SemaOverload.cpp revision ceccab908bd7824751b1def127272ec04dd4732b
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44                                                 VK_LValue, Loc, LocInfo);
45  if (HadMultipleCandidates)
46    DRE->setHadMultipleCandidates(true);
47  ExprResult E = S.Owned(DRE);
48  E = S.DefaultFunctionArrayConversion(E.take());
49  if (E.isInvalid())
50    return ExprError();
51  return move(E);
52}
53
54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
55                                 bool InOverloadResolution,
56                                 StandardConversionSequence &SCS,
57                                 bool CStyle,
58                                 bool AllowObjCWritebackConversion);
59
60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
61                                                 QualType &ToType,
62                                                 bool InOverloadResolution,
63                                                 StandardConversionSequence &SCS,
64                                                 bool CStyle);
65static OverloadingResult
66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
67                        UserDefinedConversionSequence& User,
68                        OverloadCandidateSet& Conversions,
69                        bool AllowExplicit);
70
71
72static ImplicitConversionSequence::CompareKind
73CompareStandardConversionSequences(Sema &S,
74                                   const StandardConversionSequence& SCS1,
75                                   const StandardConversionSequence& SCS2);
76
77static ImplicitConversionSequence::CompareKind
78CompareQualificationConversions(Sema &S,
79                                const StandardConversionSequence& SCS1,
80                                const StandardConversionSequence& SCS2);
81
82static ImplicitConversionSequence::CompareKind
83CompareDerivedToBaseConversions(Sema &S,
84                                const StandardConversionSequence& SCS1,
85                                const StandardConversionSequence& SCS2);
86
87
88
89/// GetConversionCategory - Retrieve the implicit conversion
90/// category corresponding to the given implicit conversion kind.
91ImplicitConversionCategory
92GetConversionCategory(ImplicitConversionKind Kind) {
93  static const ImplicitConversionCategory
94    Category[(int)ICK_Num_Conversion_Kinds] = {
95    ICC_Identity,
96    ICC_Lvalue_Transformation,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Identity,
100    ICC_Qualification_Adjustment,
101    ICC_Promotion,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion
117  };
118  return Category[(int)Kind];
119}
120
121/// GetConversionRank - Retrieve the implicit conversion rank
122/// corresponding to the given implicit conversion kind.
123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
124  static const ImplicitConversionRank
125    Rank[(int)ICK_Num_Conversion_Kinds] = {
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Promotion,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Complex_Real_Conversion,
147    ICR_Conversion,
148    ICR_Conversion,
149    ICR_Writeback_Conversion
150  };
151  return Rank[(int)Kind];
152}
153
154/// GetImplicitConversionName - Return the name of this kind of
155/// implicit conversion.
156const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158    "No conversion",
159    "Lvalue-to-rvalue",
160    "Array-to-pointer",
161    "Function-to-pointer",
162    "Noreturn adjustment",
163    "Qualification",
164    "Integral promotion",
165    "Floating point promotion",
166    "Complex promotion",
167    "Integral conversion",
168    "Floating conversion",
169    "Complex conversion",
170    "Floating-integral conversion",
171    "Pointer conversion",
172    "Pointer-to-member conversion",
173    "Boolean conversion",
174    "Compatible-types conversion",
175    "Derived-to-base conversion",
176    "Vector conversion",
177    "Vector splat",
178    "Complex-real conversion",
179    "Block Pointer conversion",
180    "Transparent Union Conversion"
181    "Writeback conversion"
182  };
183  return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189  First = ICK_Identity;
190  Second = ICK_Identity;
191  Third = ICK_Identity;
192  DeprecatedStringLiteralToCharPtr = false;
193  QualificationIncludesObjCLifetime = false;
194  ReferenceBinding = false;
195  DirectBinding = false;
196  IsLvalueReference = true;
197  BindsToFunctionLvalue = false;
198  BindsToRvalue = false;
199  BindsImplicitObjectArgumentWithoutRefQualifier = false;
200  ObjCLifetimeConversionBinding = false;
201  CopyConstructor = 0;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208  ImplicitConversionRank Rank = ICR_Exact_Match;
209  if  (GetConversionRank(First) > Rank)
210    Rank = GetConversionRank(First);
211  if  (GetConversionRank(Second) > Rank)
212    Rank = GetConversionRank(Second);
213  if  (GetConversionRank(Third) > Rank)
214    Rank = GetConversionRank(Third);
215  return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer or function-to-pointer implicit conversions, so
225  // check for their presence as well as checking whether FromType is
226  // a pointer.
227  if (getToType(1)->isBooleanType() &&
228      (getFromType()->isPointerType() ||
229       getFromType()->isObjCObjectPointerType() ||
230       getFromType()->isBlockPointerType() ||
231       getFromType()->isNullPtrType() ||
232       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
233    return true;
234
235  return false;
236}
237
238/// isPointerConversionToVoidPointer - Determines whether this
239/// conversion is a conversion of a pointer to a void pointer. This is
240/// used as part of the ranking of standard conversion sequences (C++
241/// 13.3.3.2p4).
242bool
243StandardConversionSequence::
244isPointerConversionToVoidPointer(ASTContext& Context) const {
245  QualType FromType = getFromType();
246  QualType ToType = getToType(1);
247
248  // Note that FromType has not necessarily been transformed by the
249  // array-to-pointer implicit conversion, so check for its presence
250  // and redo the conversion to get a pointer.
251  if (First == ICK_Array_To_Pointer)
252    FromType = Context.getArrayDecayedType(FromType);
253
254  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
255    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
256      return ToPtrType->getPointeeType()->isVoidType();
257
258  return false;
259}
260
261/// Skip any implicit casts which could be either part of a narrowing conversion
262/// or after one in an implicit conversion.
263static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
264  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
265    switch (ICE->getCastKind()) {
266    case CK_NoOp:
267    case CK_IntegralCast:
268    case CK_IntegralToBoolean:
269    case CK_IntegralToFloating:
270    case CK_FloatingToIntegral:
271    case CK_FloatingToBoolean:
272    case CK_FloatingCast:
273      Converted = ICE->getSubExpr();
274      continue;
275
276    default:
277      return Converted;
278    }
279  }
280
281  return Converted;
282}
283
284/// Check if this standard conversion sequence represents a narrowing
285/// conversion, according to C++11 [dcl.init.list]p7.
286///
287/// \param Ctx  The AST context.
288/// \param Converted  The result of applying this standard conversion sequence.
289/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
290///        value of the expression prior to the narrowing conversion.
291NarrowingKind
292StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
293                                             const Expr *Converted,
294                                             APValue &ConstantValue) const {
295  assert(Ctx.getLangOptions().CPlusPlus && "narrowing check outside C++");
296
297  // C++11 [dcl.init.list]p7:
298  //   A narrowing conversion is an implicit conversion ...
299  QualType FromType = getToType(0);
300  QualType ToType = getToType(1);
301  switch (Second) {
302  // -- from a floating-point type to an integer type, or
303  //
304  // -- from an integer type or unscoped enumeration type to a floating-point
305  //    type, except where the source is a constant expression and the actual
306  //    value after conversion will fit into the target type and will produce
307  //    the original value when converted back to the original type, or
308  case ICK_Floating_Integral:
309    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
310      return NK_Type_Narrowing;
311    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
312      llvm::APSInt IntConstantValue;
313      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
314      if (Initializer &&
315          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
316        // Convert the integer to the floating type.
317        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
318        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
319                                llvm::APFloat::rmNearestTiesToEven);
320        // And back.
321        llvm::APSInt ConvertedValue = IntConstantValue;
322        bool ignored;
323        Result.convertToInteger(ConvertedValue,
324                                llvm::APFloat::rmTowardZero, &ignored);
325        // If the resulting value is different, this was a narrowing conversion.
326        if (IntConstantValue != ConvertedValue) {
327          ConstantValue = APValue(IntConstantValue);
328          return NK_Constant_Narrowing;
329        }
330      } else {
331        // Variables are always narrowings.
332        return NK_Variable_Narrowing;
333      }
334    }
335    return NK_Not_Narrowing;
336
337  // -- from long double to double or float, or from double to float, except
338  //    where the source is a constant expression and the actual value after
339  //    conversion is within the range of values that can be represented (even
340  //    if it cannot be represented exactly), or
341  case ICK_Floating_Conversion:
342    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
343        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
344      // FromType is larger than ToType.
345      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
346      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
347        // Constant!
348        assert(ConstantValue.isFloat());
349        llvm::APFloat FloatVal = ConstantValue.getFloat();
350        // Convert the source value into the target type.
351        bool ignored;
352        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
353          Ctx.getFloatTypeSemantics(ToType),
354          llvm::APFloat::rmNearestTiesToEven, &ignored);
355        // If there was no overflow, the source value is within the range of
356        // values that can be represented.
357        if (ConvertStatus & llvm::APFloat::opOverflow)
358          return NK_Constant_Narrowing;
359      } else {
360        return NK_Variable_Narrowing;
361      }
362    }
363    return NK_Not_Narrowing;
364
365  // -- from an integer type or unscoped enumeration type to an integer type
366  //    that cannot represent all the values of the original type, except where
367  //    the source is a constant expression and the actual value after
368  //    conversion will fit into the target type and will produce the original
369  //    value when converted back to the original type.
370  case ICK_Boolean_Conversion:  // Bools are integers too.
371    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
372      // Boolean conversions can be from pointers and pointers to members
373      // [conv.bool], and those aren't considered narrowing conversions.
374      return NK_Not_Narrowing;
375    }  // Otherwise, fall through to the integral case.
376  case ICK_Integral_Conversion: {
377    assert(FromType->isIntegralOrUnscopedEnumerationType());
378    assert(ToType->isIntegralOrUnscopedEnumerationType());
379    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
380    const unsigned FromWidth = Ctx.getIntWidth(FromType);
381    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
382    const unsigned ToWidth = Ctx.getIntWidth(ToType);
383
384    if (FromWidth > ToWidth ||
385        (FromWidth == ToWidth && FromSigned != ToSigned)) {
386      // Not all values of FromType can be represented in ToType.
387      llvm::APSInt InitializerValue;
388      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
389      if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
390        ConstantValue = APValue(InitializerValue);
391
392        // Add a bit to the InitializerValue so we don't have to worry about
393        // signed vs. unsigned comparisons.
394        InitializerValue = InitializerValue.extend(
395          InitializerValue.getBitWidth() + 1);
396        // Convert the initializer to and from the target width and signed-ness.
397        llvm::APSInt ConvertedValue = InitializerValue;
398        ConvertedValue = ConvertedValue.trunc(ToWidth);
399        ConvertedValue.setIsSigned(ToSigned);
400        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
401        ConvertedValue.setIsSigned(InitializerValue.isSigned());
402        // If the result is different, this was a narrowing conversion.
403        if (ConvertedValue != InitializerValue)
404          return NK_Constant_Narrowing;
405      } else {
406        // Variables are always narrowings.
407        return NK_Variable_Narrowing;
408      }
409    }
410    return NK_Not_Narrowing;
411  }
412
413  default:
414    // Other kinds of conversions are not narrowings.
415    return NK_Not_Narrowing;
416  }
417}
418
419/// DebugPrint - Print this standard conversion sequence to standard
420/// error. Useful for debugging overloading issues.
421void StandardConversionSequence::DebugPrint() const {
422  raw_ostream &OS = llvm::errs();
423  bool PrintedSomething = false;
424  if (First != ICK_Identity) {
425    OS << GetImplicitConversionName(First);
426    PrintedSomething = true;
427  }
428
429  if (Second != ICK_Identity) {
430    if (PrintedSomething) {
431      OS << " -> ";
432    }
433    OS << GetImplicitConversionName(Second);
434
435    if (CopyConstructor) {
436      OS << " (by copy constructor)";
437    } else if (DirectBinding) {
438      OS << " (direct reference binding)";
439    } else if (ReferenceBinding) {
440      OS << " (reference binding)";
441    }
442    PrintedSomething = true;
443  }
444
445  if (Third != ICK_Identity) {
446    if (PrintedSomething) {
447      OS << " -> ";
448    }
449    OS << GetImplicitConversionName(Third);
450    PrintedSomething = true;
451  }
452
453  if (!PrintedSomething) {
454    OS << "No conversions required";
455  }
456}
457
458/// DebugPrint - Print this user-defined conversion sequence to standard
459/// error. Useful for debugging overloading issues.
460void UserDefinedConversionSequence::DebugPrint() const {
461  raw_ostream &OS = llvm::errs();
462  if (Before.First || Before.Second || Before.Third) {
463    Before.DebugPrint();
464    OS << " -> ";
465  }
466  if (ConversionFunction)
467    OS << '\'' << *ConversionFunction << '\'';
468  else
469    OS << "aggregate initialization";
470  if (After.First || After.Second || After.Third) {
471    OS << " -> ";
472    After.DebugPrint();
473  }
474}
475
476/// DebugPrint - Print this implicit conversion sequence to standard
477/// error. Useful for debugging overloading issues.
478void ImplicitConversionSequence::DebugPrint() const {
479  raw_ostream &OS = llvm::errs();
480  switch (ConversionKind) {
481  case StandardConversion:
482    OS << "Standard conversion: ";
483    Standard.DebugPrint();
484    break;
485  case UserDefinedConversion:
486    OS << "User-defined conversion: ";
487    UserDefined.DebugPrint();
488    break;
489  case EllipsisConversion:
490    OS << "Ellipsis conversion";
491    break;
492  case AmbiguousConversion:
493    OS << "Ambiguous conversion";
494    break;
495  case BadConversion:
496    OS << "Bad conversion";
497    break;
498  }
499
500  OS << "\n";
501}
502
503void AmbiguousConversionSequence::construct() {
504  new (&conversions()) ConversionSet();
505}
506
507void AmbiguousConversionSequence::destruct() {
508  conversions().~ConversionSet();
509}
510
511void
512AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
513  FromTypePtr = O.FromTypePtr;
514  ToTypePtr = O.ToTypePtr;
515  new (&conversions()) ConversionSet(O.conversions());
516}
517
518namespace {
519  // Structure used by OverloadCandidate::DeductionFailureInfo to store
520  // template parameter and template argument information.
521  struct DFIParamWithArguments {
522    TemplateParameter Param;
523    TemplateArgument FirstArg;
524    TemplateArgument SecondArg;
525  };
526}
527
528/// \brief Convert from Sema's representation of template deduction information
529/// to the form used in overload-candidate information.
530OverloadCandidate::DeductionFailureInfo
531static MakeDeductionFailureInfo(ASTContext &Context,
532                                Sema::TemplateDeductionResult TDK,
533                                TemplateDeductionInfo &Info) {
534  OverloadCandidate::DeductionFailureInfo Result;
535  Result.Result = static_cast<unsigned>(TDK);
536  Result.Data = 0;
537  switch (TDK) {
538  case Sema::TDK_Success:
539  case Sema::TDK_InstantiationDepth:
540  case Sema::TDK_TooManyArguments:
541  case Sema::TDK_TooFewArguments:
542    break;
543
544  case Sema::TDK_Incomplete:
545  case Sema::TDK_InvalidExplicitArguments:
546    Result.Data = Info.Param.getOpaqueValue();
547    break;
548
549  case Sema::TDK_Inconsistent:
550  case Sema::TDK_Underqualified: {
551    // FIXME: Should allocate from normal heap so that we can free this later.
552    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
553    Saved->Param = Info.Param;
554    Saved->FirstArg = Info.FirstArg;
555    Saved->SecondArg = Info.SecondArg;
556    Result.Data = Saved;
557    break;
558  }
559
560  case Sema::TDK_SubstitutionFailure:
561    Result.Data = Info.take();
562    break;
563
564  case Sema::TDK_NonDeducedMismatch:
565  case Sema::TDK_FailedOverloadResolution:
566    break;
567  }
568
569  return Result;
570}
571
572void OverloadCandidate::DeductionFailureInfo::Destroy() {
573  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
574  case Sema::TDK_Success:
575  case Sema::TDK_InstantiationDepth:
576  case Sema::TDK_Incomplete:
577  case Sema::TDK_TooManyArguments:
578  case Sema::TDK_TooFewArguments:
579  case Sema::TDK_InvalidExplicitArguments:
580    break;
581
582  case Sema::TDK_Inconsistent:
583  case Sema::TDK_Underqualified:
584    // FIXME: Destroy the data?
585    Data = 0;
586    break;
587
588  case Sema::TDK_SubstitutionFailure:
589    // FIXME: Destroy the template arugment list?
590    Data = 0;
591    break;
592
593  // Unhandled
594  case Sema::TDK_NonDeducedMismatch:
595  case Sema::TDK_FailedOverloadResolution:
596    break;
597  }
598}
599
600TemplateParameter
601OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
602  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
603  case Sema::TDK_Success:
604  case Sema::TDK_InstantiationDepth:
605  case Sema::TDK_TooManyArguments:
606  case Sema::TDK_TooFewArguments:
607  case Sema::TDK_SubstitutionFailure:
608    return TemplateParameter();
609
610  case Sema::TDK_Incomplete:
611  case Sema::TDK_InvalidExplicitArguments:
612    return TemplateParameter::getFromOpaqueValue(Data);
613
614  case Sema::TDK_Inconsistent:
615  case Sema::TDK_Underqualified:
616    return static_cast<DFIParamWithArguments*>(Data)->Param;
617
618  // Unhandled
619  case Sema::TDK_NonDeducedMismatch:
620  case Sema::TDK_FailedOverloadResolution:
621    break;
622  }
623
624  return TemplateParameter();
625}
626
627TemplateArgumentList *
628OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
629  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
630    case Sema::TDK_Success:
631    case Sema::TDK_InstantiationDepth:
632    case Sema::TDK_TooManyArguments:
633    case Sema::TDK_TooFewArguments:
634    case Sema::TDK_Incomplete:
635    case Sema::TDK_InvalidExplicitArguments:
636    case Sema::TDK_Inconsistent:
637    case Sema::TDK_Underqualified:
638      return 0;
639
640    case Sema::TDK_SubstitutionFailure:
641      return static_cast<TemplateArgumentList*>(Data);
642
643    // Unhandled
644    case Sema::TDK_NonDeducedMismatch:
645    case Sema::TDK_FailedOverloadResolution:
646      break;
647  }
648
649  return 0;
650}
651
652const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
653  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
654  case Sema::TDK_Success:
655  case Sema::TDK_InstantiationDepth:
656  case Sema::TDK_Incomplete:
657  case Sema::TDK_TooManyArguments:
658  case Sema::TDK_TooFewArguments:
659  case Sema::TDK_InvalidExplicitArguments:
660  case Sema::TDK_SubstitutionFailure:
661    return 0;
662
663  case Sema::TDK_Inconsistent:
664  case Sema::TDK_Underqualified:
665    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
666
667  // Unhandled
668  case Sema::TDK_NonDeducedMismatch:
669  case Sema::TDK_FailedOverloadResolution:
670    break;
671  }
672
673  return 0;
674}
675
676const TemplateArgument *
677OverloadCandidate::DeductionFailureInfo::getSecondArg() {
678  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
679  case Sema::TDK_Success:
680  case Sema::TDK_InstantiationDepth:
681  case Sema::TDK_Incomplete:
682  case Sema::TDK_TooManyArguments:
683  case Sema::TDK_TooFewArguments:
684  case Sema::TDK_InvalidExplicitArguments:
685  case Sema::TDK_SubstitutionFailure:
686    return 0;
687
688  case Sema::TDK_Inconsistent:
689  case Sema::TDK_Underqualified:
690    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
691
692  // Unhandled
693  case Sema::TDK_NonDeducedMismatch:
694  case Sema::TDK_FailedOverloadResolution:
695    break;
696  }
697
698  return 0;
699}
700
701void OverloadCandidateSet::clear() {
702  for (iterator i = begin(), e = end(); i != e; ++i)
703    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
704      i->Conversions[ii].~ImplicitConversionSequence();
705  NumInlineSequences = 0;
706  Candidates.clear();
707  Functions.clear();
708}
709
710namespace {
711  class UnbridgedCastsSet {
712    struct Entry {
713      Expr **Addr;
714      Expr *Saved;
715    };
716    SmallVector<Entry, 2> Entries;
717
718  public:
719    void save(Sema &S, Expr *&E) {
720      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
721      Entry entry = { &E, E };
722      Entries.push_back(entry);
723      E = S.stripARCUnbridgedCast(E);
724    }
725
726    void restore() {
727      for (SmallVectorImpl<Entry>::iterator
728             i = Entries.begin(), e = Entries.end(); i != e; ++i)
729        *i->Addr = i->Saved;
730    }
731  };
732}
733
734/// checkPlaceholderForOverload - Do any interesting placeholder-like
735/// preprocessing on the given expression.
736///
737/// \param unbridgedCasts a collection to which to add unbridged casts;
738///   without this, they will be immediately diagnosed as errors
739///
740/// Return true on unrecoverable error.
741static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
742                                        UnbridgedCastsSet *unbridgedCasts = 0) {
743  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
744    // We can't handle overloaded expressions here because overload
745    // resolution might reasonably tweak them.
746    if (placeholder->getKind() == BuiltinType::Overload) return false;
747
748    // If the context potentially accepts unbridged ARC casts, strip
749    // the unbridged cast and add it to the collection for later restoration.
750    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
751        unbridgedCasts) {
752      unbridgedCasts->save(S, E);
753      return false;
754    }
755
756    // Go ahead and check everything else.
757    ExprResult result = S.CheckPlaceholderExpr(E);
758    if (result.isInvalid())
759      return true;
760
761    E = result.take();
762    return false;
763  }
764
765  // Nothing to do.
766  return false;
767}
768
769/// checkArgPlaceholdersForOverload - Check a set of call operands for
770/// placeholders.
771static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
772                                            unsigned numArgs,
773                                            UnbridgedCastsSet &unbridged) {
774  for (unsigned i = 0; i != numArgs; ++i)
775    if (checkPlaceholderForOverload(S, args[i], &unbridged))
776      return true;
777
778  return false;
779}
780
781// IsOverload - Determine whether the given New declaration is an
782// overload of the declarations in Old. This routine returns false if
783// New and Old cannot be overloaded, e.g., if New has the same
784// signature as some function in Old (C++ 1.3.10) or if the Old
785// declarations aren't functions (or function templates) at all. When
786// it does return false, MatchedDecl will point to the decl that New
787// cannot be overloaded with.  This decl may be a UsingShadowDecl on
788// top of the underlying declaration.
789//
790// Example: Given the following input:
791//
792//   void f(int, float); // #1
793//   void f(int, int); // #2
794//   int f(int, int); // #3
795//
796// When we process #1, there is no previous declaration of "f",
797// so IsOverload will not be used.
798//
799// When we process #2, Old contains only the FunctionDecl for #1.  By
800// comparing the parameter types, we see that #1 and #2 are overloaded
801// (since they have different signatures), so this routine returns
802// false; MatchedDecl is unchanged.
803//
804// When we process #3, Old is an overload set containing #1 and #2. We
805// compare the signatures of #3 to #1 (they're overloaded, so we do
806// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
807// identical (return types of functions are not part of the
808// signature), IsOverload returns false and MatchedDecl will be set to
809// point to the FunctionDecl for #2.
810//
811// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
812// into a class by a using declaration.  The rules for whether to hide
813// shadow declarations ignore some properties which otherwise figure
814// into a function template's signature.
815Sema::OverloadKind
816Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
817                    NamedDecl *&Match, bool NewIsUsingDecl) {
818  for (LookupResult::iterator I = Old.begin(), E = Old.end();
819         I != E; ++I) {
820    NamedDecl *OldD = *I;
821
822    bool OldIsUsingDecl = false;
823    if (isa<UsingShadowDecl>(OldD)) {
824      OldIsUsingDecl = true;
825
826      // We can always introduce two using declarations into the same
827      // context, even if they have identical signatures.
828      if (NewIsUsingDecl) continue;
829
830      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
831    }
832
833    // If either declaration was introduced by a using declaration,
834    // we'll need to use slightly different rules for matching.
835    // Essentially, these rules are the normal rules, except that
836    // function templates hide function templates with different
837    // return types or template parameter lists.
838    bool UseMemberUsingDeclRules =
839      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
840
841    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
842      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
843        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
844          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
845          continue;
846        }
847
848        Match = *I;
849        return Ovl_Match;
850      }
851    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
852      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
853        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
854          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
855          continue;
856        }
857
858        Match = *I;
859        return Ovl_Match;
860      }
861    } else if (isa<UsingDecl>(OldD)) {
862      // We can overload with these, which can show up when doing
863      // redeclaration checks for UsingDecls.
864      assert(Old.getLookupKind() == LookupUsingDeclName);
865    } else if (isa<TagDecl>(OldD)) {
866      // We can always overload with tags by hiding them.
867    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
868      // Optimistically assume that an unresolved using decl will
869      // overload; if it doesn't, we'll have to diagnose during
870      // template instantiation.
871    } else {
872      // (C++ 13p1):
873      //   Only function declarations can be overloaded; object and type
874      //   declarations cannot be overloaded.
875      Match = *I;
876      return Ovl_NonFunction;
877    }
878  }
879
880  return Ovl_Overload;
881}
882
883bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
884                      bool UseUsingDeclRules) {
885  // If both of the functions are extern "C", then they are not
886  // overloads.
887  if (Old->isExternC() && New->isExternC())
888    return false;
889
890  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
891  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
892
893  // C++ [temp.fct]p2:
894  //   A function template can be overloaded with other function templates
895  //   and with normal (non-template) functions.
896  if ((OldTemplate == 0) != (NewTemplate == 0))
897    return true;
898
899  // Is the function New an overload of the function Old?
900  QualType OldQType = Context.getCanonicalType(Old->getType());
901  QualType NewQType = Context.getCanonicalType(New->getType());
902
903  // Compare the signatures (C++ 1.3.10) of the two functions to
904  // determine whether they are overloads. If we find any mismatch
905  // in the signature, they are overloads.
906
907  // If either of these functions is a K&R-style function (no
908  // prototype), then we consider them to have matching signatures.
909  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
910      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
911    return false;
912
913  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
914  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
915
916  // The signature of a function includes the types of its
917  // parameters (C++ 1.3.10), which includes the presence or absence
918  // of the ellipsis; see C++ DR 357).
919  if (OldQType != NewQType &&
920      (OldType->getNumArgs() != NewType->getNumArgs() ||
921       OldType->isVariadic() != NewType->isVariadic() ||
922       !FunctionArgTypesAreEqual(OldType, NewType)))
923    return true;
924
925  // C++ [temp.over.link]p4:
926  //   The signature of a function template consists of its function
927  //   signature, its return type and its template parameter list. The names
928  //   of the template parameters are significant only for establishing the
929  //   relationship between the template parameters and the rest of the
930  //   signature.
931  //
932  // We check the return type and template parameter lists for function
933  // templates first; the remaining checks follow.
934  //
935  // However, we don't consider either of these when deciding whether
936  // a member introduced by a shadow declaration is hidden.
937  if (!UseUsingDeclRules && NewTemplate &&
938      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
939                                       OldTemplate->getTemplateParameters(),
940                                       false, TPL_TemplateMatch) ||
941       OldType->getResultType() != NewType->getResultType()))
942    return true;
943
944  // If the function is a class member, its signature includes the
945  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
946  //
947  // As part of this, also check whether one of the member functions
948  // is static, in which case they are not overloads (C++
949  // 13.1p2). While not part of the definition of the signature,
950  // this check is important to determine whether these functions
951  // can be overloaded.
952  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
953  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
954  if (OldMethod && NewMethod &&
955      !OldMethod->isStatic() && !NewMethod->isStatic() &&
956      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
957       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
958    if (!UseUsingDeclRules &&
959        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
960        (OldMethod->getRefQualifier() == RQ_None ||
961         NewMethod->getRefQualifier() == RQ_None)) {
962      // C++0x [over.load]p2:
963      //   - Member function declarations with the same name and the same
964      //     parameter-type-list as well as member function template
965      //     declarations with the same name, the same parameter-type-list, and
966      //     the same template parameter lists cannot be overloaded if any of
967      //     them, but not all, have a ref-qualifier (8.3.5).
968      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
969        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
970      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
971    }
972
973    return true;
974  }
975
976  // The signatures match; this is not an overload.
977  return false;
978}
979
980/// \brief Checks availability of the function depending on the current
981/// function context. Inside an unavailable function, unavailability is ignored.
982///
983/// \returns true if \arg FD is unavailable and current context is inside
984/// an available function, false otherwise.
985bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
986  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
987}
988
989/// \brief Tries a user-defined conversion from From to ToType.
990///
991/// Produces an implicit conversion sequence for when a standard conversion
992/// is not an option. See TryImplicitConversion for more information.
993static ImplicitConversionSequence
994TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
995                         bool SuppressUserConversions,
996                         bool AllowExplicit,
997                         bool InOverloadResolution,
998                         bool CStyle,
999                         bool AllowObjCWritebackConversion) {
1000  ImplicitConversionSequence ICS;
1001
1002  if (SuppressUserConversions) {
1003    // We're not in the case above, so there is no conversion that
1004    // we can perform.
1005    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1006    return ICS;
1007  }
1008
1009  // Attempt user-defined conversion.
1010  OverloadCandidateSet Conversions(From->getExprLoc());
1011  OverloadingResult UserDefResult
1012    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1013                              AllowExplicit);
1014
1015  if (UserDefResult == OR_Success) {
1016    ICS.setUserDefined();
1017    // C++ [over.ics.user]p4:
1018    //   A conversion of an expression of class type to the same class
1019    //   type is given Exact Match rank, and a conversion of an
1020    //   expression of class type to a base class of that type is
1021    //   given Conversion rank, in spite of the fact that a copy
1022    //   constructor (i.e., a user-defined conversion function) is
1023    //   called for those cases.
1024    if (CXXConstructorDecl *Constructor
1025          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1026      QualType FromCanon
1027        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1028      QualType ToCanon
1029        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1030      if (Constructor->isCopyConstructor() &&
1031          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1032        // Turn this into a "standard" conversion sequence, so that it
1033        // gets ranked with standard conversion sequences.
1034        ICS.setStandard();
1035        ICS.Standard.setAsIdentityConversion();
1036        ICS.Standard.setFromType(From->getType());
1037        ICS.Standard.setAllToTypes(ToType);
1038        ICS.Standard.CopyConstructor = Constructor;
1039        if (ToCanon != FromCanon)
1040          ICS.Standard.Second = ICK_Derived_To_Base;
1041      }
1042    }
1043
1044    // C++ [over.best.ics]p4:
1045    //   However, when considering the argument of a user-defined
1046    //   conversion function that is a candidate by 13.3.1.3 when
1047    //   invoked for the copying of the temporary in the second step
1048    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1049    //   13.3.1.6 in all cases, only standard conversion sequences and
1050    //   ellipsis conversion sequences are allowed.
1051    if (SuppressUserConversions && ICS.isUserDefined()) {
1052      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1053    }
1054  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1055    ICS.setAmbiguous();
1056    ICS.Ambiguous.setFromType(From->getType());
1057    ICS.Ambiguous.setToType(ToType);
1058    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1059         Cand != Conversions.end(); ++Cand)
1060      if (Cand->Viable)
1061        ICS.Ambiguous.addConversion(Cand->Function);
1062  } else {
1063    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1064  }
1065
1066  return ICS;
1067}
1068
1069/// TryImplicitConversion - Attempt to perform an implicit conversion
1070/// from the given expression (Expr) to the given type (ToType). This
1071/// function returns an implicit conversion sequence that can be used
1072/// to perform the initialization. Given
1073///
1074///   void f(float f);
1075///   void g(int i) { f(i); }
1076///
1077/// this routine would produce an implicit conversion sequence to
1078/// describe the initialization of f from i, which will be a standard
1079/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1080/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1081//
1082/// Note that this routine only determines how the conversion can be
1083/// performed; it does not actually perform the conversion. As such,
1084/// it will not produce any diagnostics if no conversion is available,
1085/// but will instead return an implicit conversion sequence of kind
1086/// "BadConversion".
1087///
1088/// If @p SuppressUserConversions, then user-defined conversions are
1089/// not permitted.
1090/// If @p AllowExplicit, then explicit user-defined conversions are
1091/// permitted.
1092///
1093/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1094/// writeback conversion, which allows __autoreleasing id* parameters to
1095/// be initialized with __strong id* or __weak id* arguments.
1096static ImplicitConversionSequence
1097TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1098                      bool SuppressUserConversions,
1099                      bool AllowExplicit,
1100                      bool InOverloadResolution,
1101                      bool CStyle,
1102                      bool AllowObjCWritebackConversion) {
1103  ImplicitConversionSequence ICS;
1104  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1105                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1106    ICS.setStandard();
1107    return ICS;
1108  }
1109
1110  if (!S.getLangOptions().CPlusPlus) {
1111    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1112    return ICS;
1113  }
1114
1115  // C++ [over.ics.user]p4:
1116  //   A conversion of an expression of class type to the same class
1117  //   type is given Exact Match rank, and a conversion of an
1118  //   expression of class type to a base class of that type is
1119  //   given Conversion rank, in spite of the fact that a copy/move
1120  //   constructor (i.e., a user-defined conversion function) is
1121  //   called for those cases.
1122  QualType FromType = From->getType();
1123  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1124      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1125       S.IsDerivedFrom(FromType, ToType))) {
1126    ICS.setStandard();
1127    ICS.Standard.setAsIdentityConversion();
1128    ICS.Standard.setFromType(FromType);
1129    ICS.Standard.setAllToTypes(ToType);
1130
1131    // We don't actually check at this point whether there is a valid
1132    // copy/move constructor, since overloading just assumes that it
1133    // exists. When we actually perform initialization, we'll find the
1134    // appropriate constructor to copy the returned object, if needed.
1135    ICS.Standard.CopyConstructor = 0;
1136
1137    // Determine whether this is considered a derived-to-base conversion.
1138    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1139      ICS.Standard.Second = ICK_Derived_To_Base;
1140
1141    return ICS;
1142  }
1143
1144  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1145                                  AllowExplicit, InOverloadResolution, CStyle,
1146                                  AllowObjCWritebackConversion);
1147}
1148
1149ImplicitConversionSequence
1150Sema::TryImplicitConversion(Expr *From, QualType ToType,
1151                            bool SuppressUserConversions,
1152                            bool AllowExplicit,
1153                            bool InOverloadResolution,
1154                            bool CStyle,
1155                            bool AllowObjCWritebackConversion) {
1156  return clang::TryImplicitConversion(*this, From, ToType,
1157                                      SuppressUserConversions, AllowExplicit,
1158                                      InOverloadResolution, CStyle,
1159                                      AllowObjCWritebackConversion);
1160}
1161
1162/// PerformImplicitConversion - Perform an implicit conversion of the
1163/// expression From to the type ToType. Returns the
1164/// converted expression. Flavor is the kind of conversion we're
1165/// performing, used in the error message. If @p AllowExplicit,
1166/// explicit user-defined conversions are permitted.
1167ExprResult
1168Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1169                                AssignmentAction Action, bool AllowExplicit) {
1170  ImplicitConversionSequence ICS;
1171  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1172}
1173
1174ExprResult
1175Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1176                                AssignmentAction Action, bool AllowExplicit,
1177                                ImplicitConversionSequence& ICS) {
1178  if (checkPlaceholderForOverload(*this, From))
1179    return ExprError();
1180
1181  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1182  bool AllowObjCWritebackConversion
1183    = getLangOptions().ObjCAutoRefCount &&
1184      (Action == AA_Passing || Action == AA_Sending);
1185
1186  ICS = clang::TryImplicitConversion(*this, From, ToType,
1187                                     /*SuppressUserConversions=*/false,
1188                                     AllowExplicit,
1189                                     /*InOverloadResolution=*/false,
1190                                     /*CStyle=*/false,
1191                                     AllowObjCWritebackConversion);
1192  return PerformImplicitConversion(From, ToType, ICS, Action);
1193}
1194
1195/// \brief Determine whether the conversion from FromType to ToType is a valid
1196/// conversion that strips "noreturn" off the nested function type.
1197bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1198                                QualType &ResultTy) {
1199  if (Context.hasSameUnqualifiedType(FromType, ToType))
1200    return false;
1201
1202  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1203  // where F adds one of the following at most once:
1204  //   - a pointer
1205  //   - a member pointer
1206  //   - a block pointer
1207  CanQualType CanTo = Context.getCanonicalType(ToType);
1208  CanQualType CanFrom = Context.getCanonicalType(FromType);
1209  Type::TypeClass TyClass = CanTo->getTypeClass();
1210  if (TyClass != CanFrom->getTypeClass()) return false;
1211  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1212    if (TyClass == Type::Pointer) {
1213      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1214      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1215    } else if (TyClass == Type::BlockPointer) {
1216      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1217      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1218    } else if (TyClass == Type::MemberPointer) {
1219      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1220      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1221    } else {
1222      return false;
1223    }
1224
1225    TyClass = CanTo->getTypeClass();
1226    if (TyClass != CanFrom->getTypeClass()) return false;
1227    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1228      return false;
1229  }
1230
1231  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1232  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1233  if (!EInfo.getNoReturn()) return false;
1234
1235  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1236  assert(QualType(FromFn, 0).isCanonical());
1237  if (QualType(FromFn, 0) != CanTo) return false;
1238
1239  ResultTy = ToType;
1240  return true;
1241}
1242
1243/// \brief Determine whether the conversion from FromType to ToType is a valid
1244/// vector conversion.
1245///
1246/// \param ICK Will be set to the vector conversion kind, if this is a vector
1247/// conversion.
1248static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1249                               QualType ToType, ImplicitConversionKind &ICK) {
1250  // We need at least one of these types to be a vector type to have a vector
1251  // conversion.
1252  if (!ToType->isVectorType() && !FromType->isVectorType())
1253    return false;
1254
1255  // Identical types require no conversions.
1256  if (Context.hasSameUnqualifiedType(FromType, ToType))
1257    return false;
1258
1259  // There are no conversions between extended vector types, only identity.
1260  if (ToType->isExtVectorType()) {
1261    // There are no conversions between extended vector types other than the
1262    // identity conversion.
1263    if (FromType->isExtVectorType())
1264      return false;
1265
1266    // Vector splat from any arithmetic type to a vector.
1267    if (FromType->isArithmeticType()) {
1268      ICK = ICK_Vector_Splat;
1269      return true;
1270    }
1271  }
1272
1273  // We can perform the conversion between vector types in the following cases:
1274  // 1)vector types are equivalent AltiVec and GCC vector types
1275  // 2)lax vector conversions are permitted and the vector types are of the
1276  //   same size
1277  if (ToType->isVectorType() && FromType->isVectorType()) {
1278    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1279        (Context.getLangOptions().LaxVectorConversions &&
1280         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1281      ICK = ICK_Vector_Conversion;
1282      return true;
1283    }
1284  }
1285
1286  return false;
1287}
1288
1289/// IsStandardConversion - Determines whether there is a standard
1290/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1291/// expression From to the type ToType. Standard conversion sequences
1292/// only consider non-class types; for conversions that involve class
1293/// types, use TryImplicitConversion. If a conversion exists, SCS will
1294/// contain the standard conversion sequence required to perform this
1295/// conversion and this routine will return true. Otherwise, this
1296/// routine will return false and the value of SCS is unspecified.
1297static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1298                                 bool InOverloadResolution,
1299                                 StandardConversionSequence &SCS,
1300                                 bool CStyle,
1301                                 bool AllowObjCWritebackConversion) {
1302  QualType FromType = From->getType();
1303
1304  // Standard conversions (C++ [conv])
1305  SCS.setAsIdentityConversion();
1306  SCS.DeprecatedStringLiteralToCharPtr = false;
1307  SCS.IncompatibleObjC = false;
1308  SCS.setFromType(FromType);
1309  SCS.CopyConstructor = 0;
1310
1311  // There are no standard conversions for class types in C++, so
1312  // abort early. When overloading in C, however, we do permit
1313  if (FromType->isRecordType() || ToType->isRecordType()) {
1314    if (S.getLangOptions().CPlusPlus)
1315      return false;
1316
1317    // When we're overloading in C, we allow, as standard conversions,
1318  }
1319
1320  // The first conversion can be an lvalue-to-rvalue conversion,
1321  // array-to-pointer conversion, or function-to-pointer conversion
1322  // (C++ 4p1).
1323
1324  if (FromType == S.Context.OverloadTy) {
1325    DeclAccessPair AccessPair;
1326    if (FunctionDecl *Fn
1327          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1328                                                 AccessPair)) {
1329      // We were able to resolve the address of the overloaded function,
1330      // so we can convert to the type of that function.
1331      FromType = Fn->getType();
1332
1333      // we can sometimes resolve &foo<int> regardless of ToType, so check
1334      // if the type matches (identity) or we are converting to bool
1335      if (!S.Context.hasSameUnqualifiedType(
1336                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1337        QualType resultTy;
1338        // if the function type matches except for [[noreturn]], it's ok
1339        if (!S.IsNoReturnConversion(FromType,
1340              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1341          // otherwise, only a boolean conversion is standard
1342          if (!ToType->isBooleanType())
1343            return false;
1344      }
1345
1346      // Check if the "from" expression is taking the address of an overloaded
1347      // function and recompute the FromType accordingly. Take advantage of the
1348      // fact that non-static member functions *must* have such an address-of
1349      // expression.
1350      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1351      if (Method && !Method->isStatic()) {
1352        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1353               "Non-unary operator on non-static member address");
1354        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1355               == UO_AddrOf &&
1356               "Non-address-of operator on non-static member address");
1357        const Type *ClassType
1358          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1359        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1360      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1361        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1362               UO_AddrOf &&
1363               "Non-address-of operator for overloaded function expression");
1364        FromType = S.Context.getPointerType(FromType);
1365      }
1366
1367      // Check that we've computed the proper type after overload resolution.
1368      assert(S.Context.hasSameType(
1369        FromType,
1370        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1371    } else {
1372      return false;
1373    }
1374  }
1375  // Lvalue-to-rvalue conversion (C++11 4.1):
1376  //   A glvalue (3.10) of a non-function, non-array type T can
1377  //   be converted to a prvalue.
1378  bool argIsLValue = From->isGLValue();
1379  if (argIsLValue &&
1380      !FromType->isFunctionType() && !FromType->isArrayType() &&
1381      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1382    SCS.First = ICK_Lvalue_To_Rvalue;
1383
1384    // If T is a non-class type, the type of the rvalue is the
1385    // cv-unqualified version of T. Otherwise, the type of the rvalue
1386    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1387    // just strip the qualifiers because they don't matter.
1388    FromType = FromType.getUnqualifiedType();
1389  } else if (FromType->isArrayType()) {
1390    // Array-to-pointer conversion (C++ 4.2)
1391    SCS.First = ICK_Array_To_Pointer;
1392
1393    // An lvalue or rvalue of type "array of N T" or "array of unknown
1394    // bound of T" can be converted to an rvalue of type "pointer to
1395    // T" (C++ 4.2p1).
1396    FromType = S.Context.getArrayDecayedType(FromType);
1397
1398    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1399      // This conversion is deprecated. (C++ D.4).
1400      SCS.DeprecatedStringLiteralToCharPtr = true;
1401
1402      // For the purpose of ranking in overload resolution
1403      // (13.3.3.1.1), this conversion is considered an
1404      // array-to-pointer conversion followed by a qualification
1405      // conversion (4.4). (C++ 4.2p2)
1406      SCS.Second = ICK_Identity;
1407      SCS.Third = ICK_Qualification;
1408      SCS.QualificationIncludesObjCLifetime = false;
1409      SCS.setAllToTypes(FromType);
1410      return true;
1411    }
1412  } else if (FromType->isFunctionType() && argIsLValue) {
1413    // Function-to-pointer conversion (C++ 4.3).
1414    SCS.First = ICK_Function_To_Pointer;
1415
1416    // An lvalue of function type T can be converted to an rvalue of
1417    // type "pointer to T." The result is a pointer to the
1418    // function. (C++ 4.3p1).
1419    FromType = S.Context.getPointerType(FromType);
1420  } else {
1421    // We don't require any conversions for the first step.
1422    SCS.First = ICK_Identity;
1423  }
1424  SCS.setToType(0, FromType);
1425
1426  // The second conversion can be an integral promotion, floating
1427  // point promotion, integral conversion, floating point conversion,
1428  // floating-integral conversion, pointer conversion,
1429  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1430  // For overloading in C, this can also be a "compatible-type"
1431  // conversion.
1432  bool IncompatibleObjC = false;
1433  ImplicitConversionKind SecondICK = ICK_Identity;
1434  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1435    // The unqualified versions of the types are the same: there's no
1436    // conversion to do.
1437    SCS.Second = ICK_Identity;
1438  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1439    // Integral promotion (C++ 4.5).
1440    SCS.Second = ICK_Integral_Promotion;
1441    FromType = ToType.getUnqualifiedType();
1442  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1443    // Floating point promotion (C++ 4.6).
1444    SCS.Second = ICK_Floating_Promotion;
1445    FromType = ToType.getUnqualifiedType();
1446  } else if (S.IsComplexPromotion(FromType, ToType)) {
1447    // Complex promotion (Clang extension)
1448    SCS.Second = ICK_Complex_Promotion;
1449    FromType = ToType.getUnqualifiedType();
1450  } else if (ToType->isBooleanType() &&
1451             (FromType->isArithmeticType() ||
1452              FromType->isAnyPointerType() ||
1453              FromType->isBlockPointerType() ||
1454              FromType->isMemberPointerType() ||
1455              FromType->isNullPtrType())) {
1456    // Boolean conversions (C++ 4.12).
1457    SCS.Second = ICK_Boolean_Conversion;
1458    FromType = S.Context.BoolTy;
1459  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1460             ToType->isIntegralType(S.Context)) {
1461    // Integral conversions (C++ 4.7).
1462    SCS.Second = ICK_Integral_Conversion;
1463    FromType = ToType.getUnqualifiedType();
1464  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1465    // Complex conversions (C99 6.3.1.6)
1466    SCS.Second = ICK_Complex_Conversion;
1467    FromType = ToType.getUnqualifiedType();
1468  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1469             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1470    // Complex-real conversions (C99 6.3.1.7)
1471    SCS.Second = ICK_Complex_Real;
1472    FromType = ToType.getUnqualifiedType();
1473  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1474    // Floating point conversions (C++ 4.8).
1475    SCS.Second = ICK_Floating_Conversion;
1476    FromType = ToType.getUnqualifiedType();
1477  } else if ((FromType->isRealFloatingType() &&
1478              ToType->isIntegralType(S.Context)) ||
1479             (FromType->isIntegralOrUnscopedEnumerationType() &&
1480              ToType->isRealFloatingType())) {
1481    // Floating-integral conversions (C++ 4.9).
1482    SCS.Second = ICK_Floating_Integral;
1483    FromType = ToType.getUnqualifiedType();
1484  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1485    SCS.Second = ICK_Block_Pointer_Conversion;
1486  } else if (AllowObjCWritebackConversion &&
1487             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1488    SCS.Second = ICK_Writeback_Conversion;
1489  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1490                                   FromType, IncompatibleObjC)) {
1491    // Pointer conversions (C++ 4.10).
1492    SCS.Second = ICK_Pointer_Conversion;
1493    SCS.IncompatibleObjC = IncompatibleObjC;
1494    FromType = FromType.getUnqualifiedType();
1495  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1496                                         InOverloadResolution, FromType)) {
1497    // Pointer to member conversions (4.11).
1498    SCS.Second = ICK_Pointer_Member;
1499  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1500    SCS.Second = SecondICK;
1501    FromType = ToType.getUnqualifiedType();
1502  } else if (!S.getLangOptions().CPlusPlus &&
1503             S.Context.typesAreCompatible(ToType, FromType)) {
1504    // Compatible conversions (Clang extension for C function overloading)
1505    SCS.Second = ICK_Compatible_Conversion;
1506    FromType = ToType.getUnqualifiedType();
1507  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1508    // Treat a conversion that strips "noreturn" as an identity conversion.
1509    SCS.Second = ICK_NoReturn_Adjustment;
1510  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1511                                             InOverloadResolution,
1512                                             SCS, CStyle)) {
1513    SCS.Second = ICK_TransparentUnionConversion;
1514    FromType = ToType;
1515  } else {
1516    // No second conversion required.
1517    SCS.Second = ICK_Identity;
1518  }
1519  SCS.setToType(1, FromType);
1520
1521  QualType CanonFrom;
1522  QualType CanonTo;
1523  // The third conversion can be a qualification conversion (C++ 4p1).
1524  bool ObjCLifetimeConversion;
1525  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1526                                  ObjCLifetimeConversion)) {
1527    SCS.Third = ICK_Qualification;
1528    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1529    FromType = ToType;
1530    CanonFrom = S.Context.getCanonicalType(FromType);
1531    CanonTo = S.Context.getCanonicalType(ToType);
1532  } else {
1533    // No conversion required
1534    SCS.Third = ICK_Identity;
1535
1536    // C++ [over.best.ics]p6:
1537    //   [...] Any difference in top-level cv-qualification is
1538    //   subsumed by the initialization itself and does not constitute
1539    //   a conversion. [...]
1540    CanonFrom = S.Context.getCanonicalType(FromType);
1541    CanonTo = S.Context.getCanonicalType(ToType);
1542    if (CanonFrom.getLocalUnqualifiedType()
1543                                       == CanonTo.getLocalUnqualifiedType() &&
1544        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1545         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1546         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1547      FromType = ToType;
1548      CanonFrom = CanonTo;
1549    }
1550  }
1551  SCS.setToType(2, FromType);
1552
1553  // If we have not converted the argument type to the parameter type,
1554  // this is a bad conversion sequence.
1555  if (CanonFrom != CanonTo)
1556    return false;
1557
1558  return true;
1559}
1560
1561static bool
1562IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1563                                     QualType &ToType,
1564                                     bool InOverloadResolution,
1565                                     StandardConversionSequence &SCS,
1566                                     bool CStyle) {
1567
1568  const RecordType *UT = ToType->getAsUnionType();
1569  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1570    return false;
1571  // The field to initialize within the transparent union.
1572  RecordDecl *UD = UT->getDecl();
1573  // It's compatible if the expression matches any of the fields.
1574  for (RecordDecl::field_iterator it = UD->field_begin(),
1575       itend = UD->field_end();
1576       it != itend; ++it) {
1577    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1578                             CStyle, /*ObjCWritebackConversion=*/false)) {
1579      ToType = it->getType();
1580      return true;
1581    }
1582  }
1583  return false;
1584}
1585
1586/// IsIntegralPromotion - Determines whether the conversion from the
1587/// expression From (whose potentially-adjusted type is FromType) to
1588/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1589/// sets PromotedType to the promoted type.
1590bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1591  const BuiltinType *To = ToType->getAs<BuiltinType>();
1592  // All integers are built-in.
1593  if (!To) {
1594    return false;
1595  }
1596
1597  // An rvalue of type char, signed char, unsigned char, short int, or
1598  // unsigned short int can be converted to an rvalue of type int if
1599  // int can represent all the values of the source type; otherwise,
1600  // the source rvalue can be converted to an rvalue of type unsigned
1601  // int (C++ 4.5p1).
1602  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1603      !FromType->isEnumeralType()) {
1604    if (// We can promote any signed, promotable integer type to an int
1605        (FromType->isSignedIntegerType() ||
1606         // We can promote any unsigned integer type whose size is
1607         // less than int to an int.
1608         (!FromType->isSignedIntegerType() &&
1609          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1610      return To->getKind() == BuiltinType::Int;
1611    }
1612
1613    return To->getKind() == BuiltinType::UInt;
1614  }
1615
1616  // C++0x [conv.prom]p3:
1617  //   A prvalue of an unscoped enumeration type whose underlying type is not
1618  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1619  //   following types that can represent all the values of the enumeration
1620  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1621  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1622  //   long long int. If none of the types in that list can represent all the
1623  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1624  //   type can be converted to an rvalue a prvalue of the extended integer type
1625  //   with lowest integer conversion rank (4.13) greater than the rank of long
1626  //   long in which all the values of the enumeration can be represented. If
1627  //   there are two such extended types, the signed one is chosen.
1628  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1629    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1630    // provided for a scoped enumeration.
1631    if (FromEnumType->getDecl()->isScoped())
1632      return false;
1633
1634    // We have already pre-calculated the promotion type, so this is trivial.
1635    if (ToType->isIntegerType() &&
1636        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1637      return Context.hasSameUnqualifiedType(ToType,
1638                                FromEnumType->getDecl()->getPromotionType());
1639  }
1640
1641  // C++0x [conv.prom]p2:
1642  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1643  //   to an rvalue a prvalue of the first of the following types that can
1644  //   represent all the values of its underlying type: int, unsigned int,
1645  //   long int, unsigned long int, long long int, or unsigned long long int.
1646  //   If none of the types in that list can represent all the values of its
1647  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1648  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1649  //   type.
1650  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1651      ToType->isIntegerType()) {
1652    // Determine whether the type we're converting from is signed or
1653    // unsigned.
1654    bool FromIsSigned = FromType->isSignedIntegerType();
1655    uint64_t FromSize = Context.getTypeSize(FromType);
1656
1657    // The types we'll try to promote to, in the appropriate
1658    // order. Try each of these types.
1659    QualType PromoteTypes[6] = {
1660      Context.IntTy, Context.UnsignedIntTy,
1661      Context.LongTy, Context.UnsignedLongTy ,
1662      Context.LongLongTy, Context.UnsignedLongLongTy
1663    };
1664    for (int Idx = 0; Idx < 6; ++Idx) {
1665      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1666      if (FromSize < ToSize ||
1667          (FromSize == ToSize &&
1668           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1669        // We found the type that we can promote to. If this is the
1670        // type we wanted, we have a promotion. Otherwise, no
1671        // promotion.
1672        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1673      }
1674    }
1675  }
1676
1677  // An rvalue for an integral bit-field (9.6) can be converted to an
1678  // rvalue of type int if int can represent all the values of the
1679  // bit-field; otherwise, it can be converted to unsigned int if
1680  // unsigned int can represent all the values of the bit-field. If
1681  // the bit-field is larger yet, no integral promotion applies to
1682  // it. If the bit-field has an enumerated type, it is treated as any
1683  // other value of that type for promotion purposes (C++ 4.5p3).
1684  // FIXME: We should delay checking of bit-fields until we actually perform the
1685  // conversion.
1686  using llvm::APSInt;
1687  if (From)
1688    if (FieldDecl *MemberDecl = From->getBitField()) {
1689      APSInt BitWidth;
1690      if (FromType->isIntegralType(Context) &&
1691          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1692        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1693        ToSize = Context.getTypeSize(ToType);
1694
1695        // Are we promoting to an int from a bitfield that fits in an int?
1696        if (BitWidth < ToSize ||
1697            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1698          return To->getKind() == BuiltinType::Int;
1699        }
1700
1701        // Are we promoting to an unsigned int from an unsigned bitfield
1702        // that fits into an unsigned int?
1703        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1704          return To->getKind() == BuiltinType::UInt;
1705        }
1706
1707        return false;
1708      }
1709    }
1710
1711  // An rvalue of type bool can be converted to an rvalue of type int,
1712  // with false becoming zero and true becoming one (C++ 4.5p4).
1713  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1714    return true;
1715  }
1716
1717  return false;
1718}
1719
1720/// IsFloatingPointPromotion - Determines whether the conversion from
1721/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1722/// returns true and sets PromotedType to the promoted type.
1723bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1724  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1725    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1726      /// An rvalue of type float can be converted to an rvalue of type
1727      /// double. (C++ 4.6p1).
1728      if (FromBuiltin->getKind() == BuiltinType::Float &&
1729          ToBuiltin->getKind() == BuiltinType::Double)
1730        return true;
1731
1732      // C99 6.3.1.5p1:
1733      //   When a float is promoted to double or long double, or a
1734      //   double is promoted to long double [...].
1735      if (!getLangOptions().CPlusPlus &&
1736          (FromBuiltin->getKind() == BuiltinType::Float ||
1737           FromBuiltin->getKind() == BuiltinType::Double) &&
1738          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1739        return true;
1740
1741      // Half can be promoted to float.
1742      if (FromBuiltin->getKind() == BuiltinType::Half &&
1743          ToBuiltin->getKind() == BuiltinType::Float)
1744        return true;
1745    }
1746
1747  return false;
1748}
1749
1750/// \brief Determine if a conversion is a complex promotion.
1751///
1752/// A complex promotion is defined as a complex -> complex conversion
1753/// where the conversion between the underlying real types is a
1754/// floating-point or integral promotion.
1755bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1756  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1757  if (!FromComplex)
1758    return false;
1759
1760  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1761  if (!ToComplex)
1762    return false;
1763
1764  return IsFloatingPointPromotion(FromComplex->getElementType(),
1765                                  ToComplex->getElementType()) ||
1766    IsIntegralPromotion(0, FromComplex->getElementType(),
1767                        ToComplex->getElementType());
1768}
1769
1770/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1771/// the pointer type FromPtr to a pointer to type ToPointee, with the
1772/// same type qualifiers as FromPtr has on its pointee type. ToType,
1773/// if non-empty, will be a pointer to ToType that may or may not have
1774/// the right set of qualifiers on its pointee.
1775///
1776static QualType
1777BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1778                                   QualType ToPointee, QualType ToType,
1779                                   ASTContext &Context,
1780                                   bool StripObjCLifetime = false) {
1781  assert((FromPtr->getTypeClass() == Type::Pointer ||
1782          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1783         "Invalid similarly-qualified pointer type");
1784
1785  /// Conversions to 'id' subsume cv-qualifier conversions.
1786  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1787    return ToType.getUnqualifiedType();
1788
1789  QualType CanonFromPointee
1790    = Context.getCanonicalType(FromPtr->getPointeeType());
1791  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1792  Qualifiers Quals = CanonFromPointee.getQualifiers();
1793
1794  if (StripObjCLifetime)
1795    Quals.removeObjCLifetime();
1796
1797  // Exact qualifier match -> return the pointer type we're converting to.
1798  if (CanonToPointee.getLocalQualifiers() == Quals) {
1799    // ToType is exactly what we need. Return it.
1800    if (!ToType.isNull())
1801      return ToType.getUnqualifiedType();
1802
1803    // Build a pointer to ToPointee. It has the right qualifiers
1804    // already.
1805    if (isa<ObjCObjectPointerType>(ToType))
1806      return Context.getObjCObjectPointerType(ToPointee);
1807    return Context.getPointerType(ToPointee);
1808  }
1809
1810  // Just build a canonical type that has the right qualifiers.
1811  QualType QualifiedCanonToPointee
1812    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1813
1814  if (isa<ObjCObjectPointerType>(ToType))
1815    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1816  return Context.getPointerType(QualifiedCanonToPointee);
1817}
1818
1819static bool isNullPointerConstantForConversion(Expr *Expr,
1820                                               bool InOverloadResolution,
1821                                               ASTContext &Context) {
1822  // Handle value-dependent integral null pointer constants correctly.
1823  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1824  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1825      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1826    return !InOverloadResolution;
1827
1828  return Expr->isNullPointerConstant(Context,
1829                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1830                                        : Expr::NPC_ValueDependentIsNull);
1831}
1832
1833/// IsPointerConversion - Determines whether the conversion of the
1834/// expression From, which has the (possibly adjusted) type FromType,
1835/// can be converted to the type ToType via a pointer conversion (C++
1836/// 4.10). If so, returns true and places the converted type (that
1837/// might differ from ToType in its cv-qualifiers at some level) into
1838/// ConvertedType.
1839///
1840/// This routine also supports conversions to and from block pointers
1841/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1842/// pointers to interfaces. FIXME: Once we've determined the
1843/// appropriate overloading rules for Objective-C, we may want to
1844/// split the Objective-C checks into a different routine; however,
1845/// GCC seems to consider all of these conversions to be pointer
1846/// conversions, so for now they live here. IncompatibleObjC will be
1847/// set if the conversion is an allowed Objective-C conversion that
1848/// should result in a warning.
1849bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1850                               bool InOverloadResolution,
1851                               QualType& ConvertedType,
1852                               bool &IncompatibleObjC) {
1853  IncompatibleObjC = false;
1854  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1855                              IncompatibleObjC))
1856    return true;
1857
1858  // Conversion from a null pointer constant to any Objective-C pointer type.
1859  if (ToType->isObjCObjectPointerType() &&
1860      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1861    ConvertedType = ToType;
1862    return true;
1863  }
1864
1865  // Blocks: Block pointers can be converted to void*.
1866  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1867      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1868    ConvertedType = ToType;
1869    return true;
1870  }
1871  // Blocks: A null pointer constant can be converted to a block
1872  // pointer type.
1873  if (ToType->isBlockPointerType() &&
1874      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1875    ConvertedType = ToType;
1876    return true;
1877  }
1878
1879  // If the left-hand-side is nullptr_t, the right side can be a null
1880  // pointer constant.
1881  if (ToType->isNullPtrType() &&
1882      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1883    ConvertedType = ToType;
1884    return true;
1885  }
1886
1887  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1888  if (!ToTypePtr)
1889    return false;
1890
1891  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1892  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1893    ConvertedType = ToType;
1894    return true;
1895  }
1896
1897  // Beyond this point, both types need to be pointers
1898  // , including objective-c pointers.
1899  QualType ToPointeeType = ToTypePtr->getPointeeType();
1900  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1901      !getLangOptions().ObjCAutoRefCount) {
1902    ConvertedType = BuildSimilarlyQualifiedPointerType(
1903                                      FromType->getAs<ObjCObjectPointerType>(),
1904                                                       ToPointeeType,
1905                                                       ToType, Context);
1906    return true;
1907  }
1908  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1909  if (!FromTypePtr)
1910    return false;
1911
1912  QualType FromPointeeType = FromTypePtr->getPointeeType();
1913
1914  // If the unqualified pointee types are the same, this can't be a
1915  // pointer conversion, so don't do all of the work below.
1916  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1917    return false;
1918
1919  // An rvalue of type "pointer to cv T," where T is an object type,
1920  // can be converted to an rvalue of type "pointer to cv void" (C++
1921  // 4.10p2).
1922  if (FromPointeeType->isIncompleteOrObjectType() &&
1923      ToPointeeType->isVoidType()) {
1924    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1925                                                       ToPointeeType,
1926                                                       ToType, Context,
1927                                                   /*StripObjCLifetime=*/true);
1928    return true;
1929  }
1930
1931  // MSVC allows implicit function to void* type conversion.
1932  if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() &&
1933      ToPointeeType->isVoidType()) {
1934    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1935                                                       ToPointeeType,
1936                                                       ToType, Context);
1937    return true;
1938  }
1939
1940  // When we're overloading in C, we allow a special kind of pointer
1941  // conversion for compatible-but-not-identical pointee types.
1942  if (!getLangOptions().CPlusPlus &&
1943      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1944    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1945                                                       ToPointeeType,
1946                                                       ToType, Context);
1947    return true;
1948  }
1949
1950  // C++ [conv.ptr]p3:
1951  //
1952  //   An rvalue of type "pointer to cv D," where D is a class type,
1953  //   can be converted to an rvalue of type "pointer to cv B," where
1954  //   B is a base class (clause 10) of D. If B is an inaccessible
1955  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1956  //   necessitates this conversion is ill-formed. The result of the
1957  //   conversion is a pointer to the base class sub-object of the
1958  //   derived class object. The null pointer value is converted to
1959  //   the null pointer value of the destination type.
1960  //
1961  // Note that we do not check for ambiguity or inaccessibility
1962  // here. That is handled by CheckPointerConversion.
1963  if (getLangOptions().CPlusPlus &&
1964      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1965      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1966      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1967      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1969                                                       ToPointeeType,
1970                                                       ToType, Context);
1971    return true;
1972  }
1973
1974  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1975      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1976    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1977                                                       ToPointeeType,
1978                                                       ToType, Context);
1979    return true;
1980  }
1981
1982  return false;
1983}
1984
1985/// \brief Adopt the given qualifiers for the given type.
1986static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1987  Qualifiers TQs = T.getQualifiers();
1988
1989  // Check whether qualifiers already match.
1990  if (TQs == Qs)
1991    return T;
1992
1993  if (Qs.compatiblyIncludes(TQs))
1994    return Context.getQualifiedType(T, Qs);
1995
1996  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1997}
1998
1999/// isObjCPointerConversion - Determines whether this is an
2000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2001/// with the same arguments and return values.
2002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2003                                   QualType& ConvertedType,
2004                                   bool &IncompatibleObjC) {
2005  if (!getLangOptions().ObjC1)
2006    return false;
2007
2008  // The set of qualifiers on the type we're converting from.
2009  Qualifiers FromQualifiers = FromType.getQualifiers();
2010
2011  // First, we handle all conversions on ObjC object pointer types.
2012  const ObjCObjectPointerType* ToObjCPtr =
2013    ToType->getAs<ObjCObjectPointerType>();
2014  const ObjCObjectPointerType *FromObjCPtr =
2015    FromType->getAs<ObjCObjectPointerType>();
2016
2017  if (ToObjCPtr && FromObjCPtr) {
2018    // If the pointee types are the same (ignoring qualifications),
2019    // then this is not a pointer conversion.
2020    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2021                                       FromObjCPtr->getPointeeType()))
2022      return false;
2023
2024    // Check for compatible
2025    // Objective C++: We're able to convert between "id" or "Class" and a
2026    // pointer to any interface (in both directions).
2027    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2028      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2029      return true;
2030    }
2031    // Conversions with Objective-C's id<...>.
2032    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2033         ToObjCPtr->isObjCQualifiedIdType()) &&
2034        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2035                                                  /*compare=*/false)) {
2036      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2037      return true;
2038    }
2039    // Objective C++: We're able to convert from a pointer to an
2040    // interface to a pointer to a different interface.
2041    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2042      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2043      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2044      if (getLangOptions().CPlusPlus && LHS && RHS &&
2045          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2046                                                FromObjCPtr->getPointeeType()))
2047        return false;
2048      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2049                                                   ToObjCPtr->getPointeeType(),
2050                                                         ToType, Context);
2051      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2052      return true;
2053    }
2054
2055    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2056      // Okay: this is some kind of implicit downcast of Objective-C
2057      // interfaces, which is permitted. However, we're going to
2058      // complain about it.
2059      IncompatibleObjC = true;
2060      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2061                                                   ToObjCPtr->getPointeeType(),
2062                                                         ToType, Context);
2063      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2064      return true;
2065    }
2066  }
2067  // Beyond this point, both types need to be C pointers or block pointers.
2068  QualType ToPointeeType;
2069  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2070    ToPointeeType = ToCPtr->getPointeeType();
2071  else if (const BlockPointerType *ToBlockPtr =
2072            ToType->getAs<BlockPointerType>()) {
2073    // Objective C++: We're able to convert from a pointer to any object
2074    // to a block pointer type.
2075    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2076      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2077      return true;
2078    }
2079    ToPointeeType = ToBlockPtr->getPointeeType();
2080  }
2081  else if (FromType->getAs<BlockPointerType>() &&
2082           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2083    // Objective C++: We're able to convert from a block pointer type to a
2084    // pointer to any object.
2085    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2086    return true;
2087  }
2088  else
2089    return false;
2090
2091  QualType FromPointeeType;
2092  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2093    FromPointeeType = FromCPtr->getPointeeType();
2094  else if (const BlockPointerType *FromBlockPtr =
2095           FromType->getAs<BlockPointerType>())
2096    FromPointeeType = FromBlockPtr->getPointeeType();
2097  else
2098    return false;
2099
2100  // If we have pointers to pointers, recursively check whether this
2101  // is an Objective-C conversion.
2102  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2103      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2104                              IncompatibleObjC)) {
2105    // We always complain about this conversion.
2106    IncompatibleObjC = true;
2107    ConvertedType = Context.getPointerType(ConvertedType);
2108    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2109    return true;
2110  }
2111  // Allow conversion of pointee being objective-c pointer to another one;
2112  // as in I* to id.
2113  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2114      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2115      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2116                              IncompatibleObjC)) {
2117
2118    ConvertedType = Context.getPointerType(ConvertedType);
2119    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2120    return true;
2121  }
2122
2123  // If we have pointers to functions or blocks, check whether the only
2124  // differences in the argument and result types are in Objective-C
2125  // pointer conversions. If so, we permit the conversion (but
2126  // complain about it).
2127  const FunctionProtoType *FromFunctionType
2128    = FromPointeeType->getAs<FunctionProtoType>();
2129  const FunctionProtoType *ToFunctionType
2130    = ToPointeeType->getAs<FunctionProtoType>();
2131  if (FromFunctionType && ToFunctionType) {
2132    // If the function types are exactly the same, this isn't an
2133    // Objective-C pointer conversion.
2134    if (Context.getCanonicalType(FromPointeeType)
2135          == Context.getCanonicalType(ToPointeeType))
2136      return false;
2137
2138    // Perform the quick checks that will tell us whether these
2139    // function types are obviously different.
2140    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2141        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2142        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2143      return false;
2144
2145    bool HasObjCConversion = false;
2146    if (Context.getCanonicalType(FromFunctionType->getResultType())
2147          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2148      // Okay, the types match exactly. Nothing to do.
2149    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2150                                       ToFunctionType->getResultType(),
2151                                       ConvertedType, IncompatibleObjC)) {
2152      // Okay, we have an Objective-C pointer conversion.
2153      HasObjCConversion = true;
2154    } else {
2155      // Function types are too different. Abort.
2156      return false;
2157    }
2158
2159    // Check argument types.
2160    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2161         ArgIdx != NumArgs; ++ArgIdx) {
2162      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2163      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2164      if (Context.getCanonicalType(FromArgType)
2165            == Context.getCanonicalType(ToArgType)) {
2166        // Okay, the types match exactly. Nothing to do.
2167      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2168                                         ConvertedType, IncompatibleObjC)) {
2169        // Okay, we have an Objective-C pointer conversion.
2170        HasObjCConversion = true;
2171      } else {
2172        // Argument types are too different. Abort.
2173        return false;
2174      }
2175    }
2176
2177    if (HasObjCConversion) {
2178      // We had an Objective-C conversion. Allow this pointer
2179      // conversion, but complain about it.
2180      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2181      IncompatibleObjC = true;
2182      return true;
2183    }
2184  }
2185
2186  return false;
2187}
2188
2189/// \brief Determine whether this is an Objective-C writeback conversion,
2190/// used for parameter passing when performing automatic reference counting.
2191///
2192/// \param FromType The type we're converting form.
2193///
2194/// \param ToType The type we're converting to.
2195///
2196/// \param ConvertedType The type that will be produced after applying
2197/// this conversion.
2198bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2199                                     QualType &ConvertedType) {
2200  if (!getLangOptions().ObjCAutoRefCount ||
2201      Context.hasSameUnqualifiedType(FromType, ToType))
2202    return false;
2203
2204  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2205  QualType ToPointee;
2206  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2207    ToPointee = ToPointer->getPointeeType();
2208  else
2209    return false;
2210
2211  Qualifiers ToQuals = ToPointee.getQualifiers();
2212  if (!ToPointee->isObjCLifetimeType() ||
2213      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2214      !ToQuals.withoutObjCGLifetime().empty())
2215    return false;
2216
2217  // Argument must be a pointer to __strong to __weak.
2218  QualType FromPointee;
2219  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2220    FromPointee = FromPointer->getPointeeType();
2221  else
2222    return false;
2223
2224  Qualifiers FromQuals = FromPointee.getQualifiers();
2225  if (!FromPointee->isObjCLifetimeType() ||
2226      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2227       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2228    return false;
2229
2230  // Make sure that we have compatible qualifiers.
2231  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2232  if (!ToQuals.compatiblyIncludes(FromQuals))
2233    return false;
2234
2235  // Remove qualifiers from the pointee type we're converting from; they
2236  // aren't used in the compatibility check belong, and we'll be adding back
2237  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2238  FromPointee = FromPointee.getUnqualifiedType();
2239
2240  // The unqualified form of the pointee types must be compatible.
2241  ToPointee = ToPointee.getUnqualifiedType();
2242  bool IncompatibleObjC;
2243  if (Context.typesAreCompatible(FromPointee, ToPointee))
2244    FromPointee = ToPointee;
2245  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2246                                    IncompatibleObjC))
2247    return false;
2248
2249  /// \brief Construct the type we're converting to, which is a pointer to
2250  /// __autoreleasing pointee.
2251  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2252  ConvertedType = Context.getPointerType(FromPointee);
2253  return true;
2254}
2255
2256bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2257                                    QualType& ConvertedType) {
2258  QualType ToPointeeType;
2259  if (const BlockPointerType *ToBlockPtr =
2260        ToType->getAs<BlockPointerType>())
2261    ToPointeeType = ToBlockPtr->getPointeeType();
2262  else
2263    return false;
2264
2265  QualType FromPointeeType;
2266  if (const BlockPointerType *FromBlockPtr =
2267      FromType->getAs<BlockPointerType>())
2268    FromPointeeType = FromBlockPtr->getPointeeType();
2269  else
2270    return false;
2271  // We have pointer to blocks, check whether the only
2272  // differences in the argument and result types are in Objective-C
2273  // pointer conversions. If so, we permit the conversion.
2274
2275  const FunctionProtoType *FromFunctionType
2276    = FromPointeeType->getAs<FunctionProtoType>();
2277  const FunctionProtoType *ToFunctionType
2278    = ToPointeeType->getAs<FunctionProtoType>();
2279
2280  if (!FromFunctionType || !ToFunctionType)
2281    return false;
2282
2283  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2284    return true;
2285
2286  // Perform the quick checks that will tell us whether these
2287  // function types are obviously different.
2288  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2289      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2290    return false;
2291
2292  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2293  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2294  if (FromEInfo != ToEInfo)
2295    return false;
2296
2297  bool IncompatibleObjC = false;
2298  if (Context.hasSameType(FromFunctionType->getResultType(),
2299                          ToFunctionType->getResultType())) {
2300    // Okay, the types match exactly. Nothing to do.
2301  } else {
2302    QualType RHS = FromFunctionType->getResultType();
2303    QualType LHS = ToFunctionType->getResultType();
2304    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2305        !RHS.hasQualifiers() && LHS.hasQualifiers())
2306       LHS = LHS.getUnqualifiedType();
2307
2308     if (Context.hasSameType(RHS,LHS)) {
2309       // OK exact match.
2310     } else if (isObjCPointerConversion(RHS, LHS,
2311                                        ConvertedType, IncompatibleObjC)) {
2312     if (IncompatibleObjC)
2313       return false;
2314     // Okay, we have an Objective-C pointer conversion.
2315     }
2316     else
2317       return false;
2318   }
2319
2320   // Check argument types.
2321   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2322        ArgIdx != NumArgs; ++ArgIdx) {
2323     IncompatibleObjC = false;
2324     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2325     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2326     if (Context.hasSameType(FromArgType, ToArgType)) {
2327       // Okay, the types match exactly. Nothing to do.
2328     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2329                                        ConvertedType, IncompatibleObjC)) {
2330       if (IncompatibleObjC)
2331         return false;
2332       // Okay, we have an Objective-C pointer conversion.
2333     } else
2334       // Argument types are too different. Abort.
2335       return false;
2336   }
2337   if (LangOpts.ObjCAutoRefCount &&
2338       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2339                                                    ToFunctionType))
2340     return false;
2341
2342   ConvertedType = ToType;
2343   return true;
2344}
2345
2346enum {
2347  ft_default,
2348  ft_different_class,
2349  ft_parameter_arity,
2350  ft_parameter_mismatch,
2351  ft_return_type,
2352  ft_qualifer_mismatch
2353};
2354
2355/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2356/// function types.  Catches different number of parameter, mismatch in
2357/// parameter types, and different return types.
2358void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2359                                      QualType FromType, QualType ToType) {
2360  // If either type is not valid, include no extra info.
2361  if (FromType.isNull() || ToType.isNull()) {
2362    PDiag << ft_default;
2363    return;
2364  }
2365
2366  // Get the function type from the pointers.
2367  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2368    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2369                            *ToMember = ToType->getAs<MemberPointerType>();
2370    if (FromMember->getClass() != ToMember->getClass()) {
2371      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2372            << QualType(FromMember->getClass(), 0);
2373      return;
2374    }
2375    FromType = FromMember->getPointeeType();
2376    ToType = ToMember->getPointeeType();
2377  }
2378
2379  if (FromType->isPointerType())
2380    FromType = FromType->getPointeeType();
2381  if (ToType->isPointerType())
2382    ToType = ToType->getPointeeType();
2383
2384  // Remove references.
2385  FromType = FromType.getNonReferenceType();
2386  ToType = ToType.getNonReferenceType();
2387
2388  // Don't print extra info for non-specialized template functions.
2389  if (FromType->isInstantiationDependentType() &&
2390      !FromType->getAs<TemplateSpecializationType>()) {
2391    PDiag << ft_default;
2392    return;
2393  }
2394
2395  // No extra info for same types.
2396  if (Context.hasSameType(FromType, ToType)) {
2397    PDiag << ft_default;
2398    return;
2399  }
2400
2401  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2402                          *ToFunction = ToType->getAs<FunctionProtoType>();
2403
2404  // Both types need to be function types.
2405  if (!FromFunction || !ToFunction) {
2406    PDiag << ft_default;
2407    return;
2408  }
2409
2410  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2411    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2412          << FromFunction->getNumArgs();
2413    return;
2414  }
2415
2416  // Handle different parameter types.
2417  unsigned ArgPos;
2418  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2419    PDiag << ft_parameter_mismatch << ArgPos + 1
2420          << ToFunction->getArgType(ArgPos)
2421          << FromFunction->getArgType(ArgPos);
2422    return;
2423  }
2424
2425  // Handle different return type.
2426  if (!Context.hasSameType(FromFunction->getResultType(),
2427                           ToFunction->getResultType())) {
2428    PDiag << ft_return_type << ToFunction->getResultType()
2429          << FromFunction->getResultType();
2430    return;
2431  }
2432
2433  unsigned FromQuals = FromFunction->getTypeQuals(),
2434           ToQuals = ToFunction->getTypeQuals();
2435  if (FromQuals != ToQuals) {
2436    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2437    return;
2438  }
2439
2440  // Unable to find a difference, so add no extra info.
2441  PDiag << ft_default;
2442}
2443
2444/// FunctionArgTypesAreEqual - This routine checks two function proto types
2445/// for equality of their argument types. Caller has already checked that
2446/// they have same number of arguments. This routine assumes that Objective-C
2447/// pointer types which only differ in their protocol qualifiers are equal.
2448/// If the parameters are different, ArgPos will have the the parameter index
2449/// of the first different parameter.
2450bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2451                                    const FunctionProtoType *NewType,
2452                                    unsigned *ArgPos) {
2453  if (!getLangOptions().ObjC1) {
2454    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2455         N = NewType->arg_type_begin(),
2456         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2457      if (!Context.hasSameType(*O, *N)) {
2458        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2459        return false;
2460      }
2461    }
2462    return true;
2463  }
2464
2465  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2466       N = NewType->arg_type_begin(),
2467       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2468    QualType ToType = (*O);
2469    QualType FromType = (*N);
2470    if (!Context.hasSameType(ToType, FromType)) {
2471      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2472        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2473          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2474               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2475              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2476               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2477            continue;
2478      }
2479      else if (const ObjCObjectPointerType *PTTo =
2480                 ToType->getAs<ObjCObjectPointerType>()) {
2481        if (const ObjCObjectPointerType *PTFr =
2482              FromType->getAs<ObjCObjectPointerType>())
2483          if (Context.hasSameUnqualifiedType(
2484                PTTo->getObjectType()->getBaseType(),
2485                PTFr->getObjectType()->getBaseType()))
2486            continue;
2487      }
2488      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2489      return false;
2490    }
2491  }
2492  return true;
2493}
2494
2495/// CheckPointerConversion - Check the pointer conversion from the
2496/// expression From to the type ToType. This routine checks for
2497/// ambiguous or inaccessible derived-to-base pointer
2498/// conversions for which IsPointerConversion has already returned
2499/// true. It returns true and produces a diagnostic if there was an
2500/// error, or returns false otherwise.
2501bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2502                                  CastKind &Kind,
2503                                  CXXCastPath& BasePath,
2504                                  bool IgnoreBaseAccess) {
2505  QualType FromType = From->getType();
2506  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2507
2508  Kind = CK_BitCast;
2509
2510  if (!IsCStyleOrFunctionalCast &&
2511      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2512      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2513    DiagRuntimeBehavior(From->getExprLoc(), From,
2514                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2515                          << ToType << From->getSourceRange());
2516
2517  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2518    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2519      QualType FromPointeeType = FromPtrType->getPointeeType(),
2520               ToPointeeType   = ToPtrType->getPointeeType();
2521
2522      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2523          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2524        // We must have a derived-to-base conversion. Check an
2525        // ambiguous or inaccessible conversion.
2526        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2527                                         From->getExprLoc(),
2528                                         From->getSourceRange(), &BasePath,
2529                                         IgnoreBaseAccess))
2530          return true;
2531
2532        // The conversion was successful.
2533        Kind = CK_DerivedToBase;
2534      }
2535    }
2536  } else if (const ObjCObjectPointerType *ToPtrType =
2537               ToType->getAs<ObjCObjectPointerType>()) {
2538    if (const ObjCObjectPointerType *FromPtrType =
2539          FromType->getAs<ObjCObjectPointerType>()) {
2540      // Objective-C++ conversions are always okay.
2541      // FIXME: We should have a different class of conversions for the
2542      // Objective-C++ implicit conversions.
2543      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2544        return false;
2545    } else if (FromType->isBlockPointerType()) {
2546      Kind = CK_BlockPointerToObjCPointerCast;
2547    } else {
2548      Kind = CK_CPointerToObjCPointerCast;
2549    }
2550  } else if (ToType->isBlockPointerType()) {
2551    if (!FromType->isBlockPointerType())
2552      Kind = CK_AnyPointerToBlockPointerCast;
2553  }
2554
2555  // We shouldn't fall into this case unless it's valid for other
2556  // reasons.
2557  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2558    Kind = CK_NullToPointer;
2559
2560  return false;
2561}
2562
2563/// IsMemberPointerConversion - Determines whether the conversion of the
2564/// expression From, which has the (possibly adjusted) type FromType, can be
2565/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2566/// If so, returns true and places the converted type (that might differ from
2567/// ToType in its cv-qualifiers at some level) into ConvertedType.
2568bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2569                                     QualType ToType,
2570                                     bool InOverloadResolution,
2571                                     QualType &ConvertedType) {
2572  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2573  if (!ToTypePtr)
2574    return false;
2575
2576  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2577  if (From->isNullPointerConstant(Context,
2578                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2579                                        : Expr::NPC_ValueDependentIsNull)) {
2580    ConvertedType = ToType;
2581    return true;
2582  }
2583
2584  // Otherwise, both types have to be member pointers.
2585  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2586  if (!FromTypePtr)
2587    return false;
2588
2589  // A pointer to member of B can be converted to a pointer to member of D,
2590  // where D is derived from B (C++ 4.11p2).
2591  QualType FromClass(FromTypePtr->getClass(), 0);
2592  QualType ToClass(ToTypePtr->getClass(), 0);
2593
2594  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2595      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2596      IsDerivedFrom(ToClass, FromClass)) {
2597    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2598                                                 ToClass.getTypePtr());
2599    return true;
2600  }
2601
2602  return false;
2603}
2604
2605/// CheckMemberPointerConversion - Check the member pointer conversion from the
2606/// expression From to the type ToType. This routine checks for ambiguous or
2607/// virtual or inaccessible base-to-derived member pointer conversions
2608/// for which IsMemberPointerConversion has already returned true. It returns
2609/// true and produces a diagnostic if there was an error, or returns false
2610/// otherwise.
2611bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2612                                        CastKind &Kind,
2613                                        CXXCastPath &BasePath,
2614                                        bool IgnoreBaseAccess) {
2615  QualType FromType = From->getType();
2616  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2617  if (!FromPtrType) {
2618    // This must be a null pointer to member pointer conversion
2619    assert(From->isNullPointerConstant(Context,
2620                                       Expr::NPC_ValueDependentIsNull) &&
2621           "Expr must be null pointer constant!");
2622    Kind = CK_NullToMemberPointer;
2623    return false;
2624  }
2625
2626  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2627  assert(ToPtrType && "No member pointer cast has a target type "
2628                      "that is not a member pointer.");
2629
2630  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2631  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2632
2633  // FIXME: What about dependent types?
2634  assert(FromClass->isRecordType() && "Pointer into non-class.");
2635  assert(ToClass->isRecordType() && "Pointer into non-class.");
2636
2637  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2638                     /*DetectVirtual=*/true);
2639  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2640  assert(DerivationOkay &&
2641         "Should not have been called if derivation isn't OK.");
2642  (void)DerivationOkay;
2643
2644  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2645                                  getUnqualifiedType())) {
2646    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2647    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2648      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2649    return true;
2650  }
2651
2652  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2653    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2654      << FromClass << ToClass << QualType(VBase, 0)
2655      << From->getSourceRange();
2656    return true;
2657  }
2658
2659  if (!IgnoreBaseAccess)
2660    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2661                         Paths.front(),
2662                         diag::err_downcast_from_inaccessible_base);
2663
2664  // Must be a base to derived member conversion.
2665  BuildBasePathArray(Paths, BasePath);
2666  Kind = CK_BaseToDerivedMemberPointer;
2667  return false;
2668}
2669
2670/// IsQualificationConversion - Determines whether the conversion from
2671/// an rvalue of type FromType to ToType is a qualification conversion
2672/// (C++ 4.4).
2673///
2674/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2675/// when the qualification conversion involves a change in the Objective-C
2676/// object lifetime.
2677bool
2678Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2679                                bool CStyle, bool &ObjCLifetimeConversion) {
2680  FromType = Context.getCanonicalType(FromType);
2681  ToType = Context.getCanonicalType(ToType);
2682  ObjCLifetimeConversion = false;
2683
2684  // If FromType and ToType are the same type, this is not a
2685  // qualification conversion.
2686  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2687    return false;
2688
2689  // (C++ 4.4p4):
2690  //   A conversion can add cv-qualifiers at levels other than the first
2691  //   in multi-level pointers, subject to the following rules: [...]
2692  bool PreviousToQualsIncludeConst = true;
2693  bool UnwrappedAnyPointer = false;
2694  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2695    // Within each iteration of the loop, we check the qualifiers to
2696    // determine if this still looks like a qualification
2697    // conversion. Then, if all is well, we unwrap one more level of
2698    // pointers or pointers-to-members and do it all again
2699    // until there are no more pointers or pointers-to-members left to
2700    // unwrap.
2701    UnwrappedAnyPointer = true;
2702
2703    Qualifiers FromQuals = FromType.getQualifiers();
2704    Qualifiers ToQuals = ToType.getQualifiers();
2705
2706    // Objective-C ARC:
2707    //   Check Objective-C lifetime conversions.
2708    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2709        UnwrappedAnyPointer) {
2710      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2711        ObjCLifetimeConversion = true;
2712        FromQuals.removeObjCLifetime();
2713        ToQuals.removeObjCLifetime();
2714      } else {
2715        // Qualification conversions cannot cast between different
2716        // Objective-C lifetime qualifiers.
2717        return false;
2718      }
2719    }
2720
2721    // Allow addition/removal of GC attributes but not changing GC attributes.
2722    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2723        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2724      FromQuals.removeObjCGCAttr();
2725      ToQuals.removeObjCGCAttr();
2726    }
2727
2728    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2729    //      2,j, and similarly for volatile.
2730    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2731      return false;
2732
2733    //   -- if the cv 1,j and cv 2,j are different, then const is in
2734    //      every cv for 0 < k < j.
2735    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2736        && !PreviousToQualsIncludeConst)
2737      return false;
2738
2739    // Keep track of whether all prior cv-qualifiers in the "to" type
2740    // include const.
2741    PreviousToQualsIncludeConst
2742      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2743  }
2744
2745  // We are left with FromType and ToType being the pointee types
2746  // after unwrapping the original FromType and ToType the same number
2747  // of types. If we unwrapped any pointers, and if FromType and
2748  // ToType have the same unqualified type (since we checked
2749  // qualifiers above), then this is a qualification conversion.
2750  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2751}
2752
2753/// Determines whether there is a user-defined conversion sequence
2754/// (C++ [over.ics.user]) that converts expression From to the type
2755/// ToType. If such a conversion exists, User will contain the
2756/// user-defined conversion sequence that performs such a conversion
2757/// and this routine will return true. Otherwise, this routine returns
2758/// false and User is unspecified.
2759///
2760/// \param AllowExplicit  true if the conversion should consider C++0x
2761/// "explicit" conversion functions as well as non-explicit conversion
2762/// functions (C++0x [class.conv.fct]p2).
2763static OverloadingResult
2764IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2765                        UserDefinedConversionSequence& User,
2766                        OverloadCandidateSet& CandidateSet,
2767                        bool AllowExplicit) {
2768  // Whether we will only visit constructors.
2769  bool ConstructorsOnly = false;
2770
2771  // If the type we are conversion to is a class type, enumerate its
2772  // constructors.
2773  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2774    // C++ [over.match.ctor]p1:
2775    //   When objects of class type are direct-initialized (8.5), or
2776    //   copy-initialized from an expression of the same or a
2777    //   derived class type (8.5), overload resolution selects the
2778    //   constructor. [...] For copy-initialization, the candidate
2779    //   functions are all the converting constructors (12.3.1) of
2780    //   that class. The argument list is the expression-list within
2781    //   the parentheses of the initializer.
2782    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2783        (From->getType()->getAs<RecordType>() &&
2784         S.IsDerivedFrom(From->getType(), ToType)))
2785      ConstructorsOnly = true;
2786
2787    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2788    // RequireCompleteType may have returned true due to some invalid decl
2789    // during template instantiation, but ToType may be complete enough now
2790    // to try to recover.
2791    if (ToType->isIncompleteType()) {
2792      // We're not going to find any constructors.
2793    } else if (CXXRecordDecl *ToRecordDecl
2794                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2795
2796      Expr **Args = &From;
2797      unsigned NumArgs = 1;
2798      bool ListInitializing = false;
2799      // If we're list-initializing, we pass the individual elements as
2800      // arguments, not the entire list.
2801      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2802        Args = InitList->getInits();
2803        NumArgs = InitList->getNumInits();
2804        ListInitializing = true;
2805      }
2806
2807      DeclContext::lookup_iterator Con, ConEnd;
2808      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2809           Con != ConEnd; ++Con) {
2810        NamedDecl *D = *Con;
2811        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2812
2813        // Find the constructor (which may be a template).
2814        CXXConstructorDecl *Constructor = 0;
2815        FunctionTemplateDecl *ConstructorTmpl
2816          = dyn_cast<FunctionTemplateDecl>(D);
2817        if (ConstructorTmpl)
2818          Constructor
2819            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2820        else
2821          Constructor = cast<CXXConstructorDecl>(D);
2822
2823        bool Usable = !Constructor->isInvalidDecl();
2824        if (ListInitializing)
2825          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
2826        else
2827          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
2828        if (Usable) {
2829          if (ConstructorTmpl)
2830            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2831                                           /*ExplicitArgs*/ 0,
2832                                           Args, NumArgs, CandidateSet,
2833                                           /*SuppressUserConversions=*/
2834                                           !ConstructorsOnly &&
2835                                             !ListInitializing);
2836          else
2837            // Allow one user-defined conversion when user specifies a
2838            // From->ToType conversion via an static cast (c-style, etc).
2839            S.AddOverloadCandidate(Constructor, FoundDecl,
2840                                   Args, NumArgs, CandidateSet,
2841                                   /*SuppressUserConversions=*/
2842                                   !ConstructorsOnly && !ListInitializing);
2843        }
2844      }
2845    }
2846  }
2847
2848  // Enumerate conversion functions, if we're allowed to.
2849  if (ConstructorsOnly || isa<InitListExpr>(From)) {
2850  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2851                                   S.PDiag(0) << From->getSourceRange())) {
2852    // No conversion functions from incomplete types.
2853  } else if (const RecordType *FromRecordType
2854                                   = From->getType()->getAs<RecordType>()) {
2855    if (CXXRecordDecl *FromRecordDecl
2856         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2857      // Add all of the conversion functions as candidates.
2858      const UnresolvedSetImpl *Conversions
2859        = FromRecordDecl->getVisibleConversionFunctions();
2860      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2861             E = Conversions->end(); I != E; ++I) {
2862        DeclAccessPair FoundDecl = I.getPair();
2863        NamedDecl *D = FoundDecl.getDecl();
2864        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2865        if (isa<UsingShadowDecl>(D))
2866          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2867
2868        CXXConversionDecl *Conv;
2869        FunctionTemplateDecl *ConvTemplate;
2870        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2871          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2872        else
2873          Conv = cast<CXXConversionDecl>(D);
2874
2875        if (AllowExplicit || !Conv->isExplicit()) {
2876          if (ConvTemplate)
2877            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2878                                             ActingContext, From, ToType,
2879                                             CandidateSet);
2880          else
2881            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2882                                     From, ToType, CandidateSet);
2883        }
2884      }
2885    }
2886  }
2887
2888  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2889
2890  OverloadCandidateSet::iterator Best;
2891  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2892  case OR_Success:
2893    // Record the standard conversion we used and the conversion function.
2894    if (CXXConstructorDecl *Constructor
2895          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2896      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2897
2898      // C++ [over.ics.user]p1:
2899      //   If the user-defined conversion is specified by a
2900      //   constructor (12.3.1), the initial standard conversion
2901      //   sequence converts the source type to the type required by
2902      //   the argument of the constructor.
2903      //
2904      QualType ThisType = Constructor->getThisType(S.Context);
2905      if (isa<InitListExpr>(From)) {
2906        // Initializer lists don't have conversions as such.
2907        User.Before.setAsIdentityConversion();
2908      } else {
2909        if (Best->Conversions[0].isEllipsis())
2910          User.EllipsisConversion = true;
2911        else {
2912          User.Before = Best->Conversions[0].Standard;
2913          User.EllipsisConversion = false;
2914        }
2915      }
2916      User.HadMultipleCandidates = HadMultipleCandidates;
2917      User.ConversionFunction = Constructor;
2918      User.FoundConversionFunction = Best->FoundDecl;
2919      User.After.setAsIdentityConversion();
2920      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2921      User.After.setAllToTypes(ToType);
2922      return OR_Success;
2923    }
2924    if (CXXConversionDecl *Conversion
2925                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2926      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2927
2928      // C++ [over.ics.user]p1:
2929      //
2930      //   [...] If the user-defined conversion is specified by a
2931      //   conversion function (12.3.2), the initial standard
2932      //   conversion sequence converts the source type to the
2933      //   implicit object parameter of the conversion function.
2934      User.Before = Best->Conversions[0].Standard;
2935      User.HadMultipleCandidates = HadMultipleCandidates;
2936      User.ConversionFunction = Conversion;
2937      User.FoundConversionFunction = Best->FoundDecl;
2938      User.EllipsisConversion = false;
2939
2940      // C++ [over.ics.user]p2:
2941      //   The second standard conversion sequence converts the
2942      //   result of the user-defined conversion to the target type
2943      //   for the sequence. Since an implicit conversion sequence
2944      //   is an initialization, the special rules for
2945      //   initialization by user-defined conversion apply when
2946      //   selecting the best user-defined conversion for a
2947      //   user-defined conversion sequence (see 13.3.3 and
2948      //   13.3.3.1).
2949      User.After = Best->FinalConversion;
2950      return OR_Success;
2951    }
2952    llvm_unreachable("Not a constructor or conversion function?");
2953
2954  case OR_No_Viable_Function:
2955    return OR_No_Viable_Function;
2956  case OR_Deleted:
2957    // No conversion here! We're done.
2958    return OR_Deleted;
2959
2960  case OR_Ambiguous:
2961    return OR_Ambiguous;
2962  }
2963
2964  llvm_unreachable("Invalid OverloadResult!");
2965}
2966
2967bool
2968Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2969  ImplicitConversionSequence ICS;
2970  OverloadCandidateSet CandidateSet(From->getExprLoc());
2971  OverloadingResult OvResult =
2972    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2973                            CandidateSet, false);
2974  if (OvResult == OR_Ambiguous)
2975    Diag(From->getSourceRange().getBegin(),
2976         diag::err_typecheck_ambiguous_condition)
2977          << From->getType() << ToType << From->getSourceRange();
2978  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2979    Diag(From->getSourceRange().getBegin(),
2980         diag::err_typecheck_nonviable_condition)
2981    << From->getType() << ToType << From->getSourceRange();
2982  else
2983    return false;
2984  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2985  return true;
2986}
2987
2988/// CompareImplicitConversionSequences - Compare two implicit
2989/// conversion sequences to determine whether one is better than the
2990/// other or if they are indistinguishable (C++ 13.3.3.2).
2991static ImplicitConversionSequence::CompareKind
2992CompareImplicitConversionSequences(Sema &S,
2993                                   const ImplicitConversionSequence& ICS1,
2994                                   const ImplicitConversionSequence& ICS2)
2995{
2996  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2997  // conversion sequences (as defined in 13.3.3.1)
2998  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2999  //      conversion sequence than a user-defined conversion sequence or
3000  //      an ellipsis conversion sequence, and
3001  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3002  //      conversion sequence than an ellipsis conversion sequence
3003  //      (13.3.3.1.3).
3004  //
3005  // C++0x [over.best.ics]p10:
3006  //   For the purpose of ranking implicit conversion sequences as
3007  //   described in 13.3.3.2, the ambiguous conversion sequence is
3008  //   treated as a user-defined sequence that is indistinguishable
3009  //   from any other user-defined conversion sequence.
3010  if (ICS1.getKindRank() < ICS2.getKindRank())
3011    return ImplicitConversionSequence::Better;
3012  if (ICS2.getKindRank() < ICS1.getKindRank())
3013    return ImplicitConversionSequence::Worse;
3014
3015  // The following checks require both conversion sequences to be of
3016  // the same kind.
3017  if (ICS1.getKind() != ICS2.getKind())
3018    return ImplicitConversionSequence::Indistinguishable;
3019
3020  ImplicitConversionSequence::CompareKind Result =
3021      ImplicitConversionSequence::Indistinguishable;
3022
3023  // Two implicit conversion sequences of the same form are
3024  // indistinguishable conversion sequences unless one of the
3025  // following rules apply: (C++ 13.3.3.2p3):
3026  if (ICS1.isStandard())
3027    Result = CompareStandardConversionSequences(S,
3028                                                ICS1.Standard, ICS2.Standard);
3029  else if (ICS1.isUserDefined()) {
3030    // User-defined conversion sequence U1 is a better conversion
3031    // sequence than another user-defined conversion sequence U2 if
3032    // they contain the same user-defined conversion function or
3033    // constructor and if the second standard conversion sequence of
3034    // U1 is better than the second standard conversion sequence of
3035    // U2 (C++ 13.3.3.2p3).
3036    if (ICS1.UserDefined.ConversionFunction ==
3037          ICS2.UserDefined.ConversionFunction)
3038      Result = CompareStandardConversionSequences(S,
3039                                                  ICS1.UserDefined.After,
3040                                                  ICS2.UserDefined.After);
3041  }
3042
3043  // List-initialization sequence L1 is a better conversion sequence than
3044  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3045  // for some X and L2 does not.
3046  if (Result == ImplicitConversionSequence::Indistinguishable &&
3047      ICS1.isListInitializationSequence() &&
3048      ICS2.isListInitializationSequence()) {
3049    // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't.
3050  }
3051
3052  return Result;
3053}
3054
3055static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3056  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3057    Qualifiers Quals;
3058    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3059    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3060  }
3061
3062  return Context.hasSameUnqualifiedType(T1, T2);
3063}
3064
3065// Per 13.3.3.2p3, compare the given standard conversion sequences to
3066// determine if one is a proper subset of the other.
3067static ImplicitConversionSequence::CompareKind
3068compareStandardConversionSubsets(ASTContext &Context,
3069                                 const StandardConversionSequence& SCS1,
3070                                 const StandardConversionSequence& SCS2) {
3071  ImplicitConversionSequence::CompareKind Result
3072    = ImplicitConversionSequence::Indistinguishable;
3073
3074  // the identity conversion sequence is considered to be a subsequence of
3075  // any non-identity conversion sequence
3076  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3077    return ImplicitConversionSequence::Better;
3078  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3079    return ImplicitConversionSequence::Worse;
3080
3081  if (SCS1.Second != SCS2.Second) {
3082    if (SCS1.Second == ICK_Identity)
3083      Result = ImplicitConversionSequence::Better;
3084    else if (SCS2.Second == ICK_Identity)
3085      Result = ImplicitConversionSequence::Worse;
3086    else
3087      return ImplicitConversionSequence::Indistinguishable;
3088  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3089    return ImplicitConversionSequence::Indistinguishable;
3090
3091  if (SCS1.Third == SCS2.Third) {
3092    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3093                             : ImplicitConversionSequence::Indistinguishable;
3094  }
3095
3096  if (SCS1.Third == ICK_Identity)
3097    return Result == ImplicitConversionSequence::Worse
3098             ? ImplicitConversionSequence::Indistinguishable
3099             : ImplicitConversionSequence::Better;
3100
3101  if (SCS2.Third == ICK_Identity)
3102    return Result == ImplicitConversionSequence::Better
3103             ? ImplicitConversionSequence::Indistinguishable
3104             : ImplicitConversionSequence::Worse;
3105
3106  return ImplicitConversionSequence::Indistinguishable;
3107}
3108
3109/// \brief Determine whether one of the given reference bindings is better
3110/// than the other based on what kind of bindings they are.
3111static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3112                                       const StandardConversionSequence &SCS2) {
3113  // C++0x [over.ics.rank]p3b4:
3114  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3115  //      implicit object parameter of a non-static member function declared
3116  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3117  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3118  //      lvalue reference to a function lvalue and S2 binds an rvalue
3119  //      reference*.
3120  //
3121  // FIXME: Rvalue references. We're going rogue with the above edits,
3122  // because the semantics in the current C++0x working paper (N3225 at the
3123  // time of this writing) break the standard definition of std::forward
3124  // and std::reference_wrapper when dealing with references to functions.
3125  // Proposed wording changes submitted to CWG for consideration.
3126  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3127      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3128    return false;
3129
3130  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3131          SCS2.IsLvalueReference) ||
3132         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3133          !SCS2.IsLvalueReference);
3134}
3135
3136/// CompareStandardConversionSequences - Compare two standard
3137/// conversion sequences to determine whether one is better than the
3138/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3139static ImplicitConversionSequence::CompareKind
3140CompareStandardConversionSequences(Sema &S,
3141                                   const StandardConversionSequence& SCS1,
3142                                   const StandardConversionSequence& SCS2)
3143{
3144  // Standard conversion sequence S1 is a better conversion sequence
3145  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3146
3147  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3148  //     sequences in the canonical form defined by 13.3.3.1.1,
3149  //     excluding any Lvalue Transformation; the identity conversion
3150  //     sequence is considered to be a subsequence of any
3151  //     non-identity conversion sequence) or, if not that,
3152  if (ImplicitConversionSequence::CompareKind CK
3153        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3154    return CK;
3155
3156  //  -- the rank of S1 is better than the rank of S2 (by the rules
3157  //     defined below), or, if not that,
3158  ImplicitConversionRank Rank1 = SCS1.getRank();
3159  ImplicitConversionRank Rank2 = SCS2.getRank();
3160  if (Rank1 < Rank2)
3161    return ImplicitConversionSequence::Better;
3162  else if (Rank2 < Rank1)
3163    return ImplicitConversionSequence::Worse;
3164
3165  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3166  // are indistinguishable unless one of the following rules
3167  // applies:
3168
3169  //   A conversion that is not a conversion of a pointer, or
3170  //   pointer to member, to bool is better than another conversion
3171  //   that is such a conversion.
3172  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3173    return SCS2.isPointerConversionToBool()
3174             ? ImplicitConversionSequence::Better
3175             : ImplicitConversionSequence::Worse;
3176
3177  // C++ [over.ics.rank]p4b2:
3178  //
3179  //   If class B is derived directly or indirectly from class A,
3180  //   conversion of B* to A* is better than conversion of B* to
3181  //   void*, and conversion of A* to void* is better than conversion
3182  //   of B* to void*.
3183  bool SCS1ConvertsToVoid
3184    = SCS1.isPointerConversionToVoidPointer(S.Context);
3185  bool SCS2ConvertsToVoid
3186    = SCS2.isPointerConversionToVoidPointer(S.Context);
3187  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3188    // Exactly one of the conversion sequences is a conversion to
3189    // a void pointer; it's the worse conversion.
3190    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3191                              : ImplicitConversionSequence::Worse;
3192  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3193    // Neither conversion sequence converts to a void pointer; compare
3194    // their derived-to-base conversions.
3195    if (ImplicitConversionSequence::CompareKind DerivedCK
3196          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3197      return DerivedCK;
3198  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3199             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3200    // Both conversion sequences are conversions to void
3201    // pointers. Compare the source types to determine if there's an
3202    // inheritance relationship in their sources.
3203    QualType FromType1 = SCS1.getFromType();
3204    QualType FromType2 = SCS2.getFromType();
3205
3206    // Adjust the types we're converting from via the array-to-pointer
3207    // conversion, if we need to.
3208    if (SCS1.First == ICK_Array_To_Pointer)
3209      FromType1 = S.Context.getArrayDecayedType(FromType1);
3210    if (SCS2.First == ICK_Array_To_Pointer)
3211      FromType2 = S.Context.getArrayDecayedType(FromType2);
3212
3213    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3214    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3215
3216    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3217      return ImplicitConversionSequence::Better;
3218    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3219      return ImplicitConversionSequence::Worse;
3220
3221    // Objective-C++: If one interface is more specific than the
3222    // other, it is the better one.
3223    const ObjCObjectPointerType* FromObjCPtr1
3224      = FromType1->getAs<ObjCObjectPointerType>();
3225    const ObjCObjectPointerType* FromObjCPtr2
3226      = FromType2->getAs<ObjCObjectPointerType>();
3227    if (FromObjCPtr1 && FromObjCPtr2) {
3228      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3229                                                          FromObjCPtr2);
3230      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3231                                                           FromObjCPtr1);
3232      if (AssignLeft != AssignRight) {
3233        return AssignLeft? ImplicitConversionSequence::Better
3234                         : ImplicitConversionSequence::Worse;
3235      }
3236    }
3237  }
3238
3239  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3240  // bullet 3).
3241  if (ImplicitConversionSequence::CompareKind QualCK
3242        = CompareQualificationConversions(S, SCS1, SCS2))
3243    return QualCK;
3244
3245  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3246    // Check for a better reference binding based on the kind of bindings.
3247    if (isBetterReferenceBindingKind(SCS1, SCS2))
3248      return ImplicitConversionSequence::Better;
3249    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3250      return ImplicitConversionSequence::Worse;
3251
3252    // C++ [over.ics.rank]p3b4:
3253    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3254    //      which the references refer are the same type except for
3255    //      top-level cv-qualifiers, and the type to which the reference
3256    //      initialized by S2 refers is more cv-qualified than the type
3257    //      to which the reference initialized by S1 refers.
3258    QualType T1 = SCS1.getToType(2);
3259    QualType T2 = SCS2.getToType(2);
3260    T1 = S.Context.getCanonicalType(T1);
3261    T2 = S.Context.getCanonicalType(T2);
3262    Qualifiers T1Quals, T2Quals;
3263    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3264    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3265    if (UnqualT1 == UnqualT2) {
3266      // Objective-C++ ARC: If the references refer to objects with different
3267      // lifetimes, prefer bindings that don't change lifetime.
3268      if (SCS1.ObjCLifetimeConversionBinding !=
3269                                          SCS2.ObjCLifetimeConversionBinding) {
3270        return SCS1.ObjCLifetimeConversionBinding
3271                                           ? ImplicitConversionSequence::Worse
3272                                           : ImplicitConversionSequence::Better;
3273      }
3274
3275      // If the type is an array type, promote the element qualifiers to the
3276      // type for comparison.
3277      if (isa<ArrayType>(T1) && T1Quals)
3278        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3279      if (isa<ArrayType>(T2) && T2Quals)
3280        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3281      if (T2.isMoreQualifiedThan(T1))
3282        return ImplicitConversionSequence::Better;
3283      else if (T1.isMoreQualifiedThan(T2))
3284        return ImplicitConversionSequence::Worse;
3285    }
3286  }
3287
3288  // In Microsoft mode, prefer an integral conversion to a
3289  // floating-to-integral conversion if the integral conversion
3290  // is between types of the same size.
3291  // For example:
3292  // void f(float);
3293  // void f(int);
3294  // int main {
3295  //    long a;
3296  //    f(a);
3297  // }
3298  // Here, MSVC will call f(int) instead of generating a compile error
3299  // as clang will do in standard mode.
3300  if (S.getLangOptions().MicrosoftMode &&
3301      SCS1.Second == ICK_Integral_Conversion &&
3302      SCS2.Second == ICK_Floating_Integral &&
3303      S.Context.getTypeSize(SCS1.getFromType()) ==
3304      S.Context.getTypeSize(SCS1.getToType(2)))
3305    return ImplicitConversionSequence::Better;
3306
3307  return ImplicitConversionSequence::Indistinguishable;
3308}
3309
3310/// CompareQualificationConversions - Compares two standard conversion
3311/// sequences to determine whether they can be ranked based on their
3312/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3313ImplicitConversionSequence::CompareKind
3314CompareQualificationConversions(Sema &S,
3315                                const StandardConversionSequence& SCS1,
3316                                const StandardConversionSequence& SCS2) {
3317  // C++ 13.3.3.2p3:
3318  //  -- S1 and S2 differ only in their qualification conversion and
3319  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3320  //     cv-qualification signature of type T1 is a proper subset of
3321  //     the cv-qualification signature of type T2, and S1 is not the
3322  //     deprecated string literal array-to-pointer conversion (4.2).
3323  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3324      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3325    return ImplicitConversionSequence::Indistinguishable;
3326
3327  // FIXME: the example in the standard doesn't use a qualification
3328  // conversion (!)
3329  QualType T1 = SCS1.getToType(2);
3330  QualType T2 = SCS2.getToType(2);
3331  T1 = S.Context.getCanonicalType(T1);
3332  T2 = S.Context.getCanonicalType(T2);
3333  Qualifiers T1Quals, T2Quals;
3334  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3335  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3336
3337  // If the types are the same, we won't learn anything by unwrapped
3338  // them.
3339  if (UnqualT1 == UnqualT2)
3340    return ImplicitConversionSequence::Indistinguishable;
3341
3342  // If the type is an array type, promote the element qualifiers to the type
3343  // for comparison.
3344  if (isa<ArrayType>(T1) && T1Quals)
3345    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3346  if (isa<ArrayType>(T2) && T2Quals)
3347    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3348
3349  ImplicitConversionSequence::CompareKind Result
3350    = ImplicitConversionSequence::Indistinguishable;
3351
3352  // Objective-C++ ARC:
3353  //   Prefer qualification conversions not involving a change in lifetime
3354  //   to qualification conversions that do not change lifetime.
3355  if (SCS1.QualificationIncludesObjCLifetime !=
3356                                      SCS2.QualificationIncludesObjCLifetime) {
3357    Result = SCS1.QualificationIncludesObjCLifetime
3358               ? ImplicitConversionSequence::Worse
3359               : ImplicitConversionSequence::Better;
3360  }
3361
3362  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3363    // Within each iteration of the loop, we check the qualifiers to
3364    // determine if this still looks like a qualification
3365    // conversion. Then, if all is well, we unwrap one more level of
3366    // pointers or pointers-to-members and do it all again
3367    // until there are no more pointers or pointers-to-members left
3368    // to unwrap. This essentially mimics what
3369    // IsQualificationConversion does, but here we're checking for a
3370    // strict subset of qualifiers.
3371    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3372      // The qualifiers are the same, so this doesn't tell us anything
3373      // about how the sequences rank.
3374      ;
3375    else if (T2.isMoreQualifiedThan(T1)) {
3376      // T1 has fewer qualifiers, so it could be the better sequence.
3377      if (Result == ImplicitConversionSequence::Worse)
3378        // Neither has qualifiers that are a subset of the other's
3379        // qualifiers.
3380        return ImplicitConversionSequence::Indistinguishable;
3381
3382      Result = ImplicitConversionSequence::Better;
3383    } else if (T1.isMoreQualifiedThan(T2)) {
3384      // T2 has fewer qualifiers, so it could be the better sequence.
3385      if (Result == ImplicitConversionSequence::Better)
3386        // Neither has qualifiers that are a subset of the other's
3387        // qualifiers.
3388        return ImplicitConversionSequence::Indistinguishable;
3389
3390      Result = ImplicitConversionSequence::Worse;
3391    } else {
3392      // Qualifiers are disjoint.
3393      return ImplicitConversionSequence::Indistinguishable;
3394    }
3395
3396    // If the types after this point are equivalent, we're done.
3397    if (S.Context.hasSameUnqualifiedType(T1, T2))
3398      break;
3399  }
3400
3401  // Check that the winning standard conversion sequence isn't using
3402  // the deprecated string literal array to pointer conversion.
3403  switch (Result) {
3404  case ImplicitConversionSequence::Better:
3405    if (SCS1.DeprecatedStringLiteralToCharPtr)
3406      Result = ImplicitConversionSequence::Indistinguishable;
3407    break;
3408
3409  case ImplicitConversionSequence::Indistinguishable:
3410    break;
3411
3412  case ImplicitConversionSequence::Worse:
3413    if (SCS2.DeprecatedStringLiteralToCharPtr)
3414      Result = ImplicitConversionSequence::Indistinguishable;
3415    break;
3416  }
3417
3418  return Result;
3419}
3420
3421/// CompareDerivedToBaseConversions - Compares two standard conversion
3422/// sequences to determine whether they can be ranked based on their
3423/// various kinds of derived-to-base conversions (C++
3424/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3425/// conversions between Objective-C interface types.
3426ImplicitConversionSequence::CompareKind
3427CompareDerivedToBaseConversions(Sema &S,
3428                                const StandardConversionSequence& SCS1,
3429                                const StandardConversionSequence& SCS2) {
3430  QualType FromType1 = SCS1.getFromType();
3431  QualType ToType1 = SCS1.getToType(1);
3432  QualType FromType2 = SCS2.getFromType();
3433  QualType ToType2 = SCS2.getToType(1);
3434
3435  // Adjust the types we're converting from via the array-to-pointer
3436  // conversion, if we need to.
3437  if (SCS1.First == ICK_Array_To_Pointer)
3438    FromType1 = S.Context.getArrayDecayedType(FromType1);
3439  if (SCS2.First == ICK_Array_To_Pointer)
3440    FromType2 = S.Context.getArrayDecayedType(FromType2);
3441
3442  // Canonicalize all of the types.
3443  FromType1 = S.Context.getCanonicalType(FromType1);
3444  ToType1 = S.Context.getCanonicalType(ToType1);
3445  FromType2 = S.Context.getCanonicalType(FromType2);
3446  ToType2 = S.Context.getCanonicalType(ToType2);
3447
3448  // C++ [over.ics.rank]p4b3:
3449  //
3450  //   If class B is derived directly or indirectly from class A and
3451  //   class C is derived directly or indirectly from B,
3452  //
3453  // Compare based on pointer conversions.
3454  if (SCS1.Second == ICK_Pointer_Conversion &&
3455      SCS2.Second == ICK_Pointer_Conversion &&
3456      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3457      FromType1->isPointerType() && FromType2->isPointerType() &&
3458      ToType1->isPointerType() && ToType2->isPointerType()) {
3459    QualType FromPointee1
3460      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3461    QualType ToPointee1
3462      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3463    QualType FromPointee2
3464      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3465    QualType ToPointee2
3466      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3467
3468    //   -- conversion of C* to B* is better than conversion of C* to A*,
3469    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3470      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3471        return ImplicitConversionSequence::Better;
3472      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3473        return ImplicitConversionSequence::Worse;
3474    }
3475
3476    //   -- conversion of B* to A* is better than conversion of C* to A*,
3477    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3478      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3479        return ImplicitConversionSequence::Better;
3480      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3481        return ImplicitConversionSequence::Worse;
3482    }
3483  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3484             SCS2.Second == ICK_Pointer_Conversion) {
3485    const ObjCObjectPointerType *FromPtr1
3486      = FromType1->getAs<ObjCObjectPointerType>();
3487    const ObjCObjectPointerType *FromPtr2
3488      = FromType2->getAs<ObjCObjectPointerType>();
3489    const ObjCObjectPointerType *ToPtr1
3490      = ToType1->getAs<ObjCObjectPointerType>();
3491    const ObjCObjectPointerType *ToPtr2
3492      = ToType2->getAs<ObjCObjectPointerType>();
3493
3494    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3495      // Apply the same conversion ranking rules for Objective-C pointer types
3496      // that we do for C++ pointers to class types. However, we employ the
3497      // Objective-C pseudo-subtyping relationship used for assignment of
3498      // Objective-C pointer types.
3499      bool FromAssignLeft
3500        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3501      bool FromAssignRight
3502        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3503      bool ToAssignLeft
3504        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3505      bool ToAssignRight
3506        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3507
3508      // A conversion to an a non-id object pointer type or qualified 'id'
3509      // type is better than a conversion to 'id'.
3510      if (ToPtr1->isObjCIdType() &&
3511          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3512        return ImplicitConversionSequence::Worse;
3513      if (ToPtr2->isObjCIdType() &&
3514          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3515        return ImplicitConversionSequence::Better;
3516
3517      // A conversion to a non-id object pointer type is better than a
3518      // conversion to a qualified 'id' type
3519      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3520        return ImplicitConversionSequence::Worse;
3521      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3522        return ImplicitConversionSequence::Better;
3523
3524      // A conversion to an a non-Class object pointer type or qualified 'Class'
3525      // type is better than a conversion to 'Class'.
3526      if (ToPtr1->isObjCClassType() &&
3527          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3528        return ImplicitConversionSequence::Worse;
3529      if (ToPtr2->isObjCClassType() &&
3530          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3531        return ImplicitConversionSequence::Better;
3532
3533      // A conversion to a non-Class object pointer type is better than a
3534      // conversion to a qualified 'Class' type.
3535      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3536        return ImplicitConversionSequence::Worse;
3537      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3538        return ImplicitConversionSequence::Better;
3539
3540      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3541      if (S.Context.hasSameType(FromType1, FromType2) &&
3542          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3543          (ToAssignLeft != ToAssignRight))
3544        return ToAssignLeft? ImplicitConversionSequence::Worse
3545                           : ImplicitConversionSequence::Better;
3546
3547      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3548      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3549          (FromAssignLeft != FromAssignRight))
3550        return FromAssignLeft? ImplicitConversionSequence::Better
3551        : ImplicitConversionSequence::Worse;
3552    }
3553  }
3554
3555  // Ranking of member-pointer types.
3556  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3557      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3558      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3559    const MemberPointerType * FromMemPointer1 =
3560                                        FromType1->getAs<MemberPointerType>();
3561    const MemberPointerType * ToMemPointer1 =
3562                                          ToType1->getAs<MemberPointerType>();
3563    const MemberPointerType * FromMemPointer2 =
3564                                          FromType2->getAs<MemberPointerType>();
3565    const MemberPointerType * ToMemPointer2 =
3566                                          ToType2->getAs<MemberPointerType>();
3567    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3568    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3569    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3570    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3571    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3572    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3573    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3574    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3575    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3576    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3577      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3578        return ImplicitConversionSequence::Worse;
3579      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3580        return ImplicitConversionSequence::Better;
3581    }
3582    // conversion of B::* to C::* is better than conversion of A::* to C::*
3583    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3584      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3585        return ImplicitConversionSequence::Better;
3586      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3587        return ImplicitConversionSequence::Worse;
3588    }
3589  }
3590
3591  if (SCS1.Second == ICK_Derived_To_Base) {
3592    //   -- conversion of C to B is better than conversion of C to A,
3593    //   -- binding of an expression of type C to a reference of type
3594    //      B& is better than binding an expression of type C to a
3595    //      reference of type A&,
3596    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3597        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3598      if (S.IsDerivedFrom(ToType1, ToType2))
3599        return ImplicitConversionSequence::Better;
3600      else if (S.IsDerivedFrom(ToType2, ToType1))
3601        return ImplicitConversionSequence::Worse;
3602    }
3603
3604    //   -- conversion of B to A is better than conversion of C to A.
3605    //   -- binding of an expression of type B to a reference of type
3606    //      A& is better than binding an expression of type C to a
3607    //      reference of type A&,
3608    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3609        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3610      if (S.IsDerivedFrom(FromType2, FromType1))
3611        return ImplicitConversionSequence::Better;
3612      else if (S.IsDerivedFrom(FromType1, FromType2))
3613        return ImplicitConversionSequence::Worse;
3614    }
3615  }
3616
3617  return ImplicitConversionSequence::Indistinguishable;
3618}
3619
3620/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3621/// determine whether they are reference-related,
3622/// reference-compatible, reference-compatible with added
3623/// qualification, or incompatible, for use in C++ initialization by
3624/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3625/// type, and the first type (T1) is the pointee type of the reference
3626/// type being initialized.
3627Sema::ReferenceCompareResult
3628Sema::CompareReferenceRelationship(SourceLocation Loc,
3629                                   QualType OrigT1, QualType OrigT2,
3630                                   bool &DerivedToBase,
3631                                   bool &ObjCConversion,
3632                                   bool &ObjCLifetimeConversion) {
3633  assert(!OrigT1->isReferenceType() &&
3634    "T1 must be the pointee type of the reference type");
3635  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3636
3637  QualType T1 = Context.getCanonicalType(OrigT1);
3638  QualType T2 = Context.getCanonicalType(OrigT2);
3639  Qualifiers T1Quals, T2Quals;
3640  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3641  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3642
3643  // C++ [dcl.init.ref]p4:
3644  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3645  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3646  //   T1 is a base class of T2.
3647  DerivedToBase = false;
3648  ObjCConversion = false;
3649  ObjCLifetimeConversion = false;
3650  if (UnqualT1 == UnqualT2) {
3651    // Nothing to do.
3652  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3653           IsDerivedFrom(UnqualT2, UnqualT1))
3654    DerivedToBase = true;
3655  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3656           UnqualT2->isObjCObjectOrInterfaceType() &&
3657           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3658    ObjCConversion = true;
3659  else
3660    return Ref_Incompatible;
3661
3662  // At this point, we know that T1 and T2 are reference-related (at
3663  // least).
3664
3665  // If the type is an array type, promote the element qualifiers to the type
3666  // for comparison.
3667  if (isa<ArrayType>(T1) && T1Quals)
3668    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3669  if (isa<ArrayType>(T2) && T2Quals)
3670    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3671
3672  // C++ [dcl.init.ref]p4:
3673  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3674  //   reference-related to T2 and cv1 is the same cv-qualification
3675  //   as, or greater cv-qualification than, cv2. For purposes of
3676  //   overload resolution, cases for which cv1 is greater
3677  //   cv-qualification than cv2 are identified as
3678  //   reference-compatible with added qualification (see 13.3.3.2).
3679  //
3680  // Note that we also require equivalence of Objective-C GC and address-space
3681  // qualifiers when performing these computations, so that e.g., an int in
3682  // address space 1 is not reference-compatible with an int in address
3683  // space 2.
3684  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3685      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3686    T1Quals.removeObjCLifetime();
3687    T2Quals.removeObjCLifetime();
3688    ObjCLifetimeConversion = true;
3689  }
3690
3691  if (T1Quals == T2Quals)
3692    return Ref_Compatible;
3693  else if (T1Quals.compatiblyIncludes(T2Quals))
3694    return Ref_Compatible_With_Added_Qualification;
3695  else
3696    return Ref_Related;
3697}
3698
3699/// \brief Look for a user-defined conversion to an value reference-compatible
3700///        with DeclType. Return true if something definite is found.
3701static bool
3702FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3703                         QualType DeclType, SourceLocation DeclLoc,
3704                         Expr *Init, QualType T2, bool AllowRvalues,
3705                         bool AllowExplicit) {
3706  assert(T2->isRecordType() && "Can only find conversions of record types.");
3707  CXXRecordDecl *T2RecordDecl
3708    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3709
3710  OverloadCandidateSet CandidateSet(DeclLoc);
3711  const UnresolvedSetImpl *Conversions
3712    = T2RecordDecl->getVisibleConversionFunctions();
3713  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3714         E = Conversions->end(); I != E; ++I) {
3715    NamedDecl *D = *I;
3716    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3717    if (isa<UsingShadowDecl>(D))
3718      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3719
3720    FunctionTemplateDecl *ConvTemplate
3721      = dyn_cast<FunctionTemplateDecl>(D);
3722    CXXConversionDecl *Conv;
3723    if (ConvTemplate)
3724      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3725    else
3726      Conv = cast<CXXConversionDecl>(D);
3727
3728    // If this is an explicit conversion, and we're not allowed to consider
3729    // explicit conversions, skip it.
3730    if (!AllowExplicit && Conv->isExplicit())
3731      continue;
3732
3733    if (AllowRvalues) {
3734      bool DerivedToBase = false;
3735      bool ObjCConversion = false;
3736      bool ObjCLifetimeConversion = false;
3737
3738      // If we are initializing an rvalue reference, don't permit conversion
3739      // functions that return lvalues.
3740      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3741        const ReferenceType *RefType
3742          = Conv->getConversionType()->getAs<LValueReferenceType>();
3743        if (RefType && !RefType->getPointeeType()->isFunctionType())
3744          continue;
3745      }
3746
3747      if (!ConvTemplate &&
3748          S.CompareReferenceRelationship(
3749            DeclLoc,
3750            Conv->getConversionType().getNonReferenceType()
3751              .getUnqualifiedType(),
3752            DeclType.getNonReferenceType().getUnqualifiedType(),
3753            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3754          Sema::Ref_Incompatible)
3755        continue;
3756    } else {
3757      // If the conversion function doesn't return a reference type,
3758      // it can't be considered for this conversion. An rvalue reference
3759      // is only acceptable if its referencee is a function type.
3760
3761      const ReferenceType *RefType =
3762        Conv->getConversionType()->getAs<ReferenceType>();
3763      if (!RefType ||
3764          (!RefType->isLValueReferenceType() &&
3765           !RefType->getPointeeType()->isFunctionType()))
3766        continue;
3767    }
3768
3769    if (ConvTemplate)
3770      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3771                                       Init, DeclType, CandidateSet);
3772    else
3773      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3774                               DeclType, CandidateSet);
3775  }
3776
3777  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3778
3779  OverloadCandidateSet::iterator Best;
3780  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3781  case OR_Success:
3782    // C++ [over.ics.ref]p1:
3783    //
3784    //   [...] If the parameter binds directly to the result of
3785    //   applying a conversion function to the argument
3786    //   expression, the implicit conversion sequence is a
3787    //   user-defined conversion sequence (13.3.3.1.2), with the
3788    //   second standard conversion sequence either an identity
3789    //   conversion or, if the conversion function returns an
3790    //   entity of a type that is a derived class of the parameter
3791    //   type, a derived-to-base Conversion.
3792    if (!Best->FinalConversion.DirectBinding)
3793      return false;
3794
3795    if (Best->Function)
3796      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3797    ICS.setUserDefined();
3798    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3799    ICS.UserDefined.After = Best->FinalConversion;
3800    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
3801    ICS.UserDefined.ConversionFunction = Best->Function;
3802    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
3803    ICS.UserDefined.EllipsisConversion = false;
3804    assert(ICS.UserDefined.After.ReferenceBinding &&
3805           ICS.UserDefined.After.DirectBinding &&
3806           "Expected a direct reference binding!");
3807    return true;
3808
3809  case OR_Ambiguous:
3810    ICS.setAmbiguous();
3811    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3812         Cand != CandidateSet.end(); ++Cand)
3813      if (Cand->Viable)
3814        ICS.Ambiguous.addConversion(Cand->Function);
3815    return true;
3816
3817  case OR_No_Viable_Function:
3818  case OR_Deleted:
3819    // There was no suitable conversion, or we found a deleted
3820    // conversion; continue with other checks.
3821    return false;
3822  }
3823
3824  llvm_unreachable("Invalid OverloadResult!");
3825}
3826
3827/// \brief Compute an implicit conversion sequence for reference
3828/// initialization.
3829static ImplicitConversionSequence
3830TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
3831                 SourceLocation DeclLoc,
3832                 bool SuppressUserConversions,
3833                 bool AllowExplicit) {
3834  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3835
3836  // Most paths end in a failed conversion.
3837  ImplicitConversionSequence ICS;
3838  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3839
3840  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3841  QualType T2 = Init->getType();
3842
3843  // If the initializer is the address of an overloaded function, try
3844  // to resolve the overloaded function. If all goes well, T2 is the
3845  // type of the resulting function.
3846  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3847    DeclAccessPair Found;
3848    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3849                                                                false, Found))
3850      T2 = Fn->getType();
3851  }
3852
3853  // Compute some basic properties of the types and the initializer.
3854  bool isRValRef = DeclType->isRValueReferenceType();
3855  bool DerivedToBase = false;
3856  bool ObjCConversion = false;
3857  bool ObjCLifetimeConversion = false;
3858  Expr::Classification InitCategory = Init->Classify(S.Context);
3859  Sema::ReferenceCompareResult RefRelationship
3860    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3861                                     ObjCConversion, ObjCLifetimeConversion);
3862
3863
3864  // C++0x [dcl.init.ref]p5:
3865  //   A reference to type "cv1 T1" is initialized by an expression
3866  //   of type "cv2 T2" as follows:
3867
3868  //     -- If reference is an lvalue reference and the initializer expression
3869  if (!isRValRef) {
3870    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3871    //        reference-compatible with "cv2 T2," or
3872    //
3873    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3874    if (InitCategory.isLValue() &&
3875        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3876      // C++ [over.ics.ref]p1:
3877      //   When a parameter of reference type binds directly (8.5.3)
3878      //   to an argument expression, the implicit conversion sequence
3879      //   is the identity conversion, unless the argument expression
3880      //   has a type that is a derived class of the parameter type,
3881      //   in which case the implicit conversion sequence is a
3882      //   derived-to-base Conversion (13.3.3.1).
3883      ICS.setStandard();
3884      ICS.Standard.First = ICK_Identity;
3885      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3886                         : ObjCConversion? ICK_Compatible_Conversion
3887                         : ICK_Identity;
3888      ICS.Standard.Third = ICK_Identity;
3889      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3890      ICS.Standard.setToType(0, T2);
3891      ICS.Standard.setToType(1, T1);
3892      ICS.Standard.setToType(2, T1);
3893      ICS.Standard.ReferenceBinding = true;
3894      ICS.Standard.DirectBinding = true;
3895      ICS.Standard.IsLvalueReference = !isRValRef;
3896      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3897      ICS.Standard.BindsToRvalue = false;
3898      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3899      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3900      ICS.Standard.CopyConstructor = 0;
3901
3902      // Nothing more to do: the inaccessibility/ambiguity check for
3903      // derived-to-base conversions is suppressed when we're
3904      // computing the implicit conversion sequence (C++
3905      // [over.best.ics]p2).
3906      return ICS;
3907    }
3908
3909    //       -- has a class type (i.e., T2 is a class type), where T1 is
3910    //          not reference-related to T2, and can be implicitly
3911    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3912    //          is reference-compatible with "cv3 T3" 92) (this
3913    //          conversion is selected by enumerating the applicable
3914    //          conversion functions (13.3.1.6) and choosing the best
3915    //          one through overload resolution (13.3)),
3916    if (!SuppressUserConversions && T2->isRecordType() &&
3917        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3918        RefRelationship == Sema::Ref_Incompatible) {
3919      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3920                                   Init, T2, /*AllowRvalues=*/false,
3921                                   AllowExplicit))
3922        return ICS;
3923    }
3924  }
3925
3926  //     -- Otherwise, the reference shall be an lvalue reference to a
3927  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3928  //        shall be an rvalue reference.
3929  //
3930  // We actually handle one oddity of C++ [over.ics.ref] at this
3931  // point, which is that, due to p2 (which short-circuits reference
3932  // binding by only attempting a simple conversion for non-direct
3933  // bindings) and p3's strange wording, we allow a const volatile
3934  // reference to bind to an rvalue. Hence the check for the presence
3935  // of "const" rather than checking for "const" being the only
3936  // qualifier.
3937  // This is also the point where rvalue references and lvalue inits no longer
3938  // go together.
3939  if (!isRValRef && !T1.isConstQualified())
3940    return ICS;
3941
3942  //       -- If the initializer expression
3943  //
3944  //            -- is an xvalue, class prvalue, array prvalue or function
3945  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3946  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3947      (InitCategory.isXValue() ||
3948      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3949      (InitCategory.isLValue() && T2->isFunctionType()))) {
3950    ICS.setStandard();
3951    ICS.Standard.First = ICK_Identity;
3952    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3953                      : ObjCConversion? ICK_Compatible_Conversion
3954                      : ICK_Identity;
3955    ICS.Standard.Third = ICK_Identity;
3956    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3957    ICS.Standard.setToType(0, T2);
3958    ICS.Standard.setToType(1, T1);
3959    ICS.Standard.setToType(2, T1);
3960    ICS.Standard.ReferenceBinding = true;
3961    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3962    // binding unless we're binding to a class prvalue.
3963    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3964    // allow the use of rvalue references in C++98/03 for the benefit of
3965    // standard library implementors; therefore, we need the xvalue check here.
3966    ICS.Standard.DirectBinding =
3967      S.getLangOptions().CPlusPlus0x ||
3968      (InitCategory.isPRValue() && !T2->isRecordType());
3969    ICS.Standard.IsLvalueReference = !isRValRef;
3970    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3971    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3972    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3973    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3974    ICS.Standard.CopyConstructor = 0;
3975    return ICS;
3976  }
3977
3978  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3979  //               reference-related to T2, and can be implicitly converted to
3980  //               an xvalue, class prvalue, or function lvalue of type
3981  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3982  //               "cv3 T3",
3983  //
3984  //          then the reference is bound to the value of the initializer
3985  //          expression in the first case and to the result of the conversion
3986  //          in the second case (or, in either case, to an appropriate base
3987  //          class subobject).
3988  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3989      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3990      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3991                               Init, T2, /*AllowRvalues=*/true,
3992                               AllowExplicit)) {
3993    // In the second case, if the reference is an rvalue reference
3994    // and the second standard conversion sequence of the
3995    // user-defined conversion sequence includes an lvalue-to-rvalue
3996    // conversion, the program is ill-formed.
3997    if (ICS.isUserDefined() && isRValRef &&
3998        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3999      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4000
4001    return ICS;
4002  }
4003
4004  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4005  //          initialized from the initializer expression using the
4006  //          rules for a non-reference copy initialization (8.5). The
4007  //          reference is then bound to the temporary. If T1 is
4008  //          reference-related to T2, cv1 must be the same
4009  //          cv-qualification as, or greater cv-qualification than,
4010  //          cv2; otherwise, the program is ill-formed.
4011  if (RefRelationship == Sema::Ref_Related) {
4012    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4013    // we would be reference-compatible or reference-compatible with
4014    // added qualification. But that wasn't the case, so the reference
4015    // initialization fails.
4016    //
4017    // Note that we only want to check address spaces and cvr-qualifiers here.
4018    // ObjC GC and lifetime qualifiers aren't important.
4019    Qualifiers T1Quals = T1.getQualifiers();
4020    Qualifiers T2Quals = T2.getQualifiers();
4021    T1Quals.removeObjCGCAttr();
4022    T1Quals.removeObjCLifetime();
4023    T2Quals.removeObjCGCAttr();
4024    T2Quals.removeObjCLifetime();
4025    if (!T1Quals.compatiblyIncludes(T2Quals))
4026      return ICS;
4027  }
4028
4029  // If at least one of the types is a class type, the types are not
4030  // related, and we aren't allowed any user conversions, the
4031  // reference binding fails. This case is important for breaking
4032  // recursion, since TryImplicitConversion below will attempt to
4033  // create a temporary through the use of a copy constructor.
4034  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4035      (T1->isRecordType() || T2->isRecordType()))
4036    return ICS;
4037
4038  // If T1 is reference-related to T2 and the reference is an rvalue
4039  // reference, the initializer expression shall not be an lvalue.
4040  if (RefRelationship >= Sema::Ref_Related &&
4041      isRValRef && Init->Classify(S.Context).isLValue())
4042    return ICS;
4043
4044  // C++ [over.ics.ref]p2:
4045  //   When a parameter of reference type is not bound directly to
4046  //   an argument expression, the conversion sequence is the one
4047  //   required to convert the argument expression to the
4048  //   underlying type of the reference according to
4049  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4050  //   to copy-initializing a temporary of the underlying type with
4051  //   the argument expression. Any difference in top-level
4052  //   cv-qualification is subsumed by the initialization itself
4053  //   and does not constitute a conversion.
4054  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4055                              /*AllowExplicit=*/false,
4056                              /*InOverloadResolution=*/false,
4057                              /*CStyle=*/false,
4058                              /*AllowObjCWritebackConversion=*/false);
4059
4060  // Of course, that's still a reference binding.
4061  if (ICS.isStandard()) {
4062    ICS.Standard.ReferenceBinding = true;
4063    ICS.Standard.IsLvalueReference = !isRValRef;
4064    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4065    ICS.Standard.BindsToRvalue = true;
4066    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4067    ICS.Standard.ObjCLifetimeConversionBinding = false;
4068  } else if (ICS.isUserDefined()) {
4069    // Don't allow rvalue references to bind to lvalues.
4070    if (DeclType->isRValueReferenceType()) {
4071      if (const ReferenceType *RefType
4072            = ICS.UserDefined.ConversionFunction->getResultType()
4073                ->getAs<LValueReferenceType>()) {
4074        if (!RefType->getPointeeType()->isFunctionType()) {
4075          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4076                     DeclType);
4077          return ICS;
4078        }
4079      }
4080    }
4081
4082    ICS.UserDefined.After.ReferenceBinding = true;
4083    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4084    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4085    ICS.UserDefined.After.BindsToRvalue = true;
4086    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4087    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4088  }
4089
4090  return ICS;
4091}
4092
4093static ImplicitConversionSequence
4094TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4095                      bool SuppressUserConversions,
4096                      bool InOverloadResolution,
4097                      bool AllowObjCWritebackConversion);
4098
4099/// TryListConversion - Try to copy-initialize a value of type ToType from the
4100/// initializer list From.
4101static ImplicitConversionSequence
4102TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4103                  bool SuppressUserConversions,
4104                  bool InOverloadResolution,
4105                  bool AllowObjCWritebackConversion) {
4106  // C++11 [over.ics.list]p1:
4107  //   When an argument is an initializer list, it is not an expression and
4108  //   special rules apply for converting it to a parameter type.
4109
4110  ImplicitConversionSequence Result;
4111  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4112  Result.setListInitializationSequence();
4113
4114  // We need a complete type for what follows. Incomplete types can never be
4115  // initialized from init lists.
4116  if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()))
4117    return Result;
4118
4119  // C++11 [over.ics.list]p2:
4120  //   If the parameter type is std::initializer_list<X> or "array of X" and
4121  //   all the elements can be implicitly converted to X, the implicit
4122  //   conversion sequence is the worst conversion necessary to convert an
4123  //   element of the list to X.
4124  QualType X;
4125  if (ToType->isArrayType())
4126    X = S.Context.getBaseElementType(ToType);
4127  else
4128    (void)S.isStdInitializerList(ToType, &X);
4129  if (!X.isNull()) {
4130    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4131      Expr *Init = From->getInit(i);
4132      ImplicitConversionSequence ICS =
4133          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4134                                InOverloadResolution,
4135                                AllowObjCWritebackConversion);
4136      // If a single element isn't convertible, fail.
4137      if (ICS.isBad()) {
4138        Result = ICS;
4139        break;
4140      }
4141      // Otherwise, look for the worst conversion.
4142      if (Result.isBad() ||
4143          CompareImplicitConversionSequences(S, ICS, Result) ==
4144              ImplicitConversionSequence::Worse)
4145        Result = ICS;
4146    }
4147    Result.setListInitializationSequence();
4148    return Result;
4149  }
4150
4151  // C++11 [over.ics.list]p3:
4152  //   Otherwise, if the parameter is a non-aggregate class X and overload
4153  //   resolution chooses a single best constructor [...] the implicit
4154  //   conversion sequence is a user-defined conversion sequence. If multiple
4155  //   constructors are viable but none is better than the others, the
4156  //   implicit conversion sequence is a user-defined conversion sequence.
4157  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4158    // This function can deal with initializer lists.
4159    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4160                                      /*AllowExplicit=*/false,
4161                                      InOverloadResolution, /*CStyle=*/false,
4162                                      AllowObjCWritebackConversion);
4163    Result.setListInitializationSequence();
4164    return Result;
4165  }
4166
4167  // C++11 [over.ics.list]p4:
4168  //   Otherwise, if the parameter has an aggregate type which can be
4169  //   initialized from the initializer list [...] the implicit conversion
4170  //   sequence is a user-defined conversion sequence.
4171  if (ToType->isAggregateType()) {
4172    // Type is an aggregate, argument is an init list. At this point it comes
4173    // down to checking whether the initialization works.
4174    // FIXME: Find out whether this parameter is consumed or not.
4175    InitializedEntity Entity =
4176        InitializedEntity::InitializeParameter(S.Context, ToType,
4177                                               /*Consumed=*/false);
4178    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4179      Result.setUserDefined();
4180      Result.UserDefined.Before.setAsIdentityConversion();
4181      // Initializer lists don't have a type.
4182      Result.UserDefined.Before.setFromType(QualType());
4183      Result.UserDefined.Before.setAllToTypes(QualType());
4184
4185      Result.UserDefined.After.setAsIdentityConversion();
4186      Result.UserDefined.After.setFromType(ToType);
4187      Result.UserDefined.After.setAllToTypes(ToType);
4188    }
4189    return Result;
4190  }
4191
4192  // C++11 [over.ics.list]p5:
4193  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4194  if (ToType->isReferenceType()) {
4195    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4196    // mention initializer lists in any way. So we go by what list-
4197    // initialization would do and try to extrapolate from that.
4198
4199    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4200
4201    // If the initializer list has a single element that is reference-related
4202    // to the parameter type, we initialize the reference from that.
4203    if (From->getNumInits() == 1) {
4204      Expr *Init = From->getInit(0);
4205
4206      QualType T2 = Init->getType();
4207
4208      // If the initializer is the address of an overloaded function, try
4209      // to resolve the overloaded function. If all goes well, T2 is the
4210      // type of the resulting function.
4211      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4212        DeclAccessPair Found;
4213        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4214                                   Init, ToType, false, Found))
4215          T2 = Fn->getType();
4216      }
4217
4218      // Compute some basic properties of the types and the initializer.
4219      bool dummy1 = false;
4220      bool dummy2 = false;
4221      bool dummy3 = false;
4222      Sema::ReferenceCompareResult RefRelationship
4223        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4224                                         dummy2, dummy3);
4225
4226      if (RefRelationship >= Sema::Ref_Related)
4227        return TryReferenceInit(S, Init, ToType,
4228                                /*FIXME:*/From->getLocStart(),
4229                                SuppressUserConversions,
4230                                /*AllowExplicit=*/false);
4231    }
4232
4233    // Otherwise, we bind the reference to a temporary created from the
4234    // initializer list.
4235    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4236                               InOverloadResolution,
4237                               AllowObjCWritebackConversion);
4238    if (Result.isFailure())
4239      return Result;
4240    assert(!Result.isEllipsis() &&
4241           "Sub-initialization cannot result in ellipsis conversion.");
4242
4243    // Can we even bind to a temporary?
4244    if (ToType->isRValueReferenceType() ||
4245        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4246      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4247                                            Result.UserDefined.After;
4248      SCS.ReferenceBinding = true;
4249      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4250      SCS.BindsToRvalue = true;
4251      SCS.BindsToFunctionLvalue = false;
4252      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4253      SCS.ObjCLifetimeConversionBinding = false;
4254    } else
4255      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4256                    From, ToType);
4257    return Result;
4258  }
4259
4260  // C++11 [over.ics.list]p6:
4261  //   Otherwise, if the parameter type is not a class:
4262  if (!ToType->isRecordType()) {
4263    //    - if the initializer list has one element, the implicit conversion
4264    //      sequence is the one required to convert the element to the
4265    //      parameter type.
4266    unsigned NumInits = From->getNumInits();
4267    if (NumInits == 1)
4268      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4269                                     SuppressUserConversions,
4270                                     InOverloadResolution,
4271                                     AllowObjCWritebackConversion);
4272    //    - if the initializer list has no elements, the implicit conversion
4273    //      sequence is the identity conversion.
4274    else if (NumInits == 0) {
4275      Result.setStandard();
4276      Result.Standard.setAsIdentityConversion();
4277    }
4278    return Result;
4279  }
4280
4281  // C++11 [over.ics.list]p7:
4282  //   In all cases other than those enumerated above, no conversion is possible
4283  return Result;
4284}
4285
4286/// TryCopyInitialization - Try to copy-initialize a value of type
4287/// ToType from the expression From. Return the implicit conversion
4288/// sequence required to pass this argument, which may be a bad
4289/// conversion sequence (meaning that the argument cannot be passed to
4290/// a parameter of this type). If @p SuppressUserConversions, then we
4291/// do not permit any user-defined conversion sequences.
4292static ImplicitConversionSequence
4293TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4294                      bool SuppressUserConversions,
4295                      bool InOverloadResolution,
4296                      bool AllowObjCWritebackConversion) {
4297  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4298    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4299                             InOverloadResolution,AllowObjCWritebackConversion);
4300
4301  if (ToType->isReferenceType())
4302    return TryReferenceInit(S, From, ToType,
4303                            /*FIXME:*/From->getLocStart(),
4304                            SuppressUserConversions,
4305                            /*AllowExplicit=*/false);
4306
4307  return TryImplicitConversion(S, From, ToType,
4308                               SuppressUserConversions,
4309                               /*AllowExplicit=*/false,
4310                               InOverloadResolution,
4311                               /*CStyle=*/false,
4312                               AllowObjCWritebackConversion);
4313}
4314
4315static bool TryCopyInitialization(const CanQualType FromQTy,
4316                                  const CanQualType ToQTy,
4317                                  Sema &S,
4318                                  SourceLocation Loc,
4319                                  ExprValueKind FromVK) {
4320  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4321  ImplicitConversionSequence ICS =
4322    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4323
4324  return !ICS.isBad();
4325}
4326
4327/// TryObjectArgumentInitialization - Try to initialize the object
4328/// parameter of the given member function (@c Method) from the
4329/// expression @p From.
4330static ImplicitConversionSequence
4331TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4332                                Expr::Classification FromClassification,
4333                                CXXMethodDecl *Method,
4334                                CXXRecordDecl *ActingContext) {
4335  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4336  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4337  //                 const volatile object.
4338  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4339    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4340  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4341
4342  // Set up the conversion sequence as a "bad" conversion, to allow us
4343  // to exit early.
4344  ImplicitConversionSequence ICS;
4345
4346  // We need to have an object of class type.
4347  QualType FromType = OrigFromType;
4348  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4349    FromType = PT->getPointeeType();
4350
4351    // When we had a pointer, it's implicitly dereferenced, so we
4352    // better have an lvalue.
4353    assert(FromClassification.isLValue());
4354  }
4355
4356  assert(FromType->isRecordType());
4357
4358  // C++0x [over.match.funcs]p4:
4359  //   For non-static member functions, the type of the implicit object
4360  //   parameter is
4361  //
4362  //     - "lvalue reference to cv X" for functions declared without a
4363  //        ref-qualifier or with the & ref-qualifier
4364  //     - "rvalue reference to cv X" for functions declared with the &&
4365  //        ref-qualifier
4366  //
4367  // where X is the class of which the function is a member and cv is the
4368  // cv-qualification on the member function declaration.
4369  //
4370  // However, when finding an implicit conversion sequence for the argument, we
4371  // are not allowed to create temporaries or perform user-defined conversions
4372  // (C++ [over.match.funcs]p5). We perform a simplified version of
4373  // reference binding here, that allows class rvalues to bind to
4374  // non-constant references.
4375
4376  // First check the qualifiers.
4377  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4378  if (ImplicitParamType.getCVRQualifiers()
4379                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4380      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4381    ICS.setBad(BadConversionSequence::bad_qualifiers,
4382               OrigFromType, ImplicitParamType);
4383    return ICS;
4384  }
4385
4386  // Check that we have either the same type or a derived type. It
4387  // affects the conversion rank.
4388  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4389  ImplicitConversionKind SecondKind;
4390  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4391    SecondKind = ICK_Identity;
4392  } else if (S.IsDerivedFrom(FromType, ClassType))
4393    SecondKind = ICK_Derived_To_Base;
4394  else {
4395    ICS.setBad(BadConversionSequence::unrelated_class,
4396               FromType, ImplicitParamType);
4397    return ICS;
4398  }
4399
4400  // Check the ref-qualifier.
4401  switch (Method->getRefQualifier()) {
4402  case RQ_None:
4403    // Do nothing; we don't care about lvalueness or rvalueness.
4404    break;
4405
4406  case RQ_LValue:
4407    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4408      // non-const lvalue reference cannot bind to an rvalue
4409      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4410                 ImplicitParamType);
4411      return ICS;
4412    }
4413    break;
4414
4415  case RQ_RValue:
4416    if (!FromClassification.isRValue()) {
4417      // rvalue reference cannot bind to an lvalue
4418      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4419                 ImplicitParamType);
4420      return ICS;
4421    }
4422    break;
4423  }
4424
4425  // Success. Mark this as a reference binding.
4426  ICS.setStandard();
4427  ICS.Standard.setAsIdentityConversion();
4428  ICS.Standard.Second = SecondKind;
4429  ICS.Standard.setFromType(FromType);
4430  ICS.Standard.setAllToTypes(ImplicitParamType);
4431  ICS.Standard.ReferenceBinding = true;
4432  ICS.Standard.DirectBinding = true;
4433  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4434  ICS.Standard.BindsToFunctionLvalue = false;
4435  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4436  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4437    = (Method->getRefQualifier() == RQ_None);
4438  return ICS;
4439}
4440
4441/// PerformObjectArgumentInitialization - Perform initialization of
4442/// the implicit object parameter for the given Method with the given
4443/// expression.
4444ExprResult
4445Sema::PerformObjectArgumentInitialization(Expr *From,
4446                                          NestedNameSpecifier *Qualifier,
4447                                          NamedDecl *FoundDecl,
4448                                          CXXMethodDecl *Method) {
4449  QualType FromRecordType, DestType;
4450  QualType ImplicitParamRecordType  =
4451    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4452
4453  Expr::Classification FromClassification;
4454  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4455    FromRecordType = PT->getPointeeType();
4456    DestType = Method->getThisType(Context);
4457    FromClassification = Expr::Classification::makeSimpleLValue();
4458  } else {
4459    FromRecordType = From->getType();
4460    DestType = ImplicitParamRecordType;
4461    FromClassification = From->Classify(Context);
4462  }
4463
4464  // Note that we always use the true parent context when performing
4465  // the actual argument initialization.
4466  ImplicitConversionSequence ICS
4467    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4468                                      Method, Method->getParent());
4469  if (ICS.isBad()) {
4470    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4471      Qualifiers FromQs = FromRecordType.getQualifiers();
4472      Qualifiers ToQs = DestType.getQualifiers();
4473      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4474      if (CVR) {
4475        Diag(From->getSourceRange().getBegin(),
4476             diag::err_member_function_call_bad_cvr)
4477          << Method->getDeclName() << FromRecordType << (CVR - 1)
4478          << From->getSourceRange();
4479        Diag(Method->getLocation(), diag::note_previous_decl)
4480          << Method->getDeclName();
4481        return ExprError();
4482      }
4483    }
4484
4485    return Diag(From->getSourceRange().getBegin(),
4486                diag::err_implicit_object_parameter_init)
4487       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4488  }
4489
4490  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4491    ExprResult FromRes =
4492      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4493    if (FromRes.isInvalid())
4494      return ExprError();
4495    From = FromRes.take();
4496  }
4497
4498  if (!Context.hasSameType(From->getType(), DestType))
4499    From = ImpCastExprToType(From, DestType, CK_NoOp,
4500                             From->getValueKind()).take();
4501  return Owned(From);
4502}
4503
4504/// TryContextuallyConvertToBool - Attempt to contextually convert the
4505/// expression From to bool (C++0x [conv]p3).
4506static ImplicitConversionSequence
4507TryContextuallyConvertToBool(Sema &S, Expr *From) {
4508  // FIXME: This is pretty broken.
4509  return TryImplicitConversion(S, From, S.Context.BoolTy,
4510                               // FIXME: Are these flags correct?
4511                               /*SuppressUserConversions=*/false,
4512                               /*AllowExplicit=*/true,
4513                               /*InOverloadResolution=*/false,
4514                               /*CStyle=*/false,
4515                               /*AllowObjCWritebackConversion=*/false);
4516}
4517
4518/// PerformContextuallyConvertToBool - Perform a contextual conversion
4519/// of the expression From to bool (C++0x [conv]p3).
4520ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4521  if (checkPlaceholderForOverload(*this, From))
4522    return ExprError();
4523
4524  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4525  if (!ICS.isBad())
4526    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4527
4528  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4529    return Diag(From->getSourceRange().getBegin(),
4530                diag::err_typecheck_bool_condition)
4531                  << From->getType() << From->getSourceRange();
4532  return ExprError();
4533}
4534
4535/// Check that the specified conversion is permitted in a converted constant
4536/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4537/// is acceptable.
4538static bool CheckConvertedConstantConversions(Sema &S,
4539                                              StandardConversionSequence &SCS) {
4540  // Since we know that the target type is an integral or unscoped enumeration
4541  // type, most conversion kinds are impossible. All possible First and Third
4542  // conversions are fine.
4543  switch (SCS.Second) {
4544  case ICK_Identity:
4545  case ICK_Integral_Promotion:
4546  case ICK_Integral_Conversion:
4547    return true;
4548
4549  case ICK_Boolean_Conversion:
4550    // Conversion from an integral or unscoped enumeration type to bool is
4551    // classified as ICK_Boolean_Conversion, but it's also an integral
4552    // conversion, so it's permitted in a converted constant expression.
4553    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4554           SCS.getToType(2)->isBooleanType();
4555
4556  case ICK_Floating_Integral:
4557  case ICK_Complex_Real:
4558    return false;
4559
4560  case ICK_Lvalue_To_Rvalue:
4561  case ICK_Array_To_Pointer:
4562  case ICK_Function_To_Pointer:
4563  case ICK_NoReturn_Adjustment:
4564  case ICK_Qualification:
4565  case ICK_Compatible_Conversion:
4566  case ICK_Vector_Conversion:
4567  case ICK_Vector_Splat:
4568  case ICK_Derived_To_Base:
4569  case ICK_Pointer_Conversion:
4570  case ICK_Pointer_Member:
4571  case ICK_Block_Pointer_Conversion:
4572  case ICK_Writeback_Conversion:
4573  case ICK_Floating_Promotion:
4574  case ICK_Complex_Promotion:
4575  case ICK_Complex_Conversion:
4576  case ICK_Floating_Conversion:
4577  case ICK_TransparentUnionConversion:
4578    llvm_unreachable("unexpected second conversion kind");
4579
4580  case ICK_Num_Conversion_Kinds:
4581    break;
4582  }
4583
4584  llvm_unreachable("unknown conversion kind");
4585}
4586
4587/// CheckConvertedConstantExpression - Check that the expression From is a
4588/// converted constant expression of type T, perform the conversion and produce
4589/// the converted expression, per C++11 [expr.const]p3.
4590ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4591                                                  llvm::APSInt &Value,
4592                                                  CCEKind CCE) {
4593  assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4594  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4595
4596  if (checkPlaceholderForOverload(*this, From))
4597    return ExprError();
4598
4599  // C++11 [expr.const]p3 with proposed wording fixes:
4600  //  A converted constant expression of type T is a core constant expression,
4601  //  implicitly converted to a prvalue of type T, where the converted
4602  //  expression is a literal constant expression and the implicit conversion
4603  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4604  //  conversions, integral promotions, and integral conversions other than
4605  //  narrowing conversions.
4606  ImplicitConversionSequence ICS =
4607    TryImplicitConversion(From, T,
4608                          /*SuppressUserConversions=*/false,
4609                          /*AllowExplicit=*/false,
4610                          /*InOverloadResolution=*/false,
4611                          /*CStyle=*/false,
4612                          /*AllowObjcWritebackConversion=*/false);
4613  StandardConversionSequence *SCS = 0;
4614  switch (ICS.getKind()) {
4615  case ImplicitConversionSequence::StandardConversion:
4616    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4617      return Diag(From->getSourceRange().getBegin(),
4618                  diag::err_typecheck_converted_constant_expression_disallowed)
4619               << From->getType() << From->getSourceRange() << T;
4620    SCS = &ICS.Standard;
4621    break;
4622  case ImplicitConversionSequence::UserDefinedConversion:
4623    // We are converting from class type to an integral or enumeration type, so
4624    // the Before sequence must be trivial.
4625    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4626      return Diag(From->getSourceRange().getBegin(),
4627                  diag::err_typecheck_converted_constant_expression_disallowed)
4628               << From->getType() << From->getSourceRange() << T;
4629    SCS = &ICS.UserDefined.After;
4630    break;
4631  case ImplicitConversionSequence::AmbiguousConversion:
4632  case ImplicitConversionSequence::BadConversion:
4633    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4634      return Diag(From->getSourceRange().getBegin(),
4635                  diag::err_typecheck_converted_constant_expression)
4636                    << From->getType() << From->getSourceRange() << T;
4637    return ExprError();
4638
4639  case ImplicitConversionSequence::EllipsisConversion:
4640    llvm_unreachable("ellipsis conversion in converted constant expression");
4641  }
4642
4643  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4644  if (Result.isInvalid())
4645    return Result;
4646
4647  // Check for a narrowing implicit conversion.
4648  APValue PreNarrowingValue;
4649  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue)) {
4650  case NK_Variable_Narrowing:
4651    // Implicit conversion to a narrower type, and the value is not a constant
4652    // expression. We'll diagnose this in a moment.
4653  case NK_Not_Narrowing:
4654    break;
4655
4656  case NK_Constant_Narrowing:
4657    Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing)
4658      << CCE << /*Constant*/1
4659      << PreNarrowingValue.getAsString(Context, QualType()) << T;
4660    break;
4661
4662  case NK_Type_Narrowing:
4663    Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing)
4664      << CCE << /*Constant*/0 << From->getType() << T;
4665    break;
4666  }
4667
4668  // Check the expression is a constant expression.
4669  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4670  Expr::EvalResult Eval;
4671  Eval.Diag = &Notes;
4672
4673  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4674    // The expression can't be folded, so we can't keep it at this position in
4675    // the AST.
4676    Result = ExprError();
4677  } else if (Notes.empty()) {
4678    // It's a constant expression.
4679    Value = Eval.Val.getInt();
4680    return Result;
4681  }
4682
4683  // It's not a constant expression. Produce an appropriate diagnostic.
4684  if (Notes.size() == 1 &&
4685      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4686    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4687  else {
4688    Diag(From->getSourceRange().getBegin(), diag::err_expr_not_cce)
4689      << CCE << From->getSourceRange();
4690    for (unsigned I = 0; I < Notes.size(); ++I)
4691      Diag(Notes[I].first, Notes[I].second);
4692  }
4693  return ExprError();
4694}
4695
4696/// dropPointerConversions - If the given standard conversion sequence
4697/// involves any pointer conversions, remove them.  This may change
4698/// the result type of the conversion sequence.
4699static void dropPointerConversion(StandardConversionSequence &SCS) {
4700  if (SCS.Second == ICK_Pointer_Conversion) {
4701    SCS.Second = ICK_Identity;
4702    SCS.Third = ICK_Identity;
4703    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4704  }
4705}
4706
4707/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4708/// convert the expression From to an Objective-C pointer type.
4709static ImplicitConversionSequence
4710TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4711  // Do an implicit conversion to 'id'.
4712  QualType Ty = S.Context.getObjCIdType();
4713  ImplicitConversionSequence ICS
4714    = TryImplicitConversion(S, From, Ty,
4715                            // FIXME: Are these flags correct?
4716                            /*SuppressUserConversions=*/false,
4717                            /*AllowExplicit=*/true,
4718                            /*InOverloadResolution=*/false,
4719                            /*CStyle=*/false,
4720                            /*AllowObjCWritebackConversion=*/false);
4721
4722  // Strip off any final conversions to 'id'.
4723  switch (ICS.getKind()) {
4724  case ImplicitConversionSequence::BadConversion:
4725  case ImplicitConversionSequence::AmbiguousConversion:
4726  case ImplicitConversionSequence::EllipsisConversion:
4727    break;
4728
4729  case ImplicitConversionSequence::UserDefinedConversion:
4730    dropPointerConversion(ICS.UserDefined.After);
4731    break;
4732
4733  case ImplicitConversionSequence::StandardConversion:
4734    dropPointerConversion(ICS.Standard);
4735    break;
4736  }
4737
4738  return ICS;
4739}
4740
4741/// PerformContextuallyConvertToObjCPointer - Perform a contextual
4742/// conversion of the expression From to an Objective-C pointer type.
4743ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
4744  if (checkPlaceholderForOverload(*this, From))
4745    return ExprError();
4746
4747  QualType Ty = Context.getObjCIdType();
4748  ImplicitConversionSequence ICS =
4749    TryContextuallyConvertToObjCPointer(*this, From);
4750  if (!ICS.isBad())
4751    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
4752  return ExprError();
4753}
4754
4755/// \brief Attempt to convert the given expression to an integral or
4756/// enumeration type.
4757///
4758/// This routine will attempt to convert an expression of class type to an
4759/// integral or enumeration type, if that class type only has a single
4760/// conversion to an integral or enumeration type.
4761///
4762/// \param Loc The source location of the construct that requires the
4763/// conversion.
4764///
4765/// \param FromE The expression we're converting from.
4766///
4767/// \param NotIntDiag The diagnostic to be emitted if the expression does not
4768/// have integral or enumeration type.
4769///
4770/// \param IncompleteDiag The diagnostic to be emitted if the expression has
4771/// incomplete class type.
4772///
4773/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
4774/// explicit conversion function (because no implicit conversion functions
4775/// were available). This is a recovery mode.
4776///
4777/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
4778/// showing which conversion was picked.
4779///
4780/// \param AmbigDiag The diagnostic to be emitted if there is more than one
4781/// conversion function that could convert to integral or enumeration type.
4782///
4783/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
4784/// usable conversion function.
4785///
4786/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
4787/// function, which may be an extension in this case.
4788///
4789/// \returns The expression, converted to an integral or enumeration type if
4790/// successful.
4791ExprResult
4792Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
4793                                         const PartialDiagnostic &NotIntDiag,
4794                                       const PartialDiagnostic &IncompleteDiag,
4795                                     const PartialDiagnostic &ExplicitConvDiag,
4796                                     const PartialDiagnostic &ExplicitConvNote,
4797                                         const PartialDiagnostic &AmbigDiag,
4798                                         const PartialDiagnostic &AmbigNote,
4799                                         const PartialDiagnostic &ConvDiag) {
4800  // We can't perform any more checking for type-dependent expressions.
4801  if (From->isTypeDependent())
4802    return Owned(From);
4803
4804  // Process placeholders immediately.
4805  if (From->hasPlaceholderType()) {
4806    ExprResult result = CheckPlaceholderExpr(From);
4807    if (result.isInvalid()) return result;
4808    From = result.take();
4809  }
4810
4811  // If the expression already has integral or enumeration type, we're golden.
4812  QualType T = From->getType();
4813  if (T->isIntegralOrEnumerationType())
4814    return DefaultLvalueConversion(From);
4815
4816  // FIXME: Check for missing '()' if T is a function type?
4817
4818  // If we don't have a class type in C++, there's no way we can get an
4819  // expression of integral or enumeration type.
4820  const RecordType *RecordTy = T->getAs<RecordType>();
4821  if (!RecordTy || !getLangOptions().CPlusPlus) {
4822    Diag(Loc, NotIntDiag)
4823      << T << From->getSourceRange();
4824    return Owned(From);
4825  }
4826
4827  // We must have a complete class type.
4828  if (RequireCompleteType(Loc, T, IncompleteDiag))
4829    return Owned(From);
4830
4831  // Look for a conversion to an integral or enumeration type.
4832  UnresolvedSet<4> ViableConversions;
4833  UnresolvedSet<4> ExplicitConversions;
4834  const UnresolvedSetImpl *Conversions
4835    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
4836
4837  bool HadMultipleCandidates = (Conversions->size() > 1);
4838
4839  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4840                                   E = Conversions->end();
4841       I != E;
4842       ++I) {
4843    if (CXXConversionDecl *Conversion
4844          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
4845      if (Conversion->getConversionType().getNonReferenceType()
4846            ->isIntegralOrEnumerationType()) {
4847        if (Conversion->isExplicit())
4848          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
4849        else
4850          ViableConversions.addDecl(I.getDecl(), I.getAccess());
4851      }
4852  }
4853
4854  switch (ViableConversions.size()) {
4855  case 0:
4856    if (ExplicitConversions.size() == 1) {
4857      DeclAccessPair Found = ExplicitConversions[0];
4858      CXXConversionDecl *Conversion
4859        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4860
4861      // The user probably meant to invoke the given explicit
4862      // conversion; use it.
4863      QualType ConvTy
4864        = Conversion->getConversionType().getNonReferenceType();
4865      std::string TypeStr;
4866      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
4867
4868      Diag(Loc, ExplicitConvDiag)
4869        << T << ConvTy
4870        << FixItHint::CreateInsertion(From->getLocStart(),
4871                                      "static_cast<" + TypeStr + ">(")
4872        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
4873                                      ")");
4874      Diag(Conversion->getLocation(), ExplicitConvNote)
4875        << ConvTy->isEnumeralType() << ConvTy;
4876
4877      // If we aren't in a SFINAE context, build a call to the
4878      // explicit conversion function.
4879      if (isSFINAEContext())
4880        return ExprError();
4881
4882      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4883      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4884                                                 HadMultipleCandidates);
4885      if (Result.isInvalid())
4886        return ExprError();
4887      // Record usage of conversion in an implicit cast.
4888      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
4889                                      CK_UserDefinedConversion,
4890                                      Result.get(), 0,
4891                                      Result.get()->getValueKind());
4892    }
4893
4894    // We'll complain below about a non-integral condition type.
4895    break;
4896
4897  case 1: {
4898    // Apply this conversion.
4899    DeclAccessPair Found = ViableConversions[0];
4900    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4901
4902    CXXConversionDecl *Conversion
4903      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4904    QualType ConvTy
4905      = Conversion->getConversionType().getNonReferenceType();
4906    if (ConvDiag.getDiagID()) {
4907      if (isSFINAEContext())
4908        return ExprError();
4909
4910      Diag(Loc, ConvDiag)
4911        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4912    }
4913
4914    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4915                                               HadMultipleCandidates);
4916    if (Result.isInvalid())
4917      return ExprError();
4918    // Record usage of conversion in an implicit cast.
4919    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
4920                                    CK_UserDefinedConversion,
4921                                    Result.get(), 0,
4922                                    Result.get()->getValueKind());
4923    break;
4924  }
4925
4926  default:
4927    Diag(Loc, AmbigDiag)
4928      << T << From->getSourceRange();
4929    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4930      CXXConversionDecl *Conv
4931        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4932      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4933      Diag(Conv->getLocation(), AmbigNote)
4934        << ConvTy->isEnumeralType() << ConvTy;
4935    }
4936    return Owned(From);
4937  }
4938
4939  if (!From->getType()->isIntegralOrEnumerationType())
4940    Diag(Loc, NotIntDiag)
4941      << From->getType() << From->getSourceRange();
4942
4943  return DefaultLvalueConversion(From);
4944}
4945
4946/// AddOverloadCandidate - Adds the given function to the set of
4947/// candidate functions, using the given function call arguments.  If
4948/// @p SuppressUserConversions, then don't allow user-defined
4949/// conversions via constructors or conversion operators.
4950///
4951/// \para PartialOverloading true if we are performing "partial" overloading
4952/// based on an incomplete set of function arguments. This feature is used by
4953/// code completion.
4954void
4955Sema::AddOverloadCandidate(FunctionDecl *Function,
4956                           DeclAccessPair FoundDecl,
4957                           Expr **Args, unsigned NumArgs,
4958                           OverloadCandidateSet& CandidateSet,
4959                           bool SuppressUserConversions,
4960                           bool PartialOverloading) {
4961  const FunctionProtoType* Proto
4962    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4963  assert(Proto && "Functions without a prototype cannot be overloaded");
4964  assert(!Function->getDescribedFunctionTemplate() &&
4965         "Use AddTemplateOverloadCandidate for function templates");
4966
4967  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4968    if (!isa<CXXConstructorDecl>(Method)) {
4969      // If we get here, it's because we're calling a member function
4970      // that is named without a member access expression (e.g.,
4971      // "this->f") that was either written explicitly or created
4972      // implicitly. This can happen with a qualified call to a member
4973      // function, e.g., X::f(). We use an empty type for the implied
4974      // object argument (C++ [over.call.func]p3), and the acting context
4975      // is irrelevant.
4976      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
4977                         QualType(), Expr::Classification::makeSimpleLValue(),
4978                         Args, NumArgs, CandidateSet,
4979                         SuppressUserConversions);
4980      return;
4981    }
4982    // We treat a constructor like a non-member function, since its object
4983    // argument doesn't participate in overload resolution.
4984  }
4985
4986  if (!CandidateSet.isNewCandidate(Function))
4987    return;
4988
4989  // Overload resolution is always an unevaluated context.
4990  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4991
4992  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
4993    // C++ [class.copy]p3:
4994    //   A member function template is never instantiated to perform the copy
4995    //   of a class object to an object of its class type.
4996    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
4997    if (NumArgs == 1 &&
4998        Constructor->isSpecializationCopyingObject() &&
4999        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5000         IsDerivedFrom(Args[0]->getType(), ClassType)))
5001      return;
5002  }
5003
5004  // Add this candidate
5005  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5006  Candidate.FoundDecl = FoundDecl;
5007  Candidate.Function = Function;
5008  Candidate.Viable = true;
5009  Candidate.IsSurrogate = false;
5010  Candidate.IgnoreObjectArgument = false;
5011  Candidate.ExplicitCallArguments = NumArgs;
5012
5013  unsigned NumArgsInProto = Proto->getNumArgs();
5014
5015  // (C++ 13.3.2p2): A candidate function having fewer than m
5016  // parameters is viable only if it has an ellipsis in its parameter
5017  // list (8.3.5).
5018  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
5019      !Proto->isVariadic()) {
5020    Candidate.Viable = false;
5021    Candidate.FailureKind = ovl_fail_too_many_arguments;
5022    return;
5023  }
5024
5025  // (C++ 13.3.2p2): A candidate function having more than m parameters
5026  // is viable only if the (m+1)st parameter has a default argument
5027  // (8.3.6). For the purposes of overload resolution, the
5028  // parameter list is truncated on the right, so that there are
5029  // exactly m parameters.
5030  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5031  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
5032    // Not enough arguments.
5033    Candidate.Viable = false;
5034    Candidate.FailureKind = ovl_fail_too_few_arguments;
5035    return;
5036  }
5037
5038  // (CUDA B.1): Check for invalid calls between targets.
5039  if (getLangOptions().CUDA)
5040    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5041      if (CheckCUDATarget(Caller, Function)) {
5042        Candidate.Viable = false;
5043        Candidate.FailureKind = ovl_fail_bad_target;
5044        return;
5045      }
5046
5047  // Determine the implicit conversion sequences for each of the
5048  // arguments.
5049  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5050    if (ArgIdx < NumArgsInProto) {
5051      // (C++ 13.3.2p3): for F to be a viable function, there shall
5052      // exist for each argument an implicit conversion sequence
5053      // (13.3.3.1) that converts that argument to the corresponding
5054      // parameter of F.
5055      QualType ParamType = Proto->getArgType(ArgIdx);
5056      Candidate.Conversions[ArgIdx]
5057        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5058                                SuppressUserConversions,
5059                                /*InOverloadResolution=*/true,
5060                                /*AllowObjCWritebackConversion=*/
5061                                  getLangOptions().ObjCAutoRefCount);
5062      if (Candidate.Conversions[ArgIdx].isBad()) {
5063        Candidate.Viable = false;
5064        Candidate.FailureKind = ovl_fail_bad_conversion;
5065        break;
5066      }
5067    } else {
5068      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5069      // argument for which there is no corresponding parameter is
5070      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5071      Candidate.Conversions[ArgIdx].setEllipsis();
5072    }
5073  }
5074}
5075
5076/// \brief Add all of the function declarations in the given function set to
5077/// the overload canddiate set.
5078void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5079                                 Expr **Args, unsigned NumArgs,
5080                                 OverloadCandidateSet& CandidateSet,
5081                                 bool SuppressUserConversions) {
5082  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5083    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5084    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5085      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5086        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5087                           cast<CXXMethodDecl>(FD)->getParent(),
5088                           Args[0]->getType(), Args[0]->Classify(Context),
5089                           Args + 1, NumArgs - 1,
5090                           CandidateSet, SuppressUserConversions);
5091      else
5092        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
5093                             SuppressUserConversions);
5094    } else {
5095      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5096      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5097          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5098        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5099                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5100                                   /*FIXME: explicit args */ 0,
5101                                   Args[0]->getType(),
5102                                   Args[0]->Classify(Context),
5103                                   Args + 1, NumArgs - 1,
5104                                   CandidateSet,
5105                                   SuppressUserConversions);
5106      else
5107        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5108                                     /*FIXME: explicit args */ 0,
5109                                     Args, NumArgs, CandidateSet,
5110                                     SuppressUserConversions);
5111    }
5112  }
5113}
5114
5115/// AddMethodCandidate - Adds a named decl (which is some kind of
5116/// method) as a method candidate to the given overload set.
5117void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5118                              QualType ObjectType,
5119                              Expr::Classification ObjectClassification,
5120                              Expr **Args, unsigned NumArgs,
5121                              OverloadCandidateSet& CandidateSet,
5122                              bool SuppressUserConversions) {
5123  NamedDecl *Decl = FoundDecl.getDecl();
5124  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5125
5126  if (isa<UsingShadowDecl>(Decl))
5127    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5128
5129  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5130    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5131           "Expected a member function template");
5132    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5133                               /*ExplicitArgs*/ 0,
5134                               ObjectType, ObjectClassification, Args, NumArgs,
5135                               CandidateSet,
5136                               SuppressUserConversions);
5137  } else {
5138    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5139                       ObjectType, ObjectClassification, Args, NumArgs,
5140                       CandidateSet, SuppressUserConversions);
5141  }
5142}
5143
5144/// AddMethodCandidate - Adds the given C++ member function to the set
5145/// of candidate functions, using the given function call arguments
5146/// and the object argument (@c Object). For example, in a call
5147/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5148/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5149/// allow user-defined conversions via constructors or conversion
5150/// operators.
5151void
5152Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5153                         CXXRecordDecl *ActingContext, QualType ObjectType,
5154                         Expr::Classification ObjectClassification,
5155                         Expr **Args, unsigned NumArgs,
5156                         OverloadCandidateSet& CandidateSet,
5157                         bool SuppressUserConversions) {
5158  const FunctionProtoType* Proto
5159    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5160  assert(Proto && "Methods without a prototype cannot be overloaded");
5161  assert(!isa<CXXConstructorDecl>(Method) &&
5162         "Use AddOverloadCandidate for constructors");
5163
5164  if (!CandidateSet.isNewCandidate(Method))
5165    return;
5166
5167  // Overload resolution is always an unevaluated context.
5168  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5169
5170  // Add this candidate
5171  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1);
5172  Candidate.FoundDecl = FoundDecl;
5173  Candidate.Function = Method;
5174  Candidate.IsSurrogate = false;
5175  Candidate.IgnoreObjectArgument = false;
5176  Candidate.ExplicitCallArguments = NumArgs;
5177
5178  unsigned NumArgsInProto = Proto->getNumArgs();
5179
5180  // (C++ 13.3.2p2): A candidate function having fewer than m
5181  // parameters is viable only if it has an ellipsis in its parameter
5182  // list (8.3.5).
5183  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
5184    Candidate.Viable = false;
5185    Candidate.FailureKind = ovl_fail_too_many_arguments;
5186    return;
5187  }
5188
5189  // (C++ 13.3.2p2): A candidate function having more than m parameters
5190  // is viable only if the (m+1)st parameter has a default argument
5191  // (8.3.6). For the purposes of overload resolution, the
5192  // parameter list is truncated on the right, so that there are
5193  // exactly m parameters.
5194  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5195  if (NumArgs < MinRequiredArgs) {
5196    // Not enough arguments.
5197    Candidate.Viable = false;
5198    Candidate.FailureKind = ovl_fail_too_few_arguments;
5199    return;
5200  }
5201
5202  Candidate.Viable = true;
5203
5204  if (Method->isStatic() || ObjectType.isNull())
5205    // The implicit object argument is ignored.
5206    Candidate.IgnoreObjectArgument = true;
5207  else {
5208    // Determine the implicit conversion sequence for the object
5209    // parameter.
5210    Candidate.Conversions[0]
5211      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5212                                        Method, ActingContext);
5213    if (Candidate.Conversions[0].isBad()) {
5214      Candidate.Viable = false;
5215      Candidate.FailureKind = ovl_fail_bad_conversion;
5216      return;
5217    }
5218  }
5219
5220  // Determine the implicit conversion sequences for each of the
5221  // arguments.
5222  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5223    if (ArgIdx < NumArgsInProto) {
5224      // (C++ 13.3.2p3): for F to be a viable function, there shall
5225      // exist for each argument an implicit conversion sequence
5226      // (13.3.3.1) that converts that argument to the corresponding
5227      // parameter of F.
5228      QualType ParamType = Proto->getArgType(ArgIdx);
5229      Candidate.Conversions[ArgIdx + 1]
5230        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5231                                SuppressUserConversions,
5232                                /*InOverloadResolution=*/true,
5233                                /*AllowObjCWritebackConversion=*/
5234                                  getLangOptions().ObjCAutoRefCount);
5235      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5236        Candidate.Viable = false;
5237        Candidate.FailureKind = ovl_fail_bad_conversion;
5238        break;
5239      }
5240    } else {
5241      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5242      // argument for which there is no corresponding parameter is
5243      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5244      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5245    }
5246  }
5247}
5248
5249/// \brief Add a C++ member function template as a candidate to the candidate
5250/// set, using template argument deduction to produce an appropriate member
5251/// function template specialization.
5252void
5253Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5254                                 DeclAccessPair FoundDecl,
5255                                 CXXRecordDecl *ActingContext,
5256                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5257                                 QualType ObjectType,
5258                                 Expr::Classification ObjectClassification,
5259                                 Expr **Args, unsigned NumArgs,
5260                                 OverloadCandidateSet& CandidateSet,
5261                                 bool SuppressUserConversions) {
5262  if (!CandidateSet.isNewCandidate(MethodTmpl))
5263    return;
5264
5265  // C++ [over.match.funcs]p7:
5266  //   In each case where a candidate is a function template, candidate
5267  //   function template specializations are generated using template argument
5268  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5269  //   candidate functions in the usual way.113) A given name can refer to one
5270  //   or more function templates and also to a set of overloaded non-template
5271  //   functions. In such a case, the candidate functions generated from each
5272  //   function template are combined with the set of non-template candidate
5273  //   functions.
5274  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5275  FunctionDecl *Specialization = 0;
5276  if (TemplateDeductionResult Result
5277      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
5278                                Args, NumArgs, Specialization, Info)) {
5279    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5280    Candidate.FoundDecl = FoundDecl;
5281    Candidate.Function = MethodTmpl->getTemplatedDecl();
5282    Candidate.Viable = false;
5283    Candidate.FailureKind = ovl_fail_bad_deduction;
5284    Candidate.IsSurrogate = false;
5285    Candidate.IgnoreObjectArgument = false;
5286    Candidate.ExplicitCallArguments = NumArgs;
5287    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5288                                                          Info);
5289    return;
5290  }
5291
5292  // Add the function template specialization produced by template argument
5293  // deduction as a candidate.
5294  assert(Specialization && "Missing member function template specialization?");
5295  assert(isa<CXXMethodDecl>(Specialization) &&
5296         "Specialization is not a member function?");
5297  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5298                     ActingContext, ObjectType, ObjectClassification,
5299                     Args, NumArgs, CandidateSet, SuppressUserConversions);
5300}
5301
5302/// \brief Add a C++ function template specialization as a candidate
5303/// in the candidate set, using template argument deduction to produce
5304/// an appropriate function template specialization.
5305void
5306Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5307                                   DeclAccessPair FoundDecl,
5308                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5309                                   Expr **Args, unsigned NumArgs,
5310                                   OverloadCandidateSet& CandidateSet,
5311                                   bool SuppressUserConversions) {
5312  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5313    return;
5314
5315  // C++ [over.match.funcs]p7:
5316  //   In each case where a candidate is a function template, candidate
5317  //   function template specializations are generated using template argument
5318  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5319  //   candidate functions in the usual way.113) A given name can refer to one
5320  //   or more function templates and also to a set of overloaded non-template
5321  //   functions. In such a case, the candidate functions generated from each
5322  //   function template are combined with the set of non-template candidate
5323  //   functions.
5324  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5325  FunctionDecl *Specialization = 0;
5326  if (TemplateDeductionResult Result
5327        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5328                                  Args, NumArgs, Specialization, Info)) {
5329    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5330    Candidate.FoundDecl = FoundDecl;
5331    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5332    Candidate.Viable = false;
5333    Candidate.FailureKind = ovl_fail_bad_deduction;
5334    Candidate.IsSurrogate = false;
5335    Candidate.IgnoreObjectArgument = false;
5336    Candidate.ExplicitCallArguments = NumArgs;
5337    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5338                                                          Info);
5339    return;
5340  }
5341
5342  // Add the function template specialization produced by template argument
5343  // deduction as a candidate.
5344  assert(Specialization && "Missing function template specialization?");
5345  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
5346                       SuppressUserConversions);
5347}
5348
5349/// AddConversionCandidate - Add a C++ conversion function as a
5350/// candidate in the candidate set (C++ [over.match.conv],
5351/// C++ [over.match.copy]). From is the expression we're converting from,
5352/// and ToType is the type that we're eventually trying to convert to
5353/// (which may or may not be the same type as the type that the
5354/// conversion function produces).
5355void
5356Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5357                             DeclAccessPair FoundDecl,
5358                             CXXRecordDecl *ActingContext,
5359                             Expr *From, QualType ToType,
5360                             OverloadCandidateSet& CandidateSet) {
5361  assert(!Conversion->getDescribedFunctionTemplate() &&
5362         "Conversion function templates use AddTemplateConversionCandidate");
5363  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5364  if (!CandidateSet.isNewCandidate(Conversion))
5365    return;
5366
5367  // Overload resolution is always an unevaluated context.
5368  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5369
5370  // Add this candidate
5371  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5372  Candidate.FoundDecl = FoundDecl;
5373  Candidate.Function = Conversion;
5374  Candidate.IsSurrogate = false;
5375  Candidate.IgnoreObjectArgument = false;
5376  Candidate.FinalConversion.setAsIdentityConversion();
5377  Candidate.FinalConversion.setFromType(ConvType);
5378  Candidate.FinalConversion.setAllToTypes(ToType);
5379  Candidate.Viable = true;
5380  Candidate.ExplicitCallArguments = 1;
5381
5382  // C++ [over.match.funcs]p4:
5383  //   For conversion functions, the function is considered to be a member of
5384  //   the class of the implicit implied object argument for the purpose of
5385  //   defining the type of the implicit object parameter.
5386  //
5387  // Determine the implicit conversion sequence for the implicit
5388  // object parameter.
5389  QualType ImplicitParamType = From->getType();
5390  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5391    ImplicitParamType = FromPtrType->getPointeeType();
5392  CXXRecordDecl *ConversionContext
5393    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5394
5395  Candidate.Conversions[0]
5396    = TryObjectArgumentInitialization(*this, From->getType(),
5397                                      From->Classify(Context),
5398                                      Conversion, ConversionContext);
5399
5400  if (Candidate.Conversions[0].isBad()) {
5401    Candidate.Viable = false;
5402    Candidate.FailureKind = ovl_fail_bad_conversion;
5403    return;
5404  }
5405
5406  // We won't go through a user-define type conversion function to convert a
5407  // derived to base as such conversions are given Conversion Rank. They only
5408  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5409  QualType FromCanon
5410    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5411  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5412  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5413    Candidate.Viable = false;
5414    Candidate.FailureKind = ovl_fail_trivial_conversion;
5415    return;
5416  }
5417
5418  // To determine what the conversion from the result of calling the
5419  // conversion function to the type we're eventually trying to
5420  // convert to (ToType), we need to synthesize a call to the
5421  // conversion function and attempt copy initialization from it. This
5422  // makes sure that we get the right semantics with respect to
5423  // lvalues/rvalues and the type. Fortunately, we can allocate this
5424  // call on the stack and we don't need its arguments to be
5425  // well-formed.
5426  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
5427                            VK_LValue, From->getLocStart());
5428  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5429                                Context.getPointerType(Conversion->getType()),
5430                                CK_FunctionToPointerDecay,
5431                                &ConversionRef, VK_RValue);
5432
5433  QualType ConversionType = Conversion->getConversionType();
5434  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5435    Candidate.Viable = false;
5436    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5437    return;
5438  }
5439
5440  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5441
5442  // Note that it is safe to allocate CallExpr on the stack here because
5443  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5444  // allocator).
5445  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5446  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
5447                From->getLocStart());
5448  ImplicitConversionSequence ICS =
5449    TryCopyInitialization(*this, &Call, ToType,
5450                          /*SuppressUserConversions=*/true,
5451                          /*InOverloadResolution=*/false,
5452                          /*AllowObjCWritebackConversion=*/false);
5453
5454  switch (ICS.getKind()) {
5455  case ImplicitConversionSequence::StandardConversion:
5456    Candidate.FinalConversion = ICS.Standard;
5457
5458    // C++ [over.ics.user]p3:
5459    //   If the user-defined conversion is specified by a specialization of a
5460    //   conversion function template, the second standard conversion sequence
5461    //   shall have exact match rank.
5462    if (Conversion->getPrimaryTemplate() &&
5463        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5464      Candidate.Viable = false;
5465      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5466    }
5467
5468    // C++0x [dcl.init.ref]p5:
5469    //    In the second case, if the reference is an rvalue reference and
5470    //    the second standard conversion sequence of the user-defined
5471    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5472    //    program is ill-formed.
5473    if (ToType->isRValueReferenceType() &&
5474        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5475      Candidate.Viable = false;
5476      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5477    }
5478    break;
5479
5480  case ImplicitConversionSequence::BadConversion:
5481    Candidate.Viable = false;
5482    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5483    break;
5484
5485  default:
5486    llvm_unreachable(
5487           "Can only end up with a standard conversion sequence or failure");
5488  }
5489}
5490
5491/// \brief Adds a conversion function template specialization
5492/// candidate to the overload set, using template argument deduction
5493/// to deduce the template arguments of the conversion function
5494/// template from the type that we are converting to (C++
5495/// [temp.deduct.conv]).
5496void
5497Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5498                                     DeclAccessPair FoundDecl,
5499                                     CXXRecordDecl *ActingDC,
5500                                     Expr *From, QualType ToType,
5501                                     OverloadCandidateSet &CandidateSet) {
5502  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5503         "Only conversion function templates permitted here");
5504
5505  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5506    return;
5507
5508  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5509  CXXConversionDecl *Specialization = 0;
5510  if (TemplateDeductionResult Result
5511        = DeduceTemplateArguments(FunctionTemplate, ToType,
5512                                  Specialization, Info)) {
5513    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5514    Candidate.FoundDecl = FoundDecl;
5515    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5516    Candidate.Viable = false;
5517    Candidate.FailureKind = ovl_fail_bad_deduction;
5518    Candidate.IsSurrogate = false;
5519    Candidate.IgnoreObjectArgument = false;
5520    Candidate.ExplicitCallArguments = 1;
5521    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5522                                                          Info);
5523    return;
5524  }
5525
5526  // Add the conversion function template specialization produced by
5527  // template argument deduction as a candidate.
5528  assert(Specialization && "Missing function template specialization?");
5529  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5530                         CandidateSet);
5531}
5532
5533/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5534/// converts the given @c Object to a function pointer via the
5535/// conversion function @c Conversion, and then attempts to call it
5536/// with the given arguments (C++ [over.call.object]p2-4). Proto is
5537/// the type of function that we'll eventually be calling.
5538void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5539                                 DeclAccessPair FoundDecl,
5540                                 CXXRecordDecl *ActingContext,
5541                                 const FunctionProtoType *Proto,
5542                                 Expr *Object,
5543                                 Expr **Args, unsigned NumArgs,
5544                                 OverloadCandidateSet& CandidateSet) {
5545  if (!CandidateSet.isNewCandidate(Conversion))
5546    return;
5547
5548  // Overload resolution is always an unevaluated context.
5549  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5550
5551  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1);
5552  Candidate.FoundDecl = FoundDecl;
5553  Candidate.Function = 0;
5554  Candidate.Surrogate = Conversion;
5555  Candidate.Viable = true;
5556  Candidate.IsSurrogate = true;
5557  Candidate.IgnoreObjectArgument = false;
5558  Candidate.ExplicitCallArguments = NumArgs;
5559
5560  // Determine the implicit conversion sequence for the implicit
5561  // object parameter.
5562  ImplicitConversionSequence ObjectInit
5563    = TryObjectArgumentInitialization(*this, Object->getType(),
5564                                      Object->Classify(Context),
5565                                      Conversion, ActingContext);
5566  if (ObjectInit.isBad()) {
5567    Candidate.Viable = false;
5568    Candidate.FailureKind = ovl_fail_bad_conversion;
5569    Candidate.Conversions[0] = ObjectInit;
5570    return;
5571  }
5572
5573  // The first conversion is actually a user-defined conversion whose
5574  // first conversion is ObjectInit's standard conversion (which is
5575  // effectively a reference binding). Record it as such.
5576  Candidate.Conversions[0].setUserDefined();
5577  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5578  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5579  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5580  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5581  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5582  Candidate.Conversions[0].UserDefined.After
5583    = Candidate.Conversions[0].UserDefined.Before;
5584  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5585
5586  // Find the
5587  unsigned NumArgsInProto = Proto->getNumArgs();
5588
5589  // (C++ 13.3.2p2): A candidate function having fewer than m
5590  // parameters is viable only if it has an ellipsis in its parameter
5591  // list (8.3.5).
5592  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
5593    Candidate.Viable = false;
5594    Candidate.FailureKind = ovl_fail_too_many_arguments;
5595    return;
5596  }
5597
5598  // Function types don't have any default arguments, so just check if
5599  // we have enough arguments.
5600  if (NumArgs < NumArgsInProto) {
5601    // Not enough arguments.
5602    Candidate.Viable = false;
5603    Candidate.FailureKind = ovl_fail_too_few_arguments;
5604    return;
5605  }
5606
5607  // Determine the implicit conversion sequences for each of the
5608  // arguments.
5609  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5610    if (ArgIdx < NumArgsInProto) {
5611      // (C++ 13.3.2p3): for F to be a viable function, there shall
5612      // exist for each argument an implicit conversion sequence
5613      // (13.3.3.1) that converts that argument to the corresponding
5614      // parameter of F.
5615      QualType ParamType = Proto->getArgType(ArgIdx);
5616      Candidate.Conversions[ArgIdx + 1]
5617        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5618                                /*SuppressUserConversions=*/false,
5619                                /*InOverloadResolution=*/false,
5620                                /*AllowObjCWritebackConversion=*/
5621                                  getLangOptions().ObjCAutoRefCount);
5622      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5623        Candidate.Viable = false;
5624        Candidate.FailureKind = ovl_fail_bad_conversion;
5625        break;
5626      }
5627    } else {
5628      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5629      // argument for which there is no corresponding parameter is
5630      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5631      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5632    }
5633  }
5634}
5635
5636/// \brief Add overload candidates for overloaded operators that are
5637/// member functions.
5638///
5639/// Add the overloaded operator candidates that are member functions
5640/// for the operator Op that was used in an operator expression such
5641/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5642/// CandidateSet will store the added overload candidates. (C++
5643/// [over.match.oper]).
5644void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5645                                       SourceLocation OpLoc,
5646                                       Expr **Args, unsigned NumArgs,
5647                                       OverloadCandidateSet& CandidateSet,
5648                                       SourceRange OpRange) {
5649  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5650
5651  // C++ [over.match.oper]p3:
5652  //   For a unary operator @ with an operand of a type whose
5653  //   cv-unqualified version is T1, and for a binary operator @ with
5654  //   a left operand of a type whose cv-unqualified version is T1 and
5655  //   a right operand of a type whose cv-unqualified version is T2,
5656  //   three sets of candidate functions, designated member
5657  //   candidates, non-member candidates and built-in candidates, are
5658  //   constructed as follows:
5659  QualType T1 = Args[0]->getType();
5660
5661  //     -- If T1 is a class type, the set of member candidates is the
5662  //        result of the qualified lookup of T1::operator@
5663  //        (13.3.1.1.1); otherwise, the set of member candidates is
5664  //        empty.
5665  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5666    // Complete the type if it can be completed. Otherwise, we're done.
5667    if (RequireCompleteType(OpLoc, T1, PDiag()))
5668      return;
5669
5670    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5671    LookupQualifiedName(Operators, T1Rec->getDecl());
5672    Operators.suppressDiagnostics();
5673
5674    for (LookupResult::iterator Oper = Operators.begin(),
5675                             OperEnd = Operators.end();
5676         Oper != OperEnd;
5677         ++Oper)
5678      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5679                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5680                         CandidateSet,
5681                         /* SuppressUserConversions = */ false);
5682  }
5683}
5684
5685/// AddBuiltinCandidate - Add a candidate for a built-in
5686/// operator. ResultTy and ParamTys are the result and parameter types
5687/// of the built-in candidate, respectively. Args and NumArgs are the
5688/// arguments being passed to the candidate. IsAssignmentOperator
5689/// should be true when this built-in candidate is an assignment
5690/// operator. NumContextualBoolArguments is the number of arguments
5691/// (at the beginning of the argument list) that will be contextually
5692/// converted to bool.
5693void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5694                               Expr **Args, unsigned NumArgs,
5695                               OverloadCandidateSet& CandidateSet,
5696                               bool IsAssignmentOperator,
5697                               unsigned NumContextualBoolArguments) {
5698  // Overload resolution is always an unevaluated context.
5699  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5700
5701  // Add this candidate
5702  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5703  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5704  Candidate.Function = 0;
5705  Candidate.IsSurrogate = false;
5706  Candidate.IgnoreObjectArgument = false;
5707  Candidate.BuiltinTypes.ResultTy = ResultTy;
5708  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5709    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5710
5711  // Determine the implicit conversion sequences for each of the
5712  // arguments.
5713  Candidate.Viable = true;
5714  Candidate.ExplicitCallArguments = NumArgs;
5715  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5716    // C++ [over.match.oper]p4:
5717    //   For the built-in assignment operators, conversions of the
5718    //   left operand are restricted as follows:
5719    //     -- no temporaries are introduced to hold the left operand, and
5720    //     -- no user-defined conversions are applied to the left
5721    //        operand to achieve a type match with the left-most
5722    //        parameter of a built-in candidate.
5723    //
5724    // We block these conversions by turning off user-defined
5725    // conversions, since that is the only way that initialization of
5726    // a reference to a non-class type can occur from something that
5727    // is not of the same type.
5728    if (ArgIdx < NumContextualBoolArguments) {
5729      assert(ParamTys[ArgIdx] == Context.BoolTy &&
5730             "Contextual conversion to bool requires bool type");
5731      Candidate.Conversions[ArgIdx]
5732        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
5733    } else {
5734      Candidate.Conversions[ArgIdx]
5735        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
5736                                ArgIdx == 0 && IsAssignmentOperator,
5737                                /*InOverloadResolution=*/false,
5738                                /*AllowObjCWritebackConversion=*/
5739                                  getLangOptions().ObjCAutoRefCount);
5740    }
5741    if (Candidate.Conversions[ArgIdx].isBad()) {
5742      Candidate.Viable = false;
5743      Candidate.FailureKind = ovl_fail_bad_conversion;
5744      break;
5745    }
5746  }
5747}
5748
5749/// BuiltinCandidateTypeSet - A set of types that will be used for the
5750/// candidate operator functions for built-in operators (C++
5751/// [over.built]). The types are separated into pointer types and
5752/// enumeration types.
5753class BuiltinCandidateTypeSet  {
5754  /// TypeSet - A set of types.
5755  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
5756
5757  /// PointerTypes - The set of pointer types that will be used in the
5758  /// built-in candidates.
5759  TypeSet PointerTypes;
5760
5761  /// MemberPointerTypes - The set of member pointer types that will be
5762  /// used in the built-in candidates.
5763  TypeSet MemberPointerTypes;
5764
5765  /// EnumerationTypes - The set of enumeration types that will be
5766  /// used in the built-in candidates.
5767  TypeSet EnumerationTypes;
5768
5769  /// \brief The set of vector types that will be used in the built-in
5770  /// candidates.
5771  TypeSet VectorTypes;
5772
5773  /// \brief A flag indicating non-record types are viable candidates
5774  bool HasNonRecordTypes;
5775
5776  /// \brief A flag indicating whether either arithmetic or enumeration types
5777  /// were present in the candidate set.
5778  bool HasArithmeticOrEnumeralTypes;
5779
5780  /// \brief A flag indicating whether the nullptr type was present in the
5781  /// candidate set.
5782  bool HasNullPtrType;
5783
5784  /// Sema - The semantic analysis instance where we are building the
5785  /// candidate type set.
5786  Sema &SemaRef;
5787
5788  /// Context - The AST context in which we will build the type sets.
5789  ASTContext &Context;
5790
5791  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5792                                               const Qualifiers &VisibleQuals);
5793  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
5794
5795public:
5796  /// iterator - Iterates through the types that are part of the set.
5797  typedef TypeSet::iterator iterator;
5798
5799  BuiltinCandidateTypeSet(Sema &SemaRef)
5800    : HasNonRecordTypes(false),
5801      HasArithmeticOrEnumeralTypes(false),
5802      HasNullPtrType(false),
5803      SemaRef(SemaRef),
5804      Context(SemaRef.Context) { }
5805
5806  void AddTypesConvertedFrom(QualType Ty,
5807                             SourceLocation Loc,
5808                             bool AllowUserConversions,
5809                             bool AllowExplicitConversions,
5810                             const Qualifiers &VisibleTypeConversionsQuals);
5811
5812  /// pointer_begin - First pointer type found;
5813  iterator pointer_begin() { return PointerTypes.begin(); }
5814
5815  /// pointer_end - Past the last pointer type found;
5816  iterator pointer_end() { return PointerTypes.end(); }
5817
5818  /// member_pointer_begin - First member pointer type found;
5819  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
5820
5821  /// member_pointer_end - Past the last member pointer type found;
5822  iterator member_pointer_end() { return MemberPointerTypes.end(); }
5823
5824  /// enumeration_begin - First enumeration type found;
5825  iterator enumeration_begin() { return EnumerationTypes.begin(); }
5826
5827  /// enumeration_end - Past the last enumeration type found;
5828  iterator enumeration_end() { return EnumerationTypes.end(); }
5829
5830  iterator vector_begin() { return VectorTypes.begin(); }
5831  iterator vector_end() { return VectorTypes.end(); }
5832
5833  bool hasNonRecordTypes() { return HasNonRecordTypes; }
5834  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
5835  bool hasNullPtrType() const { return HasNullPtrType; }
5836};
5837
5838/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
5839/// the set of pointer types along with any more-qualified variants of
5840/// that type. For example, if @p Ty is "int const *", this routine
5841/// will add "int const *", "int const volatile *", "int const
5842/// restrict *", and "int const volatile restrict *" to the set of
5843/// pointer types. Returns true if the add of @p Ty itself succeeded,
5844/// false otherwise.
5845///
5846/// FIXME: what to do about extended qualifiers?
5847bool
5848BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5849                                             const Qualifiers &VisibleQuals) {
5850
5851  // Insert this type.
5852  if (!PointerTypes.insert(Ty))
5853    return false;
5854
5855  QualType PointeeTy;
5856  const PointerType *PointerTy = Ty->getAs<PointerType>();
5857  bool buildObjCPtr = false;
5858  if (!PointerTy) {
5859    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
5860      PointeeTy = PTy->getPointeeType();
5861      buildObjCPtr = true;
5862    }
5863    else
5864      llvm_unreachable("type was not a pointer type!");
5865  }
5866  else
5867    PointeeTy = PointerTy->getPointeeType();
5868
5869  // Don't add qualified variants of arrays. For one, they're not allowed
5870  // (the qualifier would sink to the element type), and for another, the
5871  // only overload situation where it matters is subscript or pointer +- int,
5872  // and those shouldn't have qualifier variants anyway.
5873  if (PointeeTy->isArrayType())
5874    return true;
5875  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5876  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
5877    BaseCVR = Array->getElementType().getCVRQualifiers();
5878  bool hasVolatile = VisibleQuals.hasVolatile();
5879  bool hasRestrict = VisibleQuals.hasRestrict();
5880
5881  // Iterate through all strict supersets of BaseCVR.
5882  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5883    if ((CVR | BaseCVR) != CVR) continue;
5884    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
5885    // in the types.
5886    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
5887    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5888    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5889    if (!buildObjCPtr)
5890      PointerTypes.insert(Context.getPointerType(QPointeeTy));
5891    else
5892      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5893  }
5894
5895  return true;
5896}
5897
5898/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5899/// to the set of pointer types along with any more-qualified variants of
5900/// that type. For example, if @p Ty is "int const *", this routine
5901/// will add "int const *", "int const volatile *", "int const
5902/// restrict *", and "int const volatile restrict *" to the set of
5903/// pointer types. Returns true if the add of @p Ty itself succeeded,
5904/// false otherwise.
5905///
5906/// FIXME: what to do about extended qualifiers?
5907bool
5908BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5909    QualType Ty) {
5910  // Insert this type.
5911  if (!MemberPointerTypes.insert(Ty))
5912    return false;
5913
5914  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5915  assert(PointerTy && "type was not a member pointer type!");
5916
5917  QualType PointeeTy = PointerTy->getPointeeType();
5918  // Don't add qualified variants of arrays. For one, they're not allowed
5919  // (the qualifier would sink to the element type), and for another, the
5920  // only overload situation where it matters is subscript or pointer +- int,
5921  // and those shouldn't have qualifier variants anyway.
5922  if (PointeeTy->isArrayType())
5923    return true;
5924  const Type *ClassTy = PointerTy->getClass();
5925
5926  // Iterate through all strict supersets of the pointee type's CVR
5927  // qualifiers.
5928  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5929  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5930    if ((CVR | BaseCVR) != CVR) continue;
5931
5932    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5933    MemberPointerTypes.insert(
5934      Context.getMemberPointerType(QPointeeTy, ClassTy));
5935  }
5936
5937  return true;
5938}
5939
5940/// AddTypesConvertedFrom - Add each of the types to which the type @p
5941/// Ty can be implicit converted to the given set of @p Types. We're
5942/// primarily interested in pointer types and enumeration types. We also
5943/// take member pointer types, for the conditional operator.
5944/// AllowUserConversions is true if we should look at the conversion
5945/// functions of a class type, and AllowExplicitConversions if we
5946/// should also include the explicit conversion functions of a class
5947/// type.
5948void
5949BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5950                                               SourceLocation Loc,
5951                                               bool AllowUserConversions,
5952                                               bool AllowExplicitConversions,
5953                                               const Qualifiers &VisibleQuals) {
5954  // Only deal with canonical types.
5955  Ty = Context.getCanonicalType(Ty);
5956
5957  // Look through reference types; they aren't part of the type of an
5958  // expression for the purposes of conversions.
5959  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5960    Ty = RefTy->getPointeeType();
5961
5962  // If we're dealing with an array type, decay to the pointer.
5963  if (Ty->isArrayType())
5964    Ty = SemaRef.Context.getArrayDecayedType(Ty);
5965
5966  // Otherwise, we don't care about qualifiers on the type.
5967  Ty = Ty.getLocalUnqualifiedType();
5968
5969  // Flag if we ever add a non-record type.
5970  const RecordType *TyRec = Ty->getAs<RecordType>();
5971  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5972
5973  // Flag if we encounter an arithmetic type.
5974  HasArithmeticOrEnumeralTypes =
5975    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
5976
5977  if (Ty->isObjCIdType() || Ty->isObjCClassType())
5978    PointerTypes.insert(Ty);
5979  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
5980    // Insert our type, and its more-qualified variants, into the set
5981    // of types.
5982    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
5983      return;
5984  } else if (Ty->isMemberPointerType()) {
5985    // Member pointers are far easier, since the pointee can't be converted.
5986    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
5987      return;
5988  } else if (Ty->isEnumeralType()) {
5989    HasArithmeticOrEnumeralTypes = true;
5990    EnumerationTypes.insert(Ty);
5991  } else if (Ty->isVectorType()) {
5992    // We treat vector types as arithmetic types in many contexts as an
5993    // extension.
5994    HasArithmeticOrEnumeralTypes = true;
5995    VectorTypes.insert(Ty);
5996  } else if (Ty->isNullPtrType()) {
5997    HasNullPtrType = true;
5998  } else if (AllowUserConversions && TyRec) {
5999    // No conversion functions in incomplete types.
6000    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6001      return;
6002
6003    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6004    const UnresolvedSetImpl *Conversions
6005      = ClassDecl->getVisibleConversionFunctions();
6006    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6007           E = Conversions->end(); I != E; ++I) {
6008      NamedDecl *D = I.getDecl();
6009      if (isa<UsingShadowDecl>(D))
6010        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6011
6012      // Skip conversion function templates; they don't tell us anything
6013      // about which builtin types we can convert to.
6014      if (isa<FunctionTemplateDecl>(D))
6015        continue;
6016
6017      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6018      if (AllowExplicitConversions || !Conv->isExplicit()) {
6019        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6020                              VisibleQuals);
6021      }
6022    }
6023  }
6024}
6025
6026/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6027/// the volatile- and non-volatile-qualified assignment operators for the
6028/// given type to the candidate set.
6029static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6030                                                   QualType T,
6031                                                   Expr **Args,
6032                                                   unsigned NumArgs,
6033                                    OverloadCandidateSet &CandidateSet) {
6034  QualType ParamTypes[2];
6035
6036  // T& operator=(T&, T)
6037  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6038  ParamTypes[1] = T;
6039  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6040                        /*IsAssignmentOperator=*/true);
6041
6042  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6043    // volatile T& operator=(volatile T&, T)
6044    ParamTypes[0]
6045      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6046    ParamTypes[1] = T;
6047    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6048                          /*IsAssignmentOperator=*/true);
6049  }
6050}
6051
6052/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6053/// if any, found in visible type conversion functions found in ArgExpr's type.
6054static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6055    Qualifiers VRQuals;
6056    const RecordType *TyRec;
6057    if (const MemberPointerType *RHSMPType =
6058        ArgExpr->getType()->getAs<MemberPointerType>())
6059      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6060    else
6061      TyRec = ArgExpr->getType()->getAs<RecordType>();
6062    if (!TyRec) {
6063      // Just to be safe, assume the worst case.
6064      VRQuals.addVolatile();
6065      VRQuals.addRestrict();
6066      return VRQuals;
6067    }
6068
6069    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6070    if (!ClassDecl->hasDefinition())
6071      return VRQuals;
6072
6073    const UnresolvedSetImpl *Conversions =
6074      ClassDecl->getVisibleConversionFunctions();
6075
6076    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6077           E = Conversions->end(); I != E; ++I) {
6078      NamedDecl *D = I.getDecl();
6079      if (isa<UsingShadowDecl>(D))
6080        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6081      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6082        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6083        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6084          CanTy = ResTypeRef->getPointeeType();
6085        // Need to go down the pointer/mempointer chain and add qualifiers
6086        // as see them.
6087        bool done = false;
6088        while (!done) {
6089          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6090            CanTy = ResTypePtr->getPointeeType();
6091          else if (const MemberPointerType *ResTypeMPtr =
6092                CanTy->getAs<MemberPointerType>())
6093            CanTy = ResTypeMPtr->getPointeeType();
6094          else
6095            done = true;
6096          if (CanTy.isVolatileQualified())
6097            VRQuals.addVolatile();
6098          if (CanTy.isRestrictQualified())
6099            VRQuals.addRestrict();
6100          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6101            return VRQuals;
6102        }
6103      }
6104    }
6105    return VRQuals;
6106}
6107
6108namespace {
6109
6110/// \brief Helper class to manage the addition of builtin operator overload
6111/// candidates. It provides shared state and utility methods used throughout
6112/// the process, as well as a helper method to add each group of builtin
6113/// operator overloads from the standard to a candidate set.
6114class BuiltinOperatorOverloadBuilder {
6115  // Common instance state available to all overload candidate addition methods.
6116  Sema &S;
6117  Expr **Args;
6118  unsigned NumArgs;
6119  Qualifiers VisibleTypeConversionsQuals;
6120  bool HasArithmeticOrEnumeralCandidateType;
6121  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6122  OverloadCandidateSet &CandidateSet;
6123
6124  // Define some constants used to index and iterate over the arithemetic types
6125  // provided via the getArithmeticType() method below.
6126  // The "promoted arithmetic types" are the arithmetic
6127  // types are that preserved by promotion (C++ [over.built]p2).
6128  static const unsigned FirstIntegralType = 3;
6129  static const unsigned LastIntegralType = 18;
6130  static const unsigned FirstPromotedIntegralType = 3,
6131                        LastPromotedIntegralType = 9;
6132  static const unsigned FirstPromotedArithmeticType = 0,
6133                        LastPromotedArithmeticType = 9;
6134  static const unsigned NumArithmeticTypes = 18;
6135
6136  /// \brief Get the canonical type for a given arithmetic type index.
6137  CanQualType getArithmeticType(unsigned index) {
6138    assert(index < NumArithmeticTypes);
6139    static CanQualType ASTContext::* const
6140      ArithmeticTypes[NumArithmeticTypes] = {
6141      // Start of promoted types.
6142      &ASTContext::FloatTy,
6143      &ASTContext::DoubleTy,
6144      &ASTContext::LongDoubleTy,
6145
6146      // Start of integral types.
6147      &ASTContext::IntTy,
6148      &ASTContext::LongTy,
6149      &ASTContext::LongLongTy,
6150      &ASTContext::UnsignedIntTy,
6151      &ASTContext::UnsignedLongTy,
6152      &ASTContext::UnsignedLongLongTy,
6153      // End of promoted types.
6154
6155      &ASTContext::BoolTy,
6156      &ASTContext::CharTy,
6157      &ASTContext::WCharTy,
6158      &ASTContext::Char16Ty,
6159      &ASTContext::Char32Ty,
6160      &ASTContext::SignedCharTy,
6161      &ASTContext::ShortTy,
6162      &ASTContext::UnsignedCharTy,
6163      &ASTContext::UnsignedShortTy,
6164      // End of integral types.
6165      // FIXME: What about complex?
6166    };
6167    return S.Context.*ArithmeticTypes[index];
6168  }
6169
6170  /// \brief Gets the canonical type resulting from the usual arithemetic
6171  /// converions for the given arithmetic types.
6172  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6173    // Accelerator table for performing the usual arithmetic conversions.
6174    // The rules are basically:
6175    //   - if either is floating-point, use the wider floating-point
6176    //   - if same signedness, use the higher rank
6177    //   - if same size, use unsigned of the higher rank
6178    //   - use the larger type
6179    // These rules, together with the axiom that higher ranks are
6180    // never smaller, are sufficient to precompute all of these results
6181    // *except* when dealing with signed types of higher rank.
6182    // (we could precompute SLL x UI for all known platforms, but it's
6183    // better not to make any assumptions).
6184    enum PromotedType {
6185                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
6186    };
6187    static PromotedType ConversionsTable[LastPromotedArithmeticType]
6188                                        [LastPromotedArithmeticType] = {
6189      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6190      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6191      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6192      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
6193      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
6194      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
6195      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
6196      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
6197      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
6198    };
6199
6200    assert(L < LastPromotedArithmeticType);
6201    assert(R < LastPromotedArithmeticType);
6202    int Idx = ConversionsTable[L][R];
6203
6204    // Fast path: the table gives us a concrete answer.
6205    if (Idx != Dep) return getArithmeticType(Idx);
6206
6207    // Slow path: we need to compare widths.
6208    // An invariant is that the signed type has higher rank.
6209    CanQualType LT = getArithmeticType(L),
6210                RT = getArithmeticType(R);
6211    unsigned LW = S.Context.getIntWidth(LT),
6212             RW = S.Context.getIntWidth(RT);
6213
6214    // If they're different widths, use the signed type.
6215    if (LW > RW) return LT;
6216    else if (LW < RW) return RT;
6217
6218    // Otherwise, use the unsigned type of the signed type's rank.
6219    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6220    assert(L == SLL || R == SLL);
6221    return S.Context.UnsignedLongLongTy;
6222  }
6223
6224  /// \brief Helper method to factor out the common pattern of adding overloads
6225  /// for '++' and '--' builtin operators.
6226  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6227                                           bool HasVolatile) {
6228    QualType ParamTypes[2] = {
6229      S.Context.getLValueReferenceType(CandidateTy),
6230      S.Context.IntTy
6231    };
6232
6233    // Non-volatile version.
6234    if (NumArgs == 1)
6235      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6236    else
6237      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6238
6239    // Use a heuristic to reduce number of builtin candidates in the set:
6240    // add volatile version only if there are conversions to a volatile type.
6241    if (HasVolatile) {
6242      ParamTypes[0] =
6243        S.Context.getLValueReferenceType(
6244          S.Context.getVolatileType(CandidateTy));
6245      if (NumArgs == 1)
6246        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6247      else
6248        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6249    }
6250  }
6251
6252public:
6253  BuiltinOperatorOverloadBuilder(
6254    Sema &S, Expr **Args, unsigned NumArgs,
6255    Qualifiers VisibleTypeConversionsQuals,
6256    bool HasArithmeticOrEnumeralCandidateType,
6257    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6258    OverloadCandidateSet &CandidateSet)
6259    : S(S), Args(Args), NumArgs(NumArgs),
6260      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6261      HasArithmeticOrEnumeralCandidateType(
6262        HasArithmeticOrEnumeralCandidateType),
6263      CandidateTypes(CandidateTypes),
6264      CandidateSet(CandidateSet) {
6265    // Validate some of our static helper constants in debug builds.
6266    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6267           "Invalid first promoted integral type");
6268    assert(getArithmeticType(LastPromotedIntegralType - 1)
6269             == S.Context.UnsignedLongLongTy &&
6270           "Invalid last promoted integral type");
6271    assert(getArithmeticType(FirstPromotedArithmeticType)
6272             == S.Context.FloatTy &&
6273           "Invalid first promoted arithmetic type");
6274    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6275             == S.Context.UnsignedLongLongTy &&
6276           "Invalid last promoted arithmetic type");
6277  }
6278
6279  // C++ [over.built]p3:
6280  //
6281  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6282  //   is either volatile or empty, there exist candidate operator
6283  //   functions of the form
6284  //
6285  //       VQ T&      operator++(VQ T&);
6286  //       T          operator++(VQ T&, int);
6287  //
6288  // C++ [over.built]p4:
6289  //
6290  //   For every pair (T, VQ), where T is an arithmetic type other
6291  //   than bool, and VQ is either volatile or empty, there exist
6292  //   candidate operator functions of the form
6293  //
6294  //       VQ T&      operator--(VQ T&);
6295  //       T          operator--(VQ T&, int);
6296  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6297    if (!HasArithmeticOrEnumeralCandidateType)
6298      return;
6299
6300    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6301         Arith < NumArithmeticTypes; ++Arith) {
6302      addPlusPlusMinusMinusStyleOverloads(
6303        getArithmeticType(Arith),
6304        VisibleTypeConversionsQuals.hasVolatile());
6305    }
6306  }
6307
6308  // C++ [over.built]p5:
6309  //
6310  //   For every pair (T, VQ), where T is a cv-qualified or
6311  //   cv-unqualified object type, and VQ is either volatile or
6312  //   empty, there exist candidate operator functions of the form
6313  //
6314  //       T*VQ&      operator++(T*VQ&);
6315  //       T*VQ&      operator--(T*VQ&);
6316  //       T*         operator++(T*VQ&, int);
6317  //       T*         operator--(T*VQ&, int);
6318  void addPlusPlusMinusMinusPointerOverloads() {
6319    for (BuiltinCandidateTypeSet::iterator
6320              Ptr = CandidateTypes[0].pointer_begin(),
6321           PtrEnd = CandidateTypes[0].pointer_end();
6322         Ptr != PtrEnd; ++Ptr) {
6323      // Skip pointer types that aren't pointers to object types.
6324      if (!(*Ptr)->getPointeeType()->isObjectType())
6325        continue;
6326
6327      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6328        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6329         VisibleTypeConversionsQuals.hasVolatile()));
6330    }
6331  }
6332
6333  // C++ [over.built]p6:
6334  //   For every cv-qualified or cv-unqualified object type T, there
6335  //   exist candidate operator functions of the form
6336  //
6337  //       T&         operator*(T*);
6338  //
6339  // C++ [over.built]p7:
6340  //   For every function type T that does not have cv-qualifiers or a
6341  //   ref-qualifier, there exist candidate operator functions of the form
6342  //       T&         operator*(T*);
6343  void addUnaryStarPointerOverloads() {
6344    for (BuiltinCandidateTypeSet::iterator
6345              Ptr = CandidateTypes[0].pointer_begin(),
6346           PtrEnd = CandidateTypes[0].pointer_end();
6347         Ptr != PtrEnd; ++Ptr) {
6348      QualType ParamTy = *Ptr;
6349      QualType PointeeTy = ParamTy->getPointeeType();
6350      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6351        continue;
6352
6353      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6354        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6355          continue;
6356
6357      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6358                            &ParamTy, Args, 1, CandidateSet);
6359    }
6360  }
6361
6362  // C++ [over.built]p9:
6363  //  For every promoted arithmetic type T, there exist candidate
6364  //  operator functions of the form
6365  //
6366  //       T         operator+(T);
6367  //       T         operator-(T);
6368  void addUnaryPlusOrMinusArithmeticOverloads() {
6369    if (!HasArithmeticOrEnumeralCandidateType)
6370      return;
6371
6372    for (unsigned Arith = FirstPromotedArithmeticType;
6373         Arith < LastPromotedArithmeticType; ++Arith) {
6374      QualType ArithTy = getArithmeticType(Arith);
6375      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6376    }
6377
6378    // Extension: We also add these operators for vector types.
6379    for (BuiltinCandidateTypeSet::iterator
6380              Vec = CandidateTypes[0].vector_begin(),
6381           VecEnd = CandidateTypes[0].vector_end();
6382         Vec != VecEnd; ++Vec) {
6383      QualType VecTy = *Vec;
6384      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6385    }
6386  }
6387
6388  // C++ [over.built]p8:
6389  //   For every type T, there exist candidate operator functions of
6390  //   the form
6391  //
6392  //       T*         operator+(T*);
6393  void addUnaryPlusPointerOverloads() {
6394    for (BuiltinCandidateTypeSet::iterator
6395              Ptr = CandidateTypes[0].pointer_begin(),
6396           PtrEnd = CandidateTypes[0].pointer_end();
6397         Ptr != PtrEnd; ++Ptr) {
6398      QualType ParamTy = *Ptr;
6399      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6400    }
6401  }
6402
6403  // C++ [over.built]p10:
6404  //   For every promoted integral type T, there exist candidate
6405  //   operator functions of the form
6406  //
6407  //        T         operator~(T);
6408  void addUnaryTildePromotedIntegralOverloads() {
6409    if (!HasArithmeticOrEnumeralCandidateType)
6410      return;
6411
6412    for (unsigned Int = FirstPromotedIntegralType;
6413         Int < LastPromotedIntegralType; ++Int) {
6414      QualType IntTy = getArithmeticType(Int);
6415      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6416    }
6417
6418    // Extension: We also add this operator for vector types.
6419    for (BuiltinCandidateTypeSet::iterator
6420              Vec = CandidateTypes[0].vector_begin(),
6421           VecEnd = CandidateTypes[0].vector_end();
6422         Vec != VecEnd; ++Vec) {
6423      QualType VecTy = *Vec;
6424      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6425    }
6426  }
6427
6428  // C++ [over.match.oper]p16:
6429  //   For every pointer to member type T, there exist candidate operator
6430  //   functions of the form
6431  //
6432  //        bool operator==(T,T);
6433  //        bool operator!=(T,T);
6434  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6435    /// Set of (canonical) types that we've already handled.
6436    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6437
6438    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6439      for (BuiltinCandidateTypeSet::iterator
6440                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6441             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6442           MemPtr != MemPtrEnd;
6443           ++MemPtr) {
6444        // Don't add the same builtin candidate twice.
6445        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6446          continue;
6447
6448        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6449        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6450                              CandidateSet);
6451      }
6452    }
6453  }
6454
6455  // C++ [over.built]p15:
6456  //
6457  //   For every T, where T is an enumeration type, a pointer type, or
6458  //   std::nullptr_t, there exist candidate operator functions of the form
6459  //
6460  //        bool       operator<(T, T);
6461  //        bool       operator>(T, T);
6462  //        bool       operator<=(T, T);
6463  //        bool       operator>=(T, T);
6464  //        bool       operator==(T, T);
6465  //        bool       operator!=(T, T);
6466  void addRelationalPointerOrEnumeralOverloads() {
6467    // C++ [over.built]p1:
6468    //   If there is a user-written candidate with the same name and parameter
6469    //   types as a built-in candidate operator function, the built-in operator
6470    //   function is hidden and is not included in the set of candidate
6471    //   functions.
6472    //
6473    // The text is actually in a note, but if we don't implement it then we end
6474    // up with ambiguities when the user provides an overloaded operator for
6475    // an enumeration type. Note that only enumeration types have this problem,
6476    // so we track which enumeration types we've seen operators for. Also, the
6477    // only other overloaded operator with enumeration argumenst, operator=,
6478    // cannot be overloaded for enumeration types, so this is the only place
6479    // where we must suppress candidates like this.
6480    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6481      UserDefinedBinaryOperators;
6482
6483    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6484      if (CandidateTypes[ArgIdx].enumeration_begin() !=
6485          CandidateTypes[ArgIdx].enumeration_end()) {
6486        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6487                                         CEnd = CandidateSet.end();
6488             C != CEnd; ++C) {
6489          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6490            continue;
6491
6492          QualType FirstParamType =
6493            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6494          QualType SecondParamType =
6495            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6496
6497          // Skip if either parameter isn't of enumeral type.
6498          if (!FirstParamType->isEnumeralType() ||
6499              !SecondParamType->isEnumeralType())
6500            continue;
6501
6502          // Add this operator to the set of known user-defined operators.
6503          UserDefinedBinaryOperators.insert(
6504            std::make_pair(S.Context.getCanonicalType(FirstParamType),
6505                           S.Context.getCanonicalType(SecondParamType)));
6506        }
6507      }
6508    }
6509
6510    /// Set of (canonical) types that we've already handled.
6511    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6512
6513    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6514      for (BuiltinCandidateTypeSet::iterator
6515                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6516             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6517           Ptr != PtrEnd; ++Ptr) {
6518        // Don't add the same builtin candidate twice.
6519        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6520          continue;
6521
6522        QualType ParamTypes[2] = { *Ptr, *Ptr };
6523        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6524                              CandidateSet);
6525      }
6526      for (BuiltinCandidateTypeSet::iterator
6527                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6528             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6529           Enum != EnumEnd; ++Enum) {
6530        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6531
6532        // Don't add the same builtin candidate twice, or if a user defined
6533        // candidate exists.
6534        if (!AddedTypes.insert(CanonType) ||
6535            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6536                                                            CanonType)))
6537          continue;
6538
6539        QualType ParamTypes[2] = { *Enum, *Enum };
6540        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6541                              CandidateSet);
6542      }
6543
6544      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6545        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6546        if (AddedTypes.insert(NullPtrTy) &&
6547            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6548                                                             NullPtrTy))) {
6549          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6550          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6551                                CandidateSet);
6552        }
6553      }
6554    }
6555  }
6556
6557  // C++ [over.built]p13:
6558  //
6559  //   For every cv-qualified or cv-unqualified object type T
6560  //   there exist candidate operator functions of the form
6561  //
6562  //      T*         operator+(T*, ptrdiff_t);
6563  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
6564  //      T*         operator-(T*, ptrdiff_t);
6565  //      T*         operator+(ptrdiff_t, T*);
6566  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
6567  //
6568  // C++ [over.built]p14:
6569  //
6570  //   For every T, where T is a pointer to object type, there
6571  //   exist candidate operator functions of the form
6572  //
6573  //      ptrdiff_t  operator-(T, T);
6574  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6575    /// Set of (canonical) types that we've already handled.
6576    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6577
6578    for (int Arg = 0; Arg < 2; ++Arg) {
6579      QualType AsymetricParamTypes[2] = {
6580        S.Context.getPointerDiffType(),
6581        S.Context.getPointerDiffType(),
6582      };
6583      for (BuiltinCandidateTypeSet::iterator
6584                Ptr = CandidateTypes[Arg].pointer_begin(),
6585             PtrEnd = CandidateTypes[Arg].pointer_end();
6586           Ptr != PtrEnd; ++Ptr) {
6587        QualType PointeeTy = (*Ptr)->getPointeeType();
6588        if (!PointeeTy->isObjectType())
6589          continue;
6590
6591        AsymetricParamTypes[Arg] = *Ptr;
6592        if (Arg == 0 || Op == OO_Plus) {
6593          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6594          // T* operator+(ptrdiff_t, T*);
6595          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6596                                CandidateSet);
6597        }
6598        if (Op == OO_Minus) {
6599          // ptrdiff_t operator-(T, T);
6600          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6601            continue;
6602
6603          QualType ParamTypes[2] = { *Ptr, *Ptr };
6604          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6605                                Args, 2, CandidateSet);
6606        }
6607      }
6608    }
6609  }
6610
6611  // C++ [over.built]p12:
6612  //
6613  //   For every pair of promoted arithmetic types L and R, there
6614  //   exist candidate operator functions of the form
6615  //
6616  //        LR         operator*(L, R);
6617  //        LR         operator/(L, R);
6618  //        LR         operator+(L, R);
6619  //        LR         operator-(L, R);
6620  //        bool       operator<(L, R);
6621  //        bool       operator>(L, R);
6622  //        bool       operator<=(L, R);
6623  //        bool       operator>=(L, R);
6624  //        bool       operator==(L, R);
6625  //        bool       operator!=(L, R);
6626  //
6627  //   where LR is the result of the usual arithmetic conversions
6628  //   between types L and R.
6629  //
6630  // C++ [over.built]p24:
6631  //
6632  //   For every pair of promoted arithmetic types L and R, there exist
6633  //   candidate operator functions of the form
6634  //
6635  //        LR       operator?(bool, L, R);
6636  //
6637  //   where LR is the result of the usual arithmetic conversions
6638  //   between types L and R.
6639  // Our candidates ignore the first parameter.
6640  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6641    if (!HasArithmeticOrEnumeralCandidateType)
6642      return;
6643
6644    for (unsigned Left = FirstPromotedArithmeticType;
6645         Left < LastPromotedArithmeticType; ++Left) {
6646      for (unsigned Right = FirstPromotedArithmeticType;
6647           Right < LastPromotedArithmeticType; ++Right) {
6648        QualType LandR[2] = { getArithmeticType(Left),
6649                              getArithmeticType(Right) };
6650        QualType Result =
6651          isComparison ? S.Context.BoolTy
6652                       : getUsualArithmeticConversions(Left, Right);
6653        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6654      }
6655    }
6656
6657    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6658    // conditional operator for vector types.
6659    for (BuiltinCandidateTypeSet::iterator
6660              Vec1 = CandidateTypes[0].vector_begin(),
6661           Vec1End = CandidateTypes[0].vector_end();
6662         Vec1 != Vec1End; ++Vec1) {
6663      for (BuiltinCandidateTypeSet::iterator
6664                Vec2 = CandidateTypes[1].vector_begin(),
6665             Vec2End = CandidateTypes[1].vector_end();
6666           Vec2 != Vec2End; ++Vec2) {
6667        QualType LandR[2] = { *Vec1, *Vec2 };
6668        QualType Result = S.Context.BoolTy;
6669        if (!isComparison) {
6670          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6671            Result = *Vec1;
6672          else
6673            Result = *Vec2;
6674        }
6675
6676        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6677      }
6678    }
6679  }
6680
6681  // C++ [over.built]p17:
6682  //
6683  //   For every pair of promoted integral types L and R, there
6684  //   exist candidate operator functions of the form
6685  //
6686  //      LR         operator%(L, R);
6687  //      LR         operator&(L, R);
6688  //      LR         operator^(L, R);
6689  //      LR         operator|(L, R);
6690  //      L          operator<<(L, R);
6691  //      L          operator>>(L, R);
6692  //
6693  //   where LR is the result of the usual arithmetic conversions
6694  //   between types L and R.
6695  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
6696    if (!HasArithmeticOrEnumeralCandidateType)
6697      return;
6698
6699    for (unsigned Left = FirstPromotedIntegralType;
6700         Left < LastPromotedIntegralType; ++Left) {
6701      for (unsigned Right = FirstPromotedIntegralType;
6702           Right < LastPromotedIntegralType; ++Right) {
6703        QualType LandR[2] = { getArithmeticType(Left),
6704                              getArithmeticType(Right) };
6705        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
6706            ? LandR[0]
6707            : getUsualArithmeticConversions(Left, Right);
6708        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6709      }
6710    }
6711  }
6712
6713  // C++ [over.built]p20:
6714  //
6715  //   For every pair (T, VQ), where T is an enumeration or
6716  //   pointer to member type and VQ is either volatile or
6717  //   empty, there exist candidate operator functions of the form
6718  //
6719  //        VQ T&      operator=(VQ T&, T);
6720  void addAssignmentMemberPointerOrEnumeralOverloads() {
6721    /// Set of (canonical) types that we've already handled.
6722    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6723
6724    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6725      for (BuiltinCandidateTypeSet::iterator
6726                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6727             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6728           Enum != EnumEnd; ++Enum) {
6729        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6730          continue;
6731
6732        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
6733                                               CandidateSet);
6734      }
6735
6736      for (BuiltinCandidateTypeSet::iterator
6737                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6738             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6739           MemPtr != MemPtrEnd; ++MemPtr) {
6740        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6741          continue;
6742
6743        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
6744                                               CandidateSet);
6745      }
6746    }
6747  }
6748
6749  // C++ [over.built]p19:
6750  //
6751  //   For every pair (T, VQ), where T is any type and VQ is either
6752  //   volatile or empty, there exist candidate operator functions
6753  //   of the form
6754  //
6755  //        T*VQ&      operator=(T*VQ&, T*);
6756  //
6757  // C++ [over.built]p21:
6758  //
6759  //   For every pair (T, VQ), where T is a cv-qualified or
6760  //   cv-unqualified object type and VQ is either volatile or
6761  //   empty, there exist candidate operator functions of the form
6762  //
6763  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
6764  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
6765  void addAssignmentPointerOverloads(bool isEqualOp) {
6766    /// Set of (canonical) types that we've already handled.
6767    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6768
6769    for (BuiltinCandidateTypeSet::iterator
6770              Ptr = CandidateTypes[0].pointer_begin(),
6771           PtrEnd = CandidateTypes[0].pointer_end();
6772         Ptr != PtrEnd; ++Ptr) {
6773      // If this is operator=, keep track of the builtin candidates we added.
6774      if (isEqualOp)
6775        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
6776      else if (!(*Ptr)->getPointeeType()->isObjectType())
6777        continue;
6778
6779      // non-volatile version
6780      QualType ParamTypes[2] = {
6781        S.Context.getLValueReferenceType(*Ptr),
6782        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
6783      };
6784      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6785                            /*IsAssigmentOperator=*/ isEqualOp);
6786
6787      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6788          VisibleTypeConversionsQuals.hasVolatile()) {
6789        // volatile version
6790        ParamTypes[0] =
6791          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6792        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6793                              /*IsAssigmentOperator=*/isEqualOp);
6794      }
6795    }
6796
6797    if (isEqualOp) {
6798      for (BuiltinCandidateTypeSet::iterator
6799                Ptr = CandidateTypes[1].pointer_begin(),
6800             PtrEnd = CandidateTypes[1].pointer_end();
6801           Ptr != PtrEnd; ++Ptr) {
6802        // Make sure we don't add the same candidate twice.
6803        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6804          continue;
6805
6806        QualType ParamTypes[2] = {
6807          S.Context.getLValueReferenceType(*Ptr),
6808          *Ptr,
6809        };
6810
6811        // non-volatile version
6812        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6813                              /*IsAssigmentOperator=*/true);
6814
6815        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6816            VisibleTypeConversionsQuals.hasVolatile()) {
6817          // volatile version
6818          ParamTypes[0] =
6819            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6820          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6821                                CandidateSet, /*IsAssigmentOperator=*/true);
6822        }
6823      }
6824    }
6825  }
6826
6827  // C++ [over.built]p18:
6828  //
6829  //   For every triple (L, VQ, R), where L is an arithmetic type,
6830  //   VQ is either volatile or empty, and R is a promoted
6831  //   arithmetic type, there exist candidate operator functions of
6832  //   the form
6833  //
6834  //        VQ L&      operator=(VQ L&, R);
6835  //        VQ L&      operator*=(VQ L&, R);
6836  //        VQ L&      operator/=(VQ L&, R);
6837  //        VQ L&      operator+=(VQ L&, R);
6838  //        VQ L&      operator-=(VQ L&, R);
6839  void addAssignmentArithmeticOverloads(bool isEqualOp) {
6840    if (!HasArithmeticOrEnumeralCandidateType)
6841      return;
6842
6843    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
6844      for (unsigned Right = FirstPromotedArithmeticType;
6845           Right < LastPromotedArithmeticType; ++Right) {
6846        QualType ParamTypes[2];
6847        ParamTypes[1] = getArithmeticType(Right);
6848
6849        // Add this built-in operator as a candidate (VQ is empty).
6850        ParamTypes[0] =
6851          S.Context.getLValueReferenceType(getArithmeticType(Left));
6852        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6853                              /*IsAssigmentOperator=*/isEqualOp);
6854
6855        // Add this built-in operator as a candidate (VQ is 'volatile').
6856        if (VisibleTypeConversionsQuals.hasVolatile()) {
6857          ParamTypes[0] =
6858            S.Context.getVolatileType(getArithmeticType(Left));
6859          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6860          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6861                                CandidateSet,
6862                                /*IsAssigmentOperator=*/isEqualOp);
6863        }
6864      }
6865    }
6866
6867    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
6868    for (BuiltinCandidateTypeSet::iterator
6869              Vec1 = CandidateTypes[0].vector_begin(),
6870           Vec1End = CandidateTypes[0].vector_end();
6871         Vec1 != Vec1End; ++Vec1) {
6872      for (BuiltinCandidateTypeSet::iterator
6873                Vec2 = CandidateTypes[1].vector_begin(),
6874             Vec2End = CandidateTypes[1].vector_end();
6875           Vec2 != Vec2End; ++Vec2) {
6876        QualType ParamTypes[2];
6877        ParamTypes[1] = *Vec2;
6878        // Add this built-in operator as a candidate (VQ is empty).
6879        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
6880        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6881                              /*IsAssigmentOperator=*/isEqualOp);
6882
6883        // Add this built-in operator as a candidate (VQ is 'volatile').
6884        if (VisibleTypeConversionsQuals.hasVolatile()) {
6885          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
6886          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6887          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6888                                CandidateSet,
6889                                /*IsAssigmentOperator=*/isEqualOp);
6890        }
6891      }
6892    }
6893  }
6894
6895  // C++ [over.built]p22:
6896  //
6897  //   For every triple (L, VQ, R), where L is an integral type, VQ
6898  //   is either volatile or empty, and R is a promoted integral
6899  //   type, there exist candidate operator functions of the form
6900  //
6901  //        VQ L&       operator%=(VQ L&, R);
6902  //        VQ L&       operator<<=(VQ L&, R);
6903  //        VQ L&       operator>>=(VQ L&, R);
6904  //        VQ L&       operator&=(VQ L&, R);
6905  //        VQ L&       operator^=(VQ L&, R);
6906  //        VQ L&       operator|=(VQ L&, R);
6907  void addAssignmentIntegralOverloads() {
6908    if (!HasArithmeticOrEnumeralCandidateType)
6909      return;
6910
6911    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6912      for (unsigned Right = FirstPromotedIntegralType;
6913           Right < LastPromotedIntegralType; ++Right) {
6914        QualType ParamTypes[2];
6915        ParamTypes[1] = getArithmeticType(Right);
6916
6917        // Add this built-in operator as a candidate (VQ is empty).
6918        ParamTypes[0] =
6919          S.Context.getLValueReferenceType(getArithmeticType(Left));
6920        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6921        if (VisibleTypeConversionsQuals.hasVolatile()) {
6922          // Add this built-in operator as a candidate (VQ is 'volatile').
6923          ParamTypes[0] = getArithmeticType(Left);
6924          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6925          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6926          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6927                                CandidateSet);
6928        }
6929      }
6930    }
6931  }
6932
6933  // C++ [over.operator]p23:
6934  //
6935  //   There also exist candidate operator functions of the form
6936  //
6937  //        bool        operator!(bool);
6938  //        bool        operator&&(bool, bool);
6939  //        bool        operator||(bool, bool);
6940  void addExclaimOverload() {
6941    QualType ParamTy = S.Context.BoolTy;
6942    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6943                          /*IsAssignmentOperator=*/false,
6944                          /*NumContextualBoolArguments=*/1);
6945  }
6946  void addAmpAmpOrPipePipeOverload() {
6947    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6948    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6949                          /*IsAssignmentOperator=*/false,
6950                          /*NumContextualBoolArguments=*/2);
6951  }
6952
6953  // C++ [over.built]p13:
6954  //
6955  //   For every cv-qualified or cv-unqualified object type T there
6956  //   exist candidate operator functions of the form
6957  //
6958  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
6959  //        T&         operator[](T*, ptrdiff_t);
6960  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
6961  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
6962  //        T&         operator[](ptrdiff_t, T*);
6963  void addSubscriptOverloads() {
6964    for (BuiltinCandidateTypeSet::iterator
6965              Ptr = CandidateTypes[0].pointer_begin(),
6966           PtrEnd = CandidateTypes[0].pointer_end();
6967         Ptr != PtrEnd; ++Ptr) {
6968      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6969      QualType PointeeType = (*Ptr)->getPointeeType();
6970      if (!PointeeType->isObjectType())
6971        continue;
6972
6973      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6974
6975      // T& operator[](T*, ptrdiff_t)
6976      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6977    }
6978
6979    for (BuiltinCandidateTypeSet::iterator
6980              Ptr = CandidateTypes[1].pointer_begin(),
6981           PtrEnd = CandidateTypes[1].pointer_end();
6982         Ptr != PtrEnd; ++Ptr) {
6983      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
6984      QualType PointeeType = (*Ptr)->getPointeeType();
6985      if (!PointeeType->isObjectType())
6986        continue;
6987
6988      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6989
6990      // T& operator[](ptrdiff_t, T*)
6991      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6992    }
6993  }
6994
6995  // C++ [over.built]p11:
6996  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
6997  //    C1 is the same type as C2 or is a derived class of C2, T is an object
6998  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
6999  //    there exist candidate operator functions of the form
7000  //
7001  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7002  //
7003  //    where CV12 is the union of CV1 and CV2.
7004  void addArrowStarOverloads() {
7005    for (BuiltinCandidateTypeSet::iterator
7006             Ptr = CandidateTypes[0].pointer_begin(),
7007           PtrEnd = CandidateTypes[0].pointer_end();
7008         Ptr != PtrEnd; ++Ptr) {
7009      QualType C1Ty = (*Ptr);
7010      QualType C1;
7011      QualifierCollector Q1;
7012      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7013      if (!isa<RecordType>(C1))
7014        continue;
7015      // heuristic to reduce number of builtin candidates in the set.
7016      // Add volatile/restrict version only if there are conversions to a
7017      // volatile/restrict type.
7018      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7019        continue;
7020      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7021        continue;
7022      for (BuiltinCandidateTypeSet::iterator
7023                MemPtr = CandidateTypes[1].member_pointer_begin(),
7024             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7025           MemPtr != MemPtrEnd; ++MemPtr) {
7026        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7027        QualType C2 = QualType(mptr->getClass(), 0);
7028        C2 = C2.getUnqualifiedType();
7029        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7030          break;
7031        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7032        // build CV12 T&
7033        QualType T = mptr->getPointeeType();
7034        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7035            T.isVolatileQualified())
7036          continue;
7037        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7038            T.isRestrictQualified())
7039          continue;
7040        T = Q1.apply(S.Context, T);
7041        QualType ResultTy = S.Context.getLValueReferenceType(T);
7042        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7043      }
7044    }
7045  }
7046
7047  // Note that we don't consider the first argument, since it has been
7048  // contextually converted to bool long ago. The candidates below are
7049  // therefore added as binary.
7050  //
7051  // C++ [over.built]p25:
7052  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7053  //   enumeration type, there exist candidate operator functions of the form
7054  //
7055  //        T        operator?(bool, T, T);
7056  //
7057  void addConditionalOperatorOverloads() {
7058    /// Set of (canonical) types that we've already handled.
7059    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7060
7061    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7062      for (BuiltinCandidateTypeSet::iterator
7063                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7064             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7065           Ptr != PtrEnd; ++Ptr) {
7066        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7067          continue;
7068
7069        QualType ParamTypes[2] = { *Ptr, *Ptr };
7070        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7071      }
7072
7073      for (BuiltinCandidateTypeSet::iterator
7074                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7075             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7076           MemPtr != MemPtrEnd; ++MemPtr) {
7077        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7078          continue;
7079
7080        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7081        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7082      }
7083
7084      if (S.getLangOptions().CPlusPlus0x) {
7085        for (BuiltinCandidateTypeSet::iterator
7086                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7087               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7088             Enum != EnumEnd; ++Enum) {
7089          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7090            continue;
7091
7092          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7093            continue;
7094
7095          QualType ParamTypes[2] = { *Enum, *Enum };
7096          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7097        }
7098      }
7099    }
7100  }
7101};
7102
7103} // end anonymous namespace
7104
7105/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7106/// operator overloads to the candidate set (C++ [over.built]), based
7107/// on the operator @p Op and the arguments given. For example, if the
7108/// operator is a binary '+', this routine might add "int
7109/// operator+(int, int)" to cover integer addition.
7110void
7111Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7112                                   SourceLocation OpLoc,
7113                                   Expr **Args, unsigned NumArgs,
7114                                   OverloadCandidateSet& CandidateSet) {
7115  // Find all of the types that the arguments can convert to, but only
7116  // if the operator we're looking at has built-in operator candidates
7117  // that make use of these types. Also record whether we encounter non-record
7118  // candidate types or either arithmetic or enumeral candidate types.
7119  Qualifiers VisibleTypeConversionsQuals;
7120  VisibleTypeConversionsQuals.addConst();
7121  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7122    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7123
7124  bool HasNonRecordCandidateType = false;
7125  bool HasArithmeticOrEnumeralCandidateType = false;
7126  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7127  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7128    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7129    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7130                                                 OpLoc,
7131                                                 true,
7132                                                 (Op == OO_Exclaim ||
7133                                                  Op == OO_AmpAmp ||
7134                                                  Op == OO_PipePipe),
7135                                                 VisibleTypeConversionsQuals);
7136    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7137        CandidateTypes[ArgIdx].hasNonRecordTypes();
7138    HasArithmeticOrEnumeralCandidateType =
7139        HasArithmeticOrEnumeralCandidateType ||
7140        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7141  }
7142
7143  // Exit early when no non-record types have been added to the candidate set
7144  // for any of the arguments to the operator.
7145  //
7146  // We can't exit early for !, ||, or &&, since there we have always have
7147  // 'bool' overloads.
7148  if (!HasNonRecordCandidateType &&
7149      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7150    return;
7151
7152  // Setup an object to manage the common state for building overloads.
7153  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7154                                           VisibleTypeConversionsQuals,
7155                                           HasArithmeticOrEnumeralCandidateType,
7156                                           CandidateTypes, CandidateSet);
7157
7158  // Dispatch over the operation to add in only those overloads which apply.
7159  switch (Op) {
7160  case OO_None:
7161  case NUM_OVERLOADED_OPERATORS:
7162    llvm_unreachable("Expected an overloaded operator");
7163
7164  case OO_New:
7165  case OO_Delete:
7166  case OO_Array_New:
7167  case OO_Array_Delete:
7168  case OO_Call:
7169    llvm_unreachable(
7170                    "Special operators don't use AddBuiltinOperatorCandidates");
7171
7172  case OO_Comma:
7173  case OO_Arrow:
7174    // C++ [over.match.oper]p3:
7175    //   -- For the operator ',', the unary operator '&', or the
7176    //      operator '->', the built-in candidates set is empty.
7177    break;
7178
7179  case OO_Plus: // '+' is either unary or binary
7180    if (NumArgs == 1)
7181      OpBuilder.addUnaryPlusPointerOverloads();
7182    // Fall through.
7183
7184  case OO_Minus: // '-' is either unary or binary
7185    if (NumArgs == 1) {
7186      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7187    } else {
7188      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7189      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7190    }
7191    break;
7192
7193  case OO_Star: // '*' is either unary or binary
7194    if (NumArgs == 1)
7195      OpBuilder.addUnaryStarPointerOverloads();
7196    else
7197      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7198    break;
7199
7200  case OO_Slash:
7201    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7202    break;
7203
7204  case OO_PlusPlus:
7205  case OO_MinusMinus:
7206    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7207    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7208    break;
7209
7210  case OO_EqualEqual:
7211  case OO_ExclaimEqual:
7212    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7213    // Fall through.
7214
7215  case OO_Less:
7216  case OO_Greater:
7217  case OO_LessEqual:
7218  case OO_GreaterEqual:
7219    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7220    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7221    break;
7222
7223  case OO_Percent:
7224  case OO_Caret:
7225  case OO_Pipe:
7226  case OO_LessLess:
7227  case OO_GreaterGreater:
7228    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7229    break;
7230
7231  case OO_Amp: // '&' is either unary or binary
7232    if (NumArgs == 1)
7233      // C++ [over.match.oper]p3:
7234      //   -- For the operator ',', the unary operator '&', or the
7235      //      operator '->', the built-in candidates set is empty.
7236      break;
7237
7238    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7239    break;
7240
7241  case OO_Tilde:
7242    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7243    break;
7244
7245  case OO_Equal:
7246    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7247    // Fall through.
7248
7249  case OO_PlusEqual:
7250  case OO_MinusEqual:
7251    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7252    // Fall through.
7253
7254  case OO_StarEqual:
7255  case OO_SlashEqual:
7256    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7257    break;
7258
7259  case OO_PercentEqual:
7260  case OO_LessLessEqual:
7261  case OO_GreaterGreaterEqual:
7262  case OO_AmpEqual:
7263  case OO_CaretEqual:
7264  case OO_PipeEqual:
7265    OpBuilder.addAssignmentIntegralOverloads();
7266    break;
7267
7268  case OO_Exclaim:
7269    OpBuilder.addExclaimOverload();
7270    break;
7271
7272  case OO_AmpAmp:
7273  case OO_PipePipe:
7274    OpBuilder.addAmpAmpOrPipePipeOverload();
7275    break;
7276
7277  case OO_Subscript:
7278    OpBuilder.addSubscriptOverloads();
7279    break;
7280
7281  case OO_ArrowStar:
7282    OpBuilder.addArrowStarOverloads();
7283    break;
7284
7285  case OO_Conditional:
7286    OpBuilder.addConditionalOperatorOverloads();
7287    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7288    break;
7289  }
7290}
7291
7292/// \brief Add function candidates found via argument-dependent lookup
7293/// to the set of overloading candidates.
7294///
7295/// This routine performs argument-dependent name lookup based on the
7296/// given function name (which may also be an operator name) and adds
7297/// all of the overload candidates found by ADL to the overload
7298/// candidate set (C++ [basic.lookup.argdep]).
7299void
7300Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7301                                           bool Operator,
7302                                           Expr **Args, unsigned NumArgs,
7303                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7304                                           OverloadCandidateSet& CandidateSet,
7305                                           bool PartialOverloading,
7306                                           bool StdNamespaceIsAssociated) {
7307  ADLResult Fns;
7308
7309  // FIXME: This approach for uniquing ADL results (and removing
7310  // redundant candidates from the set) relies on pointer-equality,
7311  // which means we need to key off the canonical decl.  However,
7312  // always going back to the canonical decl might not get us the
7313  // right set of default arguments.  What default arguments are
7314  // we supposed to consider on ADL candidates, anyway?
7315
7316  // FIXME: Pass in the explicit template arguments?
7317  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
7318                          StdNamespaceIsAssociated);
7319
7320  // Erase all of the candidates we already knew about.
7321  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7322                                   CandEnd = CandidateSet.end();
7323       Cand != CandEnd; ++Cand)
7324    if (Cand->Function) {
7325      Fns.erase(Cand->Function);
7326      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7327        Fns.erase(FunTmpl);
7328    }
7329
7330  // For each of the ADL candidates we found, add it to the overload
7331  // set.
7332  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7333    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7334    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7335      if (ExplicitTemplateArgs)
7336        continue;
7337
7338      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
7339                           false, PartialOverloading);
7340    } else
7341      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7342                                   FoundDecl, ExplicitTemplateArgs,
7343                                   Args, NumArgs, CandidateSet);
7344  }
7345}
7346
7347/// isBetterOverloadCandidate - Determines whether the first overload
7348/// candidate is a better candidate than the second (C++ 13.3.3p1).
7349bool
7350isBetterOverloadCandidate(Sema &S,
7351                          const OverloadCandidate &Cand1,
7352                          const OverloadCandidate &Cand2,
7353                          SourceLocation Loc,
7354                          bool UserDefinedConversion) {
7355  // Define viable functions to be better candidates than non-viable
7356  // functions.
7357  if (!Cand2.Viable)
7358    return Cand1.Viable;
7359  else if (!Cand1.Viable)
7360    return false;
7361
7362  // C++ [over.match.best]p1:
7363  //
7364  //   -- if F is a static member function, ICS1(F) is defined such
7365  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7366  //      any function G, and, symmetrically, ICS1(G) is neither
7367  //      better nor worse than ICS1(F).
7368  unsigned StartArg = 0;
7369  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7370    StartArg = 1;
7371
7372  // C++ [over.match.best]p1:
7373  //   A viable function F1 is defined to be a better function than another
7374  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7375  //   conversion sequence than ICSi(F2), and then...
7376  unsigned NumArgs = Cand1.NumConversions;
7377  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7378  bool HasBetterConversion = false;
7379  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7380    switch (CompareImplicitConversionSequences(S,
7381                                               Cand1.Conversions[ArgIdx],
7382                                               Cand2.Conversions[ArgIdx])) {
7383    case ImplicitConversionSequence::Better:
7384      // Cand1 has a better conversion sequence.
7385      HasBetterConversion = true;
7386      break;
7387
7388    case ImplicitConversionSequence::Worse:
7389      // Cand1 can't be better than Cand2.
7390      return false;
7391
7392    case ImplicitConversionSequence::Indistinguishable:
7393      // Do nothing.
7394      break;
7395    }
7396  }
7397
7398  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7399  //       ICSj(F2), or, if not that,
7400  if (HasBetterConversion)
7401    return true;
7402
7403  //     - F1 is a non-template function and F2 is a function template
7404  //       specialization, or, if not that,
7405  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7406      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7407    return true;
7408
7409  //   -- F1 and F2 are function template specializations, and the function
7410  //      template for F1 is more specialized than the template for F2
7411  //      according to the partial ordering rules described in 14.5.5.2, or,
7412  //      if not that,
7413  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7414      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7415    if (FunctionTemplateDecl *BetterTemplate
7416          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7417                                         Cand2.Function->getPrimaryTemplate(),
7418                                         Loc,
7419                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7420                                                             : TPOC_Call,
7421                                         Cand1.ExplicitCallArguments))
7422      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7423  }
7424
7425  //   -- the context is an initialization by user-defined conversion
7426  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7427  //      from the return type of F1 to the destination type (i.e.,
7428  //      the type of the entity being initialized) is a better
7429  //      conversion sequence than the standard conversion sequence
7430  //      from the return type of F2 to the destination type.
7431  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7432      isa<CXXConversionDecl>(Cand1.Function) &&
7433      isa<CXXConversionDecl>(Cand2.Function)) {
7434    switch (CompareStandardConversionSequences(S,
7435                                               Cand1.FinalConversion,
7436                                               Cand2.FinalConversion)) {
7437    case ImplicitConversionSequence::Better:
7438      // Cand1 has a better conversion sequence.
7439      return true;
7440
7441    case ImplicitConversionSequence::Worse:
7442      // Cand1 can't be better than Cand2.
7443      return false;
7444
7445    case ImplicitConversionSequence::Indistinguishable:
7446      // Do nothing
7447      break;
7448    }
7449  }
7450
7451  return false;
7452}
7453
7454/// \brief Computes the best viable function (C++ 13.3.3)
7455/// within an overload candidate set.
7456///
7457/// \param CandidateSet the set of candidate functions.
7458///
7459/// \param Loc the location of the function name (or operator symbol) for
7460/// which overload resolution occurs.
7461///
7462/// \param Best f overload resolution was successful or found a deleted
7463/// function, Best points to the candidate function found.
7464///
7465/// \returns The result of overload resolution.
7466OverloadingResult
7467OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7468                                         iterator &Best,
7469                                         bool UserDefinedConversion) {
7470  // Find the best viable function.
7471  Best = end();
7472  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7473    if (Cand->Viable)
7474      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7475                                                     UserDefinedConversion))
7476        Best = Cand;
7477  }
7478
7479  // If we didn't find any viable functions, abort.
7480  if (Best == end())
7481    return OR_No_Viable_Function;
7482
7483  // Make sure that this function is better than every other viable
7484  // function. If not, we have an ambiguity.
7485  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7486    if (Cand->Viable &&
7487        Cand != Best &&
7488        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7489                                   UserDefinedConversion)) {
7490      Best = end();
7491      return OR_Ambiguous;
7492    }
7493  }
7494
7495  // Best is the best viable function.
7496  if (Best->Function &&
7497      (Best->Function->isDeleted() ||
7498       S.isFunctionConsideredUnavailable(Best->Function)))
7499    return OR_Deleted;
7500
7501  return OR_Success;
7502}
7503
7504namespace {
7505
7506enum OverloadCandidateKind {
7507  oc_function,
7508  oc_method,
7509  oc_constructor,
7510  oc_function_template,
7511  oc_method_template,
7512  oc_constructor_template,
7513  oc_implicit_default_constructor,
7514  oc_implicit_copy_constructor,
7515  oc_implicit_move_constructor,
7516  oc_implicit_copy_assignment,
7517  oc_implicit_move_assignment,
7518  oc_implicit_inherited_constructor
7519};
7520
7521OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7522                                                FunctionDecl *Fn,
7523                                                std::string &Description) {
7524  bool isTemplate = false;
7525
7526  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7527    isTemplate = true;
7528    Description = S.getTemplateArgumentBindingsText(
7529      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7530  }
7531
7532  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7533    if (!Ctor->isImplicit())
7534      return isTemplate ? oc_constructor_template : oc_constructor;
7535
7536    if (Ctor->getInheritedConstructor())
7537      return oc_implicit_inherited_constructor;
7538
7539    if (Ctor->isDefaultConstructor())
7540      return oc_implicit_default_constructor;
7541
7542    if (Ctor->isMoveConstructor())
7543      return oc_implicit_move_constructor;
7544
7545    assert(Ctor->isCopyConstructor() &&
7546           "unexpected sort of implicit constructor");
7547    return oc_implicit_copy_constructor;
7548  }
7549
7550  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7551    // This actually gets spelled 'candidate function' for now, but
7552    // it doesn't hurt to split it out.
7553    if (!Meth->isImplicit())
7554      return isTemplate ? oc_method_template : oc_method;
7555
7556    if (Meth->isMoveAssignmentOperator())
7557      return oc_implicit_move_assignment;
7558
7559    assert(Meth->isCopyAssignmentOperator()
7560           && "implicit method is not copy assignment operator?");
7561    return oc_implicit_copy_assignment;
7562  }
7563
7564  return isTemplate ? oc_function_template : oc_function;
7565}
7566
7567void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7568  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7569  if (!Ctor) return;
7570
7571  Ctor = Ctor->getInheritedConstructor();
7572  if (!Ctor) return;
7573
7574  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7575}
7576
7577} // end anonymous namespace
7578
7579// Notes the location of an overload candidate.
7580void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7581  std::string FnDesc;
7582  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7583  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7584                             << (unsigned) K << FnDesc;
7585  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7586  Diag(Fn->getLocation(), PD);
7587  MaybeEmitInheritedConstructorNote(*this, Fn);
7588}
7589
7590//Notes the location of all overload candidates designated through
7591// OverloadedExpr
7592void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7593  assert(OverloadedExpr->getType() == Context.OverloadTy);
7594
7595  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7596  OverloadExpr *OvlExpr = Ovl.Expression;
7597
7598  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7599                            IEnd = OvlExpr->decls_end();
7600       I != IEnd; ++I) {
7601    if (FunctionTemplateDecl *FunTmpl =
7602                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7603      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7604    } else if (FunctionDecl *Fun
7605                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7606      NoteOverloadCandidate(Fun, DestType);
7607    }
7608  }
7609}
7610
7611/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7612/// "lead" diagnostic; it will be given two arguments, the source and
7613/// target types of the conversion.
7614void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7615                                 Sema &S,
7616                                 SourceLocation CaretLoc,
7617                                 const PartialDiagnostic &PDiag) const {
7618  S.Diag(CaretLoc, PDiag)
7619    << Ambiguous.getFromType() << Ambiguous.getToType();
7620  for (AmbiguousConversionSequence::const_iterator
7621         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7622    S.NoteOverloadCandidate(*I);
7623  }
7624}
7625
7626namespace {
7627
7628void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
7629  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
7630  assert(Conv.isBad());
7631  assert(Cand->Function && "for now, candidate must be a function");
7632  FunctionDecl *Fn = Cand->Function;
7633
7634  // There's a conversion slot for the object argument if this is a
7635  // non-constructor method.  Note that 'I' corresponds the
7636  // conversion-slot index.
7637  bool isObjectArgument = false;
7638  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
7639    if (I == 0)
7640      isObjectArgument = true;
7641    else
7642      I--;
7643  }
7644
7645  std::string FnDesc;
7646  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7647
7648  Expr *FromExpr = Conv.Bad.FromExpr;
7649  QualType FromTy = Conv.Bad.getFromType();
7650  QualType ToTy = Conv.Bad.getToType();
7651
7652  if (FromTy == S.Context.OverloadTy) {
7653    assert(FromExpr && "overload set argument came from implicit argument?");
7654    Expr *E = FromExpr->IgnoreParens();
7655    if (isa<UnaryOperator>(E))
7656      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
7657    DeclarationName Name = cast<OverloadExpr>(E)->getName();
7658
7659    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
7660      << (unsigned) FnKind << FnDesc
7661      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7662      << ToTy << Name << I+1;
7663    MaybeEmitInheritedConstructorNote(S, Fn);
7664    return;
7665  }
7666
7667  // Do some hand-waving analysis to see if the non-viability is due
7668  // to a qualifier mismatch.
7669  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
7670  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
7671  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
7672    CToTy = RT->getPointeeType();
7673  else {
7674    // TODO: detect and diagnose the full richness of const mismatches.
7675    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
7676      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
7677        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
7678  }
7679
7680  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
7681      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
7682    // It is dumb that we have to do this here.
7683    while (isa<ArrayType>(CFromTy))
7684      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
7685    while (isa<ArrayType>(CToTy))
7686      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
7687
7688    Qualifiers FromQs = CFromTy.getQualifiers();
7689    Qualifiers ToQs = CToTy.getQualifiers();
7690
7691    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
7692      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
7693        << (unsigned) FnKind << FnDesc
7694        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7695        << FromTy
7696        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
7697        << (unsigned) isObjectArgument << I+1;
7698      MaybeEmitInheritedConstructorNote(S, Fn);
7699      return;
7700    }
7701
7702    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7703      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
7704        << (unsigned) FnKind << FnDesc
7705        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7706        << FromTy
7707        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
7708        << (unsigned) isObjectArgument << I+1;
7709      MaybeEmitInheritedConstructorNote(S, Fn);
7710      return;
7711    }
7712
7713    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
7714      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
7715      << (unsigned) FnKind << FnDesc
7716      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7717      << FromTy
7718      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
7719      << (unsigned) isObjectArgument << I+1;
7720      MaybeEmitInheritedConstructorNote(S, Fn);
7721      return;
7722    }
7723
7724    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
7725    assert(CVR && "unexpected qualifiers mismatch");
7726
7727    if (isObjectArgument) {
7728      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
7729        << (unsigned) FnKind << FnDesc
7730        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7731        << FromTy << (CVR - 1);
7732    } else {
7733      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
7734        << (unsigned) FnKind << FnDesc
7735        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7736        << FromTy << (CVR - 1) << I+1;
7737    }
7738    MaybeEmitInheritedConstructorNote(S, Fn);
7739    return;
7740  }
7741
7742  // Special diagnostic for failure to convert an initializer list, since
7743  // telling the user that it has type void is not useful.
7744  if (FromExpr && isa<InitListExpr>(FromExpr)) {
7745    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
7746      << (unsigned) FnKind << FnDesc
7747      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7748      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7749    MaybeEmitInheritedConstructorNote(S, Fn);
7750    return;
7751  }
7752
7753  // Diagnose references or pointers to incomplete types differently,
7754  // since it's far from impossible that the incompleteness triggered
7755  // the failure.
7756  QualType TempFromTy = FromTy.getNonReferenceType();
7757  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
7758    TempFromTy = PTy->getPointeeType();
7759  if (TempFromTy->isIncompleteType()) {
7760    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
7761      << (unsigned) FnKind << FnDesc
7762      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7763      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7764    MaybeEmitInheritedConstructorNote(S, Fn);
7765    return;
7766  }
7767
7768  // Diagnose base -> derived pointer conversions.
7769  unsigned BaseToDerivedConversion = 0;
7770  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
7771    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
7772      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7773                                               FromPtrTy->getPointeeType()) &&
7774          !FromPtrTy->getPointeeType()->isIncompleteType() &&
7775          !ToPtrTy->getPointeeType()->isIncompleteType() &&
7776          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
7777                          FromPtrTy->getPointeeType()))
7778        BaseToDerivedConversion = 1;
7779    }
7780  } else if (const ObjCObjectPointerType *FromPtrTy
7781                                    = FromTy->getAs<ObjCObjectPointerType>()) {
7782    if (const ObjCObjectPointerType *ToPtrTy
7783                                        = ToTy->getAs<ObjCObjectPointerType>())
7784      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
7785        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
7786          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7787                                                FromPtrTy->getPointeeType()) &&
7788              FromIface->isSuperClassOf(ToIface))
7789            BaseToDerivedConversion = 2;
7790  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
7791      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
7792          !FromTy->isIncompleteType() &&
7793          !ToRefTy->getPointeeType()->isIncompleteType() &&
7794          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
7795        BaseToDerivedConversion = 3;
7796    }
7797
7798  if (BaseToDerivedConversion) {
7799    S.Diag(Fn->getLocation(),
7800           diag::note_ovl_candidate_bad_base_to_derived_conv)
7801      << (unsigned) FnKind << FnDesc
7802      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7803      << (BaseToDerivedConversion - 1)
7804      << FromTy << ToTy << I+1;
7805    MaybeEmitInheritedConstructorNote(S, Fn);
7806    return;
7807  }
7808
7809  if (isa<ObjCObjectPointerType>(CFromTy) &&
7810      isa<PointerType>(CToTy)) {
7811      Qualifiers FromQs = CFromTy.getQualifiers();
7812      Qualifiers ToQs = CToTy.getQualifiers();
7813      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7814        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
7815        << (unsigned) FnKind << FnDesc
7816        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7817        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7818        MaybeEmitInheritedConstructorNote(S, Fn);
7819        return;
7820      }
7821  }
7822
7823  // Emit the generic diagnostic and, optionally, add the hints to it.
7824  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
7825  FDiag << (unsigned) FnKind << FnDesc
7826    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7827    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
7828    << (unsigned) (Cand->Fix.Kind);
7829
7830  // If we can fix the conversion, suggest the FixIts.
7831  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
7832       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
7833    FDiag << *HI;
7834  S.Diag(Fn->getLocation(), FDiag);
7835
7836  MaybeEmitInheritedConstructorNote(S, Fn);
7837}
7838
7839void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
7840                           unsigned NumFormalArgs) {
7841  // TODO: treat calls to a missing default constructor as a special case
7842
7843  FunctionDecl *Fn = Cand->Function;
7844  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
7845
7846  unsigned MinParams = Fn->getMinRequiredArguments();
7847
7848  // With invalid overloaded operators, it's possible that we think we
7849  // have an arity mismatch when it fact it looks like we have the
7850  // right number of arguments, because only overloaded operators have
7851  // the weird behavior of overloading member and non-member functions.
7852  // Just don't report anything.
7853  if (Fn->isInvalidDecl() &&
7854      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
7855    return;
7856
7857  // at least / at most / exactly
7858  unsigned mode, modeCount;
7859  if (NumFormalArgs < MinParams) {
7860    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
7861           (Cand->FailureKind == ovl_fail_bad_deduction &&
7862            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
7863    if (MinParams != FnTy->getNumArgs() ||
7864        FnTy->isVariadic() || FnTy->isTemplateVariadic())
7865      mode = 0; // "at least"
7866    else
7867      mode = 2; // "exactly"
7868    modeCount = MinParams;
7869  } else {
7870    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
7871           (Cand->FailureKind == ovl_fail_bad_deduction &&
7872            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
7873    if (MinParams != FnTy->getNumArgs())
7874      mode = 1; // "at most"
7875    else
7876      mode = 2; // "exactly"
7877    modeCount = FnTy->getNumArgs();
7878  }
7879
7880  std::string Description;
7881  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
7882
7883  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
7884    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
7885    << modeCount << NumFormalArgs;
7886  MaybeEmitInheritedConstructorNote(S, Fn);
7887}
7888
7889/// Diagnose a failed template-argument deduction.
7890void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
7891                          Expr **Args, unsigned NumArgs) {
7892  FunctionDecl *Fn = Cand->Function; // pattern
7893
7894  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7895  NamedDecl *ParamD;
7896  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7897  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7898  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7899  switch (Cand->DeductionFailure.Result) {
7900  case Sema::TDK_Success:
7901    llvm_unreachable("TDK_success while diagnosing bad deduction");
7902
7903  case Sema::TDK_Incomplete: {
7904    assert(ParamD && "no parameter found for incomplete deduction result");
7905    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7906      << ParamD->getDeclName();
7907    MaybeEmitInheritedConstructorNote(S, Fn);
7908    return;
7909  }
7910
7911  case Sema::TDK_Underqualified: {
7912    assert(ParamD && "no parameter found for bad qualifiers deduction result");
7913    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7914
7915    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7916
7917    // Param will have been canonicalized, but it should just be a
7918    // qualified version of ParamD, so move the qualifiers to that.
7919    QualifierCollector Qs;
7920    Qs.strip(Param);
7921    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7922    assert(S.Context.hasSameType(Param, NonCanonParam));
7923
7924    // Arg has also been canonicalized, but there's nothing we can do
7925    // about that.  It also doesn't matter as much, because it won't
7926    // have any template parameters in it (because deduction isn't
7927    // done on dependent types).
7928    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7929
7930    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7931      << ParamD->getDeclName() << Arg << NonCanonParam;
7932    MaybeEmitInheritedConstructorNote(S, Fn);
7933    return;
7934  }
7935
7936  case Sema::TDK_Inconsistent: {
7937    assert(ParamD && "no parameter found for inconsistent deduction result");
7938    int which = 0;
7939    if (isa<TemplateTypeParmDecl>(ParamD))
7940      which = 0;
7941    else if (isa<NonTypeTemplateParmDecl>(ParamD))
7942      which = 1;
7943    else {
7944      which = 2;
7945    }
7946
7947    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7948      << which << ParamD->getDeclName()
7949      << *Cand->DeductionFailure.getFirstArg()
7950      << *Cand->DeductionFailure.getSecondArg();
7951    MaybeEmitInheritedConstructorNote(S, Fn);
7952    return;
7953  }
7954
7955  case Sema::TDK_InvalidExplicitArguments:
7956    assert(ParamD && "no parameter found for invalid explicit arguments");
7957    if (ParamD->getDeclName())
7958      S.Diag(Fn->getLocation(),
7959             diag::note_ovl_candidate_explicit_arg_mismatch_named)
7960        << ParamD->getDeclName();
7961    else {
7962      int index = 0;
7963      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7964        index = TTP->getIndex();
7965      else if (NonTypeTemplateParmDecl *NTTP
7966                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7967        index = NTTP->getIndex();
7968      else
7969        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7970      S.Diag(Fn->getLocation(),
7971             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7972        << (index + 1);
7973    }
7974    MaybeEmitInheritedConstructorNote(S, Fn);
7975    return;
7976
7977  case Sema::TDK_TooManyArguments:
7978  case Sema::TDK_TooFewArguments:
7979    DiagnoseArityMismatch(S, Cand, NumArgs);
7980    return;
7981
7982  case Sema::TDK_InstantiationDepth:
7983    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
7984    MaybeEmitInheritedConstructorNote(S, Fn);
7985    return;
7986
7987  case Sema::TDK_SubstitutionFailure: {
7988    std::string ArgString;
7989    if (TemplateArgumentList *Args
7990                            = Cand->DeductionFailure.getTemplateArgumentList())
7991      ArgString = S.getTemplateArgumentBindingsText(
7992                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
7993                                                    *Args);
7994    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
7995      << ArgString;
7996    MaybeEmitInheritedConstructorNote(S, Fn);
7997    return;
7998  }
7999
8000  // TODO: diagnose these individually, then kill off
8001  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8002  case Sema::TDK_NonDeducedMismatch:
8003  case Sema::TDK_FailedOverloadResolution:
8004    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8005    MaybeEmitInheritedConstructorNote(S, Fn);
8006    return;
8007  }
8008}
8009
8010/// CUDA: diagnose an invalid call across targets.
8011void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8012  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8013  FunctionDecl *Callee = Cand->Function;
8014
8015  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8016                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8017
8018  std::string FnDesc;
8019  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8020
8021  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8022      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8023}
8024
8025/// Generates a 'note' diagnostic for an overload candidate.  We've
8026/// already generated a primary error at the call site.
8027///
8028/// It really does need to be a single diagnostic with its caret
8029/// pointed at the candidate declaration.  Yes, this creates some
8030/// major challenges of technical writing.  Yes, this makes pointing
8031/// out problems with specific arguments quite awkward.  It's still
8032/// better than generating twenty screens of text for every failed
8033/// overload.
8034///
8035/// It would be great to be able to express per-candidate problems
8036/// more richly for those diagnostic clients that cared, but we'd
8037/// still have to be just as careful with the default diagnostics.
8038void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8039                           Expr **Args, unsigned NumArgs) {
8040  FunctionDecl *Fn = Cand->Function;
8041
8042  // Note deleted candidates, but only if they're viable.
8043  if (Cand->Viable && (Fn->isDeleted() ||
8044      S.isFunctionConsideredUnavailable(Fn))) {
8045    std::string FnDesc;
8046    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8047
8048    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8049      << FnKind << FnDesc << Fn->isDeleted();
8050    MaybeEmitInheritedConstructorNote(S, Fn);
8051    return;
8052  }
8053
8054  // We don't really have anything else to say about viable candidates.
8055  if (Cand->Viable) {
8056    S.NoteOverloadCandidate(Fn);
8057    return;
8058  }
8059
8060  switch (Cand->FailureKind) {
8061  case ovl_fail_too_many_arguments:
8062  case ovl_fail_too_few_arguments:
8063    return DiagnoseArityMismatch(S, Cand, NumArgs);
8064
8065  case ovl_fail_bad_deduction:
8066    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
8067
8068  case ovl_fail_trivial_conversion:
8069  case ovl_fail_bad_final_conversion:
8070  case ovl_fail_final_conversion_not_exact:
8071    return S.NoteOverloadCandidate(Fn);
8072
8073  case ovl_fail_bad_conversion: {
8074    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8075    for (unsigned N = Cand->NumConversions; I != N; ++I)
8076      if (Cand->Conversions[I].isBad())
8077        return DiagnoseBadConversion(S, Cand, I);
8078
8079    // FIXME: this currently happens when we're called from SemaInit
8080    // when user-conversion overload fails.  Figure out how to handle
8081    // those conditions and diagnose them well.
8082    return S.NoteOverloadCandidate(Fn);
8083  }
8084
8085  case ovl_fail_bad_target:
8086    return DiagnoseBadTarget(S, Cand);
8087  }
8088}
8089
8090void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8091  // Desugar the type of the surrogate down to a function type,
8092  // retaining as many typedefs as possible while still showing
8093  // the function type (and, therefore, its parameter types).
8094  QualType FnType = Cand->Surrogate->getConversionType();
8095  bool isLValueReference = false;
8096  bool isRValueReference = false;
8097  bool isPointer = false;
8098  if (const LValueReferenceType *FnTypeRef =
8099        FnType->getAs<LValueReferenceType>()) {
8100    FnType = FnTypeRef->getPointeeType();
8101    isLValueReference = true;
8102  } else if (const RValueReferenceType *FnTypeRef =
8103               FnType->getAs<RValueReferenceType>()) {
8104    FnType = FnTypeRef->getPointeeType();
8105    isRValueReference = true;
8106  }
8107  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8108    FnType = FnTypePtr->getPointeeType();
8109    isPointer = true;
8110  }
8111  // Desugar down to a function type.
8112  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8113  // Reconstruct the pointer/reference as appropriate.
8114  if (isPointer) FnType = S.Context.getPointerType(FnType);
8115  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8116  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8117
8118  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8119    << FnType;
8120  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8121}
8122
8123void NoteBuiltinOperatorCandidate(Sema &S,
8124                                  const char *Opc,
8125                                  SourceLocation OpLoc,
8126                                  OverloadCandidate *Cand) {
8127  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8128  std::string TypeStr("operator");
8129  TypeStr += Opc;
8130  TypeStr += "(";
8131  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8132  if (Cand->NumConversions == 1) {
8133    TypeStr += ")";
8134    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8135  } else {
8136    TypeStr += ", ";
8137    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8138    TypeStr += ")";
8139    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8140  }
8141}
8142
8143void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8144                                  OverloadCandidate *Cand) {
8145  unsigned NoOperands = Cand->NumConversions;
8146  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8147    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8148    if (ICS.isBad()) break; // all meaningless after first invalid
8149    if (!ICS.isAmbiguous()) continue;
8150
8151    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8152                              S.PDiag(diag::note_ambiguous_type_conversion));
8153  }
8154}
8155
8156SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8157  if (Cand->Function)
8158    return Cand->Function->getLocation();
8159  if (Cand->IsSurrogate)
8160    return Cand->Surrogate->getLocation();
8161  return SourceLocation();
8162}
8163
8164static unsigned
8165RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8166  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8167  case Sema::TDK_Success:
8168    llvm_unreachable("TDK_success while diagnosing bad deduction");
8169
8170  case Sema::TDK_Incomplete:
8171    return 1;
8172
8173  case Sema::TDK_Underqualified:
8174  case Sema::TDK_Inconsistent:
8175    return 2;
8176
8177  case Sema::TDK_SubstitutionFailure:
8178  case Sema::TDK_NonDeducedMismatch:
8179    return 3;
8180
8181  case Sema::TDK_InstantiationDepth:
8182  case Sema::TDK_FailedOverloadResolution:
8183    return 4;
8184
8185  case Sema::TDK_InvalidExplicitArguments:
8186    return 5;
8187
8188  case Sema::TDK_TooManyArguments:
8189  case Sema::TDK_TooFewArguments:
8190    return 6;
8191  }
8192  llvm_unreachable("Unhandled deduction result");
8193}
8194
8195struct CompareOverloadCandidatesForDisplay {
8196  Sema &S;
8197  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8198
8199  bool operator()(const OverloadCandidate *L,
8200                  const OverloadCandidate *R) {
8201    // Fast-path this check.
8202    if (L == R) return false;
8203
8204    // Order first by viability.
8205    if (L->Viable) {
8206      if (!R->Viable) return true;
8207
8208      // TODO: introduce a tri-valued comparison for overload
8209      // candidates.  Would be more worthwhile if we had a sort
8210      // that could exploit it.
8211      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8212      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8213    } else if (R->Viable)
8214      return false;
8215
8216    assert(L->Viable == R->Viable);
8217
8218    // Criteria by which we can sort non-viable candidates:
8219    if (!L->Viable) {
8220      // 1. Arity mismatches come after other candidates.
8221      if (L->FailureKind == ovl_fail_too_many_arguments ||
8222          L->FailureKind == ovl_fail_too_few_arguments)
8223        return false;
8224      if (R->FailureKind == ovl_fail_too_many_arguments ||
8225          R->FailureKind == ovl_fail_too_few_arguments)
8226        return true;
8227
8228      // 2. Bad conversions come first and are ordered by the number
8229      // of bad conversions and quality of good conversions.
8230      if (L->FailureKind == ovl_fail_bad_conversion) {
8231        if (R->FailureKind != ovl_fail_bad_conversion)
8232          return true;
8233
8234        // The conversion that can be fixed with a smaller number of changes,
8235        // comes first.
8236        unsigned numLFixes = L->Fix.NumConversionsFixed;
8237        unsigned numRFixes = R->Fix.NumConversionsFixed;
8238        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8239        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8240        if (numLFixes != numRFixes) {
8241          if (numLFixes < numRFixes)
8242            return true;
8243          else
8244            return false;
8245        }
8246
8247        // If there's any ordering between the defined conversions...
8248        // FIXME: this might not be transitive.
8249        assert(L->NumConversions == R->NumConversions);
8250
8251        int leftBetter = 0;
8252        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8253        for (unsigned E = L->NumConversions; I != E; ++I) {
8254          switch (CompareImplicitConversionSequences(S,
8255                                                     L->Conversions[I],
8256                                                     R->Conversions[I])) {
8257          case ImplicitConversionSequence::Better:
8258            leftBetter++;
8259            break;
8260
8261          case ImplicitConversionSequence::Worse:
8262            leftBetter--;
8263            break;
8264
8265          case ImplicitConversionSequence::Indistinguishable:
8266            break;
8267          }
8268        }
8269        if (leftBetter > 0) return true;
8270        if (leftBetter < 0) return false;
8271
8272      } else if (R->FailureKind == ovl_fail_bad_conversion)
8273        return false;
8274
8275      if (L->FailureKind == ovl_fail_bad_deduction) {
8276        if (R->FailureKind != ovl_fail_bad_deduction)
8277          return true;
8278
8279        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8280          return RankDeductionFailure(L->DeductionFailure)
8281               < RankDeductionFailure(R->DeductionFailure);
8282      } else if (R->FailureKind == ovl_fail_bad_deduction)
8283        return false;
8284
8285      // TODO: others?
8286    }
8287
8288    // Sort everything else by location.
8289    SourceLocation LLoc = GetLocationForCandidate(L);
8290    SourceLocation RLoc = GetLocationForCandidate(R);
8291
8292    // Put candidates without locations (e.g. builtins) at the end.
8293    if (LLoc.isInvalid()) return false;
8294    if (RLoc.isInvalid()) return true;
8295
8296    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8297  }
8298};
8299
8300/// CompleteNonViableCandidate - Normally, overload resolution only
8301/// computes up to the first. Produces the FixIt set if possible.
8302void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8303                                Expr **Args, unsigned NumArgs) {
8304  assert(!Cand->Viable);
8305
8306  // Don't do anything on failures other than bad conversion.
8307  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8308
8309  // We only want the FixIts if all the arguments can be corrected.
8310  bool Unfixable = false;
8311  // Use a implicit copy initialization to check conversion fixes.
8312  Cand->Fix.setConversionChecker(TryCopyInitialization);
8313
8314  // Skip forward to the first bad conversion.
8315  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8316  unsigned ConvCount = Cand->NumConversions;
8317  while (true) {
8318    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8319    ConvIdx++;
8320    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8321      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8322      break;
8323    }
8324  }
8325
8326  if (ConvIdx == ConvCount)
8327    return;
8328
8329  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8330         "remaining conversion is initialized?");
8331
8332  // FIXME: this should probably be preserved from the overload
8333  // operation somehow.
8334  bool SuppressUserConversions = false;
8335
8336  const FunctionProtoType* Proto;
8337  unsigned ArgIdx = ConvIdx;
8338
8339  if (Cand->IsSurrogate) {
8340    QualType ConvType
8341      = Cand->Surrogate->getConversionType().getNonReferenceType();
8342    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8343      ConvType = ConvPtrType->getPointeeType();
8344    Proto = ConvType->getAs<FunctionProtoType>();
8345    ArgIdx--;
8346  } else if (Cand->Function) {
8347    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8348    if (isa<CXXMethodDecl>(Cand->Function) &&
8349        !isa<CXXConstructorDecl>(Cand->Function))
8350      ArgIdx--;
8351  } else {
8352    // Builtin binary operator with a bad first conversion.
8353    assert(ConvCount <= 3);
8354    for (; ConvIdx != ConvCount; ++ConvIdx)
8355      Cand->Conversions[ConvIdx]
8356        = TryCopyInitialization(S, Args[ConvIdx],
8357                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
8358                                SuppressUserConversions,
8359                                /*InOverloadResolution*/ true,
8360                                /*AllowObjCWritebackConversion=*/
8361                                  S.getLangOptions().ObjCAutoRefCount);
8362    return;
8363  }
8364
8365  // Fill in the rest of the conversions.
8366  unsigned NumArgsInProto = Proto->getNumArgs();
8367  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8368    if (ArgIdx < NumArgsInProto) {
8369      Cand->Conversions[ConvIdx]
8370        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8371                                SuppressUserConversions,
8372                                /*InOverloadResolution=*/true,
8373                                /*AllowObjCWritebackConversion=*/
8374                                  S.getLangOptions().ObjCAutoRefCount);
8375      // Store the FixIt in the candidate if it exists.
8376      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8377        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8378    }
8379    else
8380      Cand->Conversions[ConvIdx].setEllipsis();
8381  }
8382}
8383
8384} // end anonymous namespace
8385
8386/// PrintOverloadCandidates - When overload resolution fails, prints
8387/// diagnostic messages containing the candidates in the candidate
8388/// set.
8389void OverloadCandidateSet::NoteCandidates(Sema &S,
8390                                          OverloadCandidateDisplayKind OCD,
8391                                          Expr **Args, unsigned NumArgs,
8392                                          const char *Opc,
8393                                          SourceLocation OpLoc) {
8394  // Sort the candidates by viability and position.  Sorting directly would
8395  // be prohibitive, so we make a set of pointers and sort those.
8396  SmallVector<OverloadCandidate*, 32> Cands;
8397  if (OCD == OCD_AllCandidates) Cands.reserve(size());
8398  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8399    if (Cand->Viable)
8400      Cands.push_back(Cand);
8401    else if (OCD == OCD_AllCandidates) {
8402      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
8403      if (Cand->Function || Cand->IsSurrogate)
8404        Cands.push_back(Cand);
8405      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
8406      // want to list every possible builtin candidate.
8407    }
8408  }
8409
8410  std::sort(Cands.begin(), Cands.end(),
8411            CompareOverloadCandidatesForDisplay(S));
8412
8413  bool ReportedAmbiguousConversions = false;
8414
8415  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8416  const DiagnosticsEngine::OverloadsShown ShowOverloads =
8417      S.Diags.getShowOverloads();
8418  unsigned CandsShown = 0;
8419  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8420    OverloadCandidate *Cand = *I;
8421
8422    // Set an arbitrary limit on the number of candidate functions we'll spam
8423    // the user with.  FIXME: This limit should depend on details of the
8424    // candidate list.
8425    if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
8426      break;
8427    }
8428    ++CandsShown;
8429
8430    if (Cand->Function)
8431      NoteFunctionCandidate(S, Cand, Args, NumArgs);
8432    else if (Cand->IsSurrogate)
8433      NoteSurrogateCandidate(S, Cand);
8434    else {
8435      assert(Cand->Viable &&
8436             "Non-viable built-in candidates are not added to Cands.");
8437      // Generally we only see ambiguities including viable builtin
8438      // operators if overload resolution got screwed up by an
8439      // ambiguous user-defined conversion.
8440      //
8441      // FIXME: It's quite possible for different conversions to see
8442      // different ambiguities, though.
8443      if (!ReportedAmbiguousConversions) {
8444        NoteAmbiguousUserConversions(S, OpLoc, Cand);
8445        ReportedAmbiguousConversions = true;
8446      }
8447
8448      // If this is a viable builtin, print it.
8449      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8450    }
8451  }
8452
8453  if (I != E)
8454    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8455}
8456
8457// [PossiblyAFunctionType]  -->   [Return]
8458// NonFunctionType --> NonFunctionType
8459// R (A) --> R(A)
8460// R (*)(A) --> R (A)
8461// R (&)(A) --> R (A)
8462// R (S::*)(A) --> R (A)
8463QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8464  QualType Ret = PossiblyAFunctionType;
8465  if (const PointerType *ToTypePtr =
8466    PossiblyAFunctionType->getAs<PointerType>())
8467    Ret = ToTypePtr->getPointeeType();
8468  else if (const ReferenceType *ToTypeRef =
8469    PossiblyAFunctionType->getAs<ReferenceType>())
8470    Ret = ToTypeRef->getPointeeType();
8471  else if (const MemberPointerType *MemTypePtr =
8472    PossiblyAFunctionType->getAs<MemberPointerType>())
8473    Ret = MemTypePtr->getPointeeType();
8474  Ret =
8475    Context.getCanonicalType(Ret).getUnqualifiedType();
8476  return Ret;
8477}
8478
8479// A helper class to help with address of function resolution
8480// - allows us to avoid passing around all those ugly parameters
8481class AddressOfFunctionResolver
8482{
8483  Sema& S;
8484  Expr* SourceExpr;
8485  const QualType& TargetType;
8486  QualType TargetFunctionType; // Extracted function type from target type
8487
8488  bool Complain;
8489  //DeclAccessPair& ResultFunctionAccessPair;
8490  ASTContext& Context;
8491
8492  bool TargetTypeIsNonStaticMemberFunction;
8493  bool FoundNonTemplateFunction;
8494
8495  OverloadExpr::FindResult OvlExprInfo;
8496  OverloadExpr *OvlExpr;
8497  TemplateArgumentListInfo OvlExplicitTemplateArgs;
8498  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8499
8500public:
8501  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8502                            const QualType& TargetType, bool Complain)
8503    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8504      Complain(Complain), Context(S.getASTContext()),
8505      TargetTypeIsNonStaticMemberFunction(
8506                                    !!TargetType->getAs<MemberPointerType>()),
8507      FoundNonTemplateFunction(false),
8508      OvlExprInfo(OverloadExpr::find(SourceExpr)),
8509      OvlExpr(OvlExprInfo.Expression)
8510  {
8511    ExtractUnqualifiedFunctionTypeFromTargetType();
8512
8513    if (!TargetFunctionType->isFunctionType()) {
8514      if (OvlExpr->hasExplicitTemplateArgs()) {
8515        DeclAccessPair dap;
8516        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8517                                            OvlExpr, false, &dap) ) {
8518
8519          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8520            if (!Method->isStatic()) {
8521              // If the target type is a non-function type and the function
8522              // found is a non-static member function, pretend as if that was
8523              // the target, it's the only possible type to end up with.
8524              TargetTypeIsNonStaticMemberFunction = true;
8525
8526              // And skip adding the function if its not in the proper form.
8527              // We'll diagnose this due to an empty set of functions.
8528              if (!OvlExprInfo.HasFormOfMemberPointer)
8529                return;
8530            }
8531          }
8532
8533          Matches.push_back(std::make_pair(dap,Fn));
8534        }
8535      }
8536      return;
8537    }
8538
8539    if (OvlExpr->hasExplicitTemplateArgs())
8540      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8541
8542    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8543      // C++ [over.over]p4:
8544      //   If more than one function is selected, [...]
8545      if (Matches.size() > 1) {
8546        if (FoundNonTemplateFunction)
8547          EliminateAllTemplateMatches();
8548        else
8549          EliminateAllExceptMostSpecializedTemplate();
8550      }
8551    }
8552  }
8553
8554private:
8555  bool isTargetTypeAFunction() const {
8556    return TargetFunctionType->isFunctionType();
8557  }
8558
8559  // [ToType]     [Return]
8560
8561  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8562  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8563  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
8564  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8565    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8566  }
8567
8568  // return true if any matching specializations were found
8569  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8570                                   const DeclAccessPair& CurAccessFunPair) {
8571    if (CXXMethodDecl *Method
8572              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8573      // Skip non-static function templates when converting to pointer, and
8574      // static when converting to member pointer.
8575      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8576        return false;
8577    }
8578    else if (TargetTypeIsNonStaticMemberFunction)
8579      return false;
8580
8581    // C++ [over.over]p2:
8582    //   If the name is a function template, template argument deduction is
8583    //   done (14.8.2.2), and if the argument deduction succeeds, the
8584    //   resulting template argument list is used to generate a single
8585    //   function template specialization, which is added to the set of
8586    //   overloaded functions considered.
8587    FunctionDecl *Specialization = 0;
8588    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8589    if (Sema::TemplateDeductionResult Result
8590          = S.DeduceTemplateArguments(FunctionTemplate,
8591                                      &OvlExplicitTemplateArgs,
8592                                      TargetFunctionType, Specialization,
8593                                      Info)) {
8594      // FIXME: make a note of the failed deduction for diagnostics.
8595      (void)Result;
8596      return false;
8597    }
8598
8599    // Template argument deduction ensures that we have an exact match.
8600    // This function template specicalization works.
8601    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
8602    assert(TargetFunctionType
8603                      == Context.getCanonicalType(Specialization->getType()));
8604    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
8605    return true;
8606  }
8607
8608  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
8609                                      const DeclAccessPair& CurAccessFunPair) {
8610    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8611      // Skip non-static functions when converting to pointer, and static
8612      // when converting to member pointer.
8613      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8614        return false;
8615    }
8616    else if (TargetTypeIsNonStaticMemberFunction)
8617      return false;
8618
8619    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
8620      if (S.getLangOptions().CUDA)
8621        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
8622          if (S.CheckCUDATarget(Caller, FunDecl))
8623            return false;
8624
8625      QualType ResultTy;
8626      if (Context.hasSameUnqualifiedType(TargetFunctionType,
8627                                         FunDecl->getType()) ||
8628          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
8629                                 ResultTy)) {
8630        Matches.push_back(std::make_pair(CurAccessFunPair,
8631          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
8632        FoundNonTemplateFunction = true;
8633        return true;
8634      }
8635    }
8636
8637    return false;
8638  }
8639
8640  bool FindAllFunctionsThatMatchTargetTypeExactly() {
8641    bool Ret = false;
8642
8643    // If the overload expression doesn't have the form of a pointer to
8644    // member, don't try to convert it to a pointer-to-member type.
8645    if (IsInvalidFormOfPointerToMemberFunction())
8646      return false;
8647
8648    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8649                               E = OvlExpr->decls_end();
8650         I != E; ++I) {
8651      // Look through any using declarations to find the underlying function.
8652      NamedDecl *Fn = (*I)->getUnderlyingDecl();
8653
8654      // C++ [over.over]p3:
8655      //   Non-member functions and static member functions match
8656      //   targets of type "pointer-to-function" or "reference-to-function."
8657      //   Nonstatic member functions match targets of
8658      //   type "pointer-to-member-function."
8659      // Note that according to DR 247, the containing class does not matter.
8660      if (FunctionTemplateDecl *FunctionTemplate
8661                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
8662        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
8663          Ret = true;
8664      }
8665      // If we have explicit template arguments supplied, skip non-templates.
8666      else if (!OvlExpr->hasExplicitTemplateArgs() &&
8667               AddMatchingNonTemplateFunction(Fn, I.getPair()))
8668        Ret = true;
8669    }
8670    assert(Ret || Matches.empty());
8671    return Ret;
8672  }
8673
8674  void EliminateAllExceptMostSpecializedTemplate() {
8675    //   [...] and any given function template specialization F1 is
8676    //   eliminated if the set contains a second function template
8677    //   specialization whose function template is more specialized
8678    //   than the function template of F1 according to the partial
8679    //   ordering rules of 14.5.5.2.
8680
8681    // The algorithm specified above is quadratic. We instead use a
8682    // two-pass algorithm (similar to the one used to identify the
8683    // best viable function in an overload set) that identifies the
8684    // best function template (if it exists).
8685
8686    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
8687    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
8688      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
8689
8690    UnresolvedSetIterator Result =
8691      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
8692                           TPOC_Other, 0, SourceExpr->getLocStart(),
8693                           S.PDiag(),
8694                           S.PDiag(diag::err_addr_ovl_ambiguous)
8695                             << Matches[0].second->getDeclName(),
8696                           S.PDiag(diag::note_ovl_candidate)
8697                             << (unsigned) oc_function_template,
8698                           Complain, TargetFunctionType);
8699
8700    if (Result != MatchesCopy.end()) {
8701      // Make it the first and only element
8702      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
8703      Matches[0].second = cast<FunctionDecl>(*Result);
8704      Matches.resize(1);
8705    }
8706  }
8707
8708  void EliminateAllTemplateMatches() {
8709    //   [...] any function template specializations in the set are
8710    //   eliminated if the set also contains a non-template function, [...]
8711    for (unsigned I = 0, N = Matches.size(); I != N; ) {
8712      if (Matches[I].second->getPrimaryTemplate() == 0)
8713        ++I;
8714      else {
8715        Matches[I] = Matches[--N];
8716        Matches.set_size(N);
8717      }
8718    }
8719  }
8720
8721public:
8722  void ComplainNoMatchesFound() const {
8723    assert(Matches.empty());
8724    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
8725        << OvlExpr->getName() << TargetFunctionType
8726        << OvlExpr->getSourceRange();
8727    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
8728  }
8729
8730  bool IsInvalidFormOfPointerToMemberFunction() const {
8731    return TargetTypeIsNonStaticMemberFunction &&
8732      !OvlExprInfo.HasFormOfMemberPointer;
8733  }
8734
8735  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
8736      // TODO: Should we condition this on whether any functions might
8737      // have matched, or is it more appropriate to do that in callers?
8738      // TODO: a fixit wouldn't hurt.
8739      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
8740        << TargetType << OvlExpr->getSourceRange();
8741  }
8742
8743  void ComplainOfInvalidConversion() const {
8744    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
8745      << OvlExpr->getName() << TargetType;
8746  }
8747
8748  void ComplainMultipleMatchesFound() const {
8749    assert(Matches.size() > 1);
8750    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
8751      << OvlExpr->getName()
8752      << OvlExpr->getSourceRange();
8753    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
8754  }
8755
8756  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
8757
8758  int getNumMatches() const { return Matches.size(); }
8759
8760  FunctionDecl* getMatchingFunctionDecl() const {
8761    if (Matches.size() != 1) return 0;
8762    return Matches[0].second;
8763  }
8764
8765  const DeclAccessPair* getMatchingFunctionAccessPair() const {
8766    if (Matches.size() != 1) return 0;
8767    return &Matches[0].first;
8768  }
8769};
8770
8771/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
8772/// an overloaded function (C++ [over.over]), where @p From is an
8773/// expression with overloaded function type and @p ToType is the type
8774/// we're trying to resolve to. For example:
8775///
8776/// @code
8777/// int f(double);
8778/// int f(int);
8779///
8780/// int (*pfd)(double) = f; // selects f(double)
8781/// @endcode
8782///
8783/// This routine returns the resulting FunctionDecl if it could be
8784/// resolved, and NULL otherwise. When @p Complain is true, this
8785/// routine will emit diagnostics if there is an error.
8786FunctionDecl *
8787Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
8788                                         QualType TargetType,
8789                                         bool Complain,
8790                                         DeclAccessPair &FoundResult,
8791                                         bool *pHadMultipleCandidates) {
8792  assert(AddressOfExpr->getType() == Context.OverloadTy);
8793
8794  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
8795                                     Complain);
8796  int NumMatches = Resolver.getNumMatches();
8797  FunctionDecl* Fn = 0;
8798  if (NumMatches == 0 && Complain) {
8799    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
8800      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
8801    else
8802      Resolver.ComplainNoMatchesFound();
8803  }
8804  else if (NumMatches > 1 && Complain)
8805    Resolver.ComplainMultipleMatchesFound();
8806  else if (NumMatches == 1) {
8807    Fn = Resolver.getMatchingFunctionDecl();
8808    assert(Fn);
8809    FoundResult = *Resolver.getMatchingFunctionAccessPair();
8810    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
8811    if (Complain)
8812      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
8813  }
8814
8815  if (pHadMultipleCandidates)
8816    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
8817  return Fn;
8818}
8819
8820/// \brief Given an expression that refers to an overloaded function, try to
8821/// resolve that overloaded function expression down to a single function.
8822///
8823/// This routine can only resolve template-ids that refer to a single function
8824/// template, where that template-id refers to a single template whose template
8825/// arguments are either provided by the template-id or have defaults,
8826/// as described in C++0x [temp.arg.explicit]p3.
8827FunctionDecl *
8828Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
8829                                                  bool Complain,
8830                                                  DeclAccessPair *FoundResult) {
8831  // C++ [over.over]p1:
8832  //   [...] [Note: any redundant set of parentheses surrounding the
8833  //   overloaded function name is ignored (5.1). ]
8834  // C++ [over.over]p1:
8835  //   [...] The overloaded function name can be preceded by the &
8836  //   operator.
8837
8838  // If we didn't actually find any template-ids, we're done.
8839  if (!ovl->hasExplicitTemplateArgs())
8840    return 0;
8841
8842  TemplateArgumentListInfo ExplicitTemplateArgs;
8843  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
8844
8845  // Look through all of the overloaded functions, searching for one
8846  // whose type matches exactly.
8847  FunctionDecl *Matched = 0;
8848  for (UnresolvedSetIterator I = ovl->decls_begin(),
8849         E = ovl->decls_end(); I != E; ++I) {
8850    // C++0x [temp.arg.explicit]p3:
8851    //   [...] In contexts where deduction is done and fails, or in contexts
8852    //   where deduction is not done, if a template argument list is
8853    //   specified and it, along with any default template arguments,
8854    //   identifies a single function template specialization, then the
8855    //   template-id is an lvalue for the function template specialization.
8856    FunctionTemplateDecl *FunctionTemplate
8857      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
8858
8859    // C++ [over.over]p2:
8860    //   If the name is a function template, template argument deduction is
8861    //   done (14.8.2.2), and if the argument deduction succeeds, the
8862    //   resulting template argument list is used to generate a single
8863    //   function template specialization, which is added to the set of
8864    //   overloaded functions considered.
8865    FunctionDecl *Specialization = 0;
8866    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
8867    if (TemplateDeductionResult Result
8868          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
8869                                    Specialization, Info)) {
8870      // FIXME: make a note of the failed deduction for diagnostics.
8871      (void)Result;
8872      continue;
8873    }
8874
8875    assert(Specialization && "no specialization and no error?");
8876
8877    // Multiple matches; we can't resolve to a single declaration.
8878    if (Matched) {
8879      if (Complain) {
8880        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
8881          << ovl->getName();
8882        NoteAllOverloadCandidates(ovl);
8883      }
8884      return 0;
8885    }
8886
8887    Matched = Specialization;
8888    if (FoundResult) *FoundResult = I.getPair();
8889  }
8890
8891  return Matched;
8892}
8893
8894
8895
8896
8897// Resolve and fix an overloaded expression that can be resolved
8898// because it identifies a single function template specialization.
8899//
8900// Last three arguments should only be supplied if Complain = true
8901//
8902// Return true if it was logically possible to so resolve the
8903// expression, regardless of whether or not it succeeded.  Always
8904// returns true if 'complain' is set.
8905bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
8906                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
8907                   bool complain, const SourceRange& OpRangeForComplaining,
8908                                           QualType DestTypeForComplaining,
8909                                            unsigned DiagIDForComplaining) {
8910  assert(SrcExpr.get()->getType() == Context.OverloadTy);
8911
8912  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
8913
8914  DeclAccessPair found;
8915  ExprResult SingleFunctionExpression;
8916  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
8917                           ovl.Expression, /*complain*/ false, &found)) {
8918    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) {
8919      SrcExpr = ExprError();
8920      return true;
8921    }
8922
8923    // It is only correct to resolve to an instance method if we're
8924    // resolving a form that's permitted to be a pointer to member.
8925    // Otherwise we'll end up making a bound member expression, which
8926    // is illegal in all the contexts we resolve like this.
8927    if (!ovl.HasFormOfMemberPointer &&
8928        isa<CXXMethodDecl>(fn) &&
8929        cast<CXXMethodDecl>(fn)->isInstance()) {
8930      if (!complain) return false;
8931
8932      Diag(ovl.Expression->getExprLoc(),
8933           diag::err_bound_member_function)
8934        << 0 << ovl.Expression->getSourceRange();
8935
8936      // TODO: I believe we only end up here if there's a mix of
8937      // static and non-static candidates (otherwise the expression
8938      // would have 'bound member' type, not 'overload' type).
8939      // Ideally we would note which candidate was chosen and why
8940      // the static candidates were rejected.
8941      SrcExpr = ExprError();
8942      return true;
8943    }
8944
8945    // Fix the expresion to refer to 'fn'.
8946    SingleFunctionExpression =
8947      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
8948
8949    // If desired, do function-to-pointer decay.
8950    if (doFunctionPointerConverion) {
8951      SingleFunctionExpression =
8952        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
8953      if (SingleFunctionExpression.isInvalid()) {
8954        SrcExpr = ExprError();
8955        return true;
8956      }
8957    }
8958  }
8959
8960  if (!SingleFunctionExpression.isUsable()) {
8961    if (complain) {
8962      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
8963        << ovl.Expression->getName()
8964        << DestTypeForComplaining
8965        << OpRangeForComplaining
8966        << ovl.Expression->getQualifierLoc().getSourceRange();
8967      NoteAllOverloadCandidates(SrcExpr.get());
8968
8969      SrcExpr = ExprError();
8970      return true;
8971    }
8972
8973    return false;
8974  }
8975
8976  SrcExpr = SingleFunctionExpression;
8977  return true;
8978}
8979
8980/// \brief Add a single candidate to the overload set.
8981static void AddOverloadedCallCandidate(Sema &S,
8982                                       DeclAccessPair FoundDecl,
8983                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
8984                                       Expr **Args, unsigned NumArgs,
8985                                       OverloadCandidateSet &CandidateSet,
8986                                       bool PartialOverloading,
8987                                       bool KnownValid) {
8988  NamedDecl *Callee = FoundDecl.getDecl();
8989  if (isa<UsingShadowDecl>(Callee))
8990    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
8991
8992  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
8993    if (ExplicitTemplateArgs) {
8994      assert(!KnownValid && "Explicit template arguments?");
8995      return;
8996    }
8997    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
8998                           false, PartialOverloading);
8999    return;
9000  }
9001
9002  if (FunctionTemplateDecl *FuncTemplate
9003      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9004    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9005                                   ExplicitTemplateArgs,
9006                                   Args, NumArgs, CandidateSet);
9007    return;
9008  }
9009
9010  assert(!KnownValid && "unhandled case in overloaded call candidate");
9011}
9012
9013/// \brief Add the overload candidates named by callee and/or found by argument
9014/// dependent lookup to the given overload set.
9015void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9016                                       Expr **Args, unsigned NumArgs,
9017                                       OverloadCandidateSet &CandidateSet,
9018                                       bool PartialOverloading) {
9019
9020#ifndef NDEBUG
9021  // Verify that ArgumentDependentLookup is consistent with the rules
9022  // in C++0x [basic.lookup.argdep]p3:
9023  //
9024  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9025  //   and let Y be the lookup set produced by argument dependent
9026  //   lookup (defined as follows). If X contains
9027  //
9028  //     -- a declaration of a class member, or
9029  //
9030  //     -- a block-scope function declaration that is not a
9031  //        using-declaration, or
9032  //
9033  //     -- a declaration that is neither a function or a function
9034  //        template
9035  //
9036  //   then Y is empty.
9037
9038  if (ULE->requiresADL()) {
9039    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9040           E = ULE->decls_end(); I != E; ++I) {
9041      assert(!(*I)->getDeclContext()->isRecord());
9042      assert(isa<UsingShadowDecl>(*I) ||
9043             !(*I)->getDeclContext()->isFunctionOrMethod());
9044      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9045    }
9046  }
9047#endif
9048
9049  // It would be nice to avoid this copy.
9050  TemplateArgumentListInfo TABuffer;
9051  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9052  if (ULE->hasExplicitTemplateArgs()) {
9053    ULE->copyTemplateArgumentsInto(TABuffer);
9054    ExplicitTemplateArgs = &TABuffer;
9055  }
9056
9057  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9058         E = ULE->decls_end(); I != E; ++I)
9059    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
9060                               Args, NumArgs, CandidateSet,
9061                               PartialOverloading, /*KnownValid*/ true);
9062
9063  if (ULE->requiresADL())
9064    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9065                                         Args, NumArgs,
9066                                         ExplicitTemplateArgs,
9067                                         CandidateSet,
9068                                         PartialOverloading,
9069                                         ULE->isStdAssociatedNamespace());
9070}
9071
9072/// Attempt to recover from an ill-formed use of a non-dependent name in a
9073/// template, where the non-dependent name was declared after the template
9074/// was defined. This is common in code written for a compilers which do not
9075/// correctly implement two-stage name lookup.
9076///
9077/// Returns true if a viable candidate was found and a diagnostic was issued.
9078static bool
9079DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9080                       const CXXScopeSpec &SS, LookupResult &R,
9081                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9082                       Expr **Args, unsigned NumArgs) {
9083  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9084    return false;
9085
9086  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9087    SemaRef.LookupQualifiedName(R, DC);
9088
9089    if (!R.empty()) {
9090      R.suppressDiagnostics();
9091
9092      if (isa<CXXRecordDecl>(DC)) {
9093        // Don't diagnose names we find in classes; we get much better
9094        // diagnostics for these from DiagnoseEmptyLookup.
9095        R.clear();
9096        return false;
9097      }
9098
9099      OverloadCandidateSet Candidates(FnLoc);
9100      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9101        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9102                                   ExplicitTemplateArgs, Args, NumArgs,
9103                                   Candidates, false, /*KnownValid*/ false);
9104
9105      OverloadCandidateSet::iterator Best;
9106      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9107        // No viable functions. Don't bother the user with notes for functions
9108        // which don't work and shouldn't be found anyway.
9109        R.clear();
9110        return false;
9111      }
9112
9113      // Find the namespaces where ADL would have looked, and suggest
9114      // declaring the function there instead.
9115      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9116      Sema::AssociatedClassSet AssociatedClasses;
9117      SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
9118                                                 AssociatedNamespaces,
9119                                                 AssociatedClasses);
9120      // Never suggest declaring a function within namespace 'std'.
9121      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9122      if (DeclContext *Std = SemaRef.getStdNamespace()) {
9123        for (Sema::AssociatedNamespaceSet::iterator
9124               it = AssociatedNamespaces.begin(),
9125               end = AssociatedNamespaces.end(); it != end; ++it) {
9126          if (!Std->Encloses(*it))
9127            SuggestedNamespaces.insert(*it);
9128        }
9129      } else {
9130        // Lacking the 'std::' namespace, use all of the associated namespaces.
9131        SuggestedNamespaces = AssociatedNamespaces;
9132      }
9133
9134      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9135        << R.getLookupName();
9136      if (SuggestedNamespaces.empty()) {
9137        SemaRef.Diag(Best->Function->getLocation(),
9138                     diag::note_not_found_by_two_phase_lookup)
9139          << R.getLookupName() << 0;
9140      } else if (SuggestedNamespaces.size() == 1) {
9141        SemaRef.Diag(Best->Function->getLocation(),
9142                     diag::note_not_found_by_two_phase_lookup)
9143          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9144      } else {
9145        // FIXME: It would be useful to list the associated namespaces here,
9146        // but the diagnostics infrastructure doesn't provide a way to produce
9147        // a localized representation of a list of items.
9148        SemaRef.Diag(Best->Function->getLocation(),
9149                     diag::note_not_found_by_two_phase_lookup)
9150          << R.getLookupName() << 2;
9151      }
9152
9153      // Try to recover by calling this function.
9154      return true;
9155    }
9156
9157    R.clear();
9158  }
9159
9160  return false;
9161}
9162
9163/// Attempt to recover from ill-formed use of a non-dependent operator in a
9164/// template, where the non-dependent operator was declared after the template
9165/// was defined.
9166///
9167/// Returns true if a viable candidate was found and a diagnostic was issued.
9168static bool
9169DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9170                               SourceLocation OpLoc,
9171                               Expr **Args, unsigned NumArgs) {
9172  DeclarationName OpName =
9173    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9174  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9175  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9176                                /*ExplicitTemplateArgs=*/0, Args, NumArgs);
9177}
9178
9179namespace {
9180// Callback to limit the allowed keywords and to only accept typo corrections
9181// that are keywords or whose decls refer to functions (or template functions)
9182// that accept the given number of arguments.
9183class RecoveryCallCCC : public CorrectionCandidateCallback {
9184 public:
9185  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9186      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9187    WantTypeSpecifiers = SemaRef.getLangOptions().CPlusPlus;
9188    WantRemainingKeywords = false;
9189  }
9190
9191  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9192    if (!candidate.getCorrectionDecl())
9193      return candidate.isKeyword();
9194
9195    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9196           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9197      FunctionDecl *FD = 0;
9198      NamedDecl *ND = (*DI)->getUnderlyingDecl();
9199      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9200        FD = FTD->getTemplatedDecl();
9201      if (!HasExplicitTemplateArgs && !FD) {
9202        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9203          // If the Decl is neither a function nor a template function,
9204          // determine if it is a pointer or reference to a function. If so,
9205          // check against the number of arguments expected for the pointee.
9206          QualType ValType = cast<ValueDecl>(ND)->getType();
9207          if (ValType->isAnyPointerType() || ValType->isReferenceType())
9208            ValType = ValType->getPointeeType();
9209          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9210            if (FPT->getNumArgs() == NumArgs)
9211              return true;
9212        }
9213      }
9214      if (FD && FD->getNumParams() >= NumArgs &&
9215          FD->getMinRequiredArguments() <= NumArgs)
9216        return true;
9217    }
9218    return false;
9219  }
9220
9221 private:
9222  unsigned NumArgs;
9223  bool HasExplicitTemplateArgs;
9224};
9225
9226// Callback that effectively disabled typo correction
9227class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9228 public:
9229  NoTypoCorrectionCCC() {
9230    WantTypeSpecifiers = false;
9231    WantExpressionKeywords = false;
9232    WantCXXNamedCasts = false;
9233    WantRemainingKeywords = false;
9234  }
9235
9236  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9237    return false;
9238  }
9239};
9240}
9241
9242/// Attempts to recover from a call where no functions were found.
9243///
9244/// Returns true if new candidates were found.
9245static ExprResult
9246BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9247                      UnresolvedLookupExpr *ULE,
9248                      SourceLocation LParenLoc,
9249                      Expr **Args, unsigned NumArgs,
9250                      SourceLocation RParenLoc,
9251                      bool EmptyLookup, bool AllowTypoCorrection) {
9252
9253  CXXScopeSpec SS;
9254  SS.Adopt(ULE->getQualifierLoc());
9255
9256  TemplateArgumentListInfo TABuffer;
9257  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9258  if (ULE->hasExplicitTemplateArgs()) {
9259    ULE->copyTemplateArgumentsInto(TABuffer);
9260    ExplicitTemplateArgs = &TABuffer;
9261  }
9262
9263  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9264                 Sema::LookupOrdinaryName);
9265  RecoveryCallCCC Validator(SemaRef, NumArgs, ExplicitTemplateArgs != 0);
9266  NoTypoCorrectionCCC RejectAll;
9267  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9268      (CorrectionCandidateCallback*)&Validator :
9269      (CorrectionCandidateCallback*)&RejectAll;
9270  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9271                              ExplicitTemplateArgs, Args, NumArgs) &&
9272      (!EmptyLookup ||
9273       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9274                                   ExplicitTemplateArgs, Args, NumArgs)))
9275    return ExprError();
9276
9277  assert(!R.empty() && "lookup results empty despite recovery");
9278
9279  // Build an implicit member call if appropriate.  Just drop the
9280  // casts and such from the call, we don't really care.
9281  ExprResult NewFn = ExprError();
9282  if ((*R.begin())->isCXXClassMember())
9283    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
9284                                                    ExplicitTemplateArgs);
9285  else if (ExplicitTemplateArgs)
9286    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
9287  else
9288    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9289
9290  if (NewFn.isInvalid())
9291    return ExprError();
9292
9293  // This shouldn't cause an infinite loop because we're giving it
9294  // an expression with viable lookup results, which should never
9295  // end up here.
9296  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9297                               MultiExprArg(Args, NumArgs), RParenLoc);
9298}
9299
9300/// ResolveOverloadedCallFn - Given the call expression that calls Fn
9301/// (which eventually refers to the declaration Func) and the call
9302/// arguments Args/NumArgs, attempt to resolve the function call down
9303/// to a specific function. If overload resolution succeeds, returns
9304/// the function declaration produced by overload
9305/// resolution. Otherwise, emits diagnostics, deletes all of the
9306/// arguments and Fn, and returns NULL.
9307ExprResult
9308Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
9309                              SourceLocation LParenLoc,
9310                              Expr **Args, unsigned NumArgs,
9311                              SourceLocation RParenLoc,
9312                              Expr *ExecConfig,
9313                              bool AllowTypoCorrection) {
9314#ifndef NDEBUG
9315  if (ULE->requiresADL()) {
9316    // To do ADL, we must have found an unqualified name.
9317    assert(!ULE->getQualifier() && "qualified name with ADL");
9318
9319    // We don't perform ADL for implicit declarations of builtins.
9320    // Verify that this was correctly set up.
9321    FunctionDecl *F;
9322    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9323        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9324        F->getBuiltinID() && F->isImplicit())
9325      llvm_unreachable("performing ADL for builtin");
9326
9327    // We don't perform ADL in C.
9328    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
9329  } else
9330    assert(!ULE->isStdAssociatedNamespace() &&
9331           "std is associated namespace but not doing ADL");
9332#endif
9333
9334  UnbridgedCastsSet UnbridgedCasts;
9335  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9336    return ExprError();
9337
9338  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9339
9340  // Add the functions denoted by the callee to the set of candidate
9341  // functions, including those from argument-dependent lookup.
9342  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
9343
9344  // If we found nothing, try to recover.
9345  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9346  // out if it fails.
9347  if (CandidateSet.empty()) {
9348    // In Microsoft mode, if we are inside a template class member function then
9349    // create a type dependent CallExpr. The goal is to postpone name lookup
9350    // to instantiation time to be able to search into type dependent base
9351    // classes.
9352    if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() &&
9353        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9354      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
9355                                          Context.DependentTy, VK_RValue,
9356                                          RParenLoc);
9357      CE->setTypeDependent(true);
9358      return Owned(CE);
9359    }
9360    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
9361                                 RParenLoc, /*EmptyLookup=*/true,
9362                                 AllowTypoCorrection);
9363  }
9364
9365  UnbridgedCasts.restore();
9366
9367  OverloadCandidateSet::iterator Best;
9368  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
9369  case OR_Success: {
9370    FunctionDecl *FDecl = Best->Function;
9371    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
9372    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
9373    DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9374    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9375    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
9376                                 ExecConfig);
9377  }
9378
9379  case OR_No_Viable_Function: {
9380    // Try to recover by looking for viable functions which the user might
9381    // have meant to call.
9382    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9383                                                Args, NumArgs, RParenLoc,
9384                                                /*EmptyLookup=*/false,
9385                                                AllowTypoCorrection);
9386    if (!Recovery.isInvalid())
9387      return Recovery;
9388
9389    Diag(Fn->getSourceRange().getBegin(),
9390         diag::err_ovl_no_viable_function_in_call)
9391      << ULE->getName() << Fn->getSourceRange();
9392    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9393    break;
9394  }
9395
9396  case OR_Ambiguous:
9397    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
9398      << ULE->getName() << Fn->getSourceRange();
9399    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9400    break;
9401
9402  case OR_Deleted:
9403    {
9404      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
9405        << Best->Function->isDeleted()
9406        << ULE->getName()
9407        << getDeletedOrUnavailableSuffix(Best->Function)
9408        << Fn->getSourceRange();
9409      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9410
9411      // We emitted an error for the unvailable/deleted function call but keep
9412      // the call in the AST.
9413      FunctionDecl *FDecl = Best->Function;
9414      Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9415      return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9416                                   RParenLoc, ExecConfig);
9417    }
9418  }
9419
9420  // Overload resolution failed.
9421  return ExprError();
9422}
9423
9424static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9425  return Functions.size() > 1 ||
9426    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9427}
9428
9429/// \brief Create a unary operation that may resolve to an overloaded
9430/// operator.
9431///
9432/// \param OpLoc The location of the operator itself (e.g., '*').
9433///
9434/// \param OpcIn The UnaryOperator::Opcode that describes this
9435/// operator.
9436///
9437/// \param Functions The set of non-member functions that will be
9438/// considered by overload resolution. The caller needs to build this
9439/// set based on the context using, e.g.,
9440/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9441/// set should not contain any member functions; those will be added
9442/// by CreateOverloadedUnaryOp().
9443///
9444/// \param input The input argument.
9445ExprResult
9446Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9447                              const UnresolvedSetImpl &Fns,
9448                              Expr *Input) {
9449  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9450
9451  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9452  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9453  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9454  // TODO: provide better source location info.
9455  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9456
9457  if (checkPlaceholderForOverload(*this, Input))
9458    return ExprError();
9459
9460  Expr *Args[2] = { Input, 0 };
9461  unsigned NumArgs = 1;
9462
9463  // For post-increment and post-decrement, add the implicit '0' as
9464  // the second argument, so that we know this is a post-increment or
9465  // post-decrement.
9466  if (Opc == UO_PostInc || Opc == UO_PostDec) {
9467    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9468    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9469                                     SourceLocation());
9470    NumArgs = 2;
9471  }
9472
9473  if (Input->isTypeDependent()) {
9474    if (Fns.empty())
9475      return Owned(new (Context) UnaryOperator(Input,
9476                                               Opc,
9477                                               Context.DependentTy,
9478                                               VK_RValue, OK_Ordinary,
9479                                               OpLoc));
9480
9481    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9482    UnresolvedLookupExpr *Fn
9483      = UnresolvedLookupExpr::Create(Context, NamingClass,
9484                                     NestedNameSpecifierLoc(), OpNameInfo,
9485                                     /*ADL*/ true, IsOverloaded(Fns),
9486                                     Fns.begin(), Fns.end());
9487    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9488                                                  &Args[0], NumArgs,
9489                                                   Context.DependentTy,
9490                                                   VK_RValue,
9491                                                   OpLoc));
9492  }
9493
9494  // Build an empty overload set.
9495  OverloadCandidateSet CandidateSet(OpLoc);
9496
9497  // Add the candidates from the given function set.
9498  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
9499
9500  // Add operator candidates that are member functions.
9501  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9502
9503  // Add candidates from ADL.
9504  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9505                                       Args, NumArgs,
9506                                       /*ExplicitTemplateArgs*/ 0,
9507                                       CandidateSet);
9508
9509  // Add builtin operator candidates.
9510  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9511
9512  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9513
9514  // Perform overload resolution.
9515  OverloadCandidateSet::iterator Best;
9516  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9517  case OR_Success: {
9518    // We found a built-in operator or an overloaded operator.
9519    FunctionDecl *FnDecl = Best->Function;
9520
9521    if (FnDecl) {
9522      // We matched an overloaded operator. Build a call to that
9523      // operator.
9524
9525      MarkDeclarationReferenced(OpLoc, FnDecl);
9526
9527      // Convert the arguments.
9528      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9529        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
9530
9531        ExprResult InputRes =
9532          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
9533                                              Best->FoundDecl, Method);
9534        if (InputRes.isInvalid())
9535          return ExprError();
9536        Input = InputRes.take();
9537      } else {
9538        // Convert the arguments.
9539        ExprResult InputInit
9540          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9541                                                      Context,
9542                                                      FnDecl->getParamDecl(0)),
9543                                      SourceLocation(),
9544                                      Input);
9545        if (InputInit.isInvalid())
9546          return ExprError();
9547        Input = InputInit.take();
9548      }
9549
9550      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9551
9552      // Determine the result type.
9553      QualType ResultTy = FnDecl->getResultType();
9554      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9555      ResultTy = ResultTy.getNonLValueExprType(Context);
9556
9557      // Build the actual expression node.
9558      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9559                                                HadMultipleCandidates);
9560      if (FnExpr.isInvalid())
9561        return ExprError();
9562
9563      Args[0] = Input;
9564      CallExpr *TheCall =
9565        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9566                                          Args, NumArgs, ResultTy, VK, OpLoc);
9567
9568      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9569                              FnDecl))
9570        return ExprError();
9571
9572      return MaybeBindToTemporary(TheCall);
9573    } else {
9574      // We matched a built-in operator. Convert the arguments, then
9575      // break out so that we will build the appropriate built-in
9576      // operator node.
9577      ExprResult InputRes =
9578        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
9579                                  Best->Conversions[0], AA_Passing);
9580      if (InputRes.isInvalid())
9581        return ExprError();
9582      Input = InputRes.take();
9583      break;
9584    }
9585  }
9586
9587  case OR_No_Viable_Function:
9588    // This is an erroneous use of an operator which can be overloaded by
9589    // a non-member function. Check for non-member operators which were
9590    // defined too late to be candidates.
9591    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
9592      // FIXME: Recover by calling the found function.
9593      return ExprError();
9594
9595    // No viable function; fall through to handling this as a
9596    // built-in operator, which will produce an error message for us.
9597    break;
9598
9599  case OR_Ambiguous:
9600    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9601        << UnaryOperator::getOpcodeStr(Opc)
9602        << Input->getType()
9603        << Input->getSourceRange();
9604    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs,
9605                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
9606    return ExprError();
9607
9608  case OR_Deleted:
9609    Diag(OpLoc, diag::err_ovl_deleted_oper)
9610      << Best->Function->isDeleted()
9611      << UnaryOperator::getOpcodeStr(Opc)
9612      << getDeletedOrUnavailableSuffix(Best->Function)
9613      << Input->getSourceRange();
9614    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs,
9615                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
9616    return ExprError();
9617  }
9618
9619  // Either we found no viable overloaded operator or we matched a
9620  // built-in operator. In either case, fall through to trying to
9621  // build a built-in operation.
9622  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9623}
9624
9625/// \brief Create a binary operation that may resolve to an overloaded
9626/// operator.
9627///
9628/// \param OpLoc The location of the operator itself (e.g., '+').
9629///
9630/// \param OpcIn The BinaryOperator::Opcode that describes this
9631/// operator.
9632///
9633/// \param Functions The set of non-member functions that will be
9634/// considered by overload resolution. The caller needs to build this
9635/// set based on the context using, e.g.,
9636/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9637/// set should not contain any member functions; those will be added
9638/// by CreateOverloadedBinOp().
9639///
9640/// \param LHS Left-hand argument.
9641/// \param RHS Right-hand argument.
9642ExprResult
9643Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
9644                            unsigned OpcIn,
9645                            const UnresolvedSetImpl &Fns,
9646                            Expr *LHS, Expr *RHS) {
9647  Expr *Args[2] = { LHS, RHS };
9648  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
9649
9650  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
9651  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
9652  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9653
9654  // If either side is type-dependent, create an appropriate dependent
9655  // expression.
9656  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9657    if (Fns.empty()) {
9658      // If there are no functions to store, just build a dependent
9659      // BinaryOperator or CompoundAssignment.
9660      if (Opc <= BO_Assign || Opc > BO_OrAssign)
9661        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
9662                                                  Context.DependentTy,
9663                                                  VK_RValue, OK_Ordinary,
9664                                                  OpLoc));
9665
9666      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
9667                                                        Context.DependentTy,
9668                                                        VK_LValue,
9669                                                        OK_Ordinary,
9670                                                        Context.DependentTy,
9671                                                        Context.DependentTy,
9672                                                        OpLoc));
9673    }
9674
9675    // FIXME: save results of ADL from here?
9676    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9677    // TODO: provide better source location info in DNLoc component.
9678    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9679    UnresolvedLookupExpr *Fn
9680      = UnresolvedLookupExpr::Create(Context, NamingClass,
9681                                     NestedNameSpecifierLoc(), OpNameInfo,
9682                                     /*ADL*/ true, IsOverloaded(Fns),
9683                                     Fns.begin(), Fns.end());
9684    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9685                                                   Args, 2,
9686                                                   Context.DependentTy,
9687                                                   VK_RValue,
9688                                                   OpLoc));
9689  }
9690
9691  // Always do placeholder-like conversions on the RHS.
9692  if (checkPlaceholderForOverload(*this, Args[1]))
9693    return ExprError();
9694
9695  // Do placeholder-like conversion on the LHS; note that we should
9696  // not get here with a PseudoObject LHS.
9697  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
9698  if (checkPlaceholderForOverload(*this, Args[0]))
9699    return ExprError();
9700
9701  // If this is the assignment operator, we only perform overload resolution
9702  // if the left-hand side is a class or enumeration type. This is actually
9703  // a hack. The standard requires that we do overload resolution between the
9704  // various built-in candidates, but as DR507 points out, this can lead to
9705  // problems. So we do it this way, which pretty much follows what GCC does.
9706  // Note that we go the traditional code path for compound assignment forms.
9707  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
9708    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9709
9710  // If this is the .* operator, which is not overloadable, just
9711  // create a built-in binary operator.
9712  if (Opc == BO_PtrMemD)
9713    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9714
9715  // Build an empty overload set.
9716  OverloadCandidateSet CandidateSet(OpLoc);
9717
9718  // Add the candidates from the given function set.
9719  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
9720
9721  // Add operator candidates that are member functions.
9722  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9723
9724  // Add candidates from ADL.
9725  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9726                                       Args, 2,
9727                                       /*ExplicitTemplateArgs*/ 0,
9728                                       CandidateSet);
9729
9730  // Add builtin operator candidates.
9731  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9732
9733  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9734
9735  // Perform overload resolution.
9736  OverloadCandidateSet::iterator Best;
9737  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9738    case OR_Success: {
9739      // We found a built-in operator or an overloaded operator.
9740      FunctionDecl *FnDecl = Best->Function;
9741
9742      if (FnDecl) {
9743        // We matched an overloaded operator. Build a call to that
9744        // operator.
9745
9746        MarkDeclarationReferenced(OpLoc, FnDecl);
9747
9748        // Convert the arguments.
9749        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9750          // Best->Access is only meaningful for class members.
9751          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
9752
9753          ExprResult Arg1 =
9754            PerformCopyInitialization(
9755              InitializedEntity::InitializeParameter(Context,
9756                                                     FnDecl->getParamDecl(0)),
9757              SourceLocation(), Owned(Args[1]));
9758          if (Arg1.isInvalid())
9759            return ExprError();
9760
9761          ExprResult Arg0 =
9762            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9763                                                Best->FoundDecl, Method);
9764          if (Arg0.isInvalid())
9765            return ExprError();
9766          Args[0] = Arg0.takeAs<Expr>();
9767          Args[1] = RHS = Arg1.takeAs<Expr>();
9768        } else {
9769          // Convert the arguments.
9770          ExprResult Arg0 = PerformCopyInitialization(
9771            InitializedEntity::InitializeParameter(Context,
9772                                                   FnDecl->getParamDecl(0)),
9773            SourceLocation(), Owned(Args[0]));
9774          if (Arg0.isInvalid())
9775            return ExprError();
9776
9777          ExprResult Arg1 =
9778            PerformCopyInitialization(
9779              InitializedEntity::InitializeParameter(Context,
9780                                                     FnDecl->getParamDecl(1)),
9781              SourceLocation(), Owned(Args[1]));
9782          if (Arg1.isInvalid())
9783            return ExprError();
9784          Args[0] = LHS = Arg0.takeAs<Expr>();
9785          Args[1] = RHS = Arg1.takeAs<Expr>();
9786        }
9787
9788        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9789
9790        // Determine the result type.
9791        QualType ResultTy = FnDecl->getResultType();
9792        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9793        ResultTy = ResultTy.getNonLValueExprType(Context);
9794
9795        // Build the actual expression node.
9796        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9797                                                  HadMultipleCandidates, OpLoc);
9798        if (FnExpr.isInvalid())
9799          return ExprError();
9800
9801        CXXOperatorCallExpr *TheCall =
9802          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9803                                            Args, 2, ResultTy, VK, OpLoc);
9804
9805        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9806                                FnDecl))
9807          return ExprError();
9808
9809        return MaybeBindToTemporary(TheCall);
9810      } else {
9811        // We matched a built-in operator. Convert the arguments, then
9812        // break out so that we will build the appropriate built-in
9813        // operator node.
9814        ExprResult ArgsRes0 =
9815          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9816                                    Best->Conversions[0], AA_Passing);
9817        if (ArgsRes0.isInvalid())
9818          return ExprError();
9819        Args[0] = ArgsRes0.take();
9820
9821        ExprResult ArgsRes1 =
9822          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9823                                    Best->Conversions[1], AA_Passing);
9824        if (ArgsRes1.isInvalid())
9825          return ExprError();
9826        Args[1] = ArgsRes1.take();
9827        break;
9828      }
9829    }
9830
9831    case OR_No_Viable_Function: {
9832      // C++ [over.match.oper]p9:
9833      //   If the operator is the operator , [...] and there are no
9834      //   viable functions, then the operator is assumed to be the
9835      //   built-in operator and interpreted according to clause 5.
9836      if (Opc == BO_Comma)
9837        break;
9838
9839      // For class as left operand for assignment or compound assigment
9840      // operator do not fall through to handling in built-in, but report that
9841      // no overloaded assignment operator found
9842      ExprResult Result = ExprError();
9843      if (Args[0]->getType()->isRecordType() &&
9844          Opc >= BO_Assign && Opc <= BO_OrAssign) {
9845        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
9846             << BinaryOperator::getOpcodeStr(Opc)
9847             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9848      } else {
9849        // This is an erroneous use of an operator which can be overloaded by
9850        // a non-member function. Check for non-member operators which were
9851        // defined too late to be candidates.
9852        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
9853          // FIXME: Recover by calling the found function.
9854          return ExprError();
9855
9856        // No viable function; try to create a built-in operation, which will
9857        // produce an error. Then, show the non-viable candidates.
9858        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9859      }
9860      assert(Result.isInvalid() &&
9861             "C++ binary operator overloading is missing candidates!");
9862      if (Result.isInvalid())
9863        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9864                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
9865      return move(Result);
9866    }
9867
9868    case OR_Ambiguous:
9869      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
9870          << BinaryOperator::getOpcodeStr(Opc)
9871          << Args[0]->getType() << Args[1]->getType()
9872          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9873      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9874                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9875      return ExprError();
9876
9877    case OR_Deleted:
9878      Diag(OpLoc, diag::err_ovl_deleted_oper)
9879        << Best->Function->isDeleted()
9880        << BinaryOperator::getOpcodeStr(Opc)
9881        << getDeletedOrUnavailableSuffix(Best->Function)
9882        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9883      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9884                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9885      return ExprError();
9886  }
9887
9888  // We matched a built-in operator; build it.
9889  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9890}
9891
9892ExprResult
9893Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
9894                                         SourceLocation RLoc,
9895                                         Expr *Base, Expr *Idx) {
9896  Expr *Args[2] = { Base, Idx };
9897  DeclarationName OpName =
9898      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
9899
9900  // If either side is type-dependent, create an appropriate dependent
9901  // expression.
9902  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9903
9904    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9905    // CHECKME: no 'operator' keyword?
9906    DeclarationNameInfo OpNameInfo(OpName, LLoc);
9907    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
9908    UnresolvedLookupExpr *Fn
9909      = UnresolvedLookupExpr::Create(Context, NamingClass,
9910                                     NestedNameSpecifierLoc(), OpNameInfo,
9911                                     /*ADL*/ true, /*Overloaded*/ false,
9912                                     UnresolvedSetIterator(),
9913                                     UnresolvedSetIterator());
9914    // Can't add any actual overloads yet
9915
9916    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
9917                                                   Args, 2,
9918                                                   Context.DependentTy,
9919                                                   VK_RValue,
9920                                                   RLoc));
9921  }
9922
9923  // Handle placeholders on both operands.
9924  if (checkPlaceholderForOverload(*this, Args[0]))
9925    return ExprError();
9926  if (checkPlaceholderForOverload(*this, Args[1]))
9927    return ExprError();
9928
9929  // Build an empty overload set.
9930  OverloadCandidateSet CandidateSet(LLoc);
9931
9932  // Subscript can only be overloaded as a member function.
9933
9934  // Add operator candidates that are member functions.
9935  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9936
9937  // Add builtin operator candidates.
9938  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9939
9940  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9941
9942  // Perform overload resolution.
9943  OverloadCandidateSet::iterator Best;
9944  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
9945    case OR_Success: {
9946      // We found a built-in operator or an overloaded operator.
9947      FunctionDecl *FnDecl = Best->Function;
9948
9949      if (FnDecl) {
9950        // We matched an overloaded operator. Build a call to that
9951        // operator.
9952
9953        MarkDeclarationReferenced(LLoc, FnDecl);
9954
9955        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
9956        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
9957
9958        // Convert the arguments.
9959        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
9960        ExprResult Arg0 =
9961          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9962                                              Best->FoundDecl, Method);
9963        if (Arg0.isInvalid())
9964          return ExprError();
9965        Args[0] = Arg0.take();
9966
9967        // Convert the arguments.
9968        ExprResult InputInit
9969          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9970                                                      Context,
9971                                                      FnDecl->getParamDecl(0)),
9972                                      SourceLocation(),
9973                                      Owned(Args[1]));
9974        if (InputInit.isInvalid())
9975          return ExprError();
9976
9977        Args[1] = InputInit.takeAs<Expr>();
9978
9979        // Determine the result type
9980        QualType ResultTy = FnDecl->getResultType();
9981        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9982        ResultTy = ResultTy.getNonLValueExprType(Context);
9983
9984        // Build the actual expression node.
9985        DeclarationNameLoc LocInfo;
9986        LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
9987        LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
9988        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9989                                                  HadMultipleCandidates,
9990                                                  LLoc, LocInfo);
9991        if (FnExpr.isInvalid())
9992          return ExprError();
9993
9994        CXXOperatorCallExpr *TheCall =
9995          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
9996                                            FnExpr.take(), Args, 2,
9997                                            ResultTy, VK, RLoc);
9998
9999        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10000                                FnDecl))
10001          return ExprError();
10002
10003        return MaybeBindToTemporary(TheCall);
10004      } else {
10005        // We matched a built-in operator. Convert the arguments, then
10006        // break out so that we will build the appropriate built-in
10007        // operator node.
10008        ExprResult ArgsRes0 =
10009          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10010                                    Best->Conversions[0], AA_Passing);
10011        if (ArgsRes0.isInvalid())
10012          return ExprError();
10013        Args[0] = ArgsRes0.take();
10014
10015        ExprResult ArgsRes1 =
10016          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10017                                    Best->Conversions[1], AA_Passing);
10018        if (ArgsRes1.isInvalid())
10019          return ExprError();
10020        Args[1] = ArgsRes1.take();
10021
10022        break;
10023      }
10024    }
10025
10026    case OR_No_Viable_Function: {
10027      if (CandidateSet.empty())
10028        Diag(LLoc, diag::err_ovl_no_oper)
10029          << Args[0]->getType() << /*subscript*/ 0
10030          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10031      else
10032        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10033          << Args[0]->getType()
10034          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10035      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
10036                                  "[]", LLoc);
10037      return ExprError();
10038    }
10039
10040    case OR_Ambiguous:
10041      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10042          << "[]"
10043          << Args[0]->getType() << Args[1]->getType()
10044          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10045      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
10046                                  "[]", LLoc);
10047      return ExprError();
10048
10049    case OR_Deleted:
10050      Diag(LLoc, diag::err_ovl_deleted_oper)
10051        << Best->Function->isDeleted() << "[]"
10052        << getDeletedOrUnavailableSuffix(Best->Function)
10053        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10054      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
10055                                  "[]", LLoc);
10056      return ExprError();
10057    }
10058
10059  // We matched a built-in operator; build it.
10060  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10061}
10062
10063/// BuildCallToMemberFunction - Build a call to a member
10064/// function. MemExpr is the expression that refers to the member
10065/// function (and includes the object parameter), Args/NumArgs are the
10066/// arguments to the function call (not including the object
10067/// parameter). The caller needs to validate that the member
10068/// expression refers to a non-static member function or an overloaded
10069/// member function.
10070ExprResult
10071Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10072                                SourceLocation LParenLoc, Expr **Args,
10073                                unsigned NumArgs, SourceLocation RParenLoc) {
10074  assert(MemExprE->getType() == Context.BoundMemberTy ||
10075         MemExprE->getType() == Context.OverloadTy);
10076
10077  // Dig out the member expression. This holds both the object
10078  // argument and the member function we're referring to.
10079  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10080
10081  // Determine whether this is a call to a pointer-to-member function.
10082  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10083    assert(op->getType() == Context.BoundMemberTy);
10084    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10085
10086    QualType fnType =
10087      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10088
10089    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10090    QualType resultType = proto->getCallResultType(Context);
10091    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10092
10093    // Check that the object type isn't more qualified than the
10094    // member function we're calling.
10095    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10096
10097    QualType objectType = op->getLHS()->getType();
10098    if (op->getOpcode() == BO_PtrMemI)
10099      objectType = objectType->castAs<PointerType>()->getPointeeType();
10100    Qualifiers objectQuals = objectType.getQualifiers();
10101
10102    Qualifiers difference = objectQuals - funcQuals;
10103    difference.removeObjCGCAttr();
10104    difference.removeAddressSpace();
10105    if (difference) {
10106      std::string qualsString = difference.getAsString();
10107      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10108        << fnType.getUnqualifiedType()
10109        << qualsString
10110        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10111    }
10112
10113    CXXMemberCallExpr *call
10114      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10115                                        resultType, valueKind, RParenLoc);
10116
10117    if (CheckCallReturnType(proto->getResultType(),
10118                            op->getRHS()->getSourceRange().getBegin(),
10119                            call, 0))
10120      return ExprError();
10121
10122    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10123      return ExprError();
10124
10125    return MaybeBindToTemporary(call);
10126  }
10127
10128  UnbridgedCastsSet UnbridgedCasts;
10129  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10130    return ExprError();
10131
10132  MemberExpr *MemExpr;
10133  CXXMethodDecl *Method = 0;
10134  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10135  NestedNameSpecifier *Qualifier = 0;
10136  if (isa<MemberExpr>(NakedMemExpr)) {
10137    MemExpr = cast<MemberExpr>(NakedMemExpr);
10138    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10139    FoundDecl = MemExpr->getFoundDecl();
10140    Qualifier = MemExpr->getQualifier();
10141    UnbridgedCasts.restore();
10142  } else {
10143    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10144    Qualifier = UnresExpr->getQualifier();
10145
10146    QualType ObjectType = UnresExpr->getBaseType();
10147    Expr::Classification ObjectClassification
10148      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10149                            : UnresExpr->getBase()->Classify(Context);
10150
10151    // Add overload candidates
10152    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10153
10154    // FIXME: avoid copy.
10155    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10156    if (UnresExpr->hasExplicitTemplateArgs()) {
10157      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10158      TemplateArgs = &TemplateArgsBuffer;
10159    }
10160
10161    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10162           E = UnresExpr->decls_end(); I != E; ++I) {
10163
10164      NamedDecl *Func = *I;
10165      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10166      if (isa<UsingShadowDecl>(Func))
10167        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10168
10169
10170      // Microsoft supports direct constructor calls.
10171      if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10172        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
10173                             CandidateSet);
10174      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10175        // If explicit template arguments were provided, we can't call a
10176        // non-template member function.
10177        if (TemplateArgs)
10178          continue;
10179
10180        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10181                           ObjectClassification,
10182                           Args, NumArgs, CandidateSet,
10183                           /*SuppressUserConversions=*/false);
10184      } else {
10185        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10186                                   I.getPair(), ActingDC, TemplateArgs,
10187                                   ObjectType,  ObjectClassification,
10188                                   Args, NumArgs, CandidateSet,
10189                                   /*SuppressUsedConversions=*/false);
10190      }
10191    }
10192
10193    DeclarationName DeclName = UnresExpr->getMemberName();
10194
10195    UnbridgedCasts.restore();
10196
10197    OverloadCandidateSet::iterator Best;
10198    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10199                                            Best)) {
10200    case OR_Success:
10201      Method = cast<CXXMethodDecl>(Best->Function);
10202      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
10203      FoundDecl = Best->FoundDecl;
10204      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10205      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10206      break;
10207
10208    case OR_No_Viable_Function:
10209      Diag(UnresExpr->getMemberLoc(),
10210           diag::err_ovl_no_viable_member_function_in_call)
10211        << DeclName << MemExprE->getSourceRange();
10212      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10213      // FIXME: Leaking incoming expressions!
10214      return ExprError();
10215
10216    case OR_Ambiguous:
10217      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10218        << DeclName << MemExprE->getSourceRange();
10219      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10220      // FIXME: Leaking incoming expressions!
10221      return ExprError();
10222
10223    case OR_Deleted:
10224      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10225        << Best->Function->isDeleted()
10226        << DeclName
10227        << getDeletedOrUnavailableSuffix(Best->Function)
10228        << MemExprE->getSourceRange();
10229      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10230      // FIXME: Leaking incoming expressions!
10231      return ExprError();
10232    }
10233
10234    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10235
10236    // If overload resolution picked a static member, build a
10237    // non-member call based on that function.
10238    if (Method->isStatic()) {
10239      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10240                                   Args, NumArgs, RParenLoc);
10241    }
10242
10243    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10244  }
10245
10246  QualType ResultType = Method->getResultType();
10247  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10248  ResultType = ResultType.getNonLValueExprType(Context);
10249
10250  assert(Method && "Member call to something that isn't a method?");
10251  CXXMemberCallExpr *TheCall =
10252    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10253                                    ResultType, VK, RParenLoc);
10254
10255  // Check for a valid return type.
10256  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10257                          TheCall, Method))
10258    return ExprError();
10259
10260  // Convert the object argument (for a non-static member function call).
10261  // We only need to do this if there was actually an overload; otherwise
10262  // it was done at lookup.
10263  if (!Method->isStatic()) {
10264    ExprResult ObjectArg =
10265      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10266                                          FoundDecl, Method);
10267    if (ObjectArg.isInvalid())
10268      return ExprError();
10269    MemExpr->setBase(ObjectArg.take());
10270  }
10271
10272  // Convert the rest of the arguments
10273  const FunctionProtoType *Proto =
10274    Method->getType()->getAs<FunctionProtoType>();
10275  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10276                              RParenLoc))
10277    return ExprError();
10278
10279  if (CheckFunctionCall(Method, TheCall))
10280    return ExprError();
10281
10282  if ((isa<CXXConstructorDecl>(CurContext) ||
10283       isa<CXXDestructorDecl>(CurContext)) &&
10284      TheCall->getMethodDecl()->isPure()) {
10285    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10286
10287    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10288      Diag(MemExpr->getLocStart(),
10289           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10290        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10291        << MD->getParent()->getDeclName();
10292
10293      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10294    }
10295  }
10296  return MaybeBindToTemporary(TheCall);
10297}
10298
10299/// BuildCallToObjectOfClassType - Build a call to an object of class
10300/// type (C++ [over.call.object]), which can end up invoking an
10301/// overloaded function call operator (@c operator()) or performing a
10302/// user-defined conversion on the object argument.
10303ExprResult
10304Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10305                                   SourceLocation LParenLoc,
10306                                   Expr **Args, unsigned NumArgs,
10307                                   SourceLocation RParenLoc) {
10308  if (checkPlaceholderForOverload(*this, Obj))
10309    return ExprError();
10310  ExprResult Object = Owned(Obj);
10311
10312  UnbridgedCastsSet UnbridgedCasts;
10313  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10314    return ExprError();
10315
10316  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10317  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10318
10319  // C++ [over.call.object]p1:
10320  //  If the primary-expression E in the function call syntax
10321  //  evaluates to a class object of type "cv T", then the set of
10322  //  candidate functions includes at least the function call
10323  //  operators of T. The function call operators of T are obtained by
10324  //  ordinary lookup of the name operator() in the context of
10325  //  (E).operator().
10326  OverloadCandidateSet CandidateSet(LParenLoc);
10327  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10328
10329  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10330                          PDiag(diag::err_incomplete_object_call)
10331                          << Object.get()->getSourceRange()))
10332    return true;
10333
10334  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10335  LookupQualifiedName(R, Record->getDecl());
10336  R.suppressDiagnostics();
10337
10338  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10339       Oper != OperEnd; ++Oper) {
10340    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10341                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10342                       /*SuppressUserConversions=*/ false);
10343  }
10344
10345  // C++ [over.call.object]p2:
10346  //   In addition, for each (non-explicit in C++0x) conversion function
10347  //   declared in T of the form
10348  //
10349  //        operator conversion-type-id () cv-qualifier;
10350  //
10351  //   where cv-qualifier is the same cv-qualification as, or a
10352  //   greater cv-qualification than, cv, and where conversion-type-id
10353  //   denotes the type "pointer to function of (P1,...,Pn) returning
10354  //   R", or the type "reference to pointer to function of
10355  //   (P1,...,Pn) returning R", or the type "reference to function
10356  //   of (P1,...,Pn) returning R", a surrogate call function [...]
10357  //   is also considered as a candidate function. Similarly,
10358  //   surrogate call functions are added to the set of candidate
10359  //   functions for each conversion function declared in an
10360  //   accessible base class provided the function is not hidden
10361  //   within T by another intervening declaration.
10362  const UnresolvedSetImpl *Conversions
10363    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10364  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10365         E = Conversions->end(); I != E; ++I) {
10366    NamedDecl *D = *I;
10367    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10368    if (isa<UsingShadowDecl>(D))
10369      D = cast<UsingShadowDecl>(D)->getTargetDecl();
10370
10371    // Skip over templated conversion functions; they aren't
10372    // surrogates.
10373    if (isa<FunctionTemplateDecl>(D))
10374      continue;
10375
10376    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10377    if (!Conv->isExplicit()) {
10378      // Strip the reference type (if any) and then the pointer type (if
10379      // any) to get down to what might be a function type.
10380      QualType ConvType = Conv->getConversionType().getNonReferenceType();
10381      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10382        ConvType = ConvPtrType->getPointeeType();
10383
10384      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10385      {
10386        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10387                              Object.get(), Args, NumArgs, CandidateSet);
10388      }
10389    }
10390  }
10391
10392  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10393
10394  // Perform overload resolution.
10395  OverloadCandidateSet::iterator Best;
10396  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10397                             Best)) {
10398  case OR_Success:
10399    // Overload resolution succeeded; we'll build the appropriate call
10400    // below.
10401    break;
10402
10403  case OR_No_Viable_Function:
10404    if (CandidateSet.empty())
10405      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
10406        << Object.get()->getType() << /*call*/ 1
10407        << Object.get()->getSourceRange();
10408    else
10409      Diag(Object.get()->getSourceRange().getBegin(),
10410           diag::err_ovl_no_viable_object_call)
10411        << Object.get()->getType() << Object.get()->getSourceRange();
10412    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10413    break;
10414
10415  case OR_Ambiguous:
10416    Diag(Object.get()->getSourceRange().getBegin(),
10417         diag::err_ovl_ambiguous_object_call)
10418      << Object.get()->getType() << Object.get()->getSourceRange();
10419    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
10420    break;
10421
10422  case OR_Deleted:
10423    Diag(Object.get()->getSourceRange().getBegin(),
10424         diag::err_ovl_deleted_object_call)
10425      << Best->Function->isDeleted()
10426      << Object.get()->getType()
10427      << getDeletedOrUnavailableSuffix(Best->Function)
10428      << Object.get()->getSourceRange();
10429    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10430    break;
10431  }
10432
10433  if (Best == CandidateSet.end())
10434    return true;
10435
10436  UnbridgedCasts.restore();
10437
10438  if (Best->Function == 0) {
10439    // Since there is no function declaration, this is one of the
10440    // surrogate candidates. Dig out the conversion function.
10441    CXXConversionDecl *Conv
10442      = cast<CXXConversionDecl>(
10443                         Best->Conversions[0].UserDefined.ConversionFunction);
10444
10445    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10446    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10447
10448    // We selected one of the surrogate functions that converts the
10449    // object parameter to a function pointer. Perform the conversion
10450    // on the object argument, then let ActOnCallExpr finish the job.
10451
10452    // Create an implicit member expr to refer to the conversion operator.
10453    // and then call it.
10454    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10455                                             Conv, HadMultipleCandidates);
10456    if (Call.isInvalid())
10457      return ExprError();
10458    // Record usage of conversion in an implicit cast.
10459    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10460                                          CK_UserDefinedConversion,
10461                                          Call.get(), 0, VK_RValue));
10462
10463    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10464                         RParenLoc);
10465  }
10466
10467  MarkDeclarationReferenced(LParenLoc, Best->Function);
10468  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10469  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10470
10471  // We found an overloaded operator(). Build a CXXOperatorCallExpr
10472  // that calls this method, using Object for the implicit object
10473  // parameter and passing along the remaining arguments.
10474  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10475  const FunctionProtoType *Proto =
10476    Method->getType()->getAs<FunctionProtoType>();
10477
10478  unsigned NumArgsInProto = Proto->getNumArgs();
10479  unsigned NumArgsToCheck = NumArgs;
10480
10481  // Build the full argument list for the method call (the
10482  // implicit object parameter is placed at the beginning of the
10483  // list).
10484  Expr **MethodArgs;
10485  if (NumArgs < NumArgsInProto) {
10486    NumArgsToCheck = NumArgsInProto;
10487    MethodArgs = new Expr*[NumArgsInProto + 1];
10488  } else {
10489    MethodArgs = new Expr*[NumArgs + 1];
10490  }
10491  MethodArgs[0] = Object.get();
10492  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
10493    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
10494
10495  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
10496                                           HadMultipleCandidates);
10497  if (NewFn.isInvalid())
10498    return true;
10499
10500  // Once we've built TheCall, all of the expressions are properly
10501  // owned.
10502  QualType ResultTy = Method->getResultType();
10503  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10504  ResultTy = ResultTy.getNonLValueExprType(Context);
10505
10506  CXXOperatorCallExpr *TheCall =
10507    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
10508                                      MethodArgs, NumArgs + 1,
10509                                      ResultTy, VK, RParenLoc);
10510  delete [] MethodArgs;
10511
10512  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
10513                          Method))
10514    return true;
10515
10516  // We may have default arguments. If so, we need to allocate more
10517  // slots in the call for them.
10518  if (NumArgs < NumArgsInProto)
10519    TheCall->setNumArgs(Context, NumArgsInProto + 1);
10520  else if (NumArgs > NumArgsInProto)
10521    NumArgsToCheck = NumArgsInProto;
10522
10523  bool IsError = false;
10524
10525  // Initialize the implicit object parameter.
10526  ExprResult ObjRes =
10527    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
10528                                        Best->FoundDecl, Method);
10529  if (ObjRes.isInvalid())
10530    IsError = true;
10531  else
10532    Object = move(ObjRes);
10533  TheCall->setArg(0, Object.take());
10534
10535  // Check the argument types.
10536  for (unsigned i = 0; i != NumArgsToCheck; i++) {
10537    Expr *Arg;
10538    if (i < NumArgs) {
10539      Arg = Args[i];
10540
10541      // Pass the argument.
10542
10543      ExprResult InputInit
10544        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10545                                                    Context,
10546                                                    Method->getParamDecl(i)),
10547                                    SourceLocation(), Arg);
10548
10549      IsError |= InputInit.isInvalid();
10550      Arg = InputInit.takeAs<Expr>();
10551    } else {
10552      ExprResult DefArg
10553        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
10554      if (DefArg.isInvalid()) {
10555        IsError = true;
10556        break;
10557      }
10558
10559      Arg = DefArg.takeAs<Expr>();
10560    }
10561
10562    TheCall->setArg(i + 1, Arg);
10563  }
10564
10565  // If this is a variadic call, handle args passed through "...".
10566  if (Proto->isVariadic()) {
10567    // Promote the arguments (C99 6.5.2.2p7).
10568    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
10569      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
10570      IsError |= Arg.isInvalid();
10571      TheCall->setArg(i + 1, Arg.take());
10572    }
10573  }
10574
10575  if (IsError) return true;
10576
10577  if (CheckFunctionCall(Method, TheCall))
10578    return true;
10579
10580  return MaybeBindToTemporary(TheCall);
10581}
10582
10583/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
10584///  (if one exists), where @c Base is an expression of class type and
10585/// @c Member is the name of the member we're trying to find.
10586ExprResult
10587Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
10588  assert(Base->getType()->isRecordType() &&
10589         "left-hand side must have class type");
10590
10591  if (checkPlaceholderForOverload(*this, Base))
10592    return ExprError();
10593
10594  SourceLocation Loc = Base->getExprLoc();
10595
10596  // C++ [over.ref]p1:
10597  //
10598  //   [...] An expression x->m is interpreted as (x.operator->())->m
10599  //   for a class object x of type T if T::operator->() exists and if
10600  //   the operator is selected as the best match function by the
10601  //   overload resolution mechanism (13.3).
10602  DeclarationName OpName =
10603    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
10604  OverloadCandidateSet CandidateSet(Loc);
10605  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
10606
10607  if (RequireCompleteType(Loc, Base->getType(),
10608                          PDiag(diag::err_typecheck_incomplete_tag)
10609                            << Base->getSourceRange()))
10610    return ExprError();
10611
10612  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
10613  LookupQualifiedName(R, BaseRecord->getDecl());
10614  R.suppressDiagnostics();
10615
10616  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10617       Oper != OperEnd; ++Oper) {
10618    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
10619                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
10620  }
10621
10622  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10623
10624  // Perform overload resolution.
10625  OverloadCandidateSet::iterator Best;
10626  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10627  case OR_Success:
10628    // Overload resolution succeeded; we'll build the call below.
10629    break;
10630
10631  case OR_No_Viable_Function:
10632    if (CandidateSet.empty())
10633      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
10634        << Base->getType() << Base->getSourceRange();
10635    else
10636      Diag(OpLoc, diag::err_ovl_no_viable_oper)
10637        << "operator->" << Base->getSourceRange();
10638    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
10639    return ExprError();
10640
10641  case OR_Ambiguous:
10642    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10643      << "->" << Base->getType() << Base->getSourceRange();
10644    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
10645    return ExprError();
10646
10647  case OR_Deleted:
10648    Diag(OpLoc,  diag::err_ovl_deleted_oper)
10649      << Best->Function->isDeleted()
10650      << "->"
10651      << getDeletedOrUnavailableSuffix(Best->Function)
10652      << Base->getSourceRange();
10653    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
10654    return ExprError();
10655  }
10656
10657  MarkDeclarationReferenced(OpLoc, Best->Function);
10658  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
10659  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10660
10661  // Convert the object parameter.
10662  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10663  ExprResult BaseResult =
10664    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
10665                                        Best->FoundDecl, Method);
10666  if (BaseResult.isInvalid())
10667    return ExprError();
10668  Base = BaseResult.take();
10669
10670  // Build the operator call.
10671  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
10672                                            HadMultipleCandidates);
10673  if (FnExpr.isInvalid())
10674    return ExprError();
10675
10676  QualType ResultTy = Method->getResultType();
10677  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10678  ResultTy = ResultTy.getNonLValueExprType(Context);
10679  CXXOperatorCallExpr *TheCall =
10680    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
10681                                      &Base, 1, ResultTy, VK, OpLoc);
10682
10683  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
10684                          Method))
10685          return ExprError();
10686
10687  return MaybeBindToTemporary(TheCall);
10688}
10689
10690/// FixOverloadedFunctionReference - E is an expression that refers to
10691/// a C++ overloaded function (possibly with some parentheses and
10692/// perhaps a '&' around it). We have resolved the overloaded function
10693/// to the function declaration Fn, so patch up the expression E to
10694/// refer (possibly indirectly) to Fn. Returns the new expr.
10695Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
10696                                           FunctionDecl *Fn) {
10697  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
10698    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
10699                                                   Found, Fn);
10700    if (SubExpr == PE->getSubExpr())
10701      return PE;
10702
10703    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
10704  }
10705
10706  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10707    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
10708                                                   Found, Fn);
10709    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
10710                               SubExpr->getType()) &&
10711           "Implicit cast type cannot be determined from overload");
10712    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
10713    if (SubExpr == ICE->getSubExpr())
10714      return ICE;
10715
10716    return ImplicitCastExpr::Create(Context, ICE->getType(),
10717                                    ICE->getCastKind(),
10718                                    SubExpr, 0,
10719                                    ICE->getValueKind());
10720  }
10721
10722  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
10723    assert(UnOp->getOpcode() == UO_AddrOf &&
10724           "Can only take the address of an overloaded function");
10725    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10726      if (Method->isStatic()) {
10727        // Do nothing: static member functions aren't any different
10728        // from non-member functions.
10729      } else {
10730        // Fix the sub expression, which really has to be an
10731        // UnresolvedLookupExpr holding an overloaded member function
10732        // or template.
10733        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
10734                                                       Found, Fn);
10735        if (SubExpr == UnOp->getSubExpr())
10736          return UnOp;
10737
10738        assert(isa<DeclRefExpr>(SubExpr)
10739               && "fixed to something other than a decl ref");
10740        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
10741               && "fixed to a member ref with no nested name qualifier");
10742
10743        // We have taken the address of a pointer to member
10744        // function. Perform the computation here so that we get the
10745        // appropriate pointer to member type.
10746        QualType ClassType
10747          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
10748        QualType MemPtrType
10749          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
10750
10751        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
10752                                           VK_RValue, OK_Ordinary,
10753                                           UnOp->getOperatorLoc());
10754      }
10755    }
10756    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
10757                                                   Found, Fn);
10758    if (SubExpr == UnOp->getSubExpr())
10759      return UnOp;
10760
10761    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
10762                                     Context.getPointerType(SubExpr->getType()),
10763                                       VK_RValue, OK_Ordinary,
10764                                       UnOp->getOperatorLoc());
10765  }
10766
10767  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10768    // FIXME: avoid copy.
10769    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10770    if (ULE->hasExplicitTemplateArgs()) {
10771      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
10772      TemplateArgs = &TemplateArgsBuffer;
10773    }
10774
10775    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
10776                                           ULE->getQualifierLoc(),
10777                                           Fn,
10778                                           ULE->getNameLoc(),
10779                                           Fn->getType(),
10780                                           VK_LValue,
10781                                           Found.getDecl(),
10782                                           TemplateArgs);
10783    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
10784    return DRE;
10785  }
10786
10787  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
10788    // FIXME: avoid copy.
10789    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10790    if (MemExpr->hasExplicitTemplateArgs()) {
10791      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10792      TemplateArgs = &TemplateArgsBuffer;
10793    }
10794
10795    Expr *Base;
10796
10797    // If we're filling in a static method where we used to have an
10798    // implicit member access, rewrite to a simple decl ref.
10799    if (MemExpr->isImplicitAccess()) {
10800      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
10801        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
10802                                               MemExpr->getQualifierLoc(),
10803                                               Fn,
10804                                               MemExpr->getMemberLoc(),
10805                                               Fn->getType(),
10806                                               VK_LValue,
10807                                               Found.getDecl(),
10808                                               TemplateArgs);
10809        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
10810        return DRE;
10811      } else {
10812        SourceLocation Loc = MemExpr->getMemberLoc();
10813        if (MemExpr->getQualifier())
10814          Loc = MemExpr->getQualifierLoc().getBeginLoc();
10815        CheckCXXThisCapture(Loc);
10816        Base = new (Context) CXXThisExpr(Loc,
10817                                         MemExpr->getBaseType(),
10818                                         /*isImplicit=*/true);
10819      }
10820    } else
10821      Base = MemExpr->getBase();
10822
10823    ExprValueKind valueKind;
10824    QualType type;
10825    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
10826      valueKind = VK_LValue;
10827      type = Fn->getType();
10828    } else {
10829      valueKind = VK_RValue;
10830      type = Context.BoundMemberTy;
10831    }
10832
10833    MemberExpr *ME = MemberExpr::Create(Context, Base,
10834                                        MemExpr->isArrow(),
10835                                        MemExpr->getQualifierLoc(),
10836                                        Fn,
10837                                        Found,
10838                                        MemExpr->getMemberNameInfo(),
10839                                        TemplateArgs,
10840                                        type, valueKind, OK_Ordinary);
10841    ME->setHadMultipleCandidates(true);
10842    return ME;
10843  }
10844
10845  llvm_unreachable("Invalid reference to overloaded function");
10846}
10847
10848ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
10849                                                DeclAccessPair Found,
10850                                                FunctionDecl *Fn) {
10851  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
10852}
10853
10854} // end namespace clang
10855