SemaOverload.cpp revision da80f74d8a3f9a78a48d5fdc2d26eb125b70e0d7
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/TypeOrdering.h" 27#include "clang/Basic/PartialDiagnostic.h" 28#include "llvm/ADT/DenseSet.h" 29#include "llvm/ADT/SmallPtrSet.h" 30#include "llvm/ADT/STLExtras.h" 31#include <algorithm> 32 33namespace clang { 34using namespace sema; 35 36/// A convenience routine for creating a decayed reference to a 37/// function. 38static Expr * 39CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, 40 SourceLocation Loc = SourceLocation()) { 41 Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc); 42 S.DefaultFunctionArrayConversion(E); 43 return E; 44} 45 46static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 47 bool InOverloadResolution, 48 StandardConversionSequence &SCS); 49static OverloadingResult 50IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 51 UserDefinedConversionSequence& User, 52 OverloadCandidateSet& Conversions, 53 bool AllowExplicit); 54 55 56static ImplicitConversionSequence::CompareKind 57CompareStandardConversionSequences(Sema &S, 58 const StandardConversionSequence& SCS1, 59 const StandardConversionSequence& SCS2); 60 61static ImplicitConversionSequence::CompareKind 62CompareQualificationConversions(Sema &S, 63 const StandardConversionSequence& SCS1, 64 const StandardConversionSequence& SCS2); 65 66static ImplicitConversionSequence::CompareKind 67CompareDerivedToBaseConversions(Sema &S, 68 const StandardConversionSequence& SCS1, 69 const StandardConversionSequence& SCS2); 70 71 72 73/// GetConversionCategory - Retrieve the implicit conversion 74/// category corresponding to the given implicit conversion kind. 75ImplicitConversionCategory 76GetConversionCategory(ImplicitConversionKind Kind) { 77 static const ImplicitConversionCategory 78 Category[(int)ICK_Num_Conversion_Kinds] = { 79 ICC_Identity, 80 ICC_Lvalue_Transformation, 81 ICC_Lvalue_Transformation, 82 ICC_Lvalue_Transformation, 83 ICC_Identity, 84 ICC_Qualification_Adjustment, 85 ICC_Promotion, 86 ICC_Promotion, 87 ICC_Promotion, 88 ICC_Conversion, 89 ICC_Conversion, 90 ICC_Conversion, 91 ICC_Conversion, 92 ICC_Conversion, 93 ICC_Conversion, 94 ICC_Conversion, 95 ICC_Conversion, 96 ICC_Conversion, 97 ICC_Conversion, 98 ICC_Conversion, 99 ICC_Conversion 100 }; 101 return Category[(int)Kind]; 102} 103 104/// GetConversionRank - Retrieve the implicit conversion rank 105/// corresponding to the given implicit conversion kind. 106ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 107 static const ImplicitConversionRank 108 Rank[(int)ICK_Num_Conversion_Kinds] = { 109 ICR_Exact_Match, 110 ICR_Exact_Match, 111 ICR_Exact_Match, 112 ICR_Exact_Match, 113 ICR_Exact_Match, 114 ICR_Exact_Match, 115 ICR_Promotion, 116 ICR_Promotion, 117 ICR_Promotion, 118 ICR_Conversion, 119 ICR_Conversion, 120 ICR_Conversion, 121 ICR_Conversion, 122 ICR_Conversion, 123 ICR_Conversion, 124 ICR_Conversion, 125 ICR_Conversion, 126 ICR_Conversion, 127 ICR_Conversion, 128 ICR_Conversion, 129 ICR_Complex_Real_Conversion 130 }; 131 return Rank[(int)Kind]; 132} 133 134/// GetImplicitConversionName - Return the name of this kind of 135/// implicit conversion. 136const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 137 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 138 "No conversion", 139 "Lvalue-to-rvalue", 140 "Array-to-pointer", 141 "Function-to-pointer", 142 "Noreturn adjustment", 143 "Qualification", 144 "Integral promotion", 145 "Floating point promotion", 146 "Complex promotion", 147 "Integral conversion", 148 "Floating conversion", 149 "Complex conversion", 150 "Floating-integral conversion", 151 "Pointer conversion", 152 "Pointer-to-member conversion", 153 "Boolean conversion", 154 "Compatible-types conversion", 155 "Derived-to-base conversion", 156 "Vector conversion", 157 "Vector splat", 158 "Complex-real conversion" 159 }; 160 return Name[Kind]; 161} 162 163/// StandardConversionSequence - Set the standard conversion 164/// sequence to the identity conversion. 165void StandardConversionSequence::setAsIdentityConversion() { 166 First = ICK_Identity; 167 Second = ICK_Identity; 168 Third = ICK_Identity; 169 DeprecatedStringLiteralToCharPtr = false; 170 ReferenceBinding = false; 171 DirectBinding = false; 172 RRefBinding = false; 173 CopyConstructor = 0; 174} 175 176/// getRank - Retrieve the rank of this standard conversion sequence 177/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 178/// implicit conversions. 179ImplicitConversionRank StandardConversionSequence::getRank() const { 180 ImplicitConversionRank Rank = ICR_Exact_Match; 181 if (GetConversionRank(First) > Rank) 182 Rank = GetConversionRank(First); 183 if (GetConversionRank(Second) > Rank) 184 Rank = GetConversionRank(Second); 185 if (GetConversionRank(Third) > Rank) 186 Rank = GetConversionRank(Third); 187 return Rank; 188} 189 190/// isPointerConversionToBool - Determines whether this conversion is 191/// a conversion of a pointer or pointer-to-member to bool. This is 192/// used as part of the ranking of standard conversion sequences 193/// (C++ 13.3.3.2p4). 194bool StandardConversionSequence::isPointerConversionToBool() const { 195 // Note that FromType has not necessarily been transformed by the 196 // array-to-pointer or function-to-pointer implicit conversions, so 197 // check for their presence as well as checking whether FromType is 198 // a pointer. 199 if (getToType(1)->isBooleanType() && 200 (getFromType()->isPointerType() || 201 getFromType()->isObjCObjectPointerType() || 202 getFromType()->isBlockPointerType() || 203 getFromType()->isNullPtrType() || 204 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 205 return true; 206 207 return false; 208} 209 210/// isPointerConversionToVoidPointer - Determines whether this 211/// conversion is a conversion of a pointer to a void pointer. This is 212/// used as part of the ranking of standard conversion sequences (C++ 213/// 13.3.3.2p4). 214bool 215StandardConversionSequence:: 216isPointerConversionToVoidPointer(ASTContext& Context) const { 217 QualType FromType = getFromType(); 218 QualType ToType = getToType(1); 219 220 // Note that FromType has not necessarily been transformed by the 221 // array-to-pointer implicit conversion, so check for its presence 222 // and redo the conversion to get a pointer. 223 if (First == ICK_Array_To_Pointer) 224 FromType = Context.getArrayDecayedType(FromType); 225 226 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 227 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 228 return ToPtrType->getPointeeType()->isVoidType(); 229 230 return false; 231} 232 233/// DebugPrint - Print this standard conversion sequence to standard 234/// error. Useful for debugging overloading issues. 235void StandardConversionSequence::DebugPrint() const { 236 llvm::raw_ostream &OS = llvm::errs(); 237 bool PrintedSomething = false; 238 if (First != ICK_Identity) { 239 OS << GetImplicitConversionName(First); 240 PrintedSomething = true; 241 } 242 243 if (Second != ICK_Identity) { 244 if (PrintedSomething) { 245 OS << " -> "; 246 } 247 OS << GetImplicitConversionName(Second); 248 249 if (CopyConstructor) { 250 OS << " (by copy constructor)"; 251 } else if (DirectBinding) { 252 OS << " (direct reference binding)"; 253 } else if (ReferenceBinding) { 254 OS << " (reference binding)"; 255 } 256 PrintedSomething = true; 257 } 258 259 if (Third != ICK_Identity) { 260 if (PrintedSomething) { 261 OS << " -> "; 262 } 263 OS << GetImplicitConversionName(Third); 264 PrintedSomething = true; 265 } 266 267 if (!PrintedSomething) { 268 OS << "No conversions required"; 269 } 270} 271 272/// DebugPrint - Print this user-defined conversion sequence to standard 273/// error. Useful for debugging overloading issues. 274void UserDefinedConversionSequence::DebugPrint() const { 275 llvm::raw_ostream &OS = llvm::errs(); 276 if (Before.First || Before.Second || Before.Third) { 277 Before.DebugPrint(); 278 OS << " -> "; 279 } 280 OS << '\'' << ConversionFunction << '\''; 281 if (After.First || After.Second || After.Third) { 282 OS << " -> "; 283 After.DebugPrint(); 284 } 285} 286 287/// DebugPrint - Print this implicit conversion sequence to standard 288/// error. Useful for debugging overloading issues. 289void ImplicitConversionSequence::DebugPrint() const { 290 llvm::raw_ostream &OS = llvm::errs(); 291 switch (ConversionKind) { 292 case StandardConversion: 293 OS << "Standard conversion: "; 294 Standard.DebugPrint(); 295 break; 296 case UserDefinedConversion: 297 OS << "User-defined conversion: "; 298 UserDefined.DebugPrint(); 299 break; 300 case EllipsisConversion: 301 OS << "Ellipsis conversion"; 302 break; 303 case AmbiguousConversion: 304 OS << "Ambiguous conversion"; 305 break; 306 case BadConversion: 307 OS << "Bad conversion"; 308 break; 309 } 310 311 OS << "\n"; 312} 313 314void AmbiguousConversionSequence::construct() { 315 new (&conversions()) ConversionSet(); 316} 317 318void AmbiguousConversionSequence::destruct() { 319 conversions().~ConversionSet(); 320} 321 322void 323AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 324 FromTypePtr = O.FromTypePtr; 325 ToTypePtr = O.ToTypePtr; 326 new (&conversions()) ConversionSet(O.conversions()); 327} 328 329namespace { 330 // Structure used by OverloadCandidate::DeductionFailureInfo to store 331 // template parameter and template argument information. 332 struct DFIParamWithArguments { 333 TemplateParameter Param; 334 TemplateArgument FirstArg; 335 TemplateArgument SecondArg; 336 }; 337} 338 339/// \brief Convert from Sema's representation of template deduction information 340/// to the form used in overload-candidate information. 341OverloadCandidate::DeductionFailureInfo 342static MakeDeductionFailureInfo(ASTContext &Context, 343 Sema::TemplateDeductionResult TDK, 344 TemplateDeductionInfo &Info) { 345 OverloadCandidate::DeductionFailureInfo Result; 346 Result.Result = static_cast<unsigned>(TDK); 347 Result.Data = 0; 348 switch (TDK) { 349 case Sema::TDK_Success: 350 case Sema::TDK_InstantiationDepth: 351 case Sema::TDK_TooManyArguments: 352 case Sema::TDK_TooFewArguments: 353 break; 354 355 case Sema::TDK_Incomplete: 356 case Sema::TDK_InvalidExplicitArguments: 357 Result.Data = Info.Param.getOpaqueValue(); 358 break; 359 360 case Sema::TDK_Inconsistent: 361 case Sema::TDK_Underqualified: { 362 // FIXME: Should allocate from normal heap so that we can free this later. 363 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 364 Saved->Param = Info.Param; 365 Saved->FirstArg = Info.FirstArg; 366 Saved->SecondArg = Info.SecondArg; 367 Result.Data = Saved; 368 break; 369 } 370 371 case Sema::TDK_SubstitutionFailure: 372 Result.Data = Info.take(); 373 break; 374 375 case Sema::TDK_NonDeducedMismatch: 376 case Sema::TDK_FailedOverloadResolution: 377 break; 378 } 379 380 return Result; 381} 382 383void OverloadCandidate::DeductionFailureInfo::Destroy() { 384 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 385 case Sema::TDK_Success: 386 case Sema::TDK_InstantiationDepth: 387 case Sema::TDK_Incomplete: 388 case Sema::TDK_TooManyArguments: 389 case Sema::TDK_TooFewArguments: 390 case Sema::TDK_InvalidExplicitArguments: 391 break; 392 393 case Sema::TDK_Inconsistent: 394 case Sema::TDK_Underqualified: 395 // FIXME: Destroy the data? 396 Data = 0; 397 break; 398 399 case Sema::TDK_SubstitutionFailure: 400 // FIXME: Destroy the template arugment list? 401 Data = 0; 402 break; 403 404 // Unhandled 405 case Sema::TDK_NonDeducedMismatch: 406 case Sema::TDK_FailedOverloadResolution: 407 break; 408 } 409} 410 411TemplateParameter 412OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 413 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 414 case Sema::TDK_Success: 415 case Sema::TDK_InstantiationDepth: 416 case Sema::TDK_TooManyArguments: 417 case Sema::TDK_TooFewArguments: 418 case Sema::TDK_SubstitutionFailure: 419 return TemplateParameter(); 420 421 case Sema::TDK_Incomplete: 422 case Sema::TDK_InvalidExplicitArguments: 423 return TemplateParameter::getFromOpaqueValue(Data); 424 425 case Sema::TDK_Inconsistent: 426 case Sema::TDK_Underqualified: 427 return static_cast<DFIParamWithArguments*>(Data)->Param; 428 429 // Unhandled 430 case Sema::TDK_NonDeducedMismatch: 431 case Sema::TDK_FailedOverloadResolution: 432 break; 433 } 434 435 return TemplateParameter(); 436} 437 438TemplateArgumentList * 439OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 440 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 441 case Sema::TDK_Success: 442 case Sema::TDK_InstantiationDepth: 443 case Sema::TDK_TooManyArguments: 444 case Sema::TDK_TooFewArguments: 445 case Sema::TDK_Incomplete: 446 case Sema::TDK_InvalidExplicitArguments: 447 case Sema::TDK_Inconsistent: 448 case Sema::TDK_Underqualified: 449 return 0; 450 451 case Sema::TDK_SubstitutionFailure: 452 return static_cast<TemplateArgumentList*>(Data); 453 454 // Unhandled 455 case Sema::TDK_NonDeducedMismatch: 456 case Sema::TDK_FailedOverloadResolution: 457 break; 458 } 459 460 return 0; 461} 462 463const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 464 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 465 case Sema::TDK_Success: 466 case Sema::TDK_InstantiationDepth: 467 case Sema::TDK_Incomplete: 468 case Sema::TDK_TooManyArguments: 469 case Sema::TDK_TooFewArguments: 470 case Sema::TDK_InvalidExplicitArguments: 471 case Sema::TDK_SubstitutionFailure: 472 return 0; 473 474 case Sema::TDK_Inconsistent: 475 case Sema::TDK_Underqualified: 476 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 477 478 // Unhandled 479 case Sema::TDK_NonDeducedMismatch: 480 case Sema::TDK_FailedOverloadResolution: 481 break; 482 } 483 484 return 0; 485} 486 487const TemplateArgument * 488OverloadCandidate::DeductionFailureInfo::getSecondArg() { 489 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 490 case Sema::TDK_Success: 491 case Sema::TDK_InstantiationDepth: 492 case Sema::TDK_Incomplete: 493 case Sema::TDK_TooManyArguments: 494 case Sema::TDK_TooFewArguments: 495 case Sema::TDK_InvalidExplicitArguments: 496 case Sema::TDK_SubstitutionFailure: 497 return 0; 498 499 case Sema::TDK_Inconsistent: 500 case Sema::TDK_Underqualified: 501 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 502 503 // Unhandled 504 case Sema::TDK_NonDeducedMismatch: 505 case Sema::TDK_FailedOverloadResolution: 506 break; 507 } 508 509 return 0; 510} 511 512void OverloadCandidateSet::clear() { 513 inherited::clear(); 514 Functions.clear(); 515} 516 517// IsOverload - Determine whether the given New declaration is an 518// overload of the declarations in Old. This routine returns false if 519// New and Old cannot be overloaded, e.g., if New has the same 520// signature as some function in Old (C++ 1.3.10) or if the Old 521// declarations aren't functions (or function templates) at all. When 522// it does return false, MatchedDecl will point to the decl that New 523// cannot be overloaded with. This decl may be a UsingShadowDecl on 524// top of the underlying declaration. 525// 526// Example: Given the following input: 527// 528// void f(int, float); // #1 529// void f(int, int); // #2 530// int f(int, int); // #3 531// 532// When we process #1, there is no previous declaration of "f", 533// so IsOverload will not be used. 534// 535// When we process #2, Old contains only the FunctionDecl for #1. By 536// comparing the parameter types, we see that #1 and #2 are overloaded 537// (since they have different signatures), so this routine returns 538// false; MatchedDecl is unchanged. 539// 540// When we process #3, Old is an overload set containing #1 and #2. We 541// compare the signatures of #3 to #1 (they're overloaded, so we do 542// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 543// identical (return types of functions are not part of the 544// signature), IsOverload returns false and MatchedDecl will be set to 545// point to the FunctionDecl for #2. 546// 547// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 548// into a class by a using declaration. The rules for whether to hide 549// shadow declarations ignore some properties which otherwise figure 550// into a function template's signature. 551Sema::OverloadKind 552Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 553 NamedDecl *&Match, bool NewIsUsingDecl) { 554 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 555 I != E; ++I) { 556 NamedDecl *OldD = *I; 557 558 bool OldIsUsingDecl = false; 559 if (isa<UsingShadowDecl>(OldD)) { 560 OldIsUsingDecl = true; 561 562 // We can always introduce two using declarations into the same 563 // context, even if they have identical signatures. 564 if (NewIsUsingDecl) continue; 565 566 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 567 } 568 569 // If either declaration was introduced by a using declaration, 570 // we'll need to use slightly different rules for matching. 571 // Essentially, these rules are the normal rules, except that 572 // function templates hide function templates with different 573 // return types or template parameter lists. 574 bool UseMemberUsingDeclRules = 575 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 576 577 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 578 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 579 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 580 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 581 continue; 582 } 583 584 Match = *I; 585 return Ovl_Match; 586 } 587 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 588 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 589 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 590 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 591 continue; 592 } 593 594 Match = *I; 595 return Ovl_Match; 596 } 597 } else if (isa<UsingDecl>(OldD)) { 598 // We can overload with these, which can show up when doing 599 // redeclaration checks for UsingDecls. 600 assert(Old.getLookupKind() == LookupUsingDeclName); 601 } else if (isa<TagDecl>(OldD)) { 602 // We can always overload with tags by hiding them. 603 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 604 // Optimistically assume that an unresolved using decl will 605 // overload; if it doesn't, we'll have to diagnose during 606 // template instantiation. 607 } else { 608 // (C++ 13p1): 609 // Only function declarations can be overloaded; object and type 610 // declarations cannot be overloaded. 611 Match = *I; 612 return Ovl_NonFunction; 613 } 614 } 615 616 return Ovl_Overload; 617} 618 619bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 620 bool UseUsingDeclRules) { 621 // If both of the functions are extern "C", then they are not 622 // overloads. 623 if (Old->isExternC() && New->isExternC()) 624 return false; 625 626 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 627 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 628 629 // C++ [temp.fct]p2: 630 // A function template can be overloaded with other function templates 631 // and with normal (non-template) functions. 632 if ((OldTemplate == 0) != (NewTemplate == 0)) 633 return true; 634 635 // Is the function New an overload of the function Old? 636 QualType OldQType = Context.getCanonicalType(Old->getType()); 637 QualType NewQType = Context.getCanonicalType(New->getType()); 638 639 // Compare the signatures (C++ 1.3.10) of the two functions to 640 // determine whether they are overloads. If we find any mismatch 641 // in the signature, they are overloads. 642 643 // If either of these functions is a K&R-style function (no 644 // prototype), then we consider them to have matching signatures. 645 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 646 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 647 return false; 648 649 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 650 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 651 652 // The signature of a function includes the types of its 653 // parameters (C++ 1.3.10), which includes the presence or absence 654 // of the ellipsis; see C++ DR 357). 655 if (OldQType != NewQType && 656 (OldType->getNumArgs() != NewType->getNumArgs() || 657 OldType->isVariadic() != NewType->isVariadic() || 658 !FunctionArgTypesAreEqual(OldType, NewType))) 659 return true; 660 661 // C++ [temp.over.link]p4: 662 // The signature of a function template consists of its function 663 // signature, its return type and its template parameter list. The names 664 // of the template parameters are significant only for establishing the 665 // relationship between the template parameters and the rest of the 666 // signature. 667 // 668 // We check the return type and template parameter lists for function 669 // templates first; the remaining checks follow. 670 // 671 // However, we don't consider either of these when deciding whether 672 // a member introduced by a shadow declaration is hidden. 673 if (!UseUsingDeclRules && NewTemplate && 674 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 675 OldTemplate->getTemplateParameters(), 676 false, TPL_TemplateMatch) || 677 OldType->getResultType() != NewType->getResultType())) 678 return true; 679 680 // If the function is a class member, its signature includes the 681 // cv-qualifiers (if any) on the function itself. 682 // 683 // As part of this, also check whether one of the member functions 684 // is static, in which case they are not overloads (C++ 685 // 13.1p2). While not part of the definition of the signature, 686 // this check is important to determine whether these functions 687 // can be overloaded. 688 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 689 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 690 if (OldMethod && NewMethod && 691 !OldMethod->isStatic() && !NewMethod->isStatic() && 692 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 693 return true; 694 695 // The signatures match; this is not an overload. 696 return false; 697} 698 699/// TryImplicitConversion - Attempt to perform an implicit conversion 700/// from the given expression (Expr) to the given type (ToType). This 701/// function returns an implicit conversion sequence that can be used 702/// to perform the initialization. Given 703/// 704/// void f(float f); 705/// void g(int i) { f(i); } 706/// 707/// this routine would produce an implicit conversion sequence to 708/// describe the initialization of f from i, which will be a standard 709/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 710/// 4.1) followed by a floating-integral conversion (C++ 4.9). 711// 712/// Note that this routine only determines how the conversion can be 713/// performed; it does not actually perform the conversion. As such, 714/// it will not produce any diagnostics if no conversion is available, 715/// but will instead return an implicit conversion sequence of kind 716/// "BadConversion". 717/// 718/// If @p SuppressUserConversions, then user-defined conversions are 719/// not permitted. 720/// If @p AllowExplicit, then explicit user-defined conversions are 721/// permitted. 722static ImplicitConversionSequence 723TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 724 bool SuppressUserConversions, 725 bool AllowExplicit, 726 bool InOverloadResolution) { 727 ImplicitConversionSequence ICS; 728 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 729 ICS.Standard)) { 730 ICS.setStandard(); 731 return ICS; 732 } 733 734 if (!S.getLangOptions().CPlusPlus) { 735 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 736 return ICS; 737 } 738 739 // C++ [over.ics.user]p4: 740 // A conversion of an expression of class type to the same class 741 // type is given Exact Match rank, and a conversion of an 742 // expression of class type to a base class of that type is 743 // given Conversion rank, in spite of the fact that a copy/move 744 // constructor (i.e., a user-defined conversion function) is 745 // called for those cases. 746 QualType FromType = From->getType(); 747 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 748 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 749 S.IsDerivedFrom(FromType, ToType))) { 750 ICS.setStandard(); 751 ICS.Standard.setAsIdentityConversion(); 752 ICS.Standard.setFromType(FromType); 753 ICS.Standard.setAllToTypes(ToType); 754 755 // We don't actually check at this point whether there is a valid 756 // copy/move constructor, since overloading just assumes that it 757 // exists. When we actually perform initialization, we'll find the 758 // appropriate constructor to copy the returned object, if needed. 759 ICS.Standard.CopyConstructor = 0; 760 761 // Determine whether this is considered a derived-to-base conversion. 762 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 763 ICS.Standard.Second = ICK_Derived_To_Base; 764 765 return ICS; 766 } 767 768 if (SuppressUserConversions) { 769 // We're not in the case above, so there is no conversion that 770 // we can perform. 771 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 772 return ICS; 773 } 774 775 // Attempt user-defined conversion. 776 OverloadCandidateSet Conversions(From->getExprLoc()); 777 OverloadingResult UserDefResult 778 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 779 AllowExplicit); 780 781 if (UserDefResult == OR_Success) { 782 ICS.setUserDefined(); 783 // C++ [over.ics.user]p4: 784 // A conversion of an expression of class type to the same class 785 // type is given Exact Match rank, and a conversion of an 786 // expression of class type to a base class of that type is 787 // given Conversion rank, in spite of the fact that a copy 788 // constructor (i.e., a user-defined conversion function) is 789 // called for those cases. 790 if (CXXConstructorDecl *Constructor 791 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 792 QualType FromCanon 793 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 794 QualType ToCanon 795 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 796 if (Constructor->isCopyConstructor() && 797 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 798 // Turn this into a "standard" conversion sequence, so that it 799 // gets ranked with standard conversion sequences. 800 ICS.setStandard(); 801 ICS.Standard.setAsIdentityConversion(); 802 ICS.Standard.setFromType(From->getType()); 803 ICS.Standard.setAllToTypes(ToType); 804 ICS.Standard.CopyConstructor = Constructor; 805 if (ToCanon != FromCanon) 806 ICS.Standard.Second = ICK_Derived_To_Base; 807 } 808 } 809 810 // C++ [over.best.ics]p4: 811 // However, when considering the argument of a user-defined 812 // conversion function that is a candidate by 13.3.1.3 when 813 // invoked for the copying of the temporary in the second step 814 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 815 // 13.3.1.6 in all cases, only standard conversion sequences and 816 // ellipsis conversion sequences are allowed. 817 if (SuppressUserConversions && ICS.isUserDefined()) { 818 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 819 } 820 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 821 ICS.setAmbiguous(); 822 ICS.Ambiguous.setFromType(From->getType()); 823 ICS.Ambiguous.setToType(ToType); 824 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 825 Cand != Conversions.end(); ++Cand) 826 if (Cand->Viable) 827 ICS.Ambiguous.addConversion(Cand->Function); 828 } else { 829 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 830 } 831 832 return ICS; 833} 834 835bool Sema::TryImplicitConversion(InitializationSequence &Sequence, 836 const InitializedEntity &Entity, 837 Expr *Initializer, 838 bool SuppressUserConversions, 839 bool AllowExplicitConversions, 840 bool InOverloadResolution) { 841 ImplicitConversionSequence ICS 842 = clang::TryImplicitConversion(*this, Initializer, Entity.getType(), 843 SuppressUserConversions, 844 AllowExplicitConversions, 845 InOverloadResolution); 846 if (ICS.isBad()) return true; 847 848 // Perform the actual conversion. 849 Sequence.AddConversionSequenceStep(ICS, Entity.getType()); 850 return false; 851} 852 853/// PerformImplicitConversion - Perform an implicit conversion of the 854/// expression From to the type ToType. Returns true if there was an 855/// error, false otherwise. The expression From is replaced with the 856/// converted expression. Flavor is the kind of conversion we're 857/// performing, used in the error message. If @p AllowExplicit, 858/// explicit user-defined conversions are permitted. 859bool 860Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 861 AssignmentAction Action, bool AllowExplicit) { 862 ImplicitConversionSequence ICS; 863 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 864} 865 866bool 867Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 868 AssignmentAction Action, bool AllowExplicit, 869 ImplicitConversionSequence& ICS) { 870 ICS = clang::TryImplicitConversion(*this, From, ToType, 871 /*SuppressUserConversions=*/false, 872 AllowExplicit, 873 /*InOverloadResolution=*/false); 874 return PerformImplicitConversion(From, ToType, ICS, Action); 875} 876 877/// \brief Determine whether the conversion from FromType to ToType is a valid 878/// conversion that strips "noreturn" off the nested function type. 879static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 880 QualType ToType, QualType &ResultTy) { 881 if (Context.hasSameUnqualifiedType(FromType, ToType)) 882 return false; 883 884 // Strip the noreturn off the type we're converting from; noreturn can 885 // safely be removed. 886 FromType = Context.getNoReturnType(FromType, false); 887 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 888 return false; 889 890 ResultTy = FromType; 891 return true; 892} 893 894/// \brief Determine whether the conversion from FromType to ToType is a valid 895/// vector conversion. 896/// 897/// \param ICK Will be set to the vector conversion kind, if this is a vector 898/// conversion. 899static bool IsVectorConversion(ASTContext &Context, QualType FromType, 900 QualType ToType, ImplicitConversionKind &ICK) { 901 // We need at least one of these types to be a vector type to have a vector 902 // conversion. 903 if (!ToType->isVectorType() && !FromType->isVectorType()) 904 return false; 905 906 // Identical types require no conversions. 907 if (Context.hasSameUnqualifiedType(FromType, ToType)) 908 return false; 909 910 // There are no conversions between extended vector types, only identity. 911 if (ToType->isExtVectorType()) { 912 // There are no conversions between extended vector types other than the 913 // identity conversion. 914 if (FromType->isExtVectorType()) 915 return false; 916 917 // Vector splat from any arithmetic type to a vector. 918 if (FromType->isArithmeticType()) { 919 ICK = ICK_Vector_Splat; 920 return true; 921 } 922 } 923 924 // We can perform the conversion between vector types in the following cases: 925 // 1)vector types are equivalent AltiVec and GCC vector types 926 // 2)lax vector conversions are permitted and the vector types are of the 927 // same size 928 if (ToType->isVectorType() && FromType->isVectorType()) { 929 if (Context.areCompatibleVectorTypes(FromType, ToType) || 930 (Context.getLangOptions().LaxVectorConversions && 931 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 932 ICK = ICK_Vector_Conversion; 933 return true; 934 } 935 } 936 937 return false; 938} 939 940/// IsStandardConversion - Determines whether there is a standard 941/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 942/// expression From to the type ToType. Standard conversion sequences 943/// only consider non-class types; for conversions that involve class 944/// types, use TryImplicitConversion. If a conversion exists, SCS will 945/// contain the standard conversion sequence required to perform this 946/// conversion and this routine will return true. Otherwise, this 947/// routine will return false and the value of SCS is unspecified. 948static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 949 bool InOverloadResolution, 950 StandardConversionSequence &SCS) { 951 QualType FromType = From->getType(); 952 953 // Standard conversions (C++ [conv]) 954 SCS.setAsIdentityConversion(); 955 SCS.DeprecatedStringLiteralToCharPtr = false; 956 SCS.IncompatibleObjC = false; 957 SCS.setFromType(FromType); 958 SCS.CopyConstructor = 0; 959 960 // There are no standard conversions for class types in C++, so 961 // abort early. When overloading in C, however, we do permit 962 if (FromType->isRecordType() || ToType->isRecordType()) { 963 if (S.getLangOptions().CPlusPlus) 964 return false; 965 966 // When we're overloading in C, we allow, as standard conversions, 967 } 968 969 // The first conversion can be an lvalue-to-rvalue conversion, 970 // array-to-pointer conversion, or function-to-pointer conversion 971 // (C++ 4p1). 972 973 if (FromType == S.Context.OverloadTy) { 974 DeclAccessPair AccessPair; 975 if (FunctionDecl *Fn 976 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 977 AccessPair)) { 978 // We were able to resolve the address of the overloaded function, 979 // so we can convert to the type of that function. 980 FromType = Fn->getType(); 981 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 982 if (!Method->isStatic()) { 983 Type *ClassType 984 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 985 FromType = S.Context.getMemberPointerType(FromType, ClassType); 986 } 987 } 988 989 // If the "from" expression takes the address of the overloaded 990 // function, update the type of the resulting expression accordingly. 991 if (FromType->getAs<FunctionType>()) 992 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 993 if (UnOp->getOpcode() == UO_AddrOf) 994 FromType = S.Context.getPointerType(FromType); 995 996 // Check that we've computed the proper type after overload resolution. 997 assert(S.Context.hasSameType(FromType, 998 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 999 } else { 1000 return false; 1001 } 1002 } 1003 // Lvalue-to-rvalue conversion (C++ 4.1): 1004 // An lvalue (3.10) of a non-function, non-array type T can be 1005 // converted to an rvalue. 1006 bool argIsLValue = From->isLValue(); 1007 if (argIsLValue && 1008 !FromType->isFunctionType() && !FromType->isArrayType() && 1009 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1010 SCS.First = ICK_Lvalue_To_Rvalue; 1011 1012 // If T is a non-class type, the type of the rvalue is the 1013 // cv-unqualified version of T. Otherwise, the type of the rvalue 1014 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1015 // just strip the qualifiers because they don't matter. 1016 FromType = FromType.getUnqualifiedType(); 1017 } else if (FromType->isArrayType()) { 1018 // Array-to-pointer conversion (C++ 4.2) 1019 SCS.First = ICK_Array_To_Pointer; 1020 1021 // An lvalue or rvalue of type "array of N T" or "array of unknown 1022 // bound of T" can be converted to an rvalue of type "pointer to 1023 // T" (C++ 4.2p1). 1024 FromType = S.Context.getArrayDecayedType(FromType); 1025 1026 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1027 // This conversion is deprecated. (C++ D.4). 1028 SCS.DeprecatedStringLiteralToCharPtr = true; 1029 1030 // For the purpose of ranking in overload resolution 1031 // (13.3.3.1.1), this conversion is considered an 1032 // array-to-pointer conversion followed by a qualification 1033 // conversion (4.4). (C++ 4.2p2) 1034 SCS.Second = ICK_Identity; 1035 SCS.Third = ICK_Qualification; 1036 SCS.setAllToTypes(FromType); 1037 return true; 1038 } 1039 } else if (FromType->isFunctionType() && argIsLValue) { 1040 // Function-to-pointer conversion (C++ 4.3). 1041 SCS.First = ICK_Function_To_Pointer; 1042 1043 // An lvalue of function type T can be converted to an rvalue of 1044 // type "pointer to T." The result is a pointer to the 1045 // function. (C++ 4.3p1). 1046 FromType = S.Context.getPointerType(FromType); 1047 } else { 1048 // We don't require any conversions for the first step. 1049 SCS.First = ICK_Identity; 1050 } 1051 SCS.setToType(0, FromType); 1052 1053 // The second conversion can be an integral promotion, floating 1054 // point promotion, integral conversion, floating point conversion, 1055 // floating-integral conversion, pointer conversion, 1056 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1057 // For overloading in C, this can also be a "compatible-type" 1058 // conversion. 1059 bool IncompatibleObjC = false; 1060 ImplicitConversionKind SecondICK = ICK_Identity; 1061 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1062 // The unqualified versions of the types are the same: there's no 1063 // conversion to do. 1064 SCS.Second = ICK_Identity; 1065 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1066 // Integral promotion (C++ 4.5). 1067 SCS.Second = ICK_Integral_Promotion; 1068 FromType = ToType.getUnqualifiedType(); 1069 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1070 // Floating point promotion (C++ 4.6). 1071 SCS.Second = ICK_Floating_Promotion; 1072 FromType = ToType.getUnqualifiedType(); 1073 } else if (S.IsComplexPromotion(FromType, ToType)) { 1074 // Complex promotion (Clang extension) 1075 SCS.Second = ICK_Complex_Promotion; 1076 FromType = ToType.getUnqualifiedType(); 1077 } else if (ToType->isBooleanType() && 1078 (FromType->isArithmeticType() || 1079 FromType->isAnyPointerType() || 1080 FromType->isBlockPointerType() || 1081 FromType->isMemberPointerType() || 1082 FromType->isNullPtrType())) { 1083 // Boolean conversions (C++ 4.12). 1084 SCS.Second = ICK_Boolean_Conversion; 1085 FromType = S.Context.BoolTy; 1086 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1087 ToType->isIntegralType(S.Context)) { 1088 // Integral conversions (C++ 4.7). 1089 SCS.Second = ICK_Integral_Conversion; 1090 FromType = ToType.getUnqualifiedType(); 1091 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1092 // Complex conversions (C99 6.3.1.6) 1093 SCS.Second = ICK_Complex_Conversion; 1094 FromType = ToType.getUnqualifiedType(); 1095 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1096 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1097 // Complex-real conversions (C99 6.3.1.7) 1098 SCS.Second = ICK_Complex_Real; 1099 FromType = ToType.getUnqualifiedType(); 1100 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1101 // Floating point conversions (C++ 4.8). 1102 SCS.Second = ICK_Floating_Conversion; 1103 FromType = ToType.getUnqualifiedType(); 1104 } else if ((FromType->isRealFloatingType() && 1105 ToType->isIntegralType(S.Context)) || 1106 (FromType->isIntegralOrUnscopedEnumerationType() && 1107 ToType->isRealFloatingType())) { 1108 // Floating-integral conversions (C++ 4.9). 1109 SCS.Second = ICK_Floating_Integral; 1110 FromType = ToType.getUnqualifiedType(); 1111 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1112 FromType, IncompatibleObjC)) { 1113 // Pointer conversions (C++ 4.10). 1114 SCS.Second = ICK_Pointer_Conversion; 1115 SCS.IncompatibleObjC = IncompatibleObjC; 1116 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1117 InOverloadResolution, FromType)) { 1118 // Pointer to member conversions (4.11). 1119 SCS.Second = ICK_Pointer_Member; 1120 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1121 SCS.Second = SecondICK; 1122 FromType = ToType.getUnqualifiedType(); 1123 } else if (!S.getLangOptions().CPlusPlus && 1124 S.Context.typesAreCompatible(ToType, FromType)) { 1125 // Compatible conversions (Clang extension for C function overloading) 1126 SCS.Second = ICK_Compatible_Conversion; 1127 FromType = ToType.getUnqualifiedType(); 1128 } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) { 1129 // Treat a conversion that strips "noreturn" as an identity conversion. 1130 SCS.Second = ICK_NoReturn_Adjustment; 1131 } else { 1132 // No second conversion required. 1133 SCS.Second = ICK_Identity; 1134 } 1135 SCS.setToType(1, FromType); 1136 1137 QualType CanonFrom; 1138 QualType CanonTo; 1139 // The third conversion can be a qualification conversion (C++ 4p1). 1140 if (S.IsQualificationConversion(FromType, ToType)) { 1141 SCS.Third = ICK_Qualification; 1142 FromType = ToType; 1143 CanonFrom = S.Context.getCanonicalType(FromType); 1144 CanonTo = S.Context.getCanonicalType(ToType); 1145 } else { 1146 // No conversion required 1147 SCS.Third = ICK_Identity; 1148 1149 // C++ [over.best.ics]p6: 1150 // [...] Any difference in top-level cv-qualification is 1151 // subsumed by the initialization itself and does not constitute 1152 // a conversion. [...] 1153 CanonFrom = S.Context.getCanonicalType(FromType); 1154 CanonTo = S.Context.getCanonicalType(ToType); 1155 if (CanonFrom.getLocalUnqualifiedType() 1156 == CanonTo.getLocalUnqualifiedType() && 1157 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1158 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1159 FromType = ToType; 1160 CanonFrom = CanonTo; 1161 } 1162 } 1163 SCS.setToType(2, FromType); 1164 1165 // If we have not converted the argument type to the parameter type, 1166 // this is a bad conversion sequence. 1167 if (CanonFrom != CanonTo) 1168 return false; 1169 1170 return true; 1171} 1172 1173/// IsIntegralPromotion - Determines whether the conversion from the 1174/// expression From (whose potentially-adjusted type is FromType) to 1175/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1176/// sets PromotedType to the promoted type. 1177bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1178 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1179 // All integers are built-in. 1180 if (!To) { 1181 return false; 1182 } 1183 1184 // An rvalue of type char, signed char, unsigned char, short int, or 1185 // unsigned short int can be converted to an rvalue of type int if 1186 // int can represent all the values of the source type; otherwise, 1187 // the source rvalue can be converted to an rvalue of type unsigned 1188 // int (C++ 4.5p1). 1189 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1190 !FromType->isEnumeralType()) { 1191 if (// We can promote any signed, promotable integer type to an int 1192 (FromType->isSignedIntegerType() || 1193 // We can promote any unsigned integer type whose size is 1194 // less than int to an int. 1195 (!FromType->isSignedIntegerType() && 1196 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1197 return To->getKind() == BuiltinType::Int; 1198 } 1199 1200 return To->getKind() == BuiltinType::UInt; 1201 } 1202 1203 // C++0x [conv.prom]p3: 1204 // A prvalue of an unscoped enumeration type whose underlying type is not 1205 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1206 // following types that can represent all the values of the enumeration 1207 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1208 // unsigned int, long int, unsigned long int, long long int, or unsigned 1209 // long long int. If none of the types in that list can represent all the 1210 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1211 // type can be converted to an rvalue a prvalue of the extended integer type 1212 // with lowest integer conversion rank (4.13) greater than the rank of long 1213 // long in which all the values of the enumeration can be represented. If 1214 // there are two such extended types, the signed one is chosen. 1215 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1216 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1217 // provided for a scoped enumeration. 1218 if (FromEnumType->getDecl()->isScoped()) 1219 return false; 1220 1221 // We have already pre-calculated the promotion type, so this is trivial. 1222 if (ToType->isIntegerType() && 1223 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1224 return Context.hasSameUnqualifiedType(ToType, 1225 FromEnumType->getDecl()->getPromotionType()); 1226 } 1227 1228 // C++0x [conv.prom]p2: 1229 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1230 // to an rvalue a prvalue of the first of the following types that can 1231 // represent all the values of its underlying type: int, unsigned int, 1232 // long int, unsigned long int, long long int, or unsigned long long int. 1233 // If none of the types in that list can represent all the values of its 1234 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1235 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1236 // type. 1237 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1238 ToType->isIntegerType()) { 1239 // Determine whether the type we're converting from is signed or 1240 // unsigned. 1241 bool FromIsSigned; 1242 uint64_t FromSize = Context.getTypeSize(FromType); 1243 1244 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1245 FromIsSigned = true; 1246 1247 // The types we'll try to promote to, in the appropriate 1248 // order. Try each of these types. 1249 QualType PromoteTypes[6] = { 1250 Context.IntTy, Context.UnsignedIntTy, 1251 Context.LongTy, Context.UnsignedLongTy , 1252 Context.LongLongTy, Context.UnsignedLongLongTy 1253 }; 1254 for (int Idx = 0; Idx < 6; ++Idx) { 1255 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1256 if (FromSize < ToSize || 1257 (FromSize == ToSize && 1258 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1259 // We found the type that we can promote to. If this is the 1260 // type we wanted, we have a promotion. Otherwise, no 1261 // promotion. 1262 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1263 } 1264 } 1265 } 1266 1267 // An rvalue for an integral bit-field (9.6) can be converted to an 1268 // rvalue of type int if int can represent all the values of the 1269 // bit-field; otherwise, it can be converted to unsigned int if 1270 // unsigned int can represent all the values of the bit-field. If 1271 // the bit-field is larger yet, no integral promotion applies to 1272 // it. If the bit-field has an enumerated type, it is treated as any 1273 // other value of that type for promotion purposes (C++ 4.5p3). 1274 // FIXME: We should delay checking of bit-fields until we actually perform the 1275 // conversion. 1276 using llvm::APSInt; 1277 if (From) 1278 if (FieldDecl *MemberDecl = From->getBitField()) { 1279 APSInt BitWidth; 1280 if (FromType->isIntegralType(Context) && 1281 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1282 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1283 ToSize = Context.getTypeSize(ToType); 1284 1285 // Are we promoting to an int from a bitfield that fits in an int? 1286 if (BitWidth < ToSize || 1287 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1288 return To->getKind() == BuiltinType::Int; 1289 } 1290 1291 // Are we promoting to an unsigned int from an unsigned bitfield 1292 // that fits into an unsigned int? 1293 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1294 return To->getKind() == BuiltinType::UInt; 1295 } 1296 1297 return false; 1298 } 1299 } 1300 1301 // An rvalue of type bool can be converted to an rvalue of type int, 1302 // with false becoming zero and true becoming one (C++ 4.5p4). 1303 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1304 return true; 1305 } 1306 1307 return false; 1308} 1309 1310/// IsFloatingPointPromotion - Determines whether the conversion from 1311/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1312/// returns true and sets PromotedType to the promoted type. 1313bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1314 /// An rvalue of type float can be converted to an rvalue of type 1315 /// double. (C++ 4.6p1). 1316 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1317 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1318 if (FromBuiltin->getKind() == BuiltinType::Float && 1319 ToBuiltin->getKind() == BuiltinType::Double) 1320 return true; 1321 1322 // C99 6.3.1.5p1: 1323 // When a float is promoted to double or long double, or a 1324 // double is promoted to long double [...]. 1325 if (!getLangOptions().CPlusPlus && 1326 (FromBuiltin->getKind() == BuiltinType::Float || 1327 FromBuiltin->getKind() == BuiltinType::Double) && 1328 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1329 return true; 1330 } 1331 1332 return false; 1333} 1334 1335/// \brief Determine if a conversion is a complex promotion. 1336/// 1337/// A complex promotion is defined as a complex -> complex conversion 1338/// where the conversion between the underlying real types is a 1339/// floating-point or integral promotion. 1340bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1341 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1342 if (!FromComplex) 1343 return false; 1344 1345 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1346 if (!ToComplex) 1347 return false; 1348 1349 return IsFloatingPointPromotion(FromComplex->getElementType(), 1350 ToComplex->getElementType()) || 1351 IsIntegralPromotion(0, FromComplex->getElementType(), 1352 ToComplex->getElementType()); 1353} 1354 1355/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1356/// the pointer type FromPtr to a pointer to type ToPointee, with the 1357/// same type qualifiers as FromPtr has on its pointee type. ToType, 1358/// if non-empty, will be a pointer to ToType that may or may not have 1359/// the right set of qualifiers on its pointee. 1360static QualType 1361BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1362 QualType ToPointee, QualType ToType, 1363 ASTContext &Context) { 1364 assert((FromPtr->getTypeClass() == Type::Pointer || 1365 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1366 "Invalid similarly-qualified pointer type"); 1367 QualType CanonFromPointee 1368 = Context.getCanonicalType(FromPtr->getPointeeType()); 1369 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1370 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1371 1372 // Exact qualifier match -> return the pointer type we're converting to. 1373 if (CanonToPointee.getLocalQualifiers() == Quals) { 1374 // ToType is exactly what we need. Return it. 1375 if (!ToType.isNull()) 1376 return ToType.getUnqualifiedType(); 1377 1378 // Build a pointer to ToPointee. It has the right qualifiers 1379 // already. 1380 if (isa<ObjCObjectPointerType>(ToType)) 1381 return Context.getObjCObjectPointerType(ToPointee); 1382 return Context.getPointerType(ToPointee); 1383 } 1384 1385 // Just build a canonical type that has the right qualifiers. 1386 QualType QualifiedCanonToPointee 1387 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1388 1389 if (isa<ObjCObjectPointerType>(ToType)) 1390 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1391 return Context.getPointerType(QualifiedCanonToPointee); 1392} 1393 1394static bool isNullPointerConstantForConversion(Expr *Expr, 1395 bool InOverloadResolution, 1396 ASTContext &Context) { 1397 // Handle value-dependent integral null pointer constants correctly. 1398 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1399 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1400 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1401 return !InOverloadResolution; 1402 1403 return Expr->isNullPointerConstant(Context, 1404 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1405 : Expr::NPC_ValueDependentIsNull); 1406} 1407 1408/// IsPointerConversion - Determines whether the conversion of the 1409/// expression From, which has the (possibly adjusted) type FromType, 1410/// can be converted to the type ToType via a pointer conversion (C++ 1411/// 4.10). If so, returns true and places the converted type (that 1412/// might differ from ToType in its cv-qualifiers at some level) into 1413/// ConvertedType. 1414/// 1415/// This routine also supports conversions to and from block pointers 1416/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1417/// pointers to interfaces. FIXME: Once we've determined the 1418/// appropriate overloading rules for Objective-C, we may want to 1419/// split the Objective-C checks into a different routine; however, 1420/// GCC seems to consider all of these conversions to be pointer 1421/// conversions, so for now they live here. IncompatibleObjC will be 1422/// set if the conversion is an allowed Objective-C conversion that 1423/// should result in a warning. 1424bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1425 bool InOverloadResolution, 1426 QualType& ConvertedType, 1427 bool &IncompatibleObjC) { 1428 IncompatibleObjC = false; 1429 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1430 return true; 1431 1432 // Conversion from a null pointer constant to any Objective-C pointer type. 1433 if (ToType->isObjCObjectPointerType() && 1434 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1435 ConvertedType = ToType; 1436 return true; 1437 } 1438 1439 // Blocks: Block pointers can be converted to void*. 1440 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1441 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1442 ConvertedType = ToType; 1443 return true; 1444 } 1445 // Blocks: A null pointer constant can be converted to a block 1446 // pointer type. 1447 if (ToType->isBlockPointerType() && 1448 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1449 ConvertedType = ToType; 1450 return true; 1451 } 1452 1453 // If the left-hand-side is nullptr_t, the right side can be a null 1454 // pointer constant. 1455 if (ToType->isNullPtrType() && 1456 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1457 ConvertedType = ToType; 1458 return true; 1459 } 1460 1461 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1462 if (!ToTypePtr) 1463 return false; 1464 1465 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1466 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1467 ConvertedType = ToType; 1468 return true; 1469 } 1470 1471 // Beyond this point, both types need to be pointers 1472 // , including objective-c pointers. 1473 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1474 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1475 ConvertedType = BuildSimilarlyQualifiedPointerType( 1476 FromType->getAs<ObjCObjectPointerType>(), 1477 ToPointeeType, 1478 ToType, Context); 1479 return true; 1480 } 1481 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1482 if (!FromTypePtr) 1483 return false; 1484 1485 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1486 1487 // If the unqualified pointee types are the same, this can't be a 1488 // pointer conversion, so don't do all of the work below. 1489 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1490 return false; 1491 1492 // An rvalue of type "pointer to cv T," where T is an object type, 1493 // can be converted to an rvalue of type "pointer to cv void" (C++ 1494 // 4.10p2). 1495 if (FromPointeeType->isIncompleteOrObjectType() && 1496 ToPointeeType->isVoidType()) { 1497 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1498 ToPointeeType, 1499 ToType, Context); 1500 return true; 1501 } 1502 1503 // When we're overloading in C, we allow a special kind of pointer 1504 // conversion for compatible-but-not-identical pointee types. 1505 if (!getLangOptions().CPlusPlus && 1506 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1507 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1508 ToPointeeType, 1509 ToType, Context); 1510 return true; 1511 } 1512 1513 // C++ [conv.ptr]p3: 1514 // 1515 // An rvalue of type "pointer to cv D," where D is a class type, 1516 // can be converted to an rvalue of type "pointer to cv B," where 1517 // B is a base class (clause 10) of D. If B is an inaccessible 1518 // (clause 11) or ambiguous (10.2) base class of D, a program that 1519 // necessitates this conversion is ill-formed. The result of the 1520 // conversion is a pointer to the base class sub-object of the 1521 // derived class object. The null pointer value is converted to 1522 // the null pointer value of the destination type. 1523 // 1524 // Note that we do not check for ambiguity or inaccessibility 1525 // here. That is handled by CheckPointerConversion. 1526 if (getLangOptions().CPlusPlus && 1527 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1528 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1529 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1530 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1531 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1532 ToPointeeType, 1533 ToType, Context); 1534 return true; 1535 } 1536 1537 return false; 1538} 1539 1540/// isObjCPointerConversion - Determines whether this is an 1541/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1542/// with the same arguments and return values. 1543bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1544 QualType& ConvertedType, 1545 bool &IncompatibleObjC) { 1546 if (!getLangOptions().ObjC1) 1547 return false; 1548 1549 // First, we handle all conversions on ObjC object pointer types. 1550 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1551 const ObjCObjectPointerType *FromObjCPtr = 1552 FromType->getAs<ObjCObjectPointerType>(); 1553 1554 if (ToObjCPtr && FromObjCPtr) { 1555 // If the pointee types are the same (ignoring qualifications), 1556 // then this is not a pointer conversion. 1557 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1558 FromObjCPtr->getPointeeType())) 1559 return false; 1560 1561 // Objective C++: We're able to convert between "id" or "Class" and a 1562 // pointer to any interface (in both directions). 1563 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1564 ConvertedType = ToType; 1565 return true; 1566 } 1567 // Conversions with Objective-C's id<...>. 1568 if ((FromObjCPtr->isObjCQualifiedIdType() || 1569 ToObjCPtr->isObjCQualifiedIdType()) && 1570 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1571 /*compare=*/false)) { 1572 ConvertedType = ToType; 1573 return true; 1574 } 1575 // Objective C++: We're able to convert from a pointer to an 1576 // interface to a pointer to a different interface. 1577 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1578 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1579 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1580 if (getLangOptions().CPlusPlus && LHS && RHS && 1581 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1582 FromObjCPtr->getPointeeType())) 1583 return false; 1584 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1585 ToObjCPtr->getPointeeType(), 1586 ToType, Context); 1587 return true; 1588 } 1589 1590 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1591 // Okay: this is some kind of implicit downcast of Objective-C 1592 // interfaces, which is permitted. However, we're going to 1593 // complain about it. 1594 IncompatibleObjC = true; 1595 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1596 ToObjCPtr->getPointeeType(), 1597 ToType, Context); 1598 return true; 1599 } 1600 } 1601 // Beyond this point, both types need to be C pointers or block pointers. 1602 QualType ToPointeeType; 1603 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1604 ToPointeeType = ToCPtr->getPointeeType(); 1605 else if (const BlockPointerType *ToBlockPtr = 1606 ToType->getAs<BlockPointerType>()) { 1607 // Objective C++: We're able to convert from a pointer to any object 1608 // to a block pointer type. 1609 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1610 ConvertedType = ToType; 1611 return true; 1612 } 1613 ToPointeeType = ToBlockPtr->getPointeeType(); 1614 } 1615 else if (FromType->getAs<BlockPointerType>() && 1616 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1617 // Objective C++: We're able to convert from a block pointer type to a 1618 // pointer to any object. 1619 ConvertedType = ToType; 1620 return true; 1621 } 1622 else 1623 return false; 1624 1625 QualType FromPointeeType; 1626 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1627 FromPointeeType = FromCPtr->getPointeeType(); 1628 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1629 FromPointeeType = FromBlockPtr->getPointeeType(); 1630 else 1631 return false; 1632 1633 // If we have pointers to pointers, recursively check whether this 1634 // is an Objective-C conversion. 1635 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1636 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1637 IncompatibleObjC)) { 1638 // We always complain about this conversion. 1639 IncompatibleObjC = true; 1640 ConvertedType = Context.getPointerType(ConvertedType); 1641 return true; 1642 } 1643 // Allow conversion of pointee being objective-c pointer to another one; 1644 // as in I* to id. 1645 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1646 ToPointeeType->getAs<ObjCObjectPointerType>() && 1647 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1648 IncompatibleObjC)) { 1649 ConvertedType = Context.getPointerType(ConvertedType); 1650 return true; 1651 } 1652 1653 // If we have pointers to functions or blocks, check whether the only 1654 // differences in the argument and result types are in Objective-C 1655 // pointer conversions. If so, we permit the conversion (but 1656 // complain about it). 1657 const FunctionProtoType *FromFunctionType 1658 = FromPointeeType->getAs<FunctionProtoType>(); 1659 const FunctionProtoType *ToFunctionType 1660 = ToPointeeType->getAs<FunctionProtoType>(); 1661 if (FromFunctionType && ToFunctionType) { 1662 // If the function types are exactly the same, this isn't an 1663 // Objective-C pointer conversion. 1664 if (Context.getCanonicalType(FromPointeeType) 1665 == Context.getCanonicalType(ToPointeeType)) 1666 return false; 1667 1668 // Perform the quick checks that will tell us whether these 1669 // function types are obviously different. 1670 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1671 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1672 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1673 return false; 1674 1675 bool HasObjCConversion = false; 1676 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1677 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1678 // Okay, the types match exactly. Nothing to do. 1679 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1680 ToFunctionType->getResultType(), 1681 ConvertedType, IncompatibleObjC)) { 1682 // Okay, we have an Objective-C pointer conversion. 1683 HasObjCConversion = true; 1684 } else { 1685 // Function types are too different. Abort. 1686 return false; 1687 } 1688 1689 // Check argument types. 1690 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1691 ArgIdx != NumArgs; ++ArgIdx) { 1692 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1693 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1694 if (Context.getCanonicalType(FromArgType) 1695 == Context.getCanonicalType(ToArgType)) { 1696 // Okay, the types match exactly. Nothing to do. 1697 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1698 ConvertedType, IncompatibleObjC)) { 1699 // Okay, we have an Objective-C pointer conversion. 1700 HasObjCConversion = true; 1701 } else { 1702 // Argument types are too different. Abort. 1703 return false; 1704 } 1705 } 1706 1707 if (HasObjCConversion) { 1708 // We had an Objective-C conversion. Allow this pointer 1709 // conversion, but complain about it. 1710 ConvertedType = ToType; 1711 IncompatibleObjC = true; 1712 return true; 1713 } 1714 } 1715 1716 return false; 1717} 1718 1719/// FunctionArgTypesAreEqual - This routine checks two function proto types 1720/// for equlity of their argument types. Caller has already checked that 1721/// they have same number of arguments. This routine assumes that Objective-C 1722/// pointer types which only differ in their protocol qualifiers are equal. 1723bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1724 FunctionProtoType* NewType){ 1725 if (!getLangOptions().ObjC1) 1726 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1727 NewType->arg_type_begin()); 1728 1729 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1730 N = NewType->arg_type_begin(), 1731 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1732 QualType ToType = (*O); 1733 QualType FromType = (*N); 1734 if (ToType != FromType) { 1735 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1736 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1737 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1738 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1739 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1740 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1741 continue; 1742 } 1743 else if (const ObjCObjectPointerType *PTTo = 1744 ToType->getAs<ObjCObjectPointerType>()) { 1745 if (const ObjCObjectPointerType *PTFr = 1746 FromType->getAs<ObjCObjectPointerType>()) 1747 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1748 continue; 1749 } 1750 return false; 1751 } 1752 } 1753 return true; 1754} 1755 1756/// CheckPointerConversion - Check the pointer conversion from the 1757/// expression From to the type ToType. This routine checks for 1758/// ambiguous or inaccessible derived-to-base pointer 1759/// conversions for which IsPointerConversion has already returned 1760/// true. It returns true and produces a diagnostic if there was an 1761/// error, or returns false otherwise. 1762bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1763 CastKind &Kind, 1764 CXXCastPath& BasePath, 1765 bool IgnoreBaseAccess) { 1766 QualType FromType = From->getType(); 1767 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 1768 1769 Kind = CK_BitCast; 1770 1771 if (CXXBoolLiteralExpr* LitBool 1772 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1773 if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false) 1774 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1775 << ToType; 1776 1777 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1778 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1779 QualType FromPointeeType = FromPtrType->getPointeeType(), 1780 ToPointeeType = ToPtrType->getPointeeType(); 1781 1782 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1783 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1784 // We must have a derived-to-base conversion. Check an 1785 // ambiguous or inaccessible conversion. 1786 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1787 From->getExprLoc(), 1788 From->getSourceRange(), &BasePath, 1789 IgnoreBaseAccess)) 1790 return true; 1791 1792 // The conversion was successful. 1793 Kind = CK_DerivedToBase; 1794 } 1795 } 1796 if (const ObjCObjectPointerType *FromPtrType = 1797 FromType->getAs<ObjCObjectPointerType>()) { 1798 if (const ObjCObjectPointerType *ToPtrType = 1799 ToType->getAs<ObjCObjectPointerType>()) { 1800 // Objective-C++ conversions are always okay. 1801 // FIXME: We should have a different class of conversions for the 1802 // Objective-C++ implicit conversions. 1803 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1804 return false; 1805 } 1806 } 1807 1808 // We shouldn't fall into this case unless it's valid for other 1809 // reasons. 1810 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 1811 Kind = CK_NullToPointer; 1812 1813 return false; 1814} 1815 1816/// IsMemberPointerConversion - Determines whether the conversion of the 1817/// expression From, which has the (possibly adjusted) type FromType, can be 1818/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1819/// If so, returns true and places the converted type (that might differ from 1820/// ToType in its cv-qualifiers at some level) into ConvertedType. 1821bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1822 QualType ToType, 1823 bool InOverloadResolution, 1824 QualType &ConvertedType) { 1825 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1826 if (!ToTypePtr) 1827 return false; 1828 1829 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1830 if (From->isNullPointerConstant(Context, 1831 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1832 : Expr::NPC_ValueDependentIsNull)) { 1833 ConvertedType = ToType; 1834 return true; 1835 } 1836 1837 // Otherwise, both types have to be member pointers. 1838 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1839 if (!FromTypePtr) 1840 return false; 1841 1842 // A pointer to member of B can be converted to a pointer to member of D, 1843 // where D is derived from B (C++ 4.11p2). 1844 QualType FromClass(FromTypePtr->getClass(), 0); 1845 QualType ToClass(ToTypePtr->getClass(), 0); 1846 // FIXME: What happens when these are dependent? Is this function even called? 1847 1848 if (IsDerivedFrom(ToClass, FromClass)) { 1849 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1850 ToClass.getTypePtr()); 1851 return true; 1852 } 1853 1854 return false; 1855} 1856 1857/// CheckMemberPointerConversion - Check the member pointer conversion from the 1858/// expression From to the type ToType. This routine checks for ambiguous or 1859/// virtual or inaccessible base-to-derived member pointer conversions 1860/// for which IsMemberPointerConversion has already returned true. It returns 1861/// true and produces a diagnostic if there was an error, or returns false 1862/// otherwise. 1863bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1864 CastKind &Kind, 1865 CXXCastPath &BasePath, 1866 bool IgnoreBaseAccess) { 1867 QualType FromType = From->getType(); 1868 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1869 if (!FromPtrType) { 1870 // This must be a null pointer to member pointer conversion 1871 assert(From->isNullPointerConstant(Context, 1872 Expr::NPC_ValueDependentIsNull) && 1873 "Expr must be null pointer constant!"); 1874 Kind = CK_NullToMemberPointer; 1875 return false; 1876 } 1877 1878 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1879 assert(ToPtrType && "No member pointer cast has a target type " 1880 "that is not a member pointer."); 1881 1882 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1883 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1884 1885 // FIXME: What about dependent types? 1886 assert(FromClass->isRecordType() && "Pointer into non-class."); 1887 assert(ToClass->isRecordType() && "Pointer into non-class."); 1888 1889 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1890 /*DetectVirtual=*/true); 1891 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1892 assert(DerivationOkay && 1893 "Should not have been called if derivation isn't OK."); 1894 (void)DerivationOkay; 1895 1896 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1897 getUnqualifiedType())) { 1898 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1899 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1900 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1901 return true; 1902 } 1903 1904 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1905 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1906 << FromClass << ToClass << QualType(VBase, 0) 1907 << From->getSourceRange(); 1908 return true; 1909 } 1910 1911 if (!IgnoreBaseAccess) 1912 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1913 Paths.front(), 1914 diag::err_downcast_from_inaccessible_base); 1915 1916 // Must be a base to derived member conversion. 1917 BuildBasePathArray(Paths, BasePath); 1918 Kind = CK_BaseToDerivedMemberPointer; 1919 return false; 1920} 1921 1922/// IsQualificationConversion - Determines whether the conversion from 1923/// an rvalue of type FromType to ToType is a qualification conversion 1924/// (C++ 4.4). 1925bool 1926Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1927 FromType = Context.getCanonicalType(FromType); 1928 ToType = Context.getCanonicalType(ToType); 1929 1930 // If FromType and ToType are the same type, this is not a 1931 // qualification conversion. 1932 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1933 return false; 1934 1935 // (C++ 4.4p4): 1936 // A conversion can add cv-qualifiers at levels other than the first 1937 // in multi-level pointers, subject to the following rules: [...] 1938 bool PreviousToQualsIncludeConst = true; 1939 bool UnwrappedAnyPointer = false; 1940 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1941 // Within each iteration of the loop, we check the qualifiers to 1942 // determine if this still looks like a qualification 1943 // conversion. Then, if all is well, we unwrap one more level of 1944 // pointers or pointers-to-members and do it all again 1945 // until there are no more pointers or pointers-to-members left to 1946 // unwrap. 1947 UnwrappedAnyPointer = true; 1948 1949 // -- for every j > 0, if const is in cv 1,j then const is in cv 1950 // 2,j, and similarly for volatile. 1951 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1952 return false; 1953 1954 // -- if the cv 1,j and cv 2,j are different, then const is in 1955 // every cv for 0 < k < j. 1956 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1957 && !PreviousToQualsIncludeConst) 1958 return false; 1959 1960 // Keep track of whether all prior cv-qualifiers in the "to" type 1961 // include const. 1962 PreviousToQualsIncludeConst 1963 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1964 } 1965 1966 // We are left with FromType and ToType being the pointee types 1967 // after unwrapping the original FromType and ToType the same number 1968 // of types. If we unwrapped any pointers, and if FromType and 1969 // ToType have the same unqualified type (since we checked 1970 // qualifiers above), then this is a qualification conversion. 1971 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1972} 1973 1974/// Determines whether there is a user-defined conversion sequence 1975/// (C++ [over.ics.user]) that converts expression From to the type 1976/// ToType. If such a conversion exists, User will contain the 1977/// user-defined conversion sequence that performs such a conversion 1978/// and this routine will return true. Otherwise, this routine returns 1979/// false and User is unspecified. 1980/// 1981/// \param AllowExplicit true if the conversion should consider C++0x 1982/// "explicit" conversion functions as well as non-explicit conversion 1983/// functions (C++0x [class.conv.fct]p2). 1984static OverloadingResult 1985IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1986 UserDefinedConversionSequence& User, 1987 OverloadCandidateSet& CandidateSet, 1988 bool AllowExplicit) { 1989 // Whether we will only visit constructors. 1990 bool ConstructorsOnly = false; 1991 1992 // If the type we are conversion to is a class type, enumerate its 1993 // constructors. 1994 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1995 // C++ [over.match.ctor]p1: 1996 // When objects of class type are direct-initialized (8.5), or 1997 // copy-initialized from an expression of the same or a 1998 // derived class type (8.5), overload resolution selects the 1999 // constructor. [...] For copy-initialization, the candidate 2000 // functions are all the converting constructors (12.3.1) of 2001 // that class. The argument list is the expression-list within 2002 // the parentheses of the initializer. 2003 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2004 (From->getType()->getAs<RecordType>() && 2005 S.IsDerivedFrom(From->getType(), ToType))) 2006 ConstructorsOnly = true; 2007 2008 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) { 2009 // We're not going to find any constructors. 2010 } else if (CXXRecordDecl *ToRecordDecl 2011 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2012 DeclContext::lookup_iterator Con, ConEnd; 2013 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2014 Con != ConEnd; ++Con) { 2015 NamedDecl *D = *Con; 2016 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2017 2018 // Find the constructor (which may be a template). 2019 CXXConstructorDecl *Constructor = 0; 2020 FunctionTemplateDecl *ConstructorTmpl 2021 = dyn_cast<FunctionTemplateDecl>(D); 2022 if (ConstructorTmpl) 2023 Constructor 2024 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2025 else 2026 Constructor = cast<CXXConstructorDecl>(D); 2027 2028 if (!Constructor->isInvalidDecl() && 2029 Constructor->isConvertingConstructor(AllowExplicit)) { 2030 if (ConstructorTmpl) 2031 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2032 /*ExplicitArgs*/ 0, 2033 &From, 1, CandidateSet, 2034 /*SuppressUserConversions=*/ 2035 !ConstructorsOnly); 2036 else 2037 // Allow one user-defined conversion when user specifies a 2038 // From->ToType conversion via an static cast (c-style, etc). 2039 S.AddOverloadCandidate(Constructor, FoundDecl, 2040 &From, 1, CandidateSet, 2041 /*SuppressUserConversions=*/ 2042 !ConstructorsOnly); 2043 } 2044 } 2045 } 2046 } 2047 2048 // Enumerate conversion functions, if we're allowed to. 2049 if (ConstructorsOnly) { 2050 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2051 S.PDiag(0) << From->getSourceRange())) { 2052 // No conversion functions from incomplete types. 2053 } else if (const RecordType *FromRecordType 2054 = From->getType()->getAs<RecordType>()) { 2055 if (CXXRecordDecl *FromRecordDecl 2056 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2057 // Add all of the conversion functions as candidates. 2058 const UnresolvedSetImpl *Conversions 2059 = FromRecordDecl->getVisibleConversionFunctions(); 2060 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2061 E = Conversions->end(); I != E; ++I) { 2062 DeclAccessPair FoundDecl = I.getPair(); 2063 NamedDecl *D = FoundDecl.getDecl(); 2064 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2065 if (isa<UsingShadowDecl>(D)) 2066 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2067 2068 CXXConversionDecl *Conv; 2069 FunctionTemplateDecl *ConvTemplate; 2070 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2071 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2072 else 2073 Conv = cast<CXXConversionDecl>(D); 2074 2075 if (AllowExplicit || !Conv->isExplicit()) { 2076 if (ConvTemplate) 2077 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2078 ActingContext, From, ToType, 2079 CandidateSet); 2080 else 2081 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2082 From, ToType, CandidateSet); 2083 } 2084 } 2085 } 2086 } 2087 2088 OverloadCandidateSet::iterator Best; 2089 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2090 case OR_Success: 2091 // Record the standard conversion we used and the conversion function. 2092 if (CXXConstructorDecl *Constructor 2093 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2094 // C++ [over.ics.user]p1: 2095 // If the user-defined conversion is specified by a 2096 // constructor (12.3.1), the initial standard conversion 2097 // sequence converts the source type to the type required by 2098 // the argument of the constructor. 2099 // 2100 QualType ThisType = Constructor->getThisType(S.Context); 2101 if (Best->Conversions[0].isEllipsis()) 2102 User.EllipsisConversion = true; 2103 else { 2104 User.Before = Best->Conversions[0].Standard; 2105 User.EllipsisConversion = false; 2106 } 2107 User.ConversionFunction = Constructor; 2108 User.After.setAsIdentityConversion(); 2109 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2110 User.After.setAllToTypes(ToType); 2111 return OR_Success; 2112 } else if (CXXConversionDecl *Conversion 2113 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2114 // C++ [over.ics.user]p1: 2115 // 2116 // [...] If the user-defined conversion is specified by a 2117 // conversion function (12.3.2), the initial standard 2118 // conversion sequence converts the source type to the 2119 // implicit object parameter of the conversion function. 2120 User.Before = Best->Conversions[0].Standard; 2121 User.ConversionFunction = Conversion; 2122 User.EllipsisConversion = false; 2123 2124 // C++ [over.ics.user]p2: 2125 // The second standard conversion sequence converts the 2126 // result of the user-defined conversion to the target type 2127 // for the sequence. Since an implicit conversion sequence 2128 // is an initialization, the special rules for 2129 // initialization by user-defined conversion apply when 2130 // selecting the best user-defined conversion for a 2131 // user-defined conversion sequence (see 13.3.3 and 2132 // 13.3.3.1). 2133 User.After = Best->FinalConversion; 2134 return OR_Success; 2135 } else { 2136 llvm_unreachable("Not a constructor or conversion function?"); 2137 return OR_No_Viable_Function; 2138 } 2139 2140 case OR_No_Viable_Function: 2141 return OR_No_Viable_Function; 2142 case OR_Deleted: 2143 // No conversion here! We're done. 2144 return OR_Deleted; 2145 2146 case OR_Ambiguous: 2147 return OR_Ambiguous; 2148 } 2149 2150 return OR_No_Viable_Function; 2151} 2152 2153bool 2154Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2155 ImplicitConversionSequence ICS; 2156 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2157 OverloadingResult OvResult = 2158 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2159 CandidateSet, false); 2160 if (OvResult == OR_Ambiguous) 2161 Diag(From->getSourceRange().getBegin(), 2162 diag::err_typecheck_ambiguous_condition) 2163 << From->getType() << ToType << From->getSourceRange(); 2164 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2165 Diag(From->getSourceRange().getBegin(), 2166 diag::err_typecheck_nonviable_condition) 2167 << From->getType() << ToType << From->getSourceRange(); 2168 else 2169 return false; 2170 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2171 return true; 2172} 2173 2174/// CompareImplicitConversionSequences - Compare two implicit 2175/// conversion sequences to determine whether one is better than the 2176/// other or if they are indistinguishable (C++ 13.3.3.2). 2177static ImplicitConversionSequence::CompareKind 2178CompareImplicitConversionSequences(Sema &S, 2179 const ImplicitConversionSequence& ICS1, 2180 const ImplicitConversionSequence& ICS2) 2181{ 2182 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2183 // conversion sequences (as defined in 13.3.3.1) 2184 // -- a standard conversion sequence (13.3.3.1.1) is a better 2185 // conversion sequence than a user-defined conversion sequence or 2186 // an ellipsis conversion sequence, and 2187 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2188 // conversion sequence than an ellipsis conversion sequence 2189 // (13.3.3.1.3). 2190 // 2191 // C++0x [over.best.ics]p10: 2192 // For the purpose of ranking implicit conversion sequences as 2193 // described in 13.3.3.2, the ambiguous conversion sequence is 2194 // treated as a user-defined sequence that is indistinguishable 2195 // from any other user-defined conversion sequence. 2196 if (ICS1.getKindRank() < ICS2.getKindRank()) 2197 return ImplicitConversionSequence::Better; 2198 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2199 return ImplicitConversionSequence::Worse; 2200 2201 // The following checks require both conversion sequences to be of 2202 // the same kind. 2203 if (ICS1.getKind() != ICS2.getKind()) 2204 return ImplicitConversionSequence::Indistinguishable; 2205 2206 // Two implicit conversion sequences of the same form are 2207 // indistinguishable conversion sequences unless one of the 2208 // following rules apply: (C++ 13.3.3.2p3): 2209 if (ICS1.isStandard()) 2210 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2211 else if (ICS1.isUserDefined()) { 2212 // User-defined conversion sequence U1 is a better conversion 2213 // sequence than another user-defined conversion sequence U2 if 2214 // they contain the same user-defined conversion function or 2215 // constructor and if the second standard conversion sequence of 2216 // U1 is better than the second standard conversion sequence of 2217 // U2 (C++ 13.3.3.2p3). 2218 if (ICS1.UserDefined.ConversionFunction == 2219 ICS2.UserDefined.ConversionFunction) 2220 return CompareStandardConversionSequences(S, 2221 ICS1.UserDefined.After, 2222 ICS2.UserDefined.After); 2223 } 2224 2225 return ImplicitConversionSequence::Indistinguishable; 2226} 2227 2228static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2229 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2230 Qualifiers Quals; 2231 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2232 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2233 } 2234 2235 return Context.hasSameUnqualifiedType(T1, T2); 2236} 2237 2238// Per 13.3.3.2p3, compare the given standard conversion sequences to 2239// determine if one is a proper subset of the other. 2240static ImplicitConversionSequence::CompareKind 2241compareStandardConversionSubsets(ASTContext &Context, 2242 const StandardConversionSequence& SCS1, 2243 const StandardConversionSequence& SCS2) { 2244 ImplicitConversionSequence::CompareKind Result 2245 = ImplicitConversionSequence::Indistinguishable; 2246 2247 // the identity conversion sequence is considered to be a subsequence of 2248 // any non-identity conversion sequence 2249 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2250 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2251 return ImplicitConversionSequence::Better; 2252 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2253 return ImplicitConversionSequence::Worse; 2254 } 2255 2256 if (SCS1.Second != SCS2.Second) { 2257 if (SCS1.Second == ICK_Identity) 2258 Result = ImplicitConversionSequence::Better; 2259 else if (SCS2.Second == ICK_Identity) 2260 Result = ImplicitConversionSequence::Worse; 2261 else 2262 return ImplicitConversionSequence::Indistinguishable; 2263 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2264 return ImplicitConversionSequence::Indistinguishable; 2265 2266 if (SCS1.Third == SCS2.Third) { 2267 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2268 : ImplicitConversionSequence::Indistinguishable; 2269 } 2270 2271 if (SCS1.Third == ICK_Identity) 2272 return Result == ImplicitConversionSequence::Worse 2273 ? ImplicitConversionSequence::Indistinguishable 2274 : ImplicitConversionSequence::Better; 2275 2276 if (SCS2.Third == ICK_Identity) 2277 return Result == ImplicitConversionSequence::Better 2278 ? ImplicitConversionSequence::Indistinguishable 2279 : ImplicitConversionSequence::Worse; 2280 2281 return ImplicitConversionSequence::Indistinguishable; 2282} 2283 2284/// CompareStandardConversionSequences - Compare two standard 2285/// conversion sequences to determine whether one is better than the 2286/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2287static ImplicitConversionSequence::CompareKind 2288CompareStandardConversionSequences(Sema &S, 2289 const StandardConversionSequence& SCS1, 2290 const StandardConversionSequence& SCS2) 2291{ 2292 // Standard conversion sequence S1 is a better conversion sequence 2293 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2294 2295 // -- S1 is a proper subsequence of S2 (comparing the conversion 2296 // sequences in the canonical form defined by 13.3.3.1.1, 2297 // excluding any Lvalue Transformation; the identity conversion 2298 // sequence is considered to be a subsequence of any 2299 // non-identity conversion sequence) or, if not that, 2300 if (ImplicitConversionSequence::CompareKind CK 2301 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2302 return CK; 2303 2304 // -- the rank of S1 is better than the rank of S2 (by the rules 2305 // defined below), or, if not that, 2306 ImplicitConversionRank Rank1 = SCS1.getRank(); 2307 ImplicitConversionRank Rank2 = SCS2.getRank(); 2308 if (Rank1 < Rank2) 2309 return ImplicitConversionSequence::Better; 2310 else if (Rank2 < Rank1) 2311 return ImplicitConversionSequence::Worse; 2312 2313 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2314 // are indistinguishable unless one of the following rules 2315 // applies: 2316 2317 // A conversion that is not a conversion of a pointer, or 2318 // pointer to member, to bool is better than another conversion 2319 // that is such a conversion. 2320 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2321 return SCS2.isPointerConversionToBool() 2322 ? ImplicitConversionSequence::Better 2323 : ImplicitConversionSequence::Worse; 2324 2325 // C++ [over.ics.rank]p4b2: 2326 // 2327 // If class B is derived directly or indirectly from class A, 2328 // conversion of B* to A* is better than conversion of B* to 2329 // void*, and conversion of A* to void* is better than conversion 2330 // of B* to void*. 2331 bool SCS1ConvertsToVoid 2332 = SCS1.isPointerConversionToVoidPointer(S.Context); 2333 bool SCS2ConvertsToVoid 2334 = SCS2.isPointerConversionToVoidPointer(S.Context); 2335 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2336 // Exactly one of the conversion sequences is a conversion to 2337 // a void pointer; it's the worse conversion. 2338 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2339 : ImplicitConversionSequence::Worse; 2340 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2341 // Neither conversion sequence converts to a void pointer; compare 2342 // their derived-to-base conversions. 2343 if (ImplicitConversionSequence::CompareKind DerivedCK 2344 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2345 return DerivedCK; 2346 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2347 // Both conversion sequences are conversions to void 2348 // pointers. Compare the source types to determine if there's an 2349 // inheritance relationship in their sources. 2350 QualType FromType1 = SCS1.getFromType(); 2351 QualType FromType2 = SCS2.getFromType(); 2352 2353 // Adjust the types we're converting from via the array-to-pointer 2354 // conversion, if we need to. 2355 if (SCS1.First == ICK_Array_To_Pointer) 2356 FromType1 = S.Context.getArrayDecayedType(FromType1); 2357 if (SCS2.First == ICK_Array_To_Pointer) 2358 FromType2 = S.Context.getArrayDecayedType(FromType2); 2359 2360 QualType FromPointee1 2361 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2362 QualType FromPointee2 2363 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2364 2365 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2366 return ImplicitConversionSequence::Better; 2367 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2368 return ImplicitConversionSequence::Worse; 2369 2370 // Objective-C++: If one interface is more specific than the 2371 // other, it is the better one. 2372 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2373 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2374 if (FromIface1 && FromIface1) { 2375 if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2376 return ImplicitConversionSequence::Better; 2377 else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2378 return ImplicitConversionSequence::Worse; 2379 } 2380 } 2381 2382 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2383 // bullet 3). 2384 if (ImplicitConversionSequence::CompareKind QualCK 2385 = CompareQualificationConversions(S, SCS1, SCS2)) 2386 return QualCK; 2387 2388 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2389 // C++0x [over.ics.rank]p3b4: 2390 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2391 // implicit object parameter of a non-static member function declared 2392 // without a ref-qualifier, and S1 binds an rvalue reference to an 2393 // rvalue and S2 binds an lvalue reference. 2394 // FIXME: We don't know if we're dealing with the implicit object parameter, 2395 // or if the member function in this case has a ref qualifier. 2396 // (Of course, we don't have ref qualifiers yet.) 2397 if (SCS1.RRefBinding != SCS2.RRefBinding) 2398 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2399 : ImplicitConversionSequence::Worse; 2400 2401 // C++ [over.ics.rank]p3b4: 2402 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2403 // which the references refer are the same type except for 2404 // top-level cv-qualifiers, and the type to which the reference 2405 // initialized by S2 refers is more cv-qualified than the type 2406 // to which the reference initialized by S1 refers. 2407 QualType T1 = SCS1.getToType(2); 2408 QualType T2 = SCS2.getToType(2); 2409 T1 = S.Context.getCanonicalType(T1); 2410 T2 = S.Context.getCanonicalType(T2); 2411 Qualifiers T1Quals, T2Quals; 2412 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2413 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2414 if (UnqualT1 == UnqualT2) { 2415 // If the type is an array type, promote the element qualifiers to the type 2416 // for comparison. 2417 if (isa<ArrayType>(T1) && T1Quals) 2418 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2419 if (isa<ArrayType>(T2) && T2Quals) 2420 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2421 if (T2.isMoreQualifiedThan(T1)) 2422 return ImplicitConversionSequence::Better; 2423 else if (T1.isMoreQualifiedThan(T2)) 2424 return ImplicitConversionSequence::Worse; 2425 } 2426 } 2427 2428 return ImplicitConversionSequence::Indistinguishable; 2429} 2430 2431/// CompareQualificationConversions - Compares two standard conversion 2432/// sequences to determine whether they can be ranked based on their 2433/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2434ImplicitConversionSequence::CompareKind 2435CompareQualificationConversions(Sema &S, 2436 const StandardConversionSequence& SCS1, 2437 const StandardConversionSequence& SCS2) { 2438 // C++ 13.3.3.2p3: 2439 // -- S1 and S2 differ only in their qualification conversion and 2440 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2441 // cv-qualification signature of type T1 is a proper subset of 2442 // the cv-qualification signature of type T2, and S1 is not the 2443 // deprecated string literal array-to-pointer conversion (4.2). 2444 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2445 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2446 return ImplicitConversionSequence::Indistinguishable; 2447 2448 // FIXME: the example in the standard doesn't use a qualification 2449 // conversion (!) 2450 QualType T1 = SCS1.getToType(2); 2451 QualType T2 = SCS2.getToType(2); 2452 T1 = S.Context.getCanonicalType(T1); 2453 T2 = S.Context.getCanonicalType(T2); 2454 Qualifiers T1Quals, T2Quals; 2455 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2456 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2457 2458 // If the types are the same, we won't learn anything by unwrapped 2459 // them. 2460 if (UnqualT1 == UnqualT2) 2461 return ImplicitConversionSequence::Indistinguishable; 2462 2463 // If the type is an array type, promote the element qualifiers to the type 2464 // for comparison. 2465 if (isa<ArrayType>(T1) && T1Quals) 2466 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2467 if (isa<ArrayType>(T2) && T2Quals) 2468 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2469 2470 ImplicitConversionSequence::CompareKind Result 2471 = ImplicitConversionSequence::Indistinguishable; 2472 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2473 // Within each iteration of the loop, we check the qualifiers to 2474 // determine if this still looks like a qualification 2475 // conversion. Then, if all is well, we unwrap one more level of 2476 // pointers or pointers-to-members and do it all again 2477 // until there are no more pointers or pointers-to-members left 2478 // to unwrap. This essentially mimics what 2479 // IsQualificationConversion does, but here we're checking for a 2480 // strict subset of qualifiers. 2481 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2482 // The qualifiers are the same, so this doesn't tell us anything 2483 // about how the sequences rank. 2484 ; 2485 else if (T2.isMoreQualifiedThan(T1)) { 2486 // T1 has fewer qualifiers, so it could be the better sequence. 2487 if (Result == ImplicitConversionSequence::Worse) 2488 // Neither has qualifiers that are a subset of the other's 2489 // qualifiers. 2490 return ImplicitConversionSequence::Indistinguishable; 2491 2492 Result = ImplicitConversionSequence::Better; 2493 } else if (T1.isMoreQualifiedThan(T2)) { 2494 // T2 has fewer qualifiers, so it could be the better sequence. 2495 if (Result == ImplicitConversionSequence::Better) 2496 // Neither has qualifiers that are a subset of the other's 2497 // qualifiers. 2498 return ImplicitConversionSequence::Indistinguishable; 2499 2500 Result = ImplicitConversionSequence::Worse; 2501 } else { 2502 // Qualifiers are disjoint. 2503 return ImplicitConversionSequence::Indistinguishable; 2504 } 2505 2506 // If the types after this point are equivalent, we're done. 2507 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2508 break; 2509 } 2510 2511 // Check that the winning standard conversion sequence isn't using 2512 // the deprecated string literal array to pointer conversion. 2513 switch (Result) { 2514 case ImplicitConversionSequence::Better: 2515 if (SCS1.DeprecatedStringLiteralToCharPtr) 2516 Result = ImplicitConversionSequence::Indistinguishable; 2517 break; 2518 2519 case ImplicitConversionSequence::Indistinguishable: 2520 break; 2521 2522 case ImplicitConversionSequence::Worse: 2523 if (SCS2.DeprecatedStringLiteralToCharPtr) 2524 Result = ImplicitConversionSequence::Indistinguishable; 2525 break; 2526 } 2527 2528 return Result; 2529} 2530 2531/// CompareDerivedToBaseConversions - Compares two standard conversion 2532/// sequences to determine whether they can be ranked based on their 2533/// various kinds of derived-to-base conversions (C++ 2534/// [over.ics.rank]p4b3). As part of these checks, we also look at 2535/// conversions between Objective-C interface types. 2536ImplicitConversionSequence::CompareKind 2537CompareDerivedToBaseConversions(Sema &S, 2538 const StandardConversionSequence& SCS1, 2539 const StandardConversionSequence& SCS2) { 2540 QualType FromType1 = SCS1.getFromType(); 2541 QualType ToType1 = SCS1.getToType(1); 2542 QualType FromType2 = SCS2.getFromType(); 2543 QualType ToType2 = SCS2.getToType(1); 2544 2545 // Adjust the types we're converting from via the array-to-pointer 2546 // conversion, if we need to. 2547 if (SCS1.First == ICK_Array_To_Pointer) 2548 FromType1 = S.Context.getArrayDecayedType(FromType1); 2549 if (SCS2.First == ICK_Array_To_Pointer) 2550 FromType2 = S.Context.getArrayDecayedType(FromType2); 2551 2552 // Canonicalize all of the types. 2553 FromType1 = S.Context.getCanonicalType(FromType1); 2554 ToType1 = S.Context.getCanonicalType(ToType1); 2555 FromType2 = S.Context.getCanonicalType(FromType2); 2556 ToType2 = S.Context.getCanonicalType(ToType2); 2557 2558 // C++ [over.ics.rank]p4b3: 2559 // 2560 // If class B is derived directly or indirectly from class A and 2561 // class C is derived directly or indirectly from B, 2562 // 2563 // For Objective-C, we let A, B, and C also be Objective-C 2564 // interfaces. 2565 2566 // Compare based on pointer conversions. 2567 if (SCS1.Second == ICK_Pointer_Conversion && 2568 SCS2.Second == ICK_Pointer_Conversion && 2569 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2570 FromType1->isPointerType() && FromType2->isPointerType() && 2571 ToType1->isPointerType() && ToType2->isPointerType()) { 2572 QualType FromPointee1 2573 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2574 QualType ToPointee1 2575 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2576 QualType FromPointee2 2577 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2578 QualType ToPointee2 2579 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2580 2581 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2582 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2583 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2584 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2585 2586 // -- conversion of C* to B* is better than conversion of C* to A*, 2587 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2588 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2589 return ImplicitConversionSequence::Better; 2590 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2591 return ImplicitConversionSequence::Worse; 2592 2593 if (ToIface1 && ToIface2) { 2594 if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2595 return ImplicitConversionSequence::Better; 2596 else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2597 return ImplicitConversionSequence::Worse; 2598 } 2599 } 2600 2601 // -- conversion of B* to A* is better than conversion of C* to A*, 2602 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2603 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2604 return ImplicitConversionSequence::Better; 2605 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2606 return ImplicitConversionSequence::Worse; 2607 2608 if (FromIface1 && FromIface2) { 2609 if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2610 return ImplicitConversionSequence::Better; 2611 else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2612 return ImplicitConversionSequence::Worse; 2613 } 2614 } 2615 } 2616 2617 // Ranking of member-pointer types. 2618 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2619 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2620 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2621 const MemberPointerType * FromMemPointer1 = 2622 FromType1->getAs<MemberPointerType>(); 2623 const MemberPointerType * ToMemPointer1 = 2624 ToType1->getAs<MemberPointerType>(); 2625 const MemberPointerType * FromMemPointer2 = 2626 FromType2->getAs<MemberPointerType>(); 2627 const MemberPointerType * ToMemPointer2 = 2628 ToType2->getAs<MemberPointerType>(); 2629 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2630 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2631 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2632 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2633 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2634 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2635 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2636 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2637 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2638 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2639 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2640 return ImplicitConversionSequence::Worse; 2641 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2642 return ImplicitConversionSequence::Better; 2643 } 2644 // conversion of B::* to C::* is better than conversion of A::* to C::* 2645 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2646 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2647 return ImplicitConversionSequence::Better; 2648 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2649 return ImplicitConversionSequence::Worse; 2650 } 2651 } 2652 2653 if (SCS1.Second == ICK_Derived_To_Base) { 2654 // -- conversion of C to B is better than conversion of C to A, 2655 // -- binding of an expression of type C to a reference of type 2656 // B& is better than binding an expression of type C to a 2657 // reference of type A&, 2658 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2659 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2660 if (S.IsDerivedFrom(ToType1, ToType2)) 2661 return ImplicitConversionSequence::Better; 2662 else if (S.IsDerivedFrom(ToType2, ToType1)) 2663 return ImplicitConversionSequence::Worse; 2664 } 2665 2666 // -- conversion of B to A is better than conversion of C to A. 2667 // -- binding of an expression of type B to a reference of type 2668 // A& is better than binding an expression of type C to a 2669 // reference of type A&, 2670 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2671 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2672 if (S.IsDerivedFrom(FromType2, FromType1)) 2673 return ImplicitConversionSequence::Better; 2674 else if (S.IsDerivedFrom(FromType1, FromType2)) 2675 return ImplicitConversionSequence::Worse; 2676 } 2677 } 2678 2679 return ImplicitConversionSequence::Indistinguishable; 2680} 2681 2682/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2683/// determine whether they are reference-related, 2684/// reference-compatible, reference-compatible with added 2685/// qualification, or incompatible, for use in C++ initialization by 2686/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2687/// type, and the first type (T1) is the pointee type of the reference 2688/// type being initialized. 2689Sema::ReferenceCompareResult 2690Sema::CompareReferenceRelationship(SourceLocation Loc, 2691 QualType OrigT1, QualType OrigT2, 2692 bool &DerivedToBase, 2693 bool &ObjCConversion) { 2694 assert(!OrigT1->isReferenceType() && 2695 "T1 must be the pointee type of the reference type"); 2696 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2697 2698 QualType T1 = Context.getCanonicalType(OrigT1); 2699 QualType T2 = Context.getCanonicalType(OrigT2); 2700 Qualifiers T1Quals, T2Quals; 2701 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2702 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2703 2704 // C++ [dcl.init.ref]p4: 2705 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2706 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2707 // T1 is a base class of T2. 2708 DerivedToBase = false; 2709 ObjCConversion = false; 2710 if (UnqualT1 == UnqualT2) { 2711 // Nothing to do. 2712 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2713 IsDerivedFrom(UnqualT2, UnqualT1)) 2714 DerivedToBase = true; 2715 else if (UnqualT1->isObjCObjectOrInterfaceType() && 2716 UnqualT2->isObjCObjectOrInterfaceType() && 2717 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 2718 ObjCConversion = true; 2719 else 2720 return Ref_Incompatible; 2721 2722 // At this point, we know that T1 and T2 are reference-related (at 2723 // least). 2724 2725 // If the type is an array type, promote the element qualifiers to the type 2726 // for comparison. 2727 if (isa<ArrayType>(T1) && T1Quals) 2728 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2729 if (isa<ArrayType>(T2) && T2Quals) 2730 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2731 2732 // C++ [dcl.init.ref]p4: 2733 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2734 // reference-related to T2 and cv1 is the same cv-qualification 2735 // as, or greater cv-qualification than, cv2. For purposes of 2736 // overload resolution, cases for which cv1 is greater 2737 // cv-qualification than cv2 are identified as 2738 // reference-compatible with added qualification (see 13.3.3.2). 2739 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2740 return Ref_Compatible; 2741 else if (T1.isMoreQualifiedThan(T2)) 2742 return Ref_Compatible_With_Added_Qualification; 2743 else 2744 return Ref_Related; 2745} 2746 2747/// \brief Look for a user-defined conversion to an value reference-compatible 2748/// with DeclType. Return true if something definite is found. 2749static bool 2750FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 2751 QualType DeclType, SourceLocation DeclLoc, 2752 Expr *Init, QualType T2, bool AllowRvalues, 2753 bool AllowExplicit) { 2754 assert(T2->isRecordType() && "Can only find conversions of record types."); 2755 CXXRecordDecl *T2RecordDecl 2756 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2757 2758 QualType ToType 2759 = AllowRvalues? DeclType->getAs<ReferenceType>()->getPointeeType() 2760 : DeclType; 2761 2762 OverloadCandidateSet CandidateSet(DeclLoc); 2763 const UnresolvedSetImpl *Conversions 2764 = T2RecordDecl->getVisibleConversionFunctions(); 2765 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2766 E = Conversions->end(); I != E; ++I) { 2767 NamedDecl *D = *I; 2768 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2769 if (isa<UsingShadowDecl>(D)) 2770 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2771 2772 FunctionTemplateDecl *ConvTemplate 2773 = dyn_cast<FunctionTemplateDecl>(D); 2774 CXXConversionDecl *Conv; 2775 if (ConvTemplate) 2776 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2777 else 2778 Conv = cast<CXXConversionDecl>(D); 2779 2780 // If this is an explicit conversion, and we're not allowed to consider 2781 // explicit conversions, skip it. 2782 if (!AllowExplicit && Conv->isExplicit()) 2783 continue; 2784 2785 if (AllowRvalues) { 2786 bool DerivedToBase = false; 2787 bool ObjCConversion = false; 2788 if (!ConvTemplate && 2789 S.CompareReferenceRelationship(DeclLoc, 2790 Conv->getConversionType().getNonReferenceType().getUnqualifiedType(), 2791 DeclType.getNonReferenceType().getUnqualifiedType(), 2792 DerivedToBase, ObjCConversion) 2793 == Sema::Ref_Incompatible) 2794 continue; 2795 } else { 2796 // If the conversion function doesn't return a reference type, 2797 // it can't be considered for this conversion. An rvalue reference 2798 // is only acceptable if its referencee is a function type. 2799 2800 const ReferenceType *RefType = 2801 Conv->getConversionType()->getAs<ReferenceType>(); 2802 if (!RefType || 2803 (!RefType->isLValueReferenceType() && 2804 !RefType->getPointeeType()->isFunctionType())) 2805 continue; 2806 } 2807 2808 if (ConvTemplate) 2809 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2810 Init, ToType, CandidateSet); 2811 else 2812 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2813 ToType, CandidateSet); 2814 } 2815 2816 OverloadCandidateSet::iterator Best; 2817 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 2818 case OR_Success: 2819 // C++ [over.ics.ref]p1: 2820 // 2821 // [...] If the parameter binds directly to the result of 2822 // applying a conversion function to the argument 2823 // expression, the implicit conversion sequence is a 2824 // user-defined conversion sequence (13.3.3.1.2), with the 2825 // second standard conversion sequence either an identity 2826 // conversion or, if the conversion function returns an 2827 // entity of a type that is a derived class of the parameter 2828 // type, a derived-to-base Conversion. 2829 if (!Best->FinalConversion.DirectBinding) 2830 return false; 2831 2832 ICS.setUserDefined(); 2833 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2834 ICS.UserDefined.After = Best->FinalConversion; 2835 ICS.UserDefined.ConversionFunction = Best->Function; 2836 ICS.UserDefined.EllipsisConversion = false; 2837 assert(ICS.UserDefined.After.ReferenceBinding && 2838 ICS.UserDefined.After.DirectBinding && 2839 "Expected a direct reference binding!"); 2840 return true; 2841 2842 case OR_Ambiguous: 2843 ICS.setAmbiguous(); 2844 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2845 Cand != CandidateSet.end(); ++Cand) 2846 if (Cand->Viable) 2847 ICS.Ambiguous.addConversion(Cand->Function); 2848 return true; 2849 2850 case OR_No_Viable_Function: 2851 case OR_Deleted: 2852 // There was no suitable conversion, or we found a deleted 2853 // conversion; continue with other checks. 2854 return false; 2855 } 2856 2857 return false; 2858} 2859 2860/// \brief Compute an implicit conversion sequence for reference 2861/// initialization. 2862static ImplicitConversionSequence 2863TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2864 SourceLocation DeclLoc, 2865 bool SuppressUserConversions, 2866 bool AllowExplicit) { 2867 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2868 2869 // Most paths end in a failed conversion. 2870 ImplicitConversionSequence ICS; 2871 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2872 2873 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2874 QualType T2 = Init->getType(); 2875 2876 // If the initializer is the address of an overloaded function, try 2877 // to resolve the overloaded function. If all goes well, T2 is the 2878 // type of the resulting function. 2879 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2880 DeclAccessPair Found; 2881 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2882 false, Found)) 2883 T2 = Fn->getType(); 2884 } 2885 2886 // Compute some basic properties of the types and the initializer. 2887 bool isRValRef = DeclType->isRValueReferenceType(); 2888 bool DerivedToBase = false; 2889 bool ObjCConversion = false; 2890 Expr::Classification InitCategory = Init->Classify(S.Context); 2891 Sema::ReferenceCompareResult RefRelationship 2892 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 2893 ObjCConversion); 2894 2895 2896 // C++0x [dcl.init.ref]p5: 2897 // A reference to type "cv1 T1" is initialized by an expression 2898 // of type "cv2 T2" as follows: 2899 2900 // -- If reference is an lvalue reference and the initializer expression 2901 // The next bullet point (T1 is a function) is pretty much equivalent to this 2902 // one, so it's handled here. 2903 if (!isRValRef || T1->isFunctionType()) { 2904 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2905 // reference-compatible with "cv2 T2," or 2906 // 2907 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2908 if (InitCategory.isLValue() && 2909 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2910 // C++ [over.ics.ref]p1: 2911 // When a parameter of reference type binds directly (8.5.3) 2912 // to an argument expression, the implicit conversion sequence 2913 // is the identity conversion, unless the argument expression 2914 // has a type that is a derived class of the parameter type, 2915 // in which case the implicit conversion sequence is a 2916 // derived-to-base Conversion (13.3.3.1). 2917 ICS.setStandard(); 2918 ICS.Standard.First = ICK_Identity; 2919 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 2920 : ObjCConversion? ICK_Compatible_Conversion 2921 : ICK_Identity; 2922 ICS.Standard.Third = ICK_Identity; 2923 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2924 ICS.Standard.setToType(0, T2); 2925 ICS.Standard.setToType(1, T1); 2926 ICS.Standard.setToType(2, T1); 2927 ICS.Standard.ReferenceBinding = true; 2928 ICS.Standard.DirectBinding = true; 2929 ICS.Standard.RRefBinding = isRValRef; 2930 ICS.Standard.CopyConstructor = 0; 2931 2932 // Nothing more to do: the inaccessibility/ambiguity check for 2933 // derived-to-base conversions is suppressed when we're 2934 // computing the implicit conversion sequence (C++ 2935 // [over.best.ics]p2). 2936 return ICS; 2937 } 2938 2939 // -- has a class type (i.e., T2 is a class type), where T1 is 2940 // not reference-related to T2, and can be implicitly 2941 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2942 // is reference-compatible with "cv3 T3" 92) (this 2943 // conversion is selected by enumerating the applicable 2944 // conversion functions (13.3.1.6) and choosing the best 2945 // one through overload resolution (13.3)), 2946 if (!SuppressUserConversions && T2->isRecordType() && 2947 !S.RequireCompleteType(DeclLoc, T2, 0) && 2948 RefRelationship == Sema::Ref_Incompatible) { 2949 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 2950 Init, T2, /*AllowRvalues=*/false, 2951 AllowExplicit)) 2952 return ICS; 2953 } 2954 } 2955 2956 // -- Otherwise, the reference shall be an lvalue reference to a 2957 // non-volatile const type (i.e., cv1 shall be const), or the reference 2958 // shall be an rvalue reference and the initializer expression shall be 2959 // an rvalue or have a function type. 2960 // 2961 // We actually handle one oddity of C++ [over.ics.ref] at this 2962 // point, which is that, due to p2 (which short-circuits reference 2963 // binding by only attempting a simple conversion for non-direct 2964 // bindings) and p3's strange wording, we allow a const volatile 2965 // reference to bind to an rvalue. Hence the check for the presence 2966 // of "const" rather than checking for "const" being the only 2967 // qualifier. 2968 // This is also the point where rvalue references and lvalue inits no longer 2969 // go together. 2970 if ((!isRValRef && !T1.isConstQualified()) || 2971 (isRValRef && InitCategory.isLValue())) 2972 return ICS; 2973 2974 // -- If T1 is a function type, then 2975 // -- if T2 is the same type as T1, the reference is bound to the 2976 // initializer expression lvalue; 2977 // -- if T2 is a class type and the initializer expression can be 2978 // implicitly converted to an lvalue of type T1 [...], the 2979 // reference is bound to the function lvalue that is the result 2980 // of the conversion; 2981 // This is the same as for the lvalue case above, so it was handled there. 2982 // -- otherwise, the program is ill-formed. 2983 // This is the one difference to the lvalue case. 2984 if (T1->isFunctionType()) 2985 return ICS; 2986 2987 // -- Otherwise, if T2 is a class type and 2988 // -- the initializer expression is an rvalue and "cv1 T1" 2989 // is reference-compatible with "cv2 T2," or 2990 // 2991 // -- T1 is not reference-related to T2 and the initializer 2992 // expression can be implicitly converted to an rvalue 2993 // of type "cv3 T3" (this conversion is selected by 2994 // enumerating the applicable conversion functions 2995 // (13.3.1.6) and choosing the best one through overload 2996 // resolution (13.3)), 2997 // 2998 // then the reference is bound to the initializer 2999 // expression rvalue in the first case and to the object 3000 // that is the result of the conversion in the second case 3001 // (or, in either case, to the appropriate base class 3002 // subobject of the object). 3003 if (T2->isRecordType()) { 3004 // First case: "cv1 T1" is reference-compatible with "cv2 T2". This is a 3005 // direct binding in C++0x but not in C++03. 3006 if (InitCategory.isRValue() && 3007 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3008 ICS.setStandard(); 3009 ICS.Standard.First = ICK_Identity; 3010 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3011 : ObjCConversion? ICK_Compatible_Conversion 3012 : ICK_Identity; 3013 ICS.Standard.Third = ICK_Identity; 3014 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3015 ICS.Standard.setToType(0, T2); 3016 ICS.Standard.setToType(1, T1); 3017 ICS.Standard.setToType(2, T1); 3018 ICS.Standard.ReferenceBinding = true; 3019 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 3020 ICS.Standard.RRefBinding = isRValRef; 3021 ICS.Standard.CopyConstructor = 0; 3022 return ICS; 3023 } 3024 3025 // Second case: not reference-related. 3026 if (RefRelationship == Sema::Ref_Incompatible && 3027 !S.RequireCompleteType(DeclLoc, T2, 0) && 3028 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3029 Init, T2, /*AllowRvalues=*/true, 3030 AllowExplicit)) 3031 return ICS; 3032 } 3033 3034 // -- Otherwise, a temporary of type "cv1 T1" is created and 3035 // initialized from the initializer expression using the 3036 // rules for a non-reference copy initialization (8.5). The 3037 // reference is then bound to the temporary. If T1 is 3038 // reference-related to T2, cv1 must be the same 3039 // cv-qualification as, or greater cv-qualification than, 3040 // cv2; otherwise, the program is ill-formed. 3041 if (RefRelationship == Sema::Ref_Related) { 3042 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3043 // we would be reference-compatible or reference-compatible with 3044 // added qualification. But that wasn't the case, so the reference 3045 // initialization fails. 3046 return ICS; 3047 } 3048 3049 // If at least one of the types is a class type, the types are not 3050 // related, and we aren't allowed any user conversions, the 3051 // reference binding fails. This case is important for breaking 3052 // recursion, since TryImplicitConversion below will attempt to 3053 // create a temporary through the use of a copy constructor. 3054 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3055 (T1->isRecordType() || T2->isRecordType())) 3056 return ICS; 3057 3058 // C++ [over.ics.ref]p2: 3059 // When a parameter of reference type is not bound directly to 3060 // an argument expression, the conversion sequence is the one 3061 // required to convert the argument expression to the 3062 // underlying type of the reference according to 3063 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3064 // to copy-initializing a temporary of the underlying type with 3065 // the argument expression. Any difference in top-level 3066 // cv-qualification is subsumed by the initialization itself 3067 // and does not constitute a conversion. 3068 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3069 /*AllowExplicit=*/false, 3070 /*InOverloadResolution=*/false); 3071 3072 // Of course, that's still a reference binding. 3073 if (ICS.isStandard()) { 3074 ICS.Standard.ReferenceBinding = true; 3075 ICS.Standard.RRefBinding = isRValRef; 3076 } else if (ICS.isUserDefined()) { 3077 ICS.UserDefined.After.ReferenceBinding = true; 3078 ICS.UserDefined.After.RRefBinding = isRValRef; 3079 } 3080 return ICS; 3081} 3082 3083/// TryCopyInitialization - Try to copy-initialize a value of type 3084/// ToType from the expression From. Return the implicit conversion 3085/// sequence required to pass this argument, which may be a bad 3086/// conversion sequence (meaning that the argument cannot be passed to 3087/// a parameter of this type). If @p SuppressUserConversions, then we 3088/// do not permit any user-defined conversion sequences. 3089static ImplicitConversionSequence 3090TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3091 bool SuppressUserConversions, 3092 bool InOverloadResolution) { 3093 if (ToType->isReferenceType()) 3094 return TryReferenceInit(S, From, ToType, 3095 /*FIXME:*/From->getLocStart(), 3096 SuppressUserConversions, 3097 /*AllowExplicit=*/false); 3098 3099 return TryImplicitConversion(S, From, ToType, 3100 SuppressUserConversions, 3101 /*AllowExplicit=*/false, 3102 InOverloadResolution); 3103} 3104 3105/// TryObjectArgumentInitialization - Try to initialize the object 3106/// parameter of the given member function (@c Method) from the 3107/// expression @p From. 3108static ImplicitConversionSequence 3109TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3110 CXXMethodDecl *Method, 3111 CXXRecordDecl *ActingContext) { 3112 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3113 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3114 // const volatile object. 3115 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3116 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3117 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3118 3119 // Set up the conversion sequence as a "bad" conversion, to allow us 3120 // to exit early. 3121 ImplicitConversionSequence ICS; 3122 3123 // We need to have an object of class type. 3124 QualType FromType = OrigFromType; 3125 if (const PointerType *PT = FromType->getAs<PointerType>()) 3126 FromType = PT->getPointeeType(); 3127 3128 assert(FromType->isRecordType()); 3129 3130 // The implicit object parameter is has the type "reference to cv X", 3131 // where X is the class of which the function is a member 3132 // (C++ [over.match.funcs]p4). However, when finding an implicit 3133 // conversion sequence for the argument, we are not allowed to 3134 // create temporaries or perform user-defined conversions 3135 // (C++ [over.match.funcs]p5). We perform a simplified version of 3136 // reference binding here, that allows class rvalues to bind to 3137 // non-constant references. 3138 3139 // First check the qualifiers. We don't care about lvalue-vs-rvalue 3140 // with the implicit object parameter (C++ [over.match.funcs]p5). 3141 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3142 if (ImplicitParamType.getCVRQualifiers() 3143 != FromTypeCanon.getLocalCVRQualifiers() && 3144 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3145 ICS.setBad(BadConversionSequence::bad_qualifiers, 3146 OrigFromType, ImplicitParamType); 3147 return ICS; 3148 } 3149 3150 // Check that we have either the same type or a derived type. It 3151 // affects the conversion rank. 3152 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3153 ImplicitConversionKind SecondKind; 3154 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3155 SecondKind = ICK_Identity; 3156 } else if (S.IsDerivedFrom(FromType, ClassType)) 3157 SecondKind = ICK_Derived_To_Base; 3158 else { 3159 ICS.setBad(BadConversionSequence::unrelated_class, 3160 FromType, ImplicitParamType); 3161 return ICS; 3162 } 3163 3164 // Success. Mark this as a reference binding. 3165 ICS.setStandard(); 3166 ICS.Standard.setAsIdentityConversion(); 3167 ICS.Standard.Second = SecondKind; 3168 ICS.Standard.setFromType(FromType); 3169 ICS.Standard.setAllToTypes(ImplicitParamType); 3170 ICS.Standard.ReferenceBinding = true; 3171 ICS.Standard.DirectBinding = true; 3172 ICS.Standard.RRefBinding = false; 3173 return ICS; 3174} 3175 3176/// PerformObjectArgumentInitialization - Perform initialization of 3177/// the implicit object parameter for the given Method with the given 3178/// expression. 3179bool 3180Sema::PerformObjectArgumentInitialization(Expr *&From, 3181 NestedNameSpecifier *Qualifier, 3182 NamedDecl *FoundDecl, 3183 CXXMethodDecl *Method) { 3184 QualType FromRecordType, DestType; 3185 QualType ImplicitParamRecordType = 3186 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3187 3188 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3189 FromRecordType = PT->getPointeeType(); 3190 DestType = Method->getThisType(Context); 3191 } else { 3192 FromRecordType = From->getType(); 3193 DestType = ImplicitParamRecordType; 3194 } 3195 3196 // Note that we always use the true parent context when performing 3197 // the actual argument initialization. 3198 ImplicitConversionSequence ICS 3199 = TryObjectArgumentInitialization(*this, From->getType(), Method, 3200 Method->getParent()); 3201 if (ICS.isBad()) { 3202 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 3203 Qualifiers FromQs = FromRecordType.getQualifiers(); 3204 Qualifiers ToQs = DestType.getQualifiers(); 3205 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 3206 if (CVR) { 3207 Diag(From->getSourceRange().getBegin(), 3208 diag::err_member_function_call_bad_cvr) 3209 << Method->getDeclName() << FromRecordType << (CVR - 1) 3210 << From->getSourceRange(); 3211 Diag(Method->getLocation(), diag::note_previous_decl) 3212 << Method->getDeclName(); 3213 return true; 3214 } 3215 } 3216 3217 return Diag(From->getSourceRange().getBegin(), 3218 diag::err_implicit_object_parameter_init) 3219 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3220 } 3221 3222 if (ICS.Standard.Second == ICK_Derived_To_Base) 3223 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3224 3225 if (!Context.hasSameType(From->getType(), DestType)) 3226 ImpCastExprToType(From, DestType, CK_NoOp, 3227 From->getType()->isPointerType() ? VK_RValue : VK_LValue); 3228 return false; 3229} 3230 3231/// TryContextuallyConvertToBool - Attempt to contextually convert the 3232/// expression From to bool (C++0x [conv]p3). 3233static ImplicitConversionSequence 3234TryContextuallyConvertToBool(Sema &S, Expr *From) { 3235 // FIXME: This is pretty broken. 3236 return TryImplicitConversion(S, From, S.Context.BoolTy, 3237 // FIXME: Are these flags correct? 3238 /*SuppressUserConversions=*/false, 3239 /*AllowExplicit=*/true, 3240 /*InOverloadResolution=*/false); 3241} 3242 3243/// PerformContextuallyConvertToBool - Perform a contextual conversion 3244/// of the expression From to bool (C++0x [conv]p3). 3245bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3246 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3247 if (!ICS.isBad()) 3248 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3249 3250 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3251 return Diag(From->getSourceRange().getBegin(), 3252 diag::err_typecheck_bool_condition) 3253 << From->getType() << From->getSourceRange(); 3254 return true; 3255} 3256 3257/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3258/// expression From to 'id'. 3259static ImplicitConversionSequence 3260TryContextuallyConvertToObjCId(Sema &S, Expr *From) { 3261 QualType Ty = S.Context.getObjCIdType(); 3262 return TryImplicitConversion(S, From, Ty, 3263 // FIXME: Are these flags correct? 3264 /*SuppressUserConversions=*/false, 3265 /*AllowExplicit=*/true, 3266 /*InOverloadResolution=*/false); 3267} 3268 3269/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3270/// of the expression From to 'id'. 3271bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3272 QualType Ty = Context.getObjCIdType(); 3273 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); 3274 if (!ICS.isBad()) 3275 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3276 return true; 3277} 3278 3279/// \brief Attempt to convert the given expression to an integral or 3280/// enumeration type. 3281/// 3282/// This routine will attempt to convert an expression of class type to an 3283/// integral or enumeration type, if that class type only has a single 3284/// conversion to an integral or enumeration type. 3285/// 3286/// \param Loc The source location of the construct that requires the 3287/// conversion. 3288/// 3289/// \param FromE The expression we're converting from. 3290/// 3291/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3292/// have integral or enumeration type. 3293/// 3294/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3295/// incomplete class type. 3296/// 3297/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3298/// explicit conversion function (because no implicit conversion functions 3299/// were available). This is a recovery mode. 3300/// 3301/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3302/// showing which conversion was picked. 3303/// 3304/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3305/// conversion function that could convert to integral or enumeration type. 3306/// 3307/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3308/// usable conversion function. 3309/// 3310/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3311/// function, which may be an extension in this case. 3312/// 3313/// \returns The expression, converted to an integral or enumeration type if 3314/// successful. 3315ExprResult 3316Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3317 const PartialDiagnostic &NotIntDiag, 3318 const PartialDiagnostic &IncompleteDiag, 3319 const PartialDiagnostic &ExplicitConvDiag, 3320 const PartialDiagnostic &ExplicitConvNote, 3321 const PartialDiagnostic &AmbigDiag, 3322 const PartialDiagnostic &AmbigNote, 3323 const PartialDiagnostic &ConvDiag) { 3324 // We can't perform any more checking for type-dependent expressions. 3325 if (From->isTypeDependent()) 3326 return Owned(From); 3327 3328 // If the expression already has integral or enumeration type, we're golden. 3329 QualType T = From->getType(); 3330 if (T->isIntegralOrEnumerationType()) 3331 return Owned(From); 3332 3333 // FIXME: Check for missing '()' if T is a function type? 3334 3335 // If we don't have a class type in C++, there's no way we can get an 3336 // expression of integral or enumeration type. 3337 const RecordType *RecordTy = T->getAs<RecordType>(); 3338 if (!RecordTy || !getLangOptions().CPlusPlus) { 3339 Diag(Loc, NotIntDiag) 3340 << T << From->getSourceRange(); 3341 return Owned(From); 3342 } 3343 3344 // We must have a complete class type. 3345 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3346 return Owned(From); 3347 3348 // Look for a conversion to an integral or enumeration type. 3349 UnresolvedSet<4> ViableConversions; 3350 UnresolvedSet<4> ExplicitConversions; 3351 const UnresolvedSetImpl *Conversions 3352 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3353 3354 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3355 E = Conversions->end(); 3356 I != E; 3357 ++I) { 3358 if (CXXConversionDecl *Conversion 3359 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3360 if (Conversion->getConversionType().getNonReferenceType() 3361 ->isIntegralOrEnumerationType()) { 3362 if (Conversion->isExplicit()) 3363 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3364 else 3365 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3366 } 3367 } 3368 3369 switch (ViableConversions.size()) { 3370 case 0: 3371 if (ExplicitConversions.size() == 1) { 3372 DeclAccessPair Found = ExplicitConversions[0]; 3373 CXXConversionDecl *Conversion 3374 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3375 3376 // The user probably meant to invoke the given explicit 3377 // conversion; use it. 3378 QualType ConvTy 3379 = Conversion->getConversionType().getNonReferenceType(); 3380 std::string TypeStr; 3381 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3382 3383 Diag(Loc, ExplicitConvDiag) 3384 << T << ConvTy 3385 << FixItHint::CreateInsertion(From->getLocStart(), 3386 "static_cast<" + TypeStr + ">(") 3387 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3388 ")"); 3389 Diag(Conversion->getLocation(), ExplicitConvNote) 3390 << ConvTy->isEnumeralType() << ConvTy; 3391 3392 // If we aren't in a SFINAE context, build a call to the 3393 // explicit conversion function. 3394 if (isSFINAEContext()) 3395 return ExprError(); 3396 3397 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3398 From = BuildCXXMemberCallExpr(From, Found, Conversion); 3399 } 3400 3401 // We'll complain below about a non-integral condition type. 3402 break; 3403 3404 case 1: { 3405 // Apply this conversion. 3406 DeclAccessPair Found = ViableConversions[0]; 3407 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3408 3409 CXXConversionDecl *Conversion 3410 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3411 QualType ConvTy 3412 = Conversion->getConversionType().getNonReferenceType(); 3413 if (ConvDiag.getDiagID()) { 3414 if (isSFINAEContext()) 3415 return ExprError(); 3416 3417 Diag(Loc, ConvDiag) 3418 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3419 } 3420 3421 From = BuildCXXMemberCallExpr(From, Found, 3422 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3423 break; 3424 } 3425 3426 default: 3427 Diag(Loc, AmbigDiag) 3428 << T << From->getSourceRange(); 3429 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3430 CXXConversionDecl *Conv 3431 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3432 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3433 Diag(Conv->getLocation(), AmbigNote) 3434 << ConvTy->isEnumeralType() << ConvTy; 3435 } 3436 return Owned(From); 3437 } 3438 3439 if (!From->getType()->isIntegralOrEnumerationType()) 3440 Diag(Loc, NotIntDiag) 3441 << From->getType() << From->getSourceRange(); 3442 3443 return Owned(From); 3444} 3445 3446/// AddOverloadCandidate - Adds the given function to the set of 3447/// candidate functions, using the given function call arguments. If 3448/// @p SuppressUserConversions, then don't allow user-defined 3449/// conversions via constructors or conversion operators. 3450/// 3451/// \para PartialOverloading true if we are performing "partial" overloading 3452/// based on an incomplete set of function arguments. This feature is used by 3453/// code completion. 3454void 3455Sema::AddOverloadCandidate(FunctionDecl *Function, 3456 DeclAccessPair FoundDecl, 3457 Expr **Args, unsigned NumArgs, 3458 OverloadCandidateSet& CandidateSet, 3459 bool SuppressUserConversions, 3460 bool PartialOverloading) { 3461 const FunctionProtoType* Proto 3462 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3463 assert(Proto && "Functions without a prototype cannot be overloaded"); 3464 assert(!Function->getDescribedFunctionTemplate() && 3465 "Use AddTemplateOverloadCandidate for function templates"); 3466 3467 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3468 if (!isa<CXXConstructorDecl>(Method)) { 3469 // If we get here, it's because we're calling a member function 3470 // that is named without a member access expression (e.g., 3471 // "this->f") that was either written explicitly or created 3472 // implicitly. This can happen with a qualified call to a member 3473 // function, e.g., X::f(). We use an empty type for the implied 3474 // object argument (C++ [over.call.func]p3), and the acting context 3475 // is irrelevant. 3476 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3477 QualType(), Args, NumArgs, CandidateSet, 3478 SuppressUserConversions); 3479 return; 3480 } 3481 // We treat a constructor like a non-member function, since its object 3482 // argument doesn't participate in overload resolution. 3483 } 3484 3485 if (!CandidateSet.isNewCandidate(Function)) 3486 return; 3487 3488 // Overload resolution is always an unevaluated context. 3489 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3490 3491 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3492 // C++ [class.copy]p3: 3493 // A member function template is never instantiated to perform the copy 3494 // of a class object to an object of its class type. 3495 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3496 if (NumArgs == 1 && 3497 Constructor->isSpecializationCopyingObject() && 3498 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3499 IsDerivedFrom(Args[0]->getType(), ClassType))) 3500 return; 3501 } 3502 3503 // Add this candidate 3504 CandidateSet.push_back(OverloadCandidate()); 3505 OverloadCandidate& Candidate = CandidateSet.back(); 3506 Candidate.FoundDecl = FoundDecl; 3507 Candidate.Function = Function; 3508 Candidate.Viable = true; 3509 Candidate.IsSurrogate = false; 3510 Candidate.IgnoreObjectArgument = false; 3511 3512 unsigned NumArgsInProto = Proto->getNumArgs(); 3513 3514 // (C++ 13.3.2p2): A candidate function having fewer than m 3515 // parameters is viable only if it has an ellipsis in its parameter 3516 // list (8.3.5). 3517 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3518 !Proto->isVariadic()) { 3519 Candidate.Viable = false; 3520 Candidate.FailureKind = ovl_fail_too_many_arguments; 3521 return; 3522 } 3523 3524 // (C++ 13.3.2p2): A candidate function having more than m parameters 3525 // is viable only if the (m+1)st parameter has a default argument 3526 // (8.3.6). For the purposes of overload resolution, the 3527 // parameter list is truncated on the right, so that there are 3528 // exactly m parameters. 3529 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3530 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3531 // Not enough arguments. 3532 Candidate.Viable = false; 3533 Candidate.FailureKind = ovl_fail_too_few_arguments; 3534 return; 3535 } 3536 3537 // Determine the implicit conversion sequences for each of the 3538 // arguments. 3539 Candidate.Conversions.resize(NumArgs); 3540 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3541 if (ArgIdx < NumArgsInProto) { 3542 // (C++ 13.3.2p3): for F to be a viable function, there shall 3543 // exist for each argument an implicit conversion sequence 3544 // (13.3.3.1) that converts that argument to the corresponding 3545 // parameter of F. 3546 QualType ParamType = Proto->getArgType(ArgIdx); 3547 Candidate.Conversions[ArgIdx] 3548 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3549 SuppressUserConversions, 3550 /*InOverloadResolution=*/true); 3551 if (Candidate.Conversions[ArgIdx].isBad()) { 3552 Candidate.Viable = false; 3553 Candidate.FailureKind = ovl_fail_bad_conversion; 3554 break; 3555 } 3556 } else { 3557 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3558 // argument for which there is no corresponding parameter is 3559 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3560 Candidate.Conversions[ArgIdx].setEllipsis(); 3561 } 3562 } 3563} 3564 3565/// \brief Add all of the function declarations in the given function set to 3566/// the overload canddiate set. 3567void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3568 Expr **Args, unsigned NumArgs, 3569 OverloadCandidateSet& CandidateSet, 3570 bool SuppressUserConversions) { 3571 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3572 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3573 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3574 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3575 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3576 cast<CXXMethodDecl>(FD)->getParent(), 3577 Args[0]->getType(), Args + 1, NumArgs - 1, 3578 CandidateSet, SuppressUserConversions); 3579 else 3580 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3581 SuppressUserConversions); 3582 } else { 3583 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3584 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3585 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3586 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3587 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3588 /*FIXME: explicit args */ 0, 3589 Args[0]->getType(), Args + 1, NumArgs - 1, 3590 CandidateSet, 3591 SuppressUserConversions); 3592 else 3593 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3594 /*FIXME: explicit args */ 0, 3595 Args, NumArgs, CandidateSet, 3596 SuppressUserConversions); 3597 } 3598 } 3599} 3600 3601/// AddMethodCandidate - Adds a named decl (which is some kind of 3602/// method) as a method candidate to the given overload set. 3603void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3604 QualType ObjectType, 3605 Expr **Args, unsigned NumArgs, 3606 OverloadCandidateSet& CandidateSet, 3607 bool SuppressUserConversions) { 3608 NamedDecl *Decl = FoundDecl.getDecl(); 3609 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3610 3611 if (isa<UsingShadowDecl>(Decl)) 3612 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3613 3614 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3615 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3616 "Expected a member function template"); 3617 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3618 /*ExplicitArgs*/ 0, 3619 ObjectType, Args, NumArgs, 3620 CandidateSet, 3621 SuppressUserConversions); 3622 } else { 3623 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3624 ObjectType, Args, NumArgs, 3625 CandidateSet, SuppressUserConversions); 3626 } 3627} 3628 3629/// AddMethodCandidate - Adds the given C++ member function to the set 3630/// of candidate functions, using the given function call arguments 3631/// and the object argument (@c Object). For example, in a call 3632/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3633/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3634/// allow user-defined conversions via constructors or conversion 3635/// operators. 3636void 3637Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3638 CXXRecordDecl *ActingContext, QualType ObjectType, 3639 Expr **Args, unsigned NumArgs, 3640 OverloadCandidateSet& CandidateSet, 3641 bool SuppressUserConversions) { 3642 const FunctionProtoType* Proto 3643 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3644 assert(Proto && "Methods without a prototype cannot be overloaded"); 3645 assert(!isa<CXXConstructorDecl>(Method) && 3646 "Use AddOverloadCandidate for constructors"); 3647 3648 if (!CandidateSet.isNewCandidate(Method)) 3649 return; 3650 3651 // Overload resolution is always an unevaluated context. 3652 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3653 3654 // Add this candidate 3655 CandidateSet.push_back(OverloadCandidate()); 3656 OverloadCandidate& Candidate = CandidateSet.back(); 3657 Candidate.FoundDecl = FoundDecl; 3658 Candidate.Function = Method; 3659 Candidate.IsSurrogate = false; 3660 Candidate.IgnoreObjectArgument = false; 3661 3662 unsigned NumArgsInProto = Proto->getNumArgs(); 3663 3664 // (C++ 13.3.2p2): A candidate function having fewer than m 3665 // parameters is viable only if it has an ellipsis in its parameter 3666 // list (8.3.5). 3667 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3668 Candidate.Viable = false; 3669 Candidate.FailureKind = ovl_fail_too_many_arguments; 3670 return; 3671 } 3672 3673 // (C++ 13.3.2p2): A candidate function having more than m parameters 3674 // is viable only if the (m+1)st parameter has a default argument 3675 // (8.3.6). For the purposes of overload resolution, the 3676 // parameter list is truncated on the right, so that there are 3677 // exactly m parameters. 3678 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3679 if (NumArgs < MinRequiredArgs) { 3680 // Not enough arguments. 3681 Candidate.Viable = false; 3682 Candidate.FailureKind = ovl_fail_too_few_arguments; 3683 return; 3684 } 3685 3686 Candidate.Viable = true; 3687 Candidate.Conversions.resize(NumArgs + 1); 3688 3689 if (Method->isStatic() || ObjectType.isNull()) 3690 // The implicit object argument is ignored. 3691 Candidate.IgnoreObjectArgument = true; 3692 else { 3693 // Determine the implicit conversion sequence for the object 3694 // parameter. 3695 Candidate.Conversions[0] 3696 = TryObjectArgumentInitialization(*this, ObjectType, Method, 3697 ActingContext); 3698 if (Candidate.Conversions[0].isBad()) { 3699 Candidate.Viable = false; 3700 Candidate.FailureKind = ovl_fail_bad_conversion; 3701 return; 3702 } 3703 } 3704 3705 // Determine the implicit conversion sequences for each of the 3706 // arguments. 3707 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3708 if (ArgIdx < NumArgsInProto) { 3709 // (C++ 13.3.2p3): for F to be a viable function, there shall 3710 // exist for each argument an implicit conversion sequence 3711 // (13.3.3.1) that converts that argument to the corresponding 3712 // parameter of F. 3713 QualType ParamType = Proto->getArgType(ArgIdx); 3714 Candidate.Conversions[ArgIdx + 1] 3715 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3716 SuppressUserConversions, 3717 /*InOverloadResolution=*/true); 3718 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3719 Candidate.Viable = false; 3720 Candidate.FailureKind = ovl_fail_bad_conversion; 3721 break; 3722 } 3723 } else { 3724 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3725 // argument for which there is no corresponding parameter is 3726 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3727 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3728 } 3729 } 3730} 3731 3732/// \brief Add a C++ member function template as a candidate to the candidate 3733/// set, using template argument deduction to produce an appropriate member 3734/// function template specialization. 3735void 3736Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3737 DeclAccessPair FoundDecl, 3738 CXXRecordDecl *ActingContext, 3739 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3740 QualType ObjectType, 3741 Expr **Args, unsigned NumArgs, 3742 OverloadCandidateSet& CandidateSet, 3743 bool SuppressUserConversions) { 3744 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3745 return; 3746 3747 // C++ [over.match.funcs]p7: 3748 // In each case where a candidate is a function template, candidate 3749 // function template specializations are generated using template argument 3750 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3751 // candidate functions in the usual way.113) A given name can refer to one 3752 // or more function templates and also to a set of overloaded non-template 3753 // functions. In such a case, the candidate functions generated from each 3754 // function template are combined with the set of non-template candidate 3755 // functions. 3756 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3757 FunctionDecl *Specialization = 0; 3758 if (TemplateDeductionResult Result 3759 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3760 Args, NumArgs, Specialization, Info)) { 3761 CandidateSet.push_back(OverloadCandidate()); 3762 OverloadCandidate &Candidate = CandidateSet.back(); 3763 Candidate.FoundDecl = FoundDecl; 3764 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3765 Candidate.Viable = false; 3766 Candidate.FailureKind = ovl_fail_bad_deduction; 3767 Candidate.IsSurrogate = false; 3768 Candidate.IgnoreObjectArgument = false; 3769 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3770 Info); 3771 return; 3772 } 3773 3774 // Add the function template specialization produced by template argument 3775 // deduction as a candidate. 3776 assert(Specialization && "Missing member function template specialization?"); 3777 assert(isa<CXXMethodDecl>(Specialization) && 3778 "Specialization is not a member function?"); 3779 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3780 ActingContext, ObjectType, Args, NumArgs, 3781 CandidateSet, SuppressUserConversions); 3782} 3783 3784/// \brief Add a C++ function template specialization as a candidate 3785/// in the candidate set, using template argument deduction to produce 3786/// an appropriate function template specialization. 3787void 3788Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3789 DeclAccessPair FoundDecl, 3790 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3791 Expr **Args, unsigned NumArgs, 3792 OverloadCandidateSet& CandidateSet, 3793 bool SuppressUserConversions) { 3794 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3795 return; 3796 3797 // C++ [over.match.funcs]p7: 3798 // In each case where a candidate is a function template, candidate 3799 // function template specializations are generated using template argument 3800 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3801 // candidate functions in the usual way.113) A given name can refer to one 3802 // or more function templates and also to a set of overloaded non-template 3803 // functions. In such a case, the candidate functions generated from each 3804 // function template are combined with the set of non-template candidate 3805 // functions. 3806 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3807 FunctionDecl *Specialization = 0; 3808 if (TemplateDeductionResult Result 3809 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3810 Args, NumArgs, Specialization, Info)) { 3811 CandidateSet.push_back(OverloadCandidate()); 3812 OverloadCandidate &Candidate = CandidateSet.back(); 3813 Candidate.FoundDecl = FoundDecl; 3814 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3815 Candidate.Viable = false; 3816 Candidate.FailureKind = ovl_fail_bad_deduction; 3817 Candidate.IsSurrogate = false; 3818 Candidate.IgnoreObjectArgument = false; 3819 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3820 Info); 3821 return; 3822 } 3823 3824 // Add the function template specialization produced by template argument 3825 // deduction as a candidate. 3826 assert(Specialization && "Missing function template specialization?"); 3827 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3828 SuppressUserConversions); 3829} 3830 3831/// AddConversionCandidate - Add a C++ conversion function as a 3832/// candidate in the candidate set (C++ [over.match.conv], 3833/// C++ [over.match.copy]). From is the expression we're converting from, 3834/// and ToType is the type that we're eventually trying to convert to 3835/// (which may or may not be the same type as the type that the 3836/// conversion function produces). 3837void 3838Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3839 DeclAccessPair FoundDecl, 3840 CXXRecordDecl *ActingContext, 3841 Expr *From, QualType ToType, 3842 OverloadCandidateSet& CandidateSet) { 3843 assert(!Conversion->getDescribedFunctionTemplate() && 3844 "Conversion function templates use AddTemplateConversionCandidate"); 3845 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3846 if (!CandidateSet.isNewCandidate(Conversion)) 3847 return; 3848 3849 // Overload resolution is always an unevaluated context. 3850 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3851 3852 // Add this candidate 3853 CandidateSet.push_back(OverloadCandidate()); 3854 OverloadCandidate& Candidate = CandidateSet.back(); 3855 Candidate.FoundDecl = FoundDecl; 3856 Candidate.Function = Conversion; 3857 Candidate.IsSurrogate = false; 3858 Candidate.IgnoreObjectArgument = false; 3859 Candidate.FinalConversion.setAsIdentityConversion(); 3860 Candidate.FinalConversion.setFromType(ConvType); 3861 Candidate.FinalConversion.setAllToTypes(ToType); 3862 Candidate.Viable = true; 3863 Candidate.Conversions.resize(1); 3864 3865 // C++ [over.match.funcs]p4: 3866 // For conversion functions, the function is considered to be a member of 3867 // the class of the implicit implied object argument for the purpose of 3868 // defining the type of the implicit object parameter. 3869 // 3870 // Determine the implicit conversion sequence for the implicit 3871 // object parameter. 3872 QualType ImplicitParamType = From->getType(); 3873 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 3874 ImplicitParamType = FromPtrType->getPointeeType(); 3875 CXXRecordDecl *ConversionContext 3876 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 3877 3878 Candidate.Conversions[0] 3879 = TryObjectArgumentInitialization(*this, From->getType(), Conversion, 3880 ConversionContext); 3881 3882 if (Candidate.Conversions[0].isBad()) { 3883 Candidate.Viable = false; 3884 Candidate.FailureKind = ovl_fail_bad_conversion; 3885 return; 3886 } 3887 3888 // We won't go through a user-define type conversion function to convert a 3889 // derived to base as such conversions are given Conversion Rank. They only 3890 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3891 QualType FromCanon 3892 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3893 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3894 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3895 Candidate.Viable = false; 3896 Candidate.FailureKind = ovl_fail_trivial_conversion; 3897 return; 3898 } 3899 3900 // To determine what the conversion from the result of calling the 3901 // conversion function to the type we're eventually trying to 3902 // convert to (ToType), we need to synthesize a call to the 3903 // conversion function and attempt copy initialization from it. This 3904 // makes sure that we get the right semantics with respect to 3905 // lvalues/rvalues and the type. Fortunately, we can allocate this 3906 // call on the stack and we don't need its arguments to be 3907 // well-formed. 3908 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3909 VK_LValue, From->getLocStart()); 3910 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 3911 Context.getPointerType(Conversion->getType()), 3912 CK_FunctionToPointerDecay, 3913 &ConversionRef, VK_RValue); 3914 3915 QualType CallResultType 3916 = Conversion->getConversionType().getNonLValueExprType(Context); 3917 if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) { 3918 Candidate.Viable = false; 3919 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3920 return; 3921 } 3922 3923 ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType()); 3924 3925 // Note that it is safe to allocate CallExpr on the stack here because 3926 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3927 // allocator). 3928 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 3929 From->getLocStart()); 3930 ImplicitConversionSequence ICS = 3931 TryCopyInitialization(*this, &Call, ToType, 3932 /*SuppressUserConversions=*/true, 3933 /*InOverloadResolution=*/false); 3934 3935 switch (ICS.getKind()) { 3936 case ImplicitConversionSequence::StandardConversion: 3937 Candidate.FinalConversion = ICS.Standard; 3938 3939 // C++ [over.ics.user]p3: 3940 // If the user-defined conversion is specified by a specialization of a 3941 // conversion function template, the second standard conversion sequence 3942 // shall have exact match rank. 3943 if (Conversion->getPrimaryTemplate() && 3944 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3945 Candidate.Viable = false; 3946 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3947 } 3948 3949 break; 3950 3951 case ImplicitConversionSequence::BadConversion: 3952 Candidate.Viable = false; 3953 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3954 break; 3955 3956 default: 3957 assert(false && 3958 "Can only end up with a standard conversion sequence or failure"); 3959 } 3960} 3961 3962/// \brief Adds a conversion function template specialization 3963/// candidate to the overload set, using template argument deduction 3964/// to deduce the template arguments of the conversion function 3965/// template from the type that we are converting to (C++ 3966/// [temp.deduct.conv]). 3967void 3968Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3969 DeclAccessPair FoundDecl, 3970 CXXRecordDecl *ActingDC, 3971 Expr *From, QualType ToType, 3972 OverloadCandidateSet &CandidateSet) { 3973 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3974 "Only conversion function templates permitted here"); 3975 3976 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3977 return; 3978 3979 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3980 CXXConversionDecl *Specialization = 0; 3981 if (TemplateDeductionResult Result 3982 = DeduceTemplateArguments(FunctionTemplate, ToType, 3983 Specialization, Info)) { 3984 CandidateSet.push_back(OverloadCandidate()); 3985 OverloadCandidate &Candidate = CandidateSet.back(); 3986 Candidate.FoundDecl = FoundDecl; 3987 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3988 Candidate.Viable = false; 3989 Candidate.FailureKind = ovl_fail_bad_deduction; 3990 Candidate.IsSurrogate = false; 3991 Candidate.IgnoreObjectArgument = false; 3992 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3993 Info); 3994 return; 3995 } 3996 3997 // Add the conversion function template specialization produced by 3998 // template argument deduction as a candidate. 3999 assert(Specialization && "Missing function template specialization?"); 4000 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 4001 CandidateSet); 4002} 4003 4004/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 4005/// converts the given @c Object to a function pointer via the 4006/// conversion function @c Conversion, and then attempts to call it 4007/// with the given arguments (C++ [over.call.object]p2-4). Proto is 4008/// the type of function that we'll eventually be calling. 4009void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 4010 DeclAccessPair FoundDecl, 4011 CXXRecordDecl *ActingContext, 4012 const FunctionProtoType *Proto, 4013 QualType ObjectType, 4014 Expr **Args, unsigned NumArgs, 4015 OverloadCandidateSet& CandidateSet) { 4016 if (!CandidateSet.isNewCandidate(Conversion)) 4017 return; 4018 4019 // Overload resolution is always an unevaluated context. 4020 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4021 4022 CandidateSet.push_back(OverloadCandidate()); 4023 OverloadCandidate& Candidate = CandidateSet.back(); 4024 Candidate.FoundDecl = FoundDecl; 4025 Candidate.Function = 0; 4026 Candidate.Surrogate = Conversion; 4027 Candidate.Viable = true; 4028 Candidate.IsSurrogate = true; 4029 Candidate.IgnoreObjectArgument = false; 4030 Candidate.Conversions.resize(NumArgs + 1); 4031 4032 // Determine the implicit conversion sequence for the implicit 4033 // object parameter. 4034 ImplicitConversionSequence ObjectInit 4035 = TryObjectArgumentInitialization(*this, ObjectType, Conversion, 4036 ActingContext); 4037 if (ObjectInit.isBad()) { 4038 Candidate.Viable = false; 4039 Candidate.FailureKind = ovl_fail_bad_conversion; 4040 Candidate.Conversions[0] = ObjectInit; 4041 return; 4042 } 4043 4044 // The first conversion is actually a user-defined conversion whose 4045 // first conversion is ObjectInit's standard conversion (which is 4046 // effectively a reference binding). Record it as such. 4047 Candidate.Conversions[0].setUserDefined(); 4048 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 4049 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 4050 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 4051 Candidate.Conversions[0].UserDefined.After 4052 = Candidate.Conversions[0].UserDefined.Before; 4053 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 4054 4055 // Find the 4056 unsigned NumArgsInProto = Proto->getNumArgs(); 4057 4058 // (C++ 13.3.2p2): A candidate function having fewer than m 4059 // parameters is viable only if it has an ellipsis in its parameter 4060 // list (8.3.5). 4061 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4062 Candidate.Viable = false; 4063 Candidate.FailureKind = ovl_fail_too_many_arguments; 4064 return; 4065 } 4066 4067 // Function types don't have any default arguments, so just check if 4068 // we have enough arguments. 4069 if (NumArgs < NumArgsInProto) { 4070 // Not enough arguments. 4071 Candidate.Viable = false; 4072 Candidate.FailureKind = ovl_fail_too_few_arguments; 4073 return; 4074 } 4075 4076 // Determine the implicit conversion sequences for each of the 4077 // arguments. 4078 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4079 if (ArgIdx < NumArgsInProto) { 4080 // (C++ 13.3.2p3): for F to be a viable function, there shall 4081 // exist for each argument an implicit conversion sequence 4082 // (13.3.3.1) that converts that argument to the corresponding 4083 // parameter of F. 4084 QualType ParamType = Proto->getArgType(ArgIdx); 4085 Candidate.Conversions[ArgIdx + 1] 4086 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4087 /*SuppressUserConversions=*/false, 4088 /*InOverloadResolution=*/false); 4089 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4090 Candidate.Viable = false; 4091 Candidate.FailureKind = ovl_fail_bad_conversion; 4092 break; 4093 } 4094 } else { 4095 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4096 // argument for which there is no corresponding parameter is 4097 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4098 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4099 } 4100 } 4101} 4102 4103/// \brief Add overload candidates for overloaded operators that are 4104/// member functions. 4105/// 4106/// Add the overloaded operator candidates that are member functions 4107/// for the operator Op that was used in an operator expression such 4108/// as "x Op y". , Args/NumArgs provides the operator arguments, and 4109/// CandidateSet will store the added overload candidates. (C++ 4110/// [over.match.oper]). 4111void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4112 SourceLocation OpLoc, 4113 Expr **Args, unsigned NumArgs, 4114 OverloadCandidateSet& CandidateSet, 4115 SourceRange OpRange) { 4116 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4117 4118 // C++ [over.match.oper]p3: 4119 // For a unary operator @ with an operand of a type whose 4120 // cv-unqualified version is T1, and for a binary operator @ with 4121 // a left operand of a type whose cv-unqualified version is T1 and 4122 // a right operand of a type whose cv-unqualified version is T2, 4123 // three sets of candidate functions, designated member 4124 // candidates, non-member candidates and built-in candidates, are 4125 // constructed as follows: 4126 QualType T1 = Args[0]->getType(); 4127 4128 // -- If T1 is a class type, the set of member candidates is the 4129 // result of the qualified lookup of T1::operator@ 4130 // (13.3.1.1.1); otherwise, the set of member candidates is 4131 // empty. 4132 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4133 // Complete the type if it can be completed. Otherwise, we're done. 4134 if (RequireCompleteType(OpLoc, T1, PDiag())) 4135 return; 4136 4137 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4138 LookupQualifiedName(Operators, T1Rec->getDecl()); 4139 Operators.suppressDiagnostics(); 4140 4141 for (LookupResult::iterator Oper = Operators.begin(), 4142 OperEnd = Operators.end(); 4143 Oper != OperEnd; 4144 ++Oper) 4145 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4146 Args + 1, NumArgs - 1, CandidateSet, 4147 /* SuppressUserConversions = */ false); 4148 } 4149} 4150 4151/// AddBuiltinCandidate - Add a candidate for a built-in 4152/// operator. ResultTy and ParamTys are the result and parameter types 4153/// of the built-in candidate, respectively. Args and NumArgs are the 4154/// arguments being passed to the candidate. IsAssignmentOperator 4155/// should be true when this built-in candidate is an assignment 4156/// operator. NumContextualBoolArguments is the number of arguments 4157/// (at the beginning of the argument list) that will be contextually 4158/// converted to bool. 4159void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4160 Expr **Args, unsigned NumArgs, 4161 OverloadCandidateSet& CandidateSet, 4162 bool IsAssignmentOperator, 4163 unsigned NumContextualBoolArguments) { 4164 // Overload resolution is always an unevaluated context. 4165 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4166 4167 // Add this candidate 4168 CandidateSet.push_back(OverloadCandidate()); 4169 OverloadCandidate& Candidate = CandidateSet.back(); 4170 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4171 Candidate.Function = 0; 4172 Candidate.IsSurrogate = false; 4173 Candidate.IgnoreObjectArgument = false; 4174 Candidate.BuiltinTypes.ResultTy = ResultTy; 4175 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4176 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4177 4178 // Determine the implicit conversion sequences for each of the 4179 // arguments. 4180 Candidate.Viable = true; 4181 Candidate.Conversions.resize(NumArgs); 4182 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4183 // C++ [over.match.oper]p4: 4184 // For the built-in assignment operators, conversions of the 4185 // left operand are restricted as follows: 4186 // -- no temporaries are introduced to hold the left operand, and 4187 // -- no user-defined conversions are applied to the left 4188 // operand to achieve a type match with the left-most 4189 // parameter of a built-in candidate. 4190 // 4191 // We block these conversions by turning off user-defined 4192 // conversions, since that is the only way that initialization of 4193 // a reference to a non-class type can occur from something that 4194 // is not of the same type. 4195 if (ArgIdx < NumContextualBoolArguments) { 4196 assert(ParamTys[ArgIdx] == Context.BoolTy && 4197 "Contextual conversion to bool requires bool type"); 4198 Candidate.Conversions[ArgIdx] 4199 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4200 } else { 4201 Candidate.Conversions[ArgIdx] 4202 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4203 ArgIdx == 0 && IsAssignmentOperator, 4204 /*InOverloadResolution=*/false); 4205 } 4206 if (Candidate.Conversions[ArgIdx].isBad()) { 4207 Candidate.Viable = false; 4208 Candidate.FailureKind = ovl_fail_bad_conversion; 4209 break; 4210 } 4211 } 4212} 4213 4214/// BuiltinCandidateTypeSet - A set of types that will be used for the 4215/// candidate operator functions for built-in operators (C++ 4216/// [over.built]). The types are separated into pointer types and 4217/// enumeration types. 4218class BuiltinCandidateTypeSet { 4219 /// TypeSet - A set of types. 4220 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4221 4222 /// PointerTypes - The set of pointer types that will be used in the 4223 /// built-in candidates. 4224 TypeSet PointerTypes; 4225 4226 /// MemberPointerTypes - The set of member pointer types that will be 4227 /// used in the built-in candidates. 4228 TypeSet MemberPointerTypes; 4229 4230 /// EnumerationTypes - The set of enumeration types that will be 4231 /// used in the built-in candidates. 4232 TypeSet EnumerationTypes; 4233 4234 /// \brief The set of vector types that will be used in the built-in 4235 /// candidates. 4236 TypeSet VectorTypes; 4237 4238 /// Sema - The semantic analysis instance where we are building the 4239 /// candidate type set. 4240 Sema &SemaRef; 4241 4242 /// Context - The AST context in which we will build the type sets. 4243 ASTContext &Context; 4244 4245 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4246 const Qualifiers &VisibleQuals); 4247 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4248 4249public: 4250 /// iterator - Iterates through the types that are part of the set. 4251 typedef TypeSet::iterator iterator; 4252 4253 BuiltinCandidateTypeSet(Sema &SemaRef) 4254 : SemaRef(SemaRef), Context(SemaRef.Context) { } 4255 4256 void AddTypesConvertedFrom(QualType Ty, 4257 SourceLocation Loc, 4258 bool AllowUserConversions, 4259 bool AllowExplicitConversions, 4260 const Qualifiers &VisibleTypeConversionsQuals); 4261 4262 /// pointer_begin - First pointer type found; 4263 iterator pointer_begin() { return PointerTypes.begin(); } 4264 4265 /// pointer_end - Past the last pointer type found; 4266 iterator pointer_end() { return PointerTypes.end(); } 4267 4268 /// member_pointer_begin - First member pointer type found; 4269 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4270 4271 /// member_pointer_end - Past the last member pointer type found; 4272 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4273 4274 /// enumeration_begin - First enumeration type found; 4275 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4276 4277 /// enumeration_end - Past the last enumeration type found; 4278 iterator enumeration_end() { return EnumerationTypes.end(); } 4279 4280 iterator vector_begin() { return VectorTypes.begin(); } 4281 iterator vector_end() { return VectorTypes.end(); } 4282}; 4283 4284/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4285/// the set of pointer types along with any more-qualified variants of 4286/// that type. For example, if @p Ty is "int const *", this routine 4287/// will add "int const *", "int const volatile *", "int const 4288/// restrict *", and "int const volatile restrict *" to the set of 4289/// pointer types. Returns true if the add of @p Ty itself succeeded, 4290/// false otherwise. 4291/// 4292/// FIXME: what to do about extended qualifiers? 4293bool 4294BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4295 const Qualifiers &VisibleQuals) { 4296 4297 // Insert this type. 4298 if (!PointerTypes.insert(Ty)) 4299 return false; 4300 4301 QualType PointeeTy; 4302 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4303 bool buildObjCPtr = false; 4304 if (!PointerTy) { 4305 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 4306 PointeeTy = PTy->getPointeeType(); 4307 buildObjCPtr = true; 4308 } 4309 else 4310 assert(false && "type was not a pointer type!"); 4311 } 4312 else 4313 PointeeTy = PointerTy->getPointeeType(); 4314 4315 // Don't add qualified variants of arrays. For one, they're not allowed 4316 // (the qualifier would sink to the element type), and for another, the 4317 // only overload situation where it matters is subscript or pointer +- int, 4318 // and those shouldn't have qualifier variants anyway. 4319 if (PointeeTy->isArrayType()) 4320 return true; 4321 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4322 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4323 BaseCVR = Array->getElementType().getCVRQualifiers(); 4324 bool hasVolatile = VisibleQuals.hasVolatile(); 4325 bool hasRestrict = VisibleQuals.hasRestrict(); 4326 4327 // Iterate through all strict supersets of BaseCVR. 4328 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4329 if ((CVR | BaseCVR) != CVR) continue; 4330 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4331 // in the types. 4332 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4333 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4334 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4335 if (!buildObjCPtr) 4336 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4337 else 4338 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 4339 } 4340 4341 return true; 4342} 4343 4344/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4345/// to the set of pointer types along with any more-qualified variants of 4346/// that type. For example, if @p Ty is "int const *", this routine 4347/// will add "int const *", "int const volatile *", "int const 4348/// restrict *", and "int const volatile restrict *" to the set of 4349/// pointer types. Returns true if the add of @p Ty itself succeeded, 4350/// false otherwise. 4351/// 4352/// FIXME: what to do about extended qualifiers? 4353bool 4354BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4355 QualType Ty) { 4356 // Insert this type. 4357 if (!MemberPointerTypes.insert(Ty)) 4358 return false; 4359 4360 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4361 assert(PointerTy && "type was not a member pointer type!"); 4362 4363 QualType PointeeTy = PointerTy->getPointeeType(); 4364 // Don't add qualified variants of arrays. For one, they're not allowed 4365 // (the qualifier would sink to the element type), and for another, the 4366 // only overload situation where it matters is subscript or pointer +- int, 4367 // and those shouldn't have qualifier variants anyway. 4368 if (PointeeTy->isArrayType()) 4369 return true; 4370 const Type *ClassTy = PointerTy->getClass(); 4371 4372 // Iterate through all strict supersets of the pointee type's CVR 4373 // qualifiers. 4374 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4375 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4376 if ((CVR | BaseCVR) != CVR) continue; 4377 4378 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4379 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 4380 } 4381 4382 return true; 4383} 4384 4385/// AddTypesConvertedFrom - Add each of the types to which the type @p 4386/// Ty can be implicit converted to the given set of @p Types. We're 4387/// primarily interested in pointer types and enumeration types. We also 4388/// take member pointer types, for the conditional operator. 4389/// AllowUserConversions is true if we should look at the conversion 4390/// functions of a class type, and AllowExplicitConversions if we 4391/// should also include the explicit conversion functions of a class 4392/// type. 4393void 4394BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4395 SourceLocation Loc, 4396 bool AllowUserConversions, 4397 bool AllowExplicitConversions, 4398 const Qualifiers &VisibleQuals) { 4399 // Only deal with canonical types. 4400 Ty = Context.getCanonicalType(Ty); 4401 4402 // Look through reference types; they aren't part of the type of an 4403 // expression for the purposes of conversions. 4404 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4405 Ty = RefTy->getPointeeType(); 4406 4407 // We don't care about qualifiers on the type. 4408 Ty = Ty.getLocalUnqualifiedType(); 4409 4410 // If we're dealing with an array type, decay to the pointer. 4411 if (Ty->isArrayType()) 4412 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4413 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 4414 PointerTypes.insert(Ty); 4415 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 4416 // Insert our type, and its more-qualified variants, into the set 4417 // of types. 4418 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4419 return; 4420 } else if (Ty->isMemberPointerType()) { 4421 // Member pointers are far easier, since the pointee can't be converted. 4422 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4423 return; 4424 } else if (Ty->isEnumeralType()) { 4425 EnumerationTypes.insert(Ty); 4426 } else if (Ty->isVectorType()) { 4427 VectorTypes.insert(Ty); 4428 } else if (AllowUserConversions) { 4429 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 4430 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 4431 // No conversion functions in incomplete types. 4432 return; 4433 } 4434 4435 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4436 const UnresolvedSetImpl *Conversions 4437 = ClassDecl->getVisibleConversionFunctions(); 4438 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4439 E = Conversions->end(); I != E; ++I) { 4440 NamedDecl *D = I.getDecl(); 4441 if (isa<UsingShadowDecl>(D)) 4442 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4443 4444 // Skip conversion function templates; they don't tell us anything 4445 // about which builtin types we can convert to. 4446 if (isa<FunctionTemplateDecl>(D)) 4447 continue; 4448 4449 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4450 if (AllowExplicitConversions || !Conv->isExplicit()) { 4451 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4452 VisibleQuals); 4453 } 4454 } 4455 } 4456 } 4457} 4458 4459/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4460/// the volatile- and non-volatile-qualified assignment operators for the 4461/// given type to the candidate set. 4462static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4463 QualType T, 4464 Expr **Args, 4465 unsigned NumArgs, 4466 OverloadCandidateSet &CandidateSet) { 4467 QualType ParamTypes[2]; 4468 4469 // T& operator=(T&, T) 4470 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4471 ParamTypes[1] = T; 4472 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4473 /*IsAssignmentOperator=*/true); 4474 4475 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4476 // volatile T& operator=(volatile T&, T) 4477 ParamTypes[0] 4478 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4479 ParamTypes[1] = T; 4480 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4481 /*IsAssignmentOperator=*/true); 4482 } 4483} 4484 4485/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4486/// if any, found in visible type conversion functions found in ArgExpr's type. 4487static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4488 Qualifiers VRQuals; 4489 const RecordType *TyRec; 4490 if (const MemberPointerType *RHSMPType = 4491 ArgExpr->getType()->getAs<MemberPointerType>()) 4492 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4493 else 4494 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4495 if (!TyRec) { 4496 // Just to be safe, assume the worst case. 4497 VRQuals.addVolatile(); 4498 VRQuals.addRestrict(); 4499 return VRQuals; 4500 } 4501 4502 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4503 if (!ClassDecl->hasDefinition()) 4504 return VRQuals; 4505 4506 const UnresolvedSetImpl *Conversions = 4507 ClassDecl->getVisibleConversionFunctions(); 4508 4509 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4510 E = Conversions->end(); I != E; ++I) { 4511 NamedDecl *D = I.getDecl(); 4512 if (isa<UsingShadowDecl>(D)) 4513 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4514 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4515 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4516 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4517 CanTy = ResTypeRef->getPointeeType(); 4518 // Need to go down the pointer/mempointer chain and add qualifiers 4519 // as see them. 4520 bool done = false; 4521 while (!done) { 4522 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4523 CanTy = ResTypePtr->getPointeeType(); 4524 else if (const MemberPointerType *ResTypeMPtr = 4525 CanTy->getAs<MemberPointerType>()) 4526 CanTy = ResTypeMPtr->getPointeeType(); 4527 else 4528 done = true; 4529 if (CanTy.isVolatileQualified()) 4530 VRQuals.addVolatile(); 4531 if (CanTy.isRestrictQualified()) 4532 VRQuals.addRestrict(); 4533 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4534 return VRQuals; 4535 } 4536 } 4537 } 4538 return VRQuals; 4539} 4540 4541 4542/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4543/// operator overloads to the candidate set (C++ [over.built]), based 4544/// on the operator @p Op and the arguments given. For example, if the 4545/// operator is a binary '+', this routine might add "int 4546/// operator+(int, int)" to cover integer addition. 4547void 4548Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4549 SourceLocation OpLoc, 4550 Expr **Args, unsigned NumArgs, 4551 OverloadCandidateSet& CandidateSet) { 4552 // Information about arithmetic types useful to builtin-type 4553 // calculations. 4554 4555 // The "promoted arithmetic types" are the arithmetic 4556 // types are that preserved by promotion (C++ [over.built]p2). 4557 4558 static const unsigned FirstIntegralType = 3; 4559 static const unsigned LastIntegralType = 18; 4560 static const unsigned FirstPromotedIntegralType = 3, 4561 LastPromotedIntegralType = 9; 4562 static const unsigned FirstPromotedArithmeticType = 0, 4563 LastPromotedArithmeticType = 9; 4564 static const unsigned NumArithmeticTypes = 18; 4565 4566 static CanQualType ASTContext::* const ArithmeticTypes[NumArithmeticTypes] = { 4567 // Start of promoted types. 4568 &ASTContext::FloatTy, 4569 &ASTContext::DoubleTy, 4570 &ASTContext::LongDoubleTy, 4571 4572 // Start of integral types. 4573 &ASTContext::IntTy, 4574 &ASTContext::LongTy, 4575 &ASTContext::LongLongTy, 4576 &ASTContext::UnsignedIntTy, 4577 &ASTContext::UnsignedLongTy, 4578 &ASTContext::UnsignedLongLongTy, 4579 // End of promoted types. 4580 4581 &ASTContext::BoolTy, 4582 &ASTContext::CharTy, 4583 &ASTContext::WCharTy, 4584 &ASTContext::Char16Ty, 4585 &ASTContext::Char32Ty, 4586 &ASTContext::SignedCharTy, 4587 &ASTContext::ShortTy, 4588 &ASTContext::UnsignedCharTy, 4589 &ASTContext::UnsignedShortTy 4590 // End of integral types. 4591 }; 4592 // FIXME: What about complex? 4593 assert(ArithmeticTypes[FirstPromotedIntegralType] == &ASTContext::IntTy && 4594 "Invalid first promoted integral type"); 4595 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4596 == &ASTContext::UnsignedLongLongTy && 4597 "Invalid last promoted integral type"); 4598 assert(ArithmeticTypes[FirstPromotedArithmeticType] == &ASTContext::FloatTy && 4599 "Invalid first promoted arithmetic type"); 4600 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4601 == &ASTContext::UnsignedLongLongTy && 4602 "Invalid last promoted arithmetic type"); 4603 4604 // Accelerator table for performing the usual arithmetic conversions. 4605 // The rules are basically: 4606 // - if either is floating-point, use the wider floating-point 4607 // - if same signedness, use the higher rank 4608 // - if same size, use unsigned of the higher rank 4609 // - use the larger type 4610 // These rules, together with the axiom that higher ranks are 4611 // never smaller, are sufficient to precompute all of these results 4612 // *except* when dealing with signed types of higher rank. 4613 // (we could precompute SLL x UI for all known platforms, but it's 4614 // better not to make any assumptions). 4615 enum PromT { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 }; 4616 static PromT UsualArithmeticConversionsTypes 4617 [LastPromotedArithmeticType][LastPromotedArithmeticType] = { 4618 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 4619 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 4620 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 4621 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 4622 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 4623 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 4624 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 4625 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 4626 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL } 4627 }; 4628 struct UsualArithmeticConversionsType { 4629 static CanQualType find(ASTContext &C, unsigned L, unsigned R) { 4630 assert(L < LastPromotedArithmeticType); 4631 assert(R < LastPromotedArithmeticType); 4632 signed char Idx = UsualArithmeticConversionsTypes[L][R]; 4633 4634 // Fast path: the table gives us a concrete answer. 4635 if (Idx != Dep) return C.*ArithmeticTypes[Idx]; 4636 4637 // Slow path: we need to compare widths. 4638 // An invariant is that the signed type has higher rank. 4639 CanQualType LT = C.*ArithmeticTypes[L], RT = C.*ArithmeticTypes[R]; 4640 unsigned LW = C.getIntWidth(LT), RW = C.getIntWidth(RT); 4641 4642 // If they're different widths, use the signed type. 4643 if (LW > RW) return LT; 4644 else if (LW > RW) return RT; 4645 4646 // Otherwise, use the unsigned type of the signed type's rank. 4647 if (L == SL || R == SL) return C.UnsignedLongTy; 4648 assert(L == SLL || R == SLL); 4649 return C.UnsignedLongLongTy; 4650 } 4651 }; 4652 4653 // Find all of the types that the arguments can convert to, but only 4654 // if the operator we're looking at has built-in operator candidates 4655 // that make use of these types. 4656 Qualifiers VisibleTypeConversionsQuals; 4657 VisibleTypeConversionsQuals.addConst(); 4658 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4659 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4660 4661 llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 4662 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4663 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 4664 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4665 OpLoc, 4666 true, 4667 (Op == OO_Exclaim || 4668 Op == OO_AmpAmp || 4669 Op == OO_PipePipe), 4670 VisibleTypeConversionsQuals); 4671 } 4672 4673 // C++ [over.built]p1: 4674 // If there is a user-written candidate with the same name and parameter 4675 // types as a built-in candidate operator function, the built-in operator 4676 // function is hidden and is not included in the set of candidate functions. 4677 // 4678 // The text is actually in a note, but if we don't implement it then we end 4679 // up with ambiguities when the user provides an overloaded operator for 4680 // an enumeration type. Note that only enumeration types have this problem, 4681 // so we track which enumeration types we've seen operators for. 4682 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 4683 UserDefinedBinaryOperators; 4684 4685 /// Set of (canonical) types that we've already handled. 4686 llvm::SmallPtrSet<QualType, 8> AddedTypes; 4687 4688 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4689 if (CandidateTypes[ArgIdx].enumeration_begin() 4690 != CandidateTypes[ArgIdx].enumeration_end()) { 4691 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 4692 CEnd = CandidateSet.end(); 4693 C != CEnd; ++C) { 4694 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 4695 continue; 4696 4697 // Check if the first parameter is of enumeration type. 4698 QualType FirstParamType 4699 = C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 4700 if (!FirstParamType->isEnumeralType()) 4701 continue; 4702 4703 // Check if the second parameter is of enumeration type. 4704 QualType SecondParamType 4705 = C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 4706 if (!SecondParamType->isEnumeralType()) 4707 continue; 4708 4709 // Add this operator to the set of known user-defined operators. 4710 UserDefinedBinaryOperators.insert( 4711 std::make_pair(Context.getCanonicalType(FirstParamType), 4712 Context.getCanonicalType(SecondParamType))); 4713 } 4714 } 4715 } 4716 4717 bool isComparison = false; 4718 switch (Op) { 4719 case OO_None: 4720 case NUM_OVERLOADED_OPERATORS: 4721 assert(false && "Expected an overloaded operator"); 4722 break; 4723 4724 case OO_Star: // '*' is either unary or binary 4725 if (NumArgs == 1) 4726 goto UnaryStar; 4727 else 4728 goto BinaryStar; 4729 break; 4730 4731 case OO_Plus: // '+' is either unary or binary 4732 if (NumArgs == 1) 4733 goto UnaryPlus; 4734 else 4735 goto BinaryPlus; 4736 break; 4737 4738 case OO_Minus: // '-' is either unary or binary 4739 if (NumArgs == 1) 4740 goto UnaryMinus; 4741 else 4742 goto BinaryMinus; 4743 break; 4744 4745 case OO_Amp: // '&' is either unary or binary 4746 if (NumArgs == 1) 4747 goto UnaryAmp; 4748 else 4749 goto BinaryAmp; 4750 4751 case OO_PlusPlus: 4752 case OO_MinusMinus: 4753 // C++ [over.built]p3: 4754 // 4755 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4756 // is either volatile or empty, there exist candidate operator 4757 // functions of the form 4758 // 4759 // VQ T& operator++(VQ T&); 4760 // T operator++(VQ T&, int); 4761 // 4762 // C++ [over.built]p4: 4763 // 4764 // For every pair (T, VQ), where T is an arithmetic type other 4765 // than bool, and VQ is either volatile or empty, there exist 4766 // candidate operator functions of the form 4767 // 4768 // VQ T& operator--(VQ T&); 4769 // T operator--(VQ T&, int); 4770 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4771 Arith < NumArithmeticTypes; ++Arith) { 4772 QualType ArithTy = Context.*ArithmeticTypes[Arith]; 4773 QualType ParamTypes[2] 4774 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4775 4776 // Non-volatile version. 4777 if (NumArgs == 1) 4778 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4779 else 4780 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4781 // heuristic to reduce number of builtin candidates in the set. 4782 // Add volatile version only if there are conversions to a volatile type. 4783 if (VisibleTypeConversionsQuals.hasVolatile()) { 4784 // Volatile version 4785 ParamTypes[0] 4786 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4787 if (NumArgs == 1) 4788 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4789 else 4790 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4791 } 4792 } 4793 4794 // C++ [over.built]p5: 4795 // 4796 // For every pair (T, VQ), where T is a cv-qualified or 4797 // cv-unqualified object type, and VQ is either volatile or 4798 // empty, there exist candidate operator functions of the form 4799 // 4800 // T*VQ& operator++(T*VQ&); 4801 // T*VQ& operator--(T*VQ&); 4802 // T* operator++(T*VQ&, int); 4803 // T* operator--(T*VQ&, int); 4804 for (BuiltinCandidateTypeSet::iterator 4805 Ptr = CandidateTypes[0].pointer_begin(), 4806 PtrEnd = CandidateTypes[0].pointer_end(); 4807 Ptr != PtrEnd; ++Ptr) { 4808 // Skip pointer types that aren't pointers to object types. 4809 if (!(*Ptr)->getPointeeType()->isIncompleteOrObjectType()) 4810 continue; 4811 4812 QualType ParamTypes[2] = { 4813 Context.getLValueReferenceType(*Ptr), Context.IntTy 4814 }; 4815 4816 // Without volatile 4817 if (NumArgs == 1) 4818 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4819 else 4820 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4821 4822 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4823 VisibleTypeConversionsQuals.hasVolatile()) { 4824 // With volatile 4825 ParamTypes[0] 4826 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4827 if (NumArgs == 1) 4828 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4829 else 4830 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4831 } 4832 } 4833 break; 4834 4835 UnaryStar: 4836 // C++ [over.built]p6: 4837 // For every cv-qualified or cv-unqualified object type T, there 4838 // exist candidate operator functions of the form 4839 // 4840 // T& operator*(T*); 4841 // 4842 // C++ [over.built]p7: 4843 // For every function type T, there exist candidate operator 4844 // functions of the form 4845 // T& operator*(T*); 4846 for (BuiltinCandidateTypeSet::iterator 4847 Ptr = CandidateTypes[0].pointer_begin(), 4848 PtrEnd = CandidateTypes[0].pointer_end(); 4849 Ptr != PtrEnd; ++Ptr) { 4850 QualType ParamTy = *Ptr; 4851 QualType PointeeTy = ParamTy->getPointeeType(); 4852 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4853 &ParamTy, Args, 1, CandidateSet); 4854 } 4855 break; 4856 4857 UnaryPlus: 4858 // C++ [over.built]p8: 4859 // For every type T, there exist candidate operator functions of 4860 // the form 4861 // 4862 // T* operator+(T*); 4863 for (BuiltinCandidateTypeSet::iterator 4864 Ptr = CandidateTypes[0].pointer_begin(), 4865 PtrEnd = CandidateTypes[0].pointer_end(); 4866 Ptr != PtrEnd; ++Ptr) { 4867 QualType ParamTy = *Ptr; 4868 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4869 } 4870 4871 // Fall through 4872 4873 UnaryMinus: 4874 // C++ [over.built]p9: 4875 // For every promoted arithmetic type T, there exist candidate 4876 // operator functions of the form 4877 // 4878 // T operator+(T); 4879 // T operator-(T); 4880 for (unsigned Arith = FirstPromotedArithmeticType; 4881 Arith < LastPromotedArithmeticType; ++Arith) { 4882 QualType ArithTy = Context.*ArithmeticTypes[Arith]; 4883 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4884 } 4885 4886 // Extension: We also add these operators for vector types. 4887 for (BuiltinCandidateTypeSet::iterator 4888 Vec = CandidateTypes[0].vector_begin(), 4889 VecEnd = CandidateTypes[0].vector_end(); 4890 Vec != VecEnd; ++Vec) { 4891 QualType VecTy = *Vec; 4892 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4893 } 4894 break; 4895 4896 case OO_Tilde: 4897 // C++ [over.built]p10: 4898 // For every promoted integral type T, there exist candidate 4899 // operator functions of the form 4900 // 4901 // T operator~(T); 4902 for (unsigned Int = FirstPromotedIntegralType; 4903 Int < LastPromotedIntegralType; ++Int) { 4904 QualType IntTy = Context.*ArithmeticTypes[Int]; 4905 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4906 } 4907 4908 // Extension: We also add this operator for vector types. 4909 for (BuiltinCandidateTypeSet::iterator 4910 Vec = CandidateTypes[0].vector_begin(), 4911 VecEnd = CandidateTypes[0].vector_end(); 4912 Vec != VecEnd; ++Vec) { 4913 QualType VecTy = *Vec; 4914 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4915 } 4916 break; 4917 4918 case OO_New: 4919 case OO_Delete: 4920 case OO_Array_New: 4921 case OO_Array_Delete: 4922 case OO_Call: 4923 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4924 break; 4925 4926 case OO_Comma: 4927 UnaryAmp: 4928 case OO_Arrow: 4929 // C++ [over.match.oper]p3: 4930 // -- For the operator ',', the unary operator '&', or the 4931 // operator '->', the built-in candidates set is empty. 4932 break; 4933 4934 case OO_EqualEqual: 4935 case OO_ExclaimEqual: 4936 // C++ [over.match.oper]p16: 4937 // For every pointer to member type T, there exist candidate operator 4938 // functions of the form 4939 // 4940 // bool operator==(T,T); 4941 // bool operator!=(T,T); 4942 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4943 for (BuiltinCandidateTypeSet::iterator 4944 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 4945 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 4946 MemPtr != MemPtrEnd; 4947 ++MemPtr) { 4948 // Don't add the same builtin candidate twice. 4949 if (!AddedTypes.insert(Context.getCanonicalType(*MemPtr))) 4950 continue; 4951 4952 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4953 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4954 } 4955 } 4956 AddedTypes.clear(); 4957 4958 // Fall through 4959 4960 case OO_Less: 4961 case OO_Greater: 4962 case OO_LessEqual: 4963 case OO_GreaterEqual: 4964 // C++ [over.built]p15: 4965 // 4966 // For every pointer or enumeration type T, there exist 4967 // candidate operator functions of the form 4968 // 4969 // bool operator<(T, T); 4970 // bool operator>(T, T); 4971 // bool operator<=(T, T); 4972 // bool operator>=(T, T); 4973 // bool operator==(T, T); 4974 // bool operator!=(T, T); 4975 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4976 for (BuiltinCandidateTypeSet::iterator 4977 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 4978 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 4979 Ptr != PtrEnd; ++Ptr) { 4980 // Don't add the same builtin candidate twice. 4981 if (!AddedTypes.insert(Context.getCanonicalType(*Ptr))) 4982 continue; 4983 4984 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4985 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4986 } 4987 for (BuiltinCandidateTypeSet::iterator 4988 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 4989 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 4990 Enum != EnumEnd; ++Enum) { 4991 // Don't add the same builtin candidate twice. 4992 if (!AddedTypes.insert(Context.getCanonicalType(*Enum))) 4993 continue; 4994 4995 QualType ParamTypes[2] = { *Enum, *Enum }; 4996 CanQualType CanonType = Context.getCanonicalType(*Enum); 4997 if (!UserDefinedBinaryOperators.count( 4998 std::make_pair(CanonType, CanonType))) 4999 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 5000 } 5001 } 5002 AddedTypes.clear(); 5003 5004 // Fall through. 5005 isComparison = true; 5006 5007 BinaryPlus: 5008 BinaryMinus: 5009 if (!isComparison) { 5010 // We didn't fall through, so we must have OO_Plus or OO_Minus. 5011 5012 // C++ [over.built]p13: 5013 // 5014 // For every cv-qualified or cv-unqualified object type T 5015 // there exist candidate operator functions of the form 5016 // 5017 // T* operator+(T*, ptrdiff_t); 5018 // T& operator[](T*, ptrdiff_t); [BELOW] 5019 // T* operator-(T*, ptrdiff_t); 5020 // T* operator+(ptrdiff_t, T*); 5021 // T& operator[](ptrdiff_t, T*); [BELOW] 5022 // 5023 // C++ [over.built]p14: 5024 // 5025 // For every T, where T is a pointer to object type, there 5026 // exist candidate operator functions of the form 5027 // 5028 // ptrdiff_t operator-(T, T); 5029 for (BuiltinCandidateTypeSet::iterator 5030 Ptr = CandidateTypes[0].pointer_begin(), 5031 PtrEnd = CandidateTypes[0].pointer_end(); 5032 Ptr != PtrEnd; ++Ptr) { 5033 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 5034 5035 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 5036 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5037 5038 if (Op == OO_Minus) { 5039 // ptrdiff_t operator-(T, T); 5040 if (!AddedTypes.insert(Context.getCanonicalType(*Ptr))) 5041 continue; 5042 5043 ParamTypes[1] = *Ptr; 5044 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 5045 Args, 2, CandidateSet); 5046 } 5047 } 5048 5049 for (BuiltinCandidateTypeSet::iterator 5050 Ptr = CandidateTypes[1].pointer_begin(), 5051 PtrEnd = CandidateTypes[1].pointer_end(); 5052 Ptr != PtrEnd; ++Ptr) { 5053 if (Op == OO_Plus) { 5054 // T* operator+(ptrdiff_t, T*); 5055 QualType ParamTypes[2] = { Context.getPointerDiffType(), *Ptr }; 5056 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5057 } else { 5058 // ptrdiff_t operator-(T, T); 5059 if (!AddedTypes.insert(Context.getCanonicalType(*Ptr))) 5060 continue; 5061 5062 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5063 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 5064 Args, 2, CandidateSet); 5065 } 5066 } 5067 5068 AddedTypes.clear(); 5069 } 5070 // Fall through 5071 5072 case OO_Slash: 5073 BinaryStar: 5074 Conditional: 5075 // C++ [over.built]p12: 5076 // 5077 // For every pair of promoted arithmetic types L and R, there 5078 // exist candidate operator functions of the form 5079 // 5080 // LR operator*(L, R); 5081 // LR operator/(L, R); 5082 // LR operator+(L, R); 5083 // LR operator-(L, R); 5084 // bool operator<(L, R); 5085 // bool operator>(L, R); 5086 // bool operator<=(L, R); 5087 // bool operator>=(L, R); 5088 // bool operator==(L, R); 5089 // bool operator!=(L, R); 5090 // 5091 // where LR is the result of the usual arithmetic conversions 5092 // between types L and R. 5093 // 5094 // C++ [over.built]p24: 5095 // 5096 // For every pair of promoted arithmetic types L and R, there exist 5097 // candidate operator functions of the form 5098 // 5099 // LR operator?(bool, L, R); 5100 // 5101 // where LR is the result of the usual arithmetic conversions 5102 // between types L and R. 5103 // Our candidates ignore the first parameter. 5104 for (unsigned Left = FirstPromotedArithmeticType; 5105 Left < LastPromotedArithmeticType; ++Left) { 5106 for (unsigned Right = FirstPromotedArithmeticType; 5107 Right < LastPromotedArithmeticType; ++Right) { 5108 QualType LandR[2] = { Context.*ArithmeticTypes[Left], 5109 Context.*ArithmeticTypes[Right] }; 5110 QualType Result 5111 = isComparison 5112 ? Context.BoolTy 5113 : UsualArithmeticConversionsType::find(Context, Left, Right); 5114 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5115 } 5116 } 5117 5118 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 5119 // conditional operator for vector types. 5120 for (BuiltinCandidateTypeSet::iterator 5121 Vec1 = CandidateTypes[0].vector_begin(), 5122 Vec1End = CandidateTypes[0].vector_end(); 5123 Vec1 != Vec1End; ++Vec1) 5124 for (BuiltinCandidateTypeSet::iterator 5125 Vec2 = CandidateTypes[1].vector_begin(), 5126 Vec2End = CandidateTypes[1].vector_end(); 5127 Vec2 != Vec2End; ++Vec2) { 5128 QualType LandR[2] = { *Vec1, *Vec2 }; 5129 QualType Result; 5130 if (isComparison) 5131 Result = Context.BoolTy; 5132 else { 5133 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 5134 Result = *Vec1; 5135 else 5136 Result = *Vec2; 5137 } 5138 5139 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5140 } 5141 5142 break; 5143 5144 case OO_Percent: 5145 BinaryAmp: 5146 case OO_Caret: 5147 case OO_Pipe: 5148 case OO_LessLess: 5149 case OO_GreaterGreater: 5150 // C++ [over.built]p17: 5151 // 5152 // For every pair of promoted integral types L and R, there 5153 // exist candidate operator functions of the form 5154 // 5155 // LR operator%(L, R); 5156 // LR operator&(L, R); 5157 // LR operator^(L, R); 5158 // LR operator|(L, R); 5159 // L operator<<(L, R); 5160 // L operator>>(L, R); 5161 // 5162 // where LR is the result of the usual arithmetic conversions 5163 // between types L and R. 5164 for (unsigned Left = FirstPromotedIntegralType; 5165 Left < LastPromotedIntegralType; ++Left) { 5166 for (unsigned Right = FirstPromotedIntegralType; 5167 Right < LastPromotedIntegralType; ++Right) { 5168 QualType LandR[2] = { Context.*ArithmeticTypes[Left], 5169 Context.*ArithmeticTypes[Right] }; 5170 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 5171 ? LandR[0] 5172 : UsualArithmeticConversionsType::find(Context, Left, Right); 5173 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5174 } 5175 } 5176 break; 5177 5178 case OO_Equal: 5179 // C++ [over.built]p20: 5180 // 5181 // For every pair (T, VQ), where T is an enumeration or 5182 // pointer to member type and VQ is either volatile or 5183 // empty, there exist candidate operator functions of the form 5184 // 5185 // VQ T& operator=(VQ T&, T); 5186 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5187 for (BuiltinCandidateTypeSet::iterator 5188 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5189 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5190 Enum != EnumEnd; ++Enum) { 5191 if (!AddedTypes.insert(Context.getCanonicalType(*Enum))) 5192 continue; 5193 5194 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 5195 CandidateSet); 5196 } 5197 5198 for (BuiltinCandidateTypeSet::iterator 5199 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5200 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5201 MemPtr != MemPtrEnd; ++MemPtr) { 5202 if (!AddedTypes.insert(Context.getCanonicalType(*MemPtr))) 5203 continue; 5204 5205 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 5206 CandidateSet); 5207 } 5208 } 5209 AddedTypes.clear(); 5210 5211 // Fall through. 5212 5213 case OO_PlusEqual: 5214 case OO_MinusEqual: 5215 // C++ [over.built]p19: 5216 // 5217 // For every pair (T, VQ), where T is any type and VQ is either 5218 // volatile or empty, there exist candidate operator functions 5219 // of the form 5220 // 5221 // T*VQ& operator=(T*VQ&, T*); 5222 // 5223 // C++ [over.built]p21: 5224 // 5225 // For every pair (T, VQ), where T is a cv-qualified or 5226 // cv-unqualified object type and VQ is either volatile or 5227 // empty, there exist candidate operator functions of the form 5228 // 5229 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5230 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5231 for (BuiltinCandidateTypeSet::iterator 5232 Ptr = CandidateTypes[0].pointer_begin(), 5233 PtrEnd = CandidateTypes[0].pointer_end(); 5234 Ptr != PtrEnd; ++Ptr) { 5235 QualType ParamTypes[2]; 5236 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 5237 5238 // If this is operator=, keep track of the builtin candidates we added. 5239 if (Op == OO_Equal) 5240 AddedTypes.insert(Context.getCanonicalType(*Ptr)); 5241 5242 // non-volatile version 5243 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 5244 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5245 /*IsAssigmentOperator=*/Op == OO_Equal); 5246 5247 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 5248 VisibleTypeConversionsQuals.hasVolatile()) { 5249 // volatile version 5250 ParamTypes[0] 5251 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 5252 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5253 /*IsAssigmentOperator=*/Op == OO_Equal); 5254 } 5255 } 5256 5257 if (Op == OO_Equal) { 5258 for (BuiltinCandidateTypeSet::iterator 5259 Ptr = CandidateTypes[1].pointer_begin(), 5260 PtrEnd = CandidateTypes[1].pointer_end(); 5261 Ptr != PtrEnd; ++Ptr) { 5262 // Make sure we don't add the same candidate twice. 5263 if (!AddedTypes.insert(Context.getCanonicalType(*Ptr))) 5264 continue; 5265 5266 QualType ParamTypes[2] = { Context.getLValueReferenceType(*Ptr), *Ptr }; 5267 5268 // non-volatile version 5269 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5270 /*IsAssigmentOperator=*/true); 5271 5272 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 5273 VisibleTypeConversionsQuals.hasVolatile()) { 5274 // volatile version 5275 ParamTypes[0] 5276 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 5277 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5278 /*IsAssigmentOperator=*/true); 5279 } 5280 } 5281 AddedTypes.clear(); 5282 } 5283 // Fall through. 5284 5285 case OO_StarEqual: 5286 case OO_SlashEqual: 5287 // C++ [over.built]p18: 5288 // 5289 // For every triple (L, VQ, R), where L is an arithmetic type, 5290 // VQ is either volatile or empty, and R is a promoted 5291 // arithmetic type, there exist candidate operator functions of 5292 // the form 5293 // 5294 // VQ L& operator=(VQ L&, R); 5295 // VQ L& operator*=(VQ L&, R); 5296 // VQ L& operator/=(VQ L&, R); 5297 // VQ L& operator+=(VQ L&, R); 5298 // VQ L& operator-=(VQ L&, R); 5299 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 5300 for (unsigned Right = FirstPromotedArithmeticType; 5301 Right < LastPromotedArithmeticType; ++Right) { 5302 QualType ParamTypes[2]; 5303 ParamTypes[1] = Context.*ArithmeticTypes[Right]; 5304 5305 // Add this built-in operator as a candidate (VQ is empty). 5306 ParamTypes[0] = 5307 Context.getLValueReferenceType(Context.*ArithmeticTypes[Left]); 5308 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5309 /*IsAssigmentOperator=*/Op == OO_Equal); 5310 5311 // Add this built-in operator as a candidate (VQ is 'volatile'). 5312 if (VisibleTypeConversionsQuals.hasVolatile()) { 5313 ParamTypes[0] = 5314 Context.getVolatileType(Context.*ArithmeticTypes[Left]); 5315 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5316 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5317 /*IsAssigmentOperator=*/Op == OO_Equal); 5318 } 5319 } 5320 } 5321 5322 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 5323 for (BuiltinCandidateTypeSet::iterator 5324 Vec1 = CandidateTypes[0].vector_begin(), 5325 Vec1End = CandidateTypes[0].vector_end(); 5326 Vec1 != Vec1End; ++Vec1) 5327 for (BuiltinCandidateTypeSet::iterator 5328 Vec2 = CandidateTypes[1].vector_begin(), 5329 Vec2End = CandidateTypes[1].vector_end(); 5330 Vec2 != Vec2End; ++Vec2) { 5331 QualType ParamTypes[2]; 5332 ParamTypes[1] = *Vec2; 5333 // Add this built-in operator as a candidate (VQ is empty). 5334 ParamTypes[0] = Context.getLValueReferenceType(*Vec1); 5335 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5336 /*IsAssigmentOperator=*/Op == OO_Equal); 5337 5338 // Add this built-in operator as a candidate (VQ is 'volatile'). 5339 if (VisibleTypeConversionsQuals.hasVolatile()) { 5340 ParamTypes[0] = Context.getVolatileType(*Vec1); 5341 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5342 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5343 /*IsAssigmentOperator=*/Op == OO_Equal); 5344 } 5345 } 5346 break; 5347 5348 case OO_PercentEqual: 5349 case OO_LessLessEqual: 5350 case OO_GreaterGreaterEqual: 5351 case OO_AmpEqual: 5352 case OO_CaretEqual: 5353 case OO_PipeEqual: 5354 // C++ [over.built]p22: 5355 // 5356 // For every triple (L, VQ, R), where L is an integral type, VQ 5357 // is either volatile or empty, and R is a promoted integral 5358 // type, there exist candidate operator functions of the form 5359 // 5360 // VQ L& operator%=(VQ L&, R); 5361 // VQ L& operator<<=(VQ L&, R); 5362 // VQ L& operator>>=(VQ L&, R); 5363 // VQ L& operator&=(VQ L&, R); 5364 // VQ L& operator^=(VQ L&, R); 5365 // VQ L& operator|=(VQ L&, R); 5366 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 5367 for (unsigned Right = FirstPromotedIntegralType; 5368 Right < LastPromotedIntegralType; ++Right) { 5369 QualType ParamTypes[2]; 5370 ParamTypes[1] = Context.*ArithmeticTypes[Right]; 5371 5372 // Add this built-in operator as a candidate (VQ is empty). 5373 ParamTypes[0] = 5374 Context.getLValueReferenceType(Context.*ArithmeticTypes[Left]); 5375 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5376 if (VisibleTypeConversionsQuals.hasVolatile()) { 5377 // Add this built-in operator as a candidate (VQ is 'volatile'). 5378 ParamTypes[0] = Context.*ArithmeticTypes[Left]; 5379 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 5380 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5381 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5382 } 5383 } 5384 } 5385 break; 5386 5387 case OO_Exclaim: { 5388 // C++ [over.operator]p23: 5389 // 5390 // There also exist candidate operator functions of the form 5391 // 5392 // bool operator!(bool); 5393 // bool operator&&(bool, bool); [BELOW] 5394 // bool operator||(bool, bool); [BELOW] 5395 QualType ParamTy = Context.BoolTy; 5396 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 5397 /*IsAssignmentOperator=*/false, 5398 /*NumContextualBoolArguments=*/1); 5399 break; 5400 } 5401 5402 case OO_AmpAmp: 5403 case OO_PipePipe: { 5404 // C++ [over.operator]p23: 5405 // 5406 // There also exist candidate operator functions of the form 5407 // 5408 // bool operator!(bool); [ABOVE] 5409 // bool operator&&(bool, bool); 5410 // bool operator||(bool, bool); 5411 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 5412 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 5413 /*IsAssignmentOperator=*/false, 5414 /*NumContextualBoolArguments=*/2); 5415 break; 5416 } 5417 5418 case OO_Subscript: 5419 // C++ [over.built]p13: 5420 // 5421 // For every cv-qualified or cv-unqualified object type T there 5422 // exist candidate operator functions of the form 5423 // 5424 // T* operator+(T*, ptrdiff_t); [ABOVE] 5425 // T& operator[](T*, ptrdiff_t); 5426 // T* operator-(T*, ptrdiff_t); [ABOVE] 5427 // T* operator+(ptrdiff_t, T*); [ABOVE] 5428 // T& operator[](ptrdiff_t, T*); 5429 for (BuiltinCandidateTypeSet::iterator 5430 Ptr = CandidateTypes[0].pointer_begin(), 5431 PtrEnd = CandidateTypes[0].pointer_end(); 5432 Ptr != PtrEnd; ++Ptr) { 5433 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 5434 QualType PointeeType = (*Ptr)->getPointeeType(); 5435 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 5436 5437 // T& operator[](T*, ptrdiff_t) 5438 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5439 } 5440 5441 for (BuiltinCandidateTypeSet::iterator 5442 Ptr = CandidateTypes[1].pointer_begin(), 5443 PtrEnd = CandidateTypes[1].pointer_end(); 5444 Ptr != PtrEnd; ++Ptr) { 5445 QualType ParamTypes[2] = { Context.getPointerDiffType(), *Ptr }; 5446 QualType PointeeType = (*Ptr)->getPointeeType(); 5447 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 5448 5449 // T& operator[](ptrdiff_t, T*) 5450 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5451 } 5452 break; 5453 5454 case OO_ArrowStar: 5455 // C++ [over.built]p11: 5456 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5457 // C1 is the same type as C2 or is a derived class of C2, T is an object 5458 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5459 // there exist candidate operator functions of the form 5460 // 5461 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5462 // 5463 // where CV12 is the union of CV1 and CV2. 5464 { 5465 for (BuiltinCandidateTypeSet::iterator 5466 Ptr = CandidateTypes[0].pointer_begin(), 5467 PtrEnd = CandidateTypes[0].pointer_end(); 5468 Ptr != PtrEnd; ++Ptr) { 5469 QualType C1Ty = (*Ptr); 5470 QualType C1; 5471 QualifierCollector Q1; 5472 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 5473 if (!isa<RecordType>(C1)) 5474 continue; 5475 // heuristic to reduce number of builtin candidates in the set. 5476 // Add volatile/restrict version only if there are conversions to a 5477 // volatile/restrict type. 5478 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5479 continue; 5480 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5481 continue; 5482 for (BuiltinCandidateTypeSet::iterator 5483 MemPtr = CandidateTypes[1].member_pointer_begin(), 5484 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 5485 MemPtr != MemPtrEnd; ++MemPtr) { 5486 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5487 QualType C2 = QualType(mptr->getClass(), 0); 5488 C2 = C2.getUnqualifiedType(); 5489 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 5490 break; 5491 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5492 // build CV12 T& 5493 QualType T = mptr->getPointeeType(); 5494 if (!VisibleTypeConversionsQuals.hasVolatile() && 5495 T.isVolatileQualified()) 5496 continue; 5497 if (!VisibleTypeConversionsQuals.hasRestrict() && 5498 T.isRestrictQualified()) 5499 continue; 5500 T = Q1.apply(T); 5501 QualType ResultTy = Context.getLValueReferenceType(T); 5502 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5503 } 5504 } 5505 } 5506 break; 5507 5508 case OO_Conditional: 5509 // Note that we don't consider the first argument, since it has been 5510 // contextually converted to bool long ago. The candidates below are 5511 // therefore added as binary. 5512 // 5513 // C++ [over.built]p25: 5514 // For every type T, where T is a pointer, pointer-to-member, or scoped 5515 // enumeration type, there exist candidate operator functions of the form 5516 // 5517 // T operator?(bool, T, T); 5518 // 5519 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5520 for (BuiltinCandidateTypeSet::iterator 5521 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5522 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5523 Ptr != PtrEnd; ++Ptr) { 5524 if (!AddedTypes.insert(Context.getCanonicalType(*Ptr))) 5525 continue; 5526 5527 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5528 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5529 } 5530 5531 for (BuiltinCandidateTypeSet::iterator 5532 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5533 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5534 MemPtr != MemPtrEnd; ++MemPtr) { 5535 if (!AddedTypes.insert(Context.getCanonicalType(*MemPtr))) 5536 continue; 5537 5538 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5539 AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 5540 } 5541 5542 if (getLangOptions().CPlusPlus0x) { 5543 for (BuiltinCandidateTypeSet::iterator 5544 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5545 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5546 Enum != EnumEnd; ++Enum) { 5547 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 5548 continue; 5549 5550 if (!AddedTypes.insert(Context.getCanonicalType(*Enum))) 5551 continue; 5552 5553 QualType ParamTypes[2] = { *Enum, *Enum }; 5554 AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 5555 } 5556 } 5557 } 5558 goto Conditional; 5559 } 5560} 5561 5562/// \brief Add function candidates found via argument-dependent lookup 5563/// to the set of overloading candidates. 5564/// 5565/// This routine performs argument-dependent name lookup based on the 5566/// given function name (which may also be an operator name) and adds 5567/// all of the overload candidates found by ADL to the overload 5568/// candidate set (C++ [basic.lookup.argdep]). 5569void 5570Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 5571 bool Operator, 5572 Expr **Args, unsigned NumArgs, 5573 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5574 OverloadCandidateSet& CandidateSet, 5575 bool PartialOverloading) { 5576 ADLResult Fns; 5577 5578 // FIXME: This approach for uniquing ADL results (and removing 5579 // redundant candidates from the set) relies on pointer-equality, 5580 // which means we need to key off the canonical decl. However, 5581 // always going back to the canonical decl might not get us the 5582 // right set of default arguments. What default arguments are 5583 // we supposed to consider on ADL candidates, anyway? 5584 5585 // FIXME: Pass in the explicit template arguments? 5586 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 5587 5588 // Erase all of the candidates we already knew about. 5589 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5590 CandEnd = CandidateSet.end(); 5591 Cand != CandEnd; ++Cand) 5592 if (Cand->Function) { 5593 Fns.erase(Cand->Function); 5594 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 5595 Fns.erase(FunTmpl); 5596 } 5597 5598 // For each of the ADL candidates we found, add it to the overload 5599 // set. 5600 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 5601 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 5602 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 5603 if (ExplicitTemplateArgs) 5604 continue; 5605 5606 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 5607 false, PartialOverloading); 5608 } else 5609 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 5610 FoundDecl, ExplicitTemplateArgs, 5611 Args, NumArgs, CandidateSet); 5612 } 5613} 5614 5615/// isBetterOverloadCandidate - Determines whether the first overload 5616/// candidate is a better candidate than the second (C++ 13.3.3p1). 5617bool 5618isBetterOverloadCandidate(Sema &S, 5619 const OverloadCandidate &Cand1, 5620 const OverloadCandidate &Cand2, 5621 SourceLocation Loc, 5622 bool UserDefinedConversion) { 5623 // Define viable functions to be better candidates than non-viable 5624 // functions. 5625 if (!Cand2.Viable) 5626 return Cand1.Viable; 5627 else if (!Cand1.Viable) 5628 return false; 5629 5630 // C++ [over.match.best]p1: 5631 // 5632 // -- if F is a static member function, ICS1(F) is defined such 5633 // that ICS1(F) is neither better nor worse than ICS1(G) for 5634 // any function G, and, symmetrically, ICS1(G) is neither 5635 // better nor worse than ICS1(F). 5636 unsigned StartArg = 0; 5637 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 5638 StartArg = 1; 5639 5640 // C++ [over.match.best]p1: 5641 // A viable function F1 is defined to be a better function than another 5642 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 5643 // conversion sequence than ICSi(F2), and then... 5644 unsigned NumArgs = Cand1.Conversions.size(); 5645 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 5646 bool HasBetterConversion = false; 5647 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 5648 switch (CompareImplicitConversionSequences(S, 5649 Cand1.Conversions[ArgIdx], 5650 Cand2.Conversions[ArgIdx])) { 5651 case ImplicitConversionSequence::Better: 5652 // Cand1 has a better conversion sequence. 5653 HasBetterConversion = true; 5654 break; 5655 5656 case ImplicitConversionSequence::Worse: 5657 // Cand1 can't be better than Cand2. 5658 return false; 5659 5660 case ImplicitConversionSequence::Indistinguishable: 5661 // Do nothing. 5662 break; 5663 } 5664 } 5665 5666 // -- for some argument j, ICSj(F1) is a better conversion sequence than 5667 // ICSj(F2), or, if not that, 5668 if (HasBetterConversion) 5669 return true; 5670 5671 // - F1 is a non-template function and F2 is a function template 5672 // specialization, or, if not that, 5673 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 5674 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5675 return true; 5676 5677 // -- F1 and F2 are function template specializations, and the function 5678 // template for F1 is more specialized than the template for F2 5679 // according to the partial ordering rules described in 14.5.5.2, or, 5680 // if not that, 5681 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 5682 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5683 if (FunctionTemplateDecl *BetterTemplate 5684 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 5685 Cand2.Function->getPrimaryTemplate(), 5686 Loc, 5687 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 5688 : TPOC_Call)) 5689 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 5690 5691 // -- the context is an initialization by user-defined conversion 5692 // (see 8.5, 13.3.1.5) and the standard conversion sequence 5693 // from the return type of F1 to the destination type (i.e., 5694 // the type of the entity being initialized) is a better 5695 // conversion sequence than the standard conversion sequence 5696 // from the return type of F2 to the destination type. 5697 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 5698 isa<CXXConversionDecl>(Cand1.Function) && 5699 isa<CXXConversionDecl>(Cand2.Function)) { 5700 switch (CompareStandardConversionSequences(S, 5701 Cand1.FinalConversion, 5702 Cand2.FinalConversion)) { 5703 case ImplicitConversionSequence::Better: 5704 // Cand1 has a better conversion sequence. 5705 return true; 5706 5707 case ImplicitConversionSequence::Worse: 5708 // Cand1 can't be better than Cand2. 5709 return false; 5710 5711 case ImplicitConversionSequence::Indistinguishable: 5712 // Do nothing 5713 break; 5714 } 5715 } 5716 5717 return false; 5718} 5719 5720/// \brief Computes the best viable function (C++ 13.3.3) 5721/// within an overload candidate set. 5722/// 5723/// \param CandidateSet the set of candidate functions. 5724/// 5725/// \param Loc the location of the function name (or operator symbol) for 5726/// which overload resolution occurs. 5727/// 5728/// \param Best f overload resolution was successful or found a deleted 5729/// function, Best points to the candidate function found. 5730/// 5731/// \returns The result of overload resolution. 5732OverloadingResult 5733OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 5734 iterator &Best, 5735 bool UserDefinedConversion) { 5736 // Find the best viable function. 5737 Best = end(); 5738 for (iterator Cand = begin(); Cand != end(); ++Cand) { 5739 if (Cand->Viable) 5740 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 5741 UserDefinedConversion)) 5742 Best = Cand; 5743 } 5744 5745 // If we didn't find any viable functions, abort. 5746 if (Best == end()) 5747 return OR_No_Viable_Function; 5748 5749 // Make sure that this function is better than every other viable 5750 // function. If not, we have an ambiguity. 5751 for (iterator Cand = begin(); Cand != end(); ++Cand) { 5752 if (Cand->Viable && 5753 Cand != Best && 5754 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 5755 UserDefinedConversion)) { 5756 Best = end(); 5757 return OR_Ambiguous; 5758 } 5759 } 5760 5761 // Best is the best viable function. 5762 if (Best->Function && 5763 (Best->Function->isDeleted() || 5764 Best->Function->getAttr<UnavailableAttr>())) 5765 return OR_Deleted; 5766 5767 // C++ [basic.def.odr]p2: 5768 // An overloaded function is used if it is selected by overload resolution 5769 // when referred to from a potentially-evaluated expression. [Note: this 5770 // covers calls to named functions (5.2.2), operator overloading 5771 // (clause 13), user-defined conversions (12.3.2), allocation function for 5772 // placement new (5.3.4), as well as non-default initialization (8.5). 5773 if (Best->Function) 5774 S.MarkDeclarationReferenced(Loc, Best->Function); 5775 5776 return OR_Success; 5777} 5778 5779namespace { 5780 5781enum OverloadCandidateKind { 5782 oc_function, 5783 oc_method, 5784 oc_constructor, 5785 oc_function_template, 5786 oc_method_template, 5787 oc_constructor_template, 5788 oc_implicit_default_constructor, 5789 oc_implicit_copy_constructor, 5790 oc_implicit_copy_assignment 5791}; 5792 5793OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 5794 FunctionDecl *Fn, 5795 std::string &Description) { 5796 bool isTemplate = false; 5797 5798 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 5799 isTemplate = true; 5800 Description = S.getTemplateArgumentBindingsText( 5801 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 5802 } 5803 5804 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 5805 if (!Ctor->isImplicit()) 5806 return isTemplate ? oc_constructor_template : oc_constructor; 5807 5808 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 5809 : oc_implicit_default_constructor; 5810 } 5811 5812 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 5813 // This actually gets spelled 'candidate function' for now, but 5814 // it doesn't hurt to split it out. 5815 if (!Meth->isImplicit()) 5816 return isTemplate ? oc_method_template : oc_method; 5817 5818 assert(Meth->isCopyAssignmentOperator() 5819 && "implicit method is not copy assignment operator?"); 5820 return oc_implicit_copy_assignment; 5821 } 5822 5823 return isTemplate ? oc_function_template : oc_function; 5824} 5825 5826} // end anonymous namespace 5827 5828// Notes the location of an overload candidate. 5829void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 5830 std::string FnDesc; 5831 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 5832 Diag(Fn->getLocation(), diag::note_ovl_candidate) 5833 << (unsigned) K << FnDesc; 5834} 5835 5836/// Diagnoses an ambiguous conversion. The partial diagnostic is the 5837/// "lead" diagnostic; it will be given two arguments, the source and 5838/// target types of the conversion. 5839void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 5840 Sema &S, 5841 SourceLocation CaretLoc, 5842 const PartialDiagnostic &PDiag) const { 5843 S.Diag(CaretLoc, PDiag) 5844 << Ambiguous.getFromType() << Ambiguous.getToType(); 5845 for (AmbiguousConversionSequence::const_iterator 5846 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 5847 S.NoteOverloadCandidate(*I); 5848 } 5849} 5850 5851namespace { 5852 5853void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5854 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5855 assert(Conv.isBad()); 5856 assert(Cand->Function && "for now, candidate must be a function"); 5857 FunctionDecl *Fn = Cand->Function; 5858 5859 // There's a conversion slot for the object argument if this is a 5860 // non-constructor method. Note that 'I' corresponds the 5861 // conversion-slot index. 5862 bool isObjectArgument = false; 5863 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5864 if (I == 0) 5865 isObjectArgument = true; 5866 else 5867 I--; 5868 } 5869 5870 std::string FnDesc; 5871 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5872 5873 Expr *FromExpr = Conv.Bad.FromExpr; 5874 QualType FromTy = Conv.Bad.getFromType(); 5875 QualType ToTy = Conv.Bad.getToType(); 5876 5877 if (FromTy == S.Context.OverloadTy) { 5878 assert(FromExpr && "overload set argument came from implicit argument?"); 5879 Expr *E = FromExpr->IgnoreParens(); 5880 if (isa<UnaryOperator>(E)) 5881 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5882 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5883 5884 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5885 << (unsigned) FnKind << FnDesc 5886 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5887 << ToTy << Name << I+1; 5888 return; 5889 } 5890 5891 // Do some hand-waving analysis to see if the non-viability is due 5892 // to a qualifier mismatch. 5893 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5894 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5895 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5896 CToTy = RT->getPointeeType(); 5897 else { 5898 // TODO: detect and diagnose the full richness of const mismatches. 5899 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5900 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5901 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5902 } 5903 5904 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5905 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5906 // It is dumb that we have to do this here. 5907 while (isa<ArrayType>(CFromTy)) 5908 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5909 while (isa<ArrayType>(CToTy)) 5910 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5911 5912 Qualifiers FromQs = CFromTy.getQualifiers(); 5913 Qualifiers ToQs = CToTy.getQualifiers(); 5914 5915 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5916 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5917 << (unsigned) FnKind << FnDesc 5918 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5919 << FromTy 5920 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5921 << (unsigned) isObjectArgument << I+1; 5922 return; 5923 } 5924 5925 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5926 assert(CVR && "unexpected qualifiers mismatch"); 5927 5928 if (isObjectArgument) { 5929 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5930 << (unsigned) FnKind << FnDesc 5931 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5932 << FromTy << (CVR - 1); 5933 } else { 5934 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5935 << (unsigned) FnKind << FnDesc 5936 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5937 << FromTy << (CVR - 1) << I+1; 5938 } 5939 return; 5940 } 5941 5942 // Diagnose references or pointers to incomplete types differently, 5943 // since it's far from impossible that the incompleteness triggered 5944 // the failure. 5945 QualType TempFromTy = FromTy.getNonReferenceType(); 5946 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5947 TempFromTy = PTy->getPointeeType(); 5948 if (TempFromTy->isIncompleteType()) { 5949 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5950 << (unsigned) FnKind << FnDesc 5951 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5952 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5953 return; 5954 } 5955 5956 // Diagnose base -> derived pointer conversions. 5957 unsigned BaseToDerivedConversion = 0; 5958 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 5959 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 5960 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5961 FromPtrTy->getPointeeType()) && 5962 !FromPtrTy->getPointeeType()->isIncompleteType() && 5963 !ToPtrTy->getPointeeType()->isIncompleteType() && 5964 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 5965 FromPtrTy->getPointeeType())) 5966 BaseToDerivedConversion = 1; 5967 } 5968 } else if (const ObjCObjectPointerType *FromPtrTy 5969 = FromTy->getAs<ObjCObjectPointerType>()) { 5970 if (const ObjCObjectPointerType *ToPtrTy 5971 = ToTy->getAs<ObjCObjectPointerType>()) 5972 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 5973 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 5974 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5975 FromPtrTy->getPointeeType()) && 5976 FromIface->isSuperClassOf(ToIface)) 5977 BaseToDerivedConversion = 2; 5978 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 5979 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 5980 !FromTy->isIncompleteType() && 5981 !ToRefTy->getPointeeType()->isIncompleteType() && 5982 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 5983 BaseToDerivedConversion = 3; 5984 } 5985 5986 if (BaseToDerivedConversion) { 5987 S.Diag(Fn->getLocation(), 5988 diag::note_ovl_candidate_bad_base_to_derived_conv) 5989 << (unsigned) FnKind << FnDesc 5990 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5991 << (BaseToDerivedConversion - 1) 5992 << FromTy << ToTy << I+1; 5993 return; 5994 } 5995 5996 // TODO: specialize more based on the kind of mismatch 5997 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5998 << (unsigned) FnKind << FnDesc 5999 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6000 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6001} 6002 6003void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 6004 unsigned NumFormalArgs) { 6005 // TODO: treat calls to a missing default constructor as a special case 6006 6007 FunctionDecl *Fn = Cand->Function; 6008 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 6009 6010 unsigned MinParams = Fn->getMinRequiredArguments(); 6011 6012 // at least / at most / exactly 6013 // FIXME: variadic templates "at most" should account for parameter packs 6014 unsigned mode, modeCount; 6015 if (NumFormalArgs < MinParams) { 6016 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 6017 (Cand->FailureKind == ovl_fail_bad_deduction && 6018 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 6019 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 6020 mode = 0; // "at least" 6021 else 6022 mode = 2; // "exactly" 6023 modeCount = MinParams; 6024 } else { 6025 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 6026 (Cand->FailureKind == ovl_fail_bad_deduction && 6027 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 6028 if (MinParams != FnTy->getNumArgs()) 6029 mode = 1; // "at most" 6030 else 6031 mode = 2; // "exactly" 6032 modeCount = FnTy->getNumArgs(); 6033 } 6034 6035 std::string Description; 6036 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 6037 6038 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 6039 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 6040 << modeCount << NumFormalArgs; 6041} 6042 6043/// Diagnose a failed template-argument deduction. 6044void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 6045 Expr **Args, unsigned NumArgs) { 6046 FunctionDecl *Fn = Cand->Function; // pattern 6047 6048 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 6049 NamedDecl *ParamD; 6050 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 6051 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 6052 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 6053 switch (Cand->DeductionFailure.Result) { 6054 case Sema::TDK_Success: 6055 llvm_unreachable("TDK_success while diagnosing bad deduction"); 6056 6057 case Sema::TDK_Incomplete: { 6058 assert(ParamD && "no parameter found for incomplete deduction result"); 6059 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 6060 << ParamD->getDeclName(); 6061 return; 6062 } 6063 6064 case Sema::TDK_Underqualified: { 6065 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 6066 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 6067 6068 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 6069 6070 // Param will have been canonicalized, but it should just be a 6071 // qualified version of ParamD, so move the qualifiers to that. 6072 QualifierCollector Qs(S.Context); 6073 Qs.strip(Param); 6074 QualType NonCanonParam = Qs.apply(TParam->getTypeForDecl()); 6075 assert(S.Context.hasSameType(Param, NonCanonParam)); 6076 6077 // Arg has also been canonicalized, but there's nothing we can do 6078 // about that. It also doesn't matter as much, because it won't 6079 // have any template parameters in it (because deduction isn't 6080 // done on dependent types). 6081 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 6082 6083 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 6084 << ParamD->getDeclName() << Arg << NonCanonParam; 6085 return; 6086 } 6087 6088 case Sema::TDK_Inconsistent: { 6089 assert(ParamD && "no parameter found for inconsistent deduction result"); 6090 int which = 0; 6091 if (isa<TemplateTypeParmDecl>(ParamD)) 6092 which = 0; 6093 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 6094 which = 1; 6095 else { 6096 which = 2; 6097 } 6098 6099 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 6100 << which << ParamD->getDeclName() 6101 << *Cand->DeductionFailure.getFirstArg() 6102 << *Cand->DeductionFailure.getSecondArg(); 6103 return; 6104 } 6105 6106 case Sema::TDK_InvalidExplicitArguments: 6107 assert(ParamD && "no parameter found for invalid explicit arguments"); 6108 if (ParamD->getDeclName()) 6109 S.Diag(Fn->getLocation(), 6110 diag::note_ovl_candidate_explicit_arg_mismatch_named) 6111 << ParamD->getDeclName(); 6112 else { 6113 int index = 0; 6114 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 6115 index = TTP->getIndex(); 6116 else if (NonTypeTemplateParmDecl *NTTP 6117 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 6118 index = NTTP->getIndex(); 6119 else 6120 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 6121 S.Diag(Fn->getLocation(), 6122 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 6123 << (index + 1); 6124 } 6125 return; 6126 6127 case Sema::TDK_TooManyArguments: 6128 case Sema::TDK_TooFewArguments: 6129 DiagnoseArityMismatch(S, Cand, NumArgs); 6130 return; 6131 6132 case Sema::TDK_InstantiationDepth: 6133 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 6134 return; 6135 6136 case Sema::TDK_SubstitutionFailure: { 6137 std::string ArgString; 6138 if (TemplateArgumentList *Args 6139 = Cand->DeductionFailure.getTemplateArgumentList()) 6140 ArgString = S.getTemplateArgumentBindingsText( 6141 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 6142 *Args); 6143 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 6144 << ArgString; 6145 return; 6146 } 6147 6148 // TODO: diagnose these individually, then kill off 6149 // note_ovl_candidate_bad_deduction, which is uselessly vague. 6150 case Sema::TDK_NonDeducedMismatch: 6151 case Sema::TDK_FailedOverloadResolution: 6152 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 6153 return; 6154 } 6155} 6156 6157/// Generates a 'note' diagnostic for an overload candidate. We've 6158/// already generated a primary error at the call site. 6159/// 6160/// It really does need to be a single diagnostic with its caret 6161/// pointed at the candidate declaration. Yes, this creates some 6162/// major challenges of technical writing. Yes, this makes pointing 6163/// out problems with specific arguments quite awkward. It's still 6164/// better than generating twenty screens of text for every failed 6165/// overload. 6166/// 6167/// It would be great to be able to express per-candidate problems 6168/// more richly for those diagnostic clients that cared, but we'd 6169/// still have to be just as careful with the default diagnostics. 6170void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 6171 Expr **Args, unsigned NumArgs) { 6172 FunctionDecl *Fn = Cand->Function; 6173 6174 // Note deleted candidates, but only if they're viable. 6175 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 6176 std::string FnDesc; 6177 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6178 6179 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 6180 << FnKind << FnDesc << Fn->isDeleted(); 6181 return; 6182 } 6183 6184 // We don't really have anything else to say about viable candidates. 6185 if (Cand->Viable) { 6186 S.NoteOverloadCandidate(Fn); 6187 return; 6188 } 6189 6190 switch (Cand->FailureKind) { 6191 case ovl_fail_too_many_arguments: 6192 case ovl_fail_too_few_arguments: 6193 return DiagnoseArityMismatch(S, Cand, NumArgs); 6194 6195 case ovl_fail_bad_deduction: 6196 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 6197 6198 case ovl_fail_trivial_conversion: 6199 case ovl_fail_bad_final_conversion: 6200 case ovl_fail_final_conversion_not_exact: 6201 return S.NoteOverloadCandidate(Fn); 6202 6203 case ovl_fail_bad_conversion: { 6204 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 6205 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 6206 if (Cand->Conversions[I].isBad()) 6207 return DiagnoseBadConversion(S, Cand, I); 6208 6209 // FIXME: this currently happens when we're called from SemaInit 6210 // when user-conversion overload fails. Figure out how to handle 6211 // those conditions and diagnose them well. 6212 return S.NoteOverloadCandidate(Fn); 6213 } 6214 } 6215} 6216 6217void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 6218 // Desugar the type of the surrogate down to a function type, 6219 // retaining as many typedefs as possible while still showing 6220 // the function type (and, therefore, its parameter types). 6221 QualType FnType = Cand->Surrogate->getConversionType(); 6222 bool isLValueReference = false; 6223 bool isRValueReference = false; 6224 bool isPointer = false; 6225 if (const LValueReferenceType *FnTypeRef = 6226 FnType->getAs<LValueReferenceType>()) { 6227 FnType = FnTypeRef->getPointeeType(); 6228 isLValueReference = true; 6229 } else if (const RValueReferenceType *FnTypeRef = 6230 FnType->getAs<RValueReferenceType>()) { 6231 FnType = FnTypeRef->getPointeeType(); 6232 isRValueReference = true; 6233 } 6234 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 6235 FnType = FnTypePtr->getPointeeType(); 6236 isPointer = true; 6237 } 6238 // Desugar down to a function type. 6239 FnType = QualType(FnType->getAs<FunctionType>(), 0); 6240 // Reconstruct the pointer/reference as appropriate. 6241 if (isPointer) FnType = S.Context.getPointerType(FnType); 6242 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 6243 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 6244 6245 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 6246 << FnType; 6247} 6248 6249void NoteBuiltinOperatorCandidate(Sema &S, 6250 const char *Opc, 6251 SourceLocation OpLoc, 6252 OverloadCandidate *Cand) { 6253 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 6254 std::string TypeStr("operator"); 6255 TypeStr += Opc; 6256 TypeStr += "("; 6257 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 6258 if (Cand->Conversions.size() == 1) { 6259 TypeStr += ")"; 6260 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 6261 } else { 6262 TypeStr += ", "; 6263 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 6264 TypeStr += ")"; 6265 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 6266 } 6267} 6268 6269void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 6270 OverloadCandidate *Cand) { 6271 unsigned NoOperands = Cand->Conversions.size(); 6272 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 6273 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 6274 if (ICS.isBad()) break; // all meaningless after first invalid 6275 if (!ICS.isAmbiguous()) continue; 6276 6277 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 6278 S.PDiag(diag::note_ambiguous_type_conversion)); 6279 } 6280} 6281 6282SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 6283 if (Cand->Function) 6284 return Cand->Function->getLocation(); 6285 if (Cand->IsSurrogate) 6286 return Cand->Surrogate->getLocation(); 6287 return SourceLocation(); 6288} 6289 6290struct CompareOverloadCandidatesForDisplay { 6291 Sema &S; 6292 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 6293 6294 bool operator()(const OverloadCandidate *L, 6295 const OverloadCandidate *R) { 6296 // Fast-path this check. 6297 if (L == R) return false; 6298 6299 // Order first by viability. 6300 if (L->Viable) { 6301 if (!R->Viable) return true; 6302 6303 // TODO: introduce a tri-valued comparison for overload 6304 // candidates. Would be more worthwhile if we had a sort 6305 // that could exploit it. 6306 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 6307 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 6308 } else if (R->Viable) 6309 return false; 6310 6311 assert(L->Viable == R->Viable); 6312 6313 // Criteria by which we can sort non-viable candidates: 6314 if (!L->Viable) { 6315 // 1. Arity mismatches come after other candidates. 6316 if (L->FailureKind == ovl_fail_too_many_arguments || 6317 L->FailureKind == ovl_fail_too_few_arguments) 6318 return false; 6319 if (R->FailureKind == ovl_fail_too_many_arguments || 6320 R->FailureKind == ovl_fail_too_few_arguments) 6321 return true; 6322 6323 // 2. Bad conversions come first and are ordered by the number 6324 // of bad conversions and quality of good conversions. 6325 if (L->FailureKind == ovl_fail_bad_conversion) { 6326 if (R->FailureKind != ovl_fail_bad_conversion) 6327 return true; 6328 6329 // If there's any ordering between the defined conversions... 6330 // FIXME: this might not be transitive. 6331 assert(L->Conversions.size() == R->Conversions.size()); 6332 6333 int leftBetter = 0; 6334 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 6335 for (unsigned E = L->Conversions.size(); I != E; ++I) { 6336 switch (CompareImplicitConversionSequences(S, 6337 L->Conversions[I], 6338 R->Conversions[I])) { 6339 case ImplicitConversionSequence::Better: 6340 leftBetter++; 6341 break; 6342 6343 case ImplicitConversionSequence::Worse: 6344 leftBetter--; 6345 break; 6346 6347 case ImplicitConversionSequence::Indistinguishable: 6348 break; 6349 } 6350 } 6351 if (leftBetter > 0) return true; 6352 if (leftBetter < 0) return false; 6353 6354 } else if (R->FailureKind == ovl_fail_bad_conversion) 6355 return false; 6356 6357 // TODO: others? 6358 } 6359 6360 // Sort everything else by location. 6361 SourceLocation LLoc = GetLocationForCandidate(L); 6362 SourceLocation RLoc = GetLocationForCandidate(R); 6363 6364 // Put candidates without locations (e.g. builtins) at the end. 6365 if (LLoc.isInvalid()) return false; 6366 if (RLoc.isInvalid()) return true; 6367 6368 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 6369 } 6370}; 6371 6372/// CompleteNonViableCandidate - Normally, overload resolution only 6373/// computes up to the first 6374void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 6375 Expr **Args, unsigned NumArgs) { 6376 assert(!Cand->Viable); 6377 6378 // Don't do anything on failures other than bad conversion. 6379 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 6380 6381 // Skip forward to the first bad conversion. 6382 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 6383 unsigned ConvCount = Cand->Conversions.size(); 6384 while (true) { 6385 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 6386 ConvIdx++; 6387 if (Cand->Conversions[ConvIdx - 1].isBad()) 6388 break; 6389 } 6390 6391 if (ConvIdx == ConvCount) 6392 return; 6393 6394 assert(!Cand->Conversions[ConvIdx].isInitialized() && 6395 "remaining conversion is initialized?"); 6396 6397 // FIXME: this should probably be preserved from the overload 6398 // operation somehow. 6399 bool SuppressUserConversions = false; 6400 6401 const FunctionProtoType* Proto; 6402 unsigned ArgIdx = ConvIdx; 6403 6404 if (Cand->IsSurrogate) { 6405 QualType ConvType 6406 = Cand->Surrogate->getConversionType().getNonReferenceType(); 6407 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6408 ConvType = ConvPtrType->getPointeeType(); 6409 Proto = ConvType->getAs<FunctionProtoType>(); 6410 ArgIdx--; 6411 } else if (Cand->Function) { 6412 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 6413 if (isa<CXXMethodDecl>(Cand->Function) && 6414 !isa<CXXConstructorDecl>(Cand->Function)) 6415 ArgIdx--; 6416 } else { 6417 // Builtin binary operator with a bad first conversion. 6418 assert(ConvCount <= 3); 6419 for (; ConvIdx != ConvCount; ++ConvIdx) 6420 Cand->Conversions[ConvIdx] 6421 = TryCopyInitialization(S, Args[ConvIdx], 6422 Cand->BuiltinTypes.ParamTypes[ConvIdx], 6423 SuppressUserConversions, 6424 /*InOverloadResolution*/ true); 6425 return; 6426 } 6427 6428 // Fill in the rest of the conversions. 6429 unsigned NumArgsInProto = Proto->getNumArgs(); 6430 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 6431 if (ArgIdx < NumArgsInProto) 6432 Cand->Conversions[ConvIdx] 6433 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 6434 SuppressUserConversions, 6435 /*InOverloadResolution=*/true); 6436 else 6437 Cand->Conversions[ConvIdx].setEllipsis(); 6438 } 6439} 6440 6441} // end anonymous namespace 6442 6443/// PrintOverloadCandidates - When overload resolution fails, prints 6444/// diagnostic messages containing the candidates in the candidate 6445/// set. 6446void OverloadCandidateSet::NoteCandidates(Sema &S, 6447 OverloadCandidateDisplayKind OCD, 6448 Expr **Args, unsigned NumArgs, 6449 const char *Opc, 6450 SourceLocation OpLoc) { 6451 // Sort the candidates by viability and position. Sorting directly would 6452 // be prohibitive, so we make a set of pointers and sort those. 6453 llvm::SmallVector<OverloadCandidate*, 32> Cands; 6454 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 6455 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 6456 if (Cand->Viable) 6457 Cands.push_back(Cand); 6458 else if (OCD == OCD_AllCandidates) { 6459 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 6460 if (Cand->Function || Cand->IsSurrogate) 6461 Cands.push_back(Cand); 6462 // Otherwise, this a non-viable builtin candidate. We do not, in general, 6463 // want to list every possible builtin candidate. 6464 } 6465 } 6466 6467 std::sort(Cands.begin(), Cands.end(), 6468 CompareOverloadCandidatesForDisplay(S)); 6469 6470 bool ReportedAmbiguousConversions = false; 6471 6472 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 6473 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 6474 unsigned CandsShown = 0; 6475 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 6476 OverloadCandidate *Cand = *I; 6477 6478 // Set an arbitrary limit on the number of candidate functions we'll spam 6479 // the user with. FIXME: This limit should depend on details of the 6480 // candidate list. 6481 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 6482 break; 6483 } 6484 ++CandsShown; 6485 6486 if (Cand->Function) 6487 NoteFunctionCandidate(S, Cand, Args, NumArgs); 6488 else if (Cand->IsSurrogate) 6489 NoteSurrogateCandidate(S, Cand); 6490 else { 6491 assert(Cand->Viable && 6492 "Non-viable built-in candidates are not added to Cands."); 6493 // Generally we only see ambiguities including viable builtin 6494 // operators if overload resolution got screwed up by an 6495 // ambiguous user-defined conversion. 6496 // 6497 // FIXME: It's quite possible for different conversions to see 6498 // different ambiguities, though. 6499 if (!ReportedAmbiguousConversions) { 6500 NoteAmbiguousUserConversions(S, OpLoc, Cand); 6501 ReportedAmbiguousConversions = true; 6502 } 6503 6504 // If this is a viable builtin, print it. 6505 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 6506 } 6507 } 6508 6509 if (I != E) 6510 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 6511} 6512 6513static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 6514 if (isa<UnresolvedLookupExpr>(E)) 6515 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 6516 6517 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 6518} 6519 6520/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 6521/// an overloaded function (C++ [over.over]), where @p From is an 6522/// expression with overloaded function type and @p ToType is the type 6523/// we're trying to resolve to. For example: 6524/// 6525/// @code 6526/// int f(double); 6527/// int f(int); 6528/// 6529/// int (*pfd)(double) = f; // selects f(double) 6530/// @endcode 6531/// 6532/// This routine returns the resulting FunctionDecl if it could be 6533/// resolved, and NULL otherwise. When @p Complain is true, this 6534/// routine will emit diagnostics if there is an error. 6535FunctionDecl * 6536Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 6537 bool Complain, 6538 DeclAccessPair &FoundResult) { 6539 QualType FunctionType = ToType; 6540 bool IsMember = false; 6541 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 6542 FunctionType = ToTypePtr->getPointeeType(); 6543 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 6544 FunctionType = ToTypeRef->getPointeeType(); 6545 else if (const MemberPointerType *MemTypePtr = 6546 ToType->getAs<MemberPointerType>()) { 6547 FunctionType = MemTypePtr->getPointeeType(); 6548 IsMember = true; 6549 } 6550 6551 // C++ [over.over]p1: 6552 // [...] [Note: any redundant set of parentheses surrounding the 6553 // overloaded function name is ignored (5.1). ] 6554 // C++ [over.over]p1: 6555 // [...] The overloaded function name can be preceded by the & 6556 // operator. 6557 // However, remember whether the expression has member-pointer form: 6558 // C++ [expr.unary.op]p4: 6559 // A pointer to member is only formed when an explicit & is used 6560 // and its operand is a qualified-id not enclosed in 6561 // parentheses. 6562 OverloadExpr::FindResult Ovl = OverloadExpr::find(From); 6563 OverloadExpr *OvlExpr = Ovl.Expression; 6564 6565 // We expect a pointer or reference to function, or a function pointer. 6566 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 6567 if (!FunctionType->isFunctionType()) { 6568 if (Complain) 6569 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 6570 << OvlExpr->getName() << ToType; 6571 6572 return 0; 6573 } 6574 6575 // If the overload expression doesn't have the form of a pointer to 6576 // member, don't try to convert it to a pointer-to-member type. 6577 if (IsMember && !Ovl.HasFormOfMemberPointer) { 6578 if (!Complain) return 0; 6579 6580 // TODO: Should we condition this on whether any functions might 6581 // have matched, or is it more appropriate to do that in callers? 6582 // TODO: a fixit wouldn't hurt. 6583 Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 6584 << ToType << OvlExpr->getSourceRange(); 6585 return 0; 6586 } 6587 6588 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 6589 if (OvlExpr->hasExplicitTemplateArgs()) { 6590 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 6591 ExplicitTemplateArgs = &ETABuffer; 6592 } 6593 6594 assert(From->getType() == Context.OverloadTy); 6595 6596 // Look through all of the overloaded functions, searching for one 6597 // whose type matches exactly. 6598 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 6599 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 6600 6601 bool FoundNonTemplateFunction = false; 6602 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6603 E = OvlExpr->decls_end(); I != E; ++I) { 6604 // Look through any using declarations to find the underlying function. 6605 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 6606 6607 // C++ [over.over]p3: 6608 // Non-member functions and static member functions match 6609 // targets of type "pointer-to-function" or "reference-to-function." 6610 // Nonstatic member functions match targets of 6611 // type "pointer-to-member-function." 6612 // Note that according to DR 247, the containing class does not matter. 6613 6614 if (FunctionTemplateDecl *FunctionTemplate 6615 = dyn_cast<FunctionTemplateDecl>(Fn)) { 6616 if (CXXMethodDecl *Method 6617 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 6618 // Skip non-static function templates when converting to pointer, and 6619 // static when converting to member pointer. 6620 if (Method->isStatic() == IsMember) 6621 continue; 6622 } else if (IsMember) 6623 continue; 6624 6625 // C++ [over.over]p2: 6626 // If the name is a function template, template argument deduction is 6627 // done (14.8.2.2), and if the argument deduction succeeds, the 6628 // resulting template argument list is used to generate a single 6629 // function template specialization, which is added to the set of 6630 // overloaded functions considered. 6631 FunctionDecl *Specialization = 0; 6632 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6633 if (TemplateDeductionResult Result 6634 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 6635 FunctionType, Specialization, Info)) { 6636 // FIXME: make a note of the failed deduction for diagnostics. 6637 (void)Result; 6638 } else { 6639 // Template argument deduction ensures that we have an exact match. 6640 // This function template specicalization works. 6641 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 6642 assert(FunctionType 6643 == Context.getCanonicalType(Specialization->getType())); 6644 Matches.push_back(std::make_pair(I.getPair(), Specialization)); 6645 } 6646 6647 continue; 6648 } 6649 6650 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6651 // Skip non-static functions when converting to pointer, and static 6652 // when converting to member pointer. 6653 if (Method->isStatic() == IsMember) 6654 continue; 6655 6656 // If we have explicit template arguments, skip non-templates. 6657 if (OvlExpr->hasExplicitTemplateArgs()) 6658 continue; 6659 } else if (IsMember) 6660 continue; 6661 6662 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 6663 QualType ResultTy; 6664 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 6665 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 6666 ResultTy)) { 6667 Matches.push_back(std::make_pair(I.getPair(), 6668 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 6669 FoundNonTemplateFunction = true; 6670 } 6671 } 6672 } 6673 6674 // If there were 0 or 1 matches, we're done. 6675 if (Matches.empty()) { 6676 if (Complain) { 6677 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 6678 << OvlExpr->getName() << FunctionType; 6679 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6680 E = OvlExpr->decls_end(); 6681 I != E; ++I) 6682 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 6683 NoteOverloadCandidate(F); 6684 } 6685 6686 return 0; 6687 } else if (Matches.size() == 1) { 6688 FunctionDecl *Result = Matches[0].second; 6689 FoundResult = Matches[0].first; 6690 MarkDeclarationReferenced(From->getLocStart(), Result); 6691 if (Complain) { 6692 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 6693 } 6694 return Result; 6695 } 6696 6697 // C++ [over.over]p4: 6698 // If more than one function is selected, [...] 6699 if (!FoundNonTemplateFunction) { 6700 // [...] and any given function template specialization F1 is 6701 // eliminated if the set contains a second function template 6702 // specialization whose function template is more specialized 6703 // than the function template of F1 according to the partial 6704 // ordering rules of 14.5.5.2. 6705 6706 // The algorithm specified above is quadratic. We instead use a 6707 // two-pass algorithm (similar to the one used to identify the 6708 // best viable function in an overload set) that identifies the 6709 // best function template (if it exists). 6710 6711 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 6712 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6713 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 6714 6715 UnresolvedSetIterator Result = 6716 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 6717 TPOC_Other, From->getLocStart(), 6718 PDiag(), 6719 PDiag(diag::err_addr_ovl_ambiguous) 6720 << Matches[0].second->getDeclName(), 6721 PDiag(diag::note_ovl_candidate) 6722 << (unsigned) oc_function_template); 6723 if (Result == MatchesCopy.end()) 6724 return 0; 6725 6726 MarkDeclarationReferenced(From->getLocStart(), *Result); 6727 FoundResult = Matches[Result - MatchesCopy.begin()].first; 6728 if (Complain) 6729 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 6730 return cast<FunctionDecl>(*Result); 6731 } 6732 6733 // [...] any function template specializations in the set are 6734 // eliminated if the set also contains a non-template function, [...] 6735 for (unsigned I = 0, N = Matches.size(); I != N; ) { 6736 if (Matches[I].second->getPrimaryTemplate() == 0) 6737 ++I; 6738 else { 6739 Matches[I] = Matches[--N]; 6740 Matches.set_size(N); 6741 } 6742 } 6743 6744 // [...] After such eliminations, if any, there shall remain exactly one 6745 // selected function. 6746 if (Matches.size() == 1) { 6747 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 6748 FoundResult = Matches[0].first; 6749 if (Complain) 6750 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 6751 return cast<FunctionDecl>(Matches[0].second); 6752 } 6753 6754 // FIXME: We should probably return the same thing that BestViableFunction 6755 // returns (even if we issue the diagnostics here). 6756 if (Complain) { 6757 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 6758 << Matches[0].second->getDeclName(); 6759 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6760 NoteOverloadCandidate(Matches[I].second); 6761 } 6762 6763 return 0; 6764} 6765 6766/// \brief Given an expression that refers to an overloaded function, try to 6767/// resolve that overloaded function expression down to a single function. 6768/// 6769/// This routine can only resolve template-ids that refer to a single function 6770/// template, where that template-id refers to a single template whose template 6771/// arguments are either provided by the template-id or have defaults, 6772/// as described in C++0x [temp.arg.explicit]p3. 6773FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 6774 // C++ [over.over]p1: 6775 // [...] [Note: any redundant set of parentheses surrounding the 6776 // overloaded function name is ignored (5.1). ] 6777 // C++ [over.over]p1: 6778 // [...] The overloaded function name can be preceded by the & 6779 // operator. 6780 6781 if (From->getType() != Context.OverloadTy) 6782 return 0; 6783 6784 OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression; 6785 6786 // If we didn't actually find any template-ids, we're done. 6787 if (!OvlExpr->hasExplicitTemplateArgs()) 6788 return 0; 6789 6790 TemplateArgumentListInfo ExplicitTemplateArgs; 6791 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 6792 6793 // Look through all of the overloaded functions, searching for one 6794 // whose type matches exactly. 6795 FunctionDecl *Matched = 0; 6796 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6797 E = OvlExpr->decls_end(); I != E; ++I) { 6798 // C++0x [temp.arg.explicit]p3: 6799 // [...] In contexts where deduction is done and fails, or in contexts 6800 // where deduction is not done, if a template argument list is 6801 // specified and it, along with any default template arguments, 6802 // identifies a single function template specialization, then the 6803 // template-id is an lvalue for the function template specialization. 6804 FunctionTemplateDecl *FunctionTemplate 6805 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 6806 6807 // C++ [over.over]p2: 6808 // If the name is a function template, template argument deduction is 6809 // done (14.8.2.2), and if the argument deduction succeeds, the 6810 // resulting template argument list is used to generate a single 6811 // function template specialization, which is added to the set of 6812 // overloaded functions considered. 6813 FunctionDecl *Specialization = 0; 6814 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6815 if (TemplateDeductionResult Result 6816 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 6817 Specialization, Info)) { 6818 // FIXME: make a note of the failed deduction for diagnostics. 6819 (void)Result; 6820 continue; 6821 } 6822 6823 // Multiple matches; we can't resolve to a single declaration. 6824 if (Matched) 6825 return 0; 6826 6827 Matched = Specialization; 6828 } 6829 6830 return Matched; 6831} 6832 6833/// \brief Add a single candidate to the overload set. 6834static void AddOverloadedCallCandidate(Sema &S, 6835 DeclAccessPair FoundDecl, 6836 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6837 Expr **Args, unsigned NumArgs, 6838 OverloadCandidateSet &CandidateSet, 6839 bool PartialOverloading) { 6840 NamedDecl *Callee = FoundDecl.getDecl(); 6841 if (isa<UsingShadowDecl>(Callee)) 6842 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 6843 6844 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 6845 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 6846 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 6847 false, PartialOverloading); 6848 return; 6849 } 6850 6851 if (FunctionTemplateDecl *FuncTemplate 6852 = dyn_cast<FunctionTemplateDecl>(Callee)) { 6853 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 6854 ExplicitTemplateArgs, 6855 Args, NumArgs, CandidateSet); 6856 return; 6857 } 6858 6859 assert(false && "unhandled case in overloaded call candidate"); 6860 6861 // do nothing? 6862} 6863 6864/// \brief Add the overload candidates named by callee and/or found by argument 6865/// dependent lookup to the given overload set. 6866void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 6867 Expr **Args, unsigned NumArgs, 6868 OverloadCandidateSet &CandidateSet, 6869 bool PartialOverloading) { 6870 6871#ifndef NDEBUG 6872 // Verify that ArgumentDependentLookup is consistent with the rules 6873 // in C++0x [basic.lookup.argdep]p3: 6874 // 6875 // Let X be the lookup set produced by unqualified lookup (3.4.1) 6876 // and let Y be the lookup set produced by argument dependent 6877 // lookup (defined as follows). If X contains 6878 // 6879 // -- a declaration of a class member, or 6880 // 6881 // -- a block-scope function declaration that is not a 6882 // using-declaration, or 6883 // 6884 // -- a declaration that is neither a function or a function 6885 // template 6886 // 6887 // then Y is empty. 6888 6889 if (ULE->requiresADL()) { 6890 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6891 E = ULE->decls_end(); I != E; ++I) { 6892 assert(!(*I)->getDeclContext()->isRecord()); 6893 assert(isa<UsingShadowDecl>(*I) || 6894 !(*I)->getDeclContext()->isFunctionOrMethod()); 6895 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 6896 } 6897 } 6898#endif 6899 6900 // It would be nice to avoid this copy. 6901 TemplateArgumentListInfo TABuffer; 6902 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6903 if (ULE->hasExplicitTemplateArgs()) { 6904 ULE->copyTemplateArgumentsInto(TABuffer); 6905 ExplicitTemplateArgs = &TABuffer; 6906 } 6907 6908 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6909 E = ULE->decls_end(); I != E; ++I) 6910 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 6911 Args, NumArgs, CandidateSet, 6912 PartialOverloading); 6913 6914 if (ULE->requiresADL()) 6915 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 6916 Args, NumArgs, 6917 ExplicitTemplateArgs, 6918 CandidateSet, 6919 PartialOverloading); 6920} 6921 6922/// Attempts to recover from a call where no functions were found. 6923/// 6924/// Returns true if new candidates were found. 6925static ExprResult 6926BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 6927 UnresolvedLookupExpr *ULE, 6928 SourceLocation LParenLoc, 6929 Expr **Args, unsigned NumArgs, 6930 SourceLocation RParenLoc) { 6931 6932 CXXScopeSpec SS; 6933 if (ULE->getQualifier()) { 6934 SS.setScopeRep(ULE->getQualifier()); 6935 SS.setRange(ULE->getQualifierRange()); 6936 } 6937 6938 TemplateArgumentListInfo TABuffer; 6939 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6940 if (ULE->hasExplicitTemplateArgs()) { 6941 ULE->copyTemplateArgumentsInto(TABuffer); 6942 ExplicitTemplateArgs = &TABuffer; 6943 } 6944 6945 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6946 Sema::LookupOrdinaryName); 6947 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 6948 return ExprError(); 6949 6950 assert(!R.empty() && "lookup results empty despite recovery"); 6951 6952 // Build an implicit member call if appropriate. Just drop the 6953 // casts and such from the call, we don't really care. 6954 ExprResult NewFn = ExprError(); 6955 if ((*R.begin())->isCXXClassMember()) 6956 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6957 else if (ExplicitTemplateArgs) 6958 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6959 else 6960 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6961 6962 if (NewFn.isInvalid()) 6963 return ExprError(); 6964 6965 // This shouldn't cause an infinite loop because we're giving it 6966 // an expression with non-empty lookup results, which should never 6967 // end up here. 6968 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 6969 MultiExprArg(Args, NumArgs), RParenLoc); 6970} 6971 6972/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6973/// (which eventually refers to the declaration Func) and the call 6974/// arguments Args/NumArgs, attempt to resolve the function call down 6975/// to a specific function. If overload resolution succeeds, returns 6976/// the function declaration produced by overload 6977/// resolution. Otherwise, emits diagnostics, deletes all of the 6978/// arguments and Fn, and returns NULL. 6979ExprResult 6980Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6981 SourceLocation LParenLoc, 6982 Expr **Args, unsigned NumArgs, 6983 SourceLocation RParenLoc) { 6984#ifndef NDEBUG 6985 if (ULE->requiresADL()) { 6986 // To do ADL, we must have found an unqualified name. 6987 assert(!ULE->getQualifier() && "qualified name with ADL"); 6988 6989 // We don't perform ADL for implicit declarations of builtins. 6990 // Verify that this was correctly set up. 6991 FunctionDecl *F; 6992 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6993 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6994 F->getBuiltinID() && F->isImplicit()) 6995 assert(0 && "performing ADL for builtin"); 6996 6997 // We don't perform ADL in C. 6998 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6999 } 7000#endif 7001 7002 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 7003 7004 // Add the functions denoted by the callee to the set of candidate 7005 // functions, including those from argument-dependent lookup. 7006 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 7007 7008 // If we found nothing, try to recover. 7009 // AddRecoveryCallCandidates diagnoses the error itself, so we just 7010 // bailout out if it fails. 7011 if (CandidateSet.empty()) 7012 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 7013 RParenLoc); 7014 7015 OverloadCandidateSet::iterator Best; 7016 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 7017 case OR_Success: { 7018 FunctionDecl *FDecl = Best->Function; 7019 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 7020 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), ULE->getNameLoc()); 7021 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 7022 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 7023 } 7024 7025 case OR_No_Viable_Function: 7026 Diag(Fn->getSourceRange().getBegin(), 7027 diag::err_ovl_no_viable_function_in_call) 7028 << ULE->getName() << Fn->getSourceRange(); 7029 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7030 break; 7031 7032 case OR_Ambiguous: 7033 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 7034 << ULE->getName() << Fn->getSourceRange(); 7035 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 7036 break; 7037 7038 case OR_Deleted: 7039 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 7040 << Best->Function->isDeleted() 7041 << ULE->getName() 7042 << Fn->getSourceRange(); 7043 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7044 break; 7045 } 7046 7047 // Overload resolution failed. 7048 return ExprError(); 7049} 7050 7051static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 7052 return Functions.size() > 1 || 7053 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 7054} 7055 7056/// \brief Create a unary operation that may resolve to an overloaded 7057/// operator. 7058/// 7059/// \param OpLoc The location of the operator itself (e.g., '*'). 7060/// 7061/// \param OpcIn The UnaryOperator::Opcode that describes this 7062/// operator. 7063/// 7064/// \param Functions The set of non-member functions that will be 7065/// considered by overload resolution. The caller needs to build this 7066/// set based on the context using, e.g., 7067/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7068/// set should not contain any member functions; those will be added 7069/// by CreateOverloadedUnaryOp(). 7070/// 7071/// \param input The input argument. 7072ExprResult 7073Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 7074 const UnresolvedSetImpl &Fns, 7075 Expr *Input) { 7076 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 7077 7078 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 7079 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 7080 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7081 // TODO: provide better source location info. 7082 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7083 7084 Expr *Args[2] = { Input, 0 }; 7085 unsigned NumArgs = 1; 7086 7087 // For post-increment and post-decrement, add the implicit '0' as 7088 // the second argument, so that we know this is a post-increment or 7089 // post-decrement. 7090 if (Opc == UO_PostInc || Opc == UO_PostDec) { 7091 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 7092 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 7093 SourceLocation()); 7094 NumArgs = 2; 7095 } 7096 7097 if (Input->isTypeDependent()) { 7098 if (Fns.empty()) 7099 return Owned(new (Context) UnaryOperator(Input, 7100 Opc, 7101 Context.DependentTy, 7102 VK_RValue, OK_Ordinary, 7103 OpLoc)); 7104 7105 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7106 UnresolvedLookupExpr *Fn 7107 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 7108 0, SourceRange(), OpNameInfo, 7109 /*ADL*/ true, IsOverloaded(Fns), 7110 Fns.begin(), Fns.end()); 7111 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7112 &Args[0], NumArgs, 7113 Context.DependentTy, 7114 VK_RValue, 7115 OpLoc)); 7116 } 7117 7118 // Build an empty overload set. 7119 OverloadCandidateSet CandidateSet(OpLoc); 7120 7121 // Add the candidates from the given function set. 7122 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 7123 7124 // Add operator candidates that are member functions. 7125 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7126 7127 // Add candidates from ADL. 7128 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7129 Args, NumArgs, 7130 /*ExplicitTemplateArgs*/ 0, 7131 CandidateSet); 7132 7133 // Add builtin operator candidates. 7134 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7135 7136 // Perform overload resolution. 7137 OverloadCandidateSet::iterator Best; 7138 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7139 case OR_Success: { 7140 // We found a built-in operator or an overloaded operator. 7141 FunctionDecl *FnDecl = Best->Function; 7142 7143 if (FnDecl) { 7144 // We matched an overloaded operator. Build a call to that 7145 // operator. 7146 7147 // Convert the arguments. 7148 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7149 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 7150 7151 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 7152 Best->FoundDecl, Method)) 7153 return ExprError(); 7154 } else { 7155 // Convert the arguments. 7156 ExprResult InputInit 7157 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7158 Context, 7159 FnDecl->getParamDecl(0)), 7160 SourceLocation(), 7161 Input); 7162 if (InputInit.isInvalid()) 7163 return ExprError(); 7164 Input = InputInit.take(); 7165 } 7166 7167 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7168 7169 // Determine the result type. 7170 QualType ResultTy = FnDecl->getResultType(); 7171 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7172 ResultTy = ResultTy.getNonLValueExprType(Context); 7173 7174 // Build the actual expression node. 7175 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl); 7176 7177 Args[0] = Input; 7178 CallExpr *TheCall = 7179 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7180 Args, NumArgs, ResultTy, VK, OpLoc); 7181 7182 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7183 FnDecl)) 7184 return ExprError(); 7185 7186 return MaybeBindToTemporary(TheCall); 7187 } else { 7188 // We matched a built-in operator. Convert the arguments, then 7189 // break out so that we will build the appropriate built-in 7190 // operator node. 7191 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 7192 Best->Conversions[0], AA_Passing)) 7193 return ExprError(); 7194 7195 break; 7196 } 7197 } 7198 7199 case OR_No_Viable_Function: 7200 // No viable function; fall through to handling this as a 7201 // built-in operator, which will produce an error message for us. 7202 break; 7203 7204 case OR_Ambiguous: 7205 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 7206 << UnaryOperator::getOpcodeStr(Opc) 7207 << Input->getType() 7208 << Input->getSourceRange(); 7209 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 7210 Args, NumArgs, 7211 UnaryOperator::getOpcodeStr(Opc), OpLoc); 7212 return ExprError(); 7213 7214 case OR_Deleted: 7215 Diag(OpLoc, diag::err_ovl_deleted_oper) 7216 << Best->Function->isDeleted() 7217 << UnaryOperator::getOpcodeStr(Opc) 7218 << Input->getSourceRange(); 7219 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7220 return ExprError(); 7221 } 7222 7223 // Either we found no viable overloaded operator or we matched a 7224 // built-in operator. In either case, fall through to trying to 7225 // build a built-in operation. 7226 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 7227} 7228 7229/// \brief Create a binary operation that may resolve to an overloaded 7230/// operator. 7231/// 7232/// \param OpLoc The location of the operator itself (e.g., '+'). 7233/// 7234/// \param OpcIn The BinaryOperator::Opcode that describes this 7235/// operator. 7236/// 7237/// \param Functions The set of non-member functions that will be 7238/// considered by overload resolution. The caller needs to build this 7239/// set based on the context using, e.g., 7240/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7241/// set should not contain any member functions; those will be added 7242/// by CreateOverloadedBinOp(). 7243/// 7244/// \param LHS Left-hand argument. 7245/// \param RHS Right-hand argument. 7246ExprResult 7247Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 7248 unsigned OpcIn, 7249 const UnresolvedSetImpl &Fns, 7250 Expr *LHS, Expr *RHS) { 7251 Expr *Args[2] = { LHS, RHS }; 7252 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 7253 7254 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 7255 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 7256 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7257 7258 // If either side is type-dependent, create an appropriate dependent 7259 // expression. 7260 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7261 if (Fns.empty()) { 7262 // If there are no functions to store, just build a dependent 7263 // BinaryOperator or CompoundAssignment. 7264 if (Opc <= BO_Assign || Opc > BO_OrAssign) 7265 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 7266 Context.DependentTy, 7267 VK_RValue, OK_Ordinary, 7268 OpLoc)); 7269 7270 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 7271 Context.DependentTy, 7272 VK_LValue, 7273 OK_Ordinary, 7274 Context.DependentTy, 7275 Context.DependentTy, 7276 OpLoc)); 7277 } 7278 7279 // FIXME: save results of ADL from here? 7280 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7281 // TODO: provide better source location info in DNLoc component. 7282 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7283 UnresolvedLookupExpr *Fn 7284 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 7285 0, SourceRange(), OpNameInfo, 7286 /*ADL*/ true, IsOverloaded(Fns), 7287 Fns.begin(), Fns.end()); 7288 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7289 Args, 2, 7290 Context.DependentTy, 7291 VK_RValue, 7292 OpLoc)); 7293 } 7294 7295 // If this is the .* operator, which is not overloadable, just 7296 // create a built-in binary operator. 7297 if (Opc == BO_PtrMemD) 7298 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7299 7300 // If this is the assignment operator, we only perform overload resolution 7301 // if the left-hand side is a class or enumeration type. This is actually 7302 // a hack. The standard requires that we do overload resolution between the 7303 // various built-in candidates, but as DR507 points out, this can lead to 7304 // problems. So we do it this way, which pretty much follows what GCC does. 7305 // Note that we go the traditional code path for compound assignment forms. 7306 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 7307 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7308 7309 // Build an empty overload set. 7310 OverloadCandidateSet CandidateSet(OpLoc); 7311 7312 // Add the candidates from the given function set. 7313 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 7314 7315 // Add operator candidates that are member functions. 7316 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7317 7318 // Add candidates from ADL. 7319 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7320 Args, 2, 7321 /*ExplicitTemplateArgs*/ 0, 7322 CandidateSet); 7323 7324 // Add builtin operator candidates. 7325 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7326 7327 // Perform overload resolution. 7328 OverloadCandidateSet::iterator Best; 7329 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7330 case OR_Success: { 7331 // We found a built-in operator or an overloaded operator. 7332 FunctionDecl *FnDecl = Best->Function; 7333 7334 if (FnDecl) { 7335 // We matched an overloaded operator. Build a call to that 7336 // operator. 7337 7338 // Convert the arguments. 7339 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7340 // Best->Access is only meaningful for class members. 7341 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 7342 7343 ExprResult Arg1 7344 = PerformCopyInitialization( 7345 InitializedEntity::InitializeParameter( 7346 Context, 7347 FnDecl->getParamDecl(0)), 7348 SourceLocation(), 7349 Owned(Args[1])); 7350 if (Arg1.isInvalid()) 7351 return ExprError(); 7352 7353 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7354 Best->FoundDecl, Method)) 7355 return ExprError(); 7356 7357 Args[1] = RHS = Arg1.takeAs<Expr>(); 7358 } else { 7359 // Convert the arguments. 7360 ExprResult Arg0 7361 = PerformCopyInitialization( 7362 InitializedEntity::InitializeParameter( 7363 Context, 7364 FnDecl->getParamDecl(0)), 7365 SourceLocation(), 7366 Owned(Args[0])); 7367 if (Arg0.isInvalid()) 7368 return ExprError(); 7369 7370 ExprResult Arg1 7371 = PerformCopyInitialization( 7372 InitializedEntity::InitializeParameter( 7373 Context, 7374 FnDecl->getParamDecl(1)), 7375 SourceLocation(), 7376 Owned(Args[1])); 7377 if (Arg1.isInvalid()) 7378 return ExprError(); 7379 Args[0] = LHS = Arg0.takeAs<Expr>(); 7380 Args[1] = RHS = Arg1.takeAs<Expr>(); 7381 } 7382 7383 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7384 7385 // Determine the result type. 7386 QualType ResultTy = FnDecl->getResultType(); 7387 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7388 ResultTy = ResultTy.getNonLValueExprType(Context); 7389 7390 // Build the actual expression node. 7391 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc); 7392 7393 CXXOperatorCallExpr *TheCall = 7394 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7395 Args, 2, ResultTy, VK, OpLoc); 7396 7397 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7398 FnDecl)) 7399 return ExprError(); 7400 7401 return MaybeBindToTemporary(TheCall); 7402 } else { 7403 // We matched a built-in operator. Convert the arguments, then 7404 // break out so that we will build the appropriate built-in 7405 // operator node. 7406 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7407 Best->Conversions[0], AA_Passing) || 7408 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7409 Best->Conversions[1], AA_Passing)) 7410 return ExprError(); 7411 7412 break; 7413 } 7414 } 7415 7416 case OR_No_Viable_Function: { 7417 // C++ [over.match.oper]p9: 7418 // If the operator is the operator , [...] and there are no 7419 // viable functions, then the operator is assumed to be the 7420 // built-in operator and interpreted according to clause 5. 7421 if (Opc == BO_Comma) 7422 break; 7423 7424 // For class as left operand for assignment or compound assigment operator 7425 // do not fall through to handling in built-in, but report that no overloaded 7426 // assignment operator found 7427 ExprResult Result = ExprError(); 7428 if (Args[0]->getType()->isRecordType() && 7429 Opc >= BO_Assign && Opc <= BO_OrAssign) { 7430 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7431 << BinaryOperator::getOpcodeStr(Opc) 7432 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7433 } else { 7434 // No viable function; try to create a built-in operation, which will 7435 // produce an error. Then, show the non-viable candidates. 7436 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7437 } 7438 assert(Result.isInvalid() && 7439 "C++ binary operator overloading is missing candidates!"); 7440 if (Result.isInvalid()) 7441 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7442 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7443 return move(Result); 7444 } 7445 7446 case OR_Ambiguous: 7447 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 7448 << BinaryOperator::getOpcodeStr(Opc) 7449 << Args[0]->getType() << Args[1]->getType() 7450 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7451 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7452 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7453 return ExprError(); 7454 7455 case OR_Deleted: 7456 Diag(OpLoc, diag::err_ovl_deleted_oper) 7457 << Best->Function->isDeleted() 7458 << BinaryOperator::getOpcodeStr(Opc) 7459 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7460 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); 7461 return ExprError(); 7462 } 7463 7464 // We matched a built-in operator; build it. 7465 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7466} 7467 7468ExprResult 7469Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 7470 SourceLocation RLoc, 7471 Expr *Base, Expr *Idx) { 7472 Expr *Args[2] = { Base, Idx }; 7473 DeclarationName OpName = 7474 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 7475 7476 // If either side is type-dependent, create an appropriate dependent 7477 // expression. 7478 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7479 7480 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7481 // CHECKME: no 'operator' keyword? 7482 DeclarationNameInfo OpNameInfo(OpName, LLoc); 7483 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 7484 UnresolvedLookupExpr *Fn 7485 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 7486 0, SourceRange(), OpNameInfo, 7487 /*ADL*/ true, /*Overloaded*/ false, 7488 UnresolvedSetIterator(), 7489 UnresolvedSetIterator()); 7490 // Can't add any actual overloads yet 7491 7492 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 7493 Args, 2, 7494 Context.DependentTy, 7495 VK_RValue, 7496 RLoc)); 7497 } 7498 7499 // Build an empty overload set. 7500 OverloadCandidateSet CandidateSet(LLoc); 7501 7502 // Subscript can only be overloaded as a member function. 7503 7504 // Add operator candidates that are member functions. 7505 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7506 7507 // Add builtin operator candidates. 7508 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7509 7510 // Perform overload resolution. 7511 OverloadCandidateSet::iterator Best; 7512 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 7513 case OR_Success: { 7514 // We found a built-in operator or an overloaded operator. 7515 FunctionDecl *FnDecl = Best->Function; 7516 7517 if (FnDecl) { 7518 // We matched an overloaded operator. Build a call to that 7519 // operator. 7520 7521 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 7522 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 7523 7524 // Convert the arguments. 7525 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 7526 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7527 Best->FoundDecl, Method)) 7528 return ExprError(); 7529 7530 // Convert the arguments. 7531 ExprResult InputInit 7532 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7533 Context, 7534 FnDecl->getParamDecl(0)), 7535 SourceLocation(), 7536 Owned(Args[1])); 7537 if (InputInit.isInvalid()) 7538 return ExprError(); 7539 7540 Args[1] = InputInit.takeAs<Expr>(); 7541 7542 // Determine the result type 7543 QualType ResultTy = FnDecl->getResultType(); 7544 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7545 ResultTy = ResultTy.getNonLValueExprType(Context); 7546 7547 // Build the actual expression node. 7548 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc); 7549 7550 CXXOperatorCallExpr *TheCall = 7551 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 7552 FnExpr, Args, 2, 7553 ResultTy, VK, RLoc); 7554 7555 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 7556 FnDecl)) 7557 return ExprError(); 7558 7559 return MaybeBindToTemporary(TheCall); 7560 } else { 7561 // We matched a built-in operator. Convert the arguments, then 7562 // break out so that we will build the appropriate built-in 7563 // operator node. 7564 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7565 Best->Conversions[0], AA_Passing) || 7566 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7567 Best->Conversions[1], AA_Passing)) 7568 return ExprError(); 7569 7570 break; 7571 } 7572 } 7573 7574 case OR_No_Viable_Function: { 7575 if (CandidateSet.empty()) 7576 Diag(LLoc, diag::err_ovl_no_oper) 7577 << Args[0]->getType() << /*subscript*/ 0 7578 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7579 else 7580 Diag(LLoc, diag::err_ovl_no_viable_subscript) 7581 << Args[0]->getType() 7582 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7583 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7584 "[]", LLoc); 7585 return ExprError(); 7586 } 7587 7588 case OR_Ambiguous: 7589 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 7590 << "[]" 7591 << Args[0]->getType() << Args[1]->getType() 7592 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7593 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7594 "[]", LLoc); 7595 return ExprError(); 7596 7597 case OR_Deleted: 7598 Diag(LLoc, diag::err_ovl_deleted_oper) 7599 << Best->Function->isDeleted() << "[]" 7600 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7601 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7602 "[]", LLoc); 7603 return ExprError(); 7604 } 7605 7606 // We matched a built-in operator; build it. 7607 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 7608} 7609 7610/// BuildCallToMemberFunction - Build a call to a member 7611/// function. MemExpr is the expression that refers to the member 7612/// function (and includes the object parameter), Args/NumArgs are the 7613/// arguments to the function call (not including the object 7614/// parameter). The caller needs to validate that the member 7615/// expression refers to a member function or an overloaded member 7616/// function. 7617ExprResult 7618Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 7619 SourceLocation LParenLoc, Expr **Args, 7620 unsigned NumArgs, SourceLocation RParenLoc) { 7621 // Dig out the member expression. This holds both the object 7622 // argument and the member function we're referring to. 7623 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 7624 7625 MemberExpr *MemExpr; 7626 CXXMethodDecl *Method = 0; 7627 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 7628 NestedNameSpecifier *Qualifier = 0; 7629 if (isa<MemberExpr>(NakedMemExpr)) { 7630 MemExpr = cast<MemberExpr>(NakedMemExpr); 7631 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 7632 FoundDecl = MemExpr->getFoundDecl(); 7633 Qualifier = MemExpr->getQualifier(); 7634 } else { 7635 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 7636 Qualifier = UnresExpr->getQualifier(); 7637 7638 QualType ObjectType = UnresExpr->getBaseType(); 7639 7640 // Add overload candidates 7641 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 7642 7643 // FIXME: avoid copy. 7644 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7645 if (UnresExpr->hasExplicitTemplateArgs()) { 7646 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7647 TemplateArgs = &TemplateArgsBuffer; 7648 } 7649 7650 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 7651 E = UnresExpr->decls_end(); I != E; ++I) { 7652 7653 NamedDecl *Func = *I; 7654 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 7655 if (isa<UsingShadowDecl>(Func)) 7656 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 7657 7658 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 7659 // If explicit template arguments were provided, we can't call a 7660 // non-template member function. 7661 if (TemplateArgs) 7662 continue; 7663 7664 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 7665 Args, NumArgs, 7666 CandidateSet, /*SuppressUserConversions=*/false); 7667 } else { 7668 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 7669 I.getPair(), ActingDC, TemplateArgs, 7670 ObjectType, Args, NumArgs, 7671 CandidateSet, 7672 /*SuppressUsedConversions=*/false); 7673 } 7674 } 7675 7676 DeclarationName DeclName = UnresExpr->getMemberName(); 7677 7678 OverloadCandidateSet::iterator Best; 7679 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 7680 Best)) { 7681 case OR_Success: 7682 Method = cast<CXXMethodDecl>(Best->Function); 7683 FoundDecl = Best->FoundDecl; 7684 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 7685 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 7686 break; 7687 7688 case OR_No_Viable_Function: 7689 Diag(UnresExpr->getMemberLoc(), 7690 diag::err_ovl_no_viable_member_function_in_call) 7691 << DeclName << MemExprE->getSourceRange(); 7692 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7693 // FIXME: Leaking incoming expressions! 7694 return ExprError(); 7695 7696 case OR_Ambiguous: 7697 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 7698 << DeclName << MemExprE->getSourceRange(); 7699 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7700 // FIXME: Leaking incoming expressions! 7701 return ExprError(); 7702 7703 case OR_Deleted: 7704 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 7705 << Best->Function->isDeleted() 7706 << DeclName << MemExprE->getSourceRange(); 7707 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7708 // FIXME: Leaking incoming expressions! 7709 return ExprError(); 7710 } 7711 7712 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 7713 7714 // If overload resolution picked a static member, build a 7715 // non-member call based on that function. 7716 if (Method->isStatic()) { 7717 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 7718 Args, NumArgs, RParenLoc); 7719 } 7720 7721 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 7722 } 7723 7724 QualType ResultType = Method->getResultType(); 7725 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7726 ResultType = ResultType.getNonLValueExprType(Context); 7727 7728 assert(Method && "Member call to something that isn't a method?"); 7729 CXXMemberCallExpr *TheCall = 7730 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 7731 ResultType, VK, RParenLoc); 7732 7733 // Check for a valid return type. 7734 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 7735 TheCall, Method)) 7736 return ExprError(); 7737 7738 // Convert the object argument (for a non-static member function call). 7739 // We only need to do this if there was actually an overload; otherwise 7740 // it was done at lookup. 7741 Expr *ObjectArg = MemExpr->getBase(); 7742 if (!Method->isStatic() && 7743 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 7744 FoundDecl, Method)) 7745 return ExprError(); 7746 MemExpr->setBase(ObjectArg); 7747 7748 // Convert the rest of the arguments 7749 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7750 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 7751 RParenLoc)) 7752 return ExprError(); 7753 7754 if (CheckFunctionCall(Method, TheCall)) 7755 return ExprError(); 7756 7757 return MaybeBindToTemporary(TheCall); 7758} 7759 7760/// BuildCallToObjectOfClassType - Build a call to an object of class 7761/// type (C++ [over.call.object]), which can end up invoking an 7762/// overloaded function call operator (@c operator()) or performing a 7763/// user-defined conversion on the object argument. 7764ExprResult 7765Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 7766 SourceLocation LParenLoc, 7767 Expr **Args, unsigned NumArgs, 7768 SourceLocation RParenLoc) { 7769 assert(Object->getType()->isRecordType() && "Requires object type argument"); 7770 const RecordType *Record = Object->getType()->getAs<RecordType>(); 7771 7772 // C++ [over.call.object]p1: 7773 // If the primary-expression E in the function call syntax 7774 // evaluates to a class object of type "cv T", then the set of 7775 // candidate functions includes at least the function call 7776 // operators of T. The function call operators of T are obtained by 7777 // ordinary lookup of the name operator() in the context of 7778 // (E).operator(). 7779 OverloadCandidateSet CandidateSet(LParenLoc); 7780 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 7781 7782 if (RequireCompleteType(LParenLoc, Object->getType(), 7783 PDiag(diag::err_incomplete_object_call) 7784 << Object->getSourceRange())) 7785 return true; 7786 7787 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 7788 LookupQualifiedName(R, Record->getDecl()); 7789 R.suppressDiagnostics(); 7790 7791 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7792 Oper != OperEnd; ++Oper) { 7793 AddMethodCandidate(Oper.getPair(), Object->getType(), 7794 Args, NumArgs, CandidateSet, 7795 /*SuppressUserConversions=*/ false); 7796 } 7797 7798 // C++ [over.call.object]p2: 7799 // In addition, for each conversion function declared in T of the 7800 // form 7801 // 7802 // operator conversion-type-id () cv-qualifier; 7803 // 7804 // where cv-qualifier is the same cv-qualification as, or a 7805 // greater cv-qualification than, cv, and where conversion-type-id 7806 // denotes the type "pointer to function of (P1,...,Pn) returning 7807 // R", or the type "reference to pointer to function of 7808 // (P1,...,Pn) returning R", or the type "reference to function 7809 // of (P1,...,Pn) returning R", a surrogate call function [...] 7810 // is also considered as a candidate function. Similarly, 7811 // surrogate call functions are added to the set of candidate 7812 // functions for each conversion function declared in an 7813 // accessible base class provided the function is not hidden 7814 // within T by another intervening declaration. 7815 const UnresolvedSetImpl *Conversions 7816 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 7817 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 7818 E = Conversions->end(); I != E; ++I) { 7819 NamedDecl *D = *I; 7820 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 7821 if (isa<UsingShadowDecl>(D)) 7822 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7823 7824 // Skip over templated conversion functions; they aren't 7825 // surrogates. 7826 if (isa<FunctionTemplateDecl>(D)) 7827 continue; 7828 7829 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7830 7831 // Strip the reference type (if any) and then the pointer type (if 7832 // any) to get down to what might be a function type. 7833 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 7834 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7835 ConvType = ConvPtrType->getPointeeType(); 7836 7837 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 7838 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 7839 Object->getType(), Args, NumArgs, 7840 CandidateSet); 7841 } 7842 7843 // Perform overload resolution. 7844 OverloadCandidateSet::iterator Best; 7845 switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(), 7846 Best)) { 7847 case OR_Success: 7848 // Overload resolution succeeded; we'll build the appropriate call 7849 // below. 7850 break; 7851 7852 case OR_No_Viable_Function: 7853 if (CandidateSet.empty()) 7854 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 7855 << Object->getType() << /*call*/ 1 7856 << Object->getSourceRange(); 7857 else 7858 Diag(Object->getSourceRange().getBegin(), 7859 diag::err_ovl_no_viable_object_call) 7860 << Object->getType() << Object->getSourceRange(); 7861 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7862 break; 7863 7864 case OR_Ambiguous: 7865 Diag(Object->getSourceRange().getBegin(), 7866 diag::err_ovl_ambiguous_object_call) 7867 << Object->getType() << Object->getSourceRange(); 7868 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 7869 break; 7870 7871 case OR_Deleted: 7872 Diag(Object->getSourceRange().getBegin(), 7873 diag::err_ovl_deleted_object_call) 7874 << Best->Function->isDeleted() 7875 << Object->getType() << Object->getSourceRange(); 7876 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7877 break; 7878 } 7879 7880 if (Best == CandidateSet.end()) 7881 return true; 7882 7883 if (Best->Function == 0) { 7884 // Since there is no function declaration, this is one of the 7885 // surrogate candidates. Dig out the conversion function. 7886 CXXConversionDecl *Conv 7887 = cast<CXXConversionDecl>( 7888 Best->Conversions[0].UserDefined.ConversionFunction); 7889 7890 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7891 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7892 7893 // We selected one of the surrogate functions that converts the 7894 // object parameter to a function pointer. Perform the conversion 7895 // on the object argument, then let ActOnCallExpr finish the job. 7896 7897 // Create an implicit member expr to refer to the conversion operator. 7898 // and then call it. 7899 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 7900 Conv); 7901 7902 return ActOnCallExpr(S, CE, LParenLoc, MultiExprArg(Args, NumArgs), 7903 RParenLoc); 7904 } 7905 7906 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7907 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7908 7909 // We found an overloaded operator(). Build a CXXOperatorCallExpr 7910 // that calls this method, using Object for the implicit object 7911 // parameter and passing along the remaining arguments. 7912 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7913 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7914 7915 unsigned NumArgsInProto = Proto->getNumArgs(); 7916 unsigned NumArgsToCheck = NumArgs; 7917 7918 // Build the full argument list for the method call (the 7919 // implicit object parameter is placed at the beginning of the 7920 // list). 7921 Expr **MethodArgs; 7922 if (NumArgs < NumArgsInProto) { 7923 NumArgsToCheck = NumArgsInProto; 7924 MethodArgs = new Expr*[NumArgsInProto + 1]; 7925 } else { 7926 MethodArgs = new Expr*[NumArgs + 1]; 7927 } 7928 MethodArgs[0] = Object; 7929 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7930 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 7931 7932 Expr *NewFn = CreateFunctionRefExpr(*this, Method); 7933 7934 // Once we've built TheCall, all of the expressions are properly 7935 // owned. 7936 QualType ResultTy = Method->getResultType(); 7937 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7938 ResultTy = ResultTy.getNonLValueExprType(Context); 7939 7940 CXXOperatorCallExpr *TheCall = 7941 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7942 MethodArgs, NumArgs + 1, 7943 ResultTy, VK, RParenLoc); 7944 delete [] MethodArgs; 7945 7946 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 7947 Method)) 7948 return true; 7949 7950 // We may have default arguments. If so, we need to allocate more 7951 // slots in the call for them. 7952 if (NumArgs < NumArgsInProto) 7953 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7954 else if (NumArgs > NumArgsInProto) 7955 NumArgsToCheck = NumArgsInProto; 7956 7957 bool IsError = false; 7958 7959 // Initialize the implicit object parameter. 7960 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7961 Best->FoundDecl, Method); 7962 TheCall->setArg(0, Object); 7963 7964 7965 // Check the argument types. 7966 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7967 Expr *Arg; 7968 if (i < NumArgs) { 7969 Arg = Args[i]; 7970 7971 // Pass the argument. 7972 7973 ExprResult InputInit 7974 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7975 Context, 7976 Method->getParamDecl(i)), 7977 SourceLocation(), Arg); 7978 7979 IsError |= InputInit.isInvalid(); 7980 Arg = InputInit.takeAs<Expr>(); 7981 } else { 7982 ExprResult DefArg 7983 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7984 if (DefArg.isInvalid()) { 7985 IsError = true; 7986 break; 7987 } 7988 7989 Arg = DefArg.takeAs<Expr>(); 7990 } 7991 7992 TheCall->setArg(i + 1, Arg); 7993 } 7994 7995 // If this is a variadic call, handle args passed through "...". 7996 if (Proto->isVariadic()) { 7997 // Promote the arguments (C99 6.5.2.2p7). 7998 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7999 Expr *Arg = Args[i]; 8000 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 8001 TheCall->setArg(i + 1, Arg); 8002 } 8003 } 8004 8005 if (IsError) return true; 8006 8007 if (CheckFunctionCall(Method, TheCall)) 8008 return true; 8009 8010 return MaybeBindToTemporary(TheCall); 8011} 8012 8013/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 8014/// (if one exists), where @c Base is an expression of class type and 8015/// @c Member is the name of the member we're trying to find. 8016ExprResult 8017Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 8018 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 8019 8020 SourceLocation Loc = Base->getExprLoc(); 8021 8022 // C++ [over.ref]p1: 8023 // 8024 // [...] An expression x->m is interpreted as (x.operator->())->m 8025 // for a class object x of type T if T::operator->() exists and if 8026 // the operator is selected as the best match function by the 8027 // overload resolution mechanism (13.3). 8028 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 8029 OverloadCandidateSet CandidateSet(Loc); 8030 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 8031 8032 if (RequireCompleteType(Loc, Base->getType(), 8033 PDiag(diag::err_typecheck_incomplete_tag) 8034 << Base->getSourceRange())) 8035 return ExprError(); 8036 8037 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 8038 LookupQualifiedName(R, BaseRecord->getDecl()); 8039 R.suppressDiagnostics(); 8040 8041 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8042 Oper != OperEnd; ++Oper) { 8043 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 8044 /*SuppressUserConversions=*/false); 8045 } 8046 8047 // Perform overload resolution. 8048 OverloadCandidateSet::iterator Best; 8049 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8050 case OR_Success: 8051 // Overload resolution succeeded; we'll build the call below. 8052 break; 8053 8054 case OR_No_Viable_Function: 8055 if (CandidateSet.empty()) 8056 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 8057 << Base->getType() << Base->getSourceRange(); 8058 else 8059 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8060 << "operator->" << Base->getSourceRange(); 8061 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8062 return ExprError(); 8063 8064 case OR_Ambiguous: 8065 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 8066 << "->" << Base->getType() << Base->getSourceRange(); 8067 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 8068 return ExprError(); 8069 8070 case OR_Deleted: 8071 Diag(OpLoc, diag::err_ovl_deleted_oper) 8072 << Best->Function->isDeleted() 8073 << "->" << Base->getSourceRange(); 8074 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8075 return ExprError(); 8076 } 8077 8078 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 8079 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8080 8081 // Convert the object parameter. 8082 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8083 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 8084 Best->FoundDecl, Method)) 8085 return ExprError(); 8086 8087 // Build the operator call. 8088 Expr *FnExpr = CreateFunctionRefExpr(*this, Method); 8089 8090 QualType ResultTy = Method->getResultType(); 8091 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8092 ResultTy = ResultTy.getNonLValueExprType(Context); 8093 CXXOperatorCallExpr *TheCall = 8094 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 8095 &Base, 1, ResultTy, VK, OpLoc); 8096 8097 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 8098 Method)) 8099 return ExprError(); 8100 return Owned(TheCall); 8101} 8102 8103/// FixOverloadedFunctionReference - E is an expression that refers to 8104/// a C++ overloaded function (possibly with some parentheses and 8105/// perhaps a '&' around it). We have resolved the overloaded function 8106/// to the function declaration Fn, so patch up the expression E to 8107/// refer (possibly indirectly) to Fn. Returns the new expr. 8108Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 8109 FunctionDecl *Fn) { 8110 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 8111 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 8112 Found, Fn); 8113 if (SubExpr == PE->getSubExpr()) 8114 return PE; 8115 8116 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 8117 } 8118 8119 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8120 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 8121 Found, Fn); 8122 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 8123 SubExpr->getType()) && 8124 "Implicit cast type cannot be determined from overload"); 8125 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 8126 if (SubExpr == ICE->getSubExpr()) 8127 return ICE; 8128 8129 return ImplicitCastExpr::Create(Context, ICE->getType(), 8130 ICE->getCastKind(), 8131 SubExpr, 0, 8132 ICE->getValueKind()); 8133 } 8134 8135 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 8136 assert(UnOp->getOpcode() == UO_AddrOf && 8137 "Can only take the address of an overloaded function"); 8138 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8139 if (Method->isStatic()) { 8140 // Do nothing: static member functions aren't any different 8141 // from non-member functions. 8142 } else { 8143 // Fix the sub expression, which really has to be an 8144 // UnresolvedLookupExpr holding an overloaded member function 8145 // or template. 8146 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8147 Found, Fn); 8148 if (SubExpr == UnOp->getSubExpr()) 8149 return UnOp; 8150 8151 assert(isa<DeclRefExpr>(SubExpr) 8152 && "fixed to something other than a decl ref"); 8153 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 8154 && "fixed to a member ref with no nested name qualifier"); 8155 8156 // We have taken the address of a pointer to member 8157 // function. Perform the computation here so that we get the 8158 // appropriate pointer to member type. 8159 QualType ClassType 8160 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 8161 QualType MemPtrType 8162 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 8163 8164 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 8165 VK_RValue, OK_Ordinary, 8166 UnOp->getOperatorLoc()); 8167 } 8168 } 8169 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8170 Found, Fn); 8171 if (SubExpr == UnOp->getSubExpr()) 8172 return UnOp; 8173 8174 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 8175 Context.getPointerType(SubExpr->getType()), 8176 VK_RValue, OK_Ordinary, 8177 UnOp->getOperatorLoc()); 8178 } 8179 8180 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 8181 // FIXME: avoid copy. 8182 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8183 if (ULE->hasExplicitTemplateArgs()) { 8184 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 8185 TemplateArgs = &TemplateArgsBuffer; 8186 } 8187 8188 return DeclRefExpr::Create(Context, 8189 ULE->getQualifier(), 8190 ULE->getQualifierRange(), 8191 Fn, 8192 ULE->getNameLoc(), 8193 Fn->getType(), 8194 VK_LValue, 8195 TemplateArgs); 8196 } 8197 8198 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 8199 // FIXME: avoid copy. 8200 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8201 if (MemExpr->hasExplicitTemplateArgs()) { 8202 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8203 TemplateArgs = &TemplateArgsBuffer; 8204 } 8205 8206 Expr *Base; 8207 8208 // If we're filling in a static method where we used to have an 8209 // implicit member access, rewrite to a simple decl ref. 8210 if (MemExpr->isImplicitAccess()) { 8211 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 8212 return DeclRefExpr::Create(Context, 8213 MemExpr->getQualifier(), 8214 MemExpr->getQualifierRange(), 8215 Fn, 8216 MemExpr->getMemberLoc(), 8217 Fn->getType(), 8218 VK_LValue, 8219 TemplateArgs); 8220 } else { 8221 SourceLocation Loc = MemExpr->getMemberLoc(); 8222 if (MemExpr->getQualifier()) 8223 Loc = MemExpr->getQualifierRange().getBegin(); 8224 Base = new (Context) CXXThisExpr(Loc, 8225 MemExpr->getBaseType(), 8226 /*isImplicit=*/true); 8227 } 8228 } else 8229 Base = MemExpr->getBase(); 8230 8231 return MemberExpr::Create(Context, Base, 8232 MemExpr->isArrow(), 8233 MemExpr->getQualifier(), 8234 MemExpr->getQualifierRange(), 8235 Fn, 8236 Found, 8237 MemExpr->getMemberNameInfo(), 8238 TemplateArgs, 8239 Fn->getType(), 8240 cast<CXXMethodDecl>(Fn)->isStatic() 8241 ? VK_LValue : VK_RValue, 8242 OK_Ordinary); 8243 } 8244 8245 llvm_unreachable("Invalid reference to overloaded function"); 8246 return E; 8247} 8248 8249ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 8250 DeclAccessPair Found, 8251 FunctionDecl *Fn) { 8252 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 8253} 8254 8255} // end namespace clang 8256