811  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2812                            From->getLocStart());
2813  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2814                                CastExpr::CK_FunctionToPointerDecay,
2815                                &ConversionRef, false);
2816
2817  // Note that it is safe to allocate CallExpr on the stack here because
2818  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2819  // allocator).
2820  CallExpr Call(Context, &ConversionFn, 0, 0,
2821                Conversion->getConversionType().getNonReferenceType(),
2822                From->getLocStart());
2823  ImplicitConversionSequence ICS =
2824    TryCopyInitialization(&Call, ToType,
2825                          /*SuppressUserConversions=*/true,
2826                          /*ForceRValue=*/false,
2827                          /*InOverloadResolution=*/false);
2828
2829  switch (ICS.getKind()) {
2830  case ImplicitConversionSequence::StandardConversion:
2831    Candidate.FinalConversion = ICS.Standard;
2832    break;
2833
2834  case ImplicitConversionSequence::BadConversion:
2835    Candidate.Viable = false;
2836    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2837    break;
2838
2839  default:
2840    assert(false &&
2841           "Can only end up with a standard conversion sequence or failure");
2842  }
2843}
2844
2845/// \brief Adds a conversion function template specialization
2846/// candidate to the overload set, using template argument deduction
2847/// to deduce the template arguments of the conversion function
2848/// template from the type that we are converting to (C++
2849/// [temp.deduct.conv]).
2850void
2851Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2852                                     AccessSpecifier Access,
2853                                     CXXRecordDecl *ActingDC,
2854                                     Expr *From, QualType ToType,
2855                                     OverloadCandidateSet &CandidateSet) {
2856  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2857         "Only conversion function templates permitted here");
2858
2859  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2860    return;
2861
2862  TemplateDeductionInfo Info(Context);
2863  CXXConversionDecl *Specialization = 0;
2864  if (TemplateDeductionResult Result
2865        = DeduceTemplateArguments(FunctionTemplate, ToType,
2866                                  Specialization, Info)) {
2867    // FIXME: Record what happened with template argument deduction, so
2868    // that we can give the user a beautiful diagnostic.
2869    (void)Result;
2870    return;
2871  }
2872
2873  // Add the conversion function template specialization produced by
2874  // template argument deduction as a candidate.
2875  assert(Specialization && "Missing function template specialization?");
2876  AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
2877                         CandidateSet);
2878}
2879
2880/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2881/// converts the given @c Object to a function pointer via the
2882/// conversion function @c Conversion, and then attempts to call it
2883/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2884/// the type of function that we'll eventually be calling.
2885void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2886                                 AccessSpecifier Access,
2887                                 CXXRecordDecl *ActingContext,
2888                                 const FunctionProtoType *Proto,
2889                                 QualType ObjectType,
2890                                 Expr **Args, unsigned NumArgs,
2891                                 OverloadCandidateSet& CandidateSet) {
2892  if (!CandidateSet.isNewCandidate(Conversion))
2893    return;
2894
2895  // Overload resolution is always an unevaluated context.
2896  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2897
2898  CandidateSet.push_back(OverloadCandidate());
2899  OverloadCandidate& Candidate = CandidateSet.back();
2900  Candidate.Function = 0;
2901  Candidate.Access = Access;
2902  Candidate.Surrogate = Conversion;
2903  Candidate.Viable = true;
2904  Candidate.IsSurrogate = true;
2905  Candidate.IgnoreObjectArgument = false;
2906  Candidate.Conversions.resize(NumArgs + 1);
2907
2908  // Determine the implicit conversion sequence for the implicit
2909  // object parameter.
2910  ImplicitConversionSequence ObjectInit
2911    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2912  if (ObjectInit.isBad()) {
2913    Candidate.Viable = false;
2914    Candidate.FailureKind = ovl_fail_bad_conversion;
2915    Candidate.Conversions[0] = ObjectInit;
2916    return;
2917  }
2918
2919  // The first conversion is actually a user-defined conversion whose
2920  // first conversion is ObjectInit's standard conversion (which is
2921  // effectively a reference binding). Record it as such.
2922  Candidate.Conversions[0].setUserDefined();
2923  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2924  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2925  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2926  Candidate.Conversions[0].UserDefined.After
2927    = Candidate.Conversions[0].UserDefined.Before;
2928  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2929
2930  // Find the
2931  unsigned NumArgsInProto = Proto->getNumArgs();
2932
2933  // (C++ 13.3.2p2): A candidate function having fewer than m
2934  // parameters is viable only if it has an ellipsis in its parameter
2935  // list (8.3.5).
2936  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2937    Candidate.Viable = false;
2938    Candidate.FailureKind = ovl_fail_too_many_arguments;
2939    return;
2940  }
2941
2942  // Function types don't have any default arguments, so just check if
2943  // we have enough arguments.
2944  if (NumArgs < NumArgsInProto) {
2945    // Not enough arguments.
2946    Candidate.Viable = false;
2947    Candidate.FailureKind = ovl_fail_too_few_arguments;
2948    return;
2949  }
2950
2951  // Determine the implicit conversion sequences for each of the
2952  // arguments.
2953  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2954    if (ArgIdx < NumArgsInProto) {
2955      // (C++ 13.3.2p3): for F to be a viable function, there shall
2956      // exist for each argument an implicit conversion sequence
2957      // (13.3.3.1) that converts that argument to the corresponding
2958      // parameter of F.
2959      QualType ParamType = Proto->getArgType(ArgIdx);
2960      Candidate.Conversions[ArgIdx + 1]
2961        = TryCopyInitialization(Args[ArgIdx], ParamType,
2962                                /*SuppressUserConversions=*/false,
2963                                /*ForceRValue=*/false,
2964                                /*InOverloadResolution=*/false);
2965      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2966        Candidate.Viable = false;
2967        Candidate.FailureKind = ovl_fail_bad_conversion;
2968        break;
2969      }
2970    } else {
2971      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2972      // argument for which there is no corresponding parameter is
2973      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2974      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2975    }
2976  }
2977}
2978
2979// FIXME: This will eventually be removed, once we've migrated all of the
2980// operator overloading logic over to the scheme used by binary operators, which
2981// works for template instantiation.
2982void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2983                                 SourceLocation OpLoc,
2984                                 Expr **Args, unsigned NumArgs,
2985                                 OverloadCandidateSet& CandidateSet,
2986                                 SourceRange OpRange) {
2987  UnresolvedSet<16> Fns;
2988
2989  QualType T1 = Args[0]->getType();
2990  QualType T2;
2991  if (NumArgs > 1)
2992    T2 = Args[1]->getType();
2993
2994  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2995  if (S)
2996    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
2997  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
2998  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
2999                                       CandidateSet);
3000  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3001  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3002}
3003
3004/// \brief Add overload candidates for overloaded operators that are
3005/// member functions.
3006///
3007/// Add the overloaded operator candidates that are member functions
3008/// for the operator Op that was used in an operator expression such
3009/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3010/// CandidateSet will store the added overload candidates. (C++
3011/// [over.match.oper]).
3012void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3013                                       SourceLocation OpLoc,
3014                                       Expr **Args, unsigned NumArgs,
3015                                       OverloadCandidateSet& CandidateSet,
3016                                       SourceRange OpRange) {
3017  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3018
3019  // C++ [over.match.oper]p3:
3020  //   For a unary operator @ with an operand of a type whose
3021  //   cv-unqualified version is T1, and for a binary operator @ with
3022  //   a left operand of a type whose cv-unqualified version is T1 and
3023  //   a right operand of a type whose cv-unqualified version is T2,
3024  //   three sets of candidate functions, designated member
3025  //   candidates, non-member candidates and built-in candidates, are
3026  //   constructed as follows:
3027  QualType T1 = Args[0]->getType();
3028  QualType T2;
3029  if (NumArgs > 1)
3030    T2 = Args[1]->getType();
3031
3032  //     -- If T1 is a class type, the set of member candidates is the
3033  //        result of the qualified lookup of T1::operator@
3034  //        (13.3.1.1.1); otherwise, the set of member candidates is
3035  //        empty.
3036  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3037    // Complete the type if it can be completed. Otherwise, we're done.
3038    if (RequireCompleteType(OpLoc, T1, PDiag()))
3039      return;
3040
3041    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3042    LookupQualifiedName(Operators, T1Rec->getDecl());
3043    Operators.suppressDiagnostics();
3044
3045    for (LookupResult::iterator Oper = Operators.begin(),
3046                             OperEnd = Operators.end();
3047         Oper != OperEnd;
3048         ++Oper)
3049      AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
3050                         Args + 1, NumArgs - 1, CandidateSet,
3051                         /* SuppressUserConversions = */ false);
3052  }
3053}
3054
3055/// AddBuiltinCandidate - Add a candidate for a built-in
3056/// operator. ResultTy and ParamTys are the result and parameter types
3057/// of the built-in candidate, respectively. Args and NumArgs are the
3058/// arguments being passed to the candidate. IsAssignmentOperator
3059/// should be true when this built-in candidate is an assignment
3060/// operator. NumContextualBoolArguments is the number of arguments
3061/// (at the beginning of the argument list) that will be contextually
3062/// converted to bool.
3063void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3064                               Expr **Args, unsigned NumArgs,
3065                               OverloadCandidateSet& CandidateSet,
3066                               bool IsAssignmentOperator,
3067                               unsigned NumContextualBoolArguments) {
3068  // Overload resolution is always an unevaluated context.
3069  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3070
3071  // Add this candidate
3072  CandidateSet.push_back(OverloadCandidate());
3073  OverloadCandidate& Candidate = CandidateSet.back();
3074  Candidate.Function = 0;
3075  Candidate.Access = AS_none;
3076  Candidate.IsSurrogate = false;
3077  Candidate.IgnoreObjectArgument = false;
3078  Candidate.BuiltinTypes.ResultTy = ResultTy;
3079  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3080    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3081
3082  // Determine the implicit conversion sequences for each of the
3083  // arguments.
3084  Candidate.Viable = true;
3085  Candidate.Conversions.resize(NumArgs);
3086  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3087    // C++ [over.match.oper]p4:
3088    //   For the built-in assignment operators, conversions of the
3089    //   left operand are restricted as follows:
3090    //     -- no temporaries are introduced to hold the left operand, and
3091    //     -- no user-defined conversions are applied to the left
3092    //        operand to achieve a type match with the left-most
3093    //        parameter of a built-in candidate.
3094    //
3095    // We block these conversions by turning off user-defined
3096    // conversions, since that is the only way that initialization of
3097    // a reference to a non-class type can occur from something that
3098    // is not of the same type.
3099    if (ArgIdx < NumContextualBoolArguments) {
3100      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3101             "Contextual conversion to bool requires bool type");
3102      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3103    } else {
3104      Candidate.Conversions[ArgIdx]
3105        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3106                                ArgIdx == 0 && IsAssignmentOperator,
3107                                /*ForceRValue=*/false,
3108                                /*InOverloadResolution=*/false);
3109    }
3110    if (Candidate.Conversions[ArgIdx].isBad()) {
3111      Candidate.Viable = false;
3112      Candidate.FailureKind = ovl_fail_bad_conversion;
3113      break;
3114    }
3115  }
3116}
3117
3118/// BuiltinCandidateTypeSet - A set of types that will be used for the
3119/// candidate operator functions for built-in operators (C++
3120/// [over.built]). The types are separated into pointer types and
3121/// enumeration types.
3122class BuiltinCandidateTypeSet  {
3123  /// TypeSet - A set of types.
3124  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3125
3126  /// PointerTypes - The set of pointer types that will be used in the
3127  /// built-in candidates.
3128  TypeSet PointerTypes;
3129
3130  /// MemberPointerTypes - The set of member pointer types that will be
3131  /// used in the built-in candidates.
3132  TypeSet MemberPointerTypes;
3133
3134  /// EnumerationTypes - The set of enumeration types that will be
3135  /// used in the built-in candidates.
3136  TypeSet EnumerationTypes;
3137
3138  /// Sema - The semantic analysis instance where we are building the
3139  /// candidate type set.
3140  Sema &SemaRef;
3141
3142  /// Context - The AST context in which we will build the type sets.
3143  ASTContext &Context;
3144
3145  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3146                                               const Qualifiers &VisibleQuals);
3147  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3148
3149public:
3150  /// iterator - Iterates through the types that are part of the set.
3151  typedef TypeSet::iterator iterator;
3152
3153  BuiltinCandidateTypeSet(Sema &SemaRef)
3154    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3155
3156  void AddTypesConvertedFrom(QualType Ty,
3157                             SourceLocation Loc,
3158                             bool AllowUserConversions,
3159                             bool AllowExplicitConversions,
3160                             const Qualifiers &VisibleTypeConversionsQuals);
3161
3162  /// pointer_begin - First pointer type found;
3163  iterator pointer_begin() { return PointerTypes.begin(); }
3164
3165  /// pointer_end - Past the last pointer type found;
3166  iterator pointer_end() { return PointerTypes.end(); }
3167
3168  /// member_pointer_begin - First member pointer type found;
3169  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3170
3171  /// member_pointer_end - Past the last member pointer type found;
3172  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3173
3174  /// enumeration_begin - First enumeration type found;
3175  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3176
3177  /// enumeration_end - Past the last enumeration type found;
3178  iterator enumeration_end() { return EnumerationTypes.end(); }
3179};
3180
3181/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3182/// the set of pointer types along with any more-qualified variants of
3183/// that type. For example, if @p Ty is "int const *", this routine
3184/// will add "int const *", "int const volatile *", "int const
3185/// restrict *", and "int const volatile restrict *" to the set of
3186/// pointer types. Returns true if the add of @p Ty itself succeeded,
3187/// false otherwise.
3188///
3189/// FIXME: what to do about extended qualifiers?
3190bool
3191BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3192                                             const Qualifiers &VisibleQuals) {
3193
3194  // Insert this type.
3195  if (!PointerTypes.insert(Ty))
3196    return false;
3197
3198  const PointerType *PointerTy = Ty->getAs<PointerType>();
3199  assert(PointerTy && "type was not a pointer type!");
3200
3201  QualType PointeeTy = PointerTy->getPointeeType();
3202  // Don't add qualified variants of arrays. For one, they're not allowed
3203  // (the qualifier would sink to the element type), and for another, the
3204  // only overload situation where it matters is subscript or pointer +- int,
3205  // and those shouldn't have qualifier variants anyway.
3206  if (PointeeTy->isArrayType())
3207    return true;
3208  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3209  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3210    BaseCVR = Array->getElementType().getCVRQualifiers();
3211  bool hasVolatile = VisibleQuals.hasVolatile();
3212  bool hasRestrict = VisibleQuals.hasRestrict();
3213
3214  // Iterate through all strict supersets of BaseCVR.
3215  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3216    if ((CVR | BaseCVR) != CVR) continue;
3217    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3218    // in the types.
3219    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3220    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3221    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3222    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3223  }
3224
3225  return true;
3226}
3227
3228/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3229/// to the set of pointer types along with any more-qualified variants of
3230/// that type. For example, if @p Ty is "int const *", this routine
3231/// will add "int const *", "int const volatile *", "int const
3232/// restrict *", and "int const volatile restrict *" to the set of
3233/// pointer types. Returns true if the add of @p Ty itself succeeded,
3234/// false otherwise.
3235///
3236/// FIXME: what to do about extended qualifiers?
3237bool
3238BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3239    QualType Ty) {
3240  // Insert this type.
3241  if (!MemberPointerTypes.insert(Ty))
3242    return false;
3243
3244  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3245  assert(PointerTy && "type was not a member pointer type!");
3246
3247  QualType PointeeTy = PointerTy->getPointeeType();
3248  // Don't add qualified variants of arrays. For one, they're not allowed
3249  // (the qualifier would sink to the element type), and for another, the
3250  // only overload situation where it matters is subscript or pointer +- int,
3251  // and those shouldn't have qualifier variants anyway.
3252  if (PointeeTy->isArrayType())
3253    return true;
3254  const Type *ClassTy = PointerTy->getClass();
3255
3256  // Iterate through all strict supersets of the pointee type's CVR
3257  // qualifiers.
3258  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3259  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3260    if ((CVR | BaseCVR) != CVR) continue;
3261
3262    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3263    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3264  }
3265
3266  return true;
3267}
3268
3269/// AddTypesConvertedFrom - Add each of the types to which the type @p
3270/// Ty can be implicit converted to the given set of @p Types. We're
3271/// primarily interested in pointer types and enumeration types. We also
3272/// take member pointer types, for the conditional operator.
3273/// AllowUserConversions is true if we should look at the conversion
3274/// functions of a class type, and AllowExplicitConversions if we
3275/// should also include the explicit conversion functions of a class
3276/// type.
3277void
3278BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3279                                               SourceLocation Loc,
3280                                               bool AllowUserConversions,
3281                                               bool AllowExplicitConversions,
3282                                               const Qualifiers &VisibleQuals) {
3283  // Only deal with canonical types.
3284  Ty = Context.getCanonicalType(Ty);
3285
3286  // Look through reference types; they aren't part of the type of an
3287  // expression for the purposes of conversions.
3288  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3289    Ty = RefTy->getPointeeType();
3290
3291  // We don't care about qualifiers on the type.
3292  Ty = Ty.getLocalUnqualifiedType();
3293
3294  // If we're dealing with an array type, decay to the pointer.
3295  if (Ty->isArrayType())
3296    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3297
3298  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3299    QualType PointeeTy = PointerTy->getPointeeType();
3300
3301    // Insert our type, and its more-qualified variants, into the set
3302    // of types.
3303    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3304      return;
3305  } else if (Ty->isMemberPointerType()) {
3306    // Member pointers are far easier, since the pointee can't be converted.
3307    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3308      return;
3309  } else if (Ty->isEnumeralType()) {
3310    EnumerationTypes.insert(Ty);
3311  } else if (AllowUserConversions) {
3312    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3313      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3314        // No conversion functions in incomplete types.
3315        return;
3316      }
3317
3318      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3319      const UnresolvedSetImpl *Conversions
3320        = ClassDecl->getVisibleConversionFunctions();
3321      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3322             E = Conversions->end(); I != E; ++I) {
3323
3324        // Skip conversion function templates; they don't tell us anything
3325        // about which builtin types we can convert to.
3326        if (isa<FunctionTemplateDecl>(*I))
3327          continue;
3328
3329        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3330        if (AllowExplicitConversions || !Conv->isExplicit()) {
3331          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3332                                VisibleQuals);
3333        }
3334      }
3335    }
3336  }
3337}
3338
3339/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3340/// the volatile- and non-volatile-qualified assignment operators for the
3341/// given type to the candidate set.
3342static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3343                                                   QualType T,
3344                                                   Expr **Args,
3345                                                   unsigned NumArgs,
3346                                    OverloadCandidateSet &CandidateSet) {
3347  QualType ParamTypes[2];
3348
3349  // T& operator=(T&, T)
3350  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3351  ParamTypes[1] = T;
3352  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3353                        /*IsAssignmentOperator=*/true);
3354
3355  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3356    // volatile T& operator=(volatile T&, T)
3357    ParamTypes[0]
3358      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3359    ParamTypes[1] = T;
3360    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3361                          /*IsAssignmentOperator=*/true);
3362  }
3363}
3364
3365/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3366/// if any, found in visible type conversion functions found in ArgExpr's type.
3367static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3368    Qualifiers VRQuals;
3369    const RecordType *TyRec;
3370    if (const MemberPointerType *RHSMPType =
3371        ArgExpr->getType()->getAs<MemberPointerType>())
3372      TyRec = cast<RecordType>(RHSMPType->getClass());
3373    else
3374      TyRec = ArgExpr->getType()->getAs<RecordType>();
3375    if (!TyRec) {
3376      // Just to be safe, assume the worst case.
3377      VRQuals.addVolatile();
3378      VRQuals.addRestrict();
3379      return VRQuals;
3380    }
3381
3382    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3383    const UnresolvedSetImpl *Conversions =
3384      ClassDecl->getVisibleConversionFunctions();
3385
3386    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3387           E = Conversions->end(); I != E; ++I) {
3388      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3389        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3390        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3391          CanTy = ResTypeRef->getPointeeType();
3392        // Need to go down the pointer/mempointer chain and add qualifiers
3393        // as see them.
3394        bool done = false;
3395        while (!done) {
3396          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3397            CanTy = ResTypePtr->getPointeeType();
3398          else if (const MemberPointerType *ResTypeMPtr =
3399                CanTy->getAs<MemberPointerType>())
3400            CanTy = ResTypeMPtr->getPointeeType();
3401          else
3402            done = true;
3403          if (CanTy.isVolatileQualified())
3404            VRQuals.addVolatile();
3405          if (CanTy.isRestrictQualified())
3406            VRQuals.addRestrict();
3407          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3408            return VRQuals;
3409        }
3410      }
3411    }
3412    return VRQuals;
3413}
3414
3415/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3416/// operator overloads to the candidate set (C++ [over.built]), based
3417/// on the operator @p Op and the arguments given. For example, if the
3418/// operator is a binary '+', this routine might add "int
3419/// operator+(int, int)" to cover integer addition.
3420void
3421Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3422                                   SourceLocation OpLoc,
3423                                   Expr **Args, unsigned NumArgs,
3424                                   OverloadCandidateSet& CandidateSet) {
3425  // The set of "promoted arithmetic types", which are the arithmetic
3426  // types are that preserved by promotion (C++ [over.built]p2). Note
3427  // that the first few of these types are the promoted integral
3428  // types; these types need to be first.
3429  // FIXME: What about complex?
3430  const unsigned FirstIntegralType = 0;
3431  const unsigned LastIntegralType = 13;
3432  const unsigned FirstPromotedIntegralType = 7,
3433                 LastPromotedIntegralType = 13;
3434  const unsigned FirstPromotedArithmeticType = 7,
3435                 LastPromotedArithmeticType = 16;
3436  const unsigned NumArithmeticTypes = 16;
3437  QualType ArithmeticTypes[NumArithmeticTypes] = {
3438    Context.BoolTy, Context.CharTy, Context.WCharTy,
3439// FIXME:   Context.Char16Ty, Context.Char32Ty,
3440    Context.SignedCharTy, Context.ShortTy,
3441    Context.UnsignedCharTy, Context.UnsignedShortTy,
3442    Context.IntTy, Context.LongTy, Context.LongLongTy,
3443    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3444    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3445  };
3446  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3447         "Invalid first promoted integral type");
3448  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3449           == Context.UnsignedLongLongTy &&
3450         "Invalid last promoted integral type");
3451  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3452         "Invalid first promoted arithmetic type");
3453  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3454            == Context.LongDoubleTy &&
3455         "Invalid last promoted arithmetic type");
3456
3457  // Find all of the types that the arguments can convert to, but only
3458  // if the operator we're looking at has built-in operator candidates
3459  // that make use of these types.
3460  Qualifiers VisibleTypeConversionsQuals;
3461  VisibleTypeConversionsQuals.addConst();
3462  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3463    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3464
3465  BuiltinCandidateTypeSet CandidateTypes(*this);
3466  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3467      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3468      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3469      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3470      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3471      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3472    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3473      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3474                                           OpLoc,
3475                                           true,
3476                                           (Op == OO_Exclaim ||
3477                                            Op == OO_AmpAmp ||
3478                                            Op == OO_PipePipe),
3479                                           VisibleTypeConversionsQuals);
3480  }
3481
3482  bool isComparison = false;
3483  switch (Op) {
3484  case OO_None:
3485  case NUM_OVERLOADED_OPERATORS:
3486    assert(false && "Expected an overloaded operator");
3487    break;
3488
3489  case OO_Star: // '*' is either unary or binary
3490    if (NumArgs == 1)
3491      goto UnaryStar;
3492    else
3493      goto BinaryStar;
3494    break;
3495
3496  case OO_Plus: // '+' is either unary or binary
3497    if (NumArgs == 1)
3498      goto UnaryPlus;
3499    else
3500      goto BinaryPlus;
3501    break;
3502
3503  case OO_Minus: // '-' is either unary or binary
3504    if (NumArgs == 1)
3505      goto UnaryMinus;
3506    else
3507      goto BinaryMinus;
3508    break;
3509
3510  case OO_Amp: // '&' is either unary or binary
3511    if (NumArgs == 1)
3512      goto UnaryAmp;
3513    else
3514      goto BinaryAmp;
3515
3516  case OO_PlusPlus:
3517  case OO_MinusMinus:
3518    // C++ [over.built]p3:
3519    //
3520    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3521    //   is either volatile or empty, there exist candidate operator
3522    //   functions of the form
3523    //
3524    //       VQ T&      operator++(VQ T&);
3525    //       T          operator++(VQ T&, int);
3526    //
3527    // C++ [over.built]p4:
3528    //
3529    //   For every pair (T, VQ), where T is an arithmetic type other
3530    //   than bool, and VQ is either volatile or empty, there exist
3531    //   candidate operator functions of the form
3532    //
3533    //       VQ T&      operator--(VQ T&);
3534    //       T          operator--(VQ T&, int);
3535    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3536         Arith < NumArithmeticTypes; ++Arith) {
3537      QualType ArithTy = ArithmeticTypes[Arith];
3538      QualType ParamTypes[2]
3539        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3540
3541      // Non-volatile version.
3542      if (NumArgs == 1)
3543        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3544      else
3545        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3546      // heuristic to reduce number of builtin candidates in the set.
3547      // Add volatile version only if there are conversions to a volatile type.
3548      if (VisibleTypeConversionsQuals.hasVolatile()) {
3549        // Volatile version
3550        ParamTypes[0]
3551          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3552        if (NumArgs == 1)
3553          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3554        else
3555          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3556      }
3557    }
3558
3559    // C++ [over.built]p5:
3560    //
3561    //   For every pair (T, VQ), where T is a cv-qualified or
3562    //   cv-unqualified object type, and VQ is either volatile or
3563    //   empty, there exist candidate operator functions of the form
3564    //
3565    //       T*VQ&      operator++(T*VQ&);
3566    //       T*VQ&      operator--(T*VQ&);
3567    //       T*         operator++(T*VQ&, int);
3568    //       T*         operator--(T*VQ&, int);
3569    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3570         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3571      // Skip pointer types that aren't pointers to object types.
3572      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3573        continue;
3574
3575      QualType ParamTypes[2] = {
3576        Context.getLValueReferenceType(*Ptr), Context.IntTy
3577      };
3578
3579      // Without volatile
3580      if (NumArgs == 1)
3581        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3582      else
3583        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3584
3585      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3586          VisibleTypeConversionsQuals.hasVolatile()) {
3587        // With volatile
3588        ParamTypes[0]
3589          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3590        if (NumArgs == 1)
3591          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3592        else
3593          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3594      }
3595    }
3596    break;
3597
3598  UnaryStar:
3599    // C++ [over.built]p6:
3600    //   For every cv-qualified or cv-unqualified object type T, there
3601    //   exist candidate operator functions of the form
3602    //
3603    //       T&         operator*(T*);
3604    //
3605    // C++ [over.built]p7:
3606    //   For every function type T, there exist candidate operator
3607    //   functions of the form
3608    //       T&         operator*(T*);
3609    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3610         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3611      QualType ParamTy = *Ptr;
3612      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3613      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3614                          &ParamTy, Args, 1, CandidateSet);
3615    }
3616    break;
3617
3618  UnaryPlus:
3619    // C++ [over.built]p8:
3620    //   For every type T, there exist candidate operator functions of
3621    //   the form
3622    //
3623    //       T*         operator+(T*);
3624    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3625         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3626      QualType ParamTy = *Ptr;
3627      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3628    }
3629
3630    // Fall through
3631
3632  UnaryMinus:
3633    // C++ [over.built]p9:
3634    //  For every promoted arithmetic type T, there exist candidate
3635    //  operator functions of the form
3636    //
3637    //       T         operator+(T);
3638    //       T         operator-(T);
3639    for (unsigned Arith = FirstPromotedArithmeticType;
3640         Arith < LastPromotedArithmeticType; ++Arith) {
3641      QualType ArithTy = ArithmeticTypes[Arith];
3642      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3643    }
3644    break;
3645
3646  case OO_Tilde:
3647    // C++ [over.built]p10:
3648    //   For every promoted integral type T, there exist candidate
3649    //   operator functions of the form
3650    //
3651    //        T         operator~(T);
3652    for (unsigned Int = FirstPromotedIntegralType;
3653         Int < LastPromotedIntegralType; ++Int) {
3654      QualType IntTy = ArithmeticTypes[Int];
3655      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3656    }
3657    break;
3658
3659  case OO_New:
3660  case OO_Delete:
3661  case OO_Array_New:
3662  case OO_Array_Delete:
3663  case OO_Call:
3664    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3665    break;
3666
3667  case OO_Comma:
3668  UnaryAmp:
3669  case OO_Arrow:
3670    // C++ [over.match.oper]p3:
3671    //   -- For the operator ',', the unary operator '&', or the
3672    //      operator '->', the built-in candidates set is empty.
3673    break;
3674
3675  case OO_EqualEqual:
3676  case OO_ExclaimEqual:
3677    // C++ [over.match.oper]p16:
3678    //   For every pointer to member type T, there exist candidate operator
3679    //   functions of the form
3680    //
3681    //        bool operator==(T,T);
3682    //        bool operator!=(T,T);
3683    for (BuiltinCandidateTypeSet::iterator
3684           MemPtr = CandidateTypes.member_pointer_begin(),
3685           MemPtrEnd = CandidateTypes.member_pointer_end();
3686         MemPtr != MemPtrEnd;
3687         ++MemPtr) {
3688      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3689      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3690    }
3691
3692    // Fall through
3693
3694  case OO_Less:
3695  case OO_Greater:
3696  case OO_LessEqual:
3697  case OO_GreaterEqual:
3698    // C++ [over.built]p15:
3699    //
3700    //   For every pointer or enumeration type T, there exist
3701    //   candidate operator functions of the form
3702    //
3703    //        bool       operator<(T, T);
3704    //        bool       operator>(T, T);
3705    //        bool       operator<=(T, T);
3706    //        bool       operator>=(T, T);
3707    //        bool       operator==(T, T);
3708    //        bool       operator!=(T, T);
3709    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3710         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3711      QualType ParamTypes[2] = { *Ptr, *Ptr };
3712      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3713    }
3714    for (BuiltinCandidateTypeSet::iterator Enum
3715           = CandidateTypes.enumeration_begin();
3716         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3717      QualType ParamTypes[2] = { *Enum, *Enum };
3718      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3719    }
3720
3721    // Fall through.
3722    isComparison = true;
3723
3724  BinaryPlus:
3725  BinaryMinus:
3726    if (!isComparison) {
3727      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3728
3729      // C++ [over.built]p13:
3730      //
3731      //   For every cv-qualified or cv-unqualified object type T
3732      //   there exist candidate operator functions of the form
3733      //
3734      //      T*         operator+(T*, ptrdiff_t);
3735      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3736      //      T*         operator-(T*, ptrdiff_t);
3737      //      T*         operator+(ptrdiff_t, T*);
3738      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3739      //
3740      // C++ [over.built]p14:
3741      //
3742      //   For every T, where T is a pointer to object type, there
3743      //   exist candidate operator functions of the form
3744      //
3745      //      ptrdiff_t  operator-(T, T);
3746      for (BuiltinCandidateTypeSet::iterator Ptr
3747             = CandidateTypes.pointer_begin();
3748           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3749        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3750
3751        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3752        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3753
3754        if (Op == OO_Plus) {
3755          // T* operator+(ptrdiff_t, T*);
3756          ParamTypes[0] = ParamTypes[1];
3757          ParamTypes[1] = *Ptr;
3758          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3759        } else {
3760          // ptrdiff_t operator-(T, T);
3761          ParamTypes[1] = *Ptr;
3762          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3763                              Args, 2, CandidateSet);
3764        }
3765      }
3766    }
3767    // Fall through
3768
3769  case OO_Slash:
3770  BinaryStar:
3771  Conditional:
3772    // C++ [over.built]p12:
3773    //
3774    //   For every pair of promoted arithmetic types L and R, there
3775    //   exist candidate operator functions of the form
3776    //
3777    //        LR         operator*(L, R);
3778    //        LR         operator/(L, R);
3779    //        LR         operator+(L, R);
3780    //        LR         operator-(L, R);
3781    //        bool       operator<(L, R);
3782    //        bool       operator>(L, R);
3783    //        bool       operator<=(L, R);
3784    //        bool       operator>=(L, R);
3785    //        bool       operator==(L, R);
3786    //        bool       operator!=(L, R);
3787    //
3788    //   where LR is the result of the usual arithmetic conversions
3789    //   between types L and R.
3790    //
3791    // C++ [over.built]p24:
3792    //
3793    //   For every pair of promoted arithmetic types L and R, there exist
3794    //   candidate operator functions of the form
3795    //
3796    //        LR       operator?(bool, L, R);
3797    //
3798    //   where LR is the result of the usual arithmetic conversions
3799    //   between types L and R.
3800    // Our candidates ignore the first parameter.
3801    for (unsigned Left = FirstPromotedArithmeticType;
3802         Left < LastPromotedArithmeticType; ++Left) {
3803      for (unsigned Right = FirstPromotedArithmeticType;
3804           Right < LastPromotedArithmeticType; ++Right) {
3805        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3806        QualType Result
3807          = isComparison
3808          ? Context.BoolTy
3809          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3810        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3811      }
3812    }
3813    break;
3814
3815  case OO_Percent:
3816  BinaryAmp:
3817  case OO_Caret:
3818  case OO_Pipe:
3819  case OO_LessLess:
3820  case OO_GreaterGreater:
3821    // C++ [over.built]p17:
3822    //
3823    //   For every pair of promoted integral types L and R, there
3824    //   exist candidate operator functions of the form
3825    //
3826    //      LR         operator%(L, R);
3827    //      LR         operator&(L, R);
3828    //      LR         operator^(L, R);
3829    //      LR         operator|(L, R);
3830    //      L          operator<<(L, R);
3831    //      L          operator>>(L, R);
3832    //
3833    //   where LR is the result of the usual arithmetic conversions
3834    //   between types L and R.
3835    for (unsigned Left = FirstPromotedIntegralType;
3836         Left < LastPromotedIntegralType; ++Left) {
3837      for (unsigned Right = FirstPromotedIntegralType;
3838           Right < LastPromotedIntegralType; ++Right) {
3839        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3840        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3841            ? LandR[0]
3842            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3843        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3844      }
3845    }
3846    break;
3847
3848  case OO_Equal:
3849    // C++ [over.built]p20:
3850    //
3851    //   For every pair (T, VQ), where T is an enumeration or
3852    //   pointer to member type and VQ is either volatile or
3853    //   empty, there exist candidate operator functions of the form
3854    //
3855    //        VQ T&      operator=(VQ T&, T);
3856    for (BuiltinCandidateTypeSet::iterator
3857           Enum = CandidateTypes.enumeration_begin(),
3858           EnumEnd = CandidateTypes.enumeration_end();
3859         Enum != EnumEnd; ++Enum)
3860      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3861                                             CandidateSet);
3862    for (BuiltinCandidateTypeSet::iterator
3863           MemPtr = CandidateTypes.member_pointer_begin(),
3864         MemPtrEnd = CandidateTypes.member_pointer_end();
3865         MemPtr != MemPtrEnd; ++MemPtr)
3866      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3867                                             CandidateSet);
3868      // Fall through.
3869
3870  case OO_PlusEqual:
3871  case OO_MinusEqual:
3872    // C++ [over.built]p19:
3873    //
3874    //   For every pair (T, VQ), where T is any type and VQ is either
3875    //   volatile or empty, there exist candidate operator functions
3876    //   of the form
3877    //
3878    //        T*VQ&      operator=(T*VQ&, T*);
3879    //
3880    // C++ [over.built]p21:
3881    //
3882    //   For every pair (T, VQ), where T is a cv-qualified or
3883    //   cv-unqualified object type and VQ is either volatile or
3884    //   empty, there exist candidate operator functions of the form
3885    //
3886    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3887    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3888    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3889         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3890      QualType ParamTypes[2];
3891      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3892
3893      // non-volatile version
3894      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3895      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3896                          /*IsAssigmentOperator=*/Op == OO_Equal);
3897
3898      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3899          VisibleTypeConversionsQuals.hasVolatile()) {
3900        // volatile version
3901        ParamTypes[0]
3902          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3903        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3904                            /*IsAssigmentOperator=*/Op == OO_Equal);
3905      }
3906    }
3907    // Fall through.
3908
3909  case OO_StarEqual:
3910  case OO_SlashEqual:
3911    // C++ [over.built]p18:
3912    //
3913    //   For every triple (L, VQ, R), where L is an arithmetic type,
3914    //   VQ is either volatile or empty, and R is a promoted
3915    //   arithmetic type, there exist candidate operator functions of
3916    //   the form
3917    //
3918    //        VQ L&      operator=(VQ L&, R);
3919    //        VQ L&      operator*=(VQ L&, R);
3920    //        VQ L&      operator/=(VQ L&, R);
3921    //        VQ L&      operator+=(VQ L&, R);
3922    //        VQ L&      operator-=(VQ L&, R);
3923    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3924      for (unsigned Right = FirstPromotedArithmeticType;
3925           Right < LastPromotedArithmeticType; ++Right) {
3926        QualType ParamTypes[2];
3927        ParamTypes[1] = ArithmeticTypes[Right];
3928
3929        // Add this built-in operator as a candidate (VQ is empty).
3930        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3931        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3932                            /*IsAssigmentOperator=*/Op == OO_Equal);
3933
3934        // Add this built-in operator as a candidate (VQ is 'volatile').
3935        if (VisibleTypeConversionsQuals.hasVolatile()) {
3936          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3937          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3938          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3939                              /*IsAssigmentOperator=*/Op == OO_Equal);
3940        }
3941      }
3942    }
3943    break;
3944
3945  case OO_PercentEqual:
3946  case OO_LessLessEqual:
3947  case OO_GreaterGreaterEqual:
3948  case OO_AmpEqual:
3949  case OO_CaretEqual:
3950  case OO_PipeEqual:
3951    // C++ [over.built]p22:
3952    //
3953    //   For every triple (L, VQ, R), where L is an integral type, VQ
3954    //   is either volatile or empty, and R is a promoted integral
3955    //   type, there exist candidate operator functions of the form
3956    //
3957    //        VQ L&       operator%=(VQ L&, R);
3958    //        VQ L&       operator<<=(VQ L&, R);
3959    //        VQ L&       operator>>=(VQ L&, R);
3960    //        VQ L&       operator&=(VQ L&, R);
3961    //        VQ L&       operator^=(VQ L&, R);
3962    //        VQ L&       operator|=(VQ L&, R);
3963    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3964      for (unsigned Right = FirstPromotedIntegralType;
3965           Right < LastPromotedIntegralType; ++Right) {
3966        QualType ParamTypes[2];
3967        ParamTypes[1] = ArithmeticTypes[Right];
3968
3969        // Add this built-in operator as a candidate (VQ is empty).
3970        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3971        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3972        if (VisibleTypeConversionsQuals.hasVolatile()) {
3973          // Add this built-in operator as a candidate (VQ is 'volatile').
3974          ParamTypes[0] = ArithmeticTypes[Left];
3975          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3976          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3977          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3978        }
3979      }
3980    }
3981    break;
3982
3983  case OO_Exclaim: {
3984    // C++ [over.operator]p23:
3985    //
3986    //   There also exist candidate operator functions of the form
3987    //
3988    //        bool        operator!(bool);
3989    //        bool        operator&&(bool, bool);     [BELOW]
3990    //        bool        operator||(bool, bool);     [BELOW]
3991    QualType ParamTy = Context.BoolTy;
3992    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3993                        /*IsAssignmentOperator=*/false,
3994                        /*NumContextualBoolArguments=*/1);
3995    break;
3996  }
3997
3998  case OO_AmpAmp:
3999  case OO_PipePipe: {
4000    // C++ [over.operator]p23:
4001    //
4002    //   There also exist candidate operator functions of the form
4003    //
4004    //        bool        operator!(bool);            [ABOVE]
4005    //        bool        operator&&(bool, bool);
4006    //        bool        operator||(bool, bool);
4007    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4008    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4009                        /*IsAssignmentOperator=*/false,
4010                        /*NumContextualBoolArguments=*/2);
4011    break;
4012  }
4013
4014  case OO_Subscript:
4015    // C++ [over.built]p13:
4016    //
4017    //   For every cv-qualified or cv-unqualified object type T there
4018    //   exist candidate operator functions of the form
4019    //
4020    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4021    //        T&         operator[](T*, ptrdiff_t);
4022    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4023    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4024    //        T&         operator[](ptrdiff_t, T*);
4025    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4026         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4027      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4028      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4029      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4030
4031      // T& operator[](T*, ptrdiff_t)
4032      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4033
4034      // T& operator[](ptrdiff_t, T*);
4035      ParamTypes[0] = ParamTypes[1];
4036      ParamTypes[1] = *Ptr;
4037      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4038    }
4039    break;
4040
4041  case OO_ArrowStar:
4042    // C++ [over.built]p11:
4043    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4044    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4045    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4046    //    there exist candidate operator functions of the form
4047    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4048    //    where CV12 is the union of CV1 and CV2.
4049    {
4050      for (BuiltinCandidateTypeSet::iterator Ptr =
4051             CandidateTypes.pointer_begin();
4052           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4053        QualType C1Ty = (*Ptr);
4054        QualType C1;
4055        QualifierCollector Q1;
4056        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4057          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4058          if (!isa<RecordType>(C1))
4059            continue;
4060          // heuristic to reduce number of builtin candidates in the set.
4061          // Add volatile/restrict version only if there are conversions to a
4062          // volatile/restrict type.
4063          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4064            continue;
4065          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4066            continue;
4067        }
4068        for (BuiltinCandidateTypeSet::iterator
4069             MemPtr = CandidateTypes.member_pointer_begin(),
4070             MemPtrEnd = CandidateTypes.member_pointer_end();
4071             MemPtr != MemPtrEnd; ++MemPtr) {
4072          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4073          QualType C2 = QualType(mptr->getClass(), 0);
4074          C2 = C2.getUnqualifiedType();
4075          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4076            break;
4077          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4078          // build CV12 T&
4079          QualType T = mptr->getPointeeType();
4080          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4081              T.isVolatileQualified())
4082            continue;
4083          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4084              T.isRestrictQualified())
4085            continue;
4086          T = Q1.apply(T);
4087          QualType ResultTy = Context.getLValueReferenceType(T);
4088          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4089        }
4090      }
4091    }
4092    break;
4093
4094  case OO_Conditional:
4095    // Note that we don't consider the first argument, since it has been
4096    // contextually converted to bool long ago. The candidates below are
4097    // therefore added as binary.
4098    //
4099    // C++ [over.built]p24:
4100    //   For every type T, where T is a pointer or pointer-to-member type,
4101    //   there exist candidate operator functions of the form
4102    //
4103    //        T        operator?(bool, T, T);
4104    //
4105    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4106         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4107      QualType ParamTypes[2] = { *Ptr, *Ptr };
4108      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4109    }
4110    for (BuiltinCandidateTypeSet::iterator Ptr =
4111           CandidateTypes.member_pointer_begin(),
4112         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4113      QualType ParamTypes[2] = { *Ptr, *Ptr };
4114      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4115    }
4116    goto Conditional;
4117  }
4118}
4119
4120/// \brief Add function candidates found via argument-dependent lookup
4121/// to the set of overloading candidates.
4122///
4123/// This routine performs argument-dependent name lookup based on the
4124/// given function name (which may also be an operator name) and adds
4125/// all of the overload candidates found by ADL to the overload
4126/// candidate set (C++ [basic.lookup.argdep]).
4127void
4128Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4129                                           bool Operator,
4130                                           Expr **Args, unsigned NumArgs,
4131                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4132                                           OverloadCandidateSet& CandidateSet,
4133                                           bool PartialOverloading) {
4134  ADLResult Fns;
4135
4136  // FIXME: This approach for uniquing ADL results (and removing
4137  // redundant candidates from the set) relies on pointer-equality,
4138  // which means we need to key off the canonical decl.  However,
4139  // always going back to the canonical decl might not get us the
4140  // right set of default arguments.  What default arguments are
4141  // we supposed to consider on ADL candidates, anyway?
4142
4143  // FIXME: Pass in the explicit template arguments?
4144  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4145
4146  // Erase all of the candidates we already knew about.
4147  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4148                                   CandEnd = CandidateSet.end();
4149       Cand != CandEnd; ++Cand)
4150    if (Cand->Function) {
4151      Fns.erase(Cand->Function);
4152      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4153        Fns.erase(FunTmpl);
4154    }
4155
4156  // For each of the ADL candidates we found, add it to the overload
4157  // set.
4158  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4159    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4160      if (ExplicitTemplateArgs)
4161        continue;
4162
4163      AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
4164                           false, false, PartialOverloading);
4165    } else
4166      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4167                                   AS_none, ExplicitTemplateArgs,
4168                                   Args, NumArgs, CandidateSet);
4169  }
4170}
4171
4172/// isBetterOverloadCandidate - Determines whether the first overload
4173/// candidate is a better candidate than the second (C++ 13.3.3p1).
4174bool
4175Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4176                                const OverloadCandidate& Cand2) {
4177  // Define viable functions to be better candidates than non-viable
4178  // functions.
4179  if (!Cand2.Viable)
4180    return Cand1.Viable;
4181  else if (!Cand1.Viable)
4182    return false;
4183
4184  // C++ [over.match.best]p1:
4185  //
4186  //   -- if F is a static member function, ICS1(F) is defined such
4187  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4188  //      any function G, and, symmetrically, ICS1(G) is neither
4189  //      better nor worse than ICS1(F).
4190  unsigned StartArg = 0;
4191  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4192    StartArg = 1;
4193
4194  // C++ [over.match.best]p1:
4195  //   A viable function F1 is defined to be a better function than another
4196  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4197  //   conversion sequence than ICSi(F2), and then...
4198  unsigned NumArgs = Cand1.Conversions.size();
4199  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4200  bool HasBetterConversion = false;
4201  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4202    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4203                                               Cand2.Conversions[ArgIdx])) {
4204    case ImplicitConversionSequence::Better:
4205      // Cand1 has a better conversion sequence.
4206      HasBetterConversion = true;
4207      break;
4208
4209    case ImplicitConversionSequence::Worse:
4210      // Cand1 can't be better than Cand2.
4211      return false;
4212
4213    case ImplicitConversionSequence::Indistinguishable:
4214      // Do nothing.
4215      break;
4216    }
4217  }
4218
4219  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4220  //       ICSj(F2), or, if not that,
4221  if (HasBetterConversion)
4222    return true;
4223
4224  //     - F1 is a non-template function and F2 is a function template
4225  //       specialization, or, if not that,
4226  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4227      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4228    return true;
4229
4230  //   -- F1 and F2 are function template specializations, and the function
4231  //      template for F1 is more specialized than the template for F2
4232  //      according to the partial ordering rules described in 14.5.5.2, or,
4233  //      if not that,
4234  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4235      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4236    if (FunctionTemplateDecl *BetterTemplate
4237          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4238                                       Cand2.Function->getPrimaryTemplate(),
4239                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4240                                                             : TPOC_Call))
4241      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4242
4243  //   -- the context is an initialization by user-defined conversion
4244  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4245  //      from the return type of F1 to the destination type (i.e.,
4246  //      the type of the entity being initialized) is a better
4247  //      conversion sequence than the standard conversion sequence
4248  //      from the return type of F2 to the destination type.
4249  if (Cand1.Function && Cand2.Function &&
4250      isa<CXXConversionDecl>(Cand1.Function) &&
4251      isa<CXXConversionDecl>(Cand2.Function)) {
4252    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4253                                               Cand2.FinalConversion)) {
4254    case ImplicitConversionSequence::Better:
4255      // Cand1 has a better conversion sequence.
4256      return true;
4257
4258    case ImplicitConversionSequence::Worse:
4259      // Cand1 can't be better than Cand2.
4260      return false;
4261
4262    case ImplicitConversionSequence::Indistinguishable:
4263      // Do nothing
4264      break;
4265    }
4266  }
4267
4268  return false;
4269}
4270
4271/// \brief Computes the best viable function (C++ 13.3.3)
4272/// within an overload candidate set.
4273///
4274/// \param CandidateSet the set of candidate functions.
4275///
4276/// \param Loc the location of the function name (or operator symbol) for
4277/// which overload resolution occurs.
4278///
4279/// \param Best f overload resolution was successful or found a deleted
4280/// function, Best points to the candidate function found.
4281///
4282/// \returns The result of overload resolution.
4283OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4284                                           SourceLocation Loc,
4285                                        OverloadCandidateSet::iterator& Best) {
4286  // Find the best viable function.
4287  Best = CandidateSet.end();
4288  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4289       Cand != CandidateSet.end(); ++Cand) {
4290    if (Cand->Viable) {
4291      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4292        Best = Cand;
4293    }
4294  }
4295
4296  // If we didn't find any viable functions, abort.
4297  if (Best == CandidateSet.end())
4298    return OR_No_Viable_Function;
4299
4300  // Make sure that this function is better than every other viable
4301  // function. If not, we have an ambiguity.
4302  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4303       Cand != CandidateSet.end(); ++Cand) {
4304    if (Cand->Viable &&
4305        Cand != Best &&
4306        !isBetterOverloadCandidate(*Best, *Cand)) {
4307      Best = CandidateSet.end();
4308      return OR_Ambiguous;
4309    }
4310  }
4311
4312  // Best is the best viable function.
4313  if (Best->Function &&
4314      (Best->Function->isDeleted() ||
4315       Best->Function->getAttr<UnavailableAttr>()))
4316    return OR_Deleted;
4317
4318  // C++ [basic.def.odr]p2:
4319  //   An overloaded function is used if it is selected by overload resolution
4320  //   when referred to from a potentially-evaluated expression. [Note: this
4321  //   covers calls to named functions (5.2.2), operator overloading
4322  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4323  //   placement new (5.3.4), as well as non-default initialization (8.5).
4324  if (Best->Function)
4325    MarkDeclarationReferenced(Loc, Best->Function);
4326  return OR_Success;
4327}
4328
4329namespace {
4330
4331enum OverloadCandidateKind {
4332  oc_function,
4333  oc_method,
4334  oc_constructor,
4335  oc_function_template,
4336  oc_method_template,
4337  oc_constructor_template,
4338  oc_implicit_default_constructor,
4339  oc_implicit_copy_constructor,
4340  oc_implicit_copy_assignment
4341};
4342
4343OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4344                                                FunctionDecl *Fn,
4345                                                std::string &Description) {
4346  bool isTemplate = false;
4347
4348  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4349    isTemplate = true;
4350    Description = S.getTemplateArgumentBindingsText(
4351      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4352  }
4353
4354  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4355    if (!Ctor->isImplicit())
4356      return isTemplate ? oc_constructor_template : oc_constructor;
4357
4358    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4359                                     : oc_implicit_default_constructor;
4360  }
4361
4362  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4363    // This actually gets spelled 'candidate function' for now, but
4364    // it doesn't hurt to split it out.
4365    if (!Meth->isImplicit())
4366      return isTemplate ? oc_method_template : oc_method;
4367
4368    assert(Meth->isCopyAssignment()
4369           && "implicit method is not copy assignment operator?");
4370    return oc_implicit_copy_assignment;
4371  }
4372
4373  return isTemplate ? oc_function_template : oc_function;
4374}
4375
4376} // end anonymous namespace
4377
4378// Notes the location of an overload candidate.
4379void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4380  std::string FnDesc;
4381  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4382  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4383    << (unsigned) K << FnDesc;
4384}
4385
4386/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4387/// "lead" diagnostic; it will be given two arguments, the source and
4388/// target types of the conversion.
4389void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4390                                       SourceLocation CaretLoc,
4391                                       const PartialDiagnostic &PDiag) {
4392  Diag(CaretLoc, PDiag)
4393    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4394  for (AmbiguousConversionSequence::const_iterator
4395         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4396    NoteOverloadCandidate(*I);
4397  }
4398}
4399
4400namespace {
4401
4402void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4403  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4404  assert(Conv.isBad());
4405  assert(Cand->Function && "for now, candidate must be a function");
4406  FunctionDecl *Fn = Cand->Function;
4407
4408  // There's a conversion slot for the object argument if this is a
4409  // non-constructor method.  Note that 'I' corresponds the
4410  // conversion-slot index.
4411  bool isObjectArgument = false;
4412  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4413    if (I == 0)
4414      isObjectArgument = true;
4415    else
4416      I--;
4417  }
4418
4419  std::string FnDesc;
4420  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4421
4422  Expr *FromExpr = Conv.Bad.FromExpr;
4423  QualType FromTy = Conv.Bad.getFromType();
4424  QualType ToTy = Conv.Bad.getToType();
4425
4426  // Do some hand-waving analysis to see if the non-viability is due
4427  // to a qualifier mismatch.
4428  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4429  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4430  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4431    CToTy = RT->getPointeeType();
4432  else {
4433    // TODO: detect and diagnose the full richness of const mismatches.
4434    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4435      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4436        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4437  }
4438
4439  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4440      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4441    // It is dumb that we have to do this here.
4442    while (isa<ArrayType>(CFromTy))
4443      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4444    while (isa<ArrayType>(CToTy))
4445      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4446
4447    Qualifiers FromQs = CFromTy.getQualifiers();
4448    Qualifiers ToQs = CToTy.getQualifiers();
4449
4450    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4451      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4452        << (unsigned) FnKind << FnDesc
4453        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4454        << FromTy
4455        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4456        << (unsigned) isObjectArgument << I+1;
4457      return;
4458    }
4459
4460    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4461    assert(CVR && "unexpected qualifiers mismatch");
4462
4463    if (isObjectArgument) {
4464      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4465        << (unsigned) FnKind << FnDesc
4466        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4467        << FromTy << (CVR - 1);
4468    } else {
4469      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4470        << (unsigned) FnKind << FnDesc
4471        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4472        << FromTy << (CVR - 1) << I+1;
4473    }
4474    return;
4475  }
4476
4477  // Diagnose references or pointers to incomplete types differently,
4478  // since it's far from impossible that the incompleteness triggered
4479  // the failure.
4480  QualType TempFromTy = FromTy.getNonReferenceType();
4481  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4482    TempFromTy = PTy->getPointeeType();
4483  if (TempFromTy->isIncompleteType()) {
4484    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4485      << (unsigned) FnKind << FnDesc
4486      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4487      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4488    return;
4489  }
4490
4491  // TODO: specialize more based on the kind of mismatch
4492  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4493    << (unsigned) FnKind << FnDesc
4494    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4495    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4496}
4497
4498void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4499                           unsigned NumFormalArgs) {
4500  // TODO: treat calls to a missing default constructor as a special case
4501
4502  FunctionDecl *Fn = Cand->Function;
4503  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4504
4505  unsigned MinParams = Fn->getMinRequiredArguments();
4506
4507  // at least / at most / exactly
4508  unsigned mode, modeCount;
4509  if (NumFormalArgs < MinParams) {
4510    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4511    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4512      mode = 0; // "at least"
4513    else
4514      mode = 2; // "exactly"
4515    modeCount = MinParams;
4516  } else {
4517    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4518    if (MinParams != FnTy->getNumArgs())
4519      mode = 1; // "at most"
4520    else
4521      mode = 2; // "exactly"
4522    modeCount = FnTy->getNumArgs();
4523  }
4524
4525  std::string Description;
4526  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4527
4528  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4529    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4530}
4531
4532void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4533                           Expr **Args, unsigned NumArgs) {
4534  FunctionDecl *Fn = Cand->Function;
4535
4536  // Note deleted candidates, but only if they're viable.
4537  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4538    std::string FnDesc;
4539    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4540
4541    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4542      << FnKind << FnDesc << Fn->isDeleted();
4543    return;
4544  }
4545
4546  // We don't really have anything else to say about viable candidates.
4547  if (Cand->Viable) {
4548    S.NoteOverloadCandidate(Fn);
4549    return;
4550  }
4551
4552  switch (Cand->FailureKind) {
4553  case ovl_fail_too_many_arguments:
4554  case ovl_fail_too_few_arguments:
4555    return DiagnoseArityMismatch(S, Cand, NumArgs);
4556
4557  case ovl_fail_bad_deduction:
4558  case ovl_fail_trivial_conversion:
4559  case ovl_fail_bad_final_conversion:
4560    return S.NoteOverloadCandidate(Fn);
4561
4562  case ovl_fail_bad_conversion:
4563    for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I)
4564      if (Cand->Conversions[I].isBad())
4565        return DiagnoseBadConversion(S, Cand, I);
4566
4567    // FIXME: this currently happens when we're called from SemaInit
4568    // when user-conversion overload fails.  Figure out how to handle
4569    // those conditions and diagnose them well.
4570    return S.NoteOverloadCandidate(Fn);
4571  }
4572}
4573
4574void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4575  // Desugar the type of the surrogate down to a function type,
4576  // retaining as many typedefs as possible while still showing
4577  // the function type (and, therefore, its parameter types).
4578  QualType FnType = Cand->Surrogate->getConversionType();
4579  bool isLValueReference = false;
4580  bool isRValueReference = false;
4581  bool isPointer = false;
4582  if (const LValueReferenceType *FnTypeRef =
4583        FnType->getAs<LValueReferenceType>()) {
4584    FnType = FnTypeRef->getPointeeType();
4585    isLValueReference = true;
4586  } else if (const RValueReferenceType *FnTypeRef =
4587               FnType->getAs<RValueReferenceType>()) {
4588    FnType = FnTypeRef->getPointeeType();
4589    isRValueReference = true;
4590  }
4591  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4592    FnType = FnTypePtr->getPointeeType();
4593    isPointer = true;
4594  }
4595  // Desugar down to a function type.
4596  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4597  // Reconstruct the pointer/reference as appropriate.
4598  if (isPointer) FnType = S.Context.getPointerType(FnType);
4599  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4600  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4601
4602  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4603    << FnType;
4604}
4605
4606void NoteBuiltinOperatorCandidate(Sema &S,
4607                                  const char *Opc,
4608                                  SourceLocation OpLoc,
4609                                  OverloadCandidate *Cand) {
4610  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4611  std::string TypeStr("operator");
4612  TypeStr += Opc;
4613  TypeStr += "(";
4614  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4615  if (Cand->Conversions.size() == 1) {
4616    TypeStr += ")";
4617    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4618  } else {
4619    TypeStr += ", ";
4620    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4621    TypeStr += ")";
4622    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4623  }
4624}
4625
4626void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4627                                  OverloadCandidate *Cand) {
4628  unsigned NoOperands = Cand->Conversions.size();
4629  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4630    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4631    if (ICS.isBad()) break; // all meaningless after first invalid
4632    if (!ICS.isAmbiguous()) continue;
4633
4634    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4635                              PDiag(diag::note_ambiguous_type_conversion));
4636  }
4637}
4638
4639SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4640  if (Cand->Function)
4641    return Cand->Function->getLocation();
4642  if (Cand->IsSurrogate)
4643    return Cand->Surrogate->getLocation();
4644  return SourceLocation();
4645}
4646
4647struct CompareOverloadCandidatesForDisplay {
4648  Sema &S;
4649  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4650
4651  bool operator()(const OverloadCandidate *L,
4652                  const OverloadCandidate *R) {
4653    // Fast-path this check.
4654    if (L == R) return false;
4655
4656    // Order first by viability.
4657    if (L->Viable) {
4658      if (!R->Viable) return true;
4659
4660      // TODO: introduce a tri-valued comparison for overload
4661      // candidates.  Would be more worthwhile if we had a sort
4662      // that could exploit it.
4663      if (S.isBetterOverloadCandidate(*L, *R)) return true;
4664      if (S.isBetterOverloadCandidate(*R, *L)) return false;
4665    } else if (R->Viable)
4666      return false;
4667
4668    assert(L->Viable == R->Viable);
4669
4670    // Criteria by which we can sort non-viable candidates:
4671    if (!L->Viable) {
4672      // 1. Arity mismatches come after other candidates.
4673      if (L->FailureKind == ovl_fail_too_many_arguments ||
4674          L->FailureKind == ovl_fail_too_few_arguments)
4675        return false;
4676      if (R->FailureKind == ovl_fail_too_many_arguments ||
4677          R->FailureKind == ovl_fail_too_few_arguments)
4678        return true;
4679
4680      // 2. Bad conversions come first and are ordered by the number
4681      // of bad conversions and quality of good conversions.
4682      if (L->FailureKind == ovl_fail_bad_conversion) {
4683        if (R->FailureKind != ovl_fail_bad_conversion)
4684          return true;
4685
4686        // If there's any ordering between the defined conversions...
4687        // FIXME: this might not be transitive.
4688        assert(L->Conversions.size() == R->Conversions.size());
4689
4690        int leftBetter = 0;
4691        for (unsigned I = 0, E = L->Conversions.size(); I != E; ++I) {
4692          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4693                                                       R->Conversions[I])) {
4694          case ImplicitConversionSequence::Better:
4695            leftBetter++;
4696            break;
4697
4698          case ImplicitConversionSequence::Worse:
4699            leftBetter--;
4700            break;
4701
4702          case ImplicitConversionSequence::Indistinguishable:
4703            break;
4704          }
4705        }
4706        if (leftBetter > 0) return true;
4707        if (leftBetter < 0) return false;
4708
4709      } else if (R->FailureKind == ovl_fail_bad_conversion)
4710        return false;
4711
4712      // TODO: others?
4713    }
4714
4715    // Sort everything else by location.
4716    SourceLocation LLoc = GetLocationForCandidate(L);
4717    SourceLocation RLoc = GetLocationForCandidate(R);
4718
4719    // Put candidates without locations (e.g. builtins) at the end.
4720    if (LLoc.isInvalid()) return false;
4721    if (RLoc.isInvalid()) return true;
4722
4723    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4724  }
4725};
4726
4727/// CompleteNonViableCandidate - Normally, overload resolution only
4728/// computes up to the first
4729void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4730                                Expr **Args, unsigned NumArgs) {
4731  assert(!Cand->Viable);
4732
4733  // Don't do anything on failures other than bad conversion.
4734  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4735
4736  // Skip forward to the first bad conversion.
4737  unsigned ConvIdx = 0;
4738  unsigned ConvCount = Cand->Conversions.size();
4739  while (true) {
4740    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4741    ConvIdx++;
4742    if (Cand->Conversions[ConvIdx - 1].isBad())
4743      break;
4744  }
4745
4746  if (ConvIdx == ConvCount)
4747    return;
4748
4749  // FIXME: these should probably be preserved from the overload
4750  // operation somehow.
4751  bool SuppressUserConversions = false;
4752  bool ForceRValue = false;
4753
4754  const FunctionProtoType* Proto;
4755  unsigned ArgIdx = ConvIdx;
4756
4757  if (Cand->IsSurrogate) {
4758    QualType ConvType
4759      = Cand->Surrogate->getConversionType().getNonReferenceType();
4760    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4761      ConvType = ConvPtrType->getPointeeType();
4762    Proto = ConvType->getAs<FunctionProtoType>();
4763    ArgIdx--;
4764  } else if (Cand->Function) {
4765    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4766    if (isa<CXXMethodDecl>(Cand->Function) &&
4767        !isa<CXXConstructorDecl>(Cand->Function))
4768      ArgIdx--;
4769  } else {
4770    // Builtin binary operator with a bad first conversion.
4771    assert(ConvCount <= 3);
4772    for (; ConvIdx != ConvCount; ++ConvIdx)
4773      Cand->Conversions[ConvIdx]
4774        = S.TryCopyInitialization(Args[ConvIdx],
4775                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4776                                  SuppressUserConversions, ForceRValue,
4777                                  /*InOverloadResolution*/ true);
4778    return;
4779  }
4780
4781  // Fill in the rest of the conversions.
4782  unsigned NumArgsInProto = Proto->getNumArgs();
4783  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4784    if (ArgIdx < NumArgsInProto)
4785      Cand->Conversions[ConvIdx]
4786        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4787                                  SuppressUserConversions, ForceRValue,
4788                                  /*InOverloadResolution=*/true);
4789    else
4790      Cand->Conversions[ConvIdx].setEllipsis();
4791  }
4792}
4793
4794} // end anonymous namespace
4795
4796/// PrintOverloadCandidates - When overload resolution fails, prints
4797/// diagnostic messages containing the candidates in the candidate
4798/// set.
4799void
4800Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4801                              OverloadCandidateDisplayKind OCD,
4802                              Expr **Args, unsigned NumArgs,
4803                              const char *Opc,
4804                              SourceLocation OpLoc) {
4805  // Sort the candidates by viability and position.  Sorting directly would
4806  // be prohibitive, so we make a set of pointers and sort those.
4807  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4808  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4809  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4810                                  LastCand = CandidateSet.end();
4811       Cand != LastCand; ++Cand) {
4812    if (Cand->Viable)
4813      Cands.push_back(Cand);
4814    else if (OCD == OCD_AllCandidates) {
4815      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4816      Cands.push_back(Cand);
4817    }
4818  }
4819
4820  std::sort(Cands.begin(), Cands.end(),
4821            CompareOverloadCandidatesForDisplay(*this));
4822
4823  bool ReportedAmbiguousConversions = false;
4824
4825  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4826  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4827    OverloadCandidate *Cand = *I;
4828
4829    if (Cand->Function)
4830      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4831    else if (Cand->IsSurrogate)
4832      NoteSurrogateCandidate(*this, Cand);
4833
4834    // This a builtin candidate.  We do not, in general, want to list
4835    // every possible builtin candidate.
4836    else if (Cand->Viable) {
4837      // Generally we only see ambiguities including viable builtin
4838      // operators if overload resolution got screwed up by an
4839      // ambiguous user-defined conversion.
4840      //
4841      // FIXME: It's quite possible for different conversions to see
4842      // different ambiguities, though.
4843      if (!ReportedAmbiguousConversions) {
4844        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4845        ReportedAmbiguousConversions = true;
4846      }
4847
4848      // If this is a viable builtin, print it.
4849      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4850    }
4851  }
4852}
4853
4854static bool CheckUnresolvedAccess(Sema &S, Expr *E, NamedDecl *D,
4855                                  AccessSpecifier AS) {
4856  if (isa<UnresolvedLookupExpr>(E))
4857    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);
4858
4859  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
4860}
4861
4862/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4863/// an overloaded function (C++ [over.over]), where @p From is an
4864/// expression with overloaded function type and @p ToType is the type
4865/// we're trying to resolve to. For example:
4866///
4867/// @code
4868/// int f(double);
4869/// int f(int);
4870///
4871/// int (*pfd)(double) = f; // selects f(double)
4872/// @endcode
4873///
4874/// This routine returns the resulting FunctionDecl if it could be
4875/// resolved, and NULL otherwise. When @p Complain is true, this
4876/// routine will emit diagnostics if there is an error.
4877FunctionDecl *
4878Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4879                                         bool Complain) {
4880  QualType FunctionType = ToType;
4881  bool IsMember = false;
4882  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4883    FunctionType = ToTypePtr->getPointeeType();
4884  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4885    FunctionType = ToTypeRef->getPointeeType();
4886  else if (const MemberPointerType *MemTypePtr =
4887                    ToType->getAs<MemberPointerType>()) {
4888    FunctionType = MemTypePtr->getPointeeType();
4889    IsMember = true;
4890  }
4891
4892  // We only look at pointers or references to functions.
4893  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4894  if (!FunctionType->isFunctionType())
4895    return 0;
4896
4897  // Find the actual overloaded function declaration.
4898
4899  // C++ [over.over]p1:
4900  //   [...] [Note: any redundant set of parentheses surrounding the
4901  //   overloaded function name is ignored (5.1). ]
4902  Expr *OvlExpr = From->IgnoreParens();
4903
4904  // C++ [over.over]p1:
4905  //   [...] The overloaded function name can be preceded by the &
4906  //   operator.
4907  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4908    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4909      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4910  }
4911
4912  bool HasExplicitTemplateArgs = false;
4913  TemplateArgumentListInfo ExplicitTemplateArgs;
4914  const UnresolvedSetImpl *Fns;
4915
4916  // Look into the overloaded expression.
4917  if (UnresolvedLookupExpr *UL
4918               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4919    Fns = &UL->getDecls();
4920    if (UL->hasExplicitTemplateArgs()) {
4921      HasExplicitTemplateArgs = true;
4922      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4923    }
4924  } else if (UnresolvedMemberExpr *ME
4925               = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
4926    Fns = &ME->getDecls();
4927    if (ME->hasExplicitTemplateArgs()) {
4928      HasExplicitTemplateArgs = true;
4929      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4930    }
4931  } else return 0;
4932
4933  // If we didn't actually find anything, we're done.
4934  if (Fns->empty())
4935    return 0;
4936
4937  // Look through all of the overloaded functions, searching for one
4938  // whose type matches exactly.
4939  UnresolvedSet<4> Matches;  // contains only FunctionDecls
4940  bool FoundNonTemplateFunction = false;
4941  for (UnresolvedSetIterator I = Fns->begin(), E = Fns->end(); I != E; ++I) {
4942    // Look through any using declarations to find the underlying function.
4943    NamedDecl *Fn = (*I)->getUnderlyingDecl();
4944
4945    // C++ [over.over]p3:
4946    //   Non-member functions and static member functions match
4947    //   targets of type "pointer-to-function" or "reference-to-function."
4948    //   Nonstatic member functions match targets of
4949    //   type "pointer-to-member-function."
4950    // Note that according to DR 247, the containing class does not matter.
4951
4952    if (FunctionTemplateDecl *FunctionTemplate
4953          = dyn_cast<FunctionTemplateDecl>(Fn)) {
4954      if (CXXMethodDecl *Method
4955            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4956        // Skip non-static function templates when converting to pointer, and
4957        // static when converting to member pointer.
4958        if (Method->isStatic() == IsMember)
4959          continue;
4960      } else if (IsMember)
4961        continue;
4962
4963      // C++ [over.over]p2:
4964      //   If the name is a function template, template argument deduction is
4965      //   done (14.8.2.2), and if the argument deduction succeeds, the
4966      //   resulting template argument list is used to generate a single
4967      //   function template specialization, which is added to the set of
4968      //   overloaded functions considered.
4969      // FIXME: We don't really want to build the specialization here, do we?
4970      FunctionDecl *Specialization = 0;
4971      TemplateDeductionInfo Info(Context);
4972      if (TemplateDeductionResult Result
4973            = DeduceTemplateArguments(FunctionTemplate,
4974                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
4975                                      FunctionType, Specialization, Info)) {
4976        // FIXME: make a note of the failed deduction for diagnostics.
4977        (void)Result;
4978      } else {
4979        // FIXME: If the match isn't exact, shouldn't we just drop this as
4980        // a candidate? Find a testcase before changing the code.
4981        assert(FunctionType
4982                 == Context.getCanonicalType(Specialization->getType()));
4983        Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
4984                        I.getAccess());
4985      }
4986
4987      continue;
4988    }
4989
4990    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4991      // Skip non-static functions when converting to pointer, and static
4992      // when converting to member pointer.
4993      if (Method->isStatic() == IsMember)
4994        continue;
4995
4996      // If we have explicit template arguments, skip non-templates.
4997      if (HasExplicitTemplateArgs)
4998        continue;
4999    } else if (IsMember)
5000      continue;
5001
5002    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5003      QualType ResultTy;
5004      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5005          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5006                               ResultTy)) {
5007        Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
5008                        I.getAccess());
5009        FoundNonTemplateFunction = true;
5010      }
5011    }
5012  }
5013
5014  // If there were 0 or 1 matches, we're done.
5015  if (Matches.empty())
5016    return 0;
5017  else if (Matches.size() == 1) {
5018    FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
5019    MarkDeclarationReferenced(From->getLocStart(), Result);
5020    if (Complain)
5021      CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
5022    return Result;
5023  }
5024
5025  // C++ [over.over]p4:
5026  //   If more than one function is selected, [...]
5027  if (!FoundNonTemplateFunction) {
5028    //   [...] and any given function template specialization F1 is
5029    //   eliminated if the set contains a second function template
5030    //   specialization whose function template is more specialized
5031    //   than the function template of F1 according to the partial
5032    //   ordering rules of 14.5.5.2.
5033
5034    // The algorithm specified above is quadratic. We instead use a
5035    // two-pass algorithm (similar to the one used to identify the
5036    // best viable function in an overload set) that identifies the
5037    // best function template (if it exists).
5038
5039    UnresolvedSetIterator Result =
5040        getMostSpecialized(Matches.begin(), Matches.end(),
5041                           TPOC_Other, From->getLocStart(),
5042                           PDiag(),
5043                           PDiag(diag::err_addr_ovl_ambiguous)
5044                               << Matches[0]->getDeclName(),
5045                           PDiag(diag::note_ovl_candidate)
5046                               << (unsigned) oc_function_template);
5047    assert(Result != Matches.end() && "no most-specialized template");
5048    MarkDeclarationReferenced(From->getLocStart(), *Result);
5049    if (Complain)
5050      CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
5051    return cast<FunctionDecl>(*Result);
5052  }
5053
5054  //   [...] any function template specializations in the set are
5055  //   eliminated if the set also contains a non-template function, [...]
5056  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5057    if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
5058      ++I;
5059    else {
5060      Matches.erase(I);
5061      --N;
5062    }
5063  }
5064
5065  // [...] After such eliminations, if any, there shall remain exactly one
5066  // selected function.
5067  if (Matches.size() == 1) {
5068    UnresolvedSetIterator Match = Matches.begin();
5069    MarkDeclarationReferenced(From->getLocStart(), *Match);
5070    if (Complain)
5071      CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
5072    return cast<FunctionDecl>(*Match);
5073  }
5074
5075  // FIXME: We should probably return the same thing that BestViableFunction
5076  // returns (even if we issue the diagnostics here).
5077  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5078    << Matches[0]->getDeclName();
5079  for (UnresolvedSetIterator I = Matches.begin(),
5080         E = Matches.end(); I != E; ++I)
5081    NoteOverloadCandidate(cast<FunctionDecl>(*I));
5082  return 0;
5083}
5084
5085/// \brief Given an expression that refers to an overloaded function, try to
5086/// resolve that overloaded function expression down to a single function.
5087///
5088/// This routine can only resolve template-ids that refer to a single function
5089/// template, where that template-id refers to a single template whose template
5090/// arguments are either provided by the template-id or have defaults,
5091/// as described in C++0x [temp.arg.explicit]p3.
5092FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5093  // C++ [over.over]p1:
5094  //   [...] [Note: any redundant set of parentheses surrounding the
5095  //   overloaded function name is ignored (5.1). ]
5096  Expr *OvlExpr = From->IgnoreParens();
5097
5098  // C++ [over.over]p1:
5099  //   [...] The overloaded function name can be preceded by the &
5100  //   operator.
5101  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
5102    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
5103      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
5104  }
5105
5106  bool HasExplicitTemplateArgs = false;
5107  TemplateArgumentListInfo ExplicitTemplateArgs;
5108  const UnresolvedSetImpl *Fns;
5109
5110  // Look into the overloaded expression.
5111  if (UnresolvedLookupExpr *UL
5112      = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
5113    Fns = &UL->getDecls();
5114    if (UL->hasExplicitTemplateArgs()) {
5115      HasExplicitTemplateArgs = true;
5116      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
5117    }
5118  } else if (UnresolvedMemberExpr *ME
5119             = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
5120    Fns = &ME->getDecls();
5121    if (ME->hasExplicitTemplateArgs()) {
5122      HasExplicitTemplateArgs = true;
5123      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
5124    }
5125  } else return 0;
5126
5127  // If we didn't actually find any template-ids, we're done.
5128  if (Fns->empty() || !HasExplicitTemplateArgs)
5129    return 0;
5130
5131  // Look through all of the overloaded functions, searching for one
5132  // whose type matches exactly.
5133  FunctionDecl *Matched = 0;
5134  for (UnresolvedSetIterator I = Fns->begin(), E = Fns->end(); I != E; ++I) {
5135    // C++0x [temp.arg.explicit]p3:
5136    //   [...] In contexts where deduction is done and fails, or in contexts
5137    //   where deduction is not done, if a template argument list is
5138    //   specified and it, along with any default template arguments,
5139    //   identifies a single function template specialization, then the
5140    //   template-id is an lvalue for the function template specialization.
5141    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5142
5143    // C++ [over.over]p2:
5144    //   If the name is a function template, template argument deduction is
5145    //   done (14.8.2.2), and if the argument deduction succeeds, the
5146    //   resulting template argument list is used to generate a single
5147    //   function template specialization, which is added to the set of
5148    //   overloaded functions considered.
5149    FunctionDecl *Specialization = 0;
5150    TemplateDeductionInfo Info(Context);
5151    if (TemplateDeductionResult Result
5152          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5153                                    Specialization, Info)) {
5154      // FIXME: make a note of the failed deduction for diagnostics.
5155      (void)Result;
5156      continue;
5157    }
5158
5159    // Multiple matches; we can't resolve to a single declaration.
5160    if (Matched)
5161      return 0;
5162
5163    Matched = Specialization;
5164  }
5165
5166  return Matched;
5167}
5168
5169/// \brief Add a single candidate to the overload set.
5170static void AddOverloadedCallCandidate(Sema &S,
5171                                       NamedDecl *Callee,
5172                                       AccessSpecifier Access,
5173                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5174                                       Expr **Args, unsigned NumArgs,
5175                                       OverloadCandidateSet &CandidateSet,
5176                                       bool PartialOverloading) {
5177  if (isa<UsingShadowDecl>(Callee))
5178    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5179
5180  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5181    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5182    S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
5183                           false, false, PartialOverloading);
5184    return;
5185  }
5186
5187  if (FunctionTemplateDecl *FuncTemplate
5188      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5189    S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
5190                                   Args, NumArgs, CandidateSet);
5191    return;
5192  }
5193
5194  assert(false && "unhandled case in overloaded call candidate");
5195
5196  // do nothing?
5197}
5198
5199/// \brief Add the overload candidates named by callee and/or found by argument
5200/// dependent lookup to the given overload set.
5201void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5202                                       Expr **Args, unsigned NumArgs,
5203                                       OverloadCandidateSet &CandidateSet,
5204                                       bool PartialOverloading) {
5205
5206#ifndef NDEBUG
5207  // Verify that ArgumentDependentLookup is consistent with the rules
5208  // in C++0x [basic.lookup.argdep]p3:
5209  //
5210  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5211  //   and let Y be the lookup set produced by argument dependent
5212  //   lookup (defined as follows). If X contains
5213  //
5214  //     -- a declaration of a class member, or
5215  //
5216  //     -- a block-scope function declaration that is not a
5217  //        using-declaration, or
5218  //
5219  //     -- a declaration that is neither a function or a function
5220  //        template
5221  //
5222  //   then Y is empty.
5223
5224  if (ULE->requiresADL()) {
5225    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5226           E = ULE->decls_end(); I != E; ++I) {
5227      assert(!(*I)->getDeclContext()->isRecord());
5228      assert(isa<UsingShadowDecl>(*I) ||
5229             !(*I)->getDeclContext()->isFunctionOrMethod());
5230      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5231    }
5232  }
5233#endif
5234
5235  // It would be nice to avoid this copy.
5236  TemplateArgumentListInfo TABuffer;
5237  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5238  if (ULE->hasExplicitTemplateArgs()) {
5239    ULE->copyTemplateArgumentsInto(TABuffer);
5240    ExplicitTemplateArgs = &TABuffer;
5241  }
5242
5243  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5244         E = ULE->decls_end(); I != E; ++I)
5245    AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
5246                               Args, NumArgs, CandidateSet,
5247                               PartialOverloading);
5248
5249  if (ULE->requiresADL())
5250    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5251                                         Args, NumArgs,
5252                                         ExplicitTemplateArgs,
5253                                         CandidateSet,
5254                                         PartialOverloading);
5255}
5256
5257static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5258                                      Expr **Args, unsigned NumArgs) {
5259  Fn->Destroy(SemaRef.Context);
5260  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5261    Args[Arg]->Destroy(SemaRef.Context);
5262  return SemaRef.ExprError();
5263}
5264
5265/// Attempts to recover from a call where no functions were found.
5266///
5267/// Returns true if new candidates were found.
5268static Sema::OwningExprResult
5269BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5270                      UnresolvedLookupExpr *ULE,
5271                      SourceLocation LParenLoc,
5272                      Expr **Args, unsigned NumArgs,
5273                      SourceLocation *CommaLocs,
5274                      SourceLocation RParenLoc) {
5275
5276  CXXScopeSpec SS;
5277  if (ULE->getQualifier()) {
5278    SS.setScopeRep(ULE->getQualifier());
5279    SS.setRange(ULE->getQualifierRange());
5280  }
5281
5282  TemplateArgumentListInfo TABuffer;
5283  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5284  if (ULE->hasExplicitTemplateArgs()) {
5285    ULE->copyTemplateArgumentsInto(TABuffer);
5286    ExplicitTemplateArgs = &TABuffer;
5287  }
5288
5289  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5290                 Sema::LookupOrdinaryName);
5291  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5292    return Destroy(SemaRef, Fn, Args, NumArgs);
5293
5294  assert(!R.empty() && "lookup results empty despite recovery");
5295
5296  // Build an implicit member call if appropriate.  Just drop the
5297  // casts and such from the call, we don't really care.
5298  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5299  if ((*R.begin())->isCXXClassMember())
5300    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5301  else if (ExplicitTemplateArgs)
5302    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5303  else
5304    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5305
5306  if (NewFn.isInvalid())
5307    return Destroy(SemaRef, Fn, Args, NumArgs);
5308
5309  Fn->Destroy(SemaRef.Context);
5310
5311  // This shouldn't cause an infinite loop because we're giving it
5312  // an expression with non-empty lookup results, which should never
5313  // end up here.
5314  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5315                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5316                               CommaLocs, RParenLoc);
5317}
5318
5319/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5320/// (which eventually refers to the declaration Func) and the call
5321/// arguments Args/NumArgs, attempt to resolve the function call down
5322/// to a specific function. If overload resolution succeeds, returns
5323/// the function declaration produced by overload
5324/// resolution. Otherwise, emits diagnostics, deletes all of the
5325/// arguments and Fn, and returns NULL.
5326Sema::OwningExprResult
5327Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5328                              SourceLocation LParenLoc,
5329                              Expr **Args, unsigned NumArgs,
5330                              SourceLocation *CommaLocs,
5331                              SourceLocation RParenLoc) {
5332#ifndef NDEBUG
5333  if (ULE->requiresADL()) {
5334    // To do ADL, we must have found an unqualified name.
5335    assert(!ULE->getQualifier() && "qualified name with ADL");
5336
5337    // We don't perform ADL for implicit declarations of builtins.
5338    // Verify that this was correctly set up.
5339    FunctionDecl *F;
5340    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5341        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5342        F->getBuiltinID() && F->isImplicit())
5343      assert(0 && "performing ADL for builtin");
5344
5345    // We don't perform ADL in C.
5346    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5347  }
5348#endif
5349
5350  OverloadCandidateSet CandidateSet;
5351
5352  // Add the functions denoted by the callee to the set of candidate
5353  // functions, including those from argument-dependent lookup.
5354  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5355
5356  // If we found nothing, try to recover.
5357  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5358  // bailout out if it fails.
5359  if (CandidateSet.empty())
5360    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5361                                 CommaLocs, RParenLoc);
5362
5363  OverloadCandidateSet::iterator Best;
5364  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5365  case OR_Success: {
5366    FunctionDecl *FDecl = Best->Function;
5367    CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
5368    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5369    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5370  }
5371
5372  case OR_No_Viable_Function:
5373    Diag(Fn->getSourceRange().getBegin(),
5374         diag::err_ovl_no_viable_function_in_call)
5375      << ULE->getName() << Fn->getSourceRange();
5376    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5377    break;
5378
5379  case OR_Ambiguous:
5380    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5381      << ULE->getName() << Fn->getSourceRange();
5382    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5383    break;
5384
5385  case OR_Deleted:
5386    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5387      << Best->Function->isDeleted()
5388      << ULE->getName()
5389      << Fn->getSourceRange();
5390    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5391    break;
5392  }
5393
5394  // Overload resolution failed. Destroy all of the subexpressions and
5395  // return NULL.
5396  Fn->Destroy(Context);
5397  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5398    Args[Arg]->Destroy(Context);
5399  return ExprError();
5400}
5401
5402static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5403  return Functions.size() > 1 ||
5404    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5405}
5406
5407/// \brief Create a unary operation that may resolve to an overloaded
5408/// operator.
5409///
5410/// \param OpLoc The location of the operator itself (e.g., '*').
5411///
5412/// \param OpcIn The UnaryOperator::Opcode that describes this
5413/// operator.
5414///
5415/// \param Functions The set of non-member functions that will be
5416/// considered by overload resolution. The caller needs to build this
5417/// set based on the context using, e.g.,
5418/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5419/// set should not contain any member functions; those will be added
5420/// by CreateOverloadedUnaryOp().
5421///
5422/// \param input The input argument.
5423Sema::OwningExprResult
5424Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5425                              const UnresolvedSetImpl &Fns,
5426                              ExprArg input) {
5427  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5428  Expr *Input = (Expr *)input.get();
5429
5430  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5431  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5432  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5433
5434  Expr *Args[2] = { Input, 0 };
5435  unsigned NumArgs = 1;
5436
5437  // For post-increment and post-decrement, add the implicit '0' as
5438  // the second argument, so that we know this is a post-increment or
5439  // post-decrement.
5440  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5441    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5442    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5443                                           SourceLocation());
5444    NumArgs = 2;
5445  }
5446
5447  if (Input->isTypeDependent()) {
5448    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5449    UnresolvedLookupExpr *Fn
5450      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5451                                     0, SourceRange(), OpName, OpLoc,
5452                                     /*ADL*/ true, IsOverloaded(Fns));
5453    Fn->addDecls(Fns.begin(), Fns.end());
5454
5455    input.release();
5456    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5457                                                   &Args[0], NumArgs,
5458                                                   Context.DependentTy,
5459                                                   OpLoc));
5460  }
5461
5462  // Build an empty overload set.
5463  OverloadCandidateSet CandidateSet;
5464
5465  // Add the candidates from the given function set.
5466  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5467
5468  // Add operator candidates that are member functions.
5469  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5470
5471  // Add candidates from ADL.
5472  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5473                                       Args, 1,
5474                                       /*ExplicitTemplateArgs*/ 0,
5475                                       CandidateSet);
5476
5477  // Add builtin operator candidates.
5478  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5479
5480  // Perform overload resolution.
5481  OverloadCandidateSet::iterator Best;
5482  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5483  case OR_Success: {
5484    // We found a built-in operator or an overloaded operator.
5485    FunctionDecl *FnDecl = Best->Function;
5486
5487    if (FnDecl) {
5488      // We matched an overloaded operator. Build a call to that
5489      // operator.
5490
5491      // FIXME: access control
5492
5493      // Convert the arguments.
5494      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5495        if (PerformObjectArgumentInitialization(Input, Method))
5496          return ExprError();
5497      } else {
5498        // Convert the arguments.
5499        OwningExprResult InputInit
5500          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5501                                                      FnDecl->getParamDecl(0)),
5502                                      SourceLocation(),
5503                                      move(input));
5504        if (InputInit.isInvalid())
5505          return ExprError();
5506
5507        input = move(InputInit);
5508        Input = (Expr *)input.get();
5509      }
5510
5511      // Determine the result type
5512      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5513
5514      // Build the actual expression node.
5515      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5516                                               SourceLocation());
5517      UsualUnaryConversions(FnExpr);
5518
5519      input.release();
5520      Args[0] = Input;
5521      ExprOwningPtr<CallExpr> TheCall(this,
5522        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5523                                          Args, NumArgs, ResultTy, OpLoc));
5524
5525      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5526                              FnDecl))
5527        return ExprError();
5528
5529      return MaybeBindToTemporary(TheCall.release());
5530    } else {
5531      // We matched a built-in operator. Convert the arguments, then
5532      // break out so that we will build the appropriate built-in
5533      // operator node.
5534        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5535                                      Best->Conversions[0], AA_Passing))
5536          return ExprError();
5537
5538        break;
5539      }
5540    }
5541
5542    case OR_No_Viable_Function:
5543      // No viable function; fall through to handling this as a
5544      // built-in operator, which will produce an error message for us.
5545      break;
5546
5547    case OR_Ambiguous:
5548      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5549          << UnaryOperator::getOpcodeStr(Opc)
5550          << Input->getSourceRange();
5551      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5552                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5553      return ExprError();
5554
5555    case OR_Deleted:
5556      Diag(OpLoc, diag::err_ovl_deleted_oper)
5557        << Best->Function->isDeleted()
5558        << UnaryOperator::getOpcodeStr(Opc)
5559        << Input->getSourceRange();
5560      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5561      return ExprError();
5562    }
5563
5564  // Either we found no viable overloaded operator or we matched a
5565  // built-in operator. In either case, fall through to trying to
5566  // build a built-in operation.
5567  input.release();
5568  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5569}
5570
5571/// \brief Create a binary operation that may resolve to an overloaded
5572/// operator.
5573///
5574/// \param OpLoc The location of the operator itself (e.g., '+').
5575///
5576/// \param OpcIn The BinaryOperator::Opcode that describes this
5577/// operator.
5578///
5579/// \param Functions The set of non-member functions that will be
5580/// considered by overload resolution. The caller needs to build this
5581/// set based on the context using, e.g.,
5582/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5583/// set should not contain any member functions; those will be added
5584/// by CreateOverloadedBinOp().
5585///
5586/// \param LHS Left-hand argument.
5587/// \param RHS Right-hand argument.
5588Sema::OwningExprResult
5589Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5590                            unsigned OpcIn,
5591                            const UnresolvedSetImpl &Fns,
5592                            Expr *LHS, Expr *RHS) {
5593  Expr *Args[2] = { LHS, RHS };
5594  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5595
5596  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5597  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5598  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5599
5600  // If either side is type-dependent, create an appropriate dependent
5601  // expression.
5602  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5603    if (Fns.empty()) {
5604      // If there are no functions to store, just build a dependent
5605      // BinaryOperator or CompoundAssignment.
5606      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5607        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5608                                                  Context.DependentTy, OpLoc));
5609
5610      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5611                                                        Context.DependentTy,
5612                                                        Context.DependentTy,
5613                                                        Context.DependentTy,
5614                                                        OpLoc));
5615    }
5616
5617    // FIXME: save results of ADL from here?
5618    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5619    UnresolvedLookupExpr *Fn
5620      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5621                                     0, SourceRange(), OpName, OpLoc,
5622                                     /*ADL*/ true, IsOverloaded(Fns));
5623
5624    Fn->addDecls(Fns.begin(), Fns.end());
5625    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5626                                                   Args, 2,
5627                                                   Context.DependentTy,
5628                                                   OpLoc));
5629  }
5630
5631  // If this is the .* operator, which is not overloadable, just
5632  // create a built-in binary operator.
5633  if (Opc == BinaryOperator::PtrMemD)
5634    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5635
5636  // If this is the assignment operator, we only perform overload resolution
5637  // if the left-hand side is a class or enumeration type. This is actually
5638  // a hack. The standard requires that we do overload resolution between the
5639  // various built-in candidates, but as DR507 points out, this can lead to
5640  // problems. So we do it this way, which pretty much follows what GCC does.
5641  // Note that we go the traditional code path for compound assignment forms.
5642  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5643    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5644
5645  // Build an empty overload set.
5646  OverloadCandidateSet CandidateSet;
5647
5648  // Add the candidates from the given function set.
5649  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5650
5651  // Add operator candidates that are member functions.
5652  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5653
5654  // Add candidates from ADL.
5655  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5656                                       Args, 2,
5657                                       /*ExplicitTemplateArgs*/ 0,
5658                                       CandidateSet);
5659
5660  // Add builtin operator candidates.
5661  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5662
5663  // Perform overload resolution.
5664  OverloadCandidateSet::iterator Best;
5665  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5666    case OR_Success: {
5667      // We found a built-in operator or an overloaded operator.
5668      FunctionDecl *FnDecl = Best->Function;
5669
5670      if (FnDecl) {
5671        // We matched an overloaded operator. Build a call to that
5672        // operator.
5673
5674        // FIXME: access control
5675
5676        // Convert the arguments.
5677        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5678          OwningExprResult Arg1
5679            = PerformCopyInitialization(
5680                                        InitializedEntity::InitializeParameter(
5681                                                        FnDecl->getParamDecl(0)),
5682                                        SourceLocation(),
5683                                        Owned(Args[1]));
5684          if (Arg1.isInvalid())
5685            return ExprError();
5686
5687          if (PerformObjectArgumentInitialization(Args[0], Method))
5688            return ExprError();
5689
5690          Args[1] = RHS = Arg1.takeAs<Expr>();
5691        } else {
5692          // Convert the arguments.
5693          OwningExprResult Arg0
5694            = PerformCopyInitialization(
5695                                        InitializedEntity::InitializeParameter(
5696                                                        FnDecl->getParamDecl(0)),
5697                                        SourceLocation(),
5698                                        Owned(Args[0]));
5699          if (Arg0.isInvalid())
5700            return ExprError();
5701
5702          OwningExprResult Arg1
5703            = PerformCopyInitialization(
5704                                        InitializedEntity::InitializeParameter(
5705                                                        FnDecl->getParamDecl(1)),
5706                                        SourceLocation(),
5707                                        Owned(Args[1]));
5708          if (Arg1.isInvalid())
5709            return ExprError();
5710          Args[0] = LHS = Arg0.takeAs<Expr>();
5711          Args[1] = RHS = Arg1.takeAs<Expr>();
5712        }
5713
5714        // Determine the result type
5715        QualType ResultTy
5716          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5717        ResultTy = ResultTy.getNonReferenceType();
5718
5719        // Build the actual expression node.
5720        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5721                                                 OpLoc);
5722        UsualUnaryConversions(FnExpr);
5723
5724        ExprOwningPtr<CXXOperatorCallExpr>
5725          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5726                                                          Args, 2, ResultTy,
5727                                                          OpLoc));
5728
5729        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5730                                FnDecl))
5731          return ExprError();
5732
5733        return MaybeBindToTemporary(TheCall.release());
5734      } else {
5735        // We matched a built-in operator. Convert the arguments, then
5736        // break out so that we will build the appropriate built-in
5737        // operator node.
5738        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5739                                      Best->Conversions[0], AA_Passing) ||
5740            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5741                                      Best->Conversions[1], AA_Passing))
5742          return ExprError();
5743
5744        break;
5745      }
5746    }
5747
5748    case OR_No_Viable_Function: {
5749      // C++ [over.match.oper]p9:
5750      //   If the operator is the operator , [...] and there are no
5751      //   viable functions, then the operator is assumed to be the
5752      //   built-in operator and interpreted according to clause 5.
5753      if (Opc == BinaryOperator::Comma)
5754        break;
5755
5756      // For class as left operand for assignment or compound assigment operator
5757      // do not fall through to handling in built-in, but report that no overloaded
5758      // assignment operator found
5759      OwningExprResult Result = ExprError();
5760      if (Args[0]->getType()->isRecordType() &&
5761          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5762        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5763             << BinaryOperator::getOpcodeStr(Opc)
5764             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5765      } else {
5766        // No viable function; try to create a built-in operation, which will
5767        // produce an error. Then, show the non-viable candidates.
5768        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5769      }
5770      assert(Result.isInvalid() &&
5771             "C++ binary operator overloading is missing candidates!");
5772      if (Result.isInvalid())
5773        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5774                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5775      return move(Result);
5776    }
5777
5778    case OR_Ambiguous:
5779      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5780          << BinaryOperator::getOpcodeStr(Opc)
5781          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5782      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5783                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5784      return ExprError();
5785
5786    case OR_Deleted:
5787      Diag(OpLoc, diag::err_ovl_deleted_oper)
5788        << Best->Function->isDeleted()
5789        << BinaryOperator::getOpcodeStr(Opc)
5790        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5791      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5792      return ExprError();
5793  }
5794
5795  // We matched a built-in operator; build it.
5796  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5797}
5798
5799Action::OwningExprResult
5800Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5801                                         SourceLocation RLoc,
5802                                         ExprArg Base, ExprArg Idx) {
5803  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5804                    static_cast<Expr*>(Idx.get()) };
5805  DeclarationName OpName =
5806      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5807
5808  // If either side is type-dependent, create an appropriate dependent
5809  // expression.
5810  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5811
5812    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5813    UnresolvedLookupExpr *Fn
5814      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5815                                     0, SourceRange(), OpName, LLoc,
5816                                     /*ADL*/ true, /*Overloaded*/ false);
5817    // Can't add any actual overloads yet
5818
5819    Base.release();
5820    Idx.release();
5821    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5822                                                   Args, 2,
5823                                                   Context.DependentTy,
5824                                                   RLoc));
5825  }
5826
5827  // Build an empty overload set.
5828  OverloadCandidateSet CandidateSet;
5829
5830  // Subscript can only be overloaded as a member function.
5831
5832  // Add operator candidates that are member functions.
5833  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5834
5835  // Add builtin operator candidates.
5836  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5837
5838  // Perform overload resolution.
5839  OverloadCandidateSet::iterator Best;
5840  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5841    case OR_Success: {
5842      // We found a built-in operator or an overloaded operator.
5843      FunctionDecl *FnDecl = Best->Function;
5844
5845      if (FnDecl) {
5846        // We matched an overloaded operator. Build a call to that
5847        // operator.
5848
5849        // FIXME: access control
5850
5851        // Convert the arguments.
5852        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5853        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5854            PerformCopyInitialization(Args[1],
5855                                      FnDecl->getParamDecl(0)->getType(),
5856                                      AA_Passing))
5857          return ExprError();
5858
5859        // Determine the result type
5860        QualType ResultTy
5861          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5862        ResultTy = ResultTy.getNonReferenceType();
5863
5864        // Build the actual expression node.
5865        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5866                                                 LLoc);
5867        UsualUnaryConversions(FnExpr);
5868
5869        Base.release();
5870        Idx.release();
5871        ExprOwningPtr<CXXOperatorCallExpr>
5872          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5873                                                          FnExpr, Args, 2,
5874                                                          ResultTy, RLoc));
5875
5876        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5877                                FnDecl))
5878          return ExprError();
5879
5880        return MaybeBindToTemporary(TheCall.release());
5881      } else {
5882        // We matched a built-in operator. Convert the arguments, then
5883        // break out so that we will build the appropriate built-in
5884        // operator node.
5885        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5886                                      Best->Conversions[0], AA_Passing) ||
5887            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5888                                      Best->Conversions[1], AA_Passing))
5889          return ExprError();
5890
5891        break;
5892      }
5893    }
5894
5895    case OR_No_Viable_Function: {
5896      if (CandidateSet.empty())
5897        Diag(LLoc, diag::err_ovl_no_oper)
5898          << Args[0]->getType() << /*subscript*/ 0
5899          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5900      else
5901        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5902          << Args[0]->getType()
5903          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5904      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5905                              "[]", LLoc);
5906      return ExprError();
5907    }
5908
5909    case OR_Ambiguous:
5910      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5911          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5912      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5913                              "[]", LLoc);
5914      return ExprError();
5915
5916    case OR_Deleted:
5917      Diag(LLoc, diag::err_ovl_deleted_oper)
5918        << Best->Function->isDeleted() << "[]"
5919        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5920      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5921                              "[]", LLoc);
5922      return ExprError();
5923    }
5924
5925  // We matched a built-in operator; build it.
5926  Base.release();
5927  Idx.release();
5928  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5929                                         Owned(Args[1]), RLoc);
5930}
5931
5932/// BuildCallToMemberFunction - Build a call to a member
5933/// function. MemExpr is the expression that refers to the member
5934/// function (and includes the object parameter), Args/NumArgs are the
5935/// arguments to the function call (not including the object
5936/// parameter). The caller needs to validate that the member
5937/// expression refers to a member function or an overloaded member
5938/// function.
5939Sema::OwningExprResult
5940Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5941                                SourceLocation LParenLoc, Expr **Args,
5942                                unsigned NumArgs, SourceLocation *CommaLocs,
5943                                SourceLocation RParenLoc) {
5944  // Dig out the member expression. This holds both the object
5945  // argument and the member function we're referring to.
5946  Expr *NakedMemExpr = MemExprE->IgnoreParens();
5947
5948  MemberExpr *MemExpr;
5949  CXXMethodDecl *Method = 0;
5950  if (isa<MemberExpr>(NakedMemExpr)) {
5951    MemExpr = cast<MemberExpr>(NakedMemExpr);
5952    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5953  } else {
5954    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
5955
5956    QualType ObjectType = UnresExpr->getBaseType();
5957
5958    // Add overload candidates
5959    OverloadCandidateSet CandidateSet;
5960
5961    // FIXME: avoid copy.
5962    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5963    if (UnresExpr->hasExplicitTemplateArgs()) {
5964      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5965      TemplateArgs = &TemplateArgsBuffer;
5966    }
5967
5968    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
5969           E = UnresExpr->decls_end(); I != E; ++I) {
5970
5971      NamedDecl *Func = *I;
5972      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
5973      if (isa<UsingShadowDecl>(Func))
5974        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
5975
5976      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
5977        // If explicit template arguments were provided, we can't call a
5978        // non-template member function.
5979        if (TemplateArgs)
5980          continue;
5981
5982        AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
5983                           Args, NumArgs,
5984                           CandidateSet, /*SuppressUserConversions=*/false);
5985      } else {
5986        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
5987                                   I.getAccess(), ActingDC, TemplateArgs,
5988                                   ObjectType, Args, NumArgs,
5989                                   CandidateSet,
5990                                   /*SuppressUsedConversions=*/false);
5991      }
5992    }
5993
5994    DeclarationName DeclName = UnresExpr->getMemberName();
5995
5996    OverloadCandidateSet::iterator Best;
5997    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
5998    case OR_Success:
5999      Method = cast<CXXMethodDecl>(Best->Function);
6000      CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
6001      break;
6002
6003    case OR_No_Viable_Function:
6004      Diag(UnresExpr->getMemberLoc(),
6005           diag::err_ovl_no_viable_member_function_in_call)
6006        << DeclName << MemExprE->getSourceRange();
6007      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6008      // FIXME: Leaking incoming expressions!
6009      return ExprError();
6010
6011    case OR_Ambiguous:
6012      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6013        << DeclName << MemExprE->getSourceRange();
6014      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6015      // FIXME: Leaking incoming expressions!
6016      return ExprError();
6017
6018    case OR_Deleted:
6019      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6020        << Best->Function->isDeleted()
6021        << DeclName << MemExprE->getSourceRange();
6022      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6023      // FIXME: Leaking incoming expressions!
6024      return ExprError();
6025    }
6026
6027    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6028
6029    // If overload resolution picked a static member, build a
6030    // non-member call based on that function.
6031    if (Method->isStatic()) {
6032      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6033                                   Args, NumArgs, RParenLoc);
6034    }
6035
6036    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6037  }
6038
6039  assert(Method && "Member call to something that isn't a method?");
6040  ExprOwningPtr<CXXMemberCallExpr>
6041    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6042                                                  NumArgs,
6043                                  Method->getResultType().getNonReferenceType(),
6044                                  RParenLoc));
6045
6046  // Check for a valid return type.
6047  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6048                          TheCall.get(), Method))
6049    return ExprError();
6050
6051  // Convert the object argument (for a non-static member function call).
6052  Expr *ObjectArg = MemExpr->getBase();
6053  if (!Method->isStatic() &&
6054      PerformObjectArgumentInitialization(ObjectArg, Method))
6055    return ExprError();
6056  MemExpr->setBase(ObjectArg);
6057
6058  // Convert the rest of the arguments
6059  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6060  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6061                              RParenLoc))
6062    return ExprError();
6063
6064  if (CheckFunctionCall(Method, TheCall.get()))
6065    return ExprError();
6066
6067  return MaybeBindToTemporary(TheCall.release());
6068}
6069
6070/// BuildCallToObjectOfClassType - Build a call to an object of class
6071/// type (C++ [over.call.object]), which can end up invoking an
6072/// overloaded function call operator (@c operator()) or performing a
6073/// user-defined conversion on the object argument.
6074Sema::ExprResult
6075Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6076                                   SourceLocation LParenLoc,
6077                                   Expr **Args, unsigned NumArgs,
6078                                   SourceLocation *CommaLocs,
6079                                   SourceLocation RParenLoc) {
6080  assert(Object->getType()->isRecordType() && "Requires object type argument");
6081  const RecordType *Record = Object->getType()->getAs<RecordType>();
6082
6083  // C++ [over.call.object]p1:
6084  //  If the primary-expression E in the function call syntax
6085  //  evaluates to a class object of type "cv T", then the set of
6086  //  candidate functions includes at least the function call
6087  //  operators of T. The function call operators of T are obtained by
6088  //  ordinary lookup of the name operator() in the context of
6089  //  (E).operator().
6090  OverloadCandidateSet CandidateSet;
6091  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6092
6093  if (RequireCompleteType(LParenLoc, Object->getType(),
6094                          PartialDiagnostic(diag::err_incomplete_object_call)
6095                          << Object->getSourceRange()))
6096    return true;
6097
6098  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6099  LookupQualifiedName(R, Record->getDecl());
6100  R.suppressDiagnostics();
6101
6102  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6103       Oper != OperEnd; ++Oper) {
6104    AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
6105                       Args, NumArgs, CandidateSet,
6106                       /*SuppressUserConversions=*/ false);
6107  }
6108
6109  // C++ [over.call.object]p2:
6110  //   In addition, for each conversion function declared in T of the
6111  //   form
6112  //
6113  //        operator conversion-type-id () cv-qualifier;
6114  //
6115  //   where cv-qualifier is the same cv-qualification as, or a
6116  //   greater cv-qualification than, cv, and where conversion-type-id
6117  //   denotes the type "pointer to function of (P1,...,Pn) returning
6118  //   R", or the type "reference to pointer to function of
6119  //   (P1,...,Pn) returning R", or the type "reference to function
6120  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6121  //   is also considered as a candidate function. Similarly,
6122  //   surrogate call functions are added to the set of candidate
6123  //   functions for each conversion function declared in an
6124  //   accessible base class provided the function is not hidden
6125  //   within T by another intervening declaration.
6126  const UnresolvedSetImpl *Conversions
6127    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6128  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6129         E = Conversions->end(); I != E; ++I) {
6130    NamedDecl *D = *I;
6131    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6132    if (isa<UsingShadowDecl>(D))
6133      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6134
6135    // Skip over templated conversion functions; they aren't
6136    // surrogates.
6137    if (isa<FunctionTemplateDecl>(D))
6138      continue;
6139
6140    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6141
6142    // Strip the reference type (if any) and then the pointer type (if
6143    // any) to get down to what might be a function type.
6144    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6145    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6146      ConvType = ConvPtrType->getPointeeType();
6147
6148    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6149      AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
6150                            Object->getType(), Args, NumArgs,
6151                            CandidateSet);
6152  }
6153
6154  // Perform overload resolution.
6155  OverloadCandidateSet::iterator Best;
6156  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6157  case OR_Success:
6158    // Overload resolution succeeded; we'll build the appropriate call
6159    // below.
6160    break;
6161
6162  case OR_No_Viable_Function:
6163    if (CandidateSet.empty())
6164      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6165        << Object->getType() << /*call*/ 1
6166        << Object->getSourceRange();
6167    else
6168      Diag(Object->getSourceRange().getBegin(),
6169           diag::err_ovl_no_viable_object_call)
6170        << Object->getType() << Object->getSourceRange();
6171    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6172    break;
6173
6174  case OR_Ambiguous:
6175    Diag(Object->getSourceRange().getBegin(),
6176         diag::err_ovl_ambiguous_object_call)
6177      << Object->getType() << Object->getSourceRange();
6178    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6179    break;
6180
6181  case OR_Deleted:
6182    Diag(Object->getSourceRange().getBegin(),
6183         diag::err_ovl_deleted_object_call)
6184      << Best->Function->isDeleted()
6185      << Object->getType() << Object->getSourceRange();
6186    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6187    break;
6188  }
6189
6190  if (Best == CandidateSet.end()) {
6191    // We had an error; delete all of the subexpressions and return
6192    // the error.
6193    Object->Destroy(Context);
6194    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6195      Args[ArgIdx]->Destroy(Context);
6196    return true;
6197  }
6198
6199  if (Best->Function == 0) {
6200    // Since there is no function declaration, this is one of the
6201    // surrogate candidates. Dig out the conversion function.
6202    CXXConversionDecl *Conv
6203      = cast<CXXConversionDecl>(
6204                         Best->Conversions[0].UserDefined.ConversionFunction);
6205
6206    // We selected one of the surrogate functions that converts the
6207    // object parameter to a function pointer. Perform the conversion
6208    // on the object argument, then let ActOnCallExpr finish the job.
6209
6210    // Create an implicit member expr to refer to the conversion operator.
6211    // and then call it.
6212    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6213
6214    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6215                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6216                         CommaLocs, RParenLoc).release();
6217  }
6218
6219  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6220  // that calls this method, using Object for the implicit object
6221  // parameter and passing along the remaining arguments.
6222  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6223  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6224
6225  unsigned NumArgsInProto = Proto->getNumArgs();
6226  unsigned NumArgsToCheck = NumArgs;
6227
6228  // Build the full argument list for the method call (the
6229  // implicit object parameter is placed at the beginning of the
6230  // list).
6231  Expr **MethodArgs;
6232  if (NumArgs < NumArgsInProto) {
6233    NumArgsToCheck = NumArgsInProto;
6234    MethodArgs = new Expr*[NumArgsInProto + 1];
6235  } else {
6236    MethodArgs = new Expr*[NumArgs + 1];
6237  }
6238  MethodArgs[0] = Object;
6239  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6240    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6241
6242  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6243                                          SourceLocation());
6244  UsualUnaryConversions(NewFn);
6245
6246  // Once we've built TheCall, all of the expressions are properly
6247  // owned.
6248  QualType ResultTy = Method->getResultType().getNonReferenceType();
6249  ExprOwningPtr<CXXOperatorCallExpr>
6250    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6251                                                    MethodArgs, NumArgs + 1,
6252                                                    ResultTy, RParenLoc));
6253  delete [] MethodArgs;
6254
6255  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6256                          Method))
6257    return true;
6258
6259  // We may have default arguments. If so, we need to allocate more
6260  // slots in the call for them.
6261  if (NumArgs < NumArgsInProto)
6262    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6263  else if (NumArgs > NumArgsInProto)
6264    NumArgsToCheck = NumArgsInProto;
6265
6266  bool IsError = false;
6267
6268  // Initialize the implicit object parameter.
6269  IsError |= PerformObjectArgumentInitialization(Object, Method);
6270  TheCall->setArg(0, Object);
6271
6272
6273  // Check the argument types.
6274  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6275    Expr *Arg;
6276    if (i < NumArgs) {
6277      Arg = Args[i];
6278
6279      // Pass the argument.
6280      QualType ProtoArgType = Proto->getArgType(i);
6281      IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing);
6282    } else {
6283      OwningExprResult DefArg
6284        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6285      if (DefArg.isInvalid()) {
6286        IsError = true;
6287        break;
6288      }
6289
6290      Arg = DefArg.takeAs<Expr>();
6291    }
6292
6293    TheCall->setArg(i + 1, Arg);
6294  }
6295
6296  // If this is a variadic call, handle args passed through "...".
6297  if (Proto->isVariadic()) {
6298    // Promote the arguments (C99 6.5.2.2p7).
6299    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6300      Expr *Arg = Args[i];
6301      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6302      TheCall->setArg(i + 1, Arg);
6303    }
6304  }
6305
6306  if (IsError) return true;
6307
6308  if (CheckFunctionCall(Method, TheCall.get()))
6309    return true;
6310
6311  return MaybeBindToTemporary(TheCall.release()).release();
6312}
6313
6314/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6315///  (if one exists), where @c Base is an expression of class type and
6316/// @c Member is the name of the member we're trying to find.
6317Sema::OwningExprResult
6318Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6319  Expr *Base = static_cast<Expr *>(BaseIn.get());
6320  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6321
6322  // C++ [over.ref]p1:
6323  //
6324  //   [...] An expression x->m is interpreted as (x.operator->())->m
6325  //   for a class object x of type T if T::operator->() exists and if
6326  //   the operator is selected as the best match function by the
6327  //   overload resolution mechanism (13.3).
6328  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6329  OverloadCandidateSet CandidateSet;
6330  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6331
6332  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
6333                          PDiag(diag::err_typecheck_incomplete_tag)
6334                            << Base->getSourceRange()))
6335    return ExprError();
6336
6337  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6338  LookupQualifiedName(R, BaseRecord->getDecl());
6339  R.suppressDiagnostics();
6340
6341  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6342       Oper != OperEnd; ++Oper) {
6343    NamedDecl *D = *Oper;
6344    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6345    if (isa<UsingShadowDecl>(D))
6346      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6347
6348    AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
6349                       Base->getType(), 0, 0, CandidateSet,
6350                       /*SuppressUserConversions=*/false);
6351  }
6352
6353  // Perform overload resolution.
6354  OverloadCandidateSet::iterator Best;
6355  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6356  case OR_Success:
6357    // Overload resolution succeeded; we'll build the call below.
6358    break;
6359
6360  case OR_No_Viable_Function:
6361    if (CandidateSet.empty())
6362      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6363        << Base->getType() << Base->getSourceRange();
6364    else
6365      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6366        << "operator->" << Base->getSourceRange();
6367    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6368    return ExprError();
6369
6370  case OR_Ambiguous:
6371    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6372      << "->" << Base->getSourceRange();
6373    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6374    return ExprError();
6375
6376  case OR_Deleted:
6377    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6378      << Best->Function->isDeleted()
6379      << "->" << Base->getSourceRange();
6380    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6381    return ExprError();
6382  }
6383
6384  // Convert the object parameter.
6385  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6386  if (PerformObjectArgumentInitialization(Base, Method))
6387    return ExprError();
6388
6389  // No concerns about early exits now.
6390  BaseIn.release();
6391
6392  // Build the operator call.
6393  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6394                                           SourceLocation());
6395  UsualUnaryConversions(FnExpr);
6396
6397  QualType ResultTy = Method->getResultType().getNonReferenceType();
6398  ExprOwningPtr<CXXOperatorCallExpr>
6399    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6400                                                    &Base, 1, ResultTy, OpLoc));
6401
6402  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6403                          Method))
6404          return ExprError();
6405  return move(TheCall);
6406}
6407
6408/// FixOverloadedFunctionReference - E is an expression that refers to
6409/// a C++ overloaded function (possibly with some parentheses and
6410/// perhaps a '&' around it). We have resolved the overloaded function
6411/// to the function declaration Fn, so patch up the expression E to
6412/// refer (possibly indirectly) to Fn. Returns the new expr.
6413Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6414  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6415    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6416    if (SubExpr == PE->getSubExpr())
6417      return PE->Retain();
6418
6419    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6420  }
6421
6422  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6423    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6424    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6425                               SubExpr->getType()) &&
6426           "Implicit cast type cannot be determined from overload");
6427    if (SubExpr == ICE->getSubExpr())
6428      return ICE->Retain();
6429
6430    return new (Context) ImplicitCastExpr(ICE->getType(),
6431                                          ICE->getCastKind(),
6432                                          SubExpr,
6433                                          ICE->isLvalueCast());
6434  }
6435
6436  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6437    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6438           "Can only take the address of an overloaded function");
6439    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6440      if (Method->isStatic()) {
6441        // Do nothing: static member functions aren't any different
6442        // from non-member functions.
6443      } else {
6444        // Fix the sub expression, which really has to be an
6445        // UnresolvedLookupExpr holding an overloaded member function
6446        // or template.
6447        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6448        if (SubExpr == UnOp->getSubExpr())
6449          return UnOp->Retain();
6450
6451        assert(isa<DeclRefExpr>(SubExpr)
6452               && "fixed to something other than a decl ref");
6453        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6454               && "fixed to a member ref with no nested name qualifier");
6455
6456        // We have taken the address of a pointer to member
6457        // function. Perform the computation here so that we get the
6458        // appropriate pointer to member type.
6459        QualType ClassType
6460          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6461        QualType MemPtrType
6462          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6463
6464        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6465                                           MemPtrType, UnOp->getOperatorLoc());
6466      }
6467    }
6468    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6469    if (SubExpr == UnOp->getSubExpr())
6470      return UnOp->Retain();
6471
6472    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6473                                     Context.getPointerType(SubExpr->getType()),
6474                                       UnOp->getOperatorLoc());
6475  }
6476
6477  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6478    // FIXME: avoid copy.
6479    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6480    if (ULE->hasExplicitTemplateArgs()) {
6481      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6482      TemplateArgs = &TemplateArgsBuffer;
6483    }
6484
6485    return DeclRefExpr::Create(Context,
6486                               ULE->getQualifier(),
6487                               ULE->getQualifierRange(),
6488                               Fn,
6489                               ULE->getNameLoc(),
6490                               Fn->getType(),
6491                               TemplateArgs);
6492  }
6493
6494  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6495    // FIXME: avoid copy.
6496    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6497    if (MemExpr->hasExplicitTemplateArgs()) {
6498      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6499      TemplateArgs = &TemplateArgsBuffer;
6500    }
6501
6502    Expr *Base;
6503
6504    // If we're filling in
6505    if (MemExpr->isImplicitAccess()) {
6506      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6507        return DeclRefExpr::Create(Context,
6508                                   MemExpr->getQualifier(),
6509                                   MemExpr->getQualifierRange(),
6510                                   Fn,
6511                                   MemExpr->getMemberLoc(),
6512                                   Fn->getType(),
6513                                   TemplateArgs);
6514      } else {
6515        SourceLocation Loc = MemExpr->getMemberLoc();
6516        if (MemExpr->getQualifier())
6517          Loc = MemExpr->getQualifierRange().getBegin();
6518        Base = new (Context) CXXThisExpr(Loc,
6519                                         MemExpr->getBaseType(),
6520                                         /*isImplicit=*/true);
6521      }
6522    } else
6523      Base = MemExpr->getBase()->Retain();
6524
6525    return MemberExpr::Create(Context, Base,
6526                              MemExpr->isArrow(),
6527                              MemExpr->getQualifier(),
6528                              MemExpr->getQualifierRange(),
6529                              Fn,
6530                              MemExpr->getMemberLoc(),
6531                              TemplateArgs,
6532                              Fn->getType());
6533  }
6534
6535  assert(false && "Invalid reference to overloaded function");
6536  return E->Retain();
6537}
6538
6539Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6540                                                            FunctionDecl *Fn) {
6541  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6542}
6543
6544} // end namespace clang
6545