SemaOverload.cpp revision fcab48b626b7ce43625958e857061d721a43a5bc
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static Expr * 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, 41 SourceLocation Loc = SourceLocation()) { 42 Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc); 43 S.DefaultFunctionArrayConversion(E); 44 return E; 45} 46 47static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 48 bool InOverloadResolution, 49 StandardConversionSequence &SCS); 50static OverloadingResult 51IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 52 UserDefinedConversionSequence& User, 53 OverloadCandidateSet& Conversions, 54 bool AllowExplicit); 55 56 57static ImplicitConversionSequence::CompareKind 58CompareStandardConversionSequences(Sema &S, 59 const StandardConversionSequence& SCS1, 60 const StandardConversionSequence& SCS2); 61 62static ImplicitConversionSequence::CompareKind 63CompareQualificationConversions(Sema &S, 64 const StandardConversionSequence& SCS1, 65 const StandardConversionSequence& SCS2); 66 67static ImplicitConversionSequence::CompareKind 68CompareDerivedToBaseConversions(Sema &S, 69 const StandardConversionSequence& SCS1, 70 const StandardConversionSequence& SCS2); 71 72 73 74/// GetConversionCategory - Retrieve the implicit conversion 75/// category corresponding to the given implicit conversion kind. 76ImplicitConversionCategory 77GetConversionCategory(ImplicitConversionKind Kind) { 78 static const ImplicitConversionCategory 79 Category[(int)ICK_Num_Conversion_Kinds] = { 80 ICC_Identity, 81 ICC_Lvalue_Transformation, 82 ICC_Lvalue_Transformation, 83 ICC_Lvalue_Transformation, 84 ICC_Identity, 85 ICC_Qualification_Adjustment, 86 ICC_Promotion, 87 ICC_Promotion, 88 ICC_Promotion, 89 ICC_Conversion, 90 ICC_Conversion, 91 ICC_Conversion, 92 ICC_Conversion, 93 ICC_Conversion, 94 ICC_Conversion, 95 ICC_Conversion, 96 ICC_Conversion, 97 ICC_Conversion, 98 ICC_Conversion, 99 ICC_Conversion, 100 ICC_Conversion 101 }; 102 return Category[(int)Kind]; 103} 104 105/// GetConversionRank - Retrieve the implicit conversion rank 106/// corresponding to the given implicit conversion kind. 107ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 108 static const ImplicitConversionRank 109 Rank[(int)ICK_Num_Conversion_Kinds] = { 110 ICR_Exact_Match, 111 ICR_Exact_Match, 112 ICR_Exact_Match, 113 ICR_Exact_Match, 114 ICR_Exact_Match, 115 ICR_Exact_Match, 116 ICR_Promotion, 117 ICR_Promotion, 118 ICR_Promotion, 119 ICR_Conversion, 120 ICR_Conversion, 121 ICR_Conversion, 122 ICR_Conversion, 123 ICR_Conversion, 124 ICR_Conversion, 125 ICR_Conversion, 126 ICR_Conversion, 127 ICR_Conversion, 128 ICR_Conversion, 129 ICR_Conversion, 130 ICR_Complex_Real_Conversion 131 }; 132 return Rank[(int)Kind]; 133} 134 135/// GetImplicitConversionName - Return the name of this kind of 136/// implicit conversion. 137const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 138 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 139 "No conversion", 140 "Lvalue-to-rvalue", 141 "Array-to-pointer", 142 "Function-to-pointer", 143 "Noreturn adjustment", 144 "Qualification", 145 "Integral promotion", 146 "Floating point promotion", 147 "Complex promotion", 148 "Integral conversion", 149 "Floating conversion", 150 "Complex conversion", 151 "Floating-integral conversion", 152 "Pointer conversion", 153 "Pointer-to-member conversion", 154 "Boolean conversion", 155 "Compatible-types conversion", 156 "Derived-to-base conversion", 157 "Vector conversion", 158 "Vector splat", 159 "Complex-real conversion" 160 }; 161 return Name[Kind]; 162} 163 164/// StandardConversionSequence - Set the standard conversion 165/// sequence to the identity conversion. 166void StandardConversionSequence::setAsIdentityConversion() { 167 First = ICK_Identity; 168 Second = ICK_Identity; 169 Third = ICK_Identity; 170 DeprecatedStringLiteralToCharPtr = false; 171 ReferenceBinding = false; 172 DirectBinding = false; 173 IsLvalueReference = true; 174 BindsToFunctionLvalue = false; 175 BindsToRvalue = false; 176 BindsImplicitObjectArgumentWithoutRefQualifier = false; 177 CopyConstructor = 0; 178} 179 180/// getRank - Retrieve the rank of this standard conversion sequence 181/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 182/// implicit conversions. 183ImplicitConversionRank StandardConversionSequence::getRank() const { 184 ImplicitConversionRank Rank = ICR_Exact_Match; 185 if (GetConversionRank(First) > Rank) 186 Rank = GetConversionRank(First); 187 if (GetConversionRank(Second) > Rank) 188 Rank = GetConversionRank(Second); 189 if (GetConversionRank(Third) > Rank) 190 Rank = GetConversionRank(Third); 191 return Rank; 192} 193 194/// isPointerConversionToBool - Determines whether this conversion is 195/// a conversion of a pointer or pointer-to-member to bool. This is 196/// used as part of the ranking of standard conversion sequences 197/// (C++ 13.3.3.2p4). 198bool StandardConversionSequence::isPointerConversionToBool() const { 199 // Note that FromType has not necessarily been transformed by the 200 // array-to-pointer or function-to-pointer implicit conversions, so 201 // check for their presence as well as checking whether FromType is 202 // a pointer. 203 if (getToType(1)->isBooleanType() && 204 (getFromType()->isPointerType() || 205 getFromType()->isObjCObjectPointerType() || 206 getFromType()->isBlockPointerType() || 207 getFromType()->isNullPtrType() || 208 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 209 return true; 210 211 return false; 212} 213 214/// isPointerConversionToVoidPointer - Determines whether this 215/// conversion is a conversion of a pointer to a void pointer. This is 216/// used as part of the ranking of standard conversion sequences (C++ 217/// 13.3.3.2p4). 218bool 219StandardConversionSequence:: 220isPointerConversionToVoidPointer(ASTContext& Context) const { 221 QualType FromType = getFromType(); 222 QualType ToType = getToType(1); 223 224 // Note that FromType has not necessarily been transformed by the 225 // array-to-pointer implicit conversion, so check for its presence 226 // and redo the conversion to get a pointer. 227 if (First == ICK_Array_To_Pointer) 228 FromType = Context.getArrayDecayedType(FromType); 229 230 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 231 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 232 return ToPtrType->getPointeeType()->isVoidType(); 233 234 return false; 235} 236 237/// DebugPrint - Print this standard conversion sequence to standard 238/// error. Useful for debugging overloading issues. 239void StandardConversionSequence::DebugPrint() const { 240 llvm::raw_ostream &OS = llvm::errs(); 241 bool PrintedSomething = false; 242 if (First != ICK_Identity) { 243 OS << GetImplicitConversionName(First); 244 PrintedSomething = true; 245 } 246 247 if (Second != ICK_Identity) { 248 if (PrintedSomething) { 249 OS << " -> "; 250 } 251 OS << GetImplicitConversionName(Second); 252 253 if (CopyConstructor) { 254 OS << " (by copy constructor)"; 255 } else if (DirectBinding) { 256 OS << " (direct reference binding)"; 257 } else if (ReferenceBinding) { 258 OS << " (reference binding)"; 259 } 260 PrintedSomething = true; 261 } 262 263 if (Third != ICK_Identity) { 264 if (PrintedSomething) { 265 OS << " -> "; 266 } 267 OS << GetImplicitConversionName(Third); 268 PrintedSomething = true; 269 } 270 271 if (!PrintedSomething) { 272 OS << "No conversions required"; 273 } 274} 275 276/// DebugPrint - Print this user-defined conversion sequence to standard 277/// error. Useful for debugging overloading issues. 278void UserDefinedConversionSequence::DebugPrint() const { 279 llvm::raw_ostream &OS = llvm::errs(); 280 if (Before.First || Before.Second || Before.Third) { 281 Before.DebugPrint(); 282 OS << " -> "; 283 } 284 OS << '\'' << ConversionFunction << '\''; 285 if (After.First || After.Second || After.Third) { 286 OS << " -> "; 287 After.DebugPrint(); 288 } 289} 290 291/// DebugPrint - Print this implicit conversion sequence to standard 292/// error. Useful for debugging overloading issues. 293void ImplicitConversionSequence::DebugPrint() const { 294 llvm::raw_ostream &OS = llvm::errs(); 295 switch (ConversionKind) { 296 case StandardConversion: 297 OS << "Standard conversion: "; 298 Standard.DebugPrint(); 299 break; 300 case UserDefinedConversion: 301 OS << "User-defined conversion: "; 302 UserDefined.DebugPrint(); 303 break; 304 case EllipsisConversion: 305 OS << "Ellipsis conversion"; 306 break; 307 case AmbiguousConversion: 308 OS << "Ambiguous conversion"; 309 break; 310 case BadConversion: 311 OS << "Bad conversion"; 312 break; 313 } 314 315 OS << "\n"; 316} 317 318void AmbiguousConversionSequence::construct() { 319 new (&conversions()) ConversionSet(); 320} 321 322void AmbiguousConversionSequence::destruct() { 323 conversions().~ConversionSet(); 324} 325 326void 327AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 328 FromTypePtr = O.FromTypePtr; 329 ToTypePtr = O.ToTypePtr; 330 new (&conversions()) ConversionSet(O.conversions()); 331} 332 333namespace { 334 // Structure used by OverloadCandidate::DeductionFailureInfo to store 335 // template parameter and template argument information. 336 struct DFIParamWithArguments { 337 TemplateParameter Param; 338 TemplateArgument FirstArg; 339 TemplateArgument SecondArg; 340 }; 341} 342 343/// \brief Convert from Sema's representation of template deduction information 344/// to the form used in overload-candidate information. 345OverloadCandidate::DeductionFailureInfo 346static MakeDeductionFailureInfo(ASTContext &Context, 347 Sema::TemplateDeductionResult TDK, 348 TemplateDeductionInfo &Info) { 349 OverloadCandidate::DeductionFailureInfo Result; 350 Result.Result = static_cast<unsigned>(TDK); 351 Result.Data = 0; 352 switch (TDK) { 353 case Sema::TDK_Success: 354 case Sema::TDK_InstantiationDepth: 355 case Sema::TDK_TooManyArguments: 356 case Sema::TDK_TooFewArguments: 357 break; 358 359 case Sema::TDK_Incomplete: 360 case Sema::TDK_InvalidExplicitArguments: 361 Result.Data = Info.Param.getOpaqueValue(); 362 break; 363 364 case Sema::TDK_Inconsistent: 365 case Sema::TDK_Underqualified: { 366 // FIXME: Should allocate from normal heap so that we can free this later. 367 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 368 Saved->Param = Info.Param; 369 Saved->FirstArg = Info.FirstArg; 370 Saved->SecondArg = Info.SecondArg; 371 Result.Data = Saved; 372 break; 373 } 374 375 case Sema::TDK_SubstitutionFailure: 376 Result.Data = Info.take(); 377 break; 378 379 case Sema::TDK_NonDeducedMismatch: 380 case Sema::TDK_FailedOverloadResolution: 381 break; 382 } 383 384 return Result; 385} 386 387void OverloadCandidate::DeductionFailureInfo::Destroy() { 388 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 389 case Sema::TDK_Success: 390 case Sema::TDK_InstantiationDepth: 391 case Sema::TDK_Incomplete: 392 case Sema::TDK_TooManyArguments: 393 case Sema::TDK_TooFewArguments: 394 case Sema::TDK_InvalidExplicitArguments: 395 break; 396 397 case Sema::TDK_Inconsistent: 398 case Sema::TDK_Underqualified: 399 // FIXME: Destroy the data? 400 Data = 0; 401 break; 402 403 case Sema::TDK_SubstitutionFailure: 404 // FIXME: Destroy the template arugment list? 405 Data = 0; 406 break; 407 408 // Unhandled 409 case Sema::TDK_NonDeducedMismatch: 410 case Sema::TDK_FailedOverloadResolution: 411 break; 412 } 413} 414 415TemplateParameter 416OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 417 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 418 case Sema::TDK_Success: 419 case Sema::TDK_InstantiationDepth: 420 case Sema::TDK_TooManyArguments: 421 case Sema::TDK_TooFewArguments: 422 case Sema::TDK_SubstitutionFailure: 423 return TemplateParameter(); 424 425 case Sema::TDK_Incomplete: 426 case Sema::TDK_InvalidExplicitArguments: 427 return TemplateParameter::getFromOpaqueValue(Data); 428 429 case Sema::TDK_Inconsistent: 430 case Sema::TDK_Underqualified: 431 return static_cast<DFIParamWithArguments*>(Data)->Param; 432 433 // Unhandled 434 case Sema::TDK_NonDeducedMismatch: 435 case Sema::TDK_FailedOverloadResolution: 436 break; 437 } 438 439 return TemplateParameter(); 440} 441 442TemplateArgumentList * 443OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 444 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 445 case Sema::TDK_Success: 446 case Sema::TDK_InstantiationDepth: 447 case Sema::TDK_TooManyArguments: 448 case Sema::TDK_TooFewArguments: 449 case Sema::TDK_Incomplete: 450 case Sema::TDK_InvalidExplicitArguments: 451 case Sema::TDK_Inconsistent: 452 case Sema::TDK_Underqualified: 453 return 0; 454 455 case Sema::TDK_SubstitutionFailure: 456 return static_cast<TemplateArgumentList*>(Data); 457 458 // Unhandled 459 case Sema::TDK_NonDeducedMismatch: 460 case Sema::TDK_FailedOverloadResolution: 461 break; 462 } 463 464 return 0; 465} 466 467const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 468 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 469 case Sema::TDK_Success: 470 case Sema::TDK_InstantiationDepth: 471 case Sema::TDK_Incomplete: 472 case Sema::TDK_TooManyArguments: 473 case Sema::TDK_TooFewArguments: 474 case Sema::TDK_InvalidExplicitArguments: 475 case Sema::TDK_SubstitutionFailure: 476 return 0; 477 478 case Sema::TDK_Inconsistent: 479 case Sema::TDK_Underqualified: 480 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 481 482 // Unhandled 483 case Sema::TDK_NonDeducedMismatch: 484 case Sema::TDK_FailedOverloadResolution: 485 break; 486 } 487 488 return 0; 489} 490 491const TemplateArgument * 492OverloadCandidate::DeductionFailureInfo::getSecondArg() { 493 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 494 case Sema::TDK_Success: 495 case Sema::TDK_InstantiationDepth: 496 case Sema::TDK_Incomplete: 497 case Sema::TDK_TooManyArguments: 498 case Sema::TDK_TooFewArguments: 499 case Sema::TDK_InvalidExplicitArguments: 500 case Sema::TDK_SubstitutionFailure: 501 return 0; 502 503 case Sema::TDK_Inconsistent: 504 case Sema::TDK_Underqualified: 505 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 506 507 // Unhandled 508 case Sema::TDK_NonDeducedMismatch: 509 case Sema::TDK_FailedOverloadResolution: 510 break; 511 } 512 513 return 0; 514} 515 516void OverloadCandidateSet::clear() { 517 inherited::clear(); 518 Functions.clear(); 519} 520 521// IsOverload - Determine whether the given New declaration is an 522// overload of the declarations in Old. This routine returns false if 523// New and Old cannot be overloaded, e.g., if New has the same 524// signature as some function in Old (C++ 1.3.10) or if the Old 525// declarations aren't functions (or function templates) at all. When 526// it does return false, MatchedDecl will point to the decl that New 527// cannot be overloaded with. This decl may be a UsingShadowDecl on 528// top of the underlying declaration. 529// 530// Example: Given the following input: 531// 532// void f(int, float); // #1 533// void f(int, int); // #2 534// int f(int, int); // #3 535// 536// When we process #1, there is no previous declaration of "f", 537// so IsOverload will not be used. 538// 539// When we process #2, Old contains only the FunctionDecl for #1. By 540// comparing the parameter types, we see that #1 and #2 are overloaded 541// (since they have different signatures), so this routine returns 542// false; MatchedDecl is unchanged. 543// 544// When we process #3, Old is an overload set containing #1 and #2. We 545// compare the signatures of #3 to #1 (they're overloaded, so we do 546// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 547// identical (return types of functions are not part of the 548// signature), IsOverload returns false and MatchedDecl will be set to 549// point to the FunctionDecl for #2. 550// 551// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 552// into a class by a using declaration. The rules for whether to hide 553// shadow declarations ignore some properties which otherwise figure 554// into a function template's signature. 555Sema::OverloadKind 556Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 557 NamedDecl *&Match, bool NewIsUsingDecl) { 558 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 559 I != E; ++I) { 560 NamedDecl *OldD = *I; 561 562 bool OldIsUsingDecl = false; 563 if (isa<UsingShadowDecl>(OldD)) { 564 OldIsUsingDecl = true; 565 566 // We can always introduce two using declarations into the same 567 // context, even if they have identical signatures. 568 if (NewIsUsingDecl) continue; 569 570 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 571 } 572 573 // If either declaration was introduced by a using declaration, 574 // we'll need to use slightly different rules for matching. 575 // Essentially, these rules are the normal rules, except that 576 // function templates hide function templates with different 577 // return types or template parameter lists. 578 bool UseMemberUsingDeclRules = 579 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 580 581 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 582 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 583 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 584 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 585 continue; 586 } 587 588 Match = *I; 589 return Ovl_Match; 590 } 591 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 592 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 593 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 594 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 595 continue; 596 } 597 598 Match = *I; 599 return Ovl_Match; 600 } 601 } else if (isa<UsingDecl>(OldD)) { 602 // We can overload with these, which can show up when doing 603 // redeclaration checks for UsingDecls. 604 assert(Old.getLookupKind() == LookupUsingDeclName); 605 } else if (isa<TagDecl>(OldD)) { 606 // We can always overload with tags by hiding them. 607 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 608 // Optimistically assume that an unresolved using decl will 609 // overload; if it doesn't, we'll have to diagnose during 610 // template instantiation. 611 } else { 612 // (C++ 13p1): 613 // Only function declarations can be overloaded; object and type 614 // declarations cannot be overloaded. 615 Match = *I; 616 return Ovl_NonFunction; 617 } 618 } 619 620 return Ovl_Overload; 621} 622 623bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 624 bool UseUsingDeclRules) { 625 // If both of the functions are extern "C", then they are not 626 // overloads. 627 if (Old->isExternC() && New->isExternC()) 628 return false; 629 630 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 631 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 632 633 // C++ [temp.fct]p2: 634 // A function template can be overloaded with other function templates 635 // and with normal (non-template) functions. 636 if ((OldTemplate == 0) != (NewTemplate == 0)) 637 return true; 638 639 // Is the function New an overload of the function Old? 640 QualType OldQType = Context.getCanonicalType(Old->getType()); 641 QualType NewQType = Context.getCanonicalType(New->getType()); 642 643 // Compare the signatures (C++ 1.3.10) of the two functions to 644 // determine whether they are overloads. If we find any mismatch 645 // in the signature, they are overloads. 646 647 // If either of these functions is a K&R-style function (no 648 // prototype), then we consider them to have matching signatures. 649 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 650 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 651 return false; 652 653 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 654 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 655 656 // The signature of a function includes the types of its 657 // parameters (C++ 1.3.10), which includes the presence or absence 658 // of the ellipsis; see C++ DR 357). 659 if (OldQType != NewQType && 660 (OldType->getNumArgs() != NewType->getNumArgs() || 661 OldType->isVariadic() != NewType->isVariadic() || 662 !FunctionArgTypesAreEqual(OldType, NewType))) 663 return true; 664 665 // C++ [temp.over.link]p4: 666 // The signature of a function template consists of its function 667 // signature, its return type and its template parameter list. The names 668 // of the template parameters are significant only for establishing the 669 // relationship between the template parameters and the rest of the 670 // signature. 671 // 672 // We check the return type and template parameter lists for function 673 // templates first; the remaining checks follow. 674 // 675 // However, we don't consider either of these when deciding whether 676 // a member introduced by a shadow declaration is hidden. 677 if (!UseUsingDeclRules && NewTemplate && 678 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 679 OldTemplate->getTemplateParameters(), 680 false, TPL_TemplateMatch) || 681 OldType->getResultType() != NewType->getResultType())) 682 return true; 683 684 // If the function is a class member, its signature includes the 685 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 686 // 687 // As part of this, also check whether one of the member functions 688 // is static, in which case they are not overloads (C++ 689 // 13.1p2). While not part of the definition of the signature, 690 // this check is important to determine whether these functions 691 // can be overloaded. 692 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 693 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 694 if (OldMethod && NewMethod && 695 !OldMethod->isStatic() && !NewMethod->isStatic() && 696 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 697 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) 698 return true; 699 700 // The signatures match; this is not an overload. 701 return false; 702} 703 704/// TryImplicitConversion - Attempt to perform an implicit conversion 705/// from the given expression (Expr) to the given type (ToType). This 706/// function returns an implicit conversion sequence that can be used 707/// to perform the initialization. Given 708/// 709/// void f(float f); 710/// void g(int i) { f(i); } 711/// 712/// this routine would produce an implicit conversion sequence to 713/// describe the initialization of f from i, which will be a standard 714/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 715/// 4.1) followed by a floating-integral conversion (C++ 4.9). 716// 717/// Note that this routine only determines how the conversion can be 718/// performed; it does not actually perform the conversion. As such, 719/// it will not produce any diagnostics if no conversion is available, 720/// but will instead return an implicit conversion sequence of kind 721/// "BadConversion". 722/// 723/// If @p SuppressUserConversions, then user-defined conversions are 724/// not permitted. 725/// If @p AllowExplicit, then explicit user-defined conversions are 726/// permitted. 727static ImplicitConversionSequence 728TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 729 bool SuppressUserConversions, 730 bool AllowExplicit, 731 bool InOverloadResolution) { 732 ImplicitConversionSequence ICS; 733 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 734 ICS.Standard)) { 735 ICS.setStandard(); 736 return ICS; 737 } 738 739 if (!S.getLangOptions().CPlusPlus) { 740 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 741 return ICS; 742 } 743 744 // C++ [over.ics.user]p4: 745 // A conversion of an expression of class type to the same class 746 // type is given Exact Match rank, and a conversion of an 747 // expression of class type to a base class of that type is 748 // given Conversion rank, in spite of the fact that a copy/move 749 // constructor (i.e., a user-defined conversion function) is 750 // called for those cases. 751 QualType FromType = From->getType(); 752 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 753 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 754 S.IsDerivedFrom(FromType, ToType))) { 755 ICS.setStandard(); 756 ICS.Standard.setAsIdentityConversion(); 757 ICS.Standard.setFromType(FromType); 758 ICS.Standard.setAllToTypes(ToType); 759 760 // We don't actually check at this point whether there is a valid 761 // copy/move constructor, since overloading just assumes that it 762 // exists. When we actually perform initialization, we'll find the 763 // appropriate constructor to copy the returned object, if needed. 764 ICS.Standard.CopyConstructor = 0; 765 766 // Determine whether this is considered a derived-to-base conversion. 767 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 768 ICS.Standard.Second = ICK_Derived_To_Base; 769 770 return ICS; 771 } 772 773 if (SuppressUserConversions) { 774 // We're not in the case above, so there is no conversion that 775 // we can perform. 776 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 777 return ICS; 778 } 779 780 // Attempt user-defined conversion. 781 OverloadCandidateSet Conversions(From->getExprLoc()); 782 OverloadingResult UserDefResult 783 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 784 AllowExplicit); 785 786 if (UserDefResult == OR_Success) { 787 ICS.setUserDefined(); 788 // C++ [over.ics.user]p4: 789 // A conversion of an expression of class type to the same class 790 // type is given Exact Match rank, and a conversion of an 791 // expression of class type to a base class of that type is 792 // given Conversion rank, in spite of the fact that a copy 793 // constructor (i.e., a user-defined conversion function) is 794 // called for those cases. 795 if (CXXConstructorDecl *Constructor 796 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 797 QualType FromCanon 798 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 799 QualType ToCanon 800 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 801 if (Constructor->isCopyConstructor() && 802 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 803 // Turn this into a "standard" conversion sequence, so that it 804 // gets ranked with standard conversion sequences. 805 ICS.setStandard(); 806 ICS.Standard.setAsIdentityConversion(); 807 ICS.Standard.setFromType(From->getType()); 808 ICS.Standard.setAllToTypes(ToType); 809 ICS.Standard.CopyConstructor = Constructor; 810 if (ToCanon != FromCanon) 811 ICS.Standard.Second = ICK_Derived_To_Base; 812 } 813 } 814 815 // C++ [over.best.ics]p4: 816 // However, when considering the argument of a user-defined 817 // conversion function that is a candidate by 13.3.1.3 when 818 // invoked for the copying of the temporary in the second step 819 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 820 // 13.3.1.6 in all cases, only standard conversion sequences and 821 // ellipsis conversion sequences are allowed. 822 if (SuppressUserConversions && ICS.isUserDefined()) { 823 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 824 } 825 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 826 ICS.setAmbiguous(); 827 ICS.Ambiguous.setFromType(From->getType()); 828 ICS.Ambiguous.setToType(ToType); 829 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 830 Cand != Conversions.end(); ++Cand) 831 if (Cand->Viable) 832 ICS.Ambiguous.addConversion(Cand->Function); 833 } else { 834 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 835 } 836 837 return ICS; 838} 839 840bool Sema::TryImplicitConversion(InitializationSequence &Sequence, 841 const InitializedEntity &Entity, 842 Expr *Initializer, 843 bool SuppressUserConversions, 844 bool AllowExplicitConversions, 845 bool InOverloadResolution) { 846 ImplicitConversionSequence ICS 847 = clang::TryImplicitConversion(*this, Initializer, Entity.getType(), 848 SuppressUserConversions, 849 AllowExplicitConversions, 850 InOverloadResolution); 851 if (ICS.isBad()) return true; 852 853 // Perform the actual conversion. 854 Sequence.AddConversionSequenceStep(ICS, Entity.getType()); 855 return false; 856} 857 858/// PerformImplicitConversion - Perform an implicit conversion of the 859/// expression From to the type ToType. Returns true if there was an 860/// error, false otherwise. The expression From is replaced with the 861/// converted expression. Flavor is the kind of conversion we're 862/// performing, used in the error message. If @p AllowExplicit, 863/// explicit user-defined conversions are permitted. 864bool 865Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 866 AssignmentAction Action, bool AllowExplicit) { 867 ImplicitConversionSequence ICS; 868 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 869} 870 871bool 872Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 873 AssignmentAction Action, bool AllowExplicit, 874 ImplicitConversionSequence& ICS) { 875 ICS = clang::TryImplicitConversion(*this, From, ToType, 876 /*SuppressUserConversions=*/false, 877 AllowExplicit, 878 /*InOverloadResolution=*/false); 879 return PerformImplicitConversion(From, ToType, ICS, Action); 880} 881 882/// \brief Determine whether the conversion from FromType to ToType is a valid 883/// conversion that strips "noreturn" off the nested function type. 884static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 885 QualType ToType, QualType &ResultTy) { 886 if (Context.hasSameUnqualifiedType(FromType, ToType)) 887 return false; 888 889 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 890 // where F adds one of the following at most once: 891 // - a pointer 892 // - a member pointer 893 // - a block pointer 894 CanQualType CanTo = Context.getCanonicalType(ToType); 895 CanQualType CanFrom = Context.getCanonicalType(FromType); 896 Type::TypeClass TyClass = CanTo->getTypeClass(); 897 if (TyClass != CanFrom->getTypeClass()) return false; 898 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 899 if (TyClass == Type::Pointer) { 900 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 901 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 902 } else if (TyClass == Type::BlockPointer) { 903 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 904 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 905 } else if (TyClass == Type::MemberPointer) { 906 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 907 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 908 } else { 909 return false; 910 } 911 912 TyClass = CanTo->getTypeClass(); 913 if (TyClass != CanFrom->getTypeClass()) return false; 914 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 915 return false; 916 } 917 918 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 919 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 920 if (!EInfo.getNoReturn()) return false; 921 922 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 923 assert(QualType(FromFn, 0).isCanonical()); 924 if (QualType(FromFn, 0) != CanTo) return false; 925 926 ResultTy = ToType; 927 return true; 928} 929 930/// \brief Determine whether the conversion from FromType to ToType is a valid 931/// vector conversion. 932/// 933/// \param ICK Will be set to the vector conversion kind, if this is a vector 934/// conversion. 935static bool IsVectorConversion(ASTContext &Context, QualType FromType, 936 QualType ToType, ImplicitConversionKind &ICK) { 937 // We need at least one of these types to be a vector type to have a vector 938 // conversion. 939 if (!ToType->isVectorType() && !FromType->isVectorType()) 940 return false; 941 942 // Identical types require no conversions. 943 if (Context.hasSameUnqualifiedType(FromType, ToType)) 944 return false; 945 946 // There are no conversions between extended vector types, only identity. 947 if (ToType->isExtVectorType()) { 948 // There are no conversions between extended vector types other than the 949 // identity conversion. 950 if (FromType->isExtVectorType()) 951 return false; 952 953 // Vector splat from any arithmetic type to a vector. 954 if (FromType->isArithmeticType()) { 955 ICK = ICK_Vector_Splat; 956 return true; 957 } 958 } 959 960 // We can perform the conversion between vector types in the following cases: 961 // 1)vector types are equivalent AltiVec and GCC vector types 962 // 2)lax vector conversions are permitted and the vector types are of the 963 // same size 964 if (ToType->isVectorType() && FromType->isVectorType()) { 965 if (Context.areCompatibleVectorTypes(FromType, ToType) || 966 (Context.getLangOptions().LaxVectorConversions && 967 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 968 ICK = ICK_Vector_Conversion; 969 return true; 970 } 971 } 972 973 return false; 974} 975 976/// IsStandardConversion - Determines whether there is a standard 977/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 978/// expression From to the type ToType. Standard conversion sequences 979/// only consider non-class types; for conversions that involve class 980/// types, use TryImplicitConversion. If a conversion exists, SCS will 981/// contain the standard conversion sequence required to perform this 982/// conversion and this routine will return true. Otherwise, this 983/// routine will return false and the value of SCS is unspecified. 984static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 985 bool InOverloadResolution, 986 StandardConversionSequence &SCS) { 987 QualType FromType = From->getType(); 988 989 // Standard conversions (C++ [conv]) 990 SCS.setAsIdentityConversion(); 991 SCS.DeprecatedStringLiteralToCharPtr = false; 992 SCS.IncompatibleObjC = false; 993 SCS.setFromType(FromType); 994 SCS.CopyConstructor = 0; 995 996 // There are no standard conversions for class types in C++, so 997 // abort early. When overloading in C, however, we do permit 998 if (FromType->isRecordType() || ToType->isRecordType()) { 999 if (S.getLangOptions().CPlusPlus) 1000 return false; 1001 1002 // When we're overloading in C, we allow, as standard conversions, 1003 } 1004 1005 // The first conversion can be an lvalue-to-rvalue conversion, 1006 // array-to-pointer conversion, or function-to-pointer conversion 1007 // (C++ 4p1). 1008 1009 if (FromType == S.Context.OverloadTy) { 1010 DeclAccessPair AccessPair; 1011 if (FunctionDecl *Fn 1012 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1013 AccessPair)) { 1014 // We were able to resolve the address of the overloaded function, 1015 // so we can convert to the type of that function. 1016 FromType = Fn->getType(); 1017 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 1018 if (!Method->isStatic()) { 1019 const Type *ClassType 1020 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1021 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1022 } 1023 } 1024 1025 // If the "from" expression takes the address of the overloaded 1026 // function, update the type of the resulting expression accordingly. 1027 if (FromType->getAs<FunctionType>()) 1028 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 1029 if (UnOp->getOpcode() == UO_AddrOf) 1030 FromType = S.Context.getPointerType(FromType); 1031 1032 // Check that we've computed the proper type after overload resolution. 1033 assert(S.Context.hasSameType(FromType, 1034 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1035 } else { 1036 return false; 1037 } 1038 } 1039 // Lvalue-to-rvalue conversion (C++ 4.1): 1040 // An lvalue (3.10) of a non-function, non-array type T can be 1041 // converted to an rvalue. 1042 bool argIsLValue = From->isLValue(); 1043 if (argIsLValue && 1044 !FromType->isFunctionType() && !FromType->isArrayType() && 1045 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1046 SCS.First = ICK_Lvalue_To_Rvalue; 1047 1048 // If T is a non-class type, the type of the rvalue is the 1049 // cv-unqualified version of T. Otherwise, the type of the rvalue 1050 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1051 // just strip the qualifiers because they don't matter. 1052 FromType = FromType.getUnqualifiedType(); 1053 } else if (FromType->isArrayType()) { 1054 // Array-to-pointer conversion (C++ 4.2) 1055 SCS.First = ICK_Array_To_Pointer; 1056 1057 // An lvalue or rvalue of type "array of N T" or "array of unknown 1058 // bound of T" can be converted to an rvalue of type "pointer to 1059 // T" (C++ 4.2p1). 1060 FromType = S.Context.getArrayDecayedType(FromType); 1061 1062 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1063 // This conversion is deprecated. (C++ D.4). 1064 SCS.DeprecatedStringLiteralToCharPtr = true; 1065 1066 // For the purpose of ranking in overload resolution 1067 // (13.3.3.1.1), this conversion is considered an 1068 // array-to-pointer conversion followed by a qualification 1069 // conversion (4.4). (C++ 4.2p2) 1070 SCS.Second = ICK_Identity; 1071 SCS.Third = ICK_Qualification; 1072 SCS.setAllToTypes(FromType); 1073 return true; 1074 } 1075 } else if (FromType->isFunctionType() && argIsLValue) { 1076 // Function-to-pointer conversion (C++ 4.3). 1077 SCS.First = ICK_Function_To_Pointer; 1078 1079 // An lvalue of function type T can be converted to an rvalue of 1080 // type "pointer to T." The result is a pointer to the 1081 // function. (C++ 4.3p1). 1082 FromType = S.Context.getPointerType(FromType); 1083 } else { 1084 // We don't require any conversions for the first step. 1085 SCS.First = ICK_Identity; 1086 } 1087 SCS.setToType(0, FromType); 1088 1089 // The second conversion can be an integral promotion, floating 1090 // point promotion, integral conversion, floating point conversion, 1091 // floating-integral conversion, pointer conversion, 1092 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1093 // For overloading in C, this can also be a "compatible-type" 1094 // conversion. 1095 bool IncompatibleObjC = false; 1096 ImplicitConversionKind SecondICK = ICK_Identity; 1097 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1098 // The unqualified versions of the types are the same: there's no 1099 // conversion to do. 1100 SCS.Second = ICK_Identity; 1101 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1102 // Integral promotion (C++ 4.5). 1103 SCS.Second = ICK_Integral_Promotion; 1104 FromType = ToType.getUnqualifiedType(); 1105 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1106 // Floating point promotion (C++ 4.6). 1107 SCS.Second = ICK_Floating_Promotion; 1108 FromType = ToType.getUnqualifiedType(); 1109 } else if (S.IsComplexPromotion(FromType, ToType)) { 1110 // Complex promotion (Clang extension) 1111 SCS.Second = ICK_Complex_Promotion; 1112 FromType = ToType.getUnqualifiedType(); 1113 } else if (ToType->isBooleanType() && 1114 (FromType->isArithmeticType() || 1115 FromType->isAnyPointerType() || 1116 FromType->isBlockPointerType() || 1117 FromType->isMemberPointerType() || 1118 FromType->isNullPtrType())) { 1119 // Boolean conversions (C++ 4.12). 1120 SCS.Second = ICK_Boolean_Conversion; 1121 FromType = S.Context.BoolTy; 1122 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1123 ToType->isIntegralType(S.Context)) { 1124 // Integral conversions (C++ 4.7). 1125 SCS.Second = ICK_Integral_Conversion; 1126 FromType = ToType.getUnqualifiedType(); 1127 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1128 // Complex conversions (C99 6.3.1.6) 1129 SCS.Second = ICK_Complex_Conversion; 1130 FromType = ToType.getUnqualifiedType(); 1131 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1132 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1133 // Complex-real conversions (C99 6.3.1.7) 1134 SCS.Second = ICK_Complex_Real; 1135 FromType = ToType.getUnqualifiedType(); 1136 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1137 // Floating point conversions (C++ 4.8). 1138 SCS.Second = ICK_Floating_Conversion; 1139 FromType = ToType.getUnqualifiedType(); 1140 } else if ((FromType->isRealFloatingType() && 1141 ToType->isIntegralType(S.Context)) || 1142 (FromType->isIntegralOrUnscopedEnumerationType() && 1143 ToType->isRealFloatingType())) { 1144 // Floating-integral conversions (C++ 4.9). 1145 SCS.Second = ICK_Floating_Integral; 1146 FromType = ToType.getUnqualifiedType(); 1147 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1148 FromType, IncompatibleObjC)) { 1149 // Pointer conversions (C++ 4.10). 1150 SCS.Second = ICK_Pointer_Conversion; 1151 SCS.IncompatibleObjC = IncompatibleObjC; 1152 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1153 InOverloadResolution, FromType)) { 1154 // Pointer to member conversions (4.11). 1155 SCS.Second = ICK_Pointer_Member; 1156 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1157 SCS.Second = SecondICK; 1158 FromType = ToType.getUnqualifiedType(); 1159 } else if (!S.getLangOptions().CPlusPlus && 1160 S.Context.typesAreCompatible(ToType, FromType)) { 1161 // Compatible conversions (Clang extension for C function overloading) 1162 SCS.Second = ICK_Compatible_Conversion; 1163 FromType = ToType.getUnqualifiedType(); 1164 } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) { 1165 // Treat a conversion that strips "noreturn" as an identity conversion. 1166 SCS.Second = ICK_NoReturn_Adjustment; 1167 } else { 1168 // No second conversion required. 1169 SCS.Second = ICK_Identity; 1170 } 1171 SCS.setToType(1, FromType); 1172 1173 QualType CanonFrom; 1174 QualType CanonTo; 1175 // The third conversion can be a qualification conversion (C++ 4p1). 1176 if (S.IsQualificationConversion(FromType, ToType)) { 1177 SCS.Third = ICK_Qualification; 1178 FromType = ToType; 1179 CanonFrom = S.Context.getCanonicalType(FromType); 1180 CanonTo = S.Context.getCanonicalType(ToType); 1181 } else { 1182 // No conversion required 1183 SCS.Third = ICK_Identity; 1184 1185 // C++ [over.best.ics]p6: 1186 // [...] Any difference in top-level cv-qualification is 1187 // subsumed by the initialization itself and does not constitute 1188 // a conversion. [...] 1189 CanonFrom = S.Context.getCanonicalType(FromType); 1190 CanonTo = S.Context.getCanonicalType(ToType); 1191 if (CanonFrom.getLocalUnqualifiedType() 1192 == CanonTo.getLocalUnqualifiedType() && 1193 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1194 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1195 FromType = ToType; 1196 CanonFrom = CanonTo; 1197 } 1198 } 1199 SCS.setToType(2, FromType); 1200 1201 // If we have not converted the argument type to the parameter type, 1202 // this is a bad conversion sequence. 1203 if (CanonFrom != CanonTo) 1204 return false; 1205 1206 return true; 1207} 1208 1209/// IsIntegralPromotion - Determines whether the conversion from the 1210/// expression From (whose potentially-adjusted type is FromType) to 1211/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1212/// sets PromotedType to the promoted type. 1213bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1214 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1215 // All integers are built-in. 1216 if (!To) { 1217 return false; 1218 } 1219 1220 // An rvalue of type char, signed char, unsigned char, short int, or 1221 // unsigned short int can be converted to an rvalue of type int if 1222 // int can represent all the values of the source type; otherwise, 1223 // the source rvalue can be converted to an rvalue of type unsigned 1224 // int (C++ 4.5p1). 1225 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1226 !FromType->isEnumeralType()) { 1227 if (// We can promote any signed, promotable integer type to an int 1228 (FromType->isSignedIntegerType() || 1229 // We can promote any unsigned integer type whose size is 1230 // less than int to an int. 1231 (!FromType->isSignedIntegerType() && 1232 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1233 return To->getKind() == BuiltinType::Int; 1234 } 1235 1236 return To->getKind() == BuiltinType::UInt; 1237 } 1238 1239 // C++0x [conv.prom]p3: 1240 // A prvalue of an unscoped enumeration type whose underlying type is not 1241 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1242 // following types that can represent all the values of the enumeration 1243 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1244 // unsigned int, long int, unsigned long int, long long int, or unsigned 1245 // long long int. If none of the types in that list can represent all the 1246 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1247 // type can be converted to an rvalue a prvalue of the extended integer type 1248 // with lowest integer conversion rank (4.13) greater than the rank of long 1249 // long in which all the values of the enumeration can be represented. If 1250 // there are two such extended types, the signed one is chosen. 1251 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1252 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1253 // provided for a scoped enumeration. 1254 if (FromEnumType->getDecl()->isScoped()) 1255 return false; 1256 1257 // We have already pre-calculated the promotion type, so this is trivial. 1258 if (ToType->isIntegerType() && 1259 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1260 return Context.hasSameUnqualifiedType(ToType, 1261 FromEnumType->getDecl()->getPromotionType()); 1262 } 1263 1264 // C++0x [conv.prom]p2: 1265 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1266 // to an rvalue a prvalue of the first of the following types that can 1267 // represent all the values of its underlying type: int, unsigned int, 1268 // long int, unsigned long int, long long int, or unsigned long long int. 1269 // If none of the types in that list can represent all the values of its 1270 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1271 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1272 // type. 1273 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1274 ToType->isIntegerType()) { 1275 // Determine whether the type we're converting from is signed or 1276 // unsigned. 1277 bool FromIsSigned; 1278 uint64_t FromSize = Context.getTypeSize(FromType); 1279 1280 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1281 FromIsSigned = true; 1282 1283 // The types we'll try to promote to, in the appropriate 1284 // order. Try each of these types. 1285 QualType PromoteTypes[6] = { 1286 Context.IntTy, Context.UnsignedIntTy, 1287 Context.LongTy, Context.UnsignedLongTy , 1288 Context.LongLongTy, Context.UnsignedLongLongTy 1289 }; 1290 for (int Idx = 0; Idx < 6; ++Idx) { 1291 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1292 if (FromSize < ToSize || 1293 (FromSize == ToSize && 1294 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1295 // We found the type that we can promote to. If this is the 1296 // type we wanted, we have a promotion. Otherwise, no 1297 // promotion. 1298 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1299 } 1300 } 1301 } 1302 1303 // An rvalue for an integral bit-field (9.6) can be converted to an 1304 // rvalue of type int if int can represent all the values of the 1305 // bit-field; otherwise, it can be converted to unsigned int if 1306 // unsigned int can represent all the values of the bit-field. If 1307 // the bit-field is larger yet, no integral promotion applies to 1308 // it. If the bit-field has an enumerated type, it is treated as any 1309 // other value of that type for promotion purposes (C++ 4.5p3). 1310 // FIXME: We should delay checking of bit-fields until we actually perform the 1311 // conversion. 1312 using llvm::APSInt; 1313 if (From) 1314 if (FieldDecl *MemberDecl = From->getBitField()) { 1315 APSInt BitWidth; 1316 if (FromType->isIntegralType(Context) && 1317 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1318 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1319 ToSize = Context.getTypeSize(ToType); 1320 1321 // Are we promoting to an int from a bitfield that fits in an int? 1322 if (BitWidth < ToSize || 1323 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1324 return To->getKind() == BuiltinType::Int; 1325 } 1326 1327 // Are we promoting to an unsigned int from an unsigned bitfield 1328 // that fits into an unsigned int? 1329 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1330 return To->getKind() == BuiltinType::UInt; 1331 } 1332 1333 return false; 1334 } 1335 } 1336 1337 // An rvalue of type bool can be converted to an rvalue of type int, 1338 // with false becoming zero and true becoming one (C++ 4.5p4). 1339 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1340 return true; 1341 } 1342 1343 return false; 1344} 1345 1346/// IsFloatingPointPromotion - Determines whether the conversion from 1347/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1348/// returns true and sets PromotedType to the promoted type. 1349bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1350 /// An rvalue of type float can be converted to an rvalue of type 1351 /// double. (C++ 4.6p1). 1352 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1353 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1354 if (FromBuiltin->getKind() == BuiltinType::Float && 1355 ToBuiltin->getKind() == BuiltinType::Double) 1356 return true; 1357 1358 // C99 6.3.1.5p1: 1359 // When a float is promoted to double or long double, or a 1360 // double is promoted to long double [...]. 1361 if (!getLangOptions().CPlusPlus && 1362 (FromBuiltin->getKind() == BuiltinType::Float || 1363 FromBuiltin->getKind() == BuiltinType::Double) && 1364 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1365 return true; 1366 } 1367 1368 return false; 1369} 1370 1371/// \brief Determine if a conversion is a complex promotion. 1372/// 1373/// A complex promotion is defined as a complex -> complex conversion 1374/// where the conversion between the underlying real types is a 1375/// floating-point or integral promotion. 1376bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1377 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1378 if (!FromComplex) 1379 return false; 1380 1381 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1382 if (!ToComplex) 1383 return false; 1384 1385 return IsFloatingPointPromotion(FromComplex->getElementType(), 1386 ToComplex->getElementType()) || 1387 IsIntegralPromotion(0, FromComplex->getElementType(), 1388 ToComplex->getElementType()); 1389} 1390 1391/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1392/// the pointer type FromPtr to a pointer to type ToPointee, with the 1393/// same type qualifiers as FromPtr has on its pointee type. ToType, 1394/// if non-empty, will be a pointer to ToType that may or may not have 1395/// the right set of qualifiers on its pointee. 1396static QualType 1397BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1398 QualType ToPointee, QualType ToType, 1399 ASTContext &Context) { 1400 assert((FromPtr->getTypeClass() == Type::Pointer || 1401 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1402 "Invalid similarly-qualified pointer type"); 1403 1404 /// \brief Conversions to 'id' subsume cv-qualifier conversions. 1405 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1406 return ToType.getUnqualifiedType(); 1407 1408 QualType CanonFromPointee 1409 = Context.getCanonicalType(FromPtr->getPointeeType()); 1410 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1411 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1412 1413 // Exact qualifier match -> return the pointer type we're converting to. 1414 if (CanonToPointee.getLocalQualifiers() == Quals) { 1415 // ToType is exactly what we need. Return it. 1416 if (!ToType.isNull()) 1417 return ToType.getUnqualifiedType(); 1418 1419 // Build a pointer to ToPointee. It has the right qualifiers 1420 // already. 1421 if (isa<ObjCObjectPointerType>(ToType)) 1422 return Context.getObjCObjectPointerType(ToPointee); 1423 return Context.getPointerType(ToPointee); 1424 } 1425 1426 // Just build a canonical type that has the right qualifiers. 1427 QualType QualifiedCanonToPointee 1428 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1429 1430 if (isa<ObjCObjectPointerType>(ToType)) 1431 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1432 return Context.getPointerType(QualifiedCanonToPointee); 1433} 1434 1435static bool isNullPointerConstantForConversion(Expr *Expr, 1436 bool InOverloadResolution, 1437 ASTContext &Context) { 1438 // Handle value-dependent integral null pointer constants correctly. 1439 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1440 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1441 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1442 return !InOverloadResolution; 1443 1444 return Expr->isNullPointerConstant(Context, 1445 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1446 : Expr::NPC_ValueDependentIsNull); 1447} 1448 1449/// IsPointerConversion - Determines whether the conversion of the 1450/// expression From, which has the (possibly adjusted) type FromType, 1451/// can be converted to the type ToType via a pointer conversion (C++ 1452/// 4.10). If so, returns true and places the converted type (that 1453/// might differ from ToType in its cv-qualifiers at some level) into 1454/// ConvertedType. 1455/// 1456/// This routine also supports conversions to and from block pointers 1457/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1458/// pointers to interfaces. FIXME: Once we've determined the 1459/// appropriate overloading rules for Objective-C, we may want to 1460/// split the Objective-C checks into a different routine; however, 1461/// GCC seems to consider all of these conversions to be pointer 1462/// conversions, so for now they live here. IncompatibleObjC will be 1463/// set if the conversion is an allowed Objective-C conversion that 1464/// should result in a warning. 1465bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1466 bool InOverloadResolution, 1467 QualType& ConvertedType, 1468 bool &IncompatibleObjC) { 1469 IncompatibleObjC = false; 1470 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1471 IncompatibleObjC)) 1472 return true; 1473 1474 // Conversion from a null pointer constant to any Objective-C pointer type. 1475 if (ToType->isObjCObjectPointerType() && 1476 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1477 ConvertedType = ToType; 1478 return true; 1479 } 1480 1481 // Blocks: Block pointers can be converted to void*. 1482 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1483 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1484 ConvertedType = ToType; 1485 return true; 1486 } 1487 // Blocks: A null pointer constant can be converted to a block 1488 // pointer type. 1489 if (ToType->isBlockPointerType() && 1490 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1491 ConvertedType = ToType; 1492 return true; 1493 } 1494 1495 // If the left-hand-side is nullptr_t, the right side can be a null 1496 // pointer constant. 1497 if (ToType->isNullPtrType() && 1498 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1499 ConvertedType = ToType; 1500 return true; 1501 } 1502 1503 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1504 if (!ToTypePtr) 1505 return false; 1506 1507 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1508 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1509 ConvertedType = ToType; 1510 return true; 1511 } 1512 1513 // Beyond this point, both types need to be pointers 1514 // , including objective-c pointers. 1515 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1516 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1517 ConvertedType = BuildSimilarlyQualifiedPointerType( 1518 FromType->getAs<ObjCObjectPointerType>(), 1519 ToPointeeType, 1520 ToType, Context); 1521 return true; 1522 } 1523 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1524 if (!FromTypePtr) 1525 return false; 1526 1527 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1528 1529 // If the unqualified pointee types are the same, this can't be a 1530 // pointer conversion, so don't do all of the work below. 1531 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1532 return false; 1533 1534 // An rvalue of type "pointer to cv T," where T is an object type, 1535 // can be converted to an rvalue of type "pointer to cv void" (C++ 1536 // 4.10p2). 1537 if (FromPointeeType->isIncompleteOrObjectType() && 1538 ToPointeeType->isVoidType()) { 1539 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1540 ToPointeeType, 1541 ToType, Context); 1542 return true; 1543 } 1544 1545 // When we're overloading in C, we allow a special kind of pointer 1546 // conversion for compatible-but-not-identical pointee types. 1547 if (!getLangOptions().CPlusPlus && 1548 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1549 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1550 ToPointeeType, 1551 ToType, Context); 1552 return true; 1553 } 1554 1555 // C++ [conv.ptr]p3: 1556 // 1557 // An rvalue of type "pointer to cv D," where D is a class type, 1558 // can be converted to an rvalue of type "pointer to cv B," where 1559 // B is a base class (clause 10) of D. If B is an inaccessible 1560 // (clause 11) or ambiguous (10.2) base class of D, a program that 1561 // necessitates this conversion is ill-formed. The result of the 1562 // conversion is a pointer to the base class sub-object of the 1563 // derived class object. The null pointer value is converted to 1564 // the null pointer value of the destination type. 1565 // 1566 // Note that we do not check for ambiguity or inaccessibility 1567 // here. That is handled by CheckPointerConversion. 1568 if (getLangOptions().CPlusPlus && 1569 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1570 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1571 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1572 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1573 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1574 ToPointeeType, 1575 ToType, Context); 1576 return true; 1577 } 1578 1579 return false; 1580} 1581 1582/// isObjCPointerConversion - Determines whether this is an 1583/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1584/// with the same arguments and return values. 1585bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1586 QualType& ConvertedType, 1587 bool &IncompatibleObjC) { 1588 if (!getLangOptions().ObjC1) 1589 return false; 1590 1591 // First, we handle all conversions on ObjC object pointer types. 1592 const ObjCObjectPointerType* ToObjCPtr = 1593 ToType->getAs<ObjCObjectPointerType>(); 1594 const ObjCObjectPointerType *FromObjCPtr = 1595 FromType->getAs<ObjCObjectPointerType>(); 1596 1597 if (ToObjCPtr && FromObjCPtr) { 1598 // If the pointee types are the same (ignoring qualifications), 1599 // then this is not a pointer conversion. 1600 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1601 FromObjCPtr->getPointeeType())) 1602 return false; 1603 1604 // Objective C++: We're able to convert between "id" or "Class" and a 1605 // pointer to any interface (in both directions). 1606 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1607 ConvertedType = ToType; 1608 return true; 1609 } 1610 // Conversions with Objective-C's id<...>. 1611 if ((FromObjCPtr->isObjCQualifiedIdType() || 1612 ToObjCPtr->isObjCQualifiedIdType()) && 1613 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1614 /*compare=*/false)) { 1615 ConvertedType = ToType; 1616 return true; 1617 } 1618 // Objective C++: We're able to convert from a pointer to an 1619 // interface to a pointer to a different interface. 1620 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1621 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1622 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1623 if (getLangOptions().CPlusPlus && LHS && RHS && 1624 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1625 FromObjCPtr->getPointeeType())) 1626 return false; 1627 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1628 ToObjCPtr->getPointeeType(), 1629 ToType, Context); 1630 return true; 1631 } 1632 1633 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1634 // Okay: this is some kind of implicit downcast of Objective-C 1635 // interfaces, which is permitted. However, we're going to 1636 // complain about it. 1637 IncompatibleObjC = true; 1638 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1639 ToObjCPtr->getPointeeType(), 1640 ToType, Context); 1641 return true; 1642 } 1643 } 1644 // Beyond this point, both types need to be C pointers or block pointers. 1645 QualType ToPointeeType; 1646 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1647 ToPointeeType = ToCPtr->getPointeeType(); 1648 else if (const BlockPointerType *ToBlockPtr = 1649 ToType->getAs<BlockPointerType>()) { 1650 // Objective C++: We're able to convert from a pointer to any object 1651 // to a block pointer type. 1652 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1653 ConvertedType = ToType; 1654 return true; 1655 } 1656 ToPointeeType = ToBlockPtr->getPointeeType(); 1657 } 1658 else if (FromType->getAs<BlockPointerType>() && 1659 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1660 // Objective C++: We're able to convert from a block pointer type to a 1661 // pointer to any object. 1662 ConvertedType = ToType; 1663 return true; 1664 } 1665 else 1666 return false; 1667 1668 QualType FromPointeeType; 1669 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1670 FromPointeeType = FromCPtr->getPointeeType(); 1671 else if (const BlockPointerType *FromBlockPtr = 1672 FromType->getAs<BlockPointerType>()) 1673 FromPointeeType = FromBlockPtr->getPointeeType(); 1674 else 1675 return false; 1676 1677 // If we have pointers to pointers, recursively check whether this 1678 // is an Objective-C conversion. 1679 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1680 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1681 IncompatibleObjC)) { 1682 // We always complain about this conversion. 1683 IncompatibleObjC = true; 1684 ConvertedType = Context.getPointerType(ConvertedType); 1685 return true; 1686 } 1687 // Allow conversion of pointee being objective-c pointer to another one; 1688 // as in I* to id. 1689 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1690 ToPointeeType->getAs<ObjCObjectPointerType>() && 1691 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1692 IncompatibleObjC)) { 1693 ConvertedType = Context.getPointerType(ConvertedType); 1694 return true; 1695 } 1696 1697 // If we have pointers to functions or blocks, check whether the only 1698 // differences in the argument and result types are in Objective-C 1699 // pointer conversions. If so, we permit the conversion (but 1700 // complain about it). 1701 const FunctionProtoType *FromFunctionType 1702 = FromPointeeType->getAs<FunctionProtoType>(); 1703 const FunctionProtoType *ToFunctionType 1704 = ToPointeeType->getAs<FunctionProtoType>(); 1705 if (FromFunctionType && ToFunctionType) { 1706 // If the function types are exactly the same, this isn't an 1707 // Objective-C pointer conversion. 1708 if (Context.getCanonicalType(FromPointeeType) 1709 == Context.getCanonicalType(ToPointeeType)) 1710 return false; 1711 1712 // Perform the quick checks that will tell us whether these 1713 // function types are obviously different. 1714 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1715 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1716 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1717 return false; 1718 1719 bool HasObjCConversion = false; 1720 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1721 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1722 // Okay, the types match exactly. Nothing to do. 1723 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1724 ToFunctionType->getResultType(), 1725 ConvertedType, IncompatibleObjC)) { 1726 // Okay, we have an Objective-C pointer conversion. 1727 HasObjCConversion = true; 1728 } else { 1729 // Function types are too different. Abort. 1730 return false; 1731 } 1732 1733 // Check argument types. 1734 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1735 ArgIdx != NumArgs; ++ArgIdx) { 1736 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1737 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1738 if (Context.getCanonicalType(FromArgType) 1739 == Context.getCanonicalType(ToArgType)) { 1740 // Okay, the types match exactly. Nothing to do. 1741 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1742 ConvertedType, IncompatibleObjC)) { 1743 // Okay, we have an Objective-C pointer conversion. 1744 HasObjCConversion = true; 1745 } else { 1746 // Argument types are too different. Abort. 1747 return false; 1748 } 1749 } 1750 1751 if (HasObjCConversion) { 1752 // We had an Objective-C conversion. Allow this pointer 1753 // conversion, but complain about it. 1754 ConvertedType = ToType; 1755 IncompatibleObjC = true; 1756 return true; 1757 } 1758 } 1759 1760 return false; 1761} 1762 1763/// FunctionArgTypesAreEqual - This routine checks two function proto types 1764/// for equlity of their argument types. Caller has already checked that 1765/// they have same number of arguments. This routine assumes that Objective-C 1766/// pointer types which only differ in their protocol qualifiers are equal. 1767bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 1768 const FunctionProtoType *NewType) { 1769 if (!getLangOptions().ObjC1) 1770 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1771 NewType->arg_type_begin()); 1772 1773 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1774 N = NewType->arg_type_begin(), 1775 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1776 QualType ToType = (*O); 1777 QualType FromType = (*N); 1778 if (ToType != FromType) { 1779 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1780 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1781 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1782 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1783 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1784 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1785 continue; 1786 } 1787 else if (const ObjCObjectPointerType *PTTo = 1788 ToType->getAs<ObjCObjectPointerType>()) { 1789 if (const ObjCObjectPointerType *PTFr = 1790 FromType->getAs<ObjCObjectPointerType>()) 1791 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1792 continue; 1793 } 1794 return false; 1795 } 1796 } 1797 return true; 1798} 1799 1800/// CheckPointerConversion - Check the pointer conversion from the 1801/// expression From to the type ToType. This routine checks for 1802/// ambiguous or inaccessible derived-to-base pointer 1803/// conversions for which IsPointerConversion has already returned 1804/// true. It returns true and produces a diagnostic if there was an 1805/// error, or returns false otherwise. 1806bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1807 CastKind &Kind, 1808 CXXCastPath& BasePath, 1809 bool IgnoreBaseAccess) { 1810 QualType FromType = From->getType(); 1811 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 1812 1813 Kind = CK_BitCast; 1814 1815 if (CXXBoolLiteralExpr* LitBool 1816 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1817 if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false) 1818 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1819 << ToType; 1820 1821 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1822 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1823 QualType FromPointeeType = FromPtrType->getPointeeType(), 1824 ToPointeeType = ToPtrType->getPointeeType(); 1825 1826 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1827 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1828 // We must have a derived-to-base conversion. Check an 1829 // ambiguous or inaccessible conversion. 1830 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1831 From->getExprLoc(), 1832 From->getSourceRange(), &BasePath, 1833 IgnoreBaseAccess)) 1834 return true; 1835 1836 // The conversion was successful. 1837 Kind = CK_DerivedToBase; 1838 } 1839 } 1840 if (const ObjCObjectPointerType *FromPtrType = 1841 FromType->getAs<ObjCObjectPointerType>()) { 1842 if (const ObjCObjectPointerType *ToPtrType = 1843 ToType->getAs<ObjCObjectPointerType>()) { 1844 // Objective-C++ conversions are always okay. 1845 // FIXME: We should have a different class of conversions for the 1846 // Objective-C++ implicit conversions. 1847 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1848 return false; 1849 } 1850 } 1851 1852 // We shouldn't fall into this case unless it's valid for other 1853 // reasons. 1854 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 1855 Kind = CK_NullToPointer; 1856 1857 return false; 1858} 1859 1860/// IsMemberPointerConversion - Determines whether the conversion of the 1861/// expression From, which has the (possibly adjusted) type FromType, can be 1862/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1863/// If so, returns true and places the converted type (that might differ from 1864/// ToType in its cv-qualifiers at some level) into ConvertedType. 1865bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1866 QualType ToType, 1867 bool InOverloadResolution, 1868 QualType &ConvertedType) { 1869 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1870 if (!ToTypePtr) 1871 return false; 1872 1873 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1874 if (From->isNullPointerConstant(Context, 1875 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1876 : Expr::NPC_ValueDependentIsNull)) { 1877 ConvertedType = ToType; 1878 return true; 1879 } 1880 1881 // Otherwise, both types have to be member pointers. 1882 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1883 if (!FromTypePtr) 1884 return false; 1885 1886 // A pointer to member of B can be converted to a pointer to member of D, 1887 // where D is derived from B (C++ 4.11p2). 1888 QualType FromClass(FromTypePtr->getClass(), 0); 1889 QualType ToClass(ToTypePtr->getClass(), 0); 1890 1891 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 1892 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 1893 IsDerivedFrom(ToClass, FromClass)) { 1894 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1895 ToClass.getTypePtr()); 1896 return true; 1897 } 1898 1899 return false; 1900} 1901 1902/// CheckMemberPointerConversion - Check the member pointer conversion from the 1903/// expression From to the type ToType. This routine checks for ambiguous or 1904/// virtual or inaccessible base-to-derived member pointer conversions 1905/// for which IsMemberPointerConversion has already returned true. It returns 1906/// true and produces a diagnostic if there was an error, or returns false 1907/// otherwise. 1908bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1909 CastKind &Kind, 1910 CXXCastPath &BasePath, 1911 bool IgnoreBaseAccess) { 1912 QualType FromType = From->getType(); 1913 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1914 if (!FromPtrType) { 1915 // This must be a null pointer to member pointer conversion 1916 assert(From->isNullPointerConstant(Context, 1917 Expr::NPC_ValueDependentIsNull) && 1918 "Expr must be null pointer constant!"); 1919 Kind = CK_NullToMemberPointer; 1920 return false; 1921 } 1922 1923 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1924 assert(ToPtrType && "No member pointer cast has a target type " 1925 "that is not a member pointer."); 1926 1927 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1928 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1929 1930 // FIXME: What about dependent types? 1931 assert(FromClass->isRecordType() && "Pointer into non-class."); 1932 assert(ToClass->isRecordType() && "Pointer into non-class."); 1933 1934 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1935 /*DetectVirtual=*/true); 1936 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1937 assert(DerivationOkay && 1938 "Should not have been called if derivation isn't OK."); 1939 (void)DerivationOkay; 1940 1941 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1942 getUnqualifiedType())) { 1943 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1944 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1945 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1946 return true; 1947 } 1948 1949 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1950 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1951 << FromClass << ToClass << QualType(VBase, 0) 1952 << From->getSourceRange(); 1953 return true; 1954 } 1955 1956 if (!IgnoreBaseAccess) 1957 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1958 Paths.front(), 1959 diag::err_downcast_from_inaccessible_base); 1960 1961 // Must be a base to derived member conversion. 1962 BuildBasePathArray(Paths, BasePath); 1963 Kind = CK_BaseToDerivedMemberPointer; 1964 return false; 1965} 1966 1967/// IsQualificationConversion - Determines whether the conversion from 1968/// an rvalue of type FromType to ToType is a qualification conversion 1969/// (C++ 4.4). 1970bool 1971Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1972 FromType = Context.getCanonicalType(FromType); 1973 ToType = Context.getCanonicalType(ToType); 1974 1975 // If FromType and ToType are the same type, this is not a 1976 // qualification conversion. 1977 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1978 return false; 1979 1980 // (C++ 4.4p4): 1981 // A conversion can add cv-qualifiers at levels other than the first 1982 // in multi-level pointers, subject to the following rules: [...] 1983 bool PreviousToQualsIncludeConst = true; 1984 bool UnwrappedAnyPointer = false; 1985 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1986 // Within each iteration of the loop, we check the qualifiers to 1987 // determine if this still looks like a qualification 1988 // conversion. Then, if all is well, we unwrap one more level of 1989 // pointers or pointers-to-members and do it all again 1990 // until there are no more pointers or pointers-to-members left to 1991 // unwrap. 1992 UnwrappedAnyPointer = true; 1993 1994 // -- for every j > 0, if const is in cv 1,j then const is in cv 1995 // 2,j, and similarly for volatile. 1996 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1997 return false; 1998 1999 // -- if the cv 1,j and cv 2,j are different, then const is in 2000 // every cv for 0 < k < j. 2001 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 2002 && !PreviousToQualsIncludeConst) 2003 return false; 2004 2005 // Keep track of whether all prior cv-qualifiers in the "to" type 2006 // include const. 2007 PreviousToQualsIncludeConst 2008 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 2009 } 2010 2011 // We are left with FromType and ToType being the pointee types 2012 // after unwrapping the original FromType and ToType the same number 2013 // of types. If we unwrapped any pointers, and if FromType and 2014 // ToType have the same unqualified type (since we checked 2015 // qualifiers above), then this is a qualification conversion. 2016 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2017} 2018 2019/// Determines whether there is a user-defined conversion sequence 2020/// (C++ [over.ics.user]) that converts expression From to the type 2021/// ToType. If such a conversion exists, User will contain the 2022/// user-defined conversion sequence that performs such a conversion 2023/// and this routine will return true. Otherwise, this routine returns 2024/// false and User is unspecified. 2025/// 2026/// \param AllowExplicit true if the conversion should consider C++0x 2027/// "explicit" conversion functions as well as non-explicit conversion 2028/// functions (C++0x [class.conv.fct]p2). 2029static OverloadingResult 2030IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2031 UserDefinedConversionSequence& User, 2032 OverloadCandidateSet& CandidateSet, 2033 bool AllowExplicit) { 2034 // Whether we will only visit constructors. 2035 bool ConstructorsOnly = false; 2036 2037 // If the type we are conversion to is a class type, enumerate its 2038 // constructors. 2039 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2040 // C++ [over.match.ctor]p1: 2041 // When objects of class type are direct-initialized (8.5), or 2042 // copy-initialized from an expression of the same or a 2043 // derived class type (8.5), overload resolution selects the 2044 // constructor. [...] For copy-initialization, the candidate 2045 // functions are all the converting constructors (12.3.1) of 2046 // that class. The argument list is the expression-list within 2047 // the parentheses of the initializer. 2048 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2049 (From->getType()->getAs<RecordType>() && 2050 S.IsDerivedFrom(From->getType(), ToType))) 2051 ConstructorsOnly = true; 2052 2053 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) { 2054 // We're not going to find any constructors. 2055 } else if (CXXRecordDecl *ToRecordDecl 2056 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2057 DeclContext::lookup_iterator Con, ConEnd; 2058 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2059 Con != ConEnd; ++Con) { 2060 NamedDecl *D = *Con; 2061 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2062 2063 // Find the constructor (which may be a template). 2064 CXXConstructorDecl *Constructor = 0; 2065 FunctionTemplateDecl *ConstructorTmpl 2066 = dyn_cast<FunctionTemplateDecl>(D); 2067 if (ConstructorTmpl) 2068 Constructor 2069 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2070 else 2071 Constructor = cast<CXXConstructorDecl>(D); 2072 2073 if (!Constructor->isInvalidDecl() && 2074 Constructor->isConvertingConstructor(AllowExplicit)) { 2075 if (ConstructorTmpl) 2076 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2077 /*ExplicitArgs*/ 0, 2078 &From, 1, CandidateSet, 2079 /*SuppressUserConversions=*/ 2080 !ConstructorsOnly); 2081 else 2082 // Allow one user-defined conversion when user specifies a 2083 // From->ToType conversion via an static cast (c-style, etc). 2084 S.AddOverloadCandidate(Constructor, FoundDecl, 2085 &From, 1, CandidateSet, 2086 /*SuppressUserConversions=*/ 2087 !ConstructorsOnly); 2088 } 2089 } 2090 } 2091 } 2092 2093 // Enumerate conversion functions, if we're allowed to. 2094 if (ConstructorsOnly) { 2095 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2096 S.PDiag(0) << From->getSourceRange())) { 2097 // No conversion functions from incomplete types. 2098 } else if (const RecordType *FromRecordType 2099 = From->getType()->getAs<RecordType>()) { 2100 if (CXXRecordDecl *FromRecordDecl 2101 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2102 // Add all of the conversion functions as candidates. 2103 const UnresolvedSetImpl *Conversions 2104 = FromRecordDecl->getVisibleConversionFunctions(); 2105 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2106 E = Conversions->end(); I != E; ++I) { 2107 DeclAccessPair FoundDecl = I.getPair(); 2108 NamedDecl *D = FoundDecl.getDecl(); 2109 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2110 if (isa<UsingShadowDecl>(D)) 2111 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2112 2113 CXXConversionDecl *Conv; 2114 FunctionTemplateDecl *ConvTemplate; 2115 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2116 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2117 else 2118 Conv = cast<CXXConversionDecl>(D); 2119 2120 if (AllowExplicit || !Conv->isExplicit()) { 2121 if (ConvTemplate) 2122 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2123 ActingContext, From, ToType, 2124 CandidateSet); 2125 else 2126 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2127 From, ToType, CandidateSet); 2128 } 2129 } 2130 } 2131 } 2132 2133 OverloadCandidateSet::iterator Best; 2134 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2135 case OR_Success: 2136 // Record the standard conversion we used and the conversion function. 2137 if (CXXConstructorDecl *Constructor 2138 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2139 // C++ [over.ics.user]p1: 2140 // If the user-defined conversion is specified by a 2141 // constructor (12.3.1), the initial standard conversion 2142 // sequence converts the source type to the type required by 2143 // the argument of the constructor. 2144 // 2145 QualType ThisType = Constructor->getThisType(S.Context); 2146 if (Best->Conversions[0].isEllipsis()) 2147 User.EllipsisConversion = true; 2148 else { 2149 User.Before = Best->Conversions[0].Standard; 2150 User.EllipsisConversion = false; 2151 } 2152 User.ConversionFunction = Constructor; 2153 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2154 User.After.setAsIdentityConversion(); 2155 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2156 User.After.setAllToTypes(ToType); 2157 return OR_Success; 2158 } else if (CXXConversionDecl *Conversion 2159 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2160 // C++ [over.ics.user]p1: 2161 // 2162 // [...] If the user-defined conversion is specified by a 2163 // conversion function (12.3.2), the initial standard 2164 // conversion sequence converts the source type to the 2165 // implicit object parameter of the conversion function. 2166 User.Before = Best->Conversions[0].Standard; 2167 User.ConversionFunction = Conversion; 2168 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2169 User.EllipsisConversion = false; 2170 2171 // C++ [over.ics.user]p2: 2172 // The second standard conversion sequence converts the 2173 // result of the user-defined conversion to the target type 2174 // for the sequence. Since an implicit conversion sequence 2175 // is an initialization, the special rules for 2176 // initialization by user-defined conversion apply when 2177 // selecting the best user-defined conversion for a 2178 // user-defined conversion sequence (see 13.3.3 and 2179 // 13.3.3.1). 2180 User.After = Best->FinalConversion; 2181 return OR_Success; 2182 } else { 2183 llvm_unreachable("Not a constructor or conversion function?"); 2184 return OR_No_Viable_Function; 2185 } 2186 2187 case OR_No_Viable_Function: 2188 return OR_No_Viable_Function; 2189 case OR_Deleted: 2190 // No conversion here! We're done. 2191 return OR_Deleted; 2192 2193 case OR_Ambiguous: 2194 return OR_Ambiguous; 2195 } 2196 2197 return OR_No_Viable_Function; 2198} 2199 2200bool 2201Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2202 ImplicitConversionSequence ICS; 2203 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2204 OverloadingResult OvResult = 2205 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2206 CandidateSet, false); 2207 if (OvResult == OR_Ambiguous) 2208 Diag(From->getSourceRange().getBegin(), 2209 diag::err_typecheck_ambiguous_condition) 2210 << From->getType() << ToType << From->getSourceRange(); 2211 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2212 Diag(From->getSourceRange().getBegin(), 2213 diag::err_typecheck_nonviable_condition) 2214 << From->getType() << ToType << From->getSourceRange(); 2215 else 2216 return false; 2217 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2218 return true; 2219} 2220 2221/// CompareImplicitConversionSequences - Compare two implicit 2222/// conversion sequences to determine whether one is better than the 2223/// other or if they are indistinguishable (C++ 13.3.3.2). 2224static ImplicitConversionSequence::CompareKind 2225CompareImplicitConversionSequences(Sema &S, 2226 const ImplicitConversionSequence& ICS1, 2227 const ImplicitConversionSequence& ICS2) 2228{ 2229 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2230 // conversion sequences (as defined in 13.3.3.1) 2231 // -- a standard conversion sequence (13.3.3.1.1) is a better 2232 // conversion sequence than a user-defined conversion sequence or 2233 // an ellipsis conversion sequence, and 2234 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2235 // conversion sequence than an ellipsis conversion sequence 2236 // (13.3.3.1.3). 2237 // 2238 // C++0x [over.best.ics]p10: 2239 // For the purpose of ranking implicit conversion sequences as 2240 // described in 13.3.3.2, the ambiguous conversion sequence is 2241 // treated as a user-defined sequence that is indistinguishable 2242 // from any other user-defined conversion sequence. 2243 if (ICS1.getKindRank() < ICS2.getKindRank()) 2244 return ImplicitConversionSequence::Better; 2245 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2246 return ImplicitConversionSequence::Worse; 2247 2248 // The following checks require both conversion sequences to be of 2249 // the same kind. 2250 if (ICS1.getKind() != ICS2.getKind()) 2251 return ImplicitConversionSequence::Indistinguishable; 2252 2253 // Two implicit conversion sequences of the same form are 2254 // indistinguishable conversion sequences unless one of the 2255 // following rules apply: (C++ 13.3.3.2p3): 2256 if (ICS1.isStandard()) 2257 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2258 else if (ICS1.isUserDefined()) { 2259 // User-defined conversion sequence U1 is a better conversion 2260 // sequence than another user-defined conversion sequence U2 if 2261 // they contain the same user-defined conversion function or 2262 // constructor and if the second standard conversion sequence of 2263 // U1 is better than the second standard conversion sequence of 2264 // U2 (C++ 13.3.3.2p3). 2265 if (ICS1.UserDefined.ConversionFunction == 2266 ICS2.UserDefined.ConversionFunction) 2267 return CompareStandardConversionSequences(S, 2268 ICS1.UserDefined.After, 2269 ICS2.UserDefined.After); 2270 } 2271 2272 return ImplicitConversionSequence::Indistinguishable; 2273} 2274 2275static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2276 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2277 Qualifiers Quals; 2278 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2279 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2280 } 2281 2282 return Context.hasSameUnqualifiedType(T1, T2); 2283} 2284 2285// Per 13.3.3.2p3, compare the given standard conversion sequences to 2286// determine if one is a proper subset of the other. 2287static ImplicitConversionSequence::CompareKind 2288compareStandardConversionSubsets(ASTContext &Context, 2289 const StandardConversionSequence& SCS1, 2290 const StandardConversionSequence& SCS2) { 2291 ImplicitConversionSequence::CompareKind Result 2292 = ImplicitConversionSequence::Indistinguishable; 2293 2294 // the identity conversion sequence is considered to be a subsequence of 2295 // any non-identity conversion sequence 2296 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2297 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2298 return ImplicitConversionSequence::Better; 2299 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2300 return ImplicitConversionSequence::Worse; 2301 } 2302 2303 if (SCS1.Second != SCS2.Second) { 2304 if (SCS1.Second == ICK_Identity) 2305 Result = ImplicitConversionSequence::Better; 2306 else if (SCS2.Second == ICK_Identity) 2307 Result = ImplicitConversionSequence::Worse; 2308 else 2309 return ImplicitConversionSequence::Indistinguishable; 2310 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2311 return ImplicitConversionSequence::Indistinguishable; 2312 2313 if (SCS1.Third == SCS2.Third) { 2314 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2315 : ImplicitConversionSequence::Indistinguishable; 2316 } 2317 2318 if (SCS1.Third == ICK_Identity) 2319 return Result == ImplicitConversionSequence::Worse 2320 ? ImplicitConversionSequence::Indistinguishable 2321 : ImplicitConversionSequence::Better; 2322 2323 if (SCS2.Third == ICK_Identity) 2324 return Result == ImplicitConversionSequence::Better 2325 ? ImplicitConversionSequence::Indistinguishable 2326 : ImplicitConversionSequence::Worse; 2327 2328 return ImplicitConversionSequence::Indistinguishable; 2329} 2330 2331/// \brief Determine whether one of the given reference bindings is better 2332/// than the other based on what kind of bindings they are. 2333static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 2334 const StandardConversionSequence &SCS2) { 2335 // C++0x [over.ics.rank]p3b4: 2336 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2337 // implicit object parameter of a non-static member function declared 2338 // without a ref-qualifier, and *either* S1 binds an rvalue reference 2339 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 2340 // lvalue reference to a function lvalue and S2 binds an rvalue 2341 // reference*. 2342 // 2343 // FIXME: Rvalue references. We're going rogue with the above edits, 2344 // because the semantics in the current C++0x working paper (N3225 at the 2345 // time of this writing) break the standard definition of std::forward 2346 // and std::reference_wrapper when dealing with references to functions. 2347 // Proposed wording changes submitted to CWG for consideration. 2348 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 2349 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 2350 return false; 2351 2352 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 2353 SCS2.IsLvalueReference) || 2354 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 2355 !SCS2.IsLvalueReference); 2356} 2357 2358/// CompareStandardConversionSequences - Compare two standard 2359/// conversion sequences to determine whether one is better than the 2360/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2361static ImplicitConversionSequence::CompareKind 2362CompareStandardConversionSequences(Sema &S, 2363 const StandardConversionSequence& SCS1, 2364 const StandardConversionSequence& SCS2) 2365{ 2366 // Standard conversion sequence S1 is a better conversion sequence 2367 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2368 2369 // -- S1 is a proper subsequence of S2 (comparing the conversion 2370 // sequences in the canonical form defined by 13.3.3.1.1, 2371 // excluding any Lvalue Transformation; the identity conversion 2372 // sequence is considered to be a subsequence of any 2373 // non-identity conversion sequence) or, if not that, 2374 if (ImplicitConversionSequence::CompareKind CK 2375 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2376 return CK; 2377 2378 // -- the rank of S1 is better than the rank of S2 (by the rules 2379 // defined below), or, if not that, 2380 ImplicitConversionRank Rank1 = SCS1.getRank(); 2381 ImplicitConversionRank Rank2 = SCS2.getRank(); 2382 if (Rank1 < Rank2) 2383 return ImplicitConversionSequence::Better; 2384 else if (Rank2 < Rank1) 2385 return ImplicitConversionSequence::Worse; 2386 2387 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2388 // are indistinguishable unless one of the following rules 2389 // applies: 2390 2391 // A conversion that is not a conversion of a pointer, or 2392 // pointer to member, to bool is better than another conversion 2393 // that is such a conversion. 2394 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2395 return SCS2.isPointerConversionToBool() 2396 ? ImplicitConversionSequence::Better 2397 : ImplicitConversionSequence::Worse; 2398 2399 // C++ [over.ics.rank]p4b2: 2400 // 2401 // If class B is derived directly or indirectly from class A, 2402 // conversion of B* to A* is better than conversion of B* to 2403 // void*, and conversion of A* to void* is better than conversion 2404 // of B* to void*. 2405 bool SCS1ConvertsToVoid 2406 = SCS1.isPointerConversionToVoidPointer(S.Context); 2407 bool SCS2ConvertsToVoid 2408 = SCS2.isPointerConversionToVoidPointer(S.Context); 2409 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2410 // Exactly one of the conversion sequences is a conversion to 2411 // a void pointer; it's the worse conversion. 2412 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2413 : ImplicitConversionSequence::Worse; 2414 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2415 // Neither conversion sequence converts to a void pointer; compare 2416 // their derived-to-base conversions. 2417 if (ImplicitConversionSequence::CompareKind DerivedCK 2418 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2419 return DerivedCK; 2420 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2421 // Both conversion sequences are conversions to void 2422 // pointers. Compare the source types to determine if there's an 2423 // inheritance relationship in their sources. 2424 QualType FromType1 = SCS1.getFromType(); 2425 QualType FromType2 = SCS2.getFromType(); 2426 2427 // Adjust the types we're converting from via the array-to-pointer 2428 // conversion, if we need to. 2429 if (SCS1.First == ICK_Array_To_Pointer) 2430 FromType1 = S.Context.getArrayDecayedType(FromType1); 2431 if (SCS2.First == ICK_Array_To_Pointer) 2432 FromType2 = S.Context.getArrayDecayedType(FromType2); 2433 2434 QualType FromPointee1 2435 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2436 QualType FromPointee2 2437 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2438 2439 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2440 return ImplicitConversionSequence::Better; 2441 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2442 return ImplicitConversionSequence::Worse; 2443 2444 // Objective-C++: If one interface is more specific than the 2445 // other, it is the better one. 2446 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2447 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2448 if (FromIface1 && FromIface1) { 2449 if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2450 return ImplicitConversionSequence::Better; 2451 else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2452 return ImplicitConversionSequence::Worse; 2453 } 2454 } 2455 2456 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2457 // bullet 3). 2458 if (ImplicitConversionSequence::CompareKind QualCK 2459 = CompareQualificationConversions(S, SCS1, SCS2)) 2460 return QualCK; 2461 2462 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2463 // Check for a better reference binding based on the kind of bindings. 2464 if (isBetterReferenceBindingKind(SCS1, SCS2)) 2465 return ImplicitConversionSequence::Better; 2466 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 2467 return ImplicitConversionSequence::Worse; 2468 2469 // C++ [over.ics.rank]p3b4: 2470 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2471 // which the references refer are the same type except for 2472 // top-level cv-qualifiers, and the type to which the reference 2473 // initialized by S2 refers is more cv-qualified than the type 2474 // to which the reference initialized by S1 refers. 2475 QualType T1 = SCS1.getToType(2); 2476 QualType T2 = SCS2.getToType(2); 2477 T1 = S.Context.getCanonicalType(T1); 2478 T2 = S.Context.getCanonicalType(T2); 2479 Qualifiers T1Quals, T2Quals; 2480 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2481 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2482 if (UnqualT1 == UnqualT2) { 2483 // If the type is an array type, promote the element qualifiers to the 2484 // type for comparison. 2485 if (isa<ArrayType>(T1) && T1Quals) 2486 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2487 if (isa<ArrayType>(T2) && T2Quals) 2488 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2489 if (T2.isMoreQualifiedThan(T1)) 2490 return ImplicitConversionSequence::Better; 2491 else if (T1.isMoreQualifiedThan(T2)) 2492 return ImplicitConversionSequence::Worse; 2493 } 2494 } 2495 2496 return ImplicitConversionSequence::Indistinguishable; 2497} 2498 2499/// CompareQualificationConversions - Compares two standard conversion 2500/// sequences to determine whether they can be ranked based on their 2501/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2502ImplicitConversionSequence::CompareKind 2503CompareQualificationConversions(Sema &S, 2504 const StandardConversionSequence& SCS1, 2505 const StandardConversionSequence& SCS2) { 2506 // C++ 13.3.3.2p3: 2507 // -- S1 and S2 differ only in their qualification conversion and 2508 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2509 // cv-qualification signature of type T1 is a proper subset of 2510 // the cv-qualification signature of type T2, and S1 is not the 2511 // deprecated string literal array-to-pointer conversion (4.2). 2512 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2513 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2514 return ImplicitConversionSequence::Indistinguishable; 2515 2516 // FIXME: the example in the standard doesn't use a qualification 2517 // conversion (!) 2518 QualType T1 = SCS1.getToType(2); 2519 QualType T2 = SCS2.getToType(2); 2520 T1 = S.Context.getCanonicalType(T1); 2521 T2 = S.Context.getCanonicalType(T2); 2522 Qualifiers T1Quals, T2Quals; 2523 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2524 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2525 2526 // If the types are the same, we won't learn anything by unwrapped 2527 // them. 2528 if (UnqualT1 == UnqualT2) 2529 return ImplicitConversionSequence::Indistinguishable; 2530 2531 // If the type is an array type, promote the element qualifiers to the type 2532 // for comparison. 2533 if (isa<ArrayType>(T1) && T1Quals) 2534 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2535 if (isa<ArrayType>(T2) && T2Quals) 2536 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2537 2538 ImplicitConversionSequence::CompareKind Result 2539 = ImplicitConversionSequence::Indistinguishable; 2540 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2541 // Within each iteration of the loop, we check the qualifiers to 2542 // determine if this still looks like a qualification 2543 // conversion. Then, if all is well, we unwrap one more level of 2544 // pointers or pointers-to-members and do it all again 2545 // until there are no more pointers or pointers-to-members left 2546 // to unwrap. This essentially mimics what 2547 // IsQualificationConversion does, but here we're checking for a 2548 // strict subset of qualifiers. 2549 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2550 // The qualifiers are the same, so this doesn't tell us anything 2551 // about how the sequences rank. 2552 ; 2553 else if (T2.isMoreQualifiedThan(T1)) { 2554 // T1 has fewer qualifiers, so it could be the better sequence. 2555 if (Result == ImplicitConversionSequence::Worse) 2556 // Neither has qualifiers that are a subset of the other's 2557 // qualifiers. 2558 return ImplicitConversionSequence::Indistinguishable; 2559 2560 Result = ImplicitConversionSequence::Better; 2561 } else if (T1.isMoreQualifiedThan(T2)) { 2562 // T2 has fewer qualifiers, so it could be the better sequence. 2563 if (Result == ImplicitConversionSequence::Better) 2564 // Neither has qualifiers that are a subset of the other's 2565 // qualifiers. 2566 return ImplicitConversionSequence::Indistinguishable; 2567 2568 Result = ImplicitConversionSequence::Worse; 2569 } else { 2570 // Qualifiers are disjoint. 2571 return ImplicitConversionSequence::Indistinguishable; 2572 } 2573 2574 // If the types after this point are equivalent, we're done. 2575 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2576 break; 2577 } 2578 2579 // Check that the winning standard conversion sequence isn't using 2580 // the deprecated string literal array to pointer conversion. 2581 switch (Result) { 2582 case ImplicitConversionSequence::Better: 2583 if (SCS1.DeprecatedStringLiteralToCharPtr) 2584 Result = ImplicitConversionSequence::Indistinguishable; 2585 break; 2586 2587 case ImplicitConversionSequence::Indistinguishable: 2588 break; 2589 2590 case ImplicitConversionSequence::Worse: 2591 if (SCS2.DeprecatedStringLiteralToCharPtr) 2592 Result = ImplicitConversionSequence::Indistinguishable; 2593 break; 2594 } 2595 2596 return Result; 2597} 2598 2599/// CompareDerivedToBaseConversions - Compares two standard conversion 2600/// sequences to determine whether they can be ranked based on their 2601/// various kinds of derived-to-base conversions (C++ 2602/// [over.ics.rank]p4b3). As part of these checks, we also look at 2603/// conversions between Objective-C interface types. 2604ImplicitConversionSequence::CompareKind 2605CompareDerivedToBaseConversions(Sema &S, 2606 const StandardConversionSequence& SCS1, 2607 const StandardConversionSequence& SCS2) { 2608 QualType FromType1 = SCS1.getFromType(); 2609 QualType ToType1 = SCS1.getToType(1); 2610 QualType FromType2 = SCS2.getFromType(); 2611 QualType ToType2 = SCS2.getToType(1); 2612 2613 // Adjust the types we're converting from via the array-to-pointer 2614 // conversion, if we need to. 2615 if (SCS1.First == ICK_Array_To_Pointer) 2616 FromType1 = S.Context.getArrayDecayedType(FromType1); 2617 if (SCS2.First == ICK_Array_To_Pointer) 2618 FromType2 = S.Context.getArrayDecayedType(FromType2); 2619 2620 // Canonicalize all of the types. 2621 FromType1 = S.Context.getCanonicalType(FromType1); 2622 ToType1 = S.Context.getCanonicalType(ToType1); 2623 FromType2 = S.Context.getCanonicalType(FromType2); 2624 ToType2 = S.Context.getCanonicalType(ToType2); 2625 2626 // C++ [over.ics.rank]p4b3: 2627 // 2628 // If class B is derived directly or indirectly from class A and 2629 // class C is derived directly or indirectly from B, 2630 // 2631 // For Objective-C, we let A, B, and C also be Objective-C 2632 // interfaces. 2633 2634 // Compare based on pointer conversions. 2635 if (SCS1.Second == ICK_Pointer_Conversion && 2636 SCS2.Second == ICK_Pointer_Conversion && 2637 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2638 FromType1->isPointerType() && FromType2->isPointerType() && 2639 ToType1->isPointerType() && ToType2->isPointerType()) { 2640 QualType FromPointee1 2641 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2642 QualType ToPointee1 2643 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2644 QualType FromPointee2 2645 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2646 QualType ToPointee2 2647 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2648 2649 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2650 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2651 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2652 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2653 2654 // -- conversion of C* to B* is better than conversion of C* to A*, 2655 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2656 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2657 return ImplicitConversionSequence::Better; 2658 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2659 return ImplicitConversionSequence::Worse; 2660 2661 if (ToIface1 && ToIface2) { 2662 if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2663 return ImplicitConversionSequence::Better; 2664 else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2665 return ImplicitConversionSequence::Worse; 2666 } 2667 } 2668 2669 // -- conversion of B* to A* is better than conversion of C* to A*, 2670 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2671 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2672 return ImplicitConversionSequence::Better; 2673 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2674 return ImplicitConversionSequence::Worse; 2675 2676 if (FromIface1 && FromIface2) { 2677 if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2678 return ImplicitConversionSequence::Better; 2679 else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2680 return ImplicitConversionSequence::Worse; 2681 } 2682 } 2683 } 2684 2685 // Ranking of member-pointer types. 2686 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2687 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2688 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2689 const MemberPointerType * FromMemPointer1 = 2690 FromType1->getAs<MemberPointerType>(); 2691 const MemberPointerType * ToMemPointer1 = 2692 ToType1->getAs<MemberPointerType>(); 2693 const MemberPointerType * FromMemPointer2 = 2694 FromType2->getAs<MemberPointerType>(); 2695 const MemberPointerType * ToMemPointer2 = 2696 ToType2->getAs<MemberPointerType>(); 2697 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2698 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2699 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2700 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2701 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2702 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2703 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2704 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2705 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2706 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2707 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2708 return ImplicitConversionSequence::Worse; 2709 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2710 return ImplicitConversionSequence::Better; 2711 } 2712 // conversion of B::* to C::* is better than conversion of A::* to C::* 2713 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2714 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2715 return ImplicitConversionSequence::Better; 2716 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2717 return ImplicitConversionSequence::Worse; 2718 } 2719 } 2720 2721 if (SCS1.Second == ICK_Derived_To_Base) { 2722 // -- conversion of C to B is better than conversion of C to A, 2723 // -- binding of an expression of type C to a reference of type 2724 // B& is better than binding an expression of type C to a 2725 // reference of type A&, 2726 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2727 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2728 if (S.IsDerivedFrom(ToType1, ToType2)) 2729 return ImplicitConversionSequence::Better; 2730 else if (S.IsDerivedFrom(ToType2, ToType1)) 2731 return ImplicitConversionSequence::Worse; 2732 } 2733 2734 // -- conversion of B to A is better than conversion of C to A. 2735 // -- binding of an expression of type B to a reference of type 2736 // A& is better than binding an expression of type C to a 2737 // reference of type A&, 2738 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2739 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2740 if (S.IsDerivedFrom(FromType2, FromType1)) 2741 return ImplicitConversionSequence::Better; 2742 else if (S.IsDerivedFrom(FromType1, FromType2)) 2743 return ImplicitConversionSequence::Worse; 2744 } 2745 } 2746 2747 return ImplicitConversionSequence::Indistinguishable; 2748} 2749 2750/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2751/// determine whether they are reference-related, 2752/// reference-compatible, reference-compatible with added 2753/// qualification, or incompatible, for use in C++ initialization by 2754/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2755/// type, and the first type (T1) is the pointee type of the reference 2756/// type being initialized. 2757Sema::ReferenceCompareResult 2758Sema::CompareReferenceRelationship(SourceLocation Loc, 2759 QualType OrigT1, QualType OrigT2, 2760 bool &DerivedToBase, 2761 bool &ObjCConversion) { 2762 assert(!OrigT1->isReferenceType() && 2763 "T1 must be the pointee type of the reference type"); 2764 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2765 2766 QualType T1 = Context.getCanonicalType(OrigT1); 2767 QualType T2 = Context.getCanonicalType(OrigT2); 2768 Qualifiers T1Quals, T2Quals; 2769 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2770 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2771 2772 // C++ [dcl.init.ref]p4: 2773 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2774 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2775 // T1 is a base class of T2. 2776 DerivedToBase = false; 2777 ObjCConversion = false; 2778 if (UnqualT1 == UnqualT2) { 2779 // Nothing to do. 2780 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2781 IsDerivedFrom(UnqualT2, UnqualT1)) 2782 DerivedToBase = true; 2783 else if (UnqualT1->isObjCObjectOrInterfaceType() && 2784 UnqualT2->isObjCObjectOrInterfaceType() && 2785 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 2786 ObjCConversion = true; 2787 else 2788 return Ref_Incompatible; 2789 2790 // At this point, we know that T1 and T2 are reference-related (at 2791 // least). 2792 2793 // If the type is an array type, promote the element qualifiers to the type 2794 // for comparison. 2795 if (isa<ArrayType>(T1) && T1Quals) 2796 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2797 if (isa<ArrayType>(T2) && T2Quals) 2798 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2799 2800 // C++ [dcl.init.ref]p4: 2801 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2802 // reference-related to T2 and cv1 is the same cv-qualification 2803 // as, or greater cv-qualification than, cv2. For purposes of 2804 // overload resolution, cases for which cv1 is greater 2805 // cv-qualification than cv2 are identified as 2806 // reference-compatible with added qualification (see 13.3.3.2). 2807 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2808 return Ref_Compatible; 2809 else if (T1.isMoreQualifiedThan(T2)) 2810 return Ref_Compatible_With_Added_Qualification; 2811 else 2812 return Ref_Related; 2813} 2814 2815/// \brief Look for a user-defined conversion to an value reference-compatible 2816/// with DeclType. Return true if something definite is found. 2817static bool 2818FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 2819 QualType DeclType, SourceLocation DeclLoc, 2820 Expr *Init, QualType T2, bool AllowRvalues, 2821 bool AllowExplicit) { 2822 assert(T2->isRecordType() && "Can only find conversions of record types."); 2823 CXXRecordDecl *T2RecordDecl 2824 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2825 2826 OverloadCandidateSet CandidateSet(DeclLoc); 2827 const UnresolvedSetImpl *Conversions 2828 = T2RecordDecl->getVisibleConversionFunctions(); 2829 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2830 E = Conversions->end(); I != E; ++I) { 2831 NamedDecl *D = *I; 2832 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2833 if (isa<UsingShadowDecl>(D)) 2834 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2835 2836 FunctionTemplateDecl *ConvTemplate 2837 = dyn_cast<FunctionTemplateDecl>(D); 2838 CXXConversionDecl *Conv; 2839 if (ConvTemplate) 2840 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2841 else 2842 Conv = cast<CXXConversionDecl>(D); 2843 2844 // If this is an explicit conversion, and we're not allowed to consider 2845 // explicit conversions, skip it. 2846 if (!AllowExplicit && Conv->isExplicit()) 2847 continue; 2848 2849 if (AllowRvalues) { 2850 bool DerivedToBase = false; 2851 bool ObjCConversion = false; 2852 if (!ConvTemplate && 2853 S.CompareReferenceRelationship( 2854 DeclLoc, 2855 Conv->getConversionType().getNonReferenceType() 2856 .getUnqualifiedType(), 2857 DeclType.getNonReferenceType().getUnqualifiedType(), 2858 DerivedToBase, ObjCConversion) == 2859 Sema::Ref_Incompatible) 2860 continue; 2861 } else { 2862 // If the conversion function doesn't return a reference type, 2863 // it can't be considered for this conversion. An rvalue reference 2864 // is only acceptable if its referencee is a function type. 2865 2866 const ReferenceType *RefType = 2867 Conv->getConversionType()->getAs<ReferenceType>(); 2868 if (!RefType || 2869 (!RefType->isLValueReferenceType() && 2870 !RefType->getPointeeType()->isFunctionType())) 2871 continue; 2872 } 2873 2874 if (ConvTemplate) 2875 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2876 Init, DeclType, CandidateSet); 2877 else 2878 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2879 DeclType, CandidateSet); 2880 } 2881 2882 OverloadCandidateSet::iterator Best; 2883 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 2884 case OR_Success: 2885 // C++ [over.ics.ref]p1: 2886 // 2887 // [...] If the parameter binds directly to the result of 2888 // applying a conversion function to the argument 2889 // expression, the implicit conversion sequence is a 2890 // user-defined conversion sequence (13.3.3.1.2), with the 2891 // second standard conversion sequence either an identity 2892 // conversion or, if the conversion function returns an 2893 // entity of a type that is a derived class of the parameter 2894 // type, a derived-to-base Conversion. 2895 if (!Best->FinalConversion.DirectBinding) 2896 return false; 2897 2898 ICS.setUserDefined(); 2899 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2900 ICS.UserDefined.After = Best->FinalConversion; 2901 ICS.UserDefined.ConversionFunction = Best->Function; 2902 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl(); 2903 ICS.UserDefined.EllipsisConversion = false; 2904 assert(ICS.UserDefined.After.ReferenceBinding && 2905 ICS.UserDefined.After.DirectBinding && 2906 "Expected a direct reference binding!"); 2907 return true; 2908 2909 case OR_Ambiguous: 2910 ICS.setAmbiguous(); 2911 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2912 Cand != CandidateSet.end(); ++Cand) 2913 if (Cand->Viable) 2914 ICS.Ambiguous.addConversion(Cand->Function); 2915 return true; 2916 2917 case OR_No_Viable_Function: 2918 case OR_Deleted: 2919 // There was no suitable conversion, or we found a deleted 2920 // conversion; continue with other checks. 2921 return false; 2922 } 2923 2924 return false; 2925} 2926 2927/// \brief Compute an implicit conversion sequence for reference 2928/// initialization. 2929static ImplicitConversionSequence 2930TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2931 SourceLocation DeclLoc, 2932 bool SuppressUserConversions, 2933 bool AllowExplicit) { 2934 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2935 2936 // Most paths end in a failed conversion. 2937 ImplicitConversionSequence ICS; 2938 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2939 2940 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2941 QualType T2 = Init->getType(); 2942 2943 // If the initializer is the address of an overloaded function, try 2944 // to resolve the overloaded function. If all goes well, T2 is the 2945 // type of the resulting function. 2946 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2947 DeclAccessPair Found; 2948 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2949 false, Found)) 2950 T2 = Fn->getType(); 2951 } 2952 2953 // Compute some basic properties of the types and the initializer. 2954 bool isRValRef = DeclType->isRValueReferenceType(); 2955 bool DerivedToBase = false; 2956 bool ObjCConversion = false; 2957 Expr::Classification InitCategory = Init->Classify(S.Context); 2958 Sema::ReferenceCompareResult RefRelationship 2959 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 2960 ObjCConversion); 2961 2962 2963 // C++0x [dcl.init.ref]p5: 2964 // A reference to type "cv1 T1" is initialized by an expression 2965 // of type "cv2 T2" as follows: 2966 2967 // -- If reference is an lvalue reference and the initializer expression 2968 if (!isRValRef) { 2969 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2970 // reference-compatible with "cv2 T2," or 2971 // 2972 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2973 if (InitCategory.isLValue() && 2974 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2975 // C++ [over.ics.ref]p1: 2976 // When a parameter of reference type binds directly (8.5.3) 2977 // to an argument expression, the implicit conversion sequence 2978 // is the identity conversion, unless the argument expression 2979 // has a type that is a derived class of the parameter type, 2980 // in which case the implicit conversion sequence is a 2981 // derived-to-base Conversion (13.3.3.1). 2982 ICS.setStandard(); 2983 ICS.Standard.First = ICK_Identity; 2984 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 2985 : ObjCConversion? ICK_Compatible_Conversion 2986 : ICK_Identity; 2987 ICS.Standard.Third = ICK_Identity; 2988 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2989 ICS.Standard.setToType(0, T2); 2990 ICS.Standard.setToType(1, T1); 2991 ICS.Standard.setToType(2, T1); 2992 ICS.Standard.ReferenceBinding = true; 2993 ICS.Standard.DirectBinding = true; 2994 ICS.Standard.IsLvalueReference = !isRValRef; 2995 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 2996 ICS.Standard.BindsToRvalue = false; 2997 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 2998 ICS.Standard.CopyConstructor = 0; 2999 3000 // Nothing more to do: the inaccessibility/ambiguity check for 3001 // derived-to-base conversions is suppressed when we're 3002 // computing the implicit conversion sequence (C++ 3003 // [over.best.ics]p2). 3004 return ICS; 3005 } 3006 3007 // -- has a class type (i.e., T2 is a class type), where T1 is 3008 // not reference-related to T2, and can be implicitly 3009 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3010 // is reference-compatible with "cv3 T3" 92) (this 3011 // conversion is selected by enumerating the applicable 3012 // conversion functions (13.3.1.6) and choosing the best 3013 // one through overload resolution (13.3)), 3014 if (!SuppressUserConversions && T2->isRecordType() && 3015 !S.RequireCompleteType(DeclLoc, T2, 0) && 3016 RefRelationship == Sema::Ref_Incompatible) { 3017 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3018 Init, T2, /*AllowRvalues=*/false, 3019 AllowExplicit)) 3020 return ICS; 3021 } 3022 } 3023 3024 // -- Otherwise, the reference shall be an lvalue reference to a 3025 // non-volatile const type (i.e., cv1 shall be const), or the reference 3026 // shall be an rvalue reference. 3027 // 3028 // We actually handle one oddity of C++ [over.ics.ref] at this 3029 // point, which is that, due to p2 (which short-circuits reference 3030 // binding by only attempting a simple conversion for non-direct 3031 // bindings) and p3's strange wording, we allow a const volatile 3032 // reference to bind to an rvalue. Hence the check for the presence 3033 // of "const" rather than checking for "const" being the only 3034 // qualifier. 3035 // This is also the point where rvalue references and lvalue inits no longer 3036 // go together. 3037 if (!isRValRef && !T1.isConstQualified()) 3038 return ICS; 3039 3040 // -- If the initializer expression 3041 // 3042 // -- is an xvalue, class prvalue, array prvalue or function 3043 // lvalue and "cv1T1" is reference-compatible with "cv2 T2", or 3044 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3045 (InitCategory.isXValue() || 3046 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3047 (InitCategory.isLValue() && T2->isFunctionType()))) { 3048 ICS.setStandard(); 3049 ICS.Standard.First = ICK_Identity; 3050 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3051 : ObjCConversion? ICK_Compatible_Conversion 3052 : ICK_Identity; 3053 ICS.Standard.Third = ICK_Identity; 3054 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3055 ICS.Standard.setToType(0, T2); 3056 ICS.Standard.setToType(1, T1); 3057 ICS.Standard.setToType(2, T1); 3058 ICS.Standard.ReferenceBinding = true; 3059 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3060 // binding unless we're binding to a class prvalue. 3061 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3062 // allow the use of rvalue references in C++98/03 for the benefit of 3063 // standard library implementors; therefore, we need the xvalue check here. 3064 ICS.Standard.DirectBinding = 3065 S.getLangOptions().CPlusPlus0x || 3066 (InitCategory.isPRValue() && !T2->isRecordType()); 3067 ICS.Standard.IsLvalueReference = !isRValRef; 3068 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3069 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3070 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3071 ICS.Standard.CopyConstructor = 0; 3072 return ICS; 3073 } 3074 3075 // -- has a class type (i.e., T2 is a class type), where T1 is not 3076 // reference-related to T2, and can be implicitly converted to 3077 // an xvalue, class prvalue, or function lvalue of type 3078 // "cv3 T3", where "cv1 T1" is reference-compatible with 3079 // "cv3 T3", 3080 // 3081 // then the reference is bound to the value of the initializer 3082 // expression in the first case and to the result of the conversion 3083 // in the second case (or, in either case, to an appropriate base 3084 // class subobject). 3085 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3086 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3087 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3088 Init, T2, /*AllowRvalues=*/true, 3089 AllowExplicit)) { 3090 // In the second case, if the reference is an rvalue reference 3091 // and the second standard conversion sequence of the 3092 // user-defined conversion sequence includes an lvalue-to-rvalue 3093 // conversion, the program is ill-formed. 3094 if (ICS.isUserDefined() && isRValRef && 3095 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3096 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3097 3098 return ICS; 3099 } 3100 3101 // -- Otherwise, a temporary of type "cv1 T1" is created and 3102 // initialized from the initializer expression using the 3103 // rules for a non-reference copy initialization (8.5). The 3104 // reference is then bound to the temporary. If T1 is 3105 // reference-related to T2, cv1 must be the same 3106 // cv-qualification as, or greater cv-qualification than, 3107 // cv2; otherwise, the program is ill-formed. 3108 if (RefRelationship == Sema::Ref_Related) { 3109 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3110 // we would be reference-compatible or reference-compatible with 3111 // added qualification. But that wasn't the case, so the reference 3112 // initialization fails. 3113 return ICS; 3114 } 3115 3116 // If at least one of the types is a class type, the types are not 3117 // related, and we aren't allowed any user conversions, the 3118 // reference binding fails. This case is important for breaking 3119 // recursion, since TryImplicitConversion below will attempt to 3120 // create a temporary through the use of a copy constructor. 3121 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3122 (T1->isRecordType() || T2->isRecordType())) 3123 return ICS; 3124 3125 // If T1 is reference-related to T2 and the reference is an rvalue 3126 // reference, the initializer expression shall not be an lvalue. 3127 if (RefRelationship >= Sema::Ref_Related && 3128 isRValRef && Init->Classify(S.Context).isLValue()) 3129 return ICS; 3130 3131 // C++ [over.ics.ref]p2: 3132 // When a parameter of reference type is not bound directly to 3133 // an argument expression, the conversion sequence is the one 3134 // required to convert the argument expression to the 3135 // underlying type of the reference according to 3136 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3137 // to copy-initializing a temporary of the underlying type with 3138 // the argument expression. Any difference in top-level 3139 // cv-qualification is subsumed by the initialization itself 3140 // and does not constitute a conversion. 3141 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3142 /*AllowExplicit=*/false, 3143 /*InOverloadResolution=*/false); 3144 3145 // Of course, that's still a reference binding. 3146 if (ICS.isStandard()) { 3147 ICS.Standard.ReferenceBinding = true; 3148 ICS.Standard.IsLvalueReference = !isRValRef; 3149 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3150 ICS.Standard.BindsToRvalue = true; 3151 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3152 } else if (ICS.isUserDefined()) { 3153 ICS.UserDefined.After.ReferenceBinding = true; 3154 ICS.Standard.IsLvalueReference = !isRValRef; 3155 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3156 ICS.Standard.BindsToRvalue = true; 3157 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3158 } 3159 3160 return ICS; 3161} 3162 3163/// TryCopyInitialization - Try to copy-initialize a value of type 3164/// ToType from the expression From. Return the implicit conversion 3165/// sequence required to pass this argument, which may be a bad 3166/// conversion sequence (meaning that the argument cannot be passed to 3167/// a parameter of this type). If @p SuppressUserConversions, then we 3168/// do not permit any user-defined conversion sequences. 3169static ImplicitConversionSequence 3170TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3171 bool SuppressUserConversions, 3172 bool InOverloadResolution) { 3173 if (ToType->isReferenceType()) 3174 return TryReferenceInit(S, From, ToType, 3175 /*FIXME:*/From->getLocStart(), 3176 SuppressUserConversions, 3177 /*AllowExplicit=*/false); 3178 3179 return TryImplicitConversion(S, From, ToType, 3180 SuppressUserConversions, 3181 /*AllowExplicit=*/false, 3182 InOverloadResolution); 3183} 3184 3185/// TryObjectArgumentInitialization - Try to initialize the object 3186/// parameter of the given member function (@c Method) from the 3187/// expression @p From. 3188static ImplicitConversionSequence 3189TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3190 Expr::Classification FromClassification, 3191 CXXMethodDecl *Method, 3192 CXXRecordDecl *ActingContext) { 3193 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3194 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3195 // const volatile object. 3196 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3197 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3198 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3199 3200 // Set up the conversion sequence as a "bad" conversion, to allow us 3201 // to exit early. 3202 ImplicitConversionSequence ICS; 3203 3204 // We need to have an object of class type. 3205 QualType FromType = OrigFromType; 3206 if (const PointerType *PT = FromType->getAs<PointerType>()) { 3207 FromType = PT->getPointeeType(); 3208 3209 // When we had a pointer, it's implicitly dereferenced, so we 3210 // better have an lvalue. 3211 assert(FromClassification.isLValue()); 3212 } 3213 3214 assert(FromType->isRecordType()); 3215 3216 // C++0x [over.match.funcs]p4: 3217 // For non-static member functions, the type of the implicit object 3218 // parameter is 3219 // 3220 // — "lvalue reference to cv X" for functions declared without a 3221 // ref-qualifier or with the & ref-qualifier 3222 // — "rvalue reference to cv X" for functions declared with the && 3223 // ref-qualifier 3224 // 3225 // where X is the class of which the function is a member and cv is the 3226 // cv-qualification on the member function declaration. 3227 // 3228 // However, when finding an implicit conversion sequence for the argument, we 3229 // are not allowed to create temporaries or perform user-defined conversions 3230 // (C++ [over.match.funcs]p5). We perform a simplified version of 3231 // reference binding here, that allows class rvalues to bind to 3232 // non-constant references. 3233 3234 // First check the qualifiers. 3235 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3236 if (ImplicitParamType.getCVRQualifiers() 3237 != FromTypeCanon.getLocalCVRQualifiers() && 3238 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3239 ICS.setBad(BadConversionSequence::bad_qualifiers, 3240 OrigFromType, ImplicitParamType); 3241 return ICS; 3242 } 3243 3244 // Check that we have either the same type or a derived type. It 3245 // affects the conversion rank. 3246 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3247 ImplicitConversionKind SecondKind; 3248 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3249 SecondKind = ICK_Identity; 3250 } else if (S.IsDerivedFrom(FromType, ClassType)) 3251 SecondKind = ICK_Derived_To_Base; 3252 else { 3253 ICS.setBad(BadConversionSequence::unrelated_class, 3254 FromType, ImplicitParamType); 3255 return ICS; 3256 } 3257 3258 // Check the ref-qualifier. 3259 switch (Method->getRefQualifier()) { 3260 case RQ_None: 3261 // Do nothing; we don't care about lvalueness or rvalueness. 3262 break; 3263 3264 case RQ_LValue: 3265 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 3266 // non-const lvalue reference cannot bind to an rvalue 3267 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 3268 ImplicitParamType); 3269 return ICS; 3270 } 3271 break; 3272 3273 case RQ_RValue: 3274 if (!FromClassification.isRValue()) { 3275 // rvalue reference cannot bind to an lvalue 3276 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 3277 ImplicitParamType); 3278 return ICS; 3279 } 3280 break; 3281 } 3282 3283 // Success. Mark this as a reference binding. 3284 ICS.setStandard(); 3285 ICS.Standard.setAsIdentityConversion(); 3286 ICS.Standard.Second = SecondKind; 3287 ICS.Standard.setFromType(FromType); 3288 ICS.Standard.setAllToTypes(ImplicitParamType); 3289 ICS.Standard.ReferenceBinding = true; 3290 ICS.Standard.DirectBinding = true; 3291 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 3292 ICS.Standard.BindsToFunctionLvalue = false; 3293 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 3294 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 3295 = (Method->getRefQualifier() == RQ_None); 3296 return ICS; 3297} 3298 3299/// PerformObjectArgumentInitialization - Perform initialization of 3300/// the implicit object parameter for the given Method with the given 3301/// expression. 3302bool 3303Sema::PerformObjectArgumentInitialization(Expr *&From, 3304 NestedNameSpecifier *Qualifier, 3305 NamedDecl *FoundDecl, 3306 CXXMethodDecl *Method) { 3307 QualType FromRecordType, DestType; 3308 QualType ImplicitParamRecordType = 3309 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3310 3311 Expr::Classification FromClassification; 3312 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3313 FromRecordType = PT->getPointeeType(); 3314 DestType = Method->getThisType(Context); 3315 FromClassification = Expr::Classification::makeSimpleLValue(); 3316 } else { 3317 FromRecordType = From->getType(); 3318 DestType = ImplicitParamRecordType; 3319 FromClassification = From->Classify(Context); 3320 } 3321 3322 // Note that we always use the true parent context when performing 3323 // the actual argument initialization. 3324 ImplicitConversionSequence ICS 3325 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 3326 Method, Method->getParent()); 3327 if (ICS.isBad()) { 3328 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 3329 Qualifiers FromQs = FromRecordType.getQualifiers(); 3330 Qualifiers ToQs = DestType.getQualifiers(); 3331 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 3332 if (CVR) { 3333 Diag(From->getSourceRange().getBegin(), 3334 diag::err_member_function_call_bad_cvr) 3335 << Method->getDeclName() << FromRecordType << (CVR - 1) 3336 << From->getSourceRange(); 3337 Diag(Method->getLocation(), diag::note_previous_decl) 3338 << Method->getDeclName(); 3339 return true; 3340 } 3341 } 3342 3343 return Diag(From->getSourceRange().getBegin(), 3344 diag::err_implicit_object_parameter_init) 3345 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3346 } 3347 3348 if (ICS.Standard.Second == ICK_Derived_To_Base) 3349 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3350 3351 if (!Context.hasSameType(From->getType(), DestType)) 3352 ImpCastExprToType(From, DestType, CK_NoOp, 3353 From->getType()->isPointerType() ? VK_RValue : VK_LValue); 3354 return false; 3355} 3356 3357/// TryContextuallyConvertToBool - Attempt to contextually convert the 3358/// expression From to bool (C++0x [conv]p3). 3359static ImplicitConversionSequence 3360TryContextuallyConvertToBool(Sema &S, Expr *From) { 3361 // FIXME: This is pretty broken. 3362 return TryImplicitConversion(S, From, S.Context.BoolTy, 3363 // FIXME: Are these flags correct? 3364 /*SuppressUserConversions=*/false, 3365 /*AllowExplicit=*/true, 3366 /*InOverloadResolution=*/false); 3367} 3368 3369/// PerformContextuallyConvertToBool - Perform a contextual conversion 3370/// of the expression From to bool (C++0x [conv]p3). 3371bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3372 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3373 if (!ICS.isBad()) 3374 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3375 3376 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3377 return Diag(From->getSourceRange().getBegin(), 3378 diag::err_typecheck_bool_condition) 3379 << From->getType() << From->getSourceRange(); 3380 return true; 3381} 3382 3383/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3384/// expression From to 'id'. 3385static ImplicitConversionSequence 3386TryContextuallyConvertToObjCId(Sema &S, Expr *From) { 3387 QualType Ty = S.Context.getObjCIdType(); 3388 return TryImplicitConversion(S, From, Ty, 3389 // FIXME: Are these flags correct? 3390 /*SuppressUserConversions=*/false, 3391 /*AllowExplicit=*/true, 3392 /*InOverloadResolution=*/false); 3393} 3394 3395/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3396/// of the expression From to 'id'. 3397bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3398 QualType Ty = Context.getObjCIdType(); 3399 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); 3400 if (!ICS.isBad()) 3401 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3402 return true; 3403} 3404 3405/// \brief Attempt to convert the given expression to an integral or 3406/// enumeration type. 3407/// 3408/// This routine will attempt to convert an expression of class type to an 3409/// integral or enumeration type, if that class type only has a single 3410/// conversion to an integral or enumeration type. 3411/// 3412/// \param Loc The source location of the construct that requires the 3413/// conversion. 3414/// 3415/// \param FromE The expression we're converting from. 3416/// 3417/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3418/// have integral or enumeration type. 3419/// 3420/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3421/// incomplete class type. 3422/// 3423/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3424/// explicit conversion function (because no implicit conversion functions 3425/// were available). This is a recovery mode. 3426/// 3427/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3428/// showing which conversion was picked. 3429/// 3430/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3431/// conversion function that could convert to integral or enumeration type. 3432/// 3433/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3434/// usable conversion function. 3435/// 3436/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3437/// function, which may be an extension in this case. 3438/// 3439/// \returns The expression, converted to an integral or enumeration type if 3440/// successful. 3441ExprResult 3442Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3443 const PartialDiagnostic &NotIntDiag, 3444 const PartialDiagnostic &IncompleteDiag, 3445 const PartialDiagnostic &ExplicitConvDiag, 3446 const PartialDiagnostic &ExplicitConvNote, 3447 const PartialDiagnostic &AmbigDiag, 3448 const PartialDiagnostic &AmbigNote, 3449 const PartialDiagnostic &ConvDiag) { 3450 // We can't perform any more checking for type-dependent expressions. 3451 if (From->isTypeDependent()) 3452 return Owned(From); 3453 3454 // If the expression already has integral or enumeration type, we're golden. 3455 QualType T = From->getType(); 3456 if (T->isIntegralOrEnumerationType()) 3457 return Owned(From); 3458 3459 // FIXME: Check for missing '()' if T is a function type? 3460 3461 // If we don't have a class type in C++, there's no way we can get an 3462 // expression of integral or enumeration type. 3463 const RecordType *RecordTy = T->getAs<RecordType>(); 3464 if (!RecordTy || !getLangOptions().CPlusPlus) { 3465 Diag(Loc, NotIntDiag) 3466 << T << From->getSourceRange(); 3467 return Owned(From); 3468 } 3469 3470 // We must have a complete class type. 3471 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3472 return Owned(From); 3473 3474 // Look for a conversion to an integral or enumeration type. 3475 UnresolvedSet<4> ViableConversions; 3476 UnresolvedSet<4> ExplicitConversions; 3477 const UnresolvedSetImpl *Conversions 3478 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3479 3480 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3481 E = Conversions->end(); 3482 I != E; 3483 ++I) { 3484 if (CXXConversionDecl *Conversion 3485 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3486 if (Conversion->getConversionType().getNonReferenceType() 3487 ->isIntegralOrEnumerationType()) { 3488 if (Conversion->isExplicit()) 3489 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3490 else 3491 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3492 } 3493 } 3494 3495 switch (ViableConversions.size()) { 3496 case 0: 3497 if (ExplicitConversions.size() == 1) { 3498 DeclAccessPair Found = ExplicitConversions[0]; 3499 CXXConversionDecl *Conversion 3500 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3501 3502 // The user probably meant to invoke the given explicit 3503 // conversion; use it. 3504 QualType ConvTy 3505 = Conversion->getConversionType().getNonReferenceType(); 3506 std::string TypeStr; 3507 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3508 3509 Diag(Loc, ExplicitConvDiag) 3510 << T << ConvTy 3511 << FixItHint::CreateInsertion(From->getLocStart(), 3512 "static_cast<" + TypeStr + ">(") 3513 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3514 ")"); 3515 Diag(Conversion->getLocation(), ExplicitConvNote) 3516 << ConvTy->isEnumeralType() << ConvTy; 3517 3518 // If we aren't in a SFINAE context, build a call to the 3519 // explicit conversion function. 3520 if (isSFINAEContext()) 3521 return ExprError(); 3522 3523 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3524 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion); 3525 if (Result.isInvalid()) 3526 return ExprError(); 3527 3528 From = Result.get(); 3529 } 3530 3531 // We'll complain below about a non-integral condition type. 3532 break; 3533 3534 case 1: { 3535 // Apply this conversion. 3536 DeclAccessPair Found = ViableConversions[0]; 3537 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3538 3539 CXXConversionDecl *Conversion 3540 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3541 QualType ConvTy 3542 = Conversion->getConversionType().getNonReferenceType(); 3543 if (ConvDiag.getDiagID()) { 3544 if (isSFINAEContext()) 3545 return ExprError(); 3546 3547 Diag(Loc, ConvDiag) 3548 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3549 } 3550 3551 ExprResult Result = BuildCXXMemberCallExpr(From, Found, 3552 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3553 if (Result.isInvalid()) 3554 return ExprError(); 3555 3556 From = Result.get(); 3557 break; 3558 } 3559 3560 default: 3561 Diag(Loc, AmbigDiag) 3562 << T << From->getSourceRange(); 3563 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3564 CXXConversionDecl *Conv 3565 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3566 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3567 Diag(Conv->getLocation(), AmbigNote) 3568 << ConvTy->isEnumeralType() << ConvTy; 3569 } 3570 return Owned(From); 3571 } 3572 3573 if (!From->getType()->isIntegralOrEnumerationType()) 3574 Diag(Loc, NotIntDiag) 3575 << From->getType() << From->getSourceRange(); 3576 3577 return Owned(From); 3578} 3579 3580/// AddOverloadCandidate - Adds the given function to the set of 3581/// candidate functions, using the given function call arguments. If 3582/// @p SuppressUserConversions, then don't allow user-defined 3583/// conversions via constructors or conversion operators. 3584/// 3585/// \para PartialOverloading true if we are performing "partial" overloading 3586/// based on an incomplete set of function arguments. This feature is used by 3587/// code completion. 3588void 3589Sema::AddOverloadCandidate(FunctionDecl *Function, 3590 DeclAccessPair FoundDecl, 3591 Expr **Args, unsigned NumArgs, 3592 OverloadCandidateSet& CandidateSet, 3593 bool SuppressUserConversions, 3594 bool PartialOverloading) { 3595 const FunctionProtoType* Proto 3596 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3597 assert(Proto && "Functions without a prototype cannot be overloaded"); 3598 assert(!Function->getDescribedFunctionTemplate() && 3599 "Use AddTemp∫lateOverloadCandidate for function templates"); 3600 3601 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3602 if (!isa<CXXConstructorDecl>(Method)) { 3603 // If we get here, it's because we're calling a member function 3604 // that is named without a member access expression (e.g., 3605 // "this->f") that was either written explicitly or created 3606 // implicitly. This can happen with a qualified call to a member 3607 // function, e.g., X::f(). We use an empty type for the implied 3608 // object argument (C++ [over.call.func]p3), and the acting context 3609 // is irrelevant. 3610 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3611 QualType(), Expr::Classification::makeSimpleLValue(), 3612 Args, NumArgs, CandidateSet, 3613 SuppressUserConversions); 3614 return; 3615 } 3616 // We treat a constructor like a non-member function, since its object 3617 // argument doesn't participate in overload resolution. 3618 } 3619 3620 if (!CandidateSet.isNewCandidate(Function)) 3621 return; 3622 3623 // Overload resolution is always an unevaluated context. 3624 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3625 3626 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3627 // C++ [class.copy]p3: 3628 // A member function template is never instantiated to perform the copy 3629 // of a class object to an object of its class type. 3630 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3631 if (NumArgs == 1 && 3632 Constructor->isSpecializationCopyingObject() && 3633 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3634 IsDerivedFrom(Args[0]->getType(), ClassType))) 3635 return; 3636 } 3637 3638 // Add this candidate 3639 CandidateSet.push_back(OverloadCandidate()); 3640 OverloadCandidate& Candidate = CandidateSet.back(); 3641 Candidate.FoundDecl = FoundDecl; 3642 Candidate.Function = Function; 3643 Candidate.Viable = true; 3644 Candidate.IsSurrogate = false; 3645 Candidate.IgnoreObjectArgument = false; 3646 Candidate.ExplicitCallArguments = NumArgs; 3647 3648 unsigned NumArgsInProto = Proto->getNumArgs(); 3649 3650 // (C++ 13.3.2p2): A candidate function having fewer than m 3651 // parameters is viable only if it has an ellipsis in its parameter 3652 // list (8.3.5). 3653 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3654 !Proto->isVariadic()) { 3655 Candidate.Viable = false; 3656 Candidate.FailureKind = ovl_fail_too_many_arguments; 3657 return; 3658 } 3659 3660 // (C++ 13.3.2p2): A candidate function having more than m parameters 3661 // is viable only if the (m+1)st parameter has a default argument 3662 // (8.3.6). For the purposes of overload resolution, the 3663 // parameter list is truncated on the right, so that there are 3664 // exactly m parameters. 3665 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3666 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3667 // Not enough arguments. 3668 Candidate.Viable = false; 3669 Candidate.FailureKind = ovl_fail_too_few_arguments; 3670 return; 3671 } 3672 3673 // Determine the implicit conversion sequences for each of the 3674 // arguments. 3675 Candidate.Conversions.resize(NumArgs); 3676 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3677 if (ArgIdx < NumArgsInProto) { 3678 // (C++ 13.3.2p3): for F to be a viable function, there shall 3679 // exist for each argument an implicit conversion sequence 3680 // (13.3.3.1) that converts that argument to the corresponding 3681 // parameter of F. 3682 QualType ParamType = Proto->getArgType(ArgIdx); 3683 Candidate.Conversions[ArgIdx] 3684 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3685 SuppressUserConversions, 3686 /*InOverloadResolution=*/true); 3687 if (Candidate.Conversions[ArgIdx].isBad()) { 3688 Candidate.Viable = false; 3689 Candidate.FailureKind = ovl_fail_bad_conversion; 3690 break; 3691 } 3692 } else { 3693 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3694 // argument for which there is no corresponding parameter is 3695 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3696 Candidate.Conversions[ArgIdx].setEllipsis(); 3697 } 3698 } 3699} 3700 3701/// \brief Add all of the function declarations in the given function set to 3702/// the overload canddiate set. 3703void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3704 Expr **Args, unsigned NumArgs, 3705 OverloadCandidateSet& CandidateSet, 3706 bool SuppressUserConversions) { 3707 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3708 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3709 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3710 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3711 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3712 cast<CXXMethodDecl>(FD)->getParent(), 3713 Args[0]->getType(), Args[0]->Classify(Context), 3714 Args + 1, NumArgs - 1, 3715 CandidateSet, SuppressUserConversions); 3716 else 3717 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3718 SuppressUserConversions); 3719 } else { 3720 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3721 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3722 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3723 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3724 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3725 /*FIXME: explicit args */ 0, 3726 Args[0]->getType(), 3727 Args[0]->Classify(Context), 3728 Args + 1, NumArgs - 1, 3729 CandidateSet, 3730 SuppressUserConversions); 3731 else 3732 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3733 /*FIXME: explicit args */ 0, 3734 Args, NumArgs, CandidateSet, 3735 SuppressUserConversions); 3736 } 3737 } 3738} 3739 3740/// AddMethodCandidate - Adds a named decl (which is some kind of 3741/// method) as a method candidate to the given overload set. 3742void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3743 QualType ObjectType, 3744 Expr::Classification ObjectClassification, 3745 Expr **Args, unsigned NumArgs, 3746 OverloadCandidateSet& CandidateSet, 3747 bool SuppressUserConversions) { 3748 NamedDecl *Decl = FoundDecl.getDecl(); 3749 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3750 3751 if (isa<UsingShadowDecl>(Decl)) 3752 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3753 3754 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3755 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3756 "Expected a member function template"); 3757 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3758 /*ExplicitArgs*/ 0, 3759 ObjectType, ObjectClassification, Args, NumArgs, 3760 CandidateSet, 3761 SuppressUserConversions); 3762 } else { 3763 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3764 ObjectType, ObjectClassification, Args, NumArgs, 3765 CandidateSet, SuppressUserConversions); 3766 } 3767} 3768 3769/// AddMethodCandidate - Adds the given C++ member function to the set 3770/// of candidate functions, using the given function call arguments 3771/// and the object argument (@c Object). For example, in a call 3772/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3773/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3774/// allow user-defined conversions via constructors or conversion 3775/// operators. 3776void 3777Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3778 CXXRecordDecl *ActingContext, QualType ObjectType, 3779 Expr::Classification ObjectClassification, 3780 Expr **Args, unsigned NumArgs, 3781 OverloadCandidateSet& CandidateSet, 3782 bool SuppressUserConversions) { 3783 const FunctionProtoType* Proto 3784 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3785 assert(Proto && "Methods without a prototype cannot be overloaded"); 3786 assert(!isa<CXXConstructorDecl>(Method) && 3787 "Use AddOverloadCandidate for constructors"); 3788 3789 if (!CandidateSet.isNewCandidate(Method)) 3790 return; 3791 3792 // Overload resolution is always an unevaluated context. 3793 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3794 3795 // Add this candidate 3796 CandidateSet.push_back(OverloadCandidate()); 3797 OverloadCandidate& Candidate = CandidateSet.back(); 3798 Candidate.FoundDecl = FoundDecl; 3799 Candidate.Function = Method; 3800 Candidate.IsSurrogate = false; 3801 Candidate.IgnoreObjectArgument = false; 3802 Candidate.ExplicitCallArguments = NumArgs; 3803 3804 unsigned NumArgsInProto = Proto->getNumArgs(); 3805 3806 // (C++ 13.3.2p2): A candidate function having fewer than m 3807 // parameters is viable only if it has an ellipsis in its parameter 3808 // list (8.3.5). 3809 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3810 Candidate.Viable = false; 3811 Candidate.FailureKind = ovl_fail_too_many_arguments; 3812 return; 3813 } 3814 3815 // (C++ 13.3.2p2): A candidate function having more than m parameters 3816 // is viable only if the (m+1)st parameter has a default argument 3817 // (8.3.6). For the purposes of overload resolution, the 3818 // parameter list is truncated on the right, so that there are 3819 // exactly m parameters. 3820 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3821 if (NumArgs < MinRequiredArgs) { 3822 // Not enough arguments. 3823 Candidate.Viable = false; 3824 Candidate.FailureKind = ovl_fail_too_few_arguments; 3825 return; 3826 } 3827 3828 Candidate.Viable = true; 3829 Candidate.Conversions.resize(NumArgs + 1); 3830 3831 if (Method->isStatic() || ObjectType.isNull()) 3832 // The implicit object argument is ignored. 3833 Candidate.IgnoreObjectArgument = true; 3834 else { 3835 // Determine the implicit conversion sequence for the object 3836 // parameter. 3837 Candidate.Conversions[0] 3838 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 3839 Method, ActingContext); 3840 if (Candidate.Conversions[0].isBad()) { 3841 Candidate.Viable = false; 3842 Candidate.FailureKind = ovl_fail_bad_conversion; 3843 return; 3844 } 3845 } 3846 3847 // Determine the implicit conversion sequences for each of the 3848 // arguments. 3849 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3850 if (ArgIdx < NumArgsInProto) { 3851 // (C++ 13.3.2p3): for F to be a viable function, there shall 3852 // exist for each argument an implicit conversion sequence 3853 // (13.3.3.1) that converts that argument to the corresponding 3854 // parameter of F. 3855 QualType ParamType = Proto->getArgType(ArgIdx); 3856 Candidate.Conversions[ArgIdx + 1] 3857 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3858 SuppressUserConversions, 3859 /*InOverloadResolution=*/true); 3860 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3861 Candidate.Viable = false; 3862 Candidate.FailureKind = ovl_fail_bad_conversion; 3863 break; 3864 } 3865 } else { 3866 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3867 // argument for which there is no corresponding parameter is 3868 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3869 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3870 } 3871 } 3872} 3873 3874/// \brief Add a C++ member function template as a candidate to the candidate 3875/// set, using template argument deduction to produce an appropriate member 3876/// function template specialization. 3877void 3878Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3879 DeclAccessPair FoundDecl, 3880 CXXRecordDecl *ActingContext, 3881 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3882 QualType ObjectType, 3883 Expr::Classification ObjectClassification, 3884 Expr **Args, unsigned NumArgs, 3885 OverloadCandidateSet& CandidateSet, 3886 bool SuppressUserConversions) { 3887 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3888 return; 3889 3890 // C++ [over.match.funcs]p7: 3891 // In each case where a candidate is a function template, candidate 3892 // function template specializations are generated using template argument 3893 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3894 // candidate functions in the usual way.113) A given name can refer to one 3895 // or more function templates and also to a set of overloaded non-template 3896 // functions. In such a case, the candidate functions generated from each 3897 // function template are combined with the set of non-template candidate 3898 // functions. 3899 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3900 FunctionDecl *Specialization = 0; 3901 if (TemplateDeductionResult Result 3902 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3903 Args, NumArgs, Specialization, Info)) { 3904 CandidateSet.push_back(OverloadCandidate()); 3905 OverloadCandidate &Candidate = CandidateSet.back(); 3906 Candidate.FoundDecl = FoundDecl; 3907 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3908 Candidate.Viable = false; 3909 Candidate.FailureKind = ovl_fail_bad_deduction; 3910 Candidate.IsSurrogate = false; 3911 Candidate.IgnoreObjectArgument = false; 3912 Candidate.ExplicitCallArguments = NumArgs; 3913 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3914 Info); 3915 return; 3916 } 3917 3918 // Add the function template specialization produced by template argument 3919 // deduction as a candidate. 3920 assert(Specialization && "Missing member function template specialization?"); 3921 assert(isa<CXXMethodDecl>(Specialization) && 3922 "Specialization is not a member function?"); 3923 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3924 ActingContext, ObjectType, ObjectClassification, 3925 Args, NumArgs, CandidateSet, SuppressUserConversions); 3926} 3927 3928/// \brief Add a C++ function template specialization as a candidate 3929/// in the candidate set, using template argument deduction to produce 3930/// an appropriate function template specialization. 3931void 3932Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3933 DeclAccessPair FoundDecl, 3934 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3935 Expr **Args, unsigned NumArgs, 3936 OverloadCandidateSet& CandidateSet, 3937 bool SuppressUserConversions) { 3938 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3939 return; 3940 3941 // C++ [over.match.funcs]p7: 3942 // In each case where a candidate is a function template, candidate 3943 // function template specializations are generated using template argument 3944 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3945 // candidate functions in the usual way.113) A given name can refer to one 3946 // or more function templates and also to a set of overloaded non-template 3947 // functions. In such a case, the candidate functions generated from each 3948 // function template are combined with the set of non-template candidate 3949 // functions. 3950 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3951 FunctionDecl *Specialization = 0; 3952 if (TemplateDeductionResult Result 3953 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3954 Args, NumArgs, Specialization, Info)) { 3955 CandidateSet.push_back(OverloadCandidate()); 3956 OverloadCandidate &Candidate = CandidateSet.back(); 3957 Candidate.FoundDecl = FoundDecl; 3958 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3959 Candidate.Viable = false; 3960 Candidate.FailureKind = ovl_fail_bad_deduction; 3961 Candidate.IsSurrogate = false; 3962 Candidate.IgnoreObjectArgument = false; 3963 Candidate.ExplicitCallArguments = NumArgs; 3964 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3965 Info); 3966 return; 3967 } 3968 3969 // Add the function template specialization produced by template argument 3970 // deduction as a candidate. 3971 assert(Specialization && "Missing function template specialization?"); 3972 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3973 SuppressUserConversions); 3974} 3975 3976/// AddConversionCandidate - Add a C++ conversion function as a 3977/// candidate in the candidate set (C++ [over.match.conv], 3978/// C++ [over.match.copy]). From is the expression we're converting from, 3979/// and ToType is the type that we're eventually trying to convert to 3980/// (which may or may not be the same type as the type that the 3981/// conversion function produces). 3982void 3983Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3984 DeclAccessPair FoundDecl, 3985 CXXRecordDecl *ActingContext, 3986 Expr *From, QualType ToType, 3987 OverloadCandidateSet& CandidateSet) { 3988 assert(!Conversion->getDescribedFunctionTemplate() && 3989 "Conversion function templates use AddTemplateConversionCandidate"); 3990 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3991 if (!CandidateSet.isNewCandidate(Conversion)) 3992 return; 3993 3994 // Overload resolution is always an unevaluated context. 3995 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3996 3997 // Add this candidate 3998 CandidateSet.push_back(OverloadCandidate()); 3999 OverloadCandidate& Candidate = CandidateSet.back(); 4000 Candidate.FoundDecl = FoundDecl; 4001 Candidate.Function = Conversion; 4002 Candidate.IsSurrogate = false; 4003 Candidate.IgnoreObjectArgument = false; 4004 Candidate.FinalConversion.setAsIdentityConversion(); 4005 Candidate.FinalConversion.setFromType(ConvType); 4006 Candidate.FinalConversion.setAllToTypes(ToType); 4007 Candidate.Viable = true; 4008 Candidate.Conversions.resize(1); 4009 Candidate.ExplicitCallArguments = 1; 4010 4011 // C++ [over.match.funcs]p4: 4012 // For conversion functions, the function is considered to be a member of 4013 // the class of the implicit implied object argument for the purpose of 4014 // defining the type of the implicit object parameter. 4015 // 4016 // Determine the implicit conversion sequence for the implicit 4017 // object parameter. 4018 QualType ImplicitParamType = From->getType(); 4019 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 4020 ImplicitParamType = FromPtrType->getPointeeType(); 4021 CXXRecordDecl *ConversionContext 4022 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 4023 4024 Candidate.Conversions[0] 4025 = TryObjectArgumentInitialization(*this, From->getType(), 4026 From->Classify(Context), 4027 Conversion, ConversionContext); 4028 4029 if (Candidate.Conversions[0].isBad()) { 4030 Candidate.Viable = false; 4031 Candidate.FailureKind = ovl_fail_bad_conversion; 4032 return; 4033 } 4034 4035 // We won't go through a user-define type conversion function to convert a 4036 // derived to base as such conversions are given Conversion Rank. They only 4037 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 4038 QualType FromCanon 4039 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 4040 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 4041 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 4042 Candidate.Viable = false; 4043 Candidate.FailureKind = ovl_fail_trivial_conversion; 4044 return; 4045 } 4046 4047 // To determine what the conversion from the result of calling the 4048 // conversion function to the type we're eventually trying to 4049 // convert to (ToType), we need to synthesize a call to the 4050 // conversion function and attempt copy initialization from it. This 4051 // makes sure that we get the right semantics with respect to 4052 // lvalues/rvalues and the type. Fortunately, we can allocate this 4053 // call on the stack and we don't need its arguments to be 4054 // well-formed. 4055 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 4056 VK_LValue, From->getLocStart()); 4057 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 4058 Context.getPointerType(Conversion->getType()), 4059 CK_FunctionToPointerDecay, 4060 &ConversionRef, VK_RValue); 4061 4062 QualType CallResultType 4063 = Conversion->getConversionType().getNonLValueExprType(Context); 4064 if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) { 4065 Candidate.Viable = false; 4066 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4067 return; 4068 } 4069 4070 ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType()); 4071 4072 // Note that it is safe to allocate CallExpr on the stack here because 4073 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 4074 // allocator). 4075 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 4076 From->getLocStart()); 4077 ImplicitConversionSequence ICS = 4078 TryCopyInitialization(*this, &Call, ToType, 4079 /*SuppressUserConversions=*/true, 4080 /*InOverloadResolution=*/false); 4081 4082 switch (ICS.getKind()) { 4083 case ImplicitConversionSequence::StandardConversion: 4084 Candidate.FinalConversion = ICS.Standard; 4085 4086 // C++ [over.ics.user]p3: 4087 // If the user-defined conversion is specified by a specialization of a 4088 // conversion function template, the second standard conversion sequence 4089 // shall have exact match rank. 4090 if (Conversion->getPrimaryTemplate() && 4091 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 4092 Candidate.Viable = false; 4093 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 4094 } 4095 4096 // C++0x [dcl.init.ref]p5: 4097 // In the second case, if the reference is an rvalue reference and 4098 // the second standard conversion sequence of the user-defined 4099 // conversion sequence includes an lvalue-to-rvalue conversion, the 4100 // program is ill-formed. 4101 if (ToType->isRValueReferenceType() && 4102 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4103 Candidate.Viable = false; 4104 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4105 } 4106 break; 4107 4108 case ImplicitConversionSequence::BadConversion: 4109 Candidate.Viable = false; 4110 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4111 break; 4112 4113 default: 4114 assert(false && 4115 "Can only end up with a standard conversion sequence or failure"); 4116 } 4117} 4118 4119/// \brief Adds a conversion function template specialization 4120/// candidate to the overload set, using template argument deduction 4121/// to deduce the template arguments of the conversion function 4122/// template from the type that we are converting to (C++ 4123/// [temp.deduct.conv]). 4124void 4125Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 4126 DeclAccessPair FoundDecl, 4127 CXXRecordDecl *ActingDC, 4128 Expr *From, QualType ToType, 4129 OverloadCandidateSet &CandidateSet) { 4130 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 4131 "Only conversion function templates permitted here"); 4132 4133 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4134 return; 4135 4136 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4137 CXXConversionDecl *Specialization = 0; 4138 if (TemplateDeductionResult Result 4139 = DeduceTemplateArguments(FunctionTemplate, ToType, 4140 Specialization, Info)) { 4141 CandidateSet.push_back(OverloadCandidate()); 4142 OverloadCandidate &Candidate = CandidateSet.back(); 4143 Candidate.FoundDecl = FoundDecl; 4144 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4145 Candidate.Viable = false; 4146 Candidate.FailureKind = ovl_fail_bad_deduction; 4147 Candidate.IsSurrogate = false; 4148 Candidate.IgnoreObjectArgument = false; 4149 Candidate.ExplicitCallArguments = 1; 4150 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4151 Info); 4152 return; 4153 } 4154 4155 // Add the conversion function template specialization produced by 4156 // template argument deduction as a candidate. 4157 assert(Specialization && "Missing function template specialization?"); 4158 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 4159 CandidateSet); 4160} 4161 4162/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 4163/// converts the given @c Object to a function pointer via the 4164/// conversion function @c Conversion, and then attempts to call it 4165/// with the given arguments (C++ [over.call.object]p2-4). Proto is 4166/// the type of function that we'll eventually be calling. 4167void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 4168 DeclAccessPair FoundDecl, 4169 CXXRecordDecl *ActingContext, 4170 const FunctionProtoType *Proto, 4171 Expr *Object, 4172 Expr **Args, unsigned NumArgs, 4173 OverloadCandidateSet& CandidateSet) { 4174 if (!CandidateSet.isNewCandidate(Conversion)) 4175 return; 4176 4177 // Overload resolution is always an unevaluated context. 4178 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4179 4180 CandidateSet.push_back(OverloadCandidate()); 4181 OverloadCandidate& Candidate = CandidateSet.back(); 4182 Candidate.FoundDecl = FoundDecl; 4183 Candidate.Function = 0; 4184 Candidate.Surrogate = Conversion; 4185 Candidate.Viable = true; 4186 Candidate.IsSurrogate = true; 4187 Candidate.IgnoreObjectArgument = false; 4188 Candidate.Conversions.resize(NumArgs + 1); 4189 Candidate.ExplicitCallArguments = NumArgs; 4190 4191 // Determine the implicit conversion sequence for the implicit 4192 // object parameter. 4193 ImplicitConversionSequence ObjectInit 4194 = TryObjectArgumentInitialization(*this, Object->getType(), 4195 Object->Classify(Context), 4196 Conversion, ActingContext); 4197 if (ObjectInit.isBad()) { 4198 Candidate.Viable = false; 4199 Candidate.FailureKind = ovl_fail_bad_conversion; 4200 Candidate.Conversions[0] = ObjectInit; 4201 return; 4202 } 4203 4204 // The first conversion is actually a user-defined conversion whose 4205 // first conversion is ObjectInit's standard conversion (which is 4206 // effectively a reference binding). Record it as such. 4207 Candidate.Conversions[0].setUserDefined(); 4208 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 4209 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 4210 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 4211 Candidate.Conversions[0].UserDefined.FoundConversionFunction 4212 = FoundDecl.getDecl(); 4213 Candidate.Conversions[0].UserDefined.After 4214 = Candidate.Conversions[0].UserDefined.Before; 4215 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 4216 4217 // Find the 4218 unsigned NumArgsInProto = Proto->getNumArgs(); 4219 4220 // (C++ 13.3.2p2): A candidate function having fewer than m 4221 // parameters is viable only if it has an ellipsis in its parameter 4222 // list (8.3.5). 4223 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4224 Candidate.Viable = false; 4225 Candidate.FailureKind = ovl_fail_too_many_arguments; 4226 return; 4227 } 4228 4229 // Function types don't have any default arguments, so just check if 4230 // we have enough arguments. 4231 if (NumArgs < NumArgsInProto) { 4232 // Not enough arguments. 4233 Candidate.Viable = false; 4234 Candidate.FailureKind = ovl_fail_too_few_arguments; 4235 return; 4236 } 4237 4238 // Determine the implicit conversion sequences for each of the 4239 // arguments. 4240 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4241 if (ArgIdx < NumArgsInProto) { 4242 // (C++ 13.3.2p3): for F to be a viable function, there shall 4243 // exist for each argument an implicit conversion sequence 4244 // (13.3.3.1) that converts that argument to the corresponding 4245 // parameter of F. 4246 QualType ParamType = Proto->getArgType(ArgIdx); 4247 Candidate.Conversions[ArgIdx + 1] 4248 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4249 /*SuppressUserConversions=*/false, 4250 /*InOverloadResolution=*/false); 4251 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4252 Candidate.Viable = false; 4253 Candidate.FailureKind = ovl_fail_bad_conversion; 4254 break; 4255 } 4256 } else { 4257 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4258 // argument for which there is no corresponding parameter is 4259 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4260 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4261 } 4262 } 4263} 4264 4265/// \brief Add overload candidates for overloaded operators that are 4266/// member functions. 4267/// 4268/// Add the overloaded operator candidates that are member functions 4269/// for the operator Op that was used in an operator expression such 4270/// as "x Op y". , Args/NumArgs provides the operator arguments, and 4271/// CandidateSet will store the added overload candidates. (C++ 4272/// [over.match.oper]). 4273void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4274 SourceLocation OpLoc, 4275 Expr **Args, unsigned NumArgs, 4276 OverloadCandidateSet& CandidateSet, 4277 SourceRange OpRange) { 4278 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4279 4280 // C++ [over.match.oper]p3: 4281 // For a unary operator @ with an operand of a type whose 4282 // cv-unqualified version is T1, and for a binary operator @ with 4283 // a left operand of a type whose cv-unqualified version is T1 and 4284 // a right operand of a type whose cv-unqualified version is T2, 4285 // three sets of candidate functions, designated member 4286 // candidates, non-member candidates and built-in candidates, are 4287 // constructed as follows: 4288 QualType T1 = Args[0]->getType(); 4289 4290 // -- If T1 is a class type, the set of member candidates is the 4291 // result of the qualified lookup of T1::operator@ 4292 // (13.3.1.1.1); otherwise, the set of member candidates is 4293 // empty. 4294 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4295 // Complete the type if it can be completed. Otherwise, we're done. 4296 if (RequireCompleteType(OpLoc, T1, PDiag())) 4297 return; 4298 4299 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4300 LookupQualifiedName(Operators, T1Rec->getDecl()); 4301 Operators.suppressDiagnostics(); 4302 4303 for (LookupResult::iterator Oper = Operators.begin(), 4304 OperEnd = Operators.end(); 4305 Oper != OperEnd; 4306 ++Oper) 4307 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4308 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 4309 CandidateSet, 4310 /* SuppressUserConversions = */ false); 4311 } 4312} 4313 4314/// AddBuiltinCandidate - Add a candidate for a built-in 4315/// operator. ResultTy and ParamTys are the result and parameter types 4316/// of the built-in candidate, respectively. Args and NumArgs are the 4317/// arguments being passed to the candidate. IsAssignmentOperator 4318/// should be true when this built-in candidate is an assignment 4319/// operator. NumContextualBoolArguments is the number of arguments 4320/// (at the beginning of the argument list) that will be contextually 4321/// converted to bool. 4322void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4323 Expr **Args, unsigned NumArgs, 4324 OverloadCandidateSet& CandidateSet, 4325 bool IsAssignmentOperator, 4326 unsigned NumContextualBoolArguments) { 4327 // Overload resolution is always an unevaluated context. 4328 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4329 4330 // Add this candidate 4331 CandidateSet.push_back(OverloadCandidate()); 4332 OverloadCandidate& Candidate = CandidateSet.back(); 4333 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4334 Candidate.Function = 0; 4335 Candidate.IsSurrogate = false; 4336 Candidate.IgnoreObjectArgument = false; 4337 Candidate.BuiltinTypes.ResultTy = ResultTy; 4338 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4339 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4340 4341 // Determine the implicit conversion sequences for each of the 4342 // arguments. 4343 Candidate.Viable = true; 4344 Candidate.Conversions.resize(NumArgs); 4345 Candidate.ExplicitCallArguments = NumArgs; 4346 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4347 // C++ [over.match.oper]p4: 4348 // For the built-in assignment operators, conversions of the 4349 // left operand are restricted as follows: 4350 // -- no temporaries are introduced to hold the left operand, and 4351 // -- no user-defined conversions are applied to the left 4352 // operand to achieve a type match with the left-most 4353 // parameter of a built-in candidate. 4354 // 4355 // We block these conversions by turning off user-defined 4356 // conversions, since that is the only way that initialization of 4357 // a reference to a non-class type can occur from something that 4358 // is not of the same type. 4359 if (ArgIdx < NumContextualBoolArguments) { 4360 assert(ParamTys[ArgIdx] == Context.BoolTy && 4361 "Contextual conversion to bool requires bool type"); 4362 Candidate.Conversions[ArgIdx] 4363 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4364 } else { 4365 Candidate.Conversions[ArgIdx] 4366 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4367 ArgIdx == 0 && IsAssignmentOperator, 4368 /*InOverloadResolution=*/false); 4369 } 4370 if (Candidate.Conversions[ArgIdx].isBad()) { 4371 Candidate.Viable = false; 4372 Candidate.FailureKind = ovl_fail_bad_conversion; 4373 break; 4374 } 4375 } 4376} 4377 4378/// BuiltinCandidateTypeSet - A set of types that will be used for the 4379/// candidate operator functions for built-in operators (C++ 4380/// [over.built]). The types are separated into pointer types and 4381/// enumeration types. 4382class BuiltinCandidateTypeSet { 4383 /// TypeSet - A set of types. 4384 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4385 4386 /// PointerTypes - The set of pointer types that will be used in the 4387 /// built-in candidates. 4388 TypeSet PointerTypes; 4389 4390 /// MemberPointerTypes - The set of member pointer types that will be 4391 /// used in the built-in candidates. 4392 TypeSet MemberPointerTypes; 4393 4394 /// EnumerationTypes - The set of enumeration types that will be 4395 /// used in the built-in candidates. 4396 TypeSet EnumerationTypes; 4397 4398 /// \brief The set of vector types that will be used in the built-in 4399 /// candidates. 4400 TypeSet VectorTypes; 4401 4402 /// \brief A flag indicating non-record types are viable candidates 4403 bool HasNonRecordTypes; 4404 4405 /// \brief A flag indicating whether either arithmetic or enumeration types 4406 /// were present in the candidate set. 4407 bool HasArithmeticOrEnumeralTypes; 4408 4409 /// Sema - The semantic analysis instance where we are building the 4410 /// candidate type set. 4411 Sema &SemaRef; 4412 4413 /// Context - The AST context in which we will build the type sets. 4414 ASTContext &Context; 4415 4416 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4417 const Qualifiers &VisibleQuals); 4418 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4419 4420public: 4421 /// iterator - Iterates through the types that are part of the set. 4422 typedef TypeSet::iterator iterator; 4423 4424 BuiltinCandidateTypeSet(Sema &SemaRef) 4425 : HasNonRecordTypes(false), 4426 HasArithmeticOrEnumeralTypes(false), 4427 SemaRef(SemaRef), 4428 Context(SemaRef.Context) { } 4429 4430 void AddTypesConvertedFrom(QualType Ty, 4431 SourceLocation Loc, 4432 bool AllowUserConversions, 4433 bool AllowExplicitConversions, 4434 const Qualifiers &VisibleTypeConversionsQuals); 4435 4436 /// pointer_begin - First pointer type found; 4437 iterator pointer_begin() { return PointerTypes.begin(); } 4438 4439 /// pointer_end - Past the last pointer type found; 4440 iterator pointer_end() { return PointerTypes.end(); } 4441 4442 /// member_pointer_begin - First member pointer type found; 4443 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4444 4445 /// member_pointer_end - Past the last member pointer type found; 4446 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4447 4448 /// enumeration_begin - First enumeration type found; 4449 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4450 4451 /// enumeration_end - Past the last enumeration type found; 4452 iterator enumeration_end() { return EnumerationTypes.end(); } 4453 4454 iterator vector_begin() { return VectorTypes.begin(); } 4455 iterator vector_end() { return VectorTypes.end(); } 4456 4457 bool hasNonRecordTypes() { return HasNonRecordTypes; } 4458 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 4459}; 4460 4461/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4462/// the set of pointer types along with any more-qualified variants of 4463/// that type. For example, if @p Ty is "int const *", this routine 4464/// will add "int const *", "int const volatile *", "int const 4465/// restrict *", and "int const volatile restrict *" to the set of 4466/// pointer types. Returns true if the add of @p Ty itself succeeded, 4467/// false otherwise. 4468/// 4469/// FIXME: what to do about extended qualifiers? 4470bool 4471BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4472 const Qualifiers &VisibleQuals) { 4473 4474 // Insert this type. 4475 if (!PointerTypes.insert(Ty)) 4476 return false; 4477 4478 QualType PointeeTy; 4479 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4480 bool buildObjCPtr = false; 4481 if (!PointerTy) { 4482 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 4483 PointeeTy = PTy->getPointeeType(); 4484 buildObjCPtr = true; 4485 } 4486 else 4487 assert(false && "type was not a pointer type!"); 4488 } 4489 else 4490 PointeeTy = PointerTy->getPointeeType(); 4491 4492 // Don't add qualified variants of arrays. For one, they're not allowed 4493 // (the qualifier would sink to the element type), and for another, the 4494 // only overload situation where it matters is subscript or pointer +- int, 4495 // and those shouldn't have qualifier variants anyway. 4496 if (PointeeTy->isArrayType()) 4497 return true; 4498 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4499 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4500 BaseCVR = Array->getElementType().getCVRQualifiers(); 4501 bool hasVolatile = VisibleQuals.hasVolatile(); 4502 bool hasRestrict = VisibleQuals.hasRestrict(); 4503 4504 // Iterate through all strict supersets of BaseCVR. 4505 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4506 if ((CVR | BaseCVR) != CVR) continue; 4507 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4508 // in the types. 4509 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4510 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4511 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4512 if (!buildObjCPtr) 4513 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4514 else 4515 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 4516 } 4517 4518 return true; 4519} 4520 4521/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4522/// to the set of pointer types along with any more-qualified variants of 4523/// that type. For example, if @p Ty is "int const *", this routine 4524/// will add "int const *", "int const volatile *", "int const 4525/// restrict *", and "int const volatile restrict *" to the set of 4526/// pointer types. Returns true if the add of @p Ty itself succeeded, 4527/// false otherwise. 4528/// 4529/// FIXME: what to do about extended qualifiers? 4530bool 4531BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4532 QualType Ty) { 4533 // Insert this type. 4534 if (!MemberPointerTypes.insert(Ty)) 4535 return false; 4536 4537 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4538 assert(PointerTy && "type was not a member pointer type!"); 4539 4540 QualType PointeeTy = PointerTy->getPointeeType(); 4541 // Don't add qualified variants of arrays. For one, they're not allowed 4542 // (the qualifier would sink to the element type), and for another, the 4543 // only overload situation where it matters is subscript or pointer +- int, 4544 // and those shouldn't have qualifier variants anyway. 4545 if (PointeeTy->isArrayType()) 4546 return true; 4547 const Type *ClassTy = PointerTy->getClass(); 4548 4549 // Iterate through all strict supersets of the pointee type's CVR 4550 // qualifiers. 4551 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4552 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4553 if ((CVR | BaseCVR) != CVR) continue; 4554 4555 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4556 MemberPointerTypes.insert( 4557 Context.getMemberPointerType(QPointeeTy, ClassTy)); 4558 } 4559 4560 return true; 4561} 4562 4563/// AddTypesConvertedFrom - Add each of the types to which the type @p 4564/// Ty can be implicit converted to the given set of @p Types. We're 4565/// primarily interested in pointer types and enumeration types. We also 4566/// take member pointer types, for the conditional operator. 4567/// AllowUserConversions is true if we should look at the conversion 4568/// functions of a class type, and AllowExplicitConversions if we 4569/// should also include the explicit conversion functions of a class 4570/// type. 4571void 4572BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4573 SourceLocation Loc, 4574 bool AllowUserConversions, 4575 bool AllowExplicitConversions, 4576 const Qualifiers &VisibleQuals) { 4577 // Only deal with canonical types. 4578 Ty = Context.getCanonicalType(Ty); 4579 4580 // Look through reference types; they aren't part of the type of an 4581 // expression for the purposes of conversions. 4582 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4583 Ty = RefTy->getPointeeType(); 4584 4585 // If we're dealing with an array type, decay to the pointer. 4586 if (Ty->isArrayType()) 4587 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4588 4589 // Otherwise, we don't care about qualifiers on the type. 4590 Ty = Ty.getLocalUnqualifiedType(); 4591 4592 // Flag if we ever add a non-record type. 4593 const RecordType *TyRec = Ty->getAs<RecordType>(); 4594 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 4595 4596 // Flag if we encounter an arithmetic type. 4597 HasArithmeticOrEnumeralTypes = 4598 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 4599 4600 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 4601 PointerTypes.insert(Ty); 4602 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 4603 // Insert our type, and its more-qualified variants, into the set 4604 // of types. 4605 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4606 return; 4607 } else if (Ty->isMemberPointerType()) { 4608 // Member pointers are far easier, since the pointee can't be converted. 4609 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4610 return; 4611 } else if (Ty->isEnumeralType()) { 4612 HasArithmeticOrEnumeralTypes = true; 4613 EnumerationTypes.insert(Ty); 4614 } else if (Ty->isVectorType()) { 4615 // We treat vector types as arithmetic types in many contexts as an 4616 // extension. 4617 HasArithmeticOrEnumeralTypes = true; 4618 VectorTypes.insert(Ty); 4619 } else if (AllowUserConversions && TyRec) { 4620 // No conversion functions in incomplete types. 4621 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 4622 return; 4623 4624 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4625 const UnresolvedSetImpl *Conversions 4626 = ClassDecl->getVisibleConversionFunctions(); 4627 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4628 E = Conversions->end(); I != E; ++I) { 4629 NamedDecl *D = I.getDecl(); 4630 if (isa<UsingShadowDecl>(D)) 4631 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4632 4633 // Skip conversion function templates; they don't tell us anything 4634 // about which builtin types we can convert to. 4635 if (isa<FunctionTemplateDecl>(D)) 4636 continue; 4637 4638 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4639 if (AllowExplicitConversions || !Conv->isExplicit()) { 4640 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4641 VisibleQuals); 4642 } 4643 } 4644 } 4645} 4646 4647/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4648/// the volatile- and non-volatile-qualified assignment operators for the 4649/// given type to the candidate set. 4650static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4651 QualType T, 4652 Expr **Args, 4653 unsigned NumArgs, 4654 OverloadCandidateSet &CandidateSet) { 4655 QualType ParamTypes[2]; 4656 4657 // T& operator=(T&, T) 4658 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4659 ParamTypes[1] = T; 4660 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4661 /*IsAssignmentOperator=*/true); 4662 4663 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4664 // volatile T& operator=(volatile T&, T) 4665 ParamTypes[0] 4666 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4667 ParamTypes[1] = T; 4668 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4669 /*IsAssignmentOperator=*/true); 4670 } 4671} 4672 4673/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4674/// if any, found in visible type conversion functions found in ArgExpr's type. 4675static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4676 Qualifiers VRQuals; 4677 const RecordType *TyRec; 4678 if (const MemberPointerType *RHSMPType = 4679 ArgExpr->getType()->getAs<MemberPointerType>()) 4680 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4681 else 4682 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4683 if (!TyRec) { 4684 // Just to be safe, assume the worst case. 4685 VRQuals.addVolatile(); 4686 VRQuals.addRestrict(); 4687 return VRQuals; 4688 } 4689 4690 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4691 if (!ClassDecl->hasDefinition()) 4692 return VRQuals; 4693 4694 const UnresolvedSetImpl *Conversions = 4695 ClassDecl->getVisibleConversionFunctions(); 4696 4697 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4698 E = Conversions->end(); I != E; ++I) { 4699 NamedDecl *D = I.getDecl(); 4700 if (isa<UsingShadowDecl>(D)) 4701 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4702 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4703 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4704 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4705 CanTy = ResTypeRef->getPointeeType(); 4706 // Need to go down the pointer/mempointer chain and add qualifiers 4707 // as see them. 4708 bool done = false; 4709 while (!done) { 4710 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4711 CanTy = ResTypePtr->getPointeeType(); 4712 else if (const MemberPointerType *ResTypeMPtr = 4713 CanTy->getAs<MemberPointerType>()) 4714 CanTy = ResTypeMPtr->getPointeeType(); 4715 else 4716 done = true; 4717 if (CanTy.isVolatileQualified()) 4718 VRQuals.addVolatile(); 4719 if (CanTy.isRestrictQualified()) 4720 VRQuals.addRestrict(); 4721 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4722 return VRQuals; 4723 } 4724 } 4725 } 4726 return VRQuals; 4727} 4728 4729namespace { 4730 4731/// \brief Helper class to manage the addition of builtin operator overload 4732/// candidates. It provides shared state and utility methods used throughout 4733/// the process, as well as a helper method to add each group of builtin 4734/// operator overloads from the standard to a candidate set. 4735class BuiltinOperatorOverloadBuilder { 4736 // Common instance state available to all overload candidate addition methods. 4737 Sema &S; 4738 Expr **Args; 4739 unsigned NumArgs; 4740 Qualifiers VisibleTypeConversionsQuals; 4741 bool HasArithmeticOrEnumeralCandidateType; 4742 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 4743 OverloadCandidateSet &CandidateSet; 4744 4745 // Define some constants used to index and iterate over the arithemetic types 4746 // provided via the getArithmeticType() method below. 4747 // The "promoted arithmetic types" are the arithmetic 4748 // types are that preserved by promotion (C++ [over.built]p2). 4749 static const unsigned FirstIntegralType = 3; 4750 static const unsigned LastIntegralType = 18; 4751 static const unsigned FirstPromotedIntegralType = 3, 4752 LastPromotedIntegralType = 9; 4753 static const unsigned FirstPromotedArithmeticType = 0, 4754 LastPromotedArithmeticType = 9; 4755 static const unsigned NumArithmeticTypes = 18; 4756 4757 /// \brief Get the canonical type for a given arithmetic type index. 4758 CanQualType getArithmeticType(unsigned index) { 4759 assert(index < NumArithmeticTypes); 4760 static CanQualType ASTContext::* const 4761 ArithmeticTypes[NumArithmeticTypes] = { 4762 // Start of promoted types. 4763 &ASTContext::FloatTy, 4764 &ASTContext::DoubleTy, 4765 &ASTContext::LongDoubleTy, 4766 4767 // Start of integral types. 4768 &ASTContext::IntTy, 4769 &ASTContext::LongTy, 4770 &ASTContext::LongLongTy, 4771 &ASTContext::UnsignedIntTy, 4772 &ASTContext::UnsignedLongTy, 4773 &ASTContext::UnsignedLongLongTy, 4774 // End of promoted types. 4775 4776 &ASTContext::BoolTy, 4777 &ASTContext::CharTy, 4778 &ASTContext::WCharTy, 4779 &ASTContext::Char16Ty, 4780 &ASTContext::Char32Ty, 4781 &ASTContext::SignedCharTy, 4782 &ASTContext::ShortTy, 4783 &ASTContext::UnsignedCharTy, 4784 &ASTContext::UnsignedShortTy, 4785 // End of integral types. 4786 // FIXME: What about complex? 4787 }; 4788 return S.Context.*ArithmeticTypes[index]; 4789 } 4790 4791 /// \brief Gets the canonical type resulting from the usual arithemetic 4792 /// converions for the given arithmetic types. 4793 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 4794 // Accelerator table for performing the usual arithmetic conversions. 4795 // The rules are basically: 4796 // - if either is floating-point, use the wider floating-point 4797 // - if same signedness, use the higher rank 4798 // - if same size, use unsigned of the higher rank 4799 // - use the larger type 4800 // These rules, together with the axiom that higher ranks are 4801 // never smaller, are sufficient to precompute all of these results 4802 // *except* when dealing with signed types of higher rank. 4803 // (we could precompute SLL x UI for all known platforms, but it's 4804 // better not to make any assumptions). 4805 enum PromotedType { 4806 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 4807 }; 4808 static PromotedType ConversionsTable[LastPromotedArithmeticType] 4809 [LastPromotedArithmeticType] = { 4810 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 4811 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 4812 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 4813 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 4814 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 4815 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 4816 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 4817 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 4818 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 4819 }; 4820 4821 assert(L < LastPromotedArithmeticType); 4822 assert(R < LastPromotedArithmeticType); 4823 int Idx = ConversionsTable[L][R]; 4824 4825 // Fast path: the table gives us a concrete answer. 4826 if (Idx != Dep) return getArithmeticType(Idx); 4827 4828 // Slow path: we need to compare widths. 4829 // An invariant is that the signed type has higher rank. 4830 CanQualType LT = getArithmeticType(L), 4831 RT = getArithmeticType(R); 4832 unsigned LW = S.Context.getIntWidth(LT), 4833 RW = S.Context.getIntWidth(RT); 4834 4835 // If they're different widths, use the signed type. 4836 if (LW > RW) return LT; 4837 else if (LW < RW) return RT; 4838 4839 // Otherwise, use the unsigned type of the signed type's rank. 4840 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 4841 assert(L == SLL || R == SLL); 4842 return S.Context.UnsignedLongLongTy; 4843 } 4844 4845 /// \brief Helper method to factor out the common pattern of adding overloads 4846 /// for '++' and '--' builtin operators. 4847 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 4848 bool HasVolatile) { 4849 QualType ParamTypes[2] = { 4850 S.Context.getLValueReferenceType(CandidateTy), 4851 S.Context.IntTy 4852 }; 4853 4854 // Non-volatile version. 4855 if (NumArgs == 1) 4856 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4857 else 4858 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 4859 4860 // Use a heuristic to reduce number of builtin candidates in the set: 4861 // add volatile version only if there are conversions to a volatile type. 4862 if (HasVolatile) { 4863 ParamTypes[0] = 4864 S.Context.getLValueReferenceType( 4865 S.Context.getVolatileType(CandidateTy)); 4866 if (NumArgs == 1) 4867 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4868 else 4869 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 4870 } 4871 } 4872 4873public: 4874 BuiltinOperatorOverloadBuilder( 4875 Sema &S, Expr **Args, unsigned NumArgs, 4876 Qualifiers VisibleTypeConversionsQuals, 4877 bool HasArithmeticOrEnumeralCandidateType, 4878 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 4879 OverloadCandidateSet &CandidateSet) 4880 : S(S), Args(Args), NumArgs(NumArgs), 4881 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 4882 HasArithmeticOrEnumeralCandidateType( 4883 HasArithmeticOrEnumeralCandidateType), 4884 CandidateTypes(CandidateTypes), 4885 CandidateSet(CandidateSet) { 4886 // Validate some of our static helper constants in debug builds. 4887 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 4888 "Invalid first promoted integral type"); 4889 assert(getArithmeticType(LastPromotedIntegralType - 1) 4890 == S.Context.UnsignedLongLongTy && 4891 "Invalid last promoted integral type"); 4892 assert(getArithmeticType(FirstPromotedArithmeticType) 4893 == S.Context.FloatTy && 4894 "Invalid first promoted arithmetic type"); 4895 assert(getArithmeticType(LastPromotedArithmeticType - 1) 4896 == S.Context.UnsignedLongLongTy && 4897 "Invalid last promoted arithmetic type"); 4898 } 4899 4900 // C++ [over.built]p3: 4901 // 4902 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4903 // is either volatile or empty, there exist candidate operator 4904 // functions of the form 4905 // 4906 // VQ T& operator++(VQ T&); 4907 // T operator++(VQ T&, int); 4908 // 4909 // C++ [over.built]p4: 4910 // 4911 // For every pair (T, VQ), where T is an arithmetic type other 4912 // than bool, and VQ is either volatile or empty, there exist 4913 // candidate operator functions of the form 4914 // 4915 // VQ T& operator--(VQ T&); 4916 // T operator--(VQ T&, int); 4917 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 4918 if (!HasArithmeticOrEnumeralCandidateType) 4919 return; 4920 4921 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4922 Arith < NumArithmeticTypes; ++Arith) { 4923 addPlusPlusMinusMinusStyleOverloads( 4924 getArithmeticType(Arith), 4925 VisibleTypeConversionsQuals.hasVolatile()); 4926 } 4927 } 4928 4929 // C++ [over.built]p5: 4930 // 4931 // For every pair (T, VQ), where T is a cv-qualified or 4932 // cv-unqualified object type, and VQ is either volatile or 4933 // empty, there exist candidate operator functions of the form 4934 // 4935 // T*VQ& operator++(T*VQ&); 4936 // T*VQ& operator--(T*VQ&); 4937 // T* operator++(T*VQ&, int); 4938 // T* operator--(T*VQ&, int); 4939 void addPlusPlusMinusMinusPointerOverloads() { 4940 for (BuiltinCandidateTypeSet::iterator 4941 Ptr = CandidateTypes[0].pointer_begin(), 4942 PtrEnd = CandidateTypes[0].pointer_end(); 4943 Ptr != PtrEnd; ++Ptr) { 4944 // Skip pointer types that aren't pointers to object types. 4945 if (!(*Ptr)->getPointeeType()->isObjectType()) 4946 continue; 4947 4948 addPlusPlusMinusMinusStyleOverloads(*Ptr, 4949 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 4950 VisibleTypeConversionsQuals.hasVolatile())); 4951 } 4952 } 4953 4954 // C++ [over.built]p6: 4955 // For every cv-qualified or cv-unqualified object type T, there 4956 // exist candidate operator functions of the form 4957 // 4958 // T& operator*(T*); 4959 // 4960 // C++ [over.built]p7: 4961 // For every function type T that does not have cv-qualifiers or a 4962 // ref-qualifier, there exist candidate operator functions of the form 4963 // T& operator*(T*); 4964 void addUnaryStarPointerOverloads() { 4965 for (BuiltinCandidateTypeSet::iterator 4966 Ptr = CandidateTypes[0].pointer_begin(), 4967 PtrEnd = CandidateTypes[0].pointer_end(); 4968 Ptr != PtrEnd; ++Ptr) { 4969 QualType ParamTy = *Ptr; 4970 QualType PointeeTy = ParamTy->getPointeeType(); 4971 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 4972 continue; 4973 4974 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 4975 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 4976 continue; 4977 4978 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 4979 &ParamTy, Args, 1, CandidateSet); 4980 } 4981 } 4982 4983 // C++ [over.built]p9: 4984 // For every promoted arithmetic type T, there exist candidate 4985 // operator functions of the form 4986 // 4987 // T operator+(T); 4988 // T operator-(T); 4989 void addUnaryPlusOrMinusArithmeticOverloads() { 4990 if (!HasArithmeticOrEnumeralCandidateType) 4991 return; 4992 4993 for (unsigned Arith = FirstPromotedArithmeticType; 4994 Arith < LastPromotedArithmeticType; ++Arith) { 4995 QualType ArithTy = getArithmeticType(Arith); 4996 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4997 } 4998 4999 // Extension: We also add these operators for vector types. 5000 for (BuiltinCandidateTypeSet::iterator 5001 Vec = CandidateTypes[0].vector_begin(), 5002 VecEnd = CandidateTypes[0].vector_end(); 5003 Vec != VecEnd; ++Vec) { 5004 QualType VecTy = *Vec; 5005 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5006 } 5007 } 5008 5009 // C++ [over.built]p8: 5010 // For every type T, there exist candidate operator functions of 5011 // the form 5012 // 5013 // T* operator+(T*); 5014 void addUnaryPlusPointerOverloads() { 5015 for (BuiltinCandidateTypeSet::iterator 5016 Ptr = CandidateTypes[0].pointer_begin(), 5017 PtrEnd = CandidateTypes[0].pointer_end(); 5018 Ptr != PtrEnd; ++Ptr) { 5019 QualType ParamTy = *Ptr; 5020 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 5021 } 5022 } 5023 5024 // C++ [over.built]p10: 5025 // For every promoted integral type T, there exist candidate 5026 // operator functions of the form 5027 // 5028 // T operator~(T); 5029 void addUnaryTildePromotedIntegralOverloads() { 5030 if (!HasArithmeticOrEnumeralCandidateType) 5031 return; 5032 5033 for (unsigned Int = FirstPromotedIntegralType; 5034 Int < LastPromotedIntegralType; ++Int) { 5035 QualType IntTy = getArithmeticType(Int); 5036 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 5037 } 5038 5039 // Extension: We also add this operator for vector types. 5040 for (BuiltinCandidateTypeSet::iterator 5041 Vec = CandidateTypes[0].vector_begin(), 5042 VecEnd = CandidateTypes[0].vector_end(); 5043 Vec != VecEnd; ++Vec) { 5044 QualType VecTy = *Vec; 5045 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5046 } 5047 } 5048 5049 // C++ [over.match.oper]p16: 5050 // For every pointer to member type T, there exist candidate operator 5051 // functions of the form 5052 // 5053 // bool operator==(T,T); 5054 // bool operator!=(T,T); 5055 void addEqualEqualOrNotEqualMemberPointerOverloads() { 5056 /// Set of (canonical) types that we've already handled. 5057 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5058 5059 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5060 for (BuiltinCandidateTypeSet::iterator 5061 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5062 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5063 MemPtr != MemPtrEnd; 5064 ++MemPtr) { 5065 // Don't add the same builtin candidate twice. 5066 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5067 continue; 5068 5069 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5070 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5071 CandidateSet); 5072 } 5073 } 5074 } 5075 5076 // C++ [over.built]p15: 5077 // 5078 // For every pointer or enumeration type T, there exist 5079 // candidate operator functions of the form 5080 // 5081 // bool operator<(T, T); 5082 // bool operator>(T, T); 5083 // bool operator<=(T, T); 5084 // bool operator>=(T, T); 5085 // bool operator==(T, T); 5086 // bool operator!=(T, T); 5087 void addRelationalPointerOrEnumeralOverloads() { 5088 // C++ [over.built]p1: 5089 // If there is a user-written candidate with the same name and parameter 5090 // types as a built-in candidate operator function, the built-in operator 5091 // function is hidden and is not included in the set of candidate 5092 // functions. 5093 // 5094 // The text is actually in a note, but if we don't implement it then we end 5095 // up with ambiguities when the user provides an overloaded operator for 5096 // an enumeration type. Note that only enumeration types have this problem, 5097 // so we track which enumeration types we've seen operators for. Also, the 5098 // only other overloaded operator with enumeration argumenst, operator=, 5099 // cannot be overloaded for enumeration types, so this is the only place 5100 // where we must suppress candidates like this. 5101 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 5102 UserDefinedBinaryOperators; 5103 5104 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5105 if (CandidateTypes[ArgIdx].enumeration_begin() != 5106 CandidateTypes[ArgIdx].enumeration_end()) { 5107 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 5108 CEnd = CandidateSet.end(); 5109 C != CEnd; ++C) { 5110 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 5111 continue; 5112 5113 QualType FirstParamType = 5114 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 5115 QualType SecondParamType = 5116 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 5117 5118 // Skip if either parameter isn't of enumeral type. 5119 if (!FirstParamType->isEnumeralType() || 5120 !SecondParamType->isEnumeralType()) 5121 continue; 5122 5123 // Add this operator to the set of known user-defined operators. 5124 UserDefinedBinaryOperators.insert( 5125 std::make_pair(S.Context.getCanonicalType(FirstParamType), 5126 S.Context.getCanonicalType(SecondParamType))); 5127 } 5128 } 5129 } 5130 5131 /// Set of (canonical) types that we've already handled. 5132 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5133 5134 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5135 for (BuiltinCandidateTypeSet::iterator 5136 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5137 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5138 Ptr != PtrEnd; ++Ptr) { 5139 // Don't add the same builtin candidate twice. 5140 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5141 continue; 5142 5143 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5144 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5145 CandidateSet); 5146 } 5147 for (BuiltinCandidateTypeSet::iterator 5148 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5149 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5150 Enum != EnumEnd; ++Enum) { 5151 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 5152 5153 // Don't add the same builtin candidate twice, or if a user defined 5154 // candidate exists. 5155 if (!AddedTypes.insert(CanonType) || 5156 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 5157 CanonType))) 5158 continue; 5159 5160 QualType ParamTypes[2] = { *Enum, *Enum }; 5161 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5162 CandidateSet); 5163 } 5164 } 5165 } 5166 5167 // C++ [over.built]p13: 5168 // 5169 // For every cv-qualified or cv-unqualified object type T 5170 // there exist candidate operator functions of the form 5171 // 5172 // T* operator+(T*, ptrdiff_t); 5173 // T& operator[](T*, ptrdiff_t); [BELOW] 5174 // T* operator-(T*, ptrdiff_t); 5175 // T* operator+(ptrdiff_t, T*); 5176 // T& operator[](ptrdiff_t, T*); [BELOW] 5177 // 5178 // C++ [over.built]p14: 5179 // 5180 // For every T, where T is a pointer to object type, there 5181 // exist candidate operator functions of the form 5182 // 5183 // ptrdiff_t operator-(T, T); 5184 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 5185 /// Set of (canonical) types that we've already handled. 5186 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5187 5188 for (int Arg = 0; Arg < 2; ++Arg) { 5189 QualType AsymetricParamTypes[2] = { 5190 S.Context.getPointerDiffType(), 5191 S.Context.getPointerDiffType(), 5192 }; 5193 for (BuiltinCandidateTypeSet::iterator 5194 Ptr = CandidateTypes[Arg].pointer_begin(), 5195 PtrEnd = CandidateTypes[Arg].pointer_end(); 5196 Ptr != PtrEnd; ++Ptr) { 5197 QualType PointeeTy = (*Ptr)->getPointeeType(); 5198 if (!PointeeTy->isObjectType()) 5199 continue; 5200 5201 AsymetricParamTypes[Arg] = *Ptr; 5202 if (Arg == 0 || Op == OO_Plus) { 5203 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 5204 // T* operator+(ptrdiff_t, T*); 5205 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 5206 CandidateSet); 5207 } 5208 if (Op == OO_Minus) { 5209 // ptrdiff_t operator-(T, T); 5210 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5211 continue; 5212 5213 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5214 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 5215 Args, 2, CandidateSet); 5216 } 5217 } 5218 } 5219 } 5220 5221 // C++ [over.built]p12: 5222 // 5223 // For every pair of promoted arithmetic types L and R, there 5224 // exist candidate operator functions of the form 5225 // 5226 // LR operator*(L, R); 5227 // LR operator/(L, R); 5228 // LR operator+(L, R); 5229 // LR operator-(L, R); 5230 // bool operator<(L, R); 5231 // bool operator>(L, R); 5232 // bool operator<=(L, R); 5233 // bool operator>=(L, R); 5234 // bool operator==(L, R); 5235 // bool operator!=(L, R); 5236 // 5237 // where LR is the result of the usual arithmetic conversions 5238 // between types L and R. 5239 // 5240 // C++ [over.built]p24: 5241 // 5242 // For every pair of promoted arithmetic types L and R, there exist 5243 // candidate operator functions of the form 5244 // 5245 // LR operator?(bool, L, R); 5246 // 5247 // where LR is the result of the usual arithmetic conversions 5248 // between types L and R. 5249 // Our candidates ignore the first parameter. 5250 void addGenericBinaryArithmeticOverloads(bool isComparison) { 5251 if (!HasArithmeticOrEnumeralCandidateType) 5252 return; 5253 5254 for (unsigned Left = FirstPromotedArithmeticType; 5255 Left < LastPromotedArithmeticType; ++Left) { 5256 for (unsigned Right = FirstPromotedArithmeticType; 5257 Right < LastPromotedArithmeticType; ++Right) { 5258 QualType LandR[2] = { getArithmeticType(Left), 5259 getArithmeticType(Right) }; 5260 QualType Result = 5261 isComparison ? S.Context.BoolTy 5262 : getUsualArithmeticConversions(Left, Right); 5263 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5264 } 5265 } 5266 5267 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 5268 // conditional operator for vector types. 5269 for (BuiltinCandidateTypeSet::iterator 5270 Vec1 = CandidateTypes[0].vector_begin(), 5271 Vec1End = CandidateTypes[0].vector_end(); 5272 Vec1 != Vec1End; ++Vec1) { 5273 for (BuiltinCandidateTypeSet::iterator 5274 Vec2 = CandidateTypes[1].vector_begin(), 5275 Vec2End = CandidateTypes[1].vector_end(); 5276 Vec2 != Vec2End; ++Vec2) { 5277 QualType LandR[2] = { *Vec1, *Vec2 }; 5278 QualType Result = S.Context.BoolTy; 5279 if (!isComparison) { 5280 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 5281 Result = *Vec1; 5282 else 5283 Result = *Vec2; 5284 } 5285 5286 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5287 } 5288 } 5289 } 5290 5291 // C++ [over.built]p17: 5292 // 5293 // For every pair of promoted integral types L and R, there 5294 // exist candidate operator functions of the form 5295 // 5296 // LR operator%(L, R); 5297 // LR operator&(L, R); 5298 // LR operator^(L, R); 5299 // LR operator|(L, R); 5300 // L operator<<(L, R); 5301 // L operator>>(L, R); 5302 // 5303 // where LR is the result of the usual arithmetic conversions 5304 // between types L and R. 5305 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 5306 if (!HasArithmeticOrEnumeralCandidateType) 5307 return; 5308 5309 for (unsigned Left = FirstPromotedIntegralType; 5310 Left < LastPromotedIntegralType; ++Left) { 5311 for (unsigned Right = FirstPromotedIntegralType; 5312 Right < LastPromotedIntegralType; ++Right) { 5313 QualType LandR[2] = { getArithmeticType(Left), 5314 getArithmeticType(Right) }; 5315 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 5316 ? LandR[0] 5317 : getUsualArithmeticConversions(Left, Right); 5318 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5319 } 5320 } 5321 } 5322 5323 // C++ [over.built]p20: 5324 // 5325 // For every pair (T, VQ), where T is an enumeration or 5326 // pointer to member type and VQ is either volatile or 5327 // empty, there exist candidate operator functions of the form 5328 // 5329 // VQ T& operator=(VQ T&, T); 5330 void addAssignmentMemberPointerOrEnumeralOverloads() { 5331 /// Set of (canonical) types that we've already handled. 5332 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5333 5334 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5335 for (BuiltinCandidateTypeSet::iterator 5336 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5337 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5338 Enum != EnumEnd; ++Enum) { 5339 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5340 continue; 5341 5342 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 5343 CandidateSet); 5344 } 5345 5346 for (BuiltinCandidateTypeSet::iterator 5347 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5348 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5349 MemPtr != MemPtrEnd; ++MemPtr) { 5350 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5351 continue; 5352 5353 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 5354 CandidateSet); 5355 } 5356 } 5357 } 5358 5359 // C++ [over.built]p19: 5360 // 5361 // For every pair (T, VQ), where T is any type and VQ is either 5362 // volatile or empty, there exist candidate operator functions 5363 // of the form 5364 // 5365 // T*VQ& operator=(T*VQ&, T*); 5366 // 5367 // C++ [over.built]p21: 5368 // 5369 // For every pair (T, VQ), where T is a cv-qualified or 5370 // cv-unqualified object type and VQ is either volatile or 5371 // empty, there exist candidate operator functions of the form 5372 // 5373 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5374 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5375 void addAssignmentPointerOverloads(bool isEqualOp) { 5376 /// Set of (canonical) types that we've already handled. 5377 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5378 5379 for (BuiltinCandidateTypeSet::iterator 5380 Ptr = CandidateTypes[0].pointer_begin(), 5381 PtrEnd = CandidateTypes[0].pointer_end(); 5382 Ptr != PtrEnd; ++Ptr) { 5383 // If this is operator=, keep track of the builtin candidates we added. 5384 if (isEqualOp) 5385 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 5386 else if (!(*Ptr)->getPointeeType()->isObjectType()) 5387 continue; 5388 5389 // non-volatile version 5390 QualType ParamTypes[2] = { 5391 S.Context.getLValueReferenceType(*Ptr), 5392 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 5393 }; 5394 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5395 /*IsAssigmentOperator=*/ isEqualOp); 5396 5397 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5398 VisibleTypeConversionsQuals.hasVolatile()) { 5399 // volatile version 5400 ParamTypes[0] = 5401 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5402 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5403 /*IsAssigmentOperator=*/isEqualOp); 5404 } 5405 } 5406 5407 if (isEqualOp) { 5408 for (BuiltinCandidateTypeSet::iterator 5409 Ptr = CandidateTypes[1].pointer_begin(), 5410 PtrEnd = CandidateTypes[1].pointer_end(); 5411 Ptr != PtrEnd; ++Ptr) { 5412 // Make sure we don't add the same candidate twice. 5413 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5414 continue; 5415 5416 QualType ParamTypes[2] = { 5417 S.Context.getLValueReferenceType(*Ptr), 5418 *Ptr, 5419 }; 5420 5421 // non-volatile version 5422 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5423 /*IsAssigmentOperator=*/true); 5424 5425 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5426 VisibleTypeConversionsQuals.hasVolatile()) { 5427 // volatile version 5428 ParamTypes[0] = 5429 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5430 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5431 CandidateSet, /*IsAssigmentOperator=*/true); 5432 } 5433 } 5434 } 5435 } 5436 5437 // C++ [over.built]p18: 5438 // 5439 // For every triple (L, VQ, R), where L is an arithmetic type, 5440 // VQ is either volatile or empty, and R is a promoted 5441 // arithmetic type, there exist candidate operator functions of 5442 // the form 5443 // 5444 // VQ L& operator=(VQ L&, R); 5445 // VQ L& operator*=(VQ L&, R); 5446 // VQ L& operator/=(VQ L&, R); 5447 // VQ L& operator+=(VQ L&, R); 5448 // VQ L& operator-=(VQ L&, R); 5449 void addAssignmentArithmeticOverloads(bool isEqualOp) { 5450 if (!HasArithmeticOrEnumeralCandidateType) 5451 return; 5452 5453 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 5454 for (unsigned Right = FirstPromotedArithmeticType; 5455 Right < LastPromotedArithmeticType; ++Right) { 5456 QualType ParamTypes[2]; 5457 ParamTypes[1] = getArithmeticType(Right); 5458 5459 // Add this built-in operator as a candidate (VQ is empty). 5460 ParamTypes[0] = 5461 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5462 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5463 /*IsAssigmentOperator=*/isEqualOp); 5464 5465 // Add this built-in operator as a candidate (VQ is 'volatile'). 5466 if (VisibleTypeConversionsQuals.hasVolatile()) { 5467 ParamTypes[0] = 5468 S.Context.getVolatileType(getArithmeticType(Left)); 5469 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5470 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5471 CandidateSet, 5472 /*IsAssigmentOperator=*/isEqualOp); 5473 } 5474 } 5475 } 5476 5477 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 5478 for (BuiltinCandidateTypeSet::iterator 5479 Vec1 = CandidateTypes[0].vector_begin(), 5480 Vec1End = CandidateTypes[0].vector_end(); 5481 Vec1 != Vec1End; ++Vec1) { 5482 for (BuiltinCandidateTypeSet::iterator 5483 Vec2 = CandidateTypes[1].vector_begin(), 5484 Vec2End = CandidateTypes[1].vector_end(); 5485 Vec2 != Vec2End; ++Vec2) { 5486 QualType ParamTypes[2]; 5487 ParamTypes[1] = *Vec2; 5488 // Add this built-in operator as a candidate (VQ is empty). 5489 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 5490 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5491 /*IsAssigmentOperator=*/isEqualOp); 5492 5493 // Add this built-in operator as a candidate (VQ is 'volatile'). 5494 if (VisibleTypeConversionsQuals.hasVolatile()) { 5495 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 5496 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5497 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5498 CandidateSet, 5499 /*IsAssigmentOperator=*/isEqualOp); 5500 } 5501 } 5502 } 5503 } 5504 5505 // C++ [over.built]p22: 5506 // 5507 // For every triple (L, VQ, R), where L is an integral type, VQ 5508 // is either volatile or empty, and R is a promoted integral 5509 // type, there exist candidate operator functions of the form 5510 // 5511 // VQ L& operator%=(VQ L&, R); 5512 // VQ L& operator<<=(VQ L&, R); 5513 // VQ L& operator>>=(VQ L&, R); 5514 // VQ L& operator&=(VQ L&, R); 5515 // VQ L& operator^=(VQ L&, R); 5516 // VQ L& operator|=(VQ L&, R); 5517 void addAssignmentIntegralOverloads() { 5518 if (!HasArithmeticOrEnumeralCandidateType) 5519 return; 5520 5521 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 5522 for (unsigned Right = FirstPromotedIntegralType; 5523 Right < LastPromotedIntegralType; ++Right) { 5524 QualType ParamTypes[2]; 5525 ParamTypes[1] = getArithmeticType(Right); 5526 5527 // Add this built-in operator as a candidate (VQ is empty). 5528 ParamTypes[0] = 5529 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5530 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5531 if (VisibleTypeConversionsQuals.hasVolatile()) { 5532 // Add this built-in operator as a candidate (VQ is 'volatile'). 5533 ParamTypes[0] = getArithmeticType(Left); 5534 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 5535 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5536 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5537 CandidateSet); 5538 } 5539 } 5540 } 5541 } 5542 5543 // C++ [over.operator]p23: 5544 // 5545 // There also exist candidate operator functions of the form 5546 // 5547 // bool operator!(bool); 5548 // bool operator&&(bool, bool); 5549 // bool operator||(bool, bool); 5550 void addExclaimOverload() { 5551 QualType ParamTy = S.Context.BoolTy; 5552 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 5553 /*IsAssignmentOperator=*/false, 5554 /*NumContextualBoolArguments=*/1); 5555 } 5556 void addAmpAmpOrPipePipeOverload() { 5557 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 5558 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 5559 /*IsAssignmentOperator=*/false, 5560 /*NumContextualBoolArguments=*/2); 5561 } 5562 5563 // C++ [over.built]p13: 5564 // 5565 // For every cv-qualified or cv-unqualified object type T there 5566 // exist candidate operator functions of the form 5567 // 5568 // T* operator+(T*, ptrdiff_t); [ABOVE] 5569 // T& operator[](T*, ptrdiff_t); 5570 // T* operator-(T*, ptrdiff_t); [ABOVE] 5571 // T* operator+(ptrdiff_t, T*); [ABOVE] 5572 // T& operator[](ptrdiff_t, T*); 5573 void addSubscriptOverloads() { 5574 for (BuiltinCandidateTypeSet::iterator 5575 Ptr = CandidateTypes[0].pointer_begin(), 5576 PtrEnd = CandidateTypes[0].pointer_end(); 5577 Ptr != PtrEnd; ++Ptr) { 5578 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 5579 QualType PointeeType = (*Ptr)->getPointeeType(); 5580 if (!PointeeType->isObjectType()) 5581 continue; 5582 5583 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 5584 5585 // T& operator[](T*, ptrdiff_t) 5586 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5587 } 5588 5589 for (BuiltinCandidateTypeSet::iterator 5590 Ptr = CandidateTypes[1].pointer_begin(), 5591 PtrEnd = CandidateTypes[1].pointer_end(); 5592 Ptr != PtrEnd; ++Ptr) { 5593 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 5594 QualType PointeeType = (*Ptr)->getPointeeType(); 5595 if (!PointeeType->isObjectType()) 5596 continue; 5597 5598 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 5599 5600 // T& operator[](ptrdiff_t, T*) 5601 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5602 } 5603 } 5604 5605 // C++ [over.built]p11: 5606 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5607 // C1 is the same type as C2 or is a derived class of C2, T is an object 5608 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5609 // there exist candidate operator functions of the form 5610 // 5611 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5612 // 5613 // where CV12 is the union of CV1 and CV2. 5614 void addArrowStarOverloads() { 5615 for (BuiltinCandidateTypeSet::iterator 5616 Ptr = CandidateTypes[0].pointer_begin(), 5617 PtrEnd = CandidateTypes[0].pointer_end(); 5618 Ptr != PtrEnd; ++Ptr) { 5619 QualType C1Ty = (*Ptr); 5620 QualType C1; 5621 QualifierCollector Q1; 5622 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 5623 if (!isa<RecordType>(C1)) 5624 continue; 5625 // heuristic to reduce number of builtin candidates in the set. 5626 // Add volatile/restrict version only if there are conversions to a 5627 // volatile/restrict type. 5628 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5629 continue; 5630 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5631 continue; 5632 for (BuiltinCandidateTypeSet::iterator 5633 MemPtr = CandidateTypes[1].member_pointer_begin(), 5634 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 5635 MemPtr != MemPtrEnd; ++MemPtr) { 5636 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5637 QualType C2 = QualType(mptr->getClass(), 0); 5638 C2 = C2.getUnqualifiedType(); 5639 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 5640 break; 5641 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5642 // build CV12 T& 5643 QualType T = mptr->getPointeeType(); 5644 if (!VisibleTypeConversionsQuals.hasVolatile() && 5645 T.isVolatileQualified()) 5646 continue; 5647 if (!VisibleTypeConversionsQuals.hasRestrict() && 5648 T.isRestrictQualified()) 5649 continue; 5650 T = Q1.apply(S.Context, T); 5651 QualType ResultTy = S.Context.getLValueReferenceType(T); 5652 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5653 } 5654 } 5655 } 5656 5657 // Note that we don't consider the first argument, since it has been 5658 // contextually converted to bool long ago. The candidates below are 5659 // therefore added as binary. 5660 // 5661 // C++ [over.built]p25: 5662 // For every type T, where T is a pointer, pointer-to-member, or scoped 5663 // enumeration type, there exist candidate operator functions of the form 5664 // 5665 // T operator?(bool, T, T); 5666 // 5667 void addConditionalOperatorOverloads() { 5668 /// Set of (canonical) types that we've already handled. 5669 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5670 5671 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5672 for (BuiltinCandidateTypeSet::iterator 5673 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5674 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5675 Ptr != PtrEnd; ++Ptr) { 5676 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5677 continue; 5678 5679 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5680 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5681 } 5682 5683 for (BuiltinCandidateTypeSet::iterator 5684 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5685 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5686 MemPtr != MemPtrEnd; ++MemPtr) { 5687 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5688 continue; 5689 5690 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5691 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 5692 } 5693 5694 if (S.getLangOptions().CPlusPlus0x) { 5695 for (BuiltinCandidateTypeSet::iterator 5696 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5697 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5698 Enum != EnumEnd; ++Enum) { 5699 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 5700 continue; 5701 5702 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5703 continue; 5704 5705 QualType ParamTypes[2] = { *Enum, *Enum }; 5706 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 5707 } 5708 } 5709 } 5710 } 5711}; 5712 5713} // end anonymous namespace 5714 5715/// AddBuiltinOperatorCandidates - Add the appropriate built-in 5716/// operator overloads to the candidate set (C++ [over.built]), based 5717/// on the operator @p Op and the arguments given. For example, if the 5718/// operator is a binary '+', this routine might add "int 5719/// operator+(int, int)" to cover integer addition. 5720void 5721Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 5722 SourceLocation OpLoc, 5723 Expr **Args, unsigned NumArgs, 5724 OverloadCandidateSet& CandidateSet) { 5725 // Find all of the types that the arguments can convert to, but only 5726 // if the operator we're looking at has built-in operator candidates 5727 // that make use of these types. Also record whether we encounter non-record 5728 // candidate types or either arithmetic or enumeral candidate types. 5729 Qualifiers VisibleTypeConversionsQuals; 5730 VisibleTypeConversionsQuals.addConst(); 5731 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5732 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 5733 5734 bool HasNonRecordCandidateType = false; 5735 bool HasArithmeticOrEnumeralCandidateType = false; 5736 llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 5737 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5738 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 5739 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 5740 OpLoc, 5741 true, 5742 (Op == OO_Exclaim || 5743 Op == OO_AmpAmp || 5744 Op == OO_PipePipe), 5745 VisibleTypeConversionsQuals); 5746 HasNonRecordCandidateType = HasNonRecordCandidateType || 5747 CandidateTypes[ArgIdx].hasNonRecordTypes(); 5748 HasArithmeticOrEnumeralCandidateType = 5749 HasArithmeticOrEnumeralCandidateType || 5750 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 5751 } 5752 5753 // Exit early when no non-record types have been added to the candidate set 5754 // for any of the arguments to the operator. 5755 if (!HasNonRecordCandidateType) 5756 return; 5757 5758 // Setup an object to manage the common state for building overloads. 5759 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 5760 VisibleTypeConversionsQuals, 5761 HasArithmeticOrEnumeralCandidateType, 5762 CandidateTypes, CandidateSet); 5763 5764 // Dispatch over the operation to add in only those overloads which apply. 5765 switch (Op) { 5766 case OO_None: 5767 case NUM_OVERLOADED_OPERATORS: 5768 assert(false && "Expected an overloaded operator"); 5769 break; 5770 5771 case OO_New: 5772 case OO_Delete: 5773 case OO_Array_New: 5774 case OO_Array_Delete: 5775 case OO_Call: 5776 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 5777 break; 5778 5779 case OO_Comma: 5780 case OO_Arrow: 5781 // C++ [over.match.oper]p3: 5782 // -- For the operator ',', the unary operator '&', or the 5783 // operator '->', the built-in candidates set is empty. 5784 break; 5785 5786 case OO_Plus: // '+' is either unary or binary 5787 if (NumArgs == 1) 5788 OpBuilder.addUnaryPlusPointerOverloads(); 5789 // Fall through. 5790 5791 case OO_Minus: // '-' is either unary or binary 5792 if (NumArgs == 1) { 5793 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 5794 } else { 5795 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 5796 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5797 } 5798 break; 5799 5800 case OO_Star: // '*' is either unary or binary 5801 if (NumArgs == 1) 5802 OpBuilder.addUnaryStarPointerOverloads(); 5803 else 5804 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5805 break; 5806 5807 case OO_Slash: 5808 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5809 break; 5810 5811 case OO_PlusPlus: 5812 case OO_MinusMinus: 5813 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 5814 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 5815 break; 5816 5817 case OO_EqualEqual: 5818 case OO_ExclaimEqual: 5819 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 5820 // Fall through. 5821 5822 case OO_Less: 5823 case OO_Greater: 5824 case OO_LessEqual: 5825 case OO_GreaterEqual: 5826 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 5827 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 5828 break; 5829 5830 case OO_Percent: 5831 case OO_Caret: 5832 case OO_Pipe: 5833 case OO_LessLess: 5834 case OO_GreaterGreater: 5835 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 5836 break; 5837 5838 case OO_Amp: // '&' is either unary or binary 5839 if (NumArgs == 1) 5840 // C++ [over.match.oper]p3: 5841 // -- For the operator ',', the unary operator '&', or the 5842 // operator '->', the built-in candidates set is empty. 5843 break; 5844 5845 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 5846 break; 5847 5848 case OO_Tilde: 5849 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 5850 break; 5851 5852 case OO_Equal: 5853 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 5854 // Fall through. 5855 5856 case OO_PlusEqual: 5857 case OO_MinusEqual: 5858 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 5859 // Fall through. 5860 5861 case OO_StarEqual: 5862 case OO_SlashEqual: 5863 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 5864 break; 5865 5866 case OO_PercentEqual: 5867 case OO_LessLessEqual: 5868 case OO_GreaterGreaterEqual: 5869 case OO_AmpEqual: 5870 case OO_CaretEqual: 5871 case OO_PipeEqual: 5872 OpBuilder.addAssignmentIntegralOverloads(); 5873 break; 5874 5875 case OO_Exclaim: 5876 OpBuilder.addExclaimOverload(); 5877 break; 5878 5879 case OO_AmpAmp: 5880 case OO_PipePipe: 5881 OpBuilder.addAmpAmpOrPipePipeOverload(); 5882 break; 5883 5884 case OO_Subscript: 5885 OpBuilder.addSubscriptOverloads(); 5886 break; 5887 5888 case OO_ArrowStar: 5889 OpBuilder.addArrowStarOverloads(); 5890 break; 5891 5892 case OO_Conditional: 5893 OpBuilder.addConditionalOperatorOverloads(); 5894 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5895 break; 5896 } 5897} 5898 5899/// \brief Add function candidates found via argument-dependent lookup 5900/// to the set of overloading candidates. 5901/// 5902/// This routine performs argument-dependent name lookup based on the 5903/// given function name (which may also be an operator name) and adds 5904/// all of the overload candidates found by ADL to the overload 5905/// candidate set (C++ [basic.lookup.argdep]). 5906void 5907Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 5908 bool Operator, 5909 Expr **Args, unsigned NumArgs, 5910 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5911 OverloadCandidateSet& CandidateSet, 5912 bool PartialOverloading) { 5913 ADLResult Fns; 5914 5915 // FIXME: This approach for uniquing ADL results (and removing 5916 // redundant candidates from the set) relies on pointer-equality, 5917 // which means we need to key off the canonical decl. However, 5918 // always going back to the canonical decl might not get us the 5919 // right set of default arguments. What default arguments are 5920 // we supposed to consider on ADL candidates, anyway? 5921 5922 // FIXME: Pass in the explicit template arguments? 5923 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 5924 5925 // Erase all of the candidates we already knew about. 5926 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5927 CandEnd = CandidateSet.end(); 5928 Cand != CandEnd; ++Cand) 5929 if (Cand->Function) { 5930 Fns.erase(Cand->Function); 5931 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 5932 Fns.erase(FunTmpl); 5933 } 5934 5935 // For each of the ADL candidates we found, add it to the overload 5936 // set. 5937 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 5938 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 5939 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 5940 if (ExplicitTemplateArgs) 5941 continue; 5942 5943 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 5944 false, PartialOverloading); 5945 } else 5946 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 5947 FoundDecl, ExplicitTemplateArgs, 5948 Args, NumArgs, CandidateSet); 5949 } 5950} 5951 5952/// isBetterOverloadCandidate - Determines whether the first overload 5953/// candidate is a better candidate than the second (C++ 13.3.3p1). 5954bool 5955isBetterOverloadCandidate(Sema &S, 5956 const OverloadCandidate &Cand1, 5957 const OverloadCandidate &Cand2, 5958 SourceLocation Loc, 5959 bool UserDefinedConversion) { 5960 // Define viable functions to be better candidates than non-viable 5961 // functions. 5962 if (!Cand2.Viable) 5963 return Cand1.Viable; 5964 else if (!Cand1.Viable) 5965 return false; 5966 5967 // C++ [over.match.best]p1: 5968 // 5969 // -- if F is a static member function, ICS1(F) is defined such 5970 // that ICS1(F) is neither better nor worse than ICS1(G) for 5971 // any function G, and, symmetrically, ICS1(G) is neither 5972 // better nor worse than ICS1(F). 5973 unsigned StartArg = 0; 5974 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 5975 StartArg = 1; 5976 5977 // C++ [over.match.best]p1: 5978 // A viable function F1 is defined to be a better function than another 5979 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 5980 // conversion sequence than ICSi(F2), and then... 5981 unsigned NumArgs = Cand1.Conversions.size(); 5982 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 5983 bool HasBetterConversion = false; 5984 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 5985 switch (CompareImplicitConversionSequences(S, 5986 Cand1.Conversions[ArgIdx], 5987 Cand2.Conversions[ArgIdx])) { 5988 case ImplicitConversionSequence::Better: 5989 // Cand1 has a better conversion sequence. 5990 HasBetterConversion = true; 5991 break; 5992 5993 case ImplicitConversionSequence::Worse: 5994 // Cand1 can't be better than Cand2. 5995 return false; 5996 5997 case ImplicitConversionSequence::Indistinguishable: 5998 // Do nothing. 5999 break; 6000 } 6001 } 6002 6003 // -- for some argument j, ICSj(F1) is a better conversion sequence than 6004 // ICSj(F2), or, if not that, 6005 if (HasBetterConversion) 6006 return true; 6007 6008 // - F1 is a non-template function and F2 is a function template 6009 // specialization, or, if not that, 6010 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 6011 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 6012 return true; 6013 6014 // -- F1 and F2 are function template specializations, and the function 6015 // template for F1 is more specialized than the template for F2 6016 // according to the partial ordering rules described in 14.5.5.2, or, 6017 // if not that, 6018 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 6019 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 6020 if (FunctionTemplateDecl *BetterTemplate 6021 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 6022 Cand2.Function->getPrimaryTemplate(), 6023 Loc, 6024 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 6025 : TPOC_Call, 6026 Cand1.ExplicitCallArguments)) 6027 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 6028 } 6029 6030 // -- the context is an initialization by user-defined conversion 6031 // (see 8.5, 13.3.1.5) and the standard conversion sequence 6032 // from the return type of F1 to the destination type (i.e., 6033 // the type of the entity being initialized) is a better 6034 // conversion sequence than the standard conversion sequence 6035 // from the return type of F2 to the destination type. 6036 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 6037 isa<CXXConversionDecl>(Cand1.Function) && 6038 isa<CXXConversionDecl>(Cand2.Function)) { 6039 switch (CompareStandardConversionSequences(S, 6040 Cand1.FinalConversion, 6041 Cand2.FinalConversion)) { 6042 case ImplicitConversionSequence::Better: 6043 // Cand1 has a better conversion sequence. 6044 return true; 6045 6046 case ImplicitConversionSequence::Worse: 6047 // Cand1 can't be better than Cand2. 6048 return false; 6049 6050 case ImplicitConversionSequence::Indistinguishable: 6051 // Do nothing 6052 break; 6053 } 6054 } 6055 6056 return false; 6057} 6058 6059/// \brief Computes the best viable function (C++ 13.3.3) 6060/// within an overload candidate set. 6061/// 6062/// \param CandidateSet the set of candidate functions. 6063/// 6064/// \param Loc the location of the function name (or operator symbol) for 6065/// which overload resolution occurs. 6066/// 6067/// \param Best f overload resolution was successful or found a deleted 6068/// function, Best points to the candidate function found. 6069/// 6070/// \returns The result of overload resolution. 6071OverloadingResult 6072OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 6073 iterator &Best, 6074 bool UserDefinedConversion) { 6075 // Find the best viable function. 6076 Best = end(); 6077 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6078 if (Cand->Viable) 6079 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 6080 UserDefinedConversion)) 6081 Best = Cand; 6082 } 6083 6084 // If we didn't find any viable functions, abort. 6085 if (Best == end()) 6086 return OR_No_Viable_Function; 6087 6088 // Make sure that this function is better than every other viable 6089 // function. If not, we have an ambiguity. 6090 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6091 if (Cand->Viable && 6092 Cand != Best && 6093 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 6094 UserDefinedConversion)) { 6095 Best = end(); 6096 return OR_Ambiguous; 6097 } 6098 } 6099 6100 // Best is the best viable function. 6101 if (Best->Function && 6102 (Best->Function->isDeleted() || 6103 Best->Function->getAttr<UnavailableAttr>())) 6104 return OR_Deleted; 6105 6106 // C++ [basic.def.odr]p2: 6107 // An overloaded function is used if it is selected by overload resolution 6108 // when referred to from a potentially-evaluated expression. [Note: this 6109 // covers calls to named functions (5.2.2), operator overloading 6110 // (clause 13), user-defined conversions (12.3.2), allocation function for 6111 // placement new (5.3.4), as well as non-default initialization (8.5). 6112 if (Best->Function) 6113 S.MarkDeclarationReferenced(Loc, Best->Function); 6114 6115 return OR_Success; 6116} 6117 6118namespace { 6119 6120enum OverloadCandidateKind { 6121 oc_function, 6122 oc_method, 6123 oc_constructor, 6124 oc_function_template, 6125 oc_method_template, 6126 oc_constructor_template, 6127 oc_implicit_default_constructor, 6128 oc_implicit_copy_constructor, 6129 oc_implicit_copy_assignment 6130}; 6131 6132OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 6133 FunctionDecl *Fn, 6134 std::string &Description) { 6135 bool isTemplate = false; 6136 6137 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 6138 isTemplate = true; 6139 Description = S.getTemplateArgumentBindingsText( 6140 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 6141 } 6142 6143 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 6144 if (!Ctor->isImplicit()) 6145 return isTemplate ? oc_constructor_template : oc_constructor; 6146 6147 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 6148 : oc_implicit_default_constructor; 6149 } 6150 6151 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 6152 // This actually gets spelled 'candidate function' for now, but 6153 // it doesn't hurt to split it out. 6154 if (!Meth->isImplicit()) 6155 return isTemplate ? oc_method_template : oc_method; 6156 6157 assert(Meth->isCopyAssignmentOperator() 6158 && "implicit method is not copy assignment operator?"); 6159 return oc_implicit_copy_assignment; 6160 } 6161 6162 return isTemplate ? oc_function_template : oc_function; 6163} 6164 6165} // end anonymous namespace 6166 6167// Notes the location of an overload candidate. 6168void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 6169 std::string FnDesc; 6170 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 6171 Diag(Fn->getLocation(), diag::note_ovl_candidate) 6172 << (unsigned) K << FnDesc; 6173} 6174 6175/// Diagnoses an ambiguous conversion. The partial diagnostic is the 6176/// "lead" diagnostic; it will be given two arguments, the source and 6177/// target types of the conversion. 6178void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 6179 Sema &S, 6180 SourceLocation CaretLoc, 6181 const PartialDiagnostic &PDiag) const { 6182 S.Diag(CaretLoc, PDiag) 6183 << Ambiguous.getFromType() << Ambiguous.getToType(); 6184 for (AmbiguousConversionSequence::const_iterator 6185 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 6186 S.NoteOverloadCandidate(*I); 6187 } 6188} 6189 6190namespace { 6191 6192void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 6193 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 6194 assert(Conv.isBad()); 6195 assert(Cand->Function && "for now, candidate must be a function"); 6196 FunctionDecl *Fn = Cand->Function; 6197 6198 // There's a conversion slot for the object argument if this is a 6199 // non-constructor method. Note that 'I' corresponds the 6200 // conversion-slot index. 6201 bool isObjectArgument = false; 6202 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 6203 if (I == 0) 6204 isObjectArgument = true; 6205 else 6206 I--; 6207 } 6208 6209 std::string FnDesc; 6210 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6211 6212 Expr *FromExpr = Conv.Bad.FromExpr; 6213 QualType FromTy = Conv.Bad.getFromType(); 6214 QualType ToTy = Conv.Bad.getToType(); 6215 6216 if (FromTy == S.Context.OverloadTy) { 6217 assert(FromExpr && "overload set argument came from implicit argument?"); 6218 Expr *E = FromExpr->IgnoreParens(); 6219 if (isa<UnaryOperator>(E)) 6220 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 6221 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 6222 6223 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 6224 << (unsigned) FnKind << FnDesc 6225 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6226 << ToTy << Name << I+1; 6227 return; 6228 } 6229 6230 // Do some hand-waving analysis to see if the non-viability is due 6231 // to a qualifier mismatch. 6232 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 6233 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 6234 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 6235 CToTy = RT->getPointeeType(); 6236 else { 6237 // TODO: detect and diagnose the full richness of const mismatches. 6238 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 6239 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 6240 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 6241 } 6242 6243 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 6244 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 6245 // It is dumb that we have to do this here. 6246 while (isa<ArrayType>(CFromTy)) 6247 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 6248 while (isa<ArrayType>(CToTy)) 6249 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 6250 6251 Qualifiers FromQs = CFromTy.getQualifiers(); 6252 Qualifiers ToQs = CToTy.getQualifiers(); 6253 6254 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 6255 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 6256 << (unsigned) FnKind << FnDesc 6257 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6258 << FromTy 6259 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 6260 << (unsigned) isObjectArgument << I+1; 6261 return; 6262 } 6263 6264 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 6265 assert(CVR && "unexpected qualifiers mismatch"); 6266 6267 if (isObjectArgument) { 6268 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 6269 << (unsigned) FnKind << FnDesc 6270 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6271 << FromTy << (CVR - 1); 6272 } else { 6273 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 6274 << (unsigned) FnKind << FnDesc 6275 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6276 << FromTy << (CVR - 1) << I+1; 6277 } 6278 return; 6279 } 6280 6281 // Diagnose references or pointers to incomplete types differently, 6282 // since it's far from impossible that the incompleteness triggered 6283 // the failure. 6284 QualType TempFromTy = FromTy.getNonReferenceType(); 6285 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 6286 TempFromTy = PTy->getPointeeType(); 6287 if (TempFromTy->isIncompleteType()) { 6288 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 6289 << (unsigned) FnKind << FnDesc 6290 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6291 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6292 return; 6293 } 6294 6295 // Diagnose base -> derived pointer conversions. 6296 unsigned BaseToDerivedConversion = 0; 6297 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 6298 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 6299 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6300 FromPtrTy->getPointeeType()) && 6301 !FromPtrTy->getPointeeType()->isIncompleteType() && 6302 !ToPtrTy->getPointeeType()->isIncompleteType() && 6303 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 6304 FromPtrTy->getPointeeType())) 6305 BaseToDerivedConversion = 1; 6306 } 6307 } else if (const ObjCObjectPointerType *FromPtrTy 6308 = FromTy->getAs<ObjCObjectPointerType>()) { 6309 if (const ObjCObjectPointerType *ToPtrTy 6310 = ToTy->getAs<ObjCObjectPointerType>()) 6311 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 6312 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 6313 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6314 FromPtrTy->getPointeeType()) && 6315 FromIface->isSuperClassOf(ToIface)) 6316 BaseToDerivedConversion = 2; 6317 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 6318 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 6319 !FromTy->isIncompleteType() && 6320 !ToRefTy->getPointeeType()->isIncompleteType() && 6321 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 6322 BaseToDerivedConversion = 3; 6323 } 6324 6325 if (BaseToDerivedConversion) { 6326 S.Diag(Fn->getLocation(), 6327 diag::note_ovl_candidate_bad_base_to_derived_conv) 6328 << (unsigned) FnKind << FnDesc 6329 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6330 << (BaseToDerivedConversion - 1) 6331 << FromTy << ToTy << I+1; 6332 return; 6333 } 6334 6335 // TODO: specialize more based on the kind of mismatch 6336 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 6337 << (unsigned) FnKind << FnDesc 6338 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6339 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6340} 6341 6342void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 6343 unsigned NumFormalArgs) { 6344 // TODO: treat calls to a missing default constructor as a special case 6345 6346 FunctionDecl *Fn = Cand->Function; 6347 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 6348 6349 unsigned MinParams = Fn->getMinRequiredArguments(); 6350 6351 // at least / at most / exactly 6352 unsigned mode, modeCount; 6353 if (NumFormalArgs < MinParams) { 6354 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 6355 (Cand->FailureKind == ovl_fail_bad_deduction && 6356 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 6357 if (MinParams != FnTy->getNumArgs() || 6358 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 6359 mode = 0; // "at least" 6360 else 6361 mode = 2; // "exactly" 6362 modeCount = MinParams; 6363 } else { 6364 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 6365 (Cand->FailureKind == ovl_fail_bad_deduction && 6366 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 6367 if (MinParams != FnTy->getNumArgs()) 6368 mode = 1; // "at most" 6369 else 6370 mode = 2; // "exactly" 6371 modeCount = FnTy->getNumArgs(); 6372 } 6373 6374 std::string Description; 6375 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 6376 6377 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 6378 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 6379 << modeCount << NumFormalArgs; 6380} 6381 6382/// Diagnose a failed template-argument deduction. 6383void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 6384 Expr **Args, unsigned NumArgs) { 6385 FunctionDecl *Fn = Cand->Function; // pattern 6386 6387 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 6388 NamedDecl *ParamD; 6389 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 6390 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 6391 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 6392 switch (Cand->DeductionFailure.Result) { 6393 case Sema::TDK_Success: 6394 llvm_unreachable("TDK_success while diagnosing bad deduction"); 6395 6396 case Sema::TDK_Incomplete: { 6397 assert(ParamD && "no parameter found for incomplete deduction result"); 6398 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 6399 << ParamD->getDeclName(); 6400 return; 6401 } 6402 6403 case Sema::TDK_Underqualified: { 6404 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 6405 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 6406 6407 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 6408 6409 // Param will have been canonicalized, but it should just be a 6410 // qualified version of ParamD, so move the qualifiers to that. 6411 QualifierCollector Qs; 6412 Qs.strip(Param); 6413 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 6414 assert(S.Context.hasSameType(Param, NonCanonParam)); 6415 6416 // Arg has also been canonicalized, but there's nothing we can do 6417 // about that. It also doesn't matter as much, because it won't 6418 // have any template parameters in it (because deduction isn't 6419 // done on dependent types). 6420 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 6421 6422 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 6423 << ParamD->getDeclName() << Arg << NonCanonParam; 6424 return; 6425 } 6426 6427 case Sema::TDK_Inconsistent: { 6428 assert(ParamD && "no parameter found for inconsistent deduction result"); 6429 int which = 0; 6430 if (isa<TemplateTypeParmDecl>(ParamD)) 6431 which = 0; 6432 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 6433 which = 1; 6434 else { 6435 which = 2; 6436 } 6437 6438 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 6439 << which << ParamD->getDeclName() 6440 << *Cand->DeductionFailure.getFirstArg() 6441 << *Cand->DeductionFailure.getSecondArg(); 6442 return; 6443 } 6444 6445 case Sema::TDK_InvalidExplicitArguments: 6446 assert(ParamD && "no parameter found for invalid explicit arguments"); 6447 if (ParamD->getDeclName()) 6448 S.Diag(Fn->getLocation(), 6449 diag::note_ovl_candidate_explicit_arg_mismatch_named) 6450 << ParamD->getDeclName(); 6451 else { 6452 int index = 0; 6453 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 6454 index = TTP->getIndex(); 6455 else if (NonTypeTemplateParmDecl *NTTP 6456 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 6457 index = NTTP->getIndex(); 6458 else 6459 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 6460 S.Diag(Fn->getLocation(), 6461 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 6462 << (index + 1); 6463 } 6464 return; 6465 6466 case Sema::TDK_TooManyArguments: 6467 case Sema::TDK_TooFewArguments: 6468 DiagnoseArityMismatch(S, Cand, NumArgs); 6469 return; 6470 6471 case Sema::TDK_InstantiationDepth: 6472 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 6473 return; 6474 6475 case Sema::TDK_SubstitutionFailure: { 6476 std::string ArgString; 6477 if (TemplateArgumentList *Args 6478 = Cand->DeductionFailure.getTemplateArgumentList()) 6479 ArgString = S.getTemplateArgumentBindingsText( 6480 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 6481 *Args); 6482 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 6483 << ArgString; 6484 return; 6485 } 6486 6487 // TODO: diagnose these individually, then kill off 6488 // note_ovl_candidate_bad_deduction, which is uselessly vague. 6489 case Sema::TDK_NonDeducedMismatch: 6490 case Sema::TDK_FailedOverloadResolution: 6491 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 6492 return; 6493 } 6494} 6495 6496/// Generates a 'note' diagnostic for an overload candidate. We've 6497/// already generated a primary error at the call site. 6498/// 6499/// It really does need to be a single diagnostic with its caret 6500/// pointed at the candidate declaration. Yes, this creates some 6501/// major challenges of technical writing. Yes, this makes pointing 6502/// out problems with specific arguments quite awkward. It's still 6503/// better than generating twenty screens of text for every failed 6504/// overload. 6505/// 6506/// It would be great to be able to express per-candidate problems 6507/// more richly for those diagnostic clients that cared, but we'd 6508/// still have to be just as careful with the default diagnostics. 6509void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 6510 Expr **Args, unsigned NumArgs) { 6511 FunctionDecl *Fn = Cand->Function; 6512 6513 // Note deleted candidates, but only if they're viable. 6514 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 6515 std::string FnDesc; 6516 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6517 6518 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 6519 << FnKind << FnDesc << Fn->isDeleted(); 6520 return; 6521 } 6522 6523 // We don't really have anything else to say about viable candidates. 6524 if (Cand->Viable) { 6525 S.NoteOverloadCandidate(Fn); 6526 return; 6527 } 6528 6529 switch (Cand->FailureKind) { 6530 case ovl_fail_too_many_arguments: 6531 case ovl_fail_too_few_arguments: 6532 return DiagnoseArityMismatch(S, Cand, NumArgs); 6533 6534 case ovl_fail_bad_deduction: 6535 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 6536 6537 case ovl_fail_trivial_conversion: 6538 case ovl_fail_bad_final_conversion: 6539 case ovl_fail_final_conversion_not_exact: 6540 return S.NoteOverloadCandidate(Fn); 6541 6542 case ovl_fail_bad_conversion: { 6543 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 6544 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 6545 if (Cand->Conversions[I].isBad()) 6546 return DiagnoseBadConversion(S, Cand, I); 6547 6548 // FIXME: this currently happens when we're called from SemaInit 6549 // when user-conversion overload fails. Figure out how to handle 6550 // those conditions and diagnose them well. 6551 return S.NoteOverloadCandidate(Fn); 6552 } 6553 } 6554} 6555 6556void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 6557 // Desugar the type of the surrogate down to a function type, 6558 // retaining as many typedefs as possible while still showing 6559 // the function type (and, therefore, its parameter types). 6560 QualType FnType = Cand->Surrogate->getConversionType(); 6561 bool isLValueReference = false; 6562 bool isRValueReference = false; 6563 bool isPointer = false; 6564 if (const LValueReferenceType *FnTypeRef = 6565 FnType->getAs<LValueReferenceType>()) { 6566 FnType = FnTypeRef->getPointeeType(); 6567 isLValueReference = true; 6568 } else if (const RValueReferenceType *FnTypeRef = 6569 FnType->getAs<RValueReferenceType>()) { 6570 FnType = FnTypeRef->getPointeeType(); 6571 isRValueReference = true; 6572 } 6573 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 6574 FnType = FnTypePtr->getPointeeType(); 6575 isPointer = true; 6576 } 6577 // Desugar down to a function type. 6578 FnType = QualType(FnType->getAs<FunctionType>(), 0); 6579 // Reconstruct the pointer/reference as appropriate. 6580 if (isPointer) FnType = S.Context.getPointerType(FnType); 6581 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 6582 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 6583 6584 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 6585 << FnType; 6586} 6587 6588void NoteBuiltinOperatorCandidate(Sema &S, 6589 const char *Opc, 6590 SourceLocation OpLoc, 6591 OverloadCandidate *Cand) { 6592 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 6593 std::string TypeStr("operator"); 6594 TypeStr += Opc; 6595 TypeStr += "("; 6596 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 6597 if (Cand->Conversions.size() == 1) { 6598 TypeStr += ")"; 6599 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 6600 } else { 6601 TypeStr += ", "; 6602 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 6603 TypeStr += ")"; 6604 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 6605 } 6606} 6607 6608void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 6609 OverloadCandidate *Cand) { 6610 unsigned NoOperands = Cand->Conversions.size(); 6611 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 6612 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 6613 if (ICS.isBad()) break; // all meaningless after first invalid 6614 if (!ICS.isAmbiguous()) continue; 6615 6616 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 6617 S.PDiag(diag::note_ambiguous_type_conversion)); 6618 } 6619} 6620 6621SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 6622 if (Cand->Function) 6623 return Cand->Function->getLocation(); 6624 if (Cand->IsSurrogate) 6625 return Cand->Surrogate->getLocation(); 6626 return SourceLocation(); 6627} 6628 6629struct CompareOverloadCandidatesForDisplay { 6630 Sema &S; 6631 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 6632 6633 bool operator()(const OverloadCandidate *L, 6634 const OverloadCandidate *R) { 6635 // Fast-path this check. 6636 if (L == R) return false; 6637 6638 // Order first by viability. 6639 if (L->Viable) { 6640 if (!R->Viable) return true; 6641 6642 // TODO: introduce a tri-valued comparison for overload 6643 // candidates. Would be more worthwhile if we had a sort 6644 // that could exploit it. 6645 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 6646 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 6647 } else if (R->Viable) 6648 return false; 6649 6650 assert(L->Viable == R->Viable); 6651 6652 // Criteria by which we can sort non-viable candidates: 6653 if (!L->Viable) { 6654 // 1. Arity mismatches come after other candidates. 6655 if (L->FailureKind == ovl_fail_too_many_arguments || 6656 L->FailureKind == ovl_fail_too_few_arguments) 6657 return false; 6658 if (R->FailureKind == ovl_fail_too_many_arguments || 6659 R->FailureKind == ovl_fail_too_few_arguments) 6660 return true; 6661 6662 // 2. Bad conversions come first and are ordered by the number 6663 // of bad conversions and quality of good conversions. 6664 if (L->FailureKind == ovl_fail_bad_conversion) { 6665 if (R->FailureKind != ovl_fail_bad_conversion) 6666 return true; 6667 6668 // If there's any ordering between the defined conversions... 6669 // FIXME: this might not be transitive. 6670 assert(L->Conversions.size() == R->Conversions.size()); 6671 6672 int leftBetter = 0; 6673 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 6674 for (unsigned E = L->Conversions.size(); I != E; ++I) { 6675 switch (CompareImplicitConversionSequences(S, 6676 L->Conversions[I], 6677 R->Conversions[I])) { 6678 case ImplicitConversionSequence::Better: 6679 leftBetter++; 6680 break; 6681 6682 case ImplicitConversionSequence::Worse: 6683 leftBetter--; 6684 break; 6685 6686 case ImplicitConversionSequence::Indistinguishable: 6687 break; 6688 } 6689 } 6690 if (leftBetter > 0) return true; 6691 if (leftBetter < 0) return false; 6692 6693 } else if (R->FailureKind == ovl_fail_bad_conversion) 6694 return false; 6695 6696 // TODO: others? 6697 } 6698 6699 // Sort everything else by location. 6700 SourceLocation LLoc = GetLocationForCandidate(L); 6701 SourceLocation RLoc = GetLocationForCandidate(R); 6702 6703 // Put candidates without locations (e.g. builtins) at the end. 6704 if (LLoc.isInvalid()) return false; 6705 if (RLoc.isInvalid()) return true; 6706 6707 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 6708 } 6709}; 6710 6711/// CompleteNonViableCandidate - Normally, overload resolution only 6712/// computes up to the first 6713void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 6714 Expr **Args, unsigned NumArgs) { 6715 assert(!Cand->Viable); 6716 6717 // Don't do anything on failures other than bad conversion. 6718 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 6719 6720 // Skip forward to the first bad conversion. 6721 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 6722 unsigned ConvCount = Cand->Conversions.size(); 6723 while (true) { 6724 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 6725 ConvIdx++; 6726 if (Cand->Conversions[ConvIdx - 1].isBad()) 6727 break; 6728 } 6729 6730 if (ConvIdx == ConvCount) 6731 return; 6732 6733 assert(!Cand->Conversions[ConvIdx].isInitialized() && 6734 "remaining conversion is initialized?"); 6735 6736 // FIXME: this should probably be preserved from the overload 6737 // operation somehow. 6738 bool SuppressUserConversions = false; 6739 6740 const FunctionProtoType* Proto; 6741 unsigned ArgIdx = ConvIdx; 6742 6743 if (Cand->IsSurrogate) { 6744 QualType ConvType 6745 = Cand->Surrogate->getConversionType().getNonReferenceType(); 6746 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6747 ConvType = ConvPtrType->getPointeeType(); 6748 Proto = ConvType->getAs<FunctionProtoType>(); 6749 ArgIdx--; 6750 } else if (Cand->Function) { 6751 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 6752 if (isa<CXXMethodDecl>(Cand->Function) && 6753 !isa<CXXConstructorDecl>(Cand->Function)) 6754 ArgIdx--; 6755 } else { 6756 // Builtin binary operator with a bad first conversion. 6757 assert(ConvCount <= 3); 6758 for (; ConvIdx != ConvCount; ++ConvIdx) 6759 Cand->Conversions[ConvIdx] 6760 = TryCopyInitialization(S, Args[ConvIdx], 6761 Cand->BuiltinTypes.ParamTypes[ConvIdx], 6762 SuppressUserConversions, 6763 /*InOverloadResolution*/ true); 6764 return; 6765 } 6766 6767 // Fill in the rest of the conversions. 6768 unsigned NumArgsInProto = Proto->getNumArgs(); 6769 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 6770 if (ArgIdx < NumArgsInProto) 6771 Cand->Conversions[ConvIdx] 6772 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 6773 SuppressUserConversions, 6774 /*InOverloadResolution=*/true); 6775 else 6776 Cand->Conversions[ConvIdx].setEllipsis(); 6777 } 6778} 6779 6780} // end anonymous namespace 6781 6782/// PrintOverloadCandidates - When overload resolution fails, prints 6783/// diagnostic messages containing the candidates in the candidate 6784/// set. 6785void OverloadCandidateSet::NoteCandidates(Sema &S, 6786 OverloadCandidateDisplayKind OCD, 6787 Expr **Args, unsigned NumArgs, 6788 const char *Opc, 6789 SourceLocation OpLoc) { 6790 // Sort the candidates by viability and position. Sorting directly would 6791 // be prohibitive, so we make a set of pointers and sort those. 6792 llvm::SmallVector<OverloadCandidate*, 32> Cands; 6793 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 6794 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 6795 if (Cand->Viable) 6796 Cands.push_back(Cand); 6797 else if (OCD == OCD_AllCandidates) { 6798 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 6799 if (Cand->Function || Cand->IsSurrogate) 6800 Cands.push_back(Cand); 6801 // Otherwise, this a non-viable builtin candidate. We do not, in general, 6802 // want to list every possible builtin candidate. 6803 } 6804 } 6805 6806 std::sort(Cands.begin(), Cands.end(), 6807 CompareOverloadCandidatesForDisplay(S)); 6808 6809 bool ReportedAmbiguousConversions = false; 6810 6811 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 6812 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 6813 unsigned CandsShown = 0; 6814 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 6815 OverloadCandidate *Cand = *I; 6816 6817 // Set an arbitrary limit on the number of candidate functions we'll spam 6818 // the user with. FIXME: This limit should depend on details of the 6819 // candidate list. 6820 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 6821 break; 6822 } 6823 ++CandsShown; 6824 6825 if (Cand->Function) 6826 NoteFunctionCandidate(S, Cand, Args, NumArgs); 6827 else if (Cand->IsSurrogate) 6828 NoteSurrogateCandidate(S, Cand); 6829 else { 6830 assert(Cand->Viable && 6831 "Non-viable built-in candidates are not added to Cands."); 6832 // Generally we only see ambiguities including viable builtin 6833 // operators if overload resolution got screwed up by an 6834 // ambiguous user-defined conversion. 6835 // 6836 // FIXME: It's quite possible for different conversions to see 6837 // different ambiguities, though. 6838 if (!ReportedAmbiguousConversions) { 6839 NoteAmbiguousUserConversions(S, OpLoc, Cand); 6840 ReportedAmbiguousConversions = true; 6841 } 6842 6843 // If this is a viable builtin, print it. 6844 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 6845 } 6846 } 6847 6848 if (I != E) 6849 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 6850} 6851 6852static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 6853 if (isa<UnresolvedLookupExpr>(E)) 6854 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 6855 6856 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 6857} 6858 6859/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 6860/// an overloaded function (C++ [over.over]), where @p From is an 6861/// expression with overloaded function type and @p ToType is the type 6862/// we're trying to resolve to. For example: 6863/// 6864/// @code 6865/// int f(double); 6866/// int f(int); 6867/// 6868/// int (*pfd)(double) = f; // selects f(double) 6869/// @endcode 6870/// 6871/// This routine returns the resulting FunctionDecl if it could be 6872/// resolved, and NULL otherwise. When @p Complain is true, this 6873/// routine will emit diagnostics if there is an error. 6874FunctionDecl * 6875Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 6876 bool Complain, 6877 DeclAccessPair &FoundResult) { 6878 QualType FunctionType = ToType; 6879 bool IsMember = false; 6880 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 6881 FunctionType = ToTypePtr->getPointeeType(); 6882 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 6883 FunctionType = ToTypeRef->getPointeeType(); 6884 else if (const MemberPointerType *MemTypePtr = 6885 ToType->getAs<MemberPointerType>()) { 6886 FunctionType = MemTypePtr->getPointeeType(); 6887 IsMember = true; 6888 } 6889 6890 // C++ [over.over]p1: 6891 // [...] [Note: any redundant set of parentheses surrounding the 6892 // overloaded function name is ignored (5.1). ] 6893 // C++ [over.over]p1: 6894 // [...] The overloaded function name can be preceded by the & 6895 // operator. 6896 // However, remember whether the expression has member-pointer form: 6897 // C++ [expr.unary.op]p4: 6898 // A pointer to member is only formed when an explicit & is used 6899 // and its operand is a qualified-id not enclosed in 6900 // parentheses. 6901 OverloadExpr::FindResult Ovl = OverloadExpr::find(From); 6902 OverloadExpr *OvlExpr = Ovl.Expression; 6903 6904 // We expect a pointer or reference to function, or a function pointer. 6905 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 6906 if (!FunctionType->isFunctionType()) { 6907 if (Complain) 6908 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 6909 << OvlExpr->getName() << ToType; 6910 6911 return 0; 6912 } 6913 6914 // If the overload expression doesn't have the form of a pointer to 6915 // member, don't try to convert it to a pointer-to-member type. 6916 if (IsMember && !Ovl.HasFormOfMemberPointer) { 6917 if (!Complain) return 0; 6918 6919 // TODO: Should we condition this on whether any functions might 6920 // have matched, or is it more appropriate to do that in callers? 6921 // TODO: a fixit wouldn't hurt. 6922 Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 6923 << ToType << OvlExpr->getSourceRange(); 6924 return 0; 6925 } 6926 6927 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 6928 if (OvlExpr->hasExplicitTemplateArgs()) { 6929 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 6930 ExplicitTemplateArgs = &ETABuffer; 6931 } 6932 6933 assert(From->getType() == Context.OverloadTy); 6934 6935 // Look through all of the overloaded functions, searching for one 6936 // whose type matches exactly. 6937 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 6938 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 6939 6940 bool FoundNonTemplateFunction = false; 6941 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6942 E = OvlExpr->decls_end(); I != E; ++I) { 6943 // Look through any using declarations to find the underlying function. 6944 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 6945 6946 // C++ [over.over]p3: 6947 // Non-member functions and static member functions match 6948 // targets of type "pointer-to-function" or "reference-to-function." 6949 // Nonstatic member functions match targets of 6950 // type "pointer-to-member-function." 6951 // Note that according to DR 247, the containing class does not matter. 6952 6953 if (FunctionTemplateDecl *FunctionTemplate 6954 = dyn_cast<FunctionTemplateDecl>(Fn)) { 6955 if (CXXMethodDecl *Method 6956 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 6957 // Skip non-static function templates when converting to pointer, and 6958 // static when converting to member pointer. 6959 if (Method->isStatic() == IsMember) 6960 continue; 6961 } else if (IsMember) 6962 continue; 6963 6964 // C++ [over.over]p2: 6965 // If the name is a function template, template argument deduction is 6966 // done (14.8.2.2), and if the argument deduction succeeds, the 6967 // resulting template argument list is used to generate a single 6968 // function template specialization, which is added to the set of 6969 // overloaded functions considered. 6970 FunctionDecl *Specialization = 0; 6971 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6972 if (TemplateDeductionResult Result 6973 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 6974 FunctionType, Specialization, Info)) { 6975 // FIXME: make a note of the failed deduction for diagnostics. 6976 (void)Result; 6977 } else { 6978 // Template argument deduction ensures that we have an exact match. 6979 // This function template specicalization works. 6980 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 6981 assert(FunctionType 6982 == Context.getCanonicalType(Specialization->getType())); 6983 Matches.push_back(std::make_pair(I.getPair(), Specialization)); 6984 } 6985 6986 continue; 6987 } 6988 6989 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6990 // Skip non-static functions when converting to pointer, and static 6991 // when converting to member pointer. 6992 if (Method->isStatic() == IsMember) 6993 continue; 6994 6995 // If we have explicit template arguments, skip non-templates. 6996 if (OvlExpr->hasExplicitTemplateArgs()) 6997 continue; 6998 } else if (IsMember) 6999 continue; 7000 7001 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 7002 QualType ResultTy; 7003 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 7004 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 7005 ResultTy)) { 7006 Matches.push_back(std::make_pair(I.getPair(), 7007 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 7008 FoundNonTemplateFunction = true; 7009 } 7010 } 7011 } 7012 7013 // If there were 0 or 1 matches, we're done. 7014 if (Matches.empty()) { 7015 if (Complain) { 7016 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 7017 << OvlExpr->getName() << FunctionType; 7018 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7019 E = OvlExpr->decls_end(); 7020 I != E; ++I) 7021 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 7022 NoteOverloadCandidate(F); 7023 } 7024 7025 return 0; 7026 } else if (Matches.size() == 1) { 7027 FunctionDecl *Result = Matches[0].second; 7028 FoundResult = Matches[0].first; 7029 MarkDeclarationReferenced(From->getLocStart(), Result); 7030 if (Complain) { 7031 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 7032 } 7033 return Result; 7034 } 7035 7036 // C++ [over.over]p4: 7037 // If more than one function is selected, [...] 7038 if (!FoundNonTemplateFunction) { 7039 // [...] and any given function template specialization F1 is 7040 // eliminated if the set contains a second function template 7041 // specialization whose function template is more specialized 7042 // than the function template of F1 according to the partial 7043 // ordering rules of 14.5.5.2. 7044 7045 // The algorithm specified above is quadratic. We instead use a 7046 // two-pass algorithm (similar to the one used to identify the 7047 // best viable function in an overload set) that identifies the 7048 // best function template (if it exists). 7049 7050 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 7051 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7052 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 7053 7054 UnresolvedSetIterator Result = 7055 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 7056 TPOC_Other, 0, From->getLocStart(), 7057 PDiag(), 7058 PDiag(diag::err_addr_ovl_ambiguous) 7059 << Matches[0].second->getDeclName(), 7060 PDiag(diag::note_ovl_candidate) 7061 << (unsigned) oc_function_template); 7062 if (Result == MatchesCopy.end()) 7063 return 0; 7064 7065 MarkDeclarationReferenced(From->getLocStart(), *Result); 7066 FoundResult = Matches[Result - MatchesCopy.begin()].first; 7067 if (Complain) 7068 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 7069 return cast<FunctionDecl>(*Result); 7070 } 7071 7072 // [...] any function template specializations in the set are 7073 // eliminated if the set also contains a non-template function, [...] 7074 for (unsigned I = 0, N = Matches.size(); I != N; ) { 7075 if (Matches[I].second->getPrimaryTemplate() == 0) 7076 ++I; 7077 else { 7078 Matches[I] = Matches[--N]; 7079 Matches.set_size(N); 7080 } 7081 } 7082 7083 // [...] After such eliminations, if any, there shall remain exactly one 7084 // selected function. 7085 if (Matches.size() == 1) { 7086 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 7087 FoundResult = Matches[0].first; 7088 if (Complain) 7089 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 7090 return cast<FunctionDecl>(Matches[0].second); 7091 } 7092 7093 // FIXME: We should probably return the same thing that BestViableFunction 7094 // returns (even if we issue the diagnostics here). 7095 if (Complain) { 7096 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 7097 << Matches[0].second->getDeclName(); 7098 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7099 NoteOverloadCandidate(Matches[I].second); 7100 } 7101 7102 return 0; 7103} 7104 7105/// \brief Given an expression that refers to an overloaded function, try to 7106/// resolve that overloaded function expression down to a single function. 7107/// 7108/// This routine can only resolve template-ids that refer to a single function 7109/// template, where that template-id refers to a single template whose template 7110/// arguments are either provided by the template-id or have defaults, 7111/// as described in C++0x [temp.arg.explicit]p3. 7112FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 7113 // C++ [over.over]p1: 7114 // [...] [Note: any redundant set of parentheses surrounding the 7115 // overloaded function name is ignored (5.1). ] 7116 // C++ [over.over]p1: 7117 // [...] The overloaded function name can be preceded by the & 7118 // operator. 7119 7120 if (From->getType() != Context.OverloadTy) 7121 return 0; 7122 7123 OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression; 7124 7125 // If we didn't actually find any template-ids, we're done. 7126 if (!OvlExpr->hasExplicitTemplateArgs()) 7127 return 0; 7128 7129 TemplateArgumentListInfo ExplicitTemplateArgs; 7130 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 7131 7132 // Look through all of the overloaded functions, searching for one 7133 // whose type matches exactly. 7134 FunctionDecl *Matched = 0; 7135 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7136 E = OvlExpr->decls_end(); I != E; ++I) { 7137 // C++0x [temp.arg.explicit]p3: 7138 // [...] In contexts where deduction is done and fails, or in contexts 7139 // where deduction is not done, if a template argument list is 7140 // specified and it, along with any default template arguments, 7141 // identifies a single function template specialization, then the 7142 // template-id is an lvalue for the function template specialization. 7143 FunctionTemplateDecl *FunctionTemplate 7144 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 7145 7146 // C++ [over.over]p2: 7147 // If the name is a function template, template argument deduction is 7148 // done (14.8.2.2), and if the argument deduction succeeds, the 7149 // resulting template argument list is used to generate a single 7150 // function template specialization, which is added to the set of 7151 // overloaded functions considered. 7152 FunctionDecl *Specialization = 0; 7153 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 7154 if (TemplateDeductionResult Result 7155 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 7156 Specialization, Info)) { 7157 // FIXME: make a note of the failed deduction for diagnostics. 7158 (void)Result; 7159 continue; 7160 } 7161 7162 // Multiple matches; we can't resolve to a single declaration. 7163 if (Matched) 7164 return 0; 7165 7166 Matched = Specialization; 7167 } 7168 7169 return Matched; 7170} 7171 7172/// \brief Add a single candidate to the overload set. 7173static void AddOverloadedCallCandidate(Sema &S, 7174 DeclAccessPair FoundDecl, 7175 const TemplateArgumentListInfo *ExplicitTemplateArgs, 7176 Expr **Args, unsigned NumArgs, 7177 OverloadCandidateSet &CandidateSet, 7178 bool PartialOverloading) { 7179 NamedDecl *Callee = FoundDecl.getDecl(); 7180 if (isa<UsingShadowDecl>(Callee)) 7181 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 7182 7183 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 7184 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 7185 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 7186 false, PartialOverloading); 7187 return; 7188 } 7189 7190 if (FunctionTemplateDecl *FuncTemplate 7191 = dyn_cast<FunctionTemplateDecl>(Callee)) { 7192 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 7193 ExplicitTemplateArgs, 7194 Args, NumArgs, CandidateSet); 7195 return; 7196 } 7197 7198 assert(false && "unhandled case in overloaded call candidate"); 7199 7200 // do nothing? 7201} 7202 7203/// \brief Add the overload candidates named by callee and/or found by argument 7204/// dependent lookup to the given overload set. 7205void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 7206 Expr **Args, unsigned NumArgs, 7207 OverloadCandidateSet &CandidateSet, 7208 bool PartialOverloading) { 7209 7210#ifndef NDEBUG 7211 // Verify that ArgumentDependentLookup is consistent with the rules 7212 // in C++0x [basic.lookup.argdep]p3: 7213 // 7214 // Let X be the lookup set produced by unqualified lookup (3.4.1) 7215 // and let Y be the lookup set produced by argument dependent 7216 // lookup (defined as follows). If X contains 7217 // 7218 // -- a declaration of a class member, or 7219 // 7220 // -- a block-scope function declaration that is not a 7221 // using-declaration, or 7222 // 7223 // -- a declaration that is neither a function or a function 7224 // template 7225 // 7226 // then Y is empty. 7227 7228 if (ULE->requiresADL()) { 7229 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 7230 E = ULE->decls_end(); I != E; ++I) { 7231 assert(!(*I)->getDeclContext()->isRecord()); 7232 assert(isa<UsingShadowDecl>(*I) || 7233 !(*I)->getDeclContext()->isFunctionOrMethod()); 7234 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 7235 } 7236 } 7237#endif 7238 7239 // It would be nice to avoid this copy. 7240 TemplateArgumentListInfo TABuffer; 7241 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 7242 if (ULE->hasExplicitTemplateArgs()) { 7243 ULE->copyTemplateArgumentsInto(TABuffer); 7244 ExplicitTemplateArgs = &TABuffer; 7245 } 7246 7247 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 7248 E = ULE->decls_end(); I != E; ++I) 7249 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 7250 Args, NumArgs, CandidateSet, 7251 PartialOverloading); 7252 7253 if (ULE->requiresADL()) 7254 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 7255 Args, NumArgs, 7256 ExplicitTemplateArgs, 7257 CandidateSet, 7258 PartialOverloading); 7259} 7260 7261/// Attempts to recover from a call where no functions were found. 7262/// 7263/// Returns true if new candidates were found. 7264static ExprResult 7265BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 7266 UnresolvedLookupExpr *ULE, 7267 SourceLocation LParenLoc, 7268 Expr **Args, unsigned NumArgs, 7269 SourceLocation RParenLoc) { 7270 7271 CXXScopeSpec SS; 7272 if (ULE->getQualifier()) { 7273 SS.setScopeRep(ULE->getQualifier()); 7274 SS.setRange(ULE->getQualifierRange()); 7275 } 7276 7277 TemplateArgumentListInfo TABuffer; 7278 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 7279 if (ULE->hasExplicitTemplateArgs()) { 7280 ULE->copyTemplateArgumentsInto(TABuffer); 7281 ExplicitTemplateArgs = &TABuffer; 7282 } 7283 7284 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 7285 Sema::LookupOrdinaryName); 7286 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 7287 return ExprError(); 7288 7289 assert(!R.empty() && "lookup results empty despite recovery"); 7290 7291 // Build an implicit member call if appropriate. Just drop the 7292 // casts and such from the call, we don't really care. 7293 ExprResult NewFn = ExprError(); 7294 if ((*R.begin())->isCXXClassMember()) 7295 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, 7296 ExplicitTemplateArgs); 7297 else if (ExplicitTemplateArgs) 7298 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 7299 else 7300 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 7301 7302 if (NewFn.isInvalid()) 7303 return ExprError(); 7304 7305 // This shouldn't cause an infinite loop because we're giving it 7306 // an expression with non-empty lookup results, which should never 7307 // end up here. 7308 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 7309 MultiExprArg(Args, NumArgs), RParenLoc); 7310} 7311 7312/// ResolveOverloadedCallFn - Given the call expression that calls Fn 7313/// (which eventually refers to the declaration Func) and the call 7314/// arguments Args/NumArgs, attempt to resolve the function call down 7315/// to a specific function. If overload resolution succeeds, returns 7316/// the function declaration produced by overload 7317/// resolution. Otherwise, emits diagnostics, deletes all of the 7318/// arguments and Fn, and returns NULL. 7319ExprResult 7320Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 7321 SourceLocation LParenLoc, 7322 Expr **Args, unsigned NumArgs, 7323 SourceLocation RParenLoc) { 7324#ifndef NDEBUG 7325 if (ULE->requiresADL()) { 7326 // To do ADL, we must have found an unqualified name. 7327 assert(!ULE->getQualifier() && "qualified name with ADL"); 7328 7329 // We don't perform ADL for implicit declarations of builtins. 7330 // Verify that this was correctly set up. 7331 FunctionDecl *F; 7332 if (ULE->decls_begin() + 1 == ULE->decls_end() && 7333 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 7334 F->getBuiltinID() && F->isImplicit()) 7335 assert(0 && "performing ADL for builtin"); 7336 7337 // We don't perform ADL in C. 7338 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 7339 } 7340#endif 7341 7342 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 7343 7344 // Add the functions denoted by the callee to the set of candidate 7345 // functions, including those from argument-dependent lookup. 7346 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 7347 7348 // If we found nothing, try to recover. 7349 // AddRecoveryCallCandidates diagnoses the error itself, so we just 7350 // bailout out if it fails. 7351 if (CandidateSet.empty()) 7352 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 7353 RParenLoc); 7354 7355 OverloadCandidateSet::iterator Best; 7356 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 7357 case OR_Success: { 7358 FunctionDecl *FDecl = Best->Function; 7359 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 7360 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), 7361 ULE->getNameLoc()); 7362 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 7363 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 7364 RParenLoc); 7365 } 7366 7367 case OR_No_Viable_Function: 7368 Diag(Fn->getSourceRange().getBegin(), 7369 diag::err_ovl_no_viable_function_in_call) 7370 << ULE->getName() << Fn->getSourceRange(); 7371 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7372 break; 7373 7374 case OR_Ambiguous: 7375 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 7376 << ULE->getName() << Fn->getSourceRange(); 7377 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 7378 break; 7379 7380 case OR_Deleted: 7381 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 7382 << Best->Function->isDeleted() 7383 << ULE->getName() 7384 << Fn->getSourceRange(); 7385 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7386 break; 7387 } 7388 7389 // Overload resolution failed. 7390 return ExprError(); 7391} 7392 7393static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 7394 return Functions.size() > 1 || 7395 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 7396} 7397 7398/// \brief Create a unary operation that may resolve to an overloaded 7399/// operator. 7400/// 7401/// \param OpLoc The location of the operator itself (e.g., '*'). 7402/// 7403/// \param OpcIn The UnaryOperator::Opcode that describes this 7404/// operator. 7405/// 7406/// \param Functions The set of non-member functions that will be 7407/// considered by overload resolution. The caller needs to build this 7408/// set based on the context using, e.g., 7409/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7410/// set should not contain any member functions; those will be added 7411/// by CreateOverloadedUnaryOp(). 7412/// 7413/// \param input The input argument. 7414ExprResult 7415Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 7416 const UnresolvedSetImpl &Fns, 7417 Expr *Input) { 7418 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 7419 7420 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 7421 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 7422 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7423 // TODO: provide better source location info. 7424 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7425 7426 if (Input->getObjectKind() == OK_ObjCProperty) 7427 ConvertPropertyForRValue(Input); 7428 7429 Expr *Args[2] = { Input, 0 }; 7430 unsigned NumArgs = 1; 7431 7432 // For post-increment and post-decrement, add the implicit '0' as 7433 // the second argument, so that we know this is a post-increment or 7434 // post-decrement. 7435 if (Opc == UO_PostInc || Opc == UO_PostDec) { 7436 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 7437 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 7438 SourceLocation()); 7439 NumArgs = 2; 7440 } 7441 7442 if (Input->isTypeDependent()) { 7443 if (Fns.empty()) 7444 return Owned(new (Context) UnaryOperator(Input, 7445 Opc, 7446 Context.DependentTy, 7447 VK_RValue, OK_Ordinary, 7448 OpLoc)); 7449 7450 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7451 UnresolvedLookupExpr *Fn 7452 = UnresolvedLookupExpr::Create(Context, NamingClass, 7453 0, SourceRange(), OpNameInfo, 7454 /*ADL*/ true, IsOverloaded(Fns), 7455 Fns.begin(), Fns.end()); 7456 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7457 &Args[0], NumArgs, 7458 Context.DependentTy, 7459 VK_RValue, 7460 OpLoc)); 7461 } 7462 7463 // Build an empty overload set. 7464 OverloadCandidateSet CandidateSet(OpLoc); 7465 7466 // Add the candidates from the given function set. 7467 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 7468 7469 // Add operator candidates that are member functions. 7470 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7471 7472 // Add candidates from ADL. 7473 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7474 Args, NumArgs, 7475 /*ExplicitTemplateArgs*/ 0, 7476 CandidateSet); 7477 7478 // Add builtin operator candidates. 7479 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7480 7481 // Perform overload resolution. 7482 OverloadCandidateSet::iterator Best; 7483 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7484 case OR_Success: { 7485 // We found a built-in operator or an overloaded operator. 7486 FunctionDecl *FnDecl = Best->Function; 7487 7488 if (FnDecl) { 7489 // We matched an overloaded operator. Build a call to that 7490 // operator. 7491 7492 // Convert the arguments. 7493 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7494 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 7495 7496 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 7497 Best->FoundDecl, Method)) 7498 return ExprError(); 7499 } else { 7500 // Convert the arguments. 7501 ExprResult InputInit 7502 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7503 Context, 7504 FnDecl->getParamDecl(0)), 7505 SourceLocation(), 7506 Input); 7507 if (InputInit.isInvalid()) 7508 return ExprError(); 7509 Input = InputInit.take(); 7510 } 7511 7512 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7513 7514 // Determine the result type. 7515 QualType ResultTy = FnDecl->getResultType(); 7516 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7517 ResultTy = ResultTy.getNonLValueExprType(Context); 7518 7519 // Build the actual expression node. 7520 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl); 7521 7522 Args[0] = Input; 7523 CallExpr *TheCall = 7524 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7525 Args, NumArgs, ResultTy, VK, OpLoc); 7526 7527 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7528 FnDecl)) 7529 return ExprError(); 7530 7531 return MaybeBindToTemporary(TheCall); 7532 } else { 7533 // We matched a built-in operator. Convert the arguments, then 7534 // break out so that we will build the appropriate built-in 7535 // operator node. 7536 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 7537 Best->Conversions[0], AA_Passing)) 7538 return ExprError(); 7539 7540 break; 7541 } 7542 } 7543 7544 case OR_No_Viable_Function: 7545 // No viable function; fall through to handling this as a 7546 // built-in operator, which will produce an error message for us. 7547 break; 7548 7549 case OR_Ambiguous: 7550 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 7551 << UnaryOperator::getOpcodeStr(Opc) 7552 << Input->getType() 7553 << Input->getSourceRange(); 7554 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 7555 Args, NumArgs, 7556 UnaryOperator::getOpcodeStr(Opc), OpLoc); 7557 return ExprError(); 7558 7559 case OR_Deleted: 7560 Diag(OpLoc, diag::err_ovl_deleted_oper) 7561 << Best->Function->isDeleted() 7562 << UnaryOperator::getOpcodeStr(Opc) 7563 << Input->getSourceRange(); 7564 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7565 return ExprError(); 7566 } 7567 7568 // Either we found no viable overloaded operator or we matched a 7569 // built-in operator. In either case, fall through to trying to 7570 // build a built-in operation. 7571 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 7572} 7573 7574/// \brief Create a binary operation that may resolve to an overloaded 7575/// operator. 7576/// 7577/// \param OpLoc The location of the operator itself (e.g., '+'). 7578/// 7579/// \param OpcIn The BinaryOperator::Opcode that describes this 7580/// operator. 7581/// 7582/// \param Functions The set of non-member functions that will be 7583/// considered by overload resolution. The caller needs to build this 7584/// set based on the context using, e.g., 7585/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7586/// set should not contain any member functions; those will be added 7587/// by CreateOverloadedBinOp(). 7588/// 7589/// \param LHS Left-hand argument. 7590/// \param RHS Right-hand argument. 7591ExprResult 7592Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 7593 unsigned OpcIn, 7594 const UnresolvedSetImpl &Fns, 7595 Expr *LHS, Expr *RHS) { 7596 Expr *Args[2] = { LHS, RHS }; 7597 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 7598 7599 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 7600 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 7601 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7602 7603 // If either side is type-dependent, create an appropriate dependent 7604 // expression. 7605 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7606 if (Fns.empty()) { 7607 // If there are no functions to store, just build a dependent 7608 // BinaryOperator or CompoundAssignment. 7609 if (Opc <= BO_Assign || Opc > BO_OrAssign) 7610 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 7611 Context.DependentTy, 7612 VK_RValue, OK_Ordinary, 7613 OpLoc)); 7614 7615 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 7616 Context.DependentTy, 7617 VK_LValue, 7618 OK_Ordinary, 7619 Context.DependentTy, 7620 Context.DependentTy, 7621 OpLoc)); 7622 } 7623 7624 // FIXME: save results of ADL from here? 7625 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7626 // TODO: provide better source location info in DNLoc component. 7627 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7628 UnresolvedLookupExpr *Fn 7629 = UnresolvedLookupExpr::Create(Context, NamingClass, 0, SourceRange(), 7630 OpNameInfo, /*ADL*/ true, IsOverloaded(Fns), 7631 Fns.begin(), Fns.end()); 7632 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7633 Args, 2, 7634 Context.DependentTy, 7635 VK_RValue, 7636 OpLoc)); 7637 } 7638 7639 // Always do property rvalue conversions on the RHS. 7640 if (Args[1]->getObjectKind() == OK_ObjCProperty) 7641 ConvertPropertyForRValue(Args[1]); 7642 7643 // The LHS is more complicated. 7644 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 7645 7646 // There's a tension for assignment operators between primitive 7647 // property assignment and the overloaded operators. 7648 if (BinaryOperator::isAssignmentOp(Opc)) { 7649 const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty(); 7650 7651 // Is the property "logically" settable? 7652 bool Settable = (PRE->isExplicitProperty() || 7653 PRE->getImplicitPropertySetter()); 7654 7655 // To avoid gratuitously inventing semantics, use the primitive 7656 // unless it isn't. Thoughts in case we ever really care: 7657 // - If the property isn't logically settable, we have to 7658 // load and hope. 7659 // - If the property is settable and this is simple assignment, 7660 // we really should use the primitive. 7661 // - If the property is settable, then we could try overloading 7662 // on a generic lvalue of the appropriate type; if it works 7663 // out to a builtin candidate, we would do that same operation 7664 // on the property, and otherwise just error. 7665 if (Settable) 7666 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7667 } 7668 7669 ConvertPropertyForRValue(Args[0]); 7670 } 7671 7672 // If this is the assignment operator, we only perform overload resolution 7673 // if the left-hand side is a class or enumeration type. This is actually 7674 // a hack. The standard requires that we do overload resolution between the 7675 // various built-in candidates, but as DR507 points out, this can lead to 7676 // problems. So we do it this way, which pretty much follows what GCC does. 7677 // Note that we go the traditional code path for compound assignment forms. 7678 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 7679 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7680 7681 // If this is the .* operator, which is not overloadable, just 7682 // create a built-in binary operator. 7683 if (Opc == BO_PtrMemD) 7684 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7685 7686 // Build an empty overload set. 7687 OverloadCandidateSet CandidateSet(OpLoc); 7688 7689 // Add the candidates from the given function set. 7690 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 7691 7692 // Add operator candidates that are member functions. 7693 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7694 7695 // Add candidates from ADL. 7696 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7697 Args, 2, 7698 /*ExplicitTemplateArgs*/ 0, 7699 CandidateSet); 7700 7701 // Add builtin operator candidates. 7702 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7703 7704 // Perform overload resolution. 7705 OverloadCandidateSet::iterator Best; 7706 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7707 case OR_Success: { 7708 // We found a built-in operator or an overloaded operator. 7709 FunctionDecl *FnDecl = Best->Function; 7710 7711 if (FnDecl) { 7712 // We matched an overloaded operator. Build a call to that 7713 // operator. 7714 7715 // Convert the arguments. 7716 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7717 // Best->Access is only meaningful for class members. 7718 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 7719 7720 ExprResult Arg1 = 7721 PerformCopyInitialization( 7722 InitializedEntity::InitializeParameter(Context, 7723 FnDecl->getParamDecl(0)), 7724 SourceLocation(), Owned(Args[1])); 7725 if (Arg1.isInvalid()) 7726 return ExprError(); 7727 7728 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7729 Best->FoundDecl, Method)) 7730 return ExprError(); 7731 7732 Args[1] = RHS = Arg1.takeAs<Expr>(); 7733 } else { 7734 // Convert the arguments. 7735 ExprResult Arg0 = PerformCopyInitialization( 7736 InitializedEntity::InitializeParameter(Context, 7737 FnDecl->getParamDecl(0)), 7738 SourceLocation(), Owned(Args[0])); 7739 if (Arg0.isInvalid()) 7740 return ExprError(); 7741 7742 ExprResult Arg1 = 7743 PerformCopyInitialization( 7744 InitializedEntity::InitializeParameter(Context, 7745 FnDecl->getParamDecl(1)), 7746 SourceLocation(), Owned(Args[1])); 7747 if (Arg1.isInvalid()) 7748 return ExprError(); 7749 Args[0] = LHS = Arg0.takeAs<Expr>(); 7750 Args[1] = RHS = Arg1.takeAs<Expr>(); 7751 } 7752 7753 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7754 7755 // Determine the result type. 7756 QualType ResultTy = FnDecl->getResultType(); 7757 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7758 ResultTy = ResultTy.getNonLValueExprType(Context); 7759 7760 // Build the actual expression node. 7761 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc); 7762 7763 CXXOperatorCallExpr *TheCall = 7764 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7765 Args, 2, ResultTy, VK, OpLoc); 7766 7767 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7768 FnDecl)) 7769 return ExprError(); 7770 7771 return MaybeBindToTemporary(TheCall); 7772 } else { 7773 // We matched a built-in operator. Convert the arguments, then 7774 // break out so that we will build the appropriate built-in 7775 // operator node. 7776 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7777 Best->Conversions[0], AA_Passing) || 7778 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7779 Best->Conversions[1], AA_Passing)) 7780 return ExprError(); 7781 7782 break; 7783 } 7784 } 7785 7786 case OR_No_Viable_Function: { 7787 // C++ [over.match.oper]p9: 7788 // If the operator is the operator , [...] and there are no 7789 // viable functions, then the operator is assumed to be the 7790 // built-in operator and interpreted according to clause 5. 7791 if (Opc == BO_Comma) 7792 break; 7793 7794 // For class as left operand for assignment or compound assigment 7795 // operator do not fall through to handling in built-in, but report that 7796 // no overloaded assignment operator found 7797 ExprResult Result = ExprError(); 7798 if (Args[0]->getType()->isRecordType() && 7799 Opc >= BO_Assign && Opc <= BO_OrAssign) { 7800 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7801 << BinaryOperator::getOpcodeStr(Opc) 7802 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7803 } else { 7804 // No viable function; try to create a built-in operation, which will 7805 // produce an error. Then, show the non-viable candidates. 7806 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7807 } 7808 assert(Result.isInvalid() && 7809 "C++ binary operator overloading is missing candidates!"); 7810 if (Result.isInvalid()) 7811 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7812 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7813 return move(Result); 7814 } 7815 7816 case OR_Ambiguous: 7817 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 7818 << BinaryOperator::getOpcodeStr(Opc) 7819 << Args[0]->getType() << Args[1]->getType() 7820 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7821 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7822 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7823 return ExprError(); 7824 7825 case OR_Deleted: 7826 Diag(OpLoc, diag::err_ovl_deleted_oper) 7827 << Best->Function->isDeleted() 7828 << BinaryOperator::getOpcodeStr(Opc) 7829 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7830 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); 7831 return ExprError(); 7832 } 7833 7834 // We matched a built-in operator; build it. 7835 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7836} 7837 7838ExprResult 7839Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 7840 SourceLocation RLoc, 7841 Expr *Base, Expr *Idx) { 7842 Expr *Args[2] = { Base, Idx }; 7843 DeclarationName OpName = 7844 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 7845 7846 // If either side is type-dependent, create an appropriate dependent 7847 // expression. 7848 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7849 7850 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7851 // CHECKME: no 'operator' keyword? 7852 DeclarationNameInfo OpNameInfo(OpName, LLoc); 7853 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 7854 UnresolvedLookupExpr *Fn 7855 = UnresolvedLookupExpr::Create(Context, NamingClass, 7856 0, SourceRange(), OpNameInfo, 7857 /*ADL*/ true, /*Overloaded*/ false, 7858 UnresolvedSetIterator(), 7859 UnresolvedSetIterator()); 7860 // Can't add any actual overloads yet 7861 7862 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 7863 Args, 2, 7864 Context.DependentTy, 7865 VK_RValue, 7866 RLoc)); 7867 } 7868 7869 if (Args[0]->getObjectKind() == OK_ObjCProperty) 7870 ConvertPropertyForRValue(Args[0]); 7871 if (Args[1]->getObjectKind() == OK_ObjCProperty) 7872 ConvertPropertyForRValue(Args[1]); 7873 7874 // Build an empty overload set. 7875 OverloadCandidateSet CandidateSet(LLoc); 7876 7877 // Subscript can only be overloaded as a member function. 7878 7879 // Add operator candidates that are member functions. 7880 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7881 7882 // Add builtin operator candidates. 7883 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7884 7885 // Perform overload resolution. 7886 OverloadCandidateSet::iterator Best; 7887 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 7888 case OR_Success: { 7889 // We found a built-in operator or an overloaded operator. 7890 FunctionDecl *FnDecl = Best->Function; 7891 7892 if (FnDecl) { 7893 // We matched an overloaded operator. Build a call to that 7894 // operator. 7895 7896 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 7897 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 7898 7899 // Convert the arguments. 7900 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 7901 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7902 Best->FoundDecl, Method)) 7903 return ExprError(); 7904 7905 // Convert the arguments. 7906 ExprResult InputInit 7907 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7908 Context, 7909 FnDecl->getParamDecl(0)), 7910 SourceLocation(), 7911 Owned(Args[1])); 7912 if (InputInit.isInvalid()) 7913 return ExprError(); 7914 7915 Args[1] = InputInit.takeAs<Expr>(); 7916 7917 // Determine the result type 7918 QualType ResultTy = FnDecl->getResultType(); 7919 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7920 ResultTy = ResultTy.getNonLValueExprType(Context); 7921 7922 // Build the actual expression node. 7923 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc); 7924 7925 CXXOperatorCallExpr *TheCall = 7926 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 7927 FnExpr, Args, 2, 7928 ResultTy, VK, RLoc); 7929 7930 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 7931 FnDecl)) 7932 return ExprError(); 7933 7934 return MaybeBindToTemporary(TheCall); 7935 } else { 7936 // We matched a built-in operator. Convert the arguments, then 7937 // break out so that we will build the appropriate built-in 7938 // operator node. 7939 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7940 Best->Conversions[0], AA_Passing) || 7941 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7942 Best->Conversions[1], AA_Passing)) 7943 return ExprError(); 7944 7945 break; 7946 } 7947 } 7948 7949 case OR_No_Viable_Function: { 7950 if (CandidateSet.empty()) 7951 Diag(LLoc, diag::err_ovl_no_oper) 7952 << Args[0]->getType() << /*subscript*/ 0 7953 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7954 else 7955 Diag(LLoc, diag::err_ovl_no_viable_subscript) 7956 << Args[0]->getType() 7957 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7958 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7959 "[]", LLoc); 7960 return ExprError(); 7961 } 7962 7963 case OR_Ambiguous: 7964 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 7965 << "[]" 7966 << Args[0]->getType() << Args[1]->getType() 7967 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7968 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7969 "[]", LLoc); 7970 return ExprError(); 7971 7972 case OR_Deleted: 7973 Diag(LLoc, diag::err_ovl_deleted_oper) 7974 << Best->Function->isDeleted() << "[]" 7975 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7976 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7977 "[]", LLoc); 7978 return ExprError(); 7979 } 7980 7981 // We matched a built-in operator; build it. 7982 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 7983} 7984 7985/// BuildCallToMemberFunction - Build a call to a member 7986/// function. MemExpr is the expression that refers to the member 7987/// function (and includes the object parameter), Args/NumArgs are the 7988/// arguments to the function call (not including the object 7989/// parameter). The caller needs to validate that the member 7990/// expression refers to a member function or an overloaded member 7991/// function. 7992ExprResult 7993Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 7994 SourceLocation LParenLoc, Expr **Args, 7995 unsigned NumArgs, SourceLocation RParenLoc) { 7996 // Dig out the member expression. This holds both the object 7997 // argument and the member function we're referring to. 7998 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 7999 8000 MemberExpr *MemExpr; 8001 CXXMethodDecl *Method = 0; 8002 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 8003 NestedNameSpecifier *Qualifier = 0; 8004 if (isa<MemberExpr>(NakedMemExpr)) { 8005 MemExpr = cast<MemberExpr>(NakedMemExpr); 8006 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 8007 FoundDecl = MemExpr->getFoundDecl(); 8008 Qualifier = MemExpr->getQualifier(); 8009 } else { 8010 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 8011 Qualifier = UnresExpr->getQualifier(); 8012 8013 QualType ObjectType = UnresExpr->getBaseType(); 8014 Expr::Classification ObjectClassification 8015 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 8016 : UnresExpr->getBase()->Classify(Context); 8017 8018 // Add overload candidates 8019 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 8020 8021 // FIXME: avoid copy. 8022 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8023 if (UnresExpr->hasExplicitTemplateArgs()) { 8024 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8025 TemplateArgs = &TemplateArgsBuffer; 8026 } 8027 8028 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 8029 E = UnresExpr->decls_end(); I != E; ++I) { 8030 8031 NamedDecl *Func = *I; 8032 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 8033 if (isa<UsingShadowDecl>(Func)) 8034 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 8035 8036 8037 // Microsoft supports direct constructor calls. 8038 if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) { 8039 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 8040 CandidateSet); 8041 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 8042 // If explicit template arguments were provided, we can't call a 8043 // non-template member function. 8044 if (TemplateArgs) 8045 continue; 8046 8047 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 8048 ObjectClassification, 8049 Args, NumArgs, CandidateSet, 8050 /*SuppressUserConversions=*/false); 8051 } else { 8052 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 8053 I.getPair(), ActingDC, TemplateArgs, 8054 ObjectType, ObjectClassification, 8055 Args, NumArgs, CandidateSet, 8056 /*SuppressUsedConversions=*/false); 8057 } 8058 } 8059 8060 DeclarationName DeclName = UnresExpr->getMemberName(); 8061 8062 OverloadCandidateSet::iterator Best; 8063 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 8064 Best)) { 8065 case OR_Success: 8066 Method = cast<CXXMethodDecl>(Best->Function); 8067 FoundDecl = Best->FoundDecl; 8068 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 8069 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 8070 break; 8071 8072 case OR_No_Viable_Function: 8073 Diag(UnresExpr->getMemberLoc(), 8074 diag::err_ovl_no_viable_member_function_in_call) 8075 << DeclName << MemExprE->getSourceRange(); 8076 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8077 // FIXME: Leaking incoming expressions! 8078 return ExprError(); 8079 8080 case OR_Ambiguous: 8081 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 8082 << DeclName << MemExprE->getSourceRange(); 8083 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8084 // FIXME: Leaking incoming expressions! 8085 return ExprError(); 8086 8087 case OR_Deleted: 8088 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 8089 << Best->Function->isDeleted() 8090 << DeclName << MemExprE->getSourceRange(); 8091 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8092 // FIXME: Leaking incoming expressions! 8093 return ExprError(); 8094 } 8095 8096 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 8097 8098 // If overload resolution picked a static member, build a 8099 // non-member call based on that function. 8100 if (Method->isStatic()) { 8101 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 8102 Args, NumArgs, RParenLoc); 8103 } 8104 8105 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 8106 } 8107 8108 QualType ResultType = Method->getResultType(); 8109 ExprValueKind VK = Expr::getValueKindForType(ResultType); 8110 ResultType = ResultType.getNonLValueExprType(Context); 8111 8112 assert(Method && "Member call to something that isn't a method?"); 8113 CXXMemberCallExpr *TheCall = 8114 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 8115 ResultType, VK, RParenLoc); 8116 8117 // Check for a valid return type. 8118 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 8119 TheCall, Method)) 8120 return ExprError(); 8121 8122 // Convert the object argument (for a non-static member function call). 8123 // We only need to do this if there was actually an overload; otherwise 8124 // it was done at lookup. 8125 Expr *ObjectArg = MemExpr->getBase(); 8126 if (!Method->isStatic() && 8127 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 8128 FoundDecl, Method)) 8129 return ExprError(); 8130 MemExpr->setBase(ObjectArg); 8131 8132 // Convert the rest of the arguments 8133 const FunctionProtoType *Proto = 8134 Method->getType()->getAs<FunctionProtoType>(); 8135 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 8136 RParenLoc)) 8137 return ExprError(); 8138 8139 if (CheckFunctionCall(Method, TheCall)) 8140 return ExprError(); 8141 8142 return MaybeBindToTemporary(TheCall); 8143} 8144 8145/// BuildCallToObjectOfClassType - Build a call to an object of class 8146/// type (C++ [over.call.object]), which can end up invoking an 8147/// overloaded function call operator (@c operator()) or performing a 8148/// user-defined conversion on the object argument. 8149ExprResult 8150Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 8151 SourceLocation LParenLoc, 8152 Expr **Args, unsigned NumArgs, 8153 SourceLocation RParenLoc) { 8154 if (Object->getObjectKind() == OK_ObjCProperty) 8155 ConvertPropertyForRValue(Object); 8156 8157 assert(Object->getType()->isRecordType() && "Requires object type argument"); 8158 const RecordType *Record = Object->getType()->getAs<RecordType>(); 8159 8160 // C++ [over.call.object]p1: 8161 // If the primary-expression E in the function call syntax 8162 // evaluates to a class object of type "cv T", then the set of 8163 // candidate functions includes at least the function call 8164 // operators of T. The function call operators of T are obtained by 8165 // ordinary lookup of the name operator() in the context of 8166 // (E).operator(). 8167 OverloadCandidateSet CandidateSet(LParenLoc); 8168 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 8169 8170 if (RequireCompleteType(LParenLoc, Object->getType(), 8171 PDiag(diag::err_incomplete_object_call) 8172 << Object->getSourceRange())) 8173 return true; 8174 8175 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 8176 LookupQualifiedName(R, Record->getDecl()); 8177 R.suppressDiagnostics(); 8178 8179 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8180 Oper != OperEnd; ++Oper) { 8181 AddMethodCandidate(Oper.getPair(), Object->getType(), 8182 Object->Classify(Context), Args, NumArgs, CandidateSet, 8183 /*SuppressUserConversions=*/ false); 8184 } 8185 8186 // C++ [over.call.object]p2: 8187 // In addition, for each conversion function declared in T of the 8188 // form 8189 // 8190 // operator conversion-type-id () cv-qualifier; 8191 // 8192 // where cv-qualifier is the same cv-qualification as, or a 8193 // greater cv-qualification than, cv, and where conversion-type-id 8194 // denotes the type "pointer to function of (P1,...,Pn) returning 8195 // R", or the type "reference to pointer to function of 8196 // (P1,...,Pn) returning R", or the type "reference to function 8197 // of (P1,...,Pn) returning R", a surrogate call function [...] 8198 // is also considered as a candidate function. Similarly, 8199 // surrogate call functions are added to the set of candidate 8200 // functions for each conversion function declared in an 8201 // accessible base class provided the function is not hidden 8202 // within T by another intervening declaration. 8203 const UnresolvedSetImpl *Conversions 8204 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 8205 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 8206 E = Conversions->end(); I != E; ++I) { 8207 NamedDecl *D = *I; 8208 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 8209 if (isa<UsingShadowDecl>(D)) 8210 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8211 8212 // Skip over templated conversion functions; they aren't 8213 // surrogates. 8214 if (isa<FunctionTemplateDecl>(D)) 8215 continue; 8216 8217 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8218 8219 // Strip the reference type (if any) and then the pointer type (if 8220 // any) to get down to what might be a function type. 8221 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 8222 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 8223 ConvType = ConvPtrType->getPointeeType(); 8224 8225 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 8226 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 8227 Object, Args, NumArgs, CandidateSet); 8228 } 8229 8230 // Perform overload resolution. 8231 OverloadCandidateSet::iterator Best; 8232 switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(), 8233 Best)) { 8234 case OR_Success: 8235 // Overload resolution succeeded; we'll build the appropriate call 8236 // below. 8237 break; 8238 8239 case OR_No_Viable_Function: 8240 if (CandidateSet.empty()) 8241 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 8242 << Object->getType() << /*call*/ 1 8243 << Object->getSourceRange(); 8244 else 8245 Diag(Object->getSourceRange().getBegin(), 8246 diag::err_ovl_no_viable_object_call) 8247 << Object->getType() << Object->getSourceRange(); 8248 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8249 break; 8250 8251 case OR_Ambiguous: 8252 Diag(Object->getSourceRange().getBegin(), 8253 diag::err_ovl_ambiguous_object_call) 8254 << Object->getType() << Object->getSourceRange(); 8255 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 8256 break; 8257 8258 case OR_Deleted: 8259 Diag(Object->getSourceRange().getBegin(), 8260 diag::err_ovl_deleted_object_call) 8261 << Best->Function->isDeleted() 8262 << Object->getType() << Object->getSourceRange(); 8263 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8264 break; 8265 } 8266 8267 if (Best == CandidateSet.end()) 8268 return true; 8269 8270 if (Best->Function == 0) { 8271 // Since there is no function declaration, this is one of the 8272 // surrogate candidates. Dig out the conversion function. 8273 CXXConversionDecl *Conv 8274 = cast<CXXConversionDecl>( 8275 Best->Conversions[0].UserDefined.ConversionFunction); 8276 8277 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 8278 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 8279 8280 // We selected one of the surrogate functions that converts the 8281 // object parameter to a function pointer. Perform the conversion 8282 // on the object argument, then let ActOnCallExpr finish the job. 8283 8284 // Create an implicit member expr to refer to the conversion operator. 8285 // and then call it. 8286 ExprResult Call = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv); 8287 if (Call.isInvalid()) 8288 return ExprError(); 8289 8290 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 8291 RParenLoc); 8292 } 8293 8294 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 8295 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 8296 8297 // We found an overloaded operator(). Build a CXXOperatorCallExpr 8298 // that calls this method, using Object for the implicit object 8299 // parameter and passing along the remaining arguments. 8300 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8301 const FunctionProtoType *Proto = 8302 Method->getType()->getAs<FunctionProtoType>(); 8303 8304 unsigned NumArgsInProto = Proto->getNumArgs(); 8305 unsigned NumArgsToCheck = NumArgs; 8306 8307 // Build the full argument list for the method call (the 8308 // implicit object parameter is placed at the beginning of the 8309 // list). 8310 Expr **MethodArgs; 8311 if (NumArgs < NumArgsInProto) { 8312 NumArgsToCheck = NumArgsInProto; 8313 MethodArgs = new Expr*[NumArgsInProto + 1]; 8314 } else { 8315 MethodArgs = new Expr*[NumArgs + 1]; 8316 } 8317 MethodArgs[0] = Object; 8318 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 8319 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 8320 8321 Expr *NewFn = CreateFunctionRefExpr(*this, Method); 8322 8323 // Once we've built TheCall, all of the expressions are properly 8324 // owned. 8325 QualType ResultTy = Method->getResultType(); 8326 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8327 ResultTy = ResultTy.getNonLValueExprType(Context); 8328 8329 CXXOperatorCallExpr *TheCall = 8330 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 8331 MethodArgs, NumArgs + 1, 8332 ResultTy, VK, RParenLoc); 8333 delete [] MethodArgs; 8334 8335 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 8336 Method)) 8337 return true; 8338 8339 // We may have default arguments. If so, we need to allocate more 8340 // slots in the call for them. 8341 if (NumArgs < NumArgsInProto) 8342 TheCall->setNumArgs(Context, NumArgsInProto + 1); 8343 else if (NumArgs > NumArgsInProto) 8344 NumArgsToCheck = NumArgsInProto; 8345 8346 bool IsError = false; 8347 8348 // Initialize the implicit object parameter. 8349 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 8350 Best->FoundDecl, Method); 8351 TheCall->setArg(0, Object); 8352 8353 8354 // Check the argument types. 8355 for (unsigned i = 0; i != NumArgsToCheck; i++) { 8356 Expr *Arg; 8357 if (i < NumArgs) { 8358 Arg = Args[i]; 8359 8360 // Pass the argument. 8361 8362 ExprResult InputInit 8363 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8364 Context, 8365 Method->getParamDecl(i)), 8366 SourceLocation(), Arg); 8367 8368 IsError |= InputInit.isInvalid(); 8369 Arg = InputInit.takeAs<Expr>(); 8370 } else { 8371 ExprResult DefArg 8372 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 8373 if (DefArg.isInvalid()) { 8374 IsError = true; 8375 break; 8376 } 8377 8378 Arg = DefArg.takeAs<Expr>(); 8379 } 8380 8381 TheCall->setArg(i + 1, Arg); 8382 } 8383 8384 // If this is a variadic call, handle args passed through "...". 8385 if (Proto->isVariadic()) { 8386 // Promote the arguments (C99 6.5.2.2p7). 8387 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 8388 Expr *Arg = Args[i]; 8389 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 8390 TheCall->setArg(i + 1, Arg); 8391 } 8392 } 8393 8394 if (IsError) return true; 8395 8396 if (CheckFunctionCall(Method, TheCall)) 8397 return true; 8398 8399 return MaybeBindToTemporary(TheCall); 8400} 8401 8402/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 8403/// (if one exists), where @c Base is an expression of class type and 8404/// @c Member is the name of the member we're trying to find. 8405ExprResult 8406Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 8407 assert(Base->getType()->isRecordType() && 8408 "left-hand side must have class type"); 8409 8410 if (Base->getObjectKind() == OK_ObjCProperty) 8411 ConvertPropertyForRValue(Base); 8412 8413 SourceLocation Loc = Base->getExprLoc(); 8414 8415 // C++ [over.ref]p1: 8416 // 8417 // [...] An expression x->m is interpreted as (x.operator->())->m 8418 // for a class object x of type T if T::operator->() exists and if 8419 // the operator is selected as the best match function by the 8420 // overload resolution mechanism (13.3). 8421 DeclarationName OpName = 8422 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 8423 OverloadCandidateSet CandidateSet(Loc); 8424 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 8425 8426 if (RequireCompleteType(Loc, Base->getType(), 8427 PDiag(diag::err_typecheck_incomplete_tag) 8428 << Base->getSourceRange())) 8429 return ExprError(); 8430 8431 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 8432 LookupQualifiedName(R, BaseRecord->getDecl()); 8433 R.suppressDiagnostics(); 8434 8435 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8436 Oper != OperEnd; ++Oper) { 8437 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 8438 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 8439 } 8440 8441 // Perform overload resolution. 8442 OverloadCandidateSet::iterator Best; 8443 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8444 case OR_Success: 8445 // Overload resolution succeeded; we'll build the call below. 8446 break; 8447 8448 case OR_No_Viable_Function: 8449 if (CandidateSet.empty()) 8450 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 8451 << Base->getType() << Base->getSourceRange(); 8452 else 8453 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8454 << "operator->" << Base->getSourceRange(); 8455 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8456 return ExprError(); 8457 8458 case OR_Ambiguous: 8459 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 8460 << "->" << Base->getType() << Base->getSourceRange(); 8461 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 8462 return ExprError(); 8463 8464 case OR_Deleted: 8465 Diag(OpLoc, diag::err_ovl_deleted_oper) 8466 << Best->Function->isDeleted() 8467 << "->" << Base->getSourceRange(); 8468 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8469 return ExprError(); 8470 } 8471 8472 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 8473 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8474 8475 // Convert the object parameter. 8476 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8477 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 8478 Best->FoundDecl, Method)) 8479 return ExprError(); 8480 8481 // Build the operator call. 8482 Expr *FnExpr = CreateFunctionRefExpr(*this, Method); 8483 8484 QualType ResultTy = Method->getResultType(); 8485 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8486 ResultTy = ResultTy.getNonLValueExprType(Context); 8487 CXXOperatorCallExpr *TheCall = 8488 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 8489 &Base, 1, ResultTy, VK, OpLoc); 8490 8491 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 8492 Method)) 8493 return ExprError(); 8494 return Owned(TheCall); 8495} 8496 8497/// FixOverloadedFunctionReference - E is an expression that refers to 8498/// a C++ overloaded function (possibly with some parentheses and 8499/// perhaps a '&' around it). We have resolved the overloaded function 8500/// to the function declaration Fn, so patch up the expression E to 8501/// refer (possibly indirectly) to Fn. Returns the new expr. 8502Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 8503 FunctionDecl *Fn) { 8504 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 8505 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 8506 Found, Fn); 8507 if (SubExpr == PE->getSubExpr()) 8508 return PE; 8509 8510 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 8511 } 8512 8513 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8514 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 8515 Found, Fn); 8516 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 8517 SubExpr->getType()) && 8518 "Implicit cast type cannot be determined from overload"); 8519 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 8520 if (SubExpr == ICE->getSubExpr()) 8521 return ICE; 8522 8523 return ImplicitCastExpr::Create(Context, ICE->getType(), 8524 ICE->getCastKind(), 8525 SubExpr, 0, 8526 ICE->getValueKind()); 8527 } 8528 8529 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 8530 assert(UnOp->getOpcode() == UO_AddrOf && 8531 "Can only take the address of an overloaded function"); 8532 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8533 if (Method->isStatic()) { 8534 // Do nothing: static member functions aren't any different 8535 // from non-member functions. 8536 } else { 8537 // Fix the sub expression, which really has to be an 8538 // UnresolvedLookupExpr holding an overloaded member function 8539 // or template. 8540 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8541 Found, Fn); 8542 if (SubExpr == UnOp->getSubExpr()) 8543 return UnOp; 8544 8545 assert(isa<DeclRefExpr>(SubExpr) 8546 && "fixed to something other than a decl ref"); 8547 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 8548 && "fixed to a member ref with no nested name qualifier"); 8549 8550 // We have taken the address of a pointer to member 8551 // function. Perform the computation here so that we get the 8552 // appropriate pointer to member type. 8553 QualType ClassType 8554 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 8555 QualType MemPtrType 8556 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 8557 8558 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 8559 VK_RValue, OK_Ordinary, 8560 UnOp->getOperatorLoc()); 8561 } 8562 } 8563 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8564 Found, Fn); 8565 if (SubExpr == UnOp->getSubExpr()) 8566 return UnOp; 8567 8568 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 8569 Context.getPointerType(SubExpr->getType()), 8570 VK_RValue, OK_Ordinary, 8571 UnOp->getOperatorLoc()); 8572 } 8573 8574 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 8575 // FIXME: avoid copy. 8576 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8577 if (ULE->hasExplicitTemplateArgs()) { 8578 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 8579 TemplateArgs = &TemplateArgsBuffer; 8580 } 8581 8582 return DeclRefExpr::Create(Context, 8583 ULE->getQualifier(), 8584 ULE->getQualifierRange(), 8585 Fn, 8586 ULE->getNameLoc(), 8587 Fn->getType(), 8588 VK_LValue, 8589 TemplateArgs); 8590 } 8591 8592 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 8593 // FIXME: avoid copy. 8594 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8595 if (MemExpr->hasExplicitTemplateArgs()) { 8596 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8597 TemplateArgs = &TemplateArgsBuffer; 8598 } 8599 8600 Expr *Base; 8601 8602 // If we're filling in a static method where we used to have an 8603 // implicit member access, rewrite to a simple decl ref. 8604 if (MemExpr->isImplicitAccess()) { 8605 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 8606 return DeclRefExpr::Create(Context, 8607 MemExpr->getQualifier(), 8608 MemExpr->getQualifierRange(), 8609 Fn, 8610 MemExpr->getMemberLoc(), 8611 Fn->getType(), 8612 VK_LValue, 8613 TemplateArgs); 8614 } else { 8615 SourceLocation Loc = MemExpr->getMemberLoc(); 8616 if (MemExpr->getQualifier()) 8617 Loc = MemExpr->getQualifierRange().getBegin(); 8618 Base = new (Context) CXXThisExpr(Loc, 8619 MemExpr->getBaseType(), 8620 /*isImplicit=*/true); 8621 } 8622 } else 8623 Base = MemExpr->getBase(); 8624 8625 return MemberExpr::Create(Context, Base, 8626 MemExpr->isArrow(), 8627 MemExpr->getQualifier(), 8628 MemExpr->getQualifierRange(), 8629 Fn, 8630 Found, 8631 MemExpr->getMemberNameInfo(), 8632 TemplateArgs, 8633 Fn->getType(), 8634 cast<CXXMethodDecl>(Fn)->isStatic() 8635 ? VK_LValue : VK_RValue, 8636 OK_Ordinary); 8637 } 8638 8639 llvm_unreachable("Invalid reference to overloaded function"); 8640 return E; 8641} 8642 8643ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 8644 DeclAccessPair Found, 8645 FunctionDecl *Fn) { 8646 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 8647} 8648 8649} // end namespace clang 8650