SemaTemplate.cpp revision 05b23ea2119b4c411719bd6631e5d679ba5e7ef1
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "llvm/Support/Compiler.h"
21
22using namespace clang;
23
24/// \brief Determine whether the declaration found is acceptable as the name
25/// of a template and, if so, return that template declaration. Otherwise,
26/// returns NULL.
27static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
28  if (!D)
29    return 0;
30
31  if (isa<TemplateDecl>(D))
32    return D;
33
34  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
35    // C++ [temp.local]p1:
36    //   Like normal (non-template) classes, class templates have an
37    //   injected-class-name (Clause 9). The injected-class-name
38    //   can be used with or without a template-argument-list. When
39    //   it is used without a template-argument-list, it is
40    //   equivalent to the injected-class-name followed by the
41    //   template-parameters of the class template enclosed in
42    //   <>. When it is used with a template-argument-list, it
43    //   refers to the specified class template specialization,
44    //   which could be the current specialization or another
45    //   specialization.
46    if (Record->isInjectedClassName()) {
47      Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
48      if (Record->getDescribedClassTemplate())
49        return Record->getDescribedClassTemplate();
50
51      if (ClassTemplateSpecializationDecl *Spec
52            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
53        return Spec->getSpecializedTemplate();
54    }
55
56    return 0;
57  }
58
59  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
60  if (!Ovl)
61    return 0;
62
63  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
64                                              FEnd = Ovl->function_end();
65       F != FEnd; ++F) {
66    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
67      // We've found a function template. Determine whether there are
68      // any other function templates we need to bundle together in an
69      // OverloadedFunctionDecl
70      for (++F; F != FEnd; ++F) {
71        if (isa<FunctionTemplateDecl>(*F))
72          break;
73      }
74
75      if (F != FEnd) {
76        // Build an overloaded function decl containing only the
77        // function templates in Ovl.
78        OverloadedFunctionDecl *OvlTemplate
79          = OverloadedFunctionDecl::Create(Context,
80                                           Ovl->getDeclContext(),
81                                           Ovl->getDeclName());
82        OvlTemplate->addOverload(FuncTmpl);
83        OvlTemplate->addOverload(*F);
84        for (++F; F != FEnd; ++F) {
85          if (isa<FunctionTemplateDecl>(*F))
86            OvlTemplate->addOverload(*F);
87        }
88
89        return OvlTemplate;
90      }
91
92      return FuncTmpl;
93    }
94  }
95
96  return 0;
97}
98
99TemplateNameKind Sema::isTemplateName(Scope *S,
100                                      const IdentifierInfo &II,
101                                      SourceLocation IdLoc,
102                                      const CXXScopeSpec *SS,
103                                      TypeTy *ObjectTypePtr,
104                                      bool EnteringContext,
105                                      TemplateTy &TemplateResult) {
106  // Determine where to perform name lookup
107  DeclContext *LookupCtx = 0;
108  bool isDependent = false;
109  if (ObjectTypePtr) {
110    // This nested-name-specifier occurs in a member access expression, e.g.,
111    // x->B::f, and we are looking into the type of the object.
112    assert((!SS || !SS->isSet()) &&
113           "ObjectType and scope specifier cannot coexist");
114    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
115    LookupCtx = computeDeclContext(ObjectType);
116    isDependent = ObjectType->isDependentType();
117  } else if (SS && SS->isSet()) {
118    // This nested-name-specifier occurs after another nested-name-specifier,
119    // so long into the context associated with the prior nested-name-specifier.
120
121    LookupCtx = computeDeclContext(*SS, EnteringContext);
122    isDependent = isDependentScopeSpecifier(*SS);
123  }
124
125  LookupResult Found;
126  bool ObjectTypeSearchedInScope = false;
127  if (LookupCtx) {
128    // Perform "qualified" name lookup into the declaration context we
129    // computed, which is either the type of the base of a member access
130    // expression or the declaration context associated with a prior
131    // nested-name-specifier.
132
133    // The declaration context must be complete.
134    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
135      return TNK_Non_template;
136
137    Found = LookupQualifiedName(LookupCtx, &II, LookupOrdinaryName);
138
139    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
140      // C++ [basic.lookup.classref]p1:
141      //   In a class member access expression (5.2.5), if the . or -> token is
142      //   immediately followed by an identifier followed by a <, the
143      //   identifier must be looked up to determine whether the < is the
144      //   beginning of a template argument list (14.2) or a less-than operator.
145      //   The identifier is first looked up in the class of the object
146      //   expression. If the identifier is not found, it is then looked up in
147      //   the context of the entire postfix-expression and shall name a class
148      //   or function template.
149      //
150      // FIXME: When we're instantiating a template, do we actually have to
151      // look in the scope of the template? Seems fishy...
152      Found = LookupName(S, &II, LookupOrdinaryName);
153      ObjectTypeSearchedInScope = true;
154    }
155  } else if (isDependent) {
156    // We cannot look into a dependent object type or
157    return TNK_Non_template;
158  } else {
159    // Perform unqualified name lookup in the current scope.
160    Found = LookupName(S, &II, LookupOrdinaryName);
161  }
162
163  // FIXME: Cope with ambiguous name-lookup results.
164  assert(!Found.isAmbiguous() &&
165         "Cannot handle template name-lookup ambiguities");
166
167  NamedDecl *Template = isAcceptableTemplateName(Context, Found);
168  if (!Template)
169    return TNK_Non_template;
170
171  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
172    // C++ [basic.lookup.classref]p1:
173    //   [...] If the lookup in the class of the object expression finds a
174    //   template, the name is also looked up in the context of the entire
175    //   postfix-expression and [...]
176    //
177    LookupResult FoundOuter = LookupName(S, &II, LookupOrdinaryName);
178    // FIXME: Handle ambiguities in this lookup better
179    NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter);
180
181    if (!OuterTemplate) {
182      //   - if the name is not found, the name found in the class of the
183      //     object expression is used, otherwise
184    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
185      //   - if the name is found in the context of the entire
186      //     postfix-expression and does not name a class template, the name
187      //     found in the class of the object expression is used, otherwise
188    } else {
189      //   - if the name found is a class template, it must refer to the same
190      //     entity as the one found in the class of the object expression,
191      //     otherwise the program is ill-formed.
192      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
193        Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
194          << &II;
195        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
196          << QualType::getFromOpaquePtr(ObjectTypePtr);
197        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
198
199        // Recover by taking the template that we found in the object
200        // expression's type.
201      }
202    }
203  }
204
205  if (SS && SS->isSet() && !SS->isInvalid()) {
206    NestedNameSpecifier *Qualifier
207      = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
208    if (OverloadedFunctionDecl *Ovl
209          = dyn_cast<OverloadedFunctionDecl>(Template))
210      TemplateResult
211        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
212                                                            Ovl));
213    else
214      TemplateResult
215        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
216                                                 cast<TemplateDecl>(Template)));
217  } else if (OverloadedFunctionDecl *Ovl
218               = dyn_cast<OverloadedFunctionDecl>(Template)) {
219    TemplateResult = TemplateTy::make(TemplateName(Ovl));
220  } else {
221    TemplateResult = TemplateTy::make(
222                                  TemplateName(cast<TemplateDecl>(Template)));
223  }
224
225  if (isa<ClassTemplateDecl>(Template) ||
226      isa<TemplateTemplateParmDecl>(Template))
227    return TNK_Type_template;
228
229  assert((isa<FunctionTemplateDecl>(Template) ||
230          isa<OverloadedFunctionDecl>(Template)) &&
231         "Unhandled template kind in Sema::isTemplateName");
232  return TNK_Function_template;
233}
234
235/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
236/// that the template parameter 'PrevDecl' is being shadowed by a new
237/// declaration at location Loc. Returns true to indicate that this is
238/// an error, and false otherwise.
239bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
240  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
241
242  // Microsoft Visual C++ permits template parameters to be shadowed.
243  if (getLangOptions().Microsoft)
244    return false;
245
246  // C++ [temp.local]p4:
247  //   A template-parameter shall not be redeclared within its
248  //   scope (including nested scopes).
249  Diag(Loc, diag::err_template_param_shadow)
250    << cast<NamedDecl>(PrevDecl)->getDeclName();
251  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
252  return true;
253}
254
255/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
256/// the parameter D to reference the templated declaration and return a pointer
257/// to the template declaration. Otherwise, do nothing to D and return null.
258TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
259  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
260    D = DeclPtrTy::make(Temp->getTemplatedDecl());
261    return Temp;
262  }
263  return 0;
264}
265
266/// ActOnTypeParameter - Called when a C++ template type parameter
267/// (e.g., "typename T") has been parsed. Typename specifies whether
268/// the keyword "typename" was used to declare the type parameter
269/// (otherwise, "class" was used), and KeyLoc is the location of the
270/// "class" or "typename" keyword. ParamName is the name of the
271/// parameter (NULL indicates an unnamed template parameter) and
272/// ParamName is the location of the parameter name (if any).
273/// If the type parameter has a default argument, it will be added
274/// later via ActOnTypeParameterDefault.
275Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
276                                         SourceLocation EllipsisLoc,
277                                         SourceLocation KeyLoc,
278                                         IdentifierInfo *ParamName,
279                                         SourceLocation ParamNameLoc,
280                                         unsigned Depth, unsigned Position) {
281  assert(S->isTemplateParamScope() &&
282         "Template type parameter not in template parameter scope!");
283  bool Invalid = false;
284
285  if (ParamName) {
286    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
287    if (PrevDecl && PrevDecl->isTemplateParameter())
288      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
289                                                           PrevDecl);
290  }
291
292  SourceLocation Loc = ParamNameLoc;
293  if (!ParamName)
294    Loc = KeyLoc;
295
296  TemplateTypeParmDecl *Param
297    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
298                                   Depth, Position, ParamName, Typename,
299                                   Ellipsis);
300  if (Invalid)
301    Param->setInvalidDecl();
302
303  if (ParamName) {
304    // Add the template parameter into the current scope.
305    S->AddDecl(DeclPtrTy::make(Param));
306    IdResolver.AddDecl(Param);
307  }
308
309  return DeclPtrTy::make(Param);
310}
311
312/// ActOnTypeParameterDefault - Adds a default argument (the type
313/// Default) to the given template type parameter (TypeParam).
314void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
315                                     SourceLocation EqualLoc,
316                                     SourceLocation DefaultLoc,
317                                     TypeTy *DefaultT) {
318  TemplateTypeParmDecl *Parm
319    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
320  // FIXME: Preserve type source info.
321  QualType Default = GetTypeFromParser(DefaultT);
322
323  // C++0x [temp.param]p9:
324  // A default template-argument may be specified for any kind of
325  // template-parameter that is not a template parameter pack.
326  if (Parm->isParameterPack()) {
327    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
328    return;
329  }
330
331  // C++ [temp.param]p14:
332  //   A template-parameter shall not be used in its own default argument.
333  // FIXME: Implement this check! Needs a recursive walk over the types.
334
335  // Check the template argument itself.
336  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
337    Parm->setInvalidDecl();
338    return;
339  }
340
341  Parm->setDefaultArgument(Default, DefaultLoc, false);
342}
343
344/// \brief Check that the type of a non-type template parameter is
345/// well-formed.
346///
347/// \returns the (possibly-promoted) parameter type if valid;
348/// otherwise, produces a diagnostic and returns a NULL type.
349QualType
350Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
351  // C++ [temp.param]p4:
352  //
353  // A non-type template-parameter shall have one of the following
354  // (optionally cv-qualified) types:
355  //
356  //       -- integral or enumeration type,
357  if (T->isIntegralType() || T->isEnumeralType() ||
358      //   -- pointer to object or pointer to function,
359      (T->isPointerType() &&
360       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
361        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
362      //   -- reference to object or reference to function,
363      T->isReferenceType() ||
364      //   -- pointer to member.
365      T->isMemberPointerType() ||
366      // If T is a dependent type, we can't do the check now, so we
367      // assume that it is well-formed.
368      T->isDependentType())
369    return T;
370  // C++ [temp.param]p8:
371  //
372  //   A non-type template-parameter of type "array of T" or
373  //   "function returning T" is adjusted to be of type "pointer to
374  //   T" or "pointer to function returning T", respectively.
375  else if (T->isArrayType())
376    // FIXME: Keep the type prior to promotion?
377    return Context.getArrayDecayedType(T);
378  else if (T->isFunctionType())
379    // FIXME: Keep the type prior to promotion?
380    return Context.getPointerType(T);
381
382  Diag(Loc, diag::err_template_nontype_parm_bad_type)
383    << T;
384
385  return QualType();
386}
387
388/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
389/// template parameter (e.g., "int Size" in "template<int Size>
390/// class Array") has been parsed. S is the current scope and D is
391/// the parsed declarator.
392Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
393                                                    unsigned Depth,
394                                                    unsigned Position) {
395  DeclaratorInfo *DInfo = 0;
396  QualType T = GetTypeForDeclarator(D, S, &DInfo);
397
398  assert(S->isTemplateParamScope() &&
399         "Non-type template parameter not in template parameter scope!");
400  bool Invalid = false;
401
402  IdentifierInfo *ParamName = D.getIdentifier();
403  if (ParamName) {
404    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
405    if (PrevDecl && PrevDecl->isTemplateParameter())
406      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
407                                                           PrevDecl);
408  }
409
410  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
411  if (T.isNull()) {
412    T = Context.IntTy; // Recover with an 'int' type.
413    Invalid = true;
414  }
415
416  NonTypeTemplateParmDecl *Param
417    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
418                                      Depth, Position, ParamName, T, DInfo);
419  if (Invalid)
420    Param->setInvalidDecl();
421
422  if (D.getIdentifier()) {
423    // Add the template parameter into the current scope.
424    S->AddDecl(DeclPtrTy::make(Param));
425    IdResolver.AddDecl(Param);
426  }
427  return DeclPtrTy::make(Param);
428}
429
430/// \brief Adds a default argument to the given non-type template
431/// parameter.
432void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
433                                                SourceLocation EqualLoc,
434                                                ExprArg DefaultE) {
435  NonTypeTemplateParmDecl *TemplateParm
436    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
437  Expr *Default = static_cast<Expr *>(DefaultE.get());
438
439  // C++ [temp.param]p14:
440  //   A template-parameter shall not be used in its own default argument.
441  // FIXME: Implement this check! Needs a recursive walk over the types.
442
443  // Check the well-formedness of the default template argument.
444  TemplateArgument Converted;
445  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
446                            Converted)) {
447    TemplateParm->setInvalidDecl();
448    return;
449  }
450
451  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
452}
453
454
455/// ActOnTemplateTemplateParameter - Called when a C++ template template
456/// parameter (e.g. T in template <template <typename> class T> class array)
457/// has been parsed. S is the current scope.
458Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
459                                                     SourceLocation TmpLoc,
460                                                     TemplateParamsTy *Params,
461                                                     IdentifierInfo *Name,
462                                                     SourceLocation NameLoc,
463                                                     unsigned Depth,
464                                                     unsigned Position) {
465  assert(S->isTemplateParamScope() &&
466         "Template template parameter not in template parameter scope!");
467
468  // Construct the parameter object.
469  TemplateTemplateParmDecl *Param =
470    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
471                                     Position, Name,
472                                     (TemplateParameterList*)Params);
473
474  // Make sure the parameter is valid.
475  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
476  // do anything yet. However, if the template parameter list or (eventual)
477  // default value is ever invalidated, that will propagate here.
478  bool Invalid = false;
479  if (Invalid) {
480    Param->setInvalidDecl();
481  }
482
483  // If the tt-param has a name, then link the identifier into the scope
484  // and lookup mechanisms.
485  if (Name) {
486    S->AddDecl(DeclPtrTy::make(Param));
487    IdResolver.AddDecl(Param);
488  }
489
490  return DeclPtrTy::make(Param);
491}
492
493/// \brief Adds a default argument to the given template template
494/// parameter.
495void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
496                                                 SourceLocation EqualLoc,
497                                                 ExprArg DefaultE) {
498  TemplateTemplateParmDecl *TemplateParm
499    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
500
501  // Since a template-template parameter's default argument is an
502  // id-expression, it must be a DeclRefExpr.
503  DeclRefExpr *Default
504    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
505
506  // C++ [temp.param]p14:
507  //   A template-parameter shall not be used in its own default argument.
508  // FIXME: Implement this check! Needs a recursive walk over the types.
509
510  // Check the well-formedness of the template argument.
511  if (!isa<TemplateDecl>(Default->getDecl())) {
512    Diag(Default->getSourceRange().getBegin(),
513         diag::err_template_arg_must_be_template)
514      << Default->getSourceRange();
515    TemplateParm->setInvalidDecl();
516    return;
517  }
518  if (CheckTemplateArgument(TemplateParm, Default)) {
519    TemplateParm->setInvalidDecl();
520    return;
521  }
522
523  DefaultE.release();
524  TemplateParm->setDefaultArgument(Default);
525}
526
527/// ActOnTemplateParameterList - Builds a TemplateParameterList that
528/// contains the template parameters in Params/NumParams.
529Sema::TemplateParamsTy *
530Sema::ActOnTemplateParameterList(unsigned Depth,
531                                 SourceLocation ExportLoc,
532                                 SourceLocation TemplateLoc,
533                                 SourceLocation LAngleLoc,
534                                 DeclPtrTy *Params, unsigned NumParams,
535                                 SourceLocation RAngleLoc) {
536  if (ExportLoc.isValid())
537    Diag(ExportLoc, diag::note_template_export_unsupported);
538
539  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
540                                       (Decl**)Params, NumParams, RAngleLoc);
541}
542
543Sema::DeclResult
544Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
545                         SourceLocation KWLoc, const CXXScopeSpec &SS,
546                         IdentifierInfo *Name, SourceLocation NameLoc,
547                         AttributeList *Attr,
548                         TemplateParameterList *TemplateParams,
549                         AccessSpecifier AS) {
550  assert(TemplateParams && TemplateParams->size() > 0 &&
551         "No template parameters");
552  assert(TUK != TUK_Reference && "Can only declare or define class templates");
553  bool Invalid = false;
554
555  // Check that we can declare a template here.
556  if (CheckTemplateDeclScope(S, TemplateParams))
557    return true;
558
559  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
560  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
561
562  // There is no such thing as an unnamed class template.
563  if (!Name) {
564    Diag(KWLoc, diag::err_template_unnamed_class);
565    return true;
566  }
567
568  // Find any previous declaration with this name.
569  DeclContext *SemanticContext;
570  LookupResult Previous;
571  if (SS.isNotEmpty() && !SS.isInvalid()) {
572    SemanticContext = computeDeclContext(SS, true);
573    if (!SemanticContext) {
574      // FIXME: Produce a reasonable diagnostic here
575      return true;
576    }
577
578    Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName,
579                                   true);
580  } else {
581    SemanticContext = CurContext;
582    Previous = LookupName(S, Name, LookupOrdinaryName, true);
583  }
584
585  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
586  NamedDecl *PrevDecl = 0;
587  if (Previous.begin() != Previous.end())
588    PrevDecl = *Previous.begin();
589
590  if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
591    PrevDecl = 0;
592
593  // If there is a previous declaration with the same name, check
594  // whether this is a valid redeclaration.
595  ClassTemplateDecl *PrevClassTemplate
596    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
597  if (PrevClassTemplate) {
598    // Ensure that the template parameter lists are compatible.
599    if (!TemplateParameterListsAreEqual(TemplateParams,
600                                   PrevClassTemplate->getTemplateParameters(),
601                                        /*Complain=*/true))
602      return true;
603
604    // C++ [temp.class]p4:
605    //   In a redeclaration, partial specialization, explicit
606    //   specialization or explicit instantiation of a class template,
607    //   the class-key shall agree in kind with the original class
608    //   template declaration (7.1.5.3).
609    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
610    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
611      Diag(KWLoc, diag::err_use_with_wrong_tag)
612        << Name
613        << CodeModificationHint::CreateReplacement(KWLoc,
614                            PrevRecordDecl->getKindName());
615      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
616      Kind = PrevRecordDecl->getTagKind();
617    }
618
619    // Check for redefinition of this class template.
620    if (TUK == TUK_Definition) {
621      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
622        Diag(NameLoc, diag::err_redefinition) << Name;
623        Diag(Def->getLocation(), diag::note_previous_definition);
624        // FIXME: Would it make sense to try to "forget" the previous
625        // definition, as part of error recovery?
626        return true;
627      }
628    }
629  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
630    // Maybe we will complain about the shadowed template parameter.
631    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
632    // Just pretend that we didn't see the previous declaration.
633    PrevDecl = 0;
634  } else if (PrevDecl) {
635    // C++ [temp]p5:
636    //   A class template shall not have the same name as any other
637    //   template, class, function, object, enumeration, enumerator,
638    //   namespace, or type in the same scope (3.3), except as specified
639    //   in (14.5.4).
640    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
641    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
642    return true;
643  }
644
645  // Check the template parameter list of this declaration, possibly
646  // merging in the template parameter list from the previous class
647  // template declaration.
648  if (CheckTemplateParameterList(TemplateParams,
649            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
650    Invalid = true;
651
652  // FIXME: If we had a scope specifier, we better have a previous template
653  // declaration!
654
655  // If this is a friend declaration of an undeclared template,
656  // create the template in the innermost namespace scope.
657  if (TUK == TUK_Friend && !PrevClassTemplate) {
658    while (!SemanticContext->isFileContext())
659      SemanticContext = SemanticContext->getParent();
660  }
661
662  CXXRecordDecl *NewClass =
663    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
664                          PrevClassTemplate?
665                            PrevClassTemplate->getTemplatedDecl() : 0,
666                          /*DelayTypeCreation=*/true);
667
668  ClassTemplateDecl *NewTemplate
669    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
670                                DeclarationName(Name), TemplateParams,
671                                NewClass, PrevClassTemplate);
672  NewClass->setDescribedClassTemplate(NewTemplate);
673
674  // Build the type for the class template declaration now.
675  QualType T =
676    Context.getTypeDeclType(NewClass,
677                            PrevClassTemplate?
678                              PrevClassTemplate->getTemplatedDecl() : 0);
679  assert(T->isDependentType() && "Class template type is not dependent?");
680  (void)T;
681
682  // Set the access specifier.
683  if (TUK == TUK_Friend)
684    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
685                                       PrevClassTemplate != NULL);
686  else
687    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
688
689  // Set the lexical context of these templates
690  NewClass->setLexicalDeclContext(CurContext);
691  NewTemplate->setLexicalDeclContext(CurContext);
692
693  if (TUK == TUK_Definition)
694    NewClass->startDefinition();
695
696  if (Attr)
697    ProcessDeclAttributeList(S, NewClass, Attr);
698
699  if (TUK != TUK_Friend)
700    PushOnScopeChains(NewTemplate, S);
701  else {
702    // We might be replacing an existing declaration in the lookup tables;
703    // if so, borrow its access specifier.
704    if (PrevClassTemplate)
705      NewTemplate->setAccess(PrevClassTemplate->getAccess());
706
707    // Friend templates are visible in fairly strange ways.
708    if (!CurContext->isDependentContext()) {
709      DeclContext *DC = SemanticContext->getLookupContext();
710      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
711      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
712        PushOnScopeChains(NewTemplate, EnclosingScope,
713                          /* AddToContext = */ false);
714    }
715  }
716
717  if (Invalid) {
718    NewTemplate->setInvalidDecl();
719    NewClass->setInvalidDecl();
720  }
721  return DeclPtrTy::make(NewTemplate);
722}
723
724/// \brief Checks the validity of a template parameter list, possibly
725/// considering the template parameter list from a previous
726/// declaration.
727///
728/// If an "old" template parameter list is provided, it must be
729/// equivalent (per TemplateParameterListsAreEqual) to the "new"
730/// template parameter list.
731///
732/// \param NewParams Template parameter list for a new template
733/// declaration. This template parameter list will be updated with any
734/// default arguments that are carried through from the previous
735/// template parameter list.
736///
737/// \param OldParams If provided, template parameter list from a
738/// previous declaration of the same template. Default template
739/// arguments will be merged from the old template parameter list to
740/// the new template parameter list.
741///
742/// \returns true if an error occurred, false otherwise.
743bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
744                                      TemplateParameterList *OldParams) {
745  bool Invalid = false;
746
747  // C++ [temp.param]p10:
748  //   The set of default template-arguments available for use with a
749  //   template declaration or definition is obtained by merging the
750  //   default arguments from the definition (if in scope) and all
751  //   declarations in scope in the same way default function
752  //   arguments are (8.3.6).
753  bool SawDefaultArgument = false;
754  SourceLocation PreviousDefaultArgLoc;
755
756  bool SawParameterPack = false;
757  SourceLocation ParameterPackLoc;
758
759  // Dummy initialization to avoid warnings.
760  TemplateParameterList::iterator OldParam = NewParams->end();
761  if (OldParams)
762    OldParam = OldParams->begin();
763
764  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
765                                    NewParamEnd = NewParams->end();
766       NewParam != NewParamEnd; ++NewParam) {
767    // Variables used to diagnose redundant default arguments
768    bool RedundantDefaultArg = false;
769    SourceLocation OldDefaultLoc;
770    SourceLocation NewDefaultLoc;
771
772    // Variables used to diagnose missing default arguments
773    bool MissingDefaultArg = false;
774
775    // C++0x [temp.param]p11:
776    // If a template parameter of a class template is a template parameter pack,
777    // it must be the last template parameter.
778    if (SawParameterPack) {
779      Diag(ParameterPackLoc,
780           diag::err_template_param_pack_must_be_last_template_parameter);
781      Invalid = true;
782    }
783
784    // Merge default arguments for template type parameters.
785    if (TemplateTypeParmDecl *NewTypeParm
786          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
787      TemplateTypeParmDecl *OldTypeParm
788          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
789
790      if (NewTypeParm->isParameterPack()) {
791        assert(!NewTypeParm->hasDefaultArgument() &&
792               "Parameter packs can't have a default argument!");
793        SawParameterPack = true;
794        ParameterPackLoc = NewTypeParm->getLocation();
795      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
796          NewTypeParm->hasDefaultArgument()) {
797        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
798        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
799        SawDefaultArgument = true;
800        RedundantDefaultArg = true;
801        PreviousDefaultArgLoc = NewDefaultLoc;
802      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
803        // Merge the default argument from the old declaration to the
804        // new declaration.
805        SawDefaultArgument = true;
806        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
807                                        OldTypeParm->getDefaultArgumentLoc(),
808                                        true);
809        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
810      } else if (NewTypeParm->hasDefaultArgument()) {
811        SawDefaultArgument = true;
812        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
813      } else if (SawDefaultArgument)
814        MissingDefaultArg = true;
815    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
816               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
817      // Merge default arguments for non-type template parameters
818      NonTypeTemplateParmDecl *OldNonTypeParm
819        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
820      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
821          NewNonTypeParm->hasDefaultArgument()) {
822        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
823        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
824        SawDefaultArgument = true;
825        RedundantDefaultArg = true;
826        PreviousDefaultArgLoc = NewDefaultLoc;
827      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
828        // Merge the default argument from the old declaration to the
829        // new declaration.
830        SawDefaultArgument = true;
831        // FIXME: We need to create a new kind of "default argument"
832        // expression that points to a previous template template
833        // parameter.
834        NewNonTypeParm->setDefaultArgument(
835                                        OldNonTypeParm->getDefaultArgument());
836        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
837      } else if (NewNonTypeParm->hasDefaultArgument()) {
838        SawDefaultArgument = true;
839        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
840      } else if (SawDefaultArgument)
841        MissingDefaultArg = true;
842    } else {
843    // Merge default arguments for template template parameters
844      TemplateTemplateParmDecl *NewTemplateParm
845        = cast<TemplateTemplateParmDecl>(*NewParam);
846      TemplateTemplateParmDecl *OldTemplateParm
847        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
848      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
849          NewTemplateParm->hasDefaultArgument()) {
850        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
851        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
852        SawDefaultArgument = true;
853        RedundantDefaultArg = true;
854        PreviousDefaultArgLoc = NewDefaultLoc;
855      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
856        // Merge the default argument from the old declaration to the
857        // new declaration.
858        SawDefaultArgument = true;
859        // FIXME: We need to create a new kind of "default argument" expression
860        // that points to a previous template template parameter.
861        NewTemplateParm->setDefaultArgument(
862                                        OldTemplateParm->getDefaultArgument());
863        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
864      } else if (NewTemplateParm->hasDefaultArgument()) {
865        SawDefaultArgument = true;
866        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
867      } else if (SawDefaultArgument)
868        MissingDefaultArg = true;
869    }
870
871    if (RedundantDefaultArg) {
872      // C++ [temp.param]p12:
873      //   A template-parameter shall not be given default arguments
874      //   by two different declarations in the same scope.
875      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
876      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
877      Invalid = true;
878    } else if (MissingDefaultArg) {
879      // C++ [temp.param]p11:
880      //   If a template-parameter has a default template-argument,
881      //   all subsequent template-parameters shall have a default
882      //   template-argument supplied.
883      Diag((*NewParam)->getLocation(),
884           diag::err_template_param_default_arg_missing);
885      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
886      Invalid = true;
887    }
888
889    // If we have an old template parameter list that we're merging
890    // in, move on to the next parameter.
891    if (OldParams)
892      ++OldParam;
893  }
894
895  return Invalid;
896}
897
898/// \brief Match the given template parameter lists to the given scope
899/// specifier, returning the template parameter list that applies to the
900/// name.
901///
902/// \param DeclStartLoc the start of the declaration that has a scope
903/// specifier or a template parameter list.
904///
905/// \param SS the scope specifier that will be matched to the given template
906/// parameter lists. This scope specifier precedes a qualified name that is
907/// being declared.
908///
909/// \param ParamLists the template parameter lists, from the outermost to the
910/// innermost template parameter lists.
911///
912/// \param NumParamLists the number of template parameter lists in ParamLists.
913///
914/// \returns the template parameter list, if any, that corresponds to the
915/// name that is preceded by the scope specifier @p SS. This template
916/// parameter list may be have template parameters (if we're declaring a
917/// template) or may have no template parameters (if we're declaring a
918/// template specialization), or may be NULL (if we were's declaring isn't
919/// itself a template).
920TemplateParameterList *
921Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
922                                              const CXXScopeSpec &SS,
923                                          TemplateParameterList **ParamLists,
924                                              unsigned NumParamLists) {
925  // Find the template-ids that occur within the nested-name-specifier. These
926  // template-ids will match up with the template parameter lists.
927  llvm::SmallVector<const TemplateSpecializationType *, 4>
928    TemplateIdsInSpecifier;
929  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
930       NNS; NNS = NNS->getPrefix()) {
931    if (const TemplateSpecializationType *SpecType
932          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
933      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
934      if (!Template)
935        continue; // FIXME: should this be an error? probably...
936
937      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
938        ClassTemplateSpecializationDecl *SpecDecl
939          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
940        // If the nested name specifier refers to an explicit specialization,
941        // we don't need a template<> header.
942        // FIXME: revisit this approach once we cope with specialization
943        // properly.
944        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
945          continue;
946      }
947
948      TemplateIdsInSpecifier.push_back(SpecType);
949    }
950  }
951
952  // Reverse the list of template-ids in the scope specifier, so that we can
953  // more easily match up the template-ids and the template parameter lists.
954  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
955
956  SourceLocation FirstTemplateLoc = DeclStartLoc;
957  if (NumParamLists)
958    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
959
960  // Match the template-ids found in the specifier to the template parameter
961  // lists.
962  unsigned Idx = 0;
963  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
964       Idx != NumTemplateIds; ++Idx) {
965    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
966    bool DependentTemplateId = TemplateId->isDependentType();
967    if (Idx >= NumParamLists) {
968      // We have a template-id without a corresponding template parameter
969      // list.
970      if (DependentTemplateId) {
971        // FIXME: the location information here isn't great.
972        Diag(SS.getRange().getBegin(),
973             diag::err_template_spec_needs_template_parameters)
974          << TemplateId
975          << SS.getRange();
976      } else {
977        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
978          << SS.getRange()
979          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
980                                                   "template<> ");
981      }
982      return 0;
983    }
984
985    // Check the template parameter list against its corresponding template-id.
986    if (DependentTemplateId) {
987      TemplateDecl *Template
988        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
989
990      if (ClassTemplateDecl *ClassTemplate
991            = dyn_cast<ClassTemplateDecl>(Template)) {
992        TemplateParameterList *ExpectedTemplateParams = 0;
993        // Is this template-id naming the primary template?
994        if (Context.hasSameType(TemplateId,
995                             ClassTemplate->getInjectedClassNameType(Context)))
996          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
997        // ... or a partial specialization?
998        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
999                   = ClassTemplate->findPartialSpecialization(TemplateId))
1000          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1001
1002        if (ExpectedTemplateParams)
1003          TemplateParameterListsAreEqual(ParamLists[Idx],
1004                                         ExpectedTemplateParams,
1005                                         true);
1006      }
1007    } else if (ParamLists[Idx]->size() > 0)
1008      Diag(ParamLists[Idx]->getTemplateLoc(),
1009           diag::err_template_param_list_matches_nontemplate)
1010        << TemplateId
1011        << ParamLists[Idx]->getSourceRange();
1012  }
1013
1014  // If there were at least as many template-ids as there were template
1015  // parameter lists, then there are no template parameter lists remaining for
1016  // the declaration itself.
1017  if (Idx >= NumParamLists)
1018    return 0;
1019
1020  // If there were too many template parameter lists, complain about that now.
1021  if (Idx != NumParamLists - 1) {
1022    while (Idx < NumParamLists - 1) {
1023      Diag(ParamLists[Idx]->getTemplateLoc(),
1024           diag::err_template_spec_extra_headers)
1025        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1026                       ParamLists[Idx]->getRAngleLoc());
1027      ++Idx;
1028    }
1029  }
1030
1031  // Return the last template parameter list, which corresponds to the
1032  // entity being declared.
1033  return ParamLists[NumParamLists - 1];
1034}
1035
1036/// \brief Translates template arguments as provided by the parser
1037/// into template arguments used by semantic analysis.
1038static void
1039translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
1040                           SourceLocation *TemplateArgLocs,
1041                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
1042  TemplateArgs.reserve(TemplateArgsIn.size());
1043
1044  void **Args = TemplateArgsIn.getArgs();
1045  bool *ArgIsType = TemplateArgsIn.getArgIsType();
1046  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
1047    TemplateArgs.push_back(
1048      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
1049                                       //FIXME: Preserve type source info.
1050                                       Sema::GetTypeFromParser(Args[Arg]))
1051                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
1052  }
1053}
1054
1055QualType Sema::CheckTemplateIdType(TemplateName Name,
1056                                   SourceLocation TemplateLoc,
1057                                   SourceLocation LAngleLoc,
1058                                   const TemplateArgument *TemplateArgs,
1059                                   unsigned NumTemplateArgs,
1060                                   SourceLocation RAngleLoc) {
1061  TemplateDecl *Template = Name.getAsTemplateDecl();
1062  if (!Template) {
1063    // The template name does not resolve to a template, so we just
1064    // build a dependent template-id type.
1065    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1066                                                 NumTemplateArgs);
1067  }
1068
1069  // Check that the template argument list is well-formed for this
1070  // template.
1071  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1072                                        NumTemplateArgs);
1073  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1074                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1075                                false, Converted))
1076    return QualType();
1077
1078  assert((Converted.structuredSize() ==
1079            Template->getTemplateParameters()->size()) &&
1080         "Converted template argument list is too short!");
1081
1082  QualType CanonType;
1083
1084  if (TemplateSpecializationType::anyDependentTemplateArguments(
1085                                                      TemplateArgs,
1086                                                      NumTemplateArgs)) {
1087    // This class template specialization is a dependent
1088    // type. Therefore, its canonical type is another class template
1089    // specialization type that contains all of the converted
1090    // arguments in canonical form. This ensures that, e.g., A<T> and
1091    // A<T, T> have identical types when A is declared as:
1092    //
1093    //   template<typename T, typename U = T> struct A;
1094    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1095    CanonType = Context.getTemplateSpecializationType(CanonName,
1096                                                   Converted.getFlatArguments(),
1097                                                   Converted.flatSize());
1098
1099    // FIXME: CanonType is not actually the canonical type, and unfortunately
1100    // it is a TemplateTypeSpecializationType that we will never use again.
1101    // In the future, we need to teach getTemplateSpecializationType to only
1102    // build the canonical type and return that to us.
1103    CanonType = Context.getCanonicalType(CanonType);
1104  } else if (ClassTemplateDecl *ClassTemplate
1105               = dyn_cast<ClassTemplateDecl>(Template)) {
1106    // Find the class template specialization declaration that
1107    // corresponds to these arguments.
1108    llvm::FoldingSetNodeID ID;
1109    ClassTemplateSpecializationDecl::Profile(ID,
1110                                             Converted.getFlatArguments(),
1111                                             Converted.flatSize(),
1112                                             Context);
1113    void *InsertPos = 0;
1114    ClassTemplateSpecializationDecl *Decl
1115      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1116    if (!Decl) {
1117      // This is the first time we have referenced this class template
1118      // specialization. Create the canonical declaration and add it to
1119      // the set of specializations.
1120      Decl = ClassTemplateSpecializationDecl::Create(Context,
1121                                    ClassTemplate->getDeclContext(),
1122                                    ClassTemplate->getLocation(),
1123                                    ClassTemplate,
1124                                    Converted, 0);
1125      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1126      Decl->setLexicalDeclContext(CurContext);
1127    }
1128
1129    CanonType = Context.getTypeDeclType(Decl);
1130  }
1131
1132  // Build the fully-sugared type for this class template
1133  // specialization, which refers back to the class template
1134  // specialization we created or found.
1135  //FIXME: Preserve type source info.
1136  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1137                                               NumTemplateArgs, CanonType);
1138}
1139
1140Action::TypeResult
1141Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1142                          SourceLocation LAngleLoc,
1143                          ASTTemplateArgsPtr TemplateArgsIn,
1144                          SourceLocation *TemplateArgLocs,
1145                          SourceLocation RAngleLoc) {
1146  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1147
1148  // Translate the parser's template argument list in our AST format.
1149  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1150  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1151
1152  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1153                                        TemplateArgs.data(),
1154                                        TemplateArgs.size(),
1155                                        RAngleLoc);
1156  TemplateArgsIn.release();
1157
1158  if (Result.isNull())
1159    return true;
1160
1161  return Result.getAsOpaquePtr();
1162}
1163
1164Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1165                                              TagUseKind TUK,
1166                                              DeclSpec::TST TagSpec,
1167                                              SourceLocation TagLoc) {
1168  if (TypeResult.isInvalid())
1169    return Sema::TypeResult();
1170
1171  QualType Type = QualType::getFromOpaquePtr(TypeResult.get());
1172
1173  // Verify the tag specifier.
1174  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1175
1176  if (const RecordType *RT = Type->getAs<RecordType>()) {
1177    RecordDecl *D = RT->getDecl();
1178
1179    IdentifierInfo *Id = D->getIdentifier();
1180    assert(Id && "templated class must have an identifier");
1181
1182    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1183      Diag(TagLoc, diag::err_use_with_wrong_tag)
1184        << Type
1185        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1186                                                   D->getKindName());
1187      Diag(D->getLocation(), diag::note_previous_use);
1188    }
1189  }
1190
1191  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1192
1193  return ElabType.getAsOpaquePtr();
1194}
1195
1196Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1197                                                 SourceLocation TemplateNameLoc,
1198                                                 SourceLocation LAngleLoc,
1199                                           const TemplateArgument *TemplateArgs,
1200                                                 unsigned NumTemplateArgs,
1201                                                 SourceLocation RAngleLoc) {
1202  // FIXME: Can we do any checking at this point? I guess we could check the
1203  // template arguments that we have against the template name, if the template
1204  // name refers to a single template. That's not a terribly common case,
1205  // though.
1206  return Owned(TemplateIdRefExpr::Create(Context,
1207                                         /*FIXME: New type?*/Context.OverloadTy,
1208                                         /*FIXME: Necessary?*/0,
1209                                         /*FIXME: Necessary?*/SourceRange(),
1210                                         Template, TemplateNameLoc, LAngleLoc,
1211                                         TemplateArgs,
1212                                         NumTemplateArgs, RAngleLoc));
1213}
1214
1215Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1216                                                 SourceLocation TemplateNameLoc,
1217                                                 SourceLocation LAngleLoc,
1218                                              ASTTemplateArgsPtr TemplateArgsIn,
1219                                                SourceLocation *TemplateArgLocs,
1220                                                 SourceLocation RAngleLoc) {
1221  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1222
1223  // Translate the parser's template argument list in our AST format.
1224  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1225  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1226  TemplateArgsIn.release();
1227
1228  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1229                             TemplateArgs.data(), TemplateArgs.size(),
1230                             RAngleLoc);
1231}
1232
1233Sema::OwningExprResult
1234Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base,
1235                                         SourceLocation OpLoc,
1236                                         tok::TokenKind OpKind,
1237                                         const CXXScopeSpec &SS,
1238                                         TemplateTy TemplateD,
1239                                         SourceLocation TemplateNameLoc,
1240                                         SourceLocation LAngleLoc,
1241                                         ASTTemplateArgsPtr TemplateArgsIn,
1242                                         SourceLocation *TemplateArgLocs,
1243                                         SourceLocation RAngleLoc) {
1244  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1245
1246  // FIXME: We're going to end up looking up the template based on its name,
1247  // twice!
1248  DeclarationName Name;
1249  if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
1250    Name = ActualTemplate->getDeclName();
1251  else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
1252    Name = Ovl->getDeclName();
1253  else
1254    Name = Template.getAsDependentTemplateName()->getName();
1255
1256  // Translate the parser's template argument list in our AST format.
1257  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1258  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1259  TemplateArgsIn.release();
1260
1261  // Do we have the save the actual template name? We might need it...
1262  return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc,
1263                                  Name, true, LAngleLoc,
1264                                  TemplateArgs.data(), TemplateArgs.size(),
1265                                  RAngleLoc, DeclPtrTy(), &SS);
1266}
1267
1268/// \brief Form a dependent template name.
1269///
1270/// This action forms a dependent template name given the template
1271/// name and its (presumably dependent) scope specifier. For
1272/// example, given "MetaFun::template apply", the scope specifier \p
1273/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1274/// of the "template" keyword, and "apply" is the \p Name.
1275Sema::TemplateTy
1276Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1277                                 const IdentifierInfo &Name,
1278                                 SourceLocation NameLoc,
1279                                 const CXXScopeSpec &SS,
1280                                 TypeTy *ObjectType) {
1281  if ((ObjectType &&
1282       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1283      (SS.isSet() && computeDeclContext(SS, false))) {
1284    // C++0x [temp.names]p5:
1285    //   If a name prefixed by the keyword template is not the name of
1286    //   a template, the program is ill-formed. [Note: the keyword
1287    //   template may not be applied to non-template members of class
1288    //   templates. -end note ] [ Note: as is the case with the
1289    //   typename prefix, the template prefix is allowed in cases
1290    //   where it is not strictly necessary; i.e., when the
1291    //   nested-name-specifier or the expression on the left of the ->
1292    //   or . is not dependent on a template-parameter, or the use
1293    //   does not appear in the scope of a template. -end note]
1294    //
1295    // Note: C++03 was more strict here, because it banned the use of
1296    // the "template" keyword prior to a template-name that was not a
1297    // dependent name. C++ DR468 relaxed this requirement (the
1298    // "template" keyword is now permitted). We follow the C++0x
1299    // rules, even in C++03 mode, retroactively applying the DR.
1300    TemplateTy Template;
1301    TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType,
1302                                          false, Template);
1303    if (TNK == TNK_Non_template) {
1304      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1305        << &Name;
1306      return TemplateTy();
1307    }
1308
1309    return Template;
1310  }
1311
1312  NestedNameSpecifier *Qualifier
1313    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1314  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1315}
1316
1317bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1318                                     const TemplateArgument &Arg,
1319                                     TemplateArgumentListBuilder &Converted) {
1320  // Check template type parameter.
1321  if (Arg.getKind() != TemplateArgument::Type) {
1322    // C++ [temp.arg.type]p1:
1323    //   A template-argument for a template-parameter which is a
1324    //   type shall be a type-id.
1325
1326    // We have a template type parameter but the template argument
1327    // is not a type.
1328    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1329    Diag(Param->getLocation(), diag::note_template_param_here);
1330
1331    return true;
1332  }
1333
1334  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1335    return true;
1336
1337  // Add the converted template type argument.
1338  Converted.Append(
1339                 TemplateArgument(Arg.getLocation(),
1340                                  Context.getCanonicalType(Arg.getAsType())));
1341  return false;
1342}
1343
1344/// \brief Check that the given template argument list is well-formed
1345/// for specializing the given template.
1346bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1347                                     SourceLocation TemplateLoc,
1348                                     SourceLocation LAngleLoc,
1349                                     const TemplateArgument *TemplateArgs,
1350                                     unsigned NumTemplateArgs,
1351                                     SourceLocation RAngleLoc,
1352                                     bool PartialTemplateArgs,
1353                                     TemplateArgumentListBuilder &Converted) {
1354  TemplateParameterList *Params = Template->getTemplateParameters();
1355  unsigned NumParams = Params->size();
1356  unsigned NumArgs = NumTemplateArgs;
1357  bool Invalid = false;
1358
1359  bool HasParameterPack =
1360    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1361
1362  if ((NumArgs > NumParams && !HasParameterPack) ||
1363      (NumArgs < Params->getMinRequiredArguments() &&
1364       !PartialTemplateArgs)) {
1365    // FIXME: point at either the first arg beyond what we can handle,
1366    // or the '>', depending on whether we have too many or too few
1367    // arguments.
1368    SourceRange Range;
1369    if (NumArgs > NumParams)
1370      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1371    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1372      << (NumArgs > NumParams)
1373      << (isa<ClassTemplateDecl>(Template)? 0 :
1374          isa<FunctionTemplateDecl>(Template)? 1 :
1375          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1376      << Template << Range;
1377    Diag(Template->getLocation(), diag::note_template_decl_here)
1378      << Params->getSourceRange();
1379    Invalid = true;
1380  }
1381
1382  // C++ [temp.arg]p1:
1383  //   [...] The type and form of each template-argument specified in
1384  //   a template-id shall match the type and form specified for the
1385  //   corresponding parameter declared by the template in its
1386  //   template-parameter-list.
1387  unsigned ArgIdx = 0;
1388  for (TemplateParameterList::iterator Param = Params->begin(),
1389                                       ParamEnd = Params->end();
1390       Param != ParamEnd; ++Param, ++ArgIdx) {
1391    if (ArgIdx > NumArgs && PartialTemplateArgs)
1392      break;
1393
1394    // Decode the template argument
1395    TemplateArgument Arg;
1396    if (ArgIdx >= NumArgs) {
1397      // Retrieve the default template argument from the template
1398      // parameter.
1399      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1400        if (TTP->isParameterPack()) {
1401          // We have an empty argument pack.
1402          Converted.BeginPack();
1403          Converted.EndPack();
1404          break;
1405        }
1406
1407        if (!TTP->hasDefaultArgument())
1408          break;
1409
1410        QualType ArgType = TTP->getDefaultArgument();
1411
1412        // If the argument type is dependent, instantiate it now based
1413        // on the previously-computed template arguments.
1414        if (ArgType->isDependentType()) {
1415          InstantiatingTemplate Inst(*this, TemplateLoc,
1416                                     Template, Converted.getFlatArguments(),
1417                                     Converted.flatSize(),
1418                                     SourceRange(TemplateLoc, RAngleLoc));
1419
1420          TemplateArgumentList TemplateArgs(Context, Converted,
1421                                            /*TakeArgs=*/false);
1422          ArgType = SubstType(ArgType,
1423                              MultiLevelTemplateArgumentList(TemplateArgs),
1424                              TTP->getDefaultArgumentLoc(),
1425                              TTP->getDeclName());
1426        }
1427
1428        if (ArgType.isNull())
1429          return true;
1430
1431        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1432      } else if (NonTypeTemplateParmDecl *NTTP
1433                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1434        if (!NTTP->hasDefaultArgument())
1435          break;
1436
1437        InstantiatingTemplate Inst(*this, TemplateLoc,
1438                                   Template, Converted.getFlatArguments(),
1439                                   Converted.flatSize(),
1440                                   SourceRange(TemplateLoc, RAngleLoc));
1441
1442        TemplateArgumentList TemplateArgs(Context, Converted,
1443                                          /*TakeArgs=*/false);
1444
1445        Sema::OwningExprResult E
1446          = SubstExpr(NTTP->getDefaultArgument(),
1447                      MultiLevelTemplateArgumentList(TemplateArgs));
1448        if (E.isInvalid())
1449          return true;
1450
1451        Arg = TemplateArgument(E.takeAs<Expr>());
1452      } else {
1453        TemplateTemplateParmDecl *TempParm
1454          = cast<TemplateTemplateParmDecl>(*Param);
1455
1456        if (!TempParm->hasDefaultArgument())
1457          break;
1458
1459        // FIXME: Subst default argument
1460        Arg = TemplateArgument(TempParm->getDefaultArgument());
1461      }
1462    } else {
1463      // Retrieve the template argument produced by the user.
1464      Arg = TemplateArgs[ArgIdx];
1465    }
1466
1467
1468    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1469      if (TTP->isParameterPack()) {
1470        Converted.BeginPack();
1471        // Check all the remaining arguments (if any).
1472        for (; ArgIdx < NumArgs; ++ArgIdx) {
1473          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1474            Invalid = true;
1475        }
1476
1477        Converted.EndPack();
1478      } else {
1479        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1480          Invalid = true;
1481      }
1482    } else if (NonTypeTemplateParmDecl *NTTP
1483                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1484      // Check non-type template parameters.
1485
1486      // Do substitution on the type of the non-type template parameter
1487      // with the template arguments we've seen thus far.
1488      QualType NTTPType = NTTP->getType();
1489      if (NTTPType->isDependentType()) {
1490        // Do substitution on the type of the non-type template parameter.
1491        InstantiatingTemplate Inst(*this, TemplateLoc,
1492                                   Template, Converted.getFlatArguments(),
1493                                   Converted.flatSize(),
1494                                   SourceRange(TemplateLoc, RAngleLoc));
1495
1496        TemplateArgumentList TemplateArgs(Context, Converted,
1497                                          /*TakeArgs=*/false);
1498        NTTPType = SubstType(NTTPType,
1499                             MultiLevelTemplateArgumentList(TemplateArgs),
1500                             NTTP->getLocation(),
1501                             NTTP->getDeclName());
1502        // If that worked, check the non-type template parameter type
1503        // for validity.
1504        if (!NTTPType.isNull())
1505          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1506                                                       NTTP->getLocation());
1507        if (NTTPType.isNull()) {
1508          Invalid = true;
1509          break;
1510        }
1511      }
1512
1513      switch (Arg.getKind()) {
1514      case TemplateArgument::Null:
1515        assert(false && "Should never see a NULL template argument here");
1516        break;
1517
1518      case TemplateArgument::Expression: {
1519        Expr *E = Arg.getAsExpr();
1520        TemplateArgument Result;
1521        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1522          Invalid = true;
1523        else
1524          Converted.Append(Result);
1525        break;
1526      }
1527
1528      case TemplateArgument::Declaration:
1529      case TemplateArgument::Integral:
1530        // We've already checked this template argument, so just copy
1531        // it to the list of converted arguments.
1532        Converted.Append(Arg);
1533        break;
1534
1535      case TemplateArgument::Type:
1536        // We have a non-type template parameter but the template
1537        // argument is a type.
1538
1539        // C++ [temp.arg]p2:
1540        //   In a template-argument, an ambiguity between a type-id and
1541        //   an expression is resolved to a type-id, regardless of the
1542        //   form of the corresponding template-parameter.
1543        //
1544        // We warn specifically about this case, since it can be rather
1545        // confusing for users.
1546        if (Arg.getAsType()->isFunctionType())
1547          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1548            << Arg.getAsType();
1549        else
1550          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1551        Diag((*Param)->getLocation(), diag::note_template_param_here);
1552        Invalid = true;
1553        break;
1554
1555      case TemplateArgument::Pack:
1556        assert(0 && "FIXME: Implement!");
1557        break;
1558      }
1559    } else {
1560      // Check template template parameters.
1561      TemplateTemplateParmDecl *TempParm
1562        = cast<TemplateTemplateParmDecl>(*Param);
1563
1564      switch (Arg.getKind()) {
1565      case TemplateArgument::Null:
1566        assert(false && "Should never see a NULL template argument here");
1567        break;
1568
1569      case TemplateArgument::Expression: {
1570        Expr *ArgExpr = Arg.getAsExpr();
1571        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1572            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1573          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1574            Invalid = true;
1575
1576          // Add the converted template argument.
1577          Decl *D
1578            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1579          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1580          continue;
1581        }
1582      }
1583        // fall through
1584
1585      case TemplateArgument::Type: {
1586        // We have a template template parameter but the template
1587        // argument does not refer to a template.
1588        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1589        Invalid = true;
1590        break;
1591      }
1592
1593      case TemplateArgument::Declaration:
1594        // We've already checked this template argument, so just copy
1595        // it to the list of converted arguments.
1596        Converted.Append(Arg);
1597        break;
1598
1599      case TemplateArgument::Integral:
1600        assert(false && "Integral argument with template template parameter");
1601        break;
1602
1603      case TemplateArgument::Pack:
1604        assert(0 && "FIXME: Implement!");
1605        break;
1606      }
1607    }
1608  }
1609
1610  return Invalid;
1611}
1612
1613/// \brief Check a template argument against its corresponding
1614/// template type parameter.
1615///
1616/// This routine implements the semantics of C++ [temp.arg.type]. It
1617/// returns true if an error occurred, and false otherwise.
1618bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1619                                 QualType Arg, SourceLocation ArgLoc) {
1620  // C++ [temp.arg.type]p2:
1621  //   A local type, a type with no linkage, an unnamed type or a type
1622  //   compounded from any of these types shall not be used as a
1623  //   template-argument for a template type-parameter.
1624  //
1625  // FIXME: Perform the recursive and no-linkage type checks.
1626  const TagType *Tag = 0;
1627  if (const EnumType *EnumT = Arg->getAsEnumType())
1628    Tag = EnumT;
1629  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1630    Tag = RecordT;
1631  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1632    return Diag(ArgLoc, diag::err_template_arg_local_type)
1633      << QualType(Tag, 0);
1634  else if (Tag && !Tag->getDecl()->getDeclName() &&
1635           !Tag->getDecl()->getTypedefForAnonDecl()) {
1636    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1637    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1638    return true;
1639  }
1640
1641  return false;
1642}
1643
1644/// \brief Checks whether the given template argument is the address
1645/// of an object or function according to C++ [temp.arg.nontype]p1.
1646bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1647                                                          NamedDecl *&Entity) {
1648  bool Invalid = false;
1649
1650  // See through any implicit casts we added to fix the type.
1651  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1652    Arg = Cast->getSubExpr();
1653
1654  // C++0x allows nullptr, and there's no further checking to be done for that.
1655  if (Arg->getType()->isNullPtrType())
1656    return false;
1657
1658  // C++ [temp.arg.nontype]p1:
1659  //
1660  //   A template-argument for a non-type, non-template
1661  //   template-parameter shall be one of: [...]
1662  //
1663  //     -- the address of an object or function with external
1664  //        linkage, including function templates and function
1665  //        template-ids but excluding non-static class members,
1666  //        expressed as & id-expression where the & is optional if
1667  //        the name refers to a function or array, or if the
1668  //        corresponding template-parameter is a reference; or
1669  DeclRefExpr *DRE = 0;
1670
1671  // Ignore (and complain about) any excess parentheses.
1672  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1673    if (!Invalid) {
1674      Diag(Arg->getSourceRange().getBegin(),
1675           diag::err_template_arg_extra_parens)
1676        << Arg->getSourceRange();
1677      Invalid = true;
1678    }
1679
1680    Arg = Parens->getSubExpr();
1681  }
1682
1683  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1684    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1685      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1686  } else
1687    DRE = dyn_cast<DeclRefExpr>(Arg);
1688
1689  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1690    return Diag(Arg->getSourceRange().getBegin(),
1691                diag::err_template_arg_not_object_or_func_form)
1692      << Arg->getSourceRange();
1693
1694  // Cannot refer to non-static data members
1695  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1696    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1697      << Field << Arg->getSourceRange();
1698
1699  // Cannot refer to non-static member functions
1700  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1701    if (!Method->isStatic())
1702      return Diag(Arg->getSourceRange().getBegin(),
1703                  diag::err_template_arg_method)
1704        << Method << Arg->getSourceRange();
1705
1706  // Functions must have external linkage.
1707  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1708    if (Func->getStorageClass() == FunctionDecl::Static) {
1709      Diag(Arg->getSourceRange().getBegin(),
1710           diag::err_template_arg_function_not_extern)
1711        << Func << Arg->getSourceRange();
1712      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1713        << true;
1714      return true;
1715    }
1716
1717    // Okay: we've named a function with external linkage.
1718    Entity = Func;
1719    return Invalid;
1720  }
1721
1722  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1723    if (!Var->hasGlobalStorage()) {
1724      Diag(Arg->getSourceRange().getBegin(),
1725           diag::err_template_arg_object_not_extern)
1726        << Var << Arg->getSourceRange();
1727      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1728        << true;
1729      return true;
1730    }
1731
1732    // Okay: we've named an object with external linkage
1733    Entity = Var;
1734    return Invalid;
1735  }
1736
1737  // We found something else, but we don't know specifically what it is.
1738  Diag(Arg->getSourceRange().getBegin(),
1739       diag::err_template_arg_not_object_or_func)
1740      << Arg->getSourceRange();
1741  Diag(DRE->getDecl()->getLocation(),
1742       diag::note_template_arg_refers_here);
1743  return true;
1744}
1745
1746/// \brief Checks whether the given template argument is a pointer to
1747/// member constant according to C++ [temp.arg.nontype]p1.
1748bool
1749Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1750  bool Invalid = false;
1751
1752  // See through any implicit casts we added to fix the type.
1753  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1754    Arg = Cast->getSubExpr();
1755
1756  // C++0x allows nullptr, and there's no further checking to be done for that.
1757  if (Arg->getType()->isNullPtrType())
1758    return false;
1759
1760  // C++ [temp.arg.nontype]p1:
1761  //
1762  //   A template-argument for a non-type, non-template
1763  //   template-parameter shall be one of: [...]
1764  //
1765  //     -- a pointer to member expressed as described in 5.3.1.
1766  QualifiedDeclRefExpr *DRE = 0;
1767
1768  // Ignore (and complain about) any excess parentheses.
1769  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1770    if (!Invalid) {
1771      Diag(Arg->getSourceRange().getBegin(),
1772           diag::err_template_arg_extra_parens)
1773        << Arg->getSourceRange();
1774      Invalid = true;
1775    }
1776
1777    Arg = Parens->getSubExpr();
1778  }
1779
1780  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1781    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1782      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1783
1784  if (!DRE)
1785    return Diag(Arg->getSourceRange().getBegin(),
1786                diag::err_template_arg_not_pointer_to_member_form)
1787      << Arg->getSourceRange();
1788
1789  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1790    assert((isa<FieldDecl>(DRE->getDecl()) ||
1791            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1792           "Only non-static member pointers can make it here");
1793
1794    // Okay: this is the address of a non-static member, and therefore
1795    // a member pointer constant.
1796    Member = DRE->getDecl();
1797    return Invalid;
1798  }
1799
1800  // We found something else, but we don't know specifically what it is.
1801  Diag(Arg->getSourceRange().getBegin(),
1802       diag::err_template_arg_not_pointer_to_member_form)
1803      << Arg->getSourceRange();
1804  Diag(DRE->getDecl()->getLocation(),
1805       diag::note_template_arg_refers_here);
1806  return true;
1807}
1808
1809/// \brief Check a template argument against its corresponding
1810/// non-type template parameter.
1811///
1812/// This routine implements the semantics of C++ [temp.arg.nontype].
1813/// It returns true if an error occurred, and false otherwise. \p
1814/// InstantiatedParamType is the type of the non-type template
1815/// parameter after it has been instantiated.
1816///
1817/// If no error was detected, Converted receives the converted template argument.
1818bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1819                                 QualType InstantiatedParamType, Expr *&Arg,
1820                                 TemplateArgument &Converted) {
1821  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1822
1823  // If either the parameter has a dependent type or the argument is
1824  // type-dependent, there's nothing we can check now.
1825  // FIXME: Add template argument to Converted!
1826  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1827    // FIXME: Produce a cloned, canonical expression?
1828    Converted = TemplateArgument(Arg);
1829    return false;
1830  }
1831
1832  // C++ [temp.arg.nontype]p5:
1833  //   The following conversions are performed on each expression used
1834  //   as a non-type template-argument. If a non-type
1835  //   template-argument cannot be converted to the type of the
1836  //   corresponding template-parameter then the program is
1837  //   ill-formed.
1838  //
1839  //     -- for a non-type template-parameter of integral or
1840  //        enumeration type, integral promotions (4.5) and integral
1841  //        conversions (4.7) are applied.
1842  QualType ParamType = InstantiatedParamType;
1843  QualType ArgType = Arg->getType();
1844  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1845    // C++ [temp.arg.nontype]p1:
1846    //   A template-argument for a non-type, non-template
1847    //   template-parameter shall be one of:
1848    //
1849    //     -- an integral constant-expression of integral or enumeration
1850    //        type; or
1851    //     -- the name of a non-type template-parameter; or
1852    SourceLocation NonConstantLoc;
1853    llvm::APSInt Value;
1854    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1855      Diag(Arg->getSourceRange().getBegin(),
1856           diag::err_template_arg_not_integral_or_enumeral)
1857        << ArgType << Arg->getSourceRange();
1858      Diag(Param->getLocation(), diag::note_template_param_here);
1859      return true;
1860    } else if (!Arg->isValueDependent() &&
1861               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1862      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1863        << ArgType << Arg->getSourceRange();
1864      return true;
1865    }
1866
1867    // FIXME: We need some way to more easily get the unqualified form
1868    // of the types without going all the way to the
1869    // canonical type.
1870    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1871      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1872    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1873      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1874
1875    // Try to convert the argument to the parameter's type.
1876    if (ParamType == ArgType) {
1877      // Okay: no conversion necessary
1878    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1879               !ParamType->isEnumeralType()) {
1880      // This is an integral promotion or conversion.
1881      ImpCastExprToType(Arg, ParamType);
1882    } else {
1883      // We can't perform this conversion.
1884      Diag(Arg->getSourceRange().getBegin(),
1885           diag::err_template_arg_not_convertible)
1886        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1887      Diag(Param->getLocation(), diag::note_template_param_here);
1888      return true;
1889    }
1890
1891    QualType IntegerType = Context.getCanonicalType(ParamType);
1892    if (const EnumType *Enum = IntegerType->getAsEnumType())
1893      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1894
1895    if (!Arg->isValueDependent()) {
1896      // Check that an unsigned parameter does not receive a negative
1897      // value.
1898      if (IntegerType->isUnsignedIntegerType()
1899          && (Value.isSigned() && Value.isNegative())) {
1900        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1901          << Value.toString(10) << Param->getType()
1902          << Arg->getSourceRange();
1903        Diag(Param->getLocation(), diag::note_template_param_here);
1904        return true;
1905      }
1906
1907      // Check that we don't overflow the template parameter type.
1908      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1909      if (Value.getActiveBits() > AllowedBits) {
1910        Diag(Arg->getSourceRange().getBegin(),
1911             diag::err_template_arg_too_large)
1912          << Value.toString(10) << Param->getType()
1913          << Arg->getSourceRange();
1914        Diag(Param->getLocation(), diag::note_template_param_here);
1915        return true;
1916      }
1917
1918      if (Value.getBitWidth() != AllowedBits)
1919        Value.extOrTrunc(AllowedBits);
1920      Value.setIsSigned(IntegerType->isSignedIntegerType());
1921    }
1922
1923    // Add the value of this argument to the list of converted
1924    // arguments. We use the bitwidth and signedness of the template
1925    // parameter.
1926    if (Arg->isValueDependent()) {
1927      // The argument is value-dependent. Create a new
1928      // TemplateArgument with the converted expression.
1929      Converted = TemplateArgument(Arg);
1930      return false;
1931    }
1932
1933    Converted = TemplateArgument(StartLoc, Value,
1934                                 ParamType->isEnumeralType() ? ParamType
1935                                                             : IntegerType);
1936    return false;
1937  }
1938
1939  // Handle pointer-to-function, reference-to-function, and
1940  // pointer-to-member-function all in (roughly) the same way.
1941  if (// -- For a non-type template-parameter of type pointer to
1942      //    function, only the function-to-pointer conversion (4.3) is
1943      //    applied. If the template-argument represents a set of
1944      //    overloaded functions (or a pointer to such), the matching
1945      //    function is selected from the set (13.4).
1946      // In C++0x, any std::nullptr_t value can be converted.
1947      (ParamType->isPointerType() &&
1948       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
1949      // -- For a non-type template-parameter of type reference to
1950      //    function, no conversions apply. If the template-argument
1951      //    represents a set of overloaded functions, the matching
1952      //    function is selected from the set (13.4).
1953      (ParamType->isReferenceType() &&
1954       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
1955      // -- For a non-type template-parameter of type pointer to
1956      //    member function, no conversions apply. If the
1957      //    template-argument represents a set of overloaded member
1958      //    functions, the matching member function is selected from
1959      //    the set (13.4).
1960      // Again, C++0x allows a std::nullptr_t value.
1961      (ParamType->isMemberPointerType() &&
1962       ParamType->getAs<MemberPointerType>()->getPointeeType()
1963         ->isFunctionType())) {
1964    if (Context.hasSameUnqualifiedType(ArgType,
1965                                       ParamType.getNonReferenceType())) {
1966      // We don't have to do anything: the types already match.
1967    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1968                 ParamType->isMemberPointerType())) {
1969      ArgType = ParamType;
1970      ImpCastExprToType(Arg, ParamType);
1971    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1972      ArgType = Context.getPointerType(ArgType);
1973      ImpCastExprToType(Arg, ArgType);
1974    } else if (FunctionDecl *Fn
1975                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1976      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1977        return true;
1978
1979      FixOverloadedFunctionReference(Arg, Fn);
1980      ArgType = Arg->getType();
1981      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1982        ArgType = Context.getPointerType(Arg->getType());
1983        ImpCastExprToType(Arg, ArgType);
1984      }
1985    }
1986
1987    if (!Context.hasSameUnqualifiedType(ArgType,
1988                                        ParamType.getNonReferenceType())) {
1989      // We can't perform this conversion.
1990      Diag(Arg->getSourceRange().getBegin(),
1991           diag::err_template_arg_not_convertible)
1992        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1993      Diag(Param->getLocation(), diag::note_template_param_here);
1994      return true;
1995    }
1996
1997    if (ParamType->isMemberPointerType()) {
1998      NamedDecl *Member = 0;
1999      if (CheckTemplateArgumentPointerToMember(Arg, Member))
2000        return true;
2001
2002      if (Member)
2003        Member = cast<NamedDecl>(Member->getCanonicalDecl());
2004      Converted = TemplateArgument(StartLoc, Member);
2005      return false;
2006    }
2007
2008    NamedDecl *Entity = 0;
2009    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2010      return true;
2011
2012    if (Entity)
2013      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2014    Converted = TemplateArgument(StartLoc, Entity);
2015    return false;
2016  }
2017
2018  if (ParamType->isPointerType()) {
2019    //   -- for a non-type template-parameter of type pointer to
2020    //      object, qualification conversions (4.4) and the
2021    //      array-to-pointer conversion (4.2) are applied.
2022    // C++0x also allows a value of std::nullptr_t.
2023    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2024           "Only object pointers allowed here");
2025
2026    if (ArgType->isNullPtrType()) {
2027      ArgType = ParamType;
2028      ImpCastExprToType(Arg, ParamType);
2029    } else if (ArgType->isArrayType()) {
2030      ArgType = Context.getArrayDecayedType(ArgType);
2031      ImpCastExprToType(Arg, ArgType);
2032    }
2033
2034    if (IsQualificationConversion(ArgType, ParamType)) {
2035      ArgType = ParamType;
2036      ImpCastExprToType(Arg, ParamType);
2037    }
2038
2039    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2040      // We can't perform this conversion.
2041      Diag(Arg->getSourceRange().getBegin(),
2042           diag::err_template_arg_not_convertible)
2043        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2044      Diag(Param->getLocation(), diag::note_template_param_here);
2045      return true;
2046    }
2047
2048    NamedDecl *Entity = 0;
2049    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2050      return true;
2051
2052    if (Entity)
2053      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2054    Converted = TemplateArgument(StartLoc, Entity);
2055    return false;
2056  }
2057
2058  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2059    //   -- For a non-type template-parameter of type reference to
2060    //      object, no conversions apply. The type referred to by the
2061    //      reference may be more cv-qualified than the (otherwise
2062    //      identical) type of the template-argument. The
2063    //      template-parameter is bound directly to the
2064    //      template-argument, which must be an lvalue.
2065    assert(ParamRefType->getPointeeType()->isObjectType() &&
2066           "Only object references allowed here");
2067
2068    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2069      Diag(Arg->getSourceRange().getBegin(),
2070           diag::err_template_arg_no_ref_bind)
2071        << InstantiatedParamType << Arg->getType()
2072        << Arg->getSourceRange();
2073      Diag(Param->getLocation(), diag::note_template_param_here);
2074      return true;
2075    }
2076
2077    unsigned ParamQuals
2078      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2079    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2080
2081    if ((ParamQuals | ArgQuals) != ParamQuals) {
2082      Diag(Arg->getSourceRange().getBegin(),
2083           diag::err_template_arg_ref_bind_ignores_quals)
2084        << InstantiatedParamType << Arg->getType()
2085        << Arg->getSourceRange();
2086      Diag(Param->getLocation(), diag::note_template_param_here);
2087      return true;
2088    }
2089
2090    NamedDecl *Entity = 0;
2091    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2092      return true;
2093
2094    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2095    Converted = TemplateArgument(StartLoc, Entity);
2096    return false;
2097  }
2098
2099  //     -- For a non-type template-parameter of type pointer to data
2100  //        member, qualification conversions (4.4) are applied.
2101  // C++0x allows std::nullptr_t values.
2102  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2103
2104  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2105    // Types match exactly: nothing more to do here.
2106  } else if (ArgType->isNullPtrType()) {
2107    ImpCastExprToType(Arg, ParamType);
2108  } else if (IsQualificationConversion(ArgType, ParamType)) {
2109    ImpCastExprToType(Arg, ParamType);
2110  } else {
2111    // We can't perform this conversion.
2112    Diag(Arg->getSourceRange().getBegin(),
2113         diag::err_template_arg_not_convertible)
2114      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2115    Diag(Param->getLocation(), diag::note_template_param_here);
2116    return true;
2117  }
2118
2119  NamedDecl *Member = 0;
2120  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2121    return true;
2122
2123  if (Member)
2124    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2125  Converted = TemplateArgument(StartLoc, Member);
2126  return false;
2127}
2128
2129/// \brief Check a template argument against its corresponding
2130/// template template parameter.
2131///
2132/// This routine implements the semantics of C++ [temp.arg.template].
2133/// It returns true if an error occurred, and false otherwise.
2134bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2135                                 DeclRefExpr *Arg) {
2136  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
2137  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
2138
2139  // C++ [temp.arg.template]p1:
2140  //   A template-argument for a template template-parameter shall be
2141  //   the name of a class template, expressed as id-expression. Only
2142  //   primary class templates are considered when matching the
2143  //   template template argument with the corresponding parameter;
2144  //   partial specializations are not considered even if their
2145  //   parameter lists match that of the template template parameter.
2146  //
2147  // Note that we also allow template template parameters here, which
2148  // will happen when we are dealing with, e.g., class template
2149  // partial specializations.
2150  if (!isa<ClassTemplateDecl>(Template) &&
2151      !isa<TemplateTemplateParmDecl>(Template)) {
2152    assert(isa<FunctionTemplateDecl>(Template) &&
2153           "Only function templates are possible here");
2154    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
2155    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2156      << Template;
2157  }
2158
2159  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2160                                         Param->getTemplateParameters(),
2161                                         true, true,
2162                                         Arg->getSourceRange().getBegin());
2163}
2164
2165/// \brief Determine whether the given template parameter lists are
2166/// equivalent.
2167///
2168/// \param New  The new template parameter list, typically written in the
2169/// source code as part of a new template declaration.
2170///
2171/// \param Old  The old template parameter list, typically found via
2172/// name lookup of the template declared with this template parameter
2173/// list.
2174///
2175/// \param Complain  If true, this routine will produce a diagnostic if
2176/// the template parameter lists are not equivalent.
2177///
2178/// \param IsTemplateTemplateParm  If true, this routine is being
2179/// called to compare the template parameter lists of a template
2180/// template parameter.
2181///
2182/// \param TemplateArgLoc If this source location is valid, then we
2183/// are actually checking the template parameter list of a template
2184/// argument (New) against the template parameter list of its
2185/// corresponding template template parameter (Old). We produce
2186/// slightly different diagnostics in this scenario.
2187///
2188/// \returns True if the template parameter lists are equal, false
2189/// otherwise.
2190bool
2191Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2192                                     TemplateParameterList *Old,
2193                                     bool Complain,
2194                                     bool IsTemplateTemplateParm,
2195                                     SourceLocation TemplateArgLoc) {
2196  if (Old->size() != New->size()) {
2197    if (Complain) {
2198      unsigned NextDiag = diag::err_template_param_list_different_arity;
2199      if (TemplateArgLoc.isValid()) {
2200        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2201        NextDiag = diag::note_template_param_list_different_arity;
2202      }
2203      Diag(New->getTemplateLoc(), NextDiag)
2204          << (New->size() > Old->size())
2205          << IsTemplateTemplateParm
2206          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2207      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2208        << IsTemplateTemplateParm
2209        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2210    }
2211
2212    return false;
2213  }
2214
2215  for (TemplateParameterList::iterator OldParm = Old->begin(),
2216         OldParmEnd = Old->end(), NewParm = New->begin();
2217       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2218    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2219      if (Complain) {
2220        unsigned NextDiag = diag::err_template_param_different_kind;
2221        if (TemplateArgLoc.isValid()) {
2222          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2223          NextDiag = diag::note_template_param_different_kind;
2224        }
2225        Diag((*NewParm)->getLocation(), NextDiag)
2226        << IsTemplateTemplateParm;
2227        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2228        << IsTemplateTemplateParm;
2229      }
2230      return false;
2231    }
2232
2233    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2234      // Okay; all template type parameters are equivalent (since we
2235      // know we're at the same index).
2236#if 0
2237      // FIXME: Enable this code in debug mode *after* we properly go through
2238      // and "instantiate" the template parameter lists of template template
2239      // parameters. It's only after this instantiation that (1) any dependent
2240      // types within the template parameter list of the template template
2241      // parameter can be checked, and (2) the template type parameter depths
2242      // will match up.
2243      QualType OldParmType
2244        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2245      QualType NewParmType
2246        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2247      assert(Context.getCanonicalType(OldParmType) ==
2248             Context.getCanonicalType(NewParmType) &&
2249             "type parameter mismatch?");
2250#endif
2251    } else if (NonTypeTemplateParmDecl *OldNTTP
2252                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2253      // The types of non-type template parameters must agree.
2254      NonTypeTemplateParmDecl *NewNTTP
2255        = cast<NonTypeTemplateParmDecl>(*NewParm);
2256      if (Context.getCanonicalType(OldNTTP->getType()) !=
2257            Context.getCanonicalType(NewNTTP->getType())) {
2258        if (Complain) {
2259          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2260          if (TemplateArgLoc.isValid()) {
2261            Diag(TemplateArgLoc,
2262                 diag::err_template_arg_template_params_mismatch);
2263            NextDiag = diag::note_template_nontype_parm_different_type;
2264          }
2265          Diag(NewNTTP->getLocation(), NextDiag)
2266            << NewNTTP->getType()
2267            << IsTemplateTemplateParm;
2268          Diag(OldNTTP->getLocation(),
2269               diag::note_template_nontype_parm_prev_declaration)
2270            << OldNTTP->getType();
2271        }
2272        return false;
2273      }
2274    } else {
2275      // The template parameter lists of template template
2276      // parameters must agree.
2277      // FIXME: Could we perform a faster "type" comparison here?
2278      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2279             "Only template template parameters handled here");
2280      TemplateTemplateParmDecl *OldTTP
2281        = cast<TemplateTemplateParmDecl>(*OldParm);
2282      TemplateTemplateParmDecl *NewTTP
2283        = cast<TemplateTemplateParmDecl>(*NewParm);
2284      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2285                                          OldTTP->getTemplateParameters(),
2286                                          Complain,
2287                                          /*IsTemplateTemplateParm=*/true,
2288                                          TemplateArgLoc))
2289        return false;
2290    }
2291  }
2292
2293  return true;
2294}
2295
2296/// \brief Check whether a template can be declared within this scope.
2297///
2298/// If the template declaration is valid in this scope, returns
2299/// false. Otherwise, issues a diagnostic and returns true.
2300bool
2301Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2302  // Find the nearest enclosing declaration scope.
2303  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2304         (S->getFlags() & Scope::TemplateParamScope) != 0)
2305    S = S->getParent();
2306
2307  // C++ [temp]p2:
2308  //   A template-declaration can appear only as a namespace scope or
2309  //   class scope declaration.
2310  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2311  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2312      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2313    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2314             << TemplateParams->getSourceRange();
2315
2316  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2317    Ctx = Ctx->getParent();
2318
2319  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2320    return false;
2321
2322  return Diag(TemplateParams->getTemplateLoc(),
2323              diag::err_template_outside_namespace_or_class_scope)
2324    << TemplateParams->getSourceRange();
2325}
2326
2327/// \brief Check whether a class template specialization or explicit
2328/// instantiation in the current context is well-formed.
2329///
2330/// This routine determines whether a class template specialization or
2331/// explicit instantiation can be declared in the current context
2332/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
2333/// appropriate diagnostics if there was an error. It returns true if
2334// there was an error that we cannot recover from, and false otherwise.
2335bool
2336Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
2337                                   ClassTemplateSpecializationDecl *PrevDecl,
2338                                            SourceLocation TemplateNameLoc,
2339                                            SourceRange ScopeSpecifierRange,
2340                                            bool PartialSpecialization,
2341                                            bool ExplicitInstantiation) {
2342  // C++ [temp.expl.spec]p2:
2343  //   An explicit specialization shall be declared in the namespace
2344  //   of which the template is a member, or, for member templates, in
2345  //   the namespace of which the enclosing class or enclosing class
2346  //   template is a member. An explicit specialization of a member
2347  //   function, member class or static data member of a class
2348  //   template shall be declared in the namespace of which the class
2349  //   template is a member. Such a declaration may also be a
2350  //   definition. If the declaration is not a definition, the
2351  //   specialization may be defined later in the name- space in which
2352  //   the explicit specialization was declared, or in a namespace
2353  //   that encloses the one in which the explicit specialization was
2354  //   declared.
2355  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2356    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2357    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
2358      << Kind << ClassTemplate;
2359    return true;
2360  }
2361
2362  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
2363  DeclContext *TemplateContext
2364    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
2365  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
2366      !ExplicitInstantiation) {
2367    // There is no prior declaration of this entity, so this
2368    // specialization must be in the same context as the template
2369    // itself.
2370    if (DC != TemplateContext) {
2371      if (isa<TranslationUnitDecl>(TemplateContext))
2372        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
2373          << PartialSpecialization
2374          << ClassTemplate << ScopeSpecifierRange;
2375      else if (isa<NamespaceDecl>(TemplateContext))
2376        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
2377          << PartialSpecialization << ClassTemplate
2378          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2379
2380      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2381    }
2382
2383    return false;
2384  }
2385
2386  // We have a previous declaration of this entity. Make sure that
2387  // this redeclaration (or definition) occurs in an enclosing namespace.
2388  if (!CurContext->Encloses(TemplateContext)) {
2389    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
2390    // dependent on a -Wc++0x flag.
2391    bool SuppressedDiag = false;
2392    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2393    if (isa<TranslationUnitDecl>(TemplateContext)) {
2394      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2395        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
2396          << Kind << ClassTemplate << ScopeSpecifierRange;
2397      else
2398        SuppressedDiag = true;
2399    } else if (isa<NamespaceDecl>(TemplateContext)) {
2400      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2401        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2402          << Kind << ClassTemplate
2403          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2404      else
2405        SuppressedDiag = true;
2406    }
2407
2408    if (!SuppressedDiag)
2409      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2410  }
2411
2412  return false;
2413}
2414
2415/// \brief Check the non-type template arguments of a class template
2416/// partial specialization according to C++ [temp.class.spec]p9.
2417///
2418/// \param TemplateParams the template parameters of the primary class
2419/// template.
2420///
2421/// \param TemplateArg the template arguments of the class template
2422/// partial specialization.
2423///
2424/// \param MirrorsPrimaryTemplate will be set true if the class
2425/// template partial specialization arguments are identical to the
2426/// implicit template arguments of the primary template. This is not
2427/// necessarily an error (C++0x), and it is left to the caller to diagnose
2428/// this condition when it is an error.
2429///
2430/// \returns true if there was an error, false otherwise.
2431bool Sema::CheckClassTemplatePartialSpecializationArgs(
2432                                        TemplateParameterList *TemplateParams,
2433                             const TemplateArgumentListBuilder &TemplateArgs,
2434                                        bool &MirrorsPrimaryTemplate) {
2435  // FIXME: the interface to this function will have to change to
2436  // accommodate variadic templates.
2437  MirrorsPrimaryTemplate = true;
2438
2439  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2440
2441  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2442    // Determine whether the template argument list of the partial
2443    // specialization is identical to the implicit argument list of
2444    // the primary template. The caller may need to diagnostic this as
2445    // an error per C++ [temp.class.spec]p9b3.
2446    if (MirrorsPrimaryTemplate) {
2447      if (TemplateTypeParmDecl *TTP
2448            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2449        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2450              Context.getCanonicalType(ArgList[I].getAsType()))
2451          MirrorsPrimaryTemplate = false;
2452      } else if (TemplateTemplateParmDecl *TTP
2453                   = dyn_cast<TemplateTemplateParmDecl>(
2454                                                 TemplateParams->getParam(I))) {
2455        // FIXME: We should settle on either Declaration storage or
2456        // Expression storage for template template parameters.
2457        TemplateTemplateParmDecl *ArgDecl
2458          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2459                                                  ArgList[I].getAsDecl());
2460        if (!ArgDecl)
2461          if (DeclRefExpr *DRE
2462                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2463            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2464
2465        if (!ArgDecl ||
2466            ArgDecl->getIndex() != TTP->getIndex() ||
2467            ArgDecl->getDepth() != TTP->getDepth())
2468          MirrorsPrimaryTemplate = false;
2469      }
2470    }
2471
2472    NonTypeTemplateParmDecl *Param
2473      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2474    if (!Param) {
2475      continue;
2476    }
2477
2478    Expr *ArgExpr = ArgList[I].getAsExpr();
2479    if (!ArgExpr) {
2480      MirrorsPrimaryTemplate = false;
2481      continue;
2482    }
2483
2484    // C++ [temp.class.spec]p8:
2485    //   A non-type argument is non-specialized if it is the name of a
2486    //   non-type parameter. All other non-type arguments are
2487    //   specialized.
2488    //
2489    // Below, we check the two conditions that only apply to
2490    // specialized non-type arguments, so skip any non-specialized
2491    // arguments.
2492    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2493      if (NonTypeTemplateParmDecl *NTTP
2494            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2495        if (MirrorsPrimaryTemplate &&
2496            (Param->getIndex() != NTTP->getIndex() ||
2497             Param->getDepth() != NTTP->getDepth()))
2498          MirrorsPrimaryTemplate = false;
2499
2500        continue;
2501      }
2502
2503    // C++ [temp.class.spec]p9:
2504    //   Within the argument list of a class template partial
2505    //   specialization, the following restrictions apply:
2506    //     -- A partially specialized non-type argument expression
2507    //        shall not involve a template parameter of the partial
2508    //        specialization except when the argument expression is a
2509    //        simple identifier.
2510    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2511      Diag(ArgExpr->getLocStart(),
2512           diag::err_dependent_non_type_arg_in_partial_spec)
2513        << ArgExpr->getSourceRange();
2514      return true;
2515    }
2516
2517    //     -- The type of a template parameter corresponding to a
2518    //        specialized non-type argument shall not be dependent on a
2519    //        parameter of the specialization.
2520    if (Param->getType()->isDependentType()) {
2521      Diag(ArgExpr->getLocStart(),
2522           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2523        << Param->getType()
2524        << ArgExpr->getSourceRange();
2525      Diag(Param->getLocation(), diag::note_template_param_here);
2526      return true;
2527    }
2528
2529    MirrorsPrimaryTemplate = false;
2530  }
2531
2532  return false;
2533}
2534
2535Sema::DeclResult
2536Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2537                                       TagUseKind TUK,
2538                                       SourceLocation KWLoc,
2539                                       const CXXScopeSpec &SS,
2540                                       TemplateTy TemplateD,
2541                                       SourceLocation TemplateNameLoc,
2542                                       SourceLocation LAngleLoc,
2543                                       ASTTemplateArgsPtr TemplateArgsIn,
2544                                       SourceLocation *TemplateArgLocs,
2545                                       SourceLocation RAngleLoc,
2546                                       AttributeList *Attr,
2547                               MultiTemplateParamsArg TemplateParameterLists) {
2548  assert(TUK == TUK_Declaration || TUK == TUK_Definition);
2549
2550  // Find the class template we're specializing
2551  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2552  ClassTemplateDecl *ClassTemplate
2553    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2554
2555  bool isPartialSpecialization = false;
2556
2557  // Check the validity of the template headers that introduce this
2558  // template.
2559  TemplateParameterList *TemplateParams
2560    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2561                        (TemplateParameterList**)TemplateParameterLists.get(),
2562                                              TemplateParameterLists.size());
2563  if (TemplateParams && TemplateParams->size() > 0) {
2564    isPartialSpecialization = true;
2565
2566    // C++ [temp.class.spec]p10:
2567    //   The template parameter list of a specialization shall not
2568    //   contain default template argument values.
2569    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2570      Decl *Param = TemplateParams->getParam(I);
2571      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2572        if (TTP->hasDefaultArgument()) {
2573          Diag(TTP->getDefaultArgumentLoc(),
2574               diag::err_default_arg_in_partial_spec);
2575          TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2576        }
2577      } else if (NonTypeTemplateParmDecl *NTTP
2578                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2579        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2580          Diag(NTTP->getDefaultArgumentLoc(),
2581               diag::err_default_arg_in_partial_spec)
2582            << DefArg->getSourceRange();
2583          NTTP->setDefaultArgument(0);
2584          DefArg->Destroy(Context);
2585        }
2586      } else {
2587        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2588        if (Expr *DefArg = TTP->getDefaultArgument()) {
2589          Diag(TTP->getDefaultArgumentLoc(),
2590               diag::err_default_arg_in_partial_spec)
2591            << DefArg->getSourceRange();
2592          TTP->setDefaultArgument(0);
2593          DefArg->Destroy(Context);
2594        }
2595      }
2596    }
2597  } else if (!TemplateParams)
2598    Diag(KWLoc, diag::err_template_spec_needs_header)
2599      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2600
2601  // Check that the specialization uses the same tag kind as the
2602  // original template.
2603  TagDecl::TagKind Kind;
2604  switch (TagSpec) {
2605  default: assert(0 && "Unknown tag type!");
2606  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2607  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2608  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2609  }
2610  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2611                                    Kind, KWLoc,
2612                                    *ClassTemplate->getIdentifier())) {
2613    Diag(KWLoc, diag::err_use_with_wrong_tag)
2614      << ClassTemplate
2615      << CodeModificationHint::CreateReplacement(KWLoc,
2616                            ClassTemplate->getTemplatedDecl()->getKindName());
2617    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2618         diag::note_previous_use);
2619    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2620  }
2621
2622  // Translate the parser's template argument list in our AST format.
2623  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2624  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2625
2626  // Check that the template argument list is well-formed for this
2627  // template.
2628  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2629                                        TemplateArgs.size());
2630  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2631                                TemplateArgs.data(), TemplateArgs.size(),
2632                                RAngleLoc, false, Converted))
2633    return true;
2634
2635  assert((Converted.structuredSize() ==
2636            ClassTemplate->getTemplateParameters()->size()) &&
2637         "Converted template argument list is too short!");
2638
2639  // Find the class template (partial) specialization declaration that
2640  // corresponds to these arguments.
2641  llvm::FoldingSetNodeID ID;
2642  if (isPartialSpecialization) {
2643    bool MirrorsPrimaryTemplate;
2644    if (CheckClassTemplatePartialSpecializationArgs(
2645                                         ClassTemplate->getTemplateParameters(),
2646                                         Converted, MirrorsPrimaryTemplate))
2647      return true;
2648
2649    if (MirrorsPrimaryTemplate) {
2650      // C++ [temp.class.spec]p9b3:
2651      //
2652      //   -- The argument list of the specialization shall not be identical
2653      //      to the implicit argument list of the primary template.
2654      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2655        << (TUK == TUK_Definition)
2656        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2657                                                           RAngleLoc));
2658      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2659                                ClassTemplate->getIdentifier(),
2660                                TemplateNameLoc,
2661                                Attr,
2662                                TemplateParams,
2663                                AS_none);
2664    }
2665
2666    // FIXME: Template parameter list matters, too
2667    ClassTemplatePartialSpecializationDecl::Profile(ID,
2668                                                   Converted.getFlatArguments(),
2669                                                   Converted.flatSize(),
2670                                                    Context);
2671  } else
2672    ClassTemplateSpecializationDecl::Profile(ID,
2673                                             Converted.getFlatArguments(),
2674                                             Converted.flatSize(),
2675                                             Context);
2676  void *InsertPos = 0;
2677  ClassTemplateSpecializationDecl *PrevDecl = 0;
2678
2679  if (isPartialSpecialization)
2680    PrevDecl
2681      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2682                                                                    InsertPos);
2683  else
2684    PrevDecl
2685      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2686
2687  ClassTemplateSpecializationDecl *Specialization = 0;
2688
2689  // Check whether we can declare a class template specialization in
2690  // the current scope.
2691  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2692                                            TemplateNameLoc,
2693                                            SS.getRange(),
2694                                            isPartialSpecialization,
2695                                            /*ExplicitInstantiation=*/false))
2696    return true;
2697
2698  // The canonical type
2699  QualType CanonType;
2700  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2701    // Since the only prior class template specialization with these
2702    // arguments was referenced but not declared, reuse that
2703    // declaration node as our own, updating its source location to
2704    // reflect our new declaration.
2705    Specialization = PrevDecl;
2706    Specialization->setLocation(TemplateNameLoc);
2707    PrevDecl = 0;
2708    CanonType = Context.getTypeDeclType(Specialization);
2709  } else if (isPartialSpecialization) {
2710    // Build the canonical type that describes the converted template
2711    // arguments of the class template partial specialization.
2712    CanonType = Context.getTemplateSpecializationType(
2713                                                  TemplateName(ClassTemplate),
2714                                                  Converted.getFlatArguments(),
2715                                                  Converted.flatSize());
2716
2717    // Create a new class template partial specialization declaration node.
2718    TemplateParameterList *TemplateParams
2719      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2720    ClassTemplatePartialSpecializationDecl *PrevPartial
2721      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2722    ClassTemplatePartialSpecializationDecl *Partial
2723      = ClassTemplatePartialSpecializationDecl::Create(Context,
2724                                             ClassTemplate->getDeclContext(),
2725                                                       TemplateNameLoc,
2726                                                       TemplateParams,
2727                                                       ClassTemplate,
2728                                                       Converted,
2729                                                       PrevPartial);
2730
2731    if (PrevPartial) {
2732      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2733      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2734    } else {
2735      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2736    }
2737    Specialization = Partial;
2738
2739    // Check that all of the template parameters of the class template
2740    // partial specialization are deducible from the template
2741    // arguments. If not, this class template partial specialization
2742    // will never be used.
2743    llvm::SmallVector<bool, 8> DeducibleParams;
2744    DeducibleParams.resize(TemplateParams->size());
2745    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2746                               DeducibleParams);
2747    unsigned NumNonDeducible = 0;
2748    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2749      if (!DeducibleParams[I])
2750        ++NumNonDeducible;
2751
2752    if (NumNonDeducible) {
2753      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2754        << (NumNonDeducible > 1)
2755        << SourceRange(TemplateNameLoc, RAngleLoc);
2756      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2757        if (!DeducibleParams[I]) {
2758          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2759          if (Param->getDeclName())
2760            Diag(Param->getLocation(),
2761                 diag::note_partial_spec_unused_parameter)
2762              << Param->getDeclName();
2763          else
2764            Diag(Param->getLocation(),
2765                 diag::note_partial_spec_unused_parameter)
2766              << std::string("<anonymous>");
2767        }
2768      }
2769    }
2770  } else {
2771    // Create a new class template specialization declaration node for
2772    // this explicit specialization.
2773    Specialization
2774      = ClassTemplateSpecializationDecl::Create(Context,
2775                                             ClassTemplate->getDeclContext(),
2776                                                TemplateNameLoc,
2777                                                ClassTemplate,
2778                                                Converted,
2779                                                PrevDecl);
2780
2781    if (PrevDecl) {
2782      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2783      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2784    } else {
2785      ClassTemplate->getSpecializations().InsertNode(Specialization,
2786                                                     InsertPos);
2787    }
2788
2789    CanonType = Context.getTypeDeclType(Specialization);
2790  }
2791
2792  // Note that this is an explicit specialization.
2793  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2794
2795  // Check that this isn't a redefinition of this specialization.
2796  if (TUK == TUK_Definition) {
2797    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2798      // FIXME: Should also handle explicit specialization after implicit
2799      // instantiation with a special diagnostic.
2800      SourceRange Range(TemplateNameLoc, RAngleLoc);
2801      Diag(TemplateNameLoc, diag::err_redefinition)
2802        << Context.getTypeDeclType(Specialization) << Range;
2803      Diag(Def->getLocation(), diag::note_previous_definition);
2804      Specialization->setInvalidDecl();
2805      return true;
2806    }
2807  }
2808
2809  // Build the fully-sugared type for this class template
2810  // specialization as the user wrote in the specialization
2811  // itself. This means that we'll pretty-print the type retrieved
2812  // from the specialization's declaration the way that the user
2813  // actually wrote the specialization, rather than formatting the
2814  // name based on the "canonical" representation used to store the
2815  // template arguments in the specialization.
2816  QualType WrittenTy
2817    = Context.getTemplateSpecializationType(Name,
2818                                            TemplateArgs.data(),
2819                                            TemplateArgs.size(),
2820                                            CanonType);
2821  Specialization->setTypeAsWritten(WrittenTy);
2822  TemplateArgsIn.release();
2823
2824  // C++ [temp.expl.spec]p9:
2825  //   A template explicit specialization is in the scope of the
2826  //   namespace in which the template was defined.
2827  //
2828  // We actually implement this paragraph where we set the semantic
2829  // context (in the creation of the ClassTemplateSpecializationDecl),
2830  // but we also maintain the lexical context where the actual
2831  // definition occurs.
2832  Specialization->setLexicalDeclContext(CurContext);
2833
2834  // We may be starting the definition of this specialization.
2835  if (TUK == TUK_Definition)
2836    Specialization->startDefinition();
2837
2838  // Add the specialization into its lexical context, so that it can
2839  // be seen when iterating through the list of declarations in that
2840  // context. However, specializations are not found by name lookup.
2841  CurContext->addDecl(Specialization);
2842  return DeclPtrTy::make(Specialization);
2843}
2844
2845Sema::DeclPtrTy
2846Sema::ActOnTemplateDeclarator(Scope *S,
2847                              MultiTemplateParamsArg TemplateParameterLists,
2848                              Declarator &D) {
2849  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2850}
2851
2852Sema::DeclPtrTy
2853Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2854                               MultiTemplateParamsArg TemplateParameterLists,
2855                                      Declarator &D) {
2856  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2857  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2858         "Not a function declarator!");
2859  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2860
2861  if (FTI.hasPrototype) {
2862    // FIXME: Diagnose arguments without names in C.
2863  }
2864
2865  Scope *ParentScope = FnBodyScope->getParent();
2866
2867  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2868                                  move(TemplateParameterLists),
2869                                  /*IsFunctionDefinition=*/true);
2870  if (FunctionTemplateDecl *FunctionTemplate
2871        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2872    return ActOnStartOfFunctionDef(FnBodyScope,
2873                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2874  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2875    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2876  return DeclPtrTy();
2877}
2878
2879// Explicit instantiation of a class template specialization
2880// FIXME: Implement extern template semantics
2881Sema::DeclResult
2882Sema::ActOnExplicitInstantiation(Scope *S,
2883                                 SourceLocation ExternLoc,
2884                                 SourceLocation TemplateLoc,
2885                                 unsigned TagSpec,
2886                                 SourceLocation KWLoc,
2887                                 const CXXScopeSpec &SS,
2888                                 TemplateTy TemplateD,
2889                                 SourceLocation TemplateNameLoc,
2890                                 SourceLocation LAngleLoc,
2891                                 ASTTemplateArgsPtr TemplateArgsIn,
2892                                 SourceLocation *TemplateArgLocs,
2893                                 SourceLocation RAngleLoc,
2894                                 AttributeList *Attr) {
2895  // Find the class template we're specializing
2896  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2897  ClassTemplateDecl *ClassTemplate
2898    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2899
2900  // Check that the specialization uses the same tag kind as the
2901  // original template.
2902  TagDecl::TagKind Kind;
2903  switch (TagSpec) {
2904  default: assert(0 && "Unknown tag type!");
2905  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2906  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2907  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2908  }
2909  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2910                                    Kind, KWLoc,
2911                                    *ClassTemplate->getIdentifier())) {
2912    Diag(KWLoc, diag::err_use_with_wrong_tag)
2913      << ClassTemplate
2914      << CodeModificationHint::CreateReplacement(KWLoc,
2915                            ClassTemplate->getTemplatedDecl()->getKindName());
2916    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2917         diag::note_previous_use);
2918    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2919  }
2920
2921  // C++0x [temp.explicit]p2:
2922  //   [...] An explicit instantiation shall appear in an enclosing
2923  //   namespace of its template. [...]
2924  //
2925  // This is C++ DR 275.
2926  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2927                                            TemplateNameLoc,
2928                                            SS.getRange(),
2929                                            /*PartialSpecialization=*/false,
2930                                            /*ExplicitInstantiation=*/true))
2931    return true;
2932
2933  // Translate the parser's template argument list in our AST format.
2934  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2935  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2936
2937  // Check that the template argument list is well-formed for this
2938  // template.
2939  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2940                                        TemplateArgs.size());
2941  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2942                                TemplateArgs.data(), TemplateArgs.size(),
2943                                RAngleLoc, false, Converted))
2944    return true;
2945
2946  assert((Converted.structuredSize() ==
2947            ClassTemplate->getTemplateParameters()->size()) &&
2948         "Converted template argument list is too short!");
2949
2950  // Find the class template specialization declaration that
2951  // corresponds to these arguments.
2952  llvm::FoldingSetNodeID ID;
2953  ClassTemplateSpecializationDecl::Profile(ID,
2954                                           Converted.getFlatArguments(),
2955                                           Converted.flatSize(),
2956                                           Context);
2957  void *InsertPos = 0;
2958  ClassTemplateSpecializationDecl *PrevDecl
2959    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2960
2961  ClassTemplateSpecializationDecl *Specialization = 0;
2962
2963  bool SpecializationRequiresInstantiation = true;
2964  if (PrevDecl) {
2965    if (PrevDecl->getSpecializationKind()
2966          == TSK_ExplicitInstantiationDefinition) {
2967      // This particular specialization has already been declared or
2968      // instantiated. We cannot explicitly instantiate it.
2969      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2970        << Context.getTypeDeclType(PrevDecl);
2971      Diag(PrevDecl->getLocation(),
2972           diag::note_previous_explicit_instantiation);
2973      return DeclPtrTy::make(PrevDecl);
2974    }
2975
2976    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2977      // C++ DR 259, C++0x [temp.explicit]p4:
2978      //   For a given set of template parameters, if an explicit
2979      //   instantiation of a template appears after a declaration of
2980      //   an explicit specialization for that template, the explicit
2981      //   instantiation has no effect.
2982      if (!getLangOptions().CPlusPlus0x) {
2983        Diag(TemplateNameLoc,
2984             diag::ext_explicit_instantiation_after_specialization)
2985          << Context.getTypeDeclType(PrevDecl);
2986        Diag(PrevDecl->getLocation(),
2987             diag::note_previous_template_specialization);
2988      }
2989
2990      // Create a new class template specialization declaration node
2991      // for this explicit specialization. This node is only used to
2992      // record the existence of this explicit instantiation for
2993      // accurate reproduction of the source code; we don't actually
2994      // use it for anything, since it is semantically irrelevant.
2995      Specialization
2996        = ClassTemplateSpecializationDecl::Create(Context,
2997                                             ClassTemplate->getDeclContext(),
2998                                                  TemplateNameLoc,
2999                                                  ClassTemplate,
3000                                                  Converted, 0);
3001      Specialization->setLexicalDeclContext(CurContext);
3002      CurContext->addDecl(Specialization);
3003      return DeclPtrTy::make(PrevDecl);
3004    }
3005
3006    // If we have already (implicitly) instantiated this
3007    // specialization, there is less work to do.
3008    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
3009      SpecializationRequiresInstantiation = false;
3010
3011    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3012        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3013      // Since the only prior class template specialization with these
3014      // arguments was referenced but not declared, reuse that
3015      // declaration node as our own, updating its source location to
3016      // reflect our new declaration.
3017      Specialization = PrevDecl;
3018      Specialization->setLocation(TemplateNameLoc);
3019      PrevDecl = 0;
3020    }
3021  }
3022
3023  if (!Specialization) {
3024    // Create a new class template specialization declaration node for
3025    // this explicit specialization.
3026    Specialization
3027      = ClassTemplateSpecializationDecl::Create(Context,
3028                                             ClassTemplate->getDeclContext(),
3029                                                TemplateNameLoc,
3030                                                ClassTemplate,
3031                                                Converted, PrevDecl);
3032
3033    if (PrevDecl) {
3034      // Remove the previous declaration from the folding set, since we want
3035      // to introduce a new declaration.
3036      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3037      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3038    }
3039
3040    // Insert the new specialization.
3041    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3042  }
3043
3044  // Build the fully-sugared type for this explicit instantiation as
3045  // the user wrote in the explicit instantiation itself. This means
3046  // that we'll pretty-print the type retrieved from the
3047  // specialization's declaration the way that the user actually wrote
3048  // the explicit instantiation, rather than formatting the name based
3049  // on the "canonical" representation used to store the template
3050  // arguments in the specialization.
3051  QualType WrittenTy
3052    = Context.getTemplateSpecializationType(Name,
3053                                            TemplateArgs.data(),
3054                                            TemplateArgs.size(),
3055                                  Context.getTypeDeclType(Specialization));
3056  Specialization->setTypeAsWritten(WrittenTy);
3057  TemplateArgsIn.release();
3058
3059  // Add the explicit instantiation into its lexical context. However,
3060  // since explicit instantiations are never found by name lookup, we
3061  // just put it into the declaration context directly.
3062  Specialization->setLexicalDeclContext(CurContext);
3063  CurContext->addDecl(Specialization);
3064
3065  Specialization->setPointOfInstantiation(TemplateNameLoc);
3066
3067  // C++ [temp.explicit]p3:
3068  //   A definition of a class template or class member template
3069  //   shall be in scope at the point of the explicit instantiation of
3070  //   the class template or class member template.
3071  //
3072  // This check comes when we actually try to perform the
3073  // instantiation.
3074  TemplateSpecializationKind TSK
3075    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3076                           : TSK_ExplicitInstantiationDeclaration;
3077  if (SpecializationRequiresInstantiation)
3078    InstantiateClassTemplateSpecialization(Specialization, TSK);
3079  else // Instantiate the members of this class template specialization.
3080    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization,
3081                                                  TSK);
3082
3083  return DeclPtrTy::make(Specialization);
3084}
3085
3086// Explicit instantiation of a member class of a class template.
3087Sema::DeclResult
3088Sema::ActOnExplicitInstantiation(Scope *S,
3089                                 SourceLocation ExternLoc,
3090                                 SourceLocation TemplateLoc,
3091                                 unsigned TagSpec,
3092                                 SourceLocation KWLoc,
3093                                 const CXXScopeSpec &SS,
3094                                 IdentifierInfo *Name,
3095                                 SourceLocation NameLoc,
3096                                 AttributeList *Attr) {
3097
3098  bool Owned = false;
3099  bool IsDependent = false;
3100  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
3101                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
3102                            MultiTemplateParamsArg(*this, 0, 0),
3103                            Owned, IsDependent);
3104  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
3105
3106  if (!TagD)
3107    return true;
3108
3109  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3110  if (Tag->isEnum()) {
3111    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
3112      << Context.getTypeDeclType(Tag);
3113    return true;
3114  }
3115
3116  if (Tag->isInvalidDecl())
3117    return true;
3118
3119  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
3120  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
3121  if (!Pattern) {
3122    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
3123      << Context.getTypeDeclType(Record);
3124    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
3125    return true;
3126  }
3127
3128  // C++0x [temp.explicit]p2:
3129  //   [...] An explicit instantiation shall appear in an enclosing
3130  //   namespace of its template. [...]
3131  //
3132  // This is C++ DR 275.
3133  if (getLangOptions().CPlusPlus0x) {
3134    // FIXME: In C++98, we would like to turn these errors into warnings,
3135    // dependent on a -Wc++0x flag.
3136    DeclContext *PatternContext
3137      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
3138    if (!CurContext->Encloses(PatternContext)) {
3139      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
3140        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
3141      Diag(Pattern->getLocation(), diag::note_previous_declaration);
3142    }
3143  }
3144
3145  TemplateSpecializationKind TSK
3146    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3147                           : TSK_ExplicitInstantiationDeclaration;
3148
3149  if (!Record->getDefinition(Context)) {
3150    // If the class has a definition, instantiate it (and all of its
3151    // members, recursively).
3152    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
3153    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
3154                                    getTemplateInstantiationArgs(Record),
3155                                    TSK))
3156      return true;
3157  } else // Instantiate all of the members of the class.
3158    InstantiateClassMembers(TemplateLoc, Record,
3159                            getTemplateInstantiationArgs(Record), TSK);
3160
3161  // FIXME: We don't have any representation for explicit instantiations of
3162  // member classes. Such a representation is not needed for compilation, but it
3163  // should be available for clients that want to see all of the declarations in
3164  // the source code.
3165  return TagD;
3166}
3167
3168Sema::TypeResult
3169Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3170                        const CXXScopeSpec &SS, IdentifierInfo *Name,
3171                        SourceLocation TagLoc, SourceLocation NameLoc) {
3172  // This has to hold, because SS is expected to be defined.
3173  assert(Name && "Expected a name in a dependent tag");
3174
3175  NestedNameSpecifier *NNS
3176    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3177  if (!NNS)
3178    return true;
3179
3180  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
3181  if (T.isNull())
3182    return true;
3183
3184  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
3185  QualType ElabType = Context.getElaboratedType(T, TagKind);
3186
3187  return ElabType.getAsOpaquePtr();
3188}
3189
3190Sema::TypeResult
3191Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
3192                        const IdentifierInfo &II, SourceLocation IdLoc) {
3193  NestedNameSpecifier *NNS
3194    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3195  if (!NNS)
3196    return true;
3197
3198  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
3199  if (T.isNull())
3200    return true;
3201  return T.getAsOpaquePtr();
3202}
3203
3204Sema::TypeResult
3205Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
3206                        SourceLocation TemplateLoc, TypeTy *Ty) {
3207  QualType T = GetTypeFromParser(Ty);
3208  NestedNameSpecifier *NNS
3209    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3210  const TemplateSpecializationType *TemplateId
3211    = T->getAsTemplateSpecializationType();
3212  assert(TemplateId && "Expected a template specialization type");
3213
3214  if (computeDeclContext(SS, false)) {
3215    // If we can compute a declaration context, then the "typename"
3216    // keyword was superfluous. Just build a QualifiedNameType to keep
3217    // track of the nested-name-specifier.
3218
3219    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
3220    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
3221  }
3222
3223  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
3224}
3225
3226/// \brief Build the type that describes a C++ typename specifier,
3227/// e.g., "typename T::type".
3228QualType
3229Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
3230                        SourceRange Range) {
3231  CXXRecordDecl *CurrentInstantiation = 0;
3232  if (NNS->isDependent()) {
3233    CurrentInstantiation = getCurrentInstantiationOf(NNS);
3234
3235    // If the nested-name-specifier does not refer to the current
3236    // instantiation, then build a typename type.
3237    if (!CurrentInstantiation)
3238      return Context.getTypenameType(NNS, &II);
3239
3240    // The nested-name-specifier refers to the current instantiation, so the
3241    // "typename" keyword itself is superfluous. In C++03, the program is
3242    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
3243    // extraneous "typename" keywords, and we retroactively apply this DR to
3244    // C++03 code.
3245  }
3246
3247  DeclContext *Ctx = 0;
3248
3249  if (CurrentInstantiation)
3250    Ctx = CurrentInstantiation;
3251  else {
3252    CXXScopeSpec SS;
3253    SS.setScopeRep(NNS);
3254    SS.setRange(Range);
3255    if (RequireCompleteDeclContext(SS))
3256      return QualType();
3257
3258    Ctx = computeDeclContext(SS);
3259  }
3260  assert(Ctx && "No declaration context?");
3261
3262  DeclarationName Name(&II);
3263  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3264                                            false);
3265  unsigned DiagID = 0;
3266  Decl *Referenced = 0;
3267  switch (Result.getKind()) {
3268  case LookupResult::NotFound:
3269    if (Ctx->isTranslationUnit())
3270      DiagID = diag::err_typename_nested_not_found_global;
3271    else
3272      DiagID = diag::err_typename_nested_not_found;
3273    break;
3274
3275  case LookupResult::Found:
3276    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3277      // We found a type. Build a QualifiedNameType, since the
3278      // typename-specifier was just sugar. FIXME: Tell
3279      // QualifiedNameType that it has a "typename" prefix.
3280      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3281    }
3282
3283    DiagID = diag::err_typename_nested_not_type;
3284    Referenced = Result.getAsDecl();
3285    break;
3286
3287  case LookupResult::FoundOverloaded:
3288    DiagID = diag::err_typename_nested_not_type;
3289    Referenced = *Result.begin();
3290    break;
3291
3292  case LookupResult::AmbiguousBaseSubobjectTypes:
3293  case LookupResult::AmbiguousBaseSubobjects:
3294  case LookupResult::AmbiguousReference:
3295    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3296    return QualType();
3297  }
3298
3299  // If we get here, it's because name lookup did not find a
3300  // type. Emit an appropriate diagnostic and return an error.
3301  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3302    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3303  else
3304    Diag(Range.getEnd(), DiagID) << Range << Name;
3305  if (Referenced)
3306    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3307      << Name;
3308  return QualType();
3309}
3310
3311namespace {
3312  // See Sema::RebuildTypeInCurrentInstantiation
3313  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
3314    : public TreeTransform<CurrentInstantiationRebuilder> {
3315    SourceLocation Loc;
3316    DeclarationName Entity;
3317
3318  public:
3319    CurrentInstantiationRebuilder(Sema &SemaRef,
3320                                  SourceLocation Loc,
3321                                  DeclarationName Entity)
3322    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
3323      Loc(Loc), Entity(Entity) { }
3324
3325    /// \brief Determine whether the given type \p T has already been
3326    /// transformed.
3327    ///
3328    /// For the purposes of type reconstruction, a type has already been
3329    /// transformed if it is NULL or if it is not dependent.
3330    bool AlreadyTransformed(QualType T) {
3331      return T.isNull() || !T->isDependentType();
3332    }
3333
3334    /// \brief Returns the location of the entity whose type is being
3335    /// rebuilt.
3336    SourceLocation getBaseLocation() { return Loc; }
3337
3338    /// \brief Returns the name of the entity whose type is being rebuilt.
3339    DeclarationName getBaseEntity() { return Entity; }
3340
3341    /// \brief Transforms an expression by returning the expression itself
3342    /// (an identity function).
3343    ///
3344    /// FIXME: This is completely unsafe; we will need to actually clone the
3345    /// expressions.
3346    Sema::OwningExprResult TransformExpr(Expr *E) {
3347      return getSema().Owned(E);
3348    }
3349
3350    /// \brief Transforms a typename type by determining whether the type now
3351    /// refers to a member of the current instantiation, and then
3352    /// type-checking and building a QualifiedNameType (when possible).
3353    QualType TransformTypenameType(const TypenameType *T);
3354  };
3355}
3356
3357QualType
3358CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) {
3359  NestedNameSpecifier *NNS
3360    = TransformNestedNameSpecifier(T->getQualifier(),
3361                              /*FIXME:*/SourceRange(getBaseLocation()));
3362  if (!NNS)
3363    return QualType();
3364
3365  // If the nested-name-specifier did not change, and we cannot compute the
3366  // context corresponding to the nested-name-specifier, then this
3367  // typename type will not change; exit early.
3368  CXXScopeSpec SS;
3369  SS.setRange(SourceRange(getBaseLocation()));
3370  SS.setScopeRep(NNS);
3371  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
3372    return QualType(T, 0);
3373
3374  // Rebuild the typename type, which will probably turn into a
3375  // QualifiedNameType.
3376  if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
3377    QualType NewTemplateId
3378      = TransformType(QualType(TemplateId, 0));
3379    if (NewTemplateId.isNull())
3380      return QualType();
3381
3382    if (NNS == T->getQualifier() &&
3383        NewTemplateId == QualType(TemplateId, 0))
3384      return QualType(T, 0);
3385
3386    return getDerived().RebuildTypenameType(NNS, NewTemplateId);
3387  }
3388
3389  return getDerived().RebuildTypenameType(NNS, T->getIdentifier());
3390}
3391
3392/// \brief Rebuilds a type within the context of the current instantiation.
3393///
3394/// The type \p T is part of the type of an out-of-line member definition of
3395/// a class template (or class template partial specialization) that was parsed
3396/// and constructed before we entered the scope of the class template (or
3397/// partial specialization thereof). This routine will rebuild that type now
3398/// that we have entered the declarator's scope, which may produce different
3399/// canonical types, e.g.,
3400///
3401/// \code
3402/// template<typename T>
3403/// struct X {
3404///   typedef T* pointer;
3405///   pointer data();
3406/// };
3407///
3408/// template<typename T>
3409/// typename X<T>::pointer X<T>::data() { ... }
3410/// \endcode
3411///
3412/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
3413/// since we do not know that we can look into X<T> when we parsed the type.
3414/// This function will rebuild the type, performing the lookup of "pointer"
3415/// in X<T> and returning a QualifiedNameType whose canonical type is the same
3416/// as the canonical type of T*, allowing the return types of the out-of-line
3417/// definition and the declaration to match.
3418QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
3419                                                 DeclarationName Name) {
3420  if (T.isNull() || !T->isDependentType())
3421    return T;
3422
3423  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
3424  return Rebuilder.TransformType(T);
3425}
3426