SemaOverload.cpp revision fb898e17cff919bd28b88e9d93301d6e2cc5cbd1
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "clang/Basic/Diagnostic.h" 16#include "clang/Lex/Preprocessor.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/CXXInheritance.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeOrdering.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/SmallPtrSet.h" 24#include "llvm/ADT/STLExtras.h" 25#include "llvm/Support/Compiler.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Qualification_Adjustment, 42 ICC_Promotion, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion 55 }; 56 return Category[(int)Kind]; 57} 58 59/// GetConversionRank - Retrieve the implicit conversion rank 60/// corresponding to the given implicit conversion kind. 61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 62 static const ImplicitConversionRank 63 Rank[(int)ICK_Num_Conversion_Kinds] = { 64 ICR_Exact_Match, 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Promotion, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Conversion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion 82 }; 83 return Rank[(int)Kind]; 84} 85 86/// GetImplicitConversionName - Return the name of this kind of 87/// implicit conversion. 88const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 89 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 90 "No conversion", 91 "Lvalue-to-rvalue", 92 "Array-to-pointer", 93 "Function-to-pointer", 94 "Qualification", 95 "Integral promotion", 96 "Floating point promotion", 97 "Complex promotion", 98 "Integral conversion", 99 "Floating conversion", 100 "Complex conversion", 101 "Floating-integral conversion", 102 "Complex-real conversion", 103 "Pointer conversion", 104 "Pointer-to-member conversion", 105 "Boolean conversion", 106 "Compatible-types conversion", 107 "Derived-to-base conversion" 108 }; 109 return Name[Kind]; 110} 111 112/// StandardConversionSequence - Set the standard conversion 113/// sequence to the identity conversion. 114void StandardConversionSequence::setAsIdentityConversion() { 115 First = ICK_Identity; 116 Second = ICK_Identity; 117 Third = ICK_Identity; 118 Deprecated = false; 119 ReferenceBinding = false; 120 DirectBinding = false; 121 RRefBinding = false; 122 CopyConstructor = 0; 123} 124 125/// getRank - Retrieve the rank of this standard conversion sequence 126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 127/// implicit conversions. 128ImplicitConversionRank StandardConversionSequence::getRank() const { 129 ImplicitConversionRank Rank = ICR_Exact_Match; 130 if (GetConversionRank(First) > Rank) 131 Rank = GetConversionRank(First); 132 if (GetConversionRank(Second) > Rank) 133 Rank = GetConversionRank(Second); 134 if (GetConversionRank(Third) > Rank) 135 Rank = GetConversionRank(Third); 136 return Rank; 137} 138 139/// isPointerConversionToBool - Determines whether this conversion is 140/// a conversion of a pointer or pointer-to-member to bool. This is 141/// used as part of the ranking of standard conversion sequences 142/// (C++ 13.3.3.2p4). 143bool StandardConversionSequence::isPointerConversionToBool() const { 144 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 145 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 146 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (ToType->isBooleanType() && 152 (FromType->isPointerType() || FromType->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 bool PrintedSomething = false; 186 if (First != ICK_Identity) { 187 fprintf(stderr, "%s", GetImplicitConversionName(First)); 188 PrintedSomething = true; 189 } 190 191 if (Second != ICK_Identity) { 192 if (PrintedSomething) { 193 fprintf(stderr, " -> "); 194 } 195 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 196 197 if (CopyConstructor) { 198 fprintf(stderr, " (by copy constructor)"); 199 } else if (DirectBinding) { 200 fprintf(stderr, " (direct reference binding)"); 201 } else if (ReferenceBinding) { 202 fprintf(stderr, " (reference binding)"); 203 } 204 PrintedSomething = true; 205 } 206 207 if (Third != ICK_Identity) { 208 if (PrintedSomething) { 209 fprintf(stderr, " -> "); 210 } 211 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 212 PrintedSomething = true; 213 } 214 215 if (!PrintedSomething) { 216 fprintf(stderr, "No conversions required"); 217 } 218} 219 220/// DebugPrint - Print this user-defined conversion sequence to standard 221/// error. Useful for debugging overloading issues. 222void UserDefinedConversionSequence::DebugPrint() const { 223 if (Before.First || Before.Second || Before.Third) { 224 Before.DebugPrint(); 225 fprintf(stderr, " -> "); 226 } 227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 228 if (After.First || After.Second || After.Third) { 229 fprintf(stderr, " -> "); 230 After.DebugPrint(); 231 } 232} 233 234/// DebugPrint - Print this implicit conversion sequence to standard 235/// error. Useful for debugging overloading issues. 236void ImplicitConversionSequence::DebugPrint() const { 237 switch (ConversionKind) { 238 case StandardConversion: 239 fprintf(stderr, "Standard conversion: "); 240 Standard.DebugPrint(); 241 break; 242 case UserDefinedConversion: 243 fprintf(stderr, "User-defined conversion: "); 244 UserDefined.DebugPrint(); 245 break; 246 case EllipsisConversion: 247 fprintf(stderr, "Ellipsis conversion"); 248 break; 249 case BadConversion: 250 fprintf(stderr, "Bad conversion"); 251 break; 252 } 253 254 fprintf(stderr, "\n"); 255} 256 257// IsOverload - Determine whether the given New declaration is an 258// overload of the Old declaration. This routine returns false if New 259// and Old cannot be overloaded, e.g., if they are functions with the 260// same signature (C++ 1.3.10) or if the Old declaration isn't a 261// function (or overload set). When it does return false and Old is an 262// OverloadedFunctionDecl, MatchedDecl will be set to point to the 263// FunctionDecl that New cannot be overloaded with. 264// 265// Example: Given the following input: 266// 267// void f(int, float); // #1 268// void f(int, int); // #2 269// int f(int, int); // #3 270// 271// When we process #1, there is no previous declaration of "f", 272// so IsOverload will not be used. 273// 274// When we process #2, Old is a FunctionDecl for #1. By comparing the 275// parameter types, we see that #1 and #2 are overloaded (since they 276// have different signatures), so this routine returns false; 277// MatchedDecl is unchanged. 278// 279// When we process #3, Old is an OverloadedFunctionDecl containing #1 280// and #2. We compare the signatures of #3 to #1 (they're overloaded, 281// so we do nothing) and then #3 to #2. Since the signatures of #3 and 282// #2 are identical (return types of functions are not part of the 283// signature), IsOverload returns false and MatchedDecl will be set to 284// point to the FunctionDecl for #2. 285bool 286Sema::IsOverload(FunctionDecl *New, Decl* OldD, 287 OverloadedFunctionDecl::function_iterator& MatchedDecl) { 288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { 289 // Is this new function an overload of every function in the 290 // overload set? 291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 292 FuncEnd = Ovl->function_end(); 293 for (; Func != FuncEnd; ++Func) { 294 if (!IsOverload(New, *Func, MatchedDecl)) { 295 MatchedDecl = Func; 296 return false; 297 } 298 } 299 300 // This function overloads every function in the overload set. 301 return true; 302 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD)) 303 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl); 304 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { 305 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 306 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 307 308 // C++ [temp.fct]p2: 309 // A function template can be overloaded with other function templates 310 // and with normal (non-template) functions. 311 if ((OldTemplate == 0) != (NewTemplate == 0)) 312 return true; 313 314 // Is the function New an overload of the function Old? 315 QualType OldQType = Context.getCanonicalType(Old->getType()); 316 QualType NewQType = Context.getCanonicalType(New->getType()); 317 318 // Compare the signatures (C++ 1.3.10) of the two functions to 319 // determine whether they are overloads. If we find any mismatch 320 // in the signature, they are overloads. 321 322 // If either of these functions is a K&R-style function (no 323 // prototype), then we consider them to have matching signatures. 324 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 325 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 326 return false; 327 328 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 329 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 330 331 // The signature of a function includes the types of its 332 // parameters (C++ 1.3.10), which includes the presence or absence 333 // of the ellipsis; see C++ DR 357). 334 if (OldQType != NewQType && 335 (OldType->getNumArgs() != NewType->getNumArgs() || 336 OldType->isVariadic() != NewType->isVariadic() || 337 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 338 NewType->arg_type_begin()))) 339 return true; 340 341 // C++ [temp.over.link]p4: 342 // The signature of a function template consists of its function 343 // signature, its return type and its template parameter list. The names 344 // of the template parameters are significant only for establishing the 345 // relationship between the template parameters and the rest of the 346 // signature. 347 // 348 // We check the return type and template parameter lists for function 349 // templates first; the remaining checks follow. 350 if (NewTemplate && 351 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 352 OldTemplate->getTemplateParameters(), 353 false, TPL_TemplateMatch) || 354 OldType->getResultType() != NewType->getResultType())) 355 return true; 356 357 // If the function is a class member, its signature includes the 358 // cv-qualifiers (if any) on the function itself. 359 // 360 // As part of this, also check whether one of the member functions 361 // is static, in which case they are not overloads (C++ 362 // 13.1p2). While not part of the definition of the signature, 363 // this check is important to determine whether these functions 364 // can be overloaded. 365 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 366 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 367 if (OldMethod && NewMethod && 368 !OldMethod->isStatic() && !NewMethod->isStatic() && 369 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 370 return true; 371 372 // The signatures match; this is not an overload. 373 return false; 374 } else { 375 // (C++ 13p1): 376 // Only function declarations can be overloaded; object and type 377 // declarations cannot be overloaded. 378 return false; 379 } 380} 381 382/// TryImplicitConversion - Attempt to perform an implicit conversion 383/// from the given expression (Expr) to the given type (ToType). This 384/// function returns an implicit conversion sequence that can be used 385/// to perform the initialization. Given 386/// 387/// void f(float f); 388/// void g(int i) { f(i); } 389/// 390/// this routine would produce an implicit conversion sequence to 391/// describe the initialization of f from i, which will be a standard 392/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 393/// 4.1) followed by a floating-integral conversion (C++ 4.9). 394// 395/// Note that this routine only determines how the conversion can be 396/// performed; it does not actually perform the conversion. As such, 397/// it will not produce any diagnostics if no conversion is available, 398/// but will instead return an implicit conversion sequence of kind 399/// "BadConversion". 400/// 401/// If @p SuppressUserConversions, then user-defined conversions are 402/// not permitted. 403/// If @p AllowExplicit, then explicit user-defined conversions are 404/// permitted. 405/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 406/// no matter its actual lvalueness. 407/// If @p UserCast, the implicit conversion is being done for a user-specified 408/// cast. 409ImplicitConversionSequence 410Sema::TryImplicitConversion(Expr* From, QualType ToType, 411 bool SuppressUserConversions, 412 bool AllowExplicit, bool ForceRValue, 413 bool InOverloadResolution, 414 bool UserCast) { 415 ImplicitConversionSequence ICS; 416 OverloadCandidateSet Conversions; 417 OverloadingResult UserDefResult = OR_Success; 418 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 419 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 420 else if (getLangOptions().CPlusPlus && 421 (UserDefResult = IsUserDefinedConversion(From, ToType, 422 ICS.UserDefined, 423 Conversions, 424 !SuppressUserConversions, AllowExplicit, 425 ForceRValue, UserCast)) == OR_Success) { 426 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 427 // C++ [over.ics.user]p4: 428 // A conversion of an expression of class type to the same class 429 // type is given Exact Match rank, and a conversion of an 430 // expression of class type to a base class of that type is 431 // given Conversion rank, in spite of the fact that a copy 432 // constructor (i.e., a user-defined conversion function) is 433 // called for those cases. 434 if (CXXConstructorDecl *Constructor 435 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 436 QualType FromCanon 437 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 438 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 439 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 440 // Turn this into a "standard" conversion sequence, so that it 441 // gets ranked with standard conversion sequences. 442 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 443 ICS.Standard.setAsIdentityConversion(); 444 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 445 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 446 ICS.Standard.CopyConstructor = Constructor; 447 if (ToCanon != FromCanon) 448 ICS.Standard.Second = ICK_Derived_To_Base; 449 } 450 } 451 452 // C++ [over.best.ics]p4: 453 // However, when considering the argument of a user-defined 454 // conversion function that is a candidate by 13.3.1.3 when 455 // invoked for the copying of the temporary in the second step 456 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 457 // 13.3.1.6 in all cases, only standard conversion sequences and 458 // ellipsis conversion sequences are allowed. 459 if (SuppressUserConversions && 460 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 461 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 462 } else { 463 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 464 if (UserDefResult == OR_Ambiguous) { 465 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 466 Cand != Conversions.end(); ++Cand) 467 if (Cand->Viable) 468 ICS.ConversionFunctionSet.push_back(Cand->Function); 469 } 470 } 471 472 return ICS; 473} 474 475/// IsStandardConversion - Determines whether there is a standard 476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 477/// expression From to the type ToType. Standard conversion sequences 478/// only consider non-class types; for conversions that involve class 479/// types, use TryImplicitConversion. If a conversion exists, SCS will 480/// contain the standard conversion sequence required to perform this 481/// conversion and this routine will return true. Otherwise, this 482/// routine will return false and the value of SCS is unspecified. 483bool 484Sema::IsStandardConversion(Expr* From, QualType ToType, 485 bool InOverloadResolution, 486 StandardConversionSequence &SCS) { 487 QualType FromType = From->getType(); 488 489 // Standard conversions (C++ [conv]) 490 SCS.setAsIdentityConversion(); 491 SCS.Deprecated = false; 492 SCS.IncompatibleObjC = false; 493 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 494 SCS.CopyConstructor = 0; 495 496 // There are no standard conversions for class types in C++, so 497 // abort early. When overloading in C, however, we do permit 498 if (FromType->isRecordType() || ToType->isRecordType()) { 499 if (getLangOptions().CPlusPlus) 500 return false; 501 502 // When we're overloading in C, we allow, as standard conversions, 503 } 504 505 // The first conversion can be an lvalue-to-rvalue conversion, 506 // array-to-pointer conversion, or function-to-pointer conversion 507 // (C++ 4p1). 508 509 // Lvalue-to-rvalue conversion (C++ 4.1): 510 // An lvalue (3.10) of a non-function, non-array type T can be 511 // converted to an rvalue. 512 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 513 if (argIsLvalue == Expr::LV_Valid && 514 !FromType->isFunctionType() && !FromType->isArrayType() && 515 Context.getCanonicalType(FromType) != Context.OverloadTy) { 516 SCS.First = ICK_Lvalue_To_Rvalue; 517 518 // If T is a non-class type, the type of the rvalue is the 519 // cv-unqualified version of T. Otherwise, the type of the rvalue 520 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 521 // just strip the qualifiers because they don't matter. 522 523 // FIXME: Doesn't see through to qualifiers behind a typedef! 524 FromType = FromType.getUnqualifiedType(); 525 } else if (FromType->isArrayType()) { 526 // Array-to-pointer conversion (C++ 4.2) 527 SCS.First = ICK_Array_To_Pointer; 528 529 // An lvalue or rvalue of type "array of N T" or "array of unknown 530 // bound of T" can be converted to an rvalue of type "pointer to 531 // T" (C++ 4.2p1). 532 FromType = Context.getArrayDecayedType(FromType); 533 534 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 535 // This conversion is deprecated. (C++ D.4). 536 SCS.Deprecated = true; 537 538 // For the purpose of ranking in overload resolution 539 // (13.3.3.1.1), this conversion is considered an 540 // array-to-pointer conversion followed by a qualification 541 // conversion (4.4). (C++ 4.2p2) 542 SCS.Second = ICK_Identity; 543 SCS.Third = ICK_Qualification; 544 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 545 return true; 546 } 547 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 548 // Function-to-pointer conversion (C++ 4.3). 549 SCS.First = ICK_Function_To_Pointer; 550 551 // An lvalue of function type T can be converted to an rvalue of 552 // type "pointer to T." The result is a pointer to the 553 // function. (C++ 4.3p1). 554 FromType = Context.getPointerType(FromType); 555 } else if (FunctionDecl *Fn 556 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 557 // Address of overloaded function (C++ [over.over]). 558 SCS.First = ICK_Function_To_Pointer; 559 560 // We were able to resolve the address of the overloaded function, 561 // so we can convert to the type of that function. 562 FromType = Fn->getType(); 563 if (ToType->isLValueReferenceType()) 564 FromType = Context.getLValueReferenceType(FromType); 565 else if (ToType->isRValueReferenceType()) 566 FromType = Context.getRValueReferenceType(FromType); 567 else if (ToType->isMemberPointerType()) { 568 // Resolve address only succeeds if both sides are member pointers, 569 // but it doesn't have to be the same class. See DR 247. 570 // Note that this means that the type of &Derived::fn can be 571 // Ret (Base::*)(Args) if the fn overload actually found is from the 572 // base class, even if it was brought into the derived class via a 573 // using declaration. The standard isn't clear on this issue at all. 574 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 575 FromType = Context.getMemberPointerType(FromType, 576 Context.getTypeDeclType(M->getParent()).getTypePtr()); 577 } else 578 FromType = Context.getPointerType(FromType); 579 } else { 580 // We don't require any conversions for the first step. 581 SCS.First = ICK_Identity; 582 } 583 584 // The second conversion can be an integral promotion, floating 585 // point promotion, integral conversion, floating point conversion, 586 // floating-integral conversion, pointer conversion, 587 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 588 // For overloading in C, this can also be a "compatible-type" 589 // conversion. 590 bool IncompatibleObjC = false; 591 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 592 // The unqualified versions of the types are the same: there's no 593 // conversion to do. 594 SCS.Second = ICK_Identity; 595 } else if (IsIntegralPromotion(From, FromType, ToType)) { 596 // Integral promotion (C++ 4.5). 597 SCS.Second = ICK_Integral_Promotion; 598 FromType = ToType.getUnqualifiedType(); 599 } else if (IsFloatingPointPromotion(FromType, ToType)) { 600 // Floating point promotion (C++ 4.6). 601 SCS.Second = ICK_Floating_Promotion; 602 FromType = ToType.getUnqualifiedType(); 603 } else if (IsComplexPromotion(FromType, ToType)) { 604 // Complex promotion (Clang extension) 605 SCS.Second = ICK_Complex_Promotion; 606 FromType = ToType.getUnqualifiedType(); 607 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 608 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 609 // Integral conversions (C++ 4.7). 610 // FIXME: isIntegralType shouldn't be true for enums in C++. 611 SCS.Second = ICK_Integral_Conversion; 612 FromType = ToType.getUnqualifiedType(); 613 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 614 // Floating point conversions (C++ 4.8). 615 SCS.Second = ICK_Floating_Conversion; 616 FromType = ToType.getUnqualifiedType(); 617 } else if (FromType->isComplexType() && ToType->isComplexType()) { 618 // Complex conversions (C99 6.3.1.6) 619 SCS.Second = ICK_Complex_Conversion; 620 FromType = ToType.getUnqualifiedType(); 621 } else if ((FromType->isFloatingType() && 622 ToType->isIntegralType() && (!ToType->isBooleanType() && 623 !ToType->isEnumeralType())) || 624 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 625 ToType->isFloatingType())) { 626 // Floating-integral conversions (C++ 4.9). 627 // FIXME: isIntegralType shouldn't be true for enums in C++. 628 SCS.Second = ICK_Floating_Integral; 629 FromType = ToType.getUnqualifiedType(); 630 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 631 (ToType->isComplexType() && FromType->isArithmeticType())) { 632 // Complex-real conversions (C99 6.3.1.7) 633 SCS.Second = ICK_Complex_Real; 634 FromType = ToType.getUnqualifiedType(); 635 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 636 FromType, IncompatibleObjC)) { 637 // Pointer conversions (C++ 4.10). 638 SCS.Second = ICK_Pointer_Conversion; 639 SCS.IncompatibleObjC = IncompatibleObjC; 640 } else if (IsMemberPointerConversion(From, FromType, ToType, 641 InOverloadResolution, FromType)) { 642 // Pointer to member conversions (4.11). 643 SCS.Second = ICK_Pointer_Member; 644 } else if (ToType->isBooleanType() && 645 (FromType->isArithmeticType() || 646 FromType->isEnumeralType() || 647 FromType->isPointerType() || 648 FromType->isBlockPointerType() || 649 FromType->isMemberPointerType() || 650 FromType->isNullPtrType())) { 651 // Boolean conversions (C++ 4.12). 652 SCS.Second = ICK_Boolean_Conversion; 653 FromType = Context.BoolTy; 654 } else if (!getLangOptions().CPlusPlus && 655 Context.typesAreCompatible(ToType, FromType)) { 656 // Compatible conversions (Clang extension for C function overloading) 657 SCS.Second = ICK_Compatible_Conversion; 658 } else { 659 // No second conversion required. 660 SCS.Second = ICK_Identity; 661 } 662 663 QualType CanonFrom; 664 QualType CanonTo; 665 // The third conversion can be a qualification conversion (C++ 4p1). 666 if (IsQualificationConversion(FromType, ToType)) { 667 SCS.Third = ICK_Qualification; 668 FromType = ToType; 669 CanonFrom = Context.getCanonicalType(FromType); 670 CanonTo = Context.getCanonicalType(ToType); 671 } else { 672 // No conversion required 673 SCS.Third = ICK_Identity; 674 675 // C++ [over.best.ics]p6: 676 // [...] Any difference in top-level cv-qualification is 677 // subsumed by the initialization itself and does not constitute 678 // a conversion. [...] 679 CanonFrom = Context.getCanonicalType(FromType); 680 CanonTo = Context.getCanonicalType(ToType); 681 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && 682 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { 683 FromType = ToType; 684 CanonFrom = CanonTo; 685 } 686 } 687 688 // If we have not converted the argument type to the parameter type, 689 // this is a bad conversion sequence. 690 if (CanonFrom != CanonTo) 691 return false; 692 693 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 694 return true; 695} 696 697/// IsIntegralPromotion - Determines whether the conversion from the 698/// expression From (whose potentially-adjusted type is FromType) to 699/// ToType is an integral promotion (C++ 4.5). If so, returns true and 700/// sets PromotedType to the promoted type. 701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 702 const BuiltinType *To = ToType->getAs<BuiltinType>(); 703 // All integers are built-in. 704 if (!To) { 705 return false; 706 } 707 708 // An rvalue of type char, signed char, unsigned char, short int, or 709 // unsigned short int can be converted to an rvalue of type int if 710 // int can represent all the values of the source type; otherwise, 711 // the source rvalue can be converted to an rvalue of type unsigned 712 // int (C++ 4.5p1). 713 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 714 if (// We can promote any signed, promotable integer type to an int 715 (FromType->isSignedIntegerType() || 716 // We can promote any unsigned integer type whose size is 717 // less than int to an int. 718 (!FromType->isSignedIntegerType() && 719 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 720 return To->getKind() == BuiltinType::Int; 721 } 722 723 return To->getKind() == BuiltinType::UInt; 724 } 725 726 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 727 // can be converted to an rvalue of the first of the following types 728 // that can represent all the values of its underlying type: int, 729 // unsigned int, long, or unsigned long (C++ 4.5p2). 730 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 731 && ToType->isIntegerType()) { 732 // Determine whether the type we're converting from is signed or 733 // unsigned. 734 bool FromIsSigned; 735 uint64_t FromSize = Context.getTypeSize(FromType); 736 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 737 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 738 FromIsSigned = UnderlyingType->isSignedIntegerType(); 739 } else { 740 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 741 FromIsSigned = true; 742 } 743 744 // The types we'll try to promote to, in the appropriate 745 // order. Try each of these types. 746 QualType PromoteTypes[6] = { 747 Context.IntTy, Context.UnsignedIntTy, 748 Context.LongTy, Context.UnsignedLongTy , 749 Context.LongLongTy, Context.UnsignedLongLongTy 750 }; 751 for (int Idx = 0; Idx < 6; ++Idx) { 752 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 753 if (FromSize < ToSize || 754 (FromSize == ToSize && 755 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 756 // We found the type that we can promote to. If this is the 757 // type we wanted, we have a promotion. Otherwise, no 758 // promotion. 759 return Context.getCanonicalType(ToType).getUnqualifiedType() 760 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); 761 } 762 } 763 } 764 765 // An rvalue for an integral bit-field (9.6) can be converted to an 766 // rvalue of type int if int can represent all the values of the 767 // bit-field; otherwise, it can be converted to unsigned int if 768 // unsigned int can represent all the values of the bit-field. If 769 // the bit-field is larger yet, no integral promotion applies to 770 // it. If the bit-field has an enumerated type, it is treated as any 771 // other value of that type for promotion purposes (C++ 4.5p3). 772 // FIXME: We should delay checking of bit-fields until we actually perform the 773 // conversion. 774 using llvm::APSInt; 775 if (From) 776 if (FieldDecl *MemberDecl = From->getBitField()) { 777 APSInt BitWidth; 778 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 779 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 780 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 781 ToSize = Context.getTypeSize(ToType); 782 783 // Are we promoting to an int from a bitfield that fits in an int? 784 if (BitWidth < ToSize || 785 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 786 return To->getKind() == BuiltinType::Int; 787 } 788 789 // Are we promoting to an unsigned int from an unsigned bitfield 790 // that fits into an unsigned int? 791 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 792 return To->getKind() == BuiltinType::UInt; 793 } 794 795 return false; 796 } 797 } 798 799 // An rvalue of type bool can be converted to an rvalue of type int, 800 // with false becoming zero and true becoming one (C++ 4.5p4). 801 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 802 return true; 803 } 804 805 return false; 806} 807 808/// IsFloatingPointPromotion - Determines whether the conversion from 809/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 810/// returns true and sets PromotedType to the promoted type. 811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 812 /// An rvalue of type float can be converted to an rvalue of type 813 /// double. (C++ 4.6p1). 814 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 815 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 816 if (FromBuiltin->getKind() == BuiltinType::Float && 817 ToBuiltin->getKind() == BuiltinType::Double) 818 return true; 819 820 // C99 6.3.1.5p1: 821 // When a float is promoted to double or long double, or a 822 // double is promoted to long double [...]. 823 if (!getLangOptions().CPlusPlus && 824 (FromBuiltin->getKind() == BuiltinType::Float || 825 FromBuiltin->getKind() == BuiltinType::Double) && 826 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 827 return true; 828 } 829 830 return false; 831} 832 833/// \brief Determine if a conversion is a complex promotion. 834/// 835/// A complex promotion is defined as a complex -> complex conversion 836/// where the conversion between the underlying real types is a 837/// floating-point or integral promotion. 838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 839 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 840 if (!FromComplex) 841 return false; 842 843 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 844 if (!ToComplex) 845 return false; 846 847 return IsFloatingPointPromotion(FromComplex->getElementType(), 848 ToComplex->getElementType()) || 849 IsIntegralPromotion(0, FromComplex->getElementType(), 850 ToComplex->getElementType()); 851} 852 853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 854/// the pointer type FromPtr to a pointer to type ToPointee, with the 855/// same type qualifiers as FromPtr has on its pointee type. ToType, 856/// if non-empty, will be a pointer to ToType that may or may not have 857/// the right set of qualifiers on its pointee. 858static QualType 859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 860 QualType ToPointee, QualType ToType, 861 ASTContext &Context) { 862 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 863 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 864 Qualifiers Quals = CanonFromPointee.getQualifiers(); 865 866 // Exact qualifier match -> return the pointer type we're converting to. 867 if (CanonToPointee.getQualifiers() == Quals) { 868 // ToType is exactly what we need. Return it. 869 if (!ToType.isNull()) 870 return ToType; 871 872 // Build a pointer to ToPointee. It has the right qualifiers 873 // already. 874 return Context.getPointerType(ToPointee); 875 } 876 877 // Just build a canonical type that has the right qualifiers. 878 return Context.getPointerType( 879 Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals)); 880} 881 882static bool isNullPointerConstantForConversion(Expr *Expr, 883 bool InOverloadResolution, 884 ASTContext &Context) { 885 // Handle value-dependent integral null pointer constants correctly. 886 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 887 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 888 Expr->getType()->isIntegralType()) 889 return !InOverloadResolution; 890 891 return Expr->isNullPointerConstant(Context, 892 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 893 : Expr::NPC_ValueDependentIsNull); 894} 895 896/// IsPointerConversion - Determines whether the conversion of the 897/// expression From, which has the (possibly adjusted) type FromType, 898/// can be converted to the type ToType via a pointer conversion (C++ 899/// 4.10). If so, returns true and places the converted type (that 900/// might differ from ToType in its cv-qualifiers at some level) into 901/// ConvertedType. 902/// 903/// This routine also supports conversions to and from block pointers 904/// and conversions with Objective-C's 'id', 'id<protocols...>', and 905/// pointers to interfaces. FIXME: Once we've determined the 906/// appropriate overloading rules for Objective-C, we may want to 907/// split the Objective-C checks into a different routine; however, 908/// GCC seems to consider all of these conversions to be pointer 909/// conversions, so for now they live here. IncompatibleObjC will be 910/// set if the conversion is an allowed Objective-C conversion that 911/// should result in a warning. 912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 913 bool InOverloadResolution, 914 QualType& ConvertedType, 915 bool &IncompatibleObjC) { 916 IncompatibleObjC = false; 917 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 918 return true; 919 920 // Conversion from a null pointer constant to any Objective-C pointer type. 921 if (ToType->isObjCObjectPointerType() && 922 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 923 ConvertedType = ToType; 924 return true; 925 } 926 927 // Blocks: Block pointers can be converted to void*. 928 if (FromType->isBlockPointerType() && ToType->isPointerType() && 929 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 930 ConvertedType = ToType; 931 return true; 932 } 933 // Blocks: A null pointer constant can be converted to a block 934 // pointer type. 935 if (ToType->isBlockPointerType() && 936 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 937 ConvertedType = ToType; 938 return true; 939 } 940 941 // If the left-hand-side is nullptr_t, the right side can be a null 942 // pointer constant. 943 if (ToType->isNullPtrType() && 944 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 945 ConvertedType = ToType; 946 return true; 947 } 948 949 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 950 if (!ToTypePtr) 951 return false; 952 953 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 954 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 955 ConvertedType = ToType; 956 return true; 957 } 958 959 // Beyond this point, both types need to be pointers. 960 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 961 if (!FromTypePtr) 962 return false; 963 964 QualType FromPointeeType = FromTypePtr->getPointeeType(); 965 QualType ToPointeeType = ToTypePtr->getPointeeType(); 966 967 // An rvalue of type "pointer to cv T," where T is an object type, 968 // can be converted to an rvalue of type "pointer to cv void" (C++ 969 // 4.10p2). 970 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 971 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 972 ToPointeeType, 973 ToType, Context); 974 return true; 975 } 976 977 // When we're overloading in C, we allow a special kind of pointer 978 // conversion for compatible-but-not-identical pointee types. 979 if (!getLangOptions().CPlusPlus && 980 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 981 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 982 ToPointeeType, 983 ToType, Context); 984 return true; 985 } 986 987 // C++ [conv.ptr]p3: 988 // 989 // An rvalue of type "pointer to cv D," where D is a class type, 990 // can be converted to an rvalue of type "pointer to cv B," where 991 // B is a base class (clause 10) of D. If B is an inaccessible 992 // (clause 11) or ambiguous (10.2) base class of D, a program that 993 // necessitates this conversion is ill-formed. The result of the 994 // conversion is a pointer to the base class sub-object of the 995 // derived class object. The null pointer value is converted to 996 // the null pointer value of the destination type. 997 // 998 // Note that we do not check for ambiguity or inaccessibility 999 // here. That is handled by CheckPointerConversion. 1000 if (getLangOptions().CPlusPlus && 1001 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1002 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1003 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1004 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1005 ToPointeeType, 1006 ToType, Context); 1007 return true; 1008 } 1009 1010 return false; 1011} 1012 1013/// isObjCPointerConversion - Determines whether this is an 1014/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1015/// with the same arguments and return values. 1016bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1017 QualType& ConvertedType, 1018 bool &IncompatibleObjC) { 1019 if (!getLangOptions().ObjC1) 1020 return false; 1021 1022 // First, we handle all conversions on ObjC object pointer types. 1023 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1024 const ObjCObjectPointerType *FromObjCPtr = 1025 FromType->getAs<ObjCObjectPointerType>(); 1026 1027 if (ToObjCPtr && FromObjCPtr) { 1028 // Objective C++: We're able to convert between "id" or "Class" and a 1029 // pointer to any interface (in both directions). 1030 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1031 ConvertedType = ToType; 1032 return true; 1033 } 1034 // Conversions with Objective-C's id<...>. 1035 if ((FromObjCPtr->isObjCQualifiedIdType() || 1036 ToObjCPtr->isObjCQualifiedIdType()) && 1037 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1038 /*compare=*/false)) { 1039 ConvertedType = ToType; 1040 return true; 1041 } 1042 // Objective C++: We're able to convert from a pointer to an 1043 // interface to a pointer to a different interface. 1044 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1045 ConvertedType = ToType; 1046 return true; 1047 } 1048 1049 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1050 // Okay: this is some kind of implicit downcast of Objective-C 1051 // interfaces, which is permitted. However, we're going to 1052 // complain about it. 1053 IncompatibleObjC = true; 1054 ConvertedType = FromType; 1055 return true; 1056 } 1057 } 1058 // Beyond this point, both types need to be C pointers or block pointers. 1059 QualType ToPointeeType; 1060 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1061 ToPointeeType = ToCPtr->getPointeeType(); 1062 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1063 ToPointeeType = ToBlockPtr->getPointeeType(); 1064 else 1065 return false; 1066 1067 QualType FromPointeeType; 1068 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1069 FromPointeeType = FromCPtr->getPointeeType(); 1070 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1071 FromPointeeType = FromBlockPtr->getPointeeType(); 1072 else 1073 return false; 1074 1075 // If we have pointers to pointers, recursively check whether this 1076 // is an Objective-C conversion. 1077 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1078 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1079 IncompatibleObjC)) { 1080 // We always complain about this conversion. 1081 IncompatibleObjC = true; 1082 ConvertedType = ToType; 1083 return true; 1084 } 1085 // If we have pointers to functions or blocks, check whether the only 1086 // differences in the argument and result types are in Objective-C 1087 // pointer conversions. If so, we permit the conversion (but 1088 // complain about it). 1089 const FunctionProtoType *FromFunctionType 1090 = FromPointeeType->getAs<FunctionProtoType>(); 1091 const FunctionProtoType *ToFunctionType 1092 = ToPointeeType->getAs<FunctionProtoType>(); 1093 if (FromFunctionType && ToFunctionType) { 1094 // If the function types are exactly the same, this isn't an 1095 // Objective-C pointer conversion. 1096 if (Context.getCanonicalType(FromPointeeType) 1097 == Context.getCanonicalType(ToPointeeType)) 1098 return false; 1099 1100 // Perform the quick checks that will tell us whether these 1101 // function types are obviously different. 1102 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1103 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1104 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1105 return false; 1106 1107 bool HasObjCConversion = false; 1108 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1109 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1110 // Okay, the types match exactly. Nothing to do. 1111 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1112 ToFunctionType->getResultType(), 1113 ConvertedType, IncompatibleObjC)) { 1114 // Okay, we have an Objective-C pointer conversion. 1115 HasObjCConversion = true; 1116 } else { 1117 // Function types are too different. Abort. 1118 return false; 1119 } 1120 1121 // Check argument types. 1122 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1123 ArgIdx != NumArgs; ++ArgIdx) { 1124 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1125 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1126 if (Context.getCanonicalType(FromArgType) 1127 == Context.getCanonicalType(ToArgType)) { 1128 // Okay, the types match exactly. Nothing to do. 1129 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1130 ConvertedType, IncompatibleObjC)) { 1131 // Okay, we have an Objective-C pointer conversion. 1132 HasObjCConversion = true; 1133 } else { 1134 // Argument types are too different. Abort. 1135 return false; 1136 } 1137 } 1138 1139 if (HasObjCConversion) { 1140 // We had an Objective-C conversion. Allow this pointer 1141 // conversion, but complain about it. 1142 ConvertedType = ToType; 1143 IncompatibleObjC = true; 1144 return true; 1145 } 1146 } 1147 1148 return false; 1149} 1150 1151/// CheckPointerConversion - Check the pointer conversion from the 1152/// expression From to the type ToType. This routine checks for 1153/// ambiguous or inaccessible derived-to-base pointer 1154/// conversions for which IsPointerConversion has already returned 1155/// true. It returns true and produces a diagnostic if there was an 1156/// error, or returns false otherwise. 1157bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1158 CastExpr::CastKind &Kind) { 1159 QualType FromType = From->getType(); 1160 1161 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1162 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1163 QualType FromPointeeType = FromPtrType->getPointeeType(), 1164 ToPointeeType = ToPtrType->getPointeeType(); 1165 1166 if (FromPointeeType->isRecordType() && 1167 ToPointeeType->isRecordType()) { 1168 // We must have a derived-to-base conversion. Check an 1169 // ambiguous or inaccessible conversion. 1170 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1171 From->getExprLoc(), 1172 From->getSourceRange())) 1173 return true; 1174 1175 // The conversion was successful. 1176 Kind = CastExpr::CK_DerivedToBase; 1177 } 1178 } 1179 if (const ObjCObjectPointerType *FromPtrType = 1180 FromType->getAs<ObjCObjectPointerType>()) 1181 if (const ObjCObjectPointerType *ToPtrType = 1182 ToType->getAs<ObjCObjectPointerType>()) { 1183 // Objective-C++ conversions are always okay. 1184 // FIXME: We should have a different class of conversions for the 1185 // Objective-C++ implicit conversions. 1186 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1187 return false; 1188 1189 } 1190 return false; 1191} 1192 1193/// IsMemberPointerConversion - Determines whether the conversion of the 1194/// expression From, which has the (possibly adjusted) type FromType, can be 1195/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1196/// If so, returns true and places the converted type (that might differ from 1197/// ToType in its cv-qualifiers at some level) into ConvertedType. 1198bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1199 QualType ToType, 1200 bool InOverloadResolution, 1201 QualType &ConvertedType) { 1202 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1203 if (!ToTypePtr) 1204 return false; 1205 1206 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1207 if (From->isNullPointerConstant(Context, 1208 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1209 : Expr::NPC_ValueDependentIsNull)) { 1210 ConvertedType = ToType; 1211 return true; 1212 } 1213 1214 // Otherwise, both types have to be member pointers. 1215 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1216 if (!FromTypePtr) 1217 return false; 1218 1219 // A pointer to member of B can be converted to a pointer to member of D, 1220 // where D is derived from B (C++ 4.11p2). 1221 QualType FromClass(FromTypePtr->getClass(), 0); 1222 QualType ToClass(ToTypePtr->getClass(), 0); 1223 // FIXME: What happens when these are dependent? Is this function even called? 1224 1225 if (IsDerivedFrom(ToClass, FromClass)) { 1226 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1227 ToClass.getTypePtr()); 1228 return true; 1229 } 1230 1231 return false; 1232} 1233 1234/// CheckMemberPointerConversion - Check the member pointer conversion from the 1235/// expression From to the type ToType. This routine checks for ambiguous or 1236/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1237/// for which IsMemberPointerConversion has already returned true. It returns 1238/// true and produces a diagnostic if there was an error, or returns false 1239/// otherwise. 1240bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1241 CastExpr::CastKind &Kind) { 1242 QualType FromType = From->getType(); 1243 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1244 if (!FromPtrType) { 1245 // This must be a null pointer to member pointer conversion 1246 assert(From->isNullPointerConstant(Context, 1247 Expr::NPC_ValueDependentIsNull) && 1248 "Expr must be null pointer constant!"); 1249 Kind = CastExpr::CK_NullToMemberPointer; 1250 return false; 1251 } 1252 1253 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1254 assert(ToPtrType && "No member pointer cast has a target type " 1255 "that is not a member pointer."); 1256 1257 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1258 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1259 1260 // FIXME: What about dependent types? 1261 assert(FromClass->isRecordType() && "Pointer into non-class."); 1262 assert(ToClass->isRecordType() && "Pointer into non-class."); 1263 1264 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1265 /*DetectVirtual=*/true); 1266 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1267 assert(DerivationOkay && 1268 "Should not have been called if derivation isn't OK."); 1269 (void)DerivationOkay; 1270 1271 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1272 getUnqualifiedType())) { 1273 // Derivation is ambiguous. Redo the check to find the exact paths. 1274 Paths.clear(); 1275 Paths.setRecordingPaths(true); 1276 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1277 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1278 (void)StillOkay; 1279 1280 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1281 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1282 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1283 return true; 1284 } 1285 1286 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1287 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1288 << FromClass << ToClass << QualType(VBase, 0) 1289 << From->getSourceRange(); 1290 return true; 1291 } 1292 1293 // Must be a base to derived member conversion. 1294 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1295 return false; 1296} 1297 1298/// IsQualificationConversion - Determines whether the conversion from 1299/// an rvalue of type FromType to ToType is a qualification conversion 1300/// (C++ 4.4). 1301bool 1302Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1303 FromType = Context.getCanonicalType(FromType); 1304 ToType = Context.getCanonicalType(ToType); 1305 1306 // If FromType and ToType are the same type, this is not a 1307 // qualification conversion. 1308 if (FromType == ToType) 1309 return false; 1310 1311 // (C++ 4.4p4): 1312 // A conversion can add cv-qualifiers at levels other than the first 1313 // in multi-level pointers, subject to the following rules: [...] 1314 bool PreviousToQualsIncludeConst = true; 1315 bool UnwrappedAnyPointer = false; 1316 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1317 // Within each iteration of the loop, we check the qualifiers to 1318 // determine if this still looks like a qualification 1319 // conversion. Then, if all is well, we unwrap one more level of 1320 // pointers or pointers-to-members and do it all again 1321 // until there are no more pointers or pointers-to-members left to 1322 // unwrap. 1323 UnwrappedAnyPointer = true; 1324 1325 // -- for every j > 0, if const is in cv 1,j then const is in cv 1326 // 2,j, and similarly for volatile. 1327 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1328 return false; 1329 1330 // -- if the cv 1,j and cv 2,j are different, then const is in 1331 // every cv for 0 < k < j. 1332 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1333 && !PreviousToQualsIncludeConst) 1334 return false; 1335 1336 // Keep track of whether all prior cv-qualifiers in the "to" type 1337 // include const. 1338 PreviousToQualsIncludeConst 1339 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1340 } 1341 1342 // We are left with FromType and ToType being the pointee types 1343 // after unwrapping the original FromType and ToType the same number 1344 // of types. If we unwrapped any pointers, and if FromType and 1345 // ToType have the same unqualified type (since we checked 1346 // qualifiers above), then this is a qualification conversion. 1347 return UnwrappedAnyPointer && 1348 FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); 1349} 1350 1351/// \brief Given a function template or function, extract the function template 1352/// declaration (if any) and the underlying function declaration. 1353template<typename T> 1354static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function, 1355 FunctionTemplateDecl *&FunctionTemplate) { 1356 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig); 1357 if (FunctionTemplate) 1358 Function = cast<T>(FunctionTemplate->getTemplatedDecl()); 1359 else 1360 Function = cast<T>(Orig); 1361} 1362 1363/// Determines whether there is a user-defined conversion sequence 1364/// (C++ [over.ics.user]) that converts expression From to the type 1365/// ToType. If such a conversion exists, User will contain the 1366/// user-defined conversion sequence that performs such a conversion 1367/// and this routine will return true. Otherwise, this routine returns 1368/// false and User is unspecified. 1369/// 1370/// \param AllowConversionFunctions true if the conversion should 1371/// consider conversion functions at all. If false, only constructors 1372/// will be considered. 1373/// 1374/// \param AllowExplicit true if the conversion should consider C++0x 1375/// "explicit" conversion functions as well as non-explicit conversion 1376/// functions (C++0x [class.conv.fct]p2). 1377/// 1378/// \param ForceRValue true if the expression should be treated as an rvalue 1379/// for overload resolution. 1380/// \param UserCast true if looking for user defined conversion for a static 1381/// cast. 1382Sema::OverloadingResult Sema::IsUserDefinedConversion( 1383 Expr *From, QualType ToType, 1384 UserDefinedConversionSequence& User, 1385 OverloadCandidateSet& CandidateSet, 1386 bool AllowConversionFunctions, 1387 bool AllowExplicit, bool ForceRValue, 1388 bool UserCast) { 1389 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1390 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1391 // We're not going to find any constructors. 1392 } else if (CXXRecordDecl *ToRecordDecl 1393 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1394 // C++ [over.match.ctor]p1: 1395 // When objects of class type are direct-initialized (8.5), or 1396 // copy-initialized from an expression of the same or a 1397 // derived class type (8.5), overload resolution selects the 1398 // constructor. [...] For copy-initialization, the candidate 1399 // functions are all the converting constructors (12.3.1) of 1400 // that class. The argument list is the expression-list within 1401 // the parentheses of the initializer. 1402 DeclarationName ConstructorName 1403 = Context.DeclarationNames.getCXXConstructorName( 1404 Context.getCanonicalType(ToType).getUnqualifiedType()); 1405 DeclContext::lookup_iterator Con, ConEnd; 1406 for (llvm::tie(Con, ConEnd) 1407 = ToRecordDecl->lookup(ConstructorName); 1408 Con != ConEnd; ++Con) { 1409 // Find the constructor (which may be a template). 1410 CXXConstructorDecl *Constructor = 0; 1411 FunctionTemplateDecl *ConstructorTmpl 1412 = dyn_cast<FunctionTemplateDecl>(*Con); 1413 if (ConstructorTmpl) 1414 Constructor 1415 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1416 else 1417 Constructor = cast<CXXConstructorDecl>(*Con); 1418 1419 if (!Constructor->isInvalidDecl() && 1420 Constructor->isConvertingConstructor(AllowExplicit)) { 1421 if (ConstructorTmpl) 1422 AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From, 1423 1, CandidateSet, 1424 /*SuppressUserConversions=*/!UserCast, 1425 ForceRValue); 1426 else 1427 // Allow one user-defined conversion when user specifies a 1428 // From->ToType conversion via an static cast (c-style, etc). 1429 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1430 /*SuppressUserConversions=*/!UserCast, 1431 ForceRValue); 1432 } 1433 } 1434 } 1435 } 1436 1437 if (!AllowConversionFunctions) { 1438 // Don't allow any conversion functions to enter the overload set. 1439 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1440 PDiag(0) 1441 << From->getSourceRange())) { 1442 // No conversion functions from incomplete types. 1443 } else if (const RecordType *FromRecordType 1444 = From->getType()->getAs<RecordType>()) { 1445 if (CXXRecordDecl *FromRecordDecl 1446 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1447 // Add all of the conversion functions as candidates. 1448 OverloadedFunctionDecl *Conversions 1449 = FromRecordDecl->getVisibleConversionFunctions(); 1450 for (OverloadedFunctionDecl::function_iterator Func 1451 = Conversions->function_begin(); 1452 Func != Conversions->function_end(); ++Func) { 1453 CXXConversionDecl *Conv; 1454 FunctionTemplateDecl *ConvTemplate; 1455 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 1456 if (ConvTemplate) 1457 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1458 else 1459 Conv = dyn_cast<CXXConversionDecl>(*Func); 1460 1461 if (AllowExplicit || !Conv->isExplicit()) { 1462 if (ConvTemplate) 1463 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1464 CandidateSet); 1465 else 1466 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1467 } 1468 } 1469 } 1470 } 1471 1472 OverloadCandidateSet::iterator Best; 1473 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1474 case OR_Success: 1475 // Record the standard conversion we used and the conversion function. 1476 if (CXXConstructorDecl *Constructor 1477 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1478 // C++ [over.ics.user]p1: 1479 // If the user-defined conversion is specified by a 1480 // constructor (12.3.1), the initial standard conversion 1481 // sequence converts the source type to the type required by 1482 // the argument of the constructor. 1483 // 1484 QualType ThisType = Constructor->getThisType(Context); 1485 if (Best->Conversions[0].ConversionKind == 1486 ImplicitConversionSequence::EllipsisConversion) 1487 User.EllipsisConversion = true; 1488 else { 1489 User.Before = Best->Conversions[0].Standard; 1490 User.EllipsisConversion = false; 1491 } 1492 User.ConversionFunction = Constructor; 1493 User.After.setAsIdentityConversion(); 1494 User.After.FromTypePtr 1495 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1496 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1497 return OR_Success; 1498 } else if (CXXConversionDecl *Conversion 1499 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1500 // C++ [over.ics.user]p1: 1501 // 1502 // [...] If the user-defined conversion is specified by a 1503 // conversion function (12.3.2), the initial standard 1504 // conversion sequence converts the source type to the 1505 // implicit object parameter of the conversion function. 1506 User.Before = Best->Conversions[0].Standard; 1507 User.ConversionFunction = Conversion; 1508 User.EllipsisConversion = false; 1509 1510 // C++ [over.ics.user]p2: 1511 // The second standard conversion sequence converts the 1512 // result of the user-defined conversion to the target type 1513 // for the sequence. Since an implicit conversion sequence 1514 // is an initialization, the special rules for 1515 // initialization by user-defined conversion apply when 1516 // selecting the best user-defined conversion for a 1517 // user-defined conversion sequence (see 13.3.3 and 1518 // 13.3.3.1). 1519 User.After = Best->FinalConversion; 1520 return OR_Success; 1521 } else { 1522 assert(false && "Not a constructor or conversion function?"); 1523 return OR_No_Viable_Function; 1524 } 1525 1526 case OR_No_Viable_Function: 1527 return OR_No_Viable_Function; 1528 case OR_Deleted: 1529 // No conversion here! We're done. 1530 return OR_Deleted; 1531 1532 case OR_Ambiguous: 1533 return OR_Ambiguous; 1534 } 1535 1536 return OR_No_Viable_Function; 1537} 1538 1539bool 1540Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) { 1541 ImplicitConversionSequence ICS; 1542 OverloadCandidateSet CandidateSet; 1543 OverloadingResult OvResult = 1544 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1545 CandidateSet, true, false, false); 1546 if (OvResult != OR_Ambiguous) 1547 return false; 1548 Diag(From->getSourceRange().getBegin(), 1549 diag::err_typecheck_ambiguous_condition) 1550 << From->getType() << ToType << From->getSourceRange(); 1551 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1552 return true; 1553} 1554 1555/// CompareImplicitConversionSequences - Compare two implicit 1556/// conversion sequences to determine whether one is better than the 1557/// other or if they are indistinguishable (C++ 13.3.3.2). 1558ImplicitConversionSequence::CompareKind 1559Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1560 const ImplicitConversionSequence& ICS2) 1561{ 1562 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1563 // conversion sequences (as defined in 13.3.3.1) 1564 // -- a standard conversion sequence (13.3.3.1.1) is a better 1565 // conversion sequence than a user-defined conversion sequence or 1566 // an ellipsis conversion sequence, and 1567 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1568 // conversion sequence than an ellipsis conversion sequence 1569 // (13.3.3.1.3). 1570 // 1571 if (ICS1.ConversionKind < ICS2.ConversionKind) 1572 return ImplicitConversionSequence::Better; 1573 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1574 return ImplicitConversionSequence::Worse; 1575 1576 // Two implicit conversion sequences of the same form are 1577 // indistinguishable conversion sequences unless one of the 1578 // following rules apply: (C++ 13.3.3.2p3): 1579 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1580 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1581 else if (ICS1.ConversionKind == 1582 ImplicitConversionSequence::UserDefinedConversion) { 1583 // User-defined conversion sequence U1 is a better conversion 1584 // sequence than another user-defined conversion sequence U2 if 1585 // they contain the same user-defined conversion function or 1586 // constructor and if the second standard conversion sequence of 1587 // U1 is better than the second standard conversion sequence of 1588 // U2 (C++ 13.3.3.2p3). 1589 if (ICS1.UserDefined.ConversionFunction == 1590 ICS2.UserDefined.ConversionFunction) 1591 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1592 ICS2.UserDefined.After); 1593 } 1594 1595 return ImplicitConversionSequence::Indistinguishable; 1596} 1597 1598/// CompareStandardConversionSequences - Compare two standard 1599/// conversion sequences to determine whether one is better than the 1600/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1601ImplicitConversionSequence::CompareKind 1602Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1603 const StandardConversionSequence& SCS2) 1604{ 1605 // Standard conversion sequence S1 is a better conversion sequence 1606 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1607 1608 // -- S1 is a proper subsequence of S2 (comparing the conversion 1609 // sequences in the canonical form defined by 13.3.3.1.1, 1610 // excluding any Lvalue Transformation; the identity conversion 1611 // sequence is considered to be a subsequence of any 1612 // non-identity conversion sequence) or, if not that, 1613 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1614 // Neither is a proper subsequence of the other. Do nothing. 1615 ; 1616 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1617 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1618 (SCS1.Second == ICK_Identity && 1619 SCS1.Third == ICK_Identity)) 1620 // SCS1 is a proper subsequence of SCS2. 1621 return ImplicitConversionSequence::Better; 1622 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1623 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1624 (SCS2.Second == ICK_Identity && 1625 SCS2.Third == ICK_Identity)) 1626 // SCS2 is a proper subsequence of SCS1. 1627 return ImplicitConversionSequence::Worse; 1628 1629 // -- the rank of S1 is better than the rank of S2 (by the rules 1630 // defined below), or, if not that, 1631 ImplicitConversionRank Rank1 = SCS1.getRank(); 1632 ImplicitConversionRank Rank2 = SCS2.getRank(); 1633 if (Rank1 < Rank2) 1634 return ImplicitConversionSequence::Better; 1635 else if (Rank2 < Rank1) 1636 return ImplicitConversionSequence::Worse; 1637 1638 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1639 // are indistinguishable unless one of the following rules 1640 // applies: 1641 1642 // A conversion that is not a conversion of a pointer, or 1643 // pointer to member, to bool is better than another conversion 1644 // that is such a conversion. 1645 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1646 return SCS2.isPointerConversionToBool() 1647 ? ImplicitConversionSequence::Better 1648 : ImplicitConversionSequence::Worse; 1649 1650 // C++ [over.ics.rank]p4b2: 1651 // 1652 // If class B is derived directly or indirectly from class A, 1653 // conversion of B* to A* is better than conversion of B* to 1654 // void*, and conversion of A* to void* is better than conversion 1655 // of B* to void*. 1656 bool SCS1ConvertsToVoid 1657 = SCS1.isPointerConversionToVoidPointer(Context); 1658 bool SCS2ConvertsToVoid 1659 = SCS2.isPointerConversionToVoidPointer(Context); 1660 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1661 // Exactly one of the conversion sequences is a conversion to 1662 // a void pointer; it's the worse conversion. 1663 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1664 : ImplicitConversionSequence::Worse; 1665 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1666 // Neither conversion sequence converts to a void pointer; compare 1667 // their derived-to-base conversions. 1668 if (ImplicitConversionSequence::CompareKind DerivedCK 1669 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1670 return DerivedCK; 1671 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1672 // Both conversion sequences are conversions to void 1673 // pointers. Compare the source types to determine if there's an 1674 // inheritance relationship in their sources. 1675 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1676 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1677 1678 // Adjust the types we're converting from via the array-to-pointer 1679 // conversion, if we need to. 1680 if (SCS1.First == ICK_Array_To_Pointer) 1681 FromType1 = Context.getArrayDecayedType(FromType1); 1682 if (SCS2.First == ICK_Array_To_Pointer) 1683 FromType2 = Context.getArrayDecayedType(FromType2); 1684 1685 QualType FromPointee1 1686 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1687 QualType FromPointee2 1688 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1689 1690 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1691 return ImplicitConversionSequence::Better; 1692 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1693 return ImplicitConversionSequence::Worse; 1694 1695 // Objective-C++: If one interface is more specific than the 1696 // other, it is the better one. 1697 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1698 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1699 if (FromIface1 && FromIface1) { 1700 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1701 return ImplicitConversionSequence::Better; 1702 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1703 return ImplicitConversionSequence::Worse; 1704 } 1705 } 1706 1707 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1708 // bullet 3). 1709 if (ImplicitConversionSequence::CompareKind QualCK 1710 = CompareQualificationConversions(SCS1, SCS2)) 1711 return QualCK; 1712 1713 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1714 // C++0x [over.ics.rank]p3b4: 1715 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1716 // implicit object parameter of a non-static member function declared 1717 // without a ref-qualifier, and S1 binds an rvalue reference to an 1718 // rvalue and S2 binds an lvalue reference. 1719 // FIXME: We don't know if we're dealing with the implicit object parameter, 1720 // or if the member function in this case has a ref qualifier. 1721 // (Of course, we don't have ref qualifiers yet.) 1722 if (SCS1.RRefBinding != SCS2.RRefBinding) 1723 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1724 : ImplicitConversionSequence::Worse; 1725 1726 // C++ [over.ics.rank]p3b4: 1727 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1728 // which the references refer are the same type except for 1729 // top-level cv-qualifiers, and the type to which the reference 1730 // initialized by S2 refers is more cv-qualified than the type 1731 // to which the reference initialized by S1 refers. 1732 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1733 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1734 T1 = Context.getCanonicalType(T1); 1735 T2 = Context.getCanonicalType(T2); 1736 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { 1737 if (T2.isMoreQualifiedThan(T1)) 1738 return ImplicitConversionSequence::Better; 1739 else if (T1.isMoreQualifiedThan(T2)) 1740 return ImplicitConversionSequence::Worse; 1741 } 1742 } 1743 1744 return ImplicitConversionSequence::Indistinguishable; 1745} 1746 1747/// CompareQualificationConversions - Compares two standard conversion 1748/// sequences to determine whether they can be ranked based on their 1749/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1750ImplicitConversionSequence::CompareKind 1751Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1752 const StandardConversionSequence& SCS2) { 1753 // C++ 13.3.3.2p3: 1754 // -- S1 and S2 differ only in their qualification conversion and 1755 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1756 // cv-qualification signature of type T1 is a proper subset of 1757 // the cv-qualification signature of type T2, and S1 is not the 1758 // deprecated string literal array-to-pointer conversion (4.2). 1759 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1760 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1761 return ImplicitConversionSequence::Indistinguishable; 1762 1763 // FIXME: the example in the standard doesn't use a qualification 1764 // conversion (!) 1765 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1766 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1767 T1 = Context.getCanonicalType(T1); 1768 T2 = Context.getCanonicalType(T2); 1769 1770 // If the types are the same, we won't learn anything by unwrapped 1771 // them. 1772 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1773 return ImplicitConversionSequence::Indistinguishable; 1774 1775 ImplicitConversionSequence::CompareKind Result 1776 = ImplicitConversionSequence::Indistinguishable; 1777 while (UnwrapSimilarPointerTypes(T1, T2)) { 1778 // Within each iteration of the loop, we check the qualifiers to 1779 // determine if this still looks like a qualification 1780 // conversion. Then, if all is well, we unwrap one more level of 1781 // pointers or pointers-to-members and do it all again 1782 // until there are no more pointers or pointers-to-members left 1783 // to unwrap. This essentially mimics what 1784 // IsQualificationConversion does, but here we're checking for a 1785 // strict subset of qualifiers. 1786 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1787 // The qualifiers are the same, so this doesn't tell us anything 1788 // about how the sequences rank. 1789 ; 1790 else if (T2.isMoreQualifiedThan(T1)) { 1791 // T1 has fewer qualifiers, so it could be the better sequence. 1792 if (Result == ImplicitConversionSequence::Worse) 1793 // Neither has qualifiers that are a subset of the other's 1794 // qualifiers. 1795 return ImplicitConversionSequence::Indistinguishable; 1796 1797 Result = ImplicitConversionSequence::Better; 1798 } else if (T1.isMoreQualifiedThan(T2)) { 1799 // T2 has fewer qualifiers, so it could be the better sequence. 1800 if (Result == ImplicitConversionSequence::Better) 1801 // Neither has qualifiers that are a subset of the other's 1802 // qualifiers. 1803 return ImplicitConversionSequence::Indistinguishable; 1804 1805 Result = ImplicitConversionSequence::Worse; 1806 } else { 1807 // Qualifiers are disjoint. 1808 return ImplicitConversionSequence::Indistinguishable; 1809 } 1810 1811 // If the types after this point are equivalent, we're done. 1812 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1813 break; 1814 } 1815 1816 // Check that the winning standard conversion sequence isn't using 1817 // the deprecated string literal array to pointer conversion. 1818 switch (Result) { 1819 case ImplicitConversionSequence::Better: 1820 if (SCS1.Deprecated) 1821 Result = ImplicitConversionSequence::Indistinguishable; 1822 break; 1823 1824 case ImplicitConversionSequence::Indistinguishable: 1825 break; 1826 1827 case ImplicitConversionSequence::Worse: 1828 if (SCS2.Deprecated) 1829 Result = ImplicitConversionSequence::Indistinguishable; 1830 break; 1831 } 1832 1833 return Result; 1834} 1835 1836/// CompareDerivedToBaseConversions - Compares two standard conversion 1837/// sequences to determine whether they can be ranked based on their 1838/// various kinds of derived-to-base conversions (C++ 1839/// [over.ics.rank]p4b3). As part of these checks, we also look at 1840/// conversions between Objective-C interface types. 1841ImplicitConversionSequence::CompareKind 1842Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1843 const StandardConversionSequence& SCS2) { 1844 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1845 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1846 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1847 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1848 1849 // Adjust the types we're converting from via the array-to-pointer 1850 // conversion, if we need to. 1851 if (SCS1.First == ICK_Array_To_Pointer) 1852 FromType1 = Context.getArrayDecayedType(FromType1); 1853 if (SCS2.First == ICK_Array_To_Pointer) 1854 FromType2 = Context.getArrayDecayedType(FromType2); 1855 1856 // Canonicalize all of the types. 1857 FromType1 = Context.getCanonicalType(FromType1); 1858 ToType1 = Context.getCanonicalType(ToType1); 1859 FromType2 = Context.getCanonicalType(FromType2); 1860 ToType2 = Context.getCanonicalType(ToType2); 1861 1862 // C++ [over.ics.rank]p4b3: 1863 // 1864 // If class B is derived directly or indirectly from class A and 1865 // class C is derived directly or indirectly from B, 1866 // 1867 // For Objective-C, we let A, B, and C also be Objective-C 1868 // interfaces. 1869 1870 // Compare based on pointer conversions. 1871 if (SCS1.Second == ICK_Pointer_Conversion && 1872 SCS2.Second == ICK_Pointer_Conversion && 1873 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1874 FromType1->isPointerType() && FromType2->isPointerType() && 1875 ToType1->isPointerType() && ToType2->isPointerType()) { 1876 QualType FromPointee1 1877 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1878 QualType ToPointee1 1879 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1880 QualType FromPointee2 1881 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1882 QualType ToPointee2 1883 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1884 1885 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1886 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1887 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1888 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1889 1890 // -- conversion of C* to B* is better than conversion of C* to A*, 1891 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1892 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1893 return ImplicitConversionSequence::Better; 1894 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1895 return ImplicitConversionSequence::Worse; 1896 1897 if (ToIface1 && ToIface2) { 1898 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1899 return ImplicitConversionSequence::Better; 1900 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1901 return ImplicitConversionSequence::Worse; 1902 } 1903 } 1904 1905 // -- conversion of B* to A* is better than conversion of C* to A*, 1906 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1907 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1908 return ImplicitConversionSequence::Better; 1909 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1910 return ImplicitConversionSequence::Worse; 1911 1912 if (FromIface1 && FromIface2) { 1913 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1914 return ImplicitConversionSequence::Better; 1915 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1916 return ImplicitConversionSequence::Worse; 1917 } 1918 } 1919 } 1920 1921 // Compare based on reference bindings. 1922 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1923 SCS1.Second == ICK_Derived_To_Base) { 1924 // -- binding of an expression of type C to a reference of type 1925 // B& is better than binding an expression of type C to a 1926 // reference of type A&, 1927 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1928 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1929 if (IsDerivedFrom(ToType1, ToType2)) 1930 return ImplicitConversionSequence::Better; 1931 else if (IsDerivedFrom(ToType2, ToType1)) 1932 return ImplicitConversionSequence::Worse; 1933 } 1934 1935 // -- binding of an expression of type B to a reference of type 1936 // A& is better than binding an expression of type C to a 1937 // reference of type A&, 1938 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1939 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1940 if (IsDerivedFrom(FromType2, FromType1)) 1941 return ImplicitConversionSequence::Better; 1942 else if (IsDerivedFrom(FromType1, FromType2)) 1943 return ImplicitConversionSequence::Worse; 1944 } 1945 } 1946 1947 // Ranking of member-pointer types. 1948 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 1949 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 1950 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 1951 const MemberPointerType * FromMemPointer1 = 1952 FromType1->getAs<MemberPointerType>(); 1953 const MemberPointerType * ToMemPointer1 = 1954 ToType1->getAs<MemberPointerType>(); 1955 const MemberPointerType * FromMemPointer2 = 1956 FromType2->getAs<MemberPointerType>(); 1957 const MemberPointerType * ToMemPointer2 = 1958 ToType2->getAs<MemberPointerType>(); 1959 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 1960 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 1961 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 1962 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 1963 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 1964 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 1965 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 1966 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 1967 // conversion of A::* to B::* is better than conversion of A::* to C::*, 1968 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1969 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1970 return ImplicitConversionSequence::Worse; 1971 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1972 return ImplicitConversionSequence::Better; 1973 } 1974 // conversion of B::* to C::* is better than conversion of A::* to C::* 1975 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 1976 if (IsDerivedFrom(FromPointee1, FromPointee2)) 1977 return ImplicitConversionSequence::Better; 1978 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 1979 return ImplicitConversionSequence::Worse; 1980 } 1981 } 1982 1983 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1984 SCS1.Second == ICK_Derived_To_Base) { 1985 // -- conversion of C to B is better than conversion of C to A, 1986 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1987 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1988 if (IsDerivedFrom(ToType1, ToType2)) 1989 return ImplicitConversionSequence::Better; 1990 else if (IsDerivedFrom(ToType2, ToType1)) 1991 return ImplicitConversionSequence::Worse; 1992 } 1993 1994 // -- conversion of B to A is better than conversion of C to A. 1995 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1996 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1997 if (IsDerivedFrom(FromType2, FromType1)) 1998 return ImplicitConversionSequence::Better; 1999 else if (IsDerivedFrom(FromType1, FromType2)) 2000 return ImplicitConversionSequence::Worse; 2001 } 2002 } 2003 2004 return ImplicitConversionSequence::Indistinguishable; 2005} 2006 2007/// TryCopyInitialization - Try to copy-initialize a value of type 2008/// ToType from the expression From. Return the implicit conversion 2009/// sequence required to pass this argument, which may be a bad 2010/// conversion sequence (meaning that the argument cannot be passed to 2011/// a parameter of this type). If @p SuppressUserConversions, then we 2012/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2013/// then we treat @p From as an rvalue, even if it is an lvalue. 2014ImplicitConversionSequence 2015Sema::TryCopyInitialization(Expr *From, QualType ToType, 2016 bool SuppressUserConversions, bool ForceRValue, 2017 bool InOverloadResolution) { 2018 if (ToType->isReferenceType()) { 2019 ImplicitConversionSequence ICS; 2020 CheckReferenceInit(From, ToType, 2021 /*FIXME:*/From->getLocStart(), 2022 SuppressUserConversions, 2023 /*AllowExplicit=*/false, 2024 ForceRValue, 2025 &ICS); 2026 return ICS; 2027 } else { 2028 return TryImplicitConversion(From, ToType, 2029 SuppressUserConversions, 2030 /*AllowExplicit=*/false, 2031 ForceRValue, 2032 InOverloadResolution); 2033 } 2034} 2035 2036/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2037/// the expression @p From. Returns true (and emits a diagnostic) if there was 2038/// an error, returns false if the initialization succeeded. Elidable should 2039/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2040/// differently in C++0x for this case. 2041bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2042 const char* Flavor, bool Elidable) { 2043 if (!getLangOptions().CPlusPlus) { 2044 // In C, argument passing is the same as performing an assignment. 2045 QualType FromType = From->getType(); 2046 2047 AssignConvertType ConvTy = 2048 CheckSingleAssignmentConstraints(ToType, From); 2049 if (ConvTy != Compatible && 2050 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2051 ConvTy = Compatible; 2052 2053 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2054 FromType, From, Flavor); 2055 } 2056 2057 if (ToType->isReferenceType()) 2058 return CheckReferenceInit(From, ToType, 2059 /*FIXME:*/From->getLocStart(), 2060 /*SuppressUserConversions=*/false, 2061 /*AllowExplicit=*/false, 2062 /*ForceRValue=*/false); 2063 2064 if (!PerformImplicitConversion(From, ToType, Flavor, 2065 /*AllowExplicit=*/false, Elidable)) 2066 return false; 2067 if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType)) 2068 return Diag(From->getSourceRange().getBegin(), 2069 diag::err_typecheck_convert_incompatible) 2070 << ToType << From->getType() << Flavor << From->getSourceRange(); 2071 return true; 2072} 2073 2074/// TryObjectArgumentInitialization - Try to initialize the object 2075/// parameter of the given member function (@c Method) from the 2076/// expression @p From. 2077ImplicitConversionSequence 2078Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 2079 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 2080 QualType ImplicitParamType 2081 = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers()); 2082 2083 // Set up the conversion sequence as a "bad" conversion, to allow us 2084 // to exit early. 2085 ImplicitConversionSequence ICS; 2086 ICS.Standard.setAsIdentityConversion(); 2087 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2088 2089 // We need to have an object of class type. 2090 QualType FromType = From->getType(); 2091 if (const PointerType *PT = FromType->getAs<PointerType>()) 2092 FromType = PT->getPointeeType(); 2093 2094 assert(FromType->isRecordType()); 2095 2096 // The implicit object parmeter is has the type "reference to cv X", 2097 // where X is the class of which the function is a member 2098 // (C++ [over.match.funcs]p4). However, when finding an implicit 2099 // conversion sequence for the argument, we are not allowed to 2100 // create temporaries or perform user-defined conversions 2101 // (C++ [over.match.funcs]p5). We perform a simplified version of 2102 // reference binding here, that allows class rvalues to bind to 2103 // non-constant references. 2104 2105 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2106 // with the implicit object parameter (C++ [over.match.funcs]p5). 2107 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2108 if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getCVRQualifiers() && 2109 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) 2110 return ICS; 2111 2112 // Check that we have either the same type or a derived type. It 2113 // affects the conversion rank. 2114 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2115 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) 2116 ICS.Standard.Second = ICK_Identity; 2117 else if (IsDerivedFrom(FromType, ClassType)) 2118 ICS.Standard.Second = ICK_Derived_To_Base; 2119 else 2120 return ICS; 2121 2122 // Success. Mark this as a reference binding. 2123 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2124 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2125 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2126 ICS.Standard.ReferenceBinding = true; 2127 ICS.Standard.DirectBinding = true; 2128 ICS.Standard.RRefBinding = false; 2129 return ICS; 2130} 2131 2132/// PerformObjectArgumentInitialization - Perform initialization of 2133/// the implicit object parameter for the given Method with the given 2134/// expression. 2135bool 2136Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2137 QualType FromRecordType, DestType; 2138 QualType ImplicitParamRecordType = 2139 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2140 2141 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2142 FromRecordType = PT->getPointeeType(); 2143 DestType = Method->getThisType(Context); 2144 } else { 2145 FromRecordType = From->getType(); 2146 DestType = ImplicitParamRecordType; 2147 } 2148 2149 ImplicitConversionSequence ICS 2150 = TryObjectArgumentInitialization(From, Method); 2151 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2152 return Diag(From->getSourceRange().getBegin(), 2153 diag::err_implicit_object_parameter_init) 2154 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2155 2156 if (ICS.Standard.Second == ICK_Derived_To_Base && 2157 CheckDerivedToBaseConversion(FromRecordType, 2158 ImplicitParamRecordType, 2159 From->getSourceRange().getBegin(), 2160 From->getSourceRange())) 2161 return true; 2162 2163 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2164 /*isLvalue=*/true); 2165 return false; 2166} 2167 2168/// TryContextuallyConvertToBool - Attempt to contextually convert the 2169/// expression From to bool (C++0x [conv]p3). 2170ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2171 return TryImplicitConversion(From, Context.BoolTy, 2172 // FIXME: Are these flags correct? 2173 /*SuppressUserConversions=*/false, 2174 /*AllowExplicit=*/true, 2175 /*ForceRValue=*/false, 2176 /*InOverloadResolution=*/false); 2177} 2178 2179/// PerformContextuallyConvertToBool - Perform a contextual conversion 2180/// of the expression From to bool (C++0x [conv]p3). 2181bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2182 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2183 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2184 return false; 2185 2186 if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy)) 2187 return Diag(From->getSourceRange().getBegin(), 2188 diag::err_typecheck_bool_condition) 2189 << From->getType() << From->getSourceRange(); 2190 return true; 2191} 2192 2193/// AddOverloadCandidate - Adds the given function to the set of 2194/// candidate functions, using the given function call arguments. If 2195/// @p SuppressUserConversions, then don't allow user-defined 2196/// conversions via constructors or conversion operators. 2197/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2198/// hacky way to implement the overloading rules for elidable copy 2199/// initialization in C++0x (C++0x 12.8p15). 2200/// 2201/// \para PartialOverloading true if we are performing "partial" overloading 2202/// based on an incomplete set of function arguments. This feature is used by 2203/// code completion. 2204void 2205Sema::AddOverloadCandidate(FunctionDecl *Function, 2206 Expr **Args, unsigned NumArgs, 2207 OverloadCandidateSet& CandidateSet, 2208 bool SuppressUserConversions, 2209 bool ForceRValue, 2210 bool PartialOverloading) { 2211 const FunctionProtoType* Proto 2212 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2213 assert(Proto && "Functions without a prototype cannot be overloaded"); 2214 assert(!isa<CXXConversionDecl>(Function) && 2215 "Use AddConversionCandidate for conversion functions"); 2216 assert(!Function->getDescribedFunctionTemplate() && 2217 "Use AddTemplateOverloadCandidate for function templates"); 2218 2219 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2220 if (!isa<CXXConstructorDecl>(Method)) { 2221 // If we get here, it's because we're calling a member function 2222 // that is named without a member access expression (e.g., 2223 // "this->f") that was either written explicitly or created 2224 // implicitly. This can happen with a qualified call to a member 2225 // function, e.g., X::f(). We use a NULL object as the implied 2226 // object argument (C++ [over.call.func]p3). 2227 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2228 SuppressUserConversions, ForceRValue); 2229 return; 2230 } 2231 // We treat a constructor like a non-member function, since its object 2232 // argument doesn't participate in overload resolution. 2233 } 2234 2235 if (!CandidateSet.isNewCandidate(Function)) 2236 return; 2237 2238 // Add this candidate 2239 CandidateSet.push_back(OverloadCandidate()); 2240 OverloadCandidate& Candidate = CandidateSet.back(); 2241 Candidate.Function = Function; 2242 Candidate.Viable = true; 2243 Candidate.IsSurrogate = false; 2244 Candidate.IgnoreObjectArgument = false; 2245 2246 unsigned NumArgsInProto = Proto->getNumArgs(); 2247 2248 // (C++ 13.3.2p2): A candidate function having fewer than m 2249 // parameters is viable only if it has an ellipsis in its parameter 2250 // list (8.3.5). 2251 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2252 !Proto->isVariadic()) { 2253 Candidate.Viable = false; 2254 return; 2255 } 2256 2257 // (C++ 13.3.2p2): A candidate function having more than m parameters 2258 // is viable only if the (m+1)st parameter has a default argument 2259 // (8.3.6). For the purposes of overload resolution, the 2260 // parameter list is truncated on the right, so that there are 2261 // exactly m parameters. 2262 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2263 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2264 // Not enough arguments. 2265 Candidate.Viable = false; 2266 return; 2267 } 2268 2269 // Determine the implicit conversion sequences for each of the 2270 // arguments. 2271 Candidate.Conversions.resize(NumArgs); 2272 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2273 if (ArgIdx < NumArgsInProto) { 2274 // (C++ 13.3.2p3): for F to be a viable function, there shall 2275 // exist for each argument an implicit conversion sequence 2276 // (13.3.3.1) that converts that argument to the corresponding 2277 // parameter of F. 2278 QualType ParamType = Proto->getArgType(ArgIdx); 2279 Candidate.Conversions[ArgIdx] 2280 = TryCopyInitialization(Args[ArgIdx], ParamType, 2281 SuppressUserConversions, ForceRValue, 2282 /*InOverloadResolution=*/true); 2283 if (Candidate.Conversions[ArgIdx].ConversionKind 2284 == ImplicitConversionSequence::BadConversion) { 2285 // 13.3.3.1-p10 If several different sequences of conversions exist that 2286 // each convert the argument to the parameter type, the implicit conversion 2287 // sequence associated with the parameter is defined to be the unique conversion 2288 // sequence designated the ambiguous conversion sequence. For the purpose of 2289 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2290 // conversion sequence is treated as a user-defined sequence that is 2291 // indistinguishable from any other user-defined conversion sequence 2292 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2293 Candidate.Conversions[ArgIdx].ConversionKind = 2294 ImplicitConversionSequence::UserDefinedConversion; 2295 // Set the conversion function to one of them. As due to ambiguity, 2296 // they carry the same weight and is needed for overload resolution 2297 // later. 2298 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2299 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2300 } 2301 else { 2302 Candidate.Viable = false; 2303 break; 2304 } 2305 } 2306 } else { 2307 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2308 // argument for which there is no corresponding parameter is 2309 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2310 Candidate.Conversions[ArgIdx].ConversionKind 2311 = ImplicitConversionSequence::EllipsisConversion; 2312 } 2313 } 2314} 2315 2316/// \brief Add all of the function declarations in the given function set to 2317/// the overload canddiate set. 2318void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2319 Expr **Args, unsigned NumArgs, 2320 OverloadCandidateSet& CandidateSet, 2321 bool SuppressUserConversions) { 2322 for (FunctionSet::const_iterator F = Functions.begin(), 2323 FEnd = Functions.end(); 2324 F != FEnd; ++F) { 2325 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2326 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2327 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2328 Args[0], Args + 1, NumArgs - 1, 2329 CandidateSet, SuppressUserConversions); 2330 else 2331 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2332 SuppressUserConversions); 2333 } else { 2334 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2335 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2336 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2337 AddMethodTemplateCandidate(FunTmpl, 2338 /*FIXME: explicit args */false, 0, 0, 2339 Args[0], Args + 1, NumArgs - 1, 2340 CandidateSet, 2341 SuppressUserConversions); 2342 else 2343 AddTemplateOverloadCandidate(FunTmpl, 2344 /*FIXME: explicit args */false, 0, 0, 2345 Args, NumArgs, CandidateSet, 2346 SuppressUserConversions); 2347 } 2348 } 2349} 2350 2351/// AddMethodCandidate - Adds the given C++ member function to the set 2352/// of candidate functions, using the given function call arguments 2353/// and the object argument (@c Object). For example, in a call 2354/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2355/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2356/// allow user-defined conversions via constructors or conversion 2357/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2358/// a slightly hacky way to implement the overloading rules for elidable copy 2359/// initialization in C++0x (C++0x 12.8p15). 2360void 2361Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2362 Expr **Args, unsigned NumArgs, 2363 OverloadCandidateSet& CandidateSet, 2364 bool SuppressUserConversions, bool ForceRValue) { 2365 const FunctionProtoType* Proto 2366 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2367 assert(Proto && "Methods without a prototype cannot be overloaded"); 2368 assert(!isa<CXXConversionDecl>(Method) && 2369 "Use AddConversionCandidate for conversion functions"); 2370 assert(!isa<CXXConstructorDecl>(Method) && 2371 "Use AddOverloadCandidate for constructors"); 2372 2373 if (!CandidateSet.isNewCandidate(Method)) 2374 return; 2375 2376 // Add this candidate 2377 CandidateSet.push_back(OverloadCandidate()); 2378 OverloadCandidate& Candidate = CandidateSet.back(); 2379 Candidate.Function = Method; 2380 Candidate.IsSurrogate = false; 2381 Candidate.IgnoreObjectArgument = false; 2382 2383 unsigned NumArgsInProto = Proto->getNumArgs(); 2384 2385 // (C++ 13.3.2p2): A candidate function having fewer than m 2386 // parameters is viable only if it has an ellipsis in its parameter 2387 // list (8.3.5). 2388 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2389 Candidate.Viable = false; 2390 return; 2391 } 2392 2393 // (C++ 13.3.2p2): A candidate function having more than m parameters 2394 // is viable only if the (m+1)st parameter has a default argument 2395 // (8.3.6). For the purposes of overload resolution, the 2396 // parameter list is truncated on the right, so that there are 2397 // exactly m parameters. 2398 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2399 if (NumArgs < MinRequiredArgs) { 2400 // Not enough arguments. 2401 Candidate.Viable = false; 2402 return; 2403 } 2404 2405 Candidate.Viable = true; 2406 Candidate.Conversions.resize(NumArgs + 1); 2407 2408 if (Method->isStatic() || !Object) 2409 // The implicit object argument is ignored. 2410 Candidate.IgnoreObjectArgument = true; 2411 else { 2412 // Determine the implicit conversion sequence for the object 2413 // parameter. 2414 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2415 if (Candidate.Conversions[0].ConversionKind 2416 == ImplicitConversionSequence::BadConversion) { 2417 Candidate.Viable = false; 2418 return; 2419 } 2420 } 2421 2422 // Determine the implicit conversion sequences for each of the 2423 // arguments. 2424 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2425 if (ArgIdx < NumArgsInProto) { 2426 // (C++ 13.3.2p3): for F to be a viable function, there shall 2427 // exist for each argument an implicit conversion sequence 2428 // (13.3.3.1) that converts that argument to the corresponding 2429 // parameter of F. 2430 QualType ParamType = Proto->getArgType(ArgIdx); 2431 Candidate.Conversions[ArgIdx + 1] 2432 = TryCopyInitialization(Args[ArgIdx], ParamType, 2433 SuppressUserConversions, ForceRValue, 2434 /*InOverloadResolution=*/true); 2435 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2436 == ImplicitConversionSequence::BadConversion) { 2437 Candidate.Viable = false; 2438 break; 2439 } 2440 } else { 2441 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2442 // argument for which there is no corresponding parameter is 2443 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2444 Candidate.Conversions[ArgIdx + 1].ConversionKind 2445 = ImplicitConversionSequence::EllipsisConversion; 2446 } 2447 } 2448} 2449 2450/// \brief Add a C++ member function template as a candidate to the candidate 2451/// set, using template argument deduction to produce an appropriate member 2452/// function template specialization. 2453void 2454Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2455 bool HasExplicitTemplateArgs, 2456 const TemplateArgumentLoc *ExplicitTemplateArgs, 2457 unsigned NumExplicitTemplateArgs, 2458 Expr *Object, Expr **Args, unsigned NumArgs, 2459 OverloadCandidateSet& CandidateSet, 2460 bool SuppressUserConversions, 2461 bool ForceRValue) { 2462 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2463 return; 2464 2465 // C++ [over.match.funcs]p7: 2466 // In each case where a candidate is a function template, candidate 2467 // function template specializations are generated using template argument 2468 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2469 // candidate functions in the usual way.113) A given name can refer to one 2470 // or more function templates and also to a set of overloaded non-template 2471 // functions. In such a case, the candidate functions generated from each 2472 // function template are combined with the set of non-template candidate 2473 // functions. 2474 TemplateDeductionInfo Info(Context); 2475 FunctionDecl *Specialization = 0; 2476 if (TemplateDeductionResult Result 2477 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs, 2478 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2479 Args, NumArgs, Specialization, Info)) { 2480 // FIXME: Record what happened with template argument deduction, so 2481 // that we can give the user a beautiful diagnostic. 2482 (void)Result; 2483 return; 2484 } 2485 2486 // Add the function template specialization produced by template argument 2487 // deduction as a candidate. 2488 assert(Specialization && "Missing member function template specialization?"); 2489 assert(isa<CXXMethodDecl>(Specialization) && 2490 "Specialization is not a member function?"); 2491 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2492 CandidateSet, SuppressUserConversions, ForceRValue); 2493} 2494 2495/// \brief Add a C++ function template specialization as a candidate 2496/// in the candidate set, using template argument deduction to produce 2497/// an appropriate function template specialization. 2498void 2499Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2500 bool HasExplicitTemplateArgs, 2501 const TemplateArgumentLoc *ExplicitTemplateArgs, 2502 unsigned NumExplicitTemplateArgs, 2503 Expr **Args, unsigned NumArgs, 2504 OverloadCandidateSet& CandidateSet, 2505 bool SuppressUserConversions, 2506 bool ForceRValue) { 2507 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2508 return; 2509 2510 // C++ [over.match.funcs]p7: 2511 // In each case where a candidate is a function template, candidate 2512 // function template specializations are generated using template argument 2513 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2514 // candidate functions in the usual way.113) A given name can refer to one 2515 // or more function templates and also to a set of overloaded non-template 2516 // functions. In such a case, the candidate functions generated from each 2517 // function template are combined with the set of non-template candidate 2518 // functions. 2519 TemplateDeductionInfo Info(Context); 2520 FunctionDecl *Specialization = 0; 2521 if (TemplateDeductionResult Result 2522 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 2523 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2524 Args, NumArgs, Specialization, Info)) { 2525 // FIXME: Record what happened with template argument deduction, so 2526 // that we can give the user a beautiful diagnostic. 2527 (void)Result; 2528 return; 2529 } 2530 2531 // Add the function template specialization produced by template argument 2532 // deduction as a candidate. 2533 assert(Specialization && "Missing function template specialization?"); 2534 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2535 SuppressUserConversions, ForceRValue); 2536} 2537 2538/// AddConversionCandidate - Add a C++ conversion function as a 2539/// candidate in the candidate set (C++ [over.match.conv], 2540/// C++ [over.match.copy]). From is the expression we're converting from, 2541/// and ToType is the type that we're eventually trying to convert to 2542/// (which may or may not be the same type as the type that the 2543/// conversion function produces). 2544void 2545Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2546 Expr *From, QualType ToType, 2547 OverloadCandidateSet& CandidateSet) { 2548 assert(!Conversion->getDescribedFunctionTemplate() && 2549 "Conversion function templates use AddTemplateConversionCandidate"); 2550 2551 if (!CandidateSet.isNewCandidate(Conversion)) 2552 return; 2553 2554 // Add this candidate 2555 CandidateSet.push_back(OverloadCandidate()); 2556 OverloadCandidate& Candidate = CandidateSet.back(); 2557 Candidate.Function = Conversion; 2558 Candidate.IsSurrogate = false; 2559 Candidate.IgnoreObjectArgument = false; 2560 Candidate.FinalConversion.setAsIdentityConversion(); 2561 Candidate.FinalConversion.FromTypePtr 2562 = Conversion->getConversionType().getAsOpaquePtr(); 2563 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2564 2565 // Determine the implicit conversion sequence for the implicit 2566 // object parameter. 2567 Candidate.Viable = true; 2568 Candidate.Conversions.resize(1); 2569 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2570 // Conversion functions to a different type in the base class is visible in 2571 // the derived class. So, a derived to base conversion should not participate 2572 // in overload resolution. 2573 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2574 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2575 if (Candidate.Conversions[0].ConversionKind 2576 == ImplicitConversionSequence::BadConversion) { 2577 Candidate.Viable = false; 2578 return; 2579 } 2580 2581 // We won't go through a user-define type conversion function to convert a 2582 // derived to base as such conversions are given Conversion Rank. They only 2583 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2584 QualType FromCanon 2585 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2586 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2587 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2588 Candidate.Viable = false; 2589 return; 2590 } 2591 2592 2593 // To determine what the conversion from the result of calling the 2594 // conversion function to the type we're eventually trying to 2595 // convert to (ToType), we need to synthesize a call to the 2596 // conversion function and attempt copy initialization from it. This 2597 // makes sure that we get the right semantics with respect to 2598 // lvalues/rvalues and the type. Fortunately, we can allocate this 2599 // call on the stack and we don't need its arguments to be 2600 // well-formed. 2601 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2602 SourceLocation()); 2603 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2604 CastExpr::CK_FunctionToPointerDecay, 2605 &ConversionRef, false); 2606 2607 // Note that it is safe to allocate CallExpr on the stack here because 2608 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2609 // allocator). 2610 CallExpr Call(Context, &ConversionFn, 0, 0, 2611 Conversion->getConversionType().getNonReferenceType(), 2612 SourceLocation()); 2613 ImplicitConversionSequence ICS = 2614 TryCopyInitialization(&Call, ToType, 2615 /*SuppressUserConversions=*/true, 2616 /*ForceRValue=*/false, 2617 /*InOverloadResolution=*/false); 2618 2619 switch (ICS.ConversionKind) { 2620 case ImplicitConversionSequence::StandardConversion: 2621 Candidate.FinalConversion = ICS.Standard; 2622 break; 2623 2624 case ImplicitConversionSequence::BadConversion: 2625 Candidate.Viable = false; 2626 break; 2627 2628 default: 2629 assert(false && 2630 "Can only end up with a standard conversion sequence or failure"); 2631 } 2632} 2633 2634/// \brief Adds a conversion function template specialization 2635/// candidate to the overload set, using template argument deduction 2636/// to deduce the template arguments of the conversion function 2637/// template from the type that we are converting to (C++ 2638/// [temp.deduct.conv]). 2639void 2640Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2641 Expr *From, QualType ToType, 2642 OverloadCandidateSet &CandidateSet) { 2643 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2644 "Only conversion function templates permitted here"); 2645 2646 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2647 return; 2648 2649 TemplateDeductionInfo Info(Context); 2650 CXXConversionDecl *Specialization = 0; 2651 if (TemplateDeductionResult Result 2652 = DeduceTemplateArguments(FunctionTemplate, ToType, 2653 Specialization, Info)) { 2654 // FIXME: Record what happened with template argument deduction, so 2655 // that we can give the user a beautiful diagnostic. 2656 (void)Result; 2657 return; 2658 } 2659 2660 // Add the conversion function template specialization produced by 2661 // template argument deduction as a candidate. 2662 assert(Specialization && "Missing function template specialization?"); 2663 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2664} 2665 2666/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2667/// converts the given @c Object to a function pointer via the 2668/// conversion function @c Conversion, and then attempts to call it 2669/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2670/// the type of function that we'll eventually be calling. 2671void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2672 const FunctionProtoType *Proto, 2673 Expr *Object, Expr **Args, unsigned NumArgs, 2674 OverloadCandidateSet& CandidateSet) { 2675 if (!CandidateSet.isNewCandidate(Conversion)) 2676 return; 2677 2678 CandidateSet.push_back(OverloadCandidate()); 2679 OverloadCandidate& Candidate = CandidateSet.back(); 2680 Candidate.Function = 0; 2681 Candidate.Surrogate = Conversion; 2682 Candidate.Viable = true; 2683 Candidate.IsSurrogate = true; 2684 Candidate.IgnoreObjectArgument = false; 2685 Candidate.Conversions.resize(NumArgs + 1); 2686 2687 // Determine the implicit conversion sequence for the implicit 2688 // object parameter. 2689 ImplicitConversionSequence ObjectInit 2690 = TryObjectArgumentInitialization(Object, Conversion); 2691 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2692 Candidate.Viable = false; 2693 return; 2694 } 2695 2696 // The first conversion is actually a user-defined conversion whose 2697 // first conversion is ObjectInit's standard conversion (which is 2698 // effectively a reference binding). Record it as such. 2699 Candidate.Conversions[0].ConversionKind 2700 = ImplicitConversionSequence::UserDefinedConversion; 2701 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2702 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2703 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2704 Candidate.Conversions[0].UserDefined.After 2705 = Candidate.Conversions[0].UserDefined.Before; 2706 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2707 2708 // Find the 2709 unsigned NumArgsInProto = Proto->getNumArgs(); 2710 2711 // (C++ 13.3.2p2): A candidate function having fewer than m 2712 // parameters is viable only if it has an ellipsis in its parameter 2713 // list (8.3.5). 2714 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2715 Candidate.Viable = false; 2716 return; 2717 } 2718 2719 // Function types don't have any default arguments, so just check if 2720 // we have enough arguments. 2721 if (NumArgs < NumArgsInProto) { 2722 // Not enough arguments. 2723 Candidate.Viable = false; 2724 return; 2725 } 2726 2727 // Determine the implicit conversion sequences for each of the 2728 // arguments. 2729 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2730 if (ArgIdx < NumArgsInProto) { 2731 // (C++ 13.3.2p3): for F to be a viable function, there shall 2732 // exist for each argument an implicit conversion sequence 2733 // (13.3.3.1) that converts that argument to the corresponding 2734 // parameter of F. 2735 QualType ParamType = Proto->getArgType(ArgIdx); 2736 Candidate.Conversions[ArgIdx + 1] 2737 = TryCopyInitialization(Args[ArgIdx], ParamType, 2738 /*SuppressUserConversions=*/false, 2739 /*ForceRValue=*/false, 2740 /*InOverloadResolution=*/false); 2741 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2742 == ImplicitConversionSequence::BadConversion) { 2743 Candidate.Viable = false; 2744 break; 2745 } 2746 } else { 2747 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2748 // argument for which there is no corresponding parameter is 2749 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2750 Candidate.Conversions[ArgIdx + 1].ConversionKind 2751 = ImplicitConversionSequence::EllipsisConversion; 2752 } 2753 } 2754} 2755 2756// FIXME: This will eventually be removed, once we've migrated all of the 2757// operator overloading logic over to the scheme used by binary operators, which 2758// works for template instantiation. 2759void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2760 SourceLocation OpLoc, 2761 Expr **Args, unsigned NumArgs, 2762 OverloadCandidateSet& CandidateSet, 2763 SourceRange OpRange) { 2764 FunctionSet Functions; 2765 2766 QualType T1 = Args[0]->getType(); 2767 QualType T2; 2768 if (NumArgs > 1) 2769 T2 = Args[1]->getType(); 2770 2771 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2772 if (S) 2773 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2774 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2775 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2776 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2777 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2778} 2779 2780/// \brief Add overload candidates for overloaded operators that are 2781/// member functions. 2782/// 2783/// Add the overloaded operator candidates that are member functions 2784/// for the operator Op that was used in an operator expression such 2785/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2786/// CandidateSet will store the added overload candidates. (C++ 2787/// [over.match.oper]). 2788void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2789 SourceLocation OpLoc, 2790 Expr **Args, unsigned NumArgs, 2791 OverloadCandidateSet& CandidateSet, 2792 SourceRange OpRange) { 2793 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2794 2795 // C++ [over.match.oper]p3: 2796 // For a unary operator @ with an operand of a type whose 2797 // cv-unqualified version is T1, and for a binary operator @ with 2798 // a left operand of a type whose cv-unqualified version is T1 and 2799 // a right operand of a type whose cv-unqualified version is T2, 2800 // three sets of candidate functions, designated member 2801 // candidates, non-member candidates and built-in candidates, are 2802 // constructed as follows: 2803 QualType T1 = Args[0]->getType(); 2804 QualType T2; 2805 if (NumArgs > 1) 2806 T2 = Args[1]->getType(); 2807 2808 // -- If T1 is a class type, the set of member candidates is the 2809 // result of the qualified lookup of T1::operator@ 2810 // (13.3.1.1.1); otherwise, the set of member candidates is 2811 // empty. 2812 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2813 // Complete the type if it can be completed. Otherwise, we're done. 2814 if (RequireCompleteType(OpLoc, T1, PDiag())) 2815 return; 2816 2817 LookupResult Operators; 2818 LookupQualifiedName(Operators, T1Rec->getDecl(), OpName, 2819 LookupOrdinaryName, false); 2820 for (LookupResult::iterator Oper = Operators.begin(), 2821 OperEnd = Operators.end(); 2822 Oper != OperEnd; 2823 ++Oper) { 2824 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) { 2825 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet, 2826 /*SuppressUserConversions=*/false); 2827 continue; 2828 } 2829 2830 assert(isa<FunctionTemplateDecl>(*Oper) && 2831 isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper) 2832 ->getTemplatedDecl()) && 2833 "Expected a member function template"); 2834 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0, 2835 Args[0], Args+1, NumArgs - 1, CandidateSet, 2836 /*SuppressUserConversions=*/false); 2837 } 2838 } 2839} 2840 2841/// AddBuiltinCandidate - Add a candidate for a built-in 2842/// operator. ResultTy and ParamTys are the result and parameter types 2843/// of the built-in candidate, respectively. Args and NumArgs are the 2844/// arguments being passed to the candidate. IsAssignmentOperator 2845/// should be true when this built-in candidate is an assignment 2846/// operator. NumContextualBoolArguments is the number of arguments 2847/// (at the beginning of the argument list) that will be contextually 2848/// converted to bool. 2849void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2850 Expr **Args, unsigned NumArgs, 2851 OverloadCandidateSet& CandidateSet, 2852 bool IsAssignmentOperator, 2853 unsigned NumContextualBoolArguments) { 2854 // Add this candidate 2855 CandidateSet.push_back(OverloadCandidate()); 2856 OverloadCandidate& Candidate = CandidateSet.back(); 2857 Candidate.Function = 0; 2858 Candidate.IsSurrogate = false; 2859 Candidate.IgnoreObjectArgument = false; 2860 Candidate.BuiltinTypes.ResultTy = ResultTy; 2861 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2862 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2863 2864 // Determine the implicit conversion sequences for each of the 2865 // arguments. 2866 Candidate.Viable = true; 2867 Candidate.Conversions.resize(NumArgs); 2868 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2869 // C++ [over.match.oper]p4: 2870 // For the built-in assignment operators, conversions of the 2871 // left operand are restricted as follows: 2872 // -- no temporaries are introduced to hold the left operand, and 2873 // -- no user-defined conversions are applied to the left 2874 // operand to achieve a type match with the left-most 2875 // parameter of a built-in candidate. 2876 // 2877 // We block these conversions by turning off user-defined 2878 // conversions, since that is the only way that initialization of 2879 // a reference to a non-class type can occur from something that 2880 // is not of the same type. 2881 if (ArgIdx < NumContextualBoolArguments) { 2882 assert(ParamTys[ArgIdx] == Context.BoolTy && 2883 "Contextual conversion to bool requires bool type"); 2884 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2885 } else { 2886 Candidate.Conversions[ArgIdx] 2887 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2888 ArgIdx == 0 && IsAssignmentOperator, 2889 /*ForceRValue=*/false, 2890 /*InOverloadResolution=*/false); 2891 } 2892 if (Candidate.Conversions[ArgIdx].ConversionKind 2893 == ImplicitConversionSequence::BadConversion) { 2894 Candidate.Viable = false; 2895 break; 2896 } 2897 } 2898} 2899 2900/// BuiltinCandidateTypeSet - A set of types that will be used for the 2901/// candidate operator functions for built-in operators (C++ 2902/// [over.built]). The types are separated into pointer types and 2903/// enumeration types. 2904class BuiltinCandidateTypeSet { 2905 /// TypeSet - A set of types. 2906 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2907 2908 /// PointerTypes - The set of pointer types that will be used in the 2909 /// built-in candidates. 2910 TypeSet PointerTypes; 2911 2912 /// MemberPointerTypes - The set of member pointer types that will be 2913 /// used in the built-in candidates. 2914 TypeSet MemberPointerTypes; 2915 2916 /// EnumerationTypes - The set of enumeration types that will be 2917 /// used in the built-in candidates. 2918 TypeSet EnumerationTypes; 2919 2920 /// Sema - The semantic analysis instance where we are building the 2921 /// candidate type set. 2922 Sema &SemaRef; 2923 2924 /// Context - The AST context in which we will build the type sets. 2925 ASTContext &Context; 2926 2927 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2928 const Qualifiers &VisibleQuals); 2929 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2930 2931public: 2932 /// iterator - Iterates through the types that are part of the set. 2933 typedef TypeSet::iterator iterator; 2934 2935 BuiltinCandidateTypeSet(Sema &SemaRef) 2936 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2937 2938 void AddTypesConvertedFrom(QualType Ty, 2939 SourceLocation Loc, 2940 bool AllowUserConversions, 2941 bool AllowExplicitConversions, 2942 const Qualifiers &VisibleTypeConversionsQuals); 2943 2944 /// pointer_begin - First pointer type found; 2945 iterator pointer_begin() { return PointerTypes.begin(); } 2946 2947 /// pointer_end - Past the last pointer type found; 2948 iterator pointer_end() { return PointerTypes.end(); } 2949 2950 /// member_pointer_begin - First member pointer type found; 2951 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2952 2953 /// member_pointer_end - Past the last member pointer type found; 2954 iterator member_pointer_end() { return MemberPointerTypes.end(); } 2955 2956 /// enumeration_begin - First enumeration type found; 2957 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2958 2959 /// enumeration_end - Past the last enumeration type found; 2960 iterator enumeration_end() { return EnumerationTypes.end(); } 2961}; 2962 2963/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 2964/// the set of pointer types along with any more-qualified variants of 2965/// that type. For example, if @p Ty is "int const *", this routine 2966/// will add "int const *", "int const volatile *", "int const 2967/// restrict *", and "int const volatile restrict *" to the set of 2968/// pointer types. Returns true if the add of @p Ty itself succeeded, 2969/// false otherwise. 2970/// 2971/// FIXME: what to do about extended qualifiers? 2972bool 2973BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2974 const Qualifiers &VisibleQuals) { 2975 2976 // Insert this type. 2977 if (!PointerTypes.insert(Ty)) 2978 return false; 2979 2980 const PointerType *PointerTy = Ty->getAs<PointerType>(); 2981 assert(PointerTy && "type was not a pointer type!"); 2982 2983 QualType PointeeTy = PointerTy->getPointeeType(); 2984 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 2985 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 2986 BaseCVR = Array->getElementType().getCVRQualifiers(); 2987 bool hasVolatile = VisibleQuals.hasVolatile(); 2988 bool hasRestrict = VisibleQuals.hasRestrict(); 2989 2990 // Iterate through all strict supersets of BaseCVR. 2991 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 2992 if ((CVR | BaseCVR) != CVR) continue; 2993 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 2994 // in the types. 2995 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 2996 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 2997 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 2998 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 2999 } 3000 3001 return true; 3002} 3003 3004/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3005/// to the set of pointer types along with any more-qualified variants of 3006/// that type. For example, if @p Ty is "int const *", this routine 3007/// will add "int const *", "int const volatile *", "int const 3008/// restrict *", and "int const volatile restrict *" to the set of 3009/// pointer types. Returns true if the add of @p Ty itself succeeded, 3010/// false otherwise. 3011/// 3012/// FIXME: what to do about extended qualifiers? 3013bool 3014BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3015 QualType Ty) { 3016 // Insert this type. 3017 if (!MemberPointerTypes.insert(Ty)) 3018 return false; 3019 3020 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3021 assert(PointerTy && "type was not a member pointer type!"); 3022 3023 QualType PointeeTy = PointerTy->getPointeeType(); 3024 const Type *ClassTy = PointerTy->getClass(); 3025 3026 // Iterate through all strict supersets of the pointee type's CVR 3027 // qualifiers. 3028 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3029 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3030 if ((CVR | BaseCVR) != CVR) continue; 3031 3032 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3033 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3034 } 3035 3036 return true; 3037} 3038 3039/// AddTypesConvertedFrom - Add each of the types to which the type @p 3040/// Ty can be implicit converted to the given set of @p Types. We're 3041/// primarily interested in pointer types and enumeration types. We also 3042/// take member pointer types, for the conditional operator. 3043/// AllowUserConversions is true if we should look at the conversion 3044/// functions of a class type, and AllowExplicitConversions if we 3045/// should also include the explicit conversion functions of a class 3046/// type. 3047void 3048BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3049 SourceLocation Loc, 3050 bool AllowUserConversions, 3051 bool AllowExplicitConversions, 3052 const Qualifiers &VisibleQuals) { 3053 // Only deal with canonical types. 3054 Ty = Context.getCanonicalType(Ty); 3055 3056 // Look through reference types; they aren't part of the type of an 3057 // expression for the purposes of conversions. 3058 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3059 Ty = RefTy->getPointeeType(); 3060 3061 // We don't care about qualifiers on the type. 3062 Ty = Ty.getUnqualifiedType(); 3063 3064 // If we're dealing with an array type, decay to the pointer. 3065 if (Ty->isArrayType()) 3066 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3067 3068 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3069 QualType PointeeTy = PointerTy->getPointeeType(); 3070 3071 // Insert our type, and its more-qualified variants, into the set 3072 // of types. 3073 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3074 return; 3075 } else if (Ty->isMemberPointerType()) { 3076 // Member pointers are far easier, since the pointee can't be converted. 3077 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3078 return; 3079 } else if (Ty->isEnumeralType()) { 3080 EnumerationTypes.insert(Ty); 3081 } else if (AllowUserConversions) { 3082 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3083 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3084 // No conversion functions in incomplete types. 3085 return; 3086 } 3087 3088 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3089 OverloadedFunctionDecl *Conversions 3090 = ClassDecl->getVisibleConversionFunctions(); 3091 for (OverloadedFunctionDecl::function_iterator Func 3092 = Conversions->function_begin(); 3093 Func != Conversions->function_end(); ++Func) { 3094 CXXConversionDecl *Conv; 3095 FunctionTemplateDecl *ConvTemplate; 3096 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 3097 3098 // Skip conversion function templates; they don't tell us anything 3099 // about which builtin types we can convert to. 3100 if (ConvTemplate) 3101 continue; 3102 3103 if (AllowExplicitConversions || !Conv->isExplicit()) { 3104 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3105 VisibleQuals); 3106 } 3107 } 3108 } 3109 } 3110} 3111 3112/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3113/// the volatile- and non-volatile-qualified assignment operators for the 3114/// given type to the candidate set. 3115static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3116 QualType T, 3117 Expr **Args, 3118 unsigned NumArgs, 3119 OverloadCandidateSet &CandidateSet) { 3120 QualType ParamTypes[2]; 3121 3122 // T& operator=(T&, T) 3123 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3124 ParamTypes[1] = T; 3125 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3126 /*IsAssignmentOperator=*/true); 3127 3128 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3129 // volatile T& operator=(volatile T&, T) 3130 ParamTypes[0] 3131 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3132 ParamTypes[1] = T; 3133 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3134 /*IsAssignmentOperator=*/true); 3135 } 3136} 3137 3138/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3139/// if any, found in visible type conversion functions found in ArgExpr's type. 3140static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3141 Qualifiers VRQuals; 3142 const RecordType *TyRec; 3143 if (const MemberPointerType *RHSMPType = 3144 ArgExpr->getType()->getAs<MemberPointerType>()) 3145 TyRec = cast<RecordType>(RHSMPType->getClass()); 3146 else 3147 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3148 if (!TyRec) { 3149 // Just to be safe, assume the worst case. 3150 VRQuals.addVolatile(); 3151 VRQuals.addRestrict(); 3152 return VRQuals; 3153 } 3154 3155 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3156 OverloadedFunctionDecl *Conversions = 3157 ClassDecl->getVisibleConversionFunctions(); 3158 3159 for (OverloadedFunctionDecl::function_iterator Func 3160 = Conversions->function_begin(); 3161 Func != Conversions->function_end(); ++Func) { 3162 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) { 3163 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3164 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3165 CanTy = ResTypeRef->getPointeeType(); 3166 // Need to go down the pointer/mempointer chain and add qualifiers 3167 // as see them. 3168 bool done = false; 3169 while (!done) { 3170 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3171 CanTy = ResTypePtr->getPointeeType(); 3172 else if (const MemberPointerType *ResTypeMPtr = 3173 CanTy->getAs<MemberPointerType>()) 3174 CanTy = ResTypeMPtr->getPointeeType(); 3175 else 3176 done = true; 3177 if (CanTy.isVolatileQualified()) 3178 VRQuals.addVolatile(); 3179 if (CanTy.isRestrictQualified()) 3180 VRQuals.addRestrict(); 3181 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3182 return VRQuals; 3183 } 3184 } 3185 } 3186 return VRQuals; 3187} 3188 3189/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3190/// operator overloads to the candidate set (C++ [over.built]), based 3191/// on the operator @p Op and the arguments given. For example, if the 3192/// operator is a binary '+', this routine might add "int 3193/// operator+(int, int)" to cover integer addition. 3194void 3195Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3196 SourceLocation OpLoc, 3197 Expr **Args, unsigned NumArgs, 3198 OverloadCandidateSet& CandidateSet) { 3199 // The set of "promoted arithmetic types", which are the arithmetic 3200 // types are that preserved by promotion (C++ [over.built]p2). Note 3201 // that the first few of these types are the promoted integral 3202 // types; these types need to be first. 3203 // FIXME: What about complex? 3204 const unsigned FirstIntegralType = 0; 3205 const unsigned LastIntegralType = 13; 3206 const unsigned FirstPromotedIntegralType = 7, 3207 LastPromotedIntegralType = 13; 3208 const unsigned FirstPromotedArithmeticType = 7, 3209 LastPromotedArithmeticType = 16; 3210 const unsigned NumArithmeticTypes = 16; 3211 QualType ArithmeticTypes[NumArithmeticTypes] = { 3212 Context.BoolTy, Context.CharTy, Context.WCharTy, 3213// FIXME: Context.Char16Ty, Context.Char32Ty, 3214 Context.SignedCharTy, Context.ShortTy, 3215 Context.UnsignedCharTy, Context.UnsignedShortTy, 3216 Context.IntTy, Context.LongTy, Context.LongLongTy, 3217 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3218 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3219 }; 3220 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3221 "Invalid first promoted integral type"); 3222 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3223 == Context.UnsignedLongLongTy && 3224 "Invalid last promoted integral type"); 3225 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3226 "Invalid first promoted arithmetic type"); 3227 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3228 == Context.LongDoubleTy && 3229 "Invalid last promoted arithmetic type"); 3230 3231 // Find all of the types that the arguments can convert to, but only 3232 // if the operator we're looking at has built-in operator candidates 3233 // that make use of these types. 3234 Qualifiers VisibleTypeConversionsQuals; 3235 VisibleTypeConversionsQuals.addConst(); 3236 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3237 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3238 3239 BuiltinCandidateTypeSet CandidateTypes(*this); 3240 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3241 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3242 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3243 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3244 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3245 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3246 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3247 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3248 OpLoc, 3249 true, 3250 (Op == OO_Exclaim || 3251 Op == OO_AmpAmp || 3252 Op == OO_PipePipe), 3253 VisibleTypeConversionsQuals); 3254 } 3255 3256 bool isComparison = false; 3257 switch (Op) { 3258 case OO_None: 3259 case NUM_OVERLOADED_OPERATORS: 3260 assert(false && "Expected an overloaded operator"); 3261 break; 3262 3263 case OO_Star: // '*' is either unary or binary 3264 if (NumArgs == 1) 3265 goto UnaryStar; 3266 else 3267 goto BinaryStar; 3268 break; 3269 3270 case OO_Plus: // '+' is either unary or binary 3271 if (NumArgs == 1) 3272 goto UnaryPlus; 3273 else 3274 goto BinaryPlus; 3275 break; 3276 3277 case OO_Minus: // '-' is either unary or binary 3278 if (NumArgs == 1) 3279 goto UnaryMinus; 3280 else 3281 goto BinaryMinus; 3282 break; 3283 3284 case OO_Amp: // '&' is either unary or binary 3285 if (NumArgs == 1) 3286 goto UnaryAmp; 3287 else 3288 goto BinaryAmp; 3289 3290 case OO_PlusPlus: 3291 case OO_MinusMinus: 3292 // C++ [over.built]p3: 3293 // 3294 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3295 // is either volatile or empty, there exist candidate operator 3296 // functions of the form 3297 // 3298 // VQ T& operator++(VQ T&); 3299 // T operator++(VQ T&, int); 3300 // 3301 // C++ [over.built]p4: 3302 // 3303 // For every pair (T, VQ), where T is an arithmetic type other 3304 // than bool, and VQ is either volatile or empty, there exist 3305 // candidate operator functions of the form 3306 // 3307 // VQ T& operator--(VQ T&); 3308 // T operator--(VQ T&, int); 3309 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3310 Arith < NumArithmeticTypes; ++Arith) { 3311 QualType ArithTy = ArithmeticTypes[Arith]; 3312 QualType ParamTypes[2] 3313 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3314 3315 // Non-volatile version. 3316 if (NumArgs == 1) 3317 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3318 else 3319 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3320 // heuristic to reduce number of builtin candidates in the set. 3321 // Add volatile version only if there are conversions to a volatile type. 3322 if (VisibleTypeConversionsQuals.hasVolatile()) { 3323 // Volatile version 3324 ParamTypes[0] 3325 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3326 if (NumArgs == 1) 3327 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3328 else 3329 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3330 } 3331 } 3332 3333 // C++ [over.built]p5: 3334 // 3335 // For every pair (T, VQ), where T is a cv-qualified or 3336 // cv-unqualified object type, and VQ is either volatile or 3337 // empty, there exist candidate operator functions of the form 3338 // 3339 // T*VQ& operator++(T*VQ&); 3340 // T*VQ& operator--(T*VQ&); 3341 // T* operator++(T*VQ&, int); 3342 // T* operator--(T*VQ&, int); 3343 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3344 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3345 // Skip pointer types that aren't pointers to object types. 3346 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3347 continue; 3348 3349 QualType ParamTypes[2] = { 3350 Context.getLValueReferenceType(*Ptr), Context.IntTy 3351 }; 3352 3353 // Without volatile 3354 if (NumArgs == 1) 3355 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3356 else 3357 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3358 3359 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3360 VisibleTypeConversionsQuals.hasVolatile()) { 3361 // With volatile 3362 ParamTypes[0] 3363 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3364 if (NumArgs == 1) 3365 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3366 else 3367 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3368 } 3369 } 3370 break; 3371 3372 UnaryStar: 3373 // C++ [over.built]p6: 3374 // For every cv-qualified or cv-unqualified object type T, there 3375 // exist candidate operator functions of the form 3376 // 3377 // T& operator*(T*); 3378 // 3379 // C++ [over.built]p7: 3380 // For every function type T, there exist candidate operator 3381 // functions of the form 3382 // T& operator*(T*); 3383 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3384 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3385 QualType ParamTy = *Ptr; 3386 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3387 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3388 &ParamTy, Args, 1, CandidateSet); 3389 } 3390 break; 3391 3392 UnaryPlus: 3393 // C++ [over.built]p8: 3394 // For every type T, there exist candidate operator functions of 3395 // the form 3396 // 3397 // T* operator+(T*); 3398 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3399 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3400 QualType ParamTy = *Ptr; 3401 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3402 } 3403 3404 // Fall through 3405 3406 UnaryMinus: 3407 // C++ [over.built]p9: 3408 // For every promoted arithmetic type T, there exist candidate 3409 // operator functions of the form 3410 // 3411 // T operator+(T); 3412 // T operator-(T); 3413 for (unsigned Arith = FirstPromotedArithmeticType; 3414 Arith < LastPromotedArithmeticType; ++Arith) { 3415 QualType ArithTy = ArithmeticTypes[Arith]; 3416 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3417 } 3418 break; 3419 3420 case OO_Tilde: 3421 // C++ [over.built]p10: 3422 // For every promoted integral type T, there exist candidate 3423 // operator functions of the form 3424 // 3425 // T operator~(T); 3426 for (unsigned Int = FirstPromotedIntegralType; 3427 Int < LastPromotedIntegralType; ++Int) { 3428 QualType IntTy = ArithmeticTypes[Int]; 3429 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3430 } 3431 break; 3432 3433 case OO_New: 3434 case OO_Delete: 3435 case OO_Array_New: 3436 case OO_Array_Delete: 3437 case OO_Call: 3438 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3439 break; 3440 3441 case OO_Comma: 3442 UnaryAmp: 3443 case OO_Arrow: 3444 // C++ [over.match.oper]p3: 3445 // -- For the operator ',', the unary operator '&', or the 3446 // operator '->', the built-in candidates set is empty. 3447 break; 3448 3449 case OO_EqualEqual: 3450 case OO_ExclaimEqual: 3451 // C++ [over.match.oper]p16: 3452 // For every pointer to member type T, there exist candidate operator 3453 // functions of the form 3454 // 3455 // bool operator==(T,T); 3456 // bool operator!=(T,T); 3457 for (BuiltinCandidateTypeSet::iterator 3458 MemPtr = CandidateTypes.member_pointer_begin(), 3459 MemPtrEnd = CandidateTypes.member_pointer_end(); 3460 MemPtr != MemPtrEnd; 3461 ++MemPtr) { 3462 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3463 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3464 } 3465 3466 // Fall through 3467 3468 case OO_Less: 3469 case OO_Greater: 3470 case OO_LessEqual: 3471 case OO_GreaterEqual: 3472 // C++ [over.built]p15: 3473 // 3474 // For every pointer or enumeration type T, there exist 3475 // candidate operator functions of the form 3476 // 3477 // bool operator<(T, T); 3478 // bool operator>(T, T); 3479 // bool operator<=(T, T); 3480 // bool operator>=(T, T); 3481 // bool operator==(T, T); 3482 // bool operator!=(T, T); 3483 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3484 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3485 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3486 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3487 } 3488 for (BuiltinCandidateTypeSet::iterator Enum 3489 = CandidateTypes.enumeration_begin(); 3490 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3491 QualType ParamTypes[2] = { *Enum, *Enum }; 3492 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3493 } 3494 3495 // Fall through. 3496 isComparison = true; 3497 3498 BinaryPlus: 3499 BinaryMinus: 3500 if (!isComparison) { 3501 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3502 3503 // C++ [over.built]p13: 3504 // 3505 // For every cv-qualified or cv-unqualified object type T 3506 // there exist candidate operator functions of the form 3507 // 3508 // T* operator+(T*, ptrdiff_t); 3509 // T& operator[](T*, ptrdiff_t); [BELOW] 3510 // T* operator-(T*, ptrdiff_t); 3511 // T* operator+(ptrdiff_t, T*); 3512 // T& operator[](ptrdiff_t, T*); [BELOW] 3513 // 3514 // C++ [over.built]p14: 3515 // 3516 // For every T, where T is a pointer to object type, there 3517 // exist candidate operator functions of the form 3518 // 3519 // ptrdiff_t operator-(T, T); 3520 for (BuiltinCandidateTypeSet::iterator Ptr 3521 = CandidateTypes.pointer_begin(); 3522 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3523 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3524 3525 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3526 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3527 3528 if (Op == OO_Plus) { 3529 // T* operator+(ptrdiff_t, T*); 3530 ParamTypes[0] = ParamTypes[1]; 3531 ParamTypes[1] = *Ptr; 3532 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3533 } else { 3534 // ptrdiff_t operator-(T, T); 3535 ParamTypes[1] = *Ptr; 3536 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3537 Args, 2, CandidateSet); 3538 } 3539 } 3540 } 3541 // Fall through 3542 3543 case OO_Slash: 3544 BinaryStar: 3545 Conditional: 3546 // C++ [over.built]p12: 3547 // 3548 // For every pair of promoted arithmetic types L and R, there 3549 // exist candidate operator functions of the form 3550 // 3551 // LR operator*(L, R); 3552 // LR operator/(L, R); 3553 // LR operator+(L, R); 3554 // LR operator-(L, R); 3555 // bool operator<(L, R); 3556 // bool operator>(L, R); 3557 // bool operator<=(L, R); 3558 // bool operator>=(L, R); 3559 // bool operator==(L, R); 3560 // bool operator!=(L, R); 3561 // 3562 // where LR is the result of the usual arithmetic conversions 3563 // between types L and R. 3564 // 3565 // C++ [over.built]p24: 3566 // 3567 // For every pair of promoted arithmetic types L and R, there exist 3568 // candidate operator functions of the form 3569 // 3570 // LR operator?(bool, L, R); 3571 // 3572 // where LR is the result of the usual arithmetic conversions 3573 // between types L and R. 3574 // Our candidates ignore the first parameter. 3575 for (unsigned Left = FirstPromotedArithmeticType; 3576 Left < LastPromotedArithmeticType; ++Left) { 3577 for (unsigned Right = FirstPromotedArithmeticType; 3578 Right < LastPromotedArithmeticType; ++Right) { 3579 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3580 QualType Result 3581 = isComparison 3582 ? Context.BoolTy 3583 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3584 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3585 } 3586 } 3587 break; 3588 3589 case OO_Percent: 3590 BinaryAmp: 3591 case OO_Caret: 3592 case OO_Pipe: 3593 case OO_LessLess: 3594 case OO_GreaterGreater: 3595 // C++ [over.built]p17: 3596 // 3597 // For every pair of promoted integral types L and R, there 3598 // exist candidate operator functions of the form 3599 // 3600 // LR operator%(L, R); 3601 // LR operator&(L, R); 3602 // LR operator^(L, R); 3603 // LR operator|(L, R); 3604 // L operator<<(L, R); 3605 // L operator>>(L, R); 3606 // 3607 // where LR is the result of the usual arithmetic conversions 3608 // between types L and R. 3609 for (unsigned Left = FirstPromotedIntegralType; 3610 Left < LastPromotedIntegralType; ++Left) { 3611 for (unsigned Right = FirstPromotedIntegralType; 3612 Right < LastPromotedIntegralType; ++Right) { 3613 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3614 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3615 ? LandR[0] 3616 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3617 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3618 } 3619 } 3620 break; 3621 3622 case OO_Equal: 3623 // C++ [over.built]p20: 3624 // 3625 // For every pair (T, VQ), where T is an enumeration or 3626 // pointer to member type and VQ is either volatile or 3627 // empty, there exist candidate operator functions of the form 3628 // 3629 // VQ T& operator=(VQ T&, T); 3630 for (BuiltinCandidateTypeSet::iterator 3631 Enum = CandidateTypes.enumeration_begin(), 3632 EnumEnd = CandidateTypes.enumeration_end(); 3633 Enum != EnumEnd; ++Enum) 3634 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3635 CandidateSet); 3636 for (BuiltinCandidateTypeSet::iterator 3637 MemPtr = CandidateTypes.member_pointer_begin(), 3638 MemPtrEnd = CandidateTypes.member_pointer_end(); 3639 MemPtr != MemPtrEnd; ++MemPtr) 3640 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3641 CandidateSet); 3642 // Fall through. 3643 3644 case OO_PlusEqual: 3645 case OO_MinusEqual: 3646 // C++ [over.built]p19: 3647 // 3648 // For every pair (T, VQ), where T is any type and VQ is either 3649 // volatile or empty, there exist candidate operator functions 3650 // of the form 3651 // 3652 // T*VQ& operator=(T*VQ&, T*); 3653 // 3654 // C++ [over.built]p21: 3655 // 3656 // For every pair (T, VQ), where T is a cv-qualified or 3657 // cv-unqualified object type and VQ is either volatile or 3658 // empty, there exist candidate operator functions of the form 3659 // 3660 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3661 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3662 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3663 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3664 QualType ParamTypes[2]; 3665 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3666 3667 // non-volatile version 3668 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3669 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3670 /*IsAssigmentOperator=*/Op == OO_Equal); 3671 3672 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3673 VisibleTypeConversionsQuals.hasVolatile()) { 3674 // volatile version 3675 ParamTypes[0] 3676 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3677 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3678 /*IsAssigmentOperator=*/Op == OO_Equal); 3679 } 3680 } 3681 // Fall through. 3682 3683 case OO_StarEqual: 3684 case OO_SlashEqual: 3685 // C++ [over.built]p18: 3686 // 3687 // For every triple (L, VQ, R), where L is an arithmetic type, 3688 // VQ is either volatile or empty, and R is a promoted 3689 // arithmetic type, there exist candidate operator functions of 3690 // the form 3691 // 3692 // VQ L& operator=(VQ L&, R); 3693 // VQ L& operator*=(VQ L&, R); 3694 // VQ L& operator/=(VQ L&, R); 3695 // VQ L& operator+=(VQ L&, R); 3696 // VQ L& operator-=(VQ L&, R); 3697 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3698 for (unsigned Right = FirstPromotedArithmeticType; 3699 Right < LastPromotedArithmeticType; ++Right) { 3700 QualType ParamTypes[2]; 3701 ParamTypes[1] = ArithmeticTypes[Right]; 3702 3703 // Add this built-in operator as a candidate (VQ is empty). 3704 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3705 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3706 /*IsAssigmentOperator=*/Op == OO_Equal); 3707 3708 // Add this built-in operator as a candidate (VQ is 'volatile'). 3709 if (VisibleTypeConversionsQuals.hasVolatile()) { 3710 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3711 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3712 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3713 /*IsAssigmentOperator=*/Op == OO_Equal); 3714 } 3715 } 3716 } 3717 break; 3718 3719 case OO_PercentEqual: 3720 case OO_LessLessEqual: 3721 case OO_GreaterGreaterEqual: 3722 case OO_AmpEqual: 3723 case OO_CaretEqual: 3724 case OO_PipeEqual: 3725 // C++ [over.built]p22: 3726 // 3727 // For every triple (L, VQ, R), where L is an integral type, VQ 3728 // is either volatile or empty, and R is a promoted integral 3729 // type, there exist candidate operator functions of the form 3730 // 3731 // VQ L& operator%=(VQ L&, R); 3732 // VQ L& operator<<=(VQ L&, R); 3733 // VQ L& operator>>=(VQ L&, R); 3734 // VQ L& operator&=(VQ L&, R); 3735 // VQ L& operator^=(VQ L&, R); 3736 // VQ L& operator|=(VQ L&, R); 3737 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3738 for (unsigned Right = FirstPromotedIntegralType; 3739 Right < LastPromotedIntegralType; ++Right) { 3740 QualType ParamTypes[2]; 3741 ParamTypes[1] = ArithmeticTypes[Right]; 3742 3743 // Add this built-in operator as a candidate (VQ is empty). 3744 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3745 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3746 if (VisibleTypeConversionsQuals.hasVolatile()) { 3747 // Add this built-in operator as a candidate (VQ is 'volatile'). 3748 ParamTypes[0] = ArithmeticTypes[Left]; 3749 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3750 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3751 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3752 } 3753 } 3754 } 3755 break; 3756 3757 case OO_Exclaim: { 3758 // C++ [over.operator]p23: 3759 // 3760 // There also exist candidate operator functions of the form 3761 // 3762 // bool operator!(bool); 3763 // bool operator&&(bool, bool); [BELOW] 3764 // bool operator||(bool, bool); [BELOW] 3765 QualType ParamTy = Context.BoolTy; 3766 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3767 /*IsAssignmentOperator=*/false, 3768 /*NumContextualBoolArguments=*/1); 3769 break; 3770 } 3771 3772 case OO_AmpAmp: 3773 case OO_PipePipe: { 3774 // C++ [over.operator]p23: 3775 // 3776 // There also exist candidate operator functions of the form 3777 // 3778 // bool operator!(bool); [ABOVE] 3779 // bool operator&&(bool, bool); 3780 // bool operator||(bool, bool); 3781 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3782 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3783 /*IsAssignmentOperator=*/false, 3784 /*NumContextualBoolArguments=*/2); 3785 break; 3786 } 3787 3788 case OO_Subscript: 3789 // C++ [over.built]p13: 3790 // 3791 // For every cv-qualified or cv-unqualified object type T there 3792 // exist candidate operator functions of the form 3793 // 3794 // T* operator+(T*, ptrdiff_t); [ABOVE] 3795 // T& operator[](T*, ptrdiff_t); 3796 // T* operator-(T*, ptrdiff_t); [ABOVE] 3797 // T* operator+(ptrdiff_t, T*); [ABOVE] 3798 // T& operator[](ptrdiff_t, T*); 3799 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3800 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3801 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3802 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3803 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3804 3805 // T& operator[](T*, ptrdiff_t) 3806 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3807 3808 // T& operator[](ptrdiff_t, T*); 3809 ParamTypes[0] = ParamTypes[1]; 3810 ParamTypes[1] = *Ptr; 3811 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3812 } 3813 break; 3814 3815 case OO_ArrowStar: 3816 // C++ [over.built]p11: 3817 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3818 // C1 is the same type as C2 or is a derived class of C2, T is an object 3819 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3820 // there exist candidate operator functions of the form 3821 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3822 // where CV12 is the union of CV1 and CV2. 3823 { 3824 for (BuiltinCandidateTypeSet::iterator Ptr = 3825 CandidateTypes.pointer_begin(); 3826 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3827 QualType C1Ty = (*Ptr); 3828 QualType C1; 3829 QualifierCollector Q1; 3830 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3831 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3832 if (!isa<RecordType>(C1)) 3833 continue; 3834 // heuristic to reduce number of builtin candidates in the set. 3835 // Add volatile/restrict version only if there are conversions to a 3836 // volatile/restrict type. 3837 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 3838 continue; 3839 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 3840 continue; 3841 } 3842 for (BuiltinCandidateTypeSet::iterator 3843 MemPtr = CandidateTypes.member_pointer_begin(), 3844 MemPtrEnd = CandidateTypes.member_pointer_end(); 3845 MemPtr != MemPtrEnd; ++MemPtr) { 3846 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 3847 QualType C2 = QualType(mptr->getClass(), 0); 3848 C2 = C2.getUnqualifiedType(); 3849 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 3850 break; 3851 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 3852 // build CV12 T& 3853 QualType T = mptr->getPointeeType(); 3854 if (!VisibleTypeConversionsQuals.hasVolatile() && 3855 T.isVolatileQualified()) 3856 continue; 3857 if (!VisibleTypeConversionsQuals.hasRestrict() && 3858 T.isRestrictQualified()) 3859 continue; 3860 T = Q1.apply(T); 3861 QualType ResultTy = Context.getLValueReferenceType(T); 3862 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3863 } 3864 } 3865 } 3866 break; 3867 3868 case OO_Conditional: 3869 // Note that we don't consider the first argument, since it has been 3870 // contextually converted to bool long ago. The candidates below are 3871 // therefore added as binary. 3872 // 3873 // C++ [over.built]p24: 3874 // For every type T, where T is a pointer or pointer-to-member type, 3875 // there exist candidate operator functions of the form 3876 // 3877 // T operator?(bool, T, T); 3878 // 3879 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3880 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3881 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3882 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3883 } 3884 for (BuiltinCandidateTypeSet::iterator Ptr = 3885 CandidateTypes.member_pointer_begin(), 3886 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3887 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3888 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3889 } 3890 goto Conditional; 3891 } 3892} 3893 3894/// \brief Add function candidates found via argument-dependent lookup 3895/// to the set of overloading candidates. 3896/// 3897/// This routine performs argument-dependent name lookup based on the 3898/// given function name (which may also be an operator name) and adds 3899/// all of the overload candidates found by ADL to the overload 3900/// candidate set (C++ [basic.lookup.argdep]). 3901void 3902Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3903 Expr **Args, unsigned NumArgs, 3904 bool HasExplicitTemplateArgs, 3905 const TemplateArgumentLoc *ExplicitTemplateArgs, 3906 unsigned NumExplicitTemplateArgs, 3907 OverloadCandidateSet& CandidateSet, 3908 bool PartialOverloading) { 3909 FunctionSet Functions; 3910 3911 // FIXME: Should we be trafficking in canonical function decls throughout? 3912 3913 // Record all of the function candidates that we've already 3914 // added to the overload set, so that we don't add those same 3915 // candidates a second time. 3916 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3917 CandEnd = CandidateSet.end(); 3918 Cand != CandEnd; ++Cand) 3919 if (Cand->Function) { 3920 Functions.insert(Cand->Function); 3921 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3922 Functions.insert(FunTmpl); 3923 } 3924 3925 // FIXME: Pass in the explicit template arguments? 3926 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 3927 3928 // Erase all of the candidates we already knew about. 3929 // FIXME: This is suboptimal. Is there a better way? 3930 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3931 CandEnd = CandidateSet.end(); 3932 Cand != CandEnd; ++Cand) 3933 if (Cand->Function) { 3934 Functions.erase(Cand->Function); 3935 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3936 Functions.erase(FunTmpl); 3937 } 3938 3939 // For each of the ADL candidates we found, add it to the overload 3940 // set. 3941 for (FunctionSet::iterator Func = Functions.begin(), 3942 FuncEnd = Functions.end(); 3943 Func != FuncEnd; ++Func) { 3944 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 3945 if (HasExplicitTemplateArgs) 3946 continue; 3947 3948 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 3949 false, false, PartialOverloading); 3950 } else 3951 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 3952 HasExplicitTemplateArgs, 3953 ExplicitTemplateArgs, 3954 NumExplicitTemplateArgs, 3955 Args, NumArgs, CandidateSet); 3956 } 3957} 3958 3959/// isBetterOverloadCandidate - Determines whether the first overload 3960/// candidate is a better candidate than the second (C++ 13.3.3p1). 3961bool 3962Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 3963 const OverloadCandidate& Cand2) { 3964 // Define viable functions to be better candidates than non-viable 3965 // functions. 3966 if (!Cand2.Viable) 3967 return Cand1.Viable; 3968 else if (!Cand1.Viable) 3969 return false; 3970 3971 // C++ [over.match.best]p1: 3972 // 3973 // -- if F is a static member function, ICS1(F) is defined such 3974 // that ICS1(F) is neither better nor worse than ICS1(G) for 3975 // any function G, and, symmetrically, ICS1(G) is neither 3976 // better nor worse than ICS1(F). 3977 unsigned StartArg = 0; 3978 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 3979 StartArg = 1; 3980 3981 // C++ [over.match.best]p1: 3982 // A viable function F1 is defined to be a better function than another 3983 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 3984 // conversion sequence than ICSi(F2), and then... 3985 unsigned NumArgs = Cand1.Conversions.size(); 3986 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 3987 bool HasBetterConversion = false; 3988 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 3989 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 3990 Cand2.Conversions[ArgIdx])) { 3991 case ImplicitConversionSequence::Better: 3992 // Cand1 has a better conversion sequence. 3993 HasBetterConversion = true; 3994 break; 3995 3996 case ImplicitConversionSequence::Worse: 3997 // Cand1 can't be better than Cand2. 3998 return false; 3999 4000 case ImplicitConversionSequence::Indistinguishable: 4001 // Do nothing. 4002 break; 4003 } 4004 } 4005 4006 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4007 // ICSj(F2), or, if not that, 4008 if (HasBetterConversion) 4009 return true; 4010 4011 // - F1 is a non-template function and F2 is a function template 4012 // specialization, or, if not that, 4013 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4014 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4015 return true; 4016 4017 // -- F1 and F2 are function template specializations, and the function 4018 // template for F1 is more specialized than the template for F2 4019 // according to the partial ordering rules described in 14.5.5.2, or, 4020 // if not that, 4021 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4022 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4023 if (FunctionTemplateDecl *BetterTemplate 4024 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4025 Cand2.Function->getPrimaryTemplate(), 4026 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4027 : TPOC_Call)) 4028 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4029 4030 // -- the context is an initialization by user-defined conversion 4031 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4032 // from the return type of F1 to the destination type (i.e., 4033 // the type of the entity being initialized) is a better 4034 // conversion sequence than the standard conversion sequence 4035 // from the return type of F2 to the destination type. 4036 if (Cand1.Function && Cand2.Function && 4037 isa<CXXConversionDecl>(Cand1.Function) && 4038 isa<CXXConversionDecl>(Cand2.Function)) { 4039 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4040 Cand2.FinalConversion)) { 4041 case ImplicitConversionSequence::Better: 4042 // Cand1 has a better conversion sequence. 4043 return true; 4044 4045 case ImplicitConversionSequence::Worse: 4046 // Cand1 can't be better than Cand2. 4047 return false; 4048 4049 case ImplicitConversionSequence::Indistinguishable: 4050 // Do nothing 4051 break; 4052 } 4053 } 4054 4055 return false; 4056} 4057 4058/// \brief Computes the best viable function (C++ 13.3.3) 4059/// within an overload candidate set. 4060/// 4061/// \param CandidateSet the set of candidate functions. 4062/// 4063/// \param Loc the location of the function name (or operator symbol) for 4064/// which overload resolution occurs. 4065/// 4066/// \param Best f overload resolution was successful or found a deleted 4067/// function, Best points to the candidate function found. 4068/// 4069/// \returns The result of overload resolution. 4070Sema::OverloadingResult 4071Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4072 SourceLocation Loc, 4073 OverloadCandidateSet::iterator& Best) { 4074 // Find the best viable function. 4075 Best = CandidateSet.end(); 4076 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4077 Cand != CandidateSet.end(); ++Cand) { 4078 if (Cand->Viable) { 4079 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4080 Best = Cand; 4081 } 4082 } 4083 4084 // If we didn't find any viable functions, abort. 4085 if (Best == CandidateSet.end()) 4086 return OR_No_Viable_Function; 4087 4088 // Make sure that this function is better than every other viable 4089 // function. If not, we have an ambiguity. 4090 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4091 Cand != CandidateSet.end(); ++Cand) { 4092 if (Cand->Viable && 4093 Cand != Best && 4094 !isBetterOverloadCandidate(*Best, *Cand)) { 4095 Best = CandidateSet.end(); 4096 return OR_Ambiguous; 4097 } 4098 } 4099 4100 // Best is the best viable function. 4101 if (Best->Function && 4102 (Best->Function->isDeleted() || 4103 Best->Function->getAttr<UnavailableAttr>())) 4104 return OR_Deleted; 4105 4106 // C++ [basic.def.odr]p2: 4107 // An overloaded function is used if it is selected by overload resolution 4108 // when referred to from a potentially-evaluated expression. [Note: this 4109 // covers calls to named functions (5.2.2), operator overloading 4110 // (clause 13), user-defined conversions (12.3.2), allocation function for 4111 // placement new (5.3.4), as well as non-default initialization (8.5). 4112 if (Best->Function) 4113 MarkDeclarationReferenced(Loc, Best->Function); 4114 return OR_Success; 4115} 4116 4117/// PrintOverloadCandidates - When overload resolution fails, prints 4118/// diagnostic messages containing the candidates in the candidate 4119/// set. If OnlyViable is true, only viable candidates will be printed. 4120void 4121Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4122 bool OnlyViable, 4123 const char *Opc, 4124 SourceLocation OpLoc) { 4125 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4126 LastCand = CandidateSet.end(); 4127 bool Reported = false; 4128 for (; Cand != LastCand; ++Cand) { 4129 if (Cand->Viable || !OnlyViable) { 4130 if (Cand->Function) { 4131 if (Cand->Function->isDeleted() || 4132 Cand->Function->getAttr<UnavailableAttr>()) { 4133 // Deleted or "unavailable" function. 4134 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 4135 << Cand->Function->isDeleted(); 4136 } else if (FunctionTemplateDecl *FunTmpl 4137 = Cand->Function->getPrimaryTemplate()) { 4138 // Function template specialization 4139 // FIXME: Give a better reason! 4140 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 4141 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4142 *Cand->Function->getTemplateSpecializationArgs()); 4143 } else { 4144 // Normal function 4145 bool errReported = false; 4146 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4147 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4148 const ImplicitConversionSequence &Conversion = 4149 Cand->Conversions[i]; 4150 if ((Conversion.ConversionKind != 4151 ImplicitConversionSequence::BadConversion) || 4152 Conversion.ConversionFunctionSet.size() == 0) 4153 continue; 4154 Diag(Cand->Function->getLocation(), 4155 diag::err_ovl_candidate_not_viable) << (i+1); 4156 errReported = true; 4157 for (int j = Conversion.ConversionFunctionSet.size()-1; 4158 j >= 0; j--) { 4159 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4160 Diag(Func->getLocation(), diag::err_ovl_candidate); 4161 } 4162 } 4163 } 4164 if (!errReported) 4165 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 4166 } 4167 } else if (Cand->IsSurrogate) { 4168 // Desugar the type of the surrogate down to a function type, 4169 // retaining as many typedefs as possible while still showing 4170 // the function type (and, therefore, its parameter types). 4171 QualType FnType = Cand->Surrogate->getConversionType(); 4172 bool isLValueReference = false; 4173 bool isRValueReference = false; 4174 bool isPointer = false; 4175 if (const LValueReferenceType *FnTypeRef = 4176 FnType->getAs<LValueReferenceType>()) { 4177 FnType = FnTypeRef->getPointeeType(); 4178 isLValueReference = true; 4179 } else if (const RValueReferenceType *FnTypeRef = 4180 FnType->getAs<RValueReferenceType>()) { 4181 FnType = FnTypeRef->getPointeeType(); 4182 isRValueReference = true; 4183 } 4184 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4185 FnType = FnTypePtr->getPointeeType(); 4186 isPointer = true; 4187 } 4188 // Desugar down to a function type. 4189 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4190 // Reconstruct the pointer/reference as appropriate. 4191 if (isPointer) FnType = Context.getPointerType(FnType); 4192 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4193 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4194 4195 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 4196 << FnType; 4197 } else if (OnlyViable) { 4198 assert(Cand->Conversions.size() <= 2 && 4199 "builtin-binary-operator-not-binary"); 4200 std::string TypeStr("operator"); 4201 TypeStr += Opc; 4202 TypeStr += "("; 4203 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4204 if (Cand->Conversions.size() == 1) { 4205 TypeStr += ")"; 4206 Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr; 4207 } 4208 else { 4209 TypeStr += ", "; 4210 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4211 TypeStr += ")"; 4212 Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr; 4213 } 4214 } 4215 else if (!Cand->Viable && !Reported) { 4216 // Non-viability might be due to ambiguous user-defined conversions, 4217 // needed for built-in operators. Report them as well, but only once 4218 // as we have typically many built-in candidates. 4219 unsigned NoOperands = Cand->Conversions.size(); 4220 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4221 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4222 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4223 ICS.ConversionFunctionSet.empty()) 4224 continue; 4225 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4226 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4227 QualType FromTy = 4228 QualType( 4229 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4230 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4231 << FromTy << Func->getConversionType(); 4232 } 4233 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4234 FunctionDecl *Func = 4235 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4236 Diag(Func->getLocation(),diag::err_ovl_candidate); 4237 } 4238 } 4239 Reported = true; 4240 } 4241 } 4242 } 4243} 4244 4245/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4246/// an overloaded function (C++ [over.over]), where @p From is an 4247/// expression with overloaded function type and @p ToType is the type 4248/// we're trying to resolve to. For example: 4249/// 4250/// @code 4251/// int f(double); 4252/// int f(int); 4253/// 4254/// int (*pfd)(double) = f; // selects f(double) 4255/// @endcode 4256/// 4257/// This routine returns the resulting FunctionDecl if it could be 4258/// resolved, and NULL otherwise. When @p Complain is true, this 4259/// routine will emit diagnostics if there is an error. 4260FunctionDecl * 4261Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4262 bool Complain) { 4263 QualType FunctionType = ToType; 4264 bool IsMember = false; 4265 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4266 FunctionType = ToTypePtr->getPointeeType(); 4267 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4268 FunctionType = ToTypeRef->getPointeeType(); 4269 else if (const MemberPointerType *MemTypePtr = 4270 ToType->getAs<MemberPointerType>()) { 4271 FunctionType = MemTypePtr->getPointeeType(); 4272 IsMember = true; 4273 } 4274 4275 // We only look at pointers or references to functions. 4276 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4277 if (!FunctionType->isFunctionType()) 4278 return 0; 4279 4280 // Find the actual overloaded function declaration. 4281 OverloadedFunctionDecl *Ovl = 0; 4282 4283 // C++ [over.over]p1: 4284 // [...] [Note: any redundant set of parentheses surrounding the 4285 // overloaded function name is ignored (5.1). ] 4286 Expr *OvlExpr = From->IgnoreParens(); 4287 4288 // C++ [over.over]p1: 4289 // [...] The overloaded function name can be preceded by the & 4290 // operator. 4291 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4292 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4293 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4294 } 4295 4296 bool HasExplicitTemplateArgs = false; 4297 const TemplateArgumentLoc *ExplicitTemplateArgs = 0; 4298 unsigned NumExplicitTemplateArgs = 0; 4299 4300 // Try to dig out the overloaded function. 4301 FunctionTemplateDecl *FunctionTemplate = 0; 4302 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) { 4303 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 4304 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl()); 4305 HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList(); 4306 ExplicitTemplateArgs = DR->getTemplateArgs(); 4307 NumExplicitTemplateArgs = DR->getNumTemplateArgs(); 4308 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) { 4309 Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl()); 4310 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl()); 4311 HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList(); 4312 ExplicitTemplateArgs = ME->getTemplateArgs(); 4313 NumExplicitTemplateArgs = ME->getNumTemplateArgs(); 4314 } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) { 4315 TemplateName Name = TIRE->getTemplateName(); 4316 Ovl = Name.getAsOverloadedFunctionDecl(); 4317 FunctionTemplate = 4318 dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4319 4320 HasExplicitTemplateArgs = true; 4321 ExplicitTemplateArgs = TIRE->getTemplateArgs(); 4322 NumExplicitTemplateArgs = TIRE->getNumTemplateArgs(); 4323 } 4324 4325 // If there's no overloaded function declaration or function template, 4326 // we're done. 4327 if (!Ovl && !FunctionTemplate) 4328 return 0; 4329 4330 OverloadIterator Fun; 4331 if (Ovl) 4332 Fun = Ovl; 4333 else 4334 Fun = FunctionTemplate; 4335 4336 // Look through all of the overloaded functions, searching for one 4337 // whose type matches exactly. 4338 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4339 bool FoundNonTemplateFunction = false; 4340 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) { 4341 // C++ [over.over]p3: 4342 // Non-member functions and static member functions match 4343 // targets of type "pointer-to-function" or "reference-to-function." 4344 // Nonstatic member functions match targets of 4345 // type "pointer-to-member-function." 4346 // Note that according to DR 247, the containing class does not matter. 4347 4348 if (FunctionTemplateDecl *FunctionTemplate 4349 = dyn_cast<FunctionTemplateDecl>(*Fun)) { 4350 if (CXXMethodDecl *Method 4351 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4352 // Skip non-static function templates when converting to pointer, and 4353 // static when converting to member pointer. 4354 if (Method->isStatic() == IsMember) 4355 continue; 4356 } else if (IsMember) 4357 continue; 4358 4359 // C++ [over.over]p2: 4360 // If the name is a function template, template argument deduction is 4361 // done (14.8.2.2), and if the argument deduction succeeds, the 4362 // resulting template argument list is used to generate a single 4363 // function template specialization, which is added to the set of 4364 // overloaded functions considered. 4365 // FIXME: We don't really want to build the specialization here, do we? 4366 FunctionDecl *Specialization = 0; 4367 TemplateDeductionInfo Info(Context); 4368 if (TemplateDeductionResult Result 4369 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 4370 ExplicitTemplateArgs, 4371 NumExplicitTemplateArgs, 4372 FunctionType, Specialization, Info)) { 4373 // FIXME: make a note of the failed deduction for diagnostics. 4374 (void)Result; 4375 } else { 4376 // FIXME: If the match isn't exact, shouldn't we just drop this as 4377 // a candidate? Find a testcase before changing the code. 4378 assert(FunctionType 4379 == Context.getCanonicalType(Specialization->getType())); 4380 Matches.insert( 4381 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4382 } 4383 } 4384 4385 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { 4386 // Skip non-static functions when converting to pointer, and static 4387 // when converting to member pointer. 4388 if (Method->isStatic() == IsMember) 4389 continue; 4390 4391 // If we have explicit template arguments, skip non-templates. 4392 if (HasExplicitTemplateArgs) 4393 continue; 4394 } else if (IsMember) 4395 continue; 4396 4397 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) { 4398 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 4399 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl())); 4400 FoundNonTemplateFunction = true; 4401 } 4402 } 4403 } 4404 4405 // If there were 0 or 1 matches, we're done. 4406 if (Matches.empty()) 4407 return 0; 4408 else if (Matches.size() == 1) { 4409 FunctionDecl *Result = *Matches.begin(); 4410 MarkDeclarationReferenced(From->getLocStart(), Result); 4411 return Result; 4412 } 4413 4414 // C++ [over.over]p4: 4415 // If more than one function is selected, [...] 4416 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4417 if (!FoundNonTemplateFunction) { 4418 // [...] and any given function template specialization F1 is 4419 // eliminated if the set contains a second function template 4420 // specialization whose function template is more specialized 4421 // than the function template of F1 according to the partial 4422 // ordering rules of 14.5.5.2. 4423 4424 // The algorithm specified above is quadratic. We instead use a 4425 // two-pass algorithm (similar to the one used to identify the 4426 // best viable function in an overload set) that identifies the 4427 // best function template (if it exists). 4428 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4429 Matches.end()); 4430 FunctionDecl *Result = 4431 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4432 TPOC_Other, From->getLocStart(), 4433 PDiag(), 4434 PDiag(diag::err_addr_ovl_ambiguous) 4435 << TemplateMatches[0]->getDeclName(), 4436 PDiag(diag::err_ovl_template_candidate)); 4437 MarkDeclarationReferenced(From->getLocStart(), Result); 4438 return Result; 4439 } 4440 4441 // [...] any function template specializations in the set are 4442 // eliminated if the set also contains a non-template function, [...] 4443 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4444 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4445 if ((*M)->getPrimaryTemplate() == 0) 4446 RemainingMatches.push_back(*M); 4447 4448 // [...] After such eliminations, if any, there shall remain exactly one 4449 // selected function. 4450 if (RemainingMatches.size() == 1) { 4451 FunctionDecl *Result = RemainingMatches.front(); 4452 MarkDeclarationReferenced(From->getLocStart(), Result); 4453 return Result; 4454 } 4455 4456 // FIXME: We should probably return the same thing that BestViableFunction 4457 // returns (even if we issue the diagnostics here). 4458 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4459 << RemainingMatches[0]->getDeclName(); 4460 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4461 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4462 return 0; 4463} 4464 4465/// \brief Add a single candidate to the overload set. 4466static void AddOverloadedCallCandidate(Sema &S, 4467 AnyFunctionDecl Callee, 4468 bool &ArgumentDependentLookup, 4469 bool HasExplicitTemplateArgs, 4470 const TemplateArgumentLoc *ExplicitTemplateArgs, 4471 unsigned NumExplicitTemplateArgs, 4472 Expr **Args, unsigned NumArgs, 4473 OverloadCandidateSet &CandidateSet, 4474 bool PartialOverloading) { 4475 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4476 assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); 4477 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4478 PartialOverloading); 4479 4480 if (Func->getDeclContext()->isRecord() || 4481 Func->getDeclContext()->isFunctionOrMethod()) 4482 ArgumentDependentLookup = false; 4483 return; 4484 } 4485 4486 FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee); 4487 S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, 4488 ExplicitTemplateArgs, 4489 NumExplicitTemplateArgs, 4490 Args, NumArgs, CandidateSet); 4491 4492 if (FuncTemplate->getDeclContext()->isRecord()) 4493 ArgumentDependentLookup = false; 4494} 4495 4496/// \brief Add the overload candidates named by callee and/or found by argument 4497/// dependent lookup to the given overload set. 4498void Sema::AddOverloadedCallCandidates(NamedDecl *Callee, 4499 DeclarationName &UnqualifiedName, 4500 bool &ArgumentDependentLookup, 4501 bool HasExplicitTemplateArgs, 4502 const TemplateArgumentLoc *ExplicitTemplateArgs, 4503 unsigned NumExplicitTemplateArgs, 4504 Expr **Args, unsigned NumArgs, 4505 OverloadCandidateSet &CandidateSet, 4506 bool PartialOverloading) { 4507 // Add the functions denoted by Callee to the set of candidate 4508 // functions. While we're doing so, track whether argument-dependent 4509 // lookup still applies, per: 4510 // 4511 // C++0x [basic.lookup.argdep]p3: 4512 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4513 // and let Y be the lookup set produced by argument dependent 4514 // lookup (defined as follows). If X contains 4515 // 4516 // -- a declaration of a class member, or 4517 // 4518 // -- a block-scope function declaration that is not a 4519 // using-declaration (FIXME: check for using declaration), or 4520 // 4521 // -- a declaration that is neither a function or a function 4522 // template 4523 // 4524 // then Y is empty. 4525 if (!Callee) { 4526 // Nothing to do. 4527 } else if (OverloadedFunctionDecl *Ovl 4528 = dyn_cast<OverloadedFunctionDecl>(Callee)) { 4529 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 4530 FuncEnd = Ovl->function_end(); 4531 Func != FuncEnd; ++Func) 4532 AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup, 4533 HasExplicitTemplateArgs, 4534 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4535 Args, NumArgs, CandidateSet, 4536 PartialOverloading); 4537 } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee)) 4538 AddOverloadedCallCandidate(*this, 4539 AnyFunctionDecl::getFromNamedDecl(Callee), 4540 ArgumentDependentLookup, 4541 HasExplicitTemplateArgs, 4542 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4543 Args, NumArgs, CandidateSet, 4544 PartialOverloading); 4545 // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than 4546 // checking dynamically. 4547 4548 if (Callee) 4549 UnqualifiedName = Callee->getDeclName(); 4550 4551 if (ArgumentDependentLookup) 4552 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4553 HasExplicitTemplateArgs, 4554 ExplicitTemplateArgs, 4555 NumExplicitTemplateArgs, 4556 CandidateSet, 4557 PartialOverloading); 4558} 4559 4560/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4561/// (which eventually refers to the declaration Func) and the call 4562/// arguments Args/NumArgs, attempt to resolve the function call down 4563/// to a specific function. If overload resolution succeeds, returns 4564/// the function declaration produced by overload 4565/// resolution. Otherwise, emits diagnostics, deletes all of the 4566/// arguments and Fn, and returns NULL. 4567FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, 4568 DeclarationName UnqualifiedName, 4569 bool HasExplicitTemplateArgs, 4570 const TemplateArgumentLoc *ExplicitTemplateArgs, 4571 unsigned NumExplicitTemplateArgs, 4572 SourceLocation LParenLoc, 4573 Expr **Args, unsigned NumArgs, 4574 SourceLocation *CommaLocs, 4575 SourceLocation RParenLoc, 4576 bool &ArgumentDependentLookup) { 4577 OverloadCandidateSet CandidateSet; 4578 4579 // Add the functions denoted by Callee to the set of candidate 4580 // functions. 4581 AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup, 4582 HasExplicitTemplateArgs, ExplicitTemplateArgs, 4583 NumExplicitTemplateArgs, Args, NumArgs, 4584 CandidateSet); 4585 OverloadCandidateSet::iterator Best; 4586 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4587 case OR_Success: 4588 return Best->Function; 4589 4590 case OR_No_Viable_Function: 4591 Diag(Fn->getSourceRange().getBegin(), 4592 diag::err_ovl_no_viable_function_in_call) 4593 << UnqualifiedName << Fn->getSourceRange(); 4594 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4595 break; 4596 4597 case OR_Ambiguous: 4598 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4599 << UnqualifiedName << Fn->getSourceRange(); 4600 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4601 break; 4602 4603 case OR_Deleted: 4604 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4605 << Best->Function->isDeleted() 4606 << UnqualifiedName 4607 << Fn->getSourceRange(); 4608 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4609 break; 4610 } 4611 4612 // Overload resolution failed. Destroy all of the subexpressions and 4613 // return NULL. 4614 Fn->Destroy(Context); 4615 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4616 Args[Arg]->Destroy(Context); 4617 return 0; 4618} 4619 4620/// \brief Create a unary operation that may resolve to an overloaded 4621/// operator. 4622/// 4623/// \param OpLoc The location of the operator itself (e.g., '*'). 4624/// 4625/// \param OpcIn The UnaryOperator::Opcode that describes this 4626/// operator. 4627/// 4628/// \param Functions The set of non-member functions that will be 4629/// considered by overload resolution. The caller needs to build this 4630/// set based on the context using, e.g., 4631/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4632/// set should not contain any member functions; those will be added 4633/// by CreateOverloadedUnaryOp(). 4634/// 4635/// \param input The input argument. 4636Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4637 unsigned OpcIn, 4638 FunctionSet &Functions, 4639 ExprArg input) { 4640 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4641 Expr *Input = (Expr *)input.get(); 4642 4643 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4644 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4645 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4646 4647 Expr *Args[2] = { Input, 0 }; 4648 unsigned NumArgs = 1; 4649 4650 // For post-increment and post-decrement, add the implicit '0' as 4651 // the second argument, so that we know this is a post-increment or 4652 // post-decrement. 4653 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4654 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4655 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4656 SourceLocation()); 4657 NumArgs = 2; 4658 } 4659 4660 if (Input->isTypeDependent()) { 4661 OverloadedFunctionDecl *Overloads 4662 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4663 for (FunctionSet::iterator Func = Functions.begin(), 4664 FuncEnd = Functions.end(); 4665 Func != FuncEnd; ++Func) 4666 Overloads->addOverload(*Func); 4667 4668 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4669 OpLoc, false, false); 4670 4671 input.release(); 4672 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4673 &Args[0], NumArgs, 4674 Context.DependentTy, 4675 OpLoc)); 4676 } 4677 4678 // Build an empty overload set. 4679 OverloadCandidateSet CandidateSet; 4680 4681 // Add the candidates from the given function set. 4682 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4683 4684 // Add operator candidates that are member functions. 4685 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4686 4687 // Add builtin operator candidates. 4688 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4689 4690 // Perform overload resolution. 4691 OverloadCandidateSet::iterator Best; 4692 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4693 case OR_Success: { 4694 // We found a built-in operator or an overloaded operator. 4695 FunctionDecl *FnDecl = Best->Function; 4696 4697 if (FnDecl) { 4698 // We matched an overloaded operator. Build a call to that 4699 // operator. 4700 4701 // Convert the arguments. 4702 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4703 if (PerformObjectArgumentInitialization(Input, Method)) 4704 return ExprError(); 4705 } else { 4706 // Convert the arguments. 4707 if (PerformCopyInitialization(Input, 4708 FnDecl->getParamDecl(0)->getType(), 4709 "passing")) 4710 return ExprError(); 4711 } 4712 4713 // Determine the result type 4714 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 4715 4716 // Build the actual expression node. 4717 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4718 SourceLocation()); 4719 UsualUnaryConversions(FnExpr); 4720 4721 input.release(); 4722 4723 ExprOwningPtr<CallExpr> TheCall(this, 4724 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4725 &Input, 1, ResultTy, OpLoc)); 4726 4727 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4728 FnDecl)) 4729 return ExprError(); 4730 4731 return MaybeBindToTemporary(TheCall.release()); 4732 } else { 4733 // We matched a built-in operator. Convert the arguments, then 4734 // break out so that we will build the appropriate built-in 4735 // operator node. 4736 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4737 Best->Conversions[0], "passing")) 4738 return ExprError(); 4739 4740 break; 4741 } 4742 } 4743 4744 case OR_No_Viable_Function: 4745 // No viable function; fall through to handling this as a 4746 // built-in operator, which will produce an error message for us. 4747 break; 4748 4749 case OR_Ambiguous: 4750 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4751 << UnaryOperator::getOpcodeStr(Opc) 4752 << Input->getSourceRange(); 4753 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4754 UnaryOperator::getOpcodeStr(Opc), OpLoc); 4755 return ExprError(); 4756 4757 case OR_Deleted: 4758 Diag(OpLoc, diag::err_ovl_deleted_oper) 4759 << Best->Function->isDeleted() 4760 << UnaryOperator::getOpcodeStr(Opc) 4761 << Input->getSourceRange(); 4762 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4763 return ExprError(); 4764 } 4765 4766 // Either we found no viable overloaded operator or we matched a 4767 // built-in operator. In either case, fall through to trying to 4768 // build a built-in operation. 4769 input.release(); 4770 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4771} 4772 4773/// \brief Create a binary operation that may resolve to an overloaded 4774/// operator. 4775/// 4776/// \param OpLoc The location of the operator itself (e.g., '+'). 4777/// 4778/// \param OpcIn The BinaryOperator::Opcode that describes this 4779/// operator. 4780/// 4781/// \param Functions The set of non-member functions that will be 4782/// considered by overload resolution. The caller needs to build this 4783/// set based on the context using, e.g., 4784/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4785/// set should not contain any member functions; those will be added 4786/// by CreateOverloadedBinOp(). 4787/// 4788/// \param LHS Left-hand argument. 4789/// \param RHS Right-hand argument. 4790Sema::OwningExprResult 4791Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4792 unsigned OpcIn, 4793 FunctionSet &Functions, 4794 Expr *LHS, Expr *RHS) { 4795 Expr *Args[2] = { LHS, RHS }; 4796 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4797 4798 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4799 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4800 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4801 4802 // If either side is type-dependent, create an appropriate dependent 4803 // expression. 4804 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4805 if (Functions.empty()) { 4806 // If there are no functions to store, just build a dependent 4807 // BinaryOperator or CompoundAssignment. 4808 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 4809 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4810 Context.DependentTy, OpLoc)); 4811 4812 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 4813 Context.DependentTy, 4814 Context.DependentTy, 4815 Context.DependentTy, 4816 OpLoc)); 4817 } 4818 4819 OverloadedFunctionDecl *Overloads 4820 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4821 for (FunctionSet::iterator Func = Functions.begin(), 4822 FuncEnd = Functions.end(); 4823 Func != FuncEnd; ++Func) 4824 Overloads->addOverload(*Func); 4825 4826 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4827 OpLoc, false, false); 4828 4829 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4830 Args, 2, 4831 Context.DependentTy, 4832 OpLoc)); 4833 } 4834 4835 // If this is the .* operator, which is not overloadable, just 4836 // create a built-in binary operator. 4837 if (Opc == BinaryOperator::PtrMemD) 4838 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4839 4840 // If this is one of the assignment operators, we only perform 4841 // overload resolution if the left-hand side is a class or 4842 // enumeration type (C++ [expr.ass]p3). 4843 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && 4844 !Args[0]->getType()->isOverloadableType()) 4845 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4846 4847 // Build an empty overload set. 4848 OverloadCandidateSet CandidateSet; 4849 4850 // Add the candidates from the given function set. 4851 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4852 4853 // Add operator candidates that are member functions. 4854 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4855 4856 // Add builtin operator candidates. 4857 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4858 4859 // Perform overload resolution. 4860 OverloadCandidateSet::iterator Best; 4861 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4862 case OR_Success: { 4863 // We found a built-in operator or an overloaded operator. 4864 FunctionDecl *FnDecl = Best->Function; 4865 4866 if (FnDecl) { 4867 // We matched an overloaded operator. Build a call to that 4868 // operator. 4869 4870 // Convert the arguments. 4871 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4872 if (PerformObjectArgumentInitialization(Args[0], Method) || 4873 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4874 "passing")) 4875 return ExprError(); 4876 } else { 4877 // Convert the arguments. 4878 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4879 "passing") || 4880 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4881 "passing")) 4882 return ExprError(); 4883 } 4884 4885 // Determine the result type 4886 QualType ResultTy 4887 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4888 ResultTy = ResultTy.getNonReferenceType(); 4889 4890 // Build the actual expression node. 4891 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4892 OpLoc); 4893 UsualUnaryConversions(FnExpr); 4894 4895 ExprOwningPtr<CXXOperatorCallExpr> 4896 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4897 Args, 2, ResultTy, 4898 OpLoc)); 4899 4900 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4901 FnDecl)) 4902 return ExprError(); 4903 4904 return MaybeBindToTemporary(TheCall.release()); 4905 } else { 4906 // We matched a built-in operator. Convert the arguments, then 4907 // break out so that we will build the appropriate built-in 4908 // operator node. 4909 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4910 Best->Conversions[0], "passing") || 4911 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4912 Best->Conversions[1], "passing")) 4913 return ExprError(); 4914 4915 break; 4916 } 4917 } 4918 4919 case OR_No_Viable_Function: { 4920 // C++ [over.match.oper]p9: 4921 // If the operator is the operator , [...] and there are no 4922 // viable functions, then the operator is assumed to be the 4923 // built-in operator and interpreted according to clause 5. 4924 if (Opc == BinaryOperator::Comma) 4925 break; 4926 4927 // For class as left operand for assignment or compound assigment operator 4928 // do not fall through to handling in built-in, but report that no overloaded 4929 // assignment operator found 4930 OwningExprResult Result = ExprError(); 4931 if (Args[0]->getType()->isRecordType() && 4932 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4933 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4934 << BinaryOperator::getOpcodeStr(Opc) 4935 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4936 } else { 4937 // No viable function; try to create a built-in operation, which will 4938 // produce an error. Then, show the non-viable candidates. 4939 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4940 } 4941 assert(Result.isInvalid() && 4942 "C++ binary operator overloading is missing candidates!"); 4943 if (Result.isInvalid()) 4944 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 4945 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4946 return move(Result); 4947 } 4948 4949 case OR_Ambiguous: 4950 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4951 << BinaryOperator::getOpcodeStr(Opc) 4952 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4953 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4954 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4955 return ExprError(); 4956 4957 case OR_Deleted: 4958 Diag(OpLoc, diag::err_ovl_deleted_oper) 4959 << Best->Function->isDeleted() 4960 << BinaryOperator::getOpcodeStr(Opc) 4961 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4962 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4963 return ExprError(); 4964 } 4965 4966 // We matched a built-in operator; build it. 4967 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4968} 4969 4970Action::OwningExprResult 4971Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 4972 SourceLocation RLoc, 4973 ExprArg Base, ExprArg Idx) { 4974 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 4975 static_cast<Expr*>(Idx.get()) }; 4976 DeclarationName OpName = 4977 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 4978 4979 // If either side is type-dependent, create an appropriate dependent 4980 // expression. 4981 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4982 4983 OverloadedFunctionDecl *Overloads 4984 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4985 4986 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4987 LLoc, false, false); 4988 4989 Base.release(); 4990 Idx.release(); 4991 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 4992 Args, 2, 4993 Context.DependentTy, 4994 RLoc)); 4995 } 4996 4997 // Build an empty overload set. 4998 OverloadCandidateSet CandidateSet; 4999 5000 // Subscript can only be overloaded as a member function. 5001 5002 // Add operator candidates that are member functions. 5003 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5004 5005 // Add builtin operator candidates. 5006 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5007 5008 // Perform overload resolution. 5009 OverloadCandidateSet::iterator Best; 5010 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5011 case OR_Success: { 5012 // We found a built-in operator or an overloaded operator. 5013 FunctionDecl *FnDecl = Best->Function; 5014 5015 if (FnDecl) { 5016 // We matched an overloaded operator. Build a call to that 5017 // operator. 5018 5019 // Convert the arguments. 5020 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5021 if (PerformObjectArgumentInitialization(Args[0], Method) || 5022 PerformCopyInitialization(Args[1], 5023 FnDecl->getParamDecl(0)->getType(), 5024 "passing")) 5025 return ExprError(); 5026 5027 // Determine the result type 5028 QualType ResultTy 5029 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5030 ResultTy = ResultTy.getNonReferenceType(); 5031 5032 // Build the actual expression node. 5033 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5034 LLoc); 5035 UsualUnaryConversions(FnExpr); 5036 5037 Base.release(); 5038 Idx.release(); 5039 ExprOwningPtr<CXXOperatorCallExpr> 5040 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5041 FnExpr, Args, 2, 5042 ResultTy, RLoc)); 5043 5044 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5045 FnDecl)) 5046 return ExprError(); 5047 5048 return MaybeBindToTemporary(TheCall.release()); 5049 } else { 5050 // We matched a built-in operator. Convert the arguments, then 5051 // break out so that we will build the appropriate built-in 5052 // operator node. 5053 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5054 Best->Conversions[0], "passing") || 5055 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5056 Best->Conversions[1], "passing")) 5057 return ExprError(); 5058 5059 break; 5060 } 5061 } 5062 5063 case OR_No_Viable_Function: { 5064 // No viable function; try to create a built-in operation, which will 5065 // produce an error. Then, show the non-viable candidates. 5066 OwningExprResult Result = 5067 CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); 5068 assert(Result.isInvalid() && 5069 "C++ subscript operator overloading is missing candidates!"); 5070 if (Result.isInvalid()) 5071 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5072 "[]", LLoc); 5073 return move(Result); 5074 } 5075 5076 case OR_Ambiguous: 5077 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5078 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5079 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5080 "[]", LLoc); 5081 return ExprError(); 5082 5083 case OR_Deleted: 5084 Diag(LLoc, diag::err_ovl_deleted_oper) 5085 << Best->Function->isDeleted() << "[]" 5086 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5087 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5088 return ExprError(); 5089 } 5090 5091 // We matched a built-in operator; build it. 5092 Base.release(); 5093 Idx.release(); 5094 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5095 Owned(Args[1]), RLoc); 5096} 5097 5098/// BuildCallToMemberFunction - Build a call to a member 5099/// function. MemExpr is the expression that refers to the member 5100/// function (and includes the object parameter), Args/NumArgs are the 5101/// arguments to the function call (not including the object 5102/// parameter). The caller needs to validate that the member 5103/// expression refers to a member function or an overloaded member 5104/// function. 5105Sema::ExprResult 5106Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5107 SourceLocation LParenLoc, Expr **Args, 5108 unsigned NumArgs, SourceLocation *CommaLocs, 5109 SourceLocation RParenLoc) { 5110 // Dig out the member expression. This holds both the object 5111 // argument and the member function we're referring to. 5112 MemberExpr *MemExpr = 0; 5113 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 5114 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 5115 else 5116 MemExpr = dyn_cast<MemberExpr>(MemExprE); 5117 assert(MemExpr && "Building member call without member expression"); 5118 5119 // Extract the object argument. 5120 Expr *ObjectArg = MemExpr->getBase(); 5121 5122 CXXMethodDecl *Method = 0; 5123 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 5124 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) { 5125 // Add overload candidates 5126 OverloadCandidateSet CandidateSet; 5127 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName(); 5128 5129 for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd; 5130 Func != FuncEnd; ++Func) { 5131 if ((Method = dyn_cast<CXXMethodDecl>(*Func))) { 5132 // If explicit template arguments were provided, we can't call a 5133 // non-template member function. 5134 if (MemExpr->hasExplicitTemplateArgumentList()) 5135 continue; 5136 5137 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 5138 /*SuppressUserConversions=*/false); 5139 } else 5140 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func), 5141 MemExpr->hasExplicitTemplateArgumentList(), 5142 MemExpr->getTemplateArgs(), 5143 MemExpr->getNumTemplateArgs(), 5144 ObjectArg, Args, NumArgs, 5145 CandidateSet, 5146 /*SuppressUsedConversions=*/false); 5147 } 5148 5149 OverloadCandidateSet::iterator Best; 5150 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { 5151 case OR_Success: 5152 Method = cast<CXXMethodDecl>(Best->Function); 5153 break; 5154 5155 case OR_No_Viable_Function: 5156 Diag(MemExpr->getSourceRange().getBegin(), 5157 diag::err_ovl_no_viable_member_function_in_call) 5158 << DeclName << MemExprE->getSourceRange(); 5159 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5160 // FIXME: Leaking incoming expressions! 5161 return true; 5162 5163 case OR_Ambiguous: 5164 Diag(MemExpr->getSourceRange().getBegin(), 5165 diag::err_ovl_ambiguous_member_call) 5166 << DeclName << MemExprE->getSourceRange(); 5167 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5168 // FIXME: Leaking incoming expressions! 5169 return true; 5170 5171 case OR_Deleted: 5172 Diag(MemExpr->getSourceRange().getBegin(), 5173 diag::err_ovl_deleted_member_call) 5174 << Best->Function->isDeleted() 5175 << DeclName << MemExprE->getSourceRange(); 5176 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5177 // FIXME: Leaking incoming expressions! 5178 return true; 5179 } 5180 5181 FixOverloadedFunctionReference(MemExpr, Method); 5182 } else { 5183 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5184 } 5185 5186 assert(Method && "Member call to something that isn't a method?"); 5187 ExprOwningPtr<CXXMemberCallExpr> 5188 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 5189 NumArgs, 5190 Method->getResultType().getNonReferenceType(), 5191 RParenLoc)); 5192 5193 // Check for a valid return type. 5194 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5195 TheCall.get(), Method)) 5196 return true; 5197 5198 // Convert the object argument (for a non-static member function call). 5199 if (!Method->isStatic() && 5200 PerformObjectArgumentInitialization(ObjectArg, Method)) 5201 return true; 5202 MemExpr->setBase(ObjectArg); 5203 5204 // Convert the rest of the arguments 5205 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5206 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5207 RParenLoc)) 5208 return true; 5209 5210 if (CheckFunctionCall(Method, TheCall.get())) 5211 return true; 5212 5213 return MaybeBindToTemporary(TheCall.release()).release(); 5214} 5215 5216/// BuildCallToObjectOfClassType - Build a call to an object of class 5217/// type (C++ [over.call.object]), which can end up invoking an 5218/// overloaded function call operator (@c operator()) or performing a 5219/// user-defined conversion on the object argument. 5220Sema::ExprResult 5221Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5222 SourceLocation LParenLoc, 5223 Expr **Args, unsigned NumArgs, 5224 SourceLocation *CommaLocs, 5225 SourceLocation RParenLoc) { 5226 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5227 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5228 5229 // C++ [over.call.object]p1: 5230 // If the primary-expression E in the function call syntax 5231 // evaluates to a class object of type "cv T", then the set of 5232 // candidate functions includes at least the function call 5233 // operators of T. The function call operators of T are obtained by 5234 // ordinary lookup of the name operator() in the context of 5235 // (E).operator(). 5236 OverloadCandidateSet CandidateSet; 5237 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5238 DeclContext::lookup_const_iterator Oper, OperEnd; 5239 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName); 5240 Oper != OperEnd; ++Oper) { 5241 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Oper)) { 5242 AddMethodTemplateCandidate(FunTmpl, false, 0, 0, Object, Args, NumArgs, 5243 CandidateSet, 5244 /*SuppressUserConversions=*/false); 5245 continue; 5246 } 5247 5248 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 5249 CandidateSet, /*SuppressUserConversions=*/false); 5250 } 5251 5252 if (RequireCompleteType(LParenLoc, Object->getType(), 5253 PartialDiagnostic(diag::err_incomplete_object_call) 5254 << Object->getSourceRange())) 5255 return true; 5256 5257 // C++ [over.call.object]p2: 5258 // In addition, for each conversion function declared in T of the 5259 // form 5260 // 5261 // operator conversion-type-id () cv-qualifier; 5262 // 5263 // where cv-qualifier is the same cv-qualification as, or a 5264 // greater cv-qualification than, cv, and where conversion-type-id 5265 // denotes the type "pointer to function of (P1,...,Pn) returning 5266 // R", or the type "reference to pointer to function of 5267 // (P1,...,Pn) returning R", or the type "reference to function 5268 // of (P1,...,Pn) returning R", a surrogate call function [...] 5269 // is also considered as a candidate function. Similarly, 5270 // surrogate call functions are added to the set of candidate 5271 // functions for each conversion function declared in an 5272 // accessible base class provided the function is not hidden 5273 // within T by another intervening declaration. 5274 // FIXME: Look in base classes for more conversion operators! 5275 OverloadedFunctionDecl *Conversions 5276 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5277 for (OverloadedFunctionDecl::function_iterator 5278 Func = Conversions->function_begin(), 5279 FuncEnd = Conversions->function_end(); 5280 Func != FuncEnd; ++Func) { 5281 CXXConversionDecl *Conv; 5282 FunctionTemplateDecl *ConvTemplate; 5283 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 5284 5285 // Skip over templated conversion functions; they aren't 5286 // surrogates. 5287 if (ConvTemplate) 5288 continue; 5289 5290 // Strip the reference type (if any) and then the pointer type (if 5291 // any) to get down to what might be a function type. 5292 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5293 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5294 ConvType = ConvPtrType->getPointeeType(); 5295 5296 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5297 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 5298 } 5299 5300 // Perform overload resolution. 5301 OverloadCandidateSet::iterator Best; 5302 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5303 case OR_Success: 5304 // Overload resolution succeeded; we'll build the appropriate call 5305 // below. 5306 break; 5307 5308 case OR_No_Viable_Function: 5309 Diag(Object->getSourceRange().getBegin(), 5310 diag::err_ovl_no_viable_object_call) 5311 << Object->getType() << Object->getSourceRange(); 5312 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5313 break; 5314 5315 case OR_Ambiguous: 5316 Diag(Object->getSourceRange().getBegin(), 5317 diag::err_ovl_ambiguous_object_call) 5318 << Object->getType() << Object->getSourceRange(); 5319 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5320 break; 5321 5322 case OR_Deleted: 5323 Diag(Object->getSourceRange().getBegin(), 5324 diag::err_ovl_deleted_object_call) 5325 << Best->Function->isDeleted() 5326 << Object->getType() << Object->getSourceRange(); 5327 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5328 break; 5329 } 5330 5331 if (Best == CandidateSet.end()) { 5332 // We had an error; delete all of the subexpressions and return 5333 // the error. 5334 Object->Destroy(Context); 5335 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5336 Args[ArgIdx]->Destroy(Context); 5337 return true; 5338 } 5339 5340 if (Best->Function == 0) { 5341 // Since there is no function declaration, this is one of the 5342 // surrogate candidates. Dig out the conversion function. 5343 CXXConversionDecl *Conv 5344 = cast<CXXConversionDecl>( 5345 Best->Conversions[0].UserDefined.ConversionFunction); 5346 5347 // We selected one of the surrogate functions that converts the 5348 // object parameter to a function pointer. Perform the conversion 5349 // on the object argument, then let ActOnCallExpr finish the job. 5350 5351 // Create an implicit member expr to refer to the conversion operator. 5352 // and then call it. 5353 CXXMemberCallExpr *CE = 5354 BuildCXXMemberCallExpr(Object, Conv); 5355 5356 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5357 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5358 CommaLocs, RParenLoc).release(); 5359 } 5360 5361 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5362 // that calls this method, using Object for the implicit object 5363 // parameter and passing along the remaining arguments. 5364 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5365 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5366 5367 unsigned NumArgsInProto = Proto->getNumArgs(); 5368 unsigned NumArgsToCheck = NumArgs; 5369 5370 // Build the full argument list for the method call (the 5371 // implicit object parameter is placed at the beginning of the 5372 // list). 5373 Expr **MethodArgs; 5374 if (NumArgs < NumArgsInProto) { 5375 NumArgsToCheck = NumArgsInProto; 5376 MethodArgs = new Expr*[NumArgsInProto + 1]; 5377 } else { 5378 MethodArgs = new Expr*[NumArgs + 1]; 5379 } 5380 MethodArgs[0] = Object; 5381 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5382 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5383 5384 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5385 SourceLocation()); 5386 UsualUnaryConversions(NewFn); 5387 5388 // Once we've built TheCall, all of the expressions are properly 5389 // owned. 5390 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5391 ExprOwningPtr<CXXOperatorCallExpr> 5392 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5393 MethodArgs, NumArgs + 1, 5394 ResultTy, RParenLoc)); 5395 delete [] MethodArgs; 5396 5397 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5398 Method)) 5399 return true; 5400 5401 // We may have default arguments. If so, we need to allocate more 5402 // slots in the call for them. 5403 if (NumArgs < NumArgsInProto) 5404 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5405 else if (NumArgs > NumArgsInProto) 5406 NumArgsToCheck = NumArgsInProto; 5407 5408 bool IsError = false; 5409 5410 // Initialize the implicit object parameter. 5411 IsError |= PerformObjectArgumentInitialization(Object, Method); 5412 TheCall->setArg(0, Object); 5413 5414 5415 // Check the argument types. 5416 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5417 Expr *Arg; 5418 if (i < NumArgs) { 5419 Arg = Args[i]; 5420 5421 // Pass the argument. 5422 QualType ProtoArgType = Proto->getArgType(i); 5423 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 5424 } else { 5425 OwningExprResult DefArg 5426 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 5427 if (DefArg.isInvalid()) { 5428 IsError = true; 5429 break; 5430 } 5431 5432 Arg = DefArg.takeAs<Expr>(); 5433 } 5434 5435 TheCall->setArg(i + 1, Arg); 5436 } 5437 5438 // If this is a variadic call, handle args passed through "...". 5439 if (Proto->isVariadic()) { 5440 // Promote the arguments (C99 6.5.2.2p7). 5441 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5442 Expr *Arg = Args[i]; 5443 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5444 TheCall->setArg(i + 1, Arg); 5445 } 5446 } 5447 5448 if (IsError) return true; 5449 5450 if (CheckFunctionCall(Method, TheCall.get())) 5451 return true; 5452 5453 return MaybeBindToTemporary(TheCall.release()).release(); 5454} 5455 5456/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5457/// (if one exists), where @c Base is an expression of class type and 5458/// @c Member is the name of the member we're trying to find. 5459Sema::OwningExprResult 5460Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5461 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5462 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5463 5464 // C++ [over.ref]p1: 5465 // 5466 // [...] An expression x->m is interpreted as (x.operator->())->m 5467 // for a class object x of type T if T::operator->() exists and if 5468 // the operator is selected as the best match function by the 5469 // overload resolution mechanism (13.3). 5470 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5471 OverloadCandidateSet CandidateSet; 5472 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5473 5474 LookupResult R; 5475 LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName); 5476 5477 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5478 Oper != OperEnd; ++Oper) 5479 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 5480 /*SuppressUserConversions=*/false); 5481 5482 // Perform overload resolution. 5483 OverloadCandidateSet::iterator Best; 5484 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5485 case OR_Success: 5486 // Overload resolution succeeded; we'll build the call below. 5487 break; 5488 5489 case OR_No_Viable_Function: 5490 if (CandidateSet.empty()) 5491 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5492 << Base->getType() << Base->getSourceRange(); 5493 else 5494 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5495 << "operator->" << Base->getSourceRange(); 5496 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5497 return ExprError(); 5498 5499 case OR_Ambiguous: 5500 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5501 << "->" << Base->getSourceRange(); 5502 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5503 return ExprError(); 5504 5505 case OR_Deleted: 5506 Diag(OpLoc, diag::err_ovl_deleted_oper) 5507 << Best->Function->isDeleted() 5508 << "->" << Base->getSourceRange(); 5509 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5510 return ExprError(); 5511 } 5512 5513 // Convert the object parameter. 5514 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5515 if (PerformObjectArgumentInitialization(Base, Method)) 5516 return ExprError(); 5517 5518 // No concerns about early exits now. 5519 BaseIn.release(); 5520 5521 // Build the operator call. 5522 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5523 SourceLocation()); 5524 UsualUnaryConversions(FnExpr); 5525 5526 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5527 ExprOwningPtr<CXXOperatorCallExpr> 5528 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5529 &Base, 1, ResultTy, OpLoc)); 5530 5531 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5532 Method)) 5533 return ExprError(); 5534 return move(TheCall); 5535} 5536 5537/// FixOverloadedFunctionReference - E is an expression that refers to 5538/// a C++ overloaded function (possibly with some parentheses and 5539/// perhaps a '&' around it). We have resolved the overloaded function 5540/// to the function declaration Fn, so patch up the expression E to 5541/// refer (possibly indirectly) to Fn. Returns the new expr. 5542Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5543 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5544 Expr *NewExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5545 PE->setSubExpr(NewExpr); 5546 PE->setType(NewExpr->getType()); 5547 } else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5548 Expr *NewExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 5549 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 5550 NewExpr->getType()) && 5551 "Implicit cast type cannot be determined from overload"); 5552 ICE->setSubExpr(NewExpr); 5553 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5554 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5555 "Can only take the address of an overloaded function"); 5556 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5557 if (Method->isStatic()) { 5558 // Do nothing: static member functions aren't any different 5559 // from non-member functions. 5560 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr())) { 5561 if (DRE->getQualifier()) { 5562 // We have taken the address of a pointer to member 5563 // function. Perform the computation here so that we get the 5564 // appropriate pointer to member type. 5565 DRE->setDecl(Fn); 5566 DRE->setType(Fn->getType()); 5567 QualType ClassType 5568 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 5569 E->setType(Context.getMemberPointerType(Fn->getType(), 5570 ClassType.getTypePtr())); 5571 return E; 5572 } 5573 } 5574 // FIXME: TemplateIdRefExpr referring to a member function template 5575 // specialization! 5576 } 5577 Expr *NewExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5578 UnOp->setSubExpr(NewExpr); 5579 UnOp->setType(Context.getPointerType(NewExpr->getType())); 5580 5581 return UnOp; 5582 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { 5583 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) || 5584 isa<FunctionTemplateDecl>(DR->getDecl()) || 5585 isa<FunctionDecl>(DR->getDecl())) && 5586 "Expected function or function template"); 5587 DR->setDecl(Fn); 5588 E->setType(Fn->getType()); 5589 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 5590 MemExpr->setMemberDecl(Fn); 5591 E->setType(Fn->getType()); 5592 } else if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) { 5593 E = DeclRefExpr::Create(Context, 5594 TID->getQualifier(), TID->getQualifierRange(), 5595 Fn, TID->getTemplateNameLoc(), 5596 true, 5597 TID->getLAngleLoc(), 5598 TID->getTemplateArgs(), 5599 TID->getNumTemplateArgs(), 5600 TID->getRAngleLoc(), 5601 Fn->getType(), 5602 /*FIXME?*/false, /*FIXME?*/false); 5603 5604 // FIXME: Don't destroy TID here, since we need its template arguments 5605 // to survive. 5606 // TID->Destroy(Context); 5607 } else if (isa<UnresolvedFunctionNameExpr>(E)) { 5608 return DeclRefExpr::Create(Context, 5609 /*Qualifier=*/0, 5610 /*QualifierRange=*/SourceRange(), 5611 Fn, E->getLocStart(), 5612 Fn->getType(), false, false); 5613 } else { 5614 assert(false && "Invalid reference to overloaded function"); 5615 } 5616 5617 return E; 5618} 5619 5620} // end namespace clang 5621