SemaOverload.cpp revision ddb0ce750c425af474008f091fb7a3483e980335
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion, 56 ICC_Conversion, 57 ICC_Conversion 58 }; 59 return Category[(int)Kind]; 60} 61 62/// GetConversionRank - Retrieve the implicit conversion rank 63/// corresponding to the given implicit conversion kind. 64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 65 static const ImplicitConversionRank 66 Rank[(int)ICK_Num_Conversion_Kinds] = { 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Exact_Match, 72 ICR_Exact_Match, 73 ICR_Promotion, 74 ICR_Promotion, 75 ICR_Promotion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion, 84 ICR_Conversion, 85 ICR_Conversion, 86 ICR_Conversion, 87 ICR_Complex_Real_Conversion 88 }; 89 return Rank[(int)Kind]; 90} 91 92/// GetImplicitConversionName - Return the name of this kind of 93/// implicit conversion. 94const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 95 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 96 "No conversion", 97 "Lvalue-to-rvalue", 98 "Array-to-pointer", 99 "Function-to-pointer", 100 "Noreturn adjustment", 101 "Qualification", 102 "Integral promotion", 103 "Floating point promotion", 104 "Complex promotion", 105 "Integral conversion", 106 "Floating conversion", 107 "Complex conversion", 108 "Floating-integral conversion", 109 "Pointer conversion", 110 "Pointer-to-member conversion", 111 "Boolean conversion", 112 "Compatible-types conversion", 113 "Derived-to-base conversion", 114 "Vector conversion", 115 "Vector splat", 116 "Complex-real conversion" 117 }; 118 return Name[Kind]; 119} 120 121/// StandardConversionSequence - Set the standard conversion 122/// sequence to the identity conversion. 123void StandardConversionSequence::setAsIdentityConversion() { 124 First = ICK_Identity; 125 Second = ICK_Identity; 126 Third = ICK_Identity; 127 DeprecatedStringLiteralToCharPtr = false; 128 ReferenceBinding = false; 129 DirectBinding = false; 130 RRefBinding = false; 131 CopyConstructor = 0; 132} 133 134/// getRank - Retrieve the rank of this standard conversion sequence 135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 136/// implicit conversions. 137ImplicitConversionRank StandardConversionSequence::getRank() const { 138 ImplicitConversionRank Rank = ICR_Exact_Match; 139 if (GetConversionRank(First) > Rank) 140 Rank = GetConversionRank(First); 141 if (GetConversionRank(Second) > Rank) 142 Rank = GetConversionRank(Second); 143 if (GetConversionRank(Third) > Rank) 144 Rank = GetConversionRank(Third); 145 return Rank; 146} 147 148/// isPointerConversionToBool - Determines whether this conversion is 149/// a conversion of a pointer or pointer-to-member to bool. This is 150/// used as part of the ranking of standard conversion sequences 151/// (C++ 13.3.3.2p4). 152bool StandardConversionSequence::isPointerConversionToBool() const { 153 // Note that FromType has not necessarily been transformed by the 154 // array-to-pointer or function-to-pointer implicit conversions, so 155 // check for their presence as well as checking whether FromType is 156 // a pointer. 157 if (getToType(1)->isBooleanType() && 158 (getFromType()->isPointerType() || 159 getFromType()->isObjCObjectPointerType() || 160 getFromType()->isBlockPointerType() || 161 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 162 return true; 163 164 return false; 165} 166 167/// isPointerConversionToVoidPointer - Determines whether this 168/// conversion is a conversion of a pointer to a void pointer. This is 169/// used as part of the ranking of standard conversion sequences (C++ 170/// 13.3.3.2p4). 171bool 172StandardConversionSequence:: 173isPointerConversionToVoidPointer(ASTContext& Context) const { 174 QualType FromType = getFromType(); 175 QualType ToType = getToType(1); 176 177 // Note that FromType has not necessarily been transformed by the 178 // array-to-pointer implicit conversion, so check for its presence 179 // and redo the conversion to get a pointer. 180 if (First == ICK_Array_To_Pointer) 181 FromType = Context.getArrayDecayedType(FromType); 182 183 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 184 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 185 return ToPtrType->getPointeeType()->isVoidType(); 186 187 return false; 188} 189 190/// DebugPrint - Print this standard conversion sequence to standard 191/// error. Useful for debugging overloading issues. 192void StandardConversionSequence::DebugPrint() const { 193 llvm::raw_ostream &OS = llvm::errs(); 194 bool PrintedSomething = false; 195 if (First != ICK_Identity) { 196 OS << GetImplicitConversionName(First); 197 PrintedSomething = true; 198 } 199 200 if (Second != ICK_Identity) { 201 if (PrintedSomething) { 202 OS << " -> "; 203 } 204 OS << GetImplicitConversionName(Second); 205 206 if (CopyConstructor) { 207 OS << " (by copy constructor)"; 208 } else if (DirectBinding) { 209 OS << " (direct reference binding)"; 210 } else if (ReferenceBinding) { 211 OS << " (reference binding)"; 212 } 213 PrintedSomething = true; 214 } 215 216 if (Third != ICK_Identity) { 217 if (PrintedSomething) { 218 OS << " -> "; 219 } 220 OS << GetImplicitConversionName(Third); 221 PrintedSomething = true; 222 } 223 224 if (!PrintedSomething) { 225 OS << "No conversions required"; 226 } 227} 228 229/// DebugPrint - Print this user-defined conversion sequence to standard 230/// error. Useful for debugging overloading issues. 231void UserDefinedConversionSequence::DebugPrint() const { 232 llvm::raw_ostream &OS = llvm::errs(); 233 if (Before.First || Before.Second || Before.Third) { 234 Before.DebugPrint(); 235 OS << " -> "; 236 } 237 OS << '\'' << ConversionFunction << '\''; 238 if (After.First || After.Second || After.Third) { 239 OS << " -> "; 240 After.DebugPrint(); 241 } 242} 243 244/// DebugPrint - Print this implicit conversion sequence to standard 245/// error. Useful for debugging overloading issues. 246void ImplicitConversionSequence::DebugPrint() const { 247 llvm::raw_ostream &OS = llvm::errs(); 248 switch (ConversionKind) { 249 case StandardConversion: 250 OS << "Standard conversion: "; 251 Standard.DebugPrint(); 252 break; 253 case UserDefinedConversion: 254 OS << "User-defined conversion: "; 255 UserDefined.DebugPrint(); 256 break; 257 case EllipsisConversion: 258 OS << "Ellipsis conversion"; 259 break; 260 case AmbiguousConversion: 261 OS << "Ambiguous conversion"; 262 break; 263 case BadConversion: 264 OS << "Bad conversion"; 265 break; 266 } 267 268 OS << "\n"; 269} 270 271void AmbiguousConversionSequence::construct() { 272 new (&conversions()) ConversionSet(); 273} 274 275void AmbiguousConversionSequence::destruct() { 276 conversions().~ConversionSet(); 277} 278 279void 280AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 281 FromTypePtr = O.FromTypePtr; 282 ToTypePtr = O.ToTypePtr; 283 new (&conversions()) ConversionSet(O.conversions()); 284} 285 286namespace { 287 // Structure used by OverloadCandidate::DeductionFailureInfo to store 288 // template parameter and template argument information. 289 struct DFIParamWithArguments { 290 TemplateParameter Param; 291 TemplateArgument FirstArg; 292 TemplateArgument SecondArg; 293 }; 294} 295 296/// \brief Convert from Sema's representation of template deduction information 297/// to the form used in overload-candidate information. 298OverloadCandidate::DeductionFailureInfo 299static MakeDeductionFailureInfo(ASTContext &Context, 300 Sema::TemplateDeductionResult TDK, 301 Sema::TemplateDeductionInfo &Info) { 302 OverloadCandidate::DeductionFailureInfo Result; 303 Result.Result = static_cast<unsigned>(TDK); 304 Result.Data = 0; 305 switch (TDK) { 306 case Sema::TDK_Success: 307 case Sema::TDK_InstantiationDepth: 308 case Sema::TDK_TooManyArguments: 309 case Sema::TDK_TooFewArguments: 310 break; 311 312 case Sema::TDK_Incomplete: 313 case Sema::TDK_InvalidExplicitArguments: 314 Result.Data = Info.Param.getOpaqueValue(); 315 break; 316 317 case Sema::TDK_Inconsistent: 318 case Sema::TDK_InconsistentQuals: { 319 // FIXME: Should allocate from normal heap so that we can free this later. 320 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 321 Saved->Param = Info.Param; 322 Saved->FirstArg = Info.FirstArg; 323 Saved->SecondArg = Info.SecondArg; 324 Result.Data = Saved; 325 break; 326 } 327 328 case Sema::TDK_SubstitutionFailure: 329 Result.Data = Info.take(); 330 break; 331 332 case Sema::TDK_NonDeducedMismatch: 333 case Sema::TDK_FailedOverloadResolution: 334 break; 335 } 336 337 return Result; 338} 339 340void OverloadCandidate::DeductionFailureInfo::Destroy() { 341 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 342 case Sema::TDK_Success: 343 case Sema::TDK_InstantiationDepth: 344 case Sema::TDK_Incomplete: 345 case Sema::TDK_TooManyArguments: 346 case Sema::TDK_TooFewArguments: 347 case Sema::TDK_InvalidExplicitArguments: 348 break; 349 350 case Sema::TDK_Inconsistent: 351 case Sema::TDK_InconsistentQuals: 352 // FIXME: Destroy the data? 353 Data = 0; 354 break; 355 356 case Sema::TDK_SubstitutionFailure: 357 // FIXME: Destroy the template arugment list? 358 Data = 0; 359 break; 360 361 // Unhandled 362 case Sema::TDK_NonDeducedMismatch: 363 case Sema::TDK_FailedOverloadResolution: 364 break; 365 } 366} 367 368TemplateParameter 369OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 370 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 371 case Sema::TDK_Success: 372 case Sema::TDK_InstantiationDepth: 373 case Sema::TDK_TooManyArguments: 374 case Sema::TDK_TooFewArguments: 375 case Sema::TDK_SubstitutionFailure: 376 return TemplateParameter(); 377 378 case Sema::TDK_Incomplete: 379 case Sema::TDK_InvalidExplicitArguments: 380 return TemplateParameter::getFromOpaqueValue(Data); 381 382 case Sema::TDK_Inconsistent: 383 case Sema::TDK_InconsistentQuals: 384 return static_cast<DFIParamWithArguments*>(Data)->Param; 385 386 // Unhandled 387 case Sema::TDK_NonDeducedMismatch: 388 case Sema::TDK_FailedOverloadResolution: 389 break; 390 } 391 392 return TemplateParameter(); 393} 394 395TemplateArgumentList * 396OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 397 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 398 case Sema::TDK_Success: 399 case Sema::TDK_InstantiationDepth: 400 case Sema::TDK_TooManyArguments: 401 case Sema::TDK_TooFewArguments: 402 case Sema::TDK_Incomplete: 403 case Sema::TDK_InvalidExplicitArguments: 404 case Sema::TDK_Inconsistent: 405 case Sema::TDK_InconsistentQuals: 406 return 0; 407 408 case Sema::TDK_SubstitutionFailure: 409 return static_cast<TemplateArgumentList*>(Data); 410 411 // Unhandled 412 case Sema::TDK_NonDeducedMismatch: 413 case Sema::TDK_FailedOverloadResolution: 414 break; 415 } 416 417 return 0; 418} 419 420const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 421 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 422 case Sema::TDK_Success: 423 case Sema::TDK_InstantiationDepth: 424 case Sema::TDK_Incomplete: 425 case Sema::TDK_TooManyArguments: 426 case Sema::TDK_TooFewArguments: 427 case Sema::TDK_InvalidExplicitArguments: 428 case Sema::TDK_SubstitutionFailure: 429 return 0; 430 431 case Sema::TDK_Inconsistent: 432 case Sema::TDK_InconsistentQuals: 433 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 434 435 // Unhandled 436 case Sema::TDK_NonDeducedMismatch: 437 case Sema::TDK_FailedOverloadResolution: 438 break; 439 } 440 441 return 0; 442} 443 444const TemplateArgument * 445OverloadCandidate::DeductionFailureInfo::getSecondArg() { 446 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 447 case Sema::TDK_Success: 448 case Sema::TDK_InstantiationDepth: 449 case Sema::TDK_Incomplete: 450 case Sema::TDK_TooManyArguments: 451 case Sema::TDK_TooFewArguments: 452 case Sema::TDK_InvalidExplicitArguments: 453 case Sema::TDK_SubstitutionFailure: 454 return 0; 455 456 case Sema::TDK_Inconsistent: 457 case Sema::TDK_InconsistentQuals: 458 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 459 460 // Unhandled 461 case Sema::TDK_NonDeducedMismatch: 462 case Sema::TDK_FailedOverloadResolution: 463 break; 464 } 465 466 return 0; 467} 468 469void OverloadCandidateSet::clear() { 470 inherited::clear(); 471 Functions.clear(); 472} 473 474// IsOverload - Determine whether the given New declaration is an 475// overload of the declarations in Old. This routine returns false if 476// New and Old cannot be overloaded, e.g., if New has the same 477// signature as some function in Old (C++ 1.3.10) or if the Old 478// declarations aren't functions (or function templates) at all. When 479// it does return false, MatchedDecl will point to the decl that New 480// cannot be overloaded with. This decl may be a UsingShadowDecl on 481// top of the underlying declaration. 482// 483// Example: Given the following input: 484// 485// void f(int, float); // #1 486// void f(int, int); // #2 487// int f(int, int); // #3 488// 489// When we process #1, there is no previous declaration of "f", 490// so IsOverload will not be used. 491// 492// When we process #2, Old contains only the FunctionDecl for #1. By 493// comparing the parameter types, we see that #1 and #2 are overloaded 494// (since they have different signatures), so this routine returns 495// false; MatchedDecl is unchanged. 496// 497// When we process #3, Old is an overload set containing #1 and #2. We 498// compare the signatures of #3 to #1 (they're overloaded, so we do 499// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 500// identical (return types of functions are not part of the 501// signature), IsOverload returns false and MatchedDecl will be set to 502// point to the FunctionDecl for #2. 503Sema::OverloadKind 504Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 505 NamedDecl *&Match) { 506 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 507 I != E; ++I) { 508 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 509 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 510 if (!IsOverload(New, OldT->getTemplatedDecl())) { 511 Match = *I; 512 return Ovl_Match; 513 } 514 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 515 if (!IsOverload(New, OldF)) { 516 Match = *I; 517 return Ovl_Match; 518 } 519 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 520 // We can overload with these, which can show up when doing 521 // redeclaration checks for UsingDecls. 522 assert(Old.getLookupKind() == LookupUsingDeclName); 523 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 524 // Optimistically assume that an unresolved using decl will 525 // overload; if it doesn't, we'll have to diagnose during 526 // template instantiation. 527 } else { 528 // (C++ 13p1): 529 // Only function declarations can be overloaded; object and type 530 // declarations cannot be overloaded. 531 Match = *I; 532 return Ovl_NonFunction; 533 } 534 } 535 536 return Ovl_Overload; 537} 538 539bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 540 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 541 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 542 543 // C++ [temp.fct]p2: 544 // A function template can be overloaded with other function templates 545 // and with normal (non-template) functions. 546 if ((OldTemplate == 0) != (NewTemplate == 0)) 547 return true; 548 549 // Is the function New an overload of the function Old? 550 QualType OldQType = Context.getCanonicalType(Old->getType()); 551 QualType NewQType = Context.getCanonicalType(New->getType()); 552 553 // Compare the signatures (C++ 1.3.10) of the two functions to 554 // determine whether they are overloads. If we find any mismatch 555 // in the signature, they are overloads. 556 557 // If either of these functions is a K&R-style function (no 558 // prototype), then we consider them to have matching signatures. 559 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 560 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 561 return false; 562 563 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 564 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 565 566 // The signature of a function includes the types of its 567 // parameters (C++ 1.3.10), which includes the presence or absence 568 // of the ellipsis; see C++ DR 357). 569 if (OldQType != NewQType && 570 (OldType->getNumArgs() != NewType->getNumArgs() || 571 OldType->isVariadic() != NewType->isVariadic() || 572 !FunctionArgTypesAreEqual(OldType, NewType))) 573 return true; 574 575 // C++ [temp.over.link]p4: 576 // The signature of a function template consists of its function 577 // signature, its return type and its template parameter list. The names 578 // of the template parameters are significant only for establishing the 579 // relationship between the template parameters and the rest of the 580 // signature. 581 // 582 // We check the return type and template parameter lists for function 583 // templates first; the remaining checks follow. 584 if (NewTemplate && 585 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 586 OldTemplate->getTemplateParameters(), 587 false, TPL_TemplateMatch) || 588 OldType->getResultType() != NewType->getResultType())) 589 return true; 590 591 // If the function is a class member, its signature includes the 592 // cv-qualifiers (if any) on the function itself. 593 // 594 // As part of this, also check whether one of the member functions 595 // is static, in which case they are not overloads (C++ 596 // 13.1p2). While not part of the definition of the signature, 597 // this check is important to determine whether these functions 598 // can be overloaded. 599 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 600 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 601 if (OldMethod && NewMethod && 602 !OldMethod->isStatic() && !NewMethod->isStatic() && 603 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 604 return true; 605 606 // The signatures match; this is not an overload. 607 return false; 608} 609 610/// TryImplicitConversion - Attempt to perform an implicit conversion 611/// from the given expression (Expr) to the given type (ToType). This 612/// function returns an implicit conversion sequence that can be used 613/// to perform the initialization. Given 614/// 615/// void f(float f); 616/// void g(int i) { f(i); } 617/// 618/// this routine would produce an implicit conversion sequence to 619/// describe the initialization of f from i, which will be a standard 620/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 621/// 4.1) followed by a floating-integral conversion (C++ 4.9). 622// 623/// Note that this routine only determines how the conversion can be 624/// performed; it does not actually perform the conversion. As such, 625/// it will not produce any diagnostics if no conversion is available, 626/// but will instead return an implicit conversion sequence of kind 627/// "BadConversion". 628/// 629/// If @p SuppressUserConversions, then user-defined conversions are 630/// not permitted. 631/// If @p AllowExplicit, then explicit user-defined conversions are 632/// permitted. 633ImplicitConversionSequence 634Sema::TryImplicitConversion(Expr* From, QualType ToType, 635 bool SuppressUserConversions, 636 bool AllowExplicit, 637 bool InOverloadResolution) { 638 ImplicitConversionSequence ICS; 639 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { 640 ICS.setStandard(); 641 return ICS; 642 } 643 644 if (!getLangOptions().CPlusPlus) { 645 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 646 return ICS; 647 } 648 649 if (SuppressUserConversions) { 650 // C++ [over.ics.user]p4: 651 // A conversion of an expression of class type to the same class 652 // type is given Exact Match rank, and a conversion of an 653 // expression of class type to a base class of that type is 654 // given Conversion rank, in spite of the fact that a copy/move 655 // constructor (i.e., a user-defined conversion function) is 656 // called for those cases. 657 QualType FromType = From->getType(); 658 if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() || 659 !(Context.hasSameUnqualifiedType(FromType, ToType) || 660 IsDerivedFrom(FromType, ToType))) { 661 // We're not in the case above, so there is no conversion that 662 // we can perform. 663 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 664 return ICS; 665 } 666 667 ICS.setStandard(); 668 ICS.Standard.setAsIdentityConversion(); 669 ICS.Standard.setFromType(FromType); 670 ICS.Standard.setAllToTypes(ToType); 671 672 // We don't actually check at this point whether there is a valid 673 // copy/move constructor, since overloading just assumes that it 674 // exists. When we actually perform initialization, we'll find the 675 // appropriate constructor to copy the returned object, if needed. 676 ICS.Standard.CopyConstructor = 0; 677 678 // Determine whether this is considered a derived-to-base conversion. 679 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 680 ICS.Standard.Second = ICK_Derived_To_Base; 681 682 return ICS; 683 } 684 685 // Attempt user-defined conversion. 686 OverloadCandidateSet Conversions(From->getExprLoc()); 687 OverloadingResult UserDefResult 688 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, 689 AllowExplicit); 690 691 if (UserDefResult == OR_Success) { 692 ICS.setUserDefined(); 693 // C++ [over.ics.user]p4: 694 // A conversion of an expression of class type to the same class 695 // type is given Exact Match rank, and a conversion of an 696 // expression of class type to a base class of that type is 697 // given Conversion rank, in spite of the fact that a copy 698 // constructor (i.e., a user-defined conversion function) is 699 // called for those cases. 700 if (CXXConstructorDecl *Constructor 701 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 702 QualType FromCanon 703 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 704 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 705 if (Constructor->isCopyConstructor() && 706 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 707 // Turn this into a "standard" conversion sequence, so that it 708 // gets ranked with standard conversion sequences. 709 ICS.setStandard(); 710 ICS.Standard.setAsIdentityConversion(); 711 ICS.Standard.setFromType(From->getType()); 712 ICS.Standard.setAllToTypes(ToType); 713 ICS.Standard.CopyConstructor = Constructor; 714 if (ToCanon != FromCanon) 715 ICS.Standard.Second = ICK_Derived_To_Base; 716 } 717 } 718 719 // C++ [over.best.ics]p4: 720 // However, when considering the argument of a user-defined 721 // conversion function that is a candidate by 13.3.1.3 when 722 // invoked for the copying of the temporary in the second step 723 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 724 // 13.3.1.6 in all cases, only standard conversion sequences and 725 // ellipsis conversion sequences are allowed. 726 if (SuppressUserConversions && ICS.isUserDefined()) { 727 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 728 } 729 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 730 ICS.setAmbiguous(); 731 ICS.Ambiguous.setFromType(From->getType()); 732 ICS.Ambiguous.setToType(ToType); 733 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 734 Cand != Conversions.end(); ++Cand) 735 if (Cand->Viable) 736 ICS.Ambiguous.addConversion(Cand->Function); 737 } else { 738 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 739 } 740 741 return ICS; 742} 743 744/// PerformImplicitConversion - Perform an implicit conversion of the 745/// expression From to the type ToType. Returns true if there was an 746/// error, false otherwise. The expression From is replaced with the 747/// converted expression. Flavor is the kind of conversion we're 748/// performing, used in the error message. If @p AllowExplicit, 749/// explicit user-defined conversions are permitted. 750bool 751Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 752 AssignmentAction Action, bool AllowExplicit) { 753 ImplicitConversionSequence ICS; 754 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 755} 756 757bool 758Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 759 AssignmentAction Action, bool AllowExplicit, 760 ImplicitConversionSequence& ICS) { 761 ICS = TryImplicitConversion(From, ToType, 762 /*SuppressUserConversions=*/false, 763 AllowExplicit, 764 /*InOverloadResolution=*/false); 765 return PerformImplicitConversion(From, ToType, ICS, Action); 766} 767 768/// \brief Determine whether the conversion from FromType to ToType is a valid 769/// conversion that strips "noreturn" off the nested function type. 770static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 771 QualType ToType, QualType &ResultTy) { 772 if (Context.hasSameUnqualifiedType(FromType, ToType)) 773 return false; 774 775 // Strip the noreturn off the type we're converting from; noreturn can 776 // safely be removed. 777 FromType = Context.getNoReturnType(FromType, false); 778 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 779 return false; 780 781 ResultTy = FromType; 782 return true; 783} 784 785/// \brief Determine whether the conversion from FromType to ToType is a valid 786/// vector conversion. 787/// 788/// \param ICK Will be set to the vector conversion kind, if this is a vector 789/// conversion. 790static bool IsVectorConversion(ASTContext &Context, QualType FromType, 791 QualType ToType, ImplicitConversionKind &ICK) { 792 // We need at least one of these types to be a vector type to have a vector 793 // conversion. 794 if (!ToType->isVectorType() && !FromType->isVectorType()) 795 return false; 796 797 // Identical types require no conversions. 798 if (Context.hasSameUnqualifiedType(FromType, ToType)) 799 return false; 800 801 // There are no conversions between extended vector types, only identity. 802 if (ToType->isExtVectorType()) { 803 // There are no conversions between extended vector types other than the 804 // identity conversion. 805 if (FromType->isExtVectorType()) 806 return false; 807 808 // Vector splat from any arithmetic type to a vector. 809 if (!FromType->isVectorType() && FromType->isArithmeticType()) { 810 ICK = ICK_Vector_Splat; 811 return true; 812 } 813 } 814 815 // If lax vector conversions are permitted and the vector types are of the 816 // same size, we can perform the conversion. 817 if (Context.getLangOptions().LaxVectorConversions && 818 FromType->isVectorType() && ToType->isVectorType() && 819 Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) { 820 ICK = ICK_Vector_Conversion; 821 return true; 822 } 823 824 return false; 825} 826 827/// IsStandardConversion - Determines whether there is a standard 828/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 829/// expression From to the type ToType. Standard conversion sequences 830/// only consider non-class types; for conversions that involve class 831/// types, use TryImplicitConversion. If a conversion exists, SCS will 832/// contain the standard conversion sequence required to perform this 833/// conversion and this routine will return true. Otherwise, this 834/// routine will return false and the value of SCS is unspecified. 835bool 836Sema::IsStandardConversion(Expr* From, QualType ToType, 837 bool InOverloadResolution, 838 StandardConversionSequence &SCS) { 839 QualType FromType = From->getType(); 840 841 // Standard conversions (C++ [conv]) 842 SCS.setAsIdentityConversion(); 843 SCS.DeprecatedStringLiteralToCharPtr = false; 844 SCS.IncompatibleObjC = false; 845 SCS.setFromType(FromType); 846 SCS.CopyConstructor = 0; 847 848 // There are no standard conversions for class types in C++, so 849 // abort early. When overloading in C, however, we do permit 850 if (FromType->isRecordType() || ToType->isRecordType()) { 851 if (getLangOptions().CPlusPlus) 852 return false; 853 854 // When we're overloading in C, we allow, as standard conversions, 855 } 856 857 // The first conversion can be an lvalue-to-rvalue conversion, 858 // array-to-pointer conversion, or function-to-pointer conversion 859 // (C++ 4p1). 860 861 if (FromType == Context.OverloadTy) { 862 DeclAccessPair AccessPair; 863 if (FunctionDecl *Fn 864 = ResolveAddressOfOverloadedFunction(From, ToType, false, 865 AccessPair)) { 866 // We were able to resolve the address of the overloaded function, 867 // so we can convert to the type of that function. 868 FromType = Fn->getType(); 869 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 870 if (!Method->isStatic()) { 871 Type *ClassType 872 = Context.getTypeDeclType(Method->getParent()).getTypePtr(); 873 FromType = Context.getMemberPointerType(FromType, ClassType); 874 } 875 } 876 877 // If the "from" expression takes the address of the overloaded 878 // function, update the type of the resulting expression accordingly. 879 if (FromType->getAs<FunctionType>()) 880 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 881 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 882 FromType = Context.getPointerType(FromType); 883 884 // Check that we've computed the proper type after overload resolution. 885 assert(Context.hasSameType(FromType, 886 FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 887 } else { 888 return false; 889 } 890 } 891 // Lvalue-to-rvalue conversion (C++ 4.1): 892 // An lvalue (3.10) of a non-function, non-array type T can be 893 // converted to an rvalue. 894 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 895 if (argIsLvalue == Expr::LV_Valid && 896 !FromType->isFunctionType() && !FromType->isArrayType() && 897 Context.getCanonicalType(FromType) != Context.OverloadTy) { 898 SCS.First = ICK_Lvalue_To_Rvalue; 899 900 // If T is a non-class type, the type of the rvalue is the 901 // cv-unqualified version of T. Otherwise, the type of the rvalue 902 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 903 // just strip the qualifiers because they don't matter. 904 FromType = FromType.getUnqualifiedType(); 905 } else if (FromType->isArrayType()) { 906 // Array-to-pointer conversion (C++ 4.2) 907 SCS.First = ICK_Array_To_Pointer; 908 909 // An lvalue or rvalue of type "array of N T" or "array of unknown 910 // bound of T" can be converted to an rvalue of type "pointer to 911 // T" (C++ 4.2p1). 912 FromType = Context.getArrayDecayedType(FromType); 913 914 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 915 // This conversion is deprecated. (C++ D.4). 916 SCS.DeprecatedStringLiteralToCharPtr = true; 917 918 // For the purpose of ranking in overload resolution 919 // (13.3.3.1.1), this conversion is considered an 920 // array-to-pointer conversion followed by a qualification 921 // conversion (4.4). (C++ 4.2p2) 922 SCS.Second = ICK_Identity; 923 SCS.Third = ICK_Qualification; 924 SCS.setAllToTypes(FromType); 925 return true; 926 } 927 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 928 // Function-to-pointer conversion (C++ 4.3). 929 SCS.First = ICK_Function_To_Pointer; 930 931 // An lvalue of function type T can be converted to an rvalue of 932 // type "pointer to T." The result is a pointer to the 933 // function. (C++ 4.3p1). 934 FromType = Context.getPointerType(FromType); 935 } else { 936 // We don't require any conversions for the first step. 937 SCS.First = ICK_Identity; 938 } 939 SCS.setToType(0, FromType); 940 941 // The second conversion can be an integral promotion, floating 942 // point promotion, integral conversion, floating point conversion, 943 // floating-integral conversion, pointer conversion, 944 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 945 // For overloading in C, this can also be a "compatible-type" 946 // conversion. 947 bool IncompatibleObjC = false; 948 ImplicitConversionKind SecondICK = ICK_Identity; 949 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 950 // The unqualified versions of the types are the same: there's no 951 // conversion to do. 952 SCS.Second = ICK_Identity; 953 } else if (IsIntegralPromotion(From, FromType, ToType)) { 954 // Integral promotion (C++ 4.5). 955 SCS.Second = ICK_Integral_Promotion; 956 FromType = ToType.getUnqualifiedType(); 957 } else if (IsFloatingPointPromotion(FromType, ToType)) { 958 // Floating point promotion (C++ 4.6). 959 SCS.Second = ICK_Floating_Promotion; 960 FromType = ToType.getUnqualifiedType(); 961 } else if (IsComplexPromotion(FromType, ToType)) { 962 // Complex promotion (Clang extension) 963 SCS.Second = ICK_Complex_Promotion; 964 FromType = ToType.getUnqualifiedType(); 965 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 966 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 967 // Integral conversions (C++ 4.7). 968 SCS.Second = ICK_Integral_Conversion; 969 FromType = ToType.getUnqualifiedType(); 970 } else if (FromType->isComplexType() && ToType->isComplexType()) { 971 // Complex conversions (C99 6.3.1.6) 972 SCS.Second = ICK_Complex_Conversion; 973 FromType = ToType.getUnqualifiedType(); 974 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 975 (ToType->isComplexType() && FromType->isArithmeticType())) { 976 // Complex-real conversions (C99 6.3.1.7) 977 SCS.Second = ICK_Complex_Real; 978 FromType = ToType.getUnqualifiedType(); 979 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 980 // Floating point conversions (C++ 4.8). 981 SCS.Second = ICK_Floating_Conversion; 982 FromType = ToType.getUnqualifiedType(); 983 } else if ((FromType->isFloatingType() && 984 ToType->isIntegralType() && (!ToType->isBooleanType() && 985 !ToType->isEnumeralType())) || 986 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 987 ToType->isFloatingType())) { 988 // Floating-integral conversions (C++ 4.9). 989 SCS.Second = ICK_Floating_Integral; 990 FromType = ToType.getUnqualifiedType(); 991 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 992 FromType, IncompatibleObjC)) { 993 // Pointer conversions (C++ 4.10). 994 SCS.Second = ICK_Pointer_Conversion; 995 SCS.IncompatibleObjC = IncompatibleObjC; 996 } else if (IsMemberPointerConversion(From, FromType, ToType, 997 InOverloadResolution, FromType)) { 998 // Pointer to member conversions (4.11). 999 SCS.Second = ICK_Pointer_Member; 1000 } else if (ToType->isBooleanType() && 1001 (FromType->isArithmeticType() || 1002 FromType->isEnumeralType() || 1003 FromType->isAnyPointerType() || 1004 FromType->isBlockPointerType() || 1005 FromType->isMemberPointerType() || 1006 FromType->isNullPtrType())) { 1007 // Boolean conversions (C++ 4.12). 1008 SCS.Second = ICK_Boolean_Conversion; 1009 FromType = Context.BoolTy; 1010 } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) { 1011 SCS.Second = SecondICK; 1012 FromType = ToType.getUnqualifiedType(); 1013 } else if (!getLangOptions().CPlusPlus && 1014 Context.typesAreCompatible(ToType, FromType)) { 1015 // Compatible conversions (Clang extension for C function overloading) 1016 SCS.Second = ICK_Compatible_Conversion; 1017 FromType = ToType.getUnqualifiedType(); 1018 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 1019 // Treat a conversion that strips "noreturn" as an identity conversion. 1020 SCS.Second = ICK_NoReturn_Adjustment; 1021 } else { 1022 // No second conversion required. 1023 SCS.Second = ICK_Identity; 1024 } 1025 SCS.setToType(1, FromType); 1026 1027 QualType CanonFrom; 1028 QualType CanonTo; 1029 // The third conversion can be a qualification conversion (C++ 4p1). 1030 if (IsQualificationConversion(FromType, ToType)) { 1031 SCS.Third = ICK_Qualification; 1032 FromType = ToType; 1033 CanonFrom = Context.getCanonicalType(FromType); 1034 CanonTo = Context.getCanonicalType(ToType); 1035 } else { 1036 // No conversion required 1037 SCS.Third = ICK_Identity; 1038 1039 // C++ [over.best.ics]p6: 1040 // [...] Any difference in top-level cv-qualification is 1041 // subsumed by the initialization itself and does not constitute 1042 // a conversion. [...] 1043 CanonFrom = Context.getCanonicalType(FromType); 1044 CanonTo = Context.getCanonicalType(ToType); 1045 if (CanonFrom.getLocalUnqualifiedType() 1046 == CanonTo.getLocalUnqualifiedType() && 1047 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1048 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1049 FromType = ToType; 1050 CanonFrom = CanonTo; 1051 } 1052 } 1053 SCS.setToType(2, FromType); 1054 1055 // If we have not converted the argument type to the parameter type, 1056 // this is a bad conversion sequence. 1057 if (CanonFrom != CanonTo) 1058 return false; 1059 1060 return true; 1061} 1062 1063/// IsIntegralPromotion - Determines whether the conversion from the 1064/// expression From (whose potentially-adjusted type is FromType) to 1065/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1066/// sets PromotedType to the promoted type. 1067bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1068 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1069 // All integers are built-in. 1070 if (!To) { 1071 return false; 1072 } 1073 1074 // An rvalue of type char, signed char, unsigned char, short int, or 1075 // unsigned short int can be converted to an rvalue of type int if 1076 // int can represent all the values of the source type; otherwise, 1077 // the source rvalue can be converted to an rvalue of type unsigned 1078 // int (C++ 4.5p1). 1079 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1080 !FromType->isEnumeralType()) { 1081 if (// We can promote any signed, promotable integer type to an int 1082 (FromType->isSignedIntegerType() || 1083 // We can promote any unsigned integer type whose size is 1084 // less than int to an int. 1085 (!FromType->isSignedIntegerType() && 1086 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1087 return To->getKind() == BuiltinType::Int; 1088 } 1089 1090 return To->getKind() == BuiltinType::UInt; 1091 } 1092 1093 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 1094 // can be converted to an rvalue of the first of the following types 1095 // that can represent all the values of its underlying type: int, 1096 // unsigned int, long, or unsigned long (C++ 4.5p2). 1097 1098 // We pre-calculate the promotion type for enum types. 1099 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 1100 if (ToType->isIntegerType()) 1101 return Context.hasSameUnqualifiedType(ToType, 1102 FromEnumType->getDecl()->getPromotionType()); 1103 1104 if (FromType->isWideCharType() && ToType->isIntegerType()) { 1105 // Determine whether the type we're converting from is signed or 1106 // unsigned. 1107 bool FromIsSigned; 1108 uint64_t FromSize = Context.getTypeSize(FromType); 1109 1110 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1111 FromIsSigned = true; 1112 1113 // The types we'll try to promote to, in the appropriate 1114 // order. Try each of these types. 1115 QualType PromoteTypes[6] = { 1116 Context.IntTy, Context.UnsignedIntTy, 1117 Context.LongTy, Context.UnsignedLongTy , 1118 Context.LongLongTy, Context.UnsignedLongLongTy 1119 }; 1120 for (int Idx = 0; Idx < 6; ++Idx) { 1121 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1122 if (FromSize < ToSize || 1123 (FromSize == ToSize && 1124 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1125 // We found the type that we can promote to. If this is the 1126 // type we wanted, we have a promotion. Otherwise, no 1127 // promotion. 1128 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1129 } 1130 } 1131 } 1132 1133 // An rvalue for an integral bit-field (9.6) can be converted to an 1134 // rvalue of type int if int can represent all the values of the 1135 // bit-field; otherwise, it can be converted to unsigned int if 1136 // unsigned int can represent all the values of the bit-field. If 1137 // the bit-field is larger yet, no integral promotion applies to 1138 // it. If the bit-field has an enumerated type, it is treated as any 1139 // other value of that type for promotion purposes (C++ 4.5p3). 1140 // FIXME: We should delay checking of bit-fields until we actually perform the 1141 // conversion. 1142 using llvm::APSInt; 1143 if (From) 1144 if (FieldDecl *MemberDecl = From->getBitField()) { 1145 APSInt BitWidth; 1146 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 1147 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1148 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1149 ToSize = Context.getTypeSize(ToType); 1150 1151 // Are we promoting to an int from a bitfield that fits in an int? 1152 if (BitWidth < ToSize || 1153 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1154 return To->getKind() == BuiltinType::Int; 1155 } 1156 1157 // Are we promoting to an unsigned int from an unsigned bitfield 1158 // that fits into an unsigned int? 1159 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1160 return To->getKind() == BuiltinType::UInt; 1161 } 1162 1163 return false; 1164 } 1165 } 1166 1167 // An rvalue of type bool can be converted to an rvalue of type int, 1168 // with false becoming zero and true becoming one (C++ 4.5p4). 1169 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1170 return true; 1171 } 1172 1173 return false; 1174} 1175 1176/// IsFloatingPointPromotion - Determines whether the conversion from 1177/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1178/// returns true and sets PromotedType to the promoted type. 1179bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1180 /// An rvalue of type float can be converted to an rvalue of type 1181 /// double. (C++ 4.6p1). 1182 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1183 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1184 if (FromBuiltin->getKind() == BuiltinType::Float && 1185 ToBuiltin->getKind() == BuiltinType::Double) 1186 return true; 1187 1188 // C99 6.3.1.5p1: 1189 // When a float is promoted to double or long double, or a 1190 // double is promoted to long double [...]. 1191 if (!getLangOptions().CPlusPlus && 1192 (FromBuiltin->getKind() == BuiltinType::Float || 1193 FromBuiltin->getKind() == BuiltinType::Double) && 1194 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1195 return true; 1196 } 1197 1198 return false; 1199} 1200 1201/// \brief Determine if a conversion is a complex promotion. 1202/// 1203/// A complex promotion is defined as a complex -> complex conversion 1204/// where the conversion between the underlying real types is a 1205/// floating-point or integral promotion. 1206bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1207 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1208 if (!FromComplex) 1209 return false; 1210 1211 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1212 if (!ToComplex) 1213 return false; 1214 1215 return IsFloatingPointPromotion(FromComplex->getElementType(), 1216 ToComplex->getElementType()) || 1217 IsIntegralPromotion(0, FromComplex->getElementType(), 1218 ToComplex->getElementType()); 1219} 1220 1221/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1222/// the pointer type FromPtr to a pointer to type ToPointee, with the 1223/// same type qualifiers as FromPtr has on its pointee type. ToType, 1224/// if non-empty, will be a pointer to ToType that may or may not have 1225/// the right set of qualifiers on its pointee. 1226static QualType 1227BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 1228 QualType ToPointee, QualType ToType, 1229 ASTContext &Context) { 1230 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 1231 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1232 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1233 1234 // Exact qualifier match -> return the pointer type we're converting to. 1235 if (CanonToPointee.getLocalQualifiers() == Quals) { 1236 // ToType is exactly what we need. Return it. 1237 if (!ToType.isNull()) 1238 return ToType.getUnqualifiedType(); 1239 1240 // Build a pointer to ToPointee. It has the right qualifiers 1241 // already. 1242 return Context.getPointerType(ToPointee); 1243 } 1244 1245 // Just build a canonical type that has the right qualifiers. 1246 return Context.getPointerType( 1247 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 1248 Quals)); 1249} 1250 1251/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 1252/// the FromType, which is an objective-c pointer, to ToType, which may or may 1253/// not have the right set of qualifiers. 1254static QualType 1255BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 1256 QualType ToType, 1257 ASTContext &Context) { 1258 QualType CanonFromType = Context.getCanonicalType(FromType); 1259 QualType CanonToType = Context.getCanonicalType(ToType); 1260 Qualifiers Quals = CanonFromType.getQualifiers(); 1261 1262 // Exact qualifier match -> return the pointer type we're converting to. 1263 if (CanonToType.getLocalQualifiers() == Quals) 1264 return ToType; 1265 1266 // Just build a canonical type that has the right qualifiers. 1267 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 1268} 1269 1270static bool isNullPointerConstantForConversion(Expr *Expr, 1271 bool InOverloadResolution, 1272 ASTContext &Context) { 1273 // Handle value-dependent integral null pointer constants correctly. 1274 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1275 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1276 Expr->getType()->isIntegralType()) 1277 return !InOverloadResolution; 1278 1279 return Expr->isNullPointerConstant(Context, 1280 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1281 : Expr::NPC_ValueDependentIsNull); 1282} 1283 1284/// IsPointerConversion - Determines whether the conversion of the 1285/// expression From, which has the (possibly adjusted) type FromType, 1286/// can be converted to the type ToType via a pointer conversion (C++ 1287/// 4.10). If so, returns true and places the converted type (that 1288/// might differ from ToType in its cv-qualifiers at some level) into 1289/// ConvertedType. 1290/// 1291/// This routine also supports conversions to and from block pointers 1292/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1293/// pointers to interfaces. FIXME: Once we've determined the 1294/// appropriate overloading rules for Objective-C, we may want to 1295/// split the Objective-C checks into a different routine; however, 1296/// GCC seems to consider all of these conversions to be pointer 1297/// conversions, so for now they live here. IncompatibleObjC will be 1298/// set if the conversion is an allowed Objective-C conversion that 1299/// should result in a warning. 1300bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1301 bool InOverloadResolution, 1302 QualType& ConvertedType, 1303 bool &IncompatibleObjC) { 1304 IncompatibleObjC = false; 1305 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1306 return true; 1307 1308 // Conversion from a null pointer constant to any Objective-C pointer type. 1309 if (ToType->isObjCObjectPointerType() && 1310 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1311 ConvertedType = ToType; 1312 return true; 1313 } 1314 1315 // Blocks: Block pointers can be converted to void*. 1316 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1317 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1318 ConvertedType = ToType; 1319 return true; 1320 } 1321 // Blocks: A null pointer constant can be converted to a block 1322 // pointer type. 1323 if (ToType->isBlockPointerType() && 1324 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1325 ConvertedType = ToType; 1326 return true; 1327 } 1328 1329 // If the left-hand-side is nullptr_t, the right side can be a null 1330 // pointer constant. 1331 if (ToType->isNullPtrType() && 1332 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1333 ConvertedType = ToType; 1334 return true; 1335 } 1336 1337 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1338 if (!ToTypePtr) 1339 return false; 1340 1341 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1342 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1343 ConvertedType = ToType; 1344 return true; 1345 } 1346 1347 // Beyond this point, both types need to be pointers 1348 // , including objective-c pointers. 1349 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1350 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1351 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1352 ToType, Context); 1353 return true; 1354 1355 } 1356 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1357 if (!FromTypePtr) 1358 return false; 1359 1360 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1361 1362 // An rvalue of type "pointer to cv T," where T is an object type, 1363 // can be converted to an rvalue of type "pointer to cv void" (C++ 1364 // 4.10p2). 1365 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1366 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1367 ToPointeeType, 1368 ToType, Context); 1369 return true; 1370 } 1371 1372 // When we're overloading in C, we allow a special kind of pointer 1373 // conversion for compatible-but-not-identical pointee types. 1374 if (!getLangOptions().CPlusPlus && 1375 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1376 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1377 ToPointeeType, 1378 ToType, Context); 1379 return true; 1380 } 1381 1382 // C++ [conv.ptr]p3: 1383 // 1384 // An rvalue of type "pointer to cv D," where D is a class type, 1385 // can be converted to an rvalue of type "pointer to cv B," where 1386 // B is a base class (clause 10) of D. If B is an inaccessible 1387 // (clause 11) or ambiguous (10.2) base class of D, a program that 1388 // necessitates this conversion is ill-formed. The result of the 1389 // conversion is a pointer to the base class sub-object of the 1390 // derived class object. The null pointer value is converted to 1391 // the null pointer value of the destination type. 1392 // 1393 // Note that we do not check for ambiguity or inaccessibility 1394 // here. That is handled by CheckPointerConversion. 1395 if (getLangOptions().CPlusPlus && 1396 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1397 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1398 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1399 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1400 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1401 ToPointeeType, 1402 ToType, Context); 1403 return true; 1404 } 1405 1406 return false; 1407} 1408 1409/// isObjCPointerConversion - Determines whether this is an 1410/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1411/// with the same arguments and return values. 1412bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1413 QualType& ConvertedType, 1414 bool &IncompatibleObjC) { 1415 if (!getLangOptions().ObjC1) 1416 return false; 1417 1418 // First, we handle all conversions on ObjC object pointer types. 1419 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1420 const ObjCObjectPointerType *FromObjCPtr = 1421 FromType->getAs<ObjCObjectPointerType>(); 1422 1423 if (ToObjCPtr && FromObjCPtr) { 1424 // Objective C++: We're able to convert between "id" or "Class" and a 1425 // pointer to any interface (in both directions). 1426 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1427 ConvertedType = ToType; 1428 return true; 1429 } 1430 // Conversions with Objective-C's id<...>. 1431 if ((FromObjCPtr->isObjCQualifiedIdType() || 1432 ToObjCPtr->isObjCQualifiedIdType()) && 1433 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1434 /*compare=*/false)) { 1435 ConvertedType = ToType; 1436 return true; 1437 } 1438 // Objective C++: We're able to convert from a pointer to an 1439 // interface to a pointer to a different interface. 1440 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1441 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1442 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1443 if (getLangOptions().CPlusPlus && LHS && RHS && 1444 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1445 FromObjCPtr->getPointeeType())) 1446 return false; 1447 ConvertedType = ToType; 1448 return true; 1449 } 1450 1451 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1452 // Okay: this is some kind of implicit downcast of Objective-C 1453 // interfaces, which is permitted. However, we're going to 1454 // complain about it. 1455 IncompatibleObjC = true; 1456 ConvertedType = FromType; 1457 return true; 1458 } 1459 } 1460 // Beyond this point, both types need to be C pointers or block pointers. 1461 QualType ToPointeeType; 1462 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1463 ToPointeeType = ToCPtr->getPointeeType(); 1464 else if (const BlockPointerType *ToBlockPtr = 1465 ToType->getAs<BlockPointerType>()) { 1466 // Objective C++: We're able to convert from a pointer to any object 1467 // to a block pointer type. 1468 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1469 ConvertedType = ToType; 1470 return true; 1471 } 1472 ToPointeeType = ToBlockPtr->getPointeeType(); 1473 } 1474 else if (FromType->getAs<BlockPointerType>() && 1475 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1476 // Objective C++: We're able to convert from a block pointer type to a 1477 // pointer to any object. 1478 ConvertedType = ToType; 1479 return true; 1480 } 1481 else 1482 return false; 1483 1484 QualType FromPointeeType; 1485 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1486 FromPointeeType = FromCPtr->getPointeeType(); 1487 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1488 FromPointeeType = FromBlockPtr->getPointeeType(); 1489 else 1490 return false; 1491 1492 // If we have pointers to pointers, recursively check whether this 1493 // is an Objective-C conversion. 1494 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1495 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1496 IncompatibleObjC)) { 1497 // We always complain about this conversion. 1498 IncompatibleObjC = true; 1499 ConvertedType = ToType; 1500 return true; 1501 } 1502 // Allow conversion of pointee being objective-c pointer to another one; 1503 // as in I* to id. 1504 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1505 ToPointeeType->getAs<ObjCObjectPointerType>() && 1506 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1507 IncompatibleObjC)) { 1508 ConvertedType = ToType; 1509 return true; 1510 } 1511 1512 // If we have pointers to functions or blocks, check whether the only 1513 // differences in the argument and result types are in Objective-C 1514 // pointer conversions. If so, we permit the conversion (but 1515 // complain about it). 1516 const FunctionProtoType *FromFunctionType 1517 = FromPointeeType->getAs<FunctionProtoType>(); 1518 const FunctionProtoType *ToFunctionType 1519 = ToPointeeType->getAs<FunctionProtoType>(); 1520 if (FromFunctionType && ToFunctionType) { 1521 // If the function types are exactly the same, this isn't an 1522 // Objective-C pointer conversion. 1523 if (Context.getCanonicalType(FromPointeeType) 1524 == Context.getCanonicalType(ToPointeeType)) 1525 return false; 1526 1527 // Perform the quick checks that will tell us whether these 1528 // function types are obviously different. 1529 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1530 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1531 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1532 return false; 1533 1534 bool HasObjCConversion = false; 1535 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1536 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1537 // Okay, the types match exactly. Nothing to do. 1538 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1539 ToFunctionType->getResultType(), 1540 ConvertedType, IncompatibleObjC)) { 1541 // Okay, we have an Objective-C pointer conversion. 1542 HasObjCConversion = true; 1543 } else { 1544 // Function types are too different. Abort. 1545 return false; 1546 } 1547 1548 // Check argument types. 1549 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1550 ArgIdx != NumArgs; ++ArgIdx) { 1551 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1552 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1553 if (Context.getCanonicalType(FromArgType) 1554 == Context.getCanonicalType(ToArgType)) { 1555 // Okay, the types match exactly. Nothing to do. 1556 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1557 ConvertedType, IncompatibleObjC)) { 1558 // Okay, we have an Objective-C pointer conversion. 1559 HasObjCConversion = true; 1560 } else { 1561 // Argument types are too different. Abort. 1562 return false; 1563 } 1564 } 1565 1566 if (HasObjCConversion) { 1567 // We had an Objective-C conversion. Allow this pointer 1568 // conversion, but complain about it. 1569 ConvertedType = ToType; 1570 IncompatibleObjC = true; 1571 return true; 1572 } 1573 } 1574 1575 return false; 1576} 1577 1578/// FunctionArgTypesAreEqual - This routine checks two function proto types 1579/// for equlity of their argument types. Caller has already checked that 1580/// they have same number of arguments. This routine assumes that Objective-C 1581/// pointer types which only differ in their protocol qualifiers are equal. 1582bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1583 FunctionProtoType* NewType){ 1584 if (!getLangOptions().ObjC1) 1585 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1586 NewType->arg_type_begin()); 1587 1588 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1589 N = NewType->arg_type_begin(), 1590 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1591 QualType ToType = (*O); 1592 QualType FromType = (*N); 1593 if (ToType != FromType) { 1594 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1595 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1596 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1597 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1598 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1599 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1600 continue; 1601 } 1602 else if (const ObjCObjectPointerType *PTTo = 1603 ToType->getAs<ObjCObjectPointerType>()) { 1604 if (const ObjCObjectPointerType *PTFr = 1605 FromType->getAs<ObjCObjectPointerType>()) 1606 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1607 continue; 1608 } 1609 return false; 1610 } 1611 } 1612 return true; 1613} 1614 1615/// CheckPointerConversion - Check the pointer conversion from the 1616/// expression From to the type ToType. This routine checks for 1617/// ambiguous or inaccessible derived-to-base pointer 1618/// conversions for which IsPointerConversion has already returned 1619/// true. It returns true and produces a diagnostic if there was an 1620/// error, or returns false otherwise. 1621bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1622 CastExpr::CastKind &Kind, 1623 CXXBaseSpecifierArray& BasePath, 1624 bool IgnoreBaseAccess) { 1625 QualType FromType = From->getType(); 1626 1627 if (CXXBoolLiteralExpr* LitBool 1628 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1629 if (LitBool->getValue() == false) 1630 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1631 << ToType; 1632 1633 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1634 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1635 QualType FromPointeeType = FromPtrType->getPointeeType(), 1636 ToPointeeType = ToPtrType->getPointeeType(); 1637 1638 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1639 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1640 // We must have a derived-to-base conversion. Check an 1641 // ambiguous or inaccessible conversion. 1642 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1643 From->getExprLoc(), 1644 From->getSourceRange(), &BasePath, 1645 IgnoreBaseAccess)) 1646 return true; 1647 1648 // The conversion was successful. 1649 Kind = CastExpr::CK_DerivedToBase; 1650 } 1651 } 1652 if (const ObjCObjectPointerType *FromPtrType = 1653 FromType->getAs<ObjCObjectPointerType>()) 1654 if (const ObjCObjectPointerType *ToPtrType = 1655 ToType->getAs<ObjCObjectPointerType>()) { 1656 // Objective-C++ conversions are always okay. 1657 // FIXME: We should have a different class of conversions for the 1658 // Objective-C++ implicit conversions. 1659 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1660 return false; 1661 1662 } 1663 return false; 1664} 1665 1666/// IsMemberPointerConversion - Determines whether the conversion of the 1667/// expression From, which has the (possibly adjusted) type FromType, can be 1668/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1669/// If so, returns true and places the converted type (that might differ from 1670/// ToType in its cv-qualifiers at some level) into ConvertedType. 1671bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1672 QualType ToType, 1673 bool InOverloadResolution, 1674 QualType &ConvertedType) { 1675 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1676 if (!ToTypePtr) 1677 return false; 1678 1679 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1680 if (From->isNullPointerConstant(Context, 1681 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1682 : Expr::NPC_ValueDependentIsNull)) { 1683 ConvertedType = ToType; 1684 return true; 1685 } 1686 1687 // Otherwise, both types have to be member pointers. 1688 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1689 if (!FromTypePtr) 1690 return false; 1691 1692 // A pointer to member of B can be converted to a pointer to member of D, 1693 // where D is derived from B (C++ 4.11p2). 1694 QualType FromClass(FromTypePtr->getClass(), 0); 1695 QualType ToClass(ToTypePtr->getClass(), 0); 1696 // FIXME: What happens when these are dependent? Is this function even called? 1697 1698 if (IsDerivedFrom(ToClass, FromClass)) { 1699 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1700 ToClass.getTypePtr()); 1701 return true; 1702 } 1703 1704 return false; 1705} 1706 1707/// CheckMemberPointerConversion - Check the member pointer conversion from the 1708/// expression From to the type ToType. This routine checks for ambiguous or 1709/// virtual or inaccessible base-to-derived member pointer conversions 1710/// for which IsMemberPointerConversion has already returned true. It returns 1711/// true and produces a diagnostic if there was an error, or returns false 1712/// otherwise. 1713bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1714 CastExpr::CastKind &Kind, 1715 CXXBaseSpecifierArray &BasePath, 1716 bool IgnoreBaseAccess) { 1717 QualType FromType = From->getType(); 1718 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1719 if (!FromPtrType) { 1720 // This must be a null pointer to member pointer conversion 1721 assert(From->isNullPointerConstant(Context, 1722 Expr::NPC_ValueDependentIsNull) && 1723 "Expr must be null pointer constant!"); 1724 Kind = CastExpr::CK_NullToMemberPointer; 1725 return false; 1726 } 1727 1728 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1729 assert(ToPtrType && "No member pointer cast has a target type " 1730 "that is not a member pointer."); 1731 1732 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1733 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1734 1735 // FIXME: What about dependent types? 1736 assert(FromClass->isRecordType() && "Pointer into non-class."); 1737 assert(ToClass->isRecordType() && "Pointer into non-class."); 1738 1739 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1740 /*DetectVirtual=*/true); 1741 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1742 assert(DerivationOkay && 1743 "Should not have been called if derivation isn't OK."); 1744 (void)DerivationOkay; 1745 1746 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1747 getUnqualifiedType())) { 1748 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1749 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1750 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1751 return true; 1752 } 1753 1754 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1755 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1756 << FromClass << ToClass << QualType(VBase, 0) 1757 << From->getSourceRange(); 1758 return true; 1759 } 1760 1761 if (!IgnoreBaseAccess) 1762 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1763 Paths.front(), 1764 diag::err_downcast_from_inaccessible_base); 1765 1766 // Must be a base to derived member conversion. 1767 BuildBasePathArray(Paths, BasePath); 1768 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1769 return false; 1770} 1771 1772/// IsQualificationConversion - Determines whether the conversion from 1773/// an rvalue of type FromType to ToType is a qualification conversion 1774/// (C++ 4.4). 1775bool 1776Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1777 FromType = Context.getCanonicalType(FromType); 1778 ToType = Context.getCanonicalType(ToType); 1779 1780 // If FromType and ToType are the same type, this is not a 1781 // qualification conversion. 1782 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1783 return false; 1784 1785 // (C++ 4.4p4): 1786 // A conversion can add cv-qualifiers at levels other than the first 1787 // in multi-level pointers, subject to the following rules: [...] 1788 bool PreviousToQualsIncludeConst = true; 1789 bool UnwrappedAnyPointer = false; 1790 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1791 // Within each iteration of the loop, we check the qualifiers to 1792 // determine if this still looks like a qualification 1793 // conversion. Then, if all is well, we unwrap one more level of 1794 // pointers or pointers-to-members and do it all again 1795 // until there are no more pointers or pointers-to-members left to 1796 // unwrap. 1797 UnwrappedAnyPointer = true; 1798 1799 // -- for every j > 0, if const is in cv 1,j then const is in cv 1800 // 2,j, and similarly for volatile. 1801 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1802 return false; 1803 1804 // -- if the cv 1,j and cv 2,j are different, then const is in 1805 // every cv for 0 < k < j. 1806 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1807 && !PreviousToQualsIncludeConst) 1808 return false; 1809 1810 // Keep track of whether all prior cv-qualifiers in the "to" type 1811 // include const. 1812 PreviousToQualsIncludeConst 1813 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1814 } 1815 1816 // We are left with FromType and ToType being the pointee types 1817 // after unwrapping the original FromType and ToType the same number 1818 // of types. If we unwrapped any pointers, and if FromType and 1819 // ToType have the same unqualified type (since we checked 1820 // qualifiers above), then this is a qualification conversion. 1821 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1822} 1823 1824/// Determines whether there is a user-defined conversion sequence 1825/// (C++ [over.ics.user]) that converts expression From to the type 1826/// ToType. If such a conversion exists, User will contain the 1827/// user-defined conversion sequence that performs such a conversion 1828/// and this routine will return true. Otherwise, this routine returns 1829/// false and User is unspecified. 1830/// 1831/// \param AllowExplicit true if the conversion should consider C++0x 1832/// "explicit" conversion functions as well as non-explicit conversion 1833/// functions (C++0x [class.conv.fct]p2). 1834OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1835 UserDefinedConversionSequence& User, 1836 OverloadCandidateSet& CandidateSet, 1837 bool AllowExplicit) { 1838 // Whether we will only visit constructors. 1839 bool ConstructorsOnly = false; 1840 1841 // If the type we are conversion to is a class type, enumerate its 1842 // constructors. 1843 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1844 // C++ [over.match.ctor]p1: 1845 // When objects of class type are direct-initialized (8.5), or 1846 // copy-initialized from an expression of the same or a 1847 // derived class type (8.5), overload resolution selects the 1848 // constructor. [...] For copy-initialization, the candidate 1849 // functions are all the converting constructors (12.3.1) of 1850 // that class. The argument list is the expression-list within 1851 // the parentheses of the initializer. 1852 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1853 (From->getType()->getAs<RecordType>() && 1854 IsDerivedFrom(From->getType(), ToType))) 1855 ConstructorsOnly = true; 1856 1857 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1858 // We're not going to find any constructors. 1859 } else if (CXXRecordDecl *ToRecordDecl 1860 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1861 DeclarationName ConstructorName 1862 = Context.DeclarationNames.getCXXConstructorName( 1863 Context.getCanonicalType(ToType).getUnqualifiedType()); 1864 DeclContext::lookup_iterator Con, ConEnd; 1865 for (llvm::tie(Con, ConEnd) 1866 = ToRecordDecl->lookup(ConstructorName); 1867 Con != ConEnd; ++Con) { 1868 NamedDecl *D = *Con; 1869 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 1870 1871 // Find the constructor (which may be a template). 1872 CXXConstructorDecl *Constructor = 0; 1873 FunctionTemplateDecl *ConstructorTmpl 1874 = dyn_cast<FunctionTemplateDecl>(D); 1875 if (ConstructorTmpl) 1876 Constructor 1877 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1878 else 1879 Constructor = cast<CXXConstructorDecl>(D); 1880 1881 if (!Constructor->isInvalidDecl() && 1882 Constructor->isConvertingConstructor(AllowExplicit)) { 1883 if (ConstructorTmpl) 1884 AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 1885 /*ExplicitArgs*/ 0, 1886 &From, 1, CandidateSet, 1887 /*SuppressUserConversions=*/!ConstructorsOnly); 1888 else 1889 // Allow one user-defined conversion when user specifies a 1890 // From->ToType conversion via an static cast (c-style, etc). 1891 AddOverloadCandidate(Constructor, FoundDecl, 1892 &From, 1, CandidateSet, 1893 /*SuppressUserConversions=*/!ConstructorsOnly); 1894 } 1895 } 1896 } 1897 } 1898 1899 // Enumerate conversion functions, if we're allowed to. 1900 if (ConstructorsOnly) { 1901 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1902 PDiag(0) << From->getSourceRange())) { 1903 // No conversion functions from incomplete types. 1904 } else if (const RecordType *FromRecordType 1905 = From->getType()->getAs<RecordType>()) { 1906 if (CXXRecordDecl *FromRecordDecl 1907 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1908 // Add all of the conversion functions as candidates. 1909 const UnresolvedSetImpl *Conversions 1910 = FromRecordDecl->getVisibleConversionFunctions(); 1911 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1912 E = Conversions->end(); I != E; ++I) { 1913 DeclAccessPair FoundDecl = I.getPair(); 1914 NamedDecl *D = FoundDecl.getDecl(); 1915 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1916 if (isa<UsingShadowDecl>(D)) 1917 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1918 1919 CXXConversionDecl *Conv; 1920 FunctionTemplateDecl *ConvTemplate; 1921 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 1922 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1923 else 1924 Conv = cast<CXXConversionDecl>(D); 1925 1926 if (AllowExplicit || !Conv->isExplicit()) { 1927 if (ConvTemplate) 1928 AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 1929 ActingContext, From, ToType, 1930 CandidateSet); 1931 else 1932 AddConversionCandidate(Conv, FoundDecl, ActingContext, 1933 From, ToType, CandidateSet); 1934 } 1935 } 1936 } 1937 } 1938 1939 OverloadCandidateSet::iterator Best; 1940 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1941 case OR_Success: 1942 // Record the standard conversion we used and the conversion function. 1943 if (CXXConstructorDecl *Constructor 1944 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1945 // C++ [over.ics.user]p1: 1946 // If the user-defined conversion is specified by a 1947 // constructor (12.3.1), the initial standard conversion 1948 // sequence converts the source type to the type required by 1949 // the argument of the constructor. 1950 // 1951 QualType ThisType = Constructor->getThisType(Context); 1952 if (Best->Conversions[0].isEllipsis()) 1953 User.EllipsisConversion = true; 1954 else { 1955 User.Before = Best->Conversions[0].Standard; 1956 User.EllipsisConversion = false; 1957 } 1958 User.ConversionFunction = Constructor; 1959 User.After.setAsIdentityConversion(); 1960 User.After.setFromType( 1961 ThisType->getAs<PointerType>()->getPointeeType()); 1962 User.After.setAllToTypes(ToType); 1963 return OR_Success; 1964 } else if (CXXConversionDecl *Conversion 1965 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1966 // C++ [over.ics.user]p1: 1967 // 1968 // [...] If the user-defined conversion is specified by a 1969 // conversion function (12.3.2), the initial standard 1970 // conversion sequence converts the source type to the 1971 // implicit object parameter of the conversion function. 1972 User.Before = Best->Conversions[0].Standard; 1973 User.ConversionFunction = Conversion; 1974 User.EllipsisConversion = false; 1975 1976 // C++ [over.ics.user]p2: 1977 // The second standard conversion sequence converts the 1978 // result of the user-defined conversion to the target type 1979 // for the sequence. Since an implicit conversion sequence 1980 // is an initialization, the special rules for 1981 // initialization by user-defined conversion apply when 1982 // selecting the best user-defined conversion for a 1983 // user-defined conversion sequence (see 13.3.3 and 1984 // 13.3.3.1). 1985 User.After = Best->FinalConversion; 1986 return OR_Success; 1987 } else { 1988 assert(false && "Not a constructor or conversion function?"); 1989 return OR_No_Viable_Function; 1990 } 1991 1992 case OR_No_Viable_Function: 1993 return OR_No_Viable_Function; 1994 case OR_Deleted: 1995 // No conversion here! We're done. 1996 return OR_Deleted; 1997 1998 case OR_Ambiguous: 1999 return OR_Ambiguous; 2000 } 2001 2002 return OR_No_Viable_Function; 2003} 2004 2005bool 2006Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2007 ImplicitConversionSequence ICS; 2008 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2009 OverloadingResult OvResult = 2010 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 2011 CandidateSet, false); 2012 if (OvResult == OR_Ambiguous) 2013 Diag(From->getSourceRange().getBegin(), 2014 diag::err_typecheck_ambiguous_condition) 2015 << From->getType() << ToType << From->getSourceRange(); 2016 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2017 Diag(From->getSourceRange().getBegin(), 2018 diag::err_typecheck_nonviable_condition) 2019 << From->getType() << ToType << From->getSourceRange(); 2020 else 2021 return false; 2022 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 2023 return true; 2024} 2025 2026/// CompareImplicitConversionSequences - Compare two implicit 2027/// conversion sequences to determine whether one is better than the 2028/// other or if they are indistinguishable (C++ 13.3.3.2). 2029ImplicitConversionSequence::CompareKind 2030Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 2031 const ImplicitConversionSequence& ICS2) 2032{ 2033 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2034 // conversion sequences (as defined in 13.3.3.1) 2035 // -- a standard conversion sequence (13.3.3.1.1) is a better 2036 // conversion sequence than a user-defined conversion sequence or 2037 // an ellipsis conversion sequence, and 2038 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2039 // conversion sequence than an ellipsis conversion sequence 2040 // (13.3.3.1.3). 2041 // 2042 // C++0x [over.best.ics]p10: 2043 // For the purpose of ranking implicit conversion sequences as 2044 // described in 13.3.3.2, the ambiguous conversion sequence is 2045 // treated as a user-defined sequence that is indistinguishable 2046 // from any other user-defined conversion sequence. 2047 if (ICS1.getKindRank() < ICS2.getKindRank()) 2048 return ImplicitConversionSequence::Better; 2049 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2050 return ImplicitConversionSequence::Worse; 2051 2052 // The following checks require both conversion sequences to be of 2053 // the same kind. 2054 if (ICS1.getKind() != ICS2.getKind()) 2055 return ImplicitConversionSequence::Indistinguishable; 2056 2057 // Two implicit conversion sequences of the same form are 2058 // indistinguishable conversion sequences unless one of the 2059 // following rules apply: (C++ 13.3.3.2p3): 2060 if (ICS1.isStandard()) 2061 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 2062 else if (ICS1.isUserDefined()) { 2063 // User-defined conversion sequence U1 is a better conversion 2064 // sequence than another user-defined conversion sequence U2 if 2065 // they contain the same user-defined conversion function or 2066 // constructor and if the second standard conversion sequence of 2067 // U1 is better than the second standard conversion sequence of 2068 // U2 (C++ 13.3.3.2p3). 2069 if (ICS1.UserDefined.ConversionFunction == 2070 ICS2.UserDefined.ConversionFunction) 2071 return CompareStandardConversionSequences(ICS1.UserDefined.After, 2072 ICS2.UserDefined.After); 2073 } 2074 2075 return ImplicitConversionSequence::Indistinguishable; 2076} 2077 2078static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2079 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2080 Qualifiers Quals; 2081 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2082 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2083 } 2084 2085 return Context.hasSameUnqualifiedType(T1, T2); 2086} 2087 2088// Per 13.3.3.2p3, compare the given standard conversion sequences to 2089// determine if one is a proper subset of the other. 2090static ImplicitConversionSequence::CompareKind 2091compareStandardConversionSubsets(ASTContext &Context, 2092 const StandardConversionSequence& SCS1, 2093 const StandardConversionSequence& SCS2) { 2094 ImplicitConversionSequence::CompareKind Result 2095 = ImplicitConversionSequence::Indistinguishable; 2096 2097 // the identity conversion sequence is considered to be a subsequence of 2098 // any non-identity conversion sequence 2099 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2100 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2101 return ImplicitConversionSequence::Better; 2102 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2103 return ImplicitConversionSequence::Worse; 2104 } 2105 2106 if (SCS1.Second != SCS2.Second) { 2107 if (SCS1.Second == ICK_Identity) 2108 Result = ImplicitConversionSequence::Better; 2109 else if (SCS2.Second == ICK_Identity) 2110 Result = ImplicitConversionSequence::Worse; 2111 else 2112 return ImplicitConversionSequence::Indistinguishable; 2113 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2114 return ImplicitConversionSequence::Indistinguishable; 2115 2116 if (SCS1.Third == SCS2.Third) { 2117 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2118 : ImplicitConversionSequence::Indistinguishable; 2119 } 2120 2121 if (SCS1.Third == ICK_Identity) 2122 return Result == ImplicitConversionSequence::Worse 2123 ? ImplicitConversionSequence::Indistinguishable 2124 : ImplicitConversionSequence::Better; 2125 2126 if (SCS2.Third == ICK_Identity) 2127 return Result == ImplicitConversionSequence::Better 2128 ? ImplicitConversionSequence::Indistinguishable 2129 : ImplicitConversionSequence::Worse; 2130 2131 return ImplicitConversionSequence::Indistinguishable; 2132} 2133 2134/// CompareStandardConversionSequences - Compare two standard 2135/// conversion sequences to determine whether one is better than the 2136/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2137ImplicitConversionSequence::CompareKind 2138Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 2139 const StandardConversionSequence& SCS2) 2140{ 2141 // Standard conversion sequence S1 is a better conversion sequence 2142 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2143 2144 // -- S1 is a proper subsequence of S2 (comparing the conversion 2145 // sequences in the canonical form defined by 13.3.3.1.1, 2146 // excluding any Lvalue Transformation; the identity conversion 2147 // sequence is considered to be a subsequence of any 2148 // non-identity conversion sequence) or, if not that, 2149 if (ImplicitConversionSequence::CompareKind CK 2150 = compareStandardConversionSubsets(Context, SCS1, SCS2)) 2151 return CK; 2152 2153 // -- the rank of S1 is better than the rank of S2 (by the rules 2154 // defined below), or, if not that, 2155 ImplicitConversionRank Rank1 = SCS1.getRank(); 2156 ImplicitConversionRank Rank2 = SCS2.getRank(); 2157 if (Rank1 < Rank2) 2158 return ImplicitConversionSequence::Better; 2159 else if (Rank2 < Rank1) 2160 return ImplicitConversionSequence::Worse; 2161 2162 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2163 // are indistinguishable unless one of the following rules 2164 // applies: 2165 2166 // A conversion that is not a conversion of a pointer, or 2167 // pointer to member, to bool is better than another conversion 2168 // that is such a conversion. 2169 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2170 return SCS2.isPointerConversionToBool() 2171 ? ImplicitConversionSequence::Better 2172 : ImplicitConversionSequence::Worse; 2173 2174 // C++ [over.ics.rank]p4b2: 2175 // 2176 // If class B is derived directly or indirectly from class A, 2177 // conversion of B* to A* is better than conversion of B* to 2178 // void*, and conversion of A* to void* is better than conversion 2179 // of B* to void*. 2180 bool SCS1ConvertsToVoid 2181 = SCS1.isPointerConversionToVoidPointer(Context); 2182 bool SCS2ConvertsToVoid 2183 = SCS2.isPointerConversionToVoidPointer(Context); 2184 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2185 // Exactly one of the conversion sequences is a conversion to 2186 // a void pointer; it's the worse conversion. 2187 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2188 : ImplicitConversionSequence::Worse; 2189 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2190 // Neither conversion sequence converts to a void pointer; compare 2191 // their derived-to-base conversions. 2192 if (ImplicitConversionSequence::CompareKind DerivedCK 2193 = CompareDerivedToBaseConversions(SCS1, SCS2)) 2194 return DerivedCK; 2195 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2196 // Both conversion sequences are conversions to void 2197 // pointers. Compare the source types to determine if there's an 2198 // inheritance relationship in their sources. 2199 QualType FromType1 = SCS1.getFromType(); 2200 QualType FromType2 = SCS2.getFromType(); 2201 2202 // Adjust the types we're converting from via the array-to-pointer 2203 // conversion, if we need to. 2204 if (SCS1.First == ICK_Array_To_Pointer) 2205 FromType1 = Context.getArrayDecayedType(FromType1); 2206 if (SCS2.First == ICK_Array_To_Pointer) 2207 FromType2 = Context.getArrayDecayedType(FromType2); 2208 2209 QualType FromPointee1 2210 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2211 QualType FromPointee2 2212 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2213 2214 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2215 return ImplicitConversionSequence::Better; 2216 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2217 return ImplicitConversionSequence::Worse; 2218 2219 // Objective-C++: If one interface is more specific than the 2220 // other, it is the better one. 2221 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2222 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2223 if (FromIface1 && FromIface1) { 2224 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2225 return ImplicitConversionSequence::Better; 2226 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2227 return ImplicitConversionSequence::Worse; 2228 } 2229 } 2230 2231 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2232 // bullet 3). 2233 if (ImplicitConversionSequence::CompareKind QualCK 2234 = CompareQualificationConversions(SCS1, SCS2)) 2235 return QualCK; 2236 2237 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2238 // C++0x [over.ics.rank]p3b4: 2239 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2240 // implicit object parameter of a non-static member function declared 2241 // without a ref-qualifier, and S1 binds an rvalue reference to an 2242 // rvalue and S2 binds an lvalue reference. 2243 // FIXME: We don't know if we're dealing with the implicit object parameter, 2244 // or if the member function in this case has a ref qualifier. 2245 // (Of course, we don't have ref qualifiers yet.) 2246 if (SCS1.RRefBinding != SCS2.RRefBinding) 2247 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2248 : ImplicitConversionSequence::Worse; 2249 2250 // C++ [over.ics.rank]p3b4: 2251 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2252 // which the references refer are the same type except for 2253 // top-level cv-qualifiers, and the type to which the reference 2254 // initialized by S2 refers is more cv-qualified than the type 2255 // to which the reference initialized by S1 refers. 2256 QualType T1 = SCS1.getToType(2); 2257 QualType T2 = SCS2.getToType(2); 2258 T1 = Context.getCanonicalType(T1); 2259 T2 = Context.getCanonicalType(T2); 2260 Qualifiers T1Quals, T2Quals; 2261 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2262 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2263 if (UnqualT1 == UnqualT2) { 2264 // If the type is an array type, promote the element qualifiers to the type 2265 // for comparison. 2266 if (isa<ArrayType>(T1) && T1Quals) 2267 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2268 if (isa<ArrayType>(T2) && T2Quals) 2269 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2270 if (T2.isMoreQualifiedThan(T1)) 2271 return ImplicitConversionSequence::Better; 2272 else if (T1.isMoreQualifiedThan(T2)) 2273 return ImplicitConversionSequence::Worse; 2274 } 2275 } 2276 2277 return ImplicitConversionSequence::Indistinguishable; 2278} 2279 2280/// CompareQualificationConversions - Compares two standard conversion 2281/// sequences to determine whether they can be ranked based on their 2282/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2283ImplicitConversionSequence::CompareKind 2284Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 2285 const StandardConversionSequence& SCS2) { 2286 // C++ 13.3.3.2p3: 2287 // -- S1 and S2 differ only in their qualification conversion and 2288 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2289 // cv-qualification signature of type T1 is a proper subset of 2290 // the cv-qualification signature of type T2, and S1 is not the 2291 // deprecated string literal array-to-pointer conversion (4.2). 2292 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2293 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2294 return ImplicitConversionSequence::Indistinguishable; 2295 2296 // FIXME: the example in the standard doesn't use a qualification 2297 // conversion (!) 2298 QualType T1 = SCS1.getToType(2); 2299 QualType T2 = SCS2.getToType(2); 2300 T1 = Context.getCanonicalType(T1); 2301 T2 = Context.getCanonicalType(T2); 2302 Qualifiers T1Quals, T2Quals; 2303 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2304 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2305 2306 // If the types are the same, we won't learn anything by unwrapped 2307 // them. 2308 if (UnqualT1 == UnqualT2) 2309 return ImplicitConversionSequence::Indistinguishable; 2310 2311 // If the type is an array type, promote the element qualifiers to the type 2312 // for comparison. 2313 if (isa<ArrayType>(T1) && T1Quals) 2314 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2315 if (isa<ArrayType>(T2) && T2Quals) 2316 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2317 2318 ImplicitConversionSequence::CompareKind Result 2319 = ImplicitConversionSequence::Indistinguishable; 2320 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2321 // Within each iteration of the loop, we check the qualifiers to 2322 // determine if this still looks like a qualification 2323 // conversion. Then, if all is well, we unwrap one more level of 2324 // pointers or pointers-to-members and do it all again 2325 // until there are no more pointers or pointers-to-members left 2326 // to unwrap. This essentially mimics what 2327 // IsQualificationConversion does, but here we're checking for a 2328 // strict subset of qualifiers. 2329 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2330 // The qualifiers are the same, so this doesn't tell us anything 2331 // about how the sequences rank. 2332 ; 2333 else if (T2.isMoreQualifiedThan(T1)) { 2334 // T1 has fewer qualifiers, so it could be the better sequence. 2335 if (Result == ImplicitConversionSequence::Worse) 2336 // Neither has qualifiers that are a subset of the other's 2337 // qualifiers. 2338 return ImplicitConversionSequence::Indistinguishable; 2339 2340 Result = ImplicitConversionSequence::Better; 2341 } else if (T1.isMoreQualifiedThan(T2)) { 2342 // T2 has fewer qualifiers, so it could be the better sequence. 2343 if (Result == ImplicitConversionSequence::Better) 2344 // Neither has qualifiers that are a subset of the other's 2345 // qualifiers. 2346 return ImplicitConversionSequence::Indistinguishable; 2347 2348 Result = ImplicitConversionSequence::Worse; 2349 } else { 2350 // Qualifiers are disjoint. 2351 return ImplicitConversionSequence::Indistinguishable; 2352 } 2353 2354 // If the types after this point are equivalent, we're done. 2355 if (Context.hasSameUnqualifiedType(T1, T2)) 2356 break; 2357 } 2358 2359 // Check that the winning standard conversion sequence isn't using 2360 // the deprecated string literal array to pointer conversion. 2361 switch (Result) { 2362 case ImplicitConversionSequence::Better: 2363 if (SCS1.DeprecatedStringLiteralToCharPtr) 2364 Result = ImplicitConversionSequence::Indistinguishable; 2365 break; 2366 2367 case ImplicitConversionSequence::Indistinguishable: 2368 break; 2369 2370 case ImplicitConversionSequence::Worse: 2371 if (SCS2.DeprecatedStringLiteralToCharPtr) 2372 Result = ImplicitConversionSequence::Indistinguishable; 2373 break; 2374 } 2375 2376 return Result; 2377} 2378 2379/// CompareDerivedToBaseConversions - Compares two standard conversion 2380/// sequences to determine whether they can be ranked based on their 2381/// various kinds of derived-to-base conversions (C++ 2382/// [over.ics.rank]p4b3). As part of these checks, we also look at 2383/// conversions between Objective-C interface types. 2384ImplicitConversionSequence::CompareKind 2385Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 2386 const StandardConversionSequence& SCS2) { 2387 QualType FromType1 = SCS1.getFromType(); 2388 QualType ToType1 = SCS1.getToType(1); 2389 QualType FromType2 = SCS2.getFromType(); 2390 QualType ToType2 = SCS2.getToType(1); 2391 2392 // Adjust the types we're converting from via the array-to-pointer 2393 // conversion, if we need to. 2394 if (SCS1.First == ICK_Array_To_Pointer) 2395 FromType1 = Context.getArrayDecayedType(FromType1); 2396 if (SCS2.First == ICK_Array_To_Pointer) 2397 FromType2 = Context.getArrayDecayedType(FromType2); 2398 2399 // Canonicalize all of the types. 2400 FromType1 = Context.getCanonicalType(FromType1); 2401 ToType1 = Context.getCanonicalType(ToType1); 2402 FromType2 = Context.getCanonicalType(FromType2); 2403 ToType2 = Context.getCanonicalType(ToType2); 2404 2405 // C++ [over.ics.rank]p4b3: 2406 // 2407 // If class B is derived directly or indirectly from class A and 2408 // class C is derived directly or indirectly from B, 2409 // 2410 // For Objective-C, we let A, B, and C also be Objective-C 2411 // interfaces. 2412 2413 // Compare based on pointer conversions. 2414 if (SCS1.Second == ICK_Pointer_Conversion && 2415 SCS2.Second == ICK_Pointer_Conversion && 2416 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2417 FromType1->isPointerType() && FromType2->isPointerType() && 2418 ToType1->isPointerType() && ToType2->isPointerType()) { 2419 QualType FromPointee1 2420 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2421 QualType ToPointee1 2422 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2423 QualType FromPointee2 2424 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2425 QualType ToPointee2 2426 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2427 2428 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2429 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2430 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2431 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2432 2433 // -- conversion of C* to B* is better than conversion of C* to A*, 2434 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2435 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2436 return ImplicitConversionSequence::Better; 2437 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2438 return ImplicitConversionSequence::Worse; 2439 2440 if (ToIface1 && ToIface2) { 2441 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2442 return ImplicitConversionSequence::Better; 2443 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2444 return ImplicitConversionSequence::Worse; 2445 } 2446 } 2447 2448 // -- conversion of B* to A* is better than conversion of C* to A*, 2449 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2450 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2451 return ImplicitConversionSequence::Better; 2452 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2453 return ImplicitConversionSequence::Worse; 2454 2455 if (FromIface1 && FromIface2) { 2456 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2457 return ImplicitConversionSequence::Better; 2458 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2459 return ImplicitConversionSequence::Worse; 2460 } 2461 } 2462 } 2463 2464 // Ranking of member-pointer types. 2465 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2466 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2467 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2468 const MemberPointerType * FromMemPointer1 = 2469 FromType1->getAs<MemberPointerType>(); 2470 const MemberPointerType * ToMemPointer1 = 2471 ToType1->getAs<MemberPointerType>(); 2472 const MemberPointerType * FromMemPointer2 = 2473 FromType2->getAs<MemberPointerType>(); 2474 const MemberPointerType * ToMemPointer2 = 2475 ToType2->getAs<MemberPointerType>(); 2476 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2477 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2478 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2479 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2480 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2481 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2482 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2483 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2484 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2485 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2486 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2487 return ImplicitConversionSequence::Worse; 2488 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2489 return ImplicitConversionSequence::Better; 2490 } 2491 // conversion of B::* to C::* is better than conversion of A::* to C::* 2492 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2493 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2494 return ImplicitConversionSequence::Better; 2495 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2496 return ImplicitConversionSequence::Worse; 2497 } 2498 } 2499 2500 if (SCS1.Second == ICK_Derived_To_Base) { 2501 // -- conversion of C to B is better than conversion of C to A, 2502 // -- binding of an expression of type C to a reference of type 2503 // B& is better than binding an expression of type C to a 2504 // reference of type A&, 2505 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2506 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2507 if (IsDerivedFrom(ToType1, ToType2)) 2508 return ImplicitConversionSequence::Better; 2509 else if (IsDerivedFrom(ToType2, ToType1)) 2510 return ImplicitConversionSequence::Worse; 2511 } 2512 2513 // -- conversion of B to A is better than conversion of C to A. 2514 // -- binding of an expression of type B to a reference of type 2515 // A& is better than binding an expression of type C to a 2516 // reference of type A&, 2517 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2518 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2519 if (IsDerivedFrom(FromType2, FromType1)) 2520 return ImplicitConversionSequence::Better; 2521 else if (IsDerivedFrom(FromType1, FromType2)) 2522 return ImplicitConversionSequence::Worse; 2523 } 2524 } 2525 2526 return ImplicitConversionSequence::Indistinguishable; 2527} 2528 2529/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2530/// determine whether they are reference-related, 2531/// reference-compatible, reference-compatible with added 2532/// qualification, or incompatible, for use in C++ initialization by 2533/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2534/// type, and the first type (T1) is the pointee type of the reference 2535/// type being initialized. 2536Sema::ReferenceCompareResult 2537Sema::CompareReferenceRelationship(SourceLocation Loc, 2538 QualType OrigT1, QualType OrigT2, 2539 bool& DerivedToBase) { 2540 assert(!OrigT1->isReferenceType() && 2541 "T1 must be the pointee type of the reference type"); 2542 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2543 2544 QualType T1 = Context.getCanonicalType(OrigT1); 2545 QualType T2 = Context.getCanonicalType(OrigT2); 2546 Qualifiers T1Quals, T2Quals; 2547 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2548 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2549 2550 // C++ [dcl.init.ref]p4: 2551 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2552 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2553 // T1 is a base class of T2. 2554 if (UnqualT1 == UnqualT2) 2555 DerivedToBase = false; 2556 else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2557 IsDerivedFrom(UnqualT2, UnqualT1)) 2558 DerivedToBase = true; 2559 else 2560 return Ref_Incompatible; 2561 2562 // At this point, we know that T1 and T2 are reference-related (at 2563 // least). 2564 2565 // If the type is an array type, promote the element qualifiers to the type 2566 // for comparison. 2567 if (isa<ArrayType>(T1) && T1Quals) 2568 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2569 if (isa<ArrayType>(T2) && T2Quals) 2570 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2571 2572 // C++ [dcl.init.ref]p4: 2573 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2574 // reference-related to T2 and cv1 is the same cv-qualification 2575 // as, or greater cv-qualification than, cv2. For purposes of 2576 // overload resolution, cases for which cv1 is greater 2577 // cv-qualification than cv2 are identified as 2578 // reference-compatible with added qualification (see 13.3.3.2). 2579 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2580 return Ref_Compatible; 2581 else if (T1.isMoreQualifiedThan(T2)) 2582 return Ref_Compatible_With_Added_Qualification; 2583 else 2584 return Ref_Related; 2585} 2586 2587/// \brief Compute an implicit conversion sequence for reference 2588/// initialization. 2589static ImplicitConversionSequence 2590TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2591 SourceLocation DeclLoc, 2592 bool SuppressUserConversions, 2593 bool AllowExplicit) { 2594 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2595 2596 // Most paths end in a failed conversion. 2597 ImplicitConversionSequence ICS; 2598 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2599 2600 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2601 QualType T2 = Init->getType(); 2602 2603 // If the initializer is the address of an overloaded function, try 2604 // to resolve the overloaded function. If all goes well, T2 is the 2605 // type of the resulting function. 2606 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2607 DeclAccessPair Found; 2608 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2609 false, Found)) 2610 T2 = Fn->getType(); 2611 } 2612 2613 // Compute some basic properties of the types and the initializer. 2614 bool isRValRef = DeclType->isRValueReferenceType(); 2615 bool DerivedToBase = false; 2616 Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context); 2617 Sema::ReferenceCompareResult RefRelationship 2618 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); 2619 2620 2621 // C++ [over.ics.ref]p3: 2622 // Except for an implicit object parameter, for which see 13.3.1, 2623 // a standard conversion sequence cannot be formed if it requires 2624 // binding an lvalue reference to non-const to an rvalue or 2625 // binding an rvalue reference to an lvalue. 2626 // 2627 // FIXME: DPG doesn't trust this code. It seems far too early to 2628 // abort because of a binding of an rvalue reference to an lvalue. 2629 if (isRValRef && InitLvalue == Expr::LV_Valid) 2630 return ICS; 2631 2632 // C++0x [dcl.init.ref]p16: 2633 // A reference to type "cv1 T1" is initialized by an expression 2634 // of type "cv2 T2" as follows: 2635 2636 // -- If the initializer expression 2637 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2638 // reference-compatible with "cv2 T2," or 2639 // 2640 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2641 if (InitLvalue == Expr::LV_Valid && 2642 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2643 // C++ [over.ics.ref]p1: 2644 // When a parameter of reference type binds directly (8.5.3) 2645 // to an argument expression, the implicit conversion sequence 2646 // is the identity conversion, unless the argument expression 2647 // has a type that is a derived class of the parameter type, 2648 // in which case the implicit conversion sequence is a 2649 // derived-to-base Conversion (13.3.3.1). 2650 ICS.setStandard(); 2651 ICS.Standard.First = ICK_Identity; 2652 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2653 ICS.Standard.Third = ICK_Identity; 2654 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2655 ICS.Standard.setToType(0, T2); 2656 ICS.Standard.setToType(1, T1); 2657 ICS.Standard.setToType(2, T1); 2658 ICS.Standard.ReferenceBinding = true; 2659 ICS.Standard.DirectBinding = true; 2660 ICS.Standard.RRefBinding = false; 2661 ICS.Standard.CopyConstructor = 0; 2662 2663 // Nothing more to do: the inaccessibility/ambiguity check for 2664 // derived-to-base conversions is suppressed when we're 2665 // computing the implicit conversion sequence (C++ 2666 // [over.best.ics]p2). 2667 return ICS; 2668 } 2669 2670 // -- has a class type (i.e., T2 is a class type), where T1 is 2671 // not reference-related to T2, and can be implicitly 2672 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2673 // is reference-compatible with "cv3 T3" 92) (this 2674 // conversion is selected by enumerating the applicable 2675 // conversion functions (13.3.1.6) and choosing the best 2676 // one through overload resolution (13.3)), 2677 if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && 2678 !S.RequireCompleteType(DeclLoc, T2, 0) && 2679 RefRelationship == Sema::Ref_Incompatible) { 2680 CXXRecordDecl *T2RecordDecl 2681 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2682 2683 OverloadCandidateSet CandidateSet(DeclLoc); 2684 const UnresolvedSetImpl *Conversions 2685 = T2RecordDecl->getVisibleConversionFunctions(); 2686 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2687 E = Conversions->end(); I != E; ++I) { 2688 NamedDecl *D = *I; 2689 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2690 if (isa<UsingShadowDecl>(D)) 2691 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2692 2693 FunctionTemplateDecl *ConvTemplate 2694 = dyn_cast<FunctionTemplateDecl>(D); 2695 CXXConversionDecl *Conv; 2696 if (ConvTemplate) 2697 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2698 else 2699 Conv = cast<CXXConversionDecl>(D); 2700 2701 // If the conversion function doesn't return a reference type, 2702 // it can't be considered for this conversion. 2703 if (Conv->getConversionType()->isLValueReferenceType() && 2704 (AllowExplicit || !Conv->isExplicit())) { 2705 if (ConvTemplate) 2706 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2707 Init, DeclType, CandidateSet); 2708 else 2709 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2710 DeclType, CandidateSet); 2711 } 2712 } 2713 2714 OverloadCandidateSet::iterator Best; 2715 switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { 2716 case OR_Success: 2717 // C++ [over.ics.ref]p1: 2718 // 2719 // [...] If the parameter binds directly to the result of 2720 // applying a conversion function to the argument 2721 // expression, the implicit conversion sequence is a 2722 // user-defined conversion sequence (13.3.3.1.2), with the 2723 // second standard conversion sequence either an identity 2724 // conversion or, if the conversion function returns an 2725 // entity of a type that is a derived class of the parameter 2726 // type, a derived-to-base Conversion. 2727 if (!Best->FinalConversion.DirectBinding) 2728 break; 2729 2730 ICS.setUserDefined(); 2731 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2732 ICS.UserDefined.After = Best->FinalConversion; 2733 ICS.UserDefined.ConversionFunction = Best->Function; 2734 ICS.UserDefined.EllipsisConversion = false; 2735 assert(ICS.UserDefined.After.ReferenceBinding && 2736 ICS.UserDefined.After.DirectBinding && 2737 "Expected a direct reference binding!"); 2738 return ICS; 2739 2740 case OR_Ambiguous: 2741 ICS.setAmbiguous(); 2742 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2743 Cand != CandidateSet.end(); ++Cand) 2744 if (Cand->Viable) 2745 ICS.Ambiguous.addConversion(Cand->Function); 2746 return ICS; 2747 2748 case OR_No_Viable_Function: 2749 case OR_Deleted: 2750 // There was no suitable conversion, or we found a deleted 2751 // conversion; continue with other checks. 2752 break; 2753 } 2754 } 2755 2756 // -- Otherwise, the reference shall be to a non-volatile const 2757 // type (i.e., cv1 shall be const), or the reference shall be an 2758 // rvalue reference and the initializer expression shall be an rvalue. 2759 // 2760 // We actually handle one oddity of C++ [over.ics.ref] at this 2761 // point, which is that, due to p2 (which short-circuits reference 2762 // binding by only attempting a simple conversion for non-direct 2763 // bindings) and p3's strange wording, we allow a const volatile 2764 // reference to bind to an rvalue. Hence the check for the presence 2765 // of "const" rather than checking for "const" being the only 2766 // qualifier. 2767 if (!isRValRef && !T1.isConstQualified()) 2768 return ICS; 2769 2770 // -- if T2 is a class type and 2771 // -- the initializer expression is an rvalue and "cv1 T1" 2772 // is reference-compatible with "cv2 T2," or 2773 // 2774 // -- T1 is not reference-related to T2 and the initializer 2775 // expression can be implicitly converted to an rvalue 2776 // of type "cv3 T3" (this conversion is selected by 2777 // enumerating the applicable conversion functions 2778 // (13.3.1.6) and choosing the best one through overload 2779 // resolution (13.3)), 2780 // 2781 // then the reference is bound to the initializer 2782 // expression rvalue in the first case and to the object 2783 // that is the result of the conversion in the second case 2784 // (or, in either case, to the appropriate base class 2785 // subobject of the object). 2786 // 2787 // We're only checking the first case here, which is a direct 2788 // binding in C++0x but not in C++03. 2789 if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && 2790 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2791 ICS.setStandard(); 2792 ICS.Standard.First = ICK_Identity; 2793 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2794 ICS.Standard.Third = ICK_Identity; 2795 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2796 ICS.Standard.setToType(0, T2); 2797 ICS.Standard.setToType(1, T1); 2798 ICS.Standard.setToType(2, T1); 2799 ICS.Standard.ReferenceBinding = true; 2800 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 2801 ICS.Standard.RRefBinding = isRValRef; 2802 ICS.Standard.CopyConstructor = 0; 2803 return ICS; 2804 } 2805 2806 // -- Otherwise, a temporary of type "cv1 T1" is created and 2807 // initialized from the initializer expression using the 2808 // rules for a non-reference copy initialization (8.5). The 2809 // reference is then bound to the temporary. If T1 is 2810 // reference-related to T2, cv1 must be the same 2811 // cv-qualification as, or greater cv-qualification than, 2812 // cv2; otherwise, the program is ill-formed. 2813 if (RefRelationship == Sema::Ref_Related) { 2814 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 2815 // we would be reference-compatible or reference-compatible with 2816 // added qualification. But that wasn't the case, so the reference 2817 // initialization fails. 2818 return ICS; 2819 } 2820 2821 // If at least one of the types is a class type, the types are not 2822 // related, and we aren't allowed any user conversions, the 2823 // reference binding fails. This case is important for breaking 2824 // recursion, since TryImplicitConversion below will attempt to 2825 // create a temporary through the use of a copy constructor. 2826 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 2827 (T1->isRecordType() || T2->isRecordType())) 2828 return ICS; 2829 2830 // C++ [over.ics.ref]p2: 2831 // When a parameter of reference type is not bound directly to 2832 // an argument expression, the conversion sequence is the one 2833 // required to convert the argument expression to the 2834 // underlying type of the reference according to 2835 // 13.3.3.1. Conceptually, this conversion sequence corresponds 2836 // to copy-initializing a temporary of the underlying type with 2837 // the argument expression. Any difference in top-level 2838 // cv-qualification is subsumed by the initialization itself 2839 // and does not constitute a conversion. 2840 ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, 2841 /*AllowExplicit=*/false, 2842 /*InOverloadResolution=*/false); 2843 2844 // Of course, that's still a reference binding. 2845 if (ICS.isStandard()) { 2846 ICS.Standard.ReferenceBinding = true; 2847 ICS.Standard.RRefBinding = isRValRef; 2848 } else if (ICS.isUserDefined()) { 2849 ICS.UserDefined.After.ReferenceBinding = true; 2850 ICS.UserDefined.After.RRefBinding = isRValRef; 2851 } 2852 return ICS; 2853} 2854 2855/// TryCopyInitialization - Try to copy-initialize a value of type 2856/// ToType from the expression From. Return the implicit conversion 2857/// sequence required to pass this argument, which may be a bad 2858/// conversion sequence (meaning that the argument cannot be passed to 2859/// a parameter of this type). If @p SuppressUserConversions, then we 2860/// do not permit any user-defined conversion sequences. 2861static ImplicitConversionSequence 2862TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 2863 bool SuppressUserConversions, 2864 bool InOverloadResolution) { 2865 if (ToType->isReferenceType()) 2866 return TryReferenceInit(S, From, ToType, 2867 /*FIXME:*/From->getLocStart(), 2868 SuppressUserConversions, 2869 /*AllowExplicit=*/false); 2870 2871 return S.TryImplicitConversion(From, ToType, 2872 SuppressUserConversions, 2873 /*AllowExplicit=*/false, 2874 InOverloadResolution); 2875} 2876 2877/// TryObjectArgumentInitialization - Try to initialize the object 2878/// parameter of the given member function (@c Method) from the 2879/// expression @p From. 2880ImplicitConversionSequence 2881Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2882 CXXMethodDecl *Method, 2883 CXXRecordDecl *ActingContext) { 2884 QualType ClassType = Context.getTypeDeclType(ActingContext); 2885 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2886 // const volatile object. 2887 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2888 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2889 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2890 2891 // Set up the conversion sequence as a "bad" conversion, to allow us 2892 // to exit early. 2893 ImplicitConversionSequence ICS; 2894 2895 // We need to have an object of class type. 2896 QualType FromType = OrigFromType; 2897 if (const PointerType *PT = FromType->getAs<PointerType>()) 2898 FromType = PT->getPointeeType(); 2899 2900 assert(FromType->isRecordType()); 2901 2902 // The implicit object parameter is has the type "reference to cv X", 2903 // where X is the class of which the function is a member 2904 // (C++ [over.match.funcs]p4). However, when finding an implicit 2905 // conversion sequence for the argument, we are not allowed to 2906 // create temporaries or perform user-defined conversions 2907 // (C++ [over.match.funcs]p5). We perform a simplified version of 2908 // reference binding here, that allows class rvalues to bind to 2909 // non-constant references. 2910 2911 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2912 // with the implicit object parameter (C++ [over.match.funcs]p5). 2913 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2914 if (ImplicitParamType.getCVRQualifiers() 2915 != FromTypeCanon.getLocalCVRQualifiers() && 2916 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 2917 ICS.setBad(BadConversionSequence::bad_qualifiers, 2918 OrigFromType, ImplicitParamType); 2919 return ICS; 2920 } 2921 2922 // Check that we have either the same type or a derived type. It 2923 // affects the conversion rank. 2924 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2925 ImplicitConversionKind SecondKind; 2926 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 2927 SecondKind = ICK_Identity; 2928 } else if (IsDerivedFrom(FromType, ClassType)) 2929 SecondKind = ICK_Derived_To_Base; 2930 else { 2931 ICS.setBad(BadConversionSequence::unrelated_class, 2932 FromType, ImplicitParamType); 2933 return ICS; 2934 } 2935 2936 // Success. Mark this as a reference binding. 2937 ICS.setStandard(); 2938 ICS.Standard.setAsIdentityConversion(); 2939 ICS.Standard.Second = SecondKind; 2940 ICS.Standard.setFromType(FromType); 2941 ICS.Standard.setAllToTypes(ImplicitParamType); 2942 ICS.Standard.ReferenceBinding = true; 2943 ICS.Standard.DirectBinding = true; 2944 ICS.Standard.RRefBinding = false; 2945 return ICS; 2946} 2947 2948/// PerformObjectArgumentInitialization - Perform initialization of 2949/// the implicit object parameter for the given Method with the given 2950/// expression. 2951bool 2952Sema::PerformObjectArgumentInitialization(Expr *&From, 2953 NestedNameSpecifier *Qualifier, 2954 NamedDecl *FoundDecl, 2955 CXXMethodDecl *Method) { 2956 QualType FromRecordType, DestType; 2957 QualType ImplicitParamRecordType = 2958 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2959 2960 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2961 FromRecordType = PT->getPointeeType(); 2962 DestType = Method->getThisType(Context); 2963 } else { 2964 FromRecordType = From->getType(); 2965 DestType = ImplicitParamRecordType; 2966 } 2967 2968 // Note that we always use the true parent context when performing 2969 // the actual argument initialization. 2970 ImplicitConversionSequence ICS 2971 = TryObjectArgumentInitialization(From->getType(), Method, 2972 Method->getParent()); 2973 if (ICS.isBad()) 2974 return Diag(From->getSourceRange().getBegin(), 2975 diag::err_implicit_object_parameter_init) 2976 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2977 2978 if (ICS.Standard.Second == ICK_Derived_To_Base) 2979 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 2980 2981 if (!Context.hasSameType(From->getType(), DestType)) 2982 ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, 2983 /*isLvalue=*/!From->getType()->isPointerType()); 2984 return false; 2985} 2986 2987/// TryContextuallyConvertToBool - Attempt to contextually convert the 2988/// expression From to bool (C++0x [conv]p3). 2989ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2990 // FIXME: This is pretty broken. 2991 return TryImplicitConversion(From, Context.BoolTy, 2992 // FIXME: Are these flags correct? 2993 /*SuppressUserConversions=*/false, 2994 /*AllowExplicit=*/true, 2995 /*InOverloadResolution=*/false); 2996} 2997 2998/// PerformContextuallyConvertToBool - Perform a contextual conversion 2999/// of the expression From to bool (C++0x [conv]p3). 3000bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3001 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 3002 if (!ICS.isBad()) 3003 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3004 3005 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3006 return Diag(From->getSourceRange().getBegin(), 3007 diag::err_typecheck_bool_condition) 3008 << From->getType() << From->getSourceRange(); 3009 return true; 3010} 3011 3012/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3013/// expression From to 'id'. 3014ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) { 3015 QualType Ty = Context.getObjCIdType(); 3016 return TryImplicitConversion(From, Ty, 3017 // FIXME: Are these flags correct? 3018 /*SuppressUserConversions=*/false, 3019 /*AllowExplicit=*/true, 3020 /*InOverloadResolution=*/false); 3021} 3022 3023/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3024/// of the expression From to 'id'. 3025bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3026 QualType Ty = Context.getObjCIdType(); 3027 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From); 3028 if (!ICS.isBad()) 3029 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3030 return true; 3031} 3032 3033/// AddOverloadCandidate - Adds the given function to the set of 3034/// candidate functions, using the given function call arguments. If 3035/// @p SuppressUserConversions, then don't allow user-defined 3036/// conversions via constructors or conversion operators. 3037/// 3038/// \para PartialOverloading true if we are performing "partial" overloading 3039/// based on an incomplete set of function arguments. This feature is used by 3040/// code completion. 3041void 3042Sema::AddOverloadCandidate(FunctionDecl *Function, 3043 DeclAccessPair FoundDecl, 3044 Expr **Args, unsigned NumArgs, 3045 OverloadCandidateSet& CandidateSet, 3046 bool SuppressUserConversions, 3047 bool PartialOverloading) { 3048 const FunctionProtoType* Proto 3049 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3050 assert(Proto && "Functions without a prototype cannot be overloaded"); 3051 assert(!Function->getDescribedFunctionTemplate() && 3052 "Use AddTemplateOverloadCandidate for function templates"); 3053 3054 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3055 if (!isa<CXXConstructorDecl>(Method)) { 3056 // If we get here, it's because we're calling a member function 3057 // that is named without a member access expression (e.g., 3058 // "this->f") that was either written explicitly or created 3059 // implicitly. This can happen with a qualified call to a member 3060 // function, e.g., X::f(). We use an empty type for the implied 3061 // object argument (C++ [over.call.func]p3), and the acting context 3062 // is irrelevant. 3063 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3064 QualType(), Args, NumArgs, CandidateSet, 3065 SuppressUserConversions); 3066 return; 3067 } 3068 // We treat a constructor like a non-member function, since its object 3069 // argument doesn't participate in overload resolution. 3070 } 3071 3072 if (!CandidateSet.isNewCandidate(Function)) 3073 return; 3074 3075 // Overload resolution is always an unevaluated context. 3076 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3077 3078 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3079 // C++ [class.copy]p3: 3080 // A member function template is never instantiated to perform the copy 3081 // of a class object to an object of its class type. 3082 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3083 if (NumArgs == 1 && 3084 Constructor->isCopyConstructorLikeSpecialization() && 3085 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3086 IsDerivedFrom(Args[0]->getType(), ClassType))) 3087 return; 3088 } 3089 3090 // Add this candidate 3091 CandidateSet.push_back(OverloadCandidate()); 3092 OverloadCandidate& Candidate = CandidateSet.back(); 3093 Candidate.FoundDecl = FoundDecl; 3094 Candidate.Function = Function; 3095 Candidate.Viable = true; 3096 Candidate.IsSurrogate = false; 3097 Candidate.IgnoreObjectArgument = false; 3098 3099 unsigned NumArgsInProto = Proto->getNumArgs(); 3100 3101 // (C++ 13.3.2p2): A candidate function having fewer than m 3102 // parameters is viable only if it has an ellipsis in its parameter 3103 // list (8.3.5). 3104 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3105 !Proto->isVariadic()) { 3106 Candidate.Viable = false; 3107 Candidate.FailureKind = ovl_fail_too_many_arguments; 3108 return; 3109 } 3110 3111 // (C++ 13.3.2p2): A candidate function having more than m parameters 3112 // is viable only if the (m+1)st parameter has a default argument 3113 // (8.3.6). For the purposes of overload resolution, the 3114 // parameter list is truncated on the right, so that there are 3115 // exactly m parameters. 3116 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3117 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3118 // Not enough arguments. 3119 Candidate.Viable = false; 3120 Candidate.FailureKind = ovl_fail_too_few_arguments; 3121 return; 3122 } 3123 3124 // Determine the implicit conversion sequences for each of the 3125 // arguments. 3126 Candidate.Conversions.resize(NumArgs); 3127 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3128 if (ArgIdx < NumArgsInProto) { 3129 // (C++ 13.3.2p3): for F to be a viable function, there shall 3130 // exist for each argument an implicit conversion sequence 3131 // (13.3.3.1) that converts that argument to the corresponding 3132 // parameter of F. 3133 QualType ParamType = Proto->getArgType(ArgIdx); 3134 Candidate.Conversions[ArgIdx] 3135 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3136 SuppressUserConversions, 3137 /*InOverloadResolution=*/true); 3138 if (Candidate.Conversions[ArgIdx].isBad()) { 3139 Candidate.Viable = false; 3140 Candidate.FailureKind = ovl_fail_bad_conversion; 3141 break; 3142 } 3143 } else { 3144 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3145 // argument for which there is no corresponding parameter is 3146 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3147 Candidate.Conversions[ArgIdx].setEllipsis(); 3148 } 3149 } 3150} 3151 3152/// \brief Add all of the function declarations in the given function set to 3153/// the overload canddiate set. 3154void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3155 Expr **Args, unsigned NumArgs, 3156 OverloadCandidateSet& CandidateSet, 3157 bool SuppressUserConversions) { 3158 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3159 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3160 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3161 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3162 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3163 cast<CXXMethodDecl>(FD)->getParent(), 3164 Args[0]->getType(), Args + 1, NumArgs - 1, 3165 CandidateSet, SuppressUserConversions); 3166 else 3167 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3168 SuppressUserConversions); 3169 } else { 3170 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3171 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3172 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3173 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3174 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3175 /*FIXME: explicit args */ 0, 3176 Args[0]->getType(), Args + 1, NumArgs - 1, 3177 CandidateSet, 3178 SuppressUserConversions); 3179 else 3180 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3181 /*FIXME: explicit args */ 0, 3182 Args, NumArgs, CandidateSet, 3183 SuppressUserConversions); 3184 } 3185 } 3186} 3187 3188/// AddMethodCandidate - Adds a named decl (which is some kind of 3189/// method) as a method candidate to the given overload set. 3190void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3191 QualType ObjectType, 3192 Expr **Args, unsigned NumArgs, 3193 OverloadCandidateSet& CandidateSet, 3194 bool SuppressUserConversions) { 3195 NamedDecl *Decl = FoundDecl.getDecl(); 3196 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3197 3198 if (isa<UsingShadowDecl>(Decl)) 3199 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3200 3201 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3202 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3203 "Expected a member function template"); 3204 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3205 /*ExplicitArgs*/ 0, 3206 ObjectType, Args, NumArgs, 3207 CandidateSet, 3208 SuppressUserConversions); 3209 } else { 3210 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3211 ObjectType, Args, NumArgs, 3212 CandidateSet, SuppressUserConversions); 3213 } 3214} 3215 3216/// AddMethodCandidate - Adds the given C++ member function to the set 3217/// of candidate functions, using the given function call arguments 3218/// and the object argument (@c Object). For example, in a call 3219/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3220/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3221/// allow user-defined conversions via constructors or conversion 3222/// operators. 3223void 3224Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3225 CXXRecordDecl *ActingContext, QualType ObjectType, 3226 Expr **Args, unsigned NumArgs, 3227 OverloadCandidateSet& CandidateSet, 3228 bool SuppressUserConversions) { 3229 const FunctionProtoType* Proto 3230 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3231 assert(Proto && "Methods without a prototype cannot be overloaded"); 3232 assert(!isa<CXXConstructorDecl>(Method) && 3233 "Use AddOverloadCandidate for constructors"); 3234 3235 if (!CandidateSet.isNewCandidate(Method)) 3236 return; 3237 3238 // Overload resolution is always an unevaluated context. 3239 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3240 3241 // Add this candidate 3242 CandidateSet.push_back(OverloadCandidate()); 3243 OverloadCandidate& Candidate = CandidateSet.back(); 3244 Candidate.FoundDecl = FoundDecl; 3245 Candidate.Function = Method; 3246 Candidate.IsSurrogate = false; 3247 Candidate.IgnoreObjectArgument = false; 3248 3249 unsigned NumArgsInProto = Proto->getNumArgs(); 3250 3251 // (C++ 13.3.2p2): A candidate function having fewer than m 3252 // parameters is viable only if it has an ellipsis in its parameter 3253 // list (8.3.5). 3254 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3255 Candidate.Viable = false; 3256 Candidate.FailureKind = ovl_fail_too_many_arguments; 3257 return; 3258 } 3259 3260 // (C++ 13.3.2p2): A candidate function having more than m parameters 3261 // is viable only if the (m+1)st parameter has a default argument 3262 // (8.3.6). For the purposes of overload resolution, the 3263 // parameter list is truncated on the right, so that there are 3264 // exactly m parameters. 3265 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3266 if (NumArgs < MinRequiredArgs) { 3267 // Not enough arguments. 3268 Candidate.Viable = false; 3269 Candidate.FailureKind = ovl_fail_too_few_arguments; 3270 return; 3271 } 3272 3273 Candidate.Viable = true; 3274 Candidate.Conversions.resize(NumArgs + 1); 3275 3276 if (Method->isStatic() || ObjectType.isNull()) 3277 // The implicit object argument is ignored. 3278 Candidate.IgnoreObjectArgument = true; 3279 else { 3280 // Determine the implicit conversion sequence for the object 3281 // parameter. 3282 Candidate.Conversions[0] 3283 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 3284 if (Candidate.Conversions[0].isBad()) { 3285 Candidate.Viable = false; 3286 Candidate.FailureKind = ovl_fail_bad_conversion; 3287 return; 3288 } 3289 } 3290 3291 // Determine the implicit conversion sequences for each of the 3292 // arguments. 3293 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3294 if (ArgIdx < NumArgsInProto) { 3295 // (C++ 13.3.2p3): for F to be a viable function, there shall 3296 // exist for each argument an implicit conversion sequence 3297 // (13.3.3.1) that converts that argument to the corresponding 3298 // parameter of F. 3299 QualType ParamType = Proto->getArgType(ArgIdx); 3300 Candidate.Conversions[ArgIdx + 1] 3301 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3302 SuppressUserConversions, 3303 /*InOverloadResolution=*/true); 3304 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3305 Candidate.Viable = false; 3306 Candidate.FailureKind = ovl_fail_bad_conversion; 3307 break; 3308 } 3309 } else { 3310 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3311 // argument for which there is no corresponding parameter is 3312 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3313 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3314 } 3315 } 3316} 3317 3318/// \brief Add a C++ member function template as a candidate to the candidate 3319/// set, using template argument deduction to produce an appropriate member 3320/// function template specialization. 3321void 3322Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3323 DeclAccessPair FoundDecl, 3324 CXXRecordDecl *ActingContext, 3325 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3326 QualType ObjectType, 3327 Expr **Args, unsigned NumArgs, 3328 OverloadCandidateSet& CandidateSet, 3329 bool SuppressUserConversions) { 3330 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3331 return; 3332 3333 // C++ [over.match.funcs]p7: 3334 // In each case where a candidate is a function template, candidate 3335 // function template specializations are generated using template argument 3336 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3337 // candidate functions in the usual way.113) A given name can refer to one 3338 // or more function templates and also to a set of overloaded non-template 3339 // functions. In such a case, the candidate functions generated from each 3340 // function template are combined with the set of non-template candidate 3341 // functions. 3342 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3343 FunctionDecl *Specialization = 0; 3344 if (TemplateDeductionResult Result 3345 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3346 Args, NumArgs, Specialization, Info)) { 3347 CandidateSet.push_back(OverloadCandidate()); 3348 OverloadCandidate &Candidate = CandidateSet.back(); 3349 Candidate.FoundDecl = FoundDecl; 3350 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3351 Candidate.Viable = false; 3352 Candidate.FailureKind = ovl_fail_bad_deduction; 3353 Candidate.IsSurrogate = false; 3354 Candidate.IgnoreObjectArgument = false; 3355 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3356 Info); 3357 return; 3358 } 3359 3360 // Add the function template specialization produced by template argument 3361 // deduction as a candidate. 3362 assert(Specialization && "Missing member function template specialization?"); 3363 assert(isa<CXXMethodDecl>(Specialization) && 3364 "Specialization is not a member function?"); 3365 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3366 ActingContext, ObjectType, Args, NumArgs, 3367 CandidateSet, SuppressUserConversions); 3368} 3369 3370/// \brief Add a C++ function template specialization as a candidate 3371/// in the candidate set, using template argument deduction to produce 3372/// an appropriate function template specialization. 3373void 3374Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3375 DeclAccessPair FoundDecl, 3376 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3377 Expr **Args, unsigned NumArgs, 3378 OverloadCandidateSet& CandidateSet, 3379 bool SuppressUserConversions) { 3380 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3381 return; 3382 3383 // C++ [over.match.funcs]p7: 3384 // In each case where a candidate is a function template, candidate 3385 // function template specializations are generated using template argument 3386 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3387 // candidate functions in the usual way.113) A given name can refer to one 3388 // or more function templates and also to a set of overloaded non-template 3389 // functions. In such a case, the candidate functions generated from each 3390 // function template are combined with the set of non-template candidate 3391 // functions. 3392 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3393 FunctionDecl *Specialization = 0; 3394 if (TemplateDeductionResult Result 3395 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3396 Args, NumArgs, Specialization, Info)) { 3397 CandidateSet.push_back(OverloadCandidate()); 3398 OverloadCandidate &Candidate = CandidateSet.back(); 3399 Candidate.FoundDecl = FoundDecl; 3400 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3401 Candidate.Viable = false; 3402 Candidate.FailureKind = ovl_fail_bad_deduction; 3403 Candidate.IsSurrogate = false; 3404 Candidate.IgnoreObjectArgument = false; 3405 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3406 Info); 3407 return; 3408 } 3409 3410 // Add the function template specialization produced by template argument 3411 // deduction as a candidate. 3412 assert(Specialization && "Missing function template specialization?"); 3413 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3414 SuppressUserConversions); 3415} 3416 3417/// AddConversionCandidate - Add a C++ conversion function as a 3418/// candidate in the candidate set (C++ [over.match.conv], 3419/// C++ [over.match.copy]). From is the expression we're converting from, 3420/// and ToType is the type that we're eventually trying to convert to 3421/// (which may or may not be the same type as the type that the 3422/// conversion function produces). 3423void 3424Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3425 DeclAccessPair FoundDecl, 3426 CXXRecordDecl *ActingContext, 3427 Expr *From, QualType ToType, 3428 OverloadCandidateSet& CandidateSet) { 3429 assert(!Conversion->getDescribedFunctionTemplate() && 3430 "Conversion function templates use AddTemplateConversionCandidate"); 3431 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3432 if (!CandidateSet.isNewCandidate(Conversion)) 3433 return; 3434 3435 // Overload resolution is always an unevaluated context. 3436 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3437 3438 // Add this candidate 3439 CandidateSet.push_back(OverloadCandidate()); 3440 OverloadCandidate& Candidate = CandidateSet.back(); 3441 Candidate.FoundDecl = FoundDecl; 3442 Candidate.Function = Conversion; 3443 Candidate.IsSurrogate = false; 3444 Candidate.IgnoreObjectArgument = false; 3445 Candidate.FinalConversion.setAsIdentityConversion(); 3446 Candidate.FinalConversion.setFromType(ConvType); 3447 Candidate.FinalConversion.setAllToTypes(ToType); 3448 3449 // Determine the implicit conversion sequence for the implicit 3450 // object parameter. 3451 Candidate.Viable = true; 3452 Candidate.Conversions.resize(1); 3453 Candidate.Conversions[0] 3454 = TryObjectArgumentInitialization(From->getType(), Conversion, 3455 ActingContext); 3456 // Conversion functions to a different type in the base class is visible in 3457 // the derived class. So, a derived to base conversion should not participate 3458 // in overload resolution. 3459 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 3460 Candidate.Conversions[0].Standard.Second = ICK_Identity; 3461 if (Candidate.Conversions[0].isBad()) { 3462 Candidate.Viable = false; 3463 Candidate.FailureKind = ovl_fail_bad_conversion; 3464 return; 3465 } 3466 3467 // We won't go through a user-define type conversion function to convert a 3468 // derived to base as such conversions are given Conversion Rank. They only 3469 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3470 QualType FromCanon 3471 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3472 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3473 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3474 Candidate.Viable = false; 3475 Candidate.FailureKind = ovl_fail_trivial_conversion; 3476 return; 3477 } 3478 3479 // To determine what the conversion from the result of calling the 3480 // conversion function to the type we're eventually trying to 3481 // convert to (ToType), we need to synthesize a call to the 3482 // conversion function and attempt copy initialization from it. This 3483 // makes sure that we get the right semantics with respect to 3484 // lvalues/rvalues and the type. Fortunately, we can allocate this 3485 // call on the stack and we don't need its arguments to be 3486 // well-formed. 3487 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3488 From->getLocStart()); 3489 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 3490 CastExpr::CK_FunctionToPointerDecay, 3491 &ConversionRef, CXXBaseSpecifierArray(), false); 3492 3493 // Note that it is safe to allocate CallExpr on the stack here because 3494 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3495 // allocator). 3496 CallExpr Call(Context, &ConversionFn, 0, 0, 3497 Conversion->getConversionType().getNonReferenceType(), 3498 From->getLocStart()); 3499 ImplicitConversionSequence ICS = 3500 TryCopyInitialization(*this, &Call, ToType, 3501 /*SuppressUserConversions=*/true, 3502 /*InOverloadResolution=*/false); 3503 3504 switch (ICS.getKind()) { 3505 case ImplicitConversionSequence::StandardConversion: 3506 Candidate.FinalConversion = ICS.Standard; 3507 3508 // C++ [over.ics.user]p3: 3509 // If the user-defined conversion is specified by a specialization of a 3510 // conversion function template, the second standard conversion sequence 3511 // shall have exact match rank. 3512 if (Conversion->getPrimaryTemplate() && 3513 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3514 Candidate.Viable = false; 3515 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3516 } 3517 3518 break; 3519 3520 case ImplicitConversionSequence::BadConversion: 3521 Candidate.Viable = false; 3522 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3523 break; 3524 3525 default: 3526 assert(false && 3527 "Can only end up with a standard conversion sequence or failure"); 3528 } 3529} 3530 3531/// \brief Adds a conversion function template specialization 3532/// candidate to the overload set, using template argument deduction 3533/// to deduce the template arguments of the conversion function 3534/// template from the type that we are converting to (C++ 3535/// [temp.deduct.conv]). 3536void 3537Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3538 DeclAccessPair FoundDecl, 3539 CXXRecordDecl *ActingDC, 3540 Expr *From, QualType ToType, 3541 OverloadCandidateSet &CandidateSet) { 3542 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3543 "Only conversion function templates permitted here"); 3544 3545 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3546 return; 3547 3548 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3549 CXXConversionDecl *Specialization = 0; 3550 if (TemplateDeductionResult Result 3551 = DeduceTemplateArguments(FunctionTemplate, ToType, 3552 Specialization, Info)) { 3553 CandidateSet.push_back(OverloadCandidate()); 3554 OverloadCandidate &Candidate = CandidateSet.back(); 3555 Candidate.FoundDecl = FoundDecl; 3556 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3557 Candidate.Viable = false; 3558 Candidate.FailureKind = ovl_fail_bad_deduction; 3559 Candidate.IsSurrogate = false; 3560 Candidate.IgnoreObjectArgument = false; 3561 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3562 Info); 3563 return; 3564 } 3565 3566 // Add the conversion function template specialization produced by 3567 // template argument deduction as a candidate. 3568 assert(Specialization && "Missing function template specialization?"); 3569 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 3570 CandidateSet); 3571} 3572 3573/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 3574/// converts the given @c Object to a function pointer via the 3575/// conversion function @c Conversion, and then attempts to call it 3576/// with the given arguments (C++ [over.call.object]p2-4). Proto is 3577/// the type of function that we'll eventually be calling. 3578void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 3579 DeclAccessPair FoundDecl, 3580 CXXRecordDecl *ActingContext, 3581 const FunctionProtoType *Proto, 3582 QualType ObjectType, 3583 Expr **Args, unsigned NumArgs, 3584 OverloadCandidateSet& CandidateSet) { 3585 if (!CandidateSet.isNewCandidate(Conversion)) 3586 return; 3587 3588 // Overload resolution is always an unevaluated context. 3589 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3590 3591 CandidateSet.push_back(OverloadCandidate()); 3592 OverloadCandidate& Candidate = CandidateSet.back(); 3593 Candidate.FoundDecl = FoundDecl; 3594 Candidate.Function = 0; 3595 Candidate.Surrogate = Conversion; 3596 Candidate.Viable = true; 3597 Candidate.IsSurrogate = true; 3598 Candidate.IgnoreObjectArgument = false; 3599 Candidate.Conversions.resize(NumArgs + 1); 3600 3601 // Determine the implicit conversion sequence for the implicit 3602 // object parameter. 3603 ImplicitConversionSequence ObjectInit 3604 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 3605 if (ObjectInit.isBad()) { 3606 Candidate.Viable = false; 3607 Candidate.FailureKind = ovl_fail_bad_conversion; 3608 Candidate.Conversions[0] = ObjectInit; 3609 return; 3610 } 3611 3612 // The first conversion is actually a user-defined conversion whose 3613 // first conversion is ObjectInit's standard conversion (which is 3614 // effectively a reference binding). Record it as such. 3615 Candidate.Conversions[0].setUserDefined(); 3616 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 3617 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 3618 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 3619 Candidate.Conversions[0].UserDefined.After 3620 = Candidate.Conversions[0].UserDefined.Before; 3621 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 3622 3623 // Find the 3624 unsigned NumArgsInProto = Proto->getNumArgs(); 3625 3626 // (C++ 13.3.2p2): A candidate function having fewer than m 3627 // parameters is viable only if it has an ellipsis in its parameter 3628 // list (8.3.5). 3629 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3630 Candidate.Viable = false; 3631 Candidate.FailureKind = ovl_fail_too_many_arguments; 3632 return; 3633 } 3634 3635 // Function types don't have any default arguments, so just check if 3636 // we have enough arguments. 3637 if (NumArgs < NumArgsInProto) { 3638 // Not enough arguments. 3639 Candidate.Viable = false; 3640 Candidate.FailureKind = ovl_fail_too_few_arguments; 3641 return; 3642 } 3643 3644 // Determine the implicit conversion sequences for each of the 3645 // arguments. 3646 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3647 if (ArgIdx < NumArgsInProto) { 3648 // (C++ 13.3.2p3): for F to be a viable function, there shall 3649 // exist for each argument an implicit conversion sequence 3650 // (13.3.3.1) that converts that argument to the corresponding 3651 // parameter of F. 3652 QualType ParamType = Proto->getArgType(ArgIdx); 3653 Candidate.Conversions[ArgIdx + 1] 3654 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3655 /*SuppressUserConversions=*/false, 3656 /*InOverloadResolution=*/false); 3657 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3658 Candidate.Viable = false; 3659 Candidate.FailureKind = ovl_fail_bad_conversion; 3660 break; 3661 } 3662 } else { 3663 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3664 // argument for which there is no corresponding parameter is 3665 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3666 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3667 } 3668 } 3669} 3670 3671/// \brief Add overload candidates for overloaded operators that are 3672/// member functions. 3673/// 3674/// Add the overloaded operator candidates that are member functions 3675/// for the operator Op that was used in an operator expression such 3676/// as "x Op y". , Args/NumArgs provides the operator arguments, and 3677/// CandidateSet will store the added overload candidates. (C++ 3678/// [over.match.oper]). 3679void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 3680 SourceLocation OpLoc, 3681 Expr **Args, unsigned NumArgs, 3682 OverloadCandidateSet& CandidateSet, 3683 SourceRange OpRange) { 3684 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3685 3686 // C++ [over.match.oper]p3: 3687 // For a unary operator @ with an operand of a type whose 3688 // cv-unqualified version is T1, and for a binary operator @ with 3689 // a left operand of a type whose cv-unqualified version is T1 and 3690 // a right operand of a type whose cv-unqualified version is T2, 3691 // three sets of candidate functions, designated member 3692 // candidates, non-member candidates and built-in candidates, are 3693 // constructed as follows: 3694 QualType T1 = Args[0]->getType(); 3695 QualType T2; 3696 if (NumArgs > 1) 3697 T2 = Args[1]->getType(); 3698 3699 // -- If T1 is a class type, the set of member candidates is the 3700 // result of the qualified lookup of T1::operator@ 3701 // (13.3.1.1.1); otherwise, the set of member candidates is 3702 // empty. 3703 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3704 // Complete the type if it can be completed. Otherwise, we're done. 3705 if (RequireCompleteType(OpLoc, T1, PDiag())) 3706 return; 3707 3708 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3709 LookupQualifiedName(Operators, T1Rec->getDecl()); 3710 Operators.suppressDiagnostics(); 3711 3712 for (LookupResult::iterator Oper = Operators.begin(), 3713 OperEnd = Operators.end(); 3714 Oper != OperEnd; 3715 ++Oper) 3716 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 3717 Args + 1, NumArgs - 1, CandidateSet, 3718 /* SuppressUserConversions = */ false); 3719 } 3720} 3721 3722/// AddBuiltinCandidate - Add a candidate for a built-in 3723/// operator. ResultTy and ParamTys are the result and parameter types 3724/// of the built-in candidate, respectively. Args and NumArgs are the 3725/// arguments being passed to the candidate. IsAssignmentOperator 3726/// should be true when this built-in candidate is an assignment 3727/// operator. NumContextualBoolArguments is the number of arguments 3728/// (at the beginning of the argument list) that will be contextually 3729/// converted to bool. 3730void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3731 Expr **Args, unsigned NumArgs, 3732 OverloadCandidateSet& CandidateSet, 3733 bool IsAssignmentOperator, 3734 unsigned NumContextualBoolArguments) { 3735 // Overload resolution is always an unevaluated context. 3736 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3737 3738 // Add this candidate 3739 CandidateSet.push_back(OverloadCandidate()); 3740 OverloadCandidate& Candidate = CandidateSet.back(); 3741 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 3742 Candidate.Function = 0; 3743 Candidate.IsSurrogate = false; 3744 Candidate.IgnoreObjectArgument = false; 3745 Candidate.BuiltinTypes.ResultTy = ResultTy; 3746 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3747 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3748 3749 // Determine the implicit conversion sequences for each of the 3750 // arguments. 3751 Candidate.Viable = true; 3752 Candidate.Conversions.resize(NumArgs); 3753 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3754 // C++ [over.match.oper]p4: 3755 // For the built-in assignment operators, conversions of the 3756 // left operand are restricted as follows: 3757 // -- no temporaries are introduced to hold the left operand, and 3758 // -- no user-defined conversions are applied to the left 3759 // operand to achieve a type match with the left-most 3760 // parameter of a built-in candidate. 3761 // 3762 // We block these conversions by turning off user-defined 3763 // conversions, since that is the only way that initialization of 3764 // a reference to a non-class type can occur from something that 3765 // is not of the same type. 3766 if (ArgIdx < NumContextualBoolArguments) { 3767 assert(ParamTys[ArgIdx] == Context.BoolTy && 3768 "Contextual conversion to bool requires bool type"); 3769 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 3770 } else { 3771 Candidate.Conversions[ArgIdx] 3772 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 3773 ArgIdx == 0 && IsAssignmentOperator, 3774 /*InOverloadResolution=*/false); 3775 } 3776 if (Candidate.Conversions[ArgIdx].isBad()) { 3777 Candidate.Viable = false; 3778 Candidate.FailureKind = ovl_fail_bad_conversion; 3779 break; 3780 } 3781 } 3782} 3783 3784/// BuiltinCandidateTypeSet - A set of types that will be used for the 3785/// candidate operator functions for built-in operators (C++ 3786/// [over.built]). The types are separated into pointer types and 3787/// enumeration types. 3788class BuiltinCandidateTypeSet { 3789 /// TypeSet - A set of types. 3790 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3791 3792 /// PointerTypes - The set of pointer types that will be used in the 3793 /// built-in candidates. 3794 TypeSet PointerTypes; 3795 3796 /// MemberPointerTypes - The set of member pointer types that will be 3797 /// used in the built-in candidates. 3798 TypeSet MemberPointerTypes; 3799 3800 /// EnumerationTypes - The set of enumeration types that will be 3801 /// used in the built-in candidates. 3802 TypeSet EnumerationTypes; 3803 3804 /// \brief The set of vector types that will be used in the built-in 3805 /// candidates. 3806 TypeSet VectorTypes; 3807 3808 /// Sema - The semantic analysis instance where we are building the 3809 /// candidate type set. 3810 Sema &SemaRef; 3811 3812 /// Context - The AST context in which we will build the type sets. 3813 ASTContext &Context; 3814 3815 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3816 const Qualifiers &VisibleQuals); 3817 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3818 3819public: 3820 /// iterator - Iterates through the types that are part of the set. 3821 typedef TypeSet::iterator iterator; 3822 3823 BuiltinCandidateTypeSet(Sema &SemaRef) 3824 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3825 3826 void AddTypesConvertedFrom(QualType Ty, 3827 SourceLocation Loc, 3828 bool AllowUserConversions, 3829 bool AllowExplicitConversions, 3830 const Qualifiers &VisibleTypeConversionsQuals); 3831 3832 /// pointer_begin - First pointer type found; 3833 iterator pointer_begin() { return PointerTypes.begin(); } 3834 3835 /// pointer_end - Past the last pointer type found; 3836 iterator pointer_end() { return PointerTypes.end(); } 3837 3838 /// member_pointer_begin - First member pointer type found; 3839 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3840 3841 /// member_pointer_end - Past the last member pointer type found; 3842 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3843 3844 /// enumeration_begin - First enumeration type found; 3845 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3846 3847 /// enumeration_end - Past the last enumeration type found; 3848 iterator enumeration_end() { return EnumerationTypes.end(); } 3849 3850 iterator vector_begin() { return VectorTypes.begin(); } 3851 iterator vector_end() { return VectorTypes.end(); } 3852}; 3853 3854/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3855/// the set of pointer types along with any more-qualified variants of 3856/// that type. For example, if @p Ty is "int const *", this routine 3857/// will add "int const *", "int const volatile *", "int const 3858/// restrict *", and "int const volatile restrict *" to the set of 3859/// pointer types. Returns true if the add of @p Ty itself succeeded, 3860/// false otherwise. 3861/// 3862/// FIXME: what to do about extended qualifiers? 3863bool 3864BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3865 const Qualifiers &VisibleQuals) { 3866 3867 // Insert this type. 3868 if (!PointerTypes.insert(Ty)) 3869 return false; 3870 3871 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3872 assert(PointerTy && "type was not a pointer type!"); 3873 3874 QualType PointeeTy = PointerTy->getPointeeType(); 3875 // Don't add qualified variants of arrays. For one, they're not allowed 3876 // (the qualifier would sink to the element type), and for another, the 3877 // only overload situation where it matters is subscript or pointer +- int, 3878 // and those shouldn't have qualifier variants anyway. 3879 if (PointeeTy->isArrayType()) 3880 return true; 3881 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3882 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3883 BaseCVR = Array->getElementType().getCVRQualifiers(); 3884 bool hasVolatile = VisibleQuals.hasVolatile(); 3885 bool hasRestrict = VisibleQuals.hasRestrict(); 3886 3887 // Iterate through all strict supersets of BaseCVR. 3888 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3889 if ((CVR | BaseCVR) != CVR) continue; 3890 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3891 // in the types. 3892 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3893 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3894 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3895 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3896 } 3897 3898 return true; 3899} 3900 3901/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3902/// to the set of pointer types along with any more-qualified variants of 3903/// that type. For example, if @p Ty is "int const *", this routine 3904/// will add "int const *", "int const volatile *", "int const 3905/// restrict *", and "int const volatile restrict *" to the set of 3906/// pointer types. Returns true if the add of @p Ty itself succeeded, 3907/// false otherwise. 3908/// 3909/// FIXME: what to do about extended qualifiers? 3910bool 3911BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3912 QualType Ty) { 3913 // Insert this type. 3914 if (!MemberPointerTypes.insert(Ty)) 3915 return false; 3916 3917 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3918 assert(PointerTy && "type was not a member pointer type!"); 3919 3920 QualType PointeeTy = PointerTy->getPointeeType(); 3921 // Don't add qualified variants of arrays. For one, they're not allowed 3922 // (the qualifier would sink to the element type), and for another, the 3923 // only overload situation where it matters is subscript or pointer +- int, 3924 // and those shouldn't have qualifier variants anyway. 3925 if (PointeeTy->isArrayType()) 3926 return true; 3927 const Type *ClassTy = PointerTy->getClass(); 3928 3929 // Iterate through all strict supersets of the pointee type's CVR 3930 // qualifiers. 3931 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3932 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3933 if ((CVR | BaseCVR) != CVR) continue; 3934 3935 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3936 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3937 } 3938 3939 return true; 3940} 3941 3942/// AddTypesConvertedFrom - Add each of the types to which the type @p 3943/// Ty can be implicit converted to the given set of @p Types. We're 3944/// primarily interested in pointer types and enumeration types. We also 3945/// take member pointer types, for the conditional operator. 3946/// AllowUserConversions is true if we should look at the conversion 3947/// functions of a class type, and AllowExplicitConversions if we 3948/// should also include the explicit conversion functions of a class 3949/// type. 3950void 3951BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3952 SourceLocation Loc, 3953 bool AllowUserConversions, 3954 bool AllowExplicitConversions, 3955 const Qualifiers &VisibleQuals) { 3956 // Only deal with canonical types. 3957 Ty = Context.getCanonicalType(Ty); 3958 3959 // Look through reference types; they aren't part of the type of an 3960 // expression for the purposes of conversions. 3961 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3962 Ty = RefTy->getPointeeType(); 3963 3964 // We don't care about qualifiers on the type. 3965 Ty = Ty.getLocalUnqualifiedType(); 3966 3967 // If we're dealing with an array type, decay to the pointer. 3968 if (Ty->isArrayType()) 3969 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3970 3971 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3972 QualType PointeeTy = PointerTy->getPointeeType(); 3973 3974 // Insert our type, and its more-qualified variants, into the set 3975 // of types. 3976 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3977 return; 3978 } else if (Ty->isMemberPointerType()) { 3979 // Member pointers are far easier, since the pointee can't be converted. 3980 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3981 return; 3982 } else if (Ty->isEnumeralType()) { 3983 EnumerationTypes.insert(Ty); 3984 } else if (Ty->isVectorType()) { 3985 VectorTypes.insert(Ty); 3986 } else if (AllowUserConversions) { 3987 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3988 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3989 // No conversion functions in incomplete types. 3990 return; 3991 } 3992 3993 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3994 const UnresolvedSetImpl *Conversions 3995 = ClassDecl->getVisibleConversionFunctions(); 3996 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3997 E = Conversions->end(); I != E; ++I) { 3998 NamedDecl *D = I.getDecl(); 3999 if (isa<UsingShadowDecl>(D)) 4000 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4001 4002 // Skip conversion function templates; they don't tell us anything 4003 // about which builtin types we can convert to. 4004 if (isa<FunctionTemplateDecl>(D)) 4005 continue; 4006 4007 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4008 if (AllowExplicitConversions || !Conv->isExplicit()) { 4009 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4010 VisibleQuals); 4011 } 4012 } 4013 } 4014 } 4015} 4016 4017/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4018/// the volatile- and non-volatile-qualified assignment operators for the 4019/// given type to the candidate set. 4020static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4021 QualType T, 4022 Expr **Args, 4023 unsigned NumArgs, 4024 OverloadCandidateSet &CandidateSet) { 4025 QualType ParamTypes[2]; 4026 4027 // T& operator=(T&, T) 4028 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4029 ParamTypes[1] = T; 4030 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4031 /*IsAssignmentOperator=*/true); 4032 4033 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4034 // volatile T& operator=(volatile T&, T) 4035 ParamTypes[0] 4036 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4037 ParamTypes[1] = T; 4038 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4039 /*IsAssignmentOperator=*/true); 4040 } 4041} 4042 4043/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4044/// if any, found in visible type conversion functions found in ArgExpr's type. 4045static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4046 Qualifiers VRQuals; 4047 const RecordType *TyRec; 4048 if (const MemberPointerType *RHSMPType = 4049 ArgExpr->getType()->getAs<MemberPointerType>()) 4050 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4051 else 4052 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4053 if (!TyRec) { 4054 // Just to be safe, assume the worst case. 4055 VRQuals.addVolatile(); 4056 VRQuals.addRestrict(); 4057 return VRQuals; 4058 } 4059 4060 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4061 if (!ClassDecl->hasDefinition()) 4062 return VRQuals; 4063 4064 const UnresolvedSetImpl *Conversions = 4065 ClassDecl->getVisibleConversionFunctions(); 4066 4067 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4068 E = Conversions->end(); I != E; ++I) { 4069 NamedDecl *D = I.getDecl(); 4070 if (isa<UsingShadowDecl>(D)) 4071 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4072 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4073 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4074 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4075 CanTy = ResTypeRef->getPointeeType(); 4076 // Need to go down the pointer/mempointer chain and add qualifiers 4077 // as see them. 4078 bool done = false; 4079 while (!done) { 4080 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4081 CanTy = ResTypePtr->getPointeeType(); 4082 else if (const MemberPointerType *ResTypeMPtr = 4083 CanTy->getAs<MemberPointerType>()) 4084 CanTy = ResTypeMPtr->getPointeeType(); 4085 else 4086 done = true; 4087 if (CanTy.isVolatileQualified()) 4088 VRQuals.addVolatile(); 4089 if (CanTy.isRestrictQualified()) 4090 VRQuals.addRestrict(); 4091 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4092 return VRQuals; 4093 } 4094 } 4095 } 4096 return VRQuals; 4097} 4098 4099/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4100/// operator overloads to the candidate set (C++ [over.built]), based 4101/// on the operator @p Op and the arguments given. For example, if the 4102/// operator is a binary '+', this routine might add "int 4103/// operator+(int, int)" to cover integer addition. 4104void 4105Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4106 SourceLocation OpLoc, 4107 Expr **Args, unsigned NumArgs, 4108 OverloadCandidateSet& CandidateSet) { 4109 // The set of "promoted arithmetic types", which are the arithmetic 4110 // types are that preserved by promotion (C++ [over.built]p2). Note 4111 // that the first few of these types are the promoted integral 4112 // types; these types need to be first. 4113 // FIXME: What about complex? 4114 const unsigned FirstIntegralType = 0; 4115 const unsigned LastIntegralType = 13; 4116 const unsigned FirstPromotedIntegralType = 7, 4117 LastPromotedIntegralType = 13; 4118 const unsigned FirstPromotedArithmeticType = 7, 4119 LastPromotedArithmeticType = 16; 4120 const unsigned NumArithmeticTypes = 16; 4121 QualType ArithmeticTypes[NumArithmeticTypes] = { 4122 Context.BoolTy, Context.CharTy, Context.WCharTy, 4123// FIXME: Context.Char16Ty, Context.Char32Ty, 4124 Context.SignedCharTy, Context.ShortTy, 4125 Context.UnsignedCharTy, Context.UnsignedShortTy, 4126 Context.IntTy, Context.LongTy, Context.LongLongTy, 4127 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 4128 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 4129 }; 4130 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 4131 "Invalid first promoted integral type"); 4132 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4133 == Context.UnsignedLongLongTy && 4134 "Invalid last promoted integral type"); 4135 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 4136 "Invalid first promoted arithmetic type"); 4137 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4138 == Context.LongDoubleTy && 4139 "Invalid last promoted arithmetic type"); 4140 4141 // Find all of the types that the arguments can convert to, but only 4142 // if the operator we're looking at has built-in operator candidates 4143 // that make use of these types. 4144 Qualifiers VisibleTypeConversionsQuals; 4145 VisibleTypeConversionsQuals.addConst(); 4146 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4147 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4148 4149 BuiltinCandidateTypeSet CandidateTypes(*this); 4150 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4151 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4152 OpLoc, 4153 true, 4154 (Op == OO_Exclaim || 4155 Op == OO_AmpAmp || 4156 Op == OO_PipePipe), 4157 VisibleTypeConversionsQuals); 4158 4159 bool isComparison = false; 4160 switch (Op) { 4161 case OO_None: 4162 case NUM_OVERLOADED_OPERATORS: 4163 assert(false && "Expected an overloaded operator"); 4164 break; 4165 4166 case OO_Star: // '*' is either unary or binary 4167 if (NumArgs == 1) 4168 goto UnaryStar; 4169 else 4170 goto BinaryStar; 4171 break; 4172 4173 case OO_Plus: // '+' is either unary or binary 4174 if (NumArgs == 1) 4175 goto UnaryPlus; 4176 else 4177 goto BinaryPlus; 4178 break; 4179 4180 case OO_Minus: // '-' is either unary or binary 4181 if (NumArgs == 1) 4182 goto UnaryMinus; 4183 else 4184 goto BinaryMinus; 4185 break; 4186 4187 case OO_Amp: // '&' is either unary or binary 4188 if (NumArgs == 1) 4189 goto UnaryAmp; 4190 else 4191 goto BinaryAmp; 4192 4193 case OO_PlusPlus: 4194 case OO_MinusMinus: 4195 // C++ [over.built]p3: 4196 // 4197 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4198 // is either volatile or empty, there exist candidate operator 4199 // functions of the form 4200 // 4201 // VQ T& operator++(VQ T&); 4202 // T operator++(VQ T&, int); 4203 // 4204 // C++ [over.built]p4: 4205 // 4206 // For every pair (T, VQ), where T is an arithmetic type other 4207 // than bool, and VQ is either volatile or empty, there exist 4208 // candidate operator functions of the form 4209 // 4210 // VQ T& operator--(VQ T&); 4211 // T operator--(VQ T&, int); 4212 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4213 Arith < NumArithmeticTypes; ++Arith) { 4214 QualType ArithTy = ArithmeticTypes[Arith]; 4215 QualType ParamTypes[2] 4216 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4217 4218 // Non-volatile version. 4219 if (NumArgs == 1) 4220 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4221 else 4222 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4223 // heuristic to reduce number of builtin candidates in the set. 4224 // Add volatile version only if there are conversions to a volatile type. 4225 if (VisibleTypeConversionsQuals.hasVolatile()) { 4226 // Volatile version 4227 ParamTypes[0] 4228 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4229 if (NumArgs == 1) 4230 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4231 else 4232 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4233 } 4234 } 4235 4236 // C++ [over.built]p5: 4237 // 4238 // For every pair (T, VQ), where T is a cv-qualified or 4239 // cv-unqualified object type, and VQ is either volatile or 4240 // empty, there exist candidate operator functions of the form 4241 // 4242 // T*VQ& operator++(T*VQ&); 4243 // T*VQ& operator--(T*VQ&); 4244 // T* operator++(T*VQ&, int); 4245 // T* operator--(T*VQ&, int); 4246 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4247 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4248 // Skip pointer types that aren't pointers to object types. 4249 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 4250 continue; 4251 4252 QualType ParamTypes[2] = { 4253 Context.getLValueReferenceType(*Ptr), Context.IntTy 4254 }; 4255 4256 // Without volatile 4257 if (NumArgs == 1) 4258 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4259 else 4260 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4261 4262 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4263 VisibleTypeConversionsQuals.hasVolatile()) { 4264 // With volatile 4265 ParamTypes[0] 4266 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4267 if (NumArgs == 1) 4268 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4269 else 4270 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4271 } 4272 } 4273 break; 4274 4275 UnaryStar: 4276 // C++ [over.built]p6: 4277 // For every cv-qualified or cv-unqualified object type T, there 4278 // exist candidate operator functions of the form 4279 // 4280 // T& operator*(T*); 4281 // 4282 // C++ [over.built]p7: 4283 // For every function type T, there exist candidate operator 4284 // functions of the form 4285 // T& operator*(T*); 4286 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4287 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4288 QualType ParamTy = *Ptr; 4289 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 4290 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4291 &ParamTy, Args, 1, CandidateSet); 4292 } 4293 break; 4294 4295 UnaryPlus: 4296 // C++ [over.built]p8: 4297 // For every type T, there exist candidate operator functions of 4298 // the form 4299 // 4300 // T* operator+(T*); 4301 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4302 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4303 QualType ParamTy = *Ptr; 4304 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4305 } 4306 4307 // Fall through 4308 4309 UnaryMinus: 4310 // C++ [over.built]p9: 4311 // For every promoted arithmetic type T, there exist candidate 4312 // operator functions of the form 4313 // 4314 // T operator+(T); 4315 // T operator-(T); 4316 for (unsigned Arith = FirstPromotedArithmeticType; 4317 Arith < LastPromotedArithmeticType; ++Arith) { 4318 QualType ArithTy = ArithmeticTypes[Arith]; 4319 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4320 } 4321 4322 // Extension: We also add these operators for vector types. 4323 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4324 VecEnd = CandidateTypes.vector_end(); 4325 Vec != VecEnd; ++Vec) { 4326 QualType VecTy = *Vec; 4327 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4328 } 4329 break; 4330 4331 case OO_Tilde: 4332 // C++ [over.built]p10: 4333 // For every promoted integral type T, there exist candidate 4334 // operator functions of the form 4335 // 4336 // T operator~(T); 4337 for (unsigned Int = FirstPromotedIntegralType; 4338 Int < LastPromotedIntegralType; ++Int) { 4339 QualType IntTy = ArithmeticTypes[Int]; 4340 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4341 } 4342 4343 // Extension: We also add this operator for vector types. 4344 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4345 VecEnd = CandidateTypes.vector_end(); 4346 Vec != VecEnd; ++Vec) { 4347 QualType VecTy = *Vec; 4348 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4349 } 4350 break; 4351 4352 case OO_New: 4353 case OO_Delete: 4354 case OO_Array_New: 4355 case OO_Array_Delete: 4356 case OO_Call: 4357 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4358 break; 4359 4360 case OO_Comma: 4361 UnaryAmp: 4362 case OO_Arrow: 4363 // C++ [over.match.oper]p3: 4364 // -- For the operator ',', the unary operator '&', or the 4365 // operator '->', the built-in candidates set is empty. 4366 break; 4367 4368 case OO_EqualEqual: 4369 case OO_ExclaimEqual: 4370 // C++ [over.match.oper]p16: 4371 // For every pointer to member type T, there exist candidate operator 4372 // functions of the form 4373 // 4374 // bool operator==(T,T); 4375 // bool operator!=(T,T); 4376 for (BuiltinCandidateTypeSet::iterator 4377 MemPtr = CandidateTypes.member_pointer_begin(), 4378 MemPtrEnd = CandidateTypes.member_pointer_end(); 4379 MemPtr != MemPtrEnd; 4380 ++MemPtr) { 4381 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4382 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4383 } 4384 4385 // Fall through 4386 4387 case OO_Less: 4388 case OO_Greater: 4389 case OO_LessEqual: 4390 case OO_GreaterEqual: 4391 // C++ [over.built]p15: 4392 // 4393 // For every pointer or enumeration type T, there exist 4394 // candidate operator functions of the form 4395 // 4396 // bool operator<(T, T); 4397 // bool operator>(T, T); 4398 // bool operator<=(T, T); 4399 // bool operator>=(T, T); 4400 // bool operator==(T, T); 4401 // bool operator!=(T, T); 4402 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4403 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4404 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4405 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4406 } 4407 for (BuiltinCandidateTypeSet::iterator Enum 4408 = CandidateTypes.enumeration_begin(); 4409 Enum != CandidateTypes.enumeration_end(); ++Enum) { 4410 QualType ParamTypes[2] = { *Enum, *Enum }; 4411 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4412 } 4413 4414 // Fall through. 4415 isComparison = true; 4416 4417 BinaryPlus: 4418 BinaryMinus: 4419 if (!isComparison) { 4420 // We didn't fall through, so we must have OO_Plus or OO_Minus. 4421 4422 // C++ [over.built]p13: 4423 // 4424 // For every cv-qualified or cv-unqualified object type T 4425 // there exist candidate operator functions of the form 4426 // 4427 // T* operator+(T*, ptrdiff_t); 4428 // T& operator[](T*, ptrdiff_t); [BELOW] 4429 // T* operator-(T*, ptrdiff_t); 4430 // T* operator+(ptrdiff_t, T*); 4431 // T& operator[](ptrdiff_t, T*); [BELOW] 4432 // 4433 // C++ [over.built]p14: 4434 // 4435 // For every T, where T is a pointer to object type, there 4436 // exist candidate operator functions of the form 4437 // 4438 // ptrdiff_t operator-(T, T); 4439 for (BuiltinCandidateTypeSet::iterator Ptr 4440 = CandidateTypes.pointer_begin(); 4441 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4442 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4443 4444 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 4445 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4446 4447 if (Op == OO_Plus) { 4448 // T* operator+(ptrdiff_t, T*); 4449 ParamTypes[0] = ParamTypes[1]; 4450 ParamTypes[1] = *Ptr; 4451 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4452 } else { 4453 // ptrdiff_t operator-(T, T); 4454 ParamTypes[1] = *Ptr; 4455 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 4456 Args, 2, CandidateSet); 4457 } 4458 } 4459 } 4460 // Fall through 4461 4462 case OO_Slash: 4463 BinaryStar: 4464 Conditional: 4465 // C++ [over.built]p12: 4466 // 4467 // For every pair of promoted arithmetic types L and R, there 4468 // exist candidate operator functions of the form 4469 // 4470 // LR operator*(L, R); 4471 // LR operator/(L, R); 4472 // LR operator+(L, R); 4473 // LR operator-(L, R); 4474 // bool operator<(L, R); 4475 // bool operator>(L, R); 4476 // bool operator<=(L, R); 4477 // bool operator>=(L, R); 4478 // bool operator==(L, R); 4479 // bool operator!=(L, R); 4480 // 4481 // where LR is the result of the usual arithmetic conversions 4482 // between types L and R. 4483 // 4484 // C++ [over.built]p24: 4485 // 4486 // For every pair of promoted arithmetic types L and R, there exist 4487 // candidate operator functions of the form 4488 // 4489 // LR operator?(bool, L, R); 4490 // 4491 // where LR is the result of the usual arithmetic conversions 4492 // between types L and R. 4493 // Our candidates ignore the first parameter. 4494 for (unsigned Left = FirstPromotedArithmeticType; 4495 Left < LastPromotedArithmeticType; ++Left) { 4496 for (unsigned Right = FirstPromotedArithmeticType; 4497 Right < LastPromotedArithmeticType; ++Right) { 4498 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4499 QualType Result 4500 = isComparison 4501 ? Context.BoolTy 4502 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4503 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4504 } 4505 } 4506 4507 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 4508 // conditional operator for vector types. 4509 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4510 Vec1End = CandidateTypes.vector_end(); 4511 Vec1 != Vec1End; ++Vec1) 4512 for (BuiltinCandidateTypeSet::iterator 4513 Vec2 = CandidateTypes.vector_begin(), 4514 Vec2End = CandidateTypes.vector_end(); 4515 Vec2 != Vec2End; ++Vec2) { 4516 QualType LandR[2] = { *Vec1, *Vec2 }; 4517 QualType Result; 4518 if (isComparison) 4519 Result = Context.BoolTy; 4520 else { 4521 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 4522 Result = *Vec1; 4523 else 4524 Result = *Vec2; 4525 } 4526 4527 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4528 } 4529 4530 break; 4531 4532 case OO_Percent: 4533 BinaryAmp: 4534 case OO_Caret: 4535 case OO_Pipe: 4536 case OO_LessLess: 4537 case OO_GreaterGreater: 4538 // C++ [over.built]p17: 4539 // 4540 // For every pair of promoted integral types L and R, there 4541 // exist candidate operator functions of the form 4542 // 4543 // LR operator%(L, R); 4544 // LR operator&(L, R); 4545 // LR operator^(L, R); 4546 // LR operator|(L, R); 4547 // L operator<<(L, R); 4548 // L operator>>(L, R); 4549 // 4550 // where LR is the result of the usual arithmetic conversions 4551 // between types L and R. 4552 for (unsigned Left = FirstPromotedIntegralType; 4553 Left < LastPromotedIntegralType; ++Left) { 4554 for (unsigned Right = FirstPromotedIntegralType; 4555 Right < LastPromotedIntegralType; ++Right) { 4556 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4557 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 4558 ? LandR[0] 4559 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4560 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4561 } 4562 } 4563 break; 4564 4565 case OO_Equal: 4566 // C++ [over.built]p20: 4567 // 4568 // For every pair (T, VQ), where T is an enumeration or 4569 // pointer to member type and VQ is either volatile or 4570 // empty, there exist candidate operator functions of the form 4571 // 4572 // VQ T& operator=(VQ T&, T); 4573 for (BuiltinCandidateTypeSet::iterator 4574 Enum = CandidateTypes.enumeration_begin(), 4575 EnumEnd = CandidateTypes.enumeration_end(); 4576 Enum != EnumEnd; ++Enum) 4577 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 4578 CandidateSet); 4579 for (BuiltinCandidateTypeSet::iterator 4580 MemPtr = CandidateTypes.member_pointer_begin(), 4581 MemPtrEnd = CandidateTypes.member_pointer_end(); 4582 MemPtr != MemPtrEnd; ++MemPtr) 4583 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 4584 CandidateSet); 4585 4586 // Fall through. 4587 4588 case OO_PlusEqual: 4589 case OO_MinusEqual: 4590 // C++ [over.built]p19: 4591 // 4592 // For every pair (T, VQ), where T is any type and VQ is either 4593 // volatile or empty, there exist candidate operator functions 4594 // of the form 4595 // 4596 // T*VQ& operator=(T*VQ&, T*); 4597 // 4598 // C++ [over.built]p21: 4599 // 4600 // For every pair (T, VQ), where T is a cv-qualified or 4601 // cv-unqualified object type and VQ is either volatile or 4602 // empty, there exist candidate operator functions of the form 4603 // 4604 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 4605 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 4606 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4607 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4608 QualType ParamTypes[2]; 4609 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 4610 4611 // non-volatile version 4612 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 4613 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4614 /*IsAssigmentOperator=*/Op == OO_Equal); 4615 4616 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4617 VisibleTypeConversionsQuals.hasVolatile()) { 4618 // volatile version 4619 ParamTypes[0] 4620 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4621 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4622 /*IsAssigmentOperator=*/Op == OO_Equal); 4623 } 4624 } 4625 // Fall through. 4626 4627 case OO_StarEqual: 4628 case OO_SlashEqual: 4629 // C++ [over.built]p18: 4630 // 4631 // For every triple (L, VQ, R), where L is an arithmetic type, 4632 // VQ is either volatile or empty, and R is a promoted 4633 // arithmetic type, there exist candidate operator functions of 4634 // the form 4635 // 4636 // VQ L& operator=(VQ L&, R); 4637 // VQ L& operator*=(VQ L&, R); 4638 // VQ L& operator/=(VQ L&, R); 4639 // VQ L& operator+=(VQ L&, R); 4640 // VQ L& operator-=(VQ L&, R); 4641 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 4642 for (unsigned Right = FirstPromotedArithmeticType; 4643 Right < LastPromotedArithmeticType; ++Right) { 4644 QualType ParamTypes[2]; 4645 ParamTypes[1] = ArithmeticTypes[Right]; 4646 4647 // Add this built-in operator as a candidate (VQ is empty). 4648 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4649 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4650 /*IsAssigmentOperator=*/Op == OO_Equal); 4651 4652 // Add this built-in operator as a candidate (VQ is 'volatile'). 4653 if (VisibleTypeConversionsQuals.hasVolatile()) { 4654 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 4655 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4656 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4657 /*IsAssigmentOperator=*/Op == OO_Equal); 4658 } 4659 } 4660 } 4661 4662 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 4663 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4664 Vec1End = CandidateTypes.vector_end(); 4665 Vec1 != Vec1End; ++Vec1) 4666 for (BuiltinCandidateTypeSet::iterator 4667 Vec2 = CandidateTypes.vector_begin(), 4668 Vec2End = CandidateTypes.vector_end(); 4669 Vec2 != Vec2End; ++Vec2) { 4670 QualType ParamTypes[2]; 4671 ParamTypes[1] = *Vec2; 4672 // Add this built-in operator as a candidate (VQ is empty). 4673 ParamTypes[0] = Context.getLValueReferenceType(*Vec1); 4674 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4675 /*IsAssigmentOperator=*/Op == OO_Equal); 4676 4677 // Add this built-in operator as a candidate (VQ is 'volatile'). 4678 if (VisibleTypeConversionsQuals.hasVolatile()) { 4679 ParamTypes[0] = Context.getVolatileType(*Vec1); 4680 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4681 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4682 /*IsAssigmentOperator=*/Op == OO_Equal); 4683 } 4684 } 4685 break; 4686 4687 case OO_PercentEqual: 4688 case OO_LessLessEqual: 4689 case OO_GreaterGreaterEqual: 4690 case OO_AmpEqual: 4691 case OO_CaretEqual: 4692 case OO_PipeEqual: 4693 // C++ [over.built]p22: 4694 // 4695 // For every triple (L, VQ, R), where L is an integral type, VQ 4696 // is either volatile or empty, and R is a promoted integral 4697 // type, there exist candidate operator functions of the form 4698 // 4699 // VQ L& operator%=(VQ L&, R); 4700 // VQ L& operator<<=(VQ L&, R); 4701 // VQ L& operator>>=(VQ L&, R); 4702 // VQ L& operator&=(VQ L&, R); 4703 // VQ L& operator^=(VQ L&, R); 4704 // VQ L& operator|=(VQ L&, R); 4705 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 4706 for (unsigned Right = FirstPromotedIntegralType; 4707 Right < LastPromotedIntegralType; ++Right) { 4708 QualType ParamTypes[2]; 4709 ParamTypes[1] = ArithmeticTypes[Right]; 4710 4711 // Add this built-in operator as a candidate (VQ is empty). 4712 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4713 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4714 if (VisibleTypeConversionsQuals.hasVolatile()) { 4715 // Add this built-in operator as a candidate (VQ is 'volatile'). 4716 ParamTypes[0] = ArithmeticTypes[Left]; 4717 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 4718 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4719 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4720 } 4721 } 4722 } 4723 break; 4724 4725 case OO_Exclaim: { 4726 // C++ [over.operator]p23: 4727 // 4728 // There also exist candidate operator functions of the form 4729 // 4730 // bool operator!(bool); 4731 // bool operator&&(bool, bool); [BELOW] 4732 // bool operator||(bool, bool); [BELOW] 4733 QualType ParamTy = Context.BoolTy; 4734 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 4735 /*IsAssignmentOperator=*/false, 4736 /*NumContextualBoolArguments=*/1); 4737 break; 4738 } 4739 4740 case OO_AmpAmp: 4741 case OO_PipePipe: { 4742 // C++ [over.operator]p23: 4743 // 4744 // There also exist candidate operator functions of the form 4745 // 4746 // bool operator!(bool); [ABOVE] 4747 // bool operator&&(bool, bool); 4748 // bool operator||(bool, bool); 4749 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 4750 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 4751 /*IsAssignmentOperator=*/false, 4752 /*NumContextualBoolArguments=*/2); 4753 break; 4754 } 4755 4756 case OO_Subscript: 4757 // C++ [over.built]p13: 4758 // 4759 // For every cv-qualified or cv-unqualified object type T there 4760 // exist candidate operator functions of the form 4761 // 4762 // T* operator+(T*, ptrdiff_t); [ABOVE] 4763 // T& operator[](T*, ptrdiff_t); 4764 // T* operator-(T*, ptrdiff_t); [ABOVE] 4765 // T* operator+(ptrdiff_t, T*); [ABOVE] 4766 // T& operator[](ptrdiff_t, T*); 4767 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4768 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4769 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4770 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 4771 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 4772 4773 // T& operator[](T*, ptrdiff_t) 4774 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4775 4776 // T& operator[](ptrdiff_t, T*); 4777 ParamTypes[0] = ParamTypes[1]; 4778 ParamTypes[1] = *Ptr; 4779 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4780 } 4781 break; 4782 4783 case OO_ArrowStar: 4784 // C++ [over.built]p11: 4785 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 4786 // C1 is the same type as C2 or is a derived class of C2, T is an object 4787 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 4788 // there exist candidate operator functions of the form 4789 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 4790 // where CV12 is the union of CV1 and CV2. 4791 { 4792 for (BuiltinCandidateTypeSet::iterator Ptr = 4793 CandidateTypes.pointer_begin(); 4794 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4795 QualType C1Ty = (*Ptr); 4796 QualType C1; 4797 QualifierCollector Q1; 4798 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 4799 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 4800 if (!isa<RecordType>(C1)) 4801 continue; 4802 // heuristic to reduce number of builtin candidates in the set. 4803 // Add volatile/restrict version only if there are conversions to a 4804 // volatile/restrict type. 4805 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 4806 continue; 4807 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 4808 continue; 4809 } 4810 for (BuiltinCandidateTypeSet::iterator 4811 MemPtr = CandidateTypes.member_pointer_begin(), 4812 MemPtrEnd = CandidateTypes.member_pointer_end(); 4813 MemPtr != MemPtrEnd; ++MemPtr) { 4814 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 4815 QualType C2 = QualType(mptr->getClass(), 0); 4816 C2 = C2.getUnqualifiedType(); 4817 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 4818 break; 4819 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 4820 // build CV12 T& 4821 QualType T = mptr->getPointeeType(); 4822 if (!VisibleTypeConversionsQuals.hasVolatile() && 4823 T.isVolatileQualified()) 4824 continue; 4825 if (!VisibleTypeConversionsQuals.hasRestrict() && 4826 T.isRestrictQualified()) 4827 continue; 4828 T = Q1.apply(T); 4829 QualType ResultTy = Context.getLValueReferenceType(T); 4830 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4831 } 4832 } 4833 } 4834 break; 4835 4836 case OO_Conditional: 4837 // Note that we don't consider the first argument, since it has been 4838 // contextually converted to bool long ago. The candidates below are 4839 // therefore added as binary. 4840 // 4841 // C++ [over.built]p24: 4842 // For every type T, where T is a pointer or pointer-to-member type, 4843 // there exist candidate operator functions of the form 4844 // 4845 // T operator?(bool, T, T); 4846 // 4847 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 4848 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 4849 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4850 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4851 } 4852 for (BuiltinCandidateTypeSet::iterator Ptr = 4853 CandidateTypes.member_pointer_begin(), 4854 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4855 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4856 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4857 } 4858 goto Conditional; 4859 } 4860} 4861 4862/// \brief Add function candidates found via argument-dependent lookup 4863/// to the set of overloading candidates. 4864/// 4865/// This routine performs argument-dependent name lookup based on the 4866/// given function name (which may also be an operator name) and adds 4867/// all of the overload candidates found by ADL to the overload 4868/// candidate set (C++ [basic.lookup.argdep]). 4869void 4870Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4871 bool Operator, 4872 Expr **Args, unsigned NumArgs, 4873 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4874 OverloadCandidateSet& CandidateSet, 4875 bool PartialOverloading) { 4876 ADLResult Fns; 4877 4878 // FIXME: This approach for uniquing ADL results (and removing 4879 // redundant candidates from the set) relies on pointer-equality, 4880 // which means we need to key off the canonical decl. However, 4881 // always going back to the canonical decl might not get us the 4882 // right set of default arguments. What default arguments are 4883 // we supposed to consider on ADL candidates, anyway? 4884 4885 // FIXME: Pass in the explicit template arguments? 4886 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 4887 4888 // Erase all of the candidates we already knew about. 4889 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4890 CandEnd = CandidateSet.end(); 4891 Cand != CandEnd; ++Cand) 4892 if (Cand->Function) { 4893 Fns.erase(Cand->Function); 4894 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4895 Fns.erase(FunTmpl); 4896 } 4897 4898 // For each of the ADL candidates we found, add it to the overload 4899 // set. 4900 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 4901 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 4902 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 4903 if (ExplicitTemplateArgs) 4904 continue; 4905 4906 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 4907 false, PartialOverloading); 4908 } else 4909 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 4910 FoundDecl, ExplicitTemplateArgs, 4911 Args, NumArgs, CandidateSet); 4912 } 4913} 4914 4915/// isBetterOverloadCandidate - Determines whether the first overload 4916/// candidate is a better candidate than the second (C++ 13.3.3p1). 4917bool 4918Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4919 const OverloadCandidate& Cand2, 4920 SourceLocation Loc) { 4921 // Define viable functions to be better candidates than non-viable 4922 // functions. 4923 if (!Cand2.Viable) 4924 return Cand1.Viable; 4925 else if (!Cand1.Viable) 4926 return false; 4927 4928 // C++ [over.match.best]p1: 4929 // 4930 // -- if F is a static member function, ICS1(F) is defined such 4931 // that ICS1(F) is neither better nor worse than ICS1(G) for 4932 // any function G, and, symmetrically, ICS1(G) is neither 4933 // better nor worse than ICS1(F). 4934 unsigned StartArg = 0; 4935 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4936 StartArg = 1; 4937 4938 // C++ [over.match.best]p1: 4939 // A viable function F1 is defined to be a better function than another 4940 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4941 // conversion sequence than ICSi(F2), and then... 4942 unsigned NumArgs = Cand1.Conversions.size(); 4943 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4944 bool HasBetterConversion = false; 4945 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4946 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4947 Cand2.Conversions[ArgIdx])) { 4948 case ImplicitConversionSequence::Better: 4949 // Cand1 has a better conversion sequence. 4950 HasBetterConversion = true; 4951 break; 4952 4953 case ImplicitConversionSequence::Worse: 4954 // Cand1 can't be better than Cand2. 4955 return false; 4956 4957 case ImplicitConversionSequence::Indistinguishable: 4958 // Do nothing. 4959 break; 4960 } 4961 } 4962 4963 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4964 // ICSj(F2), or, if not that, 4965 if (HasBetterConversion) 4966 return true; 4967 4968 // - F1 is a non-template function and F2 is a function template 4969 // specialization, or, if not that, 4970 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 4971 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4972 return true; 4973 4974 // -- F1 and F2 are function template specializations, and the function 4975 // template for F1 is more specialized than the template for F2 4976 // according to the partial ordering rules described in 14.5.5.2, or, 4977 // if not that, 4978 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4979 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4980 if (FunctionTemplateDecl *BetterTemplate 4981 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4982 Cand2.Function->getPrimaryTemplate(), 4983 Loc, 4984 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4985 : TPOC_Call)) 4986 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4987 4988 // -- the context is an initialization by user-defined conversion 4989 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4990 // from the return type of F1 to the destination type (i.e., 4991 // the type of the entity being initialized) is a better 4992 // conversion sequence than the standard conversion sequence 4993 // from the return type of F2 to the destination type. 4994 if (Cand1.Function && Cand2.Function && 4995 isa<CXXConversionDecl>(Cand1.Function) && 4996 isa<CXXConversionDecl>(Cand2.Function)) { 4997 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4998 Cand2.FinalConversion)) { 4999 case ImplicitConversionSequence::Better: 5000 // Cand1 has a better conversion sequence. 5001 return true; 5002 5003 case ImplicitConversionSequence::Worse: 5004 // Cand1 can't be better than Cand2. 5005 return false; 5006 5007 case ImplicitConversionSequence::Indistinguishable: 5008 // Do nothing 5009 break; 5010 } 5011 } 5012 5013 return false; 5014} 5015 5016/// \brief Computes the best viable function (C++ 13.3.3) 5017/// within an overload candidate set. 5018/// 5019/// \param CandidateSet the set of candidate functions. 5020/// 5021/// \param Loc the location of the function name (or operator symbol) for 5022/// which overload resolution occurs. 5023/// 5024/// \param Best f overload resolution was successful or found a deleted 5025/// function, Best points to the candidate function found. 5026/// 5027/// \returns The result of overload resolution. 5028OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 5029 SourceLocation Loc, 5030 OverloadCandidateSet::iterator& Best) { 5031 // Find the best viable function. 5032 Best = CandidateSet.end(); 5033 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5034 Cand != CandidateSet.end(); ++Cand) { 5035 if (Cand->Viable) { 5036 if (Best == CandidateSet.end() || 5037 isBetterOverloadCandidate(*Cand, *Best, Loc)) 5038 Best = Cand; 5039 } 5040 } 5041 5042 // If we didn't find any viable functions, abort. 5043 if (Best == CandidateSet.end()) 5044 return OR_No_Viable_Function; 5045 5046 // Make sure that this function is better than every other viable 5047 // function. If not, we have an ambiguity. 5048 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5049 Cand != CandidateSet.end(); ++Cand) { 5050 if (Cand->Viable && 5051 Cand != Best && 5052 !isBetterOverloadCandidate(*Best, *Cand, Loc)) { 5053 Best = CandidateSet.end(); 5054 return OR_Ambiguous; 5055 } 5056 } 5057 5058 // Best is the best viable function. 5059 if (Best->Function && 5060 (Best->Function->isDeleted() || 5061 Best->Function->getAttr<UnavailableAttr>())) 5062 return OR_Deleted; 5063 5064 // C++ [basic.def.odr]p2: 5065 // An overloaded function is used if it is selected by overload resolution 5066 // when referred to from a potentially-evaluated expression. [Note: this 5067 // covers calls to named functions (5.2.2), operator overloading 5068 // (clause 13), user-defined conversions (12.3.2), allocation function for 5069 // placement new (5.3.4), as well as non-default initialization (8.5). 5070 if (Best->Function) 5071 MarkDeclarationReferenced(Loc, Best->Function); 5072 return OR_Success; 5073} 5074 5075namespace { 5076 5077enum OverloadCandidateKind { 5078 oc_function, 5079 oc_method, 5080 oc_constructor, 5081 oc_function_template, 5082 oc_method_template, 5083 oc_constructor_template, 5084 oc_implicit_default_constructor, 5085 oc_implicit_copy_constructor, 5086 oc_implicit_copy_assignment 5087}; 5088 5089OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 5090 FunctionDecl *Fn, 5091 std::string &Description) { 5092 bool isTemplate = false; 5093 5094 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 5095 isTemplate = true; 5096 Description = S.getTemplateArgumentBindingsText( 5097 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 5098 } 5099 5100 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 5101 if (!Ctor->isImplicit()) 5102 return isTemplate ? oc_constructor_template : oc_constructor; 5103 5104 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 5105 : oc_implicit_default_constructor; 5106 } 5107 5108 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 5109 // This actually gets spelled 'candidate function' for now, but 5110 // it doesn't hurt to split it out. 5111 if (!Meth->isImplicit()) 5112 return isTemplate ? oc_method_template : oc_method; 5113 5114 assert(Meth->isCopyAssignment() 5115 && "implicit method is not copy assignment operator?"); 5116 return oc_implicit_copy_assignment; 5117 } 5118 5119 return isTemplate ? oc_function_template : oc_function; 5120} 5121 5122} // end anonymous namespace 5123 5124// Notes the location of an overload candidate. 5125void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 5126 std::string FnDesc; 5127 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 5128 Diag(Fn->getLocation(), diag::note_ovl_candidate) 5129 << (unsigned) K << FnDesc; 5130} 5131 5132/// Diagnoses an ambiguous conversion. The partial diagnostic is the 5133/// "lead" diagnostic; it will be given two arguments, the source and 5134/// target types of the conversion. 5135void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 5136 SourceLocation CaretLoc, 5137 const PartialDiagnostic &PDiag) { 5138 Diag(CaretLoc, PDiag) 5139 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 5140 for (AmbiguousConversionSequence::const_iterator 5141 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 5142 NoteOverloadCandidate(*I); 5143 } 5144} 5145 5146namespace { 5147 5148void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5149 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5150 assert(Conv.isBad()); 5151 assert(Cand->Function && "for now, candidate must be a function"); 5152 FunctionDecl *Fn = Cand->Function; 5153 5154 // There's a conversion slot for the object argument if this is a 5155 // non-constructor method. Note that 'I' corresponds the 5156 // conversion-slot index. 5157 bool isObjectArgument = false; 5158 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5159 if (I == 0) 5160 isObjectArgument = true; 5161 else 5162 I--; 5163 } 5164 5165 std::string FnDesc; 5166 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5167 5168 Expr *FromExpr = Conv.Bad.FromExpr; 5169 QualType FromTy = Conv.Bad.getFromType(); 5170 QualType ToTy = Conv.Bad.getToType(); 5171 5172 if (FromTy == S.Context.OverloadTy) { 5173 assert(FromExpr && "overload set argument came from implicit argument?"); 5174 Expr *E = FromExpr->IgnoreParens(); 5175 if (isa<UnaryOperator>(E)) 5176 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5177 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5178 5179 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5180 << (unsigned) FnKind << FnDesc 5181 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5182 << ToTy << Name << I+1; 5183 return; 5184 } 5185 5186 // Do some hand-waving analysis to see if the non-viability is due 5187 // to a qualifier mismatch. 5188 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5189 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5190 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5191 CToTy = RT->getPointeeType(); 5192 else { 5193 // TODO: detect and diagnose the full richness of const mismatches. 5194 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5195 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5196 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5197 } 5198 5199 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5200 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5201 // It is dumb that we have to do this here. 5202 while (isa<ArrayType>(CFromTy)) 5203 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5204 while (isa<ArrayType>(CToTy)) 5205 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5206 5207 Qualifiers FromQs = CFromTy.getQualifiers(); 5208 Qualifiers ToQs = CToTy.getQualifiers(); 5209 5210 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5211 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5212 << (unsigned) FnKind << FnDesc 5213 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5214 << FromTy 5215 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5216 << (unsigned) isObjectArgument << I+1; 5217 return; 5218 } 5219 5220 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5221 assert(CVR && "unexpected qualifiers mismatch"); 5222 5223 if (isObjectArgument) { 5224 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5225 << (unsigned) FnKind << FnDesc 5226 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5227 << FromTy << (CVR - 1); 5228 } else { 5229 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5230 << (unsigned) FnKind << FnDesc 5231 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5232 << FromTy << (CVR - 1) << I+1; 5233 } 5234 return; 5235 } 5236 5237 // Diagnose references or pointers to incomplete types differently, 5238 // since it's far from impossible that the incompleteness triggered 5239 // the failure. 5240 QualType TempFromTy = FromTy.getNonReferenceType(); 5241 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5242 TempFromTy = PTy->getPointeeType(); 5243 if (TempFromTy->isIncompleteType()) { 5244 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5245 << (unsigned) FnKind << FnDesc 5246 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5247 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5248 return; 5249 } 5250 5251 // TODO: specialize more based on the kind of mismatch 5252 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5253 << (unsigned) FnKind << FnDesc 5254 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5255 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5256} 5257 5258void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 5259 unsigned NumFormalArgs) { 5260 // TODO: treat calls to a missing default constructor as a special case 5261 5262 FunctionDecl *Fn = Cand->Function; 5263 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 5264 5265 unsigned MinParams = Fn->getMinRequiredArguments(); 5266 5267 // at least / at most / exactly 5268 // FIXME: variadic templates "at most" should account for parameter packs 5269 unsigned mode, modeCount; 5270 if (NumFormalArgs < MinParams) { 5271 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 5272 (Cand->FailureKind == ovl_fail_bad_deduction && 5273 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 5274 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 5275 mode = 0; // "at least" 5276 else 5277 mode = 2; // "exactly" 5278 modeCount = MinParams; 5279 } else { 5280 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 5281 (Cand->FailureKind == ovl_fail_bad_deduction && 5282 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 5283 if (MinParams != FnTy->getNumArgs()) 5284 mode = 1; // "at most" 5285 else 5286 mode = 2; // "exactly" 5287 modeCount = FnTy->getNumArgs(); 5288 } 5289 5290 std::string Description; 5291 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 5292 5293 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 5294 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 5295 << modeCount << NumFormalArgs; 5296} 5297 5298/// Diagnose a failed template-argument deduction. 5299void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 5300 Expr **Args, unsigned NumArgs) { 5301 FunctionDecl *Fn = Cand->Function; // pattern 5302 5303 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 5304 NamedDecl *ParamD; 5305 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 5306 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 5307 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 5308 switch (Cand->DeductionFailure.Result) { 5309 case Sema::TDK_Success: 5310 llvm_unreachable("TDK_success while diagnosing bad deduction"); 5311 5312 case Sema::TDK_Incomplete: { 5313 assert(ParamD && "no parameter found for incomplete deduction result"); 5314 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 5315 << ParamD->getDeclName(); 5316 return; 5317 } 5318 5319 case Sema::TDK_Inconsistent: 5320 case Sema::TDK_InconsistentQuals: { 5321 assert(ParamD && "no parameter found for inconsistent deduction result"); 5322 int which = 0; 5323 if (isa<TemplateTypeParmDecl>(ParamD)) 5324 which = 0; 5325 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 5326 which = 1; 5327 else { 5328 which = 2; 5329 } 5330 5331 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 5332 << which << ParamD->getDeclName() 5333 << *Cand->DeductionFailure.getFirstArg() 5334 << *Cand->DeductionFailure.getSecondArg(); 5335 return; 5336 } 5337 5338 case Sema::TDK_InvalidExplicitArguments: 5339 assert(ParamD && "no parameter found for invalid explicit arguments"); 5340 if (ParamD->getDeclName()) 5341 S.Diag(Fn->getLocation(), 5342 diag::note_ovl_candidate_explicit_arg_mismatch_named) 5343 << ParamD->getDeclName(); 5344 else { 5345 int index = 0; 5346 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 5347 index = TTP->getIndex(); 5348 else if (NonTypeTemplateParmDecl *NTTP 5349 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 5350 index = NTTP->getIndex(); 5351 else 5352 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 5353 S.Diag(Fn->getLocation(), 5354 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 5355 << (index + 1); 5356 } 5357 return; 5358 5359 case Sema::TDK_TooManyArguments: 5360 case Sema::TDK_TooFewArguments: 5361 DiagnoseArityMismatch(S, Cand, NumArgs); 5362 return; 5363 5364 case Sema::TDK_InstantiationDepth: 5365 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 5366 return; 5367 5368 case Sema::TDK_SubstitutionFailure: { 5369 std::string ArgString; 5370 if (TemplateArgumentList *Args 5371 = Cand->DeductionFailure.getTemplateArgumentList()) 5372 ArgString = S.getTemplateArgumentBindingsText( 5373 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 5374 *Args); 5375 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 5376 << ArgString; 5377 return; 5378 } 5379 5380 // TODO: diagnose these individually, then kill off 5381 // note_ovl_candidate_bad_deduction, which is uselessly vague. 5382 case Sema::TDK_NonDeducedMismatch: 5383 case Sema::TDK_FailedOverloadResolution: 5384 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 5385 return; 5386 } 5387} 5388 5389/// Generates a 'note' diagnostic for an overload candidate. We've 5390/// already generated a primary error at the call site. 5391/// 5392/// It really does need to be a single diagnostic with its caret 5393/// pointed at the candidate declaration. Yes, this creates some 5394/// major challenges of technical writing. Yes, this makes pointing 5395/// out problems with specific arguments quite awkward. It's still 5396/// better than generating twenty screens of text for every failed 5397/// overload. 5398/// 5399/// It would be great to be able to express per-candidate problems 5400/// more richly for those diagnostic clients that cared, but we'd 5401/// still have to be just as careful with the default diagnostics. 5402void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 5403 Expr **Args, unsigned NumArgs) { 5404 FunctionDecl *Fn = Cand->Function; 5405 5406 // Note deleted candidates, but only if they're viable. 5407 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 5408 std::string FnDesc; 5409 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5410 5411 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 5412 << FnKind << FnDesc << Fn->isDeleted(); 5413 return; 5414 } 5415 5416 // We don't really have anything else to say about viable candidates. 5417 if (Cand->Viable) { 5418 S.NoteOverloadCandidate(Fn); 5419 return; 5420 } 5421 5422 switch (Cand->FailureKind) { 5423 case ovl_fail_too_many_arguments: 5424 case ovl_fail_too_few_arguments: 5425 return DiagnoseArityMismatch(S, Cand, NumArgs); 5426 5427 case ovl_fail_bad_deduction: 5428 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 5429 5430 case ovl_fail_trivial_conversion: 5431 case ovl_fail_bad_final_conversion: 5432 case ovl_fail_final_conversion_not_exact: 5433 return S.NoteOverloadCandidate(Fn); 5434 5435 case ovl_fail_bad_conversion: { 5436 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 5437 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 5438 if (Cand->Conversions[I].isBad()) 5439 return DiagnoseBadConversion(S, Cand, I); 5440 5441 // FIXME: this currently happens when we're called from SemaInit 5442 // when user-conversion overload fails. Figure out how to handle 5443 // those conditions and diagnose them well. 5444 return S.NoteOverloadCandidate(Fn); 5445 } 5446 } 5447} 5448 5449void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 5450 // Desugar the type of the surrogate down to a function type, 5451 // retaining as many typedefs as possible while still showing 5452 // the function type (and, therefore, its parameter types). 5453 QualType FnType = Cand->Surrogate->getConversionType(); 5454 bool isLValueReference = false; 5455 bool isRValueReference = false; 5456 bool isPointer = false; 5457 if (const LValueReferenceType *FnTypeRef = 5458 FnType->getAs<LValueReferenceType>()) { 5459 FnType = FnTypeRef->getPointeeType(); 5460 isLValueReference = true; 5461 } else if (const RValueReferenceType *FnTypeRef = 5462 FnType->getAs<RValueReferenceType>()) { 5463 FnType = FnTypeRef->getPointeeType(); 5464 isRValueReference = true; 5465 } 5466 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 5467 FnType = FnTypePtr->getPointeeType(); 5468 isPointer = true; 5469 } 5470 // Desugar down to a function type. 5471 FnType = QualType(FnType->getAs<FunctionType>(), 0); 5472 // Reconstruct the pointer/reference as appropriate. 5473 if (isPointer) FnType = S.Context.getPointerType(FnType); 5474 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 5475 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 5476 5477 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 5478 << FnType; 5479} 5480 5481void NoteBuiltinOperatorCandidate(Sema &S, 5482 const char *Opc, 5483 SourceLocation OpLoc, 5484 OverloadCandidate *Cand) { 5485 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 5486 std::string TypeStr("operator"); 5487 TypeStr += Opc; 5488 TypeStr += "("; 5489 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 5490 if (Cand->Conversions.size() == 1) { 5491 TypeStr += ")"; 5492 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 5493 } else { 5494 TypeStr += ", "; 5495 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 5496 TypeStr += ")"; 5497 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 5498 } 5499} 5500 5501void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 5502 OverloadCandidate *Cand) { 5503 unsigned NoOperands = Cand->Conversions.size(); 5504 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 5505 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 5506 if (ICS.isBad()) break; // all meaningless after first invalid 5507 if (!ICS.isAmbiguous()) continue; 5508 5509 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 5510 S.PDiag(diag::note_ambiguous_type_conversion)); 5511 } 5512} 5513 5514SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 5515 if (Cand->Function) 5516 return Cand->Function->getLocation(); 5517 if (Cand->IsSurrogate) 5518 return Cand->Surrogate->getLocation(); 5519 return SourceLocation(); 5520} 5521 5522struct CompareOverloadCandidatesForDisplay { 5523 Sema &S; 5524 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 5525 5526 bool operator()(const OverloadCandidate *L, 5527 const OverloadCandidate *R) { 5528 // Fast-path this check. 5529 if (L == R) return false; 5530 5531 // Order first by viability. 5532 if (L->Viable) { 5533 if (!R->Viable) return true; 5534 5535 // TODO: introduce a tri-valued comparison for overload 5536 // candidates. Would be more worthwhile if we had a sort 5537 // that could exploit it. 5538 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; 5539 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; 5540 } else if (R->Viable) 5541 return false; 5542 5543 assert(L->Viable == R->Viable); 5544 5545 // Criteria by which we can sort non-viable candidates: 5546 if (!L->Viable) { 5547 // 1. Arity mismatches come after other candidates. 5548 if (L->FailureKind == ovl_fail_too_many_arguments || 5549 L->FailureKind == ovl_fail_too_few_arguments) 5550 return false; 5551 if (R->FailureKind == ovl_fail_too_many_arguments || 5552 R->FailureKind == ovl_fail_too_few_arguments) 5553 return true; 5554 5555 // 2. Bad conversions come first and are ordered by the number 5556 // of bad conversions and quality of good conversions. 5557 if (L->FailureKind == ovl_fail_bad_conversion) { 5558 if (R->FailureKind != ovl_fail_bad_conversion) 5559 return true; 5560 5561 // If there's any ordering between the defined conversions... 5562 // FIXME: this might not be transitive. 5563 assert(L->Conversions.size() == R->Conversions.size()); 5564 5565 int leftBetter = 0; 5566 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 5567 for (unsigned E = L->Conversions.size(); I != E; ++I) { 5568 switch (S.CompareImplicitConversionSequences(L->Conversions[I], 5569 R->Conversions[I])) { 5570 case ImplicitConversionSequence::Better: 5571 leftBetter++; 5572 break; 5573 5574 case ImplicitConversionSequence::Worse: 5575 leftBetter--; 5576 break; 5577 5578 case ImplicitConversionSequence::Indistinguishable: 5579 break; 5580 } 5581 } 5582 if (leftBetter > 0) return true; 5583 if (leftBetter < 0) return false; 5584 5585 } else if (R->FailureKind == ovl_fail_bad_conversion) 5586 return false; 5587 5588 // TODO: others? 5589 } 5590 5591 // Sort everything else by location. 5592 SourceLocation LLoc = GetLocationForCandidate(L); 5593 SourceLocation RLoc = GetLocationForCandidate(R); 5594 5595 // Put candidates without locations (e.g. builtins) at the end. 5596 if (LLoc.isInvalid()) return false; 5597 if (RLoc.isInvalid()) return true; 5598 5599 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 5600 } 5601}; 5602 5603/// CompleteNonViableCandidate - Normally, overload resolution only 5604/// computes up to the first 5605void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 5606 Expr **Args, unsigned NumArgs) { 5607 assert(!Cand->Viable); 5608 5609 // Don't do anything on failures other than bad conversion. 5610 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 5611 5612 // Skip forward to the first bad conversion. 5613 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 5614 unsigned ConvCount = Cand->Conversions.size(); 5615 while (true) { 5616 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 5617 ConvIdx++; 5618 if (Cand->Conversions[ConvIdx - 1].isBad()) 5619 break; 5620 } 5621 5622 if (ConvIdx == ConvCount) 5623 return; 5624 5625 assert(!Cand->Conversions[ConvIdx].isInitialized() && 5626 "remaining conversion is initialized?"); 5627 5628 // FIXME: this should probably be preserved from the overload 5629 // operation somehow. 5630 bool SuppressUserConversions = false; 5631 5632 const FunctionProtoType* Proto; 5633 unsigned ArgIdx = ConvIdx; 5634 5635 if (Cand->IsSurrogate) { 5636 QualType ConvType 5637 = Cand->Surrogate->getConversionType().getNonReferenceType(); 5638 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5639 ConvType = ConvPtrType->getPointeeType(); 5640 Proto = ConvType->getAs<FunctionProtoType>(); 5641 ArgIdx--; 5642 } else if (Cand->Function) { 5643 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 5644 if (isa<CXXMethodDecl>(Cand->Function) && 5645 !isa<CXXConstructorDecl>(Cand->Function)) 5646 ArgIdx--; 5647 } else { 5648 // Builtin binary operator with a bad first conversion. 5649 assert(ConvCount <= 3); 5650 for (; ConvIdx != ConvCount; ++ConvIdx) 5651 Cand->Conversions[ConvIdx] 5652 = TryCopyInitialization(S, Args[ConvIdx], 5653 Cand->BuiltinTypes.ParamTypes[ConvIdx], 5654 SuppressUserConversions, 5655 /*InOverloadResolution*/ true); 5656 return; 5657 } 5658 5659 // Fill in the rest of the conversions. 5660 unsigned NumArgsInProto = Proto->getNumArgs(); 5661 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 5662 if (ArgIdx < NumArgsInProto) 5663 Cand->Conversions[ConvIdx] 5664 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 5665 SuppressUserConversions, 5666 /*InOverloadResolution=*/true); 5667 else 5668 Cand->Conversions[ConvIdx].setEllipsis(); 5669 } 5670} 5671 5672} // end anonymous namespace 5673 5674/// PrintOverloadCandidates - When overload resolution fails, prints 5675/// diagnostic messages containing the candidates in the candidate 5676/// set. 5677void 5678Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 5679 OverloadCandidateDisplayKind OCD, 5680 Expr **Args, unsigned NumArgs, 5681 const char *Opc, 5682 SourceLocation OpLoc) { 5683 // Sort the candidates by viability and position. Sorting directly would 5684 // be prohibitive, so we make a set of pointers and sort those. 5685 llvm::SmallVector<OverloadCandidate*, 32> Cands; 5686 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 5687 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5688 LastCand = CandidateSet.end(); 5689 Cand != LastCand; ++Cand) { 5690 if (Cand->Viable) 5691 Cands.push_back(Cand); 5692 else if (OCD == OCD_AllCandidates) { 5693 CompleteNonViableCandidate(*this, Cand, Args, NumArgs); 5694 if (Cand->Function || Cand->IsSurrogate) 5695 Cands.push_back(Cand); 5696 // Otherwise, this a non-viable builtin candidate. We do not, in general, 5697 // want to list every possible builtin candidate. 5698 } 5699 } 5700 5701 std::sort(Cands.begin(), Cands.end(), 5702 CompareOverloadCandidatesForDisplay(*this)); 5703 5704 bool ReportedAmbiguousConversions = false; 5705 5706 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 5707 const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads(); 5708 unsigned CandsShown = 0; 5709 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 5710 OverloadCandidate *Cand = *I; 5711 5712 // Set an arbitrary limit on the number of candidate functions we'll spam 5713 // the user with. FIXME: This limit should depend on details of the 5714 // candidate list. 5715 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 5716 break; 5717 } 5718 ++CandsShown; 5719 5720 if (Cand->Function) 5721 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 5722 else if (Cand->IsSurrogate) 5723 NoteSurrogateCandidate(*this, Cand); 5724 else { 5725 assert(Cand->Viable && 5726 "Non-viable built-in candidates are not added to Cands."); 5727 // Generally we only see ambiguities including viable builtin 5728 // operators if overload resolution got screwed up by an 5729 // ambiguous user-defined conversion. 5730 // 5731 // FIXME: It's quite possible for different conversions to see 5732 // different ambiguities, though. 5733 if (!ReportedAmbiguousConversions) { 5734 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 5735 ReportedAmbiguousConversions = true; 5736 } 5737 5738 // If this is a viable builtin, print it. 5739 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 5740 } 5741 } 5742 5743 if (I != E) 5744 Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 5745} 5746 5747static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 5748 if (isa<UnresolvedLookupExpr>(E)) 5749 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 5750 5751 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 5752} 5753 5754/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 5755/// an overloaded function (C++ [over.over]), where @p From is an 5756/// expression with overloaded function type and @p ToType is the type 5757/// we're trying to resolve to. For example: 5758/// 5759/// @code 5760/// int f(double); 5761/// int f(int); 5762/// 5763/// int (*pfd)(double) = f; // selects f(double) 5764/// @endcode 5765/// 5766/// This routine returns the resulting FunctionDecl if it could be 5767/// resolved, and NULL otherwise. When @p Complain is true, this 5768/// routine will emit diagnostics if there is an error. 5769FunctionDecl * 5770Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 5771 bool Complain, 5772 DeclAccessPair &FoundResult) { 5773 QualType FunctionType = ToType; 5774 bool IsMember = false; 5775 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 5776 FunctionType = ToTypePtr->getPointeeType(); 5777 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 5778 FunctionType = ToTypeRef->getPointeeType(); 5779 else if (const MemberPointerType *MemTypePtr = 5780 ToType->getAs<MemberPointerType>()) { 5781 FunctionType = MemTypePtr->getPointeeType(); 5782 IsMember = true; 5783 } 5784 5785 // C++ [over.over]p1: 5786 // [...] [Note: any redundant set of parentheses surrounding the 5787 // overloaded function name is ignored (5.1). ] 5788 // C++ [over.over]p1: 5789 // [...] The overloaded function name can be preceded by the & 5790 // operator. 5791 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5792 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 5793 if (OvlExpr->hasExplicitTemplateArgs()) { 5794 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 5795 ExplicitTemplateArgs = &ETABuffer; 5796 } 5797 5798 // We expect a pointer or reference to function, or a function pointer. 5799 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 5800 if (!FunctionType->isFunctionType()) { 5801 if (Complain) 5802 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 5803 << OvlExpr->getName() << ToType; 5804 5805 return 0; 5806 } 5807 5808 assert(From->getType() == Context.OverloadTy); 5809 5810 // Look through all of the overloaded functions, searching for one 5811 // whose type matches exactly. 5812 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 5813 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 5814 5815 bool FoundNonTemplateFunction = false; 5816 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5817 E = OvlExpr->decls_end(); I != E; ++I) { 5818 // Look through any using declarations to find the underlying function. 5819 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 5820 5821 // C++ [over.over]p3: 5822 // Non-member functions and static member functions match 5823 // targets of type "pointer-to-function" or "reference-to-function." 5824 // Nonstatic member functions match targets of 5825 // type "pointer-to-member-function." 5826 // Note that according to DR 247, the containing class does not matter. 5827 5828 if (FunctionTemplateDecl *FunctionTemplate 5829 = dyn_cast<FunctionTemplateDecl>(Fn)) { 5830 if (CXXMethodDecl *Method 5831 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 5832 // Skip non-static function templates when converting to pointer, and 5833 // static when converting to member pointer. 5834 if (Method->isStatic() == IsMember) 5835 continue; 5836 } else if (IsMember) 5837 continue; 5838 5839 // C++ [over.over]p2: 5840 // If the name is a function template, template argument deduction is 5841 // done (14.8.2.2), and if the argument deduction succeeds, the 5842 // resulting template argument list is used to generate a single 5843 // function template specialization, which is added to the set of 5844 // overloaded functions considered. 5845 // FIXME: We don't really want to build the specialization here, do we? 5846 FunctionDecl *Specialization = 0; 5847 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 5848 if (TemplateDeductionResult Result 5849 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 5850 FunctionType, Specialization, Info)) { 5851 // FIXME: make a note of the failed deduction for diagnostics. 5852 (void)Result; 5853 } else { 5854 // FIXME: If the match isn't exact, shouldn't we just drop this as 5855 // a candidate? Find a testcase before changing the code. 5856 assert(FunctionType 5857 == Context.getCanonicalType(Specialization->getType())); 5858 Matches.push_back(std::make_pair(I.getPair(), 5859 cast<FunctionDecl>(Specialization->getCanonicalDecl()))); 5860 } 5861 5862 continue; 5863 } 5864 5865 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5866 // Skip non-static functions when converting to pointer, and static 5867 // when converting to member pointer. 5868 if (Method->isStatic() == IsMember) 5869 continue; 5870 5871 // If we have explicit template arguments, skip non-templates. 5872 if (OvlExpr->hasExplicitTemplateArgs()) 5873 continue; 5874 } else if (IsMember) 5875 continue; 5876 5877 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 5878 QualType ResultTy; 5879 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 5880 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 5881 ResultTy)) { 5882 Matches.push_back(std::make_pair(I.getPair(), 5883 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 5884 FoundNonTemplateFunction = true; 5885 } 5886 } 5887 } 5888 5889 // If there were 0 or 1 matches, we're done. 5890 if (Matches.empty()) { 5891 if (Complain) { 5892 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 5893 << OvlExpr->getName() << FunctionType; 5894 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5895 E = OvlExpr->decls_end(); 5896 I != E; ++I) 5897 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 5898 NoteOverloadCandidate(F); 5899 } 5900 5901 return 0; 5902 } else if (Matches.size() == 1) { 5903 FunctionDecl *Result = Matches[0].second; 5904 FoundResult = Matches[0].first; 5905 MarkDeclarationReferenced(From->getLocStart(), Result); 5906 if (Complain) 5907 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 5908 return Result; 5909 } 5910 5911 // C++ [over.over]p4: 5912 // If more than one function is selected, [...] 5913 if (!FoundNonTemplateFunction) { 5914 // [...] and any given function template specialization F1 is 5915 // eliminated if the set contains a second function template 5916 // specialization whose function template is more specialized 5917 // than the function template of F1 according to the partial 5918 // ordering rules of 14.5.5.2. 5919 5920 // The algorithm specified above is quadratic. We instead use a 5921 // two-pass algorithm (similar to the one used to identify the 5922 // best viable function in an overload set) that identifies the 5923 // best function template (if it exists). 5924 5925 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 5926 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 5927 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 5928 5929 UnresolvedSetIterator Result = 5930 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 5931 TPOC_Other, From->getLocStart(), 5932 PDiag(), 5933 PDiag(diag::err_addr_ovl_ambiguous) 5934 << Matches[0].second->getDeclName(), 5935 PDiag(diag::note_ovl_candidate) 5936 << (unsigned) oc_function_template); 5937 assert(Result != MatchesCopy.end() && "no most-specialized template"); 5938 MarkDeclarationReferenced(From->getLocStart(), *Result); 5939 FoundResult = Matches[Result - MatchesCopy.begin()].first; 5940 if (Complain) { 5941 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 5942 DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); 5943 } 5944 return cast<FunctionDecl>(*Result); 5945 } 5946 5947 // [...] any function template specializations in the set are 5948 // eliminated if the set also contains a non-template function, [...] 5949 for (unsigned I = 0, N = Matches.size(); I != N; ) { 5950 if (Matches[I].second->getPrimaryTemplate() == 0) 5951 ++I; 5952 else { 5953 Matches[I] = Matches[--N]; 5954 Matches.set_size(N); 5955 } 5956 } 5957 5958 // [...] After such eliminations, if any, there shall remain exactly one 5959 // selected function. 5960 if (Matches.size() == 1) { 5961 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 5962 FoundResult = Matches[0].first; 5963 if (Complain) { 5964 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 5965 DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); 5966 } 5967 return cast<FunctionDecl>(Matches[0].second); 5968 } 5969 5970 // FIXME: We should probably return the same thing that BestViableFunction 5971 // returns (even if we issue the diagnostics here). 5972 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 5973 << Matches[0].second->getDeclName(); 5974 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 5975 NoteOverloadCandidate(Matches[I].second); 5976 return 0; 5977} 5978 5979/// \brief Given an expression that refers to an overloaded function, try to 5980/// resolve that overloaded function expression down to a single function. 5981/// 5982/// This routine can only resolve template-ids that refer to a single function 5983/// template, where that template-id refers to a single template whose template 5984/// arguments are either provided by the template-id or have defaults, 5985/// as described in C++0x [temp.arg.explicit]p3. 5986FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 5987 // C++ [over.over]p1: 5988 // [...] [Note: any redundant set of parentheses surrounding the 5989 // overloaded function name is ignored (5.1). ] 5990 // C++ [over.over]p1: 5991 // [...] The overloaded function name can be preceded by the & 5992 // operator. 5993 5994 if (From->getType() != Context.OverloadTy) 5995 return 0; 5996 5997 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5998 5999 // If we didn't actually find any template-ids, we're done. 6000 if (!OvlExpr->hasExplicitTemplateArgs()) 6001 return 0; 6002 6003 TemplateArgumentListInfo ExplicitTemplateArgs; 6004 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 6005 6006 // Look through all of the overloaded functions, searching for one 6007 // whose type matches exactly. 6008 FunctionDecl *Matched = 0; 6009 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6010 E = OvlExpr->decls_end(); I != E; ++I) { 6011 // C++0x [temp.arg.explicit]p3: 6012 // [...] In contexts where deduction is done and fails, or in contexts 6013 // where deduction is not done, if a template argument list is 6014 // specified and it, along with any default template arguments, 6015 // identifies a single function template specialization, then the 6016 // template-id is an lvalue for the function template specialization. 6017 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 6018 6019 // C++ [over.over]p2: 6020 // If the name is a function template, template argument deduction is 6021 // done (14.8.2.2), and if the argument deduction succeeds, the 6022 // resulting template argument list is used to generate a single 6023 // function template specialization, which is added to the set of 6024 // overloaded functions considered. 6025 FunctionDecl *Specialization = 0; 6026 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6027 if (TemplateDeductionResult Result 6028 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 6029 Specialization, Info)) { 6030 // FIXME: make a note of the failed deduction for diagnostics. 6031 (void)Result; 6032 continue; 6033 } 6034 6035 // Multiple matches; we can't resolve to a single declaration. 6036 if (Matched) 6037 return 0; 6038 6039 Matched = Specialization; 6040 } 6041 6042 return Matched; 6043} 6044 6045/// \brief Add a single candidate to the overload set. 6046static void AddOverloadedCallCandidate(Sema &S, 6047 DeclAccessPair FoundDecl, 6048 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6049 Expr **Args, unsigned NumArgs, 6050 OverloadCandidateSet &CandidateSet, 6051 bool PartialOverloading) { 6052 NamedDecl *Callee = FoundDecl.getDecl(); 6053 if (isa<UsingShadowDecl>(Callee)) 6054 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 6055 6056 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 6057 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 6058 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 6059 false, PartialOverloading); 6060 return; 6061 } 6062 6063 if (FunctionTemplateDecl *FuncTemplate 6064 = dyn_cast<FunctionTemplateDecl>(Callee)) { 6065 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 6066 ExplicitTemplateArgs, 6067 Args, NumArgs, CandidateSet); 6068 return; 6069 } 6070 6071 assert(false && "unhandled case in overloaded call candidate"); 6072 6073 // do nothing? 6074} 6075 6076/// \brief Add the overload candidates named by callee and/or found by argument 6077/// dependent lookup to the given overload set. 6078void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 6079 Expr **Args, unsigned NumArgs, 6080 OverloadCandidateSet &CandidateSet, 6081 bool PartialOverloading) { 6082 6083#ifndef NDEBUG 6084 // Verify that ArgumentDependentLookup is consistent with the rules 6085 // in C++0x [basic.lookup.argdep]p3: 6086 // 6087 // Let X be the lookup set produced by unqualified lookup (3.4.1) 6088 // and let Y be the lookup set produced by argument dependent 6089 // lookup (defined as follows). If X contains 6090 // 6091 // -- a declaration of a class member, or 6092 // 6093 // -- a block-scope function declaration that is not a 6094 // using-declaration, or 6095 // 6096 // -- a declaration that is neither a function or a function 6097 // template 6098 // 6099 // then Y is empty. 6100 6101 if (ULE->requiresADL()) { 6102 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6103 E = ULE->decls_end(); I != E; ++I) { 6104 assert(!(*I)->getDeclContext()->isRecord()); 6105 assert(isa<UsingShadowDecl>(*I) || 6106 !(*I)->getDeclContext()->isFunctionOrMethod()); 6107 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 6108 } 6109 } 6110#endif 6111 6112 // It would be nice to avoid this copy. 6113 TemplateArgumentListInfo TABuffer; 6114 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6115 if (ULE->hasExplicitTemplateArgs()) { 6116 ULE->copyTemplateArgumentsInto(TABuffer); 6117 ExplicitTemplateArgs = &TABuffer; 6118 } 6119 6120 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6121 E = ULE->decls_end(); I != E; ++I) 6122 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 6123 Args, NumArgs, CandidateSet, 6124 PartialOverloading); 6125 6126 if (ULE->requiresADL()) 6127 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 6128 Args, NumArgs, 6129 ExplicitTemplateArgs, 6130 CandidateSet, 6131 PartialOverloading); 6132} 6133 6134static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 6135 Expr **Args, unsigned NumArgs) { 6136 Fn->Destroy(SemaRef.Context); 6137 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6138 Args[Arg]->Destroy(SemaRef.Context); 6139 return SemaRef.ExprError(); 6140} 6141 6142/// Attempts to recover from a call where no functions were found. 6143/// 6144/// Returns true if new candidates were found. 6145static Sema::OwningExprResult 6146BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 6147 UnresolvedLookupExpr *ULE, 6148 SourceLocation LParenLoc, 6149 Expr **Args, unsigned NumArgs, 6150 SourceLocation *CommaLocs, 6151 SourceLocation RParenLoc) { 6152 6153 CXXScopeSpec SS; 6154 if (ULE->getQualifier()) { 6155 SS.setScopeRep(ULE->getQualifier()); 6156 SS.setRange(ULE->getQualifierRange()); 6157 } 6158 6159 TemplateArgumentListInfo TABuffer; 6160 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6161 if (ULE->hasExplicitTemplateArgs()) { 6162 ULE->copyTemplateArgumentsInto(TABuffer); 6163 ExplicitTemplateArgs = &TABuffer; 6164 } 6165 6166 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6167 Sema::LookupOrdinaryName); 6168 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 6169 return Destroy(SemaRef, Fn, Args, NumArgs); 6170 6171 assert(!R.empty() && "lookup results empty despite recovery"); 6172 6173 // Build an implicit member call if appropriate. Just drop the 6174 // casts and such from the call, we don't really care. 6175 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 6176 if ((*R.begin())->isCXXClassMember()) 6177 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6178 else if (ExplicitTemplateArgs) 6179 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6180 else 6181 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6182 6183 if (NewFn.isInvalid()) 6184 return Destroy(SemaRef, Fn, Args, NumArgs); 6185 6186 Fn->Destroy(SemaRef.Context); 6187 6188 // This shouldn't cause an infinite loop because we're giving it 6189 // an expression with non-empty lookup results, which should never 6190 // end up here. 6191 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 6192 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 6193 CommaLocs, RParenLoc); 6194} 6195 6196/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6197/// (which eventually refers to the declaration Func) and the call 6198/// arguments Args/NumArgs, attempt to resolve the function call down 6199/// to a specific function. If overload resolution succeeds, returns 6200/// the function declaration produced by overload 6201/// resolution. Otherwise, emits diagnostics, deletes all of the 6202/// arguments and Fn, and returns NULL. 6203Sema::OwningExprResult 6204Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6205 SourceLocation LParenLoc, 6206 Expr **Args, unsigned NumArgs, 6207 SourceLocation *CommaLocs, 6208 SourceLocation RParenLoc) { 6209#ifndef NDEBUG 6210 if (ULE->requiresADL()) { 6211 // To do ADL, we must have found an unqualified name. 6212 assert(!ULE->getQualifier() && "qualified name with ADL"); 6213 6214 // We don't perform ADL for implicit declarations of builtins. 6215 // Verify that this was correctly set up. 6216 FunctionDecl *F; 6217 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6218 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6219 F->getBuiltinID() && F->isImplicit()) 6220 assert(0 && "performing ADL for builtin"); 6221 6222 // We don't perform ADL in C. 6223 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6224 } 6225#endif 6226 6227 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 6228 6229 // Add the functions denoted by the callee to the set of candidate 6230 // functions, including those from argument-dependent lookup. 6231 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 6232 6233 // If we found nothing, try to recover. 6234 // AddRecoveryCallCandidates diagnoses the error itself, so we just 6235 // bailout out if it fails. 6236 if (CandidateSet.empty()) 6237 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 6238 CommaLocs, RParenLoc); 6239 6240 OverloadCandidateSet::iterator Best; 6241 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 6242 case OR_Success: { 6243 FunctionDecl *FDecl = Best->Function; 6244 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 6245 DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); 6246 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 6247 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 6248 } 6249 6250 case OR_No_Viable_Function: 6251 Diag(Fn->getSourceRange().getBegin(), 6252 diag::err_ovl_no_viable_function_in_call) 6253 << ULE->getName() << Fn->getSourceRange(); 6254 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6255 break; 6256 6257 case OR_Ambiguous: 6258 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 6259 << ULE->getName() << Fn->getSourceRange(); 6260 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6261 break; 6262 6263 case OR_Deleted: 6264 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 6265 << Best->Function->isDeleted() 6266 << ULE->getName() 6267 << Fn->getSourceRange(); 6268 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6269 break; 6270 } 6271 6272 // Overload resolution failed. Destroy all of the subexpressions and 6273 // return NULL. 6274 Fn->Destroy(Context); 6275 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6276 Args[Arg]->Destroy(Context); 6277 return ExprError(); 6278} 6279 6280static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 6281 return Functions.size() > 1 || 6282 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 6283} 6284 6285/// \brief Create a unary operation that may resolve to an overloaded 6286/// operator. 6287/// 6288/// \param OpLoc The location of the operator itself (e.g., '*'). 6289/// 6290/// \param OpcIn The UnaryOperator::Opcode that describes this 6291/// operator. 6292/// 6293/// \param Functions The set of non-member functions that will be 6294/// considered by overload resolution. The caller needs to build this 6295/// set based on the context using, e.g., 6296/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6297/// set should not contain any member functions; those will be added 6298/// by CreateOverloadedUnaryOp(). 6299/// 6300/// \param input The input argument. 6301Sema::OwningExprResult 6302Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 6303 const UnresolvedSetImpl &Fns, 6304 ExprArg input) { 6305 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 6306 Expr *Input = (Expr *)input.get(); 6307 6308 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 6309 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 6310 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6311 6312 Expr *Args[2] = { Input, 0 }; 6313 unsigned NumArgs = 1; 6314 6315 // For post-increment and post-decrement, add the implicit '0' as 6316 // the second argument, so that we know this is a post-increment or 6317 // post-decrement. 6318 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 6319 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 6320 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 6321 SourceLocation()); 6322 NumArgs = 2; 6323 } 6324 6325 if (Input->isTypeDependent()) { 6326 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6327 UnresolvedLookupExpr *Fn 6328 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6329 0, SourceRange(), OpName, OpLoc, 6330 /*ADL*/ true, IsOverloaded(Fns), 6331 Fns.begin(), Fns.end()); 6332 input.release(); 6333 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6334 &Args[0], NumArgs, 6335 Context.DependentTy, 6336 OpLoc)); 6337 } 6338 6339 // Build an empty overload set. 6340 OverloadCandidateSet CandidateSet(OpLoc); 6341 6342 // Add the candidates from the given function set. 6343 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 6344 6345 // Add operator candidates that are member functions. 6346 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6347 6348 // Add candidates from ADL. 6349 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6350 Args, NumArgs, 6351 /*ExplicitTemplateArgs*/ 0, 6352 CandidateSet); 6353 6354 // Add builtin operator candidates. 6355 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6356 6357 // Perform overload resolution. 6358 OverloadCandidateSet::iterator Best; 6359 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6360 case OR_Success: { 6361 // We found a built-in operator or an overloaded operator. 6362 FunctionDecl *FnDecl = Best->Function; 6363 6364 if (FnDecl) { 6365 // We matched an overloaded operator. Build a call to that 6366 // operator. 6367 6368 // Convert the arguments. 6369 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6370 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 6371 6372 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 6373 Best->FoundDecl, Method)) 6374 return ExprError(); 6375 } else { 6376 // Convert the arguments. 6377 OwningExprResult InputInit 6378 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6379 FnDecl->getParamDecl(0)), 6380 SourceLocation(), 6381 move(input)); 6382 if (InputInit.isInvalid()) 6383 return ExprError(); 6384 6385 input = move(InputInit); 6386 Input = (Expr *)input.get(); 6387 } 6388 6389 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6390 6391 // Determine the result type 6392 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 6393 6394 // Build the actual expression node. 6395 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6396 SourceLocation()); 6397 UsualUnaryConversions(FnExpr); 6398 6399 input.release(); 6400 Args[0] = Input; 6401 ExprOwningPtr<CallExpr> TheCall(this, 6402 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6403 Args, NumArgs, ResultTy, OpLoc)); 6404 6405 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6406 FnDecl)) 6407 return ExprError(); 6408 6409 return MaybeBindToTemporary(TheCall.release()); 6410 } else { 6411 // We matched a built-in operator. Convert the arguments, then 6412 // break out so that we will build the appropriate built-in 6413 // operator node. 6414 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 6415 Best->Conversions[0], AA_Passing)) 6416 return ExprError(); 6417 6418 break; 6419 } 6420 } 6421 6422 case OR_No_Viable_Function: 6423 // No viable function; fall through to handling this as a 6424 // built-in operator, which will produce an error message for us. 6425 break; 6426 6427 case OR_Ambiguous: 6428 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6429 << UnaryOperator::getOpcodeStr(Opc) 6430 << Input->getSourceRange(); 6431 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 6432 UnaryOperator::getOpcodeStr(Opc), OpLoc); 6433 return ExprError(); 6434 6435 case OR_Deleted: 6436 Diag(OpLoc, diag::err_ovl_deleted_oper) 6437 << Best->Function->isDeleted() 6438 << UnaryOperator::getOpcodeStr(Opc) 6439 << Input->getSourceRange(); 6440 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6441 return ExprError(); 6442 } 6443 6444 // Either we found no viable overloaded operator or we matched a 6445 // built-in operator. In either case, fall through to trying to 6446 // build a built-in operation. 6447 input.release(); 6448 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 6449} 6450 6451/// \brief Create a binary operation that may resolve to an overloaded 6452/// operator. 6453/// 6454/// \param OpLoc The location of the operator itself (e.g., '+'). 6455/// 6456/// \param OpcIn The BinaryOperator::Opcode that describes this 6457/// operator. 6458/// 6459/// \param Functions The set of non-member functions that will be 6460/// considered by overload resolution. The caller needs to build this 6461/// set based on the context using, e.g., 6462/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6463/// set should not contain any member functions; those will be added 6464/// by CreateOverloadedBinOp(). 6465/// 6466/// \param LHS Left-hand argument. 6467/// \param RHS Right-hand argument. 6468Sema::OwningExprResult 6469Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 6470 unsigned OpcIn, 6471 const UnresolvedSetImpl &Fns, 6472 Expr *LHS, Expr *RHS) { 6473 Expr *Args[2] = { LHS, RHS }; 6474 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 6475 6476 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 6477 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 6478 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6479 6480 // If either side is type-dependent, create an appropriate dependent 6481 // expression. 6482 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6483 if (Fns.empty()) { 6484 // If there are no functions to store, just build a dependent 6485 // BinaryOperator or CompoundAssignment. 6486 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 6487 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 6488 Context.DependentTy, OpLoc)); 6489 6490 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 6491 Context.DependentTy, 6492 Context.DependentTy, 6493 Context.DependentTy, 6494 OpLoc)); 6495 } 6496 6497 // FIXME: save results of ADL from here? 6498 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6499 UnresolvedLookupExpr *Fn 6500 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6501 0, SourceRange(), OpName, OpLoc, 6502 /*ADL*/ true, IsOverloaded(Fns), 6503 Fns.begin(), Fns.end()); 6504 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6505 Args, 2, 6506 Context.DependentTy, 6507 OpLoc)); 6508 } 6509 6510 // If this is the .* operator, which is not overloadable, just 6511 // create a built-in binary operator. 6512 if (Opc == BinaryOperator::PtrMemD) 6513 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6514 6515 // If this is the assignment operator, we only perform overload resolution 6516 // if the left-hand side is a class or enumeration type. This is actually 6517 // a hack. The standard requires that we do overload resolution between the 6518 // various built-in candidates, but as DR507 points out, this can lead to 6519 // problems. So we do it this way, which pretty much follows what GCC does. 6520 // Note that we go the traditional code path for compound assignment forms. 6521 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 6522 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6523 6524 // Build an empty overload set. 6525 OverloadCandidateSet CandidateSet(OpLoc); 6526 6527 // Add the candidates from the given function set. 6528 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 6529 6530 // Add operator candidates that are member functions. 6531 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6532 6533 // Add candidates from ADL. 6534 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6535 Args, 2, 6536 /*ExplicitTemplateArgs*/ 0, 6537 CandidateSet); 6538 6539 // Add builtin operator candidates. 6540 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6541 6542 // Perform overload resolution. 6543 OverloadCandidateSet::iterator Best; 6544 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6545 case OR_Success: { 6546 // We found a built-in operator or an overloaded operator. 6547 FunctionDecl *FnDecl = Best->Function; 6548 6549 if (FnDecl) { 6550 // We matched an overloaded operator. Build a call to that 6551 // operator. 6552 6553 // Convert the arguments. 6554 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6555 // Best->Access is only meaningful for class members. 6556 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 6557 6558 OwningExprResult Arg1 6559 = PerformCopyInitialization( 6560 InitializedEntity::InitializeParameter( 6561 FnDecl->getParamDecl(0)), 6562 SourceLocation(), 6563 Owned(Args[1])); 6564 if (Arg1.isInvalid()) 6565 return ExprError(); 6566 6567 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6568 Best->FoundDecl, Method)) 6569 return ExprError(); 6570 6571 Args[1] = RHS = Arg1.takeAs<Expr>(); 6572 } else { 6573 // Convert the arguments. 6574 OwningExprResult Arg0 6575 = PerformCopyInitialization( 6576 InitializedEntity::InitializeParameter( 6577 FnDecl->getParamDecl(0)), 6578 SourceLocation(), 6579 Owned(Args[0])); 6580 if (Arg0.isInvalid()) 6581 return ExprError(); 6582 6583 OwningExprResult Arg1 6584 = PerformCopyInitialization( 6585 InitializedEntity::InitializeParameter( 6586 FnDecl->getParamDecl(1)), 6587 SourceLocation(), 6588 Owned(Args[1])); 6589 if (Arg1.isInvalid()) 6590 return ExprError(); 6591 Args[0] = LHS = Arg0.takeAs<Expr>(); 6592 Args[1] = RHS = Arg1.takeAs<Expr>(); 6593 } 6594 6595 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6596 6597 // Determine the result type 6598 QualType ResultTy 6599 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 6600 ResultTy = ResultTy.getNonReferenceType(); 6601 6602 // Build the actual expression node. 6603 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6604 OpLoc); 6605 UsualUnaryConversions(FnExpr); 6606 6607 ExprOwningPtr<CXXOperatorCallExpr> 6608 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6609 Args, 2, ResultTy, 6610 OpLoc)); 6611 6612 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6613 FnDecl)) 6614 return ExprError(); 6615 6616 return MaybeBindToTemporary(TheCall.release()); 6617 } else { 6618 // We matched a built-in operator. Convert the arguments, then 6619 // break out so that we will build the appropriate built-in 6620 // operator node. 6621 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6622 Best->Conversions[0], AA_Passing) || 6623 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6624 Best->Conversions[1], AA_Passing)) 6625 return ExprError(); 6626 6627 break; 6628 } 6629 } 6630 6631 case OR_No_Viable_Function: { 6632 // C++ [over.match.oper]p9: 6633 // If the operator is the operator , [...] and there are no 6634 // viable functions, then the operator is assumed to be the 6635 // built-in operator and interpreted according to clause 5. 6636 if (Opc == BinaryOperator::Comma) 6637 break; 6638 6639 // For class as left operand for assignment or compound assigment operator 6640 // do not fall through to handling in built-in, but report that no overloaded 6641 // assignment operator found 6642 OwningExprResult Result = ExprError(); 6643 if (Args[0]->getType()->isRecordType() && 6644 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 6645 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6646 << BinaryOperator::getOpcodeStr(Opc) 6647 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6648 } else { 6649 // No viable function; try to create a built-in operation, which will 6650 // produce an error. Then, show the non-viable candidates. 6651 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6652 } 6653 assert(Result.isInvalid() && 6654 "C++ binary operator overloading is missing candidates!"); 6655 if (Result.isInvalid()) 6656 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6657 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6658 return move(Result); 6659 } 6660 6661 case OR_Ambiguous: 6662 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6663 << BinaryOperator::getOpcodeStr(Opc) 6664 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6665 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6666 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6667 return ExprError(); 6668 6669 case OR_Deleted: 6670 Diag(OpLoc, diag::err_ovl_deleted_oper) 6671 << Best->Function->isDeleted() 6672 << BinaryOperator::getOpcodeStr(Opc) 6673 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6674 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 6675 return ExprError(); 6676 } 6677 6678 // We matched a built-in operator; build it. 6679 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6680} 6681 6682Action::OwningExprResult 6683Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 6684 SourceLocation RLoc, 6685 ExprArg Base, ExprArg Idx) { 6686 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 6687 static_cast<Expr*>(Idx.get()) }; 6688 DeclarationName OpName = 6689 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 6690 6691 // If either side is type-dependent, create an appropriate dependent 6692 // expression. 6693 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6694 6695 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6696 UnresolvedLookupExpr *Fn 6697 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6698 0, SourceRange(), OpName, LLoc, 6699 /*ADL*/ true, /*Overloaded*/ false, 6700 UnresolvedSetIterator(), 6701 UnresolvedSetIterator()); 6702 // Can't add any actual overloads yet 6703 6704 Base.release(); 6705 Idx.release(); 6706 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 6707 Args, 2, 6708 Context.DependentTy, 6709 RLoc)); 6710 } 6711 6712 // Build an empty overload set. 6713 OverloadCandidateSet CandidateSet(LLoc); 6714 6715 // Subscript can only be overloaded as a member function. 6716 6717 // Add operator candidates that are member functions. 6718 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6719 6720 // Add builtin operator candidates. 6721 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6722 6723 // Perform overload resolution. 6724 OverloadCandidateSet::iterator Best; 6725 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 6726 case OR_Success: { 6727 // We found a built-in operator or an overloaded operator. 6728 FunctionDecl *FnDecl = Best->Function; 6729 6730 if (FnDecl) { 6731 // We matched an overloaded operator. Build a call to that 6732 // operator. 6733 6734 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 6735 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 6736 6737 // Convert the arguments. 6738 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 6739 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6740 Best->FoundDecl, Method)) 6741 return ExprError(); 6742 6743 // Convert the arguments. 6744 OwningExprResult InputInit 6745 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6746 FnDecl->getParamDecl(0)), 6747 SourceLocation(), 6748 Owned(Args[1])); 6749 if (InputInit.isInvalid()) 6750 return ExprError(); 6751 6752 Args[1] = InputInit.takeAs<Expr>(); 6753 6754 // Determine the result type 6755 QualType ResultTy 6756 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 6757 ResultTy = ResultTy.getNonReferenceType(); 6758 6759 // Build the actual expression node. 6760 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6761 LLoc); 6762 UsualUnaryConversions(FnExpr); 6763 6764 Base.release(); 6765 Idx.release(); 6766 ExprOwningPtr<CXXOperatorCallExpr> 6767 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 6768 FnExpr, Args, 2, 6769 ResultTy, RLoc)); 6770 6771 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 6772 FnDecl)) 6773 return ExprError(); 6774 6775 return MaybeBindToTemporary(TheCall.release()); 6776 } else { 6777 // We matched a built-in operator. Convert the arguments, then 6778 // break out so that we will build the appropriate built-in 6779 // operator node. 6780 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6781 Best->Conversions[0], AA_Passing) || 6782 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6783 Best->Conversions[1], AA_Passing)) 6784 return ExprError(); 6785 6786 break; 6787 } 6788 } 6789 6790 case OR_No_Viable_Function: { 6791 if (CandidateSet.empty()) 6792 Diag(LLoc, diag::err_ovl_no_oper) 6793 << Args[0]->getType() << /*subscript*/ 0 6794 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6795 else 6796 Diag(LLoc, diag::err_ovl_no_viable_subscript) 6797 << Args[0]->getType() 6798 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6799 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6800 "[]", LLoc); 6801 return ExprError(); 6802 } 6803 6804 case OR_Ambiguous: 6805 Diag(LLoc, diag::err_ovl_ambiguous_oper) 6806 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6807 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6808 "[]", LLoc); 6809 return ExprError(); 6810 6811 case OR_Deleted: 6812 Diag(LLoc, diag::err_ovl_deleted_oper) 6813 << Best->Function->isDeleted() << "[]" 6814 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6815 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6816 "[]", LLoc); 6817 return ExprError(); 6818 } 6819 6820 // We matched a built-in operator; build it. 6821 Base.release(); 6822 Idx.release(); 6823 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 6824 Owned(Args[1]), RLoc); 6825} 6826 6827/// BuildCallToMemberFunction - Build a call to a member 6828/// function. MemExpr is the expression that refers to the member 6829/// function (and includes the object parameter), Args/NumArgs are the 6830/// arguments to the function call (not including the object 6831/// parameter). The caller needs to validate that the member 6832/// expression refers to a member function or an overloaded member 6833/// function. 6834Sema::OwningExprResult 6835Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 6836 SourceLocation LParenLoc, Expr **Args, 6837 unsigned NumArgs, SourceLocation *CommaLocs, 6838 SourceLocation RParenLoc) { 6839 // Dig out the member expression. This holds both the object 6840 // argument and the member function we're referring to. 6841 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 6842 6843 MemberExpr *MemExpr; 6844 CXXMethodDecl *Method = 0; 6845 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 6846 NestedNameSpecifier *Qualifier = 0; 6847 if (isa<MemberExpr>(NakedMemExpr)) { 6848 MemExpr = cast<MemberExpr>(NakedMemExpr); 6849 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 6850 FoundDecl = MemExpr->getFoundDecl(); 6851 Qualifier = MemExpr->getQualifier(); 6852 } else { 6853 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 6854 Qualifier = UnresExpr->getQualifier(); 6855 6856 QualType ObjectType = UnresExpr->getBaseType(); 6857 6858 // Add overload candidates 6859 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 6860 6861 // FIXME: avoid copy. 6862 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6863 if (UnresExpr->hasExplicitTemplateArgs()) { 6864 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6865 TemplateArgs = &TemplateArgsBuffer; 6866 } 6867 6868 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 6869 E = UnresExpr->decls_end(); I != E; ++I) { 6870 6871 NamedDecl *Func = *I; 6872 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 6873 if (isa<UsingShadowDecl>(Func)) 6874 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 6875 6876 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 6877 // If explicit template arguments were provided, we can't call a 6878 // non-template member function. 6879 if (TemplateArgs) 6880 continue; 6881 6882 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 6883 Args, NumArgs, 6884 CandidateSet, /*SuppressUserConversions=*/false); 6885 } else { 6886 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 6887 I.getPair(), ActingDC, TemplateArgs, 6888 ObjectType, Args, NumArgs, 6889 CandidateSet, 6890 /*SuppressUsedConversions=*/false); 6891 } 6892 } 6893 6894 DeclarationName DeclName = UnresExpr->getMemberName(); 6895 6896 OverloadCandidateSet::iterator Best; 6897 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 6898 case OR_Success: 6899 Method = cast<CXXMethodDecl>(Best->Function); 6900 FoundDecl = Best->FoundDecl; 6901 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 6902 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 6903 break; 6904 6905 case OR_No_Viable_Function: 6906 Diag(UnresExpr->getMemberLoc(), 6907 diag::err_ovl_no_viable_member_function_in_call) 6908 << DeclName << MemExprE->getSourceRange(); 6909 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6910 // FIXME: Leaking incoming expressions! 6911 return ExprError(); 6912 6913 case OR_Ambiguous: 6914 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 6915 << DeclName << MemExprE->getSourceRange(); 6916 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6917 // FIXME: Leaking incoming expressions! 6918 return ExprError(); 6919 6920 case OR_Deleted: 6921 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 6922 << Best->Function->isDeleted() 6923 << DeclName << MemExprE->getSourceRange(); 6924 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6925 // FIXME: Leaking incoming expressions! 6926 return ExprError(); 6927 } 6928 6929 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 6930 6931 // If overload resolution picked a static member, build a 6932 // non-member call based on that function. 6933 if (Method->isStatic()) { 6934 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 6935 Args, NumArgs, RParenLoc); 6936 } 6937 6938 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 6939 } 6940 6941 assert(Method && "Member call to something that isn't a method?"); 6942 ExprOwningPtr<CXXMemberCallExpr> 6943 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 6944 NumArgs, 6945 Method->getResultType().getNonReferenceType(), 6946 RParenLoc)); 6947 6948 // Check for a valid return type. 6949 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 6950 TheCall.get(), Method)) 6951 return ExprError(); 6952 6953 // Convert the object argument (for a non-static member function call). 6954 // We only need to do this if there was actually an overload; otherwise 6955 // it was done at lookup. 6956 Expr *ObjectArg = MemExpr->getBase(); 6957 if (!Method->isStatic() && 6958 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 6959 FoundDecl, Method)) 6960 return ExprError(); 6961 MemExpr->setBase(ObjectArg); 6962 6963 // Convert the rest of the arguments 6964 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 6965 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 6966 RParenLoc)) 6967 return ExprError(); 6968 6969 if (CheckFunctionCall(Method, TheCall.get())) 6970 return ExprError(); 6971 6972 return MaybeBindToTemporary(TheCall.release()); 6973} 6974 6975/// BuildCallToObjectOfClassType - Build a call to an object of class 6976/// type (C++ [over.call.object]), which can end up invoking an 6977/// overloaded function call operator (@c operator()) or performing a 6978/// user-defined conversion on the object argument. 6979Sema::ExprResult 6980Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 6981 SourceLocation LParenLoc, 6982 Expr **Args, unsigned NumArgs, 6983 SourceLocation *CommaLocs, 6984 SourceLocation RParenLoc) { 6985 assert(Object->getType()->isRecordType() && "Requires object type argument"); 6986 const RecordType *Record = Object->getType()->getAs<RecordType>(); 6987 6988 // C++ [over.call.object]p1: 6989 // If the primary-expression E in the function call syntax 6990 // evaluates to a class object of type "cv T", then the set of 6991 // candidate functions includes at least the function call 6992 // operators of T. The function call operators of T are obtained by 6993 // ordinary lookup of the name operator() in the context of 6994 // (E).operator(). 6995 OverloadCandidateSet CandidateSet(LParenLoc); 6996 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 6997 6998 if (RequireCompleteType(LParenLoc, Object->getType(), 6999 PDiag(diag::err_incomplete_object_call) 7000 << Object->getSourceRange())) 7001 return true; 7002 7003 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 7004 LookupQualifiedName(R, Record->getDecl()); 7005 R.suppressDiagnostics(); 7006 7007 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7008 Oper != OperEnd; ++Oper) { 7009 AddMethodCandidate(Oper.getPair(), Object->getType(), 7010 Args, NumArgs, CandidateSet, 7011 /*SuppressUserConversions=*/ false); 7012 } 7013 7014 // C++ [over.call.object]p2: 7015 // In addition, for each conversion function declared in T of the 7016 // form 7017 // 7018 // operator conversion-type-id () cv-qualifier; 7019 // 7020 // where cv-qualifier is the same cv-qualification as, or a 7021 // greater cv-qualification than, cv, and where conversion-type-id 7022 // denotes the type "pointer to function of (P1,...,Pn) returning 7023 // R", or the type "reference to pointer to function of 7024 // (P1,...,Pn) returning R", or the type "reference to function 7025 // of (P1,...,Pn) returning R", a surrogate call function [...] 7026 // is also considered as a candidate function. Similarly, 7027 // surrogate call functions are added to the set of candidate 7028 // functions for each conversion function declared in an 7029 // accessible base class provided the function is not hidden 7030 // within T by another intervening declaration. 7031 const UnresolvedSetImpl *Conversions 7032 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 7033 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 7034 E = Conversions->end(); I != E; ++I) { 7035 NamedDecl *D = *I; 7036 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 7037 if (isa<UsingShadowDecl>(D)) 7038 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7039 7040 // Skip over templated conversion functions; they aren't 7041 // surrogates. 7042 if (isa<FunctionTemplateDecl>(D)) 7043 continue; 7044 7045 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7046 7047 // Strip the reference type (if any) and then the pointer type (if 7048 // any) to get down to what might be a function type. 7049 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 7050 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7051 ConvType = ConvPtrType->getPointeeType(); 7052 7053 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 7054 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 7055 Object->getType(), Args, NumArgs, 7056 CandidateSet); 7057 } 7058 7059 // Perform overload resolution. 7060 OverloadCandidateSet::iterator Best; 7061 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 7062 case OR_Success: 7063 // Overload resolution succeeded; we'll build the appropriate call 7064 // below. 7065 break; 7066 7067 case OR_No_Viable_Function: 7068 if (CandidateSet.empty()) 7069 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 7070 << Object->getType() << /*call*/ 1 7071 << Object->getSourceRange(); 7072 else 7073 Diag(Object->getSourceRange().getBegin(), 7074 diag::err_ovl_no_viable_object_call) 7075 << Object->getType() << Object->getSourceRange(); 7076 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7077 break; 7078 7079 case OR_Ambiguous: 7080 Diag(Object->getSourceRange().getBegin(), 7081 diag::err_ovl_ambiguous_object_call) 7082 << Object->getType() << Object->getSourceRange(); 7083 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 7084 break; 7085 7086 case OR_Deleted: 7087 Diag(Object->getSourceRange().getBegin(), 7088 diag::err_ovl_deleted_object_call) 7089 << Best->Function->isDeleted() 7090 << Object->getType() << Object->getSourceRange(); 7091 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7092 break; 7093 } 7094 7095 if (Best == CandidateSet.end()) { 7096 // We had an error; delete all of the subexpressions and return 7097 // the error. 7098 Object->Destroy(Context); 7099 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7100 Args[ArgIdx]->Destroy(Context); 7101 return true; 7102 } 7103 7104 if (Best->Function == 0) { 7105 // Since there is no function declaration, this is one of the 7106 // surrogate candidates. Dig out the conversion function. 7107 CXXConversionDecl *Conv 7108 = cast<CXXConversionDecl>( 7109 Best->Conversions[0].UserDefined.ConversionFunction); 7110 7111 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7112 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7113 7114 // We selected one of the surrogate functions that converts the 7115 // object parameter to a function pointer. Perform the conversion 7116 // on the object argument, then let ActOnCallExpr finish the job. 7117 7118 // Create an implicit member expr to refer to the conversion operator. 7119 // and then call it. 7120 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 7121 Conv); 7122 7123 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 7124 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 7125 CommaLocs, RParenLoc).result(); 7126 } 7127 7128 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7129 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7130 7131 // We found an overloaded operator(). Build a CXXOperatorCallExpr 7132 // that calls this method, using Object for the implicit object 7133 // parameter and passing along the remaining arguments. 7134 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7135 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7136 7137 unsigned NumArgsInProto = Proto->getNumArgs(); 7138 unsigned NumArgsToCheck = NumArgs; 7139 7140 // Build the full argument list for the method call (the 7141 // implicit object parameter is placed at the beginning of the 7142 // list). 7143 Expr **MethodArgs; 7144 if (NumArgs < NumArgsInProto) { 7145 NumArgsToCheck = NumArgsInProto; 7146 MethodArgs = new Expr*[NumArgsInProto + 1]; 7147 } else { 7148 MethodArgs = new Expr*[NumArgs + 1]; 7149 } 7150 MethodArgs[0] = Object; 7151 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7152 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 7153 7154 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 7155 SourceLocation()); 7156 UsualUnaryConversions(NewFn); 7157 7158 // Once we've built TheCall, all of the expressions are properly 7159 // owned. 7160 QualType ResultTy = Method->getResultType().getNonReferenceType(); 7161 ExprOwningPtr<CXXOperatorCallExpr> 7162 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7163 MethodArgs, NumArgs + 1, 7164 ResultTy, RParenLoc)); 7165 delete [] MethodArgs; 7166 7167 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 7168 Method)) 7169 return true; 7170 7171 // We may have default arguments. If so, we need to allocate more 7172 // slots in the call for them. 7173 if (NumArgs < NumArgsInProto) 7174 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7175 else if (NumArgs > NumArgsInProto) 7176 NumArgsToCheck = NumArgsInProto; 7177 7178 bool IsError = false; 7179 7180 // Initialize the implicit object parameter. 7181 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7182 Best->FoundDecl, Method); 7183 TheCall->setArg(0, Object); 7184 7185 7186 // Check the argument types. 7187 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7188 Expr *Arg; 7189 if (i < NumArgs) { 7190 Arg = Args[i]; 7191 7192 // Pass the argument. 7193 7194 OwningExprResult InputInit 7195 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7196 Method->getParamDecl(i)), 7197 SourceLocation(), Owned(Arg)); 7198 7199 IsError |= InputInit.isInvalid(); 7200 Arg = InputInit.takeAs<Expr>(); 7201 } else { 7202 OwningExprResult DefArg 7203 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7204 if (DefArg.isInvalid()) { 7205 IsError = true; 7206 break; 7207 } 7208 7209 Arg = DefArg.takeAs<Expr>(); 7210 } 7211 7212 TheCall->setArg(i + 1, Arg); 7213 } 7214 7215 // If this is a variadic call, handle args passed through "...". 7216 if (Proto->isVariadic()) { 7217 // Promote the arguments (C99 6.5.2.2p7). 7218 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7219 Expr *Arg = Args[i]; 7220 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 7221 TheCall->setArg(i + 1, Arg); 7222 } 7223 } 7224 7225 if (IsError) return true; 7226 7227 if (CheckFunctionCall(Method, TheCall.get())) 7228 return true; 7229 7230 return MaybeBindToTemporary(TheCall.release()).result(); 7231} 7232 7233/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 7234/// (if one exists), where @c Base is an expression of class type and 7235/// @c Member is the name of the member we're trying to find. 7236Sema::OwningExprResult 7237Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 7238 Expr *Base = static_cast<Expr *>(BaseIn.get()); 7239 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 7240 7241 SourceLocation Loc = Base->getExprLoc(); 7242 7243 // C++ [over.ref]p1: 7244 // 7245 // [...] An expression x->m is interpreted as (x.operator->())->m 7246 // for a class object x of type T if T::operator->() exists and if 7247 // the operator is selected as the best match function by the 7248 // overload resolution mechanism (13.3). 7249 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 7250 OverloadCandidateSet CandidateSet(Loc); 7251 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 7252 7253 if (RequireCompleteType(Loc, Base->getType(), 7254 PDiag(diag::err_typecheck_incomplete_tag) 7255 << Base->getSourceRange())) 7256 return ExprError(); 7257 7258 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 7259 LookupQualifiedName(R, BaseRecord->getDecl()); 7260 R.suppressDiagnostics(); 7261 7262 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7263 Oper != OperEnd; ++Oper) { 7264 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 7265 /*SuppressUserConversions=*/false); 7266 } 7267 7268 // Perform overload resolution. 7269 OverloadCandidateSet::iterator Best; 7270 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 7271 case OR_Success: 7272 // Overload resolution succeeded; we'll build the call below. 7273 break; 7274 7275 case OR_No_Viable_Function: 7276 if (CandidateSet.empty()) 7277 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7278 << Base->getType() << Base->getSourceRange(); 7279 else 7280 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7281 << "operator->" << Base->getSourceRange(); 7282 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7283 return ExprError(); 7284 7285 case OR_Ambiguous: 7286 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7287 << "->" << Base->getSourceRange(); 7288 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 7289 return ExprError(); 7290 7291 case OR_Deleted: 7292 Diag(OpLoc, diag::err_ovl_deleted_oper) 7293 << Best->Function->isDeleted() 7294 << "->" << Base->getSourceRange(); 7295 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7296 return ExprError(); 7297 } 7298 7299 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 7300 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7301 7302 // Convert the object parameter. 7303 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7304 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 7305 Best->FoundDecl, Method)) 7306 return ExprError(); 7307 7308 // No concerns about early exits now. 7309 BaseIn.release(); 7310 7311 // Build the operator call. 7312 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 7313 SourceLocation()); 7314 UsualUnaryConversions(FnExpr); 7315 7316 QualType ResultTy = Method->getResultType().getNonReferenceType(); 7317 ExprOwningPtr<CXXOperatorCallExpr> 7318 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 7319 &Base, 1, ResultTy, OpLoc)); 7320 7321 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 7322 Method)) 7323 return ExprError(); 7324 return move(TheCall); 7325} 7326 7327/// FixOverloadedFunctionReference - E is an expression that refers to 7328/// a C++ overloaded function (possibly with some parentheses and 7329/// perhaps a '&' around it). We have resolved the overloaded function 7330/// to the function declaration Fn, so patch up the expression E to 7331/// refer (possibly indirectly) to Fn. Returns the new expr. 7332Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 7333 FunctionDecl *Fn) { 7334 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7335 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 7336 Found, Fn); 7337 if (SubExpr == PE->getSubExpr()) 7338 return PE->Retain(); 7339 7340 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 7341 } 7342 7343 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 7344 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 7345 Found, Fn); 7346 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 7347 SubExpr->getType()) && 7348 "Implicit cast type cannot be determined from overload"); 7349 if (SubExpr == ICE->getSubExpr()) 7350 return ICE->Retain(); 7351 7352 return new (Context) ImplicitCastExpr(ICE->getType(), 7353 ICE->getCastKind(), 7354 SubExpr, CXXBaseSpecifierArray(), 7355 ICE->isLvalueCast()); 7356 } 7357 7358 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 7359 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 7360 "Can only take the address of an overloaded function"); 7361 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7362 if (Method->isStatic()) { 7363 // Do nothing: static member functions aren't any different 7364 // from non-member functions. 7365 } else { 7366 // Fix the sub expression, which really has to be an 7367 // UnresolvedLookupExpr holding an overloaded member function 7368 // or template. 7369 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7370 Found, Fn); 7371 if (SubExpr == UnOp->getSubExpr()) 7372 return UnOp->Retain(); 7373 7374 assert(isa<DeclRefExpr>(SubExpr) 7375 && "fixed to something other than a decl ref"); 7376 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 7377 && "fixed to a member ref with no nested name qualifier"); 7378 7379 // We have taken the address of a pointer to member 7380 // function. Perform the computation here so that we get the 7381 // appropriate pointer to member type. 7382 QualType ClassType 7383 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 7384 QualType MemPtrType 7385 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 7386 7387 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7388 MemPtrType, UnOp->getOperatorLoc()); 7389 } 7390 } 7391 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7392 Found, Fn); 7393 if (SubExpr == UnOp->getSubExpr()) 7394 return UnOp->Retain(); 7395 7396 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7397 Context.getPointerType(SubExpr->getType()), 7398 UnOp->getOperatorLoc()); 7399 } 7400 7401 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 7402 // FIXME: avoid copy. 7403 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7404 if (ULE->hasExplicitTemplateArgs()) { 7405 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 7406 TemplateArgs = &TemplateArgsBuffer; 7407 } 7408 7409 return DeclRefExpr::Create(Context, 7410 ULE->getQualifier(), 7411 ULE->getQualifierRange(), 7412 Fn, 7413 ULE->getNameLoc(), 7414 Fn->getType(), 7415 TemplateArgs); 7416 } 7417 7418 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 7419 // FIXME: avoid copy. 7420 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7421 if (MemExpr->hasExplicitTemplateArgs()) { 7422 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7423 TemplateArgs = &TemplateArgsBuffer; 7424 } 7425 7426 Expr *Base; 7427 7428 // If we're filling in 7429 if (MemExpr->isImplicitAccess()) { 7430 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 7431 return DeclRefExpr::Create(Context, 7432 MemExpr->getQualifier(), 7433 MemExpr->getQualifierRange(), 7434 Fn, 7435 MemExpr->getMemberLoc(), 7436 Fn->getType(), 7437 TemplateArgs); 7438 } else { 7439 SourceLocation Loc = MemExpr->getMemberLoc(); 7440 if (MemExpr->getQualifier()) 7441 Loc = MemExpr->getQualifierRange().getBegin(); 7442 Base = new (Context) CXXThisExpr(Loc, 7443 MemExpr->getBaseType(), 7444 /*isImplicit=*/true); 7445 } 7446 } else 7447 Base = MemExpr->getBase()->Retain(); 7448 7449 return MemberExpr::Create(Context, Base, 7450 MemExpr->isArrow(), 7451 MemExpr->getQualifier(), 7452 MemExpr->getQualifierRange(), 7453 Fn, 7454 Found, 7455 MemExpr->getMemberLoc(), 7456 TemplateArgs, 7457 Fn->getType()); 7458 } 7459 7460 assert(false && "Invalid reference to overloaded function"); 7461 return E->Retain(); 7462} 7463 7464Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 7465 DeclAccessPair Found, 7466 FunctionDecl *Fn) { 7467 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 7468} 7469 7470} // end namespace clang 7471