SemaTemplate.cpp revision 107de90451b7f7a7749380a9d017ff1bafb6b407
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult) {
104  assert(getLangOptions().CPlusPlus && "No template names in C!");
105
106  DeclarationName TName;
107
108  switch (Name.getKind()) {
109  case UnqualifiedId::IK_Identifier:
110    TName = DeclarationName(Name.Identifier);
111    break;
112
113  case UnqualifiedId::IK_OperatorFunctionId:
114    TName = Context.DeclarationNames.getCXXOperatorName(
115                                              Name.OperatorFunctionId.Operator);
116    break;
117
118  case UnqualifiedId::IK_LiteralOperatorId:
119    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
120    break;
121
122  default:
123    return TNK_Non_template;
124  }
125
126  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
127
128  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
129                 LookupOrdinaryName);
130  R.suppressDiagnostics();
131  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
132  if (R.empty() || R.isAmbiguous())
133    return TNK_Non_template;
134
135  TemplateName Template;
136  TemplateNameKind TemplateKind;
137
138  unsigned ResultCount = R.end() - R.begin();
139  if (ResultCount > 1) {
140    // We assume that we'll preserve the qualifier from a function
141    // template name in other ways.
142    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
143    TemplateKind = TNK_Function_template;
144  } else {
145    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
146
147    if (SS.isSet() && !SS.isInvalid()) {
148      NestedNameSpecifier *Qualifier
149        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
150      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
151    } else {
152      Template = TemplateName(TD);
153    }
154
155    if (isa<FunctionTemplateDecl>(TD))
156      TemplateKind = TNK_Function_template;
157    else {
158      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
159      TemplateKind = TNK_Type_template;
160    }
161  }
162
163  TemplateResult = TemplateTy::make(Template);
164  return TemplateKind;
165}
166
167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
168                                       SourceLocation IILoc,
169                                       Scope *S,
170                                       const CXXScopeSpec *SS,
171                                       TemplateTy &SuggestedTemplate,
172                                       TemplateNameKind &SuggestedKind) {
173  // We can't recover unless there's a dependent scope specifier preceding the
174  // template name.
175  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
176      computeDeclContext(*SS))
177    return false;
178
179  // The code is missing a 'template' keyword prior to the dependent template
180  // name.
181  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
182  Diag(IILoc, diag::err_template_kw_missing)
183    << Qualifier << II.getName()
184    << FixItHint::CreateInsertion(IILoc, "template ");
185  SuggestedTemplate
186    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
187  SuggestedKind = TNK_Dependent_template_name;
188  return true;
189}
190
191void Sema::LookupTemplateName(LookupResult &Found,
192                              Scope *S, CXXScopeSpec &SS,
193                              QualType ObjectType,
194                              bool EnteringContext) {
195  // Determine where to perform name lookup
196  DeclContext *LookupCtx = 0;
197  bool isDependent = false;
198  if (!ObjectType.isNull()) {
199    // This nested-name-specifier occurs in a member access expression, e.g.,
200    // x->B::f, and we are looking into the type of the object.
201    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
202    LookupCtx = computeDeclContext(ObjectType);
203    isDependent = ObjectType->isDependentType();
204    assert((isDependent || !ObjectType->isIncompleteType()) &&
205           "Caller should have completed object type");
206  } else if (SS.isSet()) {
207    // This nested-name-specifier occurs after another nested-name-specifier,
208    // so long into the context associated with the prior nested-name-specifier.
209    LookupCtx = computeDeclContext(SS, EnteringContext);
210    isDependent = isDependentScopeSpecifier(SS);
211
212    // The declaration context must be complete.
213    if (LookupCtx && RequireCompleteDeclContext(SS))
214      return;
215  }
216
217  bool ObjectTypeSearchedInScope = false;
218  if (LookupCtx) {
219    // Perform "qualified" name lookup into the declaration context we
220    // computed, which is either the type of the base of a member access
221    // expression or the declaration context associated with a prior
222    // nested-name-specifier.
223    LookupQualifiedName(Found, LookupCtx);
224
225    if (!ObjectType.isNull() && Found.empty()) {
226      // C++ [basic.lookup.classref]p1:
227      //   In a class member access expression (5.2.5), if the . or -> token is
228      //   immediately followed by an identifier followed by a <, the
229      //   identifier must be looked up to determine whether the < is the
230      //   beginning of a template argument list (14.2) or a less-than operator.
231      //   The identifier is first looked up in the class of the object
232      //   expression. If the identifier is not found, it is then looked up in
233      //   the context of the entire postfix-expression and shall name a class
234      //   or function template.
235      //
236      // FIXME: When we're instantiating a template, do we actually have to
237      // look in the scope of the template? Seems fishy...
238      if (S) LookupName(Found, S);
239      ObjectTypeSearchedInScope = true;
240    }
241  } else if (isDependent) {
242    // We cannot look into a dependent object type or nested nme
243    // specifier.
244    return;
245  } else {
246    // Perform unqualified name lookup in the current scope.
247    LookupName(Found, S);
248  }
249
250  if (Found.empty() && !isDependent) {
251    // If we did not find any names, attempt to correct any typos.
252    DeclarationName Name = Found.getLookupName();
253    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
254                                                 false, CTC_CXXCasts)) {
255      FilterAcceptableTemplateNames(Context, Found);
256      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
257        if (LookupCtx)
258          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
259            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
260            << FixItHint::CreateReplacement(Found.getNameLoc(),
261                                          Found.getLookupName().getAsString());
262        else
263          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
264            << Name << Found.getLookupName()
265            << FixItHint::CreateReplacement(Found.getNameLoc(),
266                                          Found.getLookupName().getAsString());
267        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
268          Diag(Template->getLocation(), diag::note_previous_decl)
269            << Template->getDeclName();
270      } else
271        Found.clear();
272    } else {
273      Found.clear();
274    }
275  }
276
277  FilterAcceptableTemplateNames(Context, Found);
278  if (Found.empty())
279    return;
280
281  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
282    // C++ [basic.lookup.classref]p1:
283    //   [...] If the lookup in the class of the object expression finds a
284    //   template, the name is also looked up in the context of the entire
285    //   postfix-expression and [...]
286    //
287    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
288                            LookupOrdinaryName);
289    LookupName(FoundOuter, S);
290    FilterAcceptableTemplateNames(Context, FoundOuter);
291
292    if (FoundOuter.empty()) {
293      //   - if the name is not found, the name found in the class of the
294      //     object expression is used, otherwise
295    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
296      //   - if the name is found in the context of the entire
297      //     postfix-expression and does not name a class template, the name
298      //     found in the class of the object expression is used, otherwise
299    } else {
300      //   - if the name found is a class template, it must refer to the same
301      //     entity as the one found in the class of the object expression,
302      //     otherwise the program is ill-formed.
303      if (!Found.isSingleResult() ||
304          Found.getFoundDecl()->getCanonicalDecl()
305            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
306        Diag(Found.getNameLoc(),
307             diag::err_nested_name_member_ref_lookup_ambiguous)
308          << Found.getLookupName();
309        Diag(Found.getRepresentativeDecl()->getLocation(),
310             diag::note_ambig_member_ref_object_type)
311          << ObjectType;
312        Diag(FoundOuter.getFoundDecl()->getLocation(),
313             diag::note_ambig_member_ref_scope);
314
315        // Recover by taking the template that we found in the object
316        // expression's type.
317      }
318    }
319  }
320}
321
322/// ActOnDependentIdExpression - Handle a dependent id-expression that
323/// was just parsed.  This is only possible with an explicit scope
324/// specifier naming a dependent type.
325Sema::OwningExprResult
326Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
327                                 DeclarationName Name,
328                                 SourceLocation NameLoc,
329                                 bool isAddressOfOperand,
330                           const TemplateArgumentListInfo *TemplateArgs) {
331  NestedNameSpecifier *Qualifier
332    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
333
334  if (!isAddressOfOperand &&
335      isa<CXXMethodDecl>(CurContext) &&
336      cast<CXXMethodDecl>(CurContext)->isInstance()) {
337    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
338
339    // Since the 'this' expression is synthesized, we don't need to
340    // perform the double-lookup check.
341    NamedDecl *FirstQualifierInScope = 0;
342
343    return Owned(CXXDependentScopeMemberExpr::Create(Context,
344                                                     /*This*/ 0, ThisType,
345                                                     /*IsArrow*/ true,
346                                                     /*Op*/ SourceLocation(),
347                                                     Qualifier, SS.getRange(),
348                                                     FirstQualifierInScope,
349                                                     Name, NameLoc,
350                                                     TemplateArgs));
351  }
352
353  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
354}
355
356Sema::OwningExprResult
357Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
358                                DeclarationName Name,
359                                SourceLocation NameLoc,
360                                const TemplateArgumentListInfo *TemplateArgs) {
361  return Owned(DependentScopeDeclRefExpr::Create(Context,
362               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
363                                                 SS.getRange(),
364                                                 Name, NameLoc,
365                                                 TemplateArgs));
366}
367
368/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
369/// that the template parameter 'PrevDecl' is being shadowed by a new
370/// declaration at location Loc. Returns true to indicate that this is
371/// an error, and false otherwise.
372bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
373  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
374
375  // Microsoft Visual C++ permits template parameters to be shadowed.
376  if (getLangOptions().Microsoft)
377    return false;
378
379  // C++ [temp.local]p4:
380  //   A template-parameter shall not be redeclared within its
381  //   scope (including nested scopes).
382  Diag(Loc, diag::err_template_param_shadow)
383    << cast<NamedDecl>(PrevDecl)->getDeclName();
384  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
385  return true;
386}
387
388/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
389/// the parameter D to reference the templated declaration and return a pointer
390/// to the template declaration. Otherwise, do nothing to D and return null.
391TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
392  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
393    D = DeclPtrTy::make(Temp->getTemplatedDecl());
394    return Temp;
395  }
396  return 0;
397}
398
399static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
400                                            const ParsedTemplateArgument &Arg) {
401
402  switch (Arg.getKind()) {
403  case ParsedTemplateArgument::Type: {
404    TypeSourceInfo *DI;
405    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
406    if (!DI)
407      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
408    return TemplateArgumentLoc(TemplateArgument(T), DI);
409  }
410
411  case ParsedTemplateArgument::NonType: {
412    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
413    return TemplateArgumentLoc(TemplateArgument(E), E);
414  }
415
416  case ParsedTemplateArgument::Template: {
417    TemplateName Template
418      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
419    return TemplateArgumentLoc(TemplateArgument(Template),
420                               Arg.getScopeSpec().getRange(),
421                               Arg.getLocation());
422  }
423  }
424
425  llvm_unreachable("Unhandled parsed template argument");
426  return TemplateArgumentLoc();
427}
428
429/// \brief Translates template arguments as provided by the parser
430/// into template arguments used by semantic analysis.
431void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
432                                      TemplateArgumentListInfo &TemplateArgs) {
433 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
434   TemplateArgs.addArgument(translateTemplateArgument(*this,
435                                                      TemplateArgsIn[I]));
436}
437
438/// ActOnTypeParameter - Called when a C++ template type parameter
439/// (e.g., "typename T") has been parsed. Typename specifies whether
440/// the keyword "typename" was used to declare the type parameter
441/// (otherwise, "class" was used), and KeyLoc is the location of the
442/// "class" or "typename" keyword. ParamName is the name of the
443/// parameter (NULL indicates an unnamed template parameter) and
444/// ParamName is the location of the parameter name (if any).
445/// If the type parameter has a default argument, it will be added
446/// later via ActOnTypeParameterDefault.
447Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
448                                         SourceLocation EllipsisLoc,
449                                         SourceLocation KeyLoc,
450                                         IdentifierInfo *ParamName,
451                                         SourceLocation ParamNameLoc,
452                                         unsigned Depth, unsigned Position) {
453  assert(S->isTemplateParamScope() &&
454         "Template type parameter not in template parameter scope!");
455  bool Invalid = false;
456
457  if (ParamName) {
458    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
459                                           LookupOrdinaryName,
460                                           ForRedeclaration);
461    if (PrevDecl && PrevDecl->isTemplateParameter())
462      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
463                                                           PrevDecl);
464  }
465
466  SourceLocation Loc = ParamNameLoc;
467  if (!ParamName)
468    Loc = KeyLoc;
469
470  TemplateTypeParmDecl *Param
471    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
472                                   Loc, Depth, Position, ParamName, Typename,
473                                   Ellipsis);
474  if (Invalid)
475    Param->setInvalidDecl();
476
477  if (ParamName) {
478    // Add the template parameter into the current scope.
479    S->AddDecl(DeclPtrTy::make(Param));
480    IdResolver.AddDecl(Param);
481  }
482
483  return DeclPtrTy::make(Param);
484}
485
486/// ActOnTypeParameterDefault - Adds a default argument (the type
487/// Default) to the given template type parameter (TypeParam).
488void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
489                                     SourceLocation EqualLoc,
490                                     SourceLocation DefaultLoc,
491                                     TypeTy *DefaultT) {
492  TemplateTypeParmDecl *Parm
493    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
494
495  TypeSourceInfo *DefaultTInfo;
496  GetTypeFromParser(DefaultT, &DefaultTInfo);
497
498  assert(DefaultTInfo && "expected source information for type");
499
500  // C++0x [temp.param]p9:
501  // A default template-argument may be specified for any kind of
502  // template-parameter that is not a template parameter pack.
503  if (Parm->isParameterPack()) {
504    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
505    return;
506  }
507
508  // C++ [temp.param]p14:
509  //   A template-parameter shall not be used in its own default argument.
510  // FIXME: Implement this check! Needs a recursive walk over the types.
511
512  // Check the template argument itself.
513  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
514    Parm->setInvalidDecl();
515    return;
516  }
517
518  Parm->setDefaultArgument(DefaultTInfo, false);
519}
520
521/// \brief Check that the type of a non-type template parameter is
522/// well-formed.
523///
524/// \returns the (possibly-promoted) parameter type if valid;
525/// otherwise, produces a diagnostic and returns a NULL type.
526QualType
527Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
528  // C++ [temp.param]p4:
529  //
530  // A non-type template-parameter shall have one of the following
531  // (optionally cv-qualified) types:
532  //
533  //       -- integral or enumeration type,
534  if (T->isIntegralType() || T->isEnumeralType() ||
535      //   -- pointer to object or pointer to function,
536      (T->isPointerType() &&
537       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
538        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
539      //   -- reference to object or reference to function,
540      T->isReferenceType() ||
541      //   -- pointer to member.
542      T->isMemberPointerType() ||
543      // If T is a dependent type, we can't do the check now, so we
544      // assume that it is well-formed.
545      T->isDependentType())
546    return T;
547  // C++ [temp.param]p8:
548  //
549  //   A non-type template-parameter of type "array of T" or
550  //   "function returning T" is adjusted to be of type "pointer to
551  //   T" or "pointer to function returning T", respectively.
552  else if (T->isArrayType())
553    // FIXME: Keep the type prior to promotion?
554    return Context.getArrayDecayedType(T);
555  else if (T->isFunctionType())
556    // FIXME: Keep the type prior to promotion?
557    return Context.getPointerType(T);
558
559  Diag(Loc, diag::err_template_nontype_parm_bad_type)
560    << T;
561
562  return QualType();
563}
564
565/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
566/// template parameter (e.g., "int Size" in "template<int Size>
567/// class Array") has been parsed. S is the current scope and D is
568/// the parsed declarator.
569Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
570                                                    unsigned Depth,
571                                                    unsigned Position) {
572  TypeSourceInfo *TInfo = 0;
573  QualType T = GetTypeForDeclarator(D, S, &TInfo);
574
575  assert(S->isTemplateParamScope() &&
576         "Non-type template parameter not in template parameter scope!");
577  bool Invalid = false;
578
579  IdentifierInfo *ParamName = D.getIdentifier();
580  if (ParamName) {
581    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
582                                           LookupOrdinaryName,
583                                           ForRedeclaration);
584    if (PrevDecl && PrevDecl->isTemplateParameter())
585      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
586                                                           PrevDecl);
587  }
588
589  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
590  if (T.isNull()) {
591    T = Context.IntTy; // Recover with an 'int' type.
592    Invalid = true;
593  }
594
595  NonTypeTemplateParmDecl *Param
596    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
597                                      D.getIdentifierLoc(),
598                                      Depth, Position, ParamName, T, TInfo);
599  if (Invalid)
600    Param->setInvalidDecl();
601
602  if (D.getIdentifier()) {
603    // Add the template parameter into the current scope.
604    S->AddDecl(DeclPtrTy::make(Param));
605    IdResolver.AddDecl(Param);
606  }
607  return DeclPtrTy::make(Param);
608}
609
610/// \brief Adds a default argument to the given non-type template
611/// parameter.
612void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
613                                                SourceLocation EqualLoc,
614                                                ExprArg DefaultE) {
615  NonTypeTemplateParmDecl *TemplateParm
616    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
617  Expr *Default = static_cast<Expr *>(DefaultE.get());
618
619  // C++ [temp.param]p14:
620  //   A template-parameter shall not be used in its own default argument.
621  // FIXME: Implement this check! Needs a recursive walk over the types.
622
623  // Check the well-formedness of the default template argument.
624  TemplateArgument Converted;
625  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
626                            Converted)) {
627    TemplateParm->setInvalidDecl();
628    return;
629  }
630
631  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
632}
633
634
635/// ActOnTemplateTemplateParameter - Called when a C++ template template
636/// parameter (e.g. T in template <template <typename> class T> class array)
637/// has been parsed. S is the current scope.
638Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
639                                                     SourceLocation TmpLoc,
640                                                     TemplateParamsTy *Params,
641                                                     IdentifierInfo *Name,
642                                                     SourceLocation NameLoc,
643                                                     unsigned Depth,
644                                                     unsigned Position) {
645  assert(S->isTemplateParamScope() &&
646         "Template template parameter not in template parameter scope!");
647
648  // Construct the parameter object.
649  TemplateTemplateParmDecl *Param =
650    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
651                                     TmpLoc, Depth, Position, Name,
652                                     (TemplateParameterList*)Params);
653
654  // Make sure the parameter is valid.
655  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
656  // do anything yet. However, if the template parameter list or (eventual)
657  // default value is ever invalidated, that will propagate here.
658  bool Invalid = false;
659  if (Invalid) {
660    Param->setInvalidDecl();
661  }
662
663  // If the tt-param has a name, then link the identifier into the scope
664  // and lookup mechanisms.
665  if (Name) {
666    S->AddDecl(DeclPtrTy::make(Param));
667    IdResolver.AddDecl(Param);
668  }
669
670  return DeclPtrTy::make(Param);
671}
672
673/// \brief Adds a default argument to the given template template
674/// parameter.
675void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
676                                                 SourceLocation EqualLoc,
677                                        const ParsedTemplateArgument &Default) {
678  TemplateTemplateParmDecl *TemplateParm
679    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
680
681  // C++ [temp.param]p14:
682  //   A template-parameter shall not be used in its own default argument.
683  // FIXME: Implement this check! Needs a recursive walk over the types.
684
685  // Check only that we have a template template argument. We don't want to
686  // try to check well-formedness now, because our template template parameter
687  // might have dependent types in its template parameters, which we wouldn't
688  // be able to match now.
689  //
690  // If none of the template template parameter's template arguments mention
691  // other template parameters, we could actually perform more checking here.
692  // However, it isn't worth doing.
693  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
694  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
695    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
696      << DefaultArg.getSourceRange();
697    return;
698  }
699
700  TemplateParm->setDefaultArgument(DefaultArg);
701}
702
703/// ActOnTemplateParameterList - Builds a TemplateParameterList that
704/// contains the template parameters in Params/NumParams.
705Sema::TemplateParamsTy *
706Sema::ActOnTemplateParameterList(unsigned Depth,
707                                 SourceLocation ExportLoc,
708                                 SourceLocation TemplateLoc,
709                                 SourceLocation LAngleLoc,
710                                 DeclPtrTy *Params, unsigned NumParams,
711                                 SourceLocation RAngleLoc) {
712  if (ExportLoc.isValid())
713    Diag(ExportLoc, diag::warn_template_export_unsupported);
714
715  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
716                                       (NamedDecl**)Params, NumParams,
717                                       RAngleLoc);
718}
719
720static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
721  if (SS.isSet())
722    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
723                        SS.getRange());
724}
725
726Sema::DeclResult
727Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
728                         SourceLocation KWLoc, CXXScopeSpec &SS,
729                         IdentifierInfo *Name, SourceLocation NameLoc,
730                         AttributeList *Attr,
731                         TemplateParameterList *TemplateParams,
732                         AccessSpecifier AS) {
733  assert(TemplateParams && TemplateParams->size() > 0 &&
734         "No template parameters");
735  assert(TUK != TUK_Reference && "Can only declare or define class templates");
736  bool Invalid = false;
737
738  // Check that we can declare a template here.
739  if (CheckTemplateDeclScope(S, TemplateParams))
740    return true;
741
742  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
743  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
744
745  // There is no such thing as an unnamed class template.
746  if (!Name) {
747    Diag(KWLoc, diag::err_template_unnamed_class);
748    return true;
749  }
750
751  // Find any previous declaration with this name.
752  DeclContext *SemanticContext;
753  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
754                        ForRedeclaration);
755  if (SS.isNotEmpty() && !SS.isInvalid()) {
756    if (RequireCompleteDeclContext(SS))
757      return true;
758
759    SemanticContext = computeDeclContext(SS, true);
760    if (!SemanticContext) {
761      // FIXME: Produce a reasonable diagnostic here
762      return true;
763    }
764
765    LookupQualifiedName(Previous, SemanticContext);
766  } else {
767    SemanticContext = CurContext;
768    LookupName(Previous, S);
769  }
770
771  if (Previous.isAmbiguous())
772    return true;
773
774  NamedDecl *PrevDecl = 0;
775  if (Previous.begin() != Previous.end())
776    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
777
778  // If there is a previous declaration with the same name, check
779  // whether this is a valid redeclaration.
780  ClassTemplateDecl *PrevClassTemplate
781    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
782
783  // We may have found the injected-class-name of a class template,
784  // class template partial specialization, or class template specialization.
785  // In these cases, grab the template that is being defined or specialized.
786  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
787      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
788    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
789    PrevClassTemplate
790      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
791    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
792      PrevClassTemplate
793        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
794            ->getSpecializedTemplate();
795    }
796  }
797
798  if (TUK == TUK_Friend) {
799    // C++ [namespace.memdef]p3:
800    //   [...] When looking for a prior declaration of a class or a function
801    //   declared as a friend, and when the name of the friend class or
802    //   function is neither a qualified name nor a template-id, scopes outside
803    //   the innermost enclosing namespace scope are not considered.
804    if (!SS.isSet()) {
805      DeclContext *OutermostContext = CurContext;
806      while (!OutermostContext->isFileContext())
807        OutermostContext = OutermostContext->getLookupParent();
808
809      if (PrevDecl &&
810          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
811           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
812        SemanticContext = PrevDecl->getDeclContext();
813      } else {
814        // Declarations in outer scopes don't matter. However, the outermost
815        // context we computed is the semantic context for our new
816        // declaration.
817        PrevDecl = PrevClassTemplate = 0;
818        SemanticContext = OutermostContext;
819      }
820    }
821
822    if (CurContext->isDependentContext()) {
823      // If this is a dependent context, we don't want to link the friend
824      // class template to the template in scope, because that would perform
825      // checking of the template parameter lists that can't be performed
826      // until the outer context is instantiated.
827      PrevDecl = PrevClassTemplate = 0;
828    }
829  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
830    PrevDecl = PrevClassTemplate = 0;
831
832  if (PrevClassTemplate) {
833    // Ensure that the template parameter lists are compatible.
834    if (!TemplateParameterListsAreEqual(TemplateParams,
835                                   PrevClassTemplate->getTemplateParameters(),
836                                        /*Complain=*/true,
837                                        TPL_TemplateMatch))
838      return true;
839
840    // C++ [temp.class]p4:
841    //   In a redeclaration, partial specialization, explicit
842    //   specialization or explicit instantiation of a class template,
843    //   the class-key shall agree in kind with the original class
844    //   template declaration (7.1.5.3).
845    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
846    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
847      Diag(KWLoc, diag::err_use_with_wrong_tag)
848        << Name
849        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
850      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
851      Kind = PrevRecordDecl->getTagKind();
852    }
853
854    // Check for redefinition of this class template.
855    if (TUK == TUK_Definition) {
856      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
857        Diag(NameLoc, diag::err_redefinition) << Name;
858        Diag(Def->getLocation(), diag::note_previous_definition);
859        // FIXME: Would it make sense to try to "forget" the previous
860        // definition, as part of error recovery?
861        return true;
862      }
863    }
864  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
865    // Maybe we will complain about the shadowed template parameter.
866    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
867    // Just pretend that we didn't see the previous declaration.
868    PrevDecl = 0;
869  } else if (PrevDecl) {
870    // C++ [temp]p5:
871    //   A class template shall not have the same name as any other
872    //   template, class, function, object, enumeration, enumerator,
873    //   namespace, or type in the same scope (3.3), except as specified
874    //   in (14.5.4).
875    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
876    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
877    return true;
878  }
879
880  // Check the template parameter list of this declaration, possibly
881  // merging in the template parameter list from the previous class
882  // template declaration.
883  if (CheckTemplateParameterList(TemplateParams,
884            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
885                                 TPC_ClassTemplate))
886    Invalid = true;
887
888  if (SS.isSet()) {
889    // If the name of the template was qualified, we must be defining the
890    // template out-of-line.
891    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
892        !(TUK == TUK_Friend && CurContext->isDependentContext()))
893      Diag(NameLoc, diag::err_member_def_does_not_match)
894        << Name << SemanticContext << SS.getRange();
895  }
896
897  CXXRecordDecl *NewClass =
898    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
899                          PrevClassTemplate?
900                            PrevClassTemplate->getTemplatedDecl() : 0,
901                          /*DelayTypeCreation=*/true);
902  SetNestedNameSpecifier(NewClass, SS);
903
904  ClassTemplateDecl *NewTemplate
905    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
906                                DeclarationName(Name), TemplateParams,
907                                NewClass, PrevClassTemplate);
908  NewClass->setDescribedClassTemplate(NewTemplate);
909
910  // Build the type for the class template declaration now.
911  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
912  T = Context.getInjectedClassNameType(NewClass, T);
913  assert(T->isDependentType() && "Class template type is not dependent?");
914  (void)T;
915
916  // If we are providing an explicit specialization of a member that is a
917  // class template, make a note of that.
918  if (PrevClassTemplate &&
919      PrevClassTemplate->getInstantiatedFromMemberTemplate())
920    PrevClassTemplate->setMemberSpecialization();
921
922  // Set the access specifier.
923  if (!Invalid && TUK != TUK_Friend)
924    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
925
926  // Set the lexical context of these templates
927  NewClass->setLexicalDeclContext(CurContext);
928  NewTemplate->setLexicalDeclContext(CurContext);
929
930  if (TUK == TUK_Definition)
931    NewClass->startDefinition();
932
933  if (Attr)
934    ProcessDeclAttributeList(S, NewClass, Attr);
935
936  if (TUK != TUK_Friend)
937    PushOnScopeChains(NewTemplate, S);
938  else {
939    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
940      NewTemplate->setAccess(PrevClassTemplate->getAccess());
941      NewClass->setAccess(PrevClassTemplate->getAccess());
942    }
943
944    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
945                                       PrevClassTemplate != NULL);
946
947    // Friend templates are visible in fairly strange ways.
948    if (!CurContext->isDependentContext()) {
949      DeclContext *DC = SemanticContext->getLookupContext();
950      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
951      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
952        PushOnScopeChains(NewTemplate, EnclosingScope,
953                          /* AddToContext = */ false);
954    }
955
956    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
957                                            NewClass->getLocation(),
958                                            NewTemplate,
959                                    /*FIXME:*/NewClass->getLocation());
960    Friend->setAccess(AS_public);
961    CurContext->addDecl(Friend);
962  }
963
964  if (Invalid) {
965    NewTemplate->setInvalidDecl();
966    NewClass->setInvalidDecl();
967  }
968  return DeclPtrTy::make(NewTemplate);
969}
970
971/// \brief Diagnose the presence of a default template argument on a
972/// template parameter, which is ill-formed in certain contexts.
973///
974/// \returns true if the default template argument should be dropped.
975static bool DiagnoseDefaultTemplateArgument(Sema &S,
976                                            Sema::TemplateParamListContext TPC,
977                                            SourceLocation ParamLoc,
978                                            SourceRange DefArgRange) {
979  switch (TPC) {
980  case Sema::TPC_ClassTemplate:
981    return false;
982
983  case Sema::TPC_FunctionTemplate:
984    // C++ [temp.param]p9:
985    //   A default template-argument shall not be specified in a
986    //   function template declaration or a function template
987    //   definition [...]
988    // (This sentence is not in C++0x, per DR226).
989    if (!S.getLangOptions().CPlusPlus0x)
990      S.Diag(ParamLoc,
991             diag::err_template_parameter_default_in_function_template)
992        << DefArgRange;
993    return false;
994
995  case Sema::TPC_ClassTemplateMember:
996    // C++0x [temp.param]p9:
997    //   A default template-argument shall not be specified in the
998    //   template-parameter-lists of the definition of a member of a
999    //   class template that appears outside of the member's class.
1000    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1001      << DefArgRange;
1002    return true;
1003
1004  case Sema::TPC_FriendFunctionTemplate:
1005    // C++ [temp.param]p9:
1006    //   A default template-argument shall not be specified in a
1007    //   friend template declaration.
1008    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1009      << DefArgRange;
1010    return true;
1011
1012    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1013    // for friend function templates if there is only a single
1014    // declaration (and it is a definition). Strange!
1015  }
1016
1017  return false;
1018}
1019
1020/// \brief Checks the validity of a template parameter list, possibly
1021/// considering the template parameter list from a previous
1022/// declaration.
1023///
1024/// If an "old" template parameter list is provided, it must be
1025/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1026/// template parameter list.
1027///
1028/// \param NewParams Template parameter list for a new template
1029/// declaration. This template parameter list will be updated with any
1030/// default arguments that are carried through from the previous
1031/// template parameter list.
1032///
1033/// \param OldParams If provided, template parameter list from a
1034/// previous declaration of the same template. Default template
1035/// arguments will be merged from the old template parameter list to
1036/// the new template parameter list.
1037///
1038/// \param TPC Describes the context in which we are checking the given
1039/// template parameter list.
1040///
1041/// \returns true if an error occurred, false otherwise.
1042bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1043                                      TemplateParameterList *OldParams,
1044                                      TemplateParamListContext TPC) {
1045  bool Invalid = false;
1046
1047  // C++ [temp.param]p10:
1048  //   The set of default template-arguments available for use with a
1049  //   template declaration or definition is obtained by merging the
1050  //   default arguments from the definition (if in scope) and all
1051  //   declarations in scope in the same way default function
1052  //   arguments are (8.3.6).
1053  bool SawDefaultArgument = false;
1054  SourceLocation PreviousDefaultArgLoc;
1055
1056  bool SawParameterPack = false;
1057  SourceLocation ParameterPackLoc;
1058
1059  // Dummy initialization to avoid warnings.
1060  TemplateParameterList::iterator OldParam = NewParams->end();
1061  if (OldParams)
1062    OldParam = OldParams->begin();
1063
1064  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1065                                    NewParamEnd = NewParams->end();
1066       NewParam != NewParamEnd; ++NewParam) {
1067    // Variables used to diagnose redundant default arguments
1068    bool RedundantDefaultArg = false;
1069    SourceLocation OldDefaultLoc;
1070    SourceLocation NewDefaultLoc;
1071
1072    // Variables used to diagnose missing default arguments
1073    bool MissingDefaultArg = false;
1074
1075    // C++0x [temp.param]p11:
1076    // If a template parameter of a class template is a template parameter pack,
1077    // it must be the last template parameter.
1078    if (SawParameterPack) {
1079      Diag(ParameterPackLoc,
1080           diag::err_template_param_pack_must_be_last_template_parameter);
1081      Invalid = true;
1082    }
1083
1084    if (TemplateTypeParmDecl *NewTypeParm
1085          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1086      // Check the presence of a default argument here.
1087      if (NewTypeParm->hasDefaultArgument() &&
1088          DiagnoseDefaultTemplateArgument(*this, TPC,
1089                                          NewTypeParm->getLocation(),
1090               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1091                                                       .getFullSourceRange()))
1092        NewTypeParm->removeDefaultArgument();
1093
1094      // Merge default arguments for template type parameters.
1095      TemplateTypeParmDecl *OldTypeParm
1096          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1097
1098      if (NewTypeParm->isParameterPack()) {
1099        assert(!NewTypeParm->hasDefaultArgument() &&
1100               "Parameter packs can't have a default argument!");
1101        SawParameterPack = true;
1102        ParameterPackLoc = NewTypeParm->getLocation();
1103      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1104                 NewTypeParm->hasDefaultArgument()) {
1105        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1106        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1107        SawDefaultArgument = true;
1108        RedundantDefaultArg = true;
1109        PreviousDefaultArgLoc = NewDefaultLoc;
1110      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1111        // Merge the default argument from the old declaration to the
1112        // new declaration.
1113        SawDefaultArgument = true;
1114        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1115                                        true);
1116        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1117      } else if (NewTypeParm->hasDefaultArgument()) {
1118        SawDefaultArgument = true;
1119        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1120      } else if (SawDefaultArgument)
1121        MissingDefaultArg = true;
1122    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1123               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1124      // Check the presence of a default argument here.
1125      if (NewNonTypeParm->hasDefaultArgument() &&
1126          DiagnoseDefaultTemplateArgument(*this, TPC,
1127                                          NewNonTypeParm->getLocation(),
1128                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1129        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1130        NewNonTypeParm->setDefaultArgument(0);
1131      }
1132
1133      // Merge default arguments for non-type template parameters
1134      NonTypeTemplateParmDecl *OldNonTypeParm
1135        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1136      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1137          NewNonTypeParm->hasDefaultArgument()) {
1138        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1139        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1140        SawDefaultArgument = true;
1141        RedundantDefaultArg = true;
1142        PreviousDefaultArgLoc = NewDefaultLoc;
1143      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1144        // Merge the default argument from the old declaration to the
1145        // new declaration.
1146        SawDefaultArgument = true;
1147        // FIXME: We need to create a new kind of "default argument"
1148        // expression that points to a previous template template
1149        // parameter.
1150        NewNonTypeParm->setDefaultArgument(
1151                                        OldNonTypeParm->getDefaultArgument());
1152        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1153      } else if (NewNonTypeParm->hasDefaultArgument()) {
1154        SawDefaultArgument = true;
1155        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1156      } else if (SawDefaultArgument)
1157        MissingDefaultArg = true;
1158    } else {
1159      // Check the presence of a default argument here.
1160      TemplateTemplateParmDecl *NewTemplateParm
1161        = cast<TemplateTemplateParmDecl>(*NewParam);
1162      if (NewTemplateParm->hasDefaultArgument() &&
1163          DiagnoseDefaultTemplateArgument(*this, TPC,
1164                                          NewTemplateParm->getLocation(),
1165                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1166        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1167
1168      // Merge default arguments for template template parameters
1169      TemplateTemplateParmDecl *OldTemplateParm
1170        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1171      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1172          NewTemplateParm->hasDefaultArgument()) {
1173        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1174        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1175        SawDefaultArgument = true;
1176        RedundantDefaultArg = true;
1177        PreviousDefaultArgLoc = NewDefaultLoc;
1178      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1179        // Merge the default argument from the old declaration to the
1180        // new declaration.
1181        SawDefaultArgument = true;
1182        // FIXME: We need to create a new kind of "default argument" expression
1183        // that points to a previous template template parameter.
1184        NewTemplateParm->setDefaultArgument(
1185                                        OldTemplateParm->getDefaultArgument());
1186        PreviousDefaultArgLoc
1187          = OldTemplateParm->getDefaultArgument().getLocation();
1188      } else if (NewTemplateParm->hasDefaultArgument()) {
1189        SawDefaultArgument = true;
1190        PreviousDefaultArgLoc
1191          = NewTemplateParm->getDefaultArgument().getLocation();
1192      } else if (SawDefaultArgument)
1193        MissingDefaultArg = true;
1194    }
1195
1196    if (RedundantDefaultArg) {
1197      // C++ [temp.param]p12:
1198      //   A template-parameter shall not be given default arguments
1199      //   by two different declarations in the same scope.
1200      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1201      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1202      Invalid = true;
1203    } else if (MissingDefaultArg) {
1204      // C++ [temp.param]p11:
1205      //   If a template-parameter has a default template-argument,
1206      //   all subsequent template-parameters shall have a default
1207      //   template-argument supplied.
1208      Diag((*NewParam)->getLocation(),
1209           diag::err_template_param_default_arg_missing);
1210      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1211      Invalid = true;
1212    }
1213
1214    // If we have an old template parameter list that we're merging
1215    // in, move on to the next parameter.
1216    if (OldParams)
1217      ++OldParam;
1218  }
1219
1220  return Invalid;
1221}
1222
1223/// \brief Match the given template parameter lists to the given scope
1224/// specifier, returning the template parameter list that applies to the
1225/// name.
1226///
1227/// \param DeclStartLoc the start of the declaration that has a scope
1228/// specifier or a template parameter list.
1229///
1230/// \param SS the scope specifier that will be matched to the given template
1231/// parameter lists. This scope specifier precedes a qualified name that is
1232/// being declared.
1233///
1234/// \param ParamLists the template parameter lists, from the outermost to the
1235/// innermost template parameter lists.
1236///
1237/// \param NumParamLists the number of template parameter lists in ParamLists.
1238///
1239/// \param IsFriend Whether to apply the slightly different rules for
1240/// matching template parameters to scope specifiers in friend
1241/// declarations.
1242///
1243/// \param IsExplicitSpecialization will be set true if the entity being
1244/// declared is an explicit specialization, false otherwise.
1245///
1246/// \returns the template parameter list, if any, that corresponds to the
1247/// name that is preceded by the scope specifier @p SS. This template
1248/// parameter list may be have template parameters (if we're declaring a
1249/// template) or may have no template parameters (if we're declaring a
1250/// template specialization), or may be NULL (if we were's declaring isn't
1251/// itself a template).
1252TemplateParameterList *
1253Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1254                                              const CXXScopeSpec &SS,
1255                                          TemplateParameterList **ParamLists,
1256                                              unsigned NumParamLists,
1257                                              bool IsFriend,
1258                                              bool &IsExplicitSpecialization) {
1259  IsExplicitSpecialization = false;
1260
1261  // Find the template-ids that occur within the nested-name-specifier. These
1262  // template-ids will match up with the template parameter lists.
1263  llvm::SmallVector<const TemplateSpecializationType *, 4>
1264    TemplateIdsInSpecifier;
1265  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1266    ExplicitSpecializationsInSpecifier;
1267  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1268       NNS; NNS = NNS->getPrefix()) {
1269    const Type *T = NNS->getAsType();
1270    if (!T) break;
1271
1272    // C++0x [temp.expl.spec]p17:
1273    //   A member or a member template may be nested within many
1274    //   enclosing class templates. In an explicit specialization for
1275    //   such a member, the member declaration shall be preceded by a
1276    //   template<> for each enclosing class template that is
1277    //   explicitly specialized.
1278    //
1279    // Following the existing practice of GNU and EDG, we allow a typedef of a
1280    // template specialization type.
1281    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1282      T = TT->LookThroughTypedefs().getTypePtr();
1283
1284    if (const TemplateSpecializationType *SpecType
1285                                  = dyn_cast<TemplateSpecializationType>(T)) {
1286      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1287      if (!Template)
1288        continue; // FIXME: should this be an error? probably...
1289
1290      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1291        ClassTemplateSpecializationDecl *SpecDecl
1292          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1293        // If the nested name specifier refers to an explicit specialization,
1294        // we don't need a template<> header.
1295        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1296          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1297          continue;
1298        }
1299      }
1300
1301      TemplateIdsInSpecifier.push_back(SpecType);
1302    }
1303  }
1304
1305  // Reverse the list of template-ids in the scope specifier, so that we can
1306  // more easily match up the template-ids and the template parameter lists.
1307  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1308
1309  SourceLocation FirstTemplateLoc = DeclStartLoc;
1310  if (NumParamLists)
1311    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1312
1313  // Match the template-ids found in the specifier to the template parameter
1314  // lists.
1315  unsigned Idx = 0;
1316  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1317       Idx != NumTemplateIds; ++Idx) {
1318    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1319    bool DependentTemplateId = TemplateId->isDependentType();
1320    if (Idx >= NumParamLists) {
1321      // We have a template-id without a corresponding template parameter
1322      // list.
1323
1324      // ...which is fine if this is a friend declaration.
1325      if (IsFriend) {
1326        IsExplicitSpecialization = true;
1327        break;
1328      }
1329
1330      if (DependentTemplateId) {
1331        // FIXME: the location information here isn't great.
1332        Diag(SS.getRange().getBegin(),
1333             diag::err_template_spec_needs_template_parameters)
1334          << TemplateId
1335          << SS.getRange();
1336      } else {
1337        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1338          << SS.getRange()
1339          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1340        IsExplicitSpecialization = true;
1341      }
1342      return 0;
1343    }
1344
1345    // Check the template parameter list against its corresponding template-id.
1346    if (DependentTemplateId) {
1347      TemplateDecl *Template
1348        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1349
1350      if (ClassTemplateDecl *ClassTemplate
1351            = dyn_cast<ClassTemplateDecl>(Template)) {
1352        TemplateParameterList *ExpectedTemplateParams = 0;
1353        // Is this template-id naming the primary template?
1354        if (Context.hasSameType(TemplateId,
1355                 ClassTemplate->getInjectedClassNameSpecialization(Context)))
1356          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1357        // ... or a partial specialization?
1358        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1359                   = ClassTemplate->findPartialSpecialization(TemplateId))
1360          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1361
1362        if (ExpectedTemplateParams)
1363          TemplateParameterListsAreEqual(ParamLists[Idx],
1364                                         ExpectedTemplateParams,
1365                                         true, TPL_TemplateMatch);
1366      }
1367
1368      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1369    } else if (ParamLists[Idx]->size() > 0)
1370      Diag(ParamLists[Idx]->getTemplateLoc(),
1371           diag::err_template_param_list_matches_nontemplate)
1372        << TemplateId
1373        << ParamLists[Idx]->getSourceRange();
1374    else
1375      IsExplicitSpecialization = true;
1376  }
1377
1378  // If there were at least as many template-ids as there were template
1379  // parameter lists, then there are no template parameter lists remaining for
1380  // the declaration itself.
1381  if (Idx >= NumParamLists)
1382    return 0;
1383
1384  // If there were too many template parameter lists, complain about that now.
1385  if (Idx != NumParamLists - 1) {
1386    while (Idx < NumParamLists - 1) {
1387      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1388      Diag(ParamLists[Idx]->getTemplateLoc(),
1389           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1390                               : diag::err_template_spec_extra_headers)
1391        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1392                       ParamLists[Idx]->getRAngleLoc());
1393
1394      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1395        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1396             diag::note_explicit_template_spec_does_not_need_header)
1397          << ExplicitSpecializationsInSpecifier.back();
1398        ExplicitSpecializationsInSpecifier.pop_back();
1399      }
1400
1401      ++Idx;
1402    }
1403  }
1404
1405  // Return the last template parameter list, which corresponds to the
1406  // entity being declared.
1407  return ParamLists[NumParamLists - 1];
1408}
1409
1410QualType Sema::CheckTemplateIdType(TemplateName Name,
1411                                   SourceLocation TemplateLoc,
1412                              const TemplateArgumentListInfo &TemplateArgs) {
1413  TemplateDecl *Template = Name.getAsTemplateDecl();
1414  if (!Template) {
1415    // The template name does not resolve to a template, so we just
1416    // build a dependent template-id type.
1417    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1418  }
1419
1420  // Check that the template argument list is well-formed for this
1421  // template.
1422  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1423                                        TemplateArgs.size());
1424  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1425                                false, Converted))
1426    return QualType();
1427
1428  assert((Converted.structuredSize() ==
1429            Template->getTemplateParameters()->size()) &&
1430         "Converted template argument list is too short!");
1431
1432  QualType CanonType;
1433
1434  if (Name.isDependent() ||
1435      TemplateSpecializationType::anyDependentTemplateArguments(
1436                                                      TemplateArgs)) {
1437    // This class template specialization is a dependent
1438    // type. Therefore, its canonical type is another class template
1439    // specialization type that contains all of the converted
1440    // arguments in canonical form. This ensures that, e.g., A<T> and
1441    // A<T, T> have identical types when A is declared as:
1442    //
1443    //   template<typename T, typename U = T> struct A;
1444    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1445    CanonType = Context.getTemplateSpecializationType(CanonName,
1446                                                   Converted.getFlatArguments(),
1447                                                   Converted.flatSize());
1448
1449    // FIXME: CanonType is not actually the canonical type, and unfortunately
1450    // it is a TemplateSpecializationType that we will never use again.
1451    // In the future, we need to teach getTemplateSpecializationType to only
1452    // build the canonical type and return that to us.
1453    CanonType = Context.getCanonicalType(CanonType);
1454  } else if (ClassTemplateDecl *ClassTemplate
1455               = dyn_cast<ClassTemplateDecl>(Template)) {
1456    // Find the class template specialization declaration that
1457    // corresponds to these arguments.
1458    llvm::FoldingSetNodeID ID;
1459    ClassTemplateSpecializationDecl::Profile(ID,
1460                                             Converted.getFlatArguments(),
1461                                             Converted.flatSize(),
1462                                             Context);
1463    void *InsertPos = 0;
1464    ClassTemplateSpecializationDecl *Decl
1465      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1466    if (!Decl) {
1467      // This is the first time we have referenced this class template
1468      // specialization. Create the canonical declaration and add it to
1469      // the set of specializations.
1470      Decl = ClassTemplateSpecializationDecl::Create(Context,
1471                                    ClassTemplate->getDeclContext(),
1472                                    ClassTemplate->getLocation(),
1473                                    ClassTemplate,
1474                                    Converted, 0);
1475      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1476      Decl->setLexicalDeclContext(CurContext);
1477    }
1478
1479    CanonType = Context.getTypeDeclType(Decl);
1480    assert(isa<RecordType>(CanonType) &&
1481           "type of non-dependent specialization is not a RecordType");
1482  }
1483
1484  // Build the fully-sugared type for this class template
1485  // specialization, which refers back to the class template
1486  // specialization we created or found.
1487  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1488}
1489
1490Action::TypeResult
1491Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1492                          SourceLocation LAngleLoc,
1493                          ASTTemplateArgsPtr TemplateArgsIn,
1494                          SourceLocation RAngleLoc) {
1495  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1496
1497  // Translate the parser's template argument list in our AST format.
1498  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1499  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1500
1501  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1502  TemplateArgsIn.release();
1503
1504  if (Result.isNull())
1505    return true;
1506
1507  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1508  TemplateSpecializationTypeLoc TL
1509    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1510  TL.setTemplateNameLoc(TemplateLoc);
1511  TL.setLAngleLoc(LAngleLoc);
1512  TL.setRAngleLoc(RAngleLoc);
1513  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1514    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1515
1516  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1517}
1518
1519Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1520                                              TagUseKind TUK,
1521                                              DeclSpec::TST TagSpec,
1522                                              SourceLocation TagLoc) {
1523  if (TypeResult.isInvalid())
1524    return Sema::TypeResult();
1525
1526  // FIXME: preserve source info, ideally without copying the DI.
1527  TypeSourceInfo *DI;
1528  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1529
1530  // Verify the tag specifier.
1531  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1532
1533  if (const RecordType *RT = Type->getAs<RecordType>()) {
1534    RecordDecl *D = RT->getDecl();
1535
1536    IdentifierInfo *Id = D->getIdentifier();
1537    assert(Id && "templated class must have an identifier");
1538
1539    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1540      Diag(TagLoc, diag::err_use_with_wrong_tag)
1541        << Type
1542        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1543      Diag(D->getLocation(), diag::note_previous_use);
1544    }
1545  }
1546
1547  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1548
1549  return ElabType.getAsOpaquePtr();
1550}
1551
1552Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1553                                                 LookupResult &R,
1554                                                 bool RequiresADL,
1555                                 const TemplateArgumentListInfo &TemplateArgs) {
1556  // FIXME: Can we do any checking at this point? I guess we could check the
1557  // template arguments that we have against the template name, if the template
1558  // name refers to a single template. That's not a terribly common case,
1559  // though.
1560
1561  // These should be filtered out by our callers.
1562  assert(!R.empty() && "empty lookup results when building templateid");
1563  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1564
1565  NestedNameSpecifier *Qualifier = 0;
1566  SourceRange QualifierRange;
1567  if (SS.isSet()) {
1568    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1569    QualifierRange = SS.getRange();
1570  }
1571
1572  // We don't want lookup warnings at this point.
1573  R.suppressDiagnostics();
1574
1575  bool Dependent
1576    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1577                                              &TemplateArgs);
1578  UnresolvedLookupExpr *ULE
1579    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1580                                   Qualifier, QualifierRange,
1581                                   R.getLookupName(), R.getNameLoc(),
1582                                   RequiresADL, TemplateArgs);
1583  ULE->addDecls(R.begin(), R.end());
1584
1585  return Owned(ULE);
1586}
1587
1588// We actually only call this from template instantiation.
1589Sema::OwningExprResult
1590Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1591                                   DeclarationName Name,
1592                                   SourceLocation NameLoc,
1593                             const TemplateArgumentListInfo &TemplateArgs) {
1594  DeclContext *DC;
1595  if (!(DC = computeDeclContext(SS, false)) ||
1596      DC->isDependentContext() ||
1597      RequireCompleteDeclContext(SS))
1598    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1599
1600  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1601  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1602
1603  if (R.isAmbiguous())
1604    return ExprError();
1605
1606  if (R.empty()) {
1607    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1608      << Name << SS.getRange();
1609    return ExprError();
1610  }
1611
1612  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1613    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1614      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1615    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1616    return ExprError();
1617  }
1618
1619  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1620}
1621
1622/// \brief Form a dependent template name.
1623///
1624/// This action forms a dependent template name given the template
1625/// name and its (presumably dependent) scope specifier. For
1626/// example, given "MetaFun::template apply", the scope specifier \p
1627/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1628/// of the "template" keyword, and "apply" is the \p Name.
1629Sema::TemplateTy
1630Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1631                                 CXXScopeSpec &SS,
1632                                 UnqualifiedId &Name,
1633                                 TypeTy *ObjectType,
1634                                 bool EnteringContext) {
1635  DeclContext *LookupCtx = 0;
1636  if (SS.isSet())
1637    LookupCtx = computeDeclContext(SS, EnteringContext);
1638  if (!LookupCtx && ObjectType)
1639    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1640  if (LookupCtx) {
1641    // C++0x [temp.names]p5:
1642    //   If a name prefixed by the keyword template is not the name of
1643    //   a template, the program is ill-formed. [Note: the keyword
1644    //   template may not be applied to non-template members of class
1645    //   templates. -end note ] [ Note: as is the case with the
1646    //   typename prefix, the template prefix is allowed in cases
1647    //   where it is not strictly necessary; i.e., when the
1648    //   nested-name-specifier or the expression on the left of the ->
1649    //   or . is not dependent on a template-parameter, or the use
1650    //   does not appear in the scope of a template. -end note]
1651    //
1652    // Note: C++03 was more strict here, because it banned the use of
1653    // the "template" keyword prior to a template-name that was not a
1654    // dependent name. C++ DR468 relaxed this requirement (the
1655    // "template" keyword is now permitted). We follow the C++0x
1656    // rules, even in C++03 mode, retroactively applying the DR.
1657    TemplateTy Template;
1658    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1659                                          EnteringContext, Template);
1660    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1661        isa<CXXRecordDecl>(LookupCtx) &&
1662        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1663      // This is a dependent template.
1664    } else if (TNK == TNK_Non_template) {
1665      Diag(Name.getSourceRange().getBegin(),
1666           diag::err_template_kw_refers_to_non_template)
1667        << GetNameFromUnqualifiedId(Name)
1668        << Name.getSourceRange();
1669      return TemplateTy();
1670    } else {
1671      // We found something; return it.
1672      return Template;
1673    }
1674  }
1675
1676  NestedNameSpecifier *Qualifier
1677    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1678
1679  switch (Name.getKind()) {
1680  case UnqualifiedId::IK_Identifier:
1681    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1682                                                             Name.Identifier));
1683
1684  case UnqualifiedId::IK_OperatorFunctionId:
1685    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1686                                             Name.OperatorFunctionId.Operator));
1687
1688  case UnqualifiedId::IK_LiteralOperatorId:
1689    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1690
1691  default:
1692    break;
1693  }
1694
1695  Diag(Name.getSourceRange().getBegin(),
1696       diag::err_template_kw_refers_to_non_template)
1697    << GetNameFromUnqualifiedId(Name)
1698    << Name.getSourceRange();
1699  return TemplateTy();
1700}
1701
1702bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1703                                     const TemplateArgumentLoc &AL,
1704                                     TemplateArgumentListBuilder &Converted) {
1705  const TemplateArgument &Arg = AL.getArgument();
1706
1707  // Check template type parameter.
1708  switch(Arg.getKind()) {
1709  case TemplateArgument::Type:
1710    // C++ [temp.arg.type]p1:
1711    //   A template-argument for a template-parameter which is a
1712    //   type shall be a type-id.
1713    break;
1714  case TemplateArgument::Template: {
1715    // We have a template type parameter but the template argument
1716    // is a template without any arguments.
1717    SourceRange SR = AL.getSourceRange();
1718    TemplateName Name = Arg.getAsTemplate();
1719    Diag(SR.getBegin(), diag::err_template_missing_args)
1720      << Name << SR;
1721    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1722      Diag(Decl->getLocation(), diag::note_template_decl_here);
1723
1724    return true;
1725  }
1726  default: {
1727    // We have a template type parameter but the template argument
1728    // is not a type.
1729    SourceRange SR = AL.getSourceRange();
1730    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1731    Diag(Param->getLocation(), diag::note_template_param_here);
1732
1733    return true;
1734  }
1735  }
1736
1737  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1738    return true;
1739
1740  // Add the converted template type argument.
1741  Converted.Append(
1742                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1743  return false;
1744}
1745
1746/// \brief Substitute template arguments into the default template argument for
1747/// the given template type parameter.
1748///
1749/// \param SemaRef the semantic analysis object for which we are performing
1750/// the substitution.
1751///
1752/// \param Template the template that we are synthesizing template arguments
1753/// for.
1754///
1755/// \param TemplateLoc the location of the template name that started the
1756/// template-id we are checking.
1757///
1758/// \param RAngleLoc the location of the right angle bracket ('>') that
1759/// terminates the template-id.
1760///
1761/// \param Param the template template parameter whose default we are
1762/// substituting into.
1763///
1764/// \param Converted the list of template arguments provided for template
1765/// parameters that precede \p Param in the template parameter list.
1766///
1767/// \returns the substituted template argument, or NULL if an error occurred.
1768static TypeSourceInfo *
1769SubstDefaultTemplateArgument(Sema &SemaRef,
1770                             TemplateDecl *Template,
1771                             SourceLocation TemplateLoc,
1772                             SourceLocation RAngleLoc,
1773                             TemplateTypeParmDecl *Param,
1774                             TemplateArgumentListBuilder &Converted) {
1775  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1776
1777  // If the argument type is dependent, instantiate it now based
1778  // on the previously-computed template arguments.
1779  if (ArgType->getType()->isDependentType()) {
1780    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1781                                      /*TakeArgs=*/false);
1782
1783    MultiLevelTemplateArgumentList AllTemplateArgs
1784      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1785
1786    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1787                                     Template, Converted.getFlatArguments(),
1788                                     Converted.flatSize(),
1789                                     SourceRange(TemplateLoc, RAngleLoc));
1790
1791    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1792                                Param->getDefaultArgumentLoc(),
1793                                Param->getDeclName());
1794  }
1795
1796  return ArgType;
1797}
1798
1799/// \brief Substitute template arguments into the default template argument for
1800/// the given non-type template parameter.
1801///
1802/// \param SemaRef the semantic analysis object for which we are performing
1803/// the substitution.
1804///
1805/// \param Template the template that we are synthesizing template arguments
1806/// for.
1807///
1808/// \param TemplateLoc the location of the template name that started the
1809/// template-id we are checking.
1810///
1811/// \param RAngleLoc the location of the right angle bracket ('>') that
1812/// terminates the template-id.
1813///
1814/// \param Param the non-type template parameter whose default we are
1815/// substituting into.
1816///
1817/// \param Converted the list of template arguments provided for template
1818/// parameters that precede \p Param in the template parameter list.
1819///
1820/// \returns the substituted template argument, or NULL if an error occurred.
1821static Sema::OwningExprResult
1822SubstDefaultTemplateArgument(Sema &SemaRef,
1823                             TemplateDecl *Template,
1824                             SourceLocation TemplateLoc,
1825                             SourceLocation RAngleLoc,
1826                             NonTypeTemplateParmDecl *Param,
1827                             TemplateArgumentListBuilder &Converted) {
1828  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1829                                    /*TakeArgs=*/false);
1830
1831  MultiLevelTemplateArgumentList AllTemplateArgs
1832    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1833
1834  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1835                                   Template, Converted.getFlatArguments(),
1836                                   Converted.flatSize(),
1837                                   SourceRange(TemplateLoc, RAngleLoc));
1838
1839  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1840}
1841
1842/// \brief Substitute template arguments into the default template argument for
1843/// the given template template parameter.
1844///
1845/// \param SemaRef the semantic analysis object for which we are performing
1846/// the substitution.
1847///
1848/// \param Template the template that we are synthesizing template arguments
1849/// for.
1850///
1851/// \param TemplateLoc the location of the template name that started the
1852/// template-id we are checking.
1853///
1854/// \param RAngleLoc the location of the right angle bracket ('>') that
1855/// terminates the template-id.
1856///
1857/// \param Param the template template parameter whose default we are
1858/// substituting into.
1859///
1860/// \param Converted the list of template arguments provided for template
1861/// parameters that precede \p Param in the template parameter list.
1862///
1863/// \returns the substituted template argument, or NULL if an error occurred.
1864static TemplateName
1865SubstDefaultTemplateArgument(Sema &SemaRef,
1866                             TemplateDecl *Template,
1867                             SourceLocation TemplateLoc,
1868                             SourceLocation RAngleLoc,
1869                             TemplateTemplateParmDecl *Param,
1870                             TemplateArgumentListBuilder &Converted) {
1871  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1872                                    /*TakeArgs=*/false);
1873
1874  MultiLevelTemplateArgumentList AllTemplateArgs
1875    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1876
1877  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1878                                   Template, Converted.getFlatArguments(),
1879                                   Converted.flatSize(),
1880                                   SourceRange(TemplateLoc, RAngleLoc));
1881
1882  return SemaRef.SubstTemplateName(
1883                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1884                              Param->getDefaultArgument().getTemplateNameLoc(),
1885                                   AllTemplateArgs);
1886}
1887
1888/// \brief If the given template parameter has a default template
1889/// argument, substitute into that default template argument and
1890/// return the corresponding template argument.
1891TemplateArgumentLoc
1892Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1893                                              SourceLocation TemplateLoc,
1894                                              SourceLocation RAngleLoc,
1895                                              Decl *Param,
1896                                     TemplateArgumentListBuilder &Converted) {
1897  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1898    if (!TypeParm->hasDefaultArgument())
1899      return TemplateArgumentLoc();
1900
1901    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1902                                                      TemplateLoc,
1903                                                      RAngleLoc,
1904                                                      TypeParm,
1905                                                      Converted);
1906    if (DI)
1907      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1908
1909    return TemplateArgumentLoc();
1910  }
1911
1912  if (NonTypeTemplateParmDecl *NonTypeParm
1913        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1914    if (!NonTypeParm->hasDefaultArgument())
1915      return TemplateArgumentLoc();
1916
1917    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1918                                                        TemplateLoc,
1919                                                        RAngleLoc,
1920                                                        NonTypeParm,
1921                                                        Converted);
1922    if (Arg.isInvalid())
1923      return TemplateArgumentLoc();
1924
1925    Expr *ArgE = Arg.takeAs<Expr>();
1926    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1927  }
1928
1929  TemplateTemplateParmDecl *TempTempParm
1930    = cast<TemplateTemplateParmDecl>(Param);
1931  if (!TempTempParm->hasDefaultArgument())
1932    return TemplateArgumentLoc();
1933
1934  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1935                                                    TemplateLoc,
1936                                                    RAngleLoc,
1937                                                    TempTempParm,
1938                                                    Converted);
1939  if (TName.isNull())
1940    return TemplateArgumentLoc();
1941
1942  return TemplateArgumentLoc(TemplateArgument(TName),
1943                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1944                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1945}
1946
1947/// \brief Check that the given template argument corresponds to the given
1948/// template parameter.
1949bool Sema::CheckTemplateArgument(NamedDecl *Param,
1950                                 const TemplateArgumentLoc &Arg,
1951                                 TemplateDecl *Template,
1952                                 SourceLocation TemplateLoc,
1953                                 SourceLocation RAngleLoc,
1954                                 TemplateArgumentListBuilder &Converted,
1955                                 CheckTemplateArgumentKind CTAK) {
1956  // Check template type parameters.
1957  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1958    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1959
1960  // Check non-type template parameters.
1961  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1962    // Do substitution on the type of the non-type template parameter
1963    // with the template arguments we've seen thus far.
1964    QualType NTTPType = NTTP->getType();
1965    if (NTTPType->isDependentType()) {
1966      // Do substitution on the type of the non-type template parameter.
1967      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1968                                 NTTP, Converted.getFlatArguments(),
1969                                 Converted.flatSize(),
1970                                 SourceRange(TemplateLoc, RAngleLoc));
1971
1972      TemplateArgumentList TemplateArgs(Context, Converted,
1973                                        /*TakeArgs=*/false);
1974      NTTPType = SubstType(NTTPType,
1975                           MultiLevelTemplateArgumentList(TemplateArgs),
1976                           NTTP->getLocation(),
1977                           NTTP->getDeclName());
1978      // If that worked, check the non-type template parameter type
1979      // for validity.
1980      if (!NTTPType.isNull())
1981        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1982                                                     NTTP->getLocation());
1983      if (NTTPType.isNull())
1984        return true;
1985    }
1986
1987    switch (Arg.getArgument().getKind()) {
1988    case TemplateArgument::Null:
1989      assert(false && "Should never see a NULL template argument here");
1990      return true;
1991
1992    case TemplateArgument::Expression: {
1993      Expr *E = Arg.getArgument().getAsExpr();
1994      TemplateArgument Result;
1995      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
1996        return true;
1997
1998      Converted.Append(Result);
1999      break;
2000    }
2001
2002    case TemplateArgument::Declaration:
2003    case TemplateArgument::Integral:
2004      // We've already checked this template argument, so just copy
2005      // it to the list of converted arguments.
2006      Converted.Append(Arg.getArgument());
2007      break;
2008
2009    case TemplateArgument::Template:
2010      // We were given a template template argument. It may not be ill-formed;
2011      // see below.
2012      if (DependentTemplateName *DTN
2013            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2014        // We have a template argument such as \c T::template X, which we
2015        // parsed as a template template argument. However, since we now
2016        // know that we need a non-type template argument, convert this
2017        // template name into an expression.
2018        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2019                                                    DTN->getQualifier(),
2020                                               Arg.getTemplateQualifierRange(),
2021                                                    DTN->getIdentifier(),
2022                                                    Arg.getTemplateNameLoc());
2023
2024        TemplateArgument Result;
2025        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2026          return true;
2027
2028        Converted.Append(Result);
2029        break;
2030      }
2031
2032      // We have a template argument that actually does refer to a class
2033      // template, template alias, or template template parameter, and
2034      // therefore cannot be a non-type template argument.
2035      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2036        << Arg.getSourceRange();
2037
2038      Diag(Param->getLocation(), diag::note_template_param_here);
2039      return true;
2040
2041    case TemplateArgument::Type: {
2042      // We have a non-type template parameter but the template
2043      // argument is a type.
2044
2045      // C++ [temp.arg]p2:
2046      //   In a template-argument, an ambiguity between a type-id and
2047      //   an expression is resolved to a type-id, regardless of the
2048      //   form of the corresponding template-parameter.
2049      //
2050      // We warn specifically about this case, since it can be rather
2051      // confusing for users.
2052      QualType T = Arg.getArgument().getAsType();
2053      SourceRange SR = Arg.getSourceRange();
2054      if (T->isFunctionType())
2055        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2056      else
2057        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2058      Diag(Param->getLocation(), diag::note_template_param_here);
2059      return true;
2060    }
2061
2062    case TemplateArgument::Pack:
2063      llvm_unreachable("Caller must expand template argument packs");
2064      break;
2065    }
2066
2067    return false;
2068  }
2069
2070
2071  // Check template template parameters.
2072  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2073
2074  // Substitute into the template parameter list of the template
2075  // template parameter, since previously-supplied template arguments
2076  // may appear within the template template parameter.
2077  {
2078    // Set up a template instantiation context.
2079    LocalInstantiationScope Scope(*this);
2080    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2081                               TempParm, Converted.getFlatArguments(),
2082                               Converted.flatSize(),
2083                               SourceRange(TemplateLoc, RAngleLoc));
2084
2085    TemplateArgumentList TemplateArgs(Context, Converted,
2086                                      /*TakeArgs=*/false);
2087    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2088                      SubstDecl(TempParm, CurContext,
2089                                MultiLevelTemplateArgumentList(TemplateArgs)));
2090    if (!TempParm)
2091      return true;
2092
2093    // FIXME: TempParam is leaked.
2094  }
2095
2096  switch (Arg.getArgument().getKind()) {
2097  case TemplateArgument::Null:
2098    assert(false && "Should never see a NULL template argument here");
2099    return true;
2100
2101  case TemplateArgument::Template:
2102    if (CheckTemplateArgument(TempParm, Arg))
2103      return true;
2104
2105    Converted.Append(Arg.getArgument());
2106    break;
2107
2108  case TemplateArgument::Expression:
2109  case TemplateArgument::Type:
2110    // We have a template template parameter but the template
2111    // argument does not refer to a template.
2112    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2113    return true;
2114
2115  case TemplateArgument::Declaration:
2116    llvm_unreachable(
2117                       "Declaration argument with template template parameter");
2118    break;
2119  case TemplateArgument::Integral:
2120    llvm_unreachable(
2121                          "Integral argument with template template parameter");
2122    break;
2123
2124  case TemplateArgument::Pack:
2125    llvm_unreachable("Caller must expand template argument packs");
2126    break;
2127  }
2128
2129  return false;
2130}
2131
2132/// \brief Check that the given template argument list is well-formed
2133/// for specializing the given template.
2134bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2135                                     SourceLocation TemplateLoc,
2136                                const TemplateArgumentListInfo &TemplateArgs,
2137                                     bool PartialTemplateArgs,
2138                                     TemplateArgumentListBuilder &Converted) {
2139  TemplateParameterList *Params = Template->getTemplateParameters();
2140  unsigned NumParams = Params->size();
2141  unsigned NumArgs = TemplateArgs.size();
2142  bool Invalid = false;
2143
2144  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2145
2146  bool HasParameterPack =
2147    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2148
2149  if ((NumArgs > NumParams && !HasParameterPack) ||
2150      (NumArgs < Params->getMinRequiredArguments() &&
2151       !PartialTemplateArgs)) {
2152    // FIXME: point at either the first arg beyond what we can handle,
2153    // or the '>', depending on whether we have too many or too few
2154    // arguments.
2155    SourceRange Range;
2156    if (NumArgs > NumParams)
2157      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2158    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2159      << (NumArgs > NumParams)
2160      << (isa<ClassTemplateDecl>(Template)? 0 :
2161          isa<FunctionTemplateDecl>(Template)? 1 :
2162          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2163      << Template << Range;
2164    Diag(Template->getLocation(), diag::note_template_decl_here)
2165      << Params->getSourceRange();
2166    Invalid = true;
2167  }
2168
2169  // C++ [temp.arg]p1:
2170  //   [...] The type and form of each template-argument specified in
2171  //   a template-id shall match the type and form specified for the
2172  //   corresponding parameter declared by the template in its
2173  //   template-parameter-list.
2174  unsigned ArgIdx = 0;
2175  for (TemplateParameterList::iterator Param = Params->begin(),
2176                                       ParamEnd = Params->end();
2177       Param != ParamEnd; ++Param, ++ArgIdx) {
2178    if (ArgIdx > NumArgs && PartialTemplateArgs)
2179      break;
2180
2181    // If we have a template parameter pack, check every remaining template
2182    // argument against that template parameter pack.
2183    if ((*Param)->isTemplateParameterPack()) {
2184      Converted.BeginPack();
2185      for (; ArgIdx < NumArgs; ++ArgIdx) {
2186        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2187                                  TemplateLoc, RAngleLoc, Converted)) {
2188          Invalid = true;
2189          break;
2190        }
2191      }
2192      Converted.EndPack();
2193      continue;
2194    }
2195
2196    if (ArgIdx < NumArgs) {
2197      // Check the template argument we were given.
2198      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2199                                TemplateLoc, RAngleLoc, Converted))
2200        return true;
2201
2202      continue;
2203    }
2204
2205    // We have a default template argument that we will use.
2206    TemplateArgumentLoc Arg;
2207
2208    // Retrieve the default template argument from the template
2209    // parameter. For each kind of template parameter, we substitute the
2210    // template arguments provided thus far and any "outer" template arguments
2211    // (when the template parameter was part of a nested template) into
2212    // the default argument.
2213    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2214      if (!TTP->hasDefaultArgument()) {
2215        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2216        break;
2217      }
2218
2219      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2220                                                             Template,
2221                                                             TemplateLoc,
2222                                                             RAngleLoc,
2223                                                             TTP,
2224                                                             Converted);
2225      if (!ArgType)
2226        return true;
2227
2228      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2229                                ArgType);
2230    } else if (NonTypeTemplateParmDecl *NTTP
2231                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2232      if (!NTTP->hasDefaultArgument()) {
2233        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2234        break;
2235      }
2236
2237      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2238                                                              TemplateLoc,
2239                                                              RAngleLoc,
2240                                                              NTTP,
2241                                                              Converted);
2242      if (E.isInvalid())
2243        return true;
2244
2245      Expr *Ex = E.takeAs<Expr>();
2246      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2247    } else {
2248      TemplateTemplateParmDecl *TempParm
2249        = cast<TemplateTemplateParmDecl>(*Param);
2250
2251      if (!TempParm->hasDefaultArgument()) {
2252        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2253        break;
2254      }
2255
2256      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2257                                                       TemplateLoc,
2258                                                       RAngleLoc,
2259                                                       TempParm,
2260                                                       Converted);
2261      if (Name.isNull())
2262        return true;
2263
2264      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2265                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2266                  TempParm->getDefaultArgument().getTemplateNameLoc());
2267    }
2268
2269    // Introduce an instantiation record that describes where we are using
2270    // the default template argument.
2271    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2272                                        Converted.getFlatArguments(),
2273                                        Converted.flatSize(),
2274                                        SourceRange(TemplateLoc, RAngleLoc));
2275
2276    // Check the default template argument.
2277    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2278                              RAngleLoc, Converted))
2279      return true;
2280  }
2281
2282  return Invalid;
2283}
2284
2285/// \brief Check a template argument against its corresponding
2286/// template type parameter.
2287///
2288/// This routine implements the semantics of C++ [temp.arg.type]. It
2289/// returns true if an error occurred, and false otherwise.
2290bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2291                                 TypeSourceInfo *ArgInfo) {
2292  assert(ArgInfo && "invalid TypeSourceInfo");
2293  QualType Arg = ArgInfo->getType();
2294
2295  // C++ [temp.arg.type]p2:
2296  //   A local type, a type with no linkage, an unnamed type or a type
2297  //   compounded from any of these types shall not be used as a
2298  //   template-argument for a template type-parameter.
2299  //
2300  // FIXME: Perform the recursive and no-linkage type checks.
2301  const TagType *Tag = 0;
2302  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2303    Tag = EnumT;
2304  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2305    Tag = RecordT;
2306  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2307    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2308    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2309      << QualType(Tag, 0) << SR;
2310  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2311           !Tag->getDecl()->getTypedefForAnonDecl()) {
2312    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2313    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2314    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2315    return true;
2316  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2317    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2318    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2319  }
2320
2321  return false;
2322}
2323
2324/// \brief Checks whether the given template argument is the address
2325/// of an object or function according to C++ [temp.arg.nontype]p1.
2326static bool
2327CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2328                                               NonTypeTemplateParmDecl *Param,
2329                                               QualType ParamType,
2330                                               Expr *ArgIn,
2331                                               TemplateArgument &Converted) {
2332  bool Invalid = false;
2333  Expr *Arg = ArgIn;
2334  QualType ArgType = Arg->getType();
2335
2336  // See through any implicit casts we added to fix the type.
2337  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2338    Arg = Cast->getSubExpr();
2339
2340  // C++ [temp.arg.nontype]p1:
2341  //
2342  //   A template-argument for a non-type, non-template
2343  //   template-parameter shall be one of: [...]
2344  //
2345  //     -- the address of an object or function with external
2346  //        linkage, including function templates and function
2347  //        template-ids but excluding non-static class members,
2348  //        expressed as & id-expression where the & is optional if
2349  //        the name refers to a function or array, or if the
2350  //        corresponding template-parameter is a reference; or
2351  DeclRefExpr *DRE = 0;
2352
2353  // Ignore (and complain about) any excess parentheses.
2354  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2355    if (!Invalid) {
2356      S.Diag(Arg->getSourceRange().getBegin(),
2357             diag::err_template_arg_extra_parens)
2358        << Arg->getSourceRange();
2359      Invalid = true;
2360    }
2361
2362    Arg = Parens->getSubExpr();
2363  }
2364
2365  bool AddressTaken = false;
2366  SourceLocation AddrOpLoc;
2367  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2368    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2369      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2370      AddressTaken = true;
2371      AddrOpLoc = UnOp->getOperatorLoc();
2372    }
2373  } else
2374    DRE = dyn_cast<DeclRefExpr>(Arg);
2375
2376  if (!DRE) {
2377    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2378      << Arg->getSourceRange();
2379    S.Diag(Param->getLocation(), diag::note_template_param_here);
2380    return true;
2381  }
2382
2383  // Stop checking the precise nature of the argument if it is value dependent,
2384  // it should be checked when instantiated.
2385  if (Arg->isValueDependent()) {
2386    Converted = TemplateArgument(ArgIn->Retain());
2387    return false;
2388  }
2389
2390  if (!isa<ValueDecl>(DRE->getDecl())) {
2391    S.Diag(Arg->getSourceRange().getBegin(),
2392           diag::err_template_arg_not_object_or_func_form)
2393      << Arg->getSourceRange();
2394    S.Diag(Param->getLocation(), diag::note_template_param_here);
2395    return true;
2396  }
2397
2398  NamedDecl *Entity = 0;
2399
2400  // Cannot refer to non-static data members
2401  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2402    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2403      << Field << Arg->getSourceRange();
2404    S.Diag(Param->getLocation(), diag::note_template_param_here);
2405    return true;
2406  }
2407
2408  // Cannot refer to non-static member functions
2409  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2410    if (!Method->isStatic()) {
2411      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2412        << Method << Arg->getSourceRange();
2413      S.Diag(Param->getLocation(), diag::note_template_param_here);
2414      return true;
2415    }
2416
2417  // Functions must have external linkage.
2418  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2419    if (!isExternalLinkage(Func->getLinkage())) {
2420      S.Diag(Arg->getSourceRange().getBegin(),
2421             diag::err_template_arg_function_not_extern)
2422        << Func << Arg->getSourceRange();
2423      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2424        << true;
2425      return true;
2426    }
2427
2428    // Okay: we've named a function with external linkage.
2429    Entity = Func;
2430
2431    // If the template parameter has pointer type, the function decays.
2432    if (ParamType->isPointerType() && !AddressTaken)
2433      ArgType = S.Context.getPointerType(Func->getType());
2434    else if (AddressTaken && ParamType->isReferenceType()) {
2435      // If we originally had an address-of operator, but the
2436      // parameter has reference type, complain and (if things look
2437      // like they will work) drop the address-of operator.
2438      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2439                                            ParamType.getNonReferenceType())) {
2440        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2441          << ParamType;
2442        S.Diag(Param->getLocation(), diag::note_template_param_here);
2443        return true;
2444      }
2445
2446      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2447        << ParamType
2448        << FixItHint::CreateRemoval(AddrOpLoc);
2449      S.Diag(Param->getLocation(), diag::note_template_param_here);
2450
2451      ArgType = Func->getType();
2452    }
2453  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2454    if (!isExternalLinkage(Var->getLinkage())) {
2455      S.Diag(Arg->getSourceRange().getBegin(),
2456             diag::err_template_arg_object_not_extern)
2457        << Var << Arg->getSourceRange();
2458      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2459        << true;
2460      return true;
2461    }
2462
2463    // A value of reference type is not an object.
2464    if (Var->getType()->isReferenceType()) {
2465      S.Diag(Arg->getSourceRange().getBegin(),
2466             diag::err_template_arg_reference_var)
2467        << Var->getType() << Arg->getSourceRange();
2468      S.Diag(Param->getLocation(), diag::note_template_param_here);
2469      return true;
2470    }
2471
2472    // Okay: we've named an object with external linkage
2473    Entity = Var;
2474
2475    // If the template parameter has pointer type, we must have taken
2476    // the address of this object.
2477    if (ParamType->isReferenceType()) {
2478      if (AddressTaken) {
2479        // If we originally had an address-of operator, but the
2480        // parameter has reference type, complain and (if things look
2481        // like they will work) drop the address-of operator.
2482        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2483                                            ParamType.getNonReferenceType())) {
2484          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2485            << ParamType;
2486          S.Diag(Param->getLocation(), diag::note_template_param_here);
2487          return true;
2488        }
2489
2490        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2491          << ParamType
2492          << FixItHint::CreateRemoval(AddrOpLoc);
2493        S.Diag(Param->getLocation(), diag::note_template_param_here);
2494
2495        ArgType = Var->getType();
2496      }
2497    } else if (!AddressTaken && ParamType->isPointerType()) {
2498      if (Var->getType()->isArrayType()) {
2499        // Array-to-pointer decay.
2500        ArgType = S.Context.getArrayDecayedType(Var->getType());
2501      } else {
2502        // If the template parameter has pointer type but the address of
2503        // this object was not taken, complain and (possibly) recover by
2504        // taking the address of the entity.
2505        ArgType = S.Context.getPointerType(Var->getType());
2506        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2507          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2508            << ParamType;
2509          S.Diag(Param->getLocation(), diag::note_template_param_here);
2510          return true;
2511        }
2512
2513        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2514          << ParamType
2515          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2516
2517        S.Diag(Param->getLocation(), diag::note_template_param_here);
2518      }
2519    }
2520  } else {
2521    // We found something else, but we don't know specifically what it is.
2522    S.Diag(Arg->getSourceRange().getBegin(),
2523           diag::err_template_arg_not_object_or_func)
2524      << Arg->getSourceRange();
2525    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2526    return true;
2527  }
2528
2529  if (ParamType->isPointerType() &&
2530      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2531      S.IsQualificationConversion(ArgType, ParamType)) {
2532    // For pointer-to-object types, qualification conversions are
2533    // permitted.
2534  } else {
2535    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2536      if (!ParamRef->getPointeeType()->isFunctionType()) {
2537        // C++ [temp.arg.nontype]p5b3:
2538        //   For a non-type template-parameter of type reference to
2539        //   object, no conversions apply. The type referred to by the
2540        //   reference may be more cv-qualified than the (otherwise
2541        //   identical) type of the template- argument. The
2542        //   template-parameter is bound directly to the
2543        //   template-argument, which shall be an lvalue.
2544
2545        // FIXME: Other qualifiers?
2546        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2547        unsigned ArgQuals = ArgType.getCVRQualifiers();
2548
2549        if ((ParamQuals | ArgQuals) != ParamQuals) {
2550          S.Diag(Arg->getSourceRange().getBegin(),
2551                 diag::err_template_arg_ref_bind_ignores_quals)
2552            << ParamType << Arg->getType()
2553            << Arg->getSourceRange();
2554          S.Diag(Param->getLocation(), diag::note_template_param_here);
2555          return true;
2556        }
2557      }
2558    }
2559
2560    // At this point, the template argument refers to an object or
2561    // function with external linkage. We now need to check whether the
2562    // argument and parameter types are compatible.
2563    if (!S.Context.hasSameUnqualifiedType(ArgType,
2564                                          ParamType.getNonReferenceType())) {
2565      // We can't perform this conversion or binding.
2566      if (ParamType->isReferenceType())
2567        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2568          << ParamType << Arg->getType() << Arg->getSourceRange();
2569      else
2570        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2571          << Arg->getType() << ParamType << Arg->getSourceRange();
2572      S.Diag(Param->getLocation(), diag::note_template_param_here);
2573      return true;
2574    }
2575  }
2576
2577  // Create the template argument.
2578  Converted = TemplateArgument(Entity->getCanonicalDecl());
2579  return false;
2580}
2581
2582/// \brief Checks whether the given template argument is a pointer to
2583/// member constant according to C++ [temp.arg.nontype]p1.
2584bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2585                                                TemplateArgument &Converted) {
2586  bool Invalid = false;
2587
2588  // See through any implicit casts we added to fix the type.
2589  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2590    Arg = Cast->getSubExpr();
2591
2592  // C++ [temp.arg.nontype]p1:
2593  //
2594  //   A template-argument for a non-type, non-template
2595  //   template-parameter shall be one of: [...]
2596  //
2597  //     -- a pointer to member expressed as described in 5.3.1.
2598  DeclRefExpr *DRE = 0;
2599
2600  // Ignore (and complain about) any excess parentheses.
2601  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2602    if (!Invalid) {
2603      Diag(Arg->getSourceRange().getBegin(),
2604           diag::err_template_arg_extra_parens)
2605        << Arg->getSourceRange();
2606      Invalid = true;
2607    }
2608
2609    Arg = Parens->getSubExpr();
2610  }
2611
2612  // A pointer-to-member constant written &Class::member.
2613  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2614    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2615      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2616      if (DRE && !DRE->getQualifier())
2617        DRE = 0;
2618    }
2619  }
2620  // A constant of pointer-to-member type.
2621  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2622    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2623      if (VD->getType()->isMemberPointerType()) {
2624        if (isa<NonTypeTemplateParmDecl>(VD) ||
2625            (isa<VarDecl>(VD) &&
2626             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2627          if (Arg->isTypeDependent() || Arg->isValueDependent())
2628            Converted = TemplateArgument(Arg->Retain());
2629          else
2630            Converted = TemplateArgument(VD->getCanonicalDecl());
2631          return Invalid;
2632        }
2633      }
2634    }
2635
2636    DRE = 0;
2637  }
2638
2639  if (!DRE)
2640    return Diag(Arg->getSourceRange().getBegin(),
2641                diag::err_template_arg_not_pointer_to_member_form)
2642      << Arg->getSourceRange();
2643
2644  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2645    assert((isa<FieldDecl>(DRE->getDecl()) ||
2646            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2647           "Only non-static member pointers can make it here");
2648
2649    // Okay: this is the address of a non-static member, and therefore
2650    // a member pointer constant.
2651    if (Arg->isTypeDependent() || Arg->isValueDependent())
2652      Converted = TemplateArgument(Arg->Retain());
2653    else
2654      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2655    return Invalid;
2656  }
2657
2658  // We found something else, but we don't know specifically what it is.
2659  Diag(Arg->getSourceRange().getBegin(),
2660       diag::err_template_arg_not_pointer_to_member_form)
2661      << Arg->getSourceRange();
2662  Diag(DRE->getDecl()->getLocation(),
2663       diag::note_template_arg_refers_here);
2664  return true;
2665}
2666
2667/// \brief Check a template argument against its corresponding
2668/// non-type template parameter.
2669///
2670/// This routine implements the semantics of C++ [temp.arg.nontype].
2671/// It returns true if an error occurred, and false otherwise. \p
2672/// InstantiatedParamType is the type of the non-type template
2673/// parameter after it has been instantiated.
2674///
2675/// If no error was detected, Converted receives the converted template argument.
2676bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2677                                 QualType InstantiatedParamType, Expr *&Arg,
2678                                 TemplateArgument &Converted,
2679                                 CheckTemplateArgumentKind CTAK) {
2680  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2681
2682  // If either the parameter has a dependent type or the argument is
2683  // type-dependent, there's nothing we can check now.
2684  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2685    // FIXME: Produce a cloned, canonical expression?
2686    Converted = TemplateArgument(Arg);
2687    return false;
2688  }
2689
2690  // C++ [temp.arg.nontype]p5:
2691  //   The following conversions are performed on each expression used
2692  //   as a non-type template-argument. If a non-type
2693  //   template-argument cannot be converted to the type of the
2694  //   corresponding template-parameter then the program is
2695  //   ill-formed.
2696  //
2697  //     -- for a non-type template-parameter of integral or
2698  //        enumeration type, integral promotions (4.5) and integral
2699  //        conversions (4.7) are applied.
2700  QualType ParamType = InstantiatedParamType;
2701  QualType ArgType = Arg->getType();
2702  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2703    // C++ [temp.arg.nontype]p1:
2704    //   A template-argument for a non-type, non-template
2705    //   template-parameter shall be one of:
2706    //
2707    //     -- an integral constant-expression of integral or enumeration
2708    //        type; or
2709    //     -- the name of a non-type template-parameter; or
2710    SourceLocation NonConstantLoc;
2711    llvm::APSInt Value;
2712    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2713      Diag(Arg->getSourceRange().getBegin(),
2714           diag::err_template_arg_not_integral_or_enumeral)
2715        << ArgType << Arg->getSourceRange();
2716      Diag(Param->getLocation(), diag::note_template_param_here);
2717      return true;
2718    } else if (!Arg->isValueDependent() &&
2719               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2720      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2721        << ArgType << Arg->getSourceRange();
2722      return true;
2723    }
2724
2725    // From here on out, all we care about are the unqualified forms
2726    // of the parameter and argument types.
2727    ParamType = ParamType.getUnqualifiedType();
2728    ArgType = ArgType.getUnqualifiedType();
2729
2730    // Try to convert the argument to the parameter's type.
2731    if (Context.hasSameType(ParamType, ArgType)) {
2732      // Okay: no conversion necessary
2733    } else if (CTAK == CTAK_Deduced) {
2734      // C++ [temp.deduct.type]p17:
2735      //   If, in the declaration of a function template with a non-type
2736      //   template-parameter, the non-type template- parameter is used
2737      //   in an expression in the function parameter-list and, if the
2738      //   corresponding template-argument is deduced, the
2739      //   template-argument type shall match the type of the
2740      //   template-parameter exactly, except that a template-argument
2741      //   deduced from an array bound may be of any integral type.
2742      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2743        << ArgType << ParamType;
2744      Diag(Param->getLocation(), diag::note_template_param_here);
2745      return true;
2746    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2747               !ParamType->isEnumeralType()) {
2748      // This is an integral promotion or conversion.
2749      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2750    } else {
2751      // We can't perform this conversion.
2752      Diag(Arg->getSourceRange().getBegin(),
2753           diag::err_template_arg_not_convertible)
2754        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2755      Diag(Param->getLocation(), diag::note_template_param_here);
2756      return true;
2757    }
2758
2759    QualType IntegerType = Context.getCanonicalType(ParamType);
2760    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2761      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2762
2763    if (!Arg->isValueDependent()) {
2764      llvm::APSInt OldValue = Value;
2765
2766      // Coerce the template argument's value to the value it will have
2767      // based on the template parameter's type.
2768      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2769      if (Value.getBitWidth() != AllowedBits)
2770        Value.extOrTrunc(AllowedBits);
2771      Value.setIsSigned(IntegerType->isSignedIntegerType());
2772
2773      // Complain if an unsigned parameter received a negative value.
2774      if (IntegerType->isUnsignedIntegerType()
2775          && (OldValue.isSigned() && OldValue.isNegative())) {
2776        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2777          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2778          << Arg->getSourceRange();
2779        Diag(Param->getLocation(), diag::note_template_param_here);
2780      }
2781
2782      // Complain if we overflowed the template parameter's type.
2783      unsigned RequiredBits;
2784      if (IntegerType->isUnsignedIntegerType())
2785        RequiredBits = OldValue.getActiveBits();
2786      else if (OldValue.isUnsigned())
2787        RequiredBits = OldValue.getActiveBits() + 1;
2788      else
2789        RequiredBits = OldValue.getMinSignedBits();
2790      if (RequiredBits > AllowedBits) {
2791        Diag(Arg->getSourceRange().getBegin(),
2792             diag::warn_template_arg_too_large)
2793          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2794          << Arg->getSourceRange();
2795        Diag(Param->getLocation(), diag::note_template_param_here);
2796      }
2797    }
2798
2799    // Add the value of this argument to the list of converted
2800    // arguments. We use the bitwidth and signedness of the template
2801    // parameter.
2802    if (Arg->isValueDependent()) {
2803      // The argument is value-dependent. Create a new
2804      // TemplateArgument with the converted expression.
2805      Converted = TemplateArgument(Arg);
2806      return false;
2807    }
2808
2809    Converted = TemplateArgument(Value,
2810                                 ParamType->isEnumeralType() ? ParamType
2811                                                             : IntegerType);
2812    return false;
2813  }
2814
2815  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2816
2817  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2818  // from a template argument of type std::nullptr_t to a non-type
2819  // template parameter of type pointer to object, pointer to
2820  // function, or pointer-to-member, respectively.
2821  if (ArgType->isNullPtrType() &&
2822      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2823    Converted = TemplateArgument((NamedDecl *)0);
2824    return false;
2825  }
2826
2827  // Handle pointer-to-function, reference-to-function, and
2828  // pointer-to-member-function all in (roughly) the same way.
2829  if (// -- For a non-type template-parameter of type pointer to
2830      //    function, only the function-to-pointer conversion (4.3) is
2831      //    applied. If the template-argument represents a set of
2832      //    overloaded functions (or a pointer to such), the matching
2833      //    function is selected from the set (13.4).
2834      (ParamType->isPointerType() &&
2835       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2836      // -- For a non-type template-parameter of type reference to
2837      //    function, no conversions apply. If the template-argument
2838      //    represents a set of overloaded functions, the matching
2839      //    function is selected from the set (13.4).
2840      (ParamType->isReferenceType() &&
2841       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2842      // -- For a non-type template-parameter of type pointer to
2843      //    member function, no conversions apply. If the
2844      //    template-argument represents a set of overloaded member
2845      //    functions, the matching member function is selected from
2846      //    the set (13.4).
2847      (ParamType->isMemberPointerType() &&
2848       ParamType->getAs<MemberPointerType>()->getPointeeType()
2849         ->isFunctionType())) {
2850
2851    if (Arg->getType() == Context.OverloadTy) {
2852      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2853                                                                true,
2854                                                                FoundResult)) {
2855        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2856          return true;
2857
2858        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2859        ArgType = Arg->getType();
2860      } else
2861        return true;
2862    }
2863
2864    if (!ParamType->isMemberPointerType())
2865      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2866                                                            ParamType,
2867                                                            Arg, Converted);
2868
2869    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2870      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2871                        /*InheritancePath=*/0,
2872                        Arg->isLvalue(Context) == Expr::LV_Valid);
2873    } else if (!Context.hasSameUnqualifiedType(ArgType,
2874                                           ParamType.getNonReferenceType())) {
2875      // We can't perform this conversion.
2876      Diag(Arg->getSourceRange().getBegin(),
2877           diag::err_template_arg_not_convertible)
2878        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2879      Diag(Param->getLocation(), diag::note_template_param_here);
2880      return true;
2881    }
2882
2883    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2884  }
2885
2886  if (ParamType->isPointerType()) {
2887    //   -- for a non-type template-parameter of type pointer to
2888    //      object, qualification conversions (4.4) and the
2889    //      array-to-pointer conversion (4.2) are applied.
2890    // C++0x also allows a value of std::nullptr_t.
2891    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2892           "Only object pointers allowed here");
2893
2894    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2895                                                          ParamType,
2896                                                          Arg, Converted);
2897  }
2898
2899  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2900    //   -- For a non-type template-parameter of type reference to
2901    //      object, no conversions apply. The type referred to by the
2902    //      reference may be more cv-qualified than the (otherwise
2903    //      identical) type of the template-argument. The
2904    //      template-parameter is bound directly to the
2905    //      template-argument, which must be an lvalue.
2906    assert(ParamRefType->getPointeeType()->isObjectType() &&
2907           "Only object references allowed here");
2908
2909    if (Arg->getType() == Context.OverloadTy) {
2910      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2911                                                 ParamRefType->getPointeeType(),
2912                                                                true,
2913                                                                FoundResult)) {
2914        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2915          return true;
2916
2917        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2918        ArgType = Arg->getType();
2919      } else
2920        return true;
2921    }
2922
2923    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2924                                                          ParamType,
2925                                                          Arg, Converted);
2926  }
2927
2928  //     -- For a non-type template-parameter of type pointer to data
2929  //        member, qualification conversions (4.4) are applied.
2930  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2931
2932  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2933    // Types match exactly: nothing more to do here.
2934  } else if (IsQualificationConversion(ArgType, ParamType)) {
2935    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2936                      /*InheritancePath=*/0,
2937                      Arg->isLvalue(Context) == Expr::LV_Valid);
2938  } else {
2939    // We can't perform this conversion.
2940    Diag(Arg->getSourceRange().getBegin(),
2941         diag::err_template_arg_not_convertible)
2942      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2943    Diag(Param->getLocation(), diag::note_template_param_here);
2944    return true;
2945  }
2946
2947  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2948}
2949
2950/// \brief Check a template argument against its corresponding
2951/// template template parameter.
2952///
2953/// This routine implements the semantics of C++ [temp.arg.template].
2954/// It returns true if an error occurred, and false otherwise.
2955bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2956                                 const TemplateArgumentLoc &Arg) {
2957  TemplateName Name = Arg.getArgument().getAsTemplate();
2958  TemplateDecl *Template = Name.getAsTemplateDecl();
2959  if (!Template) {
2960    // Any dependent template name is fine.
2961    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2962    return false;
2963  }
2964
2965  // C++ [temp.arg.template]p1:
2966  //   A template-argument for a template template-parameter shall be
2967  //   the name of a class template, expressed as id-expression. Only
2968  //   primary class templates are considered when matching the
2969  //   template template argument with the corresponding parameter;
2970  //   partial specializations are not considered even if their
2971  //   parameter lists match that of the template template parameter.
2972  //
2973  // Note that we also allow template template parameters here, which
2974  // will happen when we are dealing with, e.g., class template
2975  // partial specializations.
2976  if (!isa<ClassTemplateDecl>(Template) &&
2977      !isa<TemplateTemplateParmDecl>(Template)) {
2978    assert(isa<FunctionTemplateDecl>(Template) &&
2979           "Only function templates are possible here");
2980    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2981    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2982      << Template;
2983  }
2984
2985  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2986                                         Param->getTemplateParameters(),
2987                                         true,
2988                                         TPL_TemplateTemplateArgumentMatch,
2989                                         Arg.getLocation());
2990}
2991
2992/// \brief Given a non-type template argument that refers to a
2993/// declaration and the type of its corresponding non-type template
2994/// parameter, produce an expression that properly refers to that
2995/// declaration.
2996Sema::OwningExprResult
2997Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
2998                                              QualType ParamType,
2999                                              SourceLocation Loc) {
3000  assert(Arg.getKind() == TemplateArgument::Declaration &&
3001         "Only declaration template arguments permitted here");
3002  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3003
3004  if (VD->getDeclContext()->isRecord() &&
3005      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3006    // If the value is a class member, we might have a pointer-to-member.
3007    // Determine whether the non-type template template parameter is of
3008    // pointer-to-member type. If so, we need to build an appropriate
3009    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3010    // would refer to the member itself.
3011    if (ParamType->isMemberPointerType()) {
3012      QualType ClassType
3013        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3014      NestedNameSpecifier *Qualifier
3015        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3016      CXXScopeSpec SS;
3017      SS.setScopeRep(Qualifier);
3018      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3019                                           VD->getType().getNonReferenceType(),
3020                                                  Loc,
3021                                                  &SS);
3022      if (RefExpr.isInvalid())
3023        return ExprError();
3024
3025      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3026      assert(!RefExpr.isInvalid() &&
3027             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3028                                 ParamType));
3029      return move(RefExpr);
3030    }
3031  }
3032
3033  QualType T = VD->getType().getNonReferenceType();
3034  if (ParamType->isPointerType()) {
3035    // When the non-type template parameter is a pointer, take the
3036    // address of the declaration.
3037    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3038    if (RefExpr.isInvalid())
3039      return ExprError();
3040
3041    if (T->isFunctionType() || T->isArrayType()) {
3042      // Decay functions and arrays.
3043      Expr *RefE = (Expr *)RefExpr.get();
3044      DefaultFunctionArrayConversion(RefE);
3045      if (RefE != RefExpr.get()) {
3046        RefExpr.release();
3047        RefExpr = Owned(RefE);
3048      }
3049
3050      return move(RefExpr);
3051    }
3052
3053    // Take the address of everything else
3054    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3055  }
3056
3057  // If the non-type template parameter has reference type, qualify the
3058  // resulting declaration reference with the extra qualifiers on the
3059  // type that the reference refers to.
3060  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3061    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3062
3063  return BuildDeclRefExpr(VD, T, Loc);
3064}
3065
3066/// \brief Construct a new expression that refers to the given
3067/// integral template argument with the given source-location
3068/// information.
3069///
3070/// This routine takes care of the mapping from an integral template
3071/// argument (which may have any integral type) to the appropriate
3072/// literal value.
3073Sema::OwningExprResult
3074Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3075                                                  SourceLocation Loc) {
3076  assert(Arg.getKind() == TemplateArgument::Integral &&
3077         "Operation is only value for integral template arguments");
3078  QualType T = Arg.getIntegralType();
3079  if (T->isCharType() || T->isWideCharType())
3080    return Owned(new (Context) CharacterLiteral(
3081                                             Arg.getAsIntegral()->getZExtValue(),
3082                                             T->isWideCharType(),
3083                                             T,
3084                                             Loc));
3085  if (T->isBooleanType())
3086    return Owned(new (Context) CXXBoolLiteralExpr(
3087                                            Arg.getAsIntegral()->getBoolValue(),
3088                                            T,
3089                                            Loc));
3090
3091  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3092}
3093
3094
3095/// \brief Determine whether the given template parameter lists are
3096/// equivalent.
3097///
3098/// \param New  The new template parameter list, typically written in the
3099/// source code as part of a new template declaration.
3100///
3101/// \param Old  The old template parameter list, typically found via
3102/// name lookup of the template declared with this template parameter
3103/// list.
3104///
3105/// \param Complain  If true, this routine will produce a diagnostic if
3106/// the template parameter lists are not equivalent.
3107///
3108/// \param Kind describes how we are to match the template parameter lists.
3109///
3110/// \param TemplateArgLoc If this source location is valid, then we
3111/// are actually checking the template parameter list of a template
3112/// argument (New) against the template parameter list of its
3113/// corresponding template template parameter (Old). We produce
3114/// slightly different diagnostics in this scenario.
3115///
3116/// \returns True if the template parameter lists are equal, false
3117/// otherwise.
3118bool
3119Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3120                                     TemplateParameterList *Old,
3121                                     bool Complain,
3122                                     TemplateParameterListEqualKind Kind,
3123                                     SourceLocation TemplateArgLoc) {
3124  if (Old->size() != New->size()) {
3125    if (Complain) {
3126      unsigned NextDiag = diag::err_template_param_list_different_arity;
3127      if (TemplateArgLoc.isValid()) {
3128        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3129        NextDiag = diag::note_template_param_list_different_arity;
3130      }
3131      Diag(New->getTemplateLoc(), NextDiag)
3132          << (New->size() > Old->size())
3133          << (Kind != TPL_TemplateMatch)
3134          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3135      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3136        << (Kind != TPL_TemplateMatch)
3137        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3138    }
3139
3140    return false;
3141  }
3142
3143  for (TemplateParameterList::iterator OldParm = Old->begin(),
3144         OldParmEnd = Old->end(), NewParm = New->begin();
3145       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3146    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3147      if (Complain) {
3148        unsigned NextDiag = diag::err_template_param_different_kind;
3149        if (TemplateArgLoc.isValid()) {
3150          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3151          NextDiag = diag::note_template_param_different_kind;
3152        }
3153        Diag((*NewParm)->getLocation(), NextDiag)
3154          << (Kind != TPL_TemplateMatch);
3155        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3156          << (Kind != TPL_TemplateMatch);
3157      }
3158      return false;
3159    }
3160
3161    if (isa<TemplateTypeParmDecl>(*OldParm)) {
3162      // Okay; all template type parameters are equivalent (since we
3163      // know we're at the same index).
3164    } else if (NonTypeTemplateParmDecl *OldNTTP
3165                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3166      // The types of non-type template parameters must agree.
3167      NonTypeTemplateParmDecl *NewNTTP
3168        = cast<NonTypeTemplateParmDecl>(*NewParm);
3169
3170      // If we are matching a template template argument to a template
3171      // template parameter and one of the non-type template parameter types
3172      // is dependent, then we must wait until template instantiation time
3173      // to actually compare the arguments.
3174      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3175          (OldNTTP->getType()->isDependentType() ||
3176           NewNTTP->getType()->isDependentType()))
3177        continue;
3178
3179      if (Context.getCanonicalType(OldNTTP->getType()) !=
3180            Context.getCanonicalType(NewNTTP->getType())) {
3181        if (Complain) {
3182          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3183          if (TemplateArgLoc.isValid()) {
3184            Diag(TemplateArgLoc,
3185                 diag::err_template_arg_template_params_mismatch);
3186            NextDiag = diag::note_template_nontype_parm_different_type;
3187          }
3188          Diag(NewNTTP->getLocation(), NextDiag)
3189            << NewNTTP->getType()
3190            << (Kind != TPL_TemplateMatch);
3191          Diag(OldNTTP->getLocation(),
3192               diag::note_template_nontype_parm_prev_declaration)
3193            << OldNTTP->getType();
3194        }
3195        return false;
3196      }
3197    } else {
3198      // The template parameter lists of template template
3199      // parameters must agree.
3200      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3201             "Only template template parameters handled here");
3202      TemplateTemplateParmDecl *OldTTP
3203        = cast<TemplateTemplateParmDecl>(*OldParm);
3204      TemplateTemplateParmDecl *NewTTP
3205        = cast<TemplateTemplateParmDecl>(*NewParm);
3206      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3207                                          OldTTP->getTemplateParameters(),
3208                                          Complain,
3209              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3210                                          TemplateArgLoc))
3211        return false;
3212    }
3213  }
3214
3215  return true;
3216}
3217
3218/// \brief Check whether a template can be declared within this scope.
3219///
3220/// If the template declaration is valid in this scope, returns
3221/// false. Otherwise, issues a diagnostic and returns true.
3222bool
3223Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3224  // Find the nearest enclosing declaration scope.
3225  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3226         (S->getFlags() & Scope::TemplateParamScope) != 0)
3227    S = S->getParent();
3228
3229  // C++ [temp]p2:
3230  //   A template-declaration can appear only as a namespace scope or
3231  //   class scope declaration.
3232  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3233  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3234      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3235    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3236             << TemplateParams->getSourceRange();
3237
3238  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3239    Ctx = Ctx->getParent();
3240
3241  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3242    return false;
3243
3244  return Diag(TemplateParams->getTemplateLoc(),
3245              diag::err_template_outside_namespace_or_class_scope)
3246    << TemplateParams->getSourceRange();
3247}
3248
3249/// \brief Determine what kind of template specialization the given declaration
3250/// is.
3251static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3252  if (!D)
3253    return TSK_Undeclared;
3254
3255  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3256    return Record->getTemplateSpecializationKind();
3257  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3258    return Function->getTemplateSpecializationKind();
3259  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3260    return Var->getTemplateSpecializationKind();
3261
3262  return TSK_Undeclared;
3263}
3264
3265/// \brief Check whether a specialization is well-formed in the current
3266/// context.
3267///
3268/// This routine determines whether a template specialization can be declared
3269/// in the current context (C++ [temp.expl.spec]p2).
3270///
3271/// \param S the semantic analysis object for which this check is being
3272/// performed.
3273///
3274/// \param Specialized the entity being specialized or instantiated, which
3275/// may be a kind of template (class template, function template, etc.) or
3276/// a member of a class template (member function, static data member,
3277/// member class).
3278///
3279/// \param PrevDecl the previous declaration of this entity, if any.
3280///
3281/// \param Loc the location of the explicit specialization or instantiation of
3282/// this entity.
3283///
3284/// \param IsPartialSpecialization whether this is a partial specialization of
3285/// a class template.
3286///
3287/// \returns true if there was an error that we cannot recover from, false
3288/// otherwise.
3289static bool CheckTemplateSpecializationScope(Sema &S,
3290                                             NamedDecl *Specialized,
3291                                             NamedDecl *PrevDecl,
3292                                             SourceLocation Loc,
3293                                             bool IsPartialSpecialization) {
3294  // Keep these "kind" numbers in sync with the %select statements in the
3295  // various diagnostics emitted by this routine.
3296  int EntityKind = 0;
3297  bool isTemplateSpecialization = false;
3298  if (isa<ClassTemplateDecl>(Specialized)) {
3299    EntityKind = IsPartialSpecialization? 1 : 0;
3300    isTemplateSpecialization = true;
3301  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3302    EntityKind = 2;
3303    isTemplateSpecialization = true;
3304  } else if (isa<CXXMethodDecl>(Specialized))
3305    EntityKind = 3;
3306  else if (isa<VarDecl>(Specialized))
3307    EntityKind = 4;
3308  else if (isa<RecordDecl>(Specialized))
3309    EntityKind = 5;
3310  else {
3311    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3312    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3313    return true;
3314  }
3315
3316  // C++ [temp.expl.spec]p2:
3317  //   An explicit specialization shall be declared in the namespace
3318  //   of which the template is a member, or, for member templates, in
3319  //   the namespace of which the enclosing class or enclosing class
3320  //   template is a member. An explicit specialization of a member
3321  //   function, member class or static data member of a class
3322  //   template shall be declared in the namespace of which the class
3323  //   template is a member. Such a declaration may also be a
3324  //   definition. If the declaration is not a definition, the
3325  //   specialization may be defined later in the name- space in which
3326  //   the explicit specialization was declared, or in a namespace
3327  //   that encloses the one in which the explicit specialization was
3328  //   declared.
3329  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3330    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3331      << Specialized;
3332    return true;
3333  }
3334
3335  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3336    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3337      << Specialized;
3338    return true;
3339  }
3340
3341  // C++ [temp.class.spec]p6:
3342  //   A class template partial specialization may be declared or redeclared
3343  //   in any namespace scope in which its definition may be defined (14.5.1
3344  //   and 14.5.2).
3345  bool ComplainedAboutScope = false;
3346  DeclContext *SpecializedContext
3347    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3348  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3349  if ((!PrevDecl ||
3350       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3351       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3352    // There is no prior declaration of this entity, so this
3353    // specialization must be in the same context as the template
3354    // itself.
3355    if (!DC->Equals(SpecializedContext)) {
3356      if (isa<TranslationUnitDecl>(SpecializedContext))
3357        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3358        << EntityKind << Specialized;
3359      else if (isa<NamespaceDecl>(SpecializedContext))
3360        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3361        << EntityKind << Specialized
3362        << cast<NamedDecl>(SpecializedContext);
3363
3364      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3365      ComplainedAboutScope = true;
3366    }
3367  }
3368
3369  // Make sure that this redeclaration (or definition) occurs in an enclosing
3370  // namespace.
3371  // Note that HandleDeclarator() performs this check for explicit
3372  // specializations of function templates, static data members, and member
3373  // functions, so we skip the check here for those kinds of entities.
3374  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3375  // Should we refactor that check, so that it occurs later?
3376  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3377      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3378        isa<FunctionDecl>(Specialized))) {
3379    if (isa<TranslationUnitDecl>(SpecializedContext))
3380      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3381        << EntityKind << Specialized;
3382    else if (isa<NamespaceDecl>(SpecializedContext))
3383      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3384        << EntityKind << Specialized
3385        << cast<NamedDecl>(SpecializedContext);
3386
3387    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3388  }
3389
3390  // FIXME: check for specialization-after-instantiation errors and such.
3391
3392  return false;
3393}
3394
3395/// \brief Check the non-type template arguments of a class template
3396/// partial specialization according to C++ [temp.class.spec]p9.
3397///
3398/// \param TemplateParams the template parameters of the primary class
3399/// template.
3400///
3401/// \param TemplateArg the template arguments of the class template
3402/// partial specialization.
3403///
3404/// \param MirrorsPrimaryTemplate will be set true if the class
3405/// template partial specialization arguments are identical to the
3406/// implicit template arguments of the primary template. This is not
3407/// necessarily an error (C++0x), and it is left to the caller to diagnose
3408/// this condition when it is an error.
3409///
3410/// \returns true if there was an error, false otherwise.
3411bool Sema::CheckClassTemplatePartialSpecializationArgs(
3412                                        TemplateParameterList *TemplateParams,
3413                             const TemplateArgumentListBuilder &TemplateArgs,
3414                                        bool &MirrorsPrimaryTemplate) {
3415  // FIXME: the interface to this function will have to change to
3416  // accommodate variadic templates.
3417  MirrorsPrimaryTemplate = true;
3418
3419  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3420
3421  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3422    // Determine whether the template argument list of the partial
3423    // specialization is identical to the implicit argument list of
3424    // the primary template. The caller may need to diagnostic this as
3425    // an error per C++ [temp.class.spec]p9b3.
3426    if (MirrorsPrimaryTemplate) {
3427      if (TemplateTypeParmDecl *TTP
3428            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3429        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3430              Context.getCanonicalType(ArgList[I].getAsType()))
3431          MirrorsPrimaryTemplate = false;
3432      } else if (TemplateTemplateParmDecl *TTP
3433                   = dyn_cast<TemplateTemplateParmDecl>(
3434                                                 TemplateParams->getParam(I))) {
3435        TemplateName Name = ArgList[I].getAsTemplate();
3436        TemplateTemplateParmDecl *ArgDecl
3437          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3438        if (!ArgDecl ||
3439            ArgDecl->getIndex() != TTP->getIndex() ||
3440            ArgDecl->getDepth() != TTP->getDepth())
3441          MirrorsPrimaryTemplate = false;
3442      }
3443    }
3444
3445    NonTypeTemplateParmDecl *Param
3446      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3447    if (!Param) {
3448      continue;
3449    }
3450
3451    Expr *ArgExpr = ArgList[I].getAsExpr();
3452    if (!ArgExpr) {
3453      MirrorsPrimaryTemplate = false;
3454      continue;
3455    }
3456
3457    // C++ [temp.class.spec]p8:
3458    //   A non-type argument is non-specialized if it is the name of a
3459    //   non-type parameter. All other non-type arguments are
3460    //   specialized.
3461    //
3462    // Below, we check the two conditions that only apply to
3463    // specialized non-type arguments, so skip any non-specialized
3464    // arguments.
3465    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3466      if (NonTypeTemplateParmDecl *NTTP
3467            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3468        if (MirrorsPrimaryTemplate &&
3469            (Param->getIndex() != NTTP->getIndex() ||
3470             Param->getDepth() != NTTP->getDepth()))
3471          MirrorsPrimaryTemplate = false;
3472
3473        continue;
3474      }
3475
3476    // C++ [temp.class.spec]p9:
3477    //   Within the argument list of a class template partial
3478    //   specialization, the following restrictions apply:
3479    //     -- A partially specialized non-type argument expression
3480    //        shall not involve a template parameter of the partial
3481    //        specialization except when the argument expression is a
3482    //        simple identifier.
3483    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3484      Diag(ArgExpr->getLocStart(),
3485           diag::err_dependent_non_type_arg_in_partial_spec)
3486        << ArgExpr->getSourceRange();
3487      return true;
3488    }
3489
3490    //     -- The type of a template parameter corresponding to a
3491    //        specialized non-type argument shall not be dependent on a
3492    //        parameter of the specialization.
3493    if (Param->getType()->isDependentType()) {
3494      Diag(ArgExpr->getLocStart(),
3495           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3496        << Param->getType()
3497        << ArgExpr->getSourceRange();
3498      Diag(Param->getLocation(), diag::note_template_param_here);
3499      return true;
3500    }
3501
3502    MirrorsPrimaryTemplate = false;
3503  }
3504
3505  return false;
3506}
3507
3508/// \brief Retrieve the previous declaration of the given declaration.
3509static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3510  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3511    return VD->getPreviousDeclaration();
3512  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3513    return FD->getPreviousDeclaration();
3514  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3515    return TD->getPreviousDeclaration();
3516  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3517    return TD->getPreviousDeclaration();
3518  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3519    return FTD->getPreviousDeclaration();
3520  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3521    return CTD->getPreviousDeclaration();
3522  return 0;
3523}
3524
3525Sema::DeclResult
3526Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3527                                       TagUseKind TUK,
3528                                       SourceLocation KWLoc,
3529                                       CXXScopeSpec &SS,
3530                                       TemplateTy TemplateD,
3531                                       SourceLocation TemplateNameLoc,
3532                                       SourceLocation LAngleLoc,
3533                                       ASTTemplateArgsPtr TemplateArgsIn,
3534                                       SourceLocation RAngleLoc,
3535                                       AttributeList *Attr,
3536                               MultiTemplateParamsArg TemplateParameterLists) {
3537  assert(TUK != TUK_Reference && "References are not specializations");
3538
3539  // Find the class template we're specializing
3540  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3541  ClassTemplateDecl *ClassTemplate
3542    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3543
3544  if (!ClassTemplate) {
3545    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3546      << (Name.getAsTemplateDecl() &&
3547          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3548    return true;
3549  }
3550
3551  bool isExplicitSpecialization = false;
3552  bool isPartialSpecialization = false;
3553
3554  // Check the validity of the template headers that introduce this
3555  // template.
3556  // FIXME: We probably shouldn't complain about these headers for
3557  // friend declarations.
3558  TemplateParameterList *TemplateParams
3559    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3560                        (TemplateParameterList**)TemplateParameterLists.get(),
3561                                              TemplateParameterLists.size(),
3562                                              TUK == TUK_Friend,
3563                                              isExplicitSpecialization);
3564  if (TemplateParams && TemplateParams->size() > 0) {
3565    isPartialSpecialization = true;
3566
3567    // C++ [temp.class.spec]p10:
3568    //   The template parameter list of a specialization shall not
3569    //   contain default template argument values.
3570    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3571      Decl *Param = TemplateParams->getParam(I);
3572      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3573        if (TTP->hasDefaultArgument()) {
3574          Diag(TTP->getDefaultArgumentLoc(),
3575               diag::err_default_arg_in_partial_spec);
3576          TTP->removeDefaultArgument();
3577        }
3578      } else if (NonTypeTemplateParmDecl *NTTP
3579                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3580        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3581          Diag(NTTP->getDefaultArgumentLoc(),
3582               diag::err_default_arg_in_partial_spec)
3583            << DefArg->getSourceRange();
3584          NTTP->setDefaultArgument(0);
3585          DefArg->Destroy(Context);
3586        }
3587      } else {
3588        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3589        if (TTP->hasDefaultArgument()) {
3590          Diag(TTP->getDefaultArgument().getLocation(),
3591               diag::err_default_arg_in_partial_spec)
3592            << TTP->getDefaultArgument().getSourceRange();
3593          TTP->setDefaultArgument(TemplateArgumentLoc());
3594        }
3595      }
3596    }
3597  } else if (TemplateParams) {
3598    if (TUK == TUK_Friend)
3599      Diag(KWLoc, diag::err_template_spec_friend)
3600        << FixItHint::CreateRemoval(
3601                                SourceRange(TemplateParams->getTemplateLoc(),
3602                                            TemplateParams->getRAngleLoc()))
3603        << SourceRange(LAngleLoc, RAngleLoc);
3604    else
3605      isExplicitSpecialization = true;
3606  } else if (TUK != TUK_Friend) {
3607    Diag(KWLoc, diag::err_template_spec_needs_header)
3608      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3609    isExplicitSpecialization = true;
3610  }
3611
3612  // Check that the specialization uses the same tag kind as the
3613  // original template.
3614  TagDecl::TagKind Kind;
3615  switch (TagSpec) {
3616  default: assert(0 && "Unknown tag type!");
3617  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3618  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3619  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3620  }
3621  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3622                                    Kind, KWLoc,
3623                                    *ClassTemplate->getIdentifier())) {
3624    Diag(KWLoc, diag::err_use_with_wrong_tag)
3625      << ClassTemplate
3626      << FixItHint::CreateReplacement(KWLoc,
3627                            ClassTemplate->getTemplatedDecl()->getKindName());
3628    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3629         diag::note_previous_use);
3630    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3631  }
3632
3633  // Translate the parser's template argument list in our AST format.
3634  TemplateArgumentListInfo TemplateArgs;
3635  TemplateArgs.setLAngleLoc(LAngleLoc);
3636  TemplateArgs.setRAngleLoc(RAngleLoc);
3637  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3638
3639  // Check that the template argument list is well-formed for this
3640  // template.
3641  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3642                                        TemplateArgs.size());
3643  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3644                                TemplateArgs, false, Converted))
3645    return true;
3646
3647  assert((Converted.structuredSize() ==
3648            ClassTemplate->getTemplateParameters()->size()) &&
3649         "Converted template argument list is too short!");
3650
3651  // Find the class template (partial) specialization declaration that
3652  // corresponds to these arguments.
3653  llvm::FoldingSetNodeID ID;
3654  if (isPartialSpecialization) {
3655    bool MirrorsPrimaryTemplate;
3656    if (CheckClassTemplatePartialSpecializationArgs(
3657                                         ClassTemplate->getTemplateParameters(),
3658                                         Converted, MirrorsPrimaryTemplate))
3659      return true;
3660
3661    if (MirrorsPrimaryTemplate) {
3662      // C++ [temp.class.spec]p9b3:
3663      //
3664      //   -- The argument list of the specialization shall not be identical
3665      //      to the implicit argument list of the primary template.
3666      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3667        << (TUK == TUK_Definition)
3668        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3669      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3670                                ClassTemplate->getIdentifier(),
3671                                TemplateNameLoc,
3672                                Attr,
3673                                TemplateParams,
3674                                AS_none);
3675    }
3676
3677    // FIXME: Diagnose friend partial specializations
3678
3679    if (!Name.isDependent() &&
3680        !TemplateSpecializationType::anyDependentTemplateArguments(
3681                                             TemplateArgs.getArgumentArray(),
3682                                                         TemplateArgs.size())) {
3683      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3684        << ClassTemplate->getDeclName();
3685      isPartialSpecialization = false;
3686    } else {
3687      // FIXME: Template parameter list matters, too
3688      ClassTemplatePartialSpecializationDecl::Profile(ID,
3689                                                  Converted.getFlatArguments(),
3690                                                      Converted.flatSize(),
3691                                                      Context);
3692    }
3693  }
3694
3695  if (!isPartialSpecialization)
3696    ClassTemplateSpecializationDecl::Profile(ID,
3697                                             Converted.getFlatArguments(),
3698                                             Converted.flatSize(),
3699                                             Context);
3700  void *InsertPos = 0;
3701  ClassTemplateSpecializationDecl *PrevDecl = 0;
3702
3703  if (isPartialSpecialization)
3704    PrevDecl
3705      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3706                                                                    InsertPos);
3707  else
3708    PrevDecl
3709      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3710
3711  ClassTemplateSpecializationDecl *Specialization = 0;
3712
3713  // Check whether we can declare a class template specialization in
3714  // the current scope.
3715  if (TUK != TUK_Friend &&
3716      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3717                                       TemplateNameLoc,
3718                                       isPartialSpecialization))
3719    return true;
3720
3721  // The canonical type
3722  QualType CanonType;
3723  if (PrevDecl &&
3724      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3725               TUK == TUK_Friend)) {
3726    // Since the only prior class template specialization with these
3727    // arguments was referenced but not declared, or we're only
3728    // referencing this specialization as a friend, reuse that
3729    // declaration node as our own, updating its source location to
3730    // reflect our new declaration.
3731    Specialization = PrevDecl;
3732    Specialization->setLocation(TemplateNameLoc);
3733    PrevDecl = 0;
3734    CanonType = Context.getTypeDeclType(Specialization);
3735  } else if (isPartialSpecialization) {
3736    // Build the canonical type that describes the converted template
3737    // arguments of the class template partial specialization.
3738    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3739    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3740                                                  Converted.getFlatArguments(),
3741                                                  Converted.flatSize());
3742
3743    // Create a new class template partial specialization declaration node.
3744    ClassTemplatePartialSpecializationDecl *PrevPartial
3745      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3746    ClassTemplatePartialSpecializationDecl *Partial
3747      = ClassTemplatePartialSpecializationDecl::Create(Context,
3748                                             ClassTemplate->getDeclContext(),
3749                                                       TemplateNameLoc,
3750                                                       TemplateParams,
3751                                                       ClassTemplate,
3752                                                       Converted,
3753                                                       TemplateArgs,
3754                                                       CanonType,
3755                                                       PrevPartial);
3756    SetNestedNameSpecifier(Partial, SS);
3757
3758    if (PrevPartial) {
3759      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3760      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3761    } else {
3762      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3763    }
3764    Specialization = Partial;
3765
3766    // If we are providing an explicit specialization of a member class
3767    // template specialization, make a note of that.
3768    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3769      PrevPartial->setMemberSpecialization();
3770
3771    // Check that all of the template parameters of the class template
3772    // partial specialization are deducible from the template
3773    // arguments. If not, this class template partial specialization
3774    // will never be used.
3775    llvm::SmallVector<bool, 8> DeducibleParams;
3776    DeducibleParams.resize(TemplateParams->size());
3777    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3778                               TemplateParams->getDepth(),
3779                               DeducibleParams);
3780    unsigned NumNonDeducible = 0;
3781    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3782      if (!DeducibleParams[I])
3783        ++NumNonDeducible;
3784
3785    if (NumNonDeducible) {
3786      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3787        << (NumNonDeducible > 1)
3788        << SourceRange(TemplateNameLoc, RAngleLoc);
3789      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3790        if (!DeducibleParams[I]) {
3791          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3792          if (Param->getDeclName())
3793            Diag(Param->getLocation(),
3794                 diag::note_partial_spec_unused_parameter)
3795              << Param->getDeclName();
3796          else
3797            Diag(Param->getLocation(),
3798                 diag::note_partial_spec_unused_parameter)
3799              << std::string("<anonymous>");
3800        }
3801      }
3802    }
3803  } else {
3804    // Create a new class template specialization declaration node for
3805    // this explicit specialization or friend declaration.
3806    Specialization
3807      = ClassTemplateSpecializationDecl::Create(Context,
3808                                             ClassTemplate->getDeclContext(),
3809                                                TemplateNameLoc,
3810                                                ClassTemplate,
3811                                                Converted,
3812                                                PrevDecl);
3813    SetNestedNameSpecifier(Specialization, SS);
3814
3815    if (PrevDecl) {
3816      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3817      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3818    } else {
3819      ClassTemplate->getSpecializations().InsertNode(Specialization,
3820                                                     InsertPos);
3821    }
3822
3823    CanonType = Context.getTypeDeclType(Specialization);
3824  }
3825
3826  // C++ [temp.expl.spec]p6:
3827  //   If a template, a member template or the member of a class template is
3828  //   explicitly specialized then that specialization shall be declared
3829  //   before the first use of that specialization that would cause an implicit
3830  //   instantiation to take place, in every translation unit in which such a
3831  //   use occurs; no diagnostic is required.
3832  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3833    bool Okay = false;
3834    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3835      // Is there any previous explicit specialization declaration?
3836      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3837        Okay = true;
3838        break;
3839      }
3840    }
3841
3842    if (!Okay) {
3843      SourceRange Range(TemplateNameLoc, RAngleLoc);
3844      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3845        << Context.getTypeDeclType(Specialization) << Range;
3846
3847      Diag(PrevDecl->getPointOfInstantiation(),
3848           diag::note_instantiation_required_here)
3849        << (PrevDecl->getTemplateSpecializationKind()
3850                                                != TSK_ImplicitInstantiation);
3851      return true;
3852    }
3853  }
3854
3855  // If this is not a friend, note that this is an explicit specialization.
3856  if (TUK != TUK_Friend)
3857    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3858
3859  // Check that this isn't a redefinition of this specialization.
3860  if (TUK == TUK_Definition) {
3861    if (RecordDecl *Def = Specialization->getDefinition()) {
3862      SourceRange Range(TemplateNameLoc, RAngleLoc);
3863      Diag(TemplateNameLoc, diag::err_redefinition)
3864        << Context.getTypeDeclType(Specialization) << Range;
3865      Diag(Def->getLocation(), diag::note_previous_definition);
3866      Specialization->setInvalidDecl();
3867      return true;
3868    }
3869  }
3870
3871  // Build the fully-sugared type for this class template
3872  // specialization as the user wrote in the specialization
3873  // itself. This means that we'll pretty-print the type retrieved
3874  // from the specialization's declaration the way that the user
3875  // actually wrote the specialization, rather than formatting the
3876  // name based on the "canonical" representation used to store the
3877  // template arguments in the specialization.
3878  TypeSourceInfo *WrittenTy
3879    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3880                                                TemplateArgs, CanonType);
3881  if (TUK != TUK_Friend)
3882    Specialization->setTypeAsWritten(WrittenTy);
3883  TemplateArgsIn.release();
3884
3885  // C++ [temp.expl.spec]p9:
3886  //   A template explicit specialization is in the scope of the
3887  //   namespace in which the template was defined.
3888  //
3889  // We actually implement this paragraph where we set the semantic
3890  // context (in the creation of the ClassTemplateSpecializationDecl),
3891  // but we also maintain the lexical context where the actual
3892  // definition occurs.
3893  Specialization->setLexicalDeclContext(CurContext);
3894
3895  // We may be starting the definition of this specialization.
3896  if (TUK == TUK_Definition)
3897    Specialization->startDefinition();
3898
3899  if (TUK == TUK_Friend) {
3900    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3901                                            TemplateNameLoc,
3902                                            WrittenTy,
3903                                            /*FIXME:*/KWLoc);
3904    Friend->setAccess(AS_public);
3905    CurContext->addDecl(Friend);
3906  } else {
3907    // Add the specialization into its lexical context, so that it can
3908    // be seen when iterating through the list of declarations in that
3909    // context. However, specializations are not found by name lookup.
3910    CurContext->addDecl(Specialization);
3911  }
3912  return DeclPtrTy::make(Specialization);
3913}
3914
3915Sema::DeclPtrTy
3916Sema::ActOnTemplateDeclarator(Scope *S,
3917                              MultiTemplateParamsArg TemplateParameterLists,
3918                              Declarator &D) {
3919  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3920}
3921
3922Sema::DeclPtrTy
3923Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3924                               MultiTemplateParamsArg TemplateParameterLists,
3925                                      Declarator &D) {
3926  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3927  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3928         "Not a function declarator!");
3929  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3930
3931  if (FTI.hasPrototype) {
3932    // FIXME: Diagnose arguments without names in C.
3933  }
3934
3935  Scope *ParentScope = FnBodyScope->getParent();
3936
3937  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3938                                  move(TemplateParameterLists),
3939                                  /*IsFunctionDefinition=*/true);
3940  if (FunctionTemplateDecl *FunctionTemplate
3941        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3942    return ActOnStartOfFunctionDef(FnBodyScope,
3943                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3944  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3945    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3946  return DeclPtrTy();
3947}
3948
3949/// \brief Strips various properties off an implicit instantiation
3950/// that has just been explicitly specialized.
3951static void StripImplicitInstantiation(NamedDecl *D) {
3952  D->invalidateAttrs();
3953
3954  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3955    FD->setInlineSpecified(false);
3956  }
3957}
3958
3959/// \brief Diagnose cases where we have an explicit template specialization
3960/// before/after an explicit template instantiation, producing diagnostics
3961/// for those cases where they are required and determining whether the
3962/// new specialization/instantiation will have any effect.
3963///
3964/// \param NewLoc the location of the new explicit specialization or
3965/// instantiation.
3966///
3967/// \param NewTSK the kind of the new explicit specialization or instantiation.
3968///
3969/// \param PrevDecl the previous declaration of the entity.
3970///
3971/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3972///
3973/// \param PrevPointOfInstantiation if valid, indicates where the previus
3974/// declaration was instantiated (either implicitly or explicitly).
3975///
3976/// \param SuppressNew will be set to true to indicate that the new
3977/// specialization or instantiation has no effect and should be ignored.
3978///
3979/// \returns true if there was an error that should prevent the introduction of
3980/// the new declaration into the AST, false otherwise.
3981bool
3982Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3983                                             TemplateSpecializationKind NewTSK,
3984                                             NamedDecl *PrevDecl,
3985                                             TemplateSpecializationKind PrevTSK,
3986                                        SourceLocation PrevPointOfInstantiation,
3987                                             bool &SuppressNew) {
3988  SuppressNew = false;
3989
3990  switch (NewTSK) {
3991  case TSK_Undeclared:
3992  case TSK_ImplicitInstantiation:
3993    assert(false && "Don't check implicit instantiations here");
3994    return false;
3995
3996  case TSK_ExplicitSpecialization:
3997    switch (PrevTSK) {
3998    case TSK_Undeclared:
3999    case TSK_ExplicitSpecialization:
4000      // Okay, we're just specializing something that is either already
4001      // explicitly specialized or has merely been mentioned without any
4002      // instantiation.
4003      return false;
4004
4005    case TSK_ImplicitInstantiation:
4006      if (PrevPointOfInstantiation.isInvalid()) {
4007        // The declaration itself has not actually been instantiated, so it is
4008        // still okay to specialize it.
4009        StripImplicitInstantiation(PrevDecl);
4010        return false;
4011      }
4012      // Fall through
4013
4014    case TSK_ExplicitInstantiationDeclaration:
4015    case TSK_ExplicitInstantiationDefinition:
4016      assert((PrevTSK == TSK_ImplicitInstantiation ||
4017              PrevPointOfInstantiation.isValid()) &&
4018             "Explicit instantiation without point of instantiation?");
4019
4020      // C++ [temp.expl.spec]p6:
4021      //   If a template, a member template or the member of a class template
4022      //   is explicitly specialized then that specialization shall be declared
4023      //   before the first use of that specialization that would cause an
4024      //   implicit instantiation to take place, in every translation unit in
4025      //   which such a use occurs; no diagnostic is required.
4026      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4027        // Is there any previous explicit specialization declaration?
4028        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4029          return false;
4030      }
4031
4032      Diag(NewLoc, diag::err_specialization_after_instantiation)
4033        << PrevDecl;
4034      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4035        << (PrevTSK != TSK_ImplicitInstantiation);
4036
4037      return true;
4038    }
4039    break;
4040
4041  case TSK_ExplicitInstantiationDeclaration:
4042    switch (PrevTSK) {
4043    case TSK_ExplicitInstantiationDeclaration:
4044      // This explicit instantiation declaration is redundant (that's okay).
4045      SuppressNew = true;
4046      return false;
4047
4048    case TSK_Undeclared:
4049    case TSK_ImplicitInstantiation:
4050      // We're explicitly instantiating something that may have already been
4051      // implicitly instantiated; that's fine.
4052      return false;
4053
4054    case TSK_ExplicitSpecialization:
4055      // C++0x [temp.explicit]p4:
4056      //   For a given set of template parameters, if an explicit instantiation
4057      //   of a template appears after a declaration of an explicit
4058      //   specialization for that template, the explicit instantiation has no
4059      //   effect.
4060      SuppressNew = true;
4061      return false;
4062
4063    case TSK_ExplicitInstantiationDefinition:
4064      // C++0x [temp.explicit]p10:
4065      //   If an entity is the subject of both an explicit instantiation
4066      //   declaration and an explicit instantiation definition in the same
4067      //   translation unit, the definition shall follow the declaration.
4068      Diag(NewLoc,
4069           diag::err_explicit_instantiation_declaration_after_definition);
4070      Diag(PrevPointOfInstantiation,
4071           diag::note_explicit_instantiation_definition_here);
4072      assert(PrevPointOfInstantiation.isValid() &&
4073             "Explicit instantiation without point of instantiation?");
4074      SuppressNew = true;
4075      return false;
4076    }
4077    break;
4078
4079  case TSK_ExplicitInstantiationDefinition:
4080    switch (PrevTSK) {
4081    case TSK_Undeclared:
4082    case TSK_ImplicitInstantiation:
4083      // We're explicitly instantiating something that may have already been
4084      // implicitly instantiated; that's fine.
4085      return false;
4086
4087    case TSK_ExplicitSpecialization:
4088      // C++ DR 259, C++0x [temp.explicit]p4:
4089      //   For a given set of template parameters, if an explicit
4090      //   instantiation of a template appears after a declaration of
4091      //   an explicit specialization for that template, the explicit
4092      //   instantiation has no effect.
4093      //
4094      // In C++98/03 mode, we only give an extension warning here, because it
4095      // is not harmful to try to explicitly instantiate something that
4096      // has been explicitly specialized.
4097      if (!getLangOptions().CPlusPlus0x) {
4098        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4099          << PrevDecl;
4100        Diag(PrevDecl->getLocation(),
4101             diag::note_previous_template_specialization);
4102      }
4103      SuppressNew = true;
4104      return false;
4105
4106    case TSK_ExplicitInstantiationDeclaration:
4107      // We're explicity instantiating a definition for something for which we
4108      // were previously asked to suppress instantiations. That's fine.
4109      return false;
4110
4111    case TSK_ExplicitInstantiationDefinition:
4112      // C++0x [temp.spec]p5:
4113      //   For a given template and a given set of template-arguments,
4114      //     - an explicit instantiation definition shall appear at most once
4115      //       in a program,
4116      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4117        << PrevDecl;
4118      Diag(PrevPointOfInstantiation,
4119           diag::note_previous_explicit_instantiation);
4120      SuppressNew = true;
4121      return false;
4122    }
4123    break;
4124  }
4125
4126  assert(false && "Missing specialization/instantiation case?");
4127
4128  return false;
4129}
4130
4131/// \brief Perform semantic analysis for the given dependent function
4132/// template specialization.  The only possible way to get a dependent
4133/// function template specialization is with a friend declaration,
4134/// like so:
4135///
4136///   template <class T> void foo(T);
4137///   template <class T> class A {
4138///     friend void foo<>(T);
4139///   };
4140///
4141/// There really isn't any useful analysis we can do here, so we
4142/// just store the information.
4143bool
4144Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4145                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4146                                                   LookupResult &Previous) {
4147  // Remove anything from Previous that isn't a function template in
4148  // the correct context.
4149  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4150  LookupResult::Filter F = Previous.makeFilter();
4151  while (F.hasNext()) {
4152    NamedDecl *D = F.next()->getUnderlyingDecl();
4153    if (!isa<FunctionTemplateDecl>(D) ||
4154        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4155      F.erase();
4156  }
4157  F.done();
4158
4159  // Should this be diagnosed here?
4160  if (Previous.empty()) return true;
4161
4162  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4163                                         ExplicitTemplateArgs);
4164  return false;
4165}
4166
4167/// \brief Perform semantic analysis for the given function template
4168/// specialization.
4169///
4170/// This routine performs all of the semantic analysis required for an
4171/// explicit function template specialization. On successful completion,
4172/// the function declaration \p FD will become a function template
4173/// specialization.
4174///
4175/// \param FD the function declaration, which will be updated to become a
4176/// function template specialization.
4177///
4178/// \param HasExplicitTemplateArgs whether any template arguments were
4179/// explicitly provided.
4180///
4181/// \param LAngleLoc the location of the left angle bracket ('<'), if
4182/// template arguments were explicitly provided.
4183///
4184/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4185/// if any.
4186///
4187/// \param NumExplicitTemplateArgs the number of explicitly-provided template
4188/// arguments. This number may be zero even when HasExplicitTemplateArgs is
4189/// true as in, e.g., \c void sort<>(char*, char*);
4190///
4191/// \param RAngleLoc the location of the right angle bracket ('>'), if
4192/// template arguments were explicitly provided.
4193///
4194/// \param PrevDecl the set of declarations that
4195bool
4196Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4197                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4198                                          LookupResult &Previous) {
4199  // The set of function template specializations that could match this
4200  // explicit function template specialization.
4201  UnresolvedSet<8> Candidates;
4202
4203  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4204  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4205         I != E; ++I) {
4206    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4207    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4208      // Only consider templates found within the same semantic lookup scope as
4209      // FD.
4210      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4211        continue;
4212
4213      // C++ [temp.expl.spec]p11:
4214      //   A trailing template-argument can be left unspecified in the
4215      //   template-id naming an explicit function template specialization
4216      //   provided it can be deduced from the function argument type.
4217      // Perform template argument deduction to determine whether we may be
4218      // specializing this template.
4219      // FIXME: It is somewhat wasteful to build
4220      TemplateDeductionInfo Info(Context, FD->getLocation());
4221      FunctionDecl *Specialization = 0;
4222      if (TemplateDeductionResult TDK
4223            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4224                                      FD->getType(),
4225                                      Specialization,
4226                                      Info)) {
4227        // FIXME: Template argument deduction failed; record why it failed, so
4228        // that we can provide nifty diagnostics.
4229        (void)TDK;
4230        continue;
4231      }
4232
4233      // Record this candidate.
4234      Candidates.addDecl(Specialization, I.getAccess());
4235    }
4236  }
4237
4238  // Find the most specialized function template.
4239  UnresolvedSetIterator Result
4240    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4241                         TPOC_Other, FD->getLocation(),
4242                  PDiag(diag::err_function_template_spec_no_match)
4243                    << FD->getDeclName(),
4244                  PDiag(diag::err_function_template_spec_ambiguous)
4245                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4246                  PDiag(diag::note_function_template_spec_matched));
4247  if (Result == Candidates.end())
4248    return true;
4249
4250  // Ignore access information;  it doesn't figure into redeclaration checking.
4251  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4252  Specialization->setLocation(FD->getLocation());
4253
4254  // FIXME: Check if the prior specialization has a point of instantiation.
4255  // If so, we have run afoul of .
4256
4257  // If this is a friend declaration, then we're not really declaring
4258  // an explicit specialization.
4259  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4260
4261  // Check the scope of this explicit specialization.
4262  if (!isFriend &&
4263      CheckTemplateSpecializationScope(*this,
4264                                       Specialization->getPrimaryTemplate(),
4265                                       Specialization, FD->getLocation(),
4266                                       false))
4267    return true;
4268
4269  // C++ [temp.expl.spec]p6:
4270  //   If a template, a member template or the member of a class template is
4271  //   explicitly specialized then that specialization shall be declared
4272  //   before the first use of that specialization that would cause an implicit
4273  //   instantiation to take place, in every translation unit in which such a
4274  //   use occurs; no diagnostic is required.
4275  FunctionTemplateSpecializationInfo *SpecInfo
4276    = Specialization->getTemplateSpecializationInfo();
4277  assert(SpecInfo && "Function template specialization info missing?");
4278
4279  bool SuppressNew = false;
4280  if (!isFriend &&
4281      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4282                                             TSK_ExplicitSpecialization,
4283                                             Specialization,
4284                                   SpecInfo->getTemplateSpecializationKind(),
4285                                         SpecInfo->getPointOfInstantiation(),
4286                                             SuppressNew))
4287    return true;
4288
4289  // Mark the prior declaration as an explicit specialization, so that later
4290  // clients know that this is an explicit specialization.
4291  if (!isFriend)
4292    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4293
4294  // Turn the given function declaration into a function template
4295  // specialization, with the template arguments from the previous
4296  // specialization.
4297  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4298                         new (Context) TemplateArgumentList(
4299                             *Specialization->getTemplateSpecializationArgs()),
4300                                        /*InsertPos=*/0,
4301                                    SpecInfo->getTemplateSpecializationKind());
4302
4303  // The "previous declaration" for this function template specialization is
4304  // the prior function template specialization.
4305  Previous.clear();
4306  Previous.addDecl(Specialization);
4307  return false;
4308}
4309
4310/// \brief Perform semantic analysis for the given non-template member
4311/// specialization.
4312///
4313/// This routine performs all of the semantic analysis required for an
4314/// explicit member function specialization. On successful completion,
4315/// the function declaration \p FD will become a member function
4316/// specialization.
4317///
4318/// \param Member the member declaration, which will be updated to become a
4319/// specialization.
4320///
4321/// \param Previous the set of declarations, one of which may be specialized
4322/// by this function specialization;  the set will be modified to contain the
4323/// redeclared member.
4324bool
4325Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4326  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4327
4328  // Try to find the member we are instantiating.
4329  NamedDecl *Instantiation = 0;
4330  NamedDecl *InstantiatedFrom = 0;
4331  MemberSpecializationInfo *MSInfo = 0;
4332
4333  if (Previous.empty()) {
4334    // Nowhere to look anyway.
4335  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4336    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4337           I != E; ++I) {
4338      NamedDecl *D = (*I)->getUnderlyingDecl();
4339      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4340        if (Context.hasSameType(Function->getType(), Method->getType())) {
4341          Instantiation = Method;
4342          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4343          MSInfo = Method->getMemberSpecializationInfo();
4344          break;
4345        }
4346      }
4347    }
4348  } else if (isa<VarDecl>(Member)) {
4349    VarDecl *PrevVar;
4350    if (Previous.isSingleResult() &&
4351        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4352      if (PrevVar->isStaticDataMember()) {
4353        Instantiation = PrevVar;
4354        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4355        MSInfo = PrevVar->getMemberSpecializationInfo();
4356      }
4357  } else if (isa<RecordDecl>(Member)) {
4358    CXXRecordDecl *PrevRecord;
4359    if (Previous.isSingleResult() &&
4360        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4361      Instantiation = PrevRecord;
4362      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4363      MSInfo = PrevRecord->getMemberSpecializationInfo();
4364    }
4365  }
4366
4367  if (!Instantiation) {
4368    // There is no previous declaration that matches. Since member
4369    // specializations are always out-of-line, the caller will complain about
4370    // this mismatch later.
4371    return false;
4372  }
4373
4374  // If this is a friend, just bail out here before we start turning
4375  // things into explicit specializations.
4376  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4377    // Preserve instantiation information.
4378    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4379      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4380                                      cast<CXXMethodDecl>(InstantiatedFrom),
4381        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4382    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4383      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4384                                      cast<CXXRecordDecl>(InstantiatedFrom),
4385        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4386    }
4387
4388    Previous.clear();
4389    Previous.addDecl(Instantiation);
4390    return false;
4391  }
4392
4393  // Make sure that this is a specialization of a member.
4394  if (!InstantiatedFrom) {
4395    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4396      << Member;
4397    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4398    return true;
4399  }
4400
4401  // C++ [temp.expl.spec]p6:
4402  //   If a template, a member template or the member of a class template is
4403  //   explicitly specialized then that spe- cialization shall be declared
4404  //   before the first use of that specialization that would cause an implicit
4405  //   instantiation to take place, in every translation unit in which such a
4406  //   use occurs; no diagnostic is required.
4407  assert(MSInfo && "Member specialization info missing?");
4408
4409  bool SuppressNew = false;
4410  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4411                                             TSK_ExplicitSpecialization,
4412                                             Instantiation,
4413                                     MSInfo->getTemplateSpecializationKind(),
4414                                           MSInfo->getPointOfInstantiation(),
4415                                             SuppressNew))
4416    return true;
4417
4418  // Check the scope of this explicit specialization.
4419  if (CheckTemplateSpecializationScope(*this,
4420                                       InstantiatedFrom,
4421                                       Instantiation, Member->getLocation(),
4422                                       false))
4423    return true;
4424
4425  // Note that this is an explicit instantiation of a member.
4426  // the original declaration to note that it is an explicit specialization
4427  // (if it was previously an implicit instantiation). This latter step
4428  // makes bookkeeping easier.
4429  if (isa<FunctionDecl>(Member)) {
4430    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4431    if (InstantiationFunction->getTemplateSpecializationKind() ==
4432          TSK_ImplicitInstantiation) {
4433      InstantiationFunction->setTemplateSpecializationKind(
4434                                                  TSK_ExplicitSpecialization);
4435      InstantiationFunction->setLocation(Member->getLocation());
4436    }
4437
4438    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4439                                        cast<CXXMethodDecl>(InstantiatedFrom),
4440                                                  TSK_ExplicitSpecialization);
4441  } else if (isa<VarDecl>(Member)) {
4442    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4443    if (InstantiationVar->getTemplateSpecializationKind() ==
4444          TSK_ImplicitInstantiation) {
4445      InstantiationVar->setTemplateSpecializationKind(
4446                                                  TSK_ExplicitSpecialization);
4447      InstantiationVar->setLocation(Member->getLocation());
4448    }
4449
4450    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4451                                                cast<VarDecl>(InstantiatedFrom),
4452                                                TSK_ExplicitSpecialization);
4453  } else {
4454    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4455    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4456    if (InstantiationClass->getTemplateSpecializationKind() ==
4457          TSK_ImplicitInstantiation) {
4458      InstantiationClass->setTemplateSpecializationKind(
4459                                                   TSK_ExplicitSpecialization);
4460      InstantiationClass->setLocation(Member->getLocation());
4461    }
4462
4463    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4464                                        cast<CXXRecordDecl>(InstantiatedFrom),
4465                                                   TSK_ExplicitSpecialization);
4466  }
4467
4468  // Save the caller the trouble of having to figure out which declaration
4469  // this specialization matches.
4470  Previous.clear();
4471  Previous.addDecl(Instantiation);
4472  return false;
4473}
4474
4475/// \brief Check the scope of an explicit instantiation.
4476static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4477                                            SourceLocation InstLoc,
4478                                            bool WasQualifiedName) {
4479  DeclContext *ExpectedContext
4480    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4481  DeclContext *CurContext = S.CurContext->getLookupContext();
4482
4483  // C++0x [temp.explicit]p2:
4484  //   An explicit instantiation shall appear in an enclosing namespace of its
4485  //   template.
4486  //
4487  // This is DR275, which we do not retroactively apply to C++98/03.
4488  if (S.getLangOptions().CPlusPlus0x &&
4489      !CurContext->Encloses(ExpectedContext)) {
4490    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4491      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4492        << D << NS;
4493    else
4494      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4495        << D;
4496    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4497    return;
4498  }
4499
4500  // C++0x [temp.explicit]p2:
4501  //   If the name declared in the explicit instantiation is an unqualified
4502  //   name, the explicit instantiation shall appear in the namespace where
4503  //   its template is declared or, if that namespace is inline (7.3.1), any
4504  //   namespace from its enclosing namespace set.
4505  if (WasQualifiedName)
4506    return;
4507
4508  if (CurContext->Equals(ExpectedContext))
4509    return;
4510
4511  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4512    << D << ExpectedContext;
4513  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4514}
4515
4516/// \brief Determine whether the given scope specifier has a template-id in it.
4517static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4518  if (!SS.isSet())
4519    return false;
4520
4521  // C++0x [temp.explicit]p2:
4522  //   If the explicit instantiation is for a member function, a member class
4523  //   or a static data member of a class template specialization, the name of
4524  //   the class template specialization in the qualified-id for the member
4525  //   name shall be a simple-template-id.
4526  //
4527  // C++98 has the same restriction, just worded differently.
4528  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4529       NNS; NNS = NNS->getPrefix())
4530    if (Type *T = NNS->getAsType())
4531      if (isa<TemplateSpecializationType>(T))
4532        return true;
4533
4534  return false;
4535}
4536
4537// Explicit instantiation of a class template specialization
4538// FIXME: Implement extern template semantics
4539Sema::DeclResult
4540Sema::ActOnExplicitInstantiation(Scope *S,
4541                                 SourceLocation ExternLoc,
4542                                 SourceLocation TemplateLoc,
4543                                 unsigned TagSpec,
4544                                 SourceLocation KWLoc,
4545                                 const CXXScopeSpec &SS,
4546                                 TemplateTy TemplateD,
4547                                 SourceLocation TemplateNameLoc,
4548                                 SourceLocation LAngleLoc,
4549                                 ASTTemplateArgsPtr TemplateArgsIn,
4550                                 SourceLocation RAngleLoc,
4551                                 AttributeList *Attr) {
4552  // Find the class template we're specializing
4553  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4554  ClassTemplateDecl *ClassTemplate
4555    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4556
4557  // Check that the specialization uses the same tag kind as the
4558  // original template.
4559  TagDecl::TagKind Kind;
4560  switch (TagSpec) {
4561  default: assert(0 && "Unknown tag type!");
4562  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4563  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4564  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4565  }
4566  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4567                                    Kind, KWLoc,
4568                                    *ClassTemplate->getIdentifier())) {
4569    Diag(KWLoc, diag::err_use_with_wrong_tag)
4570      << ClassTemplate
4571      << FixItHint::CreateReplacement(KWLoc,
4572                            ClassTemplate->getTemplatedDecl()->getKindName());
4573    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4574         diag::note_previous_use);
4575    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4576  }
4577
4578  // C++0x [temp.explicit]p2:
4579  //   There are two forms of explicit instantiation: an explicit instantiation
4580  //   definition and an explicit instantiation declaration. An explicit
4581  //   instantiation declaration begins with the extern keyword. [...]
4582  TemplateSpecializationKind TSK
4583    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4584                           : TSK_ExplicitInstantiationDeclaration;
4585
4586  // Translate the parser's template argument list in our AST format.
4587  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4588  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4589
4590  // Check that the template argument list is well-formed for this
4591  // template.
4592  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4593                                        TemplateArgs.size());
4594  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4595                                TemplateArgs, false, Converted))
4596    return true;
4597
4598  assert((Converted.structuredSize() ==
4599            ClassTemplate->getTemplateParameters()->size()) &&
4600         "Converted template argument list is too short!");
4601
4602  // Find the class template specialization declaration that
4603  // corresponds to these arguments.
4604  llvm::FoldingSetNodeID ID;
4605  ClassTemplateSpecializationDecl::Profile(ID,
4606                                           Converted.getFlatArguments(),
4607                                           Converted.flatSize(),
4608                                           Context);
4609  void *InsertPos = 0;
4610  ClassTemplateSpecializationDecl *PrevDecl
4611    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4612
4613  // C++0x [temp.explicit]p2:
4614  //   [...] An explicit instantiation shall appear in an enclosing
4615  //   namespace of its template. [...]
4616  //
4617  // This is C++ DR 275.
4618  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4619                                  SS.isSet());
4620
4621  ClassTemplateSpecializationDecl *Specialization = 0;
4622
4623  bool ReusedDecl = false;
4624  if (PrevDecl) {
4625    bool SuppressNew = false;
4626    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4627                                               PrevDecl,
4628                                              PrevDecl->getSpecializationKind(),
4629                                            PrevDecl->getPointOfInstantiation(),
4630                                               SuppressNew))
4631      return DeclPtrTy::make(PrevDecl);
4632
4633    if (SuppressNew)
4634      return DeclPtrTy::make(PrevDecl);
4635
4636    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4637        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4638      // Since the only prior class template specialization with these
4639      // arguments was referenced but not declared, reuse that
4640      // declaration node as our own, updating its source location to
4641      // reflect our new declaration.
4642      Specialization = PrevDecl;
4643      Specialization->setLocation(TemplateNameLoc);
4644      PrevDecl = 0;
4645      ReusedDecl = true;
4646    }
4647  }
4648
4649  if (!Specialization) {
4650    // Create a new class template specialization declaration node for
4651    // this explicit specialization.
4652    Specialization
4653      = ClassTemplateSpecializationDecl::Create(Context,
4654                                             ClassTemplate->getDeclContext(),
4655                                                TemplateNameLoc,
4656                                                ClassTemplate,
4657                                                Converted, PrevDecl);
4658    SetNestedNameSpecifier(Specialization, SS);
4659
4660    if (PrevDecl) {
4661      // Remove the previous declaration from the folding set, since we want
4662      // to introduce a new declaration.
4663      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4664      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4665    }
4666
4667    // Insert the new specialization.
4668    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4669  }
4670
4671  // Build the fully-sugared type for this explicit instantiation as
4672  // the user wrote in the explicit instantiation itself. This means
4673  // that we'll pretty-print the type retrieved from the
4674  // specialization's declaration the way that the user actually wrote
4675  // the explicit instantiation, rather than formatting the name based
4676  // on the "canonical" representation used to store the template
4677  // arguments in the specialization.
4678  TypeSourceInfo *WrittenTy
4679    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4680                                                TemplateArgs,
4681                                  Context.getTypeDeclType(Specialization));
4682  Specialization->setTypeAsWritten(WrittenTy);
4683  TemplateArgsIn.release();
4684
4685  if (!ReusedDecl) {
4686    // Add the explicit instantiation into its lexical context. However,
4687    // since explicit instantiations are never found by name lookup, we
4688    // just put it into the declaration context directly.
4689    Specialization->setLexicalDeclContext(CurContext);
4690    CurContext->addDecl(Specialization);
4691  }
4692
4693  // C++ [temp.explicit]p3:
4694  //   A definition of a class template or class member template
4695  //   shall be in scope at the point of the explicit instantiation of
4696  //   the class template or class member template.
4697  //
4698  // This check comes when we actually try to perform the
4699  // instantiation.
4700  ClassTemplateSpecializationDecl *Def
4701    = cast_or_null<ClassTemplateSpecializationDecl>(
4702                                              Specialization->getDefinition());
4703  if (!Def)
4704    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4705
4706  // Instantiate the members of this class template specialization.
4707  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4708                                       Specialization->getDefinition());
4709  if (Def) {
4710    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4711
4712    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4713    // TSK_ExplicitInstantiationDefinition
4714    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4715        TSK == TSK_ExplicitInstantiationDefinition)
4716      Def->setTemplateSpecializationKind(TSK);
4717
4718    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4719  }
4720
4721  return DeclPtrTy::make(Specialization);
4722}
4723
4724// Explicit instantiation of a member class of a class template.
4725Sema::DeclResult
4726Sema::ActOnExplicitInstantiation(Scope *S,
4727                                 SourceLocation ExternLoc,
4728                                 SourceLocation TemplateLoc,
4729                                 unsigned TagSpec,
4730                                 SourceLocation KWLoc,
4731                                 CXXScopeSpec &SS,
4732                                 IdentifierInfo *Name,
4733                                 SourceLocation NameLoc,
4734                                 AttributeList *Attr) {
4735
4736  bool Owned = false;
4737  bool IsDependent = false;
4738  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4739                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4740                            MultiTemplateParamsArg(*this, 0, 0),
4741                            Owned, IsDependent);
4742  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4743
4744  if (!TagD)
4745    return true;
4746
4747  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4748  if (Tag->isEnum()) {
4749    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4750      << Context.getTypeDeclType(Tag);
4751    return true;
4752  }
4753
4754  if (Tag->isInvalidDecl())
4755    return true;
4756
4757  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4758  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4759  if (!Pattern) {
4760    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4761      << Context.getTypeDeclType(Record);
4762    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4763    return true;
4764  }
4765
4766  // C++0x [temp.explicit]p2:
4767  //   If the explicit instantiation is for a class or member class, the
4768  //   elaborated-type-specifier in the declaration shall include a
4769  //   simple-template-id.
4770  //
4771  // C++98 has the same restriction, just worded differently.
4772  if (!ScopeSpecifierHasTemplateId(SS))
4773    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4774      << Record << SS.getRange();
4775
4776  // C++0x [temp.explicit]p2:
4777  //   There are two forms of explicit instantiation: an explicit instantiation
4778  //   definition and an explicit instantiation declaration. An explicit
4779  //   instantiation declaration begins with the extern keyword. [...]
4780  TemplateSpecializationKind TSK
4781    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4782                           : TSK_ExplicitInstantiationDeclaration;
4783
4784  // C++0x [temp.explicit]p2:
4785  //   [...] An explicit instantiation shall appear in an enclosing
4786  //   namespace of its template. [...]
4787  //
4788  // This is C++ DR 275.
4789  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4790
4791  // Verify that it is okay to explicitly instantiate here.
4792  CXXRecordDecl *PrevDecl
4793    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4794  if (!PrevDecl && Record->getDefinition())
4795    PrevDecl = Record;
4796  if (PrevDecl) {
4797    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4798    bool SuppressNew = false;
4799    assert(MSInfo && "No member specialization information?");
4800    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4801                                               PrevDecl,
4802                                        MSInfo->getTemplateSpecializationKind(),
4803                                             MSInfo->getPointOfInstantiation(),
4804                                               SuppressNew))
4805      return true;
4806    if (SuppressNew)
4807      return TagD;
4808  }
4809
4810  CXXRecordDecl *RecordDef
4811    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4812  if (!RecordDef) {
4813    // C++ [temp.explicit]p3:
4814    //   A definition of a member class of a class template shall be in scope
4815    //   at the point of an explicit instantiation of the member class.
4816    CXXRecordDecl *Def
4817      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4818    if (!Def) {
4819      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4820        << 0 << Record->getDeclName() << Record->getDeclContext();
4821      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4822        << Pattern;
4823      return true;
4824    } else {
4825      if (InstantiateClass(NameLoc, Record, Def,
4826                           getTemplateInstantiationArgs(Record),
4827                           TSK))
4828        return true;
4829
4830      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4831      if (!RecordDef)
4832        return true;
4833    }
4834  }
4835
4836  // Instantiate all of the members of the class.
4837  InstantiateClassMembers(NameLoc, RecordDef,
4838                          getTemplateInstantiationArgs(Record), TSK);
4839
4840  // FIXME: We don't have any representation for explicit instantiations of
4841  // member classes. Such a representation is not needed for compilation, but it
4842  // should be available for clients that want to see all of the declarations in
4843  // the source code.
4844  return TagD;
4845}
4846
4847Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4848                                                  SourceLocation ExternLoc,
4849                                                  SourceLocation TemplateLoc,
4850                                                  Declarator &D) {
4851  // Explicit instantiations always require a name.
4852  DeclarationName Name = GetNameForDeclarator(D);
4853  if (!Name) {
4854    if (!D.isInvalidType())
4855      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4856           diag::err_explicit_instantiation_requires_name)
4857        << D.getDeclSpec().getSourceRange()
4858        << D.getSourceRange();
4859
4860    return true;
4861  }
4862
4863  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4864  // we find one that is.
4865  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4866         (S->getFlags() & Scope::TemplateParamScope) != 0)
4867    S = S->getParent();
4868
4869  // Determine the type of the declaration.
4870  QualType R = GetTypeForDeclarator(D, S, 0);
4871  if (R.isNull())
4872    return true;
4873
4874  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4875    // Cannot explicitly instantiate a typedef.
4876    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4877      << Name;
4878    return true;
4879  }
4880
4881  // C++0x [temp.explicit]p1:
4882  //   [...] An explicit instantiation of a function template shall not use the
4883  //   inline or constexpr specifiers.
4884  // Presumably, this also applies to member functions of class templates as
4885  // well.
4886  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4887    Diag(D.getDeclSpec().getInlineSpecLoc(),
4888         diag::err_explicit_instantiation_inline)
4889      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4890
4891  // FIXME: check for constexpr specifier.
4892
4893  // C++0x [temp.explicit]p2:
4894  //   There are two forms of explicit instantiation: an explicit instantiation
4895  //   definition and an explicit instantiation declaration. An explicit
4896  //   instantiation declaration begins with the extern keyword. [...]
4897  TemplateSpecializationKind TSK
4898    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4899                           : TSK_ExplicitInstantiationDeclaration;
4900
4901  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4902  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4903
4904  if (!R->isFunctionType()) {
4905    // C++ [temp.explicit]p1:
4906    //   A [...] static data member of a class template can be explicitly
4907    //   instantiated from the member definition associated with its class
4908    //   template.
4909    if (Previous.isAmbiguous())
4910      return true;
4911
4912    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4913    if (!Prev || !Prev->isStaticDataMember()) {
4914      // We expect to see a data data member here.
4915      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4916        << Name;
4917      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4918           P != PEnd; ++P)
4919        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4920      return true;
4921    }
4922
4923    if (!Prev->getInstantiatedFromStaticDataMember()) {
4924      // FIXME: Check for explicit specialization?
4925      Diag(D.getIdentifierLoc(),
4926           diag::err_explicit_instantiation_data_member_not_instantiated)
4927        << Prev;
4928      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4929      // FIXME: Can we provide a note showing where this was declared?
4930      return true;
4931    }
4932
4933    // C++0x [temp.explicit]p2:
4934    //   If the explicit instantiation is for a member function, a member class
4935    //   or a static data member of a class template specialization, the name of
4936    //   the class template specialization in the qualified-id for the member
4937    //   name shall be a simple-template-id.
4938    //
4939    // C++98 has the same restriction, just worded differently.
4940    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4941      Diag(D.getIdentifierLoc(),
4942           diag::err_explicit_instantiation_without_qualified_id)
4943        << Prev << D.getCXXScopeSpec().getRange();
4944
4945    // Check the scope of this explicit instantiation.
4946    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4947
4948    // Verify that it is okay to explicitly instantiate here.
4949    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4950    assert(MSInfo && "Missing static data member specialization info?");
4951    bool SuppressNew = false;
4952    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4953                                        MSInfo->getTemplateSpecializationKind(),
4954                                              MSInfo->getPointOfInstantiation(),
4955                                               SuppressNew))
4956      return true;
4957    if (SuppressNew)
4958      return DeclPtrTy();
4959
4960    // Instantiate static data member.
4961    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4962    if (TSK == TSK_ExplicitInstantiationDefinition)
4963      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4964                                            /*DefinitionRequired=*/true);
4965
4966    // FIXME: Create an ExplicitInstantiation node?
4967    return DeclPtrTy();
4968  }
4969
4970  // If the declarator is a template-id, translate the parser's template
4971  // argument list into our AST format.
4972  bool HasExplicitTemplateArgs = false;
4973  TemplateArgumentListInfo TemplateArgs;
4974  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4975    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4976    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4977    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4978    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4979                                       TemplateId->getTemplateArgs(),
4980                                       TemplateId->NumArgs);
4981    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4982    HasExplicitTemplateArgs = true;
4983    TemplateArgsPtr.release();
4984  }
4985
4986  // C++ [temp.explicit]p1:
4987  //   A [...] function [...] can be explicitly instantiated from its template.
4988  //   A member function [...] of a class template can be explicitly
4989  //  instantiated from the member definition associated with its class
4990  //  template.
4991  UnresolvedSet<8> Matches;
4992  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4993       P != PEnd; ++P) {
4994    NamedDecl *Prev = *P;
4995    if (!HasExplicitTemplateArgs) {
4996      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4997        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4998          Matches.clear();
4999
5000          Matches.addDecl(Method, P.getAccess());
5001          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5002            break;
5003        }
5004      }
5005    }
5006
5007    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5008    if (!FunTmpl)
5009      continue;
5010
5011    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5012    FunctionDecl *Specialization = 0;
5013    if (TemplateDeductionResult TDK
5014          = DeduceTemplateArguments(FunTmpl,
5015                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5016                                    R, Specialization, Info)) {
5017      // FIXME: Keep track of almost-matches?
5018      (void)TDK;
5019      continue;
5020    }
5021
5022    Matches.addDecl(Specialization, P.getAccess());
5023  }
5024
5025  // Find the most specialized function template specialization.
5026  UnresolvedSetIterator Result
5027    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5028                         D.getIdentifierLoc(),
5029                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5030                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5031                         PDiag(diag::note_explicit_instantiation_candidate));
5032
5033  if (Result == Matches.end())
5034    return true;
5035
5036  // Ignore access control bits, we don't need them for redeclaration checking.
5037  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5038
5039  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5040    Diag(D.getIdentifierLoc(),
5041         diag::err_explicit_instantiation_member_function_not_instantiated)
5042      << Specialization
5043      << (Specialization->getTemplateSpecializationKind() ==
5044          TSK_ExplicitSpecialization);
5045    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5046    return true;
5047  }
5048
5049  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5050  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5051    PrevDecl = Specialization;
5052
5053  if (PrevDecl) {
5054    bool SuppressNew = false;
5055    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5056                                               PrevDecl,
5057                                     PrevDecl->getTemplateSpecializationKind(),
5058                                          PrevDecl->getPointOfInstantiation(),
5059                                               SuppressNew))
5060      return true;
5061
5062    // FIXME: We may still want to build some representation of this
5063    // explicit specialization.
5064    if (SuppressNew)
5065      return DeclPtrTy();
5066  }
5067
5068  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5069
5070  if (TSK == TSK_ExplicitInstantiationDefinition)
5071    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5072                                  false, /*DefinitionRequired=*/true);
5073
5074  // C++0x [temp.explicit]p2:
5075  //   If the explicit instantiation is for a member function, a member class
5076  //   or a static data member of a class template specialization, the name of
5077  //   the class template specialization in the qualified-id for the member
5078  //   name shall be a simple-template-id.
5079  //
5080  // C++98 has the same restriction, just worded differently.
5081  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5082  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5083      D.getCXXScopeSpec().isSet() &&
5084      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5085    Diag(D.getIdentifierLoc(),
5086         diag::err_explicit_instantiation_without_qualified_id)
5087    << Specialization << D.getCXXScopeSpec().getRange();
5088
5089  CheckExplicitInstantiationScope(*this,
5090                   FunTmpl? (NamedDecl *)FunTmpl
5091                          : Specialization->getInstantiatedFromMemberFunction(),
5092                                  D.getIdentifierLoc(),
5093                                  D.getCXXScopeSpec().isSet());
5094
5095  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5096  return DeclPtrTy();
5097}
5098
5099Sema::TypeResult
5100Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5101                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5102                        SourceLocation TagLoc, SourceLocation NameLoc) {
5103  // This has to hold, because SS is expected to be defined.
5104  assert(Name && "Expected a name in a dependent tag");
5105
5106  NestedNameSpecifier *NNS
5107    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5108  if (!NNS)
5109    return true;
5110
5111  ElaboratedTypeKeyword Keyword = ETK_None;
5112  switch (TagDecl::getTagKindForTypeSpec(TagSpec)) {
5113  case TagDecl::TK_struct: Keyword = ETK_Struct; break;
5114  case TagDecl::TK_class: Keyword = ETK_Class; break;
5115  case TagDecl::TK_union: Keyword = ETK_Union; break;
5116  case TagDecl::TK_enum: Keyword = ETK_Enum; break;
5117  }
5118  assert(Keyword != ETK_None && "Invalid tag kind!");
5119
5120  return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr();
5121}
5122
5123Sema::TypeResult
5124Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5125                        const IdentifierInfo &II, SourceLocation IdLoc) {
5126  NestedNameSpecifier *NNS
5127    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5128  if (!NNS)
5129    return true;
5130
5131  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5132                                 SourceRange(TypenameLoc, IdLoc));
5133  if (T.isNull())
5134    return true;
5135  return T.getAsOpaquePtr();
5136}
5137
5138Sema::TypeResult
5139Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5140                        SourceLocation TemplateLoc, TypeTy *Ty) {
5141  QualType T = GetTypeFromParser(Ty);
5142  NestedNameSpecifier *NNS
5143    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5144  const TemplateSpecializationType *TemplateId
5145    = T->getAs<TemplateSpecializationType>();
5146  assert(TemplateId && "Expected a template specialization type");
5147
5148  if (computeDeclContext(SS, false)) {
5149    // If we can compute a declaration context, then the "typename"
5150    // keyword was superfluous. Just build a QualifiedNameType to keep
5151    // track of the nested-name-specifier.
5152
5153    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
5154    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
5155  }
5156
5157  return Context.getDependentNameType(ETK_Typename, NNS, TemplateId)
5158                                                            .getAsOpaquePtr();
5159}
5160
5161/// \brief Build the type that describes a C++ typename specifier,
5162/// e.g., "typename T::type".
5163QualType
5164Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5165                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5166                        SourceRange Range) {
5167  CXXRecordDecl *CurrentInstantiation = 0;
5168  if (NNS->isDependent()) {
5169    CurrentInstantiation = getCurrentInstantiationOf(NNS);
5170
5171    // If the nested-name-specifier does not refer to the current
5172    // instantiation, then build a typename type.
5173    if (!CurrentInstantiation)
5174      return Context.getDependentNameType(Keyword, NNS, &II);
5175
5176    // The nested-name-specifier refers to the current instantiation, so the
5177    // "typename" keyword itself is superfluous. In C++03, the program is
5178    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
5179    // extraneous "typename" keywords, and we retroactively apply this DR to
5180    // C++03 code.
5181  }
5182
5183  DeclContext *Ctx = 0;
5184
5185  if (CurrentInstantiation)
5186    Ctx = CurrentInstantiation;
5187  else {
5188    CXXScopeSpec SS;
5189    SS.setScopeRep(NNS);
5190    SS.setRange(Range);
5191    if (RequireCompleteDeclContext(SS))
5192      return QualType();
5193
5194    Ctx = computeDeclContext(SS);
5195  }
5196  assert(Ctx && "No declaration context?");
5197
5198  DeclarationName Name(&II);
5199  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
5200  LookupQualifiedName(Result, Ctx);
5201  unsigned DiagID = 0;
5202  Decl *Referenced = 0;
5203  switch (Result.getResultKind()) {
5204  case LookupResult::NotFound:
5205    DiagID = diag::err_typename_nested_not_found;
5206    break;
5207
5208  case LookupResult::NotFoundInCurrentInstantiation:
5209    // Okay, it's a member of an unknown instantiation.
5210    return Context.getDependentNameType(Keyword, NNS, &II);
5211
5212  case LookupResult::Found:
5213    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5214      // We found a type. Build a QualifiedNameType, since the
5215      // typename-specifier was just sugar. FIXME: Tell
5216      // QualifiedNameType that it has a "typename" prefix.
5217      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
5218    }
5219
5220    DiagID = diag::err_typename_nested_not_type;
5221    Referenced = Result.getFoundDecl();
5222    break;
5223
5224  case LookupResult::FoundUnresolvedValue:
5225    llvm_unreachable("unresolved using decl in non-dependent context");
5226    return QualType();
5227
5228  case LookupResult::FoundOverloaded:
5229    DiagID = diag::err_typename_nested_not_type;
5230    Referenced = *Result.begin();
5231    break;
5232
5233  case LookupResult::Ambiguous:
5234    return QualType();
5235  }
5236
5237  // If we get here, it's because name lookup did not find a
5238  // type. Emit an appropriate diagnostic and return an error.
5239  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
5240  if (Referenced)
5241    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5242      << Name;
5243  return QualType();
5244}
5245
5246namespace {
5247  // See Sema::RebuildTypeInCurrentInstantiation
5248  class CurrentInstantiationRebuilder
5249    : public TreeTransform<CurrentInstantiationRebuilder> {
5250    SourceLocation Loc;
5251    DeclarationName Entity;
5252
5253  public:
5254    CurrentInstantiationRebuilder(Sema &SemaRef,
5255                                  SourceLocation Loc,
5256                                  DeclarationName Entity)
5257    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5258      Loc(Loc), Entity(Entity) { }
5259
5260    /// \brief Determine whether the given type \p T has already been
5261    /// transformed.
5262    ///
5263    /// For the purposes of type reconstruction, a type has already been
5264    /// transformed if it is NULL or if it is not dependent.
5265    bool AlreadyTransformed(QualType T) {
5266      return T.isNull() || !T->isDependentType();
5267    }
5268
5269    /// \brief Returns the location of the entity whose type is being
5270    /// rebuilt.
5271    SourceLocation getBaseLocation() { return Loc; }
5272
5273    /// \brief Returns the name of the entity whose type is being rebuilt.
5274    DeclarationName getBaseEntity() { return Entity; }
5275
5276    /// \brief Sets the "base" location and entity when that
5277    /// information is known based on another transformation.
5278    void setBase(SourceLocation Loc, DeclarationName Entity) {
5279      this->Loc = Loc;
5280      this->Entity = Entity;
5281    }
5282
5283    /// \brief Transforms an expression by returning the expression itself
5284    /// (an identity function).
5285    ///
5286    /// FIXME: This is completely unsafe; we will need to actually clone the
5287    /// expressions.
5288    Sema::OwningExprResult TransformExpr(Expr *E) {
5289      return getSema().Owned(E);
5290    }
5291
5292    /// \brief Transforms a typename type by determining whether the type now
5293    /// refers to a member of the current instantiation, and then
5294    /// type-checking and building a QualifiedNameType (when possible).
5295    QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL,
5296                                   QualType ObjectType);
5297  };
5298}
5299
5300QualType
5301CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB,
5302                                                     DependentNameTypeLoc TL,
5303                                                     QualType ObjectType) {
5304  DependentNameType *T = TL.getTypePtr();
5305
5306  NestedNameSpecifier *NNS
5307    = TransformNestedNameSpecifier(T->getQualifier(),
5308                                   /*FIXME:*/SourceRange(getBaseLocation()),
5309                                   ObjectType);
5310  if (!NNS)
5311    return QualType();
5312
5313  // If the nested-name-specifier did not change, and we cannot compute the
5314  // context corresponding to the nested-name-specifier, then this
5315  // typename type will not change; exit early.
5316  CXXScopeSpec SS;
5317  SS.setRange(SourceRange(getBaseLocation()));
5318  SS.setScopeRep(NNS);
5319
5320  QualType Result;
5321  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
5322    Result = QualType(T, 0);
5323
5324  // Rebuild the typename type, which will probably turn into a
5325  // QualifiedNameType.
5326  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
5327    QualType NewTemplateId
5328      = TransformType(QualType(TemplateId, 0));
5329    if (NewTemplateId.isNull())
5330      return QualType();
5331
5332    if (NNS == T->getQualifier() &&
5333        NewTemplateId == QualType(TemplateId, 0))
5334      Result = QualType(T, 0);
5335    else
5336      Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5337                                                     NNS, NewTemplateId);
5338  } else
5339    Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5340                                                   NNS, T->getIdentifier(),
5341                                                  SourceRange(TL.getNameLoc()));
5342
5343  if (Result.isNull())
5344    return QualType();
5345
5346  DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5347  NewTL.setNameLoc(TL.getNameLoc());
5348  return Result;
5349}
5350
5351/// \brief Rebuilds a type within the context of the current instantiation.
5352///
5353/// The type \p T is part of the type of an out-of-line member definition of
5354/// a class template (or class template partial specialization) that was parsed
5355/// and constructed before we entered the scope of the class template (or
5356/// partial specialization thereof). This routine will rebuild that type now
5357/// that we have entered the declarator's scope, which may produce different
5358/// canonical types, e.g.,
5359///
5360/// \code
5361/// template<typename T>
5362/// struct X {
5363///   typedef T* pointer;
5364///   pointer data();
5365/// };
5366///
5367/// template<typename T>
5368/// typename X<T>::pointer X<T>::data() { ... }
5369/// \endcode
5370///
5371/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5372/// since we do not know that we can look into X<T> when we parsed the type.
5373/// This function will rebuild the type, performing the lookup of "pointer"
5374/// in X<T> and returning a QualifiedNameType whose canonical type is the same
5375/// as the canonical type of T*, allowing the return types of the out-of-line
5376/// definition and the declaration to match.
5377QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
5378                                                 DeclarationName Name) {
5379  if (T.isNull() || !T->isDependentType())
5380    return T;
5381
5382  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5383  return Rebuilder.TransformType(T);
5384}
5385
5386/// \brief Produces a formatted string that describes the binding of
5387/// template parameters to template arguments.
5388std::string
5389Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5390                                      const TemplateArgumentList &Args) {
5391  // FIXME: For variadic templates, we'll need to get the structured list.
5392  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5393                                         Args.flat_size());
5394}
5395
5396std::string
5397Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5398                                      const TemplateArgument *Args,
5399                                      unsigned NumArgs) {
5400  std::string Result;
5401
5402  if (!Params || Params->size() == 0 || NumArgs == 0)
5403    return Result;
5404
5405  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5406    if (I >= NumArgs)
5407      break;
5408
5409    if (I == 0)
5410      Result += "[with ";
5411    else
5412      Result += ", ";
5413
5414    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5415      Result += Id->getName();
5416    } else {
5417      Result += '$';
5418      Result += llvm::utostr(I);
5419    }
5420
5421    Result += " = ";
5422
5423    switch (Args[I].getKind()) {
5424      case TemplateArgument::Null:
5425        Result += "<no value>";
5426        break;
5427
5428      case TemplateArgument::Type: {
5429        std::string TypeStr;
5430        Args[I].getAsType().getAsStringInternal(TypeStr,
5431                                                Context.PrintingPolicy);
5432        Result += TypeStr;
5433        break;
5434      }
5435
5436      case TemplateArgument::Declaration: {
5437        bool Unnamed = true;
5438        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5439          if (ND->getDeclName()) {
5440            Unnamed = false;
5441            Result += ND->getNameAsString();
5442          }
5443        }
5444
5445        if (Unnamed) {
5446          Result += "<anonymous>";
5447        }
5448        break;
5449      }
5450
5451      case TemplateArgument::Template: {
5452        std::string Str;
5453        llvm::raw_string_ostream OS(Str);
5454        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5455        Result += OS.str();
5456        break;
5457      }
5458
5459      case TemplateArgument::Integral: {
5460        Result += Args[I].getAsIntegral()->toString(10);
5461        break;
5462      }
5463
5464      case TemplateArgument::Expression: {
5465        assert(false && "No expressions in deduced template arguments!");
5466        Result += "<expression>";
5467        break;
5468      }
5469
5470      case TemplateArgument::Pack:
5471        // FIXME: Format template argument packs
5472        Result += "<template argument pack>";
5473        break;
5474    }
5475  }
5476
5477  Result += ']';
5478  return Result;
5479}
5480