SemaStmtAsm.cpp revision 2d5a1de741c94f15461b06cd09a65081c7ce3d70
1//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for inline asm statements. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Scope.h" 16#include "clang/Sema/ScopeInfo.h" 17#include "clang/Sema/Initialization.h" 18#include "clang/Sema/Lookup.h" 19#include "clang/AST/TypeLoc.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/Basic/TargetInfo.h" 22#include "llvm/ADT/ArrayRef.h" 23#include "llvm/ADT/BitVector.h" 24#include "llvm/ADT/SmallString.h" 25#include "llvm/MC/MCAsmInfo.h" 26#include "llvm/MC/MCContext.h" 27#include "llvm/MC/MCExpr.h" 28#include "llvm/MC/MCInst.h" 29#include "llvm/MC/MCInstPrinter.h" 30#include "llvm/MC/MCInstrInfo.h" 31#include "llvm/MC/MCObjectFileInfo.h" 32#include "llvm/MC/MCRegisterInfo.h" 33#include "llvm/MC/MCStreamer.h" 34#include "llvm/MC/MCSubtargetInfo.h" 35#include "llvm/MC/MCSymbol.h" 36#include "llvm/MC/MCTargetAsmParser.h" 37#include "llvm/MC/MCParser/MCAsmLexer.h" 38#include "llvm/MC/MCParser/MCAsmParser.h" 39#include "llvm/Support/SourceMgr.h" 40#include "llvm/Support/TargetRegistry.h" 41#include "llvm/Support/TargetSelect.h" 42using namespace clang; 43using namespace sema; 44 45/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 46/// ignore "noop" casts in places where an lvalue is required by an inline asm. 47/// We emulate this behavior when -fheinous-gnu-extensions is specified, but 48/// provide a strong guidance to not use it. 49/// 50/// This method checks to see if the argument is an acceptable l-value and 51/// returns false if it is a case we can handle. 52static bool CheckAsmLValue(const Expr *E, Sema &S) { 53 // Type dependent expressions will be checked during instantiation. 54 if (E->isTypeDependent()) 55 return false; 56 57 if (E->isLValue()) 58 return false; // Cool, this is an lvalue. 59 60 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 61 // are supposed to allow. 62 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 63 if (E != E2 && E2->isLValue()) { 64 if (!S.getLangOpts().HeinousExtensions) 65 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) 66 << E->getSourceRange(); 67 else 68 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 69 << E->getSourceRange(); 70 // Accept, even if we emitted an error diagnostic. 71 return false; 72 } 73 74 // None of the above, just randomly invalid non-lvalue. 75 return true; 76} 77 78/// isOperandMentioned - Return true if the specified operand # is mentioned 79/// anywhere in the decomposed asm string. 80static bool isOperandMentioned(unsigned OpNo, 81 ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) { 82 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 83 const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 84 if (!Piece.isOperand()) continue; 85 86 // If this is a reference to the input and if the input was the smaller 87 // one, then we have to reject this asm. 88 if (Piece.getOperandNo() == OpNo) 89 return true; 90 } 91 return false; 92} 93 94StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, 95 bool IsVolatile, unsigned NumOutputs, 96 unsigned NumInputs, IdentifierInfo **Names, 97 MultiExprArg constraints, MultiExprArg exprs, 98 Expr *asmString, MultiExprArg clobbers, 99 SourceLocation RParenLoc) { 100 unsigned NumClobbers = clobbers.size(); 101 StringLiteral **Constraints = 102 reinterpret_cast<StringLiteral**>(constraints.get()); 103 Expr **Exprs = exprs.get(); 104 StringLiteral *AsmString = cast<StringLiteral>(asmString); 105 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get()); 106 107 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 108 109 // The parser verifies that there is a string literal here. 110 if (!AsmString->isAscii()) 111 return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) 112 << AsmString->getSourceRange()); 113 114 for (unsigned i = 0; i != NumOutputs; i++) { 115 StringLiteral *Literal = Constraints[i]; 116 if (!Literal->isAscii()) 117 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) 118 << Literal->getSourceRange()); 119 120 StringRef OutputName; 121 if (Names[i]) 122 OutputName = Names[i]->getName(); 123 124 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 125 if (!Context.getTargetInfo().validateOutputConstraint(Info)) 126 return StmtError(Diag(Literal->getLocStart(), 127 diag::err_asm_invalid_output_constraint) 128 << Info.getConstraintStr()); 129 130 // Check that the output exprs are valid lvalues. 131 Expr *OutputExpr = Exprs[i]; 132 if (CheckAsmLValue(OutputExpr, *this)) { 133 return StmtError(Diag(OutputExpr->getLocStart(), 134 diag::err_asm_invalid_lvalue_in_output) 135 << OutputExpr->getSourceRange()); 136 } 137 138 OutputConstraintInfos.push_back(Info); 139 } 140 141 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 142 143 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 144 StringLiteral *Literal = Constraints[i]; 145 if (!Literal->isAscii()) 146 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) 147 << Literal->getSourceRange()); 148 149 StringRef InputName; 150 if (Names[i]) 151 InputName = Names[i]->getName(); 152 153 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 154 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), 155 NumOutputs, Info)) { 156 return StmtError(Diag(Literal->getLocStart(), 157 diag::err_asm_invalid_input_constraint) 158 << Info.getConstraintStr()); 159 } 160 161 Expr *InputExpr = Exprs[i]; 162 163 // Only allow void types for memory constraints. 164 if (Info.allowsMemory() && !Info.allowsRegister()) { 165 if (CheckAsmLValue(InputExpr, *this)) 166 return StmtError(Diag(InputExpr->getLocStart(), 167 diag::err_asm_invalid_lvalue_in_input) 168 << Info.getConstraintStr() 169 << InputExpr->getSourceRange()); 170 } 171 172 if (Info.allowsRegister()) { 173 if (InputExpr->getType()->isVoidType()) { 174 return StmtError(Diag(InputExpr->getLocStart(), 175 diag::err_asm_invalid_type_in_input) 176 << InputExpr->getType() << Info.getConstraintStr() 177 << InputExpr->getSourceRange()); 178 } 179 } 180 181 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 182 if (Result.isInvalid()) 183 return StmtError(); 184 185 Exprs[i] = Result.take(); 186 InputConstraintInfos.push_back(Info); 187 } 188 189 // Check that the clobbers are valid. 190 for (unsigned i = 0; i != NumClobbers; i++) { 191 StringLiteral *Literal = Clobbers[i]; 192 if (!Literal->isAscii()) 193 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) 194 << Literal->getSourceRange()); 195 196 StringRef Clobber = Literal->getString(); 197 198 if (!Context.getTargetInfo().isValidClobber(Clobber)) 199 return StmtError(Diag(Literal->getLocStart(), 200 diag::err_asm_unknown_register_name) << Clobber); 201 } 202 203 AsmStmt *NS = 204 new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 205 NumInputs, Names, Constraints, Exprs, AsmString, 206 NumClobbers, Clobbers, RParenLoc); 207 // Validate the asm string, ensuring it makes sense given the operands we 208 // have. 209 SmallVector<AsmStmt::AsmStringPiece, 8> Pieces; 210 unsigned DiagOffs; 211 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 212 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 213 << AsmString->getSourceRange(); 214 return StmtError(); 215 } 216 217 // Validate tied input operands for type mismatches. 218 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 219 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 220 221 // If this is a tied constraint, verify that the output and input have 222 // either exactly the same type, or that they are int/ptr operands with the 223 // same size (int/long, int*/long, are ok etc). 224 if (!Info.hasTiedOperand()) continue; 225 226 unsigned TiedTo = Info.getTiedOperand(); 227 unsigned InputOpNo = i+NumOutputs; 228 Expr *OutputExpr = Exprs[TiedTo]; 229 Expr *InputExpr = Exprs[InputOpNo]; 230 231 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 232 continue; 233 234 QualType InTy = InputExpr->getType(); 235 QualType OutTy = OutputExpr->getType(); 236 if (Context.hasSameType(InTy, OutTy)) 237 continue; // All types can be tied to themselves. 238 239 // Decide if the input and output are in the same domain (integer/ptr or 240 // floating point. 241 enum AsmDomain { 242 AD_Int, AD_FP, AD_Other 243 } InputDomain, OutputDomain; 244 245 if (InTy->isIntegerType() || InTy->isPointerType()) 246 InputDomain = AD_Int; 247 else if (InTy->isRealFloatingType()) 248 InputDomain = AD_FP; 249 else 250 InputDomain = AD_Other; 251 252 if (OutTy->isIntegerType() || OutTy->isPointerType()) 253 OutputDomain = AD_Int; 254 else if (OutTy->isRealFloatingType()) 255 OutputDomain = AD_FP; 256 else 257 OutputDomain = AD_Other; 258 259 // They are ok if they are the same size and in the same domain. This 260 // allows tying things like: 261 // void* to int* 262 // void* to int if they are the same size. 263 // double to long double if they are the same size. 264 // 265 uint64_t OutSize = Context.getTypeSize(OutTy); 266 uint64_t InSize = Context.getTypeSize(InTy); 267 if (OutSize == InSize && InputDomain == OutputDomain && 268 InputDomain != AD_Other) 269 continue; 270 271 // If the smaller input/output operand is not mentioned in the asm string, 272 // then we can promote the smaller one to a larger input and the asm string 273 // won't notice. 274 bool SmallerValueMentioned = false; 275 276 // If this is a reference to the input and if the input was the smaller 277 // one, then we have to reject this asm. 278 if (isOperandMentioned(InputOpNo, Pieces)) { 279 // This is a use in the asm string of the smaller operand. Since we 280 // codegen this by promoting to a wider value, the asm will get printed 281 // "wrong". 282 SmallerValueMentioned |= InSize < OutSize; 283 } 284 if (isOperandMentioned(TiedTo, Pieces)) { 285 // If this is a reference to the output, and if the output is the larger 286 // value, then it's ok because we'll promote the input to the larger type. 287 SmallerValueMentioned |= OutSize < InSize; 288 } 289 290 // If the smaller value wasn't mentioned in the asm string, and if the 291 // output was a register, just extend the shorter one to the size of the 292 // larger one. 293 if (!SmallerValueMentioned && InputDomain != AD_Other && 294 OutputConstraintInfos[TiedTo].allowsRegister()) 295 continue; 296 297 // Either both of the operands were mentioned or the smaller one was 298 // mentioned. One more special case that we'll allow: if the tied input is 299 // integer, unmentioned, and is a constant, then we'll allow truncating it 300 // down to the size of the destination. 301 if (InputDomain == AD_Int && OutputDomain == AD_Int && 302 !isOperandMentioned(InputOpNo, Pieces) && 303 InputExpr->isEvaluatable(Context)) { 304 CastKind castKind = 305 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 306 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); 307 Exprs[InputOpNo] = InputExpr; 308 NS->setInputExpr(i, InputExpr); 309 continue; 310 } 311 312 Diag(InputExpr->getLocStart(), 313 diag::err_asm_tying_incompatible_types) 314 << InTy << OutTy << OutputExpr->getSourceRange() 315 << InputExpr->getSourceRange(); 316 return StmtError(); 317 } 318 319 return Owned(NS); 320} 321 322// isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These 323// require special handling. 324static bool isMSAsmKeyword(StringRef Name) { 325 bool Ret = llvm::StringSwitch<bool>(Name) 326 .Cases("EVEN", "ALIGN", true) // Alignment directives. 327 .Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes. 328 .Case("_emit", true) // _emit Pseudoinstruction. 329 .Default(false); 330 return Ret; 331} 332 333// getIdentifierInfo - Given a Name and a range of tokens, find the associated 334// IdentifierInfo*. 335static IdentifierInfo *getIdentifierInfo(StringRef Name, 336 ArrayRef<Token> AsmToks, 337 unsigned Begin, unsigned End) { 338 for (unsigned i = Begin; i <= End; ++i) { 339 IdentifierInfo *II = AsmToks[i].getIdentifierInfo(); 340 if (II && II->getName() == Name) 341 return II; 342 } 343 return 0; 344} 345 346// getSpelling - Get the spelling of the AsmTok token. 347static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { 348 StringRef Asm; 349 SmallString<512> TokenBuf; 350 TokenBuf.resize(512); 351 bool StringInvalid = false; 352 Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); 353 assert (!StringInvalid && "Expected valid string!"); 354 return Asm; 355} 356 357// Determine if we should bail on this MSAsm instruction. 358static bool bailOnMSAsm(std::vector<StringRef> Piece) { 359 for (unsigned i = 0, e = Piece.size(); i != e; ++i) 360 if (isMSAsmKeyword(Piece[i])) 361 return true; 362 return false; 363} 364 365// Determine if we should bail on this MSAsm block. 366static bool bailOnMSAsm(std::vector<std::vector<StringRef> > Pieces) { 367 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) 368 if (bailOnMSAsm(Pieces[i])) 369 return true; 370 return false; 371} 372 373// Determine if this is a simple MSAsm instruction. 374static bool isSimpleMSAsm(std::vector<StringRef> &Pieces, 375 const TargetInfo &TI) { 376 if (isMSAsmKeyword(Pieces[0])) 377 return false; 378 379 for (unsigned i = 1, e = Pieces.size(); i != e; ++i) 380 if (!TI.isValidGCCRegisterName(Pieces[i])) 381 return false; 382 return true; 383} 384 385// Determine if this is a simple MSAsm block. 386static bool isSimpleMSAsm(std::vector<std::vector<StringRef> > Pieces, 387 const TargetInfo &TI) { 388 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) 389 if (!isSimpleMSAsm(Pieces[i], TI)) 390 return false; 391 return true; 392} 393 394// Break the AsmSting into pieces (i.e., mnemonic and operands). 395static void buildMSAsmPieces(StringRef Asm, std::vector<StringRef> &Pieces) { 396 std::pair<StringRef,StringRef> Split = Asm.split(' '); 397 398 // Mnemonic 399 Pieces.push_back(Split.first); 400 Asm = Split.second; 401 402 // Operands 403 while (!Asm.empty()) { 404 Split = Asm.split(", "); 405 Pieces.push_back(Split.first); 406 Asm = Split.second; 407 } 408} 409 410static void buildMSAsmPieces(std::vector<std::string> &AsmStrings, 411 std::vector<std::vector<StringRef> > &Pieces) { 412 for (unsigned i = 0, e = AsmStrings.size(); i != e; ++i) 413 buildMSAsmPieces(AsmStrings[i], Pieces[i]); 414} 415 416// Build the unmodified AsmString used by the IR. Also build the individual 417// asm instruction(s) and place them in the AsmStrings vector; these are fed 418// to the AsmParser. 419static std::string buildMSAsmString(Sema &SemaRef, ArrayRef<Token> AsmToks, 420 std::vector<std::string> &AsmStrings, 421 std::vector<std::pair<unsigned,unsigned> > &AsmTokRanges) { 422 assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); 423 424 SmallString<512> Res; 425 SmallString<512> Asm; 426 unsigned startTok = 0; 427 for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { 428 bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() || 429 AsmToks[i].is(tok::kw_asm); 430 431 if (isNewAsm) { 432 if (i) { 433 AsmStrings.push_back(Asm.c_str()); 434 AsmTokRanges.push_back(std::make_pair(startTok, i-1)); 435 startTok = i; 436 Res += Asm; 437 Asm.clear(); 438 Res += '\n'; 439 } 440 if (AsmToks[i].is(tok::kw_asm)) { 441 i++; // Skip __asm 442 assert (i != e && "Expected another token"); 443 } 444 } 445 446 if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) 447 Asm += ' '; 448 449 Asm += getSpelling(SemaRef, AsmToks[i]); 450 } 451 AsmStrings.push_back(Asm.c_str()); 452 AsmTokRanges.push_back(std::make_pair(startTok, AsmToks.size()-1)); 453 Res += Asm; 454 return Res.c_str(); 455} 456 457#define DEF_SIMPLE_MSASM \ 458 MSAsmStmt *NS = \ 459 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, \ 460 /*IsVolatile*/ true, AsmToks, Inputs, Outputs, \ 461 AsmString, Clobbers, EndLoc); 462 463StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, 464 SourceLocation LBraceLoc, 465 ArrayRef<Token> AsmToks, 466 SourceLocation EndLoc) { 467 // MS-style inline assembly is not fully supported, so emit a warning. 468 Diag(AsmLoc, diag::warn_unsupported_msasm); 469 SmallVector<StringRef,4> Clobbers; 470 std::set<std::string> ClobberRegs; 471 SmallVector<IdentifierInfo*, 4> Inputs; 472 SmallVector<IdentifierInfo*, 4> Outputs; 473 474 // Empty asm statements don't need to instantiate the AsmParser, etc. 475 if (AsmToks.empty()) { 476 StringRef AsmString; 477 DEF_SIMPLE_MSASM; 478 return Owned(NS); 479 } 480 481 std::vector<std::string> AsmStrings; 482 std::vector<std::pair<unsigned,unsigned> > AsmTokRanges; 483 std::string AsmString = buildMSAsmString(*this, AsmToks, AsmStrings, AsmTokRanges); 484 485 std::vector<std::vector<StringRef> > Pieces(AsmStrings.size()); 486 buildMSAsmPieces(AsmStrings, Pieces); 487 488 bool IsSimple = isSimpleMSAsm(Pieces, Context.getTargetInfo()); 489 490 // AsmParser doesn't fully support these asm statements. 491 if (bailOnMSAsm(Pieces)) { DEF_SIMPLE_MSASM; return Owned(NS); } 492 493 // Initialize targets and assembly printers/parsers. 494 llvm::InitializeAllTargetInfos(); 495 llvm::InitializeAllTargetMCs(); 496 llvm::InitializeAllAsmParsers(); 497 498 // Get the target specific parser. 499 std::string Error; 500 const std::string &TT = Context.getTargetInfo().getTriple().getTriple(); 501 const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); 502 503 OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT)); 504 OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT)); 505 OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo()); 506 OwningPtr<llvm::MCSubtargetInfo> 507 STI(TheTarget->createMCSubtargetInfo(TT, "", "")); 508 509 for (unsigned i = 0, e = AsmStrings.size(); i != e; ++i) { 510 llvm::SourceMgr SrcMgr; 511 llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); 512 llvm::MemoryBuffer *Buffer = 513 llvm::MemoryBuffer::getMemBuffer(AsmStrings[i], "<inline asm>"); 514 515 // Tell SrcMgr about this buffer, which is what the parser will pick up. 516 SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); 517 518 OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx)); 519 OwningPtr<llvm::MCAsmParser> 520 Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); 521 OwningPtr<llvm::MCTargetAsmParser> 522 TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); 523 // Change to the Intel dialect. 524 Parser->setAssemblerDialect(1); 525 Parser->setTargetParser(*TargetParser.get()); 526 527 // Prime the lexer. 528 Parser->Lex(); 529 530 // Parse the opcode. 531 StringRef IDVal; 532 Parser->ParseIdentifier(IDVal); 533 534 // Canonicalize the opcode to lower case. 535 SmallString<128> Opcode; 536 for (unsigned j = 0, e = IDVal.size(); j != e; ++j) 537 Opcode.push_back(tolower(IDVal[j])); 538 539 // Parse the operands. 540 llvm::SMLoc IDLoc; 541 SmallVector<llvm::MCParsedAsmOperand*, 8> Operands; 542 bool HadError = TargetParser->ParseInstruction(Opcode.str(), IDLoc, 543 Operands); 544 // If we had an error parsing the operands, fail gracefully. 545 if (HadError) { DEF_SIMPLE_MSASM; return Owned(NS); } 546 547 // Match the MCInstr. 548 unsigned ErrorInfo; 549 SmallVector<llvm::MCInst, 2> Instrs; 550 HadError = TargetParser->MatchInstruction(IDLoc, Operands, Instrs, 551 ErrorInfo, 552 /*matchingInlineAsm*/ true); 553 // If we had an error parsing the operands, fail gracefully. 554 if (HadError) { DEF_SIMPLE_MSASM; return Owned(NS); } 555 556 // Get the instruction descriptor. 557 llvm::MCInst Inst = Instrs[0]; 558 const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); 559 const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode()); 560 llvm::MCInstPrinter *IP = 561 TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); 562 563 // Build the list of clobbers, outputs and inputs. 564 unsigned NumDefs = Desc.getNumDefs(); 565 for (unsigned j = 0, e = Inst.getNumOperands(); j != e; ++j) { 566 const llvm::MCOperand &Op = Inst.getOperand(j); 567 568 // Immediate. 569 if (Op.isImm() || Op.isFPImm()) 570 continue; 571 572 bool isDef = NumDefs && (j < NumDefs); 573 574 // Register/Clobber. 575 if (Op.isReg() && isDef) { 576 std::string Reg; 577 llvm::raw_string_ostream OS(Reg); 578 IP->printRegName(OS, Op.getReg()); 579 580 StringRef Clobber(OS.str()); 581 if (!Context.getTargetInfo().isValidClobber(Clobber)) 582 return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) << 583 Clobber); 584 ClobberRegs.insert(Reg); 585 continue; 586 } 587 // Expr/Input or Output. 588 if (Op.isExpr()) { 589 const llvm::MCExpr *Expr = Op.getExpr(); 590 const llvm::MCSymbolRefExpr *SymRef; 591 if ((SymRef = dyn_cast<llvm::MCSymbolRefExpr>(Expr))) { 592 StringRef Name = SymRef->getSymbol().getName(); 593 IdentifierInfo *II = getIdentifierInfo(Name, AsmToks, 594 AsmTokRanges[i].first, 595 AsmTokRanges[i].second); 596 if (II) 597 isDef ? Outputs.push_back(II) : Inputs.push_back(II); 598 } 599 } 600 } 601 } 602 for (std::set<std::string>::iterator I = ClobberRegs.begin(), 603 E = ClobberRegs.end(); I != E; ++I) 604 Clobbers.push_back(*I); 605 606 MSAsmStmt *NS = 607 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 608 /*IsVolatile*/ true, AsmToks, Inputs, Outputs, 609 AsmString, Clobbers, EndLoc); 610 return Owned(NS); 611} 612