SemaTemplate.cpp revision 107de90451b7f7a7749380a9d017ff1bafb6b407
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult) { 104 assert(getLangOptions().CPlusPlus && "No template names in C!"); 105 106 DeclarationName TName; 107 108 switch (Name.getKind()) { 109 case UnqualifiedId::IK_Identifier: 110 TName = DeclarationName(Name.Identifier); 111 break; 112 113 case UnqualifiedId::IK_OperatorFunctionId: 114 TName = Context.DeclarationNames.getCXXOperatorName( 115 Name.OperatorFunctionId.Operator); 116 break; 117 118 case UnqualifiedId::IK_LiteralOperatorId: 119 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 120 break; 121 122 default: 123 return TNK_Non_template; 124 } 125 126 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 127 128 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 129 LookupOrdinaryName); 130 R.suppressDiagnostics(); 131 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 132 if (R.empty() || R.isAmbiguous()) 133 return TNK_Non_template; 134 135 TemplateName Template; 136 TemplateNameKind TemplateKind; 137 138 unsigned ResultCount = R.end() - R.begin(); 139 if (ResultCount > 1) { 140 // We assume that we'll preserve the qualifier from a function 141 // template name in other ways. 142 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 143 TemplateKind = TNK_Function_template; 144 } else { 145 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 146 147 if (SS.isSet() && !SS.isInvalid()) { 148 NestedNameSpecifier *Qualifier 149 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 150 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 151 } else { 152 Template = TemplateName(TD); 153 } 154 155 if (isa<FunctionTemplateDecl>(TD)) 156 TemplateKind = TNK_Function_template; 157 else { 158 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 159 TemplateKind = TNK_Type_template; 160 } 161 } 162 163 TemplateResult = TemplateTy::make(Template); 164 return TemplateKind; 165} 166 167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 168 SourceLocation IILoc, 169 Scope *S, 170 const CXXScopeSpec *SS, 171 TemplateTy &SuggestedTemplate, 172 TemplateNameKind &SuggestedKind) { 173 // We can't recover unless there's a dependent scope specifier preceding the 174 // template name. 175 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 176 computeDeclContext(*SS)) 177 return false; 178 179 // The code is missing a 'template' keyword prior to the dependent template 180 // name. 181 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 182 Diag(IILoc, diag::err_template_kw_missing) 183 << Qualifier << II.getName() 184 << FixItHint::CreateInsertion(IILoc, "template "); 185 SuggestedTemplate 186 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 187 SuggestedKind = TNK_Dependent_template_name; 188 return true; 189} 190 191void Sema::LookupTemplateName(LookupResult &Found, 192 Scope *S, CXXScopeSpec &SS, 193 QualType ObjectType, 194 bool EnteringContext) { 195 // Determine where to perform name lookup 196 DeclContext *LookupCtx = 0; 197 bool isDependent = false; 198 if (!ObjectType.isNull()) { 199 // This nested-name-specifier occurs in a member access expression, e.g., 200 // x->B::f, and we are looking into the type of the object. 201 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 202 LookupCtx = computeDeclContext(ObjectType); 203 isDependent = ObjectType->isDependentType(); 204 assert((isDependent || !ObjectType->isIncompleteType()) && 205 "Caller should have completed object type"); 206 } else if (SS.isSet()) { 207 // This nested-name-specifier occurs after another nested-name-specifier, 208 // so long into the context associated with the prior nested-name-specifier. 209 LookupCtx = computeDeclContext(SS, EnteringContext); 210 isDependent = isDependentScopeSpecifier(SS); 211 212 // The declaration context must be complete. 213 if (LookupCtx && RequireCompleteDeclContext(SS)) 214 return; 215 } 216 217 bool ObjectTypeSearchedInScope = false; 218 if (LookupCtx) { 219 // Perform "qualified" name lookup into the declaration context we 220 // computed, which is either the type of the base of a member access 221 // expression or the declaration context associated with a prior 222 // nested-name-specifier. 223 LookupQualifiedName(Found, LookupCtx); 224 225 if (!ObjectType.isNull() && Found.empty()) { 226 // C++ [basic.lookup.classref]p1: 227 // In a class member access expression (5.2.5), if the . or -> token is 228 // immediately followed by an identifier followed by a <, the 229 // identifier must be looked up to determine whether the < is the 230 // beginning of a template argument list (14.2) or a less-than operator. 231 // The identifier is first looked up in the class of the object 232 // expression. If the identifier is not found, it is then looked up in 233 // the context of the entire postfix-expression and shall name a class 234 // or function template. 235 // 236 // FIXME: When we're instantiating a template, do we actually have to 237 // look in the scope of the template? Seems fishy... 238 if (S) LookupName(Found, S); 239 ObjectTypeSearchedInScope = true; 240 } 241 } else if (isDependent) { 242 // We cannot look into a dependent object type or nested nme 243 // specifier. 244 return; 245 } else { 246 // Perform unqualified name lookup in the current scope. 247 LookupName(Found, S); 248 } 249 250 if (Found.empty() && !isDependent) { 251 // If we did not find any names, attempt to correct any typos. 252 DeclarationName Name = Found.getLookupName(); 253 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 254 false, CTC_CXXCasts)) { 255 FilterAcceptableTemplateNames(Context, Found); 256 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 257 if (LookupCtx) 258 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 259 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 260 << FixItHint::CreateReplacement(Found.getNameLoc(), 261 Found.getLookupName().getAsString()); 262 else 263 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 264 << Name << Found.getLookupName() 265 << FixItHint::CreateReplacement(Found.getNameLoc(), 266 Found.getLookupName().getAsString()); 267 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 268 Diag(Template->getLocation(), diag::note_previous_decl) 269 << Template->getDeclName(); 270 } else 271 Found.clear(); 272 } else { 273 Found.clear(); 274 } 275 } 276 277 FilterAcceptableTemplateNames(Context, Found); 278 if (Found.empty()) 279 return; 280 281 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 282 // C++ [basic.lookup.classref]p1: 283 // [...] If the lookup in the class of the object expression finds a 284 // template, the name is also looked up in the context of the entire 285 // postfix-expression and [...] 286 // 287 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 288 LookupOrdinaryName); 289 LookupName(FoundOuter, S); 290 FilterAcceptableTemplateNames(Context, FoundOuter); 291 292 if (FoundOuter.empty()) { 293 // - if the name is not found, the name found in the class of the 294 // object expression is used, otherwise 295 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 296 // - if the name is found in the context of the entire 297 // postfix-expression and does not name a class template, the name 298 // found in the class of the object expression is used, otherwise 299 } else { 300 // - if the name found is a class template, it must refer to the same 301 // entity as the one found in the class of the object expression, 302 // otherwise the program is ill-formed. 303 if (!Found.isSingleResult() || 304 Found.getFoundDecl()->getCanonicalDecl() 305 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 306 Diag(Found.getNameLoc(), 307 diag::err_nested_name_member_ref_lookup_ambiguous) 308 << Found.getLookupName(); 309 Diag(Found.getRepresentativeDecl()->getLocation(), 310 diag::note_ambig_member_ref_object_type) 311 << ObjectType; 312 Diag(FoundOuter.getFoundDecl()->getLocation(), 313 diag::note_ambig_member_ref_scope); 314 315 // Recover by taking the template that we found in the object 316 // expression's type. 317 } 318 } 319 } 320} 321 322/// ActOnDependentIdExpression - Handle a dependent id-expression that 323/// was just parsed. This is only possible with an explicit scope 324/// specifier naming a dependent type. 325Sema::OwningExprResult 326Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 327 DeclarationName Name, 328 SourceLocation NameLoc, 329 bool isAddressOfOperand, 330 const TemplateArgumentListInfo *TemplateArgs) { 331 NestedNameSpecifier *Qualifier 332 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 333 334 if (!isAddressOfOperand && 335 isa<CXXMethodDecl>(CurContext) && 336 cast<CXXMethodDecl>(CurContext)->isInstance()) { 337 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 338 339 // Since the 'this' expression is synthesized, we don't need to 340 // perform the double-lookup check. 341 NamedDecl *FirstQualifierInScope = 0; 342 343 return Owned(CXXDependentScopeMemberExpr::Create(Context, 344 /*This*/ 0, ThisType, 345 /*IsArrow*/ true, 346 /*Op*/ SourceLocation(), 347 Qualifier, SS.getRange(), 348 FirstQualifierInScope, 349 Name, NameLoc, 350 TemplateArgs)); 351 } 352 353 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 354} 355 356Sema::OwningExprResult 357Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 358 DeclarationName Name, 359 SourceLocation NameLoc, 360 const TemplateArgumentListInfo *TemplateArgs) { 361 return Owned(DependentScopeDeclRefExpr::Create(Context, 362 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 363 SS.getRange(), 364 Name, NameLoc, 365 TemplateArgs)); 366} 367 368/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 369/// that the template parameter 'PrevDecl' is being shadowed by a new 370/// declaration at location Loc. Returns true to indicate that this is 371/// an error, and false otherwise. 372bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 373 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 374 375 // Microsoft Visual C++ permits template parameters to be shadowed. 376 if (getLangOptions().Microsoft) 377 return false; 378 379 // C++ [temp.local]p4: 380 // A template-parameter shall not be redeclared within its 381 // scope (including nested scopes). 382 Diag(Loc, diag::err_template_param_shadow) 383 << cast<NamedDecl>(PrevDecl)->getDeclName(); 384 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 385 return true; 386} 387 388/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 389/// the parameter D to reference the templated declaration and return a pointer 390/// to the template declaration. Otherwise, do nothing to D and return null. 391TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 392 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 393 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 394 return Temp; 395 } 396 return 0; 397} 398 399static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 400 const ParsedTemplateArgument &Arg) { 401 402 switch (Arg.getKind()) { 403 case ParsedTemplateArgument::Type: { 404 TypeSourceInfo *DI; 405 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 406 if (!DI) 407 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 408 return TemplateArgumentLoc(TemplateArgument(T), DI); 409 } 410 411 case ParsedTemplateArgument::NonType: { 412 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 413 return TemplateArgumentLoc(TemplateArgument(E), E); 414 } 415 416 case ParsedTemplateArgument::Template: { 417 TemplateName Template 418 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 419 return TemplateArgumentLoc(TemplateArgument(Template), 420 Arg.getScopeSpec().getRange(), 421 Arg.getLocation()); 422 } 423 } 424 425 llvm_unreachable("Unhandled parsed template argument"); 426 return TemplateArgumentLoc(); 427} 428 429/// \brief Translates template arguments as provided by the parser 430/// into template arguments used by semantic analysis. 431void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 432 TemplateArgumentListInfo &TemplateArgs) { 433 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 434 TemplateArgs.addArgument(translateTemplateArgument(*this, 435 TemplateArgsIn[I])); 436} 437 438/// ActOnTypeParameter - Called when a C++ template type parameter 439/// (e.g., "typename T") has been parsed. Typename specifies whether 440/// the keyword "typename" was used to declare the type parameter 441/// (otherwise, "class" was used), and KeyLoc is the location of the 442/// "class" or "typename" keyword. ParamName is the name of the 443/// parameter (NULL indicates an unnamed template parameter) and 444/// ParamName is the location of the parameter name (if any). 445/// If the type parameter has a default argument, it will be added 446/// later via ActOnTypeParameterDefault. 447Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 448 SourceLocation EllipsisLoc, 449 SourceLocation KeyLoc, 450 IdentifierInfo *ParamName, 451 SourceLocation ParamNameLoc, 452 unsigned Depth, unsigned Position) { 453 assert(S->isTemplateParamScope() && 454 "Template type parameter not in template parameter scope!"); 455 bool Invalid = false; 456 457 if (ParamName) { 458 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 459 LookupOrdinaryName, 460 ForRedeclaration); 461 if (PrevDecl && PrevDecl->isTemplateParameter()) 462 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 463 PrevDecl); 464 } 465 466 SourceLocation Loc = ParamNameLoc; 467 if (!ParamName) 468 Loc = KeyLoc; 469 470 TemplateTypeParmDecl *Param 471 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 472 Loc, Depth, Position, ParamName, Typename, 473 Ellipsis); 474 if (Invalid) 475 Param->setInvalidDecl(); 476 477 if (ParamName) { 478 // Add the template parameter into the current scope. 479 S->AddDecl(DeclPtrTy::make(Param)); 480 IdResolver.AddDecl(Param); 481 } 482 483 return DeclPtrTy::make(Param); 484} 485 486/// ActOnTypeParameterDefault - Adds a default argument (the type 487/// Default) to the given template type parameter (TypeParam). 488void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 489 SourceLocation EqualLoc, 490 SourceLocation DefaultLoc, 491 TypeTy *DefaultT) { 492 TemplateTypeParmDecl *Parm 493 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 494 495 TypeSourceInfo *DefaultTInfo; 496 GetTypeFromParser(DefaultT, &DefaultTInfo); 497 498 assert(DefaultTInfo && "expected source information for type"); 499 500 // C++0x [temp.param]p9: 501 // A default template-argument may be specified for any kind of 502 // template-parameter that is not a template parameter pack. 503 if (Parm->isParameterPack()) { 504 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 505 return; 506 } 507 508 // C++ [temp.param]p14: 509 // A template-parameter shall not be used in its own default argument. 510 // FIXME: Implement this check! Needs a recursive walk over the types. 511 512 // Check the template argument itself. 513 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 514 Parm->setInvalidDecl(); 515 return; 516 } 517 518 Parm->setDefaultArgument(DefaultTInfo, false); 519} 520 521/// \brief Check that the type of a non-type template parameter is 522/// well-formed. 523/// 524/// \returns the (possibly-promoted) parameter type if valid; 525/// otherwise, produces a diagnostic and returns a NULL type. 526QualType 527Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 528 // C++ [temp.param]p4: 529 // 530 // A non-type template-parameter shall have one of the following 531 // (optionally cv-qualified) types: 532 // 533 // -- integral or enumeration type, 534 if (T->isIntegralType() || T->isEnumeralType() || 535 // -- pointer to object or pointer to function, 536 (T->isPointerType() && 537 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 538 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 539 // -- reference to object or reference to function, 540 T->isReferenceType() || 541 // -- pointer to member. 542 T->isMemberPointerType() || 543 // If T is a dependent type, we can't do the check now, so we 544 // assume that it is well-formed. 545 T->isDependentType()) 546 return T; 547 // C++ [temp.param]p8: 548 // 549 // A non-type template-parameter of type "array of T" or 550 // "function returning T" is adjusted to be of type "pointer to 551 // T" or "pointer to function returning T", respectively. 552 else if (T->isArrayType()) 553 // FIXME: Keep the type prior to promotion? 554 return Context.getArrayDecayedType(T); 555 else if (T->isFunctionType()) 556 // FIXME: Keep the type prior to promotion? 557 return Context.getPointerType(T); 558 559 Diag(Loc, diag::err_template_nontype_parm_bad_type) 560 << T; 561 562 return QualType(); 563} 564 565/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 566/// template parameter (e.g., "int Size" in "template<int Size> 567/// class Array") has been parsed. S is the current scope and D is 568/// the parsed declarator. 569Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 570 unsigned Depth, 571 unsigned Position) { 572 TypeSourceInfo *TInfo = 0; 573 QualType T = GetTypeForDeclarator(D, S, &TInfo); 574 575 assert(S->isTemplateParamScope() && 576 "Non-type template parameter not in template parameter scope!"); 577 bool Invalid = false; 578 579 IdentifierInfo *ParamName = D.getIdentifier(); 580 if (ParamName) { 581 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 582 LookupOrdinaryName, 583 ForRedeclaration); 584 if (PrevDecl && PrevDecl->isTemplateParameter()) 585 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 586 PrevDecl); 587 } 588 589 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 590 if (T.isNull()) { 591 T = Context.IntTy; // Recover with an 'int' type. 592 Invalid = true; 593 } 594 595 NonTypeTemplateParmDecl *Param 596 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 597 D.getIdentifierLoc(), 598 Depth, Position, ParamName, T, TInfo); 599 if (Invalid) 600 Param->setInvalidDecl(); 601 602 if (D.getIdentifier()) { 603 // Add the template parameter into the current scope. 604 S->AddDecl(DeclPtrTy::make(Param)); 605 IdResolver.AddDecl(Param); 606 } 607 return DeclPtrTy::make(Param); 608} 609 610/// \brief Adds a default argument to the given non-type template 611/// parameter. 612void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 613 SourceLocation EqualLoc, 614 ExprArg DefaultE) { 615 NonTypeTemplateParmDecl *TemplateParm 616 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 617 Expr *Default = static_cast<Expr *>(DefaultE.get()); 618 619 // C++ [temp.param]p14: 620 // A template-parameter shall not be used in its own default argument. 621 // FIXME: Implement this check! Needs a recursive walk over the types. 622 623 // Check the well-formedness of the default template argument. 624 TemplateArgument Converted; 625 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 626 Converted)) { 627 TemplateParm->setInvalidDecl(); 628 return; 629 } 630 631 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 632} 633 634 635/// ActOnTemplateTemplateParameter - Called when a C++ template template 636/// parameter (e.g. T in template <template <typename> class T> class array) 637/// has been parsed. S is the current scope. 638Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 639 SourceLocation TmpLoc, 640 TemplateParamsTy *Params, 641 IdentifierInfo *Name, 642 SourceLocation NameLoc, 643 unsigned Depth, 644 unsigned Position) { 645 assert(S->isTemplateParamScope() && 646 "Template template parameter not in template parameter scope!"); 647 648 // Construct the parameter object. 649 TemplateTemplateParmDecl *Param = 650 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 651 TmpLoc, Depth, Position, Name, 652 (TemplateParameterList*)Params); 653 654 // Make sure the parameter is valid. 655 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 656 // do anything yet. However, if the template parameter list or (eventual) 657 // default value is ever invalidated, that will propagate here. 658 bool Invalid = false; 659 if (Invalid) { 660 Param->setInvalidDecl(); 661 } 662 663 // If the tt-param has a name, then link the identifier into the scope 664 // and lookup mechanisms. 665 if (Name) { 666 S->AddDecl(DeclPtrTy::make(Param)); 667 IdResolver.AddDecl(Param); 668 } 669 670 return DeclPtrTy::make(Param); 671} 672 673/// \brief Adds a default argument to the given template template 674/// parameter. 675void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 676 SourceLocation EqualLoc, 677 const ParsedTemplateArgument &Default) { 678 TemplateTemplateParmDecl *TemplateParm 679 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 680 681 // C++ [temp.param]p14: 682 // A template-parameter shall not be used in its own default argument. 683 // FIXME: Implement this check! Needs a recursive walk over the types. 684 685 // Check only that we have a template template argument. We don't want to 686 // try to check well-formedness now, because our template template parameter 687 // might have dependent types in its template parameters, which we wouldn't 688 // be able to match now. 689 // 690 // If none of the template template parameter's template arguments mention 691 // other template parameters, we could actually perform more checking here. 692 // However, it isn't worth doing. 693 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 694 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 695 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 696 << DefaultArg.getSourceRange(); 697 return; 698 } 699 700 TemplateParm->setDefaultArgument(DefaultArg); 701} 702 703/// ActOnTemplateParameterList - Builds a TemplateParameterList that 704/// contains the template parameters in Params/NumParams. 705Sema::TemplateParamsTy * 706Sema::ActOnTemplateParameterList(unsigned Depth, 707 SourceLocation ExportLoc, 708 SourceLocation TemplateLoc, 709 SourceLocation LAngleLoc, 710 DeclPtrTy *Params, unsigned NumParams, 711 SourceLocation RAngleLoc) { 712 if (ExportLoc.isValid()) 713 Diag(ExportLoc, diag::warn_template_export_unsupported); 714 715 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 716 (NamedDecl**)Params, NumParams, 717 RAngleLoc); 718} 719 720static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 721 if (SS.isSet()) 722 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 723 SS.getRange()); 724} 725 726Sema::DeclResult 727Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 728 SourceLocation KWLoc, CXXScopeSpec &SS, 729 IdentifierInfo *Name, SourceLocation NameLoc, 730 AttributeList *Attr, 731 TemplateParameterList *TemplateParams, 732 AccessSpecifier AS) { 733 assert(TemplateParams && TemplateParams->size() > 0 && 734 "No template parameters"); 735 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 736 bool Invalid = false; 737 738 // Check that we can declare a template here. 739 if (CheckTemplateDeclScope(S, TemplateParams)) 740 return true; 741 742 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 743 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 744 745 // There is no such thing as an unnamed class template. 746 if (!Name) { 747 Diag(KWLoc, diag::err_template_unnamed_class); 748 return true; 749 } 750 751 // Find any previous declaration with this name. 752 DeclContext *SemanticContext; 753 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 754 ForRedeclaration); 755 if (SS.isNotEmpty() && !SS.isInvalid()) { 756 if (RequireCompleteDeclContext(SS)) 757 return true; 758 759 SemanticContext = computeDeclContext(SS, true); 760 if (!SemanticContext) { 761 // FIXME: Produce a reasonable diagnostic here 762 return true; 763 } 764 765 LookupQualifiedName(Previous, SemanticContext); 766 } else { 767 SemanticContext = CurContext; 768 LookupName(Previous, S); 769 } 770 771 if (Previous.isAmbiguous()) 772 return true; 773 774 NamedDecl *PrevDecl = 0; 775 if (Previous.begin() != Previous.end()) 776 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 777 778 // If there is a previous declaration with the same name, check 779 // whether this is a valid redeclaration. 780 ClassTemplateDecl *PrevClassTemplate 781 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 782 783 // We may have found the injected-class-name of a class template, 784 // class template partial specialization, or class template specialization. 785 // In these cases, grab the template that is being defined or specialized. 786 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 787 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 788 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 789 PrevClassTemplate 790 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 791 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 792 PrevClassTemplate 793 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 794 ->getSpecializedTemplate(); 795 } 796 } 797 798 if (TUK == TUK_Friend) { 799 // C++ [namespace.memdef]p3: 800 // [...] When looking for a prior declaration of a class or a function 801 // declared as a friend, and when the name of the friend class or 802 // function is neither a qualified name nor a template-id, scopes outside 803 // the innermost enclosing namespace scope are not considered. 804 if (!SS.isSet()) { 805 DeclContext *OutermostContext = CurContext; 806 while (!OutermostContext->isFileContext()) 807 OutermostContext = OutermostContext->getLookupParent(); 808 809 if (PrevDecl && 810 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 811 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 812 SemanticContext = PrevDecl->getDeclContext(); 813 } else { 814 // Declarations in outer scopes don't matter. However, the outermost 815 // context we computed is the semantic context for our new 816 // declaration. 817 PrevDecl = PrevClassTemplate = 0; 818 SemanticContext = OutermostContext; 819 } 820 } 821 822 if (CurContext->isDependentContext()) { 823 // If this is a dependent context, we don't want to link the friend 824 // class template to the template in scope, because that would perform 825 // checking of the template parameter lists that can't be performed 826 // until the outer context is instantiated. 827 PrevDecl = PrevClassTemplate = 0; 828 } 829 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 830 PrevDecl = PrevClassTemplate = 0; 831 832 if (PrevClassTemplate) { 833 // Ensure that the template parameter lists are compatible. 834 if (!TemplateParameterListsAreEqual(TemplateParams, 835 PrevClassTemplate->getTemplateParameters(), 836 /*Complain=*/true, 837 TPL_TemplateMatch)) 838 return true; 839 840 // C++ [temp.class]p4: 841 // In a redeclaration, partial specialization, explicit 842 // specialization or explicit instantiation of a class template, 843 // the class-key shall agree in kind with the original class 844 // template declaration (7.1.5.3). 845 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 846 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 847 Diag(KWLoc, diag::err_use_with_wrong_tag) 848 << Name 849 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 850 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 851 Kind = PrevRecordDecl->getTagKind(); 852 } 853 854 // Check for redefinition of this class template. 855 if (TUK == TUK_Definition) { 856 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 857 Diag(NameLoc, diag::err_redefinition) << Name; 858 Diag(Def->getLocation(), diag::note_previous_definition); 859 // FIXME: Would it make sense to try to "forget" the previous 860 // definition, as part of error recovery? 861 return true; 862 } 863 } 864 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 865 // Maybe we will complain about the shadowed template parameter. 866 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 867 // Just pretend that we didn't see the previous declaration. 868 PrevDecl = 0; 869 } else if (PrevDecl) { 870 // C++ [temp]p5: 871 // A class template shall not have the same name as any other 872 // template, class, function, object, enumeration, enumerator, 873 // namespace, or type in the same scope (3.3), except as specified 874 // in (14.5.4). 875 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 876 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 877 return true; 878 } 879 880 // Check the template parameter list of this declaration, possibly 881 // merging in the template parameter list from the previous class 882 // template declaration. 883 if (CheckTemplateParameterList(TemplateParams, 884 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 885 TPC_ClassTemplate)) 886 Invalid = true; 887 888 if (SS.isSet()) { 889 // If the name of the template was qualified, we must be defining the 890 // template out-of-line. 891 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 892 !(TUK == TUK_Friend && CurContext->isDependentContext())) 893 Diag(NameLoc, diag::err_member_def_does_not_match) 894 << Name << SemanticContext << SS.getRange(); 895 } 896 897 CXXRecordDecl *NewClass = 898 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 899 PrevClassTemplate? 900 PrevClassTemplate->getTemplatedDecl() : 0, 901 /*DelayTypeCreation=*/true); 902 SetNestedNameSpecifier(NewClass, SS); 903 904 ClassTemplateDecl *NewTemplate 905 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 906 DeclarationName(Name), TemplateParams, 907 NewClass, PrevClassTemplate); 908 NewClass->setDescribedClassTemplate(NewTemplate); 909 910 // Build the type for the class template declaration now. 911 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 912 T = Context.getInjectedClassNameType(NewClass, T); 913 assert(T->isDependentType() && "Class template type is not dependent?"); 914 (void)T; 915 916 // If we are providing an explicit specialization of a member that is a 917 // class template, make a note of that. 918 if (PrevClassTemplate && 919 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 920 PrevClassTemplate->setMemberSpecialization(); 921 922 // Set the access specifier. 923 if (!Invalid && TUK != TUK_Friend) 924 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 925 926 // Set the lexical context of these templates 927 NewClass->setLexicalDeclContext(CurContext); 928 NewTemplate->setLexicalDeclContext(CurContext); 929 930 if (TUK == TUK_Definition) 931 NewClass->startDefinition(); 932 933 if (Attr) 934 ProcessDeclAttributeList(S, NewClass, Attr); 935 936 if (TUK != TUK_Friend) 937 PushOnScopeChains(NewTemplate, S); 938 else { 939 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 940 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 941 NewClass->setAccess(PrevClassTemplate->getAccess()); 942 } 943 944 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 945 PrevClassTemplate != NULL); 946 947 // Friend templates are visible in fairly strange ways. 948 if (!CurContext->isDependentContext()) { 949 DeclContext *DC = SemanticContext->getLookupContext(); 950 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 951 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 952 PushOnScopeChains(NewTemplate, EnclosingScope, 953 /* AddToContext = */ false); 954 } 955 956 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 957 NewClass->getLocation(), 958 NewTemplate, 959 /*FIXME:*/NewClass->getLocation()); 960 Friend->setAccess(AS_public); 961 CurContext->addDecl(Friend); 962 } 963 964 if (Invalid) { 965 NewTemplate->setInvalidDecl(); 966 NewClass->setInvalidDecl(); 967 } 968 return DeclPtrTy::make(NewTemplate); 969} 970 971/// \brief Diagnose the presence of a default template argument on a 972/// template parameter, which is ill-formed in certain contexts. 973/// 974/// \returns true if the default template argument should be dropped. 975static bool DiagnoseDefaultTemplateArgument(Sema &S, 976 Sema::TemplateParamListContext TPC, 977 SourceLocation ParamLoc, 978 SourceRange DefArgRange) { 979 switch (TPC) { 980 case Sema::TPC_ClassTemplate: 981 return false; 982 983 case Sema::TPC_FunctionTemplate: 984 // C++ [temp.param]p9: 985 // A default template-argument shall not be specified in a 986 // function template declaration or a function template 987 // definition [...] 988 // (This sentence is not in C++0x, per DR226). 989 if (!S.getLangOptions().CPlusPlus0x) 990 S.Diag(ParamLoc, 991 diag::err_template_parameter_default_in_function_template) 992 << DefArgRange; 993 return false; 994 995 case Sema::TPC_ClassTemplateMember: 996 // C++0x [temp.param]p9: 997 // A default template-argument shall not be specified in the 998 // template-parameter-lists of the definition of a member of a 999 // class template that appears outside of the member's class. 1000 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1001 << DefArgRange; 1002 return true; 1003 1004 case Sema::TPC_FriendFunctionTemplate: 1005 // C++ [temp.param]p9: 1006 // A default template-argument shall not be specified in a 1007 // friend template declaration. 1008 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1009 << DefArgRange; 1010 return true; 1011 1012 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1013 // for friend function templates if there is only a single 1014 // declaration (and it is a definition). Strange! 1015 } 1016 1017 return false; 1018} 1019 1020/// \brief Checks the validity of a template parameter list, possibly 1021/// considering the template parameter list from a previous 1022/// declaration. 1023/// 1024/// If an "old" template parameter list is provided, it must be 1025/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1026/// template parameter list. 1027/// 1028/// \param NewParams Template parameter list for a new template 1029/// declaration. This template parameter list will be updated with any 1030/// default arguments that are carried through from the previous 1031/// template parameter list. 1032/// 1033/// \param OldParams If provided, template parameter list from a 1034/// previous declaration of the same template. Default template 1035/// arguments will be merged from the old template parameter list to 1036/// the new template parameter list. 1037/// 1038/// \param TPC Describes the context in which we are checking the given 1039/// template parameter list. 1040/// 1041/// \returns true if an error occurred, false otherwise. 1042bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1043 TemplateParameterList *OldParams, 1044 TemplateParamListContext TPC) { 1045 bool Invalid = false; 1046 1047 // C++ [temp.param]p10: 1048 // The set of default template-arguments available for use with a 1049 // template declaration or definition is obtained by merging the 1050 // default arguments from the definition (if in scope) and all 1051 // declarations in scope in the same way default function 1052 // arguments are (8.3.6). 1053 bool SawDefaultArgument = false; 1054 SourceLocation PreviousDefaultArgLoc; 1055 1056 bool SawParameterPack = false; 1057 SourceLocation ParameterPackLoc; 1058 1059 // Dummy initialization to avoid warnings. 1060 TemplateParameterList::iterator OldParam = NewParams->end(); 1061 if (OldParams) 1062 OldParam = OldParams->begin(); 1063 1064 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1065 NewParamEnd = NewParams->end(); 1066 NewParam != NewParamEnd; ++NewParam) { 1067 // Variables used to diagnose redundant default arguments 1068 bool RedundantDefaultArg = false; 1069 SourceLocation OldDefaultLoc; 1070 SourceLocation NewDefaultLoc; 1071 1072 // Variables used to diagnose missing default arguments 1073 bool MissingDefaultArg = false; 1074 1075 // C++0x [temp.param]p11: 1076 // If a template parameter of a class template is a template parameter pack, 1077 // it must be the last template parameter. 1078 if (SawParameterPack) { 1079 Diag(ParameterPackLoc, 1080 diag::err_template_param_pack_must_be_last_template_parameter); 1081 Invalid = true; 1082 } 1083 1084 if (TemplateTypeParmDecl *NewTypeParm 1085 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1086 // Check the presence of a default argument here. 1087 if (NewTypeParm->hasDefaultArgument() && 1088 DiagnoseDefaultTemplateArgument(*this, TPC, 1089 NewTypeParm->getLocation(), 1090 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1091 .getFullSourceRange())) 1092 NewTypeParm->removeDefaultArgument(); 1093 1094 // Merge default arguments for template type parameters. 1095 TemplateTypeParmDecl *OldTypeParm 1096 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1097 1098 if (NewTypeParm->isParameterPack()) { 1099 assert(!NewTypeParm->hasDefaultArgument() && 1100 "Parameter packs can't have a default argument!"); 1101 SawParameterPack = true; 1102 ParameterPackLoc = NewTypeParm->getLocation(); 1103 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1104 NewTypeParm->hasDefaultArgument()) { 1105 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1106 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1107 SawDefaultArgument = true; 1108 RedundantDefaultArg = true; 1109 PreviousDefaultArgLoc = NewDefaultLoc; 1110 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1111 // Merge the default argument from the old declaration to the 1112 // new declaration. 1113 SawDefaultArgument = true; 1114 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1115 true); 1116 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1117 } else if (NewTypeParm->hasDefaultArgument()) { 1118 SawDefaultArgument = true; 1119 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1120 } else if (SawDefaultArgument) 1121 MissingDefaultArg = true; 1122 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1123 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1124 // Check the presence of a default argument here. 1125 if (NewNonTypeParm->hasDefaultArgument() && 1126 DiagnoseDefaultTemplateArgument(*this, TPC, 1127 NewNonTypeParm->getLocation(), 1128 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1129 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1130 NewNonTypeParm->setDefaultArgument(0); 1131 } 1132 1133 // Merge default arguments for non-type template parameters 1134 NonTypeTemplateParmDecl *OldNonTypeParm 1135 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1136 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1137 NewNonTypeParm->hasDefaultArgument()) { 1138 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1139 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1140 SawDefaultArgument = true; 1141 RedundantDefaultArg = true; 1142 PreviousDefaultArgLoc = NewDefaultLoc; 1143 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1144 // Merge the default argument from the old declaration to the 1145 // new declaration. 1146 SawDefaultArgument = true; 1147 // FIXME: We need to create a new kind of "default argument" 1148 // expression that points to a previous template template 1149 // parameter. 1150 NewNonTypeParm->setDefaultArgument( 1151 OldNonTypeParm->getDefaultArgument()); 1152 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1153 } else if (NewNonTypeParm->hasDefaultArgument()) { 1154 SawDefaultArgument = true; 1155 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1156 } else if (SawDefaultArgument) 1157 MissingDefaultArg = true; 1158 } else { 1159 // Check the presence of a default argument here. 1160 TemplateTemplateParmDecl *NewTemplateParm 1161 = cast<TemplateTemplateParmDecl>(*NewParam); 1162 if (NewTemplateParm->hasDefaultArgument() && 1163 DiagnoseDefaultTemplateArgument(*this, TPC, 1164 NewTemplateParm->getLocation(), 1165 NewTemplateParm->getDefaultArgument().getSourceRange())) 1166 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1167 1168 // Merge default arguments for template template parameters 1169 TemplateTemplateParmDecl *OldTemplateParm 1170 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1171 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1172 NewTemplateParm->hasDefaultArgument()) { 1173 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1174 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1175 SawDefaultArgument = true; 1176 RedundantDefaultArg = true; 1177 PreviousDefaultArgLoc = NewDefaultLoc; 1178 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1179 // Merge the default argument from the old declaration to the 1180 // new declaration. 1181 SawDefaultArgument = true; 1182 // FIXME: We need to create a new kind of "default argument" expression 1183 // that points to a previous template template parameter. 1184 NewTemplateParm->setDefaultArgument( 1185 OldTemplateParm->getDefaultArgument()); 1186 PreviousDefaultArgLoc 1187 = OldTemplateParm->getDefaultArgument().getLocation(); 1188 } else if (NewTemplateParm->hasDefaultArgument()) { 1189 SawDefaultArgument = true; 1190 PreviousDefaultArgLoc 1191 = NewTemplateParm->getDefaultArgument().getLocation(); 1192 } else if (SawDefaultArgument) 1193 MissingDefaultArg = true; 1194 } 1195 1196 if (RedundantDefaultArg) { 1197 // C++ [temp.param]p12: 1198 // A template-parameter shall not be given default arguments 1199 // by two different declarations in the same scope. 1200 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1201 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1202 Invalid = true; 1203 } else if (MissingDefaultArg) { 1204 // C++ [temp.param]p11: 1205 // If a template-parameter has a default template-argument, 1206 // all subsequent template-parameters shall have a default 1207 // template-argument supplied. 1208 Diag((*NewParam)->getLocation(), 1209 diag::err_template_param_default_arg_missing); 1210 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1211 Invalid = true; 1212 } 1213 1214 // If we have an old template parameter list that we're merging 1215 // in, move on to the next parameter. 1216 if (OldParams) 1217 ++OldParam; 1218 } 1219 1220 return Invalid; 1221} 1222 1223/// \brief Match the given template parameter lists to the given scope 1224/// specifier, returning the template parameter list that applies to the 1225/// name. 1226/// 1227/// \param DeclStartLoc the start of the declaration that has a scope 1228/// specifier or a template parameter list. 1229/// 1230/// \param SS the scope specifier that will be matched to the given template 1231/// parameter lists. This scope specifier precedes a qualified name that is 1232/// being declared. 1233/// 1234/// \param ParamLists the template parameter lists, from the outermost to the 1235/// innermost template parameter lists. 1236/// 1237/// \param NumParamLists the number of template parameter lists in ParamLists. 1238/// 1239/// \param IsFriend Whether to apply the slightly different rules for 1240/// matching template parameters to scope specifiers in friend 1241/// declarations. 1242/// 1243/// \param IsExplicitSpecialization will be set true if the entity being 1244/// declared is an explicit specialization, false otherwise. 1245/// 1246/// \returns the template parameter list, if any, that corresponds to the 1247/// name that is preceded by the scope specifier @p SS. This template 1248/// parameter list may be have template parameters (if we're declaring a 1249/// template) or may have no template parameters (if we're declaring a 1250/// template specialization), or may be NULL (if we were's declaring isn't 1251/// itself a template). 1252TemplateParameterList * 1253Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1254 const CXXScopeSpec &SS, 1255 TemplateParameterList **ParamLists, 1256 unsigned NumParamLists, 1257 bool IsFriend, 1258 bool &IsExplicitSpecialization) { 1259 IsExplicitSpecialization = false; 1260 1261 // Find the template-ids that occur within the nested-name-specifier. These 1262 // template-ids will match up with the template parameter lists. 1263 llvm::SmallVector<const TemplateSpecializationType *, 4> 1264 TemplateIdsInSpecifier; 1265 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1266 ExplicitSpecializationsInSpecifier; 1267 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1268 NNS; NNS = NNS->getPrefix()) { 1269 const Type *T = NNS->getAsType(); 1270 if (!T) break; 1271 1272 // C++0x [temp.expl.spec]p17: 1273 // A member or a member template may be nested within many 1274 // enclosing class templates. In an explicit specialization for 1275 // such a member, the member declaration shall be preceded by a 1276 // template<> for each enclosing class template that is 1277 // explicitly specialized. 1278 // 1279 // Following the existing practice of GNU and EDG, we allow a typedef of a 1280 // template specialization type. 1281 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1282 T = TT->LookThroughTypedefs().getTypePtr(); 1283 1284 if (const TemplateSpecializationType *SpecType 1285 = dyn_cast<TemplateSpecializationType>(T)) { 1286 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1287 if (!Template) 1288 continue; // FIXME: should this be an error? probably... 1289 1290 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1291 ClassTemplateSpecializationDecl *SpecDecl 1292 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1293 // If the nested name specifier refers to an explicit specialization, 1294 // we don't need a template<> header. 1295 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1296 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1297 continue; 1298 } 1299 } 1300 1301 TemplateIdsInSpecifier.push_back(SpecType); 1302 } 1303 } 1304 1305 // Reverse the list of template-ids in the scope specifier, so that we can 1306 // more easily match up the template-ids and the template parameter lists. 1307 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1308 1309 SourceLocation FirstTemplateLoc = DeclStartLoc; 1310 if (NumParamLists) 1311 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1312 1313 // Match the template-ids found in the specifier to the template parameter 1314 // lists. 1315 unsigned Idx = 0; 1316 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1317 Idx != NumTemplateIds; ++Idx) { 1318 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1319 bool DependentTemplateId = TemplateId->isDependentType(); 1320 if (Idx >= NumParamLists) { 1321 // We have a template-id without a corresponding template parameter 1322 // list. 1323 1324 // ...which is fine if this is a friend declaration. 1325 if (IsFriend) { 1326 IsExplicitSpecialization = true; 1327 break; 1328 } 1329 1330 if (DependentTemplateId) { 1331 // FIXME: the location information here isn't great. 1332 Diag(SS.getRange().getBegin(), 1333 diag::err_template_spec_needs_template_parameters) 1334 << TemplateId 1335 << SS.getRange(); 1336 } else { 1337 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1338 << SS.getRange() 1339 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1340 IsExplicitSpecialization = true; 1341 } 1342 return 0; 1343 } 1344 1345 // Check the template parameter list against its corresponding template-id. 1346 if (DependentTemplateId) { 1347 TemplateDecl *Template 1348 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1349 1350 if (ClassTemplateDecl *ClassTemplate 1351 = dyn_cast<ClassTemplateDecl>(Template)) { 1352 TemplateParameterList *ExpectedTemplateParams = 0; 1353 // Is this template-id naming the primary template? 1354 if (Context.hasSameType(TemplateId, 1355 ClassTemplate->getInjectedClassNameSpecialization(Context))) 1356 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1357 // ... or a partial specialization? 1358 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1359 = ClassTemplate->findPartialSpecialization(TemplateId)) 1360 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1361 1362 if (ExpectedTemplateParams) 1363 TemplateParameterListsAreEqual(ParamLists[Idx], 1364 ExpectedTemplateParams, 1365 true, TPL_TemplateMatch); 1366 } 1367 1368 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1369 } else if (ParamLists[Idx]->size() > 0) 1370 Diag(ParamLists[Idx]->getTemplateLoc(), 1371 diag::err_template_param_list_matches_nontemplate) 1372 << TemplateId 1373 << ParamLists[Idx]->getSourceRange(); 1374 else 1375 IsExplicitSpecialization = true; 1376 } 1377 1378 // If there were at least as many template-ids as there were template 1379 // parameter lists, then there are no template parameter lists remaining for 1380 // the declaration itself. 1381 if (Idx >= NumParamLists) 1382 return 0; 1383 1384 // If there were too many template parameter lists, complain about that now. 1385 if (Idx != NumParamLists - 1) { 1386 while (Idx < NumParamLists - 1) { 1387 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1388 Diag(ParamLists[Idx]->getTemplateLoc(), 1389 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1390 : diag::err_template_spec_extra_headers) 1391 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1392 ParamLists[Idx]->getRAngleLoc()); 1393 1394 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1395 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1396 diag::note_explicit_template_spec_does_not_need_header) 1397 << ExplicitSpecializationsInSpecifier.back(); 1398 ExplicitSpecializationsInSpecifier.pop_back(); 1399 } 1400 1401 ++Idx; 1402 } 1403 } 1404 1405 // Return the last template parameter list, which corresponds to the 1406 // entity being declared. 1407 return ParamLists[NumParamLists - 1]; 1408} 1409 1410QualType Sema::CheckTemplateIdType(TemplateName Name, 1411 SourceLocation TemplateLoc, 1412 const TemplateArgumentListInfo &TemplateArgs) { 1413 TemplateDecl *Template = Name.getAsTemplateDecl(); 1414 if (!Template) { 1415 // The template name does not resolve to a template, so we just 1416 // build a dependent template-id type. 1417 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1418 } 1419 1420 // Check that the template argument list is well-formed for this 1421 // template. 1422 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1423 TemplateArgs.size()); 1424 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1425 false, Converted)) 1426 return QualType(); 1427 1428 assert((Converted.structuredSize() == 1429 Template->getTemplateParameters()->size()) && 1430 "Converted template argument list is too short!"); 1431 1432 QualType CanonType; 1433 1434 if (Name.isDependent() || 1435 TemplateSpecializationType::anyDependentTemplateArguments( 1436 TemplateArgs)) { 1437 // This class template specialization is a dependent 1438 // type. Therefore, its canonical type is another class template 1439 // specialization type that contains all of the converted 1440 // arguments in canonical form. This ensures that, e.g., A<T> and 1441 // A<T, T> have identical types when A is declared as: 1442 // 1443 // template<typename T, typename U = T> struct A; 1444 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1445 CanonType = Context.getTemplateSpecializationType(CanonName, 1446 Converted.getFlatArguments(), 1447 Converted.flatSize()); 1448 1449 // FIXME: CanonType is not actually the canonical type, and unfortunately 1450 // it is a TemplateSpecializationType that we will never use again. 1451 // In the future, we need to teach getTemplateSpecializationType to only 1452 // build the canonical type and return that to us. 1453 CanonType = Context.getCanonicalType(CanonType); 1454 } else if (ClassTemplateDecl *ClassTemplate 1455 = dyn_cast<ClassTemplateDecl>(Template)) { 1456 // Find the class template specialization declaration that 1457 // corresponds to these arguments. 1458 llvm::FoldingSetNodeID ID; 1459 ClassTemplateSpecializationDecl::Profile(ID, 1460 Converted.getFlatArguments(), 1461 Converted.flatSize(), 1462 Context); 1463 void *InsertPos = 0; 1464 ClassTemplateSpecializationDecl *Decl 1465 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1466 if (!Decl) { 1467 // This is the first time we have referenced this class template 1468 // specialization. Create the canonical declaration and add it to 1469 // the set of specializations. 1470 Decl = ClassTemplateSpecializationDecl::Create(Context, 1471 ClassTemplate->getDeclContext(), 1472 ClassTemplate->getLocation(), 1473 ClassTemplate, 1474 Converted, 0); 1475 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1476 Decl->setLexicalDeclContext(CurContext); 1477 } 1478 1479 CanonType = Context.getTypeDeclType(Decl); 1480 assert(isa<RecordType>(CanonType) && 1481 "type of non-dependent specialization is not a RecordType"); 1482 } 1483 1484 // Build the fully-sugared type for this class template 1485 // specialization, which refers back to the class template 1486 // specialization we created or found. 1487 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1488} 1489 1490Action::TypeResult 1491Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1492 SourceLocation LAngleLoc, 1493 ASTTemplateArgsPtr TemplateArgsIn, 1494 SourceLocation RAngleLoc) { 1495 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1496 1497 // Translate the parser's template argument list in our AST format. 1498 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1499 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1500 1501 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1502 TemplateArgsIn.release(); 1503 1504 if (Result.isNull()) 1505 return true; 1506 1507 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1508 TemplateSpecializationTypeLoc TL 1509 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1510 TL.setTemplateNameLoc(TemplateLoc); 1511 TL.setLAngleLoc(LAngleLoc); 1512 TL.setRAngleLoc(RAngleLoc); 1513 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1514 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1515 1516 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1517} 1518 1519Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1520 TagUseKind TUK, 1521 DeclSpec::TST TagSpec, 1522 SourceLocation TagLoc) { 1523 if (TypeResult.isInvalid()) 1524 return Sema::TypeResult(); 1525 1526 // FIXME: preserve source info, ideally without copying the DI. 1527 TypeSourceInfo *DI; 1528 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1529 1530 // Verify the tag specifier. 1531 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1532 1533 if (const RecordType *RT = Type->getAs<RecordType>()) { 1534 RecordDecl *D = RT->getDecl(); 1535 1536 IdentifierInfo *Id = D->getIdentifier(); 1537 assert(Id && "templated class must have an identifier"); 1538 1539 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1540 Diag(TagLoc, diag::err_use_with_wrong_tag) 1541 << Type 1542 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1543 Diag(D->getLocation(), diag::note_previous_use); 1544 } 1545 } 1546 1547 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1548 1549 return ElabType.getAsOpaquePtr(); 1550} 1551 1552Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1553 LookupResult &R, 1554 bool RequiresADL, 1555 const TemplateArgumentListInfo &TemplateArgs) { 1556 // FIXME: Can we do any checking at this point? I guess we could check the 1557 // template arguments that we have against the template name, if the template 1558 // name refers to a single template. That's not a terribly common case, 1559 // though. 1560 1561 // These should be filtered out by our callers. 1562 assert(!R.empty() && "empty lookup results when building templateid"); 1563 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1564 1565 NestedNameSpecifier *Qualifier = 0; 1566 SourceRange QualifierRange; 1567 if (SS.isSet()) { 1568 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1569 QualifierRange = SS.getRange(); 1570 } 1571 1572 // We don't want lookup warnings at this point. 1573 R.suppressDiagnostics(); 1574 1575 bool Dependent 1576 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1577 &TemplateArgs); 1578 UnresolvedLookupExpr *ULE 1579 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1580 Qualifier, QualifierRange, 1581 R.getLookupName(), R.getNameLoc(), 1582 RequiresADL, TemplateArgs); 1583 ULE->addDecls(R.begin(), R.end()); 1584 1585 return Owned(ULE); 1586} 1587 1588// We actually only call this from template instantiation. 1589Sema::OwningExprResult 1590Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1591 DeclarationName Name, 1592 SourceLocation NameLoc, 1593 const TemplateArgumentListInfo &TemplateArgs) { 1594 DeclContext *DC; 1595 if (!(DC = computeDeclContext(SS, false)) || 1596 DC->isDependentContext() || 1597 RequireCompleteDeclContext(SS)) 1598 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1599 1600 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1601 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1602 1603 if (R.isAmbiguous()) 1604 return ExprError(); 1605 1606 if (R.empty()) { 1607 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1608 << Name << SS.getRange(); 1609 return ExprError(); 1610 } 1611 1612 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1613 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1614 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1615 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1616 return ExprError(); 1617 } 1618 1619 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1620} 1621 1622/// \brief Form a dependent template name. 1623/// 1624/// This action forms a dependent template name given the template 1625/// name and its (presumably dependent) scope specifier. For 1626/// example, given "MetaFun::template apply", the scope specifier \p 1627/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1628/// of the "template" keyword, and "apply" is the \p Name. 1629Sema::TemplateTy 1630Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1631 CXXScopeSpec &SS, 1632 UnqualifiedId &Name, 1633 TypeTy *ObjectType, 1634 bool EnteringContext) { 1635 DeclContext *LookupCtx = 0; 1636 if (SS.isSet()) 1637 LookupCtx = computeDeclContext(SS, EnteringContext); 1638 if (!LookupCtx && ObjectType) 1639 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1640 if (LookupCtx) { 1641 // C++0x [temp.names]p5: 1642 // If a name prefixed by the keyword template is not the name of 1643 // a template, the program is ill-formed. [Note: the keyword 1644 // template may not be applied to non-template members of class 1645 // templates. -end note ] [ Note: as is the case with the 1646 // typename prefix, the template prefix is allowed in cases 1647 // where it is not strictly necessary; i.e., when the 1648 // nested-name-specifier or the expression on the left of the -> 1649 // or . is not dependent on a template-parameter, or the use 1650 // does not appear in the scope of a template. -end note] 1651 // 1652 // Note: C++03 was more strict here, because it banned the use of 1653 // the "template" keyword prior to a template-name that was not a 1654 // dependent name. C++ DR468 relaxed this requirement (the 1655 // "template" keyword is now permitted). We follow the C++0x 1656 // rules, even in C++03 mode, retroactively applying the DR. 1657 TemplateTy Template; 1658 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1659 EnteringContext, Template); 1660 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1661 isa<CXXRecordDecl>(LookupCtx) && 1662 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1663 // This is a dependent template. 1664 } else if (TNK == TNK_Non_template) { 1665 Diag(Name.getSourceRange().getBegin(), 1666 diag::err_template_kw_refers_to_non_template) 1667 << GetNameFromUnqualifiedId(Name) 1668 << Name.getSourceRange(); 1669 return TemplateTy(); 1670 } else { 1671 // We found something; return it. 1672 return Template; 1673 } 1674 } 1675 1676 NestedNameSpecifier *Qualifier 1677 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1678 1679 switch (Name.getKind()) { 1680 case UnqualifiedId::IK_Identifier: 1681 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1682 Name.Identifier)); 1683 1684 case UnqualifiedId::IK_OperatorFunctionId: 1685 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1686 Name.OperatorFunctionId.Operator)); 1687 1688 case UnqualifiedId::IK_LiteralOperatorId: 1689 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1690 1691 default: 1692 break; 1693 } 1694 1695 Diag(Name.getSourceRange().getBegin(), 1696 diag::err_template_kw_refers_to_non_template) 1697 << GetNameFromUnqualifiedId(Name) 1698 << Name.getSourceRange(); 1699 return TemplateTy(); 1700} 1701 1702bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1703 const TemplateArgumentLoc &AL, 1704 TemplateArgumentListBuilder &Converted) { 1705 const TemplateArgument &Arg = AL.getArgument(); 1706 1707 // Check template type parameter. 1708 switch(Arg.getKind()) { 1709 case TemplateArgument::Type: 1710 // C++ [temp.arg.type]p1: 1711 // A template-argument for a template-parameter which is a 1712 // type shall be a type-id. 1713 break; 1714 case TemplateArgument::Template: { 1715 // We have a template type parameter but the template argument 1716 // is a template without any arguments. 1717 SourceRange SR = AL.getSourceRange(); 1718 TemplateName Name = Arg.getAsTemplate(); 1719 Diag(SR.getBegin(), diag::err_template_missing_args) 1720 << Name << SR; 1721 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1722 Diag(Decl->getLocation(), diag::note_template_decl_here); 1723 1724 return true; 1725 } 1726 default: { 1727 // We have a template type parameter but the template argument 1728 // is not a type. 1729 SourceRange SR = AL.getSourceRange(); 1730 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1731 Diag(Param->getLocation(), diag::note_template_param_here); 1732 1733 return true; 1734 } 1735 } 1736 1737 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1738 return true; 1739 1740 // Add the converted template type argument. 1741 Converted.Append( 1742 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1743 return false; 1744} 1745 1746/// \brief Substitute template arguments into the default template argument for 1747/// the given template type parameter. 1748/// 1749/// \param SemaRef the semantic analysis object for which we are performing 1750/// the substitution. 1751/// 1752/// \param Template the template that we are synthesizing template arguments 1753/// for. 1754/// 1755/// \param TemplateLoc the location of the template name that started the 1756/// template-id we are checking. 1757/// 1758/// \param RAngleLoc the location of the right angle bracket ('>') that 1759/// terminates the template-id. 1760/// 1761/// \param Param the template template parameter whose default we are 1762/// substituting into. 1763/// 1764/// \param Converted the list of template arguments provided for template 1765/// parameters that precede \p Param in the template parameter list. 1766/// 1767/// \returns the substituted template argument, or NULL if an error occurred. 1768static TypeSourceInfo * 1769SubstDefaultTemplateArgument(Sema &SemaRef, 1770 TemplateDecl *Template, 1771 SourceLocation TemplateLoc, 1772 SourceLocation RAngleLoc, 1773 TemplateTypeParmDecl *Param, 1774 TemplateArgumentListBuilder &Converted) { 1775 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1776 1777 // If the argument type is dependent, instantiate it now based 1778 // on the previously-computed template arguments. 1779 if (ArgType->getType()->isDependentType()) { 1780 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1781 /*TakeArgs=*/false); 1782 1783 MultiLevelTemplateArgumentList AllTemplateArgs 1784 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1785 1786 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1787 Template, Converted.getFlatArguments(), 1788 Converted.flatSize(), 1789 SourceRange(TemplateLoc, RAngleLoc)); 1790 1791 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1792 Param->getDefaultArgumentLoc(), 1793 Param->getDeclName()); 1794 } 1795 1796 return ArgType; 1797} 1798 1799/// \brief Substitute template arguments into the default template argument for 1800/// the given non-type template parameter. 1801/// 1802/// \param SemaRef the semantic analysis object for which we are performing 1803/// the substitution. 1804/// 1805/// \param Template the template that we are synthesizing template arguments 1806/// for. 1807/// 1808/// \param TemplateLoc the location of the template name that started the 1809/// template-id we are checking. 1810/// 1811/// \param RAngleLoc the location of the right angle bracket ('>') that 1812/// terminates the template-id. 1813/// 1814/// \param Param the non-type template parameter whose default we are 1815/// substituting into. 1816/// 1817/// \param Converted the list of template arguments provided for template 1818/// parameters that precede \p Param in the template parameter list. 1819/// 1820/// \returns the substituted template argument, or NULL if an error occurred. 1821static Sema::OwningExprResult 1822SubstDefaultTemplateArgument(Sema &SemaRef, 1823 TemplateDecl *Template, 1824 SourceLocation TemplateLoc, 1825 SourceLocation RAngleLoc, 1826 NonTypeTemplateParmDecl *Param, 1827 TemplateArgumentListBuilder &Converted) { 1828 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1829 /*TakeArgs=*/false); 1830 1831 MultiLevelTemplateArgumentList AllTemplateArgs 1832 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1833 1834 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1835 Template, Converted.getFlatArguments(), 1836 Converted.flatSize(), 1837 SourceRange(TemplateLoc, RAngleLoc)); 1838 1839 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1840} 1841 1842/// \brief Substitute template arguments into the default template argument for 1843/// the given template template parameter. 1844/// 1845/// \param SemaRef the semantic analysis object for which we are performing 1846/// the substitution. 1847/// 1848/// \param Template the template that we are synthesizing template arguments 1849/// for. 1850/// 1851/// \param TemplateLoc the location of the template name that started the 1852/// template-id we are checking. 1853/// 1854/// \param RAngleLoc the location of the right angle bracket ('>') that 1855/// terminates the template-id. 1856/// 1857/// \param Param the template template parameter whose default we are 1858/// substituting into. 1859/// 1860/// \param Converted the list of template arguments provided for template 1861/// parameters that precede \p Param in the template parameter list. 1862/// 1863/// \returns the substituted template argument, or NULL if an error occurred. 1864static TemplateName 1865SubstDefaultTemplateArgument(Sema &SemaRef, 1866 TemplateDecl *Template, 1867 SourceLocation TemplateLoc, 1868 SourceLocation RAngleLoc, 1869 TemplateTemplateParmDecl *Param, 1870 TemplateArgumentListBuilder &Converted) { 1871 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1872 /*TakeArgs=*/false); 1873 1874 MultiLevelTemplateArgumentList AllTemplateArgs 1875 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1876 1877 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1878 Template, Converted.getFlatArguments(), 1879 Converted.flatSize(), 1880 SourceRange(TemplateLoc, RAngleLoc)); 1881 1882 return SemaRef.SubstTemplateName( 1883 Param->getDefaultArgument().getArgument().getAsTemplate(), 1884 Param->getDefaultArgument().getTemplateNameLoc(), 1885 AllTemplateArgs); 1886} 1887 1888/// \brief If the given template parameter has a default template 1889/// argument, substitute into that default template argument and 1890/// return the corresponding template argument. 1891TemplateArgumentLoc 1892Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1893 SourceLocation TemplateLoc, 1894 SourceLocation RAngleLoc, 1895 Decl *Param, 1896 TemplateArgumentListBuilder &Converted) { 1897 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1898 if (!TypeParm->hasDefaultArgument()) 1899 return TemplateArgumentLoc(); 1900 1901 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1902 TemplateLoc, 1903 RAngleLoc, 1904 TypeParm, 1905 Converted); 1906 if (DI) 1907 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1908 1909 return TemplateArgumentLoc(); 1910 } 1911 1912 if (NonTypeTemplateParmDecl *NonTypeParm 1913 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1914 if (!NonTypeParm->hasDefaultArgument()) 1915 return TemplateArgumentLoc(); 1916 1917 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1918 TemplateLoc, 1919 RAngleLoc, 1920 NonTypeParm, 1921 Converted); 1922 if (Arg.isInvalid()) 1923 return TemplateArgumentLoc(); 1924 1925 Expr *ArgE = Arg.takeAs<Expr>(); 1926 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1927 } 1928 1929 TemplateTemplateParmDecl *TempTempParm 1930 = cast<TemplateTemplateParmDecl>(Param); 1931 if (!TempTempParm->hasDefaultArgument()) 1932 return TemplateArgumentLoc(); 1933 1934 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1935 TemplateLoc, 1936 RAngleLoc, 1937 TempTempParm, 1938 Converted); 1939 if (TName.isNull()) 1940 return TemplateArgumentLoc(); 1941 1942 return TemplateArgumentLoc(TemplateArgument(TName), 1943 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1944 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1945} 1946 1947/// \brief Check that the given template argument corresponds to the given 1948/// template parameter. 1949bool Sema::CheckTemplateArgument(NamedDecl *Param, 1950 const TemplateArgumentLoc &Arg, 1951 TemplateDecl *Template, 1952 SourceLocation TemplateLoc, 1953 SourceLocation RAngleLoc, 1954 TemplateArgumentListBuilder &Converted, 1955 CheckTemplateArgumentKind CTAK) { 1956 // Check template type parameters. 1957 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1958 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1959 1960 // Check non-type template parameters. 1961 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1962 // Do substitution on the type of the non-type template parameter 1963 // with the template arguments we've seen thus far. 1964 QualType NTTPType = NTTP->getType(); 1965 if (NTTPType->isDependentType()) { 1966 // Do substitution on the type of the non-type template parameter. 1967 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1968 NTTP, Converted.getFlatArguments(), 1969 Converted.flatSize(), 1970 SourceRange(TemplateLoc, RAngleLoc)); 1971 1972 TemplateArgumentList TemplateArgs(Context, Converted, 1973 /*TakeArgs=*/false); 1974 NTTPType = SubstType(NTTPType, 1975 MultiLevelTemplateArgumentList(TemplateArgs), 1976 NTTP->getLocation(), 1977 NTTP->getDeclName()); 1978 // If that worked, check the non-type template parameter type 1979 // for validity. 1980 if (!NTTPType.isNull()) 1981 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1982 NTTP->getLocation()); 1983 if (NTTPType.isNull()) 1984 return true; 1985 } 1986 1987 switch (Arg.getArgument().getKind()) { 1988 case TemplateArgument::Null: 1989 assert(false && "Should never see a NULL template argument here"); 1990 return true; 1991 1992 case TemplateArgument::Expression: { 1993 Expr *E = Arg.getArgument().getAsExpr(); 1994 TemplateArgument Result; 1995 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 1996 return true; 1997 1998 Converted.Append(Result); 1999 break; 2000 } 2001 2002 case TemplateArgument::Declaration: 2003 case TemplateArgument::Integral: 2004 // We've already checked this template argument, so just copy 2005 // it to the list of converted arguments. 2006 Converted.Append(Arg.getArgument()); 2007 break; 2008 2009 case TemplateArgument::Template: 2010 // We were given a template template argument. It may not be ill-formed; 2011 // see below. 2012 if (DependentTemplateName *DTN 2013 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2014 // We have a template argument such as \c T::template X, which we 2015 // parsed as a template template argument. However, since we now 2016 // know that we need a non-type template argument, convert this 2017 // template name into an expression. 2018 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2019 DTN->getQualifier(), 2020 Arg.getTemplateQualifierRange(), 2021 DTN->getIdentifier(), 2022 Arg.getTemplateNameLoc()); 2023 2024 TemplateArgument Result; 2025 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2026 return true; 2027 2028 Converted.Append(Result); 2029 break; 2030 } 2031 2032 // We have a template argument that actually does refer to a class 2033 // template, template alias, or template template parameter, and 2034 // therefore cannot be a non-type template argument. 2035 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2036 << Arg.getSourceRange(); 2037 2038 Diag(Param->getLocation(), diag::note_template_param_here); 2039 return true; 2040 2041 case TemplateArgument::Type: { 2042 // We have a non-type template parameter but the template 2043 // argument is a type. 2044 2045 // C++ [temp.arg]p2: 2046 // In a template-argument, an ambiguity between a type-id and 2047 // an expression is resolved to a type-id, regardless of the 2048 // form of the corresponding template-parameter. 2049 // 2050 // We warn specifically about this case, since it can be rather 2051 // confusing for users. 2052 QualType T = Arg.getArgument().getAsType(); 2053 SourceRange SR = Arg.getSourceRange(); 2054 if (T->isFunctionType()) 2055 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2056 else 2057 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2058 Diag(Param->getLocation(), diag::note_template_param_here); 2059 return true; 2060 } 2061 2062 case TemplateArgument::Pack: 2063 llvm_unreachable("Caller must expand template argument packs"); 2064 break; 2065 } 2066 2067 return false; 2068 } 2069 2070 2071 // Check template template parameters. 2072 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2073 2074 // Substitute into the template parameter list of the template 2075 // template parameter, since previously-supplied template arguments 2076 // may appear within the template template parameter. 2077 { 2078 // Set up a template instantiation context. 2079 LocalInstantiationScope Scope(*this); 2080 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2081 TempParm, Converted.getFlatArguments(), 2082 Converted.flatSize(), 2083 SourceRange(TemplateLoc, RAngleLoc)); 2084 2085 TemplateArgumentList TemplateArgs(Context, Converted, 2086 /*TakeArgs=*/false); 2087 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2088 SubstDecl(TempParm, CurContext, 2089 MultiLevelTemplateArgumentList(TemplateArgs))); 2090 if (!TempParm) 2091 return true; 2092 2093 // FIXME: TempParam is leaked. 2094 } 2095 2096 switch (Arg.getArgument().getKind()) { 2097 case TemplateArgument::Null: 2098 assert(false && "Should never see a NULL template argument here"); 2099 return true; 2100 2101 case TemplateArgument::Template: 2102 if (CheckTemplateArgument(TempParm, Arg)) 2103 return true; 2104 2105 Converted.Append(Arg.getArgument()); 2106 break; 2107 2108 case TemplateArgument::Expression: 2109 case TemplateArgument::Type: 2110 // We have a template template parameter but the template 2111 // argument does not refer to a template. 2112 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2113 return true; 2114 2115 case TemplateArgument::Declaration: 2116 llvm_unreachable( 2117 "Declaration argument with template template parameter"); 2118 break; 2119 case TemplateArgument::Integral: 2120 llvm_unreachable( 2121 "Integral argument with template template parameter"); 2122 break; 2123 2124 case TemplateArgument::Pack: 2125 llvm_unreachable("Caller must expand template argument packs"); 2126 break; 2127 } 2128 2129 return false; 2130} 2131 2132/// \brief Check that the given template argument list is well-formed 2133/// for specializing the given template. 2134bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2135 SourceLocation TemplateLoc, 2136 const TemplateArgumentListInfo &TemplateArgs, 2137 bool PartialTemplateArgs, 2138 TemplateArgumentListBuilder &Converted) { 2139 TemplateParameterList *Params = Template->getTemplateParameters(); 2140 unsigned NumParams = Params->size(); 2141 unsigned NumArgs = TemplateArgs.size(); 2142 bool Invalid = false; 2143 2144 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2145 2146 bool HasParameterPack = 2147 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2148 2149 if ((NumArgs > NumParams && !HasParameterPack) || 2150 (NumArgs < Params->getMinRequiredArguments() && 2151 !PartialTemplateArgs)) { 2152 // FIXME: point at either the first arg beyond what we can handle, 2153 // or the '>', depending on whether we have too many or too few 2154 // arguments. 2155 SourceRange Range; 2156 if (NumArgs > NumParams) 2157 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2158 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2159 << (NumArgs > NumParams) 2160 << (isa<ClassTemplateDecl>(Template)? 0 : 2161 isa<FunctionTemplateDecl>(Template)? 1 : 2162 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2163 << Template << Range; 2164 Diag(Template->getLocation(), diag::note_template_decl_here) 2165 << Params->getSourceRange(); 2166 Invalid = true; 2167 } 2168 2169 // C++ [temp.arg]p1: 2170 // [...] The type and form of each template-argument specified in 2171 // a template-id shall match the type and form specified for the 2172 // corresponding parameter declared by the template in its 2173 // template-parameter-list. 2174 unsigned ArgIdx = 0; 2175 for (TemplateParameterList::iterator Param = Params->begin(), 2176 ParamEnd = Params->end(); 2177 Param != ParamEnd; ++Param, ++ArgIdx) { 2178 if (ArgIdx > NumArgs && PartialTemplateArgs) 2179 break; 2180 2181 // If we have a template parameter pack, check every remaining template 2182 // argument against that template parameter pack. 2183 if ((*Param)->isTemplateParameterPack()) { 2184 Converted.BeginPack(); 2185 for (; ArgIdx < NumArgs; ++ArgIdx) { 2186 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2187 TemplateLoc, RAngleLoc, Converted)) { 2188 Invalid = true; 2189 break; 2190 } 2191 } 2192 Converted.EndPack(); 2193 continue; 2194 } 2195 2196 if (ArgIdx < NumArgs) { 2197 // Check the template argument we were given. 2198 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2199 TemplateLoc, RAngleLoc, Converted)) 2200 return true; 2201 2202 continue; 2203 } 2204 2205 // We have a default template argument that we will use. 2206 TemplateArgumentLoc Arg; 2207 2208 // Retrieve the default template argument from the template 2209 // parameter. For each kind of template parameter, we substitute the 2210 // template arguments provided thus far and any "outer" template arguments 2211 // (when the template parameter was part of a nested template) into 2212 // the default argument. 2213 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2214 if (!TTP->hasDefaultArgument()) { 2215 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2216 break; 2217 } 2218 2219 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2220 Template, 2221 TemplateLoc, 2222 RAngleLoc, 2223 TTP, 2224 Converted); 2225 if (!ArgType) 2226 return true; 2227 2228 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2229 ArgType); 2230 } else if (NonTypeTemplateParmDecl *NTTP 2231 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2232 if (!NTTP->hasDefaultArgument()) { 2233 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2234 break; 2235 } 2236 2237 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2238 TemplateLoc, 2239 RAngleLoc, 2240 NTTP, 2241 Converted); 2242 if (E.isInvalid()) 2243 return true; 2244 2245 Expr *Ex = E.takeAs<Expr>(); 2246 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2247 } else { 2248 TemplateTemplateParmDecl *TempParm 2249 = cast<TemplateTemplateParmDecl>(*Param); 2250 2251 if (!TempParm->hasDefaultArgument()) { 2252 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2253 break; 2254 } 2255 2256 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2257 TemplateLoc, 2258 RAngleLoc, 2259 TempParm, 2260 Converted); 2261 if (Name.isNull()) 2262 return true; 2263 2264 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2265 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2266 TempParm->getDefaultArgument().getTemplateNameLoc()); 2267 } 2268 2269 // Introduce an instantiation record that describes where we are using 2270 // the default template argument. 2271 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2272 Converted.getFlatArguments(), 2273 Converted.flatSize(), 2274 SourceRange(TemplateLoc, RAngleLoc)); 2275 2276 // Check the default template argument. 2277 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2278 RAngleLoc, Converted)) 2279 return true; 2280 } 2281 2282 return Invalid; 2283} 2284 2285/// \brief Check a template argument against its corresponding 2286/// template type parameter. 2287/// 2288/// This routine implements the semantics of C++ [temp.arg.type]. It 2289/// returns true if an error occurred, and false otherwise. 2290bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2291 TypeSourceInfo *ArgInfo) { 2292 assert(ArgInfo && "invalid TypeSourceInfo"); 2293 QualType Arg = ArgInfo->getType(); 2294 2295 // C++ [temp.arg.type]p2: 2296 // A local type, a type with no linkage, an unnamed type or a type 2297 // compounded from any of these types shall not be used as a 2298 // template-argument for a template type-parameter. 2299 // 2300 // FIXME: Perform the recursive and no-linkage type checks. 2301 const TagType *Tag = 0; 2302 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2303 Tag = EnumT; 2304 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2305 Tag = RecordT; 2306 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2307 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2308 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2309 << QualType(Tag, 0) << SR; 2310 } else if (Tag && !Tag->getDecl()->getDeclName() && 2311 !Tag->getDecl()->getTypedefForAnonDecl()) { 2312 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2313 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2314 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2315 return true; 2316 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2317 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2318 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2319 } 2320 2321 return false; 2322} 2323 2324/// \brief Checks whether the given template argument is the address 2325/// of an object or function according to C++ [temp.arg.nontype]p1. 2326static bool 2327CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2328 NonTypeTemplateParmDecl *Param, 2329 QualType ParamType, 2330 Expr *ArgIn, 2331 TemplateArgument &Converted) { 2332 bool Invalid = false; 2333 Expr *Arg = ArgIn; 2334 QualType ArgType = Arg->getType(); 2335 2336 // See through any implicit casts we added to fix the type. 2337 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2338 Arg = Cast->getSubExpr(); 2339 2340 // C++ [temp.arg.nontype]p1: 2341 // 2342 // A template-argument for a non-type, non-template 2343 // template-parameter shall be one of: [...] 2344 // 2345 // -- the address of an object or function with external 2346 // linkage, including function templates and function 2347 // template-ids but excluding non-static class members, 2348 // expressed as & id-expression where the & is optional if 2349 // the name refers to a function or array, or if the 2350 // corresponding template-parameter is a reference; or 2351 DeclRefExpr *DRE = 0; 2352 2353 // Ignore (and complain about) any excess parentheses. 2354 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2355 if (!Invalid) { 2356 S.Diag(Arg->getSourceRange().getBegin(), 2357 diag::err_template_arg_extra_parens) 2358 << Arg->getSourceRange(); 2359 Invalid = true; 2360 } 2361 2362 Arg = Parens->getSubExpr(); 2363 } 2364 2365 bool AddressTaken = false; 2366 SourceLocation AddrOpLoc; 2367 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2368 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2369 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2370 AddressTaken = true; 2371 AddrOpLoc = UnOp->getOperatorLoc(); 2372 } 2373 } else 2374 DRE = dyn_cast<DeclRefExpr>(Arg); 2375 2376 if (!DRE) { 2377 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2378 << Arg->getSourceRange(); 2379 S.Diag(Param->getLocation(), diag::note_template_param_here); 2380 return true; 2381 } 2382 2383 // Stop checking the precise nature of the argument if it is value dependent, 2384 // it should be checked when instantiated. 2385 if (Arg->isValueDependent()) { 2386 Converted = TemplateArgument(ArgIn->Retain()); 2387 return false; 2388 } 2389 2390 if (!isa<ValueDecl>(DRE->getDecl())) { 2391 S.Diag(Arg->getSourceRange().getBegin(), 2392 diag::err_template_arg_not_object_or_func_form) 2393 << Arg->getSourceRange(); 2394 S.Diag(Param->getLocation(), diag::note_template_param_here); 2395 return true; 2396 } 2397 2398 NamedDecl *Entity = 0; 2399 2400 // Cannot refer to non-static data members 2401 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2402 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2403 << Field << Arg->getSourceRange(); 2404 S.Diag(Param->getLocation(), diag::note_template_param_here); 2405 return true; 2406 } 2407 2408 // Cannot refer to non-static member functions 2409 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2410 if (!Method->isStatic()) { 2411 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2412 << Method << Arg->getSourceRange(); 2413 S.Diag(Param->getLocation(), diag::note_template_param_here); 2414 return true; 2415 } 2416 2417 // Functions must have external linkage. 2418 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2419 if (!isExternalLinkage(Func->getLinkage())) { 2420 S.Diag(Arg->getSourceRange().getBegin(), 2421 diag::err_template_arg_function_not_extern) 2422 << Func << Arg->getSourceRange(); 2423 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2424 << true; 2425 return true; 2426 } 2427 2428 // Okay: we've named a function with external linkage. 2429 Entity = Func; 2430 2431 // If the template parameter has pointer type, the function decays. 2432 if (ParamType->isPointerType() && !AddressTaken) 2433 ArgType = S.Context.getPointerType(Func->getType()); 2434 else if (AddressTaken && ParamType->isReferenceType()) { 2435 // If we originally had an address-of operator, but the 2436 // parameter has reference type, complain and (if things look 2437 // like they will work) drop the address-of operator. 2438 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2439 ParamType.getNonReferenceType())) { 2440 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2441 << ParamType; 2442 S.Diag(Param->getLocation(), diag::note_template_param_here); 2443 return true; 2444 } 2445 2446 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2447 << ParamType 2448 << FixItHint::CreateRemoval(AddrOpLoc); 2449 S.Diag(Param->getLocation(), diag::note_template_param_here); 2450 2451 ArgType = Func->getType(); 2452 } 2453 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2454 if (!isExternalLinkage(Var->getLinkage())) { 2455 S.Diag(Arg->getSourceRange().getBegin(), 2456 diag::err_template_arg_object_not_extern) 2457 << Var << Arg->getSourceRange(); 2458 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2459 << true; 2460 return true; 2461 } 2462 2463 // A value of reference type is not an object. 2464 if (Var->getType()->isReferenceType()) { 2465 S.Diag(Arg->getSourceRange().getBegin(), 2466 diag::err_template_arg_reference_var) 2467 << Var->getType() << Arg->getSourceRange(); 2468 S.Diag(Param->getLocation(), diag::note_template_param_here); 2469 return true; 2470 } 2471 2472 // Okay: we've named an object with external linkage 2473 Entity = Var; 2474 2475 // If the template parameter has pointer type, we must have taken 2476 // the address of this object. 2477 if (ParamType->isReferenceType()) { 2478 if (AddressTaken) { 2479 // If we originally had an address-of operator, but the 2480 // parameter has reference type, complain and (if things look 2481 // like they will work) drop the address-of operator. 2482 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2483 ParamType.getNonReferenceType())) { 2484 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2485 << ParamType; 2486 S.Diag(Param->getLocation(), diag::note_template_param_here); 2487 return true; 2488 } 2489 2490 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2491 << ParamType 2492 << FixItHint::CreateRemoval(AddrOpLoc); 2493 S.Diag(Param->getLocation(), diag::note_template_param_here); 2494 2495 ArgType = Var->getType(); 2496 } 2497 } else if (!AddressTaken && ParamType->isPointerType()) { 2498 if (Var->getType()->isArrayType()) { 2499 // Array-to-pointer decay. 2500 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2501 } else { 2502 // If the template parameter has pointer type but the address of 2503 // this object was not taken, complain and (possibly) recover by 2504 // taking the address of the entity. 2505 ArgType = S.Context.getPointerType(Var->getType()); 2506 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2507 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2508 << ParamType; 2509 S.Diag(Param->getLocation(), diag::note_template_param_here); 2510 return true; 2511 } 2512 2513 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2514 << ParamType 2515 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2516 2517 S.Diag(Param->getLocation(), diag::note_template_param_here); 2518 } 2519 } 2520 } else { 2521 // We found something else, but we don't know specifically what it is. 2522 S.Diag(Arg->getSourceRange().getBegin(), 2523 diag::err_template_arg_not_object_or_func) 2524 << Arg->getSourceRange(); 2525 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2526 return true; 2527 } 2528 2529 if (ParamType->isPointerType() && 2530 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2531 S.IsQualificationConversion(ArgType, ParamType)) { 2532 // For pointer-to-object types, qualification conversions are 2533 // permitted. 2534 } else { 2535 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2536 if (!ParamRef->getPointeeType()->isFunctionType()) { 2537 // C++ [temp.arg.nontype]p5b3: 2538 // For a non-type template-parameter of type reference to 2539 // object, no conversions apply. The type referred to by the 2540 // reference may be more cv-qualified than the (otherwise 2541 // identical) type of the template- argument. The 2542 // template-parameter is bound directly to the 2543 // template-argument, which shall be an lvalue. 2544 2545 // FIXME: Other qualifiers? 2546 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2547 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2548 2549 if ((ParamQuals | ArgQuals) != ParamQuals) { 2550 S.Diag(Arg->getSourceRange().getBegin(), 2551 diag::err_template_arg_ref_bind_ignores_quals) 2552 << ParamType << Arg->getType() 2553 << Arg->getSourceRange(); 2554 S.Diag(Param->getLocation(), diag::note_template_param_here); 2555 return true; 2556 } 2557 } 2558 } 2559 2560 // At this point, the template argument refers to an object or 2561 // function with external linkage. We now need to check whether the 2562 // argument and parameter types are compatible. 2563 if (!S.Context.hasSameUnqualifiedType(ArgType, 2564 ParamType.getNonReferenceType())) { 2565 // We can't perform this conversion or binding. 2566 if (ParamType->isReferenceType()) 2567 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2568 << ParamType << Arg->getType() << Arg->getSourceRange(); 2569 else 2570 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2571 << Arg->getType() << ParamType << Arg->getSourceRange(); 2572 S.Diag(Param->getLocation(), diag::note_template_param_here); 2573 return true; 2574 } 2575 } 2576 2577 // Create the template argument. 2578 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2579 return false; 2580} 2581 2582/// \brief Checks whether the given template argument is a pointer to 2583/// member constant according to C++ [temp.arg.nontype]p1. 2584bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2585 TemplateArgument &Converted) { 2586 bool Invalid = false; 2587 2588 // See through any implicit casts we added to fix the type. 2589 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2590 Arg = Cast->getSubExpr(); 2591 2592 // C++ [temp.arg.nontype]p1: 2593 // 2594 // A template-argument for a non-type, non-template 2595 // template-parameter shall be one of: [...] 2596 // 2597 // -- a pointer to member expressed as described in 5.3.1. 2598 DeclRefExpr *DRE = 0; 2599 2600 // Ignore (and complain about) any excess parentheses. 2601 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2602 if (!Invalid) { 2603 Diag(Arg->getSourceRange().getBegin(), 2604 diag::err_template_arg_extra_parens) 2605 << Arg->getSourceRange(); 2606 Invalid = true; 2607 } 2608 2609 Arg = Parens->getSubExpr(); 2610 } 2611 2612 // A pointer-to-member constant written &Class::member. 2613 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2614 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2615 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2616 if (DRE && !DRE->getQualifier()) 2617 DRE = 0; 2618 } 2619 } 2620 // A constant of pointer-to-member type. 2621 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2622 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2623 if (VD->getType()->isMemberPointerType()) { 2624 if (isa<NonTypeTemplateParmDecl>(VD) || 2625 (isa<VarDecl>(VD) && 2626 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2627 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2628 Converted = TemplateArgument(Arg->Retain()); 2629 else 2630 Converted = TemplateArgument(VD->getCanonicalDecl()); 2631 return Invalid; 2632 } 2633 } 2634 } 2635 2636 DRE = 0; 2637 } 2638 2639 if (!DRE) 2640 return Diag(Arg->getSourceRange().getBegin(), 2641 diag::err_template_arg_not_pointer_to_member_form) 2642 << Arg->getSourceRange(); 2643 2644 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2645 assert((isa<FieldDecl>(DRE->getDecl()) || 2646 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2647 "Only non-static member pointers can make it here"); 2648 2649 // Okay: this is the address of a non-static member, and therefore 2650 // a member pointer constant. 2651 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2652 Converted = TemplateArgument(Arg->Retain()); 2653 else 2654 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2655 return Invalid; 2656 } 2657 2658 // We found something else, but we don't know specifically what it is. 2659 Diag(Arg->getSourceRange().getBegin(), 2660 diag::err_template_arg_not_pointer_to_member_form) 2661 << Arg->getSourceRange(); 2662 Diag(DRE->getDecl()->getLocation(), 2663 diag::note_template_arg_refers_here); 2664 return true; 2665} 2666 2667/// \brief Check a template argument against its corresponding 2668/// non-type template parameter. 2669/// 2670/// This routine implements the semantics of C++ [temp.arg.nontype]. 2671/// It returns true if an error occurred, and false otherwise. \p 2672/// InstantiatedParamType is the type of the non-type template 2673/// parameter after it has been instantiated. 2674/// 2675/// If no error was detected, Converted receives the converted template argument. 2676bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2677 QualType InstantiatedParamType, Expr *&Arg, 2678 TemplateArgument &Converted, 2679 CheckTemplateArgumentKind CTAK) { 2680 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2681 2682 // If either the parameter has a dependent type or the argument is 2683 // type-dependent, there's nothing we can check now. 2684 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2685 // FIXME: Produce a cloned, canonical expression? 2686 Converted = TemplateArgument(Arg); 2687 return false; 2688 } 2689 2690 // C++ [temp.arg.nontype]p5: 2691 // The following conversions are performed on each expression used 2692 // as a non-type template-argument. If a non-type 2693 // template-argument cannot be converted to the type of the 2694 // corresponding template-parameter then the program is 2695 // ill-formed. 2696 // 2697 // -- for a non-type template-parameter of integral or 2698 // enumeration type, integral promotions (4.5) and integral 2699 // conversions (4.7) are applied. 2700 QualType ParamType = InstantiatedParamType; 2701 QualType ArgType = Arg->getType(); 2702 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2703 // C++ [temp.arg.nontype]p1: 2704 // A template-argument for a non-type, non-template 2705 // template-parameter shall be one of: 2706 // 2707 // -- an integral constant-expression of integral or enumeration 2708 // type; or 2709 // -- the name of a non-type template-parameter; or 2710 SourceLocation NonConstantLoc; 2711 llvm::APSInt Value; 2712 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2713 Diag(Arg->getSourceRange().getBegin(), 2714 diag::err_template_arg_not_integral_or_enumeral) 2715 << ArgType << Arg->getSourceRange(); 2716 Diag(Param->getLocation(), diag::note_template_param_here); 2717 return true; 2718 } else if (!Arg->isValueDependent() && 2719 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2720 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2721 << ArgType << Arg->getSourceRange(); 2722 return true; 2723 } 2724 2725 // From here on out, all we care about are the unqualified forms 2726 // of the parameter and argument types. 2727 ParamType = ParamType.getUnqualifiedType(); 2728 ArgType = ArgType.getUnqualifiedType(); 2729 2730 // Try to convert the argument to the parameter's type. 2731 if (Context.hasSameType(ParamType, ArgType)) { 2732 // Okay: no conversion necessary 2733 } else if (CTAK == CTAK_Deduced) { 2734 // C++ [temp.deduct.type]p17: 2735 // If, in the declaration of a function template with a non-type 2736 // template-parameter, the non-type template- parameter is used 2737 // in an expression in the function parameter-list and, if the 2738 // corresponding template-argument is deduced, the 2739 // template-argument type shall match the type of the 2740 // template-parameter exactly, except that a template-argument 2741 // deduced from an array bound may be of any integral type. 2742 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2743 << ArgType << ParamType; 2744 Diag(Param->getLocation(), diag::note_template_param_here); 2745 return true; 2746 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2747 !ParamType->isEnumeralType()) { 2748 // This is an integral promotion or conversion. 2749 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2750 } else { 2751 // We can't perform this conversion. 2752 Diag(Arg->getSourceRange().getBegin(), 2753 diag::err_template_arg_not_convertible) 2754 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2755 Diag(Param->getLocation(), diag::note_template_param_here); 2756 return true; 2757 } 2758 2759 QualType IntegerType = Context.getCanonicalType(ParamType); 2760 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2761 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2762 2763 if (!Arg->isValueDependent()) { 2764 llvm::APSInt OldValue = Value; 2765 2766 // Coerce the template argument's value to the value it will have 2767 // based on the template parameter's type. 2768 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2769 if (Value.getBitWidth() != AllowedBits) 2770 Value.extOrTrunc(AllowedBits); 2771 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2772 2773 // Complain if an unsigned parameter received a negative value. 2774 if (IntegerType->isUnsignedIntegerType() 2775 && (OldValue.isSigned() && OldValue.isNegative())) { 2776 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2777 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2778 << Arg->getSourceRange(); 2779 Diag(Param->getLocation(), diag::note_template_param_here); 2780 } 2781 2782 // Complain if we overflowed the template parameter's type. 2783 unsigned RequiredBits; 2784 if (IntegerType->isUnsignedIntegerType()) 2785 RequiredBits = OldValue.getActiveBits(); 2786 else if (OldValue.isUnsigned()) 2787 RequiredBits = OldValue.getActiveBits() + 1; 2788 else 2789 RequiredBits = OldValue.getMinSignedBits(); 2790 if (RequiredBits > AllowedBits) { 2791 Diag(Arg->getSourceRange().getBegin(), 2792 diag::warn_template_arg_too_large) 2793 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2794 << Arg->getSourceRange(); 2795 Diag(Param->getLocation(), diag::note_template_param_here); 2796 } 2797 } 2798 2799 // Add the value of this argument to the list of converted 2800 // arguments. We use the bitwidth and signedness of the template 2801 // parameter. 2802 if (Arg->isValueDependent()) { 2803 // The argument is value-dependent. Create a new 2804 // TemplateArgument with the converted expression. 2805 Converted = TemplateArgument(Arg); 2806 return false; 2807 } 2808 2809 Converted = TemplateArgument(Value, 2810 ParamType->isEnumeralType() ? ParamType 2811 : IntegerType); 2812 return false; 2813 } 2814 2815 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2816 2817 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2818 // from a template argument of type std::nullptr_t to a non-type 2819 // template parameter of type pointer to object, pointer to 2820 // function, or pointer-to-member, respectively. 2821 if (ArgType->isNullPtrType() && 2822 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2823 Converted = TemplateArgument((NamedDecl *)0); 2824 return false; 2825 } 2826 2827 // Handle pointer-to-function, reference-to-function, and 2828 // pointer-to-member-function all in (roughly) the same way. 2829 if (// -- For a non-type template-parameter of type pointer to 2830 // function, only the function-to-pointer conversion (4.3) is 2831 // applied. If the template-argument represents a set of 2832 // overloaded functions (or a pointer to such), the matching 2833 // function is selected from the set (13.4). 2834 (ParamType->isPointerType() && 2835 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2836 // -- For a non-type template-parameter of type reference to 2837 // function, no conversions apply. If the template-argument 2838 // represents a set of overloaded functions, the matching 2839 // function is selected from the set (13.4). 2840 (ParamType->isReferenceType() && 2841 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2842 // -- For a non-type template-parameter of type pointer to 2843 // member function, no conversions apply. If the 2844 // template-argument represents a set of overloaded member 2845 // functions, the matching member function is selected from 2846 // the set (13.4). 2847 (ParamType->isMemberPointerType() && 2848 ParamType->getAs<MemberPointerType>()->getPointeeType() 2849 ->isFunctionType())) { 2850 2851 if (Arg->getType() == Context.OverloadTy) { 2852 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2853 true, 2854 FoundResult)) { 2855 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2856 return true; 2857 2858 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2859 ArgType = Arg->getType(); 2860 } else 2861 return true; 2862 } 2863 2864 if (!ParamType->isMemberPointerType()) 2865 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2866 ParamType, 2867 Arg, Converted); 2868 2869 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2870 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2871 /*InheritancePath=*/0, 2872 Arg->isLvalue(Context) == Expr::LV_Valid); 2873 } else if (!Context.hasSameUnqualifiedType(ArgType, 2874 ParamType.getNonReferenceType())) { 2875 // We can't perform this conversion. 2876 Diag(Arg->getSourceRange().getBegin(), 2877 diag::err_template_arg_not_convertible) 2878 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2879 Diag(Param->getLocation(), diag::note_template_param_here); 2880 return true; 2881 } 2882 2883 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2884 } 2885 2886 if (ParamType->isPointerType()) { 2887 // -- for a non-type template-parameter of type pointer to 2888 // object, qualification conversions (4.4) and the 2889 // array-to-pointer conversion (4.2) are applied. 2890 // C++0x also allows a value of std::nullptr_t. 2891 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2892 "Only object pointers allowed here"); 2893 2894 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2895 ParamType, 2896 Arg, Converted); 2897 } 2898 2899 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2900 // -- For a non-type template-parameter of type reference to 2901 // object, no conversions apply. The type referred to by the 2902 // reference may be more cv-qualified than the (otherwise 2903 // identical) type of the template-argument. The 2904 // template-parameter is bound directly to the 2905 // template-argument, which must be an lvalue. 2906 assert(ParamRefType->getPointeeType()->isObjectType() && 2907 "Only object references allowed here"); 2908 2909 if (Arg->getType() == Context.OverloadTy) { 2910 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2911 ParamRefType->getPointeeType(), 2912 true, 2913 FoundResult)) { 2914 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2915 return true; 2916 2917 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2918 ArgType = Arg->getType(); 2919 } else 2920 return true; 2921 } 2922 2923 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2924 ParamType, 2925 Arg, Converted); 2926 } 2927 2928 // -- For a non-type template-parameter of type pointer to data 2929 // member, qualification conversions (4.4) are applied. 2930 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2931 2932 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2933 // Types match exactly: nothing more to do here. 2934 } else if (IsQualificationConversion(ArgType, ParamType)) { 2935 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2936 /*InheritancePath=*/0, 2937 Arg->isLvalue(Context) == Expr::LV_Valid); 2938 } else { 2939 // We can't perform this conversion. 2940 Diag(Arg->getSourceRange().getBegin(), 2941 diag::err_template_arg_not_convertible) 2942 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2943 Diag(Param->getLocation(), diag::note_template_param_here); 2944 return true; 2945 } 2946 2947 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2948} 2949 2950/// \brief Check a template argument against its corresponding 2951/// template template parameter. 2952/// 2953/// This routine implements the semantics of C++ [temp.arg.template]. 2954/// It returns true if an error occurred, and false otherwise. 2955bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2956 const TemplateArgumentLoc &Arg) { 2957 TemplateName Name = Arg.getArgument().getAsTemplate(); 2958 TemplateDecl *Template = Name.getAsTemplateDecl(); 2959 if (!Template) { 2960 // Any dependent template name is fine. 2961 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2962 return false; 2963 } 2964 2965 // C++ [temp.arg.template]p1: 2966 // A template-argument for a template template-parameter shall be 2967 // the name of a class template, expressed as id-expression. Only 2968 // primary class templates are considered when matching the 2969 // template template argument with the corresponding parameter; 2970 // partial specializations are not considered even if their 2971 // parameter lists match that of the template template parameter. 2972 // 2973 // Note that we also allow template template parameters here, which 2974 // will happen when we are dealing with, e.g., class template 2975 // partial specializations. 2976 if (!isa<ClassTemplateDecl>(Template) && 2977 !isa<TemplateTemplateParmDecl>(Template)) { 2978 assert(isa<FunctionTemplateDecl>(Template) && 2979 "Only function templates are possible here"); 2980 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2981 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2982 << Template; 2983 } 2984 2985 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2986 Param->getTemplateParameters(), 2987 true, 2988 TPL_TemplateTemplateArgumentMatch, 2989 Arg.getLocation()); 2990} 2991 2992/// \brief Given a non-type template argument that refers to a 2993/// declaration and the type of its corresponding non-type template 2994/// parameter, produce an expression that properly refers to that 2995/// declaration. 2996Sema::OwningExprResult 2997Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 2998 QualType ParamType, 2999 SourceLocation Loc) { 3000 assert(Arg.getKind() == TemplateArgument::Declaration && 3001 "Only declaration template arguments permitted here"); 3002 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3003 3004 if (VD->getDeclContext()->isRecord() && 3005 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3006 // If the value is a class member, we might have a pointer-to-member. 3007 // Determine whether the non-type template template parameter is of 3008 // pointer-to-member type. If so, we need to build an appropriate 3009 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3010 // would refer to the member itself. 3011 if (ParamType->isMemberPointerType()) { 3012 QualType ClassType 3013 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3014 NestedNameSpecifier *Qualifier 3015 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 3016 CXXScopeSpec SS; 3017 SS.setScopeRep(Qualifier); 3018 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 3019 VD->getType().getNonReferenceType(), 3020 Loc, 3021 &SS); 3022 if (RefExpr.isInvalid()) 3023 return ExprError(); 3024 3025 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3026 assert(!RefExpr.isInvalid() && 3027 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3028 ParamType)); 3029 return move(RefExpr); 3030 } 3031 } 3032 3033 QualType T = VD->getType().getNonReferenceType(); 3034 if (ParamType->isPointerType()) { 3035 // When the non-type template parameter is a pointer, take the 3036 // address of the declaration. 3037 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3038 if (RefExpr.isInvalid()) 3039 return ExprError(); 3040 3041 if (T->isFunctionType() || T->isArrayType()) { 3042 // Decay functions and arrays. 3043 Expr *RefE = (Expr *)RefExpr.get(); 3044 DefaultFunctionArrayConversion(RefE); 3045 if (RefE != RefExpr.get()) { 3046 RefExpr.release(); 3047 RefExpr = Owned(RefE); 3048 } 3049 3050 return move(RefExpr); 3051 } 3052 3053 // Take the address of everything else 3054 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3055 } 3056 3057 // If the non-type template parameter has reference type, qualify the 3058 // resulting declaration reference with the extra qualifiers on the 3059 // type that the reference refers to. 3060 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3061 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3062 3063 return BuildDeclRefExpr(VD, T, Loc); 3064} 3065 3066/// \brief Construct a new expression that refers to the given 3067/// integral template argument with the given source-location 3068/// information. 3069/// 3070/// This routine takes care of the mapping from an integral template 3071/// argument (which may have any integral type) to the appropriate 3072/// literal value. 3073Sema::OwningExprResult 3074Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3075 SourceLocation Loc) { 3076 assert(Arg.getKind() == TemplateArgument::Integral && 3077 "Operation is only value for integral template arguments"); 3078 QualType T = Arg.getIntegralType(); 3079 if (T->isCharType() || T->isWideCharType()) 3080 return Owned(new (Context) CharacterLiteral( 3081 Arg.getAsIntegral()->getZExtValue(), 3082 T->isWideCharType(), 3083 T, 3084 Loc)); 3085 if (T->isBooleanType()) 3086 return Owned(new (Context) CXXBoolLiteralExpr( 3087 Arg.getAsIntegral()->getBoolValue(), 3088 T, 3089 Loc)); 3090 3091 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3092} 3093 3094 3095/// \brief Determine whether the given template parameter lists are 3096/// equivalent. 3097/// 3098/// \param New The new template parameter list, typically written in the 3099/// source code as part of a new template declaration. 3100/// 3101/// \param Old The old template parameter list, typically found via 3102/// name lookup of the template declared with this template parameter 3103/// list. 3104/// 3105/// \param Complain If true, this routine will produce a diagnostic if 3106/// the template parameter lists are not equivalent. 3107/// 3108/// \param Kind describes how we are to match the template parameter lists. 3109/// 3110/// \param TemplateArgLoc If this source location is valid, then we 3111/// are actually checking the template parameter list of a template 3112/// argument (New) against the template parameter list of its 3113/// corresponding template template parameter (Old). We produce 3114/// slightly different diagnostics in this scenario. 3115/// 3116/// \returns True if the template parameter lists are equal, false 3117/// otherwise. 3118bool 3119Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3120 TemplateParameterList *Old, 3121 bool Complain, 3122 TemplateParameterListEqualKind Kind, 3123 SourceLocation TemplateArgLoc) { 3124 if (Old->size() != New->size()) { 3125 if (Complain) { 3126 unsigned NextDiag = diag::err_template_param_list_different_arity; 3127 if (TemplateArgLoc.isValid()) { 3128 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3129 NextDiag = diag::note_template_param_list_different_arity; 3130 } 3131 Diag(New->getTemplateLoc(), NextDiag) 3132 << (New->size() > Old->size()) 3133 << (Kind != TPL_TemplateMatch) 3134 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3135 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3136 << (Kind != TPL_TemplateMatch) 3137 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3138 } 3139 3140 return false; 3141 } 3142 3143 for (TemplateParameterList::iterator OldParm = Old->begin(), 3144 OldParmEnd = Old->end(), NewParm = New->begin(); 3145 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3146 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3147 if (Complain) { 3148 unsigned NextDiag = diag::err_template_param_different_kind; 3149 if (TemplateArgLoc.isValid()) { 3150 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3151 NextDiag = diag::note_template_param_different_kind; 3152 } 3153 Diag((*NewParm)->getLocation(), NextDiag) 3154 << (Kind != TPL_TemplateMatch); 3155 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3156 << (Kind != TPL_TemplateMatch); 3157 } 3158 return false; 3159 } 3160 3161 if (isa<TemplateTypeParmDecl>(*OldParm)) { 3162 // Okay; all template type parameters are equivalent (since we 3163 // know we're at the same index). 3164 } else if (NonTypeTemplateParmDecl *OldNTTP 3165 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3166 // The types of non-type template parameters must agree. 3167 NonTypeTemplateParmDecl *NewNTTP 3168 = cast<NonTypeTemplateParmDecl>(*NewParm); 3169 3170 // If we are matching a template template argument to a template 3171 // template parameter and one of the non-type template parameter types 3172 // is dependent, then we must wait until template instantiation time 3173 // to actually compare the arguments. 3174 if (Kind == TPL_TemplateTemplateArgumentMatch && 3175 (OldNTTP->getType()->isDependentType() || 3176 NewNTTP->getType()->isDependentType())) 3177 continue; 3178 3179 if (Context.getCanonicalType(OldNTTP->getType()) != 3180 Context.getCanonicalType(NewNTTP->getType())) { 3181 if (Complain) { 3182 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3183 if (TemplateArgLoc.isValid()) { 3184 Diag(TemplateArgLoc, 3185 diag::err_template_arg_template_params_mismatch); 3186 NextDiag = diag::note_template_nontype_parm_different_type; 3187 } 3188 Diag(NewNTTP->getLocation(), NextDiag) 3189 << NewNTTP->getType() 3190 << (Kind != TPL_TemplateMatch); 3191 Diag(OldNTTP->getLocation(), 3192 diag::note_template_nontype_parm_prev_declaration) 3193 << OldNTTP->getType(); 3194 } 3195 return false; 3196 } 3197 } else { 3198 // The template parameter lists of template template 3199 // parameters must agree. 3200 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3201 "Only template template parameters handled here"); 3202 TemplateTemplateParmDecl *OldTTP 3203 = cast<TemplateTemplateParmDecl>(*OldParm); 3204 TemplateTemplateParmDecl *NewTTP 3205 = cast<TemplateTemplateParmDecl>(*NewParm); 3206 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3207 OldTTP->getTemplateParameters(), 3208 Complain, 3209 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3210 TemplateArgLoc)) 3211 return false; 3212 } 3213 } 3214 3215 return true; 3216} 3217 3218/// \brief Check whether a template can be declared within this scope. 3219/// 3220/// If the template declaration is valid in this scope, returns 3221/// false. Otherwise, issues a diagnostic and returns true. 3222bool 3223Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3224 // Find the nearest enclosing declaration scope. 3225 while ((S->getFlags() & Scope::DeclScope) == 0 || 3226 (S->getFlags() & Scope::TemplateParamScope) != 0) 3227 S = S->getParent(); 3228 3229 // C++ [temp]p2: 3230 // A template-declaration can appear only as a namespace scope or 3231 // class scope declaration. 3232 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3233 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3234 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3235 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3236 << TemplateParams->getSourceRange(); 3237 3238 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3239 Ctx = Ctx->getParent(); 3240 3241 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3242 return false; 3243 3244 return Diag(TemplateParams->getTemplateLoc(), 3245 diag::err_template_outside_namespace_or_class_scope) 3246 << TemplateParams->getSourceRange(); 3247} 3248 3249/// \brief Determine what kind of template specialization the given declaration 3250/// is. 3251static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3252 if (!D) 3253 return TSK_Undeclared; 3254 3255 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3256 return Record->getTemplateSpecializationKind(); 3257 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3258 return Function->getTemplateSpecializationKind(); 3259 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3260 return Var->getTemplateSpecializationKind(); 3261 3262 return TSK_Undeclared; 3263} 3264 3265/// \brief Check whether a specialization is well-formed in the current 3266/// context. 3267/// 3268/// This routine determines whether a template specialization can be declared 3269/// in the current context (C++ [temp.expl.spec]p2). 3270/// 3271/// \param S the semantic analysis object for which this check is being 3272/// performed. 3273/// 3274/// \param Specialized the entity being specialized or instantiated, which 3275/// may be a kind of template (class template, function template, etc.) or 3276/// a member of a class template (member function, static data member, 3277/// member class). 3278/// 3279/// \param PrevDecl the previous declaration of this entity, if any. 3280/// 3281/// \param Loc the location of the explicit specialization or instantiation of 3282/// this entity. 3283/// 3284/// \param IsPartialSpecialization whether this is a partial specialization of 3285/// a class template. 3286/// 3287/// \returns true if there was an error that we cannot recover from, false 3288/// otherwise. 3289static bool CheckTemplateSpecializationScope(Sema &S, 3290 NamedDecl *Specialized, 3291 NamedDecl *PrevDecl, 3292 SourceLocation Loc, 3293 bool IsPartialSpecialization) { 3294 // Keep these "kind" numbers in sync with the %select statements in the 3295 // various diagnostics emitted by this routine. 3296 int EntityKind = 0; 3297 bool isTemplateSpecialization = false; 3298 if (isa<ClassTemplateDecl>(Specialized)) { 3299 EntityKind = IsPartialSpecialization? 1 : 0; 3300 isTemplateSpecialization = true; 3301 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3302 EntityKind = 2; 3303 isTemplateSpecialization = true; 3304 } else if (isa<CXXMethodDecl>(Specialized)) 3305 EntityKind = 3; 3306 else if (isa<VarDecl>(Specialized)) 3307 EntityKind = 4; 3308 else if (isa<RecordDecl>(Specialized)) 3309 EntityKind = 5; 3310 else { 3311 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3312 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3313 return true; 3314 } 3315 3316 // C++ [temp.expl.spec]p2: 3317 // An explicit specialization shall be declared in the namespace 3318 // of which the template is a member, or, for member templates, in 3319 // the namespace of which the enclosing class or enclosing class 3320 // template is a member. An explicit specialization of a member 3321 // function, member class or static data member of a class 3322 // template shall be declared in the namespace of which the class 3323 // template is a member. Such a declaration may also be a 3324 // definition. If the declaration is not a definition, the 3325 // specialization may be defined later in the name- space in which 3326 // the explicit specialization was declared, or in a namespace 3327 // that encloses the one in which the explicit specialization was 3328 // declared. 3329 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3330 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3331 << Specialized; 3332 return true; 3333 } 3334 3335 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3336 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3337 << Specialized; 3338 return true; 3339 } 3340 3341 // C++ [temp.class.spec]p6: 3342 // A class template partial specialization may be declared or redeclared 3343 // in any namespace scope in which its definition may be defined (14.5.1 3344 // and 14.5.2). 3345 bool ComplainedAboutScope = false; 3346 DeclContext *SpecializedContext 3347 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3348 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3349 if ((!PrevDecl || 3350 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3351 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3352 // There is no prior declaration of this entity, so this 3353 // specialization must be in the same context as the template 3354 // itself. 3355 if (!DC->Equals(SpecializedContext)) { 3356 if (isa<TranslationUnitDecl>(SpecializedContext)) 3357 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3358 << EntityKind << Specialized; 3359 else if (isa<NamespaceDecl>(SpecializedContext)) 3360 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3361 << EntityKind << Specialized 3362 << cast<NamedDecl>(SpecializedContext); 3363 3364 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3365 ComplainedAboutScope = true; 3366 } 3367 } 3368 3369 // Make sure that this redeclaration (or definition) occurs in an enclosing 3370 // namespace. 3371 // Note that HandleDeclarator() performs this check for explicit 3372 // specializations of function templates, static data members, and member 3373 // functions, so we skip the check here for those kinds of entities. 3374 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3375 // Should we refactor that check, so that it occurs later? 3376 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3377 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3378 isa<FunctionDecl>(Specialized))) { 3379 if (isa<TranslationUnitDecl>(SpecializedContext)) 3380 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3381 << EntityKind << Specialized; 3382 else if (isa<NamespaceDecl>(SpecializedContext)) 3383 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3384 << EntityKind << Specialized 3385 << cast<NamedDecl>(SpecializedContext); 3386 3387 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3388 } 3389 3390 // FIXME: check for specialization-after-instantiation errors and such. 3391 3392 return false; 3393} 3394 3395/// \brief Check the non-type template arguments of a class template 3396/// partial specialization according to C++ [temp.class.spec]p9. 3397/// 3398/// \param TemplateParams the template parameters of the primary class 3399/// template. 3400/// 3401/// \param TemplateArg the template arguments of the class template 3402/// partial specialization. 3403/// 3404/// \param MirrorsPrimaryTemplate will be set true if the class 3405/// template partial specialization arguments are identical to the 3406/// implicit template arguments of the primary template. This is not 3407/// necessarily an error (C++0x), and it is left to the caller to diagnose 3408/// this condition when it is an error. 3409/// 3410/// \returns true if there was an error, false otherwise. 3411bool Sema::CheckClassTemplatePartialSpecializationArgs( 3412 TemplateParameterList *TemplateParams, 3413 const TemplateArgumentListBuilder &TemplateArgs, 3414 bool &MirrorsPrimaryTemplate) { 3415 // FIXME: the interface to this function will have to change to 3416 // accommodate variadic templates. 3417 MirrorsPrimaryTemplate = true; 3418 3419 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3420 3421 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3422 // Determine whether the template argument list of the partial 3423 // specialization is identical to the implicit argument list of 3424 // the primary template. The caller may need to diagnostic this as 3425 // an error per C++ [temp.class.spec]p9b3. 3426 if (MirrorsPrimaryTemplate) { 3427 if (TemplateTypeParmDecl *TTP 3428 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3429 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3430 Context.getCanonicalType(ArgList[I].getAsType())) 3431 MirrorsPrimaryTemplate = false; 3432 } else if (TemplateTemplateParmDecl *TTP 3433 = dyn_cast<TemplateTemplateParmDecl>( 3434 TemplateParams->getParam(I))) { 3435 TemplateName Name = ArgList[I].getAsTemplate(); 3436 TemplateTemplateParmDecl *ArgDecl 3437 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3438 if (!ArgDecl || 3439 ArgDecl->getIndex() != TTP->getIndex() || 3440 ArgDecl->getDepth() != TTP->getDepth()) 3441 MirrorsPrimaryTemplate = false; 3442 } 3443 } 3444 3445 NonTypeTemplateParmDecl *Param 3446 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3447 if (!Param) { 3448 continue; 3449 } 3450 3451 Expr *ArgExpr = ArgList[I].getAsExpr(); 3452 if (!ArgExpr) { 3453 MirrorsPrimaryTemplate = false; 3454 continue; 3455 } 3456 3457 // C++ [temp.class.spec]p8: 3458 // A non-type argument is non-specialized if it is the name of a 3459 // non-type parameter. All other non-type arguments are 3460 // specialized. 3461 // 3462 // Below, we check the two conditions that only apply to 3463 // specialized non-type arguments, so skip any non-specialized 3464 // arguments. 3465 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3466 if (NonTypeTemplateParmDecl *NTTP 3467 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3468 if (MirrorsPrimaryTemplate && 3469 (Param->getIndex() != NTTP->getIndex() || 3470 Param->getDepth() != NTTP->getDepth())) 3471 MirrorsPrimaryTemplate = false; 3472 3473 continue; 3474 } 3475 3476 // C++ [temp.class.spec]p9: 3477 // Within the argument list of a class template partial 3478 // specialization, the following restrictions apply: 3479 // -- A partially specialized non-type argument expression 3480 // shall not involve a template parameter of the partial 3481 // specialization except when the argument expression is a 3482 // simple identifier. 3483 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3484 Diag(ArgExpr->getLocStart(), 3485 diag::err_dependent_non_type_arg_in_partial_spec) 3486 << ArgExpr->getSourceRange(); 3487 return true; 3488 } 3489 3490 // -- The type of a template parameter corresponding to a 3491 // specialized non-type argument shall not be dependent on a 3492 // parameter of the specialization. 3493 if (Param->getType()->isDependentType()) { 3494 Diag(ArgExpr->getLocStart(), 3495 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3496 << Param->getType() 3497 << ArgExpr->getSourceRange(); 3498 Diag(Param->getLocation(), diag::note_template_param_here); 3499 return true; 3500 } 3501 3502 MirrorsPrimaryTemplate = false; 3503 } 3504 3505 return false; 3506} 3507 3508/// \brief Retrieve the previous declaration of the given declaration. 3509static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3510 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3511 return VD->getPreviousDeclaration(); 3512 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3513 return FD->getPreviousDeclaration(); 3514 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3515 return TD->getPreviousDeclaration(); 3516 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3517 return TD->getPreviousDeclaration(); 3518 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3519 return FTD->getPreviousDeclaration(); 3520 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3521 return CTD->getPreviousDeclaration(); 3522 return 0; 3523} 3524 3525Sema::DeclResult 3526Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3527 TagUseKind TUK, 3528 SourceLocation KWLoc, 3529 CXXScopeSpec &SS, 3530 TemplateTy TemplateD, 3531 SourceLocation TemplateNameLoc, 3532 SourceLocation LAngleLoc, 3533 ASTTemplateArgsPtr TemplateArgsIn, 3534 SourceLocation RAngleLoc, 3535 AttributeList *Attr, 3536 MultiTemplateParamsArg TemplateParameterLists) { 3537 assert(TUK != TUK_Reference && "References are not specializations"); 3538 3539 // Find the class template we're specializing 3540 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3541 ClassTemplateDecl *ClassTemplate 3542 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3543 3544 if (!ClassTemplate) { 3545 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3546 << (Name.getAsTemplateDecl() && 3547 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3548 return true; 3549 } 3550 3551 bool isExplicitSpecialization = false; 3552 bool isPartialSpecialization = false; 3553 3554 // Check the validity of the template headers that introduce this 3555 // template. 3556 // FIXME: We probably shouldn't complain about these headers for 3557 // friend declarations. 3558 TemplateParameterList *TemplateParams 3559 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3560 (TemplateParameterList**)TemplateParameterLists.get(), 3561 TemplateParameterLists.size(), 3562 TUK == TUK_Friend, 3563 isExplicitSpecialization); 3564 if (TemplateParams && TemplateParams->size() > 0) { 3565 isPartialSpecialization = true; 3566 3567 // C++ [temp.class.spec]p10: 3568 // The template parameter list of a specialization shall not 3569 // contain default template argument values. 3570 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3571 Decl *Param = TemplateParams->getParam(I); 3572 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3573 if (TTP->hasDefaultArgument()) { 3574 Diag(TTP->getDefaultArgumentLoc(), 3575 diag::err_default_arg_in_partial_spec); 3576 TTP->removeDefaultArgument(); 3577 } 3578 } else if (NonTypeTemplateParmDecl *NTTP 3579 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3580 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3581 Diag(NTTP->getDefaultArgumentLoc(), 3582 diag::err_default_arg_in_partial_spec) 3583 << DefArg->getSourceRange(); 3584 NTTP->setDefaultArgument(0); 3585 DefArg->Destroy(Context); 3586 } 3587 } else { 3588 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3589 if (TTP->hasDefaultArgument()) { 3590 Diag(TTP->getDefaultArgument().getLocation(), 3591 diag::err_default_arg_in_partial_spec) 3592 << TTP->getDefaultArgument().getSourceRange(); 3593 TTP->setDefaultArgument(TemplateArgumentLoc()); 3594 } 3595 } 3596 } 3597 } else if (TemplateParams) { 3598 if (TUK == TUK_Friend) 3599 Diag(KWLoc, diag::err_template_spec_friend) 3600 << FixItHint::CreateRemoval( 3601 SourceRange(TemplateParams->getTemplateLoc(), 3602 TemplateParams->getRAngleLoc())) 3603 << SourceRange(LAngleLoc, RAngleLoc); 3604 else 3605 isExplicitSpecialization = true; 3606 } else if (TUK != TUK_Friend) { 3607 Diag(KWLoc, diag::err_template_spec_needs_header) 3608 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3609 isExplicitSpecialization = true; 3610 } 3611 3612 // Check that the specialization uses the same tag kind as the 3613 // original template. 3614 TagDecl::TagKind Kind; 3615 switch (TagSpec) { 3616 default: assert(0 && "Unknown tag type!"); 3617 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3618 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3619 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3620 } 3621 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3622 Kind, KWLoc, 3623 *ClassTemplate->getIdentifier())) { 3624 Diag(KWLoc, diag::err_use_with_wrong_tag) 3625 << ClassTemplate 3626 << FixItHint::CreateReplacement(KWLoc, 3627 ClassTemplate->getTemplatedDecl()->getKindName()); 3628 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3629 diag::note_previous_use); 3630 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3631 } 3632 3633 // Translate the parser's template argument list in our AST format. 3634 TemplateArgumentListInfo TemplateArgs; 3635 TemplateArgs.setLAngleLoc(LAngleLoc); 3636 TemplateArgs.setRAngleLoc(RAngleLoc); 3637 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3638 3639 // Check that the template argument list is well-formed for this 3640 // template. 3641 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3642 TemplateArgs.size()); 3643 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3644 TemplateArgs, false, Converted)) 3645 return true; 3646 3647 assert((Converted.structuredSize() == 3648 ClassTemplate->getTemplateParameters()->size()) && 3649 "Converted template argument list is too short!"); 3650 3651 // Find the class template (partial) specialization declaration that 3652 // corresponds to these arguments. 3653 llvm::FoldingSetNodeID ID; 3654 if (isPartialSpecialization) { 3655 bool MirrorsPrimaryTemplate; 3656 if (CheckClassTemplatePartialSpecializationArgs( 3657 ClassTemplate->getTemplateParameters(), 3658 Converted, MirrorsPrimaryTemplate)) 3659 return true; 3660 3661 if (MirrorsPrimaryTemplate) { 3662 // C++ [temp.class.spec]p9b3: 3663 // 3664 // -- The argument list of the specialization shall not be identical 3665 // to the implicit argument list of the primary template. 3666 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3667 << (TUK == TUK_Definition) 3668 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3669 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3670 ClassTemplate->getIdentifier(), 3671 TemplateNameLoc, 3672 Attr, 3673 TemplateParams, 3674 AS_none); 3675 } 3676 3677 // FIXME: Diagnose friend partial specializations 3678 3679 if (!Name.isDependent() && 3680 !TemplateSpecializationType::anyDependentTemplateArguments( 3681 TemplateArgs.getArgumentArray(), 3682 TemplateArgs.size())) { 3683 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3684 << ClassTemplate->getDeclName(); 3685 isPartialSpecialization = false; 3686 } else { 3687 // FIXME: Template parameter list matters, too 3688 ClassTemplatePartialSpecializationDecl::Profile(ID, 3689 Converted.getFlatArguments(), 3690 Converted.flatSize(), 3691 Context); 3692 } 3693 } 3694 3695 if (!isPartialSpecialization) 3696 ClassTemplateSpecializationDecl::Profile(ID, 3697 Converted.getFlatArguments(), 3698 Converted.flatSize(), 3699 Context); 3700 void *InsertPos = 0; 3701 ClassTemplateSpecializationDecl *PrevDecl = 0; 3702 3703 if (isPartialSpecialization) 3704 PrevDecl 3705 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3706 InsertPos); 3707 else 3708 PrevDecl 3709 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3710 3711 ClassTemplateSpecializationDecl *Specialization = 0; 3712 3713 // Check whether we can declare a class template specialization in 3714 // the current scope. 3715 if (TUK != TUK_Friend && 3716 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3717 TemplateNameLoc, 3718 isPartialSpecialization)) 3719 return true; 3720 3721 // The canonical type 3722 QualType CanonType; 3723 if (PrevDecl && 3724 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3725 TUK == TUK_Friend)) { 3726 // Since the only prior class template specialization with these 3727 // arguments was referenced but not declared, or we're only 3728 // referencing this specialization as a friend, reuse that 3729 // declaration node as our own, updating its source location to 3730 // reflect our new declaration. 3731 Specialization = PrevDecl; 3732 Specialization->setLocation(TemplateNameLoc); 3733 PrevDecl = 0; 3734 CanonType = Context.getTypeDeclType(Specialization); 3735 } else if (isPartialSpecialization) { 3736 // Build the canonical type that describes the converted template 3737 // arguments of the class template partial specialization. 3738 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3739 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3740 Converted.getFlatArguments(), 3741 Converted.flatSize()); 3742 3743 // Create a new class template partial specialization declaration node. 3744 ClassTemplatePartialSpecializationDecl *PrevPartial 3745 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3746 ClassTemplatePartialSpecializationDecl *Partial 3747 = ClassTemplatePartialSpecializationDecl::Create(Context, 3748 ClassTemplate->getDeclContext(), 3749 TemplateNameLoc, 3750 TemplateParams, 3751 ClassTemplate, 3752 Converted, 3753 TemplateArgs, 3754 CanonType, 3755 PrevPartial); 3756 SetNestedNameSpecifier(Partial, SS); 3757 3758 if (PrevPartial) { 3759 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3760 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3761 } else { 3762 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3763 } 3764 Specialization = Partial; 3765 3766 // If we are providing an explicit specialization of a member class 3767 // template specialization, make a note of that. 3768 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3769 PrevPartial->setMemberSpecialization(); 3770 3771 // Check that all of the template parameters of the class template 3772 // partial specialization are deducible from the template 3773 // arguments. If not, this class template partial specialization 3774 // will never be used. 3775 llvm::SmallVector<bool, 8> DeducibleParams; 3776 DeducibleParams.resize(TemplateParams->size()); 3777 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3778 TemplateParams->getDepth(), 3779 DeducibleParams); 3780 unsigned NumNonDeducible = 0; 3781 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3782 if (!DeducibleParams[I]) 3783 ++NumNonDeducible; 3784 3785 if (NumNonDeducible) { 3786 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3787 << (NumNonDeducible > 1) 3788 << SourceRange(TemplateNameLoc, RAngleLoc); 3789 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3790 if (!DeducibleParams[I]) { 3791 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3792 if (Param->getDeclName()) 3793 Diag(Param->getLocation(), 3794 diag::note_partial_spec_unused_parameter) 3795 << Param->getDeclName(); 3796 else 3797 Diag(Param->getLocation(), 3798 diag::note_partial_spec_unused_parameter) 3799 << std::string("<anonymous>"); 3800 } 3801 } 3802 } 3803 } else { 3804 // Create a new class template specialization declaration node for 3805 // this explicit specialization or friend declaration. 3806 Specialization 3807 = ClassTemplateSpecializationDecl::Create(Context, 3808 ClassTemplate->getDeclContext(), 3809 TemplateNameLoc, 3810 ClassTemplate, 3811 Converted, 3812 PrevDecl); 3813 SetNestedNameSpecifier(Specialization, SS); 3814 3815 if (PrevDecl) { 3816 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3817 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3818 } else { 3819 ClassTemplate->getSpecializations().InsertNode(Specialization, 3820 InsertPos); 3821 } 3822 3823 CanonType = Context.getTypeDeclType(Specialization); 3824 } 3825 3826 // C++ [temp.expl.spec]p6: 3827 // If a template, a member template or the member of a class template is 3828 // explicitly specialized then that specialization shall be declared 3829 // before the first use of that specialization that would cause an implicit 3830 // instantiation to take place, in every translation unit in which such a 3831 // use occurs; no diagnostic is required. 3832 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3833 bool Okay = false; 3834 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3835 // Is there any previous explicit specialization declaration? 3836 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3837 Okay = true; 3838 break; 3839 } 3840 } 3841 3842 if (!Okay) { 3843 SourceRange Range(TemplateNameLoc, RAngleLoc); 3844 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3845 << Context.getTypeDeclType(Specialization) << Range; 3846 3847 Diag(PrevDecl->getPointOfInstantiation(), 3848 diag::note_instantiation_required_here) 3849 << (PrevDecl->getTemplateSpecializationKind() 3850 != TSK_ImplicitInstantiation); 3851 return true; 3852 } 3853 } 3854 3855 // If this is not a friend, note that this is an explicit specialization. 3856 if (TUK != TUK_Friend) 3857 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3858 3859 // Check that this isn't a redefinition of this specialization. 3860 if (TUK == TUK_Definition) { 3861 if (RecordDecl *Def = Specialization->getDefinition()) { 3862 SourceRange Range(TemplateNameLoc, RAngleLoc); 3863 Diag(TemplateNameLoc, diag::err_redefinition) 3864 << Context.getTypeDeclType(Specialization) << Range; 3865 Diag(Def->getLocation(), diag::note_previous_definition); 3866 Specialization->setInvalidDecl(); 3867 return true; 3868 } 3869 } 3870 3871 // Build the fully-sugared type for this class template 3872 // specialization as the user wrote in the specialization 3873 // itself. This means that we'll pretty-print the type retrieved 3874 // from the specialization's declaration the way that the user 3875 // actually wrote the specialization, rather than formatting the 3876 // name based on the "canonical" representation used to store the 3877 // template arguments in the specialization. 3878 TypeSourceInfo *WrittenTy 3879 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3880 TemplateArgs, CanonType); 3881 if (TUK != TUK_Friend) 3882 Specialization->setTypeAsWritten(WrittenTy); 3883 TemplateArgsIn.release(); 3884 3885 // C++ [temp.expl.spec]p9: 3886 // A template explicit specialization is in the scope of the 3887 // namespace in which the template was defined. 3888 // 3889 // We actually implement this paragraph where we set the semantic 3890 // context (in the creation of the ClassTemplateSpecializationDecl), 3891 // but we also maintain the lexical context where the actual 3892 // definition occurs. 3893 Specialization->setLexicalDeclContext(CurContext); 3894 3895 // We may be starting the definition of this specialization. 3896 if (TUK == TUK_Definition) 3897 Specialization->startDefinition(); 3898 3899 if (TUK == TUK_Friend) { 3900 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3901 TemplateNameLoc, 3902 WrittenTy, 3903 /*FIXME:*/KWLoc); 3904 Friend->setAccess(AS_public); 3905 CurContext->addDecl(Friend); 3906 } else { 3907 // Add the specialization into its lexical context, so that it can 3908 // be seen when iterating through the list of declarations in that 3909 // context. However, specializations are not found by name lookup. 3910 CurContext->addDecl(Specialization); 3911 } 3912 return DeclPtrTy::make(Specialization); 3913} 3914 3915Sema::DeclPtrTy 3916Sema::ActOnTemplateDeclarator(Scope *S, 3917 MultiTemplateParamsArg TemplateParameterLists, 3918 Declarator &D) { 3919 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3920} 3921 3922Sema::DeclPtrTy 3923Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3924 MultiTemplateParamsArg TemplateParameterLists, 3925 Declarator &D) { 3926 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3927 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3928 "Not a function declarator!"); 3929 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3930 3931 if (FTI.hasPrototype) { 3932 // FIXME: Diagnose arguments without names in C. 3933 } 3934 3935 Scope *ParentScope = FnBodyScope->getParent(); 3936 3937 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3938 move(TemplateParameterLists), 3939 /*IsFunctionDefinition=*/true); 3940 if (FunctionTemplateDecl *FunctionTemplate 3941 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3942 return ActOnStartOfFunctionDef(FnBodyScope, 3943 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3944 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3945 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3946 return DeclPtrTy(); 3947} 3948 3949/// \brief Strips various properties off an implicit instantiation 3950/// that has just been explicitly specialized. 3951static void StripImplicitInstantiation(NamedDecl *D) { 3952 D->invalidateAttrs(); 3953 3954 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3955 FD->setInlineSpecified(false); 3956 } 3957} 3958 3959/// \brief Diagnose cases where we have an explicit template specialization 3960/// before/after an explicit template instantiation, producing diagnostics 3961/// for those cases where they are required and determining whether the 3962/// new specialization/instantiation will have any effect. 3963/// 3964/// \param NewLoc the location of the new explicit specialization or 3965/// instantiation. 3966/// 3967/// \param NewTSK the kind of the new explicit specialization or instantiation. 3968/// 3969/// \param PrevDecl the previous declaration of the entity. 3970/// 3971/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3972/// 3973/// \param PrevPointOfInstantiation if valid, indicates where the previus 3974/// declaration was instantiated (either implicitly or explicitly). 3975/// 3976/// \param SuppressNew will be set to true to indicate that the new 3977/// specialization or instantiation has no effect and should be ignored. 3978/// 3979/// \returns true if there was an error that should prevent the introduction of 3980/// the new declaration into the AST, false otherwise. 3981bool 3982Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3983 TemplateSpecializationKind NewTSK, 3984 NamedDecl *PrevDecl, 3985 TemplateSpecializationKind PrevTSK, 3986 SourceLocation PrevPointOfInstantiation, 3987 bool &SuppressNew) { 3988 SuppressNew = false; 3989 3990 switch (NewTSK) { 3991 case TSK_Undeclared: 3992 case TSK_ImplicitInstantiation: 3993 assert(false && "Don't check implicit instantiations here"); 3994 return false; 3995 3996 case TSK_ExplicitSpecialization: 3997 switch (PrevTSK) { 3998 case TSK_Undeclared: 3999 case TSK_ExplicitSpecialization: 4000 // Okay, we're just specializing something that is either already 4001 // explicitly specialized or has merely been mentioned without any 4002 // instantiation. 4003 return false; 4004 4005 case TSK_ImplicitInstantiation: 4006 if (PrevPointOfInstantiation.isInvalid()) { 4007 // The declaration itself has not actually been instantiated, so it is 4008 // still okay to specialize it. 4009 StripImplicitInstantiation(PrevDecl); 4010 return false; 4011 } 4012 // Fall through 4013 4014 case TSK_ExplicitInstantiationDeclaration: 4015 case TSK_ExplicitInstantiationDefinition: 4016 assert((PrevTSK == TSK_ImplicitInstantiation || 4017 PrevPointOfInstantiation.isValid()) && 4018 "Explicit instantiation without point of instantiation?"); 4019 4020 // C++ [temp.expl.spec]p6: 4021 // If a template, a member template or the member of a class template 4022 // is explicitly specialized then that specialization shall be declared 4023 // before the first use of that specialization that would cause an 4024 // implicit instantiation to take place, in every translation unit in 4025 // which such a use occurs; no diagnostic is required. 4026 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4027 // Is there any previous explicit specialization declaration? 4028 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4029 return false; 4030 } 4031 4032 Diag(NewLoc, diag::err_specialization_after_instantiation) 4033 << PrevDecl; 4034 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4035 << (PrevTSK != TSK_ImplicitInstantiation); 4036 4037 return true; 4038 } 4039 break; 4040 4041 case TSK_ExplicitInstantiationDeclaration: 4042 switch (PrevTSK) { 4043 case TSK_ExplicitInstantiationDeclaration: 4044 // This explicit instantiation declaration is redundant (that's okay). 4045 SuppressNew = true; 4046 return false; 4047 4048 case TSK_Undeclared: 4049 case TSK_ImplicitInstantiation: 4050 // We're explicitly instantiating something that may have already been 4051 // implicitly instantiated; that's fine. 4052 return false; 4053 4054 case TSK_ExplicitSpecialization: 4055 // C++0x [temp.explicit]p4: 4056 // For a given set of template parameters, if an explicit instantiation 4057 // of a template appears after a declaration of an explicit 4058 // specialization for that template, the explicit instantiation has no 4059 // effect. 4060 SuppressNew = true; 4061 return false; 4062 4063 case TSK_ExplicitInstantiationDefinition: 4064 // C++0x [temp.explicit]p10: 4065 // If an entity is the subject of both an explicit instantiation 4066 // declaration and an explicit instantiation definition in the same 4067 // translation unit, the definition shall follow the declaration. 4068 Diag(NewLoc, 4069 diag::err_explicit_instantiation_declaration_after_definition); 4070 Diag(PrevPointOfInstantiation, 4071 diag::note_explicit_instantiation_definition_here); 4072 assert(PrevPointOfInstantiation.isValid() && 4073 "Explicit instantiation without point of instantiation?"); 4074 SuppressNew = true; 4075 return false; 4076 } 4077 break; 4078 4079 case TSK_ExplicitInstantiationDefinition: 4080 switch (PrevTSK) { 4081 case TSK_Undeclared: 4082 case TSK_ImplicitInstantiation: 4083 // We're explicitly instantiating something that may have already been 4084 // implicitly instantiated; that's fine. 4085 return false; 4086 4087 case TSK_ExplicitSpecialization: 4088 // C++ DR 259, C++0x [temp.explicit]p4: 4089 // For a given set of template parameters, if an explicit 4090 // instantiation of a template appears after a declaration of 4091 // an explicit specialization for that template, the explicit 4092 // instantiation has no effect. 4093 // 4094 // In C++98/03 mode, we only give an extension warning here, because it 4095 // is not harmful to try to explicitly instantiate something that 4096 // has been explicitly specialized. 4097 if (!getLangOptions().CPlusPlus0x) { 4098 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4099 << PrevDecl; 4100 Diag(PrevDecl->getLocation(), 4101 diag::note_previous_template_specialization); 4102 } 4103 SuppressNew = true; 4104 return false; 4105 4106 case TSK_ExplicitInstantiationDeclaration: 4107 // We're explicity instantiating a definition for something for which we 4108 // were previously asked to suppress instantiations. That's fine. 4109 return false; 4110 4111 case TSK_ExplicitInstantiationDefinition: 4112 // C++0x [temp.spec]p5: 4113 // For a given template and a given set of template-arguments, 4114 // - an explicit instantiation definition shall appear at most once 4115 // in a program, 4116 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4117 << PrevDecl; 4118 Diag(PrevPointOfInstantiation, 4119 diag::note_previous_explicit_instantiation); 4120 SuppressNew = true; 4121 return false; 4122 } 4123 break; 4124 } 4125 4126 assert(false && "Missing specialization/instantiation case?"); 4127 4128 return false; 4129} 4130 4131/// \brief Perform semantic analysis for the given dependent function 4132/// template specialization. The only possible way to get a dependent 4133/// function template specialization is with a friend declaration, 4134/// like so: 4135/// 4136/// template <class T> void foo(T); 4137/// template <class T> class A { 4138/// friend void foo<>(T); 4139/// }; 4140/// 4141/// There really isn't any useful analysis we can do here, so we 4142/// just store the information. 4143bool 4144Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4145 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4146 LookupResult &Previous) { 4147 // Remove anything from Previous that isn't a function template in 4148 // the correct context. 4149 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4150 LookupResult::Filter F = Previous.makeFilter(); 4151 while (F.hasNext()) { 4152 NamedDecl *D = F.next()->getUnderlyingDecl(); 4153 if (!isa<FunctionTemplateDecl>(D) || 4154 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4155 F.erase(); 4156 } 4157 F.done(); 4158 4159 // Should this be diagnosed here? 4160 if (Previous.empty()) return true; 4161 4162 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4163 ExplicitTemplateArgs); 4164 return false; 4165} 4166 4167/// \brief Perform semantic analysis for the given function template 4168/// specialization. 4169/// 4170/// This routine performs all of the semantic analysis required for an 4171/// explicit function template specialization. On successful completion, 4172/// the function declaration \p FD will become a function template 4173/// specialization. 4174/// 4175/// \param FD the function declaration, which will be updated to become a 4176/// function template specialization. 4177/// 4178/// \param HasExplicitTemplateArgs whether any template arguments were 4179/// explicitly provided. 4180/// 4181/// \param LAngleLoc the location of the left angle bracket ('<'), if 4182/// template arguments were explicitly provided. 4183/// 4184/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4185/// if any. 4186/// 4187/// \param NumExplicitTemplateArgs the number of explicitly-provided template 4188/// arguments. This number may be zero even when HasExplicitTemplateArgs is 4189/// true as in, e.g., \c void sort<>(char*, char*); 4190/// 4191/// \param RAngleLoc the location of the right angle bracket ('>'), if 4192/// template arguments were explicitly provided. 4193/// 4194/// \param PrevDecl the set of declarations that 4195bool 4196Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4197 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4198 LookupResult &Previous) { 4199 // The set of function template specializations that could match this 4200 // explicit function template specialization. 4201 UnresolvedSet<8> Candidates; 4202 4203 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4204 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4205 I != E; ++I) { 4206 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4207 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4208 // Only consider templates found within the same semantic lookup scope as 4209 // FD. 4210 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4211 continue; 4212 4213 // C++ [temp.expl.spec]p11: 4214 // A trailing template-argument can be left unspecified in the 4215 // template-id naming an explicit function template specialization 4216 // provided it can be deduced from the function argument type. 4217 // Perform template argument deduction to determine whether we may be 4218 // specializing this template. 4219 // FIXME: It is somewhat wasteful to build 4220 TemplateDeductionInfo Info(Context, FD->getLocation()); 4221 FunctionDecl *Specialization = 0; 4222 if (TemplateDeductionResult TDK 4223 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4224 FD->getType(), 4225 Specialization, 4226 Info)) { 4227 // FIXME: Template argument deduction failed; record why it failed, so 4228 // that we can provide nifty diagnostics. 4229 (void)TDK; 4230 continue; 4231 } 4232 4233 // Record this candidate. 4234 Candidates.addDecl(Specialization, I.getAccess()); 4235 } 4236 } 4237 4238 // Find the most specialized function template. 4239 UnresolvedSetIterator Result 4240 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4241 TPOC_Other, FD->getLocation(), 4242 PDiag(diag::err_function_template_spec_no_match) 4243 << FD->getDeclName(), 4244 PDiag(diag::err_function_template_spec_ambiguous) 4245 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4246 PDiag(diag::note_function_template_spec_matched)); 4247 if (Result == Candidates.end()) 4248 return true; 4249 4250 // Ignore access information; it doesn't figure into redeclaration checking. 4251 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4252 Specialization->setLocation(FD->getLocation()); 4253 4254 // FIXME: Check if the prior specialization has a point of instantiation. 4255 // If so, we have run afoul of . 4256 4257 // If this is a friend declaration, then we're not really declaring 4258 // an explicit specialization. 4259 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4260 4261 // Check the scope of this explicit specialization. 4262 if (!isFriend && 4263 CheckTemplateSpecializationScope(*this, 4264 Specialization->getPrimaryTemplate(), 4265 Specialization, FD->getLocation(), 4266 false)) 4267 return true; 4268 4269 // C++ [temp.expl.spec]p6: 4270 // If a template, a member template or the member of a class template is 4271 // explicitly specialized then that specialization shall be declared 4272 // before the first use of that specialization that would cause an implicit 4273 // instantiation to take place, in every translation unit in which such a 4274 // use occurs; no diagnostic is required. 4275 FunctionTemplateSpecializationInfo *SpecInfo 4276 = Specialization->getTemplateSpecializationInfo(); 4277 assert(SpecInfo && "Function template specialization info missing?"); 4278 4279 bool SuppressNew = false; 4280 if (!isFriend && 4281 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4282 TSK_ExplicitSpecialization, 4283 Specialization, 4284 SpecInfo->getTemplateSpecializationKind(), 4285 SpecInfo->getPointOfInstantiation(), 4286 SuppressNew)) 4287 return true; 4288 4289 // Mark the prior declaration as an explicit specialization, so that later 4290 // clients know that this is an explicit specialization. 4291 if (!isFriend) 4292 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4293 4294 // Turn the given function declaration into a function template 4295 // specialization, with the template arguments from the previous 4296 // specialization. 4297 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4298 new (Context) TemplateArgumentList( 4299 *Specialization->getTemplateSpecializationArgs()), 4300 /*InsertPos=*/0, 4301 SpecInfo->getTemplateSpecializationKind()); 4302 4303 // The "previous declaration" for this function template specialization is 4304 // the prior function template specialization. 4305 Previous.clear(); 4306 Previous.addDecl(Specialization); 4307 return false; 4308} 4309 4310/// \brief Perform semantic analysis for the given non-template member 4311/// specialization. 4312/// 4313/// This routine performs all of the semantic analysis required for an 4314/// explicit member function specialization. On successful completion, 4315/// the function declaration \p FD will become a member function 4316/// specialization. 4317/// 4318/// \param Member the member declaration, which will be updated to become a 4319/// specialization. 4320/// 4321/// \param Previous the set of declarations, one of which may be specialized 4322/// by this function specialization; the set will be modified to contain the 4323/// redeclared member. 4324bool 4325Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4326 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4327 4328 // Try to find the member we are instantiating. 4329 NamedDecl *Instantiation = 0; 4330 NamedDecl *InstantiatedFrom = 0; 4331 MemberSpecializationInfo *MSInfo = 0; 4332 4333 if (Previous.empty()) { 4334 // Nowhere to look anyway. 4335 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4336 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4337 I != E; ++I) { 4338 NamedDecl *D = (*I)->getUnderlyingDecl(); 4339 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4340 if (Context.hasSameType(Function->getType(), Method->getType())) { 4341 Instantiation = Method; 4342 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4343 MSInfo = Method->getMemberSpecializationInfo(); 4344 break; 4345 } 4346 } 4347 } 4348 } else if (isa<VarDecl>(Member)) { 4349 VarDecl *PrevVar; 4350 if (Previous.isSingleResult() && 4351 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4352 if (PrevVar->isStaticDataMember()) { 4353 Instantiation = PrevVar; 4354 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4355 MSInfo = PrevVar->getMemberSpecializationInfo(); 4356 } 4357 } else if (isa<RecordDecl>(Member)) { 4358 CXXRecordDecl *PrevRecord; 4359 if (Previous.isSingleResult() && 4360 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4361 Instantiation = PrevRecord; 4362 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4363 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4364 } 4365 } 4366 4367 if (!Instantiation) { 4368 // There is no previous declaration that matches. Since member 4369 // specializations are always out-of-line, the caller will complain about 4370 // this mismatch later. 4371 return false; 4372 } 4373 4374 // If this is a friend, just bail out here before we start turning 4375 // things into explicit specializations. 4376 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4377 // Preserve instantiation information. 4378 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4379 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4380 cast<CXXMethodDecl>(InstantiatedFrom), 4381 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4382 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4383 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4384 cast<CXXRecordDecl>(InstantiatedFrom), 4385 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4386 } 4387 4388 Previous.clear(); 4389 Previous.addDecl(Instantiation); 4390 return false; 4391 } 4392 4393 // Make sure that this is a specialization of a member. 4394 if (!InstantiatedFrom) { 4395 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4396 << Member; 4397 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4398 return true; 4399 } 4400 4401 // C++ [temp.expl.spec]p6: 4402 // If a template, a member template or the member of a class template is 4403 // explicitly specialized then that spe- cialization shall be declared 4404 // before the first use of that specialization that would cause an implicit 4405 // instantiation to take place, in every translation unit in which such a 4406 // use occurs; no diagnostic is required. 4407 assert(MSInfo && "Member specialization info missing?"); 4408 4409 bool SuppressNew = false; 4410 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4411 TSK_ExplicitSpecialization, 4412 Instantiation, 4413 MSInfo->getTemplateSpecializationKind(), 4414 MSInfo->getPointOfInstantiation(), 4415 SuppressNew)) 4416 return true; 4417 4418 // Check the scope of this explicit specialization. 4419 if (CheckTemplateSpecializationScope(*this, 4420 InstantiatedFrom, 4421 Instantiation, Member->getLocation(), 4422 false)) 4423 return true; 4424 4425 // Note that this is an explicit instantiation of a member. 4426 // the original declaration to note that it is an explicit specialization 4427 // (if it was previously an implicit instantiation). This latter step 4428 // makes bookkeeping easier. 4429 if (isa<FunctionDecl>(Member)) { 4430 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4431 if (InstantiationFunction->getTemplateSpecializationKind() == 4432 TSK_ImplicitInstantiation) { 4433 InstantiationFunction->setTemplateSpecializationKind( 4434 TSK_ExplicitSpecialization); 4435 InstantiationFunction->setLocation(Member->getLocation()); 4436 } 4437 4438 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4439 cast<CXXMethodDecl>(InstantiatedFrom), 4440 TSK_ExplicitSpecialization); 4441 } else if (isa<VarDecl>(Member)) { 4442 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4443 if (InstantiationVar->getTemplateSpecializationKind() == 4444 TSK_ImplicitInstantiation) { 4445 InstantiationVar->setTemplateSpecializationKind( 4446 TSK_ExplicitSpecialization); 4447 InstantiationVar->setLocation(Member->getLocation()); 4448 } 4449 4450 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4451 cast<VarDecl>(InstantiatedFrom), 4452 TSK_ExplicitSpecialization); 4453 } else { 4454 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4455 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4456 if (InstantiationClass->getTemplateSpecializationKind() == 4457 TSK_ImplicitInstantiation) { 4458 InstantiationClass->setTemplateSpecializationKind( 4459 TSK_ExplicitSpecialization); 4460 InstantiationClass->setLocation(Member->getLocation()); 4461 } 4462 4463 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4464 cast<CXXRecordDecl>(InstantiatedFrom), 4465 TSK_ExplicitSpecialization); 4466 } 4467 4468 // Save the caller the trouble of having to figure out which declaration 4469 // this specialization matches. 4470 Previous.clear(); 4471 Previous.addDecl(Instantiation); 4472 return false; 4473} 4474 4475/// \brief Check the scope of an explicit instantiation. 4476static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4477 SourceLocation InstLoc, 4478 bool WasQualifiedName) { 4479 DeclContext *ExpectedContext 4480 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4481 DeclContext *CurContext = S.CurContext->getLookupContext(); 4482 4483 // C++0x [temp.explicit]p2: 4484 // An explicit instantiation shall appear in an enclosing namespace of its 4485 // template. 4486 // 4487 // This is DR275, which we do not retroactively apply to C++98/03. 4488 if (S.getLangOptions().CPlusPlus0x && 4489 !CurContext->Encloses(ExpectedContext)) { 4490 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4491 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4492 << D << NS; 4493 else 4494 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4495 << D; 4496 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4497 return; 4498 } 4499 4500 // C++0x [temp.explicit]p2: 4501 // If the name declared in the explicit instantiation is an unqualified 4502 // name, the explicit instantiation shall appear in the namespace where 4503 // its template is declared or, if that namespace is inline (7.3.1), any 4504 // namespace from its enclosing namespace set. 4505 if (WasQualifiedName) 4506 return; 4507 4508 if (CurContext->Equals(ExpectedContext)) 4509 return; 4510 4511 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4512 << D << ExpectedContext; 4513 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4514} 4515 4516/// \brief Determine whether the given scope specifier has a template-id in it. 4517static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4518 if (!SS.isSet()) 4519 return false; 4520 4521 // C++0x [temp.explicit]p2: 4522 // If the explicit instantiation is for a member function, a member class 4523 // or a static data member of a class template specialization, the name of 4524 // the class template specialization in the qualified-id for the member 4525 // name shall be a simple-template-id. 4526 // 4527 // C++98 has the same restriction, just worded differently. 4528 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4529 NNS; NNS = NNS->getPrefix()) 4530 if (Type *T = NNS->getAsType()) 4531 if (isa<TemplateSpecializationType>(T)) 4532 return true; 4533 4534 return false; 4535} 4536 4537// Explicit instantiation of a class template specialization 4538// FIXME: Implement extern template semantics 4539Sema::DeclResult 4540Sema::ActOnExplicitInstantiation(Scope *S, 4541 SourceLocation ExternLoc, 4542 SourceLocation TemplateLoc, 4543 unsigned TagSpec, 4544 SourceLocation KWLoc, 4545 const CXXScopeSpec &SS, 4546 TemplateTy TemplateD, 4547 SourceLocation TemplateNameLoc, 4548 SourceLocation LAngleLoc, 4549 ASTTemplateArgsPtr TemplateArgsIn, 4550 SourceLocation RAngleLoc, 4551 AttributeList *Attr) { 4552 // Find the class template we're specializing 4553 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4554 ClassTemplateDecl *ClassTemplate 4555 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4556 4557 // Check that the specialization uses the same tag kind as the 4558 // original template. 4559 TagDecl::TagKind Kind; 4560 switch (TagSpec) { 4561 default: assert(0 && "Unknown tag type!"); 4562 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4563 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4564 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4565 } 4566 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4567 Kind, KWLoc, 4568 *ClassTemplate->getIdentifier())) { 4569 Diag(KWLoc, diag::err_use_with_wrong_tag) 4570 << ClassTemplate 4571 << FixItHint::CreateReplacement(KWLoc, 4572 ClassTemplate->getTemplatedDecl()->getKindName()); 4573 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4574 diag::note_previous_use); 4575 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4576 } 4577 4578 // C++0x [temp.explicit]p2: 4579 // There are two forms of explicit instantiation: an explicit instantiation 4580 // definition and an explicit instantiation declaration. An explicit 4581 // instantiation declaration begins with the extern keyword. [...] 4582 TemplateSpecializationKind TSK 4583 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4584 : TSK_ExplicitInstantiationDeclaration; 4585 4586 // Translate the parser's template argument list in our AST format. 4587 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4588 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4589 4590 // Check that the template argument list is well-formed for this 4591 // template. 4592 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4593 TemplateArgs.size()); 4594 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4595 TemplateArgs, false, Converted)) 4596 return true; 4597 4598 assert((Converted.structuredSize() == 4599 ClassTemplate->getTemplateParameters()->size()) && 4600 "Converted template argument list is too short!"); 4601 4602 // Find the class template specialization declaration that 4603 // corresponds to these arguments. 4604 llvm::FoldingSetNodeID ID; 4605 ClassTemplateSpecializationDecl::Profile(ID, 4606 Converted.getFlatArguments(), 4607 Converted.flatSize(), 4608 Context); 4609 void *InsertPos = 0; 4610 ClassTemplateSpecializationDecl *PrevDecl 4611 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4612 4613 // C++0x [temp.explicit]p2: 4614 // [...] An explicit instantiation shall appear in an enclosing 4615 // namespace of its template. [...] 4616 // 4617 // This is C++ DR 275. 4618 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4619 SS.isSet()); 4620 4621 ClassTemplateSpecializationDecl *Specialization = 0; 4622 4623 bool ReusedDecl = false; 4624 if (PrevDecl) { 4625 bool SuppressNew = false; 4626 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4627 PrevDecl, 4628 PrevDecl->getSpecializationKind(), 4629 PrevDecl->getPointOfInstantiation(), 4630 SuppressNew)) 4631 return DeclPtrTy::make(PrevDecl); 4632 4633 if (SuppressNew) 4634 return DeclPtrTy::make(PrevDecl); 4635 4636 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4637 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4638 // Since the only prior class template specialization with these 4639 // arguments was referenced but not declared, reuse that 4640 // declaration node as our own, updating its source location to 4641 // reflect our new declaration. 4642 Specialization = PrevDecl; 4643 Specialization->setLocation(TemplateNameLoc); 4644 PrevDecl = 0; 4645 ReusedDecl = true; 4646 } 4647 } 4648 4649 if (!Specialization) { 4650 // Create a new class template specialization declaration node for 4651 // this explicit specialization. 4652 Specialization 4653 = ClassTemplateSpecializationDecl::Create(Context, 4654 ClassTemplate->getDeclContext(), 4655 TemplateNameLoc, 4656 ClassTemplate, 4657 Converted, PrevDecl); 4658 SetNestedNameSpecifier(Specialization, SS); 4659 4660 if (PrevDecl) { 4661 // Remove the previous declaration from the folding set, since we want 4662 // to introduce a new declaration. 4663 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4664 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4665 } 4666 4667 // Insert the new specialization. 4668 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4669 } 4670 4671 // Build the fully-sugared type for this explicit instantiation as 4672 // the user wrote in the explicit instantiation itself. This means 4673 // that we'll pretty-print the type retrieved from the 4674 // specialization's declaration the way that the user actually wrote 4675 // the explicit instantiation, rather than formatting the name based 4676 // on the "canonical" representation used to store the template 4677 // arguments in the specialization. 4678 TypeSourceInfo *WrittenTy 4679 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4680 TemplateArgs, 4681 Context.getTypeDeclType(Specialization)); 4682 Specialization->setTypeAsWritten(WrittenTy); 4683 TemplateArgsIn.release(); 4684 4685 if (!ReusedDecl) { 4686 // Add the explicit instantiation into its lexical context. However, 4687 // since explicit instantiations are never found by name lookup, we 4688 // just put it into the declaration context directly. 4689 Specialization->setLexicalDeclContext(CurContext); 4690 CurContext->addDecl(Specialization); 4691 } 4692 4693 // C++ [temp.explicit]p3: 4694 // A definition of a class template or class member template 4695 // shall be in scope at the point of the explicit instantiation of 4696 // the class template or class member template. 4697 // 4698 // This check comes when we actually try to perform the 4699 // instantiation. 4700 ClassTemplateSpecializationDecl *Def 4701 = cast_or_null<ClassTemplateSpecializationDecl>( 4702 Specialization->getDefinition()); 4703 if (!Def) 4704 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4705 4706 // Instantiate the members of this class template specialization. 4707 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4708 Specialization->getDefinition()); 4709 if (Def) { 4710 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4711 4712 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4713 // TSK_ExplicitInstantiationDefinition 4714 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4715 TSK == TSK_ExplicitInstantiationDefinition) 4716 Def->setTemplateSpecializationKind(TSK); 4717 4718 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4719 } 4720 4721 return DeclPtrTy::make(Specialization); 4722} 4723 4724// Explicit instantiation of a member class of a class template. 4725Sema::DeclResult 4726Sema::ActOnExplicitInstantiation(Scope *S, 4727 SourceLocation ExternLoc, 4728 SourceLocation TemplateLoc, 4729 unsigned TagSpec, 4730 SourceLocation KWLoc, 4731 CXXScopeSpec &SS, 4732 IdentifierInfo *Name, 4733 SourceLocation NameLoc, 4734 AttributeList *Attr) { 4735 4736 bool Owned = false; 4737 bool IsDependent = false; 4738 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4739 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4740 MultiTemplateParamsArg(*this, 0, 0), 4741 Owned, IsDependent); 4742 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4743 4744 if (!TagD) 4745 return true; 4746 4747 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4748 if (Tag->isEnum()) { 4749 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4750 << Context.getTypeDeclType(Tag); 4751 return true; 4752 } 4753 4754 if (Tag->isInvalidDecl()) 4755 return true; 4756 4757 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4758 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4759 if (!Pattern) { 4760 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4761 << Context.getTypeDeclType(Record); 4762 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4763 return true; 4764 } 4765 4766 // C++0x [temp.explicit]p2: 4767 // If the explicit instantiation is for a class or member class, the 4768 // elaborated-type-specifier in the declaration shall include a 4769 // simple-template-id. 4770 // 4771 // C++98 has the same restriction, just worded differently. 4772 if (!ScopeSpecifierHasTemplateId(SS)) 4773 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4774 << Record << SS.getRange(); 4775 4776 // C++0x [temp.explicit]p2: 4777 // There are two forms of explicit instantiation: an explicit instantiation 4778 // definition and an explicit instantiation declaration. An explicit 4779 // instantiation declaration begins with the extern keyword. [...] 4780 TemplateSpecializationKind TSK 4781 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4782 : TSK_ExplicitInstantiationDeclaration; 4783 4784 // C++0x [temp.explicit]p2: 4785 // [...] An explicit instantiation shall appear in an enclosing 4786 // namespace of its template. [...] 4787 // 4788 // This is C++ DR 275. 4789 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4790 4791 // Verify that it is okay to explicitly instantiate here. 4792 CXXRecordDecl *PrevDecl 4793 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4794 if (!PrevDecl && Record->getDefinition()) 4795 PrevDecl = Record; 4796 if (PrevDecl) { 4797 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4798 bool SuppressNew = false; 4799 assert(MSInfo && "No member specialization information?"); 4800 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4801 PrevDecl, 4802 MSInfo->getTemplateSpecializationKind(), 4803 MSInfo->getPointOfInstantiation(), 4804 SuppressNew)) 4805 return true; 4806 if (SuppressNew) 4807 return TagD; 4808 } 4809 4810 CXXRecordDecl *RecordDef 4811 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4812 if (!RecordDef) { 4813 // C++ [temp.explicit]p3: 4814 // A definition of a member class of a class template shall be in scope 4815 // at the point of an explicit instantiation of the member class. 4816 CXXRecordDecl *Def 4817 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4818 if (!Def) { 4819 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4820 << 0 << Record->getDeclName() << Record->getDeclContext(); 4821 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4822 << Pattern; 4823 return true; 4824 } else { 4825 if (InstantiateClass(NameLoc, Record, Def, 4826 getTemplateInstantiationArgs(Record), 4827 TSK)) 4828 return true; 4829 4830 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4831 if (!RecordDef) 4832 return true; 4833 } 4834 } 4835 4836 // Instantiate all of the members of the class. 4837 InstantiateClassMembers(NameLoc, RecordDef, 4838 getTemplateInstantiationArgs(Record), TSK); 4839 4840 // FIXME: We don't have any representation for explicit instantiations of 4841 // member classes. Such a representation is not needed for compilation, but it 4842 // should be available for clients that want to see all of the declarations in 4843 // the source code. 4844 return TagD; 4845} 4846 4847Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4848 SourceLocation ExternLoc, 4849 SourceLocation TemplateLoc, 4850 Declarator &D) { 4851 // Explicit instantiations always require a name. 4852 DeclarationName Name = GetNameForDeclarator(D); 4853 if (!Name) { 4854 if (!D.isInvalidType()) 4855 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4856 diag::err_explicit_instantiation_requires_name) 4857 << D.getDeclSpec().getSourceRange() 4858 << D.getSourceRange(); 4859 4860 return true; 4861 } 4862 4863 // The scope passed in may not be a decl scope. Zip up the scope tree until 4864 // we find one that is. 4865 while ((S->getFlags() & Scope::DeclScope) == 0 || 4866 (S->getFlags() & Scope::TemplateParamScope) != 0) 4867 S = S->getParent(); 4868 4869 // Determine the type of the declaration. 4870 QualType R = GetTypeForDeclarator(D, S, 0); 4871 if (R.isNull()) 4872 return true; 4873 4874 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4875 // Cannot explicitly instantiate a typedef. 4876 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4877 << Name; 4878 return true; 4879 } 4880 4881 // C++0x [temp.explicit]p1: 4882 // [...] An explicit instantiation of a function template shall not use the 4883 // inline or constexpr specifiers. 4884 // Presumably, this also applies to member functions of class templates as 4885 // well. 4886 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4887 Diag(D.getDeclSpec().getInlineSpecLoc(), 4888 diag::err_explicit_instantiation_inline) 4889 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4890 4891 // FIXME: check for constexpr specifier. 4892 4893 // C++0x [temp.explicit]p2: 4894 // There are two forms of explicit instantiation: an explicit instantiation 4895 // definition and an explicit instantiation declaration. An explicit 4896 // instantiation declaration begins with the extern keyword. [...] 4897 TemplateSpecializationKind TSK 4898 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4899 : TSK_ExplicitInstantiationDeclaration; 4900 4901 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4902 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4903 4904 if (!R->isFunctionType()) { 4905 // C++ [temp.explicit]p1: 4906 // A [...] static data member of a class template can be explicitly 4907 // instantiated from the member definition associated with its class 4908 // template. 4909 if (Previous.isAmbiguous()) 4910 return true; 4911 4912 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4913 if (!Prev || !Prev->isStaticDataMember()) { 4914 // We expect to see a data data member here. 4915 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4916 << Name; 4917 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4918 P != PEnd; ++P) 4919 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4920 return true; 4921 } 4922 4923 if (!Prev->getInstantiatedFromStaticDataMember()) { 4924 // FIXME: Check for explicit specialization? 4925 Diag(D.getIdentifierLoc(), 4926 diag::err_explicit_instantiation_data_member_not_instantiated) 4927 << Prev; 4928 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4929 // FIXME: Can we provide a note showing where this was declared? 4930 return true; 4931 } 4932 4933 // C++0x [temp.explicit]p2: 4934 // If the explicit instantiation is for a member function, a member class 4935 // or a static data member of a class template specialization, the name of 4936 // the class template specialization in the qualified-id for the member 4937 // name shall be a simple-template-id. 4938 // 4939 // C++98 has the same restriction, just worded differently. 4940 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4941 Diag(D.getIdentifierLoc(), 4942 diag::err_explicit_instantiation_without_qualified_id) 4943 << Prev << D.getCXXScopeSpec().getRange(); 4944 4945 // Check the scope of this explicit instantiation. 4946 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4947 4948 // Verify that it is okay to explicitly instantiate here. 4949 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4950 assert(MSInfo && "Missing static data member specialization info?"); 4951 bool SuppressNew = false; 4952 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4953 MSInfo->getTemplateSpecializationKind(), 4954 MSInfo->getPointOfInstantiation(), 4955 SuppressNew)) 4956 return true; 4957 if (SuppressNew) 4958 return DeclPtrTy(); 4959 4960 // Instantiate static data member. 4961 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4962 if (TSK == TSK_ExplicitInstantiationDefinition) 4963 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4964 /*DefinitionRequired=*/true); 4965 4966 // FIXME: Create an ExplicitInstantiation node? 4967 return DeclPtrTy(); 4968 } 4969 4970 // If the declarator is a template-id, translate the parser's template 4971 // argument list into our AST format. 4972 bool HasExplicitTemplateArgs = false; 4973 TemplateArgumentListInfo TemplateArgs; 4974 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4975 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4976 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4977 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4978 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4979 TemplateId->getTemplateArgs(), 4980 TemplateId->NumArgs); 4981 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4982 HasExplicitTemplateArgs = true; 4983 TemplateArgsPtr.release(); 4984 } 4985 4986 // C++ [temp.explicit]p1: 4987 // A [...] function [...] can be explicitly instantiated from its template. 4988 // A member function [...] of a class template can be explicitly 4989 // instantiated from the member definition associated with its class 4990 // template. 4991 UnresolvedSet<8> Matches; 4992 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4993 P != PEnd; ++P) { 4994 NamedDecl *Prev = *P; 4995 if (!HasExplicitTemplateArgs) { 4996 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4997 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4998 Matches.clear(); 4999 5000 Matches.addDecl(Method, P.getAccess()); 5001 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5002 break; 5003 } 5004 } 5005 } 5006 5007 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5008 if (!FunTmpl) 5009 continue; 5010 5011 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5012 FunctionDecl *Specialization = 0; 5013 if (TemplateDeductionResult TDK 5014 = DeduceTemplateArguments(FunTmpl, 5015 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5016 R, Specialization, Info)) { 5017 // FIXME: Keep track of almost-matches? 5018 (void)TDK; 5019 continue; 5020 } 5021 5022 Matches.addDecl(Specialization, P.getAccess()); 5023 } 5024 5025 // Find the most specialized function template specialization. 5026 UnresolvedSetIterator Result 5027 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5028 D.getIdentifierLoc(), 5029 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5030 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5031 PDiag(diag::note_explicit_instantiation_candidate)); 5032 5033 if (Result == Matches.end()) 5034 return true; 5035 5036 // Ignore access control bits, we don't need them for redeclaration checking. 5037 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5038 5039 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5040 Diag(D.getIdentifierLoc(), 5041 diag::err_explicit_instantiation_member_function_not_instantiated) 5042 << Specialization 5043 << (Specialization->getTemplateSpecializationKind() == 5044 TSK_ExplicitSpecialization); 5045 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5046 return true; 5047 } 5048 5049 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5050 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5051 PrevDecl = Specialization; 5052 5053 if (PrevDecl) { 5054 bool SuppressNew = false; 5055 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5056 PrevDecl, 5057 PrevDecl->getTemplateSpecializationKind(), 5058 PrevDecl->getPointOfInstantiation(), 5059 SuppressNew)) 5060 return true; 5061 5062 // FIXME: We may still want to build some representation of this 5063 // explicit specialization. 5064 if (SuppressNew) 5065 return DeclPtrTy(); 5066 } 5067 5068 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5069 5070 if (TSK == TSK_ExplicitInstantiationDefinition) 5071 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5072 false, /*DefinitionRequired=*/true); 5073 5074 // C++0x [temp.explicit]p2: 5075 // If the explicit instantiation is for a member function, a member class 5076 // or a static data member of a class template specialization, the name of 5077 // the class template specialization in the qualified-id for the member 5078 // name shall be a simple-template-id. 5079 // 5080 // C++98 has the same restriction, just worded differently. 5081 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5082 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5083 D.getCXXScopeSpec().isSet() && 5084 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5085 Diag(D.getIdentifierLoc(), 5086 diag::err_explicit_instantiation_without_qualified_id) 5087 << Specialization << D.getCXXScopeSpec().getRange(); 5088 5089 CheckExplicitInstantiationScope(*this, 5090 FunTmpl? (NamedDecl *)FunTmpl 5091 : Specialization->getInstantiatedFromMemberFunction(), 5092 D.getIdentifierLoc(), 5093 D.getCXXScopeSpec().isSet()); 5094 5095 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5096 return DeclPtrTy(); 5097} 5098 5099Sema::TypeResult 5100Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5101 const CXXScopeSpec &SS, IdentifierInfo *Name, 5102 SourceLocation TagLoc, SourceLocation NameLoc) { 5103 // This has to hold, because SS is expected to be defined. 5104 assert(Name && "Expected a name in a dependent tag"); 5105 5106 NestedNameSpecifier *NNS 5107 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5108 if (!NNS) 5109 return true; 5110 5111 ElaboratedTypeKeyword Keyword = ETK_None; 5112 switch (TagDecl::getTagKindForTypeSpec(TagSpec)) { 5113 case TagDecl::TK_struct: Keyword = ETK_Struct; break; 5114 case TagDecl::TK_class: Keyword = ETK_Class; break; 5115 case TagDecl::TK_union: Keyword = ETK_Union; break; 5116 case TagDecl::TK_enum: Keyword = ETK_Enum; break; 5117 } 5118 assert(Keyword != ETK_None && "Invalid tag kind!"); 5119 5120 return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr(); 5121} 5122 5123Sema::TypeResult 5124Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5125 const IdentifierInfo &II, SourceLocation IdLoc) { 5126 NestedNameSpecifier *NNS 5127 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5128 if (!NNS) 5129 return true; 5130 5131 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5132 SourceRange(TypenameLoc, IdLoc)); 5133 if (T.isNull()) 5134 return true; 5135 return T.getAsOpaquePtr(); 5136} 5137 5138Sema::TypeResult 5139Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5140 SourceLocation TemplateLoc, TypeTy *Ty) { 5141 QualType T = GetTypeFromParser(Ty); 5142 NestedNameSpecifier *NNS 5143 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5144 const TemplateSpecializationType *TemplateId 5145 = T->getAs<TemplateSpecializationType>(); 5146 assert(TemplateId && "Expected a template specialization type"); 5147 5148 if (computeDeclContext(SS, false)) { 5149 // If we can compute a declaration context, then the "typename" 5150 // keyword was superfluous. Just build a QualifiedNameType to keep 5151 // track of the nested-name-specifier. 5152 5153 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 5154 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 5155 } 5156 5157 return Context.getDependentNameType(ETK_Typename, NNS, TemplateId) 5158 .getAsOpaquePtr(); 5159} 5160 5161/// \brief Build the type that describes a C++ typename specifier, 5162/// e.g., "typename T::type". 5163QualType 5164Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5165 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5166 SourceRange Range) { 5167 CXXRecordDecl *CurrentInstantiation = 0; 5168 if (NNS->isDependent()) { 5169 CurrentInstantiation = getCurrentInstantiationOf(NNS); 5170 5171 // If the nested-name-specifier does not refer to the current 5172 // instantiation, then build a typename type. 5173 if (!CurrentInstantiation) 5174 return Context.getDependentNameType(Keyword, NNS, &II); 5175 5176 // The nested-name-specifier refers to the current instantiation, so the 5177 // "typename" keyword itself is superfluous. In C++03, the program is 5178 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 5179 // extraneous "typename" keywords, and we retroactively apply this DR to 5180 // C++03 code. 5181 } 5182 5183 DeclContext *Ctx = 0; 5184 5185 if (CurrentInstantiation) 5186 Ctx = CurrentInstantiation; 5187 else { 5188 CXXScopeSpec SS; 5189 SS.setScopeRep(NNS); 5190 SS.setRange(Range); 5191 if (RequireCompleteDeclContext(SS)) 5192 return QualType(); 5193 5194 Ctx = computeDeclContext(SS); 5195 } 5196 assert(Ctx && "No declaration context?"); 5197 5198 DeclarationName Name(&II); 5199 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 5200 LookupQualifiedName(Result, Ctx); 5201 unsigned DiagID = 0; 5202 Decl *Referenced = 0; 5203 switch (Result.getResultKind()) { 5204 case LookupResult::NotFound: 5205 DiagID = diag::err_typename_nested_not_found; 5206 break; 5207 5208 case LookupResult::NotFoundInCurrentInstantiation: 5209 // Okay, it's a member of an unknown instantiation. 5210 return Context.getDependentNameType(Keyword, NNS, &II); 5211 5212 case LookupResult::Found: 5213 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5214 // We found a type. Build a QualifiedNameType, since the 5215 // typename-specifier was just sugar. FIXME: Tell 5216 // QualifiedNameType that it has a "typename" prefix. 5217 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 5218 } 5219 5220 DiagID = diag::err_typename_nested_not_type; 5221 Referenced = Result.getFoundDecl(); 5222 break; 5223 5224 case LookupResult::FoundUnresolvedValue: 5225 llvm_unreachable("unresolved using decl in non-dependent context"); 5226 return QualType(); 5227 5228 case LookupResult::FoundOverloaded: 5229 DiagID = diag::err_typename_nested_not_type; 5230 Referenced = *Result.begin(); 5231 break; 5232 5233 case LookupResult::Ambiguous: 5234 return QualType(); 5235 } 5236 5237 // If we get here, it's because name lookup did not find a 5238 // type. Emit an appropriate diagnostic and return an error. 5239 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 5240 if (Referenced) 5241 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5242 << Name; 5243 return QualType(); 5244} 5245 5246namespace { 5247 // See Sema::RebuildTypeInCurrentInstantiation 5248 class CurrentInstantiationRebuilder 5249 : public TreeTransform<CurrentInstantiationRebuilder> { 5250 SourceLocation Loc; 5251 DeclarationName Entity; 5252 5253 public: 5254 CurrentInstantiationRebuilder(Sema &SemaRef, 5255 SourceLocation Loc, 5256 DeclarationName Entity) 5257 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5258 Loc(Loc), Entity(Entity) { } 5259 5260 /// \brief Determine whether the given type \p T has already been 5261 /// transformed. 5262 /// 5263 /// For the purposes of type reconstruction, a type has already been 5264 /// transformed if it is NULL or if it is not dependent. 5265 bool AlreadyTransformed(QualType T) { 5266 return T.isNull() || !T->isDependentType(); 5267 } 5268 5269 /// \brief Returns the location of the entity whose type is being 5270 /// rebuilt. 5271 SourceLocation getBaseLocation() { return Loc; } 5272 5273 /// \brief Returns the name of the entity whose type is being rebuilt. 5274 DeclarationName getBaseEntity() { return Entity; } 5275 5276 /// \brief Sets the "base" location and entity when that 5277 /// information is known based on another transformation. 5278 void setBase(SourceLocation Loc, DeclarationName Entity) { 5279 this->Loc = Loc; 5280 this->Entity = Entity; 5281 } 5282 5283 /// \brief Transforms an expression by returning the expression itself 5284 /// (an identity function). 5285 /// 5286 /// FIXME: This is completely unsafe; we will need to actually clone the 5287 /// expressions. 5288 Sema::OwningExprResult TransformExpr(Expr *E) { 5289 return getSema().Owned(E); 5290 } 5291 5292 /// \brief Transforms a typename type by determining whether the type now 5293 /// refers to a member of the current instantiation, and then 5294 /// type-checking and building a QualifiedNameType (when possible). 5295 QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL, 5296 QualType ObjectType); 5297 }; 5298} 5299 5300QualType 5301CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB, 5302 DependentNameTypeLoc TL, 5303 QualType ObjectType) { 5304 DependentNameType *T = TL.getTypePtr(); 5305 5306 NestedNameSpecifier *NNS 5307 = TransformNestedNameSpecifier(T->getQualifier(), 5308 /*FIXME:*/SourceRange(getBaseLocation()), 5309 ObjectType); 5310 if (!NNS) 5311 return QualType(); 5312 5313 // If the nested-name-specifier did not change, and we cannot compute the 5314 // context corresponding to the nested-name-specifier, then this 5315 // typename type will not change; exit early. 5316 CXXScopeSpec SS; 5317 SS.setRange(SourceRange(getBaseLocation())); 5318 SS.setScopeRep(NNS); 5319 5320 QualType Result; 5321 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 5322 Result = QualType(T, 0); 5323 5324 // Rebuild the typename type, which will probably turn into a 5325 // QualifiedNameType. 5326 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 5327 QualType NewTemplateId 5328 = TransformType(QualType(TemplateId, 0)); 5329 if (NewTemplateId.isNull()) 5330 return QualType(); 5331 5332 if (NNS == T->getQualifier() && 5333 NewTemplateId == QualType(TemplateId, 0)) 5334 Result = QualType(T, 0); 5335 else 5336 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5337 NNS, NewTemplateId); 5338 } else 5339 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5340 NNS, T->getIdentifier(), 5341 SourceRange(TL.getNameLoc())); 5342 5343 if (Result.isNull()) 5344 return QualType(); 5345 5346 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); 5347 NewTL.setNameLoc(TL.getNameLoc()); 5348 return Result; 5349} 5350 5351/// \brief Rebuilds a type within the context of the current instantiation. 5352/// 5353/// The type \p T is part of the type of an out-of-line member definition of 5354/// a class template (or class template partial specialization) that was parsed 5355/// and constructed before we entered the scope of the class template (or 5356/// partial specialization thereof). This routine will rebuild that type now 5357/// that we have entered the declarator's scope, which may produce different 5358/// canonical types, e.g., 5359/// 5360/// \code 5361/// template<typename T> 5362/// struct X { 5363/// typedef T* pointer; 5364/// pointer data(); 5365/// }; 5366/// 5367/// template<typename T> 5368/// typename X<T>::pointer X<T>::data() { ... } 5369/// \endcode 5370/// 5371/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5372/// since we do not know that we can look into X<T> when we parsed the type. 5373/// This function will rebuild the type, performing the lookup of "pointer" 5374/// in X<T> and returning a QualifiedNameType whose canonical type is the same 5375/// as the canonical type of T*, allowing the return types of the out-of-line 5376/// definition and the declaration to match. 5377QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 5378 DeclarationName Name) { 5379 if (T.isNull() || !T->isDependentType()) 5380 return T; 5381 5382 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5383 return Rebuilder.TransformType(T); 5384} 5385 5386/// \brief Produces a formatted string that describes the binding of 5387/// template parameters to template arguments. 5388std::string 5389Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5390 const TemplateArgumentList &Args) { 5391 // FIXME: For variadic templates, we'll need to get the structured list. 5392 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5393 Args.flat_size()); 5394} 5395 5396std::string 5397Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5398 const TemplateArgument *Args, 5399 unsigned NumArgs) { 5400 std::string Result; 5401 5402 if (!Params || Params->size() == 0 || NumArgs == 0) 5403 return Result; 5404 5405 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5406 if (I >= NumArgs) 5407 break; 5408 5409 if (I == 0) 5410 Result += "[with "; 5411 else 5412 Result += ", "; 5413 5414 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5415 Result += Id->getName(); 5416 } else { 5417 Result += '$'; 5418 Result += llvm::utostr(I); 5419 } 5420 5421 Result += " = "; 5422 5423 switch (Args[I].getKind()) { 5424 case TemplateArgument::Null: 5425 Result += "<no value>"; 5426 break; 5427 5428 case TemplateArgument::Type: { 5429 std::string TypeStr; 5430 Args[I].getAsType().getAsStringInternal(TypeStr, 5431 Context.PrintingPolicy); 5432 Result += TypeStr; 5433 break; 5434 } 5435 5436 case TemplateArgument::Declaration: { 5437 bool Unnamed = true; 5438 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5439 if (ND->getDeclName()) { 5440 Unnamed = false; 5441 Result += ND->getNameAsString(); 5442 } 5443 } 5444 5445 if (Unnamed) { 5446 Result += "<anonymous>"; 5447 } 5448 break; 5449 } 5450 5451 case TemplateArgument::Template: { 5452 std::string Str; 5453 llvm::raw_string_ostream OS(Str); 5454 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5455 Result += OS.str(); 5456 break; 5457 } 5458 5459 case TemplateArgument::Integral: { 5460 Result += Args[I].getAsIntegral()->toString(10); 5461 break; 5462 } 5463 5464 case TemplateArgument::Expression: { 5465 assert(false && "No expressions in deduced template arguments!"); 5466 Result += "<expression>"; 5467 break; 5468 } 5469 5470 case TemplateArgument::Pack: 5471 // FIXME: Format template argument packs 5472 Result += "<template argument pack>"; 5473 break; 5474 } 5475 } 5476 5477 Result += ']'; 5478 return Result; 5479} 5480