SemaOverload.cpp revision e61eb0443a77dd178934d070f458e1a08b84eb96
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static ExprResult 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates, 41 SourceLocation Loc = SourceLocation(), 42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 43 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(), 44 VK_LValue, Loc, LocInfo); 45 if (HadMultipleCandidates) 46 DRE->setHadMultipleCandidates(true); 47 ExprResult E = S.Owned(DRE); 48 E = S.DefaultFunctionArrayConversion(E.take()); 49 if (E.isInvalid()) 50 return ExprError(); 51 return move(E); 52} 53 54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 55 bool InOverloadResolution, 56 StandardConversionSequence &SCS, 57 bool CStyle, 58 bool AllowObjCWritebackConversion); 59 60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 61 QualType &ToType, 62 bool InOverloadResolution, 63 StandardConversionSequence &SCS, 64 bool CStyle); 65static OverloadingResult 66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 67 UserDefinedConversionSequence& User, 68 OverloadCandidateSet& Conversions, 69 bool AllowExplicit); 70 71 72static ImplicitConversionSequence::CompareKind 73CompareStandardConversionSequences(Sema &S, 74 const StandardConversionSequence& SCS1, 75 const StandardConversionSequence& SCS2); 76 77static ImplicitConversionSequence::CompareKind 78CompareQualificationConversions(Sema &S, 79 const StandardConversionSequence& SCS1, 80 const StandardConversionSequence& SCS2); 81 82static ImplicitConversionSequence::CompareKind 83CompareDerivedToBaseConversions(Sema &S, 84 const StandardConversionSequence& SCS1, 85 const StandardConversionSequence& SCS2); 86 87 88 89/// GetConversionCategory - Retrieve the implicit conversion 90/// category corresponding to the given implicit conversion kind. 91ImplicitConversionCategory 92GetConversionCategory(ImplicitConversionKind Kind) { 93 static const ImplicitConversionCategory 94 Category[(int)ICK_Num_Conversion_Kinds] = { 95 ICC_Identity, 96 ICC_Lvalue_Transformation, 97 ICC_Lvalue_Transformation, 98 ICC_Lvalue_Transformation, 99 ICC_Identity, 100 ICC_Qualification_Adjustment, 101 ICC_Promotion, 102 ICC_Promotion, 103 ICC_Promotion, 104 ICC_Conversion, 105 ICC_Conversion, 106 ICC_Conversion, 107 ICC_Conversion, 108 ICC_Conversion, 109 ICC_Conversion, 110 ICC_Conversion, 111 ICC_Conversion, 112 ICC_Conversion, 113 ICC_Conversion, 114 ICC_Conversion, 115 ICC_Conversion, 116 ICC_Conversion 117 }; 118 return Category[(int)Kind]; 119} 120 121/// GetConversionRank - Retrieve the implicit conversion rank 122/// corresponding to the given implicit conversion kind. 123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 124 static const ImplicitConversionRank 125 Rank[(int)ICK_Num_Conversion_Kinds] = { 126 ICR_Exact_Match, 127 ICR_Exact_Match, 128 ICR_Exact_Match, 129 ICR_Exact_Match, 130 ICR_Exact_Match, 131 ICR_Exact_Match, 132 ICR_Promotion, 133 ICR_Promotion, 134 ICR_Promotion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Conversion, 146 ICR_Complex_Real_Conversion, 147 ICR_Conversion, 148 ICR_Conversion, 149 ICR_Writeback_Conversion 150 }; 151 return Rank[(int)Kind]; 152} 153 154/// GetImplicitConversionName - Return the name of this kind of 155/// implicit conversion. 156const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 157 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 158 "No conversion", 159 "Lvalue-to-rvalue", 160 "Array-to-pointer", 161 "Function-to-pointer", 162 "Noreturn adjustment", 163 "Qualification", 164 "Integral promotion", 165 "Floating point promotion", 166 "Complex promotion", 167 "Integral conversion", 168 "Floating conversion", 169 "Complex conversion", 170 "Floating-integral conversion", 171 "Pointer conversion", 172 "Pointer-to-member conversion", 173 "Boolean conversion", 174 "Compatible-types conversion", 175 "Derived-to-base conversion", 176 "Vector conversion", 177 "Vector splat", 178 "Complex-real conversion", 179 "Block Pointer conversion", 180 "Transparent Union Conversion" 181 "Writeback conversion" 182 }; 183 return Name[Kind]; 184} 185 186/// StandardConversionSequence - Set the standard conversion 187/// sequence to the identity conversion. 188void StandardConversionSequence::setAsIdentityConversion() { 189 First = ICK_Identity; 190 Second = ICK_Identity; 191 Third = ICK_Identity; 192 DeprecatedStringLiteralToCharPtr = false; 193 QualificationIncludesObjCLifetime = false; 194 ReferenceBinding = false; 195 DirectBinding = false; 196 IsLvalueReference = true; 197 BindsToFunctionLvalue = false; 198 BindsToRvalue = false; 199 BindsImplicitObjectArgumentWithoutRefQualifier = false; 200 ObjCLifetimeConversionBinding = false; 201 CopyConstructor = 0; 202} 203 204/// getRank - Retrieve the rank of this standard conversion sequence 205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 206/// implicit conversions. 207ImplicitConversionRank StandardConversionSequence::getRank() const { 208 ImplicitConversionRank Rank = ICR_Exact_Match; 209 if (GetConversionRank(First) > Rank) 210 Rank = GetConversionRank(First); 211 if (GetConversionRank(Second) > Rank) 212 Rank = GetConversionRank(Second); 213 if (GetConversionRank(Third) > Rank) 214 Rank = GetConversionRank(Third); 215 return Rank; 216} 217 218/// isPointerConversionToBool - Determines whether this conversion is 219/// a conversion of a pointer or pointer-to-member to bool. This is 220/// used as part of the ranking of standard conversion sequences 221/// (C++ 13.3.3.2p4). 222bool StandardConversionSequence::isPointerConversionToBool() const { 223 // Note that FromType has not necessarily been transformed by the 224 // array-to-pointer or function-to-pointer implicit conversions, so 225 // check for their presence as well as checking whether FromType is 226 // a pointer. 227 if (getToType(1)->isBooleanType() && 228 (getFromType()->isPointerType() || 229 getFromType()->isObjCObjectPointerType() || 230 getFromType()->isBlockPointerType() || 231 getFromType()->isNullPtrType() || 232 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 233 return true; 234 235 return false; 236} 237 238/// isPointerConversionToVoidPointer - Determines whether this 239/// conversion is a conversion of a pointer to a void pointer. This is 240/// used as part of the ranking of standard conversion sequences (C++ 241/// 13.3.3.2p4). 242bool 243StandardConversionSequence:: 244isPointerConversionToVoidPointer(ASTContext& Context) const { 245 QualType FromType = getFromType(); 246 QualType ToType = getToType(1); 247 248 // Note that FromType has not necessarily been transformed by the 249 // array-to-pointer implicit conversion, so check for its presence 250 // and redo the conversion to get a pointer. 251 if (First == ICK_Array_To_Pointer) 252 FromType = Context.getArrayDecayedType(FromType); 253 254 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 255 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 256 return ToPtrType->getPointeeType()->isVoidType(); 257 258 return false; 259} 260 261/// Skip any implicit casts which could be either part of a narrowing conversion 262/// or after one in an implicit conversion. 263static const Expr *IgnoreNarrowingConversion(const Expr *Converted) { 264 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 265 switch (ICE->getCastKind()) { 266 case CK_NoOp: 267 case CK_IntegralCast: 268 case CK_IntegralToBoolean: 269 case CK_IntegralToFloating: 270 case CK_FloatingToIntegral: 271 case CK_FloatingToBoolean: 272 case CK_FloatingCast: 273 Converted = ICE->getSubExpr(); 274 continue; 275 276 default: 277 return Converted; 278 } 279 } 280 281 return Converted; 282} 283 284/// Check if this standard conversion sequence represents a narrowing 285/// conversion, according to C++11 [dcl.init.list]p7. 286/// 287/// \param Ctx The AST context. 288/// \param Converted The result of applying this standard conversion sequence. 289/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 290/// value of the expression prior to the narrowing conversion. 291NarrowingKind 292StandardConversionSequence::getNarrowingKind(ASTContext &Ctx, 293 const Expr *Converted, 294 APValue &ConstantValue) const { 295 assert(Ctx.getLangOptions().CPlusPlus && "narrowing check outside C++"); 296 297 // C++11 [dcl.init.list]p7: 298 // A narrowing conversion is an implicit conversion ... 299 QualType FromType = getToType(0); 300 QualType ToType = getToType(1); 301 switch (Second) { 302 // -- from a floating-point type to an integer type, or 303 // 304 // -- from an integer type or unscoped enumeration type to a floating-point 305 // type, except where the source is a constant expression and the actual 306 // value after conversion will fit into the target type and will produce 307 // the original value when converted back to the original type, or 308 case ICK_Floating_Integral: 309 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 310 return NK_Type_Narrowing; 311 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { 312 llvm::APSInt IntConstantValue; 313 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 314 if (Initializer && 315 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { 316 // Convert the integer to the floating type. 317 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 318 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), 319 llvm::APFloat::rmNearestTiesToEven); 320 // And back. 321 llvm::APSInt ConvertedValue = IntConstantValue; 322 bool ignored; 323 Result.convertToInteger(ConvertedValue, 324 llvm::APFloat::rmTowardZero, &ignored); 325 // If the resulting value is different, this was a narrowing conversion. 326 if (IntConstantValue != ConvertedValue) { 327 ConstantValue = APValue(IntConstantValue); 328 return NK_Constant_Narrowing; 329 } 330 } else { 331 // Variables are always narrowings. 332 return NK_Variable_Narrowing; 333 } 334 } 335 return NK_Not_Narrowing; 336 337 // -- from long double to double or float, or from double to float, except 338 // where the source is a constant expression and the actual value after 339 // conversion is within the range of values that can be represented (even 340 // if it cannot be represented exactly), or 341 case ICK_Floating_Conversion: 342 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 343 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 344 // FromType is larger than ToType. 345 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 346 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 347 // Constant! 348 assert(ConstantValue.isFloat()); 349 llvm::APFloat FloatVal = ConstantValue.getFloat(); 350 // Convert the source value into the target type. 351 bool ignored; 352 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 353 Ctx.getFloatTypeSemantics(ToType), 354 llvm::APFloat::rmNearestTiesToEven, &ignored); 355 // If there was no overflow, the source value is within the range of 356 // values that can be represented. 357 if (ConvertStatus & llvm::APFloat::opOverflow) 358 return NK_Constant_Narrowing; 359 } else { 360 return NK_Variable_Narrowing; 361 } 362 } 363 return NK_Not_Narrowing; 364 365 // -- from an integer type or unscoped enumeration type to an integer type 366 // that cannot represent all the values of the original type, except where 367 // the source is a constant expression and the actual value after 368 // conversion will fit into the target type and will produce the original 369 // value when converted back to the original type. 370 case ICK_Boolean_Conversion: // Bools are integers too. 371 if (!FromType->isIntegralOrUnscopedEnumerationType()) { 372 // Boolean conversions can be from pointers and pointers to members 373 // [conv.bool], and those aren't considered narrowing conversions. 374 return NK_Not_Narrowing; 375 } // Otherwise, fall through to the integral case. 376 case ICK_Integral_Conversion: { 377 assert(FromType->isIntegralOrUnscopedEnumerationType()); 378 assert(ToType->isIntegralOrUnscopedEnumerationType()); 379 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 380 const unsigned FromWidth = Ctx.getIntWidth(FromType); 381 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 382 const unsigned ToWidth = Ctx.getIntWidth(ToType); 383 384 if (FromWidth > ToWidth || 385 (FromWidth == ToWidth && FromSigned != ToSigned)) { 386 // Not all values of FromType can be represented in ToType. 387 llvm::APSInt InitializerValue; 388 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 389 if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { 390 ConstantValue = APValue(InitializerValue); 391 392 // Add a bit to the InitializerValue so we don't have to worry about 393 // signed vs. unsigned comparisons. 394 InitializerValue = InitializerValue.extend( 395 InitializerValue.getBitWidth() + 1); 396 // Convert the initializer to and from the target width and signed-ness. 397 llvm::APSInt ConvertedValue = InitializerValue; 398 ConvertedValue = ConvertedValue.trunc(ToWidth); 399 ConvertedValue.setIsSigned(ToSigned); 400 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 401 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 402 // If the result is different, this was a narrowing conversion. 403 if (ConvertedValue != InitializerValue) 404 return NK_Constant_Narrowing; 405 } else { 406 // Variables are always narrowings. 407 return NK_Variable_Narrowing; 408 } 409 } 410 return NK_Not_Narrowing; 411 } 412 413 default: 414 // Other kinds of conversions are not narrowings. 415 return NK_Not_Narrowing; 416 } 417} 418 419/// DebugPrint - Print this standard conversion sequence to standard 420/// error. Useful for debugging overloading issues. 421void StandardConversionSequence::DebugPrint() const { 422 raw_ostream &OS = llvm::errs(); 423 bool PrintedSomething = false; 424 if (First != ICK_Identity) { 425 OS << GetImplicitConversionName(First); 426 PrintedSomething = true; 427 } 428 429 if (Second != ICK_Identity) { 430 if (PrintedSomething) { 431 OS << " -> "; 432 } 433 OS << GetImplicitConversionName(Second); 434 435 if (CopyConstructor) { 436 OS << " (by copy constructor)"; 437 } else if (DirectBinding) { 438 OS << " (direct reference binding)"; 439 } else if (ReferenceBinding) { 440 OS << " (reference binding)"; 441 } 442 PrintedSomething = true; 443 } 444 445 if (Third != ICK_Identity) { 446 if (PrintedSomething) { 447 OS << " -> "; 448 } 449 OS << GetImplicitConversionName(Third); 450 PrintedSomething = true; 451 } 452 453 if (!PrintedSomething) { 454 OS << "No conversions required"; 455 } 456} 457 458/// DebugPrint - Print this user-defined conversion sequence to standard 459/// error. Useful for debugging overloading issues. 460void UserDefinedConversionSequence::DebugPrint() const { 461 raw_ostream &OS = llvm::errs(); 462 if (Before.First || Before.Second || Before.Third) { 463 Before.DebugPrint(); 464 OS << " -> "; 465 } 466 if (ConversionFunction) 467 OS << '\'' << *ConversionFunction << '\''; 468 else 469 OS << "aggregate initialization"; 470 if (After.First || After.Second || After.Third) { 471 OS << " -> "; 472 After.DebugPrint(); 473 } 474} 475 476/// DebugPrint - Print this implicit conversion sequence to standard 477/// error. Useful for debugging overloading issues. 478void ImplicitConversionSequence::DebugPrint() const { 479 raw_ostream &OS = llvm::errs(); 480 switch (ConversionKind) { 481 case StandardConversion: 482 OS << "Standard conversion: "; 483 Standard.DebugPrint(); 484 break; 485 case UserDefinedConversion: 486 OS << "User-defined conversion: "; 487 UserDefined.DebugPrint(); 488 break; 489 case EllipsisConversion: 490 OS << "Ellipsis conversion"; 491 break; 492 case AmbiguousConversion: 493 OS << "Ambiguous conversion"; 494 break; 495 case BadConversion: 496 OS << "Bad conversion"; 497 break; 498 } 499 500 OS << "\n"; 501} 502 503void AmbiguousConversionSequence::construct() { 504 new (&conversions()) ConversionSet(); 505} 506 507void AmbiguousConversionSequence::destruct() { 508 conversions().~ConversionSet(); 509} 510 511void 512AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 513 FromTypePtr = O.FromTypePtr; 514 ToTypePtr = O.ToTypePtr; 515 new (&conversions()) ConversionSet(O.conversions()); 516} 517 518namespace { 519 // Structure used by OverloadCandidate::DeductionFailureInfo to store 520 // template parameter and template argument information. 521 struct DFIParamWithArguments { 522 TemplateParameter Param; 523 TemplateArgument FirstArg; 524 TemplateArgument SecondArg; 525 }; 526} 527 528/// \brief Convert from Sema's representation of template deduction information 529/// to the form used in overload-candidate information. 530OverloadCandidate::DeductionFailureInfo 531static MakeDeductionFailureInfo(ASTContext &Context, 532 Sema::TemplateDeductionResult TDK, 533 TemplateDeductionInfo &Info) { 534 OverloadCandidate::DeductionFailureInfo Result; 535 Result.Result = static_cast<unsigned>(TDK); 536 Result.Data = 0; 537 switch (TDK) { 538 case Sema::TDK_Success: 539 case Sema::TDK_InstantiationDepth: 540 case Sema::TDK_TooManyArguments: 541 case Sema::TDK_TooFewArguments: 542 break; 543 544 case Sema::TDK_Incomplete: 545 case Sema::TDK_InvalidExplicitArguments: 546 Result.Data = Info.Param.getOpaqueValue(); 547 break; 548 549 case Sema::TDK_Inconsistent: 550 case Sema::TDK_Underqualified: { 551 // FIXME: Should allocate from normal heap so that we can free this later. 552 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 553 Saved->Param = Info.Param; 554 Saved->FirstArg = Info.FirstArg; 555 Saved->SecondArg = Info.SecondArg; 556 Result.Data = Saved; 557 break; 558 } 559 560 case Sema::TDK_SubstitutionFailure: 561 Result.Data = Info.take(); 562 break; 563 564 case Sema::TDK_NonDeducedMismatch: 565 case Sema::TDK_FailedOverloadResolution: 566 break; 567 } 568 569 return Result; 570} 571 572void OverloadCandidate::DeductionFailureInfo::Destroy() { 573 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 574 case Sema::TDK_Success: 575 case Sema::TDK_InstantiationDepth: 576 case Sema::TDK_Incomplete: 577 case Sema::TDK_TooManyArguments: 578 case Sema::TDK_TooFewArguments: 579 case Sema::TDK_InvalidExplicitArguments: 580 break; 581 582 case Sema::TDK_Inconsistent: 583 case Sema::TDK_Underqualified: 584 // FIXME: Destroy the data? 585 Data = 0; 586 break; 587 588 case Sema::TDK_SubstitutionFailure: 589 // FIXME: Destroy the template arugment list? 590 Data = 0; 591 break; 592 593 // Unhandled 594 case Sema::TDK_NonDeducedMismatch: 595 case Sema::TDK_FailedOverloadResolution: 596 break; 597 } 598} 599 600TemplateParameter 601OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 602 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 603 case Sema::TDK_Success: 604 case Sema::TDK_InstantiationDepth: 605 case Sema::TDK_TooManyArguments: 606 case Sema::TDK_TooFewArguments: 607 case Sema::TDK_SubstitutionFailure: 608 return TemplateParameter(); 609 610 case Sema::TDK_Incomplete: 611 case Sema::TDK_InvalidExplicitArguments: 612 return TemplateParameter::getFromOpaqueValue(Data); 613 614 case Sema::TDK_Inconsistent: 615 case Sema::TDK_Underqualified: 616 return static_cast<DFIParamWithArguments*>(Data)->Param; 617 618 // Unhandled 619 case Sema::TDK_NonDeducedMismatch: 620 case Sema::TDK_FailedOverloadResolution: 621 break; 622 } 623 624 return TemplateParameter(); 625} 626 627TemplateArgumentList * 628OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 629 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 630 case Sema::TDK_Success: 631 case Sema::TDK_InstantiationDepth: 632 case Sema::TDK_TooManyArguments: 633 case Sema::TDK_TooFewArguments: 634 case Sema::TDK_Incomplete: 635 case Sema::TDK_InvalidExplicitArguments: 636 case Sema::TDK_Inconsistent: 637 case Sema::TDK_Underqualified: 638 return 0; 639 640 case Sema::TDK_SubstitutionFailure: 641 return static_cast<TemplateArgumentList*>(Data); 642 643 // Unhandled 644 case Sema::TDK_NonDeducedMismatch: 645 case Sema::TDK_FailedOverloadResolution: 646 break; 647 } 648 649 return 0; 650} 651 652const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 653 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 654 case Sema::TDK_Success: 655 case Sema::TDK_InstantiationDepth: 656 case Sema::TDK_Incomplete: 657 case Sema::TDK_TooManyArguments: 658 case Sema::TDK_TooFewArguments: 659 case Sema::TDK_InvalidExplicitArguments: 660 case Sema::TDK_SubstitutionFailure: 661 return 0; 662 663 case Sema::TDK_Inconsistent: 664 case Sema::TDK_Underqualified: 665 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 666 667 // Unhandled 668 case Sema::TDK_NonDeducedMismatch: 669 case Sema::TDK_FailedOverloadResolution: 670 break; 671 } 672 673 return 0; 674} 675 676const TemplateArgument * 677OverloadCandidate::DeductionFailureInfo::getSecondArg() { 678 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 679 case Sema::TDK_Success: 680 case Sema::TDK_InstantiationDepth: 681 case Sema::TDK_Incomplete: 682 case Sema::TDK_TooManyArguments: 683 case Sema::TDK_TooFewArguments: 684 case Sema::TDK_InvalidExplicitArguments: 685 case Sema::TDK_SubstitutionFailure: 686 return 0; 687 688 case Sema::TDK_Inconsistent: 689 case Sema::TDK_Underqualified: 690 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 691 692 // Unhandled 693 case Sema::TDK_NonDeducedMismatch: 694 case Sema::TDK_FailedOverloadResolution: 695 break; 696 } 697 698 return 0; 699} 700 701void OverloadCandidateSet::clear() { 702 for (iterator i = begin(), e = end(); i != e; ++i) 703 for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii) 704 i->Conversions[ii].~ImplicitConversionSequence(); 705 NumInlineSequences = 0; 706 Candidates.clear(); 707 Functions.clear(); 708} 709 710namespace { 711 class UnbridgedCastsSet { 712 struct Entry { 713 Expr **Addr; 714 Expr *Saved; 715 }; 716 SmallVector<Entry, 2> Entries; 717 718 public: 719 void save(Sema &S, Expr *&E) { 720 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 721 Entry entry = { &E, E }; 722 Entries.push_back(entry); 723 E = S.stripARCUnbridgedCast(E); 724 } 725 726 void restore() { 727 for (SmallVectorImpl<Entry>::iterator 728 i = Entries.begin(), e = Entries.end(); i != e; ++i) 729 *i->Addr = i->Saved; 730 } 731 }; 732} 733 734/// checkPlaceholderForOverload - Do any interesting placeholder-like 735/// preprocessing on the given expression. 736/// 737/// \param unbridgedCasts a collection to which to add unbridged casts; 738/// without this, they will be immediately diagnosed as errors 739/// 740/// Return true on unrecoverable error. 741static bool checkPlaceholderForOverload(Sema &S, Expr *&E, 742 UnbridgedCastsSet *unbridgedCasts = 0) { 743 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 744 // We can't handle overloaded expressions here because overload 745 // resolution might reasonably tweak them. 746 if (placeholder->getKind() == BuiltinType::Overload) return false; 747 748 // If the context potentially accepts unbridged ARC casts, strip 749 // the unbridged cast and add it to the collection for later restoration. 750 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 751 unbridgedCasts) { 752 unbridgedCasts->save(S, E); 753 return false; 754 } 755 756 // Go ahead and check everything else. 757 ExprResult result = S.CheckPlaceholderExpr(E); 758 if (result.isInvalid()) 759 return true; 760 761 E = result.take(); 762 return false; 763 } 764 765 // Nothing to do. 766 return false; 767} 768 769/// checkArgPlaceholdersForOverload - Check a set of call operands for 770/// placeholders. 771static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args, 772 unsigned numArgs, 773 UnbridgedCastsSet &unbridged) { 774 for (unsigned i = 0; i != numArgs; ++i) 775 if (checkPlaceholderForOverload(S, args[i], &unbridged)) 776 return true; 777 778 return false; 779} 780 781// IsOverload - Determine whether the given New declaration is an 782// overload of the declarations in Old. This routine returns false if 783// New and Old cannot be overloaded, e.g., if New has the same 784// signature as some function in Old (C++ 1.3.10) or if the Old 785// declarations aren't functions (or function templates) at all. When 786// it does return false, MatchedDecl will point to the decl that New 787// cannot be overloaded with. This decl may be a UsingShadowDecl on 788// top of the underlying declaration. 789// 790// Example: Given the following input: 791// 792// void f(int, float); // #1 793// void f(int, int); // #2 794// int f(int, int); // #3 795// 796// When we process #1, there is no previous declaration of "f", 797// so IsOverload will not be used. 798// 799// When we process #2, Old contains only the FunctionDecl for #1. By 800// comparing the parameter types, we see that #1 and #2 are overloaded 801// (since they have different signatures), so this routine returns 802// false; MatchedDecl is unchanged. 803// 804// When we process #3, Old is an overload set containing #1 and #2. We 805// compare the signatures of #3 to #1 (they're overloaded, so we do 806// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 807// identical (return types of functions are not part of the 808// signature), IsOverload returns false and MatchedDecl will be set to 809// point to the FunctionDecl for #2. 810// 811// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 812// into a class by a using declaration. The rules for whether to hide 813// shadow declarations ignore some properties which otherwise figure 814// into a function template's signature. 815Sema::OverloadKind 816Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 817 NamedDecl *&Match, bool NewIsUsingDecl) { 818 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 819 I != E; ++I) { 820 NamedDecl *OldD = *I; 821 822 bool OldIsUsingDecl = false; 823 if (isa<UsingShadowDecl>(OldD)) { 824 OldIsUsingDecl = true; 825 826 // We can always introduce two using declarations into the same 827 // context, even if they have identical signatures. 828 if (NewIsUsingDecl) continue; 829 830 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 831 } 832 833 // If either declaration was introduced by a using declaration, 834 // we'll need to use slightly different rules for matching. 835 // Essentially, these rules are the normal rules, except that 836 // function templates hide function templates with different 837 // return types or template parameter lists. 838 bool UseMemberUsingDeclRules = 839 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 840 841 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 842 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 843 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 844 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 845 continue; 846 } 847 848 Match = *I; 849 return Ovl_Match; 850 } 851 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 852 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 853 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 854 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 855 continue; 856 } 857 858 Match = *I; 859 return Ovl_Match; 860 } 861 } else if (isa<UsingDecl>(OldD)) { 862 // We can overload with these, which can show up when doing 863 // redeclaration checks for UsingDecls. 864 assert(Old.getLookupKind() == LookupUsingDeclName); 865 } else if (isa<TagDecl>(OldD)) { 866 // We can always overload with tags by hiding them. 867 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 868 // Optimistically assume that an unresolved using decl will 869 // overload; if it doesn't, we'll have to diagnose during 870 // template instantiation. 871 } else { 872 // (C++ 13p1): 873 // Only function declarations can be overloaded; object and type 874 // declarations cannot be overloaded. 875 Match = *I; 876 return Ovl_NonFunction; 877 } 878 } 879 880 return Ovl_Overload; 881} 882 883bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 884 bool UseUsingDeclRules) { 885 // If both of the functions are extern "C", then they are not 886 // overloads. 887 if (Old->isExternC() && New->isExternC()) 888 return false; 889 890 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 891 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 892 893 // C++ [temp.fct]p2: 894 // A function template can be overloaded with other function templates 895 // and with normal (non-template) functions. 896 if ((OldTemplate == 0) != (NewTemplate == 0)) 897 return true; 898 899 // Is the function New an overload of the function Old? 900 QualType OldQType = Context.getCanonicalType(Old->getType()); 901 QualType NewQType = Context.getCanonicalType(New->getType()); 902 903 // Compare the signatures (C++ 1.3.10) of the two functions to 904 // determine whether they are overloads. If we find any mismatch 905 // in the signature, they are overloads. 906 907 // If either of these functions is a K&R-style function (no 908 // prototype), then we consider them to have matching signatures. 909 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 910 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 911 return false; 912 913 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 914 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 915 916 // The signature of a function includes the types of its 917 // parameters (C++ 1.3.10), which includes the presence or absence 918 // of the ellipsis; see C++ DR 357). 919 if (OldQType != NewQType && 920 (OldType->getNumArgs() != NewType->getNumArgs() || 921 OldType->isVariadic() != NewType->isVariadic() || 922 !FunctionArgTypesAreEqual(OldType, NewType))) 923 return true; 924 925 // C++ [temp.over.link]p4: 926 // The signature of a function template consists of its function 927 // signature, its return type and its template parameter list. The names 928 // of the template parameters are significant only for establishing the 929 // relationship between the template parameters and the rest of the 930 // signature. 931 // 932 // We check the return type and template parameter lists for function 933 // templates first; the remaining checks follow. 934 // 935 // However, we don't consider either of these when deciding whether 936 // a member introduced by a shadow declaration is hidden. 937 if (!UseUsingDeclRules && NewTemplate && 938 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 939 OldTemplate->getTemplateParameters(), 940 false, TPL_TemplateMatch) || 941 OldType->getResultType() != NewType->getResultType())) 942 return true; 943 944 // If the function is a class member, its signature includes the 945 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 946 // 947 // As part of this, also check whether one of the member functions 948 // is static, in which case they are not overloads (C++ 949 // 13.1p2). While not part of the definition of the signature, 950 // this check is important to determine whether these functions 951 // can be overloaded. 952 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 953 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 954 if (OldMethod && NewMethod && 955 !OldMethod->isStatic() && !NewMethod->isStatic() && 956 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 957 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 958 if (!UseUsingDeclRules && 959 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 960 (OldMethod->getRefQualifier() == RQ_None || 961 NewMethod->getRefQualifier() == RQ_None)) { 962 // C++0x [over.load]p2: 963 // - Member function declarations with the same name and the same 964 // parameter-type-list as well as member function template 965 // declarations with the same name, the same parameter-type-list, and 966 // the same template parameter lists cannot be overloaded if any of 967 // them, but not all, have a ref-qualifier (8.3.5). 968 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 969 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 970 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 971 } 972 973 return true; 974 } 975 976 // The signatures match; this is not an overload. 977 return false; 978} 979 980/// \brief Checks availability of the function depending on the current 981/// function context. Inside an unavailable function, unavailability is ignored. 982/// 983/// \returns true if \arg FD is unavailable and current context is inside 984/// an available function, false otherwise. 985bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 986 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); 987} 988 989/// \brief Tries a user-defined conversion from From to ToType. 990/// 991/// Produces an implicit conversion sequence for when a standard conversion 992/// is not an option. See TryImplicitConversion for more information. 993static ImplicitConversionSequence 994TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 995 bool SuppressUserConversions, 996 bool AllowExplicit, 997 bool InOverloadResolution, 998 bool CStyle, 999 bool AllowObjCWritebackConversion) { 1000 ImplicitConversionSequence ICS; 1001 1002 if (SuppressUserConversions) { 1003 // We're not in the case above, so there is no conversion that 1004 // we can perform. 1005 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1006 return ICS; 1007 } 1008 1009 // Attempt user-defined conversion. 1010 OverloadCandidateSet Conversions(From->getExprLoc()); 1011 OverloadingResult UserDefResult 1012 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 1013 AllowExplicit); 1014 1015 if (UserDefResult == OR_Success) { 1016 ICS.setUserDefined(); 1017 // C++ [over.ics.user]p4: 1018 // A conversion of an expression of class type to the same class 1019 // type is given Exact Match rank, and a conversion of an 1020 // expression of class type to a base class of that type is 1021 // given Conversion rank, in spite of the fact that a copy 1022 // constructor (i.e., a user-defined conversion function) is 1023 // called for those cases. 1024 if (CXXConstructorDecl *Constructor 1025 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1026 QualType FromCanon 1027 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1028 QualType ToCanon 1029 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1030 if (Constructor->isCopyConstructor() && 1031 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 1032 // Turn this into a "standard" conversion sequence, so that it 1033 // gets ranked with standard conversion sequences. 1034 ICS.setStandard(); 1035 ICS.Standard.setAsIdentityConversion(); 1036 ICS.Standard.setFromType(From->getType()); 1037 ICS.Standard.setAllToTypes(ToType); 1038 ICS.Standard.CopyConstructor = Constructor; 1039 if (ToCanon != FromCanon) 1040 ICS.Standard.Second = ICK_Derived_To_Base; 1041 } 1042 } 1043 1044 // C++ [over.best.ics]p4: 1045 // However, when considering the argument of a user-defined 1046 // conversion function that is a candidate by 13.3.1.3 when 1047 // invoked for the copying of the temporary in the second step 1048 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 1049 // 13.3.1.6 in all cases, only standard conversion sequences and 1050 // ellipsis conversion sequences are allowed. 1051 if (SuppressUserConversions && ICS.isUserDefined()) { 1052 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 1053 } 1054 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 1055 ICS.setAmbiguous(); 1056 ICS.Ambiguous.setFromType(From->getType()); 1057 ICS.Ambiguous.setToType(ToType); 1058 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1059 Cand != Conversions.end(); ++Cand) 1060 if (Cand->Viable) 1061 ICS.Ambiguous.addConversion(Cand->Function); 1062 } else { 1063 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1064 } 1065 1066 return ICS; 1067} 1068 1069/// TryImplicitConversion - Attempt to perform an implicit conversion 1070/// from the given expression (Expr) to the given type (ToType). This 1071/// function returns an implicit conversion sequence that can be used 1072/// to perform the initialization. Given 1073/// 1074/// void f(float f); 1075/// void g(int i) { f(i); } 1076/// 1077/// this routine would produce an implicit conversion sequence to 1078/// describe the initialization of f from i, which will be a standard 1079/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1080/// 4.1) followed by a floating-integral conversion (C++ 4.9). 1081// 1082/// Note that this routine only determines how the conversion can be 1083/// performed; it does not actually perform the conversion. As such, 1084/// it will not produce any diagnostics if no conversion is available, 1085/// but will instead return an implicit conversion sequence of kind 1086/// "BadConversion". 1087/// 1088/// If @p SuppressUserConversions, then user-defined conversions are 1089/// not permitted. 1090/// If @p AllowExplicit, then explicit user-defined conversions are 1091/// permitted. 1092/// 1093/// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1094/// writeback conversion, which allows __autoreleasing id* parameters to 1095/// be initialized with __strong id* or __weak id* arguments. 1096static ImplicitConversionSequence 1097TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1098 bool SuppressUserConversions, 1099 bool AllowExplicit, 1100 bool InOverloadResolution, 1101 bool CStyle, 1102 bool AllowObjCWritebackConversion) { 1103 ImplicitConversionSequence ICS; 1104 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1105 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1106 ICS.setStandard(); 1107 return ICS; 1108 } 1109 1110 if (!S.getLangOptions().CPlusPlus) { 1111 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1112 return ICS; 1113 } 1114 1115 // C++ [over.ics.user]p4: 1116 // A conversion of an expression of class type to the same class 1117 // type is given Exact Match rank, and a conversion of an 1118 // expression of class type to a base class of that type is 1119 // given Conversion rank, in spite of the fact that a copy/move 1120 // constructor (i.e., a user-defined conversion function) is 1121 // called for those cases. 1122 QualType FromType = From->getType(); 1123 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1124 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1125 S.IsDerivedFrom(FromType, ToType))) { 1126 ICS.setStandard(); 1127 ICS.Standard.setAsIdentityConversion(); 1128 ICS.Standard.setFromType(FromType); 1129 ICS.Standard.setAllToTypes(ToType); 1130 1131 // We don't actually check at this point whether there is a valid 1132 // copy/move constructor, since overloading just assumes that it 1133 // exists. When we actually perform initialization, we'll find the 1134 // appropriate constructor to copy the returned object, if needed. 1135 ICS.Standard.CopyConstructor = 0; 1136 1137 // Determine whether this is considered a derived-to-base conversion. 1138 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1139 ICS.Standard.Second = ICK_Derived_To_Base; 1140 1141 return ICS; 1142 } 1143 1144 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1145 AllowExplicit, InOverloadResolution, CStyle, 1146 AllowObjCWritebackConversion); 1147} 1148 1149ImplicitConversionSequence 1150Sema::TryImplicitConversion(Expr *From, QualType ToType, 1151 bool SuppressUserConversions, 1152 bool AllowExplicit, 1153 bool InOverloadResolution, 1154 bool CStyle, 1155 bool AllowObjCWritebackConversion) { 1156 return clang::TryImplicitConversion(*this, From, ToType, 1157 SuppressUserConversions, AllowExplicit, 1158 InOverloadResolution, CStyle, 1159 AllowObjCWritebackConversion); 1160} 1161 1162/// PerformImplicitConversion - Perform an implicit conversion of the 1163/// expression From to the type ToType. Returns the 1164/// converted expression. Flavor is the kind of conversion we're 1165/// performing, used in the error message. If @p AllowExplicit, 1166/// explicit user-defined conversions are permitted. 1167ExprResult 1168Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1169 AssignmentAction Action, bool AllowExplicit) { 1170 ImplicitConversionSequence ICS; 1171 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 1172} 1173 1174ExprResult 1175Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1176 AssignmentAction Action, bool AllowExplicit, 1177 ImplicitConversionSequence& ICS) { 1178 if (checkPlaceholderForOverload(*this, From)) 1179 return ExprError(); 1180 1181 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1182 bool AllowObjCWritebackConversion 1183 = getLangOptions().ObjCAutoRefCount && 1184 (Action == AA_Passing || Action == AA_Sending); 1185 1186 ICS = clang::TryImplicitConversion(*this, From, ToType, 1187 /*SuppressUserConversions=*/false, 1188 AllowExplicit, 1189 /*InOverloadResolution=*/false, 1190 /*CStyle=*/false, 1191 AllowObjCWritebackConversion); 1192 return PerformImplicitConversion(From, ToType, ICS, Action); 1193} 1194 1195/// \brief Determine whether the conversion from FromType to ToType is a valid 1196/// conversion that strips "noreturn" off the nested function type. 1197bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, 1198 QualType &ResultTy) { 1199 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1200 return false; 1201 1202 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1203 // where F adds one of the following at most once: 1204 // - a pointer 1205 // - a member pointer 1206 // - a block pointer 1207 CanQualType CanTo = Context.getCanonicalType(ToType); 1208 CanQualType CanFrom = Context.getCanonicalType(FromType); 1209 Type::TypeClass TyClass = CanTo->getTypeClass(); 1210 if (TyClass != CanFrom->getTypeClass()) return false; 1211 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1212 if (TyClass == Type::Pointer) { 1213 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 1214 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 1215 } else if (TyClass == Type::BlockPointer) { 1216 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 1217 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 1218 } else if (TyClass == Type::MemberPointer) { 1219 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 1220 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 1221 } else { 1222 return false; 1223 } 1224 1225 TyClass = CanTo->getTypeClass(); 1226 if (TyClass != CanFrom->getTypeClass()) return false; 1227 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1228 return false; 1229 } 1230 1231 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 1232 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 1233 if (!EInfo.getNoReturn()) return false; 1234 1235 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 1236 assert(QualType(FromFn, 0).isCanonical()); 1237 if (QualType(FromFn, 0) != CanTo) return false; 1238 1239 ResultTy = ToType; 1240 return true; 1241} 1242 1243/// \brief Determine whether the conversion from FromType to ToType is a valid 1244/// vector conversion. 1245/// 1246/// \param ICK Will be set to the vector conversion kind, if this is a vector 1247/// conversion. 1248static bool IsVectorConversion(ASTContext &Context, QualType FromType, 1249 QualType ToType, ImplicitConversionKind &ICK) { 1250 // We need at least one of these types to be a vector type to have a vector 1251 // conversion. 1252 if (!ToType->isVectorType() && !FromType->isVectorType()) 1253 return false; 1254 1255 // Identical types require no conversions. 1256 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1257 return false; 1258 1259 // There are no conversions between extended vector types, only identity. 1260 if (ToType->isExtVectorType()) { 1261 // There are no conversions between extended vector types other than the 1262 // identity conversion. 1263 if (FromType->isExtVectorType()) 1264 return false; 1265 1266 // Vector splat from any arithmetic type to a vector. 1267 if (FromType->isArithmeticType()) { 1268 ICK = ICK_Vector_Splat; 1269 return true; 1270 } 1271 } 1272 1273 // We can perform the conversion between vector types in the following cases: 1274 // 1)vector types are equivalent AltiVec and GCC vector types 1275 // 2)lax vector conversions are permitted and the vector types are of the 1276 // same size 1277 if (ToType->isVectorType() && FromType->isVectorType()) { 1278 if (Context.areCompatibleVectorTypes(FromType, ToType) || 1279 (Context.getLangOptions().LaxVectorConversions && 1280 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 1281 ICK = ICK_Vector_Conversion; 1282 return true; 1283 } 1284 } 1285 1286 return false; 1287} 1288 1289/// IsStandardConversion - Determines whether there is a standard 1290/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1291/// expression From to the type ToType. Standard conversion sequences 1292/// only consider non-class types; for conversions that involve class 1293/// types, use TryImplicitConversion. If a conversion exists, SCS will 1294/// contain the standard conversion sequence required to perform this 1295/// conversion and this routine will return true. Otherwise, this 1296/// routine will return false and the value of SCS is unspecified. 1297static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1298 bool InOverloadResolution, 1299 StandardConversionSequence &SCS, 1300 bool CStyle, 1301 bool AllowObjCWritebackConversion) { 1302 QualType FromType = From->getType(); 1303 1304 // Standard conversions (C++ [conv]) 1305 SCS.setAsIdentityConversion(); 1306 SCS.DeprecatedStringLiteralToCharPtr = false; 1307 SCS.IncompatibleObjC = false; 1308 SCS.setFromType(FromType); 1309 SCS.CopyConstructor = 0; 1310 1311 // There are no standard conversions for class types in C++, so 1312 // abort early. When overloading in C, however, we do permit 1313 if (FromType->isRecordType() || ToType->isRecordType()) { 1314 if (S.getLangOptions().CPlusPlus) 1315 return false; 1316 1317 // When we're overloading in C, we allow, as standard conversions, 1318 } 1319 1320 // The first conversion can be an lvalue-to-rvalue conversion, 1321 // array-to-pointer conversion, or function-to-pointer conversion 1322 // (C++ 4p1). 1323 1324 if (FromType == S.Context.OverloadTy) { 1325 DeclAccessPair AccessPair; 1326 if (FunctionDecl *Fn 1327 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1328 AccessPair)) { 1329 // We were able to resolve the address of the overloaded function, 1330 // so we can convert to the type of that function. 1331 FromType = Fn->getType(); 1332 1333 // we can sometimes resolve &foo<int> regardless of ToType, so check 1334 // if the type matches (identity) or we are converting to bool 1335 if (!S.Context.hasSameUnqualifiedType( 1336 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1337 QualType resultTy; 1338 // if the function type matches except for [[noreturn]], it's ok 1339 if (!S.IsNoReturnConversion(FromType, 1340 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1341 // otherwise, only a boolean conversion is standard 1342 if (!ToType->isBooleanType()) 1343 return false; 1344 } 1345 1346 // Check if the "from" expression is taking the address of an overloaded 1347 // function and recompute the FromType accordingly. Take advantage of the 1348 // fact that non-static member functions *must* have such an address-of 1349 // expression. 1350 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1351 if (Method && !Method->isStatic()) { 1352 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1353 "Non-unary operator on non-static member address"); 1354 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1355 == UO_AddrOf && 1356 "Non-address-of operator on non-static member address"); 1357 const Type *ClassType 1358 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1359 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1360 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1361 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1362 UO_AddrOf && 1363 "Non-address-of operator for overloaded function expression"); 1364 FromType = S.Context.getPointerType(FromType); 1365 } 1366 1367 // Check that we've computed the proper type after overload resolution. 1368 assert(S.Context.hasSameType( 1369 FromType, 1370 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1371 } else { 1372 return false; 1373 } 1374 } 1375 // Lvalue-to-rvalue conversion (C++11 4.1): 1376 // A glvalue (3.10) of a non-function, non-array type T can 1377 // be converted to a prvalue. 1378 bool argIsLValue = From->isGLValue(); 1379 if (argIsLValue && 1380 !FromType->isFunctionType() && !FromType->isArrayType() && 1381 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1382 SCS.First = ICK_Lvalue_To_Rvalue; 1383 1384 // If T is a non-class type, the type of the rvalue is the 1385 // cv-unqualified version of T. Otherwise, the type of the rvalue 1386 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1387 // just strip the qualifiers because they don't matter. 1388 FromType = FromType.getUnqualifiedType(); 1389 } else if (FromType->isArrayType()) { 1390 // Array-to-pointer conversion (C++ 4.2) 1391 SCS.First = ICK_Array_To_Pointer; 1392 1393 // An lvalue or rvalue of type "array of N T" or "array of unknown 1394 // bound of T" can be converted to an rvalue of type "pointer to 1395 // T" (C++ 4.2p1). 1396 FromType = S.Context.getArrayDecayedType(FromType); 1397 1398 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1399 // This conversion is deprecated. (C++ D.4). 1400 SCS.DeprecatedStringLiteralToCharPtr = true; 1401 1402 // For the purpose of ranking in overload resolution 1403 // (13.3.3.1.1), this conversion is considered an 1404 // array-to-pointer conversion followed by a qualification 1405 // conversion (4.4). (C++ 4.2p2) 1406 SCS.Second = ICK_Identity; 1407 SCS.Third = ICK_Qualification; 1408 SCS.QualificationIncludesObjCLifetime = false; 1409 SCS.setAllToTypes(FromType); 1410 return true; 1411 } 1412 } else if (FromType->isFunctionType() && argIsLValue) { 1413 // Function-to-pointer conversion (C++ 4.3). 1414 SCS.First = ICK_Function_To_Pointer; 1415 1416 // An lvalue of function type T can be converted to an rvalue of 1417 // type "pointer to T." The result is a pointer to the 1418 // function. (C++ 4.3p1). 1419 FromType = S.Context.getPointerType(FromType); 1420 } else { 1421 // We don't require any conversions for the first step. 1422 SCS.First = ICK_Identity; 1423 } 1424 SCS.setToType(0, FromType); 1425 1426 // The second conversion can be an integral promotion, floating 1427 // point promotion, integral conversion, floating point conversion, 1428 // floating-integral conversion, pointer conversion, 1429 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1430 // For overloading in C, this can also be a "compatible-type" 1431 // conversion. 1432 bool IncompatibleObjC = false; 1433 ImplicitConversionKind SecondICK = ICK_Identity; 1434 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1435 // The unqualified versions of the types are the same: there's no 1436 // conversion to do. 1437 SCS.Second = ICK_Identity; 1438 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1439 // Integral promotion (C++ 4.5). 1440 SCS.Second = ICK_Integral_Promotion; 1441 FromType = ToType.getUnqualifiedType(); 1442 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1443 // Floating point promotion (C++ 4.6). 1444 SCS.Second = ICK_Floating_Promotion; 1445 FromType = ToType.getUnqualifiedType(); 1446 } else if (S.IsComplexPromotion(FromType, ToType)) { 1447 // Complex promotion (Clang extension) 1448 SCS.Second = ICK_Complex_Promotion; 1449 FromType = ToType.getUnqualifiedType(); 1450 } else if (ToType->isBooleanType() && 1451 (FromType->isArithmeticType() || 1452 FromType->isAnyPointerType() || 1453 FromType->isBlockPointerType() || 1454 FromType->isMemberPointerType() || 1455 FromType->isNullPtrType())) { 1456 // Boolean conversions (C++ 4.12). 1457 SCS.Second = ICK_Boolean_Conversion; 1458 FromType = S.Context.BoolTy; 1459 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1460 ToType->isIntegralType(S.Context)) { 1461 // Integral conversions (C++ 4.7). 1462 SCS.Second = ICK_Integral_Conversion; 1463 FromType = ToType.getUnqualifiedType(); 1464 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1465 // Complex conversions (C99 6.3.1.6) 1466 SCS.Second = ICK_Complex_Conversion; 1467 FromType = ToType.getUnqualifiedType(); 1468 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1469 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1470 // Complex-real conversions (C99 6.3.1.7) 1471 SCS.Second = ICK_Complex_Real; 1472 FromType = ToType.getUnqualifiedType(); 1473 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1474 // Floating point conversions (C++ 4.8). 1475 SCS.Second = ICK_Floating_Conversion; 1476 FromType = ToType.getUnqualifiedType(); 1477 } else if ((FromType->isRealFloatingType() && 1478 ToType->isIntegralType(S.Context)) || 1479 (FromType->isIntegralOrUnscopedEnumerationType() && 1480 ToType->isRealFloatingType())) { 1481 // Floating-integral conversions (C++ 4.9). 1482 SCS.Second = ICK_Floating_Integral; 1483 FromType = ToType.getUnqualifiedType(); 1484 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1485 SCS.Second = ICK_Block_Pointer_Conversion; 1486 } else if (AllowObjCWritebackConversion && 1487 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1488 SCS.Second = ICK_Writeback_Conversion; 1489 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1490 FromType, IncompatibleObjC)) { 1491 // Pointer conversions (C++ 4.10). 1492 SCS.Second = ICK_Pointer_Conversion; 1493 SCS.IncompatibleObjC = IncompatibleObjC; 1494 FromType = FromType.getUnqualifiedType(); 1495 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1496 InOverloadResolution, FromType)) { 1497 // Pointer to member conversions (4.11). 1498 SCS.Second = ICK_Pointer_Member; 1499 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1500 SCS.Second = SecondICK; 1501 FromType = ToType.getUnqualifiedType(); 1502 } else if (!S.getLangOptions().CPlusPlus && 1503 S.Context.typesAreCompatible(ToType, FromType)) { 1504 // Compatible conversions (Clang extension for C function overloading) 1505 SCS.Second = ICK_Compatible_Conversion; 1506 FromType = ToType.getUnqualifiedType(); 1507 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { 1508 // Treat a conversion that strips "noreturn" as an identity conversion. 1509 SCS.Second = ICK_NoReturn_Adjustment; 1510 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1511 InOverloadResolution, 1512 SCS, CStyle)) { 1513 SCS.Second = ICK_TransparentUnionConversion; 1514 FromType = ToType; 1515 } else { 1516 // No second conversion required. 1517 SCS.Second = ICK_Identity; 1518 } 1519 SCS.setToType(1, FromType); 1520 1521 QualType CanonFrom; 1522 QualType CanonTo; 1523 // The third conversion can be a qualification conversion (C++ 4p1). 1524 bool ObjCLifetimeConversion; 1525 if (S.IsQualificationConversion(FromType, ToType, CStyle, 1526 ObjCLifetimeConversion)) { 1527 SCS.Third = ICK_Qualification; 1528 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1529 FromType = ToType; 1530 CanonFrom = S.Context.getCanonicalType(FromType); 1531 CanonTo = S.Context.getCanonicalType(ToType); 1532 } else { 1533 // No conversion required 1534 SCS.Third = ICK_Identity; 1535 1536 // C++ [over.best.ics]p6: 1537 // [...] Any difference in top-level cv-qualification is 1538 // subsumed by the initialization itself and does not constitute 1539 // a conversion. [...] 1540 CanonFrom = S.Context.getCanonicalType(FromType); 1541 CanonTo = S.Context.getCanonicalType(ToType); 1542 if (CanonFrom.getLocalUnqualifiedType() 1543 == CanonTo.getLocalUnqualifiedType() && 1544 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1545 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() 1546 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { 1547 FromType = ToType; 1548 CanonFrom = CanonTo; 1549 } 1550 } 1551 SCS.setToType(2, FromType); 1552 1553 // If we have not converted the argument type to the parameter type, 1554 // this is a bad conversion sequence. 1555 if (CanonFrom != CanonTo) 1556 return false; 1557 1558 return true; 1559} 1560 1561static bool 1562IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1563 QualType &ToType, 1564 bool InOverloadResolution, 1565 StandardConversionSequence &SCS, 1566 bool CStyle) { 1567 1568 const RecordType *UT = ToType->getAsUnionType(); 1569 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1570 return false; 1571 // The field to initialize within the transparent union. 1572 RecordDecl *UD = UT->getDecl(); 1573 // It's compatible if the expression matches any of the fields. 1574 for (RecordDecl::field_iterator it = UD->field_begin(), 1575 itend = UD->field_end(); 1576 it != itend; ++it) { 1577 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1578 CStyle, /*ObjCWritebackConversion=*/false)) { 1579 ToType = it->getType(); 1580 return true; 1581 } 1582 } 1583 return false; 1584} 1585 1586/// IsIntegralPromotion - Determines whether the conversion from the 1587/// expression From (whose potentially-adjusted type is FromType) to 1588/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1589/// sets PromotedType to the promoted type. 1590bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1591 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1592 // All integers are built-in. 1593 if (!To) { 1594 return false; 1595 } 1596 1597 // An rvalue of type char, signed char, unsigned char, short int, or 1598 // unsigned short int can be converted to an rvalue of type int if 1599 // int can represent all the values of the source type; otherwise, 1600 // the source rvalue can be converted to an rvalue of type unsigned 1601 // int (C++ 4.5p1). 1602 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1603 !FromType->isEnumeralType()) { 1604 if (// We can promote any signed, promotable integer type to an int 1605 (FromType->isSignedIntegerType() || 1606 // We can promote any unsigned integer type whose size is 1607 // less than int to an int. 1608 (!FromType->isSignedIntegerType() && 1609 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1610 return To->getKind() == BuiltinType::Int; 1611 } 1612 1613 return To->getKind() == BuiltinType::UInt; 1614 } 1615 1616 // C++0x [conv.prom]p3: 1617 // A prvalue of an unscoped enumeration type whose underlying type is not 1618 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1619 // following types that can represent all the values of the enumeration 1620 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1621 // unsigned int, long int, unsigned long int, long long int, or unsigned 1622 // long long int. If none of the types in that list can represent all the 1623 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1624 // type can be converted to an rvalue a prvalue of the extended integer type 1625 // with lowest integer conversion rank (4.13) greater than the rank of long 1626 // long in which all the values of the enumeration can be represented. If 1627 // there are two such extended types, the signed one is chosen. 1628 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1629 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1630 // provided for a scoped enumeration. 1631 if (FromEnumType->getDecl()->isScoped()) 1632 return false; 1633 1634 // We have already pre-calculated the promotion type, so this is trivial. 1635 if (ToType->isIntegerType() && 1636 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1637 return Context.hasSameUnqualifiedType(ToType, 1638 FromEnumType->getDecl()->getPromotionType()); 1639 } 1640 1641 // C++0x [conv.prom]p2: 1642 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1643 // to an rvalue a prvalue of the first of the following types that can 1644 // represent all the values of its underlying type: int, unsigned int, 1645 // long int, unsigned long int, long long int, or unsigned long long int. 1646 // If none of the types in that list can represent all the values of its 1647 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1648 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1649 // type. 1650 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1651 ToType->isIntegerType()) { 1652 // Determine whether the type we're converting from is signed or 1653 // unsigned. 1654 bool FromIsSigned = FromType->isSignedIntegerType(); 1655 uint64_t FromSize = Context.getTypeSize(FromType); 1656 1657 // The types we'll try to promote to, in the appropriate 1658 // order. Try each of these types. 1659 QualType PromoteTypes[6] = { 1660 Context.IntTy, Context.UnsignedIntTy, 1661 Context.LongTy, Context.UnsignedLongTy , 1662 Context.LongLongTy, Context.UnsignedLongLongTy 1663 }; 1664 for (int Idx = 0; Idx < 6; ++Idx) { 1665 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1666 if (FromSize < ToSize || 1667 (FromSize == ToSize && 1668 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1669 // We found the type that we can promote to. If this is the 1670 // type we wanted, we have a promotion. Otherwise, no 1671 // promotion. 1672 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1673 } 1674 } 1675 } 1676 1677 // An rvalue for an integral bit-field (9.6) can be converted to an 1678 // rvalue of type int if int can represent all the values of the 1679 // bit-field; otherwise, it can be converted to unsigned int if 1680 // unsigned int can represent all the values of the bit-field. If 1681 // the bit-field is larger yet, no integral promotion applies to 1682 // it. If the bit-field has an enumerated type, it is treated as any 1683 // other value of that type for promotion purposes (C++ 4.5p3). 1684 // FIXME: We should delay checking of bit-fields until we actually perform the 1685 // conversion. 1686 using llvm::APSInt; 1687 if (From) 1688 if (FieldDecl *MemberDecl = From->getBitField()) { 1689 APSInt BitWidth; 1690 if (FromType->isIntegralType(Context) && 1691 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1692 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1693 ToSize = Context.getTypeSize(ToType); 1694 1695 // Are we promoting to an int from a bitfield that fits in an int? 1696 if (BitWidth < ToSize || 1697 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1698 return To->getKind() == BuiltinType::Int; 1699 } 1700 1701 // Are we promoting to an unsigned int from an unsigned bitfield 1702 // that fits into an unsigned int? 1703 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1704 return To->getKind() == BuiltinType::UInt; 1705 } 1706 1707 return false; 1708 } 1709 } 1710 1711 // An rvalue of type bool can be converted to an rvalue of type int, 1712 // with false becoming zero and true becoming one (C++ 4.5p4). 1713 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1714 return true; 1715 } 1716 1717 return false; 1718} 1719 1720/// IsFloatingPointPromotion - Determines whether the conversion from 1721/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1722/// returns true and sets PromotedType to the promoted type. 1723bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1724 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1725 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1726 /// An rvalue of type float can be converted to an rvalue of type 1727 /// double. (C++ 4.6p1). 1728 if (FromBuiltin->getKind() == BuiltinType::Float && 1729 ToBuiltin->getKind() == BuiltinType::Double) 1730 return true; 1731 1732 // C99 6.3.1.5p1: 1733 // When a float is promoted to double or long double, or a 1734 // double is promoted to long double [...]. 1735 if (!getLangOptions().CPlusPlus && 1736 (FromBuiltin->getKind() == BuiltinType::Float || 1737 FromBuiltin->getKind() == BuiltinType::Double) && 1738 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1739 return true; 1740 1741 // Half can be promoted to float. 1742 if (FromBuiltin->getKind() == BuiltinType::Half && 1743 ToBuiltin->getKind() == BuiltinType::Float) 1744 return true; 1745 } 1746 1747 return false; 1748} 1749 1750/// \brief Determine if a conversion is a complex promotion. 1751/// 1752/// A complex promotion is defined as a complex -> complex conversion 1753/// where the conversion between the underlying real types is a 1754/// floating-point or integral promotion. 1755bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1756 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1757 if (!FromComplex) 1758 return false; 1759 1760 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1761 if (!ToComplex) 1762 return false; 1763 1764 return IsFloatingPointPromotion(FromComplex->getElementType(), 1765 ToComplex->getElementType()) || 1766 IsIntegralPromotion(0, FromComplex->getElementType(), 1767 ToComplex->getElementType()); 1768} 1769 1770/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1771/// the pointer type FromPtr to a pointer to type ToPointee, with the 1772/// same type qualifiers as FromPtr has on its pointee type. ToType, 1773/// if non-empty, will be a pointer to ToType that may or may not have 1774/// the right set of qualifiers on its pointee. 1775/// 1776static QualType 1777BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1778 QualType ToPointee, QualType ToType, 1779 ASTContext &Context, 1780 bool StripObjCLifetime = false) { 1781 assert((FromPtr->getTypeClass() == Type::Pointer || 1782 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1783 "Invalid similarly-qualified pointer type"); 1784 1785 /// Conversions to 'id' subsume cv-qualifier conversions. 1786 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1787 return ToType.getUnqualifiedType(); 1788 1789 QualType CanonFromPointee 1790 = Context.getCanonicalType(FromPtr->getPointeeType()); 1791 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1792 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1793 1794 if (StripObjCLifetime) 1795 Quals.removeObjCLifetime(); 1796 1797 // Exact qualifier match -> return the pointer type we're converting to. 1798 if (CanonToPointee.getLocalQualifiers() == Quals) { 1799 // ToType is exactly what we need. Return it. 1800 if (!ToType.isNull()) 1801 return ToType.getUnqualifiedType(); 1802 1803 // Build a pointer to ToPointee. It has the right qualifiers 1804 // already. 1805 if (isa<ObjCObjectPointerType>(ToType)) 1806 return Context.getObjCObjectPointerType(ToPointee); 1807 return Context.getPointerType(ToPointee); 1808 } 1809 1810 // Just build a canonical type that has the right qualifiers. 1811 QualType QualifiedCanonToPointee 1812 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1813 1814 if (isa<ObjCObjectPointerType>(ToType)) 1815 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1816 return Context.getPointerType(QualifiedCanonToPointee); 1817} 1818 1819static bool isNullPointerConstantForConversion(Expr *Expr, 1820 bool InOverloadResolution, 1821 ASTContext &Context) { 1822 // Handle value-dependent integral null pointer constants correctly. 1823 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1824 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1825 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1826 return !InOverloadResolution; 1827 1828 return Expr->isNullPointerConstant(Context, 1829 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1830 : Expr::NPC_ValueDependentIsNull); 1831} 1832 1833/// IsPointerConversion - Determines whether the conversion of the 1834/// expression From, which has the (possibly adjusted) type FromType, 1835/// can be converted to the type ToType via a pointer conversion (C++ 1836/// 4.10). If so, returns true and places the converted type (that 1837/// might differ from ToType in its cv-qualifiers at some level) into 1838/// ConvertedType. 1839/// 1840/// This routine also supports conversions to and from block pointers 1841/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1842/// pointers to interfaces. FIXME: Once we've determined the 1843/// appropriate overloading rules for Objective-C, we may want to 1844/// split the Objective-C checks into a different routine; however, 1845/// GCC seems to consider all of these conversions to be pointer 1846/// conversions, so for now they live here. IncompatibleObjC will be 1847/// set if the conversion is an allowed Objective-C conversion that 1848/// should result in a warning. 1849bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1850 bool InOverloadResolution, 1851 QualType& ConvertedType, 1852 bool &IncompatibleObjC) { 1853 IncompatibleObjC = false; 1854 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1855 IncompatibleObjC)) 1856 return true; 1857 1858 // Conversion from a null pointer constant to any Objective-C pointer type. 1859 if (ToType->isObjCObjectPointerType() && 1860 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1861 ConvertedType = ToType; 1862 return true; 1863 } 1864 1865 // Blocks: Block pointers can be converted to void*. 1866 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1867 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1868 ConvertedType = ToType; 1869 return true; 1870 } 1871 // Blocks: A null pointer constant can be converted to a block 1872 // pointer type. 1873 if (ToType->isBlockPointerType() && 1874 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1875 ConvertedType = ToType; 1876 return true; 1877 } 1878 1879 // If the left-hand-side is nullptr_t, the right side can be a null 1880 // pointer constant. 1881 if (ToType->isNullPtrType() && 1882 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1883 ConvertedType = ToType; 1884 return true; 1885 } 1886 1887 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1888 if (!ToTypePtr) 1889 return false; 1890 1891 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1892 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1893 ConvertedType = ToType; 1894 return true; 1895 } 1896 1897 // Beyond this point, both types need to be pointers 1898 // , including objective-c pointers. 1899 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1900 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 1901 !getLangOptions().ObjCAutoRefCount) { 1902 ConvertedType = BuildSimilarlyQualifiedPointerType( 1903 FromType->getAs<ObjCObjectPointerType>(), 1904 ToPointeeType, 1905 ToType, Context); 1906 return true; 1907 } 1908 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1909 if (!FromTypePtr) 1910 return false; 1911 1912 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1913 1914 // If the unqualified pointee types are the same, this can't be a 1915 // pointer conversion, so don't do all of the work below. 1916 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1917 return false; 1918 1919 // An rvalue of type "pointer to cv T," where T is an object type, 1920 // can be converted to an rvalue of type "pointer to cv void" (C++ 1921 // 4.10p2). 1922 if (FromPointeeType->isIncompleteOrObjectType() && 1923 ToPointeeType->isVoidType()) { 1924 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1925 ToPointeeType, 1926 ToType, Context, 1927 /*StripObjCLifetime=*/true); 1928 return true; 1929 } 1930 1931 // MSVC allows implicit function to void* type conversion. 1932 if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() && 1933 ToPointeeType->isVoidType()) { 1934 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1935 ToPointeeType, 1936 ToType, Context); 1937 return true; 1938 } 1939 1940 // When we're overloading in C, we allow a special kind of pointer 1941 // conversion for compatible-but-not-identical pointee types. 1942 if (!getLangOptions().CPlusPlus && 1943 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1944 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1945 ToPointeeType, 1946 ToType, Context); 1947 return true; 1948 } 1949 1950 // C++ [conv.ptr]p3: 1951 // 1952 // An rvalue of type "pointer to cv D," where D is a class type, 1953 // can be converted to an rvalue of type "pointer to cv B," where 1954 // B is a base class (clause 10) of D. If B is an inaccessible 1955 // (clause 11) or ambiguous (10.2) base class of D, a program that 1956 // necessitates this conversion is ill-formed. The result of the 1957 // conversion is a pointer to the base class sub-object of the 1958 // derived class object. The null pointer value is converted to 1959 // the null pointer value of the destination type. 1960 // 1961 // Note that we do not check for ambiguity or inaccessibility 1962 // here. That is handled by CheckPointerConversion. 1963 if (getLangOptions().CPlusPlus && 1964 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1965 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1966 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1967 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1968 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1969 ToPointeeType, 1970 ToType, Context); 1971 return true; 1972 } 1973 1974 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 1975 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 1976 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1977 ToPointeeType, 1978 ToType, Context); 1979 return true; 1980 } 1981 1982 return false; 1983} 1984 1985/// \brief Adopt the given qualifiers for the given type. 1986static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 1987 Qualifiers TQs = T.getQualifiers(); 1988 1989 // Check whether qualifiers already match. 1990 if (TQs == Qs) 1991 return T; 1992 1993 if (Qs.compatiblyIncludes(TQs)) 1994 return Context.getQualifiedType(T, Qs); 1995 1996 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 1997} 1998 1999/// isObjCPointerConversion - Determines whether this is an 2000/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2001/// with the same arguments and return values. 2002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2003 QualType& ConvertedType, 2004 bool &IncompatibleObjC) { 2005 if (!getLangOptions().ObjC1) 2006 return false; 2007 2008 // The set of qualifiers on the type we're converting from. 2009 Qualifiers FromQualifiers = FromType.getQualifiers(); 2010 2011 // First, we handle all conversions on ObjC object pointer types. 2012 const ObjCObjectPointerType* ToObjCPtr = 2013 ToType->getAs<ObjCObjectPointerType>(); 2014 const ObjCObjectPointerType *FromObjCPtr = 2015 FromType->getAs<ObjCObjectPointerType>(); 2016 2017 if (ToObjCPtr && FromObjCPtr) { 2018 // If the pointee types are the same (ignoring qualifications), 2019 // then this is not a pointer conversion. 2020 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2021 FromObjCPtr->getPointeeType())) 2022 return false; 2023 2024 // Check for compatible 2025 // Objective C++: We're able to convert between "id" or "Class" and a 2026 // pointer to any interface (in both directions). 2027 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 2028 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2029 return true; 2030 } 2031 // Conversions with Objective-C's id<...>. 2032 if ((FromObjCPtr->isObjCQualifiedIdType() || 2033 ToObjCPtr->isObjCQualifiedIdType()) && 2034 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 2035 /*compare=*/false)) { 2036 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2037 return true; 2038 } 2039 // Objective C++: We're able to convert from a pointer to an 2040 // interface to a pointer to a different interface. 2041 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2042 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2043 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2044 if (getLangOptions().CPlusPlus && LHS && RHS && 2045 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2046 FromObjCPtr->getPointeeType())) 2047 return false; 2048 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2049 ToObjCPtr->getPointeeType(), 2050 ToType, Context); 2051 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2052 return true; 2053 } 2054 2055 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2056 // Okay: this is some kind of implicit downcast of Objective-C 2057 // interfaces, which is permitted. However, we're going to 2058 // complain about it. 2059 IncompatibleObjC = true; 2060 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2061 ToObjCPtr->getPointeeType(), 2062 ToType, Context); 2063 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2064 return true; 2065 } 2066 } 2067 // Beyond this point, both types need to be C pointers or block pointers. 2068 QualType ToPointeeType; 2069 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2070 ToPointeeType = ToCPtr->getPointeeType(); 2071 else if (const BlockPointerType *ToBlockPtr = 2072 ToType->getAs<BlockPointerType>()) { 2073 // Objective C++: We're able to convert from a pointer to any object 2074 // to a block pointer type. 2075 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2076 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2077 return true; 2078 } 2079 ToPointeeType = ToBlockPtr->getPointeeType(); 2080 } 2081 else if (FromType->getAs<BlockPointerType>() && 2082 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2083 // Objective C++: We're able to convert from a block pointer type to a 2084 // pointer to any object. 2085 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2086 return true; 2087 } 2088 else 2089 return false; 2090 2091 QualType FromPointeeType; 2092 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2093 FromPointeeType = FromCPtr->getPointeeType(); 2094 else if (const BlockPointerType *FromBlockPtr = 2095 FromType->getAs<BlockPointerType>()) 2096 FromPointeeType = FromBlockPtr->getPointeeType(); 2097 else 2098 return false; 2099 2100 // If we have pointers to pointers, recursively check whether this 2101 // is an Objective-C conversion. 2102 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2103 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2104 IncompatibleObjC)) { 2105 // We always complain about this conversion. 2106 IncompatibleObjC = true; 2107 ConvertedType = Context.getPointerType(ConvertedType); 2108 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2109 return true; 2110 } 2111 // Allow conversion of pointee being objective-c pointer to another one; 2112 // as in I* to id. 2113 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2114 ToPointeeType->getAs<ObjCObjectPointerType>() && 2115 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2116 IncompatibleObjC)) { 2117 2118 ConvertedType = Context.getPointerType(ConvertedType); 2119 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2120 return true; 2121 } 2122 2123 // If we have pointers to functions or blocks, check whether the only 2124 // differences in the argument and result types are in Objective-C 2125 // pointer conversions. If so, we permit the conversion (but 2126 // complain about it). 2127 const FunctionProtoType *FromFunctionType 2128 = FromPointeeType->getAs<FunctionProtoType>(); 2129 const FunctionProtoType *ToFunctionType 2130 = ToPointeeType->getAs<FunctionProtoType>(); 2131 if (FromFunctionType && ToFunctionType) { 2132 // If the function types are exactly the same, this isn't an 2133 // Objective-C pointer conversion. 2134 if (Context.getCanonicalType(FromPointeeType) 2135 == Context.getCanonicalType(ToPointeeType)) 2136 return false; 2137 2138 // Perform the quick checks that will tell us whether these 2139 // function types are obviously different. 2140 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2141 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2142 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 2143 return false; 2144 2145 bool HasObjCConversion = false; 2146 if (Context.getCanonicalType(FromFunctionType->getResultType()) 2147 == Context.getCanonicalType(ToFunctionType->getResultType())) { 2148 // Okay, the types match exactly. Nothing to do. 2149 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 2150 ToFunctionType->getResultType(), 2151 ConvertedType, IncompatibleObjC)) { 2152 // Okay, we have an Objective-C pointer conversion. 2153 HasObjCConversion = true; 2154 } else { 2155 // Function types are too different. Abort. 2156 return false; 2157 } 2158 2159 // Check argument types. 2160 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2161 ArgIdx != NumArgs; ++ArgIdx) { 2162 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2163 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2164 if (Context.getCanonicalType(FromArgType) 2165 == Context.getCanonicalType(ToArgType)) { 2166 // Okay, the types match exactly. Nothing to do. 2167 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2168 ConvertedType, IncompatibleObjC)) { 2169 // Okay, we have an Objective-C pointer conversion. 2170 HasObjCConversion = true; 2171 } else { 2172 // Argument types are too different. Abort. 2173 return false; 2174 } 2175 } 2176 2177 if (HasObjCConversion) { 2178 // We had an Objective-C conversion. Allow this pointer 2179 // conversion, but complain about it. 2180 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2181 IncompatibleObjC = true; 2182 return true; 2183 } 2184 } 2185 2186 return false; 2187} 2188 2189/// \brief Determine whether this is an Objective-C writeback conversion, 2190/// used for parameter passing when performing automatic reference counting. 2191/// 2192/// \param FromType The type we're converting form. 2193/// 2194/// \param ToType The type we're converting to. 2195/// 2196/// \param ConvertedType The type that will be produced after applying 2197/// this conversion. 2198bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2199 QualType &ConvertedType) { 2200 if (!getLangOptions().ObjCAutoRefCount || 2201 Context.hasSameUnqualifiedType(FromType, ToType)) 2202 return false; 2203 2204 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2205 QualType ToPointee; 2206 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2207 ToPointee = ToPointer->getPointeeType(); 2208 else 2209 return false; 2210 2211 Qualifiers ToQuals = ToPointee.getQualifiers(); 2212 if (!ToPointee->isObjCLifetimeType() || 2213 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2214 !ToQuals.withoutObjCLifetime().empty()) 2215 return false; 2216 2217 // Argument must be a pointer to __strong to __weak. 2218 QualType FromPointee; 2219 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2220 FromPointee = FromPointer->getPointeeType(); 2221 else 2222 return false; 2223 2224 Qualifiers FromQuals = FromPointee.getQualifiers(); 2225 if (!FromPointee->isObjCLifetimeType() || 2226 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2227 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2228 return false; 2229 2230 // Make sure that we have compatible qualifiers. 2231 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2232 if (!ToQuals.compatiblyIncludes(FromQuals)) 2233 return false; 2234 2235 // Remove qualifiers from the pointee type we're converting from; they 2236 // aren't used in the compatibility check belong, and we'll be adding back 2237 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2238 FromPointee = FromPointee.getUnqualifiedType(); 2239 2240 // The unqualified form of the pointee types must be compatible. 2241 ToPointee = ToPointee.getUnqualifiedType(); 2242 bool IncompatibleObjC; 2243 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2244 FromPointee = ToPointee; 2245 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2246 IncompatibleObjC)) 2247 return false; 2248 2249 /// \brief Construct the type we're converting to, which is a pointer to 2250 /// __autoreleasing pointee. 2251 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2252 ConvertedType = Context.getPointerType(FromPointee); 2253 return true; 2254} 2255 2256bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2257 QualType& ConvertedType) { 2258 QualType ToPointeeType; 2259 if (const BlockPointerType *ToBlockPtr = 2260 ToType->getAs<BlockPointerType>()) 2261 ToPointeeType = ToBlockPtr->getPointeeType(); 2262 else 2263 return false; 2264 2265 QualType FromPointeeType; 2266 if (const BlockPointerType *FromBlockPtr = 2267 FromType->getAs<BlockPointerType>()) 2268 FromPointeeType = FromBlockPtr->getPointeeType(); 2269 else 2270 return false; 2271 // We have pointer to blocks, check whether the only 2272 // differences in the argument and result types are in Objective-C 2273 // pointer conversions. If so, we permit the conversion. 2274 2275 const FunctionProtoType *FromFunctionType 2276 = FromPointeeType->getAs<FunctionProtoType>(); 2277 const FunctionProtoType *ToFunctionType 2278 = ToPointeeType->getAs<FunctionProtoType>(); 2279 2280 if (!FromFunctionType || !ToFunctionType) 2281 return false; 2282 2283 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2284 return true; 2285 2286 // Perform the quick checks that will tell us whether these 2287 // function types are obviously different. 2288 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2289 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2290 return false; 2291 2292 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2293 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2294 if (FromEInfo != ToEInfo) 2295 return false; 2296 2297 bool IncompatibleObjC = false; 2298 if (Context.hasSameType(FromFunctionType->getResultType(), 2299 ToFunctionType->getResultType())) { 2300 // Okay, the types match exactly. Nothing to do. 2301 } else { 2302 QualType RHS = FromFunctionType->getResultType(); 2303 QualType LHS = ToFunctionType->getResultType(); 2304 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && 2305 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2306 LHS = LHS.getUnqualifiedType(); 2307 2308 if (Context.hasSameType(RHS,LHS)) { 2309 // OK exact match. 2310 } else if (isObjCPointerConversion(RHS, LHS, 2311 ConvertedType, IncompatibleObjC)) { 2312 if (IncompatibleObjC) 2313 return false; 2314 // Okay, we have an Objective-C pointer conversion. 2315 } 2316 else 2317 return false; 2318 } 2319 2320 // Check argument types. 2321 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2322 ArgIdx != NumArgs; ++ArgIdx) { 2323 IncompatibleObjC = false; 2324 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2325 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2326 if (Context.hasSameType(FromArgType, ToArgType)) { 2327 // Okay, the types match exactly. Nothing to do. 2328 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2329 ConvertedType, IncompatibleObjC)) { 2330 if (IncompatibleObjC) 2331 return false; 2332 // Okay, we have an Objective-C pointer conversion. 2333 } else 2334 // Argument types are too different. Abort. 2335 return false; 2336 } 2337 if (LangOpts.ObjCAutoRefCount && 2338 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 2339 ToFunctionType)) 2340 return false; 2341 2342 ConvertedType = ToType; 2343 return true; 2344} 2345 2346enum { 2347 ft_default, 2348 ft_different_class, 2349 ft_parameter_arity, 2350 ft_parameter_mismatch, 2351 ft_return_type, 2352 ft_qualifer_mismatch 2353}; 2354 2355/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2356/// function types. Catches different number of parameter, mismatch in 2357/// parameter types, and different return types. 2358void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2359 QualType FromType, QualType ToType) { 2360 // If either type is not valid, include no extra info. 2361 if (FromType.isNull() || ToType.isNull()) { 2362 PDiag << ft_default; 2363 return; 2364 } 2365 2366 // Get the function type from the pointers. 2367 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2368 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), 2369 *ToMember = ToType->getAs<MemberPointerType>(); 2370 if (FromMember->getClass() != ToMember->getClass()) { 2371 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2372 << QualType(FromMember->getClass(), 0); 2373 return; 2374 } 2375 FromType = FromMember->getPointeeType(); 2376 ToType = ToMember->getPointeeType(); 2377 } 2378 2379 if (FromType->isPointerType()) 2380 FromType = FromType->getPointeeType(); 2381 if (ToType->isPointerType()) 2382 ToType = ToType->getPointeeType(); 2383 2384 // Remove references. 2385 FromType = FromType.getNonReferenceType(); 2386 ToType = ToType.getNonReferenceType(); 2387 2388 // Don't print extra info for non-specialized template functions. 2389 if (FromType->isInstantiationDependentType() && 2390 !FromType->getAs<TemplateSpecializationType>()) { 2391 PDiag << ft_default; 2392 return; 2393 } 2394 2395 // No extra info for same types. 2396 if (Context.hasSameType(FromType, ToType)) { 2397 PDiag << ft_default; 2398 return; 2399 } 2400 2401 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(), 2402 *ToFunction = ToType->getAs<FunctionProtoType>(); 2403 2404 // Both types need to be function types. 2405 if (!FromFunction || !ToFunction) { 2406 PDiag << ft_default; 2407 return; 2408 } 2409 2410 if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) { 2411 PDiag << ft_parameter_arity << ToFunction->getNumArgs() 2412 << FromFunction->getNumArgs(); 2413 return; 2414 } 2415 2416 // Handle different parameter types. 2417 unsigned ArgPos; 2418 if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2419 PDiag << ft_parameter_mismatch << ArgPos + 1 2420 << ToFunction->getArgType(ArgPos) 2421 << FromFunction->getArgType(ArgPos); 2422 return; 2423 } 2424 2425 // Handle different return type. 2426 if (!Context.hasSameType(FromFunction->getResultType(), 2427 ToFunction->getResultType())) { 2428 PDiag << ft_return_type << ToFunction->getResultType() 2429 << FromFunction->getResultType(); 2430 return; 2431 } 2432 2433 unsigned FromQuals = FromFunction->getTypeQuals(), 2434 ToQuals = ToFunction->getTypeQuals(); 2435 if (FromQuals != ToQuals) { 2436 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; 2437 return; 2438 } 2439 2440 // Unable to find a difference, so add no extra info. 2441 PDiag << ft_default; 2442} 2443 2444/// FunctionArgTypesAreEqual - This routine checks two function proto types 2445/// for equality of their argument types. Caller has already checked that 2446/// they have same number of arguments. This routine assumes that Objective-C 2447/// pointer types which only differ in their protocol qualifiers are equal. 2448/// If the parameters are different, ArgPos will have the the parameter index 2449/// of the first different parameter. 2450bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 2451 const FunctionProtoType *NewType, 2452 unsigned *ArgPos) { 2453 if (!getLangOptions().ObjC1) { 2454 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2455 N = NewType->arg_type_begin(), 2456 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2457 if (!Context.hasSameType(*O, *N)) { 2458 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2459 return false; 2460 } 2461 } 2462 return true; 2463 } 2464 2465 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2466 N = NewType->arg_type_begin(), 2467 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2468 QualType ToType = (*O); 2469 QualType FromType = (*N); 2470 if (!Context.hasSameType(ToType, FromType)) { 2471 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 2472 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 2473 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 2474 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 2475 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 2476 PTFr->getPointeeType()->isObjCQualifiedClassType())) 2477 continue; 2478 } 2479 else if (const ObjCObjectPointerType *PTTo = 2480 ToType->getAs<ObjCObjectPointerType>()) { 2481 if (const ObjCObjectPointerType *PTFr = 2482 FromType->getAs<ObjCObjectPointerType>()) 2483 if (Context.hasSameUnqualifiedType( 2484 PTTo->getObjectType()->getBaseType(), 2485 PTFr->getObjectType()->getBaseType())) 2486 continue; 2487 } 2488 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2489 return false; 2490 } 2491 } 2492 return true; 2493} 2494 2495/// CheckPointerConversion - Check the pointer conversion from the 2496/// expression From to the type ToType. This routine checks for 2497/// ambiguous or inaccessible derived-to-base pointer 2498/// conversions for which IsPointerConversion has already returned 2499/// true. It returns true and produces a diagnostic if there was an 2500/// error, or returns false otherwise. 2501bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2502 CastKind &Kind, 2503 CXXCastPath& BasePath, 2504 bool IgnoreBaseAccess) { 2505 QualType FromType = From->getType(); 2506 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2507 2508 Kind = CK_BitCast; 2509 2510 if (!IsCStyleOrFunctionalCast && 2511 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) && 2512 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2513 DiagRuntimeBehavior(From->getExprLoc(), From, 2514 PDiag(diag::warn_impcast_bool_to_null_pointer) 2515 << ToType << From->getSourceRange()); 2516 2517 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2518 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 2519 QualType FromPointeeType = FromPtrType->getPointeeType(), 2520 ToPointeeType = ToPtrType->getPointeeType(); 2521 2522 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2523 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2524 // We must have a derived-to-base conversion. Check an 2525 // ambiguous or inaccessible conversion. 2526 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 2527 From->getExprLoc(), 2528 From->getSourceRange(), &BasePath, 2529 IgnoreBaseAccess)) 2530 return true; 2531 2532 // The conversion was successful. 2533 Kind = CK_DerivedToBase; 2534 } 2535 } 2536 } else if (const ObjCObjectPointerType *ToPtrType = 2537 ToType->getAs<ObjCObjectPointerType>()) { 2538 if (const ObjCObjectPointerType *FromPtrType = 2539 FromType->getAs<ObjCObjectPointerType>()) { 2540 // Objective-C++ conversions are always okay. 2541 // FIXME: We should have a different class of conversions for the 2542 // Objective-C++ implicit conversions. 2543 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2544 return false; 2545 } else if (FromType->isBlockPointerType()) { 2546 Kind = CK_BlockPointerToObjCPointerCast; 2547 } else { 2548 Kind = CK_CPointerToObjCPointerCast; 2549 } 2550 } else if (ToType->isBlockPointerType()) { 2551 if (!FromType->isBlockPointerType()) 2552 Kind = CK_AnyPointerToBlockPointerCast; 2553 } 2554 2555 // We shouldn't fall into this case unless it's valid for other 2556 // reasons. 2557 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2558 Kind = CK_NullToPointer; 2559 2560 return false; 2561} 2562 2563/// IsMemberPointerConversion - Determines whether the conversion of the 2564/// expression From, which has the (possibly adjusted) type FromType, can be 2565/// converted to the type ToType via a member pointer conversion (C++ 4.11). 2566/// If so, returns true and places the converted type (that might differ from 2567/// ToType in its cv-qualifiers at some level) into ConvertedType. 2568bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2569 QualType ToType, 2570 bool InOverloadResolution, 2571 QualType &ConvertedType) { 2572 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2573 if (!ToTypePtr) 2574 return false; 2575 2576 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2577 if (From->isNullPointerConstant(Context, 2578 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2579 : Expr::NPC_ValueDependentIsNull)) { 2580 ConvertedType = ToType; 2581 return true; 2582 } 2583 2584 // Otherwise, both types have to be member pointers. 2585 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2586 if (!FromTypePtr) 2587 return false; 2588 2589 // A pointer to member of B can be converted to a pointer to member of D, 2590 // where D is derived from B (C++ 4.11p2). 2591 QualType FromClass(FromTypePtr->getClass(), 0); 2592 QualType ToClass(ToTypePtr->getClass(), 0); 2593 2594 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2595 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 2596 IsDerivedFrom(ToClass, FromClass)) { 2597 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2598 ToClass.getTypePtr()); 2599 return true; 2600 } 2601 2602 return false; 2603} 2604 2605/// CheckMemberPointerConversion - Check the member pointer conversion from the 2606/// expression From to the type ToType. This routine checks for ambiguous or 2607/// virtual or inaccessible base-to-derived member pointer conversions 2608/// for which IsMemberPointerConversion has already returned true. It returns 2609/// true and produces a diagnostic if there was an error, or returns false 2610/// otherwise. 2611bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2612 CastKind &Kind, 2613 CXXCastPath &BasePath, 2614 bool IgnoreBaseAccess) { 2615 QualType FromType = From->getType(); 2616 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2617 if (!FromPtrType) { 2618 // This must be a null pointer to member pointer conversion 2619 assert(From->isNullPointerConstant(Context, 2620 Expr::NPC_ValueDependentIsNull) && 2621 "Expr must be null pointer constant!"); 2622 Kind = CK_NullToMemberPointer; 2623 return false; 2624 } 2625 2626 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2627 assert(ToPtrType && "No member pointer cast has a target type " 2628 "that is not a member pointer."); 2629 2630 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2631 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2632 2633 // FIXME: What about dependent types? 2634 assert(FromClass->isRecordType() && "Pointer into non-class."); 2635 assert(ToClass->isRecordType() && "Pointer into non-class."); 2636 2637 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2638 /*DetectVirtual=*/true); 2639 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2640 assert(DerivationOkay && 2641 "Should not have been called if derivation isn't OK."); 2642 (void)DerivationOkay; 2643 2644 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2645 getUnqualifiedType())) { 2646 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2647 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2648 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2649 return true; 2650 } 2651 2652 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2653 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2654 << FromClass << ToClass << QualType(VBase, 0) 2655 << From->getSourceRange(); 2656 return true; 2657 } 2658 2659 if (!IgnoreBaseAccess) 2660 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2661 Paths.front(), 2662 diag::err_downcast_from_inaccessible_base); 2663 2664 // Must be a base to derived member conversion. 2665 BuildBasePathArray(Paths, BasePath); 2666 Kind = CK_BaseToDerivedMemberPointer; 2667 return false; 2668} 2669 2670/// IsQualificationConversion - Determines whether the conversion from 2671/// an rvalue of type FromType to ToType is a qualification conversion 2672/// (C++ 4.4). 2673/// 2674/// \param ObjCLifetimeConversion Output parameter that will be set to indicate 2675/// when the qualification conversion involves a change in the Objective-C 2676/// object lifetime. 2677bool 2678Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2679 bool CStyle, bool &ObjCLifetimeConversion) { 2680 FromType = Context.getCanonicalType(FromType); 2681 ToType = Context.getCanonicalType(ToType); 2682 ObjCLifetimeConversion = false; 2683 2684 // If FromType and ToType are the same type, this is not a 2685 // qualification conversion. 2686 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2687 return false; 2688 2689 // (C++ 4.4p4): 2690 // A conversion can add cv-qualifiers at levels other than the first 2691 // in multi-level pointers, subject to the following rules: [...] 2692 bool PreviousToQualsIncludeConst = true; 2693 bool UnwrappedAnyPointer = false; 2694 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2695 // Within each iteration of the loop, we check the qualifiers to 2696 // determine if this still looks like a qualification 2697 // conversion. Then, if all is well, we unwrap one more level of 2698 // pointers or pointers-to-members and do it all again 2699 // until there are no more pointers or pointers-to-members left to 2700 // unwrap. 2701 UnwrappedAnyPointer = true; 2702 2703 Qualifiers FromQuals = FromType.getQualifiers(); 2704 Qualifiers ToQuals = ToType.getQualifiers(); 2705 2706 // Objective-C ARC: 2707 // Check Objective-C lifetime conversions. 2708 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 2709 UnwrappedAnyPointer) { 2710 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 2711 ObjCLifetimeConversion = true; 2712 FromQuals.removeObjCLifetime(); 2713 ToQuals.removeObjCLifetime(); 2714 } else { 2715 // Qualification conversions cannot cast between different 2716 // Objective-C lifetime qualifiers. 2717 return false; 2718 } 2719 } 2720 2721 // Allow addition/removal of GC attributes but not changing GC attributes. 2722 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 2723 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 2724 FromQuals.removeObjCGCAttr(); 2725 ToQuals.removeObjCGCAttr(); 2726 } 2727 2728 // -- for every j > 0, if const is in cv 1,j then const is in cv 2729 // 2,j, and similarly for volatile. 2730 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 2731 return false; 2732 2733 // -- if the cv 1,j and cv 2,j are different, then const is in 2734 // every cv for 0 < k < j. 2735 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 2736 && !PreviousToQualsIncludeConst) 2737 return false; 2738 2739 // Keep track of whether all prior cv-qualifiers in the "to" type 2740 // include const. 2741 PreviousToQualsIncludeConst 2742 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 2743 } 2744 2745 // We are left with FromType and ToType being the pointee types 2746 // after unwrapping the original FromType and ToType the same number 2747 // of types. If we unwrapped any pointers, and if FromType and 2748 // ToType have the same unqualified type (since we checked 2749 // qualifiers above), then this is a qualification conversion. 2750 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2751} 2752 2753static OverloadingResult 2754IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 2755 CXXRecordDecl *To, 2756 UserDefinedConversionSequence &User, 2757 OverloadCandidateSet &CandidateSet, 2758 bool AllowExplicit) { 2759 DeclContext::lookup_iterator Con, ConEnd; 2760 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To); 2761 Con != ConEnd; ++Con) { 2762 NamedDecl *D = *Con; 2763 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2764 2765 // Find the constructor (which may be a template). 2766 CXXConstructorDecl *Constructor = 0; 2767 FunctionTemplateDecl *ConstructorTmpl 2768 = dyn_cast<FunctionTemplateDecl>(D); 2769 if (ConstructorTmpl) 2770 Constructor 2771 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2772 else 2773 Constructor = cast<CXXConstructorDecl>(D); 2774 2775 bool Usable = !Constructor->isInvalidDecl() && 2776 S.isInitListConstructor(Constructor) && 2777 (AllowExplicit || !Constructor->isExplicit()); 2778 if (Usable) { 2779 if (ConstructorTmpl) 2780 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2781 /*ExplicitArgs*/ 0, 2782 &From, 1, CandidateSet, 2783 /*SuppressUserConversions=*/true); 2784 else 2785 S.AddOverloadCandidate(Constructor, FoundDecl, 2786 &From, 1, CandidateSet, 2787 /*SuppressUserConversions=*/true); 2788 } 2789 } 2790 2791 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2792 2793 OverloadCandidateSet::iterator Best; 2794 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2795 case OR_Success: { 2796 // Record the standard conversion we used and the conversion function. 2797 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 2798 S.MarkFunctionReferenced(From->getLocStart(), Constructor); 2799 2800 QualType ThisType = Constructor->getThisType(S.Context); 2801 // Initializer lists don't have conversions as such. 2802 User.Before.setAsIdentityConversion(); 2803 User.HadMultipleCandidates = HadMultipleCandidates; 2804 User.ConversionFunction = Constructor; 2805 User.FoundConversionFunction = Best->FoundDecl; 2806 User.After.setAsIdentityConversion(); 2807 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2808 User.After.setAllToTypes(ToType); 2809 return OR_Success; 2810 } 2811 2812 case OR_No_Viable_Function: 2813 return OR_No_Viable_Function; 2814 case OR_Deleted: 2815 return OR_Deleted; 2816 case OR_Ambiguous: 2817 return OR_Ambiguous; 2818 } 2819 2820 llvm_unreachable("Invalid OverloadResult!"); 2821} 2822 2823/// Determines whether there is a user-defined conversion sequence 2824/// (C++ [over.ics.user]) that converts expression From to the type 2825/// ToType. If such a conversion exists, User will contain the 2826/// user-defined conversion sequence that performs such a conversion 2827/// and this routine will return true. Otherwise, this routine returns 2828/// false and User is unspecified. 2829/// 2830/// \param AllowExplicit true if the conversion should consider C++0x 2831/// "explicit" conversion functions as well as non-explicit conversion 2832/// functions (C++0x [class.conv.fct]p2). 2833static OverloadingResult 2834IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2835 UserDefinedConversionSequence &User, 2836 OverloadCandidateSet &CandidateSet, 2837 bool AllowExplicit) { 2838 // Whether we will only visit constructors. 2839 bool ConstructorsOnly = false; 2840 2841 // If the type we are conversion to is a class type, enumerate its 2842 // constructors. 2843 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2844 // C++ [over.match.ctor]p1: 2845 // When objects of class type are direct-initialized (8.5), or 2846 // copy-initialized from an expression of the same or a 2847 // derived class type (8.5), overload resolution selects the 2848 // constructor. [...] For copy-initialization, the candidate 2849 // functions are all the converting constructors (12.3.1) of 2850 // that class. The argument list is the expression-list within 2851 // the parentheses of the initializer. 2852 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2853 (From->getType()->getAs<RecordType>() && 2854 S.IsDerivedFrom(From->getType(), ToType))) 2855 ConstructorsOnly = true; 2856 2857 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()); 2858 // RequireCompleteType may have returned true due to some invalid decl 2859 // during template instantiation, but ToType may be complete enough now 2860 // to try to recover. 2861 if (ToType->isIncompleteType()) { 2862 // We're not going to find any constructors. 2863 } else if (CXXRecordDecl *ToRecordDecl 2864 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2865 2866 Expr **Args = &From; 2867 unsigned NumArgs = 1; 2868 bool ListInitializing = false; 2869 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 2870 // But first, see if there is an init-list-contructor that will work. 2871 OverloadingResult Result = IsInitializerListConstructorConversion( 2872 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit); 2873 if (Result != OR_No_Viable_Function) 2874 return Result; 2875 // Never mind. 2876 CandidateSet.clear(); 2877 2878 // If we're list-initializing, we pass the individual elements as 2879 // arguments, not the entire list. 2880 Args = InitList->getInits(); 2881 NumArgs = InitList->getNumInits(); 2882 ListInitializing = true; 2883 } 2884 2885 DeclContext::lookup_iterator Con, ConEnd; 2886 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2887 Con != ConEnd; ++Con) { 2888 NamedDecl *D = *Con; 2889 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2890 2891 // Find the constructor (which may be a template). 2892 CXXConstructorDecl *Constructor = 0; 2893 FunctionTemplateDecl *ConstructorTmpl 2894 = dyn_cast<FunctionTemplateDecl>(D); 2895 if (ConstructorTmpl) 2896 Constructor 2897 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2898 else 2899 Constructor = cast<CXXConstructorDecl>(D); 2900 2901 bool Usable = !Constructor->isInvalidDecl(); 2902 if (ListInitializing) 2903 Usable = Usable && (AllowExplicit || !Constructor->isExplicit()); 2904 else 2905 Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit); 2906 if (Usable) { 2907 if (ConstructorTmpl) 2908 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2909 /*ExplicitArgs*/ 0, 2910 Args, NumArgs, CandidateSet, 2911 /*SuppressUserConversions=*/ 2912 !ConstructorsOnly && 2913 !ListInitializing); 2914 else 2915 // Allow one user-defined conversion when user specifies a 2916 // From->ToType conversion via an static cast (c-style, etc). 2917 S.AddOverloadCandidate(Constructor, FoundDecl, 2918 Args, NumArgs, CandidateSet, 2919 /*SuppressUserConversions=*/ 2920 !ConstructorsOnly && !ListInitializing); 2921 } 2922 } 2923 } 2924 } 2925 2926 // Enumerate conversion functions, if we're allowed to. 2927 if (ConstructorsOnly || isa<InitListExpr>(From)) { 2928 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2929 S.PDiag(0) << From->getSourceRange())) { 2930 // No conversion functions from incomplete types. 2931 } else if (const RecordType *FromRecordType 2932 = From->getType()->getAs<RecordType>()) { 2933 if (CXXRecordDecl *FromRecordDecl 2934 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2935 // Add all of the conversion functions as candidates. 2936 const UnresolvedSetImpl *Conversions 2937 = FromRecordDecl->getVisibleConversionFunctions(); 2938 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2939 E = Conversions->end(); I != E; ++I) { 2940 DeclAccessPair FoundDecl = I.getPair(); 2941 NamedDecl *D = FoundDecl.getDecl(); 2942 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2943 if (isa<UsingShadowDecl>(D)) 2944 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2945 2946 CXXConversionDecl *Conv; 2947 FunctionTemplateDecl *ConvTemplate; 2948 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2949 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2950 else 2951 Conv = cast<CXXConversionDecl>(D); 2952 2953 if (AllowExplicit || !Conv->isExplicit()) { 2954 if (ConvTemplate) 2955 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2956 ActingContext, From, ToType, 2957 CandidateSet); 2958 else 2959 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2960 From, ToType, CandidateSet); 2961 } 2962 } 2963 } 2964 } 2965 2966 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2967 2968 OverloadCandidateSet::iterator Best; 2969 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2970 case OR_Success: 2971 // Record the standard conversion we used and the conversion function. 2972 if (CXXConstructorDecl *Constructor 2973 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2974 S.MarkFunctionReferenced(From->getLocStart(), Constructor); 2975 2976 // C++ [over.ics.user]p1: 2977 // If the user-defined conversion is specified by a 2978 // constructor (12.3.1), the initial standard conversion 2979 // sequence converts the source type to the type required by 2980 // the argument of the constructor. 2981 // 2982 QualType ThisType = Constructor->getThisType(S.Context); 2983 if (isa<InitListExpr>(From)) { 2984 // Initializer lists don't have conversions as such. 2985 User.Before.setAsIdentityConversion(); 2986 } else { 2987 if (Best->Conversions[0].isEllipsis()) 2988 User.EllipsisConversion = true; 2989 else { 2990 User.Before = Best->Conversions[0].Standard; 2991 User.EllipsisConversion = false; 2992 } 2993 } 2994 User.HadMultipleCandidates = HadMultipleCandidates; 2995 User.ConversionFunction = Constructor; 2996 User.FoundConversionFunction = Best->FoundDecl; 2997 User.After.setAsIdentityConversion(); 2998 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2999 User.After.setAllToTypes(ToType); 3000 return OR_Success; 3001 } 3002 if (CXXConversionDecl *Conversion 3003 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3004 S.MarkFunctionReferenced(From->getLocStart(), Conversion); 3005 3006 // C++ [over.ics.user]p1: 3007 // 3008 // [...] If the user-defined conversion is specified by a 3009 // conversion function (12.3.2), the initial standard 3010 // conversion sequence converts the source type to the 3011 // implicit object parameter of the conversion function. 3012 User.Before = Best->Conversions[0].Standard; 3013 User.HadMultipleCandidates = HadMultipleCandidates; 3014 User.ConversionFunction = Conversion; 3015 User.FoundConversionFunction = Best->FoundDecl; 3016 User.EllipsisConversion = false; 3017 3018 // C++ [over.ics.user]p2: 3019 // The second standard conversion sequence converts the 3020 // result of the user-defined conversion to the target type 3021 // for the sequence. Since an implicit conversion sequence 3022 // is an initialization, the special rules for 3023 // initialization by user-defined conversion apply when 3024 // selecting the best user-defined conversion for a 3025 // user-defined conversion sequence (see 13.3.3 and 3026 // 13.3.3.1). 3027 User.After = Best->FinalConversion; 3028 return OR_Success; 3029 } 3030 llvm_unreachable("Not a constructor or conversion function?"); 3031 3032 case OR_No_Viable_Function: 3033 return OR_No_Viable_Function; 3034 case OR_Deleted: 3035 // No conversion here! We're done. 3036 return OR_Deleted; 3037 3038 case OR_Ambiguous: 3039 return OR_Ambiguous; 3040 } 3041 3042 llvm_unreachable("Invalid OverloadResult!"); 3043} 3044 3045bool 3046Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3047 ImplicitConversionSequence ICS; 3048 OverloadCandidateSet CandidateSet(From->getExprLoc()); 3049 OverloadingResult OvResult = 3050 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3051 CandidateSet, false); 3052 if (OvResult == OR_Ambiguous) 3053 Diag(From->getSourceRange().getBegin(), 3054 diag::err_typecheck_ambiguous_condition) 3055 << From->getType() << ToType << From->getSourceRange(); 3056 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 3057 Diag(From->getSourceRange().getBegin(), 3058 diag::err_typecheck_nonviable_condition) 3059 << From->getType() << ToType << From->getSourceRange(); 3060 else 3061 return false; 3062 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 3063 return true; 3064} 3065 3066/// CompareImplicitConversionSequences - Compare two implicit 3067/// conversion sequences to determine whether one is better than the 3068/// other or if they are indistinguishable (C++ 13.3.3.2). 3069static ImplicitConversionSequence::CompareKind 3070CompareImplicitConversionSequences(Sema &S, 3071 const ImplicitConversionSequence& ICS1, 3072 const ImplicitConversionSequence& ICS2) 3073{ 3074 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3075 // conversion sequences (as defined in 13.3.3.1) 3076 // -- a standard conversion sequence (13.3.3.1.1) is a better 3077 // conversion sequence than a user-defined conversion sequence or 3078 // an ellipsis conversion sequence, and 3079 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3080 // conversion sequence than an ellipsis conversion sequence 3081 // (13.3.3.1.3). 3082 // 3083 // C++0x [over.best.ics]p10: 3084 // For the purpose of ranking implicit conversion sequences as 3085 // described in 13.3.3.2, the ambiguous conversion sequence is 3086 // treated as a user-defined sequence that is indistinguishable 3087 // from any other user-defined conversion sequence. 3088 if (ICS1.getKindRank() < ICS2.getKindRank()) 3089 return ImplicitConversionSequence::Better; 3090 if (ICS2.getKindRank() < ICS1.getKindRank()) 3091 return ImplicitConversionSequence::Worse; 3092 3093 // The following checks require both conversion sequences to be of 3094 // the same kind. 3095 if (ICS1.getKind() != ICS2.getKind()) 3096 return ImplicitConversionSequence::Indistinguishable; 3097 3098 ImplicitConversionSequence::CompareKind Result = 3099 ImplicitConversionSequence::Indistinguishable; 3100 3101 // Two implicit conversion sequences of the same form are 3102 // indistinguishable conversion sequences unless one of the 3103 // following rules apply: (C++ 13.3.3.2p3): 3104 if (ICS1.isStandard()) 3105 Result = CompareStandardConversionSequences(S, 3106 ICS1.Standard, ICS2.Standard); 3107 else if (ICS1.isUserDefined()) { 3108 // User-defined conversion sequence U1 is a better conversion 3109 // sequence than another user-defined conversion sequence U2 if 3110 // they contain the same user-defined conversion function or 3111 // constructor and if the second standard conversion sequence of 3112 // U1 is better than the second standard conversion sequence of 3113 // U2 (C++ 13.3.3.2p3). 3114 if (ICS1.UserDefined.ConversionFunction == 3115 ICS2.UserDefined.ConversionFunction) 3116 Result = CompareStandardConversionSequences(S, 3117 ICS1.UserDefined.After, 3118 ICS2.UserDefined.After); 3119 } 3120 3121 // List-initialization sequence L1 is a better conversion sequence than 3122 // list-initialization sequence L2 if L1 converts to std::initializer_list<X> 3123 // for some X and L2 does not. 3124 if (Result == ImplicitConversionSequence::Indistinguishable && 3125 ICS1.isListInitializationSequence() && 3126 ICS2.isListInitializationSequence()) { 3127 // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't. 3128 } 3129 3130 return Result; 3131} 3132 3133static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 3134 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 3135 Qualifiers Quals; 3136 T1 = Context.getUnqualifiedArrayType(T1, Quals); 3137 T2 = Context.getUnqualifiedArrayType(T2, Quals); 3138 } 3139 3140 return Context.hasSameUnqualifiedType(T1, T2); 3141} 3142 3143// Per 13.3.3.2p3, compare the given standard conversion sequences to 3144// determine if one is a proper subset of the other. 3145static ImplicitConversionSequence::CompareKind 3146compareStandardConversionSubsets(ASTContext &Context, 3147 const StandardConversionSequence& SCS1, 3148 const StandardConversionSequence& SCS2) { 3149 ImplicitConversionSequence::CompareKind Result 3150 = ImplicitConversionSequence::Indistinguishable; 3151 3152 // the identity conversion sequence is considered to be a subsequence of 3153 // any non-identity conversion sequence 3154 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3155 return ImplicitConversionSequence::Better; 3156 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3157 return ImplicitConversionSequence::Worse; 3158 3159 if (SCS1.Second != SCS2.Second) { 3160 if (SCS1.Second == ICK_Identity) 3161 Result = ImplicitConversionSequence::Better; 3162 else if (SCS2.Second == ICK_Identity) 3163 Result = ImplicitConversionSequence::Worse; 3164 else 3165 return ImplicitConversionSequence::Indistinguishable; 3166 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 3167 return ImplicitConversionSequence::Indistinguishable; 3168 3169 if (SCS1.Third == SCS2.Third) { 3170 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3171 : ImplicitConversionSequence::Indistinguishable; 3172 } 3173 3174 if (SCS1.Third == ICK_Identity) 3175 return Result == ImplicitConversionSequence::Worse 3176 ? ImplicitConversionSequence::Indistinguishable 3177 : ImplicitConversionSequence::Better; 3178 3179 if (SCS2.Third == ICK_Identity) 3180 return Result == ImplicitConversionSequence::Better 3181 ? ImplicitConversionSequence::Indistinguishable 3182 : ImplicitConversionSequence::Worse; 3183 3184 return ImplicitConversionSequence::Indistinguishable; 3185} 3186 3187/// \brief Determine whether one of the given reference bindings is better 3188/// than the other based on what kind of bindings they are. 3189static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3190 const StandardConversionSequence &SCS2) { 3191 // C++0x [over.ics.rank]p3b4: 3192 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3193 // implicit object parameter of a non-static member function declared 3194 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3195 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3196 // lvalue reference to a function lvalue and S2 binds an rvalue 3197 // reference*. 3198 // 3199 // FIXME: Rvalue references. We're going rogue with the above edits, 3200 // because the semantics in the current C++0x working paper (N3225 at the 3201 // time of this writing) break the standard definition of std::forward 3202 // and std::reference_wrapper when dealing with references to functions. 3203 // Proposed wording changes submitted to CWG for consideration. 3204 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3205 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3206 return false; 3207 3208 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3209 SCS2.IsLvalueReference) || 3210 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3211 !SCS2.IsLvalueReference); 3212} 3213 3214/// CompareStandardConversionSequences - Compare two standard 3215/// conversion sequences to determine whether one is better than the 3216/// other or if they are indistinguishable (C++ 13.3.3.2p3). 3217static ImplicitConversionSequence::CompareKind 3218CompareStandardConversionSequences(Sema &S, 3219 const StandardConversionSequence& SCS1, 3220 const StandardConversionSequence& SCS2) 3221{ 3222 // Standard conversion sequence S1 is a better conversion sequence 3223 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3224 3225 // -- S1 is a proper subsequence of S2 (comparing the conversion 3226 // sequences in the canonical form defined by 13.3.3.1.1, 3227 // excluding any Lvalue Transformation; the identity conversion 3228 // sequence is considered to be a subsequence of any 3229 // non-identity conversion sequence) or, if not that, 3230 if (ImplicitConversionSequence::CompareKind CK 3231 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3232 return CK; 3233 3234 // -- the rank of S1 is better than the rank of S2 (by the rules 3235 // defined below), or, if not that, 3236 ImplicitConversionRank Rank1 = SCS1.getRank(); 3237 ImplicitConversionRank Rank2 = SCS2.getRank(); 3238 if (Rank1 < Rank2) 3239 return ImplicitConversionSequence::Better; 3240 else if (Rank2 < Rank1) 3241 return ImplicitConversionSequence::Worse; 3242 3243 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3244 // are indistinguishable unless one of the following rules 3245 // applies: 3246 3247 // A conversion that is not a conversion of a pointer, or 3248 // pointer to member, to bool is better than another conversion 3249 // that is such a conversion. 3250 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 3251 return SCS2.isPointerConversionToBool() 3252 ? ImplicitConversionSequence::Better 3253 : ImplicitConversionSequence::Worse; 3254 3255 // C++ [over.ics.rank]p4b2: 3256 // 3257 // If class B is derived directly or indirectly from class A, 3258 // conversion of B* to A* is better than conversion of B* to 3259 // void*, and conversion of A* to void* is better than conversion 3260 // of B* to void*. 3261 bool SCS1ConvertsToVoid 3262 = SCS1.isPointerConversionToVoidPointer(S.Context); 3263 bool SCS2ConvertsToVoid 3264 = SCS2.isPointerConversionToVoidPointer(S.Context); 3265 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 3266 // Exactly one of the conversion sequences is a conversion to 3267 // a void pointer; it's the worse conversion. 3268 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 3269 : ImplicitConversionSequence::Worse; 3270 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 3271 // Neither conversion sequence converts to a void pointer; compare 3272 // their derived-to-base conversions. 3273 if (ImplicitConversionSequence::CompareKind DerivedCK 3274 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 3275 return DerivedCK; 3276 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 3277 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 3278 // Both conversion sequences are conversions to void 3279 // pointers. Compare the source types to determine if there's an 3280 // inheritance relationship in their sources. 3281 QualType FromType1 = SCS1.getFromType(); 3282 QualType FromType2 = SCS2.getFromType(); 3283 3284 // Adjust the types we're converting from via the array-to-pointer 3285 // conversion, if we need to. 3286 if (SCS1.First == ICK_Array_To_Pointer) 3287 FromType1 = S.Context.getArrayDecayedType(FromType1); 3288 if (SCS2.First == ICK_Array_To_Pointer) 3289 FromType2 = S.Context.getArrayDecayedType(FromType2); 3290 3291 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 3292 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 3293 3294 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3295 return ImplicitConversionSequence::Better; 3296 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3297 return ImplicitConversionSequence::Worse; 3298 3299 // Objective-C++: If one interface is more specific than the 3300 // other, it is the better one. 3301 const ObjCObjectPointerType* FromObjCPtr1 3302 = FromType1->getAs<ObjCObjectPointerType>(); 3303 const ObjCObjectPointerType* FromObjCPtr2 3304 = FromType2->getAs<ObjCObjectPointerType>(); 3305 if (FromObjCPtr1 && FromObjCPtr2) { 3306 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 3307 FromObjCPtr2); 3308 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 3309 FromObjCPtr1); 3310 if (AssignLeft != AssignRight) { 3311 return AssignLeft? ImplicitConversionSequence::Better 3312 : ImplicitConversionSequence::Worse; 3313 } 3314 } 3315 } 3316 3317 // Compare based on qualification conversions (C++ 13.3.3.2p3, 3318 // bullet 3). 3319 if (ImplicitConversionSequence::CompareKind QualCK 3320 = CompareQualificationConversions(S, SCS1, SCS2)) 3321 return QualCK; 3322 3323 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 3324 // Check for a better reference binding based on the kind of bindings. 3325 if (isBetterReferenceBindingKind(SCS1, SCS2)) 3326 return ImplicitConversionSequence::Better; 3327 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 3328 return ImplicitConversionSequence::Worse; 3329 3330 // C++ [over.ics.rank]p3b4: 3331 // -- S1 and S2 are reference bindings (8.5.3), and the types to 3332 // which the references refer are the same type except for 3333 // top-level cv-qualifiers, and the type to which the reference 3334 // initialized by S2 refers is more cv-qualified than the type 3335 // to which the reference initialized by S1 refers. 3336 QualType T1 = SCS1.getToType(2); 3337 QualType T2 = SCS2.getToType(2); 3338 T1 = S.Context.getCanonicalType(T1); 3339 T2 = S.Context.getCanonicalType(T2); 3340 Qualifiers T1Quals, T2Quals; 3341 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3342 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3343 if (UnqualT1 == UnqualT2) { 3344 // Objective-C++ ARC: If the references refer to objects with different 3345 // lifetimes, prefer bindings that don't change lifetime. 3346 if (SCS1.ObjCLifetimeConversionBinding != 3347 SCS2.ObjCLifetimeConversionBinding) { 3348 return SCS1.ObjCLifetimeConversionBinding 3349 ? ImplicitConversionSequence::Worse 3350 : ImplicitConversionSequence::Better; 3351 } 3352 3353 // If the type is an array type, promote the element qualifiers to the 3354 // type for comparison. 3355 if (isa<ArrayType>(T1) && T1Quals) 3356 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3357 if (isa<ArrayType>(T2) && T2Quals) 3358 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3359 if (T2.isMoreQualifiedThan(T1)) 3360 return ImplicitConversionSequence::Better; 3361 else if (T1.isMoreQualifiedThan(T2)) 3362 return ImplicitConversionSequence::Worse; 3363 } 3364 } 3365 3366 // In Microsoft mode, prefer an integral conversion to a 3367 // floating-to-integral conversion if the integral conversion 3368 // is between types of the same size. 3369 // For example: 3370 // void f(float); 3371 // void f(int); 3372 // int main { 3373 // long a; 3374 // f(a); 3375 // } 3376 // Here, MSVC will call f(int) instead of generating a compile error 3377 // as clang will do in standard mode. 3378 if (S.getLangOptions().MicrosoftMode && 3379 SCS1.Second == ICK_Integral_Conversion && 3380 SCS2.Second == ICK_Floating_Integral && 3381 S.Context.getTypeSize(SCS1.getFromType()) == 3382 S.Context.getTypeSize(SCS1.getToType(2))) 3383 return ImplicitConversionSequence::Better; 3384 3385 return ImplicitConversionSequence::Indistinguishable; 3386} 3387 3388/// CompareQualificationConversions - Compares two standard conversion 3389/// sequences to determine whether they can be ranked based on their 3390/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 3391ImplicitConversionSequence::CompareKind 3392CompareQualificationConversions(Sema &S, 3393 const StandardConversionSequence& SCS1, 3394 const StandardConversionSequence& SCS2) { 3395 // C++ 13.3.3.2p3: 3396 // -- S1 and S2 differ only in their qualification conversion and 3397 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 3398 // cv-qualification signature of type T1 is a proper subset of 3399 // the cv-qualification signature of type T2, and S1 is not the 3400 // deprecated string literal array-to-pointer conversion (4.2). 3401 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 3402 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 3403 return ImplicitConversionSequence::Indistinguishable; 3404 3405 // FIXME: the example in the standard doesn't use a qualification 3406 // conversion (!) 3407 QualType T1 = SCS1.getToType(2); 3408 QualType T2 = SCS2.getToType(2); 3409 T1 = S.Context.getCanonicalType(T1); 3410 T2 = S.Context.getCanonicalType(T2); 3411 Qualifiers T1Quals, T2Quals; 3412 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3413 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3414 3415 // If the types are the same, we won't learn anything by unwrapped 3416 // them. 3417 if (UnqualT1 == UnqualT2) 3418 return ImplicitConversionSequence::Indistinguishable; 3419 3420 // If the type is an array type, promote the element qualifiers to the type 3421 // for comparison. 3422 if (isa<ArrayType>(T1) && T1Quals) 3423 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3424 if (isa<ArrayType>(T2) && T2Quals) 3425 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3426 3427 ImplicitConversionSequence::CompareKind Result 3428 = ImplicitConversionSequence::Indistinguishable; 3429 3430 // Objective-C++ ARC: 3431 // Prefer qualification conversions not involving a change in lifetime 3432 // to qualification conversions that do not change lifetime. 3433 if (SCS1.QualificationIncludesObjCLifetime != 3434 SCS2.QualificationIncludesObjCLifetime) { 3435 Result = SCS1.QualificationIncludesObjCLifetime 3436 ? ImplicitConversionSequence::Worse 3437 : ImplicitConversionSequence::Better; 3438 } 3439 3440 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 3441 // Within each iteration of the loop, we check the qualifiers to 3442 // determine if this still looks like a qualification 3443 // conversion. Then, if all is well, we unwrap one more level of 3444 // pointers or pointers-to-members and do it all again 3445 // until there are no more pointers or pointers-to-members left 3446 // to unwrap. This essentially mimics what 3447 // IsQualificationConversion does, but here we're checking for a 3448 // strict subset of qualifiers. 3449 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 3450 // The qualifiers are the same, so this doesn't tell us anything 3451 // about how the sequences rank. 3452 ; 3453 else if (T2.isMoreQualifiedThan(T1)) { 3454 // T1 has fewer qualifiers, so it could be the better sequence. 3455 if (Result == ImplicitConversionSequence::Worse) 3456 // Neither has qualifiers that are a subset of the other's 3457 // qualifiers. 3458 return ImplicitConversionSequence::Indistinguishable; 3459 3460 Result = ImplicitConversionSequence::Better; 3461 } else if (T1.isMoreQualifiedThan(T2)) { 3462 // T2 has fewer qualifiers, so it could be the better sequence. 3463 if (Result == ImplicitConversionSequence::Better) 3464 // Neither has qualifiers that are a subset of the other's 3465 // qualifiers. 3466 return ImplicitConversionSequence::Indistinguishable; 3467 3468 Result = ImplicitConversionSequence::Worse; 3469 } else { 3470 // Qualifiers are disjoint. 3471 return ImplicitConversionSequence::Indistinguishable; 3472 } 3473 3474 // If the types after this point are equivalent, we're done. 3475 if (S.Context.hasSameUnqualifiedType(T1, T2)) 3476 break; 3477 } 3478 3479 // Check that the winning standard conversion sequence isn't using 3480 // the deprecated string literal array to pointer conversion. 3481 switch (Result) { 3482 case ImplicitConversionSequence::Better: 3483 if (SCS1.DeprecatedStringLiteralToCharPtr) 3484 Result = ImplicitConversionSequence::Indistinguishable; 3485 break; 3486 3487 case ImplicitConversionSequence::Indistinguishable: 3488 break; 3489 3490 case ImplicitConversionSequence::Worse: 3491 if (SCS2.DeprecatedStringLiteralToCharPtr) 3492 Result = ImplicitConversionSequence::Indistinguishable; 3493 break; 3494 } 3495 3496 return Result; 3497} 3498 3499/// CompareDerivedToBaseConversions - Compares two standard conversion 3500/// sequences to determine whether they can be ranked based on their 3501/// various kinds of derived-to-base conversions (C++ 3502/// [over.ics.rank]p4b3). As part of these checks, we also look at 3503/// conversions between Objective-C interface types. 3504ImplicitConversionSequence::CompareKind 3505CompareDerivedToBaseConversions(Sema &S, 3506 const StandardConversionSequence& SCS1, 3507 const StandardConversionSequence& SCS2) { 3508 QualType FromType1 = SCS1.getFromType(); 3509 QualType ToType1 = SCS1.getToType(1); 3510 QualType FromType2 = SCS2.getFromType(); 3511 QualType ToType2 = SCS2.getToType(1); 3512 3513 // Adjust the types we're converting from via the array-to-pointer 3514 // conversion, if we need to. 3515 if (SCS1.First == ICK_Array_To_Pointer) 3516 FromType1 = S.Context.getArrayDecayedType(FromType1); 3517 if (SCS2.First == ICK_Array_To_Pointer) 3518 FromType2 = S.Context.getArrayDecayedType(FromType2); 3519 3520 // Canonicalize all of the types. 3521 FromType1 = S.Context.getCanonicalType(FromType1); 3522 ToType1 = S.Context.getCanonicalType(ToType1); 3523 FromType2 = S.Context.getCanonicalType(FromType2); 3524 ToType2 = S.Context.getCanonicalType(ToType2); 3525 3526 // C++ [over.ics.rank]p4b3: 3527 // 3528 // If class B is derived directly or indirectly from class A and 3529 // class C is derived directly or indirectly from B, 3530 // 3531 // Compare based on pointer conversions. 3532 if (SCS1.Second == ICK_Pointer_Conversion && 3533 SCS2.Second == ICK_Pointer_Conversion && 3534 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 3535 FromType1->isPointerType() && FromType2->isPointerType() && 3536 ToType1->isPointerType() && ToType2->isPointerType()) { 3537 QualType FromPointee1 3538 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3539 QualType ToPointee1 3540 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3541 QualType FromPointee2 3542 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3543 QualType ToPointee2 3544 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3545 3546 // -- conversion of C* to B* is better than conversion of C* to A*, 3547 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3548 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3549 return ImplicitConversionSequence::Better; 3550 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3551 return ImplicitConversionSequence::Worse; 3552 } 3553 3554 // -- conversion of B* to A* is better than conversion of C* to A*, 3555 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 3556 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3557 return ImplicitConversionSequence::Better; 3558 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3559 return ImplicitConversionSequence::Worse; 3560 } 3561 } else if (SCS1.Second == ICK_Pointer_Conversion && 3562 SCS2.Second == ICK_Pointer_Conversion) { 3563 const ObjCObjectPointerType *FromPtr1 3564 = FromType1->getAs<ObjCObjectPointerType>(); 3565 const ObjCObjectPointerType *FromPtr2 3566 = FromType2->getAs<ObjCObjectPointerType>(); 3567 const ObjCObjectPointerType *ToPtr1 3568 = ToType1->getAs<ObjCObjectPointerType>(); 3569 const ObjCObjectPointerType *ToPtr2 3570 = ToType2->getAs<ObjCObjectPointerType>(); 3571 3572 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 3573 // Apply the same conversion ranking rules for Objective-C pointer types 3574 // that we do for C++ pointers to class types. However, we employ the 3575 // Objective-C pseudo-subtyping relationship used for assignment of 3576 // Objective-C pointer types. 3577 bool FromAssignLeft 3578 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 3579 bool FromAssignRight 3580 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 3581 bool ToAssignLeft 3582 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 3583 bool ToAssignRight 3584 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 3585 3586 // A conversion to an a non-id object pointer type or qualified 'id' 3587 // type is better than a conversion to 'id'. 3588 if (ToPtr1->isObjCIdType() && 3589 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 3590 return ImplicitConversionSequence::Worse; 3591 if (ToPtr2->isObjCIdType() && 3592 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 3593 return ImplicitConversionSequence::Better; 3594 3595 // A conversion to a non-id object pointer type is better than a 3596 // conversion to a qualified 'id' type 3597 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 3598 return ImplicitConversionSequence::Worse; 3599 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 3600 return ImplicitConversionSequence::Better; 3601 3602 // A conversion to an a non-Class object pointer type or qualified 'Class' 3603 // type is better than a conversion to 'Class'. 3604 if (ToPtr1->isObjCClassType() && 3605 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 3606 return ImplicitConversionSequence::Worse; 3607 if (ToPtr2->isObjCClassType() && 3608 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 3609 return ImplicitConversionSequence::Better; 3610 3611 // A conversion to a non-Class object pointer type is better than a 3612 // conversion to a qualified 'Class' type. 3613 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 3614 return ImplicitConversionSequence::Worse; 3615 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 3616 return ImplicitConversionSequence::Better; 3617 3618 // -- "conversion of C* to B* is better than conversion of C* to A*," 3619 if (S.Context.hasSameType(FromType1, FromType2) && 3620 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 3621 (ToAssignLeft != ToAssignRight)) 3622 return ToAssignLeft? ImplicitConversionSequence::Worse 3623 : ImplicitConversionSequence::Better; 3624 3625 // -- "conversion of B* to A* is better than conversion of C* to A*," 3626 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 3627 (FromAssignLeft != FromAssignRight)) 3628 return FromAssignLeft? ImplicitConversionSequence::Better 3629 : ImplicitConversionSequence::Worse; 3630 } 3631 } 3632 3633 // Ranking of member-pointer types. 3634 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 3635 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 3636 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 3637 const MemberPointerType * FromMemPointer1 = 3638 FromType1->getAs<MemberPointerType>(); 3639 const MemberPointerType * ToMemPointer1 = 3640 ToType1->getAs<MemberPointerType>(); 3641 const MemberPointerType * FromMemPointer2 = 3642 FromType2->getAs<MemberPointerType>(); 3643 const MemberPointerType * ToMemPointer2 = 3644 ToType2->getAs<MemberPointerType>(); 3645 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 3646 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 3647 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 3648 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 3649 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 3650 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 3651 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 3652 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 3653 // conversion of A::* to B::* is better than conversion of A::* to C::*, 3654 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3655 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3656 return ImplicitConversionSequence::Worse; 3657 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3658 return ImplicitConversionSequence::Better; 3659 } 3660 // conversion of B::* to C::* is better than conversion of A::* to C::* 3661 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 3662 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3663 return ImplicitConversionSequence::Better; 3664 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3665 return ImplicitConversionSequence::Worse; 3666 } 3667 } 3668 3669 if (SCS1.Second == ICK_Derived_To_Base) { 3670 // -- conversion of C to B is better than conversion of C to A, 3671 // -- binding of an expression of type C to a reference of type 3672 // B& is better than binding an expression of type C to a 3673 // reference of type A&, 3674 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3675 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3676 if (S.IsDerivedFrom(ToType1, ToType2)) 3677 return ImplicitConversionSequence::Better; 3678 else if (S.IsDerivedFrom(ToType2, ToType1)) 3679 return ImplicitConversionSequence::Worse; 3680 } 3681 3682 // -- conversion of B to A is better than conversion of C to A. 3683 // -- binding of an expression of type B to a reference of type 3684 // A& is better than binding an expression of type C to a 3685 // reference of type A&, 3686 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3687 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3688 if (S.IsDerivedFrom(FromType2, FromType1)) 3689 return ImplicitConversionSequence::Better; 3690 else if (S.IsDerivedFrom(FromType1, FromType2)) 3691 return ImplicitConversionSequence::Worse; 3692 } 3693 } 3694 3695 return ImplicitConversionSequence::Indistinguishable; 3696} 3697 3698/// CompareReferenceRelationship - Compare the two types T1 and T2 to 3699/// determine whether they are reference-related, 3700/// reference-compatible, reference-compatible with added 3701/// qualification, or incompatible, for use in C++ initialization by 3702/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 3703/// type, and the first type (T1) is the pointee type of the reference 3704/// type being initialized. 3705Sema::ReferenceCompareResult 3706Sema::CompareReferenceRelationship(SourceLocation Loc, 3707 QualType OrigT1, QualType OrigT2, 3708 bool &DerivedToBase, 3709 bool &ObjCConversion, 3710 bool &ObjCLifetimeConversion) { 3711 assert(!OrigT1->isReferenceType() && 3712 "T1 must be the pointee type of the reference type"); 3713 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 3714 3715 QualType T1 = Context.getCanonicalType(OrigT1); 3716 QualType T2 = Context.getCanonicalType(OrigT2); 3717 Qualifiers T1Quals, T2Quals; 3718 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 3719 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 3720 3721 // C++ [dcl.init.ref]p4: 3722 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 3723 // reference-related to "cv2 T2" if T1 is the same type as T2, or 3724 // T1 is a base class of T2. 3725 DerivedToBase = false; 3726 ObjCConversion = false; 3727 ObjCLifetimeConversion = false; 3728 if (UnqualT1 == UnqualT2) { 3729 // Nothing to do. 3730 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 3731 IsDerivedFrom(UnqualT2, UnqualT1)) 3732 DerivedToBase = true; 3733 else if (UnqualT1->isObjCObjectOrInterfaceType() && 3734 UnqualT2->isObjCObjectOrInterfaceType() && 3735 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 3736 ObjCConversion = true; 3737 else 3738 return Ref_Incompatible; 3739 3740 // At this point, we know that T1 and T2 are reference-related (at 3741 // least). 3742 3743 // If the type is an array type, promote the element qualifiers to the type 3744 // for comparison. 3745 if (isa<ArrayType>(T1) && T1Quals) 3746 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 3747 if (isa<ArrayType>(T2) && T2Quals) 3748 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 3749 3750 // C++ [dcl.init.ref]p4: 3751 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 3752 // reference-related to T2 and cv1 is the same cv-qualification 3753 // as, or greater cv-qualification than, cv2. For purposes of 3754 // overload resolution, cases for which cv1 is greater 3755 // cv-qualification than cv2 are identified as 3756 // reference-compatible with added qualification (see 13.3.3.2). 3757 // 3758 // Note that we also require equivalence of Objective-C GC and address-space 3759 // qualifiers when performing these computations, so that e.g., an int in 3760 // address space 1 is not reference-compatible with an int in address 3761 // space 2. 3762 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 3763 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 3764 T1Quals.removeObjCLifetime(); 3765 T2Quals.removeObjCLifetime(); 3766 ObjCLifetimeConversion = true; 3767 } 3768 3769 if (T1Quals == T2Quals) 3770 return Ref_Compatible; 3771 else if (T1Quals.compatiblyIncludes(T2Quals)) 3772 return Ref_Compatible_With_Added_Qualification; 3773 else 3774 return Ref_Related; 3775} 3776 3777/// \brief Look for a user-defined conversion to an value reference-compatible 3778/// with DeclType. Return true if something definite is found. 3779static bool 3780FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 3781 QualType DeclType, SourceLocation DeclLoc, 3782 Expr *Init, QualType T2, bool AllowRvalues, 3783 bool AllowExplicit) { 3784 assert(T2->isRecordType() && "Can only find conversions of record types."); 3785 CXXRecordDecl *T2RecordDecl 3786 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3787 3788 OverloadCandidateSet CandidateSet(DeclLoc); 3789 const UnresolvedSetImpl *Conversions 3790 = T2RecordDecl->getVisibleConversionFunctions(); 3791 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3792 E = Conversions->end(); I != E; ++I) { 3793 NamedDecl *D = *I; 3794 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3795 if (isa<UsingShadowDecl>(D)) 3796 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3797 3798 FunctionTemplateDecl *ConvTemplate 3799 = dyn_cast<FunctionTemplateDecl>(D); 3800 CXXConversionDecl *Conv; 3801 if (ConvTemplate) 3802 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3803 else 3804 Conv = cast<CXXConversionDecl>(D); 3805 3806 // If this is an explicit conversion, and we're not allowed to consider 3807 // explicit conversions, skip it. 3808 if (!AllowExplicit && Conv->isExplicit()) 3809 continue; 3810 3811 if (AllowRvalues) { 3812 bool DerivedToBase = false; 3813 bool ObjCConversion = false; 3814 bool ObjCLifetimeConversion = false; 3815 3816 // If we are initializing an rvalue reference, don't permit conversion 3817 // functions that return lvalues. 3818 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 3819 const ReferenceType *RefType 3820 = Conv->getConversionType()->getAs<LValueReferenceType>(); 3821 if (RefType && !RefType->getPointeeType()->isFunctionType()) 3822 continue; 3823 } 3824 3825 if (!ConvTemplate && 3826 S.CompareReferenceRelationship( 3827 DeclLoc, 3828 Conv->getConversionType().getNonReferenceType() 3829 .getUnqualifiedType(), 3830 DeclType.getNonReferenceType().getUnqualifiedType(), 3831 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 3832 Sema::Ref_Incompatible) 3833 continue; 3834 } else { 3835 // If the conversion function doesn't return a reference type, 3836 // it can't be considered for this conversion. An rvalue reference 3837 // is only acceptable if its referencee is a function type. 3838 3839 const ReferenceType *RefType = 3840 Conv->getConversionType()->getAs<ReferenceType>(); 3841 if (!RefType || 3842 (!RefType->isLValueReferenceType() && 3843 !RefType->getPointeeType()->isFunctionType())) 3844 continue; 3845 } 3846 3847 if (ConvTemplate) 3848 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 3849 Init, DeclType, CandidateSet); 3850 else 3851 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 3852 DeclType, CandidateSet); 3853 } 3854 3855 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3856 3857 OverloadCandidateSet::iterator Best; 3858 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3859 case OR_Success: 3860 // C++ [over.ics.ref]p1: 3861 // 3862 // [...] If the parameter binds directly to the result of 3863 // applying a conversion function to the argument 3864 // expression, the implicit conversion sequence is a 3865 // user-defined conversion sequence (13.3.3.1.2), with the 3866 // second standard conversion sequence either an identity 3867 // conversion or, if the conversion function returns an 3868 // entity of a type that is a derived class of the parameter 3869 // type, a derived-to-base Conversion. 3870 if (!Best->FinalConversion.DirectBinding) 3871 return false; 3872 3873 if (Best->Function) 3874 S.MarkFunctionReferenced(DeclLoc, Best->Function); 3875 ICS.setUserDefined(); 3876 ICS.UserDefined.Before = Best->Conversions[0].Standard; 3877 ICS.UserDefined.After = Best->FinalConversion; 3878 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 3879 ICS.UserDefined.ConversionFunction = Best->Function; 3880 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 3881 ICS.UserDefined.EllipsisConversion = false; 3882 assert(ICS.UserDefined.After.ReferenceBinding && 3883 ICS.UserDefined.After.DirectBinding && 3884 "Expected a direct reference binding!"); 3885 return true; 3886 3887 case OR_Ambiguous: 3888 ICS.setAmbiguous(); 3889 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3890 Cand != CandidateSet.end(); ++Cand) 3891 if (Cand->Viable) 3892 ICS.Ambiguous.addConversion(Cand->Function); 3893 return true; 3894 3895 case OR_No_Viable_Function: 3896 case OR_Deleted: 3897 // There was no suitable conversion, or we found a deleted 3898 // conversion; continue with other checks. 3899 return false; 3900 } 3901 3902 llvm_unreachable("Invalid OverloadResult!"); 3903} 3904 3905/// \brief Compute an implicit conversion sequence for reference 3906/// initialization. 3907static ImplicitConversionSequence 3908TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 3909 SourceLocation DeclLoc, 3910 bool SuppressUserConversions, 3911 bool AllowExplicit) { 3912 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 3913 3914 // Most paths end in a failed conversion. 3915 ImplicitConversionSequence ICS; 3916 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3917 3918 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 3919 QualType T2 = Init->getType(); 3920 3921 // If the initializer is the address of an overloaded function, try 3922 // to resolve the overloaded function. If all goes well, T2 is the 3923 // type of the resulting function. 3924 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3925 DeclAccessPair Found; 3926 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 3927 false, Found)) 3928 T2 = Fn->getType(); 3929 } 3930 3931 // Compute some basic properties of the types and the initializer. 3932 bool isRValRef = DeclType->isRValueReferenceType(); 3933 bool DerivedToBase = false; 3934 bool ObjCConversion = false; 3935 bool ObjCLifetimeConversion = false; 3936 Expr::Classification InitCategory = Init->Classify(S.Context); 3937 Sema::ReferenceCompareResult RefRelationship 3938 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 3939 ObjCConversion, ObjCLifetimeConversion); 3940 3941 3942 // C++0x [dcl.init.ref]p5: 3943 // A reference to type "cv1 T1" is initialized by an expression 3944 // of type "cv2 T2" as follows: 3945 3946 // -- If reference is an lvalue reference and the initializer expression 3947 if (!isRValRef) { 3948 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 3949 // reference-compatible with "cv2 T2," or 3950 // 3951 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 3952 if (InitCategory.isLValue() && 3953 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3954 // C++ [over.ics.ref]p1: 3955 // When a parameter of reference type binds directly (8.5.3) 3956 // to an argument expression, the implicit conversion sequence 3957 // is the identity conversion, unless the argument expression 3958 // has a type that is a derived class of the parameter type, 3959 // in which case the implicit conversion sequence is a 3960 // derived-to-base Conversion (13.3.3.1). 3961 ICS.setStandard(); 3962 ICS.Standard.First = ICK_Identity; 3963 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3964 : ObjCConversion? ICK_Compatible_Conversion 3965 : ICK_Identity; 3966 ICS.Standard.Third = ICK_Identity; 3967 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3968 ICS.Standard.setToType(0, T2); 3969 ICS.Standard.setToType(1, T1); 3970 ICS.Standard.setToType(2, T1); 3971 ICS.Standard.ReferenceBinding = true; 3972 ICS.Standard.DirectBinding = true; 3973 ICS.Standard.IsLvalueReference = !isRValRef; 3974 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3975 ICS.Standard.BindsToRvalue = false; 3976 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3977 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3978 ICS.Standard.CopyConstructor = 0; 3979 3980 // Nothing more to do: the inaccessibility/ambiguity check for 3981 // derived-to-base conversions is suppressed when we're 3982 // computing the implicit conversion sequence (C++ 3983 // [over.best.ics]p2). 3984 return ICS; 3985 } 3986 3987 // -- has a class type (i.e., T2 is a class type), where T1 is 3988 // not reference-related to T2, and can be implicitly 3989 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3990 // is reference-compatible with "cv3 T3" 92) (this 3991 // conversion is selected by enumerating the applicable 3992 // conversion functions (13.3.1.6) and choosing the best 3993 // one through overload resolution (13.3)), 3994 if (!SuppressUserConversions && T2->isRecordType() && 3995 !S.RequireCompleteType(DeclLoc, T2, 0) && 3996 RefRelationship == Sema::Ref_Incompatible) { 3997 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3998 Init, T2, /*AllowRvalues=*/false, 3999 AllowExplicit)) 4000 return ICS; 4001 } 4002 } 4003 4004 // -- Otherwise, the reference shall be an lvalue reference to a 4005 // non-volatile const type (i.e., cv1 shall be const), or the reference 4006 // shall be an rvalue reference. 4007 // 4008 // We actually handle one oddity of C++ [over.ics.ref] at this 4009 // point, which is that, due to p2 (which short-circuits reference 4010 // binding by only attempting a simple conversion for non-direct 4011 // bindings) and p3's strange wording, we allow a const volatile 4012 // reference to bind to an rvalue. Hence the check for the presence 4013 // of "const" rather than checking for "const" being the only 4014 // qualifier. 4015 // This is also the point where rvalue references and lvalue inits no longer 4016 // go together. 4017 if (!isRValRef && !T1.isConstQualified()) 4018 return ICS; 4019 4020 // -- If the initializer expression 4021 // 4022 // -- is an xvalue, class prvalue, array prvalue or function 4023 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4024 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 4025 (InitCategory.isXValue() || 4026 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 4027 (InitCategory.isLValue() && T2->isFunctionType()))) { 4028 ICS.setStandard(); 4029 ICS.Standard.First = ICK_Identity; 4030 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 4031 : ObjCConversion? ICK_Compatible_Conversion 4032 : ICK_Identity; 4033 ICS.Standard.Third = ICK_Identity; 4034 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 4035 ICS.Standard.setToType(0, T2); 4036 ICS.Standard.setToType(1, T1); 4037 ICS.Standard.setToType(2, T1); 4038 ICS.Standard.ReferenceBinding = true; 4039 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 4040 // binding unless we're binding to a class prvalue. 4041 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4042 // allow the use of rvalue references in C++98/03 for the benefit of 4043 // standard library implementors; therefore, we need the xvalue check here. 4044 ICS.Standard.DirectBinding = 4045 S.getLangOptions().CPlusPlus0x || 4046 (InitCategory.isPRValue() && !T2->isRecordType()); 4047 ICS.Standard.IsLvalueReference = !isRValRef; 4048 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4049 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4050 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4051 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 4052 ICS.Standard.CopyConstructor = 0; 4053 return ICS; 4054 } 4055 4056 // -- has a class type (i.e., T2 is a class type), where T1 is not 4057 // reference-related to T2, and can be implicitly converted to 4058 // an xvalue, class prvalue, or function lvalue of type 4059 // "cv3 T3", where "cv1 T1" is reference-compatible with 4060 // "cv3 T3", 4061 // 4062 // then the reference is bound to the value of the initializer 4063 // expression in the first case and to the result of the conversion 4064 // in the second case (or, in either case, to an appropriate base 4065 // class subobject). 4066 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4067 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 4068 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4069 Init, T2, /*AllowRvalues=*/true, 4070 AllowExplicit)) { 4071 // In the second case, if the reference is an rvalue reference 4072 // and the second standard conversion sequence of the 4073 // user-defined conversion sequence includes an lvalue-to-rvalue 4074 // conversion, the program is ill-formed. 4075 if (ICS.isUserDefined() && isRValRef && 4076 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4077 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4078 4079 return ICS; 4080 } 4081 4082 // -- Otherwise, a temporary of type "cv1 T1" is created and 4083 // initialized from the initializer expression using the 4084 // rules for a non-reference copy initialization (8.5). The 4085 // reference is then bound to the temporary. If T1 is 4086 // reference-related to T2, cv1 must be the same 4087 // cv-qualification as, or greater cv-qualification than, 4088 // cv2; otherwise, the program is ill-formed. 4089 if (RefRelationship == Sema::Ref_Related) { 4090 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4091 // we would be reference-compatible or reference-compatible with 4092 // added qualification. But that wasn't the case, so the reference 4093 // initialization fails. 4094 // 4095 // Note that we only want to check address spaces and cvr-qualifiers here. 4096 // ObjC GC and lifetime qualifiers aren't important. 4097 Qualifiers T1Quals = T1.getQualifiers(); 4098 Qualifiers T2Quals = T2.getQualifiers(); 4099 T1Quals.removeObjCGCAttr(); 4100 T1Quals.removeObjCLifetime(); 4101 T2Quals.removeObjCGCAttr(); 4102 T2Quals.removeObjCLifetime(); 4103 if (!T1Quals.compatiblyIncludes(T2Quals)) 4104 return ICS; 4105 } 4106 4107 // If at least one of the types is a class type, the types are not 4108 // related, and we aren't allowed any user conversions, the 4109 // reference binding fails. This case is important for breaking 4110 // recursion, since TryImplicitConversion below will attempt to 4111 // create a temporary through the use of a copy constructor. 4112 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4113 (T1->isRecordType() || T2->isRecordType())) 4114 return ICS; 4115 4116 // If T1 is reference-related to T2 and the reference is an rvalue 4117 // reference, the initializer expression shall not be an lvalue. 4118 if (RefRelationship >= Sema::Ref_Related && 4119 isRValRef && Init->Classify(S.Context).isLValue()) 4120 return ICS; 4121 4122 // C++ [over.ics.ref]p2: 4123 // When a parameter of reference type is not bound directly to 4124 // an argument expression, the conversion sequence is the one 4125 // required to convert the argument expression to the 4126 // underlying type of the reference according to 4127 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4128 // to copy-initializing a temporary of the underlying type with 4129 // the argument expression. Any difference in top-level 4130 // cv-qualification is subsumed by the initialization itself 4131 // and does not constitute a conversion. 4132 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4133 /*AllowExplicit=*/false, 4134 /*InOverloadResolution=*/false, 4135 /*CStyle=*/false, 4136 /*AllowObjCWritebackConversion=*/false); 4137 4138 // Of course, that's still a reference binding. 4139 if (ICS.isStandard()) { 4140 ICS.Standard.ReferenceBinding = true; 4141 ICS.Standard.IsLvalueReference = !isRValRef; 4142 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4143 ICS.Standard.BindsToRvalue = true; 4144 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4145 ICS.Standard.ObjCLifetimeConversionBinding = false; 4146 } else if (ICS.isUserDefined()) { 4147 // Don't allow rvalue references to bind to lvalues. 4148 if (DeclType->isRValueReferenceType()) { 4149 if (const ReferenceType *RefType 4150 = ICS.UserDefined.ConversionFunction->getResultType() 4151 ->getAs<LValueReferenceType>()) { 4152 if (!RefType->getPointeeType()->isFunctionType()) { 4153 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, 4154 DeclType); 4155 return ICS; 4156 } 4157 } 4158 } 4159 4160 ICS.UserDefined.After.ReferenceBinding = true; 4161 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4162 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType(); 4163 ICS.UserDefined.After.BindsToRvalue = true; 4164 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4165 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4166 } 4167 4168 return ICS; 4169} 4170 4171static ImplicitConversionSequence 4172TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4173 bool SuppressUserConversions, 4174 bool InOverloadResolution, 4175 bool AllowObjCWritebackConversion); 4176 4177/// TryListConversion - Try to copy-initialize a value of type ToType from the 4178/// initializer list From. 4179static ImplicitConversionSequence 4180TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 4181 bool SuppressUserConversions, 4182 bool InOverloadResolution, 4183 bool AllowObjCWritebackConversion) { 4184 // C++11 [over.ics.list]p1: 4185 // When an argument is an initializer list, it is not an expression and 4186 // special rules apply for converting it to a parameter type. 4187 4188 ImplicitConversionSequence Result; 4189 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 4190 Result.setListInitializationSequence(); 4191 4192 // We need a complete type for what follows. Incomplete types can never be 4193 // initialized from init lists. 4194 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) 4195 return Result; 4196 4197 // C++11 [over.ics.list]p2: 4198 // If the parameter type is std::initializer_list<X> or "array of X" and 4199 // all the elements can be implicitly converted to X, the implicit 4200 // conversion sequence is the worst conversion necessary to convert an 4201 // element of the list to X. 4202 QualType X; 4203 if (ToType->isArrayType()) 4204 X = S.Context.getBaseElementType(ToType); 4205 else 4206 (void)S.isStdInitializerList(ToType, &X); 4207 if (!X.isNull()) { 4208 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 4209 Expr *Init = From->getInit(i); 4210 ImplicitConversionSequence ICS = 4211 TryCopyInitialization(S, Init, X, SuppressUserConversions, 4212 InOverloadResolution, 4213 AllowObjCWritebackConversion); 4214 // If a single element isn't convertible, fail. 4215 if (ICS.isBad()) { 4216 Result = ICS; 4217 break; 4218 } 4219 // Otherwise, look for the worst conversion. 4220 if (Result.isBad() || 4221 CompareImplicitConversionSequences(S, ICS, Result) == 4222 ImplicitConversionSequence::Worse) 4223 Result = ICS; 4224 } 4225 Result.setListInitializationSequence(); 4226 return Result; 4227 } 4228 4229 // C++11 [over.ics.list]p3: 4230 // Otherwise, if the parameter is a non-aggregate class X and overload 4231 // resolution chooses a single best constructor [...] the implicit 4232 // conversion sequence is a user-defined conversion sequence. If multiple 4233 // constructors are viable but none is better than the others, the 4234 // implicit conversion sequence is a user-defined conversion sequence. 4235 if (ToType->isRecordType() && !ToType->isAggregateType()) { 4236 // This function can deal with initializer lists. 4237 Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 4238 /*AllowExplicit=*/false, 4239 InOverloadResolution, /*CStyle=*/false, 4240 AllowObjCWritebackConversion); 4241 Result.setListInitializationSequence(); 4242 return Result; 4243 } 4244 4245 // C++11 [over.ics.list]p4: 4246 // Otherwise, if the parameter has an aggregate type which can be 4247 // initialized from the initializer list [...] the implicit conversion 4248 // sequence is a user-defined conversion sequence. 4249 if (ToType->isAggregateType()) { 4250 // Type is an aggregate, argument is an init list. At this point it comes 4251 // down to checking whether the initialization works. 4252 // FIXME: Find out whether this parameter is consumed or not. 4253 InitializedEntity Entity = 4254 InitializedEntity::InitializeParameter(S.Context, ToType, 4255 /*Consumed=*/false); 4256 if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) { 4257 Result.setUserDefined(); 4258 Result.UserDefined.Before.setAsIdentityConversion(); 4259 // Initializer lists don't have a type. 4260 Result.UserDefined.Before.setFromType(QualType()); 4261 Result.UserDefined.Before.setAllToTypes(QualType()); 4262 4263 Result.UserDefined.After.setAsIdentityConversion(); 4264 Result.UserDefined.After.setFromType(ToType); 4265 Result.UserDefined.After.setAllToTypes(ToType); 4266 Result.UserDefined.ConversionFunction = 0; 4267 } 4268 return Result; 4269 } 4270 4271 // C++11 [over.ics.list]p5: 4272 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 4273 if (ToType->isReferenceType()) { 4274 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 4275 // mention initializer lists in any way. So we go by what list- 4276 // initialization would do and try to extrapolate from that. 4277 4278 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); 4279 4280 // If the initializer list has a single element that is reference-related 4281 // to the parameter type, we initialize the reference from that. 4282 if (From->getNumInits() == 1) { 4283 Expr *Init = From->getInit(0); 4284 4285 QualType T2 = Init->getType(); 4286 4287 // If the initializer is the address of an overloaded function, try 4288 // to resolve the overloaded function. If all goes well, T2 is the 4289 // type of the resulting function. 4290 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4291 DeclAccessPair Found; 4292 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 4293 Init, ToType, false, Found)) 4294 T2 = Fn->getType(); 4295 } 4296 4297 // Compute some basic properties of the types and the initializer. 4298 bool dummy1 = false; 4299 bool dummy2 = false; 4300 bool dummy3 = false; 4301 Sema::ReferenceCompareResult RefRelationship 4302 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, 4303 dummy2, dummy3); 4304 4305 if (RefRelationship >= Sema::Ref_Related) 4306 return TryReferenceInit(S, Init, ToType, 4307 /*FIXME:*/From->getLocStart(), 4308 SuppressUserConversions, 4309 /*AllowExplicit=*/false); 4310 } 4311 4312 // Otherwise, we bind the reference to a temporary created from the 4313 // initializer list. 4314 Result = TryListConversion(S, From, T1, SuppressUserConversions, 4315 InOverloadResolution, 4316 AllowObjCWritebackConversion); 4317 if (Result.isFailure()) 4318 return Result; 4319 assert(!Result.isEllipsis() && 4320 "Sub-initialization cannot result in ellipsis conversion."); 4321 4322 // Can we even bind to a temporary? 4323 if (ToType->isRValueReferenceType() || 4324 (T1.isConstQualified() && !T1.isVolatileQualified())) { 4325 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 4326 Result.UserDefined.After; 4327 SCS.ReferenceBinding = true; 4328 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 4329 SCS.BindsToRvalue = true; 4330 SCS.BindsToFunctionLvalue = false; 4331 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4332 SCS.ObjCLifetimeConversionBinding = false; 4333 } else 4334 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 4335 From, ToType); 4336 return Result; 4337 } 4338 4339 // C++11 [over.ics.list]p6: 4340 // Otherwise, if the parameter type is not a class: 4341 if (!ToType->isRecordType()) { 4342 // - if the initializer list has one element, the implicit conversion 4343 // sequence is the one required to convert the element to the 4344 // parameter type. 4345 unsigned NumInits = From->getNumInits(); 4346 if (NumInits == 1) 4347 Result = TryCopyInitialization(S, From->getInit(0), ToType, 4348 SuppressUserConversions, 4349 InOverloadResolution, 4350 AllowObjCWritebackConversion); 4351 // - if the initializer list has no elements, the implicit conversion 4352 // sequence is the identity conversion. 4353 else if (NumInits == 0) { 4354 Result.setStandard(); 4355 Result.Standard.setAsIdentityConversion(); 4356 } 4357 return Result; 4358 } 4359 4360 // C++11 [over.ics.list]p7: 4361 // In all cases other than those enumerated above, no conversion is possible 4362 return Result; 4363} 4364 4365/// TryCopyInitialization - Try to copy-initialize a value of type 4366/// ToType from the expression From. Return the implicit conversion 4367/// sequence required to pass this argument, which may be a bad 4368/// conversion sequence (meaning that the argument cannot be passed to 4369/// a parameter of this type). If @p SuppressUserConversions, then we 4370/// do not permit any user-defined conversion sequences. 4371static ImplicitConversionSequence 4372TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4373 bool SuppressUserConversions, 4374 bool InOverloadResolution, 4375 bool AllowObjCWritebackConversion) { 4376 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 4377 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 4378 InOverloadResolution,AllowObjCWritebackConversion); 4379 4380 if (ToType->isReferenceType()) 4381 return TryReferenceInit(S, From, ToType, 4382 /*FIXME:*/From->getLocStart(), 4383 SuppressUserConversions, 4384 /*AllowExplicit=*/false); 4385 4386 return TryImplicitConversion(S, From, ToType, 4387 SuppressUserConversions, 4388 /*AllowExplicit=*/false, 4389 InOverloadResolution, 4390 /*CStyle=*/false, 4391 AllowObjCWritebackConversion); 4392} 4393 4394static bool TryCopyInitialization(const CanQualType FromQTy, 4395 const CanQualType ToQTy, 4396 Sema &S, 4397 SourceLocation Loc, 4398 ExprValueKind FromVK) { 4399 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 4400 ImplicitConversionSequence ICS = 4401 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 4402 4403 return !ICS.isBad(); 4404} 4405 4406/// TryObjectArgumentInitialization - Try to initialize the object 4407/// parameter of the given member function (@c Method) from the 4408/// expression @p From. 4409static ImplicitConversionSequence 4410TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 4411 Expr::Classification FromClassification, 4412 CXXMethodDecl *Method, 4413 CXXRecordDecl *ActingContext) { 4414 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 4415 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 4416 // const volatile object. 4417 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 4418 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 4419 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 4420 4421 // Set up the conversion sequence as a "bad" conversion, to allow us 4422 // to exit early. 4423 ImplicitConversionSequence ICS; 4424 4425 // We need to have an object of class type. 4426 QualType FromType = OrigFromType; 4427 if (const PointerType *PT = FromType->getAs<PointerType>()) { 4428 FromType = PT->getPointeeType(); 4429 4430 // When we had a pointer, it's implicitly dereferenced, so we 4431 // better have an lvalue. 4432 assert(FromClassification.isLValue()); 4433 } 4434 4435 assert(FromType->isRecordType()); 4436 4437 // C++0x [over.match.funcs]p4: 4438 // For non-static member functions, the type of the implicit object 4439 // parameter is 4440 // 4441 // - "lvalue reference to cv X" for functions declared without a 4442 // ref-qualifier or with the & ref-qualifier 4443 // - "rvalue reference to cv X" for functions declared with the && 4444 // ref-qualifier 4445 // 4446 // where X is the class of which the function is a member and cv is the 4447 // cv-qualification on the member function declaration. 4448 // 4449 // However, when finding an implicit conversion sequence for the argument, we 4450 // are not allowed to create temporaries or perform user-defined conversions 4451 // (C++ [over.match.funcs]p5). We perform a simplified version of 4452 // reference binding here, that allows class rvalues to bind to 4453 // non-constant references. 4454 4455 // First check the qualifiers. 4456 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 4457 if (ImplicitParamType.getCVRQualifiers() 4458 != FromTypeCanon.getLocalCVRQualifiers() && 4459 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 4460 ICS.setBad(BadConversionSequence::bad_qualifiers, 4461 OrigFromType, ImplicitParamType); 4462 return ICS; 4463 } 4464 4465 // Check that we have either the same type or a derived type. It 4466 // affects the conversion rank. 4467 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 4468 ImplicitConversionKind SecondKind; 4469 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 4470 SecondKind = ICK_Identity; 4471 } else if (S.IsDerivedFrom(FromType, ClassType)) 4472 SecondKind = ICK_Derived_To_Base; 4473 else { 4474 ICS.setBad(BadConversionSequence::unrelated_class, 4475 FromType, ImplicitParamType); 4476 return ICS; 4477 } 4478 4479 // Check the ref-qualifier. 4480 switch (Method->getRefQualifier()) { 4481 case RQ_None: 4482 // Do nothing; we don't care about lvalueness or rvalueness. 4483 break; 4484 4485 case RQ_LValue: 4486 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 4487 // non-const lvalue reference cannot bind to an rvalue 4488 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 4489 ImplicitParamType); 4490 return ICS; 4491 } 4492 break; 4493 4494 case RQ_RValue: 4495 if (!FromClassification.isRValue()) { 4496 // rvalue reference cannot bind to an lvalue 4497 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 4498 ImplicitParamType); 4499 return ICS; 4500 } 4501 break; 4502 } 4503 4504 // Success. Mark this as a reference binding. 4505 ICS.setStandard(); 4506 ICS.Standard.setAsIdentityConversion(); 4507 ICS.Standard.Second = SecondKind; 4508 ICS.Standard.setFromType(FromType); 4509 ICS.Standard.setAllToTypes(ImplicitParamType); 4510 ICS.Standard.ReferenceBinding = true; 4511 ICS.Standard.DirectBinding = true; 4512 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 4513 ICS.Standard.BindsToFunctionLvalue = false; 4514 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 4515 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 4516 = (Method->getRefQualifier() == RQ_None); 4517 return ICS; 4518} 4519 4520/// PerformObjectArgumentInitialization - Perform initialization of 4521/// the implicit object parameter for the given Method with the given 4522/// expression. 4523ExprResult 4524Sema::PerformObjectArgumentInitialization(Expr *From, 4525 NestedNameSpecifier *Qualifier, 4526 NamedDecl *FoundDecl, 4527 CXXMethodDecl *Method) { 4528 QualType FromRecordType, DestType; 4529 QualType ImplicitParamRecordType = 4530 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 4531 4532 Expr::Classification FromClassification; 4533 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 4534 FromRecordType = PT->getPointeeType(); 4535 DestType = Method->getThisType(Context); 4536 FromClassification = Expr::Classification::makeSimpleLValue(); 4537 } else { 4538 FromRecordType = From->getType(); 4539 DestType = ImplicitParamRecordType; 4540 FromClassification = From->Classify(Context); 4541 } 4542 4543 // Note that we always use the true parent context when performing 4544 // the actual argument initialization. 4545 ImplicitConversionSequence ICS 4546 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 4547 Method, Method->getParent()); 4548 if (ICS.isBad()) { 4549 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 4550 Qualifiers FromQs = FromRecordType.getQualifiers(); 4551 Qualifiers ToQs = DestType.getQualifiers(); 4552 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 4553 if (CVR) { 4554 Diag(From->getSourceRange().getBegin(), 4555 diag::err_member_function_call_bad_cvr) 4556 << Method->getDeclName() << FromRecordType << (CVR - 1) 4557 << From->getSourceRange(); 4558 Diag(Method->getLocation(), diag::note_previous_decl) 4559 << Method->getDeclName(); 4560 return ExprError(); 4561 } 4562 } 4563 4564 return Diag(From->getSourceRange().getBegin(), 4565 diag::err_implicit_object_parameter_init) 4566 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 4567 } 4568 4569 if (ICS.Standard.Second == ICK_Derived_To_Base) { 4570 ExprResult FromRes = 4571 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 4572 if (FromRes.isInvalid()) 4573 return ExprError(); 4574 From = FromRes.take(); 4575 } 4576 4577 if (!Context.hasSameType(From->getType(), DestType)) 4578 From = ImpCastExprToType(From, DestType, CK_NoOp, 4579 From->getValueKind()).take(); 4580 return Owned(From); 4581} 4582 4583/// TryContextuallyConvertToBool - Attempt to contextually convert the 4584/// expression From to bool (C++0x [conv]p3). 4585static ImplicitConversionSequence 4586TryContextuallyConvertToBool(Sema &S, Expr *From) { 4587 // FIXME: This is pretty broken. 4588 return TryImplicitConversion(S, From, S.Context.BoolTy, 4589 // FIXME: Are these flags correct? 4590 /*SuppressUserConversions=*/false, 4591 /*AllowExplicit=*/true, 4592 /*InOverloadResolution=*/false, 4593 /*CStyle=*/false, 4594 /*AllowObjCWritebackConversion=*/false); 4595} 4596 4597/// PerformContextuallyConvertToBool - Perform a contextual conversion 4598/// of the expression From to bool (C++0x [conv]p3). 4599ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 4600 if (checkPlaceholderForOverload(*this, From)) 4601 return ExprError(); 4602 4603 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 4604 if (!ICS.isBad()) 4605 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 4606 4607 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 4608 return Diag(From->getSourceRange().getBegin(), 4609 diag::err_typecheck_bool_condition) 4610 << From->getType() << From->getSourceRange(); 4611 return ExprError(); 4612} 4613 4614/// Check that the specified conversion is permitted in a converted constant 4615/// expression, according to C++11 [expr.const]p3. Return true if the conversion 4616/// is acceptable. 4617static bool CheckConvertedConstantConversions(Sema &S, 4618 StandardConversionSequence &SCS) { 4619 // Since we know that the target type is an integral or unscoped enumeration 4620 // type, most conversion kinds are impossible. All possible First and Third 4621 // conversions are fine. 4622 switch (SCS.Second) { 4623 case ICK_Identity: 4624 case ICK_Integral_Promotion: 4625 case ICK_Integral_Conversion: 4626 return true; 4627 4628 case ICK_Boolean_Conversion: 4629 // Conversion from an integral or unscoped enumeration type to bool is 4630 // classified as ICK_Boolean_Conversion, but it's also an integral 4631 // conversion, so it's permitted in a converted constant expression. 4632 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 4633 SCS.getToType(2)->isBooleanType(); 4634 4635 case ICK_Floating_Integral: 4636 case ICK_Complex_Real: 4637 return false; 4638 4639 case ICK_Lvalue_To_Rvalue: 4640 case ICK_Array_To_Pointer: 4641 case ICK_Function_To_Pointer: 4642 case ICK_NoReturn_Adjustment: 4643 case ICK_Qualification: 4644 case ICK_Compatible_Conversion: 4645 case ICK_Vector_Conversion: 4646 case ICK_Vector_Splat: 4647 case ICK_Derived_To_Base: 4648 case ICK_Pointer_Conversion: 4649 case ICK_Pointer_Member: 4650 case ICK_Block_Pointer_Conversion: 4651 case ICK_Writeback_Conversion: 4652 case ICK_Floating_Promotion: 4653 case ICK_Complex_Promotion: 4654 case ICK_Complex_Conversion: 4655 case ICK_Floating_Conversion: 4656 case ICK_TransparentUnionConversion: 4657 llvm_unreachable("unexpected second conversion kind"); 4658 4659 case ICK_Num_Conversion_Kinds: 4660 break; 4661 } 4662 4663 llvm_unreachable("unknown conversion kind"); 4664} 4665 4666/// CheckConvertedConstantExpression - Check that the expression From is a 4667/// converted constant expression of type T, perform the conversion and produce 4668/// the converted expression, per C++11 [expr.const]p3. 4669ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 4670 llvm::APSInt &Value, 4671 CCEKind CCE) { 4672 assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11"); 4673 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 4674 4675 if (checkPlaceholderForOverload(*this, From)) 4676 return ExprError(); 4677 4678 // C++11 [expr.const]p3 with proposed wording fixes: 4679 // A converted constant expression of type T is a core constant expression, 4680 // implicitly converted to a prvalue of type T, where the converted 4681 // expression is a literal constant expression and the implicit conversion 4682 // sequence contains only user-defined conversions, lvalue-to-rvalue 4683 // conversions, integral promotions, and integral conversions other than 4684 // narrowing conversions. 4685 ImplicitConversionSequence ICS = 4686 TryImplicitConversion(From, T, 4687 /*SuppressUserConversions=*/false, 4688 /*AllowExplicit=*/false, 4689 /*InOverloadResolution=*/false, 4690 /*CStyle=*/false, 4691 /*AllowObjcWritebackConversion=*/false); 4692 StandardConversionSequence *SCS = 0; 4693 switch (ICS.getKind()) { 4694 case ImplicitConversionSequence::StandardConversion: 4695 if (!CheckConvertedConstantConversions(*this, ICS.Standard)) 4696 return Diag(From->getSourceRange().getBegin(), 4697 diag::err_typecheck_converted_constant_expression_disallowed) 4698 << From->getType() << From->getSourceRange() << T; 4699 SCS = &ICS.Standard; 4700 break; 4701 case ImplicitConversionSequence::UserDefinedConversion: 4702 // We are converting from class type to an integral or enumeration type, so 4703 // the Before sequence must be trivial. 4704 if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After)) 4705 return Diag(From->getSourceRange().getBegin(), 4706 diag::err_typecheck_converted_constant_expression_disallowed) 4707 << From->getType() << From->getSourceRange() << T; 4708 SCS = &ICS.UserDefined.After; 4709 break; 4710 case ImplicitConversionSequence::AmbiguousConversion: 4711 case ImplicitConversionSequence::BadConversion: 4712 if (!DiagnoseMultipleUserDefinedConversion(From, T)) 4713 return Diag(From->getSourceRange().getBegin(), 4714 diag::err_typecheck_converted_constant_expression) 4715 << From->getType() << From->getSourceRange() << T; 4716 return ExprError(); 4717 4718 case ImplicitConversionSequence::EllipsisConversion: 4719 llvm_unreachable("ellipsis conversion in converted constant expression"); 4720 } 4721 4722 ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting); 4723 if (Result.isInvalid()) 4724 return Result; 4725 4726 // Check for a narrowing implicit conversion. 4727 APValue PreNarrowingValue; 4728 bool Diagnosed = false; 4729 switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue)) { 4730 case NK_Variable_Narrowing: 4731 // Implicit conversion to a narrower type, and the value is not a constant 4732 // expression. We'll diagnose this in a moment. 4733 case NK_Not_Narrowing: 4734 break; 4735 4736 case NK_Constant_Narrowing: 4737 Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing) 4738 << CCE << /*Constant*/1 4739 << PreNarrowingValue.getAsString(Context, QualType()) << T; 4740 Diagnosed = true; 4741 break; 4742 4743 case NK_Type_Narrowing: 4744 Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing) 4745 << CCE << /*Constant*/0 << From->getType() << T; 4746 Diagnosed = true; 4747 break; 4748 } 4749 4750 // Check the expression is a constant expression. 4751 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 4752 Expr::EvalResult Eval; 4753 Eval.Diag = &Notes; 4754 4755 if (!Result.get()->EvaluateAsRValue(Eval, Context)) { 4756 // The expression can't be folded, so we can't keep it at this position in 4757 // the AST. 4758 Result = ExprError(); 4759 } else { 4760 Value = Eval.Val.getInt(); 4761 4762 if (Notes.empty()) { 4763 // It's a constant expression. 4764 return Result; 4765 } 4766 } 4767 4768 // Only issue one narrowing diagnostic. 4769 if (Diagnosed) 4770 return Result; 4771 4772 // It's not a constant expression. Produce an appropriate diagnostic. 4773 if (Notes.size() == 1 && 4774 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) 4775 Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 4776 else { 4777 Diag(From->getSourceRange().getBegin(), diag::err_expr_not_cce) 4778 << CCE << From->getSourceRange(); 4779 for (unsigned I = 0; I < Notes.size(); ++I) 4780 Diag(Notes[I].first, Notes[I].second); 4781 } 4782 return Result; 4783} 4784 4785/// dropPointerConversions - If the given standard conversion sequence 4786/// involves any pointer conversions, remove them. This may change 4787/// the result type of the conversion sequence. 4788static void dropPointerConversion(StandardConversionSequence &SCS) { 4789 if (SCS.Second == ICK_Pointer_Conversion) { 4790 SCS.Second = ICK_Identity; 4791 SCS.Third = ICK_Identity; 4792 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 4793 } 4794} 4795 4796/// TryContextuallyConvertToObjCPointer - Attempt to contextually 4797/// convert the expression From to an Objective-C pointer type. 4798static ImplicitConversionSequence 4799TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 4800 // Do an implicit conversion to 'id'. 4801 QualType Ty = S.Context.getObjCIdType(); 4802 ImplicitConversionSequence ICS 4803 = TryImplicitConversion(S, From, Ty, 4804 // FIXME: Are these flags correct? 4805 /*SuppressUserConversions=*/false, 4806 /*AllowExplicit=*/true, 4807 /*InOverloadResolution=*/false, 4808 /*CStyle=*/false, 4809 /*AllowObjCWritebackConversion=*/false); 4810 4811 // Strip off any final conversions to 'id'. 4812 switch (ICS.getKind()) { 4813 case ImplicitConversionSequence::BadConversion: 4814 case ImplicitConversionSequence::AmbiguousConversion: 4815 case ImplicitConversionSequence::EllipsisConversion: 4816 break; 4817 4818 case ImplicitConversionSequence::UserDefinedConversion: 4819 dropPointerConversion(ICS.UserDefined.After); 4820 break; 4821 4822 case ImplicitConversionSequence::StandardConversion: 4823 dropPointerConversion(ICS.Standard); 4824 break; 4825 } 4826 4827 return ICS; 4828} 4829 4830/// PerformContextuallyConvertToObjCPointer - Perform a contextual 4831/// conversion of the expression From to an Objective-C pointer type. 4832ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 4833 if (checkPlaceholderForOverload(*this, From)) 4834 return ExprError(); 4835 4836 QualType Ty = Context.getObjCIdType(); 4837 ImplicitConversionSequence ICS = 4838 TryContextuallyConvertToObjCPointer(*this, From); 4839 if (!ICS.isBad()) 4840 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 4841 return ExprError(); 4842} 4843 4844/// Determine whether the provided type is an integral type, or an enumeration 4845/// type of a permitted flavor. 4846static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) { 4847 return AllowScopedEnum ? T->isIntegralOrEnumerationType() 4848 : T->isIntegralOrUnscopedEnumerationType(); 4849} 4850 4851/// \brief Attempt to convert the given expression to an integral or 4852/// enumeration type. 4853/// 4854/// This routine will attempt to convert an expression of class type to an 4855/// integral or enumeration type, if that class type only has a single 4856/// conversion to an integral or enumeration type. 4857/// 4858/// \param Loc The source location of the construct that requires the 4859/// conversion. 4860/// 4861/// \param FromE The expression we're converting from. 4862/// 4863/// \param NotIntDiag The diagnostic to be emitted if the expression does not 4864/// have integral or enumeration type. 4865/// 4866/// \param IncompleteDiag The diagnostic to be emitted if the expression has 4867/// incomplete class type. 4868/// 4869/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 4870/// explicit conversion function (because no implicit conversion functions 4871/// were available). This is a recovery mode. 4872/// 4873/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 4874/// showing which conversion was picked. 4875/// 4876/// \param AmbigDiag The diagnostic to be emitted if there is more than one 4877/// conversion function that could convert to integral or enumeration type. 4878/// 4879/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 4880/// usable conversion function. 4881/// 4882/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 4883/// function, which may be an extension in this case. 4884/// 4885/// \param AllowScopedEnumerations Specifies whether conversions to scoped 4886/// enumerations should be considered. 4887/// 4888/// \returns The expression, converted to an integral or enumeration type if 4889/// successful. 4890ExprResult 4891Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 4892 const PartialDiagnostic &NotIntDiag, 4893 const PartialDiagnostic &IncompleteDiag, 4894 const PartialDiagnostic &ExplicitConvDiag, 4895 const PartialDiagnostic &ExplicitConvNote, 4896 const PartialDiagnostic &AmbigDiag, 4897 const PartialDiagnostic &AmbigNote, 4898 const PartialDiagnostic &ConvDiag, 4899 bool AllowScopedEnumerations) { 4900 // We can't perform any more checking for type-dependent expressions. 4901 if (From->isTypeDependent()) 4902 return Owned(From); 4903 4904 // Process placeholders immediately. 4905 if (From->hasPlaceholderType()) { 4906 ExprResult result = CheckPlaceholderExpr(From); 4907 if (result.isInvalid()) return result; 4908 From = result.take(); 4909 } 4910 4911 // If the expression already has integral or enumeration type, we're golden. 4912 QualType T = From->getType(); 4913 if (isIntegralOrEnumerationType(T, AllowScopedEnumerations)) 4914 return DefaultLvalueConversion(From); 4915 4916 // FIXME: Check for missing '()' if T is a function type? 4917 4918 // If we don't have a class type in C++, there's no way we can get an 4919 // expression of integral or enumeration type. 4920 const RecordType *RecordTy = T->getAs<RecordType>(); 4921 if (!RecordTy || !getLangOptions().CPlusPlus) { 4922 if (NotIntDiag.getDiagID()) 4923 Diag(Loc, NotIntDiag) << T << From->getSourceRange(); 4924 return Owned(From); 4925 } 4926 4927 // We must have a complete class type. 4928 if (RequireCompleteType(Loc, T, IncompleteDiag)) 4929 return Owned(From); 4930 4931 // Look for a conversion to an integral or enumeration type. 4932 UnresolvedSet<4> ViableConversions; 4933 UnresolvedSet<4> ExplicitConversions; 4934 const UnresolvedSetImpl *Conversions 4935 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 4936 4937 bool HadMultipleCandidates = (Conversions->size() > 1); 4938 4939 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4940 E = Conversions->end(); 4941 I != E; 4942 ++I) { 4943 if (CXXConversionDecl *Conversion 4944 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) { 4945 if (isIntegralOrEnumerationType( 4946 Conversion->getConversionType().getNonReferenceType(), 4947 AllowScopedEnumerations)) { 4948 if (Conversion->isExplicit()) 4949 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 4950 else 4951 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 4952 } 4953 } 4954 } 4955 4956 switch (ViableConversions.size()) { 4957 case 0: 4958 if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) { 4959 DeclAccessPair Found = ExplicitConversions[0]; 4960 CXXConversionDecl *Conversion 4961 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4962 4963 // The user probably meant to invoke the given explicit 4964 // conversion; use it. 4965 QualType ConvTy 4966 = Conversion->getConversionType().getNonReferenceType(); 4967 std::string TypeStr; 4968 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy()); 4969 4970 Diag(Loc, ExplicitConvDiag) 4971 << T << ConvTy 4972 << FixItHint::CreateInsertion(From->getLocStart(), 4973 "static_cast<" + TypeStr + ">(") 4974 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 4975 ")"); 4976 Diag(Conversion->getLocation(), ExplicitConvNote) 4977 << ConvTy->isEnumeralType() << ConvTy; 4978 4979 // If we aren't in a SFINAE context, build a call to the 4980 // explicit conversion function. 4981 if (isSFINAEContext()) 4982 return ExprError(); 4983 4984 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4985 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 4986 HadMultipleCandidates); 4987 if (Result.isInvalid()) 4988 return ExprError(); 4989 // Record usage of conversion in an implicit cast. 4990 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 4991 CK_UserDefinedConversion, 4992 Result.get(), 0, 4993 Result.get()->getValueKind()); 4994 } 4995 4996 // We'll complain below about a non-integral condition type. 4997 break; 4998 4999 case 1: { 5000 // Apply this conversion. 5001 DeclAccessPair Found = ViableConversions[0]; 5002 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 5003 5004 CXXConversionDecl *Conversion 5005 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5006 QualType ConvTy 5007 = Conversion->getConversionType().getNonReferenceType(); 5008 if (ConvDiag.getDiagID()) { 5009 if (isSFINAEContext()) 5010 return ExprError(); 5011 5012 Diag(Loc, ConvDiag) 5013 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 5014 } 5015 5016 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 5017 HadMultipleCandidates); 5018 if (Result.isInvalid()) 5019 return ExprError(); 5020 // Record usage of conversion in an implicit cast. 5021 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 5022 CK_UserDefinedConversion, 5023 Result.get(), 0, 5024 Result.get()->getValueKind()); 5025 break; 5026 } 5027 5028 default: 5029 if (!AmbigDiag.getDiagID()) 5030 return Owned(From); 5031 5032 Diag(Loc, AmbigDiag) 5033 << T << From->getSourceRange(); 5034 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5035 CXXConversionDecl *Conv 5036 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5037 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5038 Diag(Conv->getLocation(), AmbigNote) 5039 << ConvTy->isEnumeralType() << ConvTy; 5040 } 5041 return Owned(From); 5042 } 5043 5044 if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) && 5045 NotIntDiag.getDiagID()) 5046 Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange(); 5047 5048 return DefaultLvalueConversion(From); 5049} 5050 5051/// AddOverloadCandidate - Adds the given function to the set of 5052/// candidate functions, using the given function call arguments. If 5053/// @p SuppressUserConversions, then don't allow user-defined 5054/// conversions via constructors or conversion operators. 5055/// 5056/// \para PartialOverloading true if we are performing "partial" overloading 5057/// based on an incomplete set of function arguments. This feature is used by 5058/// code completion. 5059void 5060Sema::AddOverloadCandidate(FunctionDecl *Function, 5061 DeclAccessPair FoundDecl, 5062 Expr **Args, unsigned NumArgs, 5063 OverloadCandidateSet& CandidateSet, 5064 bool SuppressUserConversions, 5065 bool PartialOverloading) { 5066 const FunctionProtoType* Proto 5067 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 5068 assert(Proto && "Functions without a prototype cannot be overloaded"); 5069 assert(!Function->getDescribedFunctionTemplate() && 5070 "Use AddTemplateOverloadCandidate for function templates"); 5071 5072 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 5073 if (!isa<CXXConstructorDecl>(Method)) { 5074 // If we get here, it's because we're calling a member function 5075 // that is named without a member access expression (e.g., 5076 // "this->f") that was either written explicitly or created 5077 // implicitly. This can happen with a qualified call to a member 5078 // function, e.g., X::f(). We use an empty type for the implied 5079 // object argument (C++ [over.call.func]p3), and the acting context 5080 // is irrelevant. 5081 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 5082 QualType(), Expr::Classification::makeSimpleLValue(), 5083 Args, NumArgs, CandidateSet, 5084 SuppressUserConversions); 5085 return; 5086 } 5087 // We treat a constructor like a non-member function, since its object 5088 // argument doesn't participate in overload resolution. 5089 } 5090 5091 if (!CandidateSet.isNewCandidate(Function)) 5092 return; 5093 5094 // Overload resolution is always an unevaluated context. 5095 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5096 5097 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 5098 // C++ [class.copy]p3: 5099 // A member function template is never instantiated to perform the copy 5100 // of a class object to an object of its class type. 5101 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 5102 if (NumArgs == 1 && 5103 Constructor->isSpecializationCopyingObject() && 5104 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 5105 IsDerivedFrom(Args[0]->getType(), ClassType))) 5106 return; 5107 } 5108 5109 // Add this candidate 5110 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); 5111 Candidate.FoundDecl = FoundDecl; 5112 Candidate.Function = Function; 5113 Candidate.Viable = true; 5114 Candidate.IsSurrogate = false; 5115 Candidate.IgnoreObjectArgument = false; 5116 Candidate.ExplicitCallArguments = NumArgs; 5117 5118 unsigned NumArgsInProto = Proto->getNumArgs(); 5119 5120 // (C++ 13.3.2p2): A candidate function having fewer than m 5121 // parameters is viable only if it has an ellipsis in its parameter 5122 // list (8.3.5). 5123 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 5124 !Proto->isVariadic()) { 5125 Candidate.Viable = false; 5126 Candidate.FailureKind = ovl_fail_too_many_arguments; 5127 return; 5128 } 5129 5130 // (C++ 13.3.2p2): A candidate function having more than m parameters 5131 // is viable only if the (m+1)st parameter has a default argument 5132 // (8.3.6). For the purposes of overload resolution, the 5133 // parameter list is truncated on the right, so that there are 5134 // exactly m parameters. 5135 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 5136 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 5137 // Not enough arguments. 5138 Candidate.Viable = false; 5139 Candidate.FailureKind = ovl_fail_too_few_arguments; 5140 return; 5141 } 5142 5143 // (CUDA B.1): Check for invalid calls between targets. 5144 if (getLangOptions().CUDA) 5145 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 5146 if (CheckCUDATarget(Caller, Function)) { 5147 Candidate.Viable = false; 5148 Candidate.FailureKind = ovl_fail_bad_target; 5149 return; 5150 } 5151 5152 // Determine the implicit conversion sequences for each of the 5153 // arguments. 5154 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5155 if (ArgIdx < NumArgsInProto) { 5156 // (C++ 13.3.2p3): for F to be a viable function, there shall 5157 // exist for each argument an implicit conversion sequence 5158 // (13.3.3.1) that converts that argument to the corresponding 5159 // parameter of F. 5160 QualType ParamType = Proto->getArgType(ArgIdx); 5161 Candidate.Conversions[ArgIdx] 5162 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5163 SuppressUserConversions, 5164 /*InOverloadResolution=*/true, 5165 /*AllowObjCWritebackConversion=*/ 5166 getLangOptions().ObjCAutoRefCount); 5167 if (Candidate.Conversions[ArgIdx].isBad()) { 5168 Candidate.Viable = false; 5169 Candidate.FailureKind = ovl_fail_bad_conversion; 5170 break; 5171 } 5172 } else { 5173 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5174 // argument for which there is no corresponding parameter is 5175 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5176 Candidate.Conversions[ArgIdx].setEllipsis(); 5177 } 5178 } 5179} 5180 5181/// \brief Add all of the function declarations in the given function set to 5182/// the overload canddiate set. 5183void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 5184 Expr **Args, unsigned NumArgs, 5185 OverloadCandidateSet& CandidateSet, 5186 bool SuppressUserConversions) { 5187 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 5188 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 5189 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5190 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 5191 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 5192 cast<CXXMethodDecl>(FD)->getParent(), 5193 Args[0]->getType(), Args[0]->Classify(Context), 5194 Args + 1, NumArgs - 1, 5195 CandidateSet, SuppressUserConversions); 5196 else 5197 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 5198 SuppressUserConversions); 5199 } else { 5200 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 5201 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 5202 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 5203 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 5204 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 5205 /*FIXME: explicit args */ 0, 5206 Args[0]->getType(), 5207 Args[0]->Classify(Context), 5208 Args + 1, NumArgs - 1, 5209 CandidateSet, 5210 SuppressUserConversions); 5211 else 5212 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 5213 /*FIXME: explicit args */ 0, 5214 Args, NumArgs, CandidateSet, 5215 SuppressUserConversions); 5216 } 5217 } 5218} 5219 5220/// AddMethodCandidate - Adds a named decl (which is some kind of 5221/// method) as a method candidate to the given overload set. 5222void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 5223 QualType ObjectType, 5224 Expr::Classification ObjectClassification, 5225 Expr **Args, unsigned NumArgs, 5226 OverloadCandidateSet& CandidateSet, 5227 bool SuppressUserConversions) { 5228 NamedDecl *Decl = FoundDecl.getDecl(); 5229 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 5230 5231 if (isa<UsingShadowDecl>(Decl)) 5232 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 5233 5234 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 5235 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 5236 "Expected a member function template"); 5237 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 5238 /*ExplicitArgs*/ 0, 5239 ObjectType, ObjectClassification, Args, NumArgs, 5240 CandidateSet, 5241 SuppressUserConversions); 5242 } else { 5243 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 5244 ObjectType, ObjectClassification, Args, NumArgs, 5245 CandidateSet, SuppressUserConversions); 5246 } 5247} 5248 5249/// AddMethodCandidate - Adds the given C++ member function to the set 5250/// of candidate functions, using the given function call arguments 5251/// and the object argument (@c Object). For example, in a call 5252/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 5253/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 5254/// allow user-defined conversions via constructors or conversion 5255/// operators. 5256void 5257Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 5258 CXXRecordDecl *ActingContext, QualType ObjectType, 5259 Expr::Classification ObjectClassification, 5260 Expr **Args, unsigned NumArgs, 5261 OverloadCandidateSet& CandidateSet, 5262 bool SuppressUserConversions) { 5263 const FunctionProtoType* Proto 5264 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 5265 assert(Proto && "Methods without a prototype cannot be overloaded"); 5266 assert(!isa<CXXConstructorDecl>(Method) && 5267 "Use AddOverloadCandidate for constructors"); 5268 5269 if (!CandidateSet.isNewCandidate(Method)) 5270 return; 5271 5272 // Overload resolution is always an unevaluated context. 5273 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5274 5275 // Add this candidate 5276 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1); 5277 Candidate.FoundDecl = FoundDecl; 5278 Candidate.Function = Method; 5279 Candidate.IsSurrogate = false; 5280 Candidate.IgnoreObjectArgument = false; 5281 Candidate.ExplicitCallArguments = NumArgs; 5282 5283 unsigned NumArgsInProto = Proto->getNumArgs(); 5284 5285 // (C++ 13.3.2p2): A candidate function having fewer than m 5286 // parameters is viable only if it has an ellipsis in its parameter 5287 // list (8.3.5). 5288 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 5289 Candidate.Viable = false; 5290 Candidate.FailureKind = ovl_fail_too_many_arguments; 5291 return; 5292 } 5293 5294 // (C++ 13.3.2p2): A candidate function having more than m parameters 5295 // is viable only if the (m+1)st parameter has a default argument 5296 // (8.3.6). For the purposes of overload resolution, the 5297 // parameter list is truncated on the right, so that there are 5298 // exactly m parameters. 5299 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 5300 if (NumArgs < MinRequiredArgs) { 5301 // Not enough arguments. 5302 Candidate.Viable = false; 5303 Candidate.FailureKind = ovl_fail_too_few_arguments; 5304 return; 5305 } 5306 5307 Candidate.Viable = true; 5308 5309 if (Method->isStatic() || ObjectType.isNull()) 5310 // The implicit object argument is ignored. 5311 Candidate.IgnoreObjectArgument = true; 5312 else { 5313 // Determine the implicit conversion sequence for the object 5314 // parameter. 5315 Candidate.Conversions[0] 5316 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 5317 Method, ActingContext); 5318 if (Candidate.Conversions[0].isBad()) { 5319 Candidate.Viable = false; 5320 Candidate.FailureKind = ovl_fail_bad_conversion; 5321 return; 5322 } 5323 } 5324 5325 // Determine the implicit conversion sequences for each of the 5326 // arguments. 5327 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5328 if (ArgIdx < NumArgsInProto) { 5329 // (C++ 13.3.2p3): for F to be a viable function, there shall 5330 // exist for each argument an implicit conversion sequence 5331 // (13.3.3.1) that converts that argument to the corresponding 5332 // parameter of F. 5333 QualType ParamType = Proto->getArgType(ArgIdx); 5334 Candidate.Conversions[ArgIdx + 1] 5335 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5336 SuppressUserConversions, 5337 /*InOverloadResolution=*/true, 5338 /*AllowObjCWritebackConversion=*/ 5339 getLangOptions().ObjCAutoRefCount); 5340 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5341 Candidate.Viable = false; 5342 Candidate.FailureKind = ovl_fail_bad_conversion; 5343 break; 5344 } 5345 } else { 5346 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5347 // argument for which there is no corresponding parameter is 5348 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5349 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5350 } 5351 } 5352} 5353 5354/// \brief Add a C++ member function template as a candidate to the candidate 5355/// set, using template argument deduction to produce an appropriate member 5356/// function template specialization. 5357void 5358Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 5359 DeclAccessPair FoundDecl, 5360 CXXRecordDecl *ActingContext, 5361 TemplateArgumentListInfo *ExplicitTemplateArgs, 5362 QualType ObjectType, 5363 Expr::Classification ObjectClassification, 5364 Expr **Args, unsigned NumArgs, 5365 OverloadCandidateSet& CandidateSet, 5366 bool SuppressUserConversions) { 5367 if (!CandidateSet.isNewCandidate(MethodTmpl)) 5368 return; 5369 5370 // C++ [over.match.funcs]p7: 5371 // In each case where a candidate is a function template, candidate 5372 // function template specializations are generated using template argument 5373 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 5374 // candidate functions in the usual way.113) A given name can refer to one 5375 // or more function templates and also to a set of overloaded non-template 5376 // functions. In such a case, the candidate functions generated from each 5377 // function template are combined with the set of non-template candidate 5378 // functions. 5379 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5380 FunctionDecl *Specialization = 0; 5381 if (TemplateDeductionResult Result 5382 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 5383 Args, NumArgs, Specialization, Info)) { 5384 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5385 Candidate.FoundDecl = FoundDecl; 5386 Candidate.Function = MethodTmpl->getTemplatedDecl(); 5387 Candidate.Viable = false; 5388 Candidate.FailureKind = ovl_fail_bad_deduction; 5389 Candidate.IsSurrogate = false; 5390 Candidate.IgnoreObjectArgument = false; 5391 Candidate.ExplicitCallArguments = NumArgs; 5392 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5393 Info); 5394 return; 5395 } 5396 5397 // Add the function template specialization produced by template argument 5398 // deduction as a candidate. 5399 assert(Specialization && "Missing member function template specialization?"); 5400 assert(isa<CXXMethodDecl>(Specialization) && 5401 "Specialization is not a member function?"); 5402 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 5403 ActingContext, ObjectType, ObjectClassification, 5404 Args, NumArgs, CandidateSet, SuppressUserConversions); 5405} 5406 5407/// \brief Add a C++ function template specialization as a candidate 5408/// in the candidate set, using template argument deduction to produce 5409/// an appropriate function template specialization. 5410void 5411Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 5412 DeclAccessPair FoundDecl, 5413 TemplateArgumentListInfo *ExplicitTemplateArgs, 5414 Expr **Args, unsigned NumArgs, 5415 OverloadCandidateSet& CandidateSet, 5416 bool SuppressUserConversions) { 5417 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5418 return; 5419 5420 // C++ [over.match.funcs]p7: 5421 // In each case where a candidate is a function template, candidate 5422 // function template specializations are generated using template argument 5423 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 5424 // candidate functions in the usual way.113) A given name can refer to one 5425 // or more function templates and also to a set of overloaded non-template 5426 // functions. In such a case, the candidate functions generated from each 5427 // function template are combined with the set of non-template candidate 5428 // functions. 5429 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5430 FunctionDecl *Specialization = 0; 5431 if (TemplateDeductionResult Result 5432 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 5433 Args, NumArgs, Specialization, Info)) { 5434 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5435 Candidate.FoundDecl = FoundDecl; 5436 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5437 Candidate.Viable = false; 5438 Candidate.FailureKind = ovl_fail_bad_deduction; 5439 Candidate.IsSurrogate = false; 5440 Candidate.IgnoreObjectArgument = false; 5441 Candidate.ExplicitCallArguments = NumArgs; 5442 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5443 Info); 5444 return; 5445 } 5446 5447 // Add the function template specialization produced by template argument 5448 // deduction as a candidate. 5449 assert(Specialization && "Missing function template specialization?"); 5450 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 5451 SuppressUserConversions); 5452} 5453 5454/// AddConversionCandidate - Add a C++ conversion function as a 5455/// candidate in the candidate set (C++ [over.match.conv], 5456/// C++ [over.match.copy]). From is the expression we're converting from, 5457/// and ToType is the type that we're eventually trying to convert to 5458/// (which may or may not be the same type as the type that the 5459/// conversion function produces). 5460void 5461Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 5462 DeclAccessPair FoundDecl, 5463 CXXRecordDecl *ActingContext, 5464 Expr *From, QualType ToType, 5465 OverloadCandidateSet& CandidateSet) { 5466 assert(!Conversion->getDescribedFunctionTemplate() && 5467 "Conversion function templates use AddTemplateConversionCandidate"); 5468 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 5469 if (!CandidateSet.isNewCandidate(Conversion)) 5470 return; 5471 5472 // Overload resolution is always an unevaluated context. 5473 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5474 5475 // Add this candidate 5476 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 5477 Candidate.FoundDecl = FoundDecl; 5478 Candidate.Function = Conversion; 5479 Candidate.IsSurrogate = false; 5480 Candidate.IgnoreObjectArgument = false; 5481 Candidate.FinalConversion.setAsIdentityConversion(); 5482 Candidate.FinalConversion.setFromType(ConvType); 5483 Candidate.FinalConversion.setAllToTypes(ToType); 5484 Candidate.Viable = true; 5485 Candidate.ExplicitCallArguments = 1; 5486 5487 // C++ [over.match.funcs]p4: 5488 // For conversion functions, the function is considered to be a member of 5489 // the class of the implicit implied object argument for the purpose of 5490 // defining the type of the implicit object parameter. 5491 // 5492 // Determine the implicit conversion sequence for the implicit 5493 // object parameter. 5494 QualType ImplicitParamType = From->getType(); 5495 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 5496 ImplicitParamType = FromPtrType->getPointeeType(); 5497 CXXRecordDecl *ConversionContext 5498 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 5499 5500 Candidate.Conversions[0] 5501 = TryObjectArgumentInitialization(*this, From->getType(), 5502 From->Classify(Context), 5503 Conversion, ConversionContext); 5504 5505 if (Candidate.Conversions[0].isBad()) { 5506 Candidate.Viable = false; 5507 Candidate.FailureKind = ovl_fail_bad_conversion; 5508 return; 5509 } 5510 5511 // We won't go through a user-define type conversion function to convert a 5512 // derived to base as such conversions are given Conversion Rank. They only 5513 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 5514 QualType FromCanon 5515 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 5516 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 5517 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 5518 Candidate.Viable = false; 5519 Candidate.FailureKind = ovl_fail_trivial_conversion; 5520 return; 5521 } 5522 5523 // To determine what the conversion from the result of calling the 5524 // conversion function to the type we're eventually trying to 5525 // convert to (ToType), we need to synthesize a call to the 5526 // conversion function and attempt copy initialization from it. This 5527 // makes sure that we get the right semantics with respect to 5528 // lvalues/rvalues and the type. Fortunately, we can allocate this 5529 // call on the stack and we don't need its arguments to be 5530 // well-formed. 5531 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 5532 VK_LValue, From->getLocStart()); 5533 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 5534 Context.getPointerType(Conversion->getType()), 5535 CK_FunctionToPointerDecay, 5536 &ConversionRef, VK_RValue); 5537 5538 QualType ConversionType = Conversion->getConversionType(); 5539 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { 5540 Candidate.Viable = false; 5541 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5542 return; 5543 } 5544 5545 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 5546 5547 // Note that it is safe to allocate CallExpr on the stack here because 5548 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 5549 // allocator). 5550 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 5551 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 5552 From->getLocStart()); 5553 ImplicitConversionSequence ICS = 5554 TryCopyInitialization(*this, &Call, ToType, 5555 /*SuppressUserConversions=*/true, 5556 /*InOverloadResolution=*/false, 5557 /*AllowObjCWritebackConversion=*/false); 5558 5559 switch (ICS.getKind()) { 5560 case ImplicitConversionSequence::StandardConversion: 5561 Candidate.FinalConversion = ICS.Standard; 5562 5563 // C++ [over.ics.user]p3: 5564 // If the user-defined conversion is specified by a specialization of a 5565 // conversion function template, the second standard conversion sequence 5566 // shall have exact match rank. 5567 if (Conversion->getPrimaryTemplate() && 5568 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 5569 Candidate.Viable = false; 5570 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 5571 } 5572 5573 // C++0x [dcl.init.ref]p5: 5574 // In the second case, if the reference is an rvalue reference and 5575 // the second standard conversion sequence of the user-defined 5576 // conversion sequence includes an lvalue-to-rvalue conversion, the 5577 // program is ill-formed. 5578 if (ToType->isRValueReferenceType() && 5579 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5580 Candidate.Viable = false; 5581 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5582 } 5583 break; 5584 5585 case ImplicitConversionSequence::BadConversion: 5586 Candidate.Viable = false; 5587 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5588 break; 5589 5590 default: 5591 llvm_unreachable( 5592 "Can only end up with a standard conversion sequence or failure"); 5593 } 5594} 5595 5596/// \brief Adds a conversion function template specialization 5597/// candidate to the overload set, using template argument deduction 5598/// to deduce the template arguments of the conversion function 5599/// template from the type that we are converting to (C++ 5600/// [temp.deduct.conv]). 5601void 5602Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 5603 DeclAccessPair FoundDecl, 5604 CXXRecordDecl *ActingDC, 5605 Expr *From, QualType ToType, 5606 OverloadCandidateSet &CandidateSet) { 5607 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 5608 "Only conversion function templates permitted here"); 5609 5610 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5611 return; 5612 5613 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5614 CXXConversionDecl *Specialization = 0; 5615 if (TemplateDeductionResult Result 5616 = DeduceTemplateArguments(FunctionTemplate, ToType, 5617 Specialization, Info)) { 5618 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5619 Candidate.FoundDecl = FoundDecl; 5620 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5621 Candidate.Viable = false; 5622 Candidate.FailureKind = ovl_fail_bad_deduction; 5623 Candidate.IsSurrogate = false; 5624 Candidate.IgnoreObjectArgument = false; 5625 Candidate.ExplicitCallArguments = 1; 5626 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5627 Info); 5628 return; 5629 } 5630 5631 // Add the conversion function template specialization produced by 5632 // template argument deduction as a candidate. 5633 assert(Specialization && "Missing function template specialization?"); 5634 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 5635 CandidateSet); 5636} 5637 5638/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 5639/// converts the given @c Object to a function pointer via the 5640/// conversion function @c Conversion, and then attempts to call it 5641/// with the given arguments (C++ [over.call.object]p2-4). Proto is 5642/// the type of function that we'll eventually be calling. 5643void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 5644 DeclAccessPair FoundDecl, 5645 CXXRecordDecl *ActingContext, 5646 const FunctionProtoType *Proto, 5647 Expr *Object, 5648 Expr **Args, unsigned NumArgs, 5649 OverloadCandidateSet& CandidateSet) { 5650 if (!CandidateSet.isNewCandidate(Conversion)) 5651 return; 5652 5653 // Overload resolution is always an unevaluated context. 5654 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5655 5656 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1); 5657 Candidate.FoundDecl = FoundDecl; 5658 Candidate.Function = 0; 5659 Candidate.Surrogate = Conversion; 5660 Candidate.Viable = true; 5661 Candidate.IsSurrogate = true; 5662 Candidate.IgnoreObjectArgument = false; 5663 Candidate.ExplicitCallArguments = NumArgs; 5664 5665 // Determine the implicit conversion sequence for the implicit 5666 // object parameter. 5667 ImplicitConversionSequence ObjectInit 5668 = TryObjectArgumentInitialization(*this, Object->getType(), 5669 Object->Classify(Context), 5670 Conversion, ActingContext); 5671 if (ObjectInit.isBad()) { 5672 Candidate.Viable = false; 5673 Candidate.FailureKind = ovl_fail_bad_conversion; 5674 Candidate.Conversions[0] = ObjectInit; 5675 return; 5676 } 5677 5678 // The first conversion is actually a user-defined conversion whose 5679 // first conversion is ObjectInit's standard conversion (which is 5680 // effectively a reference binding). Record it as such. 5681 Candidate.Conversions[0].setUserDefined(); 5682 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 5683 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 5684 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 5685 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 5686 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 5687 Candidate.Conversions[0].UserDefined.After 5688 = Candidate.Conversions[0].UserDefined.Before; 5689 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 5690 5691 // Find the 5692 unsigned NumArgsInProto = Proto->getNumArgs(); 5693 5694 // (C++ 13.3.2p2): A candidate function having fewer than m 5695 // parameters is viable only if it has an ellipsis in its parameter 5696 // list (8.3.5). 5697 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 5698 Candidate.Viable = false; 5699 Candidate.FailureKind = ovl_fail_too_many_arguments; 5700 return; 5701 } 5702 5703 // Function types don't have any default arguments, so just check if 5704 // we have enough arguments. 5705 if (NumArgs < NumArgsInProto) { 5706 // Not enough arguments. 5707 Candidate.Viable = false; 5708 Candidate.FailureKind = ovl_fail_too_few_arguments; 5709 return; 5710 } 5711 5712 // Determine the implicit conversion sequences for each of the 5713 // arguments. 5714 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5715 if (ArgIdx < NumArgsInProto) { 5716 // (C++ 13.3.2p3): for F to be a viable function, there shall 5717 // exist for each argument an implicit conversion sequence 5718 // (13.3.3.1) that converts that argument to the corresponding 5719 // parameter of F. 5720 QualType ParamType = Proto->getArgType(ArgIdx); 5721 Candidate.Conversions[ArgIdx + 1] 5722 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5723 /*SuppressUserConversions=*/false, 5724 /*InOverloadResolution=*/false, 5725 /*AllowObjCWritebackConversion=*/ 5726 getLangOptions().ObjCAutoRefCount); 5727 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5728 Candidate.Viable = false; 5729 Candidate.FailureKind = ovl_fail_bad_conversion; 5730 break; 5731 } 5732 } else { 5733 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5734 // argument for which there is no corresponding parameter is 5735 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5736 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5737 } 5738 } 5739} 5740 5741/// \brief Add overload candidates for overloaded operators that are 5742/// member functions. 5743/// 5744/// Add the overloaded operator candidates that are member functions 5745/// for the operator Op that was used in an operator expression such 5746/// as "x Op y". , Args/NumArgs provides the operator arguments, and 5747/// CandidateSet will store the added overload candidates. (C++ 5748/// [over.match.oper]). 5749void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 5750 SourceLocation OpLoc, 5751 Expr **Args, unsigned NumArgs, 5752 OverloadCandidateSet& CandidateSet, 5753 SourceRange OpRange) { 5754 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5755 5756 // C++ [over.match.oper]p3: 5757 // For a unary operator @ with an operand of a type whose 5758 // cv-unqualified version is T1, and for a binary operator @ with 5759 // a left operand of a type whose cv-unqualified version is T1 and 5760 // a right operand of a type whose cv-unqualified version is T2, 5761 // three sets of candidate functions, designated member 5762 // candidates, non-member candidates and built-in candidates, are 5763 // constructed as follows: 5764 QualType T1 = Args[0]->getType(); 5765 5766 // -- If T1 is a class type, the set of member candidates is the 5767 // result of the qualified lookup of T1::operator@ 5768 // (13.3.1.1.1); otherwise, the set of member candidates is 5769 // empty. 5770 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 5771 // Complete the type if it can be completed. Otherwise, we're done. 5772 if (RequireCompleteType(OpLoc, T1, PDiag())) 5773 return; 5774 5775 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 5776 LookupQualifiedName(Operators, T1Rec->getDecl()); 5777 Operators.suppressDiagnostics(); 5778 5779 for (LookupResult::iterator Oper = Operators.begin(), 5780 OperEnd = Operators.end(); 5781 Oper != OperEnd; 5782 ++Oper) 5783 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 5784 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 5785 CandidateSet, 5786 /* SuppressUserConversions = */ false); 5787 } 5788} 5789 5790/// AddBuiltinCandidate - Add a candidate for a built-in 5791/// operator. ResultTy and ParamTys are the result and parameter types 5792/// of the built-in candidate, respectively. Args and NumArgs are the 5793/// arguments being passed to the candidate. IsAssignmentOperator 5794/// should be true when this built-in candidate is an assignment 5795/// operator. NumContextualBoolArguments is the number of arguments 5796/// (at the beginning of the argument list) that will be contextually 5797/// converted to bool. 5798void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 5799 Expr **Args, unsigned NumArgs, 5800 OverloadCandidateSet& CandidateSet, 5801 bool IsAssignmentOperator, 5802 unsigned NumContextualBoolArguments) { 5803 // Overload resolution is always an unevaluated context. 5804 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5805 5806 // Add this candidate 5807 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); 5808 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 5809 Candidate.Function = 0; 5810 Candidate.IsSurrogate = false; 5811 Candidate.IgnoreObjectArgument = false; 5812 Candidate.BuiltinTypes.ResultTy = ResultTy; 5813 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5814 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 5815 5816 // Determine the implicit conversion sequences for each of the 5817 // arguments. 5818 Candidate.Viable = true; 5819 Candidate.ExplicitCallArguments = NumArgs; 5820 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5821 // C++ [over.match.oper]p4: 5822 // For the built-in assignment operators, conversions of the 5823 // left operand are restricted as follows: 5824 // -- no temporaries are introduced to hold the left operand, and 5825 // -- no user-defined conversions are applied to the left 5826 // operand to achieve a type match with the left-most 5827 // parameter of a built-in candidate. 5828 // 5829 // We block these conversions by turning off user-defined 5830 // conversions, since that is the only way that initialization of 5831 // a reference to a non-class type can occur from something that 5832 // is not of the same type. 5833 if (ArgIdx < NumContextualBoolArguments) { 5834 assert(ParamTys[ArgIdx] == Context.BoolTy && 5835 "Contextual conversion to bool requires bool type"); 5836 Candidate.Conversions[ArgIdx] 5837 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 5838 } else { 5839 Candidate.Conversions[ArgIdx] 5840 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 5841 ArgIdx == 0 && IsAssignmentOperator, 5842 /*InOverloadResolution=*/false, 5843 /*AllowObjCWritebackConversion=*/ 5844 getLangOptions().ObjCAutoRefCount); 5845 } 5846 if (Candidate.Conversions[ArgIdx].isBad()) { 5847 Candidate.Viable = false; 5848 Candidate.FailureKind = ovl_fail_bad_conversion; 5849 break; 5850 } 5851 } 5852} 5853 5854/// BuiltinCandidateTypeSet - A set of types that will be used for the 5855/// candidate operator functions for built-in operators (C++ 5856/// [over.built]). The types are separated into pointer types and 5857/// enumeration types. 5858class BuiltinCandidateTypeSet { 5859 /// TypeSet - A set of types. 5860 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 5861 5862 /// PointerTypes - The set of pointer types that will be used in the 5863 /// built-in candidates. 5864 TypeSet PointerTypes; 5865 5866 /// MemberPointerTypes - The set of member pointer types that will be 5867 /// used in the built-in candidates. 5868 TypeSet MemberPointerTypes; 5869 5870 /// EnumerationTypes - The set of enumeration types that will be 5871 /// used in the built-in candidates. 5872 TypeSet EnumerationTypes; 5873 5874 /// \brief The set of vector types that will be used in the built-in 5875 /// candidates. 5876 TypeSet VectorTypes; 5877 5878 /// \brief A flag indicating non-record types are viable candidates 5879 bool HasNonRecordTypes; 5880 5881 /// \brief A flag indicating whether either arithmetic or enumeration types 5882 /// were present in the candidate set. 5883 bool HasArithmeticOrEnumeralTypes; 5884 5885 /// \brief A flag indicating whether the nullptr type was present in the 5886 /// candidate set. 5887 bool HasNullPtrType; 5888 5889 /// Sema - The semantic analysis instance where we are building the 5890 /// candidate type set. 5891 Sema &SemaRef; 5892 5893 /// Context - The AST context in which we will build the type sets. 5894 ASTContext &Context; 5895 5896 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5897 const Qualifiers &VisibleQuals); 5898 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 5899 5900public: 5901 /// iterator - Iterates through the types that are part of the set. 5902 typedef TypeSet::iterator iterator; 5903 5904 BuiltinCandidateTypeSet(Sema &SemaRef) 5905 : HasNonRecordTypes(false), 5906 HasArithmeticOrEnumeralTypes(false), 5907 HasNullPtrType(false), 5908 SemaRef(SemaRef), 5909 Context(SemaRef.Context) { } 5910 5911 void AddTypesConvertedFrom(QualType Ty, 5912 SourceLocation Loc, 5913 bool AllowUserConversions, 5914 bool AllowExplicitConversions, 5915 const Qualifiers &VisibleTypeConversionsQuals); 5916 5917 /// pointer_begin - First pointer type found; 5918 iterator pointer_begin() { return PointerTypes.begin(); } 5919 5920 /// pointer_end - Past the last pointer type found; 5921 iterator pointer_end() { return PointerTypes.end(); } 5922 5923 /// member_pointer_begin - First member pointer type found; 5924 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 5925 5926 /// member_pointer_end - Past the last member pointer type found; 5927 iterator member_pointer_end() { return MemberPointerTypes.end(); } 5928 5929 /// enumeration_begin - First enumeration type found; 5930 iterator enumeration_begin() { return EnumerationTypes.begin(); } 5931 5932 /// enumeration_end - Past the last enumeration type found; 5933 iterator enumeration_end() { return EnumerationTypes.end(); } 5934 5935 iterator vector_begin() { return VectorTypes.begin(); } 5936 iterator vector_end() { return VectorTypes.end(); } 5937 5938 bool hasNonRecordTypes() { return HasNonRecordTypes; } 5939 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 5940 bool hasNullPtrType() const { return HasNullPtrType; } 5941}; 5942 5943/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 5944/// the set of pointer types along with any more-qualified variants of 5945/// that type. For example, if @p Ty is "int const *", this routine 5946/// will add "int const *", "int const volatile *", "int const 5947/// restrict *", and "int const volatile restrict *" to the set of 5948/// pointer types. Returns true if the add of @p Ty itself succeeded, 5949/// false otherwise. 5950/// 5951/// FIXME: what to do about extended qualifiers? 5952bool 5953BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5954 const Qualifiers &VisibleQuals) { 5955 5956 // Insert this type. 5957 if (!PointerTypes.insert(Ty)) 5958 return false; 5959 5960 QualType PointeeTy; 5961 const PointerType *PointerTy = Ty->getAs<PointerType>(); 5962 bool buildObjCPtr = false; 5963 if (!PointerTy) { 5964 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 5965 PointeeTy = PTy->getPointeeType(); 5966 buildObjCPtr = true; 5967 } 5968 else 5969 llvm_unreachable("type was not a pointer type!"); 5970 } 5971 else 5972 PointeeTy = PointerTy->getPointeeType(); 5973 5974 // Don't add qualified variants of arrays. For one, they're not allowed 5975 // (the qualifier would sink to the element type), and for another, the 5976 // only overload situation where it matters is subscript or pointer +- int, 5977 // and those shouldn't have qualifier variants anyway. 5978 if (PointeeTy->isArrayType()) 5979 return true; 5980 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5981 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 5982 BaseCVR = Array->getElementType().getCVRQualifiers(); 5983 bool hasVolatile = VisibleQuals.hasVolatile(); 5984 bool hasRestrict = VisibleQuals.hasRestrict(); 5985 5986 // Iterate through all strict supersets of BaseCVR. 5987 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5988 if ((CVR | BaseCVR) != CVR) continue; 5989 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 5990 // in the types. 5991 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 5992 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 5993 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5994 if (!buildObjCPtr) 5995 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 5996 else 5997 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 5998 } 5999 6000 return true; 6001} 6002 6003/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 6004/// to the set of pointer types along with any more-qualified variants of 6005/// that type. For example, if @p Ty is "int const *", this routine 6006/// will add "int const *", "int const volatile *", "int const 6007/// restrict *", and "int const volatile restrict *" to the set of 6008/// pointer types. Returns true if the add of @p Ty itself succeeded, 6009/// false otherwise. 6010/// 6011/// FIXME: what to do about extended qualifiers? 6012bool 6013BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 6014 QualType Ty) { 6015 // Insert this type. 6016 if (!MemberPointerTypes.insert(Ty)) 6017 return false; 6018 6019 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 6020 assert(PointerTy && "type was not a member pointer type!"); 6021 6022 QualType PointeeTy = PointerTy->getPointeeType(); 6023 // Don't add qualified variants of arrays. For one, they're not allowed 6024 // (the qualifier would sink to the element type), and for another, the 6025 // only overload situation where it matters is subscript or pointer +- int, 6026 // and those shouldn't have qualifier variants anyway. 6027 if (PointeeTy->isArrayType()) 6028 return true; 6029 const Type *ClassTy = PointerTy->getClass(); 6030 6031 // Iterate through all strict supersets of the pointee type's CVR 6032 // qualifiers. 6033 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 6034 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 6035 if ((CVR | BaseCVR) != CVR) continue; 6036 6037 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 6038 MemberPointerTypes.insert( 6039 Context.getMemberPointerType(QPointeeTy, ClassTy)); 6040 } 6041 6042 return true; 6043} 6044 6045/// AddTypesConvertedFrom - Add each of the types to which the type @p 6046/// Ty can be implicit converted to the given set of @p Types. We're 6047/// primarily interested in pointer types and enumeration types. We also 6048/// take member pointer types, for the conditional operator. 6049/// AllowUserConversions is true if we should look at the conversion 6050/// functions of a class type, and AllowExplicitConversions if we 6051/// should also include the explicit conversion functions of a class 6052/// type. 6053void 6054BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 6055 SourceLocation Loc, 6056 bool AllowUserConversions, 6057 bool AllowExplicitConversions, 6058 const Qualifiers &VisibleQuals) { 6059 // Only deal with canonical types. 6060 Ty = Context.getCanonicalType(Ty); 6061 6062 // Look through reference types; they aren't part of the type of an 6063 // expression for the purposes of conversions. 6064 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 6065 Ty = RefTy->getPointeeType(); 6066 6067 // If we're dealing with an array type, decay to the pointer. 6068 if (Ty->isArrayType()) 6069 Ty = SemaRef.Context.getArrayDecayedType(Ty); 6070 6071 // Otherwise, we don't care about qualifiers on the type. 6072 Ty = Ty.getLocalUnqualifiedType(); 6073 6074 // Flag if we ever add a non-record type. 6075 const RecordType *TyRec = Ty->getAs<RecordType>(); 6076 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 6077 6078 // Flag if we encounter an arithmetic type. 6079 HasArithmeticOrEnumeralTypes = 6080 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 6081 6082 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 6083 PointerTypes.insert(Ty); 6084 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 6085 // Insert our type, and its more-qualified variants, into the set 6086 // of types. 6087 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 6088 return; 6089 } else if (Ty->isMemberPointerType()) { 6090 // Member pointers are far easier, since the pointee can't be converted. 6091 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 6092 return; 6093 } else if (Ty->isEnumeralType()) { 6094 HasArithmeticOrEnumeralTypes = true; 6095 EnumerationTypes.insert(Ty); 6096 } else if (Ty->isVectorType()) { 6097 // We treat vector types as arithmetic types in many contexts as an 6098 // extension. 6099 HasArithmeticOrEnumeralTypes = true; 6100 VectorTypes.insert(Ty); 6101 } else if (Ty->isNullPtrType()) { 6102 HasNullPtrType = true; 6103 } else if (AllowUserConversions && TyRec) { 6104 // No conversion functions in incomplete types. 6105 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 6106 return; 6107 6108 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 6109 const UnresolvedSetImpl *Conversions 6110 = ClassDecl->getVisibleConversionFunctions(); 6111 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 6112 E = Conversions->end(); I != E; ++I) { 6113 NamedDecl *D = I.getDecl(); 6114 if (isa<UsingShadowDecl>(D)) 6115 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6116 6117 // Skip conversion function templates; they don't tell us anything 6118 // about which builtin types we can convert to. 6119 if (isa<FunctionTemplateDecl>(D)) 6120 continue; 6121 6122 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 6123 if (AllowExplicitConversions || !Conv->isExplicit()) { 6124 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 6125 VisibleQuals); 6126 } 6127 } 6128 } 6129} 6130 6131/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 6132/// the volatile- and non-volatile-qualified assignment operators for the 6133/// given type to the candidate set. 6134static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 6135 QualType T, 6136 Expr **Args, 6137 unsigned NumArgs, 6138 OverloadCandidateSet &CandidateSet) { 6139 QualType ParamTypes[2]; 6140 6141 // T& operator=(T&, T) 6142 ParamTypes[0] = S.Context.getLValueReferenceType(T); 6143 ParamTypes[1] = T; 6144 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6145 /*IsAssignmentOperator=*/true); 6146 6147 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 6148 // volatile T& operator=(volatile T&, T) 6149 ParamTypes[0] 6150 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 6151 ParamTypes[1] = T; 6152 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6153 /*IsAssignmentOperator=*/true); 6154 } 6155} 6156 6157/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 6158/// if any, found in visible type conversion functions found in ArgExpr's type. 6159static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 6160 Qualifiers VRQuals; 6161 const RecordType *TyRec; 6162 if (const MemberPointerType *RHSMPType = 6163 ArgExpr->getType()->getAs<MemberPointerType>()) 6164 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 6165 else 6166 TyRec = ArgExpr->getType()->getAs<RecordType>(); 6167 if (!TyRec) { 6168 // Just to be safe, assume the worst case. 6169 VRQuals.addVolatile(); 6170 VRQuals.addRestrict(); 6171 return VRQuals; 6172 } 6173 6174 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 6175 if (!ClassDecl->hasDefinition()) 6176 return VRQuals; 6177 6178 const UnresolvedSetImpl *Conversions = 6179 ClassDecl->getVisibleConversionFunctions(); 6180 6181 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 6182 E = Conversions->end(); I != E; ++I) { 6183 NamedDecl *D = I.getDecl(); 6184 if (isa<UsingShadowDecl>(D)) 6185 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6186 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 6187 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 6188 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 6189 CanTy = ResTypeRef->getPointeeType(); 6190 // Need to go down the pointer/mempointer chain and add qualifiers 6191 // as see them. 6192 bool done = false; 6193 while (!done) { 6194 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 6195 CanTy = ResTypePtr->getPointeeType(); 6196 else if (const MemberPointerType *ResTypeMPtr = 6197 CanTy->getAs<MemberPointerType>()) 6198 CanTy = ResTypeMPtr->getPointeeType(); 6199 else 6200 done = true; 6201 if (CanTy.isVolatileQualified()) 6202 VRQuals.addVolatile(); 6203 if (CanTy.isRestrictQualified()) 6204 VRQuals.addRestrict(); 6205 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 6206 return VRQuals; 6207 } 6208 } 6209 } 6210 return VRQuals; 6211} 6212 6213namespace { 6214 6215/// \brief Helper class to manage the addition of builtin operator overload 6216/// candidates. It provides shared state and utility methods used throughout 6217/// the process, as well as a helper method to add each group of builtin 6218/// operator overloads from the standard to a candidate set. 6219class BuiltinOperatorOverloadBuilder { 6220 // Common instance state available to all overload candidate addition methods. 6221 Sema &S; 6222 Expr **Args; 6223 unsigned NumArgs; 6224 Qualifiers VisibleTypeConversionsQuals; 6225 bool HasArithmeticOrEnumeralCandidateType; 6226 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 6227 OverloadCandidateSet &CandidateSet; 6228 6229 // Define some constants used to index and iterate over the arithemetic types 6230 // provided via the getArithmeticType() method below. 6231 // The "promoted arithmetic types" are the arithmetic 6232 // types are that preserved by promotion (C++ [over.built]p2). 6233 static const unsigned FirstIntegralType = 3; 6234 static const unsigned LastIntegralType = 18; 6235 static const unsigned FirstPromotedIntegralType = 3, 6236 LastPromotedIntegralType = 9; 6237 static const unsigned FirstPromotedArithmeticType = 0, 6238 LastPromotedArithmeticType = 9; 6239 static const unsigned NumArithmeticTypes = 18; 6240 6241 /// \brief Get the canonical type for a given arithmetic type index. 6242 CanQualType getArithmeticType(unsigned index) { 6243 assert(index < NumArithmeticTypes); 6244 static CanQualType ASTContext::* const 6245 ArithmeticTypes[NumArithmeticTypes] = { 6246 // Start of promoted types. 6247 &ASTContext::FloatTy, 6248 &ASTContext::DoubleTy, 6249 &ASTContext::LongDoubleTy, 6250 6251 // Start of integral types. 6252 &ASTContext::IntTy, 6253 &ASTContext::LongTy, 6254 &ASTContext::LongLongTy, 6255 &ASTContext::UnsignedIntTy, 6256 &ASTContext::UnsignedLongTy, 6257 &ASTContext::UnsignedLongLongTy, 6258 // End of promoted types. 6259 6260 &ASTContext::BoolTy, 6261 &ASTContext::CharTy, 6262 &ASTContext::WCharTy, 6263 &ASTContext::Char16Ty, 6264 &ASTContext::Char32Ty, 6265 &ASTContext::SignedCharTy, 6266 &ASTContext::ShortTy, 6267 &ASTContext::UnsignedCharTy, 6268 &ASTContext::UnsignedShortTy, 6269 // End of integral types. 6270 // FIXME: What about complex? 6271 }; 6272 return S.Context.*ArithmeticTypes[index]; 6273 } 6274 6275 /// \brief Gets the canonical type resulting from the usual arithemetic 6276 /// converions for the given arithmetic types. 6277 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 6278 // Accelerator table for performing the usual arithmetic conversions. 6279 // The rules are basically: 6280 // - if either is floating-point, use the wider floating-point 6281 // - if same signedness, use the higher rank 6282 // - if same size, use unsigned of the higher rank 6283 // - use the larger type 6284 // These rules, together with the axiom that higher ranks are 6285 // never smaller, are sufficient to precompute all of these results 6286 // *except* when dealing with signed types of higher rank. 6287 // (we could precompute SLL x UI for all known platforms, but it's 6288 // better not to make any assumptions). 6289 enum PromotedType { 6290 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 6291 }; 6292 static PromotedType ConversionsTable[LastPromotedArithmeticType] 6293 [LastPromotedArithmeticType] = { 6294 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 6295 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 6296 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 6297 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 6298 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 6299 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 6300 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 6301 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 6302 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 6303 }; 6304 6305 assert(L < LastPromotedArithmeticType); 6306 assert(R < LastPromotedArithmeticType); 6307 int Idx = ConversionsTable[L][R]; 6308 6309 // Fast path: the table gives us a concrete answer. 6310 if (Idx != Dep) return getArithmeticType(Idx); 6311 6312 // Slow path: we need to compare widths. 6313 // An invariant is that the signed type has higher rank. 6314 CanQualType LT = getArithmeticType(L), 6315 RT = getArithmeticType(R); 6316 unsigned LW = S.Context.getIntWidth(LT), 6317 RW = S.Context.getIntWidth(RT); 6318 6319 // If they're different widths, use the signed type. 6320 if (LW > RW) return LT; 6321 else if (LW < RW) return RT; 6322 6323 // Otherwise, use the unsigned type of the signed type's rank. 6324 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 6325 assert(L == SLL || R == SLL); 6326 return S.Context.UnsignedLongLongTy; 6327 } 6328 6329 /// \brief Helper method to factor out the common pattern of adding overloads 6330 /// for '++' and '--' builtin operators. 6331 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 6332 bool HasVolatile) { 6333 QualType ParamTypes[2] = { 6334 S.Context.getLValueReferenceType(CandidateTy), 6335 S.Context.IntTy 6336 }; 6337 6338 // Non-volatile version. 6339 if (NumArgs == 1) 6340 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6341 else 6342 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6343 6344 // Use a heuristic to reduce number of builtin candidates in the set: 6345 // add volatile version only if there are conversions to a volatile type. 6346 if (HasVolatile) { 6347 ParamTypes[0] = 6348 S.Context.getLValueReferenceType( 6349 S.Context.getVolatileType(CandidateTy)); 6350 if (NumArgs == 1) 6351 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6352 else 6353 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6354 } 6355 } 6356 6357public: 6358 BuiltinOperatorOverloadBuilder( 6359 Sema &S, Expr **Args, unsigned NumArgs, 6360 Qualifiers VisibleTypeConversionsQuals, 6361 bool HasArithmeticOrEnumeralCandidateType, 6362 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 6363 OverloadCandidateSet &CandidateSet) 6364 : S(S), Args(Args), NumArgs(NumArgs), 6365 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 6366 HasArithmeticOrEnumeralCandidateType( 6367 HasArithmeticOrEnumeralCandidateType), 6368 CandidateTypes(CandidateTypes), 6369 CandidateSet(CandidateSet) { 6370 // Validate some of our static helper constants in debug builds. 6371 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 6372 "Invalid first promoted integral type"); 6373 assert(getArithmeticType(LastPromotedIntegralType - 1) 6374 == S.Context.UnsignedLongLongTy && 6375 "Invalid last promoted integral type"); 6376 assert(getArithmeticType(FirstPromotedArithmeticType) 6377 == S.Context.FloatTy && 6378 "Invalid first promoted arithmetic type"); 6379 assert(getArithmeticType(LastPromotedArithmeticType - 1) 6380 == S.Context.UnsignedLongLongTy && 6381 "Invalid last promoted arithmetic type"); 6382 } 6383 6384 // C++ [over.built]p3: 6385 // 6386 // For every pair (T, VQ), where T is an arithmetic type, and VQ 6387 // is either volatile or empty, there exist candidate operator 6388 // functions of the form 6389 // 6390 // VQ T& operator++(VQ T&); 6391 // T operator++(VQ T&, int); 6392 // 6393 // C++ [over.built]p4: 6394 // 6395 // For every pair (T, VQ), where T is an arithmetic type other 6396 // than bool, and VQ is either volatile or empty, there exist 6397 // candidate operator functions of the form 6398 // 6399 // VQ T& operator--(VQ T&); 6400 // T operator--(VQ T&, int); 6401 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 6402 if (!HasArithmeticOrEnumeralCandidateType) 6403 return; 6404 6405 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 6406 Arith < NumArithmeticTypes; ++Arith) { 6407 addPlusPlusMinusMinusStyleOverloads( 6408 getArithmeticType(Arith), 6409 VisibleTypeConversionsQuals.hasVolatile()); 6410 } 6411 } 6412 6413 // C++ [over.built]p5: 6414 // 6415 // For every pair (T, VQ), where T is a cv-qualified or 6416 // cv-unqualified object type, and VQ is either volatile or 6417 // empty, there exist candidate operator functions of the form 6418 // 6419 // T*VQ& operator++(T*VQ&); 6420 // T*VQ& operator--(T*VQ&); 6421 // T* operator++(T*VQ&, int); 6422 // T* operator--(T*VQ&, int); 6423 void addPlusPlusMinusMinusPointerOverloads() { 6424 for (BuiltinCandidateTypeSet::iterator 6425 Ptr = CandidateTypes[0].pointer_begin(), 6426 PtrEnd = CandidateTypes[0].pointer_end(); 6427 Ptr != PtrEnd; ++Ptr) { 6428 // Skip pointer types that aren't pointers to object types. 6429 if (!(*Ptr)->getPointeeType()->isObjectType()) 6430 continue; 6431 6432 addPlusPlusMinusMinusStyleOverloads(*Ptr, 6433 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6434 VisibleTypeConversionsQuals.hasVolatile())); 6435 } 6436 } 6437 6438 // C++ [over.built]p6: 6439 // For every cv-qualified or cv-unqualified object type T, there 6440 // exist candidate operator functions of the form 6441 // 6442 // T& operator*(T*); 6443 // 6444 // C++ [over.built]p7: 6445 // For every function type T that does not have cv-qualifiers or a 6446 // ref-qualifier, there exist candidate operator functions of the form 6447 // T& operator*(T*); 6448 void addUnaryStarPointerOverloads() { 6449 for (BuiltinCandidateTypeSet::iterator 6450 Ptr = CandidateTypes[0].pointer_begin(), 6451 PtrEnd = CandidateTypes[0].pointer_end(); 6452 Ptr != PtrEnd; ++Ptr) { 6453 QualType ParamTy = *Ptr; 6454 QualType PointeeTy = ParamTy->getPointeeType(); 6455 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 6456 continue; 6457 6458 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 6459 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 6460 continue; 6461 6462 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 6463 &ParamTy, Args, 1, CandidateSet); 6464 } 6465 } 6466 6467 // C++ [over.built]p9: 6468 // For every promoted arithmetic type T, there exist candidate 6469 // operator functions of the form 6470 // 6471 // T operator+(T); 6472 // T operator-(T); 6473 void addUnaryPlusOrMinusArithmeticOverloads() { 6474 if (!HasArithmeticOrEnumeralCandidateType) 6475 return; 6476 6477 for (unsigned Arith = FirstPromotedArithmeticType; 6478 Arith < LastPromotedArithmeticType; ++Arith) { 6479 QualType ArithTy = getArithmeticType(Arith); 6480 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 6481 } 6482 6483 // Extension: We also add these operators for vector types. 6484 for (BuiltinCandidateTypeSet::iterator 6485 Vec = CandidateTypes[0].vector_begin(), 6486 VecEnd = CandidateTypes[0].vector_end(); 6487 Vec != VecEnd; ++Vec) { 6488 QualType VecTy = *Vec; 6489 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6490 } 6491 } 6492 6493 // C++ [over.built]p8: 6494 // For every type T, there exist candidate operator functions of 6495 // the form 6496 // 6497 // T* operator+(T*); 6498 void addUnaryPlusPointerOverloads() { 6499 for (BuiltinCandidateTypeSet::iterator 6500 Ptr = CandidateTypes[0].pointer_begin(), 6501 PtrEnd = CandidateTypes[0].pointer_end(); 6502 Ptr != PtrEnd; ++Ptr) { 6503 QualType ParamTy = *Ptr; 6504 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 6505 } 6506 } 6507 6508 // C++ [over.built]p10: 6509 // For every promoted integral type T, there exist candidate 6510 // operator functions of the form 6511 // 6512 // T operator~(T); 6513 void addUnaryTildePromotedIntegralOverloads() { 6514 if (!HasArithmeticOrEnumeralCandidateType) 6515 return; 6516 6517 for (unsigned Int = FirstPromotedIntegralType; 6518 Int < LastPromotedIntegralType; ++Int) { 6519 QualType IntTy = getArithmeticType(Int); 6520 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 6521 } 6522 6523 // Extension: We also add this operator for vector types. 6524 for (BuiltinCandidateTypeSet::iterator 6525 Vec = CandidateTypes[0].vector_begin(), 6526 VecEnd = CandidateTypes[0].vector_end(); 6527 Vec != VecEnd; ++Vec) { 6528 QualType VecTy = *Vec; 6529 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6530 } 6531 } 6532 6533 // C++ [over.match.oper]p16: 6534 // For every pointer to member type T, there exist candidate operator 6535 // functions of the form 6536 // 6537 // bool operator==(T,T); 6538 // bool operator!=(T,T); 6539 void addEqualEqualOrNotEqualMemberPointerOverloads() { 6540 /// Set of (canonical) types that we've already handled. 6541 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6542 6543 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6544 for (BuiltinCandidateTypeSet::iterator 6545 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6546 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6547 MemPtr != MemPtrEnd; 6548 ++MemPtr) { 6549 // Don't add the same builtin candidate twice. 6550 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6551 continue; 6552 6553 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6554 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6555 CandidateSet); 6556 } 6557 } 6558 } 6559 6560 // C++ [over.built]p15: 6561 // 6562 // For every T, where T is an enumeration type, a pointer type, or 6563 // std::nullptr_t, there exist candidate operator functions of the form 6564 // 6565 // bool operator<(T, T); 6566 // bool operator>(T, T); 6567 // bool operator<=(T, T); 6568 // bool operator>=(T, T); 6569 // bool operator==(T, T); 6570 // bool operator!=(T, T); 6571 void addRelationalPointerOrEnumeralOverloads() { 6572 // C++ [over.built]p1: 6573 // If there is a user-written candidate with the same name and parameter 6574 // types as a built-in candidate operator function, the built-in operator 6575 // function is hidden and is not included in the set of candidate 6576 // functions. 6577 // 6578 // The text is actually in a note, but if we don't implement it then we end 6579 // up with ambiguities when the user provides an overloaded operator for 6580 // an enumeration type. Note that only enumeration types have this problem, 6581 // so we track which enumeration types we've seen operators for. Also, the 6582 // only other overloaded operator with enumeration argumenst, operator=, 6583 // cannot be overloaded for enumeration types, so this is the only place 6584 // where we must suppress candidates like this. 6585 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 6586 UserDefinedBinaryOperators; 6587 6588 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6589 if (CandidateTypes[ArgIdx].enumeration_begin() != 6590 CandidateTypes[ArgIdx].enumeration_end()) { 6591 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 6592 CEnd = CandidateSet.end(); 6593 C != CEnd; ++C) { 6594 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 6595 continue; 6596 6597 QualType FirstParamType = 6598 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 6599 QualType SecondParamType = 6600 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 6601 6602 // Skip if either parameter isn't of enumeral type. 6603 if (!FirstParamType->isEnumeralType() || 6604 !SecondParamType->isEnumeralType()) 6605 continue; 6606 6607 // Add this operator to the set of known user-defined operators. 6608 UserDefinedBinaryOperators.insert( 6609 std::make_pair(S.Context.getCanonicalType(FirstParamType), 6610 S.Context.getCanonicalType(SecondParamType))); 6611 } 6612 } 6613 } 6614 6615 /// Set of (canonical) types that we've already handled. 6616 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6617 6618 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6619 for (BuiltinCandidateTypeSet::iterator 6620 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6621 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6622 Ptr != PtrEnd; ++Ptr) { 6623 // Don't add the same builtin candidate twice. 6624 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6625 continue; 6626 6627 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6628 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6629 CandidateSet); 6630 } 6631 for (BuiltinCandidateTypeSet::iterator 6632 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6633 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6634 Enum != EnumEnd; ++Enum) { 6635 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 6636 6637 // Don't add the same builtin candidate twice, or if a user defined 6638 // candidate exists. 6639 if (!AddedTypes.insert(CanonType) || 6640 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 6641 CanonType))) 6642 continue; 6643 6644 QualType ParamTypes[2] = { *Enum, *Enum }; 6645 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6646 CandidateSet); 6647 } 6648 6649 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 6650 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 6651 if (AddedTypes.insert(NullPtrTy) && 6652 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 6653 NullPtrTy))) { 6654 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 6655 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6656 CandidateSet); 6657 } 6658 } 6659 } 6660 } 6661 6662 // C++ [over.built]p13: 6663 // 6664 // For every cv-qualified or cv-unqualified object type T 6665 // there exist candidate operator functions of the form 6666 // 6667 // T* operator+(T*, ptrdiff_t); 6668 // T& operator[](T*, ptrdiff_t); [BELOW] 6669 // T* operator-(T*, ptrdiff_t); 6670 // T* operator+(ptrdiff_t, T*); 6671 // T& operator[](ptrdiff_t, T*); [BELOW] 6672 // 6673 // C++ [over.built]p14: 6674 // 6675 // For every T, where T is a pointer to object type, there 6676 // exist candidate operator functions of the form 6677 // 6678 // ptrdiff_t operator-(T, T); 6679 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 6680 /// Set of (canonical) types that we've already handled. 6681 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6682 6683 for (int Arg = 0; Arg < 2; ++Arg) { 6684 QualType AsymetricParamTypes[2] = { 6685 S.Context.getPointerDiffType(), 6686 S.Context.getPointerDiffType(), 6687 }; 6688 for (BuiltinCandidateTypeSet::iterator 6689 Ptr = CandidateTypes[Arg].pointer_begin(), 6690 PtrEnd = CandidateTypes[Arg].pointer_end(); 6691 Ptr != PtrEnd; ++Ptr) { 6692 QualType PointeeTy = (*Ptr)->getPointeeType(); 6693 if (!PointeeTy->isObjectType()) 6694 continue; 6695 6696 AsymetricParamTypes[Arg] = *Ptr; 6697 if (Arg == 0 || Op == OO_Plus) { 6698 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 6699 // T* operator+(ptrdiff_t, T*); 6700 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 6701 CandidateSet); 6702 } 6703 if (Op == OO_Minus) { 6704 // ptrdiff_t operator-(T, T); 6705 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6706 continue; 6707 6708 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6709 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 6710 Args, 2, CandidateSet); 6711 } 6712 } 6713 } 6714 } 6715 6716 // C++ [over.built]p12: 6717 // 6718 // For every pair of promoted arithmetic types L and R, there 6719 // exist candidate operator functions of the form 6720 // 6721 // LR operator*(L, R); 6722 // LR operator/(L, R); 6723 // LR operator+(L, R); 6724 // LR operator-(L, R); 6725 // bool operator<(L, R); 6726 // bool operator>(L, R); 6727 // bool operator<=(L, R); 6728 // bool operator>=(L, R); 6729 // bool operator==(L, R); 6730 // bool operator!=(L, R); 6731 // 6732 // where LR is the result of the usual arithmetic conversions 6733 // between types L and R. 6734 // 6735 // C++ [over.built]p24: 6736 // 6737 // For every pair of promoted arithmetic types L and R, there exist 6738 // candidate operator functions of the form 6739 // 6740 // LR operator?(bool, L, R); 6741 // 6742 // where LR is the result of the usual arithmetic conversions 6743 // between types L and R. 6744 // Our candidates ignore the first parameter. 6745 void addGenericBinaryArithmeticOverloads(bool isComparison) { 6746 if (!HasArithmeticOrEnumeralCandidateType) 6747 return; 6748 6749 for (unsigned Left = FirstPromotedArithmeticType; 6750 Left < LastPromotedArithmeticType; ++Left) { 6751 for (unsigned Right = FirstPromotedArithmeticType; 6752 Right < LastPromotedArithmeticType; ++Right) { 6753 QualType LandR[2] = { getArithmeticType(Left), 6754 getArithmeticType(Right) }; 6755 QualType Result = 6756 isComparison ? S.Context.BoolTy 6757 : getUsualArithmeticConversions(Left, Right); 6758 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6759 } 6760 } 6761 6762 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 6763 // conditional operator for vector types. 6764 for (BuiltinCandidateTypeSet::iterator 6765 Vec1 = CandidateTypes[0].vector_begin(), 6766 Vec1End = CandidateTypes[0].vector_end(); 6767 Vec1 != Vec1End; ++Vec1) { 6768 for (BuiltinCandidateTypeSet::iterator 6769 Vec2 = CandidateTypes[1].vector_begin(), 6770 Vec2End = CandidateTypes[1].vector_end(); 6771 Vec2 != Vec2End; ++Vec2) { 6772 QualType LandR[2] = { *Vec1, *Vec2 }; 6773 QualType Result = S.Context.BoolTy; 6774 if (!isComparison) { 6775 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 6776 Result = *Vec1; 6777 else 6778 Result = *Vec2; 6779 } 6780 6781 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6782 } 6783 } 6784 } 6785 6786 // C++ [over.built]p17: 6787 // 6788 // For every pair of promoted integral types L and R, there 6789 // exist candidate operator functions of the form 6790 // 6791 // LR operator%(L, R); 6792 // LR operator&(L, R); 6793 // LR operator^(L, R); 6794 // LR operator|(L, R); 6795 // L operator<<(L, R); 6796 // L operator>>(L, R); 6797 // 6798 // where LR is the result of the usual arithmetic conversions 6799 // between types L and R. 6800 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 6801 if (!HasArithmeticOrEnumeralCandidateType) 6802 return; 6803 6804 for (unsigned Left = FirstPromotedIntegralType; 6805 Left < LastPromotedIntegralType; ++Left) { 6806 for (unsigned Right = FirstPromotedIntegralType; 6807 Right < LastPromotedIntegralType; ++Right) { 6808 QualType LandR[2] = { getArithmeticType(Left), 6809 getArithmeticType(Right) }; 6810 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 6811 ? LandR[0] 6812 : getUsualArithmeticConversions(Left, Right); 6813 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6814 } 6815 } 6816 } 6817 6818 // C++ [over.built]p20: 6819 // 6820 // For every pair (T, VQ), where T is an enumeration or 6821 // pointer to member type and VQ is either volatile or 6822 // empty, there exist candidate operator functions of the form 6823 // 6824 // VQ T& operator=(VQ T&, T); 6825 void addAssignmentMemberPointerOrEnumeralOverloads() { 6826 /// Set of (canonical) types that we've already handled. 6827 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6828 6829 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 6830 for (BuiltinCandidateTypeSet::iterator 6831 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6832 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6833 Enum != EnumEnd; ++Enum) { 6834 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 6835 continue; 6836 6837 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 6838 CandidateSet); 6839 } 6840 6841 for (BuiltinCandidateTypeSet::iterator 6842 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6843 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6844 MemPtr != MemPtrEnd; ++MemPtr) { 6845 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6846 continue; 6847 6848 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 6849 CandidateSet); 6850 } 6851 } 6852 } 6853 6854 // C++ [over.built]p19: 6855 // 6856 // For every pair (T, VQ), where T is any type and VQ is either 6857 // volatile or empty, there exist candidate operator functions 6858 // of the form 6859 // 6860 // T*VQ& operator=(T*VQ&, T*); 6861 // 6862 // C++ [over.built]p21: 6863 // 6864 // For every pair (T, VQ), where T is a cv-qualified or 6865 // cv-unqualified object type and VQ is either volatile or 6866 // empty, there exist candidate operator functions of the form 6867 // 6868 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 6869 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 6870 void addAssignmentPointerOverloads(bool isEqualOp) { 6871 /// Set of (canonical) types that we've already handled. 6872 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6873 6874 for (BuiltinCandidateTypeSet::iterator 6875 Ptr = CandidateTypes[0].pointer_begin(), 6876 PtrEnd = CandidateTypes[0].pointer_end(); 6877 Ptr != PtrEnd; ++Ptr) { 6878 // If this is operator=, keep track of the builtin candidates we added. 6879 if (isEqualOp) 6880 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 6881 else if (!(*Ptr)->getPointeeType()->isObjectType()) 6882 continue; 6883 6884 // non-volatile version 6885 QualType ParamTypes[2] = { 6886 S.Context.getLValueReferenceType(*Ptr), 6887 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 6888 }; 6889 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6890 /*IsAssigmentOperator=*/ isEqualOp); 6891 6892 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6893 VisibleTypeConversionsQuals.hasVolatile()) { 6894 // volatile version 6895 ParamTypes[0] = 6896 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6897 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6898 /*IsAssigmentOperator=*/isEqualOp); 6899 } 6900 } 6901 6902 if (isEqualOp) { 6903 for (BuiltinCandidateTypeSet::iterator 6904 Ptr = CandidateTypes[1].pointer_begin(), 6905 PtrEnd = CandidateTypes[1].pointer_end(); 6906 Ptr != PtrEnd; ++Ptr) { 6907 // Make sure we don't add the same candidate twice. 6908 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6909 continue; 6910 6911 QualType ParamTypes[2] = { 6912 S.Context.getLValueReferenceType(*Ptr), 6913 *Ptr, 6914 }; 6915 6916 // non-volatile version 6917 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6918 /*IsAssigmentOperator=*/true); 6919 6920 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6921 VisibleTypeConversionsQuals.hasVolatile()) { 6922 // volatile version 6923 ParamTypes[0] = 6924 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6925 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6926 CandidateSet, /*IsAssigmentOperator=*/true); 6927 } 6928 } 6929 } 6930 } 6931 6932 // C++ [over.built]p18: 6933 // 6934 // For every triple (L, VQ, R), where L is an arithmetic type, 6935 // VQ is either volatile or empty, and R is a promoted 6936 // arithmetic type, there exist candidate operator functions of 6937 // the form 6938 // 6939 // VQ L& operator=(VQ L&, R); 6940 // VQ L& operator*=(VQ L&, R); 6941 // VQ L& operator/=(VQ L&, R); 6942 // VQ L& operator+=(VQ L&, R); 6943 // VQ L& operator-=(VQ L&, R); 6944 void addAssignmentArithmeticOverloads(bool isEqualOp) { 6945 if (!HasArithmeticOrEnumeralCandidateType) 6946 return; 6947 6948 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 6949 for (unsigned Right = FirstPromotedArithmeticType; 6950 Right < LastPromotedArithmeticType; ++Right) { 6951 QualType ParamTypes[2]; 6952 ParamTypes[1] = getArithmeticType(Right); 6953 6954 // Add this built-in operator as a candidate (VQ is empty). 6955 ParamTypes[0] = 6956 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6957 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6958 /*IsAssigmentOperator=*/isEqualOp); 6959 6960 // Add this built-in operator as a candidate (VQ is 'volatile'). 6961 if (VisibleTypeConversionsQuals.hasVolatile()) { 6962 ParamTypes[0] = 6963 S.Context.getVolatileType(getArithmeticType(Left)); 6964 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6965 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6966 CandidateSet, 6967 /*IsAssigmentOperator=*/isEqualOp); 6968 } 6969 } 6970 } 6971 6972 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 6973 for (BuiltinCandidateTypeSet::iterator 6974 Vec1 = CandidateTypes[0].vector_begin(), 6975 Vec1End = CandidateTypes[0].vector_end(); 6976 Vec1 != Vec1End; ++Vec1) { 6977 for (BuiltinCandidateTypeSet::iterator 6978 Vec2 = CandidateTypes[1].vector_begin(), 6979 Vec2End = CandidateTypes[1].vector_end(); 6980 Vec2 != Vec2End; ++Vec2) { 6981 QualType ParamTypes[2]; 6982 ParamTypes[1] = *Vec2; 6983 // Add this built-in operator as a candidate (VQ is empty). 6984 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 6985 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6986 /*IsAssigmentOperator=*/isEqualOp); 6987 6988 // Add this built-in operator as a candidate (VQ is 'volatile'). 6989 if (VisibleTypeConversionsQuals.hasVolatile()) { 6990 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 6991 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6992 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6993 CandidateSet, 6994 /*IsAssigmentOperator=*/isEqualOp); 6995 } 6996 } 6997 } 6998 } 6999 7000 // C++ [over.built]p22: 7001 // 7002 // For every triple (L, VQ, R), where L is an integral type, VQ 7003 // is either volatile or empty, and R is a promoted integral 7004 // type, there exist candidate operator functions of the form 7005 // 7006 // VQ L& operator%=(VQ L&, R); 7007 // VQ L& operator<<=(VQ L&, R); 7008 // VQ L& operator>>=(VQ L&, R); 7009 // VQ L& operator&=(VQ L&, R); 7010 // VQ L& operator^=(VQ L&, R); 7011 // VQ L& operator|=(VQ L&, R); 7012 void addAssignmentIntegralOverloads() { 7013 if (!HasArithmeticOrEnumeralCandidateType) 7014 return; 7015 7016 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 7017 for (unsigned Right = FirstPromotedIntegralType; 7018 Right < LastPromotedIntegralType; ++Right) { 7019 QualType ParamTypes[2]; 7020 ParamTypes[1] = getArithmeticType(Right); 7021 7022 // Add this built-in operator as a candidate (VQ is empty). 7023 ParamTypes[0] = 7024 S.Context.getLValueReferenceType(getArithmeticType(Left)); 7025 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 7026 if (VisibleTypeConversionsQuals.hasVolatile()) { 7027 // Add this built-in operator as a candidate (VQ is 'volatile'). 7028 ParamTypes[0] = getArithmeticType(Left); 7029 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 7030 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 7031 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7032 CandidateSet); 7033 } 7034 } 7035 } 7036 } 7037 7038 // C++ [over.operator]p23: 7039 // 7040 // There also exist candidate operator functions of the form 7041 // 7042 // bool operator!(bool); 7043 // bool operator&&(bool, bool); 7044 // bool operator||(bool, bool); 7045 void addExclaimOverload() { 7046 QualType ParamTy = S.Context.BoolTy; 7047 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 7048 /*IsAssignmentOperator=*/false, 7049 /*NumContextualBoolArguments=*/1); 7050 } 7051 void addAmpAmpOrPipePipeOverload() { 7052 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 7053 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 7054 /*IsAssignmentOperator=*/false, 7055 /*NumContextualBoolArguments=*/2); 7056 } 7057 7058 // C++ [over.built]p13: 7059 // 7060 // For every cv-qualified or cv-unqualified object type T there 7061 // exist candidate operator functions of the form 7062 // 7063 // T* operator+(T*, ptrdiff_t); [ABOVE] 7064 // T& operator[](T*, ptrdiff_t); 7065 // T* operator-(T*, ptrdiff_t); [ABOVE] 7066 // T* operator+(ptrdiff_t, T*); [ABOVE] 7067 // T& operator[](ptrdiff_t, T*); 7068 void addSubscriptOverloads() { 7069 for (BuiltinCandidateTypeSet::iterator 7070 Ptr = CandidateTypes[0].pointer_begin(), 7071 PtrEnd = CandidateTypes[0].pointer_end(); 7072 Ptr != PtrEnd; ++Ptr) { 7073 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 7074 QualType PointeeType = (*Ptr)->getPointeeType(); 7075 if (!PointeeType->isObjectType()) 7076 continue; 7077 7078 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 7079 7080 // T& operator[](T*, ptrdiff_t) 7081 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7082 } 7083 7084 for (BuiltinCandidateTypeSet::iterator 7085 Ptr = CandidateTypes[1].pointer_begin(), 7086 PtrEnd = CandidateTypes[1].pointer_end(); 7087 Ptr != PtrEnd; ++Ptr) { 7088 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 7089 QualType PointeeType = (*Ptr)->getPointeeType(); 7090 if (!PointeeType->isObjectType()) 7091 continue; 7092 7093 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 7094 7095 // T& operator[](ptrdiff_t, T*) 7096 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7097 } 7098 } 7099 7100 // C++ [over.built]p11: 7101 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 7102 // C1 is the same type as C2 or is a derived class of C2, T is an object 7103 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 7104 // there exist candidate operator functions of the form 7105 // 7106 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 7107 // 7108 // where CV12 is the union of CV1 and CV2. 7109 void addArrowStarOverloads() { 7110 for (BuiltinCandidateTypeSet::iterator 7111 Ptr = CandidateTypes[0].pointer_begin(), 7112 PtrEnd = CandidateTypes[0].pointer_end(); 7113 Ptr != PtrEnd; ++Ptr) { 7114 QualType C1Ty = (*Ptr); 7115 QualType C1; 7116 QualifierCollector Q1; 7117 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 7118 if (!isa<RecordType>(C1)) 7119 continue; 7120 // heuristic to reduce number of builtin candidates in the set. 7121 // Add volatile/restrict version only if there are conversions to a 7122 // volatile/restrict type. 7123 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 7124 continue; 7125 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 7126 continue; 7127 for (BuiltinCandidateTypeSet::iterator 7128 MemPtr = CandidateTypes[1].member_pointer_begin(), 7129 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 7130 MemPtr != MemPtrEnd; ++MemPtr) { 7131 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 7132 QualType C2 = QualType(mptr->getClass(), 0); 7133 C2 = C2.getUnqualifiedType(); 7134 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 7135 break; 7136 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 7137 // build CV12 T& 7138 QualType T = mptr->getPointeeType(); 7139 if (!VisibleTypeConversionsQuals.hasVolatile() && 7140 T.isVolatileQualified()) 7141 continue; 7142 if (!VisibleTypeConversionsQuals.hasRestrict() && 7143 T.isRestrictQualified()) 7144 continue; 7145 T = Q1.apply(S.Context, T); 7146 QualType ResultTy = S.Context.getLValueReferenceType(T); 7147 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7148 } 7149 } 7150 } 7151 7152 // Note that we don't consider the first argument, since it has been 7153 // contextually converted to bool long ago. The candidates below are 7154 // therefore added as binary. 7155 // 7156 // C++ [over.built]p25: 7157 // For every type T, where T is a pointer, pointer-to-member, or scoped 7158 // enumeration type, there exist candidate operator functions of the form 7159 // 7160 // T operator?(bool, T, T); 7161 // 7162 void addConditionalOperatorOverloads() { 7163 /// Set of (canonical) types that we've already handled. 7164 llvm::SmallPtrSet<QualType, 8> AddedTypes; 7165 7166 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 7167 for (BuiltinCandidateTypeSet::iterator 7168 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 7169 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 7170 Ptr != PtrEnd; ++Ptr) { 7171 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 7172 continue; 7173 7174 QualType ParamTypes[2] = { *Ptr, *Ptr }; 7175 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 7176 } 7177 7178 for (BuiltinCandidateTypeSet::iterator 7179 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 7180 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 7181 MemPtr != MemPtrEnd; ++MemPtr) { 7182 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 7183 continue; 7184 7185 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 7186 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 7187 } 7188 7189 if (S.getLangOptions().CPlusPlus0x) { 7190 for (BuiltinCandidateTypeSet::iterator 7191 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 7192 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 7193 Enum != EnumEnd; ++Enum) { 7194 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 7195 continue; 7196 7197 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 7198 continue; 7199 7200 QualType ParamTypes[2] = { *Enum, *Enum }; 7201 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 7202 } 7203 } 7204 } 7205 } 7206}; 7207 7208} // end anonymous namespace 7209 7210/// AddBuiltinOperatorCandidates - Add the appropriate built-in 7211/// operator overloads to the candidate set (C++ [over.built]), based 7212/// on the operator @p Op and the arguments given. For example, if the 7213/// operator is a binary '+', this routine might add "int 7214/// operator+(int, int)" to cover integer addition. 7215void 7216Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 7217 SourceLocation OpLoc, 7218 Expr **Args, unsigned NumArgs, 7219 OverloadCandidateSet& CandidateSet) { 7220 // Find all of the types that the arguments can convert to, but only 7221 // if the operator we're looking at has built-in operator candidates 7222 // that make use of these types. Also record whether we encounter non-record 7223 // candidate types or either arithmetic or enumeral candidate types. 7224 Qualifiers VisibleTypeConversionsQuals; 7225 VisibleTypeConversionsQuals.addConst(); 7226 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7227 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 7228 7229 bool HasNonRecordCandidateType = false; 7230 bool HasArithmeticOrEnumeralCandidateType = false; 7231 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 7232 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 7233 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 7234 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 7235 OpLoc, 7236 true, 7237 (Op == OO_Exclaim || 7238 Op == OO_AmpAmp || 7239 Op == OO_PipePipe), 7240 VisibleTypeConversionsQuals); 7241 HasNonRecordCandidateType = HasNonRecordCandidateType || 7242 CandidateTypes[ArgIdx].hasNonRecordTypes(); 7243 HasArithmeticOrEnumeralCandidateType = 7244 HasArithmeticOrEnumeralCandidateType || 7245 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 7246 } 7247 7248 // Exit early when no non-record types have been added to the candidate set 7249 // for any of the arguments to the operator. 7250 // 7251 // We can't exit early for !, ||, or &&, since there we have always have 7252 // 'bool' overloads. 7253 if (!HasNonRecordCandidateType && 7254 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 7255 return; 7256 7257 // Setup an object to manage the common state for building overloads. 7258 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 7259 VisibleTypeConversionsQuals, 7260 HasArithmeticOrEnumeralCandidateType, 7261 CandidateTypes, CandidateSet); 7262 7263 // Dispatch over the operation to add in only those overloads which apply. 7264 switch (Op) { 7265 case OO_None: 7266 case NUM_OVERLOADED_OPERATORS: 7267 llvm_unreachable("Expected an overloaded operator"); 7268 7269 case OO_New: 7270 case OO_Delete: 7271 case OO_Array_New: 7272 case OO_Array_Delete: 7273 case OO_Call: 7274 llvm_unreachable( 7275 "Special operators don't use AddBuiltinOperatorCandidates"); 7276 7277 case OO_Comma: 7278 case OO_Arrow: 7279 // C++ [over.match.oper]p3: 7280 // -- For the operator ',', the unary operator '&', or the 7281 // operator '->', the built-in candidates set is empty. 7282 break; 7283 7284 case OO_Plus: // '+' is either unary or binary 7285 if (NumArgs == 1) 7286 OpBuilder.addUnaryPlusPointerOverloads(); 7287 // Fall through. 7288 7289 case OO_Minus: // '-' is either unary or binary 7290 if (NumArgs == 1) { 7291 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 7292 } else { 7293 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 7294 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7295 } 7296 break; 7297 7298 case OO_Star: // '*' is either unary or binary 7299 if (NumArgs == 1) 7300 OpBuilder.addUnaryStarPointerOverloads(); 7301 else 7302 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7303 break; 7304 7305 case OO_Slash: 7306 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7307 break; 7308 7309 case OO_PlusPlus: 7310 case OO_MinusMinus: 7311 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 7312 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 7313 break; 7314 7315 case OO_EqualEqual: 7316 case OO_ExclaimEqual: 7317 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 7318 // Fall through. 7319 7320 case OO_Less: 7321 case OO_Greater: 7322 case OO_LessEqual: 7323 case OO_GreaterEqual: 7324 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 7325 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 7326 break; 7327 7328 case OO_Percent: 7329 case OO_Caret: 7330 case OO_Pipe: 7331 case OO_LessLess: 7332 case OO_GreaterGreater: 7333 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 7334 break; 7335 7336 case OO_Amp: // '&' is either unary or binary 7337 if (NumArgs == 1) 7338 // C++ [over.match.oper]p3: 7339 // -- For the operator ',', the unary operator '&', or the 7340 // operator '->', the built-in candidates set is empty. 7341 break; 7342 7343 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 7344 break; 7345 7346 case OO_Tilde: 7347 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 7348 break; 7349 7350 case OO_Equal: 7351 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 7352 // Fall through. 7353 7354 case OO_PlusEqual: 7355 case OO_MinusEqual: 7356 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 7357 // Fall through. 7358 7359 case OO_StarEqual: 7360 case OO_SlashEqual: 7361 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 7362 break; 7363 7364 case OO_PercentEqual: 7365 case OO_LessLessEqual: 7366 case OO_GreaterGreaterEqual: 7367 case OO_AmpEqual: 7368 case OO_CaretEqual: 7369 case OO_PipeEqual: 7370 OpBuilder.addAssignmentIntegralOverloads(); 7371 break; 7372 7373 case OO_Exclaim: 7374 OpBuilder.addExclaimOverload(); 7375 break; 7376 7377 case OO_AmpAmp: 7378 case OO_PipePipe: 7379 OpBuilder.addAmpAmpOrPipePipeOverload(); 7380 break; 7381 7382 case OO_Subscript: 7383 OpBuilder.addSubscriptOverloads(); 7384 break; 7385 7386 case OO_ArrowStar: 7387 OpBuilder.addArrowStarOverloads(); 7388 break; 7389 7390 case OO_Conditional: 7391 OpBuilder.addConditionalOperatorOverloads(); 7392 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7393 break; 7394 } 7395} 7396 7397/// \brief Add function candidates found via argument-dependent lookup 7398/// to the set of overloading candidates. 7399/// 7400/// This routine performs argument-dependent name lookup based on the 7401/// given function name (which may also be an operator name) and adds 7402/// all of the overload candidates found by ADL to the overload 7403/// candidate set (C++ [basic.lookup.argdep]). 7404void 7405Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 7406 bool Operator, 7407 Expr **Args, unsigned NumArgs, 7408 TemplateArgumentListInfo *ExplicitTemplateArgs, 7409 OverloadCandidateSet& CandidateSet, 7410 bool PartialOverloading, 7411 bool StdNamespaceIsAssociated) { 7412 ADLResult Fns; 7413 7414 // FIXME: This approach for uniquing ADL results (and removing 7415 // redundant candidates from the set) relies on pointer-equality, 7416 // which means we need to key off the canonical decl. However, 7417 // always going back to the canonical decl might not get us the 7418 // right set of default arguments. What default arguments are 7419 // we supposed to consider on ADL candidates, anyway? 7420 7421 // FIXME: Pass in the explicit template arguments? 7422 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns, 7423 StdNamespaceIsAssociated); 7424 7425 // Erase all of the candidates we already knew about. 7426 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 7427 CandEnd = CandidateSet.end(); 7428 Cand != CandEnd; ++Cand) 7429 if (Cand->Function) { 7430 Fns.erase(Cand->Function); 7431 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 7432 Fns.erase(FunTmpl); 7433 } 7434 7435 // For each of the ADL candidates we found, add it to the overload 7436 // set. 7437 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 7438 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 7439 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 7440 if (ExplicitTemplateArgs) 7441 continue; 7442 7443 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 7444 false, PartialOverloading); 7445 } else 7446 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 7447 FoundDecl, ExplicitTemplateArgs, 7448 Args, NumArgs, CandidateSet); 7449 } 7450} 7451 7452/// isBetterOverloadCandidate - Determines whether the first overload 7453/// candidate is a better candidate than the second (C++ 13.3.3p1). 7454bool 7455isBetterOverloadCandidate(Sema &S, 7456 const OverloadCandidate &Cand1, 7457 const OverloadCandidate &Cand2, 7458 SourceLocation Loc, 7459 bool UserDefinedConversion) { 7460 // Define viable functions to be better candidates than non-viable 7461 // functions. 7462 if (!Cand2.Viable) 7463 return Cand1.Viable; 7464 else if (!Cand1.Viable) 7465 return false; 7466 7467 // C++ [over.match.best]p1: 7468 // 7469 // -- if F is a static member function, ICS1(F) is defined such 7470 // that ICS1(F) is neither better nor worse than ICS1(G) for 7471 // any function G, and, symmetrically, ICS1(G) is neither 7472 // better nor worse than ICS1(F). 7473 unsigned StartArg = 0; 7474 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 7475 StartArg = 1; 7476 7477 // C++ [over.match.best]p1: 7478 // A viable function F1 is defined to be a better function than another 7479 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 7480 // conversion sequence than ICSi(F2), and then... 7481 unsigned NumArgs = Cand1.NumConversions; 7482 assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch"); 7483 bool HasBetterConversion = false; 7484 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 7485 switch (CompareImplicitConversionSequences(S, 7486 Cand1.Conversions[ArgIdx], 7487 Cand2.Conversions[ArgIdx])) { 7488 case ImplicitConversionSequence::Better: 7489 // Cand1 has a better conversion sequence. 7490 HasBetterConversion = true; 7491 break; 7492 7493 case ImplicitConversionSequence::Worse: 7494 // Cand1 can't be better than Cand2. 7495 return false; 7496 7497 case ImplicitConversionSequence::Indistinguishable: 7498 // Do nothing. 7499 break; 7500 } 7501 } 7502 7503 // -- for some argument j, ICSj(F1) is a better conversion sequence than 7504 // ICSj(F2), or, if not that, 7505 if (HasBetterConversion) 7506 return true; 7507 7508 // - F1 is a non-template function and F2 is a function template 7509 // specialization, or, if not that, 7510 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 7511 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 7512 return true; 7513 7514 // -- F1 and F2 are function template specializations, and the function 7515 // template for F1 is more specialized than the template for F2 7516 // according to the partial ordering rules described in 14.5.5.2, or, 7517 // if not that, 7518 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 7519 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 7520 if (FunctionTemplateDecl *BetterTemplate 7521 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 7522 Cand2.Function->getPrimaryTemplate(), 7523 Loc, 7524 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 7525 : TPOC_Call, 7526 Cand1.ExplicitCallArguments)) 7527 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 7528 } 7529 7530 // -- the context is an initialization by user-defined conversion 7531 // (see 8.5, 13.3.1.5) and the standard conversion sequence 7532 // from the return type of F1 to the destination type (i.e., 7533 // the type of the entity being initialized) is a better 7534 // conversion sequence than the standard conversion sequence 7535 // from the return type of F2 to the destination type. 7536 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 7537 isa<CXXConversionDecl>(Cand1.Function) && 7538 isa<CXXConversionDecl>(Cand2.Function)) { 7539 switch (CompareStandardConversionSequences(S, 7540 Cand1.FinalConversion, 7541 Cand2.FinalConversion)) { 7542 case ImplicitConversionSequence::Better: 7543 // Cand1 has a better conversion sequence. 7544 return true; 7545 7546 case ImplicitConversionSequence::Worse: 7547 // Cand1 can't be better than Cand2. 7548 return false; 7549 7550 case ImplicitConversionSequence::Indistinguishable: 7551 // Do nothing 7552 break; 7553 } 7554 } 7555 7556 return false; 7557} 7558 7559/// \brief Computes the best viable function (C++ 13.3.3) 7560/// within an overload candidate set. 7561/// 7562/// \param CandidateSet the set of candidate functions. 7563/// 7564/// \param Loc the location of the function name (or operator symbol) for 7565/// which overload resolution occurs. 7566/// 7567/// \param Best f overload resolution was successful or found a deleted 7568/// function, Best points to the candidate function found. 7569/// 7570/// \returns The result of overload resolution. 7571OverloadingResult 7572OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 7573 iterator &Best, 7574 bool UserDefinedConversion) { 7575 // Find the best viable function. 7576 Best = end(); 7577 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7578 if (Cand->Viable) 7579 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 7580 UserDefinedConversion)) 7581 Best = Cand; 7582 } 7583 7584 // If we didn't find any viable functions, abort. 7585 if (Best == end()) 7586 return OR_No_Viable_Function; 7587 7588 // Make sure that this function is better than every other viable 7589 // function. If not, we have an ambiguity. 7590 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7591 if (Cand->Viable && 7592 Cand != Best && 7593 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 7594 UserDefinedConversion)) { 7595 Best = end(); 7596 return OR_Ambiguous; 7597 } 7598 } 7599 7600 // Best is the best viable function. 7601 if (Best->Function && 7602 (Best->Function->isDeleted() || 7603 S.isFunctionConsideredUnavailable(Best->Function))) 7604 return OR_Deleted; 7605 7606 return OR_Success; 7607} 7608 7609namespace { 7610 7611enum OverloadCandidateKind { 7612 oc_function, 7613 oc_method, 7614 oc_constructor, 7615 oc_function_template, 7616 oc_method_template, 7617 oc_constructor_template, 7618 oc_implicit_default_constructor, 7619 oc_implicit_copy_constructor, 7620 oc_implicit_move_constructor, 7621 oc_implicit_copy_assignment, 7622 oc_implicit_move_assignment, 7623 oc_implicit_inherited_constructor 7624}; 7625 7626OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 7627 FunctionDecl *Fn, 7628 std::string &Description) { 7629 bool isTemplate = false; 7630 7631 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 7632 isTemplate = true; 7633 Description = S.getTemplateArgumentBindingsText( 7634 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 7635 } 7636 7637 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 7638 if (!Ctor->isImplicit()) 7639 return isTemplate ? oc_constructor_template : oc_constructor; 7640 7641 if (Ctor->getInheritedConstructor()) 7642 return oc_implicit_inherited_constructor; 7643 7644 if (Ctor->isDefaultConstructor()) 7645 return oc_implicit_default_constructor; 7646 7647 if (Ctor->isMoveConstructor()) 7648 return oc_implicit_move_constructor; 7649 7650 assert(Ctor->isCopyConstructor() && 7651 "unexpected sort of implicit constructor"); 7652 return oc_implicit_copy_constructor; 7653 } 7654 7655 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 7656 // This actually gets spelled 'candidate function' for now, but 7657 // it doesn't hurt to split it out. 7658 if (!Meth->isImplicit()) 7659 return isTemplate ? oc_method_template : oc_method; 7660 7661 if (Meth->isMoveAssignmentOperator()) 7662 return oc_implicit_move_assignment; 7663 7664 if (Meth->isCopyAssignmentOperator()) 7665 return oc_implicit_copy_assignment; 7666 7667 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 7668 return oc_method; 7669 } 7670 7671 return isTemplate ? oc_function_template : oc_function; 7672} 7673 7674void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 7675 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 7676 if (!Ctor) return; 7677 7678 Ctor = Ctor->getInheritedConstructor(); 7679 if (!Ctor) return; 7680 7681 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 7682} 7683 7684} // end anonymous namespace 7685 7686// Notes the location of an overload candidate. 7687void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) { 7688 std::string FnDesc; 7689 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 7690 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 7691 << (unsigned) K << FnDesc; 7692 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 7693 Diag(Fn->getLocation(), PD); 7694 MaybeEmitInheritedConstructorNote(*this, Fn); 7695} 7696 7697//Notes the location of all overload candidates designated through 7698// OverloadedExpr 7699void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) { 7700 assert(OverloadedExpr->getType() == Context.OverloadTy); 7701 7702 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 7703 OverloadExpr *OvlExpr = Ovl.Expression; 7704 7705 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7706 IEnd = OvlExpr->decls_end(); 7707 I != IEnd; ++I) { 7708 if (FunctionTemplateDecl *FunTmpl = 7709 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 7710 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType); 7711 } else if (FunctionDecl *Fun 7712 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 7713 NoteOverloadCandidate(Fun, DestType); 7714 } 7715 } 7716} 7717 7718/// Diagnoses an ambiguous conversion. The partial diagnostic is the 7719/// "lead" diagnostic; it will be given two arguments, the source and 7720/// target types of the conversion. 7721void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 7722 Sema &S, 7723 SourceLocation CaretLoc, 7724 const PartialDiagnostic &PDiag) const { 7725 S.Diag(CaretLoc, PDiag) 7726 << Ambiguous.getFromType() << Ambiguous.getToType(); 7727 for (AmbiguousConversionSequence::const_iterator 7728 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 7729 S.NoteOverloadCandidate(*I); 7730 } 7731} 7732 7733namespace { 7734 7735void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 7736 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 7737 assert(Conv.isBad()); 7738 assert(Cand->Function && "for now, candidate must be a function"); 7739 FunctionDecl *Fn = Cand->Function; 7740 7741 // There's a conversion slot for the object argument if this is a 7742 // non-constructor method. Note that 'I' corresponds the 7743 // conversion-slot index. 7744 bool isObjectArgument = false; 7745 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 7746 if (I == 0) 7747 isObjectArgument = true; 7748 else 7749 I--; 7750 } 7751 7752 std::string FnDesc; 7753 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 7754 7755 Expr *FromExpr = Conv.Bad.FromExpr; 7756 QualType FromTy = Conv.Bad.getFromType(); 7757 QualType ToTy = Conv.Bad.getToType(); 7758 7759 if (FromTy == S.Context.OverloadTy) { 7760 assert(FromExpr && "overload set argument came from implicit argument?"); 7761 Expr *E = FromExpr->IgnoreParens(); 7762 if (isa<UnaryOperator>(E)) 7763 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 7764 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 7765 7766 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 7767 << (unsigned) FnKind << FnDesc 7768 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7769 << ToTy << Name << I+1; 7770 MaybeEmitInheritedConstructorNote(S, Fn); 7771 return; 7772 } 7773 7774 // Do some hand-waving analysis to see if the non-viability is due 7775 // to a qualifier mismatch. 7776 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 7777 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 7778 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 7779 CToTy = RT->getPointeeType(); 7780 else { 7781 // TODO: detect and diagnose the full richness of const mismatches. 7782 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 7783 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 7784 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 7785 } 7786 7787 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 7788 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 7789 // It is dumb that we have to do this here. 7790 while (isa<ArrayType>(CFromTy)) 7791 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 7792 while (isa<ArrayType>(CToTy)) 7793 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 7794 7795 Qualifiers FromQs = CFromTy.getQualifiers(); 7796 Qualifiers ToQs = CToTy.getQualifiers(); 7797 7798 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 7799 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 7800 << (unsigned) FnKind << FnDesc 7801 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7802 << FromTy 7803 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 7804 << (unsigned) isObjectArgument << I+1; 7805 MaybeEmitInheritedConstructorNote(S, Fn); 7806 return; 7807 } 7808 7809 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 7810 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 7811 << (unsigned) FnKind << FnDesc 7812 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7813 << FromTy 7814 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 7815 << (unsigned) isObjectArgument << I+1; 7816 MaybeEmitInheritedConstructorNote(S, Fn); 7817 return; 7818 } 7819 7820 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 7821 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 7822 << (unsigned) FnKind << FnDesc 7823 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7824 << FromTy 7825 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 7826 << (unsigned) isObjectArgument << I+1; 7827 MaybeEmitInheritedConstructorNote(S, Fn); 7828 return; 7829 } 7830 7831 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 7832 assert(CVR && "unexpected qualifiers mismatch"); 7833 7834 if (isObjectArgument) { 7835 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 7836 << (unsigned) FnKind << FnDesc 7837 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7838 << FromTy << (CVR - 1); 7839 } else { 7840 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 7841 << (unsigned) FnKind << FnDesc 7842 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7843 << FromTy << (CVR - 1) << I+1; 7844 } 7845 MaybeEmitInheritedConstructorNote(S, Fn); 7846 return; 7847 } 7848 7849 // Special diagnostic for failure to convert an initializer list, since 7850 // telling the user that it has type void is not useful. 7851 if (FromExpr && isa<InitListExpr>(FromExpr)) { 7852 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 7853 << (unsigned) FnKind << FnDesc 7854 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7855 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7856 MaybeEmitInheritedConstructorNote(S, Fn); 7857 return; 7858 } 7859 7860 // Diagnose references or pointers to incomplete types differently, 7861 // since it's far from impossible that the incompleteness triggered 7862 // the failure. 7863 QualType TempFromTy = FromTy.getNonReferenceType(); 7864 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 7865 TempFromTy = PTy->getPointeeType(); 7866 if (TempFromTy->isIncompleteType()) { 7867 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 7868 << (unsigned) FnKind << FnDesc 7869 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7870 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7871 MaybeEmitInheritedConstructorNote(S, Fn); 7872 return; 7873 } 7874 7875 // Diagnose base -> derived pointer conversions. 7876 unsigned BaseToDerivedConversion = 0; 7877 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 7878 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 7879 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 7880 FromPtrTy->getPointeeType()) && 7881 !FromPtrTy->getPointeeType()->isIncompleteType() && 7882 !ToPtrTy->getPointeeType()->isIncompleteType() && 7883 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 7884 FromPtrTy->getPointeeType())) 7885 BaseToDerivedConversion = 1; 7886 } 7887 } else if (const ObjCObjectPointerType *FromPtrTy 7888 = FromTy->getAs<ObjCObjectPointerType>()) { 7889 if (const ObjCObjectPointerType *ToPtrTy 7890 = ToTy->getAs<ObjCObjectPointerType>()) 7891 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 7892 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 7893 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 7894 FromPtrTy->getPointeeType()) && 7895 FromIface->isSuperClassOf(ToIface)) 7896 BaseToDerivedConversion = 2; 7897 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 7898 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 7899 !FromTy->isIncompleteType() && 7900 !ToRefTy->getPointeeType()->isIncompleteType() && 7901 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 7902 BaseToDerivedConversion = 3; 7903 } 7904 7905 if (BaseToDerivedConversion) { 7906 S.Diag(Fn->getLocation(), 7907 diag::note_ovl_candidate_bad_base_to_derived_conv) 7908 << (unsigned) FnKind << FnDesc 7909 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7910 << (BaseToDerivedConversion - 1) 7911 << FromTy << ToTy << I+1; 7912 MaybeEmitInheritedConstructorNote(S, Fn); 7913 return; 7914 } 7915 7916 if (isa<ObjCObjectPointerType>(CFromTy) && 7917 isa<PointerType>(CToTy)) { 7918 Qualifiers FromQs = CFromTy.getQualifiers(); 7919 Qualifiers ToQs = CToTy.getQualifiers(); 7920 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 7921 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 7922 << (unsigned) FnKind << FnDesc 7923 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7924 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7925 MaybeEmitInheritedConstructorNote(S, Fn); 7926 return; 7927 } 7928 } 7929 7930 // Emit the generic diagnostic and, optionally, add the hints to it. 7931 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 7932 FDiag << (unsigned) FnKind << FnDesc 7933 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7934 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 7935 << (unsigned) (Cand->Fix.Kind); 7936 7937 // If we can fix the conversion, suggest the FixIts. 7938 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 7939 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 7940 FDiag << *HI; 7941 S.Diag(Fn->getLocation(), FDiag); 7942 7943 MaybeEmitInheritedConstructorNote(S, Fn); 7944} 7945 7946void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 7947 unsigned NumFormalArgs) { 7948 // TODO: treat calls to a missing default constructor as a special case 7949 7950 FunctionDecl *Fn = Cand->Function; 7951 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 7952 7953 unsigned MinParams = Fn->getMinRequiredArguments(); 7954 7955 // With invalid overloaded operators, it's possible that we think we 7956 // have an arity mismatch when it fact it looks like we have the 7957 // right number of arguments, because only overloaded operators have 7958 // the weird behavior of overloading member and non-member functions. 7959 // Just don't report anything. 7960 if (Fn->isInvalidDecl() && 7961 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 7962 return; 7963 7964 // at least / at most / exactly 7965 unsigned mode, modeCount; 7966 if (NumFormalArgs < MinParams) { 7967 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 7968 (Cand->FailureKind == ovl_fail_bad_deduction && 7969 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 7970 if (MinParams != FnTy->getNumArgs() || 7971 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 7972 mode = 0; // "at least" 7973 else 7974 mode = 2; // "exactly" 7975 modeCount = MinParams; 7976 } else { 7977 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 7978 (Cand->FailureKind == ovl_fail_bad_deduction && 7979 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 7980 if (MinParams != FnTy->getNumArgs()) 7981 mode = 1; // "at most" 7982 else 7983 mode = 2; // "exactly" 7984 modeCount = FnTy->getNumArgs(); 7985 } 7986 7987 std::string Description; 7988 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 7989 7990 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 7991 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 7992 << modeCount << NumFormalArgs; 7993 MaybeEmitInheritedConstructorNote(S, Fn); 7994} 7995 7996/// Diagnose a failed template-argument deduction. 7997void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 7998 Expr **Args, unsigned NumArgs) { 7999 FunctionDecl *Fn = Cand->Function; // pattern 8000 8001 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 8002 NamedDecl *ParamD; 8003 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 8004 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 8005 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 8006 switch (Cand->DeductionFailure.Result) { 8007 case Sema::TDK_Success: 8008 llvm_unreachable("TDK_success while diagnosing bad deduction"); 8009 8010 case Sema::TDK_Incomplete: { 8011 assert(ParamD && "no parameter found for incomplete deduction result"); 8012 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 8013 << ParamD->getDeclName(); 8014 MaybeEmitInheritedConstructorNote(S, Fn); 8015 return; 8016 } 8017 8018 case Sema::TDK_Underqualified: { 8019 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 8020 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 8021 8022 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 8023 8024 // Param will have been canonicalized, but it should just be a 8025 // qualified version of ParamD, so move the qualifiers to that. 8026 QualifierCollector Qs; 8027 Qs.strip(Param); 8028 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 8029 assert(S.Context.hasSameType(Param, NonCanonParam)); 8030 8031 // Arg has also been canonicalized, but there's nothing we can do 8032 // about that. It also doesn't matter as much, because it won't 8033 // have any template parameters in it (because deduction isn't 8034 // done on dependent types). 8035 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 8036 8037 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 8038 << ParamD->getDeclName() << Arg << NonCanonParam; 8039 MaybeEmitInheritedConstructorNote(S, Fn); 8040 return; 8041 } 8042 8043 case Sema::TDK_Inconsistent: { 8044 assert(ParamD && "no parameter found for inconsistent deduction result"); 8045 int which = 0; 8046 if (isa<TemplateTypeParmDecl>(ParamD)) 8047 which = 0; 8048 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 8049 which = 1; 8050 else { 8051 which = 2; 8052 } 8053 8054 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 8055 << which << ParamD->getDeclName() 8056 << *Cand->DeductionFailure.getFirstArg() 8057 << *Cand->DeductionFailure.getSecondArg(); 8058 MaybeEmitInheritedConstructorNote(S, Fn); 8059 return; 8060 } 8061 8062 case Sema::TDK_InvalidExplicitArguments: 8063 assert(ParamD && "no parameter found for invalid explicit arguments"); 8064 if (ParamD->getDeclName()) 8065 S.Diag(Fn->getLocation(), 8066 diag::note_ovl_candidate_explicit_arg_mismatch_named) 8067 << ParamD->getDeclName(); 8068 else { 8069 int index = 0; 8070 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 8071 index = TTP->getIndex(); 8072 else if (NonTypeTemplateParmDecl *NTTP 8073 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 8074 index = NTTP->getIndex(); 8075 else 8076 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 8077 S.Diag(Fn->getLocation(), 8078 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 8079 << (index + 1); 8080 } 8081 MaybeEmitInheritedConstructorNote(S, Fn); 8082 return; 8083 8084 case Sema::TDK_TooManyArguments: 8085 case Sema::TDK_TooFewArguments: 8086 DiagnoseArityMismatch(S, Cand, NumArgs); 8087 return; 8088 8089 case Sema::TDK_InstantiationDepth: 8090 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 8091 MaybeEmitInheritedConstructorNote(S, Fn); 8092 return; 8093 8094 case Sema::TDK_SubstitutionFailure: { 8095 std::string ArgString; 8096 if (TemplateArgumentList *Args 8097 = Cand->DeductionFailure.getTemplateArgumentList()) 8098 ArgString = S.getTemplateArgumentBindingsText( 8099 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 8100 *Args); 8101 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 8102 << ArgString; 8103 MaybeEmitInheritedConstructorNote(S, Fn); 8104 return; 8105 } 8106 8107 // TODO: diagnose these individually, then kill off 8108 // note_ovl_candidate_bad_deduction, which is uselessly vague. 8109 case Sema::TDK_NonDeducedMismatch: 8110 case Sema::TDK_FailedOverloadResolution: 8111 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 8112 MaybeEmitInheritedConstructorNote(S, Fn); 8113 return; 8114 } 8115} 8116 8117/// CUDA: diagnose an invalid call across targets. 8118void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 8119 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 8120 FunctionDecl *Callee = Cand->Function; 8121 8122 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 8123 CalleeTarget = S.IdentifyCUDATarget(Callee); 8124 8125 std::string FnDesc; 8126 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc); 8127 8128 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 8129 << (unsigned) FnKind << CalleeTarget << CallerTarget; 8130} 8131 8132/// Generates a 'note' diagnostic for an overload candidate. We've 8133/// already generated a primary error at the call site. 8134/// 8135/// It really does need to be a single diagnostic with its caret 8136/// pointed at the candidate declaration. Yes, this creates some 8137/// major challenges of technical writing. Yes, this makes pointing 8138/// out problems with specific arguments quite awkward. It's still 8139/// better than generating twenty screens of text for every failed 8140/// overload. 8141/// 8142/// It would be great to be able to express per-candidate problems 8143/// more richly for those diagnostic clients that cared, but we'd 8144/// still have to be just as careful with the default diagnostics. 8145void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 8146 Expr **Args, unsigned NumArgs) { 8147 FunctionDecl *Fn = Cand->Function; 8148 8149 // Note deleted candidates, but only if they're viable. 8150 if (Cand->Viable && (Fn->isDeleted() || 8151 S.isFunctionConsideredUnavailable(Fn))) { 8152 std::string FnDesc; 8153 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 8154 8155 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 8156 << FnKind << FnDesc << Fn->isDeleted(); 8157 MaybeEmitInheritedConstructorNote(S, Fn); 8158 return; 8159 } 8160 8161 // We don't really have anything else to say about viable candidates. 8162 if (Cand->Viable) { 8163 S.NoteOverloadCandidate(Fn); 8164 return; 8165 } 8166 8167 switch (Cand->FailureKind) { 8168 case ovl_fail_too_many_arguments: 8169 case ovl_fail_too_few_arguments: 8170 return DiagnoseArityMismatch(S, Cand, NumArgs); 8171 8172 case ovl_fail_bad_deduction: 8173 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 8174 8175 case ovl_fail_trivial_conversion: 8176 case ovl_fail_bad_final_conversion: 8177 case ovl_fail_final_conversion_not_exact: 8178 return S.NoteOverloadCandidate(Fn); 8179 8180 case ovl_fail_bad_conversion: { 8181 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 8182 for (unsigned N = Cand->NumConversions; I != N; ++I) 8183 if (Cand->Conversions[I].isBad()) 8184 return DiagnoseBadConversion(S, Cand, I); 8185 8186 // FIXME: this currently happens when we're called from SemaInit 8187 // when user-conversion overload fails. Figure out how to handle 8188 // those conditions and diagnose them well. 8189 return S.NoteOverloadCandidate(Fn); 8190 } 8191 8192 case ovl_fail_bad_target: 8193 return DiagnoseBadTarget(S, Cand); 8194 } 8195} 8196 8197void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 8198 // Desugar the type of the surrogate down to a function type, 8199 // retaining as many typedefs as possible while still showing 8200 // the function type (and, therefore, its parameter types). 8201 QualType FnType = Cand->Surrogate->getConversionType(); 8202 bool isLValueReference = false; 8203 bool isRValueReference = false; 8204 bool isPointer = false; 8205 if (const LValueReferenceType *FnTypeRef = 8206 FnType->getAs<LValueReferenceType>()) { 8207 FnType = FnTypeRef->getPointeeType(); 8208 isLValueReference = true; 8209 } else if (const RValueReferenceType *FnTypeRef = 8210 FnType->getAs<RValueReferenceType>()) { 8211 FnType = FnTypeRef->getPointeeType(); 8212 isRValueReference = true; 8213 } 8214 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 8215 FnType = FnTypePtr->getPointeeType(); 8216 isPointer = true; 8217 } 8218 // Desugar down to a function type. 8219 FnType = QualType(FnType->getAs<FunctionType>(), 0); 8220 // Reconstruct the pointer/reference as appropriate. 8221 if (isPointer) FnType = S.Context.getPointerType(FnType); 8222 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 8223 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 8224 8225 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 8226 << FnType; 8227 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 8228} 8229 8230void NoteBuiltinOperatorCandidate(Sema &S, 8231 const char *Opc, 8232 SourceLocation OpLoc, 8233 OverloadCandidate *Cand) { 8234 assert(Cand->NumConversions <= 2 && "builtin operator is not binary"); 8235 std::string TypeStr("operator"); 8236 TypeStr += Opc; 8237 TypeStr += "("; 8238 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 8239 if (Cand->NumConversions == 1) { 8240 TypeStr += ")"; 8241 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 8242 } else { 8243 TypeStr += ", "; 8244 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 8245 TypeStr += ")"; 8246 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 8247 } 8248} 8249 8250void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 8251 OverloadCandidate *Cand) { 8252 unsigned NoOperands = Cand->NumConversions; 8253 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 8254 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 8255 if (ICS.isBad()) break; // all meaningless after first invalid 8256 if (!ICS.isAmbiguous()) continue; 8257 8258 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 8259 S.PDiag(diag::note_ambiguous_type_conversion)); 8260 } 8261} 8262 8263SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 8264 if (Cand->Function) 8265 return Cand->Function->getLocation(); 8266 if (Cand->IsSurrogate) 8267 return Cand->Surrogate->getLocation(); 8268 return SourceLocation(); 8269} 8270 8271static unsigned 8272RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) { 8273 switch ((Sema::TemplateDeductionResult)DFI.Result) { 8274 case Sema::TDK_Success: 8275 llvm_unreachable("TDK_success while diagnosing bad deduction"); 8276 8277 case Sema::TDK_Incomplete: 8278 return 1; 8279 8280 case Sema::TDK_Underqualified: 8281 case Sema::TDK_Inconsistent: 8282 return 2; 8283 8284 case Sema::TDK_SubstitutionFailure: 8285 case Sema::TDK_NonDeducedMismatch: 8286 return 3; 8287 8288 case Sema::TDK_InstantiationDepth: 8289 case Sema::TDK_FailedOverloadResolution: 8290 return 4; 8291 8292 case Sema::TDK_InvalidExplicitArguments: 8293 return 5; 8294 8295 case Sema::TDK_TooManyArguments: 8296 case Sema::TDK_TooFewArguments: 8297 return 6; 8298 } 8299 llvm_unreachable("Unhandled deduction result"); 8300} 8301 8302struct CompareOverloadCandidatesForDisplay { 8303 Sema &S; 8304 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 8305 8306 bool operator()(const OverloadCandidate *L, 8307 const OverloadCandidate *R) { 8308 // Fast-path this check. 8309 if (L == R) return false; 8310 8311 // Order first by viability. 8312 if (L->Viable) { 8313 if (!R->Viable) return true; 8314 8315 // TODO: introduce a tri-valued comparison for overload 8316 // candidates. Would be more worthwhile if we had a sort 8317 // that could exploit it. 8318 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 8319 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 8320 } else if (R->Viable) 8321 return false; 8322 8323 assert(L->Viable == R->Viable); 8324 8325 // Criteria by which we can sort non-viable candidates: 8326 if (!L->Viable) { 8327 // 1. Arity mismatches come after other candidates. 8328 if (L->FailureKind == ovl_fail_too_many_arguments || 8329 L->FailureKind == ovl_fail_too_few_arguments) 8330 return false; 8331 if (R->FailureKind == ovl_fail_too_many_arguments || 8332 R->FailureKind == ovl_fail_too_few_arguments) 8333 return true; 8334 8335 // 2. Bad conversions come first and are ordered by the number 8336 // of bad conversions and quality of good conversions. 8337 if (L->FailureKind == ovl_fail_bad_conversion) { 8338 if (R->FailureKind != ovl_fail_bad_conversion) 8339 return true; 8340 8341 // The conversion that can be fixed with a smaller number of changes, 8342 // comes first. 8343 unsigned numLFixes = L->Fix.NumConversionsFixed; 8344 unsigned numRFixes = R->Fix.NumConversionsFixed; 8345 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 8346 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 8347 if (numLFixes != numRFixes) { 8348 if (numLFixes < numRFixes) 8349 return true; 8350 else 8351 return false; 8352 } 8353 8354 // If there's any ordering between the defined conversions... 8355 // FIXME: this might not be transitive. 8356 assert(L->NumConversions == R->NumConversions); 8357 8358 int leftBetter = 0; 8359 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 8360 for (unsigned E = L->NumConversions; I != E; ++I) { 8361 switch (CompareImplicitConversionSequences(S, 8362 L->Conversions[I], 8363 R->Conversions[I])) { 8364 case ImplicitConversionSequence::Better: 8365 leftBetter++; 8366 break; 8367 8368 case ImplicitConversionSequence::Worse: 8369 leftBetter--; 8370 break; 8371 8372 case ImplicitConversionSequence::Indistinguishable: 8373 break; 8374 } 8375 } 8376 if (leftBetter > 0) return true; 8377 if (leftBetter < 0) return false; 8378 8379 } else if (R->FailureKind == ovl_fail_bad_conversion) 8380 return false; 8381 8382 if (L->FailureKind == ovl_fail_bad_deduction) { 8383 if (R->FailureKind != ovl_fail_bad_deduction) 8384 return true; 8385 8386 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 8387 return RankDeductionFailure(L->DeductionFailure) 8388 < RankDeductionFailure(R->DeductionFailure); 8389 } else if (R->FailureKind == ovl_fail_bad_deduction) 8390 return false; 8391 8392 // TODO: others? 8393 } 8394 8395 // Sort everything else by location. 8396 SourceLocation LLoc = GetLocationForCandidate(L); 8397 SourceLocation RLoc = GetLocationForCandidate(R); 8398 8399 // Put candidates without locations (e.g. builtins) at the end. 8400 if (LLoc.isInvalid()) return false; 8401 if (RLoc.isInvalid()) return true; 8402 8403 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 8404 } 8405}; 8406 8407/// CompleteNonViableCandidate - Normally, overload resolution only 8408/// computes up to the first. Produces the FixIt set if possible. 8409void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 8410 Expr **Args, unsigned NumArgs) { 8411 assert(!Cand->Viable); 8412 8413 // Don't do anything on failures other than bad conversion. 8414 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 8415 8416 // We only want the FixIts if all the arguments can be corrected. 8417 bool Unfixable = false; 8418 // Use a implicit copy initialization to check conversion fixes. 8419 Cand->Fix.setConversionChecker(TryCopyInitialization); 8420 8421 // Skip forward to the first bad conversion. 8422 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 8423 unsigned ConvCount = Cand->NumConversions; 8424 while (true) { 8425 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 8426 ConvIdx++; 8427 if (Cand->Conversions[ConvIdx - 1].isBad()) { 8428 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); 8429 break; 8430 } 8431 } 8432 8433 if (ConvIdx == ConvCount) 8434 return; 8435 8436 assert(!Cand->Conversions[ConvIdx].isInitialized() && 8437 "remaining conversion is initialized?"); 8438 8439 // FIXME: this should probably be preserved from the overload 8440 // operation somehow. 8441 bool SuppressUserConversions = false; 8442 8443 const FunctionProtoType* Proto; 8444 unsigned ArgIdx = ConvIdx; 8445 8446 if (Cand->IsSurrogate) { 8447 QualType ConvType 8448 = Cand->Surrogate->getConversionType().getNonReferenceType(); 8449 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 8450 ConvType = ConvPtrType->getPointeeType(); 8451 Proto = ConvType->getAs<FunctionProtoType>(); 8452 ArgIdx--; 8453 } else if (Cand->Function) { 8454 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 8455 if (isa<CXXMethodDecl>(Cand->Function) && 8456 !isa<CXXConstructorDecl>(Cand->Function)) 8457 ArgIdx--; 8458 } else { 8459 // Builtin binary operator with a bad first conversion. 8460 assert(ConvCount <= 3); 8461 for (; ConvIdx != ConvCount; ++ConvIdx) 8462 Cand->Conversions[ConvIdx] 8463 = TryCopyInitialization(S, Args[ConvIdx], 8464 Cand->BuiltinTypes.ParamTypes[ConvIdx], 8465 SuppressUserConversions, 8466 /*InOverloadResolution*/ true, 8467 /*AllowObjCWritebackConversion=*/ 8468 S.getLangOptions().ObjCAutoRefCount); 8469 return; 8470 } 8471 8472 // Fill in the rest of the conversions. 8473 unsigned NumArgsInProto = Proto->getNumArgs(); 8474 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 8475 if (ArgIdx < NumArgsInProto) { 8476 Cand->Conversions[ConvIdx] 8477 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 8478 SuppressUserConversions, 8479 /*InOverloadResolution=*/true, 8480 /*AllowObjCWritebackConversion=*/ 8481 S.getLangOptions().ObjCAutoRefCount); 8482 // Store the FixIt in the candidate if it exists. 8483 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 8484 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 8485 } 8486 else 8487 Cand->Conversions[ConvIdx].setEllipsis(); 8488 } 8489} 8490 8491} // end anonymous namespace 8492 8493/// PrintOverloadCandidates - When overload resolution fails, prints 8494/// diagnostic messages containing the candidates in the candidate 8495/// set. 8496void OverloadCandidateSet::NoteCandidates(Sema &S, 8497 OverloadCandidateDisplayKind OCD, 8498 Expr **Args, unsigned NumArgs, 8499 const char *Opc, 8500 SourceLocation OpLoc) { 8501 // Sort the candidates by viability and position. Sorting directly would 8502 // be prohibitive, so we make a set of pointers and sort those. 8503 SmallVector<OverloadCandidate*, 32> Cands; 8504 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 8505 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 8506 if (Cand->Viable) 8507 Cands.push_back(Cand); 8508 else if (OCD == OCD_AllCandidates) { 8509 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 8510 if (Cand->Function || Cand->IsSurrogate) 8511 Cands.push_back(Cand); 8512 // Otherwise, this a non-viable builtin candidate. We do not, in general, 8513 // want to list every possible builtin candidate. 8514 } 8515 } 8516 8517 std::sort(Cands.begin(), Cands.end(), 8518 CompareOverloadCandidatesForDisplay(S)); 8519 8520 bool ReportedAmbiguousConversions = false; 8521 8522 SmallVectorImpl<OverloadCandidate*>::iterator I, E; 8523 const DiagnosticsEngine::OverloadsShown ShowOverloads = 8524 S.Diags.getShowOverloads(); 8525 unsigned CandsShown = 0; 8526 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 8527 OverloadCandidate *Cand = *I; 8528 8529 // Set an arbitrary limit on the number of candidate functions we'll spam 8530 // the user with. FIXME: This limit should depend on details of the 8531 // candidate list. 8532 if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) { 8533 break; 8534 } 8535 ++CandsShown; 8536 8537 if (Cand->Function) 8538 NoteFunctionCandidate(S, Cand, Args, NumArgs); 8539 else if (Cand->IsSurrogate) 8540 NoteSurrogateCandidate(S, Cand); 8541 else { 8542 assert(Cand->Viable && 8543 "Non-viable built-in candidates are not added to Cands."); 8544 // Generally we only see ambiguities including viable builtin 8545 // operators if overload resolution got screwed up by an 8546 // ambiguous user-defined conversion. 8547 // 8548 // FIXME: It's quite possible for different conversions to see 8549 // different ambiguities, though. 8550 if (!ReportedAmbiguousConversions) { 8551 NoteAmbiguousUserConversions(S, OpLoc, Cand); 8552 ReportedAmbiguousConversions = true; 8553 } 8554 8555 // If this is a viable builtin, print it. 8556 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 8557 } 8558 } 8559 8560 if (I != E) 8561 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 8562} 8563 8564// [PossiblyAFunctionType] --> [Return] 8565// NonFunctionType --> NonFunctionType 8566// R (A) --> R(A) 8567// R (*)(A) --> R (A) 8568// R (&)(A) --> R (A) 8569// R (S::*)(A) --> R (A) 8570QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 8571 QualType Ret = PossiblyAFunctionType; 8572 if (const PointerType *ToTypePtr = 8573 PossiblyAFunctionType->getAs<PointerType>()) 8574 Ret = ToTypePtr->getPointeeType(); 8575 else if (const ReferenceType *ToTypeRef = 8576 PossiblyAFunctionType->getAs<ReferenceType>()) 8577 Ret = ToTypeRef->getPointeeType(); 8578 else if (const MemberPointerType *MemTypePtr = 8579 PossiblyAFunctionType->getAs<MemberPointerType>()) 8580 Ret = MemTypePtr->getPointeeType(); 8581 Ret = 8582 Context.getCanonicalType(Ret).getUnqualifiedType(); 8583 return Ret; 8584} 8585 8586// A helper class to help with address of function resolution 8587// - allows us to avoid passing around all those ugly parameters 8588class AddressOfFunctionResolver 8589{ 8590 Sema& S; 8591 Expr* SourceExpr; 8592 const QualType& TargetType; 8593 QualType TargetFunctionType; // Extracted function type from target type 8594 8595 bool Complain; 8596 //DeclAccessPair& ResultFunctionAccessPair; 8597 ASTContext& Context; 8598 8599 bool TargetTypeIsNonStaticMemberFunction; 8600 bool FoundNonTemplateFunction; 8601 8602 OverloadExpr::FindResult OvlExprInfo; 8603 OverloadExpr *OvlExpr; 8604 TemplateArgumentListInfo OvlExplicitTemplateArgs; 8605 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 8606 8607public: 8608 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 8609 const QualType& TargetType, bool Complain) 8610 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 8611 Complain(Complain), Context(S.getASTContext()), 8612 TargetTypeIsNonStaticMemberFunction( 8613 !!TargetType->getAs<MemberPointerType>()), 8614 FoundNonTemplateFunction(false), 8615 OvlExprInfo(OverloadExpr::find(SourceExpr)), 8616 OvlExpr(OvlExprInfo.Expression) 8617 { 8618 ExtractUnqualifiedFunctionTypeFromTargetType(); 8619 8620 if (!TargetFunctionType->isFunctionType()) { 8621 if (OvlExpr->hasExplicitTemplateArgs()) { 8622 DeclAccessPair dap; 8623 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 8624 OvlExpr, false, &dap) ) { 8625 8626 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8627 if (!Method->isStatic()) { 8628 // If the target type is a non-function type and the function 8629 // found is a non-static member function, pretend as if that was 8630 // the target, it's the only possible type to end up with. 8631 TargetTypeIsNonStaticMemberFunction = true; 8632 8633 // And skip adding the function if its not in the proper form. 8634 // We'll diagnose this due to an empty set of functions. 8635 if (!OvlExprInfo.HasFormOfMemberPointer) 8636 return; 8637 } 8638 } 8639 8640 Matches.push_back(std::make_pair(dap,Fn)); 8641 } 8642 } 8643 return; 8644 } 8645 8646 if (OvlExpr->hasExplicitTemplateArgs()) 8647 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 8648 8649 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 8650 // C++ [over.over]p4: 8651 // If more than one function is selected, [...] 8652 if (Matches.size() > 1) { 8653 if (FoundNonTemplateFunction) 8654 EliminateAllTemplateMatches(); 8655 else 8656 EliminateAllExceptMostSpecializedTemplate(); 8657 } 8658 } 8659 } 8660 8661private: 8662 bool isTargetTypeAFunction() const { 8663 return TargetFunctionType->isFunctionType(); 8664 } 8665 8666 // [ToType] [Return] 8667 8668 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 8669 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 8670 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 8671 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 8672 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 8673 } 8674 8675 // return true if any matching specializations were found 8676 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 8677 const DeclAccessPair& CurAccessFunPair) { 8678 if (CXXMethodDecl *Method 8679 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 8680 // Skip non-static function templates when converting to pointer, and 8681 // static when converting to member pointer. 8682 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 8683 return false; 8684 } 8685 else if (TargetTypeIsNonStaticMemberFunction) 8686 return false; 8687 8688 // C++ [over.over]p2: 8689 // If the name is a function template, template argument deduction is 8690 // done (14.8.2.2), and if the argument deduction succeeds, the 8691 // resulting template argument list is used to generate a single 8692 // function template specialization, which is added to the set of 8693 // overloaded functions considered. 8694 FunctionDecl *Specialization = 0; 8695 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 8696 if (Sema::TemplateDeductionResult Result 8697 = S.DeduceTemplateArguments(FunctionTemplate, 8698 &OvlExplicitTemplateArgs, 8699 TargetFunctionType, Specialization, 8700 Info)) { 8701 // FIXME: make a note of the failed deduction for diagnostics. 8702 (void)Result; 8703 return false; 8704 } 8705 8706 // Template argument deduction ensures that we have an exact match. 8707 // This function template specicalization works. 8708 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 8709 assert(TargetFunctionType 8710 == Context.getCanonicalType(Specialization->getType())); 8711 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 8712 return true; 8713 } 8714 8715 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 8716 const DeclAccessPair& CurAccessFunPair) { 8717 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8718 // Skip non-static functions when converting to pointer, and static 8719 // when converting to member pointer. 8720 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 8721 return false; 8722 } 8723 else if (TargetTypeIsNonStaticMemberFunction) 8724 return false; 8725 8726 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 8727 if (S.getLangOptions().CUDA) 8728 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 8729 if (S.CheckCUDATarget(Caller, FunDecl)) 8730 return false; 8731 8732 QualType ResultTy; 8733 if (Context.hasSameUnqualifiedType(TargetFunctionType, 8734 FunDecl->getType()) || 8735 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, 8736 ResultTy)) { 8737 Matches.push_back(std::make_pair(CurAccessFunPair, 8738 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 8739 FoundNonTemplateFunction = true; 8740 return true; 8741 } 8742 } 8743 8744 return false; 8745 } 8746 8747 bool FindAllFunctionsThatMatchTargetTypeExactly() { 8748 bool Ret = false; 8749 8750 // If the overload expression doesn't have the form of a pointer to 8751 // member, don't try to convert it to a pointer-to-member type. 8752 if (IsInvalidFormOfPointerToMemberFunction()) 8753 return false; 8754 8755 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 8756 E = OvlExpr->decls_end(); 8757 I != E; ++I) { 8758 // Look through any using declarations to find the underlying function. 8759 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 8760 8761 // C++ [over.over]p3: 8762 // Non-member functions and static member functions match 8763 // targets of type "pointer-to-function" or "reference-to-function." 8764 // Nonstatic member functions match targets of 8765 // type "pointer-to-member-function." 8766 // Note that according to DR 247, the containing class does not matter. 8767 if (FunctionTemplateDecl *FunctionTemplate 8768 = dyn_cast<FunctionTemplateDecl>(Fn)) { 8769 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 8770 Ret = true; 8771 } 8772 // If we have explicit template arguments supplied, skip non-templates. 8773 else if (!OvlExpr->hasExplicitTemplateArgs() && 8774 AddMatchingNonTemplateFunction(Fn, I.getPair())) 8775 Ret = true; 8776 } 8777 assert(Ret || Matches.empty()); 8778 return Ret; 8779 } 8780 8781 void EliminateAllExceptMostSpecializedTemplate() { 8782 // [...] and any given function template specialization F1 is 8783 // eliminated if the set contains a second function template 8784 // specialization whose function template is more specialized 8785 // than the function template of F1 according to the partial 8786 // ordering rules of 14.5.5.2. 8787 8788 // The algorithm specified above is quadratic. We instead use a 8789 // two-pass algorithm (similar to the one used to identify the 8790 // best viable function in an overload set) that identifies the 8791 // best function template (if it exists). 8792 8793 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 8794 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 8795 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 8796 8797 UnresolvedSetIterator Result = 8798 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 8799 TPOC_Other, 0, SourceExpr->getLocStart(), 8800 S.PDiag(), 8801 S.PDiag(diag::err_addr_ovl_ambiguous) 8802 << Matches[0].second->getDeclName(), 8803 S.PDiag(diag::note_ovl_candidate) 8804 << (unsigned) oc_function_template, 8805 Complain, TargetFunctionType); 8806 8807 if (Result != MatchesCopy.end()) { 8808 // Make it the first and only element 8809 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 8810 Matches[0].second = cast<FunctionDecl>(*Result); 8811 Matches.resize(1); 8812 } 8813 } 8814 8815 void EliminateAllTemplateMatches() { 8816 // [...] any function template specializations in the set are 8817 // eliminated if the set also contains a non-template function, [...] 8818 for (unsigned I = 0, N = Matches.size(); I != N; ) { 8819 if (Matches[I].second->getPrimaryTemplate() == 0) 8820 ++I; 8821 else { 8822 Matches[I] = Matches[--N]; 8823 Matches.set_size(N); 8824 } 8825 } 8826 } 8827 8828public: 8829 void ComplainNoMatchesFound() const { 8830 assert(Matches.empty()); 8831 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 8832 << OvlExpr->getName() << TargetFunctionType 8833 << OvlExpr->getSourceRange(); 8834 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 8835 } 8836 8837 bool IsInvalidFormOfPointerToMemberFunction() const { 8838 return TargetTypeIsNonStaticMemberFunction && 8839 !OvlExprInfo.HasFormOfMemberPointer; 8840 } 8841 8842 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 8843 // TODO: Should we condition this on whether any functions might 8844 // have matched, or is it more appropriate to do that in callers? 8845 // TODO: a fixit wouldn't hurt. 8846 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 8847 << TargetType << OvlExpr->getSourceRange(); 8848 } 8849 8850 void ComplainOfInvalidConversion() const { 8851 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 8852 << OvlExpr->getName() << TargetType; 8853 } 8854 8855 void ComplainMultipleMatchesFound() const { 8856 assert(Matches.size() > 1); 8857 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 8858 << OvlExpr->getName() 8859 << OvlExpr->getSourceRange(); 8860 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 8861 } 8862 8863 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 8864 8865 int getNumMatches() const { return Matches.size(); } 8866 8867 FunctionDecl* getMatchingFunctionDecl() const { 8868 if (Matches.size() != 1) return 0; 8869 return Matches[0].second; 8870 } 8871 8872 const DeclAccessPair* getMatchingFunctionAccessPair() const { 8873 if (Matches.size() != 1) return 0; 8874 return &Matches[0].first; 8875 } 8876}; 8877 8878/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 8879/// an overloaded function (C++ [over.over]), where @p From is an 8880/// expression with overloaded function type and @p ToType is the type 8881/// we're trying to resolve to. For example: 8882/// 8883/// @code 8884/// int f(double); 8885/// int f(int); 8886/// 8887/// int (*pfd)(double) = f; // selects f(double) 8888/// @endcode 8889/// 8890/// This routine returns the resulting FunctionDecl if it could be 8891/// resolved, and NULL otherwise. When @p Complain is true, this 8892/// routine will emit diagnostics if there is an error. 8893FunctionDecl * 8894Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 8895 QualType TargetType, 8896 bool Complain, 8897 DeclAccessPair &FoundResult, 8898 bool *pHadMultipleCandidates) { 8899 assert(AddressOfExpr->getType() == Context.OverloadTy); 8900 8901 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 8902 Complain); 8903 int NumMatches = Resolver.getNumMatches(); 8904 FunctionDecl* Fn = 0; 8905 if (NumMatches == 0 && Complain) { 8906 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 8907 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 8908 else 8909 Resolver.ComplainNoMatchesFound(); 8910 } 8911 else if (NumMatches > 1 && Complain) 8912 Resolver.ComplainMultipleMatchesFound(); 8913 else if (NumMatches == 1) { 8914 Fn = Resolver.getMatchingFunctionDecl(); 8915 assert(Fn); 8916 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 8917 MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn); 8918 if (Complain) 8919 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 8920 } 8921 8922 if (pHadMultipleCandidates) 8923 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 8924 return Fn; 8925} 8926 8927/// \brief Given an expression that refers to an overloaded function, try to 8928/// resolve that overloaded function expression down to a single function. 8929/// 8930/// This routine can only resolve template-ids that refer to a single function 8931/// template, where that template-id refers to a single template whose template 8932/// arguments are either provided by the template-id or have defaults, 8933/// as described in C++0x [temp.arg.explicit]p3. 8934FunctionDecl * 8935Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 8936 bool Complain, 8937 DeclAccessPair *FoundResult) { 8938 // C++ [over.over]p1: 8939 // [...] [Note: any redundant set of parentheses surrounding the 8940 // overloaded function name is ignored (5.1). ] 8941 // C++ [over.over]p1: 8942 // [...] The overloaded function name can be preceded by the & 8943 // operator. 8944 8945 // If we didn't actually find any template-ids, we're done. 8946 if (!ovl->hasExplicitTemplateArgs()) 8947 return 0; 8948 8949 TemplateArgumentListInfo ExplicitTemplateArgs; 8950 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 8951 8952 // Look through all of the overloaded functions, searching for one 8953 // whose type matches exactly. 8954 FunctionDecl *Matched = 0; 8955 for (UnresolvedSetIterator I = ovl->decls_begin(), 8956 E = ovl->decls_end(); I != E; ++I) { 8957 // C++0x [temp.arg.explicit]p3: 8958 // [...] In contexts where deduction is done and fails, or in contexts 8959 // where deduction is not done, if a template argument list is 8960 // specified and it, along with any default template arguments, 8961 // identifies a single function template specialization, then the 8962 // template-id is an lvalue for the function template specialization. 8963 FunctionTemplateDecl *FunctionTemplate 8964 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 8965 8966 // C++ [over.over]p2: 8967 // If the name is a function template, template argument deduction is 8968 // done (14.8.2.2), and if the argument deduction succeeds, the 8969 // resulting template argument list is used to generate a single 8970 // function template specialization, which is added to the set of 8971 // overloaded functions considered. 8972 FunctionDecl *Specialization = 0; 8973 TemplateDeductionInfo Info(Context, ovl->getNameLoc()); 8974 if (TemplateDeductionResult Result 8975 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 8976 Specialization, Info)) { 8977 // FIXME: make a note of the failed deduction for diagnostics. 8978 (void)Result; 8979 continue; 8980 } 8981 8982 assert(Specialization && "no specialization and no error?"); 8983 8984 // Multiple matches; we can't resolve to a single declaration. 8985 if (Matched) { 8986 if (Complain) { 8987 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 8988 << ovl->getName(); 8989 NoteAllOverloadCandidates(ovl); 8990 } 8991 return 0; 8992 } 8993 8994 Matched = Specialization; 8995 if (FoundResult) *FoundResult = I.getPair(); 8996 } 8997 8998 return Matched; 8999} 9000 9001 9002 9003 9004// Resolve and fix an overloaded expression that can be resolved 9005// because it identifies a single function template specialization. 9006// 9007// Last three arguments should only be supplied if Complain = true 9008// 9009// Return true if it was logically possible to so resolve the 9010// expression, regardless of whether or not it succeeded. Always 9011// returns true if 'complain' is set. 9012bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 9013 ExprResult &SrcExpr, bool doFunctionPointerConverion, 9014 bool complain, const SourceRange& OpRangeForComplaining, 9015 QualType DestTypeForComplaining, 9016 unsigned DiagIDForComplaining) { 9017 assert(SrcExpr.get()->getType() == Context.OverloadTy); 9018 9019 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 9020 9021 DeclAccessPair found; 9022 ExprResult SingleFunctionExpression; 9023 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 9024 ovl.Expression, /*complain*/ false, &found)) { 9025 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) { 9026 SrcExpr = ExprError(); 9027 return true; 9028 } 9029 9030 // It is only correct to resolve to an instance method if we're 9031 // resolving a form that's permitted to be a pointer to member. 9032 // Otherwise we'll end up making a bound member expression, which 9033 // is illegal in all the contexts we resolve like this. 9034 if (!ovl.HasFormOfMemberPointer && 9035 isa<CXXMethodDecl>(fn) && 9036 cast<CXXMethodDecl>(fn)->isInstance()) { 9037 if (!complain) return false; 9038 9039 Diag(ovl.Expression->getExprLoc(), 9040 diag::err_bound_member_function) 9041 << 0 << ovl.Expression->getSourceRange(); 9042 9043 // TODO: I believe we only end up here if there's a mix of 9044 // static and non-static candidates (otherwise the expression 9045 // would have 'bound member' type, not 'overload' type). 9046 // Ideally we would note which candidate was chosen and why 9047 // the static candidates were rejected. 9048 SrcExpr = ExprError(); 9049 return true; 9050 } 9051 9052 // Fix the expresion to refer to 'fn'. 9053 SingleFunctionExpression = 9054 Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn)); 9055 9056 // If desired, do function-to-pointer decay. 9057 if (doFunctionPointerConverion) { 9058 SingleFunctionExpression = 9059 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); 9060 if (SingleFunctionExpression.isInvalid()) { 9061 SrcExpr = ExprError(); 9062 return true; 9063 } 9064 } 9065 } 9066 9067 if (!SingleFunctionExpression.isUsable()) { 9068 if (complain) { 9069 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 9070 << ovl.Expression->getName() 9071 << DestTypeForComplaining 9072 << OpRangeForComplaining 9073 << ovl.Expression->getQualifierLoc().getSourceRange(); 9074 NoteAllOverloadCandidates(SrcExpr.get()); 9075 9076 SrcExpr = ExprError(); 9077 return true; 9078 } 9079 9080 return false; 9081 } 9082 9083 SrcExpr = SingleFunctionExpression; 9084 return true; 9085} 9086 9087/// \brief Add a single candidate to the overload set. 9088static void AddOverloadedCallCandidate(Sema &S, 9089 DeclAccessPair FoundDecl, 9090 TemplateArgumentListInfo *ExplicitTemplateArgs, 9091 Expr **Args, unsigned NumArgs, 9092 OverloadCandidateSet &CandidateSet, 9093 bool PartialOverloading, 9094 bool KnownValid) { 9095 NamedDecl *Callee = FoundDecl.getDecl(); 9096 if (isa<UsingShadowDecl>(Callee)) 9097 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 9098 9099 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 9100 if (ExplicitTemplateArgs) { 9101 assert(!KnownValid && "Explicit template arguments?"); 9102 return; 9103 } 9104 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 9105 false, PartialOverloading); 9106 return; 9107 } 9108 9109 if (FunctionTemplateDecl *FuncTemplate 9110 = dyn_cast<FunctionTemplateDecl>(Callee)) { 9111 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 9112 ExplicitTemplateArgs, 9113 Args, NumArgs, CandidateSet); 9114 return; 9115 } 9116 9117 assert(!KnownValid && "unhandled case in overloaded call candidate"); 9118} 9119 9120/// \brief Add the overload candidates named by callee and/or found by argument 9121/// dependent lookup to the given overload set. 9122void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 9123 Expr **Args, unsigned NumArgs, 9124 OverloadCandidateSet &CandidateSet, 9125 bool PartialOverloading) { 9126 9127#ifndef NDEBUG 9128 // Verify that ArgumentDependentLookup is consistent with the rules 9129 // in C++0x [basic.lookup.argdep]p3: 9130 // 9131 // Let X be the lookup set produced by unqualified lookup (3.4.1) 9132 // and let Y be the lookup set produced by argument dependent 9133 // lookup (defined as follows). If X contains 9134 // 9135 // -- a declaration of a class member, or 9136 // 9137 // -- a block-scope function declaration that is not a 9138 // using-declaration, or 9139 // 9140 // -- a declaration that is neither a function or a function 9141 // template 9142 // 9143 // then Y is empty. 9144 9145 if (ULE->requiresADL()) { 9146 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 9147 E = ULE->decls_end(); I != E; ++I) { 9148 assert(!(*I)->getDeclContext()->isRecord()); 9149 assert(isa<UsingShadowDecl>(*I) || 9150 !(*I)->getDeclContext()->isFunctionOrMethod()); 9151 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 9152 } 9153 } 9154#endif 9155 9156 // It would be nice to avoid this copy. 9157 TemplateArgumentListInfo TABuffer; 9158 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 9159 if (ULE->hasExplicitTemplateArgs()) { 9160 ULE->copyTemplateArgumentsInto(TABuffer); 9161 ExplicitTemplateArgs = &TABuffer; 9162 } 9163 9164 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 9165 E = ULE->decls_end(); I != E; ++I) 9166 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 9167 Args, NumArgs, CandidateSet, 9168 PartialOverloading, /*KnownValid*/ true); 9169 9170 if (ULE->requiresADL()) 9171 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 9172 Args, NumArgs, 9173 ExplicitTemplateArgs, 9174 CandidateSet, 9175 PartialOverloading, 9176 ULE->isStdAssociatedNamespace()); 9177} 9178 9179/// Attempt to recover from an ill-formed use of a non-dependent name in a 9180/// template, where the non-dependent name was declared after the template 9181/// was defined. This is common in code written for a compilers which do not 9182/// correctly implement two-stage name lookup. 9183/// 9184/// Returns true if a viable candidate was found and a diagnostic was issued. 9185static bool 9186DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 9187 const CXXScopeSpec &SS, LookupResult &R, 9188 TemplateArgumentListInfo *ExplicitTemplateArgs, 9189 Expr **Args, unsigned NumArgs) { 9190 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) 9191 return false; 9192 9193 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 9194 SemaRef.LookupQualifiedName(R, DC); 9195 9196 if (!R.empty()) { 9197 R.suppressDiagnostics(); 9198 9199 if (isa<CXXRecordDecl>(DC)) { 9200 // Don't diagnose names we find in classes; we get much better 9201 // diagnostics for these from DiagnoseEmptyLookup. 9202 R.clear(); 9203 return false; 9204 } 9205 9206 OverloadCandidateSet Candidates(FnLoc); 9207 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 9208 AddOverloadedCallCandidate(SemaRef, I.getPair(), 9209 ExplicitTemplateArgs, Args, NumArgs, 9210 Candidates, false, /*KnownValid*/ false); 9211 9212 OverloadCandidateSet::iterator Best; 9213 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 9214 // No viable functions. Don't bother the user with notes for functions 9215 // which don't work and shouldn't be found anyway. 9216 R.clear(); 9217 return false; 9218 } 9219 9220 // Find the namespaces where ADL would have looked, and suggest 9221 // declaring the function there instead. 9222 Sema::AssociatedNamespaceSet AssociatedNamespaces; 9223 Sema::AssociatedClassSet AssociatedClasses; 9224 SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs, 9225 AssociatedNamespaces, 9226 AssociatedClasses); 9227 // Never suggest declaring a function within namespace 'std'. 9228 Sema::AssociatedNamespaceSet SuggestedNamespaces; 9229 if (DeclContext *Std = SemaRef.getStdNamespace()) { 9230 for (Sema::AssociatedNamespaceSet::iterator 9231 it = AssociatedNamespaces.begin(), 9232 end = AssociatedNamespaces.end(); it != end; ++it) { 9233 if (!Std->Encloses(*it)) 9234 SuggestedNamespaces.insert(*it); 9235 } 9236 } else { 9237 // Lacking the 'std::' namespace, use all of the associated namespaces. 9238 SuggestedNamespaces = AssociatedNamespaces; 9239 } 9240 9241 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 9242 << R.getLookupName(); 9243 if (SuggestedNamespaces.empty()) { 9244 SemaRef.Diag(Best->Function->getLocation(), 9245 diag::note_not_found_by_two_phase_lookup) 9246 << R.getLookupName() << 0; 9247 } else if (SuggestedNamespaces.size() == 1) { 9248 SemaRef.Diag(Best->Function->getLocation(), 9249 diag::note_not_found_by_two_phase_lookup) 9250 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 9251 } else { 9252 // FIXME: It would be useful to list the associated namespaces here, 9253 // but the diagnostics infrastructure doesn't provide a way to produce 9254 // a localized representation of a list of items. 9255 SemaRef.Diag(Best->Function->getLocation(), 9256 diag::note_not_found_by_two_phase_lookup) 9257 << R.getLookupName() << 2; 9258 } 9259 9260 // Try to recover by calling this function. 9261 return true; 9262 } 9263 9264 R.clear(); 9265 } 9266 9267 return false; 9268} 9269 9270/// Attempt to recover from ill-formed use of a non-dependent operator in a 9271/// template, where the non-dependent operator was declared after the template 9272/// was defined. 9273/// 9274/// Returns true if a viable candidate was found and a diagnostic was issued. 9275static bool 9276DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 9277 SourceLocation OpLoc, 9278 Expr **Args, unsigned NumArgs) { 9279 DeclarationName OpName = 9280 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 9281 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 9282 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 9283 /*ExplicitTemplateArgs=*/0, Args, NumArgs); 9284} 9285 9286namespace { 9287// Callback to limit the allowed keywords and to only accept typo corrections 9288// that are keywords or whose decls refer to functions (or template functions) 9289// that accept the given number of arguments. 9290class RecoveryCallCCC : public CorrectionCandidateCallback { 9291 public: 9292 RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs) 9293 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) { 9294 WantTypeSpecifiers = SemaRef.getLangOptions().CPlusPlus; 9295 WantRemainingKeywords = false; 9296 } 9297 9298 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 9299 if (!candidate.getCorrectionDecl()) 9300 return candidate.isKeyword(); 9301 9302 for (TypoCorrection::const_decl_iterator DI = candidate.begin(), 9303 DIEnd = candidate.end(); DI != DIEnd; ++DI) { 9304 FunctionDecl *FD = 0; 9305 NamedDecl *ND = (*DI)->getUnderlyingDecl(); 9306 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 9307 FD = FTD->getTemplatedDecl(); 9308 if (!HasExplicitTemplateArgs && !FD) { 9309 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 9310 // If the Decl is neither a function nor a template function, 9311 // determine if it is a pointer or reference to a function. If so, 9312 // check against the number of arguments expected for the pointee. 9313 QualType ValType = cast<ValueDecl>(ND)->getType(); 9314 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 9315 ValType = ValType->getPointeeType(); 9316 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 9317 if (FPT->getNumArgs() == NumArgs) 9318 return true; 9319 } 9320 } 9321 if (FD && FD->getNumParams() >= NumArgs && 9322 FD->getMinRequiredArguments() <= NumArgs) 9323 return true; 9324 } 9325 return false; 9326 } 9327 9328 private: 9329 unsigned NumArgs; 9330 bool HasExplicitTemplateArgs; 9331}; 9332 9333// Callback that effectively disabled typo correction 9334class NoTypoCorrectionCCC : public CorrectionCandidateCallback { 9335 public: 9336 NoTypoCorrectionCCC() { 9337 WantTypeSpecifiers = false; 9338 WantExpressionKeywords = false; 9339 WantCXXNamedCasts = false; 9340 WantRemainingKeywords = false; 9341 } 9342 9343 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 9344 return false; 9345 } 9346}; 9347} 9348 9349/// Attempts to recover from a call where no functions were found. 9350/// 9351/// Returns true if new candidates were found. 9352static ExprResult 9353BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 9354 UnresolvedLookupExpr *ULE, 9355 SourceLocation LParenLoc, 9356 Expr **Args, unsigned NumArgs, 9357 SourceLocation RParenLoc, 9358 bool EmptyLookup, bool AllowTypoCorrection) { 9359 9360 CXXScopeSpec SS; 9361 SS.Adopt(ULE->getQualifierLoc()); 9362 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 9363 9364 TemplateArgumentListInfo TABuffer; 9365 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 9366 if (ULE->hasExplicitTemplateArgs()) { 9367 ULE->copyTemplateArgumentsInto(TABuffer); 9368 ExplicitTemplateArgs = &TABuffer; 9369 } 9370 9371 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 9372 Sema::LookupOrdinaryName); 9373 RecoveryCallCCC Validator(SemaRef, NumArgs, ExplicitTemplateArgs != 0); 9374 NoTypoCorrectionCCC RejectAll; 9375 CorrectionCandidateCallback *CCC = AllowTypoCorrection ? 9376 (CorrectionCandidateCallback*)&Validator : 9377 (CorrectionCandidateCallback*)&RejectAll; 9378 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 9379 ExplicitTemplateArgs, Args, NumArgs) && 9380 (!EmptyLookup || 9381 SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC, 9382 ExplicitTemplateArgs, Args, NumArgs))) 9383 return ExprError(); 9384 9385 assert(!R.empty() && "lookup results empty despite recovery"); 9386 9387 // Build an implicit member call if appropriate. Just drop the 9388 // casts and such from the call, we don't really care. 9389 ExprResult NewFn = ExprError(); 9390 if ((*R.begin())->isCXXClassMember()) 9391 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, 9392 R, ExplicitTemplateArgs); 9393 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 9394 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 9395 ExplicitTemplateArgs); 9396 else 9397 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 9398 9399 if (NewFn.isInvalid()) 9400 return ExprError(); 9401 9402 // This shouldn't cause an infinite loop because we're giving it 9403 // an expression with viable lookup results, which should never 9404 // end up here. 9405 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 9406 MultiExprArg(Args, NumArgs), RParenLoc); 9407} 9408 9409/// ResolveOverloadedCallFn - Given the call expression that calls Fn 9410/// (which eventually refers to the declaration Func) and the call 9411/// arguments Args/NumArgs, attempt to resolve the function call down 9412/// to a specific function. If overload resolution succeeds, returns 9413/// the function declaration produced by overload 9414/// resolution. Otherwise, emits diagnostics, deletes all of the 9415/// arguments and Fn, and returns NULL. 9416ExprResult 9417Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 9418 SourceLocation LParenLoc, 9419 Expr **Args, unsigned NumArgs, 9420 SourceLocation RParenLoc, 9421 Expr *ExecConfig, 9422 bool AllowTypoCorrection) { 9423#ifndef NDEBUG 9424 if (ULE->requiresADL()) { 9425 // To do ADL, we must have found an unqualified name. 9426 assert(!ULE->getQualifier() && "qualified name with ADL"); 9427 9428 // We don't perform ADL for implicit declarations of builtins. 9429 // Verify that this was correctly set up. 9430 FunctionDecl *F; 9431 if (ULE->decls_begin() + 1 == ULE->decls_end() && 9432 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 9433 F->getBuiltinID() && F->isImplicit()) 9434 llvm_unreachable("performing ADL for builtin"); 9435 9436 // We don't perform ADL in C. 9437 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 9438 } else 9439 assert(!ULE->isStdAssociatedNamespace() && 9440 "std is associated namespace but not doing ADL"); 9441#endif 9442 9443 UnbridgedCastsSet UnbridgedCasts; 9444 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 9445 return ExprError(); 9446 9447 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 9448 9449 // Add the functions denoted by the callee to the set of candidate 9450 // functions, including those from argument-dependent lookup. 9451 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 9452 9453 // If we found nothing, try to recover. 9454 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail 9455 // out if it fails. 9456 if (CandidateSet.empty()) { 9457 // In Microsoft mode, if we are inside a template class member function then 9458 // create a type dependent CallExpr. The goal is to postpone name lookup 9459 // to instantiation time to be able to search into type dependent base 9460 // classes. 9461 if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() && 9462 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 9463 CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs, 9464 Context.DependentTy, VK_RValue, 9465 RParenLoc); 9466 CE->setTypeDependent(true); 9467 return Owned(CE); 9468 } 9469 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 9470 RParenLoc, /*EmptyLookup=*/true, 9471 AllowTypoCorrection); 9472 } 9473 9474 UnbridgedCasts.restore(); 9475 9476 OverloadCandidateSet::iterator Best; 9477 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 9478 case OR_Success: { 9479 FunctionDecl *FDecl = Best->Function; 9480 MarkFunctionReferenced(Fn->getExprLoc(), FDecl); 9481 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 9482 DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()); 9483 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 9484 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, 9485 ExecConfig); 9486 } 9487 9488 case OR_No_Viable_Function: { 9489 // Try to recover by looking for viable functions which the user might 9490 // have meant to call. 9491 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, 9492 Args, NumArgs, RParenLoc, 9493 /*EmptyLookup=*/false, 9494 AllowTypoCorrection); 9495 if (!Recovery.isInvalid()) 9496 return Recovery; 9497 9498 Diag(Fn->getSourceRange().getBegin(), 9499 diag::err_ovl_no_viable_function_in_call) 9500 << ULE->getName() << Fn->getSourceRange(); 9501 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9502 break; 9503 } 9504 9505 case OR_Ambiguous: 9506 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 9507 << ULE->getName() << Fn->getSourceRange(); 9508 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 9509 break; 9510 9511 case OR_Deleted: 9512 { 9513 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 9514 << Best->Function->isDeleted() 9515 << ULE->getName() 9516 << getDeletedOrUnavailableSuffix(Best->Function) 9517 << Fn->getSourceRange(); 9518 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9519 9520 // We emitted an error for the unvailable/deleted function call but keep 9521 // the call in the AST. 9522 FunctionDecl *FDecl = Best->Function; 9523 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 9524 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 9525 RParenLoc, ExecConfig); 9526 } 9527 } 9528 9529 // Overload resolution failed. 9530 return ExprError(); 9531} 9532 9533static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 9534 return Functions.size() > 1 || 9535 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 9536} 9537 9538/// \brief Create a unary operation that may resolve to an overloaded 9539/// operator. 9540/// 9541/// \param OpLoc The location of the operator itself (e.g., '*'). 9542/// 9543/// \param OpcIn The UnaryOperator::Opcode that describes this 9544/// operator. 9545/// 9546/// \param Functions The set of non-member functions that will be 9547/// considered by overload resolution. The caller needs to build this 9548/// set based on the context using, e.g., 9549/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 9550/// set should not contain any member functions; those will be added 9551/// by CreateOverloadedUnaryOp(). 9552/// 9553/// \param input The input argument. 9554ExprResult 9555Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 9556 const UnresolvedSetImpl &Fns, 9557 Expr *Input) { 9558 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 9559 9560 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 9561 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 9562 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 9563 // TODO: provide better source location info. 9564 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 9565 9566 if (checkPlaceholderForOverload(*this, Input)) 9567 return ExprError(); 9568 9569 Expr *Args[2] = { Input, 0 }; 9570 unsigned NumArgs = 1; 9571 9572 // For post-increment and post-decrement, add the implicit '0' as 9573 // the second argument, so that we know this is a post-increment or 9574 // post-decrement. 9575 if (Opc == UO_PostInc || Opc == UO_PostDec) { 9576 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 9577 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 9578 SourceLocation()); 9579 NumArgs = 2; 9580 } 9581 9582 if (Input->isTypeDependent()) { 9583 if (Fns.empty()) 9584 return Owned(new (Context) UnaryOperator(Input, 9585 Opc, 9586 Context.DependentTy, 9587 VK_RValue, OK_Ordinary, 9588 OpLoc)); 9589 9590 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9591 UnresolvedLookupExpr *Fn 9592 = UnresolvedLookupExpr::Create(Context, NamingClass, 9593 NestedNameSpecifierLoc(), OpNameInfo, 9594 /*ADL*/ true, IsOverloaded(Fns), 9595 Fns.begin(), Fns.end()); 9596 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9597 &Args[0], NumArgs, 9598 Context.DependentTy, 9599 VK_RValue, 9600 OpLoc)); 9601 } 9602 9603 // Build an empty overload set. 9604 OverloadCandidateSet CandidateSet(OpLoc); 9605 9606 // Add the candidates from the given function set. 9607 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 9608 9609 // Add operator candidates that are member functions. 9610 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 9611 9612 // Add candidates from ADL. 9613 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 9614 Args, NumArgs, 9615 /*ExplicitTemplateArgs*/ 0, 9616 CandidateSet); 9617 9618 // Add builtin operator candidates. 9619 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 9620 9621 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9622 9623 // Perform overload resolution. 9624 OverloadCandidateSet::iterator Best; 9625 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9626 case OR_Success: { 9627 // We found a built-in operator or an overloaded operator. 9628 FunctionDecl *FnDecl = Best->Function; 9629 9630 if (FnDecl) { 9631 // We matched an overloaded operator. Build a call to that 9632 // operator. 9633 9634 MarkFunctionReferenced(OpLoc, FnDecl); 9635 9636 // Convert the arguments. 9637 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 9638 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 9639 9640 ExprResult InputRes = 9641 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 9642 Best->FoundDecl, Method); 9643 if (InputRes.isInvalid()) 9644 return ExprError(); 9645 Input = InputRes.take(); 9646 } else { 9647 // Convert the arguments. 9648 ExprResult InputInit 9649 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9650 Context, 9651 FnDecl->getParamDecl(0)), 9652 SourceLocation(), 9653 Input); 9654 if (InputInit.isInvalid()) 9655 return ExprError(); 9656 Input = InputInit.take(); 9657 } 9658 9659 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9660 9661 // Determine the result type. 9662 QualType ResultTy = FnDecl->getResultType(); 9663 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9664 ResultTy = ResultTy.getNonLValueExprType(Context); 9665 9666 // Build the actual expression node. 9667 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9668 HadMultipleCandidates, OpLoc); 9669 if (FnExpr.isInvalid()) 9670 return ExprError(); 9671 9672 Args[0] = Input; 9673 CallExpr *TheCall = 9674 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 9675 Args, NumArgs, ResultTy, VK, OpLoc); 9676 9677 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 9678 FnDecl)) 9679 return ExprError(); 9680 9681 return MaybeBindToTemporary(TheCall); 9682 } else { 9683 // We matched a built-in operator. Convert the arguments, then 9684 // break out so that we will build the appropriate built-in 9685 // operator node. 9686 ExprResult InputRes = 9687 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 9688 Best->Conversions[0], AA_Passing); 9689 if (InputRes.isInvalid()) 9690 return ExprError(); 9691 Input = InputRes.take(); 9692 break; 9693 } 9694 } 9695 9696 case OR_No_Viable_Function: 9697 // This is an erroneous use of an operator which can be overloaded by 9698 // a non-member function. Check for non-member operators which were 9699 // defined too late to be candidates. 9700 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs)) 9701 // FIXME: Recover by calling the found function. 9702 return ExprError(); 9703 9704 // No viable function; fall through to handling this as a 9705 // built-in operator, which will produce an error message for us. 9706 break; 9707 9708 case OR_Ambiguous: 9709 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 9710 << UnaryOperator::getOpcodeStr(Opc) 9711 << Input->getType() 9712 << Input->getSourceRange(); 9713 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs, 9714 UnaryOperator::getOpcodeStr(Opc), OpLoc); 9715 return ExprError(); 9716 9717 case OR_Deleted: 9718 Diag(OpLoc, diag::err_ovl_deleted_oper) 9719 << Best->Function->isDeleted() 9720 << UnaryOperator::getOpcodeStr(Opc) 9721 << getDeletedOrUnavailableSuffix(Best->Function) 9722 << Input->getSourceRange(); 9723 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs, 9724 UnaryOperator::getOpcodeStr(Opc), OpLoc); 9725 return ExprError(); 9726 } 9727 9728 // Either we found no viable overloaded operator or we matched a 9729 // built-in operator. In either case, fall through to trying to 9730 // build a built-in operation. 9731 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 9732} 9733 9734/// \brief Create a binary operation that may resolve to an overloaded 9735/// operator. 9736/// 9737/// \param OpLoc The location of the operator itself (e.g., '+'). 9738/// 9739/// \param OpcIn The BinaryOperator::Opcode that describes this 9740/// operator. 9741/// 9742/// \param Functions The set of non-member functions that will be 9743/// considered by overload resolution. The caller needs to build this 9744/// set based on the context using, e.g., 9745/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 9746/// set should not contain any member functions; those will be added 9747/// by CreateOverloadedBinOp(). 9748/// 9749/// \param LHS Left-hand argument. 9750/// \param RHS Right-hand argument. 9751ExprResult 9752Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 9753 unsigned OpcIn, 9754 const UnresolvedSetImpl &Fns, 9755 Expr *LHS, Expr *RHS) { 9756 Expr *Args[2] = { LHS, RHS }; 9757 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 9758 9759 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 9760 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 9761 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 9762 9763 // If either side is type-dependent, create an appropriate dependent 9764 // expression. 9765 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 9766 if (Fns.empty()) { 9767 // If there are no functions to store, just build a dependent 9768 // BinaryOperator or CompoundAssignment. 9769 if (Opc <= BO_Assign || Opc > BO_OrAssign) 9770 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 9771 Context.DependentTy, 9772 VK_RValue, OK_Ordinary, 9773 OpLoc)); 9774 9775 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 9776 Context.DependentTy, 9777 VK_LValue, 9778 OK_Ordinary, 9779 Context.DependentTy, 9780 Context.DependentTy, 9781 OpLoc)); 9782 } 9783 9784 // FIXME: save results of ADL from here? 9785 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9786 // TODO: provide better source location info in DNLoc component. 9787 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 9788 UnresolvedLookupExpr *Fn 9789 = UnresolvedLookupExpr::Create(Context, NamingClass, 9790 NestedNameSpecifierLoc(), OpNameInfo, 9791 /*ADL*/ true, IsOverloaded(Fns), 9792 Fns.begin(), Fns.end()); 9793 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9794 Args, 2, 9795 Context.DependentTy, 9796 VK_RValue, 9797 OpLoc)); 9798 } 9799 9800 // Always do placeholder-like conversions on the RHS. 9801 if (checkPlaceholderForOverload(*this, Args[1])) 9802 return ExprError(); 9803 9804 // Do placeholder-like conversion on the LHS; note that we should 9805 // not get here with a PseudoObject LHS. 9806 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 9807 if (checkPlaceholderForOverload(*this, Args[0])) 9808 return ExprError(); 9809 9810 // If this is the assignment operator, we only perform overload resolution 9811 // if the left-hand side is a class or enumeration type. This is actually 9812 // a hack. The standard requires that we do overload resolution between the 9813 // various built-in candidates, but as DR507 points out, this can lead to 9814 // problems. So we do it this way, which pretty much follows what GCC does. 9815 // Note that we go the traditional code path for compound assignment forms. 9816 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 9817 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9818 9819 // If this is the .* operator, which is not overloadable, just 9820 // create a built-in binary operator. 9821 if (Opc == BO_PtrMemD) 9822 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9823 9824 // Build an empty overload set. 9825 OverloadCandidateSet CandidateSet(OpLoc); 9826 9827 // Add the candidates from the given function set. 9828 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 9829 9830 // Add operator candidates that are member functions. 9831 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 9832 9833 // Add candidates from ADL. 9834 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 9835 Args, 2, 9836 /*ExplicitTemplateArgs*/ 0, 9837 CandidateSet); 9838 9839 // Add builtin operator candidates. 9840 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 9841 9842 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9843 9844 // Perform overload resolution. 9845 OverloadCandidateSet::iterator Best; 9846 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9847 case OR_Success: { 9848 // We found a built-in operator or an overloaded operator. 9849 FunctionDecl *FnDecl = Best->Function; 9850 9851 if (FnDecl) { 9852 // We matched an overloaded operator. Build a call to that 9853 // operator. 9854 9855 MarkFunctionReferenced(OpLoc, FnDecl); 9856 9857 // Convert the arguments. 9858 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 9859 // Best->Access is only meaningful for class members. 9860 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 9861 9862 ExprResult Arg1 = 9863 PerformCopyInitialization( 9864 InitializedEntity::InitializeParameter(Context, 9865 FnDecl->getParamDecl(0)), 9866 SourceLocation(), Owned(Args[1])); 9867 if (Arg1.isInvalid()) 9868 return ExprError(); 9869 9870 ExprResult Arg0 = 9871 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 9872 Best->FoundDecl, Method); 9873 if (Arg0.isInvalid()) 9874 return ExprError(); 9875 Args[0] = Arg0.takeAs<Expr>(); 9876 Args[1] = RHS = Arg1.takeAs<Expr>(); 9877 } else { 9878 // Convert the arguments. 9879 ExprResult Arg0 = PerformCopyInitialization( 9880 InitializedEntity::InitializeParameter(Context, 9881 FnDecl->getParamDecl(0)), 9882 SourceLocation(), Owned(Args[0])); 9883 if (Arg0.isInvalid()) 9884 return ExprError(); 9885 9886 ExprResult Arg1 = 9887 PerformCopyInitialization( 9888 InitializedEntity::InitializeParameter(Context, 9889 FnDecl->getParamDecl(1)), 9890 SourceLocation(), Owned(Args[1])); 9891 if (Arg1.isInvalid()) 9892 return ExprError(); 9893 Args[0] = LHS = Arg0.takeAs<Expr>(); 9894 Args[1] = RHS = Arg1.takeAs<Expr>(); 9895 } 9896 9897 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9898 9899 // Determine the result type. 9900 QualType ResultTy = FnDecl->getResultType(); 9901 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9902 ResultTy = ResultTy.getNonLValueExprType(Context); 9903 9904 // Build the actual expression node. 9905 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9906 HadMultipleCandidates, OpLoc); 9907 if (FnExpr.isInvalid()) 9908 return ExprError(); 9909 9910 CXXOperatorCallExpr *TheCall = 9911 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 9912 Args, 2, ResultTy, VK, OpLoc); 9913 9914 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 9915 FnDecl)) 9916 return ExprError(); 9917 9918 return MaybeBindToTemporary(TheCall); 9919 } else { 9920 // We matched a built-in operator. Convert the arguments, then 9921 // break out so that we will build the appropriate built-in 9922 // operator node. 9923 ExprResult ArgsRes0 = 9924 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 9925 Best->Conversions[0], AA_Passing); 9926 if (ArgsRes0.isInvalid()) 9927 return ExprError(); 9928 Args[0] = ArgsRes0.take(); 9929 9930 ExprResult ArgsRes1 = 9931 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 9932 Best->Conversions[1], AA_Passing); 9933 if (ArgsRes1.isInvalid()) 9934 return ExprError(); 9935 Args[1] = ArgsRes1.take(); 9936 break; 9937 } 9938 } 9939 9940 case OR_No_Viable_Function: { 9941 // C++ [over.match.oper]p9: 9942 // If the operator is the operator , [...] and there are no 9943 // viable functions, then the operator is assumed to be the 9944 // built-in operator and interpreted according to clause 5. 9945 if (Opc == BO_Comma) 9946 break; 9947 9948 // For class as left operand for assignment or compound assigment 9949 // operator do not fall through to handling in built-in, but report that 9950 // no overloaded assignment operator found 9951 ExprResult Result = ExprError(); 9952 if (Args[0]->getType()->isRecordType() && 9953 Opc >= BO_Assign && Opc <= BO_OrAssign) { 9954 Diag(OpLoc, diag::err_ovl_no_viable_oper) 9955 << BinaryOperator::getOpcodeStr(Opc) 9956 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9957 } else { 9958 // This is an erroneous use of an operator which can be overloaded by 9959 // a non-member function. Check for non-member operators which were 9960 // defined too late to be candidates. 9961 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2)) 9962 // FIXME: Recover by calling the found function. 9963 return ExprError(); 9964 9965 // No viable function; try to create a built-in operation, which will 9966 // produce an error. Then, show the non-viable candidates. 9967 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9968 } 9969 assert(Result.isInvalid() && 9970 "C++ binary operator overloading is missing candidates!"); 9971 if (Result.isInvalid()) 9972 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9973 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9974 return move(Result); 9975 } 9976 9977 case OR_Ambiguous: 9978 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 9979 << BinaryOperator::getOpcodeStr(Opc) 9980 << Args[0]->getType() << Args[1]->getType() 9981 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9982 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 9983 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9984 return ExprError(); 9985 9986 case OR_Deleted: 9987 if (isImplicitlyDeleted(Best->Function)) { 9988 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 9989 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 9990 << getSpecialMember(Method) 9991 << BinaryOperator::getOpcodeStr(Opc) 9992 << getDeletedOrUnavailableSuffix(Best->Function); 9993 9994 if (Method->getParent()->isLambda()) { 9995 Diag(Method->getParent()->getLocation(), diag::note_lambda_decl); 9996 return ExprError(); 9997 } 9998 } else { 9999 Diag(OpLoc, diag::err_ovl_deleted_oper) 10000 << Best->Function->isDeleted() 10001 << BinaryOperator::getOpcodeStr(Opc) 10002 << getDeletedOrUnavailableSuffix(Best->Function) 10003 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10004 } 10005 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 10006 BinaryOperator::getOpcodeStr(Opc), OpLoc); 10007 return ExprError(); 10008 } 10009 10010 // We matched a built-in operator; build it. 10011 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 10012} 10013 10014ExprResult 10015Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 10016 SourceLocation RLoc, 10017 Expr *Base, Expr *Idx) { 10018 Expr *Args[2] = { Base, Idx }; 10019 DeclarationName OpName = 10020 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 10021 10022 // If either side is type-dependent, create an appropriate dependent 10023 // expression. 10024 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 10025 10026 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 10027 // CHECKME: no 'operator' keyword? 10028 DeclarationNameInfo OpNameInfo(OpName, LLoc); 10029 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 10030 UnresolvedLookupExpr *Fn 10031 = UnresolvedLookupExpr::Create(Context, NamingClass, 10032 NestedNameSpecifierLoc(), OpNameInfo, 10033 /*ADL*/ true, /*Overloaded*/ false, 10034 UnresolvedSetIterator(), 10035 UnresolvedSetIterator()); 10036 // Can't add any actual overloads yet 10037 10038 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 10039 Args, 2, 10040 Context.DependentTy, 10041 VK_RValue, 10042 RLoc)); 10043 } 10044 10045 // Handle placeholders on both operands. 10046 if (checkPlaceholderForOverload(*this, Args[0])) 10047 return ExprError(); 10048 if (checkPlaceholderForOverload(*this, Args[1])) 10049 return ExprError(); 10050 10051 // Build an empty overload set. 10052 OverloadCandidateSet CandidateSet(LLoc); 10053 10054 // Subscript can only be overloaded as a member function. 10055 10056 // Add operator candidates that are member functions. 10057 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 10058 10059 // Add builtin operator candidates. 10060 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 10061 10062 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10063 10064 // Perform overload resolution. 10065 OverloadCandidateSet::iterator Best; 10066 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 10067 case OR_Success: { 10068 // We found a built-in operator or an overloaded operator. 10069 FunctionDecl *FnDecl = Best->Function; 10070 10071 if (FnDecl) { 10072 // We matched an overloaded operator. Build a call to that 10073 // operator. 10074 10075 MarkFunctionReferenced(LLoc, FnDecl); 10076 10077 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 10078 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 10079 10080 // Convert the arguments. 10081 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 10082 ExprResult Arg0 = 10083 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 10084 Best->FoundDecl, Method); 10085 if (Arg0.isInvalid()) 10086 return ExprError(); 10087 Args[0] = Arg0.take(); 10088 10089 // Convert the arguments. 10090 ExprResult InputInit 10091 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 10092 Context, 10093 FnDecl->getParamDecl(0)), 10094 SourceLocation(), 10095 Owned(Args[1])); 10096 if (InputInit.isInvalid()) 10097 return ExprError(); 10098 10099 Args[1] = InputInit.takeAs<Expr>(); 10100 10101 // Determine the result type 10102 QualType ResultTy = FnDecl->getResultType(); 10103 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10104 ResultTy = ResultTy.getNonLValueExprType(Context); 10105 10106 // Build the actual expression node. 10107 DeclarationNameInfo OpLocInfo(OpName, LLoc); 10108 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 10109 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 10110 HadMultipleCandidates, 10111 OpLocInfo.getLoc(), 10112 OpLocInfo.getInfo()); 10113 if (FnExpr.isInvalid()) 10114 return ExprError(); 10115 10116 CXXOperatorCallExpr *TheCall = 10117 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 10118 FnExpr.take(), Args, 2, 10119 ResultTy, VK, RLoc); 10120 10121 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 10122 FnDecl)) 10123 return ExprError(); 10124 10125 return MaybeBindToTemporary(TheCall); 10126 } else { 10127 // We matched a built-in operator. Convert the arguments, then 10128 // break out so that we will build the appropriate built-in 10129 // operator node. 10130 ExprResult ArgsRes0 = 10131 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 10132 Best->Conversions[0], AA_Passing); 10133 if (ArgsRes0.isInvalid()) 10134 return ExprError(); 10135 Args[0] = ArgsRes0.take(); 10136 10137 ExprResult ArgsRes1 = 10138 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 10139 Best->Conversions[1], AA_Passing); 10140 if (ArgsRes1.isInvalid()) 10141 return ExprError(); 10142 Args[1] = ArgsRes1.take(); 10143 10144 break; 10145 } 10146 } 10147 10148 case OR_No_Viable_Function: { 10149 if (CandidateSet.empty()) 10150 Diag(LLoc, diag::err_ovl_no_oper) 10151 << Args[0]->getType() << /*subscript*/ 0 10152 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10153 else 10154 Diag(LLoc, diag::err_ovl_no_viable_subscript) 10155 << Args[0]->getType() 10156 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10157 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 10158 "[]", LLoc); 10159 return ExprError(); 10160 } 10161 10162 case OR_Ambiguous: 10163 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 10164 << "[]" 10165 << Args[0]->getType() << Args[1]->getType() 10166 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10167 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 10168 "[]", LLoc); 10169 return ExprError(); 10170 10171 case OR_Deleted: 10172 Diag(LLoc, diag::err_ovl_deleted_oper) 10173 << Best->Function->isDeleted() << "[]" 10174 << getDeletedOrUnavailableSuffix(Best->Function) 10175 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10176 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 10177 "[]", LLoc); 10178 return ExprError(); 10179 } 10180 10181 // We matched a built-in operator; build it. 10182 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 10183} 10184 10185/// BuildCallToMemberFunction - Build a call to a member 10186/// function. MemExpr is the expression that refers to the member 10187/// function (and includes the object parameter), Args/NumArgs are the 10188/// arguments to the function call (not including the object 10189/// parameter). The caller needs to validate that the member 10190/// expression refers to a non-static member function or an overloaded 10191/// member function. 10192ExprResult 10193Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 10194 SourceLocation LParenLoc, Expr **Args, 10195 unsigned NumArgs, SourceLocation RParenLoc) { 10196 assert(MemExprE->getType() == Context.BoundMemberTy || 10197 MemExprE->getType() == Context.OverloadTy); 10198 10199 // Dig out the member expression. This holds both the object 10200 // argument and the member function we're referring to. 10201 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 10202 10203 // Determine whether this is a call to a pointer-to-member function. 10204 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 10205 assert(op->getType() == Context.BoundMemberTy); 10206 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 10207 10208 QualType fnType = 10209 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 10210 10211 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 10212 QualType resultType = proto->getCallResultType(Context); 10213 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); 10214 10215 // Check that the object type isn't more qualified than the 10216 // member function we're calling. 10217 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 10218 10219 QualType objectType = op->getLHS()->getType(); 10220 if (op->getOpcode() == BO_PtrMemI) 10221 objectType = objectType->castAs<PointerType>()->getPointeeType(); 10222 Qualifiers objectQuals = objectType.getQualifiers(); 10223 10224 Qualifiers difference = objectQuals - funcQuals; 10225 difference.removeObjCGCAttr(); 10226 difference.removeAddressSpace(); 10227 if (difference) { 10228 std::string qualsString = difference.getAsString(); 10229 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 10230 << fnType.getUnqualifiedType() 10231 << qualsString 10232 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 10233 } 10234 10235 CXXMemberCallExpr *call 10236 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 10237 resultType, valueKind, RParenLoc); 10238 10239 if (CheckCallReturnType(proto->getResultType(), 10240 op->getRHS()->getSourceRange().getBegin(), 10241 call, 0)) 10242 return ExprError(); 10243 10244 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) 10245 return ExprError(); 10246 10247 return MaybeBindToTemporary(call); 10248 } 10249 10250 UnbridgedCastsSet UnbridgedCasts; 10251 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 10252 return ExprError(); 10253 10254 MemberExpr *MemExpr; 10255 CXXMethodDecl *Method = 0; 10256 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 10257 NestedNameSpecifier *Qualifier = 0; 10258 if (isa<MemberExpr>(NakedMemExpr)) { 10259 MemExpr = cast<MemberExpr>(NakedMemExpr); 10260 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 10261 FoundDecl = MemExpr->getFoundDecl(); 10262 Qualifier = MemExpr->getQualifier(); 10263 UnbridgedCasts.restore(); 10264 } else { 10265 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 10266 Qualifier = UnresExpr->getQualifier(); 10267 10268 QualType ObjectType = UnresExpr->getBaseType(); 10269 Expr::Classification ObjectClassification 10270 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 10271 : UnresExpr->getBase()->Classify(Context); 10272 10273 // Add overload candidates 10274 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 10275 10276 // FIXME: avoid copy. 10277 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10278 if (UnresExpr->hasExplicitTemplateArgs()) { 10279 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 10280 TemplateArgs = &TemplateArgsBuffer; 10281 } 10282 10283 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 10284 E = UnresExpr->decls_end(); I != E; ++I) { 10285 10286 NamedDecl *Func = *I; 10287 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 10288 if (isa<UsingShadowDecl>(Func)) 10289 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 10290 10291 10292 // Microsoft supports direct constructor calls. 10293 if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 10294 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 10295 CandidateSet); 10296 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 10297 // If explicit template arguments were provided, we can't call a 10298 // non-template member function. 10299 if (TemplateArgs) 10300 continue; 10301 10302 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 10303 ObjectClassification, 10304 Args, NumArgs, CandidateSet, 10305 /*SuppressUserConversions=*/false); 10306 } else { 10307 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 10308 I.getPair(), ActingDC, TemplateArgs, 10309 ObjectType, ObjectClassification, 10310 Args, NumArgs, CandidateSet, 10311 /*SuppressUsedConversions=*/false); 10312 } 10313 } 10314 10315 DeclarationName DeclName = UnresExpr->getMemberName(); 10316 10317 UnbridgedCasts.restore(); 10318 10319 OverloadCandidateSet::iterator Best; 10320 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 10321 Best)) { 10322 case OR_Success: 10323 Method = cast<CXXMethodDecl>(Best->Function); 10324 MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method); 10325 FoundDecl = Best->FoundDecl; 10326 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 10327 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 10328 break; 10329 10330 case OR_No_Viable_Function: 10331 Diag(UnresExpr->getMemberLoc(), 10332 diag::err_ovl_no_viable_member_function_in_call) 10333 << DeclName << MemExprE->getSourceRange(); 10334 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10335 // FIXME: Leaking incoming expressions! 10336 return ExprError(); 10337 10338 case OR_Ambiguous: 10339 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 10340 << DeclName << MemExprE->getSourceRange(); 10341 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10342 // FIXME: Leaking incoming expressions! 10343 return ExprError(); 10344 10345 case OR_Deleted: 10346 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 10347 << Best->Function->isDeleted() 10348 << DeclName 10349 << getDeletedOrUnavailableSuffix(Best->Function) 10350 << MemExprE->getSourceRange(); 10351 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10352 // FIXME: Leaking incoming expressions! 10353 return ExprError(); 10354 } 10355 10356 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 10357 10358 // If overload resolution picked a static member, build a 10359 // non-member call based on that function. 10360 if (Method->isStatic()) { 10361 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 10362 Args, NumArgs, RParenLoc); 10363 } 10364 10365 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 10366 } 10367 10368 QualType ResultType = Method->getResultType(); 10369 ExprValueKind VK = Expr::getValueKindForType(ResultType); 10370 ResultType = ResultType.getNonLValueExprType(Context); 10371 10372 assert(Method && "Member call to something that isn't a method?"); 10373 CXXMemberCallExpr *TheCall = 10374 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 10375 ResultType, VK, RParenLoc); 10376 10377 // Check for a valid return type. 10378 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 10379 TheCall, Method)) 10380 return ExprError(); 10381 10382 // Convert the object argument (for a non-static member function call). 10383 // We only need to do this if there was actually an overload; otherwise 10384 // it was done at lookup. 10385 if (!Method->isStatic()) { 10386 ExprResult ObjectArg = 10387 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 10388 FoundDecl, Method); 10389 if (ObjectArg.isInvalid()) 10390 return ExprError(); 10391 MemExpr->setBase(ObjectArg.take()); 10392 } 10393 10394 // Convert the rest of the arguments 10395 const FunctionProtoType *Proto = 10396 Method->getType()->getAs<FunctionProtoType>(); 10397 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 10398 RParenLoc)) 10399 return ExprError(); 10400 10401 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs); 10402 10403 if (CheckFunctionCall(Method, TheCall)) 10404 return ExprError(); 10405 10406 if ((isa<CXXConstructorDecl>(CurContext) || 10407 isa<CXXDestructorDecl>(CurContext)) && 10408 TheCall->getMethodDecl()->isPure()) { 10409 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 10410 10411 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { 10412 Diag(MemExpr->getLocStart(), 10413 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 10414 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 10415 << MD->getParent()->getDeclName(); 10416 10417 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 10418 } 10419 } 10420 return MaybeBindToTemporary(TheCall); 10421} 10422 10423/// BuildCallToObjectOfClassType - Build a call to an object of class 10424/// type (C++ [over.call.object]), which can end up invoking an 10425/// overloaded function call operator (@c operator()) or performing a 10426/// user-defined conversion on the object argument. 10427ExprResult 10428Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 10429 SourceLocation LParenLoc, 10430 Expr **Args, unsigned NumArgs, 10431 SourceLocation RParenLoc) { 10432 if (checkPlaceholderForOverload(*this, Obj)) 10433 return ExprError(); 10434 ExprResult Object = Owned(Obj); 10435 10436 UnbridgedCastsSet UnbridgedCasts; 10437 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 10438 return ExprError(); 10439 10440 assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); 10441 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 10442 10443 // C++ [over.call.object]p1: 10444 // If the primary-expression E in the function call syntax 10445 // evaluates to a class object of type "cv T", then the set of 10446 // candidate functions includes at least the function call 10447 // operators of T. The function call operators of T are obtained by 10448 // ordinary lookup of the name operator() in the context of 10449 // (E).operator(). 10450 OverloadCandidateSet CandidateSet(LParenLoc); 10451 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 10452 10453 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 10454 PDiag(diag::err_incomplete_object_call) 10455 << Object.get()->getSourceRange())) 10456 return true; 10457 10458 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 10459 LookupQualifiedName(R, Record->getDecl()); 10460 R.suppressDiagnostics(); 10461 10462 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 10463 Oper != OperEnd; ++Oper) { 10464 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 10465 Object.get()->Classify(Context), Args, NumArgs, CandidateSet, 10466 /*SuppressUserConversions=*/ false); 10467 } 10468 10469 // C++ [over.call.object]p2: 10470 // In addition, for each (non-explicit in C++0x) conversion function 10471 // declared in T of the form 10472 // 10473 // operator conversion-type-id () cv-qualifier; 10474 // 10475 // where cv-qualifier is the same cv-qualification as, or a 10476 // greater cv-qualification than, cv, and where conversion-type-id 10477 // denotes the type "pointer to function of (P1,...,Pn) returning 10478 // R", or the type "reference to pointer to function of 10479 // (P1,...,Pn) returning R", or the type "reference to function 10480 // of (P1,...,Pn) returning R", a surrogate call function [...] 10481 // is also considered as a candidate function. Similarly, 10482 // surrogate call functions are added to the set of candidate 10483 // functions for each conversion function declared in an 10484 // accessible base class provided the function is not hidden 10485 // within T by another intervening declaration. 10486 const UnresolvedSetImpl *Conversions 10487 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 10488 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 10489 E = Conversions->end(); I != E; ++I) { 10490 NamedDecl *D = *I; 10491 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 10492 if (isa<UsingShadowDecl>(D)) 10493 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 10494 10495 // Skip over templated conversion functions; they aren't 10496 // surrogates. 10497 if (isa<FunctionTemplateDecl>(D)) 10498 continue; 10499 10500 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 10501 if (!Conv->isExplicit()) { 10502 // Strip the reference type (if any) and then the pointer type (if 10503 // any) to get down to what might be a function type. 10504 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 10505 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 10506 ConvType = ConvPtrType->getPointeeType(); 10507 10508 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 10509 { 10510 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 10511 Object.get(), Args, NumArgs, CandidateSet); 10512 } 10513 } 10514 } 10515 10516 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10517 10518 // Perform overload resolution. 10519 OverloadCandidateSet::iterator Best; 10520 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 10521 Best)) { 10522 case OR_Success: 10523 // Overload resolution succeeded; we'll build the appropriate call 10524 // below. 10525 break; 10526 10527 case OR_No_Viable_Function: 10528 if (CandidateSet.empty()) 10529 Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper) 10530 << Object.get()->getType() << /*call*/ 1 10531 << Object.get()->getSourceRange(); 10532 else 10533 Diag(Object.get()->getSourceRange().getBegin(), 10534 diag::err_ovl_no_viable_object_call) 10535 << Object.get()->getType() << Object.get()->getSourceRange(); 10536 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10537 break; 10538 10539 case OR_Ambiguous: 10540 Diag(Object.get()->getSourceRange().getBegin(), 10541 diag::err_ovl_ambiguous_object_call) 10542 << Object.get()->getType() << Object.get()->getSourceRange(); 10543 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 10544 break; 10545 10546 case OR_Deleted: 10547 Diag(Object.get()->getSourceRange().getBegin(), 10548 diag::err_ovl_deleted_object_call) 10549 << Best->Function->isDeleted() 10550 << Object.get()->getType() 10551 << getDeletedOrUnavailableSuffix(Best->Function) 10552 << Object.get()->getSourceRange(); 10553 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10554 break; 10555 } 10556 10557 if (Best == CandidateSet.end()) 10558 return true; 10559 10560 UnbridgedCasts.restore(); 10561 10562 if (Best->Function == 0) { 10563 // Since there is no function declaration, this is one of the 10564 // surrogate candidates. Dig out the conversion function. 10565 CXXConversionDecl *Conv 10566 = cast<CXXConversionDecl>( 10567 Best->Conversions[0].UserDefined.ConversionFunction); 10568 10569 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 10570 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 10571 10572 // We selected one of the surrogate functions that converts the 10573 // object parameter to a function pointer. Perform the conversion 10574 // on the object argument, then let ActOnCallExpr finish the job. 10575 10576 // Create an implicit member expr to refer to the conversion operator. 10577 // and then call it. 10578 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 10579 Conv, HadMultipleCandidates); 10580 if (Call.isInvalid()) 10581 return ExprError(); 10582 // Record usage of conversion in an implicit cast. 10583 Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(), 10584 CK_UserDefinedConversion, 10585 Call.get(), 0, VK_RValue)); 10586 10587 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 10588 RParenLoc); 10589 } 10590 10591 MarkFunctionReferenced(LParenLoc, Best->Function); 10592 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 10593 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 10594 10595 // We found an overloaded operator(). Build a CXXOperatorCallExpr 10596 // that calls this method, using Object for the implicit object 10597 // parameter and passing along the remaining arguments. 10598 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10599 const FunctionProtoType *Proto = 10600 Method->getType()->getAs<FunctionProtoType>(); 10601 10602 unsigned NumArgsInProto = Proto->getNumArgs(); 10603 unsigned NumArgsToCheck = NumArgs; 10604 10605 // Build the full argument list for the method call (the 10606 // implicit object parameter is placed at the beginning of the 10607 // list). 10608 Expr **MethodArgs; 10609 if (NumArgs < NumArgsInProto) { 10610 NumArgsToCheck = NumArgsInProto; 10611 MethodArgs = new Expr*[NumArgsInProto + 1]; 10612 } else { 10613 MethodArgs = new Expr*[NumArgs + 1]; 10614 } 10615 MethodArgs[0] = Object.get(); 10616 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 10617 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 10618 10619 DeclarationNameInfo OpLocInfo( 10620 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 10621 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 10622 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, 10623 HadMultipleCandidates, 10624 OpLocInfo.getLoc(), 10625 OpLocInfo.getInfo()); 10626 if (NewFn.isInvalid()) 10627 return true; 10628 10629 // Once we've built TheCall, all of the expressions are properly 10630 // owned. 10631 QualType ResultTy = Method->getResultType(); 10632 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10633 ResultTy = ResultTy.getNonLValueExprType(Context); 10634 10635 CXXOperatorCallExpr *TheCall = 10636 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), 10637 MethodArgs, NumArgs + 1, 10638 ResultTy, VK, RParenLoc); 10639 delete [] MethodArgs; 10640 10641 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 10642 Method)) 10643 return true; 10644 10645 // We may have default arguments. If so, we need to allocate more 10646 // slots in the call for them. 10647 if (NumArgs < NumArgsInProto) 10648 TheCall->setNumArgs(Context, NumArgsInProto + 1); 10649 else if (NumArgs > NumArgsInProto) 10650 NumArgsToCheck = NumArgsInProto; 10651 10652 bool IsError = false; 10653 10654 // Initialize the implicit object parameter. 10655 ExprResult ObjRes = 10656 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, 10657 Best->FoundDecl, Method); 10658 if (ObjRes.isInvalid()) 10659 IsError = true; 10660 else 10661 Object = move(ObjRes); 10662 TheCall->setArg(0, Object.take()); 10663 10664 // Check the argument types. 10665 for (unsigned i = 0; i != NumArgsToCheck; i++) { 10666 Expr *Arg; 10667 if (i < NumArgs) { 10668 Arg = Args[i]; 10669 10670 // Pass the argument. 10671 10672 ExprResult InputInit 10673 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 10674 Context, 10675 Method->getParamDecl(i)), 10676 SourceLocation(), Arg); 10677 10678 IsError |= InputInit.isInvalid(); 10679 Arg = InputInit.takeAs<Expr>(); 10680 } else { 10681 ExprResult DefArg 10682 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 10683 if (DefArg.isInvalid()) { 10684 IsError = true; 10685 break; 10686 } 10687 10688 Arg = DefArg.takeAs<Expr>(); 10689 } 10690 10691 TheCall->setArg(i + 1, Arg); 10692 } 10693 10694 // If this is a variadic call, handle args passed through "...". 10695 if (Proto->isVariadic()) { 10696 // Promote the arguments (C99 6.5.2.2p7). 10697 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 10698 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 10699 IsError |= Arg.isInvalid(); 10700 TheCall->setArg(i + 1, Arg.take()); 10701 } 10702 } 10703 10704 if (IsError) return true; 10705 10706 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs); 10707 10708 if (CheckFunctionCall(Method, TheCall)) 10709 return true; 10710 10711 return MaybeBindToTemporary(TheCall); 10712} 10713 10714/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 10715/// (if one exists), where @c Base is an expression of class type and 10716/// @c Member is the name of the member we're trying to find. 10717ExprResult 10718Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 10719 assert(Base->getType()->isRecordType() && 10720 "left-hand side must have class type"); 10721 10722 if (checkPlaceholderForOverload(*this, Base)) 10723 return ExprError(); 10724 10725 SourceLocation Loc = Base->getExprLoc(); 10726 10727 // C++ [over.ref]p1: 10728 // 10729 // [...] An expression x->m is interpreted as (x.operator->())->m 10730 // for a class object x of type T if T::operator->() exists and if 10731 // the operator is selected as the best match function by the 10732 // overload resolution mechanism (13.3). 10733 DeclarationName OpName = 10734 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 10735 OverloadCandidateSet CandidateSet(Loc); 10736 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 10737 10738 if (RequireCompleteType(Loc, Base->getType(), 10739 PDiag(diag::err_typecheck_incomplete_tag) 10740 << Base->getSourceRange())) 10741 return ExprError(); 10742 10743 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 10744 LookupQualifiedName(R, BaseRecord->getDecl()); 10745 R.suppressDiagnostics(); 10746 10747 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 10748 Oper != OperEnd; ++Oper) { 10749 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 10750 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 10751 } 10752 10753 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10754 10755 // Perform overload resolution. 10756 OverloadCandidateSet::iterator Best; 10757 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 10758 case OR_Success: 10759 // Overload resolution succeeded; we'll build the call below. 10760 break; 10761 10762 case OR_No_Viable_Function: 10763 if (CandidateSet.empty()) 10764 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 10765 << Base->getType() << Base->getSourceRange(); 10766 else 10767 Diag(OpLoc, diag::err_ovl_no_viable_oper) 10768 << "operator->" << Base->getSourceRange(); 10769 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 10770 return ExprError(); 10771 10772 case OR_Ambiguous: 10773 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 10774 << "->" << Base->getType() << Base->getSourceRange(); 10775 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 10776 return ExprError(); 10777 10778 case OR_Deleted: 10779 Diag(OpLoc, diag::err_ovl_deleted_oper) 10780 << Best->Function->isDeleted() 10781 << "->" 10782 << getDeletedOrUnavailableSuffix(Best->Function) 10783 << Base->getSourceRange(); 10784 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 10785 return ExprError(); 10786 } 10787 10788 MarkFunctionReferenced(OpLoc, Best->Function); 10789 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 10790 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 10791 10792 // Convert the object parameter. 10793 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10794 ExprResult BaseResult = 10795 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 10796 Best->FoundDecl, Method); 10797 if (BaseResult.isInvalid()) 10798 return ExprError(); 10799 Base = BaseResult.take(); 10800 10801 // Build the operator call. 10802 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, 10803 HadMultipleCandidates, OpLoc); 10804 if (FnExpr.isInvalid()) 10805 return ExprError(); 10806 10807 QualType ResultTy = Method->getResultType(); 10808 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10809 ResultTy = ResultTy.getNonLValueExprType(Context); 10810 CXXOperatorCallExpr *TheCall = 10811 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), 10812 &Base, 1, ResultTy, VK, OpLoc); 10813 10814 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 10815 Method)) 10816 return ExprError(); 10817 10818 return MaybeBindToTemporary(TheCall); 10819} 10820 10821/// FixOverloadedFunctionReference - E is an expression that refers to 10822/// a C++ overloaded function (possibly with some parentheses and 10823/// perhaps a '&' around it). We have resolved the overloaded function 10824/// to the function declaration Fn, so patch up the expression E to 10825/// refer (possibly indirectly) to Fn. Returns the new expr. 10826Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 10827 FunctionDecl *Fn) { 10828 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 10829 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 10830 Found, Fn); 10831 if (SubExpr == PE->getSubExpr()) 10832 return PE; 10833 10834 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 10835 } 10836 10837 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10838 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 10839 Found, Fn); 10840 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 10841 SubExpr->getType()) && 10842 "Implicit cast type cannot be determined from overload"); 10843 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 10844 if (SubExpr == ICE->getSubExpr()) 10845 return ICE; 10846 10847 return ImplicitCastExpr::Create(Context, ICE->getType(), 10848 ICE->getCastKind(), 10849 SubExpr, 0, 10850 ICE->getValueKind()); 10851 } 10852 10853 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 10854 assert(UnOp->getOpcode() == UO_AddrOf && 10855 "Can only take the address of an overloaded function"); 10856 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 10857 if (Method->isStatic()) { 10858 // Do nothing: static member functions aren't any different 10859 // from non-member functions. 10860 } else { 10861 // Fix the sub expression, which really has to be an 10862 // UnresolvedLookupExpr holding an overloaded member function 10863 // or template. 10864 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 10865 Found, Fn); 10866 if (SubExpr == UnOp->getSubExpr()) 10867 return UnOp; 10868 10869 assert(isa<DeclRefExpr>(SubExpr) 10870 && "fixed to something other than a decl ref"); 10871 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 10872 && "fixed to a member ref with no nested name qualifier"); 10873 10874 // We have taken the address of a pointer to member 10875 // function. Perform the computation here so that we get the 10876 // appropriate pointer to member type. 10877 QualType ClassType 10878 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 10879 QualType MemPtrType 10880 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 10881 10882 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 10883 VK_RValue, OK_Ordinary, 10884 UnOp->getOperatorLoc()); 10885 } 10886 } 10887 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 10888 Found, Fn); 10889 if (SubExpr == UnOp->getSubExpr()) 10890 return UnOp; 10891 10892 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 10893 Context.getPointerType(SubExpr->getType()), 10894 VK_RValue, OK_Ordinary, 10895 UnOp->getOperatorLoc()); 10896 } 10897 10898 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 10899 // FIXME: avoid copy. 10900 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10901 if (ULE->hasExplicitTemplateArgs()) { 10902 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 10903 TemplateArgs = &TemplateArgsBuffer; 10904 } 10905 10906 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 10907 ULE->getQualifierLoc(), 10908 ULE->getTemplateKeywordLoc(), 10909 Fn, 10910 ULE->getNameLoc(), 10911 Fn->getType(), 10912 VK_LValue, 10913 Found.getDecl(), 10914 TemplateArgs); 10915 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 10916 return DRE; 10917 } 10918 10919 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 10920 // FIXME: avoid copy. 10921 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10922 if (MemExpr->hasExplicitTemplateArgs()) { 10923 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 10924 TemplateArgs = &TemplateArgsBuffer; 10925 } 10926 10927 Expr *Base; 10928 10929 // If we're filling in a static method where we used to have an 10930 // implicit member access, rewrite to a simple decl ref. 10931 if (MemExpr->isImplicitAccess()) { 10932 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 10933 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 10934 MemExpr->getQualifierLoc(), 10935 MemExpr->getTemplateKeywordLoc(), 10936 Fn, 10937 MemExpr->getMemberLoc(), 10938 Fn->getType(), 10939 VK_LValue, 10940 Found.getDecl(), 10941 TemplateArgs); 10942 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 10943 return DRE; 10944 } else { 10945 SourceLocation Loc = MemExpr->getMemberLoc(); 10946 if (MemExpr->getQualifier()) 10947 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 10948 CheckCXXThisCapture(Loc); 10949 Base = new (Context) CXXThisExpr(Loc, 10950 MemExpr->getBaseType(), 10951 /*isImplicit=*/true); 10952 } 10953 } else 10954 Base = MemExpr->getBase(); 10955 10956 ExprValueKind valueKind; 10957 QualType type; 10958 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 10959 valueKind = VK_LValue; 10960 type = Fn->getType(); 10961 } else { 10962 valueKind = VK_RValue; 10963 type = Context.BoundMemberTy; 10964 } 10965 10966 MemberExpr *ME = MemberExpr::Create(Context, Base, 10967 MemExpr->isArrow(), 10968 MemExpr->getQualifierLoc(), 10969 MemExpr->getTemplateKeywordLoc(), 10970 Fn, 10971 Found, 10972 MemExpr->getMemberNameInfo(), 10973 TemplateArgs, 10974 type, valueKind, OK_Ordinary); 10975 ME->setHadMultipleCandidates(true); 10976 return ME; 10977 } 10978 10979 llvm_unreachable("Invalid reference to overloaded function"); 10980} 10981 10982ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 10983 DeclAccessPair Found, 10984 FunctionDecl *Fn) { 10985 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 10986} 10987 10988} // end namespace clang 10989