SemaTemplate.cpp revision 0f434ecbead44c1f4d5f9dda088f9827fa0dc40f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    } else if (OverloadedFunctionDecl *Ovl
69                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
70      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
71                                                  FEnd = Ovl->function_end();
72           F != FEnd; ++F) {
73        if (FunctionTemplateDecl *FuncTmpl
74              = dyn_cast<FunctionTemplateDecl>(*F)) {
75          // We've found a function template. Determine whether there are
76          // any other function templates we need to bundle together in an
77          // OverloadedFunctionDecl
78          for (++F; F != FEnd; ++F) {
79            if (isa<FunctionTemplateDecl>(*F))
80              break;
81          }
82
83          if (F != FEnd) {
84            // Build an overloaded function decl containing only the
85            // function templates in Ovl.
86            OverloadedFunctionDecl *OvlTemplate
87              = OverloadedFunctionDecl::Create(Context,
88                                               Ovl->getDeclContext(),
89                                               Ovl->getDeclName());
90            OvlTemplate->addOverload(FuncTmpl);
91            OvlTemplate->addOverload(*F);
92            for (++F; F != FEnd; ++F) {
93              if (isa<FunctionTemplateDecl>(*F))
94                OvlTemplate->addOverload(*F);
95            }
96
97            // Form the resulting TemplateName
98            if (SS && SS->isSet() && !SS->isInvalid()) {
99              NestedNameSpecifier *Qualifier
100                = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
101              TemplateResult
102                = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
103                                                                    false,
104                                                                  OvlTemplate));
105            } else {
106              TemplateResult = TemplateTy::make(TemplateName(OvlTemplate));
107            }
108            return TNK_Function_template;
109          }
110
111          TNK = TNK_Function_template;
112          Template = FuncTmpl;
113          break;
114        }
115      }
116    }
117
118    if (TNK != TNK_Non_template) {
119      if (SS && SS->isSet() && !SS->isInvalid()) {
120        NestedNameSpecifier *Qualifier
121          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
122        TemplateResult
123          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
124                                                              false,
125                                                              Template));
126      } else
127        TemplateResult = TemplateTy::make(TemplateName(Template));
128    }
129  }
130  return TNK;
131}
132
133/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
134/// that the template parameter 'PrevDecl' is being shadowed by a new
135/// declaration at location Loc. Returns true to indicate that this is
136/// an error, and false otherwise.
137bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
138  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
139
140  // Microsoft Visual C++ permits template parameters to be shadowed.
141  if (getLangOptions().Microsoft)
142    return false;
143
144  // C++ [temp.local]p4:
145  //   A template-parameter shall not be redeclared within its
146  //   scope (including nested scopes).
147  Diag(Loc, diag::err_template_param_shadow)
148    << cast<NamedDecl>(PrevDecl)->getDeclName();
149  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
150  return true;
151}
152
153/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
154/// the parameter D to reference the templated declaration and return a pointer
155/// to the template declaration. Otherwise, do nothing to D and return null.
156TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
157  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
158    D = DeclPtrTy::make(Temp->getTemplatedDecl());
159    return Temp;
160  }
161  return 0;
162}
163
164/// ActOnTypeParameter - Called when a C++ template type parameter
165/// (e.g., "typename T") has been parsed. Typename specifies whether
166/// the keyword "typename" was used to declare the type parameter
167/// (otherwise, "class" was used), and KeyLoc is the location of the
168/// "class" or "typename" keyword. ParamName is the name of the
169/// parameter (NULL indicates an unnamed template parameter) and
170/// ParamName is the location of the parameter name (if any).
171/// If the type parameter has a default argument, it will be added
172/// later via ActOnTypeParameterDefault.
173Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
174                                         SourceLocation EllipsisLoc,
175                                         SourceLocation KeyLoc,
176                                         IdentifierInfo *ParamName,
177                                         SourceLocation ParamNameLoc,
178                                         unsigned Depth, unsigned Position) {
179  assert(S->isTemplateParamScope() &&
180	 "Template type parameter not in template parameter scope!");
181  bool Invalid = false;
182
183  if (ParamName) {
184    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
185    if (PrevDecl && PrevDecl->isTemplateParameter())
186      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
187							   PrevDecl);
188  }
189
190  SourceLocation Loc = ParamNameLoc;
191  if (!ParamName)
192    Loc = KeyLoc;
193
194  TemplateTypeParmDecl *Param
195    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
196                                   Depth, Position, ParamName, Typename,
197                                   Ellipsis);
198  if (Invalid)
199    Param->setInvalidDecl();
200
201  if (ParamName) {
202    // Add the template parameter into the current scope.
203    S->AddDecl(DeclPtrTy::make(Param));
204    IdResolver.AddDecl(Param);
205  }
206
207  return DeclPtrTy::make(Param);
208}
209
210/// ActOnTypeParameterDefault - Adds a default argument (the type
211/// Default) to the given template type parameter (TypeParam).
212void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
213                                     SourceLocation EqualLoc,
214                                     SourceLocation DefaultLoc,
215                                     TypeTy *DefaultT) {
216  TemplateTypeParmDecl *Parm
217    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
218  QualType Default = QualType::getFromOpaquePtr(DefaultT);
219
220  // C++0x [temp.param]p9:
221  // A default template-argument may be specified for any kind of
222  // template-parameter that is not a template parameter pack.
223  if (Parm->isParameterPack()) {
224    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
225    return;
226  }
227
228  // C++ [temp.param]p14:
229  //   A template-parameter shall not be used in its own default argument.
230  // FIXME: Implement this check! Needs a recursive walk over the types.
231
232  // Check the template argument itself.
233  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
234    Parm->setInvalidDecl();
235    return;
236  }
237
238  Parm->setDefaultArgument(Default, DefaultLoc, false);
239}
240
241/// \brief Check that the type of a non-type template parameter is
242/// well-formed.
243///
244/// \returns the (possibly-promoted) parameter type if valid;
245/// otherwise, produces a diagnostic and returns a NULL type.
246QualType
247Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
248  // C++ [temp.param]p4:
249  //
250  // A non-type template-parameter shall have one of the following
251  // (optionally cv-qualified) types:
252  //
253  //       -- integral or enumeration type,
254  if (T->isIntegralType() || T->isEnumeralType() ||
255      //   -- pointer to object or pointer to function,
256      (T->isPointerType() &&
257       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
258        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
259      //   -- reference to object or reference to function,
260      T->isReferenceType() ||
261      //   -- pointer to member.
262      T->isMemberPointerType() ||
263      // If T is a dependent type, we can't do the check now, so we
264      // assume that it is well-formed.
265      T->isDependentType())
266    return T;
267  // C++ [temp.param]p8:
268  //
269  //   A non-type template-parameter of type "array of T" or
270  //   "function returning T" is adjusted to be of type "pointer to
271  //   T" or "pointer to function returning T", respectively.
272  else if (T->isArrayType())
273    // FIXME: Keep the type prior to promotion?
274    return Context.getArrayDecayedType(T);
275  else if (T->isFunctionType())
276    // FIXME: Keep the type prior to promotion?
277    return Context.getPointerType(T);
278
279  Diag(Loc, diag::err_template_nontype_parm_bad_type)
280    << T;
281
282  return QualType();
283}
284
285/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
286/// template parameter (e.g., "int Size" in "template<int Size>
287/// class Array") has been parsed. S is the current scope and D is
288/// the parsed declarator.
289Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
290                                                    unsigned Depth,
291                                                    unsigned Position) {
292  QualType T = GetTypeForDeclarator(D, S);
293
294  assert(S->isTemplateParamScope() &&
295         "Non-type template parameter not in template parameter scope!");
296  bool Invalid = false;
297
298  IdentifierInfo *ParamName = D.getIdentifier();
299  if (ParamName) {
300    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
301    if (PrevDecl && PrevDecl->isTemplateParameter())
302      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
303                                                           PrevDecl);
304  }
305
306  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
307  if (T.isNull()) {
308    T = Context.IntTy; // Recover with an 'int' type.
309    Invalid = true;
310  }
311
312  NonTypeTemplateParmDecl *Param
313    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
314                                      Depth, Position, ParamName, T);
315  if (Invalid)
316    Param->setInvalidDecl();
317
318  if (D.getIdentifier()) {
319    // Add the template parameter into the current scope.
320    S->AddDecl(DeclPtrTy::make(Param));
321    IdResolver.AddDecl(Param);
322  }
323  return DeclPtrTy::make(Param);
324}
325
326/// \brief Adds a default argument to the given non-type template
327/// parameter.
328void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
329                                                SourceLocation EqualLoc,
330                                                ExprArg DefaultE) {
331  NonTypeTemplateParmDecl *TemplateParm
332    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
333  Expr *Default = static_cast<Expr *>(DefaultE.get());
334
335  // C++ [temp.param]p14:
336  //   A template-parameter shall not be used in its own default argument.
337  // FIXME: Implement this check! Needs a recursive walk over the types.
338
339  // Check the well-formedness of the default template argument.
340  TemplateArgument Converted;
341  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
342                            Converted)) {
343    TemplateParm->setInvalidDecl();
344    return;
345  }
346
347  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
348}
349
350
351/// ActOnTemplateTemplateParameter - Called when a C++ template template
352/// parameter (e.g. T in template <template <typename> class T> class array)
353/// has been parsed. S is the current scope.
354Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
355                                                     SourceLocation TmpLoc,
356                                                     TemplateParamsTy *Params,
357                                                     IdentifierInfo *Name,
358                                                     SourceLocation NameLoc,
359                                                     unsigned Depth,
360                                                     unsigned Position)
361{
362  assert(S->isTemplateParamScope() &&
363         "Template template parameter not in template parameter scope!");
364
365  // Construct the parameter object.
366  TemplateTemplateParmDecl *Param =
367    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
368                                     Position, Name,
369                                     (TemplateParameterList*)Params);
370
371  // Make sure the parameter is valid.
372  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
373  // do anything yet. However, if the template parameter list or (eventual)
374  // default value is ever invalidated, that will propagate here.
375  bool Invalid = false;
376  if (Invalid) {
377    Param->setInvalidDecl();
378  }
379
380  // If the tt-param has a name, then link the identifier into the scope
381  // and lookup mechanisms.
382  if (Name) {
383    S->AddDecl(DeclPtrTy::make(Param));
384    IdResolver.AddDecl(Param);
385  }
386
387  return DeclPtrTy::make(Param);
388}
389
390/// \brief Adds a default argument to the given template template
391/// parameter.
392void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
393                                                 SourceLocation EqualLoc,
394                                                 ExprArg DefaultE) {
395  TemplateTemplateParmDecl *TemplateParm
396    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
397
398  // Since a template-template parameter's default argument is an
399  // id-expression, it must be a DeclRefExpr.
400  DeclRefExpr *Default
401    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
402
403  // C++ [temp.param]p14:
404  //   A template-parameter shall not be used in its own default argument.
405  // FIXME: Implement this check! Needs a recursive walk over the types.
406
407  // Check the well-formedness of the template argument.
408  if (!isa<TemplateDecl>(Default->getDecl())) {
409    Diag(Default->getSourceRange().getBegin(),
410         diag::err_template_arg_must_be_template)
411      << Default->getSourceRange();
412    TemplateParm->setInvalidDecl();
413    return;
414  }
415  if (CheckTemplateArgument(TemplateParm, Default)) {
416    TemplateParm->setInvalidDecl();
417    return;
418  }
419
420  DefaultE.release();
421  TemplateParm->setDefaultArgument(Default);
422}
423
424/// ActOnTemplateParameterList - Builds a TemplateParameterList that
425/// contains the template parameters in Params/NumParams.
426Sema::TemplateParamsTy *
427Sema::ActOnTemplateParameterList(unsigned Depth,
428                                 SourceLocation ExportLoc,
429                                 SourceLocation TemplateLoc,
430                                 SourceLocation LAngleLoc,
431                                 DeclPtrTy *Params, unsigned NumParams,
432                                 SourceLocation RAngleLoc) {
433  if (ExportLoc.isValid())
434    Diag(ExportLoc, diag::note_template_export_unsupported);
435
436  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
437                                       (Decl**)Params, NumParams, RAngleLoc);
438}
439
440Sema::DeclResult
441Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
442                         SourceLocation KWLoc, const CXXScopeSpec &SS,
443                         IdentifierInfo *Name, SourceLocation NameLoc,
444                         AttributeList *Attr,
445                         MultiTemplateParamsArg TemplateParameterLists,
446                         AccessSpecifier AS) {
447  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
448  assert(TUK != TUK_Reference && "Can only declare or define class templates");
449  bool Invalid = false;
450
451  // Check that we can declare a template here.
452  if (CheckTemplateDeclScope(S, TemplateParameterLists))
453    return true;
454
455  TagDecl::TagKind Kind;
456  switch (TagSpec) {
457  default: assert(0 && "Unknown tag type!");
458  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
459  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
460  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
461  }
462
463  // There is no such thing as an unnamed class template.
464  if (!Name) {
465    Diag(KWLoc, diag::err_template_unnamed_class);
466    return true;
467  }
468
469  // Find any previous declaration with this name.
470  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
471                                           true);
472  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
473  NamedDecl *PrevDecl = 0;
474  if (Previous.begin() != Previous.end())
475    PrevDecl = *Previous.begin();
476
477  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
478    PrevDecl = 0;
479
480  DeclContext *SemanticContext = CurContext;
481  if (SS.isNotEmpty() && !SS.isInvalid()) {
482    SemanticContext = computeDeclContext(SS);
483
484    // FIXME: need to match up several levels of template parameter lists here.
485  }
486
487  // FIXME: member templates!
488  TemplateParameterList *TemplateParams
489    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
490
491  // If there is a previous declaration with the same name, check
492  // whether this is a valid redeclaration.
493  ClassTemplateDecl *PrevClassTemplate
494    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
495  if (PrevClassTemplate) {
496    // Ensure that the template parameter lists are compatible.
497    if (!TemplateParameterListsAreEqual(TemplateParams,
498                                   PrevClassTemplate->getTemplateParameters(),
499                                        /*Complain=*/true))
500      return true;
501
502    // C++ [temp.class]p4:
503    //   In a redeclaration, partial specialization, explicit
504    //   specialization or explicit instantiation of a class template,
505    //   the class-key shall agree in kind with the original class
506    //   template declaration (7.1.5.3).
507    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
508    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
509      Diag(KWLoc, diag::err_use_with_wrong_tag)
510        << Name
511        << CodeModificationHint::CreateReplacement(KWLoc,
512                            PrevRecordDecl->getKindName());
513      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
514      Kind = PrevRecordDecl->getTagKind();
515    }
516
517    // Check for redefinition of this class template.
518    if (TUK == TUK_Definition) {
519      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
520        Diag(NameLoc, diag::err_redefinition) << Name;
521        Diag(Def->getLocation(), diag::note_previous_definition);
522        // FIXME: Would it make sense to try to "forget" the previous
523        // definition, as part of error recovery?
524        return true;
525      }
526    }
527  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
528    // Maybe we will complain about the shadowed template parameter.
529    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
530    // Just pretend that we didn't see the previous declaration.
531    PrevDecl = 0;
532  } else if (PrevDecl) {
533    // C++ [temp]p5:
534    //   A class template shall not have the same name as any other
535    //   template, class, function, object, enumeration, enumerator,
536    //   namespace, or type in the same scope (3.3), except as specified
537    //   in (14.5.4).
538    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
539    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
540    return true;
541  }
542
543  // Check the template parameter list of this declaration, possibly
544  // merging in the template parameter list from the previous class
545  // template declaration.
546  if (CheckTemplateParameterList(TemplateParams,
547            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
548    Invalid = true;
549
550  // FIXME: If we had a scope specifier, we better have a previous template
551  // declaration!
552
553  CXXRecordDecl *NewClass =
554    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
555                          PrevClassTemplate?
556                            PrevClassTemplate->getTemplatedDecl() : 0,
557                          /*DelayTypeCreation=*/true);
558
559  ClassTemplateDecl *NewTemplate
560    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
561                                DeclarationName(Name), TemplateParams,
562                                NewClass, PrevClassTemplate);
563  NewClass->setDescribedClassTemplate(NewTemplate);
564
565  // Build the type for the class template declaration now.
566  QualType T =
567    Context.getTypeDeclType(NewClass,
568                            PrevClassTemplate?
569                              PrevClassTemplate->getTemplatedDecl() : 0);
570  assert(T->isDependentType() && "Class template type is not dependent?");
571  (void)T;
572
573  // Set the access specifier.
574  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
575
576  // Set the lexical context of these templates
577  NewClass->setLexicalDeclContext(CurContext);
578  NewTemplate->setLexicalDeclContext(CurContext);
579
580  if (TUK == TUK_Definition)
581    NewClass->startDefinition();
582
583  if (Attr)
584    ProcessDeclAttributeList(S, NewClass, Attr);
585
586  PushOnScopeChains(NewTemplate, S);
587
588  if (Invalid) {
589    NewTemplate->setInvalidDecl();
590    NewClass->setInvalidDecl();
591  }
592  return DeclPtrTy::make(NewTemplate);
593}
594
595/// \brief Checks the validity of a template parameter list, possibly
596/// considering the template parameter list from a previous
597/// declaration.
598///
599/// If an "old" template parameter list is provided, it must be
600/// equivalent (per TemplateParameterListsAreEqual) to the "new"
601/// template parameter list.
602///
603/// \param NewParams Template parameter list for a new template
604/// declaration. This template parameter list will be updated with any
605/// default arguments that are carried through from the previous
606/// template parameter list.
607///
608/// \param OldParams If provided, template parameter list from a
609/// previous declaration of the same template. Default template
610/// arguments will be merged from the old template parameter list to
611/// the new template parameter list.
612///
613/// \returns true if an error occurred, false otherwise.
614bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
615                                      TemplateParameterList *OldParams) {
616  bool Invalid = false;
617
618  // C++ [temp.param]p10:
619  //   The set of default template-arguments available for use with a
620  //   template declaration or definition is obtained by merging the
621  //   default arguments from the definition (if in scope) and all
622  //   declarations in scope in the same way default function
623  //   arguments are (8.3.6).
624  bool SawDefaultArgument = false;
625  SourceLocation PreviousDefaultArgLoc;
626
627  bool SawParameterPack = false;
628  SourceLocation ParameterPackLoc;
629
630  // Dummy initialization to avoid warnings.
631  TemplateParameterList::iterator OldParam = NewParams->end();
632  if (OldParams)
633    OldParam = OldParams->begin();
634
635  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
636                                    NewParamEnd = NewParams->end();
637       NewParam != NewParamEnd; ++NewParam) {
638    // Variables used to diagnose redundant default arguments
639    bool RedundantDefaultArg = false;
640    SourceLocation OldDefaultLoc;
641    SourceLocation NewDefaultLoc;
642
643    // Variables used to diagnose missing default arguments
644    bool MissingDefaultArg = false;
645
646    // C++0x [temp.param]p11:
647    // If a template parameter of a class template is a template parameter pack,
648    // it must be the last template parameter.
649    if (SawParameterPack) {
650      Diag(ParameterPackLoc,
651           diag::err_template_param_pack_must_be_last_template_parameter);
652      Invalid = true;
653    }
654
655    // Merge default arguments for template type parameters.
656    if (TemplateTypeParmDecl *NewTypeParm
657          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
658      TemplateTypeParmDecl *OldTypeParm
659          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
660
661      if (NewTypeParm->isParameterPack()) {
662        assert(!NewTypeParm->hasDefaultArgument() &&
663               "Parameter packs can't have a default argument!");
664        SawParameterPack = true;
665        ParameterPackLoc = NewTypeParm->getLocation();
666      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
667          NewTypeParm->hasDefaultArgument()) {
668        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
669        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
670        SawDefaultArgument = true;
671        RedundantDefaultArg = true;
672        PreviousDefaultArgLoc = NewDefaultLoc;
673      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
674        // Merge the default argument from the old declaration to the
675        // new declaration.
676        SawDefaultArgument = true;
677        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
678                                        OldTypeParm->getDefaultArgumentLoc(),
679                                        true);
680        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
681      } else if (NewTypeParm->hasDefaultArgument()) {
682        SawDefaultArgument = true;
683        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
684      } else if (SawDefaultArgument)
685        MissingDefaultArg = true;
686    }
687    // Merge default arguments for non-type template parameters
688    else if (NonTypeTemplateParmDecl *NewNonTypeParm
689               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
690      NonTypeTemplateParmDecl *OldNonTypeParm
691        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
692      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
693          NewNonTypeParm->hasDefaultArgument()) {
694        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
695        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
696        SawDefaultArgument = true;
697        RedundantDefaultArg = true;
698        PreviousDefaultArgLoc = NewDefaultLoc;
699      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
700        // Merge the default argument from the old declaration to the
701        // new declaration.
702        SawDefaultArgument = true;
703        // FIXME: We need to create a new kind of "default argument"
704        // expression that points to a previous template template
705        // parameter.
706        NewNonTypeParm->setDefaultArgument(
707                                        OldNonTypeParm->getDefaultArgument());
708        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
709      } else if (NewNonTypeParm->hasDefaultArgument()) {
710        SawDefaultArgument = true;
711        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
712      } else if (SawDefaultArgument)
713        MissingDefaultArg = true;
714    }
715    // Merge default arguments for template template parameters
716    else {
717      TemplateTemplateParmDecl *NewTemplateParm
718        = cast<TemplateTemplateParmDecl>(*NewParam);
719      TemplateTemplateParmDecl *OldTemplateParm
720        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
721      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
722          NewTemplateParm->hasDefaultArgument()) {
723        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
724        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
725        SawDefaultArgument = true;
726        RedundantDefaultArg = true;
727        PreviousDefaultArgLoc = NewDefaultLoc;
728      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
729        // Merge the default argument from the old declaration to the
730        // new declaration.
731        SawDefaultArgument = true;
732        // FIXME: We need to create a new kind of "default argument" expression
733        // that points to a previous template template parameter.
734        NewTemplateParm->setDefaultArgument(
735                                        OldTemplateParm->getDefaultArgument());
736        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
737      } else if (NewTemplateParm->hasDefaultArgument()) {
738        SawDefaultArgument = true;
739        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
740      } else if (SawDefaultArgument)
741        MissingDefaultArg = true;
742    }
743
744    if (RedundantDefaultArg) {
745      // C++ [temp.param]p12:
746      //   A template-parameter shall not be given default arguments
747      //   by two different declarations in the same scope.
748      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
749      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
750      Invalid = true;
751    } else if (MissingDefaultArg) {
752      // C++ [temp.param]p11:
753      //   If a template-parameter has a default template-argument,
754      //   all subsequent template-parameters shall have a default
755      //   template-argument supplied.
756      Diag((*NewParam)->getLocation(),
757           diag::err_template_param_default_arg_missing);
758      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
759      Invalid = true;
760    }
761
762    // If we have an old template parameter list that we're merging
763    // in, move on to the next parameter.
764    if (OldParams)
765      ++OldParam;
766  }
767
768  return Invalid;
769}
770
771/// \brief Match the given template parameter lists to the given scope
772/// specifier, returning the template parameter list that applies to the
773/// name.
774///
775/// \param DeclStartLoc the start of the declaration that has a scope
776/// specifier or a template parameter list.
777///
778/// \param SS the scope specifier that will be matched to the given template
779/// parameter lists. This scope specifier precedes a qualified name that is
780/// being declared.
781///
782/// \param ParamLists the template parameter lists, from the outermost to the
783/// innermost template parameter lists.
784///
785/// \param NumParamLists the number of template parameter lists in ParamLists.
786///
787/// \returns the template parameter list, if any, that corresponds to the
788/// name that is preceded by the scope specifier @p SS. This template
789/// parameter list may be have template parameters (if we're declaring a
790/// template) or may have no template parameters (if we're declaring a
791/// template specialization), or may be NULL (if we were's declaring isn't
792/// itself a template).
793TemplateParameterList *
794Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
795                                              const CXXScopeSpec &SS,
796                                          TemplateParameterList **ParamLists,
797                                              unsigned NumParamLists) {
798  // FIXME: This routine will need a lot more testing once we have support for
799  // member templates.
800
801  // Find the template-ids that occur within the nested-name-specifier. These
802  // template-ids will match up with the template parameter lists.
803  llvm::SmallVector<const TemplateSpecializationType *, 4>
804    TemplateIdsInSpecifier;
805  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
806       NNS; NNS = NNS->getPrefix()) {
807    if (const TemplateSpecializationType *SpecType
808          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
809      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
810      if (!Template)
811        continue; // FIXME: should this be an error? probably...
812
813      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
814        ClassTemplateSpecializationDecl *SpecDecl
815          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
816        // If the nested name specifier refers to an explicit specialization,
817        // we don't need a template<> header.
818        // FIXME: revisit this approach once we cope with specialization
819        // properly.
820        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
821          continue;
822      }
823
824      TemplateIdsInSpecifier.push_back(SpecType);
825    }
826  }
827
828  // Reverse the list of template-ids in the scope specifier, so that we can
829  // more easily match up the template-ids and the template parameter lists.
830  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
831
832  SourceLocation FirstTemplateLoc = DeclStartLoc;
833  if (NumParamLists)
834    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
835
836  // Match the template-ids found in the specifier to the template parameter
837  // lists.
838  unsigned Idx = 0;
839  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
840       Idx != NumTemplateIds; ++Idx) {
841    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
842    bool DependentTemplateId = TemplateId->isDependentType();
843    if (Idx >= NumParamLists) {
844      // We have a template-id without a corresponding template parameter
845      // list.
846      if (DependentTemplateId) {
847        // FIXME: the location information here isn't great.
848        Diag(SS.getRange().getBegin(),
849             diag::err_template_spec_needs_template_parameters)
850          << TemplateId
851          << SS.getRange();
852      } else {
853        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
854          << SS.getRange()
855          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
856                                                   "template<> ");
857      }
858      return 0;
859    }
860
861    // Check the template parameter list against its corresponding template-id.
862    if (DependentTemplateId) {
863      TemplateDecl *Template
864        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
865
866      if (ClassTemplateDecl *ClassTemplate
867            = dyn_cast<ClassTemplateDecl>(Template)) {
868        TemplateParameterList *ExpectedTemplateParams = 0;
869        // Is this template-id naming the primary template?
870        if (Context.hasSameType(TemplateId,
871                             ClassTemplate->getInjectedClassNameType(Context)))
872          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
873        // ... or a partial specialization?
874        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
875                   = ClassTemplate->findPartialSpecialization(TemplateId))
876          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
877
878        if (ExpectedTemplateParams)
879          TemplateParameterListsAreEqual(ParamLists[Idx],
880                                         ExpectedTemplateParams,
881                                         true);
882      }
883    } else if (ParamLists[Idx]->size() > 0)
884      Diag(ParamLists[Idx]->getTemplateLoc(),
885           diag::err_template_param_list_matches_nontemplate)
886        << TemplateId
887        << ParamLists[Idx]->getSourceRange();
888  }
889
890  // If there were at least as many template-ids as there were template
891  // parameter lists, then there are no template parameter lists remaining for
892  // the declaration itself.
893  if (Idx >= NumParamLists)
894    return 0;
895
896  // If there were too many template parameter lists, complain about that now.
897  if (Idx != NumParamLists - 1) {
898    while (Idx < NumParamLists - 1) {
899      Diag(ParamLists[Idx]->getTemplateLoc(),
900           diag::err_template_spec_extra_headers)
901        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
902                       ParamLists[Idx]->getRAngleLoc());
903      ++Idx;
904    }
905  }
906
907  // Return the last template parameter list, which corresponds to the
908  // entity being declared.
909  return ParamLists[NumParamLists - 1];
910}
911
912/// \brief Translates template arguments as provided by the parser
913/// into template arguments used by semantic analysis.
914static void
915translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
916                           SourceLocation *TemplateArgLocs,
917                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
918  TemplateArgs.reserve(TemplateArgsIn.size());
919
920  void **Args = TemplateArgsIn.getArgs();
921  bool *ArgIsType = TemplateArgsIn.getArgIsType();
922  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
923    TemplateArgs.push_back(
924      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
925                                       QualType::getFromOpaquePtr(Args[Arg]))
926                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
927  }
928}
929
930QualType Sema::CheckTemplateIdType(TemplateName Name,
931                                   SourceLocation TemplateLoc,
932                                   SourceLocation LAngleLoc,
933                                   const TemplateArgument *TemplateArgs,
934                                   unsigned NumTemplateArgs,
935                                   SourceLocation RAngleLoc) {
936  TemplateDecl *Template = Name.getAsTemplateDecl();
937  if (!Template) {
938    // The template name does not resolve to a template, so we just
939    // build a dependent template-id type.
940    return Context.getTemplateSpecializationType(Name, TemplateArgs,
941                                                 NumTemplateArgs);
942  }
943
944  // Check that the template argument list is well-formed for this
945  // template.
946  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
947                                        NumTemplateArgs);
948  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
949                                TemplateArgs, NumTemplateArgs, RAngleLoc,
950                                false, Converted))
951    return QualType();
952
953  assert((Converted.structuredSize() ==
954            Template->getTemplateParameters()->size()) &&
955         "Converted template argument list is too short!");
956
957  QualType CanonType;
958
959  if (TemplateSpecializationType::anyDependentTemplateArguments(
960                                                      TemplateArgs,
961                                                      NumTemplateArgs)) {
962    // This class template specialization is a dependent
963    // type. Therefore, its canonical type is another class template
964    // specialization type that contains all of the converted
965    // arguments in canonical form. This ensures that, e.g., A<T> and
966    // A<T, T> have identical types when A is declared as:
967    //
968    //   template<typename T, typename U = T> struct A;
969    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
970    CanonType = Context.getTemplateSpecializationType(CanonName,
971                                                   Converted.getFlatArguments(),
972                                                   Converted.flatSize());
973
974    // FIXME: CanonType is not actually the canonical type, and unfortunately
975    // it is a TemplateTypeSpecializationType that we will never use again.
976    // In the future, we need to teach getTemplateSpecializationType to only
977    // build the canonical type and return that to us.
978    CanonType = Context.getCanonicalType(CanonType);
979  } else if (ClassTemplateDecl *ClassTemplate
980               = dyn_cast<ClassTemplateDecl>(Template)) {
981    // Find the class template specialization declaration that
982    // corresponds to these arguments.
983    llvm::FoldingSetNodeID ID;
984    ClassTemplateSpecializationDecl::Profile(ID,
985                                             Converted.getFlatArguments(),
986                                             Converted.flatSize(),
987                                             Context);
988    void *InsertPos = 0;
989    ClassTemplateSpecializationDecl *Decl
990      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
991    if (!Decl) {
992      // This is the first time we have referenced this class template
993      // specialization. Create the canonical declaration and add it to
994      // the set of specializations.
995      Decl = ClassTemplateSpecializationDecl::Create(Context,
996                                    ClassTemplate->getDeclContext(),
997                                    TemplateLoc,
998                                    ClassTemplate,
999                                    Converted, 0);
1000      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1001      Decl->setLexicalDeclContext(CurContext);
1002    }
1003
1004    CanonType = Context.getTypeDeclType(Decl);
1005  }
1006
1007  // Build the fully-sugared type for this class template
1008  // specialization, which refers back to the class template
1009  // specialization we created or found.
1010  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1011                                               NumTemplateArgs, CanonType);
1012}
1013
1014Action::TypeResult
1015Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1016                          SourceLocation LAngleLoc,
1017                          ASTTemplateArgsPtr TemplateArgsIn,
1018                          SourceLocation *TemplateArgLocs,
1019                          SourceLocation RAngleLoc) {
1020  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1021
1022  // Translate the parser's template argument list in our AST format.
1023  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1024  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1025
1026  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1027                                        TemplateArgs.data(),
1028                                        TemplateArgs.size(),
1029                                        RAngleLoc);
1030  TemplateArgsIn.release();
1031
1032  if (Result.isNull())
1033    return true;
1034
1035  return Result.getAsOpaquePtr();
1036}
1037
1038Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1039                                                 SourceLocation TemplateNameLoc,
1040                                                 SourceLocation LAngleLoc,
1041                                           const TemplateArgument *TemplateArgs,
1042                                                 unsigned NumTemplateArgs,
1043                                                 SourceLocation RAngleLoc) {
1044  // FIXME: Can we do any checking at this point? I guess we could check the
1045  // template arguments that we have against the template name, if the template
1046  // name refers to a single template. That's not a terribly common case,
1047  // though.
1048  return Owned(TemplateIdRefExpr::Create(Context,
1049                                         /*FIXME: New type?*/Context.OverloadTy,
1050                                         /*FIXME: Necessary?*/0,
1051                                         /*FIXME: Necessary?*/SourceRange(),
1052                                         Template, TemplateNameLoc, LAngleLoc,
1053                                         TemplateArgs,
1054                                         NumTemplateArgs, RAngleLoc));
1055}
1056
1057Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1058                                                 SourceLocation TemplateNameLoc,
1059                                                 SourceLocation LAngleLoc,
1060                                              ASTTemplateArgsPtr TemplateArgsIn,
1061                                                SourceLocation *TemplateArgLocs,
1062                                                 SourceLocation RAngleLoc) {
1063  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1064
1065  // Translate the parser's template argument list in our AST format.
1066  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1067  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1068  TemplateArgsIn.release();
1069
1070  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1071                             TemplateArgs.data(), TemplateArgs.size(),
1072                             RAngleLoc);
1073}
1074
1075/// \brief Form a dependent template name.
1076///
1077/// This action forms a dependent template name given the template
1078/// name and its (presumably dependent) scope specifier. For
1079/// example, given "MetaFun::template apply", the scope specifier \p
1080/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1081/// of the "template" keyword, and "apply" is the \p Name.
1082Sema::TemplateTy
1083Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1084                                 const IdentifierInfo &Name,
1085                                 SourceLocation NameLoc,
1086                                 const CXXScopeSpec &SS) {
1087  if (!SS.isSet() || SS.isInvalid())
1088    return TemplateTy();
1089
1090  NestedNameSpecifier *Qualifier
1091    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1092
1093  // FIXME: member of the current instantiation
1094
1095  if (!Qualifier->isDependent()) {
1096    // C++0x [temp.names]p5:
1097    //   If a name prefixed by the keyword template is not the name of
1098    //   a template, the program is ill-formed. [Note: the keyword
1099    //   template may not be applied to non-template members of class
1100    //   templates. -end note ] [ Note: as is the case with the
1101    //   typename prefix, the template prefix is allowed in cases
1102    //   where it is not strictly necessary; i.e., when the
1103    //   nested-name-specifier or the expression on the left of the ->
1104    //   or . is not dependent on a template-parameter, or the use
1105    //   does not appear in the scope of a template. -end note]
1106    //
1107    // Note: C++03 was more strict here, because it banned the use of
1108    // the "template" keyword prior to a template-name that was not a
1109    // dependent name. C++ DR468 relaxed this requirement (the
1110    // "template" keyword is now permitted). We follow the C++0x
1111    // rules, even in C++03 mode, retroactively applying the DR.
1112    TemplateTy Template;
1113    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
1114    if (TNK == TNK_Non_template) {
1115      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1116        << &Name;
1117      return TemplateTy();
1118    }
1119
1120    return Template;
1121  }
1122
1123  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1124}
1125
1126bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1127                                     const TemplateArgument &Arg,
1128                                     TemplateArgumentListBuilder &Converted) {
1129  // Check template type parameter.
1130  if (Arg.getKind() != TemplateArgument::Type) {
1131    // C++ [temp.arg.type]p1:
1132    //   A template-argument for a template-parameter which is a
1133    //   type shall be a type-id.
1134
1135    // We have a template type parameter but the template argument
1136    // is not a type.
1137    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1138    Diag(Param->getLocation(), diag::note_template_param_here);
1139
1140    return true;
1141  }
1142
1143  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1144    return true;
1145
1146  // Add the converted template type argument.
1147  Converted.Append(
1148                 TemplateArgument(Arg.getLocation(),
1149                                  Context.getCanonicalType(Arg.getAsType())));
1150  return false;
1151}
1152
1153/// \brief Check that the given template argument list is well-formed
1154/// for specializing the given template.
1155bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1156                                     SourceLocation TemplateLoc,
1157                                     SourceLocation LAngleLoc,
1158                                     const TemplateArgument *TemplateArgs,
1159                                     unsigned NumTemplateArgs,
1160                                     SourceLocation RAngleLoc,
1161                                     bool PartialTemplateArgs,
1162                                     TemplateArgumentListBuilder &Converted) {
1163  TemplateParameterList *Params = Template->getTemplateParameters();
1164  unsigned NumParams = Params->size();
1165  unsigned NumArgs = NumTemplateArgs;
1166  bool Invalid = false;
1167
1168  bool HasParameterPack =
1169    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1170
1171  if ((NumArgs > NumParams && !HasParameterPack) ||
1172      (NumArgs < Params->getMinRequiredArguments() &&
1173       !PartialTemplateArgs)) {
1174    // FIXME: point at either the first arg beyond what we can handle,
1175    // or the '>', depending on whether we have too many or too few
1176    // arguments.
1177    SourceRange Range;
1178    if (NumArgs > NumParams)
1179      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1180    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1181      << (NumArgs > NumParams)
1182      << (isa<ClassTemplateDecl>(Template)? 0 :
1183          isa<FunctionTemplateDecl>(Template)? 1 :
1184          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1185      << Template << Range;
1186    Diag(Template->getLocation(), diag::note_template_decl_here)
1187      << Params->getSourceRange();
1188    Invalid = true;
1189  }
1190
1191  // C++ [temp.arg]p1:
1192  //   [...] The type and form of each template-argument specified in
1193  //   a template-id shall match the type and form specified for the
1194  //   corresponding parameter declared by the template in its
1195  //   template-parameter-list.
1196  unsigned ArgIdx = 0;
1197  for (TemplateParameterList::iterator Param = Params->begin(),
1198                                       ParamEnd = Params->end();
1199       Param != ParamEnd; ++Param, ++ArgIdx) {
1200    if (ArgIdx > NumArgs && PartialTemplateArgs)
1201      break;
1202
1203    // Decode the template argument
1204    TemplateArgument Arg;
1205    if (ArgIdx >= NumArgs) {
1206      // Retrieve the default template argument from the template
1207      // parameter.
1208      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1209        if (TTP->isParameterPack()) {
1210          // We have an empty argument pack.
1211          Converted.BeginPack();
1212          Converted.EndPack();
1213          break;
1214        }
1215
1216        if (!TTP->hasDefaultArgument())
1217          break;
1218
1219        QualType ArgType = TTP->getDefaultArgument();
1220
1221        // If the argument type is dependent, instantiate it now based
1222        // on the previously-computed template arguments.
1223        if (ArgType->isDependentType()) {
1224          InstantiatingTemplate Inst(*this, TemplateLoc,
1225                                     Template, Converted.getFlatArguments(),
1226                                     Converted.flatSize(),
1227                                     SourceRange(TemplateLoc, RAngleLoc));
1228
1229          TemplateArgumentList TemplateArgs(Context, Converted,
1230                                            /*TakeArgs=*/false);
1231          ArgType = InstantiateType(ArgType, TemplateArgs,
1232                                    TTP->getDefaultArgumentLoc(),
1233                                    TTP->getDeclName());
1234        }
1235
1236        if (ArgType.isNull())
1237          return true;
1238
1239        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1240      } else if (NonTypeTemplateParmDecl *NTTP
1241                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1242        if (!NTTP->hasDefaultArgument())
1243          break;
1244
1245        InstantiatingTemplate Inst(*this, TemplateLoc,
1246                                   Template, Converted.getFlatArguments(),
1247                                   Converted.flatSize(),
1248                                   SourceRange(TemplateLoc, RAngleLoc));
1249
1250        TemplateArgumentList TemplateArgs(Context, Converted,
1251                                          /*TakeArgs=*/false);
1252
1253        Sema::OwningExprResult E = InstantiateExpr(NTTP->getDefaultArgument(),
1254                                                   TemplateArgs);
1255        if (E.isInvalid())
1256          return true;
1257
1258        Arg = TemplateArgument(E.takeAs<Expr>());
1259      } else {
1260        TemplateTemplateParmDecl *TempParm
1261          = cast<TemplateTemplateParmDecl>(*Param);
1262
1263        if (!TempParm->hasDefaultArgument())
1264          break;
1265
1266        // FIXME: Instantiate default argument
1267        Arg = TemplateArgument(TempParm->getDefaultArgument());
1268      }
1269    } else {
1270      // Retrieve the template argument produced by the user.
1271      Arg = TemplateArgs[ArgIdx];
1272    }
1273
1274
1275    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1276      if (TTP->isParameterPack()) {
1277        Converted.BeginPack();
1278        // Check all the remaining arguments (if any).
1279        for (; ArgIdx < NumArgs; ++ArgIdx) {
1280          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1281            Invalid = true;
1282        }
1283
1284        Converted.EndPack();
1285      } else {
1286        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1287          Invalid = true;
1288      }
1289    } else if (NonTypeTemplateParmDecl *NTTP
1290                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1291      // Check non-type template parameters.
1292
1293      // Instantiate the type of the non-type template parameter with
1294      // the template arguments we've seen thus far.
1295      QualType NTTPType = NTTP->getType();
1296      if (NTTPType->isDependentType()) {
1297        // Instantiate the type of the non-type template parameter.
1298        InstantiatingTemplate Inst(*this, TemplateLoc,
1299                                   Template, Converted.getFlatArguments(),
1300                                   Converted.flatSize(),
1301                                   SourceRange(TemplateLoc, RAngleLoc));
1302
1303        TemplateArgumentList TemplateArgs(Context, Converted,
1304                                          /*TakeArgs=*/false);
1305        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1306                                   NTTP->getLocation(),
1307                                   NTTP->getDeclName());
1308        // If that worked, check the non-type template parameter type
1309        // for validity.
1310        if (!NTTPType.isNull())
1311          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1312                                                       NTTP->getLocation());
1313        if (NTTPType.isNull()) {
1314          Invalid = true;
1315          break;
1316        }
1317      }
1318
1319      switch (Arg.getKind()) {
1320      case TemplateArgument::Null:
1321        assert(false && "Should never see a NULL template argument here");
1322        break;
1323
1324      case TemplateArgument::Expression: {
1325        Expr *E = Arg.getAsExpr();
1326        TemplateArgument Result;
1327        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1328          Invalid = true;
1329        else
1330          Converted.Append(Result);
1331        break;
1332      }
1333
1334      case TemplateArgument::Declaration:
1335      case TemplateArgument::Integral:
1336        // We've already checked this template argument, so just copy
1337        // it to the list of converted arguments.
1338        Converted.Append(Arg);
1339        break;
1340
1341      case TemplateArgument::Type:
1342        // We have a non-type template parameter but the template
1343        // argument is a type.
1344
1345        // C++ [temp.arg]p2:
1346        //   In a template-argument, an ambiguity between a type-id and
1347        //   an expression is resolved to a type-id, regardless of the
1348        //   form of the corresponding template-parameter.
1349        //
1350        // We warn specifically about this case, since it can be rather
1351        // confusing for users.
1352        if (Arg.getAsType()->isFunctionType())
1353          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1354            << Arg.getAsType();
1355        else
1356          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1357        Diag((*Param)->getLocation(), diag::note_template_param_here);
1358        Invalid = true;
1359        break;
1360
1361      case TemplateArgument::Pack:
1362        assert(0 && "FIXME: Implement!");
1363        break;
1364      }
1365    } else {
1366      // Check template template parameters.
1367      TemplateTemplateParmDecl *TempParm
1368        = cast<TemplateTemplateParmDecl>(*Param);
1369
1370      switch (Arg.getKind()) {
1371      case TemplateArgument::Null:
1372        assert(false && "Should never see a NULL template argument here");
1373        break;
1374
1375      case TemplateArgument::Expression: {
1376        Expr *ArgExpr = Arg.getAsExpr();
1377        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1378            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1379          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1380            Invalid = true;
1381
1382          // Add the converted template argument.
1383          Decl *D
1384            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1385          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1386          continue;
1387        }
1388      }
1389        // fall through
1390
1391      case TemplateArgument::Type: {
1392        // We have a template template parameter but the template
1393        // argument does not refer to a template.
1394        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1395        Invalid = true;
1396        break;
1397      }
1398
1399      case TemplateArgument::Declaration:
1400        // We've already checked this template argument, so just copy
1401        // it to the list of converted arguments.
1402        Converted.Append(Arg);
1403        break;
1404
1405      case TemplateArgument::Integral:
1406        assert(false && "Integral argument with template template parameter");
1407        break;
1408
1409      case TemplateArgument::Pack:
1410        assert(0 && "FIXME: Implement!");
1411        break;
1412      }
1413    }
1414  }
1415
1416  return Invalid;
1417}
1418
1419/// \brief Check a template argument against its corresponding
1420/// template type parameter.
1421///
1422/// This routine implements the semantics of C++ [temp.arg.type]. It
1423/// returns true if an error occurred, and false otherwise.
1424bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1425                                 QualType Arg, SourceLocation ArgLoc) {
1426  // C++ [temp.arg.type]p2:
1427  //   A local type, a type with no linkage, an unnamed type or a type
1428  //   compounded from any of these types shall not be used as a
1429  //   template-argument for a template type-parameter.
1430  //
1431  // FIXME: Perform the recursive and no-linkage type checks.
1432  const TagType *Tag = 0;
1433  if (const EnumType *EnumT = Arg->getAsEnumType())
1434    Tag = EnumT;
1435  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1436    Tag = RecordT;
1437  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1438    return Diag(ArgLoc, diag::err_template_arg_local_type)
1439      << QualType(Tag, 0);
1440  else if (Tag && !Tag->getDecl()->getDeclName() &&
1441           !Tag->getDecl()->getTypedefForAnonDecl()) {
1442    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1443    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1444    return true;
1445  }
1446
1447  return false;
1448}
1449
1450/// \brief Checks whether the given template argument is the address
1451/// of an object or function according to C++ [temp.arg.nontype]p1.
1452bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1453                                                          NamedDecl *&Entity) {
1454  bool Invalid = false;
1455
1456  // See through any implicit casts we added to fix the type.
1457  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1458    Arg = Cast->getSubExpr();
1459
1460  // C++0x allows nullptr, and there's no further checking to be done for that.
1461  if (Arg->getType()->isNullPtrType())
1462    return false;
1463
1464  // C++ [temp.arg.nontype]p1:
1465  //
1466  //   A template-argument for a non-type, non-template
1467  //   template-parameter shall be one of: [...]
1468  //
1469  //     -- the address of an object or function with external
1470  //        linkage, including function templates and function
1471  //        template-ids but excluding non-static class members,
1472  //        expressed as & id-expression where the & is optional if
1473  //        the name refers to a function or array, or if the
1474  //        corresponding template-parameter is a reference; or
1475  DeclRefExpr *DRE = 0;
1476
1477  // Ignore (and complain about) any excess parentheses.
1478  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1479    if (!Invalid) {
1480      Diag(Arg->getSourceRange().getBegin(),
1481           diag::err_template_arg_extra_parens)
1482        << Arg->getSourceRange();
1483      Invalid = true;
1484    }
1485
1486    Arg = Parens->getSubExpr();
1487  }
1488
1489  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1490    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1491      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1492  } else
1493    DRE = dyn_cast<DeclRefExpr>(Arg);
1494
1495  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1496    return Diag(Arg->getSourceRange().getBegin(),
1497                diag::err_template_arg_not_object_or_func_form)
1498      << Arg->getSourceRange();
1499
1500  // Cannot refer to non-static data members
1501  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1502    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1503      << Field << Arg->getSourceRange();
1504
1505  // Cannot refer to non-static member functions
1506  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1507    if (!Method->isStatic())
1508      return Diag(Arg->getSourceRange().getBegin(),
1509                  diag::err_template_arg_method)
1510        << Method << Arg->getSourceRange();
1511
1512  // Functions must have external linkage.
1513  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1514    if (Func->getStorageClass() == FunctionDecl::Static) {
1515      Diag(Arg->getSourceRange().getBegin(),
1516           diag::err_template_arg_function_not_extern)
1517        << Func << Arg->getSourceRange();
1518      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1519        << true;
1520      return true;
1521    }
1522
1523    // Okay: we've named a function with external linkage.
1524    Entity = Func;
1525    return Invalid;
1526  }
1527
1528  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1529    if (!Var->hasGlobalStorage()) {
1530      Diag(Arg->getSourceRange().getBegin(),
1531           diag::err_template_arg_object_not_extern)
1532        << Var << Arg->getSourceRange();
1533      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1534        << true;
1535      return true;
1536    }
1537
1538    // Okay: we've named an object with external linkage
1539    Entity = Var;
1540    return Invalid;
1541  }
1542
1543  // We found something else, but we don't know specifically what it is.
1544  Diag(Arg->getSourceRange().getBegin(),
1545       diag::err_template_arg_not_object_or_func)
1546      << Arg->getSourceRange();
1547  Diag(DRE->getDecl()->getLocation(),
1548       diag::note_template_arg_refers_here);
1549  return true;
1550}
1551
1552/// \brief Checks whether the given template argument is a pointer to
1553/// member constant according to C++ [temp.arg.nontype]p1.
1554bool
1555Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1556  bool Invalid = false;
1557
1558  // See through any implicit casts we added to fix the type.
1559  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1560    Arg = Cast->getSubExpr();
1561
1562  // C++0x allows nullptr, and there's no further checking to be done for that.
1563  if (Arg->getType()->isNullPtrType())
1564    return false;
1565
1566  // C++ [temp.arg.nontype]p1:
1567  //
1568  //   A template-argument for a non-type, non-template
1569  //   template-parameter shall be one of: [...]
1570  //
1571  //     -- a pointer to member expressed as described in 5.3.1.
1572  QualifiedDeclRefExpr *DRE = 0;
1573
1574  // Ignore (and complain about) any excess parentheses.
1575  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1576    if (!Invalid) {
1577      Diag(Arg->getSourceRange().getBegin(),
1578           diag::err_template_arg_extra_parens)
1579        << Arg->getSourceRange();
1580      Invalid = true;
1581    }
1582
1583    Arg = Parens->getSubExpr();
1584  }
1585
1586  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1587    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1588      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1589
1590  if (!DRE)
1591    return Diag(Arg->getSourceRange().getBegin(),
1592                diag::err_template_arg_not_pointer_to_member_form)
1593      << Arg->getSourceRange();
1594
1595  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1596    assert((isa<FieldDecl>(DRE->getDecl()) ||
1597            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1598           "Only non-static member pointers can make it here");
1599
1600    // Okay: this is the address of a non-static member, and therefore
1601    // a member pointer constant.
1602    Member = DRE->getDecl();
1603    return Invalid;
1604  }
1605
1606  // We found something else, but we don't know specifically what it is.
1607  Diag(Arg->getSourceRange().getBegin(),
1608       diag::err_template_arg_not_pointer_to_member_form)
1609      << Arg->getSourceRange();
1610  Diag(DRE->getDecl()->getLocation(),
1611       diag::note_template_arg_refers_here);
1612  return true;
1613}
1614
1615/// \brief Check a template argument against its corresponding
1616/// non-type template parameter.
1617///
1618/// This routine implements the semantics of C++ [temp.arg.nontype].
1619/// It returns true if an error occurred, and false otherwise. \p
1620/// InstantiatedParamType is the type of the non-type template
1621/// parameter after it has been instantiated.
1622///
1623/// If no error was detected, Converted receives the converted template argument.
1624bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1625                                 QualType InstantiatedParamType, Expr *&Arg,
1626                                 TemplateArgument &Converted) {
1627  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1628
1629  // If either the parameter has a dependent type or the argument is
1630  // type-dependent, there's nothing we can check now.
1631  // FIXME: Add template argument to Converted!
1632  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1633    // FIXME: Produce a cloned, canonical expression?
1634    Converted = TemplateArgument(Arg);
1635    return false;
1636  }
1637
1638  // C++ [temp.arg.nontype]p5:
1639  //   The following conversions are performed on each expression used
1640  //   as a non-type template-argument. If a non-type
1641  //   template-argument cannot be converted to the type of the
1642  //   corresponding template-parameter then the program is
1643  //   ill-formed.
1644  //
1645  //     -- for a non-type template-parameter of integral or
1646  //        enumeration type, integral promotions (4.5) and integral
1647  //        conversions (4.7) are applied.
1648  QualType ParamType = InstantiatedParamType;
1649  QualType ArgType = Arg->getType();
1650  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1651    // C++ [temp.arg.nontype]p1:
1652    //   A template-argument for a non-type, non-template
1653    //   template-parameter shall be one of:
1654    //
1655    //     -- an integral constant-expression of integral or enumeration
1656    //        type; or
1657    //     -- the name of a non-type template-parameter; or
1658    SourceLocation NonConstantLoc;
1659    llvm::APSInt Value;
1660    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1661      Diag(Arg->getSourceRange().getBegin(),
1662           diag::err_template_arg_not_integral_or_enumeral)
1663        << ArgType << Arg->getSourceRange();
1664      Diag(Param->getLocation(), diag::note_template_param_here);
1665      return true;
1666    } else if (!Arg->isValueDependent() &&
1667               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1668      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1669        << ArgType << Arg->getSourceRange();
1670      return true;
1671    }
1672
1673    // FIXME: We need some way to more easily get the unqualified form
1674    // of the types without going all the way to the
1675    // canonical type.
1676    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1677      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1678    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1679      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1680
1681    // Try to convert the argument to the parameter's type.
1682    if (ParamType == ArgType) {
1683      // Okay: no conversion necessary
1684    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1685               !ParamType->isEnumeralType()) {
1686      // This is an integral promotion or conversion.
1687      ImpCastExprToType(Arg, ParamType);
1688    } else {
1689      // We can't perform this conversion.
1690      Diag(Arg->getSourceRange().getBegin(),
1691           diag::err_template_arg_not_convertible)
1692        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1693      Diag(Param->getLocation(), diag::note_template_param_here);
1694      return true;
1695    }
1696
1697    QualType IntegerType = Context.getCanonicalType(ParamType);
1698    if (const EnumType *Enum = IntegerType->getAsEnumType())
1699      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1700
1701    if (!Arg->isValueDependent()) {
1702      // Check that an unsigned parameter does not receive a negative
1703      // value.
1704      if (IntegerType->isUnsignedIntegerType()
1705          && (Value.isSigned() && Value.isNegative())) {
1706        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1707          << Value.toString(10) << Param->getType()
1708          << Arg->getSourceRange();
1709        Diag(Param->getLocation(), diag::note_template_param_here);
1710        return true;
1711      }
1712
1713      // Check that we don't overflow the template parameter type.
1714      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1715      if (Value.getActiveBits() > AllowedBits) {
1716        Diag(Arg->getSourceRange().getBegin(),
1717             diag::err_template_arg_too_large)
1718          << Value.toString(10) << Param->getType()
1719          << Arg->getSourceRange();
1720        Diag(Param->getLocation(), diag::note_template_param_here);
1721        return true;
1722      }
1723
1724      if (Value.getBitWidth() != AllowedBits)
1725        Value.extOrTrunc(AllowedBits);
1726      Value.setIsSigned(IntegerType->isSignedIntegerType());
1727    }
1728
1729    // Add the value of this argument to the list of converted
1730    // arguments. We use the bitwidth and signedness of the template
1731    // parameter.
1732    if (Arg->isValueDependent()) {
1733      // The argument is value-dependent. Create a new
1734      // TemplateArgument with the converted expression.
1735      Converted = TemplateArgument(Arg);
1736      return false;
1737    }
1738
1739    Converted = TemplateArgument(StartLoc, Value,
1740                                 ParamType->isEnumeralType() ? ParamType
1741                                                             : IntegerType);
1742    return false;
1743  }
1744
1745  // Handle pointer-to-function, reference-to-function, and
1746  // pointer-to-member-function all in (roughly) the same way.
1747  if (// -- For a non-type template-parameter of type pointer to
1748      //    function, only the function-to-pointer conversion (4.3) is
1749      //    applied. If the template-argument represents a set of
1750      //    overloaded functions (or a pointer to such), the matching
1751      //    function is selected from the set (13.4).
1752      // In C++0x, any std::nullptr_t value can be converted.
1753      (ParamType->isPointerType() &&
1754       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
1755      // -- For a non-type template-parameter of type reference to
1756      //    function, no conversions apply. If the template-argument
1757      //    represents a set of overloaded functions, the matching
1758      //    function is selected from the set (13.4).
1759      (ParamType->isReferenceType() &&
1760       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
1761      // -- For a non-type template-parameter of type pointer to
1762      //    member function, no conversions apply. If the
1763      //    template-argument represents a set of overloaded member
1764      //    functions, the matching member function is selected from
1765      //    the set (13.4).
1766      // Again, C++0x allows a std::nullptr_t value.
1767      (ParamType->isMemberPointerType() &&
1768       ParamType->getAs<MemberPointerType>()->getPointeeType()
1769         ->isFunctionType())) {
1770    if (Context.hasSameUnqualifiedType(ArgType,
1771                                       ParamType.getNonReferenceType())) {
1772      // We don't have to do anything: the types already match.
1773    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1774                 ParamType->isMemberPointerType())) {
1775      ArgType = ParamType;
1776      ImpCastExprToType(Arg, ParamType);
1777    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1778      ArgType = Context.getPointerType(ArgType);
1779      ImpCastExprToType(Arg, ArgType);
1780    } else if (FunctionDecl *Fn
1781                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1782      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1783        return true;
1784
1785      FixOverloadedFunctionReference(Arg, Fn);
1786      ArgType = Arg->getType();
1787      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1788        ArgType = Context.getPointerType(Arg->getType());
1789        ImpCastExprToType(Arg, ArgType);
1790      }
1791    }
1792
1793    if (!Context.hasSameUnqualifiedType(ArgType,
1794                                        ParamType.getNonReferenceType())) {
1795      // We can't perform this conversion.
1796      Diag(Arg->getSourceRange().getBegin(),
1797           diag::err_template_arg_not_convertible)
1798        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1799      Diag(Param->getLocation(), diag::note_template_param_here);
1800      return true;
1801    }
1802
1803    if (ParamType->isMemberPointerType()) {
1804      NamedDecl *Member = 0;
1805      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1806        return true;
1807
1808      if (Member)
1809        Member = cast<NamedDecl>(Member->getCanonicalDecl());
1810      Converted = TemplateArgument(StartLoc, Member);
1811      return false;
1812    }
1813
1814    NamedDecl *Entity = 0;
1815    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1816      return true;
1817
1818    if (Entity)
1819      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1820    Converted = TemplateArgument(StartLoc, Entity);
1821    return false;
1822  }
1823
1824  if (ParamType->isPointerType()) {
1825    //   -- for a non-type template-parameter of type pointer to
1826    //      object, qualification conversions (4.4) and the
1827    //      array-to-pointer conversion (4.2) are applied.
1828    // C++0x also allows a value of std::nullptr_t.
1829    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
1830           "Only object pointers allowed here");
1831
1832    if (ArgType->isNullPtrType()) {
1833      ArgType = ParamType;
1834      ImpCastExprToType(Arg, ParamType);
1835    } else if (ArgType->isArrayType()) {
1836      ArgType = Context.getArrayDecayedType(ArgType);
1837      ImpCastExprToType(Arg, ArgType);
1838    }
1839
1840    if (IsQualificationConversion(ArgType, ParamType)) {
1841      ArgType = ParamType;
1842      ImpCastExprToType(Arg, ParamType);
1843    }
1844
1845    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1846      // We can't perform this conversion.
1847      Diag(Arg->getSourceRange().getBegin(),
1848           diag::err_template_arg_not_convertible)
1849        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1850      Diag(Param->getLocation(), diag::note_template_param_here);
1851      return true;
1852    }
1853
1854    NamedDecl *Entity = 0;
1855    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1856      return true;
1857
1858    if (Entity)
1859      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1860    Converted = TemplateArgument(StartLoc, Entity);
1861    return false;
1862  }
1863
1864  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1865    //   -- For a non-type template-parameter of type reference to
1866    //      object, no conversions apply. The type referred to by the
1867    //      reference may be more cv-qualified than the (otherwise
1868    //      identical) type of the template-argument. The
1869    //      template-parameter is bound directly to the
1870    //      template-argument, which must be an lvalue.
1871    assert(ParamRefType->getPointeeType()->isObjectType() &&
1872           "Only object references allowed here");
1873
1874    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1875      Diag(Arg->getSourceRange().getBegin(),
1876           diag::err_template_arg_no_ref_bind)
1877        << InstantiatedParamType << Arg->getType()
1878        << Arg->getSourceRange();
1879      Diag(Param->getLocation(), diag::note_template_param_here);
1880      return true;
1881    }
1882
1883    unsigned ParamQuals
1884      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1885    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1886
1887    if ((ParamQuals | ArgQuals) != ParamQuals) {
1888      Diag(Arg->getSourceRange().getBegin(),
1889           diag::err_template_arg_ref_bind_ignores_quals)
1890        << InstantiatedParamType << Arg->getType()
1891        << Arg->getSourceRange();
1892      Diag(Param->getLocation(), diag::note_template_param_here);
1893      return true;
1894    }
1895
1896    NamedDecl *Entity = 0;
1897    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1898      return true;
1899
1900    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1901    Converted = TemplateArgument(StartLoc, Entity);
1902    return false;
1903  }
1904
1905  //     -- For a non-type template-parameter of type pointer to data
1906  //        member, qualification conversions (4.4) are applied.
1907  // C++0x allows std::nullptr_t values.
1908  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1909
1910  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1911    // Types match exactly: nothing more to do here.
1912  } else if (ArgType->isNullPtrType()) {
1913    ImpCastExprToType(Arg, ParamType);
1914  } else if (IsQualificationConversion(ArgType, ParamType)) {
1915    ImpCastExprToType(Arg, ParamType);
1916  } else {
1917    // We can't perform this conversion.
1918    Diag(Arg->getSourceRange().getBegin(),
1919         diag::err_template_arg_not_convertible)
1920      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1921    Diag(Param->getLocation(), diag::note_template_param_here);
1922    return true;
1923  }
1924
1925  NamedDecl *Member = 0;
1926  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1927    return true;
1928
1929  if (Member)
1930    Member = cast<NamedDecl>(Member->getCanonicalDecl());
1931  Converted = TemplateArgument(StartLoc, Member);
1932  return false;
1933}
1934
1935/// \brief Check a template argument against its corresponding
1936/// template template parameter.
1937///
1938/// This routine implements the semantics of C++ [temp.arg.template].
1939/// It returns true if an error occurred, and false otherwise.
1940bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1941                                 DeclRefExpr *Arg) {
1942  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1943  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1944
1945  // C++ [temp.arg.template]p1:
1946  //   A template-argument for a template template-parameter shall be
1947  //   the name of a class template, expressed as id-expression. Only
1948  //   primary class templates are considered when matching the
1949  //   template template argument with the corresponding parameter;
1950  //   partial specializations are not considered even if their
1951  //   parameter lists match that of the template template parameter.
1952  //
1953  // Note that we also allow template template parameters here, which
1954  // will happen when we are dealing with, e.g., class template
1955  // partial specializations.
1956  if (!isa<ClassTemplateDecl>(Template) &&
1957      !isa<TemplateTemplateParmDecl>(Template)) {
1958    assert(isa<FunctionTemplateDecl>(Template) &&
1959           "Only function templates are possible here");
1960    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
1961    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
1962      << Template;
1963  }
1964
1965  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1966                                         Param->getTemplateParameters(),
1967                                         true, true,
1968                                         Arg->getSourceRange().getBegin());
1969}
1970
1971/// \brief Determine whether the given template parameter lists are
1972/// equivalent.
1973///
1974/// \param New  The new template parameter list, typically written in the
1975/// source code as part of a new template declaration.
1976///
1977/// \param Old  The old template parameter list, typically found via
1978/// name lookup of the template declared with this template parameter
1979/// list.
1980///
1981/// \param Complain  If true, this routine will produce a diagnostic if
1982/// the template parameter lists are not equivalent.
1983///
1984/// \param IsTemplateTemplateParm  If true, this routine is being
1985/// called to compare the template parameter lists of a template
1986/// template parameter.
1987///
1988/// \param TemplateArgLoc If this source location is valid, then we
1989/// are actually checking the template parameter list of a template
1990/// argument (New) against the template parameter list of its
1991/// corresponding template template parameter (Old). We produce
1992/// slightly different diagnostics in this scenario.
1993///
1994/// \returns True if the template parameter lists are equal, false
1995/// otherwise.
1996bool
1997Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
1998                                     TemplateParameterList *Old,
1999                                     bool Complain,
2000                                     bool IsTemplateTemplateParm,
2001                                     SourceLocation TemplateArgLoc) {
2002  if (Old->size() != New->size()) {
2003    if (Complain) {
2004      unsigned NextDiag = diag::err_template_param_list_different_arity;
2005      if (TemplateArgLoc.isValid()) {
2006        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2007        NextDiag = diag::note_template_param_list_different_arity;
2008      }
2009      Diag(New->getTemplateLoc(), NextDiag)
2010          << (New->size() > Old->size())
2011          << IsTemplateTemplateParm
2012          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2013      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2014        << IsTemplateTemplateParm
2015        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2016    }
2017
2018    return false;
2019  }
2020
2021  for (TemplateParameterList::iterator OldParm = Old->begin(),
2022         OldParmEnd = Old->end(), NewParm = New->begin();
2023       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2024    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2025      if (Complain) {
2026        unsigned NextDiag = diag::err_template_param_different_kind;
2027        if (TemplateArgLoc.isValid()) {
2028          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2029          NextDiag = diag::note_template_param_different_kind;
2030        }
2031        Diag((*NewParm)->getLocation(), NextDiag)
2032        << IsTemplateTemplateParm;
2033        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2034        << IsTemplateTemplateParm;
2035      }
2036      return false;
2037    }
2038
2039    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2040      // Okay; all template type parameters are equivalent (since we
2041      // know we're at the same index).
2042#if 0
2043      // FIXME: Enable this code in debug mode *after* we properly go through
2044      // and "instantiate" the template parameter lists of template template
2045      // parameters. It's only after this instantiation that (1) any dependent
2046      // types within the template parameter list of the template template
2047      // parameter can be checked, and (2) the template type parameter depths
2048      // will match up.
2049      QualType OldParmType
2050        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2051      QualType NewParmType
2052        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2053      assert(Context.getCanonicalType(OldParmType) ==
2054             Context.getCanonicalType(NewParmType) &&
2055             "type parameter mismatch?");
2056#endif
2057    } else if (NonTypeTemplateParmDecl *OldNTTP
2058                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2059      // The types of non-type template parameters must agree.
2060      NonTypeTemplateParmDecl *NewNTTP
2061        = cast<NonTypeTemplateParmDecl>(*NewParm);
2062      if (Context.getCanonicalType(OldNTTP->getType()) !=
2063            Context.getCanonicalType(NewNTTP->getType())) {
2064        if (Complain) {
2065          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2066          if (TemplateArgLoc.isValid()) {
2067            Diag(TemplateArgLoc,
2068                 diag::err_template_arg_template_params_mismatch);
2069            NextDiag = diag::note_template_nontype_parm_different_type;
2070          }
2071          Diag(NewNTTP->getLocation(), NextDiag)
2072            << NewNTTP->getType()
2073            << IsTemplateTemplateParm;
2074          Diag(OldNTTP->getLocation(),
2075               diag::note_template_nontype_parm_prev_declaration)
2076            << OldNTTP->getType();
2077        }
2078        return false;
2079      }
2080    } else {
2081      // The template parameter lists of template template
2082      // parameters must agree.
2083      // FIXME: Could we perform a faster "type" comparison here?
2084      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2085             "Only template template parameters handled here");
2086      TemplateTemplateParmDecl *OldTTP
2087        = cast<TemplateTemplateParmDecl>(*OldParm);
2088      TemplateTemplateParmDecl *NewTTP
2089        = cast<TemplateTemplateParmDecl>(*NewParm);
2090      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2091                                          OldTTP->getTemplateParameters(),
2092                                          Complain,
2093                                          /*IsTemplateTemplateParm=*/true,
2094                                          TemplateArgLoc))
2095        return false;
2096    }
2097  }
2098
2099  return true;
2100}
2101
2102/// \brief Check whether a template can be declared within this scope.
2103///
2104/// If the template declaration is valid in this scope, returns
2105/// false. Otherwise, issues a diagnostic and returns true.
2106bool
2107Sema::CheckTemplateDeclScope(Scope *S,
2108                             MultiTemplateParamsArg &TemplateParameterLists) {
2109  assert(TemplateParameterLists.size() > 0 && "Not a template");
2110
2111  // Find the nearest enclosing declaration scope.
2112  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2113         (S->getFlags() & Scope::TemplateParamScope) != 0)
2114    S = S->getParent();
2115
2116  TemplateParameterList *TemplateParams =
2117    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2118  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
2119  SourceRange TemplateRange
2120    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
2121
2122  // C++ [temp]p2:
2123  //   A template-declaration can appear only as a namespace scope or
2124  //   class scope declaration.
2125  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2126  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2127      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2128    return Diag(TemplateLoc, diag::err_template_linkage) << TemplateRange;
2129
2130  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2131    Ctx = Ctx->getParent();
2132
2133  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2134    return false;
2135
2136  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
2137    << TemplateRange;
2138}
2139
2140/// \brief Check whether a class template specialization or explicit
2141/// instantiation in the current context is well-formed.
2142///
2143/// This routine determines whether a class template specialization or
2144/// explicit instantiation can be declared in the current context
2145/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
2146/// appropriate diagnostics if there was an error. It returns true if
2147// there was an error that we cannot recover from, and false otherwise.
2148bool
2149Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
2150                                   ClassTemplateSpecializationDecl *PrevDecl,
2151                                            SourceLocation TemplateNameLoc,
2152                                            SourceRange ScopeSpecifierRange,
2153                                            bool PartialSpecialization,
2154                                            bool ExplicitInstantiation) {
2155  // C++ [temp.expl.spec]p2:
2156  //   An explicit specialization shall be declared in the namespace
2157  //   of which the template is a member, or, for member templates, in
2158  //   the namespace of which the enclosing class or enclosing class
2159  //   template is a member. An explicit specialization of a member
2160  //   function, member class or static data member of a class
2161  //   template shall be declared in the namespace of which the class
2162  //   template is a member. Such a declaration may also be a
2163  //   definition. If the declaration is not a definition, the
2164  //   specialization may be defined later in the name- space in which
2165  //   the explicit specialization was declared, or in a namespace
2166  //   that encloses the one in which the explicit specialization was
2167  //   declared.
2168  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2169    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2170    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
2171      << Kind << ClassTemplate;
2172    return true;
2173  }
2174
2175  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
2176  DeclContext *TemplateContext
2177    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
2178  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
2179      !ExplicitInstantiation) {
2180    // There is no prior declaration of this entity, so this
2181    // specialization must be in the same context as the template
2182    // itself.
2183    if (DC != TemplateContext) {
2184      if (isa<TranslationUnitDecl>(TemplateContext))
2185        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
2186          << PartialSpecialization
2187          << ClassTemplate << ScopeSpecifierRange;
2188      else if (isa<NamespaceDecl>(TemplateContext))
2189        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
2190          << PartialSpecialization << ClassTemplate
2191          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2192
2193      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2194    }
2195
2196    return false;
2197  }
2198
2199  // We have a previous declaration of this entity. Make sure that
2200  // this redeclaration (or definition) occurs in an enclosing namespace.
2201  if (!CurContext->Encloses(TemplateContext)) {
2202    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
2203    // dependent on a -Wc++0x flag.
2204    bool SuppressedDiag = false;
2205    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2206    if (isa<TranslationUnitDecl>(TemplateContext)) {
2207      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2208        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
2209          << Kind << ClassTemplate << ScopeSpecifierRange;
2210      else
2211        SuppressedDiag = true;
2212    } else if (isa<NamespaceDecl>(TemplateContext)) {
2213      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2214        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2215          << Kind << ClassTemplate
2216          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2217      else
2218        SuppressedDiag = true;
2219    }
2220
2221    if (!SuppressedDiag)
2222      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2223  }
2224
2225  return false;
2226}
2227
2228/// \brief Check the non-type template arguments of a class template
2229/// partial specialization according to C++ [temp.class.spec]p9.
2230///
2231/// \param TemplateParams the template parameters of the primary class
2232/// template.
2233///
2234/// \param TemplateArg the template arguments of the class template
2235/// partial specialization.
2236///
2237/// \param MirrorsPrimaryTemplate will be set true if the class
2238/// template partial specialization arguments are identical to the
2239/// implicit template arguments of the primary template. This is not
2240/// necessarily an error (C++0x), and it is left to the caller to diagnose
2241/// this condition when it is an error.
2242///
2243/// \returns true if there was an error, false otherwise.
2244bool Sema::CheckClassTemplatePartialSpecializationArgs(
2245                                        TemplateParameterList *TemplateParams,
2246                             const TemplateArgumentListBuilder &TemplateArgs,
2247                                        bool &MirrorsPrimaryTemplate) {
2248  // FIXME: the interface to this function will have to change to
2249  // accommodate variadic templates.
2250  MirrorsPrimaryTemplate = true;
2251
2252  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2253
2254  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2255    // Determine whether the template argument list of the partial
2256    // specialization is identical to the implicit argument list of
2257    // the primary template. The caller may need to diagnostic this as
2258    // an error per C++ [temp.class.spec]p9b3.
2259    if (MirrorsPrimaryTemplate) {
2260      if (TemplateTypeParmDecl *TTP
2261            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2262        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2263              Context.getCanonicalType(ArgList[I].getAsType()))
2264          MirrorsPrimaryTemplate = false;
2265      } else if (TemplateTemplateParmDecl *TTP
2266                   = dyn_cast<TemplateTemplateParmDecl>(
2267                                                 TemplateParams->getParam(I))) {
2268        // FIXME: We should settle on either Declaration storage or
2269        // Expression storage for template template parameters.
2270        TemplateTemplateParmDecl *ArgDecl
2271          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2272                                                  ArgList[I].getAsDecl());
2273        if (!ArgDecl)
2274          if (DeclRefExpr *DRE
2275                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2276            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2277
2278        if (!ArgDecl ||
2279            ArgDecl->getIndex() != TTP->getIndex() ||
2280            ArgDecl->getDepth() != TTP->getDepth())
2281          MirrorsPrimaryTemplate = false;
2282      }
2283    }
2284
2285    NonTypeTemplateParmDecl *Param
2286      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2287    if (!Param) {
2288      continue;
2289    }
2290
2291    Expr *ArgExpr = ArgList[I].getAsExpr();
2292    if (!ArgExpr) {
2293      MirrorsPrimaryTemplate = false;
2294      continue;
2295    }
2296
2297    // C++ [temp.class.spec]p8:
2298    //   A non-type argument is non-specialized if it is the name of a
2299    //   non-type parameter. All other non-type arguments are
2300    //   specialized.
2301    //
2302    // Below, we check the two conditions that only apply to
2303    // specialized non-type arguments, so skip any non-specialized
2304    // arguments.
2305    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2306      if (NonTypeTemplateParmDecl *NTTP
2307            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2308        if (MirrorsPrimaryTemplate &&
2309            (Param->getIndex() != NTTP->getIndex() ||
2310             Param->getDepth() != NTTP->getDepth()))
2311          MirrorsPrimaryTemplate = false;
2312
2313        continue;
2314      }
2315
2316    // C++ [temp.class.spec]p9:
2317    //   Within the argument list of a class template partial
2318    //   specialization, the following restrictions apply:
2319    //     -- A partially specialized non-type argument expression
2320    //        shall not involve a template parameter of the partial
2321    //        specialization except when the argument expression is a
2322    //        simple identifier.
2323    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2324      Diag(ArgExpr->getLocStart(),
2325           diag::err_dependent_non_type_arg_in_partial_spec)
2326        << ArgExpr->getSourceRange();
2327      return true;
2328    }
2329
2330    //     -- The type of a template parameter corresponding to a
2331    //        specialized non-type argument shall not be dependent on a
2332    //        parameter of the specialization.
2333    if (Param->getType()->isDependentType()) {
2334      Diag(ArgExpr->getLocStart(),
2335           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2336        << Param->getType()
2337        << ArgExpr->getSourceRange();
2338      Diag(Param->getLocation(), diag::note_template_param_here);
2339      return true;
2340    }
2341
2342    MirrorsPrimaryTemplate = false;
2343  }
2344
2345  return false;
2346}
2347
2348Sema::DeclResult
2349Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2350                                       TagUseKind TUK,
2351                                       SourceLocation KWLoc,
2352                                       const CXXScopeSpec &SS,
2353                                       TemplateTy TemplateD,
2354                                       SourceLocation TemplateNameLoc,
2355                                       SourceLocation LAngleLoc,
2356                                       ASTTemplateArgsPtr TemplateArgsIn,
2357                                       SourceLocation *TemplateArgLocs,
2358                                       SourceLocation RAngleLoc,
2359                                       AttributeList *Attr,
2360                               MultiTemplateParamsArg TemplateParameterLists) {
2361  // Find the class template we're specializing
2362  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2363  ClassTemplateDecl *ClassTemplate
2364    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2365
2366  bool isPartialSpecialization = false;
2367
2368  // Check the validity of the template headers that introduce this
2369  // template.
2370  // FIXME: Once we have member templates, we'll need to check
2371  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2372  // template<> headers.
2373  if (TemplateParameterLists.size() == 0)
2374    Diag(KWLoc, diag::err_template_spec_needs_header)
2375      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2376  else {
2377    TemplateParameterList *TemplateParams
2378      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2379    if (TemplateParameterLists.size() > 1) {
2380      Diag(TemplateParams->getTemplateLoc(),
2381           diag::err_template_spec_extra_headers);
2382      return true;
2383    }
2384
2385    if (TemplateParams->size() > 0) {
2386      isPartialSpecialization = true;
2387
2388      // C++ [temp.class.spec]p10:
2389      //   The template parameter list of a specialization shall not
2390      //   contain default template argument values.
2391      for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2392        Decl *Param = TemplateParams->getParam(I);
2393        if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2394          if (TTP->hasDefaultArgument()) {
2395            Diag(TTP->getDefaultArgumentLoc(),
2396                 diag::err_default_arg_in_partial_spec);
2397            TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2398          }
2399        } else if (NonTypeTemplateParmDecl *NTTP
2400                     = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2401          if (Expr *DefArg = NTTP->getDefaultArgument()) {
2402            Diag(NTTP->getDefaultArgumentLoc(),
2403                 diag::err_default_arg_in_partial_spec)
2404              << DefArg->getSourceRange();
2405            NTTP->setDefaultArgument(0);
2406            DefArg->Destroy(Context);
2407          }
2408        } else {
2409          TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2410          if (Expr *DefArg = TTP->getDefaultArgument()) {
2411            Diag(TTP->getDefaultArgumentLoc(),
2412                 diag::err_default_arg_in_partial_spec)
2413              << DefArg->getSourceRange();
2414            TTP->setDefaultArgument(0);
2415            DefArg->Destroy(Context);
2416          }
2417        }
2418      }
2419    }
2420  }
2421
2422  // Check that the specialization uses the same tag kind as the
2423  // original template.
2424  TagDecl::TagKind Kind;
2425  switch (TagSpec) {
2426  default: assert(0 && "Unknown tag type!");
2427  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2428  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2429  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2430  }
2431  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2432                                    Kind, KWLoc,
2433                                    *ClassTemplate->getIdentifier())) {
2434    Diag(KWLoc, diag::err_use_with_wrong_tag)
2435      << ClassTemplate
2436      << CodeModificationHint::CreateReplacement(KWLoc,
2437                            ClassTemplate->getTemplatedDecl()->getKindName());
2438    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2439         diag::note_previous_use);
2440    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2441  }
2442
2443  // Translate the parser's template argument list in our AST format.
2444  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2445  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2446
2447  // Check that the template argument list is well-formed for this
2448  // template.
2449  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2450                                        TemplateArgs.size());
2451  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2452                                TemplateArgs.data(), TemplateArgs.size(),
2453                                RAngleLoc, false, Converted))
2454    return true;
2455
2456  assert((Converted.structuredSize() ==
2457            ClassTemplate->getTemplateParameters()->size()) &&
2458         "Converted template argument list is too short!");
2459
2460  // Find the class template (partial) specialization declaration that
2461  // corresponds to these arguments.
2462  llvm::FoldingSetNodeID ID;
2463  if (isPartialSpecialization) {
2464    bool MirrorsPrimaryTemplate;
2465    if (CheckClassTemplatePartialSpecializationArgs(
2466                                         ClassTemplate->getTemplateParameters(),
2467                                         Converted, MirrorsPrimaryTemplate))
2468      return true;
2469
2470    if (MirrorsPrimaryTemplate) {
2471      // C++ [temp.class.spec]p9b3:
2472      //
2473      //   -- The argument list of the specialization shall not be identical
2474      //      to the implicit argument list of the primary template.
2475      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2476        << (TUK == TUK_Definition)
2477        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2478                                                           RAngleLoc));
2479      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2480                                ClassTemplate->getIdentifier(),
2481                                TemplateNameLoc,
2482                                Attr,
2483                                move(TemplateParameterLists),
2484                                AS_none);
2485    }
2486
2487    // FIXME: Template parameter list matters, too
2488    ClassTemplatePartialSpecializationDecl::Profile(ID,
2489                                                   Converted.getFlatArguments(),
2490                                                   Converted.flatSize(),
2491                                                    Context);
2492  }
2493  else
2494    ClassTemplateSpecializationDecl::Profile(ID,
2495                                             Converted.getFlatArguments(),
2496                                             Converted.flatSize(),
2497                                             Context);
2498  void *InsertPos = 0;
2499  ClassTemplateSpecializationDecl *PrevDecl = 0;
2500
2501  if (isPartialSpecialization)
2502    PrevDecl
2503      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2504                                                                    InsertPos);
2505  else
2506    PrevDecl
2507      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2508
2509  ClassTemplateSpecializationDecl *Specialization = 0;
2510
2511  // Check whether we can declare a class template specialization in
2512  // the current scope.
2513  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2514                                            TemplateNameLoc,
2515                                            SS.getRange(),
2516                                            isPartialSpecialization,
2517                                            /*ExplicitInstantiation=*/false))
2518    return true;
2519
2520  // The canonical type
2521  QualType CanonType;
2522  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2523    // Since the only prior class template specialization with these
2524    // arguments was referenced but not declared, reuse that
2525    // declaration node as our own, updating its source location to
2526    // reflect our new declaration.
2527    Specialization = PrevDecl;
2528    Specialization->setLocation(TemplateNameLoc);
2529    PrevDecl = 0;
2530    CanonType = Context.getTypeDeclType(Specialization);
2531  } else if (isPartialSpecialization) {
2532    // Build the canonical type that describes the converted template
2533    // arguments of the class template partial specialization.
2534    CanonType = Context.getTemplateSpecializationType(
2535                                                  TemplateName(ClassTemplate),
2536                                                  Converted.getFlatArguments(),
2537                                                  Converted.flatSize());
2538
2539    // Create a new class template partial specialization declaration node.
2540    TemplateParameterList *TemplateParams
2541      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2542    ClassTemplatePartialSpecializationDecl *PrevPartial
2543      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2544    ClassTemplatePartialSpecializationDecl *Partial
2545      = ClassTemplatePartialSpecializationDecl::Create(Context,
2546                                             ClassTemplate->getDeclContext(),
2547                                                       TemplateNameLoc,
2548                                                       TemplateParams,
2549                                                       ClassTemplate,
2550                                                       Converted,
2551                                                       PrevPartial);
2552
2553    if (PrevPartial) {
2554      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2555      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2556    } else {
2557      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2558    }
2559    Specialization = Partial;
2560
2561    // Check that all of the template parameters of the class template
2562    // partial specialization are deducible from the template
2563    // arguments. If not, this class template partial specialization
2564    // will never be used.
2565    llvm::SmallVector<bool, 8> DeducibleParams;
2566    DeducibleParams.resize(TemplateParams->size());
2567    MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams);
2568    unsigned NumNonDeducible = 0;
2569    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2570      if (!DeducibleParams[I])
2571        ++NumNonDeducible;
2572
2573    if (NumNonDeducible) {
2574      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2575        << (NumNonDeducible > 1)
2576        << SourceRange(TemplateNameLoc, RAngleLoc);
2577      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2578        if (!DeducibleParams[I]) {
2579          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2580          if (Param->getDeclName())
2581            Diag(Param->getLocation(),
2582                 diag::note_partial_spec_unused_parameter)
2583              << Param->getDeclName();
2584          else
2585            Diag(Param->getLocation(),
2586                 diag::note_partial_spec_unused_parameter)
2587              << std::string("<anonymous>");
2588        }
2589      }
2590    }
2591  } else {
2592    // Create a new class template specialization declaration node for
2593    // this explicit specialization.
2594    Specialization
2595      = ClassTemplateSpecializationDecl::Create(Context,
2596                                             ClassTemplate->getDeclContext(),
2597                                                TemplateNameLoc,
2598                                                ClassTemplate,
2599                                                Converted,
2600                                                PrevDecl);
2601
2602    if (PrevDecl) {
2603      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2604      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2605    } else {
2606      ClassTemplate->getSpecializations().InsertNode(Specialization,
2607                                                     InsertPos);
2608    }
2609
2610    CanonType = Context.getTypeDeclType(Specialization);
2611  }
2612
2613  // Note that this is an explicit specialization.
2614  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2615
2616  // Check that this isn't a redefinition of this specialization.
2617  if (TUK == TUK_Definition) {
2618    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2619      // FIXME: Should also handle explicit specialization after implicit
2620      // instantiation with a special diagnostic.
2621      SourceRange Range(TemplateNameLoc, RAngleLoc);
2622      Diag(TemplateNameLoc, diag::err_redefinition)
2623        << Context.getTypeDeclType(Specialization) << Range;
2624      Diag(Def->getLocation(), diag::note_previous_definition);
2625      Specialization->setInvalidDecl();
2626      return true;
2627    }
2628  }
2629
2630  // Build the fully-sugared type for this class template
2631  // specialization as the user wrote in the specialization
2632  // itself. This means that we'll pretty-print the type retrieved
2633  // from the specialization's declaration the way that the user
2634  // actually wrote the specialization, rather than formatting the
2635  // name based on the "canonical" representation used to store the
2636  // template arguments in the specialization.
2637  QualType WrittenTy
2638    = Context.getTemplateSpecializationType(Name,
2639                                            TemplateArgs.data(),
2640                                            TemplateArgs.size(),
2641                                            CanonType);
2642  Specialization->setTypeAsWritten(WrittenTy);
2643  TemplateArgsIn.release();
2644
2645  // C++ [temp.expl.spec]p9:
2646  //   A template explicit specialization is in the scope of the
2647  //   namespace in which the template was defined.
2648  //
2649  // We actually implement this paragraph where we set the semantic
2650  // context (in the creation of the ClassTemplateSpecializationDecl),
2651  // but we also maintain the lexical context where the actual
2652  // definition occurs.
2653  Specialization->setLexicalDeclContext(CurContext);
2654
2655  // We may be starting the definition of this specialization.
2656  if (TUK == TUK_Definition)
2657    Specialization->startDefinition();
2658
2659  // Add the specialization into its lexical context, so that it can
2660  // be seen when iterating through the list of declarations in that
2661  // context. However, specializations are not found by name lookup.
2662  CurContext->addDecl(Specialization);
2663  return DeclPtrTy::make(Specialization);
2664}
2665
2666Sema::DeclPtrTy
2667Sema::ActOnTemplateDeclarator(Scope *S,
2668                              MultiTemplateParamsArg TemplateParameterLists,
2669                              Declarator &D) {
2670  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2671}
2672
2673Sema::DeclPtrTy
2674Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2675                               MultiTemplateParamsArg TemplateParameterLists,
2676                                      Declarator &D) {
2677  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2678  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2679         "Not a function declarator!");
2680  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2681
2682  if (FTI.hasPrototype) {
2683    // FIXME: Diagnose arguments without names in C.
2684  }
2685
2686  Scope *ParentScope = FnBodyScope->getParent();
2687
2688  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2689                                  move(TemplateParameterLists),
2690                                  /*IsFunctionDefinition=*/true);
2691  if (FunctionTemplateDecl *FunctionTemplate
2692        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2693    return ActOnStartOfFunctionDef(FnBodyScope,
2694                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2695  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2696    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2697  return DeclPtrTy();
2698}
2699
2700// Explicit instantiation of a class template specialization
2701Sema::DeclResult
2702Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2703                                 unsigned TagSpec,
2704                                 SourceLocation KWLoc,
2705                                 const CXXScopeSpec &SS,
2706                                 TemplateTy TemplateD,
2707                                 SourceLocation TemplateNameLoc,
2708                                 SourceLocation LAngleLoc,
2709                                 ASTTemplateArgsPtr TemplateArgsIn,
2710                                 SourceLocation *TemplateArgLocs,
2711                                 SourceLocation RAngleLoc,
2712                                 AttributeList *Attr) {
2713  // Find the class template we're specializing
2714  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2715  ClassTemplateDecl *ClassTemplate
2716    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2717
2718  // Check that the specialization uses the same tag kind as the
2719  // original template.
2720  TagDecl::TagKind Kind;
2721  switch (TagSpec) {
2722  default: assert(0 && "Unknown tag type!");
2723  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2724  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2725  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2726  }
2727  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2728                                    Kind, KWLoc,
2729                                    *ClassTemplate->getIdentifier())) {
2730    Diag(KWLoc, diag::err_use_with_wrong_tag)
2731      << ClassTemplate
2732      << CodeModificationHint::CreateReplacement(KWLoc,
2733                            ClassTemplate->getTemplatedDecl()->getKindName());
2734    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2735         diag::note_previous_use);
2736    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2737  }
2738
2739  // C++0x [temp.explicit]p2:
2740  //   [...] An explicit instantiation shall appear in an enclosing
2741  //   namespace of its template. [...]
2742  //
2743  // This is C++ DR 275.
2744  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2745                                            TemplateNameLoc,
2746                                            SS.getRange(),
2747                                            /*PartialSpecialization=*/false,
2748                                            /*ExplicitInstantiation=*/true))
2749    return true;
2750
2751  // Translate the parser's template argument list in our AST format.
2752  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2753  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2754
2755  // Check that the template argument list is well-formed for this
2756  // template.
2757  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2758                                        TemplateArgs.size());
2759  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2760                                TemplateArgs.data(), TemplateArgs.size(),
2761                                RAngleLoc, false, Converted))
2762    return true;
2763
2764  assert((Converted.structuredSize() ==
2765            ClassTemplate->getTemplateParameters()->size()) &&
2766         "Converted template argument list is too short!");
2767
2768  // Find the class template specialization declaration that
2769  // corresponds to these arguments.
2770  llvm::FoldingSetNodeID ID;
2771  ClassTemplateSpecializationDecl::Profile(ID,
2772                                           Converted.getFlatArguments(),
2773                                           Converted.flatSize(),
2774                                           Context);
2775  void *InsertPos = 0;
2776  ClassTemplateSpecializationDecl *PrevDecl
2777    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2778
2779  ClassTemplateSpecializationDecl *Specialization = 0;
2780
2781  bool SpecializationRequiresInstantiation = true;
2782  if (PrevDecl) {
2783    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2784      // This particular specialization has already been declared or
2785      // instantiated. We cannot explicitly instantiate it.
2786      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2787        << Context.getTypeDeclType(PrevDecl);
2788      Diag(PrevDecl->getLocation(),
2789           diag::note_previous_explicit_instantiation);
2790      return DeclPtrTy::make(PrevDecl);
2791    }
2792
2793    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2794      // C++ DR 259, C++0x [temp.explicit]p4:
2795      //   For a given set of template parameters, if an explicit
2796      //   instantiation of a template appears after a declaration of
2797      //   an explicit specialization for that template, the explicit
2798      //   instantiation has no effect.
2799      if (!getLangOptions().CPlusPlus0x) {
2800        Diag(TemplateNameLoc,
2801             diag::ext_explicit_instantiation_after_specialization)
2802          << Context.getTypeDeclType(PrevDecl);
2803        Diag(PrevDecl->getLocation(),
2804             diag::note_previous_template_specialization);
2805      }
2806
2807      // Create a new class template specialization declaration node
2808      // for this explicit specialization. This node is only used to
2809      // record the existence of this explicit instantiation for
2810      // accurate reproduction of the source code; we don't actually
2811      // use it for anything, since it is semantically irrelevant.
2812      Specialization
2813        = ClassTemplateSpecializationDecl::Create(Context,
2814                                             ClassTemplate->getDeclContext(),
2815                                                  TemplateNameLoc,
2816                                                  ClassTemplate,
2817                                                  Converted, 0);
2818      Specialization->setLexicalDeclContext(CurContext);
2819      CurContext->addDecl(Specialization);
2820      return DeclPtrTy::make(Specialization);
2821    }
2822
2823    // If we have already (implicitly) instantiated this
2824    // specialization, there is less work to do.
2825    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2826      SpecializationRequiresInstantiation = false;
2827
2828    // Since the only prior class template specialization with these
2829    // arguments was referenced but not declared, reuse that
2830    // declaration node as our own, updating its source location to
2831    // reflect our new declaration.
2832    Specialization = PrevDecl;
2833    Specialization->setLocation(TemplateNameLoc);
2834    PrevDecl = 0;
2835  } else {
2836    // Create a new class template specialization declaration node for
2837    // this explicit specialization.
2838    Specialization
2839      = ClassTemplateSpecializationDecl::Create(Context,
2840                                             ClassTemplate->getDeclContext(),
2841                                                TemplateNameLoc,
2842                                                ClassTemplate,
2843                                                Converted, 0);
2844
2845    ClassTemplate->getSpecializations().InsertNode(Specialization,
2846                                                   InsertPos);
2847  }
2848
2849  // Build the fully-sugared type for this explicit instantiation as
2850  // the user wrote in the explicit instantiation itself. This means
2851  // that we'll pretty-print the type retrieved from the
2852  // specialization's declaration the way that the user actually wrote
2853  // the explicit instantiation, rather than formatting the name based
2854  // on the "canonical" representation used to store the template
2855  // arguments in the specialization.
2856  QualType WrittenTy
2857    = Context.getTemplateSpecializationType(Name,
2858                                            TemplateArgs.data(),
2859                                            TemplateArgs.size(),
2860                                  Context.getTypeDeclType(Specialization));
2861  Specialization->setTypeAsWritten(WrittenTy);
2862  TemplateArgsIn.release();
2863
2864  // Add the explicit instantiation into its lexical context. However,
2865  // since explicit instantiations are never found by name lookup, we
2866  // just put it into the declaration context directly.
2867  Specialization->setLexicalDeclContext(CurContext);
2868  CurContext->addDecl(Specialization);
2869
2870  // C++ [temp.explicit]p3:
2871  //   A definition of a class template or class member template
2872  //   shall be in scope at the point of the explicit instantiation of
2873  //   the class template or class member template.
2874  //
2875  // This check comes when we actually try to perform the
2876  // instantiation.
2877  if (SpecializationRequiresInstantiation)
2878    InstantiateClassTemplateSpecialization(Specialization, true);
2879  else // Instantiate the members of this class template specialization.
2880    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2881
2882  return DeclPtrTy::make(Specialization);
2883}
2884
2885// Explicit instantiation of a member class of a class template.
2886Sema::DeclResult
2887Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2888                                 unsigned TagSpec,
2889                                 SourceLocation KWLoc,
2890                                 const CXXScopeSpec &SS,
2891                                 IdentifierInfo *Name,
2892                                 SourceLocation NameLoc,
2893                                 AttributeList *Attr) {
2894
2895  bool Owned = false;
2896  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
2897                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
2898                            MultiTemplateParamsArg(*this, 0, 0), Owned);
2899  if (!TagD)
2900    return true;
2901
2902  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2903  if (Tag->isEnum()) {
2904    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2905      << Context.getTypeDeclType(Tag);
2906    return true;
2907  }
2908
2909  if (Tag->isInvalidDecl())
2910    return true;
2911
2912  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2913  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2914  if (!Pattern) {
2915    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2916      << Context.getTypeDeclType(Record);
2917    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2918    return true;
2919  }
2920
2921  // C++0x [temp.explicit]p2:
2922  //   [...] An explicit instantiation shall appear in an enclosing
2923  //   namespace of its template. [...]
2924  //
2925  // This is C++ DR 275.
2926  if (getLangOptions().CPlusPlus0x) {
2927    // FIXME: In C++98, we would like to turn these errors into warnings,
2928    // dependent on a -Wc++0x flag.
2929    DeclContext *PatternContext
2930      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2931    if (!CurContext->Encloses(PatternContext)) {
2932      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2933        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2934      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2935    }
2936  }
2937
2938  if (!Record->getDefinition(Context)) {
2939    // If the class has a definition, instantiate it (and all of its
2940    // members, recursively).
2941    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2942    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2943                                    getTemplateInstantiationArgs(Record),
2944                                    /*ExplicitInstantiation=*/true))
2945      return true;
2946  } else // Instantiate all of the members of class.
2947    InstantiateClassMembers(TemplateLoc, Record,
2948                            getTemplateInstantiationArgs(Record));
2949
2950  // FIXME: We don't have any representation for explicit instantiations of
2951  // member classes. Such a representation is not needed for compilation, but it
2952  // should be available for clients that want to see all of the declarations in
2953  // the source code.
2954  return TagD;
2955}
2956
2957Sema::TypeResult
2958Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2959                        const IdentifierInfo &II, SourceLocation IdLoc) {
2960  NestedNameSpecifier *NNS
2961    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2962  if (!NNS)
2963    return true;
2964
2965  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2966  if (T.isNull())
2967    return true;
2968  return T.getAsOpaquePtr();
2969}
2970
2971Sema::TypeResult
2972Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2973                        SourceLocation TemplateLoc, TypeTy *Ty) {
2974  QualType T = QualType::getFromOpaquePtr(Ty);
2975  NestedNameSpecifier *NNS
2976    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2977  const TemplateSpecializationType *TemplateId
2978    = T->getAsTemplateSpecializationType();
2979  assert(TemplateId && "Expected a template specialization type");
2980
2981  if (NNS->isDependent())
2982    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2983
2984  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2985}
2986
2987/// \brief Build the type that describes a C++ typename specifier,
2988/// e.g., "typename T::type".
2989QualType
2990Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2991                        SourceRange Range) {
2992  CXXRecordDecl *CurrentInstantiation = 0;
2993  if (NNS->isDependent()) {
2994    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2995
2996    // If the nested-name-specifier does not refer to the current
2997    // instantiation, then build a typename type.
2998    if (!CurrentInstantiation)
2999      return Context.getTypenameType(NNS, &II);
3000  }
3001
3002  DeclContext *Ctx = 0;
3003
3004  if (CurrentInstantiation)
3005    Ctx = CurrentInstantiation;
3006  else {
3007    CXXScopeSpec SS;
3008    SS.setScopeRep(NNS);
3009    SS.setRange(Range);
3010    if (RequireCompleteDeclContext(SS))
3011      return QualType();
3012
3013    Ctx = computeDeclContext(SS);
3014  }
3015  assert(Ctx && "No declaration context?");
3016
3017  DeclarationName Name(&II);
3018  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3019                                            false);
3020  unsigned DiagID = 0;
3021  Decl *Referenced = 0;
3022  switch (Result.getKind()) {
3023  case LookupResult::NotFound:
3024    if (Ctx->isTranslationUnit())
3025      DiagID = diag::err_typename_nested_not_found_global;
3026    else
3027      DiagID = diag::err_typename_nested_not_found;
3028    break;
3029
3030  case LookupResult::Found:
3031    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3032      // We found a type. Build a QualifiedNameType, since the
3033      // typename-specifier was just sugar. FIXME: Tell
3034      // QualifiedNameType that it has a "typename" prefix.
3035      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3036    }
3037
3038    DiagID = diag::err_typename_nested_not_type;
3039    Referenced = Result.getAsDecl();
3040    break;
3041
3042  case LookupResult::FoundOverloaded:
3043    DiagID = diag::err_typename_nested_not_type;
3044    Referenced = *Result.begin();
3045    break;
3046
3047  case LookupResult::AmbiguousBaseSubobjectTypes:
3048  case LookupResult::AmbiguousBaseSubobjects:
3049  case LookupResult::AmbiguousReference:
3050    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3051    return QualType();
3052  }
3053
3054  // If we get here, it's because name lookup did not find a
3055  // type. Emit an appropriate diagnostic and return an error.
3056  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3057    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3058  else
3059    Diag(Range.getEnd(), DiagID) << Range << Name;
3060  if (Referenced)
3061    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3062      << Name;
3063  return QualType();
3064}
3065