SemaTemplate.cpp revision 1274ccd90aec0b205fc838c3d504821ccfb55482
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/Sema/DeclSpec.h" 24#include "clang/Sema/ParsedTemplate.h" 25#include "clang/Basic/LangOptions.h" 26#include "clang/Basic/PartialDiagnostic.h" 27#include "llvm/ADT/StringExtras.h" 28using namespace clang; 29using namespace sema; 30 31/// \brief Determine whether the declaration found is acceptable as the name 32/// of a template and, if so, return that template declaration. Otherwise, 33/// returns NULL. 34static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 35 NamedDecl *Orig) { 36 NamedDecl *D = Orig->getUnderlyingDecl(); 37 38 if (isa<TemplateDecl>(D)) 39 return Orig; 40 41 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 42 // C++ [temp.local]p1: 43 // Like normal (non-template) classes, class templates have an 44 // injected-class-name (Clause 9). The injected-class-name 45 // can be used with or without a template-argument-list. When 46 // it is used without a template-argument-list, it is 47 // equivalent to the injected-class-name followed by the 48 // template-parameters of the class template enclosed in 49 // <>. When it is used with a template-argument-list, it 50 // refers to the specified class template specialization, 51 // which could be the current specialization or another 52 // specialization. 53 if (Record->isInjectedClassName()) { 54 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 55 if (Record->getDescribedClassTemplate()) 56 return Record->getDescribedClassTemplate(); 57 58 if (ClassTemplateSpecializationDecl *Spec 59 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 60 return Spec->getSpecializedTemplate(); 61 } 62 63 return 0; 64 } 65 66 return 0; 67} 68 69static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 70 // The set of class templates we've already seen. 71 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 72 LookupResult::Filter filter = R.makeFilter(); 73 while (filter.hasNext()) { 74 NamedDecl *Orig = filter.next(); 75 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 76 if (!Repl) 77 filter.erase(); 78 else if (Repl != Orig) { 79 80 // C++ [temp.local]p3: 81 // A lookup that finds an injected-class-name (10.2) can result in an 82 // ambiguity in certain cases (for example, if it is found in more than 83 // one base class). If all of the injected-class-names that are found 84 // refer to specializations of the same class template, and if the name 85 // is followed by a template-argument-list, the reference refers to the 86 // class template itself and not a specialization thereof, and is not 87 // ambiguous. 88 // 89 // FIXME: Will we eventually have to do the same for alias templates? 90 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 91 if (!ClassTemplates.insert(ClassTmpl)) { 92 filter.erase(); 93 continue; 94 } 95 96 // FIXME: we promote access to public here as a workaround to 97 // the fact that LookupResult doesn't let us remember that we 98 // found this template through a particular injected class name, 99 // which means we end up doing nasty things to the invariants. 100 // Pretending that access is public is *much* safer. 101 filter.replace(Repl, AS_public); 102 } 103 } 104 filter.done(); 105} 106 107TemplateNameKind Sema::isTemplateName(Scope *S, 108 CXXScopeSpec &SS, 109 bool hasTemplateKeyword, 110 UnqualifiedId &Name, 111 ParsedType ObjectTypePtr, 112 bool EnteringContext, 113 TemplateTy &TemplateResult, 114 bool &MemberOfUnknownSpecialization) { 115 assert(getLangOptions().CPlusPlus && "No template names in C!"); 116 117 DeclarationName TName; 118 MemberOfUnknownSpecialization = false; 119 120 switch (Name.getKind()) { 121 case UnqualifiedId::IK_Identifier: 122 TName = DeclarationName(Name.Identifier); 123 break; 124 125 case UnqualifiedId::IK_OperatorFunctionId: 126 TName = Context.DeclarationNames.getCXXOperatorName( 127 Name.OperatorFunctionId.Operator); 128 break; 129 130 case UnqualifiedId::IK_LiteralOperatorId: 131 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 132 break; 133 134 default: 135 return TNK_Non_template; 136 } 137 138 QualType ObjectType = ObjectTypePtr.get(); 139 140 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 141 LookupOrdinaryName); 142 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 143 MemberOfUnknownSpecialization); 144 if (R.empty()) return TNK_Non_template; 145 if (R.isAmbiguous()) { 146 // Suppress diagnostics; we'll redo this lookup later. 147 R.suppressDiagnostics(); 148 149 // FIXME: we might have ambiguous templates, in which case we 150 // should at least parse them properly! 151 return TNK_Non_template; 152 } 153 154 TemplateName Template; 155 TemplateNameKind TemplateKind; 156 157 unsigned ResultCount = R.end() - R.begin(); 158 if (ResultCount > 1) { 159 // We assume that we'll preserve the qualifier from a function 160 // template name in other ways. 161 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 162 TemplateKind = TNK_Function_template; 163 164 // We'll do this lookup again later. 165 R.suppressDiagnostics(); 166 } else { 167 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 168 169 if (SS.isSet() && !SS.isInvalid()) { 170 NestedNameSpecifier *Qualifier 171 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 172 Template = Context.getQualifiedTemplateName(Qualifier, 173 hasTemplateKeyword, TD); 174 } else { 175 Template = TemplateName(TD); 176 } 177 178 if (isa<FunctionTemplateDecl>(TD)) { 179 TemplateKind = TNK_Function_template; 180 181 // We'll do this lookup again later. 182 R.suppressDiagnostics(); 183 } else { 184 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 185 TemplateKind = TNK_Type_template; 186 } 187 } 188 189 TemplateResult = TemplateTy::make(Template); 190 return TemplateKind; 191} 192 193bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 194 SourceLocation IILoc, 195 Scope *S, 196 const CXXScopeSpec *SS, 197 TemplateTy &SuggestedTemplate, 198 TemplateNameKind &SuggestedKind) { 199 // We can't recover unless there's a dependent scope specifier preceding the 200 // template name. 201 // FIXME: Typo correction? 202 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 203 computeDeclContext(*SS)) 204 return false; 205 206 // The code is missing a 'template' keyword prior to the dependent template 207 // name. 208 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 209 Diag(IILoc, diag::err_template_kw_missing) 210 << Qualifier << II.getName() 211 << FixItHint::CreateInsertion(IILoc, "template "); 212 SuggestedTemplate 213 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 214 SuggestedKind = TNK_Dependent_template_name; 215 return true; 216} 217 218void Sema::LookupTemplateName(LookupResult &Found, 219 Scope *S, CXXScopeSpec &SS, 220 QualType ObjectType, 221 bool EnteringContext, 222 bool &MemberOfUnknownSpecialization) { 223 // Determine where to perform name lookup 224 MemberOfUnknownSpecialization = false; 225 DeclContext *LookupCtx = 0; 226 bool isDependent = false; 227 if (!ObjectType.isNull()) { 228 // This nested-name-specifier occurs in a member access expression, e.g., 229 // x->B::f, and we are looking into the type of the object. 230 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 231 LookupCtx = computeDeclContext(ObjectType); 232 isDependent = ObjectType->isDependentType(); 233 assert((isDependent || !ObjectType->isIncompleteType()) && 234 "Caller should have completed object type"); 235 } else if (SS.isSet()) { 236 // This nested-name-specifier occurs after another nested-name-specifier, 237 // so long into the context associated with the prior nested-name-specifier. 238 LookupCtx = computeDeclContext(SS, EnteringContext); 239 isDependent = isDependentScopeSpecifier(SS); 240 241 // The declaration context must be complete. 242 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 243 return; 244 } 245 246 bool ObjectTypeSearchedInScope = false; 247 if (LookupCtx) { 248 // Perform "qualified" name lookup into the declaration context we 249 // computed, which is either the type of the base of a member access 250 // expression or the declaration context associated with a prior 251 // nested-name-specifier. 252 LookupQualifiedName(Found, LookupCtx); 253 254 if (!ObjectType.isNull() && Found.empty()) { 255 // C++ [basic.lookup.classref]p1: 256 // In a class member access expression (5.2.5), if the . or -> token is 257 // immediately followed by an identifier followed by a <, the 258 // identifier must be looked up to determine whether the < is the 259 // beginning of a template argument list (14.2) or a less-than operator. 260 // The identifier is first looked up in the class of the object 261 // expression. If the identifier is not found, it is then looked up in 262 // the context of the entire postfix-expression and shall name a class 263 // or function template. 264 if (S) LookupName(Found, S); 265 ObjectTypeSearchedInScope = true; 266 } 267 } else if (isDependent && (!S || ObjectType.isNull())) { 268 // We cannot look into a dependent object type or nested nme 269 // specifier. 270 MemberOfUnknownSpecialization = true; 271 return; 272 } else { 273 // Perform unqualified name lookup in the current scope. 274 LookupName(Found, S); 275 } 276 277 if (Found.empty() && !isDependent) { 278 // If we did not find any names, attempt to correct any typos. 279 DeclarationName Name = Found.getLookupName(); 280 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 281 false, CTC_CXXCasts)) { 282 FilterAcceptableTemplateNames(Context, Found); 283 if (!Found.empty()) { 284 if (LookupCtx) 285 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 286 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 287 << FixItHint::CreateReplacement(Found.getNameLoc(), 288 Found.getLookupName().getAsString()); 289 else 290 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 291 << Name << Found.getLookupName() 292 << FixItHint::CreateReplacement(Found.getNameLoc(), 293 Found.getLookupName().getAsString()); 294 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 295 Diag(Template->getLocation(), diag::note_previous_decl) 296 << Template->getDeclName(); 297 } 298 } else { 299 Found.clear(); 300 Found.setLookupName(Name); 301 } 302 } 303 304 FilterAcceptableTemplateNames(Context, Found); 305 if (Found.empty()) { 306 if (isDependent) 307 MemberOfUnknownSpecialization = true; 308 return; 309 } 310 311 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 312 // C++ [basic.lookup.classref]p1: 313 // [...] If the lookup in the class of the object expression finds a 314 // template, the name is also looked up in the context of the entire 315 // postfix-expression and [...] 316 // 317 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 318 LookupOrdinaryName); 319 LookupName(FoundOuter, S); 320 FilterAcceptableTemplateNames(Context, FoundOuter); 321 322 if (FoundOuter.empty()) { 323 // - if the name is not found, the name found in the class of the 324 // object expression is used, otherwise 325 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 326 // - if the name is found in the context of the entire 327 // postfix-expression and does not name a class template, the name 328 // found in the class of the object expression is used, otherwise 329 } else if (!Found.isSuppressingDiagnostics()) { 330 // - if the name found is a class template, it must refer to the same 331 // entity as the one found in the class of the object expression, 332 // otherwise the program is ill-formed. 333 if (!Found.isSingleResult() || 334 Found.getFoundDecl()->getCanonicalDecl() 335 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 336 Diag(Found.getNameLoc(), 337 diag::ext_nested_name_member_ref_lookup_ambiguous) 338 << Found.getLookupName() 339 << ObjectType; 340 Diag(Found.getRepresentativeDecl()->getLocation(), 341 diag::note_ambig_member_ref_object_type) 342 << ObjectType; 343 Diag(FoundOuter.getFoundDecl()->getLocation(), 344 diag::note_ambig_member_ref_scope); 345 346 // Recover by taking the template that we found in the object 347 // expression's type. 348 } 349 } 350 } 351} 352 353/// ActOnDependentIdExpression - Handle a dependent id-expression that 354/// was just parsed. This is only possible with an explicit scope 355/// specifier naming a dependent type. 356ExprResult 357Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 358 const DeclarationNameInfo &NameInfo, 359 bool isAddressOfOperand, 360 const TemplateArgumentListInfo *TemplateArgs) { 361 NestedNameSpecifier *Qualifier 362 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 363 364 DeclContext *DC = getFunctionLevelDeclContext(); 365 366 if (!isAddressOfOperand && 367 isa<CXXMethodDecl>(DC) && 368 cast<CXXMethodDecl>(DC)->isInstance()) { 369 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 370 371 // Since the 'this' expression is synthesized, we don't need to 372 // perform the double-lookup check. 373 NamedDecl *FirstQualifierInScope = 0; 374 375 return Owned(CXXDependentScopeMemberExpr::Create(Context, 376 /*This*/ 0, ThisType, 377 /*IsArrow*/ true, 378 /*Op*/ SourceLocation(), 379 Qualifier, SS.getRange(), 380 FirstQualifierInScope, 381 NameInfo, 382 TemplateArgs)); 383 } 384 385 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 386} 387 388ExprResult 389Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 390 const DeclarationNameInfo &NameInfo, 391 const TemplateArgumentListInfo *TemplateArgs) { 392 return Owned(DependentScopeDeclRefExpr::Create(Context, 393 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 394 SS.getRange(), 395 NameInfo, 396 TemplateArgs)); 397} 398 399/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 400/// that the template parameter 'PrevDecl' is being shadowed by a new 401/// declaration at location Loc. Returns true to indicate that this is 402/// an error, and false otherwise. 403bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 404 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 405 406 // Microsoft Visual C++ permits template parameters to be shadowed. 407 if (getLangOptions().Microsoft) 408 return false; 409 410 // C++ [temp.local]p4: 411 // A template-parameter shall not be redeclared within its 412 // scope (including nested scopes). 413 Diag(Loc, diag::err_template_param_shadow) 414 << cast<NamedDecl>(PrevDecl)->getDeclName(); 415 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 416 return true; 417} 418 419/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 420/// the parameter D to reference the templated declaration and return a pointer 421/// to the template declaration. Otherwise, do nothing to D and return null. 422TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 423 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 424 D = Temp->getTemplatedDecl(); 425 return Temp; 426 } 427 return 0; 428} 429 430static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 431 const ParsedTemplateArgument &Arg) { 432 433 switch (Arg.getKind()) { 434 case ParsedTemplateArgument::Type: { 435 TypeSourceInfo *DI; 436 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 437 if (!DI) 438 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 439 return TemplateArgumentLoc(TemplateArgument(T), DI); 440 } 441 442 case ParsedTemplateArgument::NonType: { 443 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 444 return TemplateArgumentLoc(TemplateArgument(E), E); 445 } 446 447 case ParsedTemplateArgument::Template: { 448 TemplateName Template = Arg.getAsTemplate().get(); 449 return TemplateArgumentLoc(TemplateArgument(Template), 450 Arg.getScopeSpec().getRange(), 451 Arg.getLocation()); 452 } 453 } 454 455 llvm_unreachable("Unhandled parsed template argument"); 456 return TemplateArgumentLoc(); 457} 458 459/// \brief Translates template arguments as provided by the parser 460/// into template arguments used by semantic analysis. 461void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 462 TemplateArgumentListInfo &TemplateArgs) { 463 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 464 TemplateArgs.addArgument(translateTemplateArgument(*this, 465 TemplateArgsIn[I])); 466} 467 468/// ActOnTypeParameter - Called when a C++ template type parameter 469/// (e.g., "typename T") has been parsed. Typename specifies whether 470/// the keyword "typename" was used to declare the type parameter 471/// (otherwise, "class" was used), and KeyLoc is the location of the 472/// "class" or "typename" keyword. ParamName is the name of the 473/// parameter (NULL indicates an unnamed template parameter) and 474/// ParamName is the location of the parameter name (if any). 475/// If the type parameter has a default argument, it will be added 476/// later via ActOnTypeParameterDefault. 477Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 478 SourceLocation EllipsisLoc, 479 SourceLocation KeyLoc, 480 IdentifierInfo *ParamName, 481 SourceLocation ParamNameLoc, 482 unsigned Depth, unsigned Position, 483 SourceLocation EqualLoc, 484 ParsedType DefaultArg) { 485 assert(S->isTemplateParamScope() && 486 "Template type parameter not in template parameter scope!"); 487 bool Invalid = false; 488 489 if (ParamName) { 490 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 491 LookupOrdinaryName, 492 ForRedeclaration); 493 if (PrevDecl && PrevDecl->isTemplateParameter()) 494 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 495 PrevDecl); 496 } 497 498 SourceLocation Loc = ParamNameLoc; 499 if (!ParamName) 500 Loc = KeyLoc; 501 502 TemplateTypeParmDecl *Param 503 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 504 Loc, Depth, Position, ParamName, Typename, 505 Ellipsis); 506 if (Invalid) 507 Param->setInvalidDecl(); 508 509 if (ParamName) { 510 // Add the template parameter into the current scope. 511 S->AddDecl(Param); 512 IdResolver.AddDecl(Param); 513 } 514 515 // Handle the default argument, if provided. 516 if (DefaultArg) { 517 TypeSourceInfo *DefaultTInfo; 518 GetTypeFromParser(DefaultArg, &DefaultTInfo); 519 520 assert(DefaultTInfo && "expected source information for type"); 521 522 // C++0x [temp.param]p9: 523 // A default template-argument may be specified for any kind of 524 // template-parameter that is not a template parameter pack. 525 if (Ellipsis) { 526 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 527 return Param; 528 } 529 530 // Check the template argument itself. 531 if (CheckTemplateArgument(Param, DefaultTInfo)) { 532 Param->setInvalidDecl(); 533 return Param; 534 } 535 536 Param->setDefaultArgument(DefaultTInfo, false); 537 } 538 539 return Param; 540} 541 542/// \brief Check that the type of a non-type template parameter is 543/// well-formed. 544/// 545/// \returns the (possibly-promoted) parameter type if valid; 546/// otherwise, produces a diagnostic and returns a NULL type. 547QualType 548Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 549 // We don't allow variably-modified types as the type of non-type template 550 // parameters. 551 if (T->isVariablyModifiedType()) { 552 Diag(Loc, diag::err_variably_modified_nontype_template_param) 553 << T; 554 return QualType(); 555 } 556 557 // C++ [temp.param]p4: 558 // 559 // A non-type template-parameter shall have one of the following 560 // (optionally cv-qualified) types: 561 // 562 // -- integral or enumeration type, 563 if (T->isIntegralOrEnumerationType() || 564 // -- pointer to object or pointer to function, 565 T->isPointerType() || 566 // -- reference to object or reference to function, 567 T->isReferenceType() || 568 // -- pointer to member. 569 T->isMemberPointerType() || 570 // If T is a dependent type, we can't do the check now, so we 571 // assume that it is well-formed. 572 T->isDependentType()) 573 return T; 574 // C++ [temp.param]p8: 575 // 576 // A non-type template-parameter of type "array of T" or 577 // "function returning T" is adjusted to be of type "pointer to 578 // T" or "pointer to function returning T", respectively. 579 else if (T->isArrayType()) 580 // FIXME: Keep the type prior to promotion? 581 return Context.getArrayDecayedType(T); 582 else if (T->isFunctionType()) 583 // FIXME: Keep the type prior to promotion? 584 return Context.getPointerType(T); 585 586 Diag(Loc, diag::err_template_nontype_parm_bad_type) 587 << T; 588 589 return QualType(); 590} 591 592Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 593 unsigned Depth, 594 unsigned Position, 595 SourceLocation EqualLoc, 596 Expr *Default) { 597 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 598 QualType T = TInfo->getType(); 599 600 assert(S->isTemplateParamScope() && 601 "Non-type template parameter not in template parameter scope!"); 602 bool Invalid = false; 603 604 IdentifierInfo *ParamName = D.getIdentifier(); 605 if (ParamName) { 606 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 607 LookupOrdinaryName, 608 ForRedeclaration); 609 if (PrevDecl && PrevDecl->isTemplateParameter()) 610 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 611 PrevDecl); 612 } 613 614 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 615 if (T.isNull()) { 616 T = Context.IntTy; // Recover with an 'int' type. 617 Invalid = true; 618 } 619 620 NonTypeTemplateParmDecl *Param 621 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 622 D.getIdentifierLoc(), 623 Depth, Position, ParamName, T, TInfo); 624 if (Invalid) 625 Param->setInvalidDecl(); 626 627 if (D.getIdentifier()) { 628 // Add the template parameter into the current scope. 629 S->AddDecl(Param); 630 IdResolver.AddDecl(Param); 631 } 632 633 // Check the well-formedness of the default template argument, if provided. 634 if (Default) { 635 TemplateArgument Converted; 636 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 637 Param->setInvalidDecl(); 638 return Param; 639 } 640 641 Param->setDefaultArgument(Default, false); 642 } 643 644 return Param; 645} 646 647/// ActOnTemplateTemplateParameter - Called when a C++ template template 648/// parameter (e.g. T in template <template <typename> class T> class array) 649/// has been parsed. S is the current scope. 650Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 651 SourceLocation TmpLoc, 652 TemplateParamsTy *Params, 653 IdentifierInfo *Name, 654 SourceLocation NameLoc, 655 unsigned Depth, 656 unsigned Position, 657 SourceLocation EqualLoc, 658 const ParsedTemplateArgument &Default) { 659 assert(S->isTemplateParamScope() && 660 "Template template parameter not in template parameter scope!"); 661 662 // Construct the parameter object. 663 TemplateTemplateParmDecl *Param = 664 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 665 NameLoc.isInvalid()? TmpLoc : NameLoc, 666 Depth, Position, Name, 667 (TemplateParameterList*)Params); 668 669 // If the template template parameter has a name, then link the identifier 670 // into the scope and lookup mechanisms. 671 if (Name) { 672 S->AddDecl(Param); 673 IdResolver.AddDecl(Param); 674 } 675 676 if (!Default.isInvalid()) { 677 // Check only that we have a template template argument. We don't want to 678 // try to check well-formedness now, because our template template parameter 679 // might have dependent types in its template parameters, which we wouldn't 680 // be able to match now. 681 // 682 // If none of the template template parameter's template arguments mention 683 // other template parameters, we could actually perform more checking here. 684 // However, it isn't worth doing. 685 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 686 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 687 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 688 << DefaultArg.getSourceRange(); 689 return Param; 690 } 691 692 Param->setDefaultArgument(DefaultArg, false); 693 } 694 695 return Param; 696} 697 698/// ActOnTemplateParameterList - Builds a TemplateParameterList that 699/// contains the template parameters in Params/NumParams. 700Sema::TemplateParamsTy * 701Sema::ActOnTemplateParameterList(unsigned Depth, 702 SourceLocation ExportLoc, 703 SourceLocation TemplateLoc, 704 SourceLocation LAngleLoc, 705 Decl **Params, unsigned NumParams, 706 SourceLocation RAngleLoc) { 707 if (ExportLoc.isValid()) 708 Diag(ExportLoc, diag::warn_template_export_unsupported); 709 710 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 711 (NamedDecl**)Params, NumParams, 712 RAngleLoc); 713} 714 715static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 716 if (SS.isSet()) 717 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 718 SS.getRange()); 719} 720 721DeclResult 722Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 723 SourceLocation KWLoc, CXXScopeSpec &SS, 724 IdentifierInfo *Name, SourceLocation NameLoc, 725 AttributeList *Attr, 726 TemplateParameterList *TemplateParams, 727 AccessSpecifier AS) { 728 assert(TemplateParams && TemplateParams->size() > 0 && 729 "No template parameters"); 730 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 731 bool Invalid = false; 732 733 // Check that we can declare a template here. 734 if (CheckTemplateDeclScope(S, TemplateParams)) 735 return true; 736 737 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 738 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 739 740 // There is no such thing as an unnamed class template. 741 if (!Name) { 742 Diag(KWLoc, diag::err_template_unnamed_class); 743 return true; 744 } 745 746 // Find any previous declaration with this name. 747 DeclContext *SemanticContext; 748 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 749 ForRedeclaration); 750 if (SS.isNotEmpty() && !SS.isInvalid()) { 751 SemanticContext = computeDeclContext(SS, true); 752 if (!SemanticContext) { 753 // FIXME: Produce a reasonable diagnostic here 754 return true; 755 } 756 757 if (RequireCompleteDeclContext(SS, SemanticContext)) 758 return true; 759 760 LookupQualifiedName(Previous, SemanticContext); 761 } else { 762 SemanticContext = CurContext; 763 LookupName(Previous, S); 764 } 765 766 if (Previous.isAmbiguous()) 767 return true; 768 769 NamedDecl *PrevDecl = 0; 770 if (Previous.begin() != Previous.end()) 771 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 772 773 // If there is a previous declaration with the same name, check 774 // whether this is a valid redeclaration. 775 ClassTemplateDecl *PrevClassTemplate 776 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 777 778 // We may have found the injected-class-name of a class template, 779 // class template partial specialization, or class template specialization. 780 // In these cases, grab the template that is being defined or specialized. 781 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 782 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 783 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 784 PrevClassTemplate 785 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 786 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 787 PrevClassTemplate 788 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 789 ->getSpecializedTemplate(); 790 } 791 } 792 793 if (TUK == TUK_Friend) { 794 // C++ [namespace.memdef]p3: 795 // [...] When looking for a prior declaration of a class or a function 796 // declared as a friend, and when the name of the friend class or 797 // function is neither a qualified name nor a template-id, scopes outside 798 // the innermost enclosing namespace scope are not considered. 799 if (!SS.isSet()) { 800 DeclContext *OutermostContext = CurContext; 801 while (!OutermostContext->isFileContext()) 802 OutermostContext = OutermostContext->getLookupParent(); 803 804 if (PrevDecl && 805 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 806 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 807 SemanticContext = PrevDecl->getDeclContext(); 808 } else { 809 // Declarations in outer scopes don't matter. However, the outermost 810 // context we computed is the semantic context for our new 811 // declaration. 812 PrevDecl = PrevClassTemplate = 0; 813 SemanticContext = OutermostContext; 814 } 815 } 816 817 if (CurContext->isDependentContext()) { 818 // If this is a dependent context, we don't want to link the friend 819 // class template to the template in scope, because that would perform 820 // checking of the template parameter lists that can't be performed 821 // until the outer context is instantiated. 822 PrevDecl = PrevClassTemplate = 0; 823 } 824 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 825 PrevDecl = PrevClassTemplate = 0; 826 827 if (PrevClassTemplate) { 828 // Ensure that the template parameter lists are compatible. 829 if (!TemplateParameterListsAreEqual(TemplateParams, 830 PrevClassTemplate->getTemplateParameters(), 831 /*Complain=*/true, 832 TPL_TemplateMatch)) 833 return true; 834 835 // C++ [temp.class]p4: 836 // In a redeclaration, partial specialization, explicit 837 // specialization or explicit instantiation of a class template, 838 // the class-key shall agree in kind with the original class 839 // template declaration (7.1.5.3). 840 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 841 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 842 Diag(KWLoc, diag::err_use_with_wrong_tag) 843 << Name 844 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 845 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 846 Kind = PrevRecordDecl->getTagKind(); 847 } 848 849 // Check for redefinition of this class template. 850 if (TUK == TUK_Definition) { 851 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 852 Diag(NameLoc, diag::err_redefinition) << Name; 853 Diag(Def->getLocation(), diag::note_previous_definition); 854 // FIXME: Would it make sense to try to "forget" the previous 855 // definition, as part of error recovery? 856 return true; 857 } 858 } 859 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 860 // Maybe we will complain about the shadowed template parameter. 861 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 862 // Just pretend that we didn't see the previous declaration. 863 PrevDecl = 0; 864 } else if (PrevDecl) { 865 // C++ [temp]p5: 866 // A class template shall not have the same name as any other 867 // template, class, function, object, enumeration, enumerator, 868 // namespace, or type in the same scope (3.3), except as specified 869 // in (14.5.4). 870 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 871 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 872 return true; 873 } 874 875 // Check the template parameter list of this declaration, possibly 876 // merging in the template parameter list from the previous class 877 // template declaration. 878 if (CheckTemplateParameterList(TemplateParams, 879 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 880 TPC_ClassTemplate)) 881 Invalid = true; 882 883 if (SS.isSet()) { 884 // If the name of the template was qualified, we must be defining the 885 // template out-of-line. 886 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 887 !(TUK == TUK_Friend && CurContext->isDependentContext())) 888 Diag(NameLoc, diag::err_member_def_does_not_match) 889 << Name << SemanticContext << SS.getRange(); 890 } 891 892 CXXRecordDecl *NewClass = 893 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 894 PrevClassTemplate? 895 PrevClassTemplate->getTemplatedDecl() : 0, 896 /*DelayTypeCreation=*/true); 897 SetNestedNameSpecifier(NewClass, SS); 898 899 ClassTemplateDecl *NewTemplate 900 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 901 DeclarationName(Name), TemplateParams, 902 NewClass, PrevClassTemplate); 903 NewClass->setDescribedClassTemplate(NewTemplate); 904 905 // Build the type for the class template declaration now. 906 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 907 T = Context.getInjectedClassNameType(NewClass, T); 908 assert(T->isDependentType() && "Class template type is not dependent?"); 909 (void)T; 910 911 // If we are providing an explicit specialization of a member that is a 912 // class template, make a note of that. 913 if (PrevClassTemplate && 914 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 915 PrevClassTemplate->setMemberSpecialization(); 916 917 // Set the access specifier. 918 if (!Invalid && TUK != TUK_Friend) 919 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 920 921 // Set the lexical context of these templates 922 NewClass->setLexicalDeclContext(CurContext); 923 NewTemplate->setLexicalDeclContext(CurContext); 924 925 if (TUK == TUK_Definition) 926 NewClass->startDefinition(); 927 928 if (Attr) 929 ProcessDeclAttributeList(S, NewClass, Attr); 930 931 if (TUK != TUK_Friend) 932 PushOnScopeChains(NewTemplate, S); 933 else { 934 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 935 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 936 NewClass->setAccess(PrevClassTemplate->getAccess()); 937 } 938 939 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 940 PrevClassTemplate != NULL); 941 942 // Friend templates are visible in fairly strange ways. 943 if (!CurContext->isDependentContext()) { 944 DeclContext *DC = SemanticContext->getRedeclContext(); 945 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 946 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 947 PushOnScopeChains(NewTemplate, EnclosingScope, 948 /* AddToContext = */ false); 949 } 950 951 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 952 NewClass->getLocation(), 953 NewTemplate, 954 /*FIXME:*/NewClass->getLocation()); 955 Friend->setAccess(AS_public); 956 CurContext->addDecl(Friend); 957 } 958 959 if (Invalid) { 960 NewTemplate->setInvalidDecl(); 961 NewClass->setInvalidDecl(); 962 } 963 return NewTemplate; 964} 965 966/// \brief Diagnose the presence of a default template argument on a 967/// template parameter, which is ill-formed in certain contexts. 968/// 969/// \returns true if the default template argument should be dropped. 970static bool DiagnoseDefaultTemplateArgument(Sema &S, 971 Sema::TemplateParamListContext TPC, 972 SourceLocation ParamLoc, 973 SourceRange DefArgRange) { 974 switch (TPC) { 975 case Sema::TPC_ClassTemplate: 976 return false; 977 978 case Sema::TPC_FunctionTemplate: 979 // C++ [temp.param]p9: 980 // A default template-argument shall not be specified in a 981 // function template declaration or a function template 982 // definition [...] 983 // (This sentence is not in C++0x, per DR226). 984 if (!S.getLangOptions().CPlusPlus0x) 985 S.Diag(ParamLoc, 986 diag::err_template_parameter_default_in_function_template) 987 << DefArgRange; 988 return false; 989 990 case Sema::TPC_ClassTemplateMember: 991 // C++0x [temp.param]p9: 992 // A default template-argument shall not be specified in the 993 // template-parameter-lists of the definition of a member of a 994 // class template that appears outside of the member's class. 995 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 996 << DefArgRange; 997 return true; 998 999 case Sema::TPC_FriendFunctionTemplate: 1000 // C++ [temp.param]p9: 1001 // A default template-argument shall not be specified in a 1002 // friend template declaration. 1003 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1004 << DefArgRange; 1005 return true; 1006 1007 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1008 // for friend function templates if there is only a single 1009 // declaration (and it is a definition). Strange! 1010 } 1011 1012 return false; 1013} 1014 1015/// \brief Checks the validity of a template parameter list, possibly 1016/// considering the template parameter list from a previous 1017/// declaration. 1018/// 1019/// If an "old" template parameter list is provided, it must be 1020/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1021/// template parameter list. 1022/// 1023/// \param NewParams Template parameter list for a new template 1024/// declaration. This template parameter list will be updated with any 1025/// default arguments that are carried through from the previous 1026/// template parameter list. 1027/// 1028/// \param OldParams If provided, template parameter list from a 1029/// previous declaration of the same template. Default template 1030/// arguments will be merged from the old template parameter list to 1031/// the new template parameter list. 1032/// 1033/// \param TPC Describes the context in which we are checking the given 1034/// template parameter list. 1035/// 1036/// \returns true if an error occurred, false otherwise. 1037bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1038 TemplateParameterList *OldParams, 1039 TemplateParamListContext TPC) { 1040 bool Invalid = false; 1041 1042 // C++ [temp.param]p10: 1043 // The set of default template-arguments available for use with a 1044 // template declaration or definition is obtained by merging the 1045 // default arguments from the definition (if in scope) and all 1046 // declarations in scope in the same way default function 1047 // arguments are (8.3.6). 1048 bool SawDefaultArgument = false; 1049 SourceLocation PreviousDefaultArgLoc; 1050 1051 bool SawParameterPack = false; 1052 SourceLocation ParameterPackLoc; 1053 1054 // Dummy initialization to avoid warnings. 1055 TemplateParameterList::iterator OldParam = NewParams->end(); 1056 if (OldParams) 1057 OldParam = OldParams->begin(); 1058 1059 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1060 NewParamEnd = NewParams->end(); 1061 NewParam != NewParamEnd; ++NewParam) { 1062 // Variables used to diagnose redundant default arguments 1063 bool RedundantDefaultArg = false; 1064 SourceLocation OldDefaultLoc; 1065 SourceLocation NewDefaultLoc; 1066 1067 // Variables used to diagnose missing default arguments 1068 bool MissingDefaultArg = false; 1069 1070 // C++0x [temp.param]p11: 1071 // If a template parameter of a class template is a template parameter pack, 1072 // it must be the last template parameter. 1073 if (SawParameterPack) { 1074 Diag(ParameterPackLoc, 1075 diag::err_template_param_pack_must_be_last_template_parameter); 1076 Invalid = true; 1077 } 1078 1079 if (TemplateTypeParmDecl *NewTypeParm 1080 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1081 // Check the presence of a default argument here. 1082 if (NewTypeParm->hasDefaultArgument() && 1083 DiagnoseDefaultTemplateArgument(*this, TPC, 1084 NewTypeParm->getLocation(), 1085 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1086 .getSourceRange())) 1087 NewTypeParm->removeDefaultArgument(); 1088 1089 // Merge default arguments for template type parameters. 1090 TemplateTypeParmDecl *OldTypeParm 1091 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1092 1093 if (NewTypeParm->isParameterPack()) { 1094 assert(!NewTypeParm->hasDefaultArgument() && 1095 "Parameter packs can't have a default argument!"); 1096 SawParameterPack = true; 1097 ParameterPackLoc = NewTypeParm->getLocation(); 1098 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1099 NewTypeParm->hasDefaultArgument()) { 1100 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1101 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1102 SawDefaultArgument = true; 1103 RedundantDefaultArg = true; 1104 PreviousDefaultArgLoc = NewDefaultLoc; 1105 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1106 // Merge the default argument from the old declaration to the 1107 // new declaration. 1108 SawDefaultArgument = true; 1109 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1110 true); 1111 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1112 } else if (NewTypeParm->hasDefaultArgument()) { 1113 SawDefaultArgument = true; 1114 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1115 } else if (SawDefaultArgument) 1116 MissingDefaultArg = true; 1117 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1118 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1119 // Check the presence of a default argument here. 1120 if (NewNonTypeParm->hasDefaultArgument() && 1121 DiagnoseDefaultTemplateArgument(*this, TPC, 1122 NewNonTypeParm->getLocation(), 1123 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1124 NewNonTypeParm->removeDefaultArgument(); 1125 } 1126 1127 // Merge default arguments for non-type template parameters 1128 NonTypeTemplateParmDecl *OldNonTypeParm 1129 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1130 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1131 NewNonTypeParm->hasDefaultArgument()) { 1132 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1133 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1134 SawDefaultArgument = true; 1135 RedundantDefaultArg = true; 1136 PreviousDefaultArgLoc = NewDefaultLoc; 1137 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1138 // Merge the default argument from the old declaration to the 1139 // new declaration. 1140 SawDefaultArgument = true; 1141 // FIXME: We need to create a new kind of "default argument" 1142 // expression that points to a previous template template 1143 // parameter. 1144 NewNonTypeParm->setDefaultArgument( 1145 OldNonTypeParm->getDefaultArgument(), 1146 /*Inherited=*/ true); 1147 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1148 } else if (NewNonTypeParm->hasDefaultArgument()) { 1149 SawDefaultArgument = true; 1150 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1151 } else if (SawDefaultArgument) 1152 MissingDefaultArg = true; 1153 } else { 1154 // Check the presence of a default argument here. 1155 TemplateTemplateParmDecl *NewTemplateParm 1156 = cast<TemplateTemplateParmDecl>(*NewParam); 1157 if (NewTemplateParm->hasDefaultArgument() && 1158 DiagnoseDefaultTemplateArgument(*this, TPC, 1159 NewTemplateParm->getLocation(), 1160 NewTemplateParm->getDefaultArgument().getSourceRange())) 1161 NewTemplateParm->removeDefaultArgument(); 1162 1163 // Merge default arguments for template template parameters 1164 TemplateTemplateParmDecl *OldTemplateParm 1165 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1166 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1167 NewTemplateParm->hasDefaultArgument()) { 1168 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1169 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1170 SawDefaultArgument = true; 1171 RedundantDefaultArg = true; 1172 PreviousDefaultArgLoc = NewDefaultLoc; 1173 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1174 // Merge the default argument from the old declaration to the 1175 // new declaration. 1176 SawDefaultArgument = true; 1177 // FIXME: We need to create a new kind of "default argument" expression 1178 // that points to a previous template template parameter. 1179 NewTemplateParm->setDefaultArgument( 1180 OldTemplateParm->getDefaultArgument(), 1181 /*Inherited=*/ true); 1182 PreviousDefaultArgLoc 1183 = OldTemplateParm->getDefaultArgument().getLocation(); 1184 } else if (NewTemplateParm->hasDefaultArgument()) { 1185 SawDefaultArgument = true; 1186 PreviousDefaultArgLoc 1187 = NewTemplateParm->getDefaultArgument().getLocation(); 1188 } else if (SawDefaultArgument) 1189 MissingDefaultArg = true; 1190 } 1191 1192 if (RedundantDefaultArg) { 1193 // C++ [temp.param]p12: 1194 // A template-parameter shall not be given default arguments 1195 // by two different declarations in the same scope. 1196 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1197 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1198 Invalid = true; 1199 } else if (MissingDefaultArg) { 1200 // C++ [temp.param]p11: 1201 // If a template-parameter has a default template-argument, 1202 // all subsequent template-parameters shall have a default 1203 // template-argument supplied. 1204 Diag((*NewParam)->getLocation(), 1205 diag::err_template_param_default_arg_missing); 1206 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1207 Invalid = true; 1208 } 1209 1210 // If we have an old template parameter list that we're merging 1211 // in, move on to the next parameter. 1212 if (OldParams) 1213 ++OldParam; 1214 } 1215 1216 return Invalid; 1217} 1218 1219/// \brief Match the given template parameter lists to the given scope 1220/// specifier, returning the template parameter list that applies to the 1221/// name. 1222/// 1223/// \param DeclStartLoc the start of the declaration that has a scope 1224/// specifier or a template parameter list. 1225/// 1226/// \param SS the scope specifier that will be matched to the given template 1227/// parameter lists. This scope specifier precedes a qualified name that is 1228/// being declared. 1229/// 1230/// \param ParamLists the template parameter lists, from the outermost to the 1231/// innermost template parameter lists. 1232/// 1233/// \param NumParamLists the number of template parameter lists in ParamLists. 1234/// 1235/// \param IsFriend Whether to apply the slightly different rules for 1236/// matching template parameters to scope specifiers in friend 1237/// declarations. 1238/// 1239/// \param IsExplicitSpecialization will be set true if the entity being 1240/// declared is an explicit specialization, false otherwise. 1241/// 1242/// \returns the template parameter list, if any, that corresponds to the 1243/// name that is preceded by the scope specifier @p SS. This template 1244/// parameter list may be have template parameters (if we're declaring a 1245/// template) or may have no template parameters (if we're declaring a 1246/// template specialization), or may be NULL (if we were's declaring isn't 1247/// itself a template). 1248TemplateParameterList * 1249Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1250 const CXXScopeSpec &SS, 1251 TemplateParameterList **ParamLists, 1252 unsigned NumParamLists, 1253 bool IsFriend, 1254 bool &IsExplicitSpecialization, 1255 bool &Invalid) { 1256 IsExplicitSpecialization = false; 1257 1258 // Find the template-ids that occur within the nested-name-specifier. These 1259 // template-ids will match up with the template parameter lists. 1260 llvm::SmallVector<const TemplateSpecializationType *, 4> 1261 TemplateIdsInSpecifier; 1262 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1263 ExplicitSpecializationsInSpecifier; 1264 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1265 NNS; NNS = NNS->getPrefix()) { 1266 const Type *T = NNS->getAsType(); 1267 if (!T) break; 1268 1269 // C++0x [temp.expl.spec]p17: 1270 // A member or a member template may be nested within many 1271 // enclosing class templates. In an explicit specialization for 1272 // such a member, the member declaration shall be preceded by a 1273 // template<> for each enclosing class template that is 1274 // explicitly specialized. 1275 // 1276 // Following the existing practice of GNU and EDG, we allow a typedef of a 1277 // template specialization type. 1278 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1279 T = TT->LookThroughTypedefs().getTypePtr(); 1280 1281 if (const TemplateSpecializationType *SpecType 1282 = dyn_cast<TemplateSpecializationType>(T)) { 1283 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1284 if (!Template) 1285 continue; // FIXME: should this be an error? probably... 1286 1287 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1288 ClassTemplateSpecializationDecl *SpecDecl 1289 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1290 // If the nested name specifier refers to an explicit specialization, 1291 // we don't need a template<> header. 1292 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1293 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1294 continue; 1295 } 1296 } 1297 1298 TemplateIdsInSpecifier.push_back(SpecType); 1299 } 1300 } 1301 1302 // Reverse the list of template-ids in the scope specifier, so that we can 1303 // more easily match up the template-ids and the template parameter lists. 1304 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1305 1306 SourceLocation FirstTemplateLoc = DeclStartLoc; 1307 if (NumParamLists) 1308 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1309 1310 // Match the template-ids found in the specifier to the template parameter 1311 // lists. 1312 unsigned Idx = 0; 1313 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1314 Idx != NumTemplateIds; ++Idx) { 1315 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1316 bool DependentTemplateId = TemplateId->isDependentType(); 1317 if (Idx >= NumParamLists) { 1318 // We have a template-id without a corresponding template parameter 1319 // list. 1320 1321 // ...which is fine if this is a friend declaration. 1322 if (IsFriend) { 1323 IsExplicitSpecialization = true; 1324 break; 1325 } 1326 1327 if (DependentTemplateId) { 1328 // FIXME: the location information here isn't great. 1329 Diag(SS.getRange().getBegin(), 1330 diag::err_template_spec_needs_template_parameters) 1331 << TemplateId 1332 << SS.getRange(); 1333 Invalid = true; 1334 } else { 1335 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1336 << SS.getRange() 1337 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1338 IsExplicitSpecialization = true; 1339 } 1340 return 0; 1341 } 1342 1343 // Check the template parameter list against its corresponding template-id. 1344 if (DependentTemplateId) { 1345 TemplateParameterList *ExpectedTemplateParams = 0; 1346 1347 // Are there cases in (e.g.) friends where this won't match? 1348 if (const InjectedClassNameType *Injected 1349 = TemplateId->getAs<InjectedClassNameType>()) { 1350 CXXRecordDecl *Record = Injected->getDecl(); 1351 if (ClassTemplatePartialSpecializationDecl *Partial = 1352 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1353 ExpectedTemplateParams = Partial->getTemplateParameters(); 1354 else 1355 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1356 ->getTemplateParameters(); 1357 } 1358 1359 if (ExpectedTemplateParams) 1360 TemplateParameterListsAreEqual(ParamLists[Idx], 1361 ExpectedTemplateParams, 1362 true, TPL_TemplateMatch); 1363 1364 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1365 } else if (ParamLists[Idx]->size() > 0) 1366 Diag(ParamLists[Idx]->getTemplateLoc(), 1367 diag::err_template_param_list_matches_nontemplate) 1368 << TemplateId 1369 << ParamLists[Idx]->getSourceRange(); 1370 else 1371 IsExplicitSpecialization = true; 1372 } 1373 1374 // If there were at least as many template-ids as there were template 1375 // parameter lists, then there are no template parameter lists remaining for 1376 // the declaration itself. 1377 if (Idx >= NumParamLists) 1378 return 0; 1379 1380 // If there were too many template parameter lists, complain about that now. 1381 if (Idx != NumParamLists - 1) { 1382 while (Idx < NumParamLists - 1) { 1383 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1384 Diag(ParamLists[Idx]->getTemplateLoc(), 1385 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1386 : diag::err_template_spec_extra_headers) 1387 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1388 ParamLists[Idx]->getRAngleLoc()); 1389 1390 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1391 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1392 diag::note_explicit_template_spec_does_not_need_header) 1393 << ExplicitSpecializationsInSpecifier.back(); 1394 ExplicitSpecializationsInSpecifier.pop_back(); 1395 } 1396 1397 // We have a template parameter list with no corresponding scope, which 1398 // means that the resulting template declaration can't be instantiated 1399 // properly (we'll end up with dependent nodes when we shouldn't). 1400 if (!isExplicitSpecHeader) 1401 Invalid = true; 1402 1403 ++Idx; 1404 } 1405 } 1406 1407 // Return the last template parameter list, which corresponds to the 1408 // entity being declared. 1409 return ParamLists[NumParamLists - 1]; 1410} 1411 1412QualType Sema::CheckTemplateIdType(TemplateName Name, 1413 SourceLocation TemplateLoc, 1414 const TemplateArgumentListInfo &TemplateArgs) { 1415 TemplateDecl *Template = Name.getAsTemplateDecl(); 1416 if (!Template) { 1417 // The template name does not resolve to a template, so we just 1418 // build a dependent template-id type. 1419 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1420 } 1421 1422 // Check that the template argument list is well-formed for this 1423 // template. 1424 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1425 TemplateArgs.size()); 1426 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1427 false, Converted)) 1428 return QualType(); 1429 1430 assert((Converted.structuredSize() == 1431 Template->getTemplateParameters()->size()) && 1432 "Converted template argument list is too short!"); 1433 1434 QualType CanonType; 1435 1436 if (Name.isDependent() || 1437 TemplateSpecializationType::anyDependentTemplateArguments( 1438 TemplateArgs)) { 1439 // This class template specialization is a dependent 1440 // type. Therefore, its canonical type is another class template 1441 // specialization type that contains all of the converted 1442 // arguments in canonical form. This ensures that, e.g., A<T> and 1443 // A<T, T> have identical types when A is declared as: 1444 // 1445 // template<typename T, typename U = T> struct A; 1446 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1447 CanonType = Context.getTemplateSpecializationType(CanonName, 1448 Converted.getFlatArguments(), 1449 Converted.flatSize()); 1450 1451 // FIXME: CanonType is not actually the canonical type, and unfortunately 1452 // it is a TemplateSpecializationType that we will never use again. 1453 // In the future, we need to teach getTemplateSpecializationType to only 1454 // build the canonical type and return that to us. 1455 CanonType = Context.getCanonicalType(CanonType); 1456 1457 // This might work out to be a current instantiation, in which 1458 // case the canonical type needs to be the InjectedClassNameType. 1459 // 1460 // TODO: in theory this could be a simple hashtable lookup; most 1461 // changes to CurContext don't change the set of current 1462 // instantiations. 1463 if (isa<ClassTemplateDecl>(Template)) { 1464 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1465 // If we get out to a namespace, we're done. 1466 if (Ctx->isFileContext()) break; 1467 1468 // If this isn't a record, keep looking. 1469 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1470 if (!Record) continue; 1471 1472 // Look for one of the two cases with InjectedClassNameTypes 1473 // and check whether it's the same template. 1474 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1475 !Record->getDescribedClassTemplate()) 1476 continue; 1477 1478 // Fetch the injected class name type and check whether its 1479 // injected type is equal to the type we just built. 1480 QualType ICNT = Context.getTypeDeclType(Record); 1481 QualType Injected = cast<InjectedClassNameType>(ICNT) 1482 ->getInjectedSpecializationType(); 1483 1484 if (CanonType != Injected->getCanonicalTypeInternal()) 1485 continue; 1486 1487 // If so, the canonical type of this TST is the injected 1488 // class name type of the record we just found. 1489 assert(ICNT.isCanonical()); 1490 CanonType = ICNT; 1491 break; 1492 } 1493 } 1494 } else if (ClassTemplateDecl *ClassTemplate 1495 = dyn_cast<ClassTemplateDecl>(Template)) { 1496 // Find the class template specialization declaration that 1497 // corresponds to these arguments. 1498 void *InsertPos = 0; 1499 ClassTemplateSpecializationDecl *Decl 1500 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 1501 Converted.flatSize(), InsertPos); 1502 if (!Decl) { 1503 // This is the first time we have referenced this class template 1504 // specialization. Create the canonical declaration and add it to 1505 // the set of specializations. 1506 Decl = ClassTemplateSpecializationDecl::Create(Context, 1507 ClassTemplate->getTemplatedDecl()->getTagKind(), 1508 ClassTemplate->getDeclContext(), 1509 ClassTemplate->getLocation(), 1510 ClassTemplate, 1511 Converted, 0); 1512 ClassTemplate->AddSpecialization(Decl, InsertPos); 1513 Decl->setLexicalDeclContext(CurContext); 1514 } 1515 1516 CanonType = Context.getTypeDeclType(Decl); 1517 assert(isa<RecordType>(CanonType) && 1518 "type of non-dependent specialization is not a RecordType"); 1519 } 1520 1521 // Build the fully-sugared type for this class template 1522 // specialization, which refers back to the class template 1523 // specialization we created or found. 1524 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1525} 1526 1527TypeResult 1528Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1529 SourceLocation LAngleLoc, 1530 ASTTemplateArgsPtr TemplateArgsIn, 1531 SourceLocation RAngleLoc) { 1532 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1533 1534 // Translate the parser's template argument list in our AST format. 1535 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1536 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1537 1538 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1539 TemplateArgsIn.release(); 1540 1541 if (Result.isNull()) 1542 return true; 1543 1544 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1545 TemplateSpecializationTypeLoc TL 1546 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1547 TL.setTemplateNameLoc(TemplateLoc); 1548 TL.setLAngleLoc(LAngleLoc); 1549 TL.setRAngleLoc(RAngleLoc); 1550 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1551 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1552 1553 return CreateParsedType(Result, DI); 1554} 1555 1556TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1557 TagUseKind TUK, 1558 TypeSpecifierType TagSpec, 1559 SourceLocation TagLoc) { 1560 if (TypeResult.isInvalid()) 1561 return ::TypeResult(); 1562 1563 // FIXME: preserve source info, ideally without copying the DI. 1564 TypeSourceInfo *DI; 1565 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1566 1567 // Verify the tag specifier. 1568 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1569 1570 if (const RecordType *RT = Type->getAs<RecordType>()) { 1571 RecordDecl *D = RT->getDecl(); 1572 1573 IdentifierInfo *Id = D->getIdentifier(); 1574 assert(Id && "templated class must have an identifier"); 1575 1576 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1577 Diag(TagLoc, diag::err_use_with_wrong_tag) 1578 << Type 1579 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1580 Diag(D->getLocation(), diag::note_previous_use); 1581 } 1582 } 1583 1584 ElaboratedTypeKeyword Keyword 1585 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1586 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1587 1588 return ParsedType::make(ElabType); 1589} 1590 1591ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1592 LookupResult &R, 1593 bool RequiresADL, 1594 const TemplateArgumentListInfo &TemplateArgs) { 1595 // FIXME: Can we do any checking at this point? I guess we could check the 1596 // template arguments that we have against the template name, if the template 1597 // name refers to a single template. That's not a terribly common case, 1598 // though. 1599 1600 // These should be filtered out by our callers. 1601 assert(!R.empty() && "empty lookup results when building templateid"); 1602 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1603 1604 NestedNameSpecifier *Qualifier = 0; 1605 SourceRange QualifierRange; 1606 if (SS.isSet()) { 1607 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1608 QualifierRange = SS.getRange(); 1609 } 1610 1611 // We don't want lookup warnings at this point. 1612 R.suppressDiagnostics(); 1613 1614 bool Dependent 1615 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1616 &TemplateArgs); 1617 UnresolvedLookupExpr *ULE 1618 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1619 Qualifier, QualifierRange, 1620 R.getLookupNameInfo(), 1621 RequiresADL, TemplateArgs, 1622 R.begin(), R.end()); 1623 1624 return Owned(ULE); 1625} 1626 1627// We actually only call this from template instantiation. 1628ExprResult 1629Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1630 const DeclarationNameInfo &NameInfo, 1631 const TemplateArgumentListInfo &TemplateArgs) { 1632 DeclContext *DC; 1633 if (!(DC = computeDeclContext(SS, false)) || 1634 DC->isDependentContext() || 1635 RequireCompleteDeclContext(SS, DC)) 1636 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1637 1638 bool MemberOfUnknownSpecialization; 1639 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1640 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1641 MemberOfUnknownSpecialization); 1642 1643 if (R.isAmbiguous()) 1644 return ExprError(); 1645 1646 if (R.empty()) { 1647 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1648 << NameInfo.getName() << SS.getRange(); 1649 return ExprError(); 1650 } 1651 1652 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1653 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1654 << (NestedNameSpecifier*) SS.getScopeRep() 1655 << NameInfo.getName() << SS.getRange(); 1656 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1657 return ExprError(); 1658 } 1659 1660 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1661} 1662 1663/// \brief Form a dependent template name. 1664/// 1665/// This action forms a dependent template name given the template 1666/// name and its (presumably dependent) scope specifier. For 1667/// example, given "MetaFun::template apply", the scope specifier \p 1668/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1669/// of the "template" keyword, and "apply" is the \p Name. 1670TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1671 SourceLocation TemplateKWLoc, 1672 CXXScopeSpec &SS, 1673 UnqualifiedId &Name, 1674 ParsedType ObjectType, 1675 bool EnteringContext, 1676 TemplateTy &Result) { 1677 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1678 !getLangOptions().CPlusPlus0x) 1679 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1680 << FixItHint::CreateRemoval(TemplateKWLoc); 1681 1682 DeclContext *LookupCtx = 0; 1683 if (SS.isSet()) 1684 LookupCtx = computeDeclContext(SS, EnteringContext); 1685 if (!LookupCtx && ObjectType) 1686 LookupCtx = computeDeclContext(ObjectType.get()); 1687 if (LookupCtx) { 1688 // C++0x [temp.names]p5: 1689 // If a name prefixed by the keyword template is not the name of 1690 // a template, the program is ill-formed. [Note: the keyword 1691 // template may not be applied to non-template members of class 1692 // templates. -end note ] [ Note: as is the case with the 1693 // typename prefix, the template prefix is allowed in cases 1694 // where it is not strictly necessary; i.e., when the 1695 // nested-name-specifier or the expression on the left of the -> 1696 // or . is not dependent on a template-parameter, or the use 1697 // does not appear in the scope of a template. -end note] 1698 // 1699 // Note: C++03 was more strict here, because it banned the use of 1700 // the "template" keyword prior to a template-name that was not a 1701 // dependent name. C++ DR468 relaxed this requirement (the 1702 // "template" keyword is now permitted). We follow the C++0x 1703 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1704 bool MemberOfUnknownSpecialization; 1705 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1706 ObjectType, EnteringContext, Result, 1707 MemberOfUnknownSpecialization); 1708 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1709 isa<CXXRecordDecl>(LookupCtx) && 1710 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1711 // This is a dependent template. Handle it below. 1712 } else if (TNK == TNK_Non_template) { 1713 Diag(Name.getSourceRange().getBegin(), 1714 diag::err_template_kw_refers_to_non_template) 1715 << GetNameFromUnqualifiedId(Name).getName() 1716 << Name.getSourceRange() 1717 << TemplateKWLoc; 1718 return TNK_Non_template; 1719 } else { 1720 // We found something; return it. 1721 return TNK; 1722 } 1723 } 1724 1725 NestedNameSpecifier *Qualifier 1726 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1727 1728 switch (Name.getKind()) { 1729 case UnqualifiedId::IK_Identifier: 1730 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1731 Name.Identifier)); 1732 return TNK_Dependent_template_name; 1733 1734 case UnqualifiedId::IK_OperatorFunctionId: 1735 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1736 Name.OperatorFunctionId.Operator)); 1737 return TNK_Dependent_template_name; 1738 1739 case UnqualifiedId::IK_LiteralOperatorId: 1740 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1741 1742 default: 1743 break; 1744 } 1745 1746 Diag(Name.getSourceRange().getBegin(), 1747 diag::err_template_kw_refers_to_non_template) 1748 << GetNameFromUnqualifiedId(Name).getName() 1749 << Name.getSourceRange() 1750 << TemplateKWLoc; 1751 return TNK_Non_template; 1752} 1753 1754bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1755 const TemplateArgumentLoc &AL, 1756 TemplateArgumentListBuilder &Converted) { 1757 const TemplateArgument &Arg = AL.getArgument(); 1758 1759 // Check template type parameter. 1760 switch(Arg.getKind()) { 1761 case TemplateArgument::Type: 1762 // C++ [temp.arg.type]p1: 1763 // A template-argument for a template-parameter which is a 1764 // type shall be a type-id. 1765 break; 1766 case TemplateArgument::Template: { 1767 // We have a template type parameter but the template argument 1768 // is a template without any arguments. 1769 SourceRange SR = AL.getSourceRange(); 1770 TemplateName Name = Arg.getAsTemplate(); 1771 Diag(SR.getBegin(), diag::err_template_missing_args) 1772 << Name << SR; 1773 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1774 Diag(Decl->getLocation(), diag::note_template_decl_here); 1775 1776 return true; 1777 } 1778 default: { 1779 // We have a template type parameter but the template argument 1780 // is not a type. 1781 SourceRange SR = AL.getSourceRange(); 1782 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1783 Diag(Param->getLocation(), diag::note_template_param_here); 1784 1785 return true; 1786 } 1787 } 1788 1789 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1790 return true; 1791 1792 // Add the converted template type argument. 1793 Converted.Append( 1794 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1795 return false; 1796} 1797 1798/// \brief Substitute template arguments into the default template argument for 1799/// the given template type parameter. 1800/// 1801/// \param SemaRef the semantic analysis object for which we are performing 1802/// the substitution. 1803/// 1804/// \param Template the template that we are synthesizing template arguments 1805/// for. 1806/// 1807/// \param TemplateLoc the location of the template name that started the 1808/// template-id we are checking. 1809/// 1810/// \param RAngleLoc the location of the right angle bracket ('>') that 1811/// terminates the template-id. 1812/// 1813/// \param Param the template template parameter whose default we are 1814/// substituting into. 1815/// 1816/// \param Converted the list of template arguments provided for template 1817/// parameters that precede \p Param in the template parameter list. 1818/// 1819/// \returns the substituted template argument, or NULL if an error occurred. 1820static TypeSourceInfo * 1821SubstDefaultTemplateArgument(Sema &SemaRef, 1822 TemplateDecl *Template, 1823 SourceLocation TemplateLoc, 1824 SourceLocation RAngleLoc, 1825 TemplateTypeParmDecl *Param, 1826 TemplateArgumentListBuilder &Converted) { 1827 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1828 1829 // If the argument type is dependent, instantiate it now based 1830 // on the previously-computed template arguments. 1831 if (ArgType->getType()->isDependentType()) { 1832 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1833 /*TakeArgs=*/false); 1834 1835 MultiLevelTemplateArgumentList AllTemplateArgs 1836 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1837 1838 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1839 Template, Converted.getFlatArguments(), 1840 Converted.flatSize(), 1841 SourceRange(TemplateLoc, RAngleLoc)); 1842 1843 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1844 Param->getDefaultArgumentLoc(), 1845 Param->getDeclName()); 1846 } 1847 1848 return ArgType; 1849} 1850 1851/// \brief Substitute template arguments into the default template argument for 1852/// the given non-type template parameter. 1853/// 1854/// \param SemaRef the semantic analysis object for which we are performing 1855/// the substitution. 1856/// 1857/// \param Template the template that we are synthesizing template arguments 1858/// for. 1859/// 1860/// \param TemplateLoc the location of the template name that started the 1861/// template-id we are checking. 1862/// 1863/// \param RAngleLoc the location of the right angle bracket ('>') that 1864/// terminates the template-id. 1865/// 1866/// \param Param the non-type template parameter whose default we are 1867/// substituting into. 1868/// 1869/// \param Converted the list of template arguments provided for template 1870/// parameters that precede \p Param in the template parameter list. 1871/// 1872/// \returns the substituted template argument, or NULL if an error occurred. 1873static ExprResult 1874SubstDefaultTemplateArgument(Sema &SemaRef, 1875 TemplateDecl *Template, 1876 SourceLocation TemplateLoc, 1877 SourceLocation RAngleLoc, 1878 NonTypeTemplateParmDecl *Param, 1879 TemplateArgumentListBuilder &Converted) { 1880 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1881 /*TakeArgs=*/false); 1882 1883 MultiLevelTemplateArgumentList AllTemplateArgs 1884 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1885 1886 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1887 Template, Converted.getFlatArguments(), 1888 Converted.flatSize(), 1889 SourceRange(TemplateLoc, RAngleLoc)); 1890 1891 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1892} 1893 1894/// \brief Substitute template arguments into the default template argument for 1895/// the given template template parameter. 1896/// 1897/// \param SemaRef the semantic analysis object for which we are performing 1898/// the substitution. 1899/// 1900/// \param Template the template that we are synthesizing template arguments 1901/// for. 1902/// 1903/// \param TemplateLoc the location of the template name that started the 1904/// template-id we are checking. 1905/// 1906/// \param RAngleLoc the location of the right angle bracket ('>') that 1907/// terminates the template-id. 1908/// 1909/// \param Param the template template parameter whose default we are 1910/// substituting into. 1911/// 1912/// \param Converted the list of template arguments provided for template 1913/// parameters that precede \p Param in the template parameter list. 1914/// 1915/// \returns the substituted template argument, or NULL if an error occurred. 1916static TemplateName 1917SubstDefaultTemplateArgument(Sema &SemaRef, 1918 TemplateDecl *Template, 1919 SourceLocation TemplateLoc, 1920 SourceLocation RAngleLoc, 1921 TemplateTemplateParmDecl *Param, 1922 TemplateArgumentListBuilder &Converted) { 1923 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1924 /*TakeArgs=*/false); 1925 1926 MultiLevelTemplateArgumentList AllTemplateArgs 1927 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1928 1929 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1930 Template, Converted.getFlatArguments(), 1931 Converted.flatSize(), 1932 SourceRange(TemplateLoc, RAngleLoc)); 1933 1934 return SemaRef.SubstTemplateName( 1935 Param->getDefaultArgument().getArgument().getAsTemplate(), 1936 Param->getDefaultArgument().getTemplateNameLoc(), 1937 AllTemplateArgs); 1938} 1939 1940/// \brief If the given template parameter has a default template 1941/// argument, substitute into that default template argument and 1942/// return the corresponding template argument. 1943TemplateArgumentLoc 1944Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1945 SourceLocation TemplateLoc, 1946 SourceLocation RAngleLoc, 1947 Decl *Param, 1948 TemplateArgumentListBuilder &Converted) { 1949 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1950 if (!TypeParm->hasDefaultArgument()) 1951 return TemplateArgumentLoc(); 1952 1953 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1954 TemplateLoc, 1955 RAngleLoc, 1956 TypeParm, 1957 Converted); 1958 if (DI) 1959 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1960 1961 return TemplateArgumentLoc(); 1962 } 1963 1964 if (NonTypeTemplateParmDecl *NonTypeParm 1965 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1966 if (!NonTypeParm->hasDefaultArgument()) 1967 return TemplateArgumentLoc(); 1968 1969 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1970 TemplateLoc, 1971 RAngleLoc, 1972 NonTypeParm, 1973 Converted); 1974 if (Arg.isInvalid()) 1975 return TemplateArgumentLoc(); 1976 1977 Expr *ArgE = Arg.takeAs<Expr>(); 1978 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1979 } 1980 1981 TemplateTemplateParmDecl *TempTempParm 1982 = cast<TemplateTemplateParmDecl>(Param); 1983 if (!TempTempParm->hasDefaultArgument()) 1984 return TemplateArgumentLoc(); 1985 1986 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1987 TemplateLoc, 1988 RAngleLoc, 1989 TempTempParm, 1990 Converted); 1991 if (TName.isNull()) 1992 return TemplateArgumentLoc(); 1993 1994 return TemplateArgumentLoc(TemplateArgument(TName), 1995 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1996 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1997} 1998 1999/// \brief Check that the given template argument corresponds to the given 2000/// template parameter. 2001bool Sema::CheckTemplateArgument(NamedDecl *Param, 2002 const TemplateArgumentLoc &Arg, 2003 TemplateDecl *Template, 2004 SourceLocation TemplateLoc, 2005 SourceLocation RAngleLoc, 2006 TemplateArgumentListBuilder &Converted, 2007 CheckTemplateArgumentKind CTAK) { 2008 // Check template type parameters. 2009 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2010 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2011 2012 // Check non-type template parameters. 2013 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2014 // Do substitution on the type of the non-type template parameter 2015 // with the template arguments we've seen thus far. 2016 QualType NTTPType = NTTP->getType(); 2017 if (NTTPType->isDependentType()) { 2018 // Do substitution on the type of the non-type template parameter. 2019 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2020 NTTP, Converted.getFlatArguments(), 2021 Converted.flatSize(), 2022 SourceRange(TemplateLoc, RAngleLoc)); 2023 2024 TemplateArgumentList TemplateArgs(Context, Converted, 2025 /*TakeArgs=*/false); 2026 NTTPType = SubstType(NTTPType, 2027 MultiLevelTemplateArgumentList(TemplateArgs), 2028 NTTP->getLocation(), 2029 NTTP->getDeclName()); 2030 // If that worked, check the non-type template parameter type 2031 // for validity. 2032 if (!NTTPType.isNull()) 2033 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2034 NTTP->getLocation()); 2035 if (NTTPType.isNull()) 2036 return true; 2037 } 2038 2039 switch (Arg.getArgument().getKind()) { 2040 case TemplateArgument::Null: 2041 assert(false && "Should never see a NULL template argument here"); 2042 return true; 2043 2044 case TemplateArgument::Expression: { 2045 Expr *E = Arg.getArgument().getAsExpr(); 2046 TemplateArgument Result; 2047 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2048 return true; 2049 2050 Converted.Append(Result); 2051 break; 2052 } 2053 2054 case TemplateArgument::Declaration: 2055 case TemplateArgument::Integral: 2056 // We've already checked this template argument, so just copy 2057 // it to the list of converted arguments. 2058 Converted.Append(Arg.getArgument()); 2059 break; 2060 2061 case TemplateArgument::Template: 2062 // We were given a template template argument. It may not be ill-formed; 2063 // see below. 2064 if (DependentTemplateName *DTN 2065 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2066 // We have a template argument such as \c T::template X, which we 2067 // parsed as a template template argument. However, since we now 2068 // know that we need a non-type template argument, convert this 2069 // template name into an expression. 2070 2071 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2072 Arg.getTemplateNameLoc()); 2073 2074 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2075 DTN->getQualifier(), 2076 Arg.getTemplateQualifierRange(), 2077 NameInfo); 2078 2079 TemplateArgument Result; 2080 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2081 return true; 2082 2083 Converted.Append(Result); 2084 break; 2085 } 2086 2087 // We have a template argument that actually does refer to a class 2088 // template, template alias, or template template parameter, and 2089 // therefore cannot be a non-type template argument. 2090 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2091 << Arg.getSourceRange(); 2092 2093 Diag(Param->getLocation(), diag::note_template_param_here); 2094 return true; 2095 2096 case TemplateArgument::Type: { 2097 // We have a non-type template parameter but the template 2098 // argument is a type. 2099 2100 // C++ [temp.arg]p2: 2101 // In a template-argument, an ambiguity between a type-id and 2102 // an expression is resolved to a type-id, regardless of the 2103 // form of the corresponding template-parameter. 2104 // 2105 // We warn specifically about this case, since it can be rather 2106 // confusing for users. 2107 QualType T = Arg.getArgument().getAsType(); 2108 SourceRange SR = Arg.getSourceRange(); 2109 if (T->isFunctionType()) 2110 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2111 else 2112 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2113 Diag(Param->getLocation(), diag::note_template_param_here); 2114 return true; 2115 } 2116 2117 case TemplateArgument::Pack: 2118 llvm_unreachable("Caller must expand template argument packs"); 2119 break; 2120 } 2121 2122 return false; 2123 } 2124 2125 2126 // Check template template parameters. 2127 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2128 2129 // Substitute into the template parameter list of the template 2130 // template parameter, since previously-supplied template arguments 2131 // may appear within the template template parameter. 2132 { 2133 // Set up a template instantiation context. 2134 LocalInstantiationScope Scope(*this); 2135 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2136 TempParm, Converted.getFlatArguments(), 2137 Converted.flatSize(), 2138 SourceRange(TemplateLoc, RAngleLoc)); 2139 2140 TemplateArgumentList TemplateArgs(Context, Converted, 2141 /*TakeArgs=*/false); 2142 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2143 SubstDecl(TempParm, CurContext, 2144 MultiLevelTemplateArgumentList(TemplateArgs))); 2145 if (!TempParm) 2146 return true; 2147 2148 // FIXME: TempParam is leaked. 2149 } 2150 2151 switch (Arg.getArgument().getKind()) { 2152 case TemplateArgument::Null: 2153 assert(false && "Should never see a NULL template argument here"); 2154 return true; 2155 2156 case TemplateArgument::Template: 2157 if (CheckTemplateArgument(TempParm, Arg)) 2158 return true; 2159 2160 Converted.Append(Arg.getArgument()); 2161 break; 2162 2163 case TemplateArgument::Expression: 2164 case TemplateArgument::Type: 2165 // We have a template template parameter but the template 2166 // argument does not refer to a template. 2167 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2168 return true; 2169 2170 case TemplateArgument::Declaration: 2171 llvm_unreachable( 2172 "Declaration argument with template template parameter"); 2173 break; 2174 case TemplateArgument::Integral: 2175 llvm_unreachable( 2176 "Integral argument with template template parameter"); 2177 break; 2178 2179 case TemplateArgument::Pack: 2180 llvm_unreachable("Caller must expand template argument packs"); 2181 break; 2182 } 2183 2184 return false; 2185} 2186 2187/// \brief Check that the given template argument list is well-formed 2188/// for specializing the given template. 2189bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2190 SourceLocation TemplateLoc, 2191 const TemplateArgumentListInfo &TemplateArgs, 2192 bool PartialTemplateArgs, 2193 TemplateArgumentListBuilder &Converted) { 2194 TemplateParameterList *Params = Template->getTemplateParameters(); 2195 unsigned NumParams = Params->size(); 2196 unsigned NumArgs = TemplateArgs.size(); 2197 bool Invalid = false; 2198 2199 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2200 2201 bool HasParameterPack = 2202 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2203 2204 if ((NumArgs > NumParams && !HasParameterPack) || 2205 (NumArgs < Params->getMinRequiredArguments() && 2206 !PartialTemplateArgs)) { 2207 // FIXME: point at either the first arg beyond what we can handle, 2208 // or the '>', depending on whether we have too many or too few 2209 // arguments. 2210 SourceRange Range; 2211 if (NumArgs > NumParams) 2212 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2213 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2214 << (NumArgs > NumParams) 2215 << (isa<ClassTemplateDecl>(Template)? 0 : 2216 isa<FunctionTemplateDecl>(Template)? 1 : 2217 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2218 << Template << Range; 2219 Diag(Template->getLocation(), diag::note_template_decl_here) 2220 << Params->getSourceRange(); 2221 Invalid = true; 2222 } 2223 2224 // C++ [temp.arg]p1: 2225 // [...] The type and form of each template-argument specified in 2226 // a template-id shall match the type and form specified for the 2227 // corresponding parameter declared by the template in its 2228 // template-parameter-list. 2229 unsigned ArgIdx = 0; 2230 for (TemplateParameterList::iterator Param = Params->begin(), 2231 ParamEnd = Params->end(); 2232 Param != ParamEnd; ++Param, ++ArgIdx) { 2233 if (ArgIdx > NumArgs && PartialTemplateArgs) 2234 break; 2235 2236 // If we have a template parameter pack, check every remaining template 2237 // argument against that template parameter pack. 2238 if ((*Param)->isTemplateParameterPack()) { 2239 Converted.BeginPack(); 2240 for (; ArgIdx < NumArgs; ++ArgIdx) { 2241 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2242 TemplateLoc, RAngleLoc, Converted)) { 2243 Invalid = true; 2244 break; 2245 } 2246 } 2247 Converted.EndPack(); 2248 continue; 2249 } 2250 2251 if (ArgIdx < NumArgs) { 2252 // Check the template argument we were given. 2253 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2254 TemplateLoc, RAngleLoc, Converted)) 2255 return true; 2256 2257 continue; 2258 } 2259 2260 // We have a default template argument that we will use. 2261 TemplateArgumentLoc Arg; 2262 2263 // Retrieve the default template argument from the template 2264 // parameter. For each kind of template parameter, we substitute the 2265 // template arguments provided thus far and any "outer" template arguments 2266 // (when the template parameter was part of a nested template) into 2267 // the default argument. 2268 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2269 if (!TTP->hasDefaultArgument()) { 2270 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2271 break; 2272 } 2273 2274 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2275 Template, 2276 TemplateLoc, 2277 RAngleLoc, 2278 TTP, 2279 Converted); 2280 if (!ArgType) 2281 return true; 2282 2283 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2284 ArgType); 2285 } else if (NonTypeTemplateParmDecl *NTTP 2286 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2287 if (!NTTP->hasDefaultArgument()) { 2288 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2289 break; 2290 } 2291 2292 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2293 TemplateLoc, 2294 RAngleLoc, 2295 NTTP, 2296 Converted); 2297 if (E.isInvalid()) 2298 return true; 2299 2300 Expr *Ex = E.takeAs<Expr>(); 2301 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2302 } else { 2303 TemplateTemplateParmDecl *TempParm 2304 = cast<TemplateTemplateParmDecl>(*Param); 2305 2306 if (!TempParm->hasDefaultArgument()) { 2307 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2308 break; 2309 } 2310 2311 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2312 TemplateLoc, 2313 RAngleLoc, 2314 TempParm, 2315 Converted); 2316 if (Name.isNull()) 2317 return true; 2318 2319 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2320 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2321 TempParm->getDefaultArgument().getTemplateNameLoc()); 2322 } 2323 2324 // Introduce an instantiation record that describes where we are using 2325 // the default template argument. 2326 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2327 Converted.getFlatArguments(), 2328 Converted.flatSize(), 2329 SourceRange(TemplateLoc, RAngleLoc)); 2330 2331 // Check the default template argument. 2332 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2333 RAngleLoc, Converted)) 2334 return true; 2335 } 2336 2337 return Invalid; 2338} 2339 2340/// \brief Check a template argument against its corresponding 2341/// template type parameter. 2342/// 2343/// This routine implements the semantics of C++ [temp.arg.type]. It 2344/// returns true if an error occurred, and false otherwise. 2345bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2346 TypeSourceInfo *ArgInfo) { 2347 assert(ArgInfo && "invalid TypeSourceInfo"); 2348 QualType Arg = ArgInfo->getType(); 2349 2350 // C++03 [temp.arg.type]p2: 2351 // A local type, a type with no linkage, an unnamed type or a type 2352 // compounded from any of these types shall not be used as a 2353 // template-argument for a template type-parameter. 2354 // C++0x allows these, and even in C++03 we allow them as an extension with 2355 // a warning. 2356 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2357 if (!LangOpts.CPlusPlus0x) { 2358 const TagType *Tag = 0; 2359 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2360 Tag = EnumT; 2361 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2362 Tag = RecordT; 2363 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2364 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2365 Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2366 << QualType(Tag, 0) << SR; 2367 } else if (Tag && !Tag->getDecl()->getDeclName() && 2368 !Tag->getDecl()->getTypedefForAnonDecl()) { 2369 Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2370 Diag(Tag->getDecl()->getLocation(), 2371 diag::note_template_unnamed_type_here); 2372 } 2373 } 2374 2375 if (Arg->isVariablyModifiedType()) { 2376 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2377 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2378 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2379 } 2380 2381 return false; 2382} 2383 2384/// \brief Checks whether the given template argument is the address 2385/// of an object or function according to C++ [temp.arg.nontype]p1. 2386static bool 2387CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2388 NonTypeTemplateParmDecl *Param, 2389 QualType ParamType, 2390 Expr *ArgIn, 2391 TemplateArgument &Converted) { 2392 bool Invalid = false; 2393 Expr *Arg = ArgIn; 2394 QualType ArgType = Arg->getType(); 2395 2396 // See through any implicit casts we added to fix the type. 2397 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2398 Arg = Cast->getSubExpr(); 2399 2400 // C++ [temp.arg.nontype]p1: 2401 // 2402 // A template-argument for a non-type, non-template 2403 // template-parameter shall be one of: [...] 2404 // 2405 // -- the address of an object or function with external 2406 // linkage, including function templates and function 2407 // template-ids but excluding non-static class members, 2408 // expressed as & id-expression where the & is optional if 2409 // the name refers to a function or array, or if the 2410 // corresponding template-parameter is a reference; or 2411 DeclRefExpr *DRE = 0; 2412 2413 // In C++98/03 mode, give an extension warning on any extra parentheses. 2414 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2415 bool ExtraParens = false; 2416 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2417 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2418 S.Diag(Arg->getSourceRange().getBegin(), 2419 diag::ext_template_arg_extra_parens) 2420 << Arg->getSourceRange(); 2421 ExtraParens = true; 2422 } 2423 2424 Arg = Parens->getSubExpr(); 2425 } 2426 2427 bool AddressTaken = false; 2428 SourceLocation AddrOpLoc; 2429 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2430 if (UnOp->getOpcode() == UO_AddrOf) { 2431 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2432 AddressTaken = true; 2433 AddrOpLoc = UnOp->getOperatorLoc(); 2434 } 2435 } else 2436 DRE = dyn_cast<DeclRefExpr>(Arg); 2437 2438 if (!DRE) { 2439 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2440 << Arg->getSourceRange(); 2441 S.Diag(Param->getLocation(), diag::note_template_param_here); 2442 return true; 2443 } 2444 2445 // Stop checking the precise nature of the argument if it is value dependent, 2446 // it should be checked when instantiated. 2447 if (Arg->isValueDependent()) { 2448 Converted = TemplateArgument(ArgIn->Retain()); 2449 return false; 2450 } 2451 2452 if (!isa<ValueDecl>(DRE->getDecl())) { 2453 S.Diag(Arg->getSourceRange().getBegin(), 2454 diag::err_template_arg_not_object_or_func_form) 2455 << Arg->getSourceRange(); 2456 S.Diag(Param->getLocation(), diag::note_template_param_here); 2457 return true; 2458 } 2459 2460 NamedDecl *Entity = 0; 2461 2462 // Cannot refer to non-static data members 2463 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2464 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2465 << Field << Arg->getSourceRange(); 2466 S.Diag(Param->getLocation(), diag::note_template_param_here); 2467 return true; 2468 } 2469 2470 // Cannot refer to non-static member functions 2471 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2472 if (!Method->isStatic()) { 2473 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2474 << Method << Arg->getSourceRange(); 2475 S.Diag(Param->getLocation(), diag::note_template_param_here); 2476 return true; 2477 } 2478 2479 // Functions must have external linkage. 2480 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2481 if (!isExternalLinkage(Func->getLinkage())) { 2482 S.Diag(Arg->getSourceRange().getBegin(), 2483 diag::err_template_arg_function_not_extern) 2484 << Func << Arg->getSourceRange(); 2485 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2486 << true; 2487 return true; 2488 } 2489 2490 // Okay: we've named a function with external linkage. 2491 Entity = Func; 2492 2493 // If the template parameter has pointer type, the function decays. 2494 if (ParamType->isPointerType() && !AddressTaken) 2495 ArgType = S.Context.getPointerType(Func->getType()); 2496 else if (AddressTaken && ParamType->isReferenceType()) { 2497 // If we originally had an address-of operator, but the 2498 // parameter has reference type, complain and (if things look 2499 // like they will work) drop the address-of operator. 2500 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2501 ParamType.getNonReferenceType())) { 2502 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2503 << ParamType; 2504 S.Diag(Param->getLocation(), diag::note_template_param_here); 2505 return true; 2506 } 2507 2508 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2509 << ParamType 2510 << FixItHint::CreateRemoval(AddrOpLoc); 2511 S.Diag(Param->getLocation(), diag::note_template_param_here); 2512 2513 ArgType = Func->getType(); 2514 } 2515 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2516 if (!isExternalLinkage(Var->getLinkage())) { 2517 S.Diag(Arg->getSourceRange().getBegin(), 2518 diag::err_template_arg_object_not_extern) 2519 << Var << Arg->getSourceRange(); 2520 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2521 << true; 2522 return true; 2523 } 2524 2525 // A value of reference type is not an object. 2526 if (Var->getType()->isReferenceType()) { 2527 S.Diag(Arg->getSourceRange().getBegin(), 2528 diag::err_template_arg_reference_var) 2529 << Var->getType() << Arg->getSourceRange(); 2530 S.Diag(Param->getLocation(), diag::note_template_param_here); 2531 return true; 2532 } 2533 2534 // Okay: we've named an object with external linkage 2535 Entity = Var; 2536 2537 // If the template parameter has pointer type, we must have taken 2538 // the address of this object. 2539 if (ParamType->isReferenceType()) { 2540 if (AddressTaken) { 2541 // If we originally had an address-of operator, but the 2542 // parameter has reference type, complain and (if things look 2543 // like they will work) drop the address-of operator. 2544 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2545 ParamType.getNonReferenceType())) { 2546 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2547 << ParamType; 2548 S.Diag(Param->getLocation(), diag::note_template_param_here); 2549 return true; 2550 } 2551 2552 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2553 << ParamType 2554 << FixItHint::CreateRemoval(AddrOpLoc); 2555 S.Diag(Param->getLocation(), diag::note_template_param_here); 2556 2557 ArgType = Var->getType(); 2558 } 2559 } else if (!AddressTaken && ParamType->isPointerType()) { 2560 if (Var->getType()->isArrayType()) { 2561 // Array-to-pointer decay. 2562 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2563 } else { 2564 // If the template parameter has pointer type but the address of 2565 // this object was not taken, complain and (possibly) recover by 2566 // taking the address of the entity. 2567 ArgType = S.Context.getPointerType(Var->getType()); 2568 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2569 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2570 << ParamType; 2571 S.Diag(Param->getLocation(), diag::note_template_param_here); 2572 return true; 2573 } 2574 2575 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2576 << ParamType 2577 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2578 2579 S.Diag(Param->getLocation(), diag::note_template_param_here); 2580 } 2581 } 2582 } else { 2583 // We found something else, but we don't know specifically what it is. 2584 S.Diag(Arg->getSourceRange().getBegin(), 2585 diag::err_template_arg_not_object_or_func) 2586 << Arg->getSourceRange(); 2587 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2588 return true; 2589 } 2590 2591 if (ParamType->isPointerType() && 2592 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2593 S.IsQualificationConversion(ArgType, ParamType)) { 2594 // For pointer-to-object types, qualification conversions are 2595 // permitted. 2596 } else { 2597 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2598 if (!ParamRef->getPointeeType()->isFunctionType()) { 2599 // C++ [temp.arg.nontype]p5b3: 2600 // For a non-type template-parameter of type reference to 2601 // object, no conversions apply. The type referred to by the 2602 // reference may be more cv-qualified than the (otherwise 2603 // identical) type of the template- argument. The 2604 // template-parameter is bound directly to the 2605 // template-argument, which shall be an lvalue. 2606 2607 // FIXME: Other qualifiers? 2608 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2609 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2610 2611 if ((ParamQuals | ArgQuals) != ParamQuals) { 2612 S.Diag(Arg->getSourceRange().getBegin(), 2613 diag::err_template_arg_ref_bind_ignores_quals) 2614 << ParamType << Arg->getType() 2615 << Arg->getSourceRange(); 2616 S.Diag(Param->getLocation(), diag::note_template_param_here); 2617 return true; 2618 } 2619 } 2620 } 2621 2622 // At this point, the template argument refers to an object or 2623 // function with external linkage. We now need to check whether the 2624 // argument and parameter types are compatible. 2625 if (!S.Context.hasSameUnqualifiedType(ArgType, 2626 ParamType.getNonReferenceType())) { 2627 // We can't perform this conversion or binding. 2628 if (ParamType->isReferenceType()) 2629 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2630 << ParamType << Arg->getType() << Arg->getSourceRange(); 2631 else 2632 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2633 << Arg->getType() << ParamType << Arg->getSourceRange(); 2634 S.Diag(Param->getLocation(), diag::note_template_param_here); 2635 return true; 2636 } 2637 } 2638 2639 // Create the template argument. 2640 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2641 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2642 return false; 2643} 2644 2645/// \brief Checks whether the given template argument is a pointer to 2646/// member constant according to C++ [temp.arg.nontype]p1. 2647bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2648 TemplateArgument &Converted) { 2649 bool Invalid = false; 2650 2651 // See through any implicit casts we added to fix the type. 2652 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2653 Arg = Cast->getSubExpr(); 2654 2655 // C++ [temp.arg.nontype]p1: 2656 // 2657 // A template-argument for a non-type, non-template 2658 // template-parameter shall be one of: [...] 2659 // 2660 // -- a pointer to member expressed as described in 5.3.1. 2661 DeclRefExpr *DRE = 0; 2662 2663 // In C++98/03 mode, give an extension warning on any extra parentheses. 2664 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2665 bool ExtraParens = false; 2666 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2667 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 2668 Diag(Arg->getSourceRange().getBegin(), 2669 diag::ext_template_arg_extra_parens) 2670 << Arg->getSourceRange(); 2671 ExtraParens = true; 2672 } 2673 2674 Arg = Parens->getSubExpr(); 2675 } 2676 2677 // A pointer-to-member constant written &Class::member. 2678 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2679 if (UnOp->getOpcode() == UO_AddrOf) { 2680 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2681 if (DRE && !DRE->getQualifier()) 2682 DRE = 0; 2683 } 2684 } 2685 // A constant of pointer-to-member type. 2686 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2687 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2688 if (VD->getType()->isMemberPointerType()) { 2689 if (isa<NonTypeTemplateParmDecl>(VD) || 2690 (isa<VarDecl>(VD) && 2691 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2692 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2693 Converted = TemplateArgument(Arg->Retain()); 2694 else 2695 Converted = TemplateArgument(VD->getCanonicalDecl()); 2696 return Invalid; 2697 } 2698 } 2699 } 2700 2701 DRE = 0; 2702 } 2703 2704 if (!DRE) 2705 return Diag(Arg->getSourceRange().getBegin(), 2706 diag::err_template_arg_not_pointer_to_member_form) 2707 << Arg->getSourceRange(); 2708 2709 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2710 assert((isa<FieldDecl>(DRE->getDecl()) || 2711 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2712 "Only non-static member pointers can make it here"); 2713 2714 // Okay: this is the address of a non-static member, and therefore 2715 // a member pointer constant. 2716 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2717 Converted = TemplateArgument(Arg->Retain()); 2718 else 2719 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2720 return Invalid; 2721 } 2722 2723 // We found something else, but we don't know specifically what it is. 2724 Diag(Arg->getSourceRange().getBegin(), 2725 diag::err_template_arg_not_pointer_to_member_form) 2726 << Arg->getSourceRange(); 2727 Diag(DRE->getDecl()->getLocation(), 2728 diag::note_template_arg_refers_here); 2729 return true; 2730} 2731 2732/// \brief Check a template argument against its corresponding 2733/// non-type template parameter. 2734/// 2735/// This routine implements the semantics of C++ [temp.arg.nontype]. 2736/// It returns true if an error occurred, and false otherwise. \p 2737/// InstantiatedParamType is the type of the non-type template 2738/// parameter after it has been instantiated. 2739/// 2740/// If no error was detected, Converted receives the converted template argument. 2741bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2742 QualType InstantiatedParamType, Expr *&Arg, 2743 TemplateArgument &Converted, 2744 CheckTemplateArgumentKind CTAK) { 2745 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2746 2747 // If either the parameter has a dependent type or the argument is 2748 // type-dependent, there's nothing we can check now. 2749 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2750 // FIXME: Produce a cloned, canonical expression? 2751 Converted = TemplateArgument(Arg); 2752 return false; 2753 } 2754 2755 // C++ [temp.arg.nontype]p5: 2756 // The following conversions are performed on each expression used 2757 // as a non-type template-argument. If a non-type 2758 // template-argument cannot be converted to the type of the 2759 // corresponding template-parameter then the program is 2760 // ill-formed. 2761 // 2762 // -- for a non-type template-parameter of integral or 2763 // enumeration type, integral promotions (4.5) and integral 2764 // conversions (4.7) are applied. 2765 QualType ParamType = InstantiatedParamType; 2766 QualType ArgType = Arg->getType(); 2767 if (ParamType->isIntegralOrEnumerationType()) { 2768 // C++ [temp.arg.nontype]p1: 2769 // A template-argument for a non-type, non-template 2770 // template-parameter shall be one of: 2771 // 2772 // -- an integral constant-expression of integral or enumeration 2773 // type; or 2774 // -- the name of a non-type template-parameter; or 2775 SourceLocation NonConstantLoc; 2776 llvm::APSInt Value; 2777 if (!ArgType->isIntegralOrEnumerationType()) { 2778 Diag(Arg->getSourceRange().getBegin(), 2779 diag::err_template_arg_not_integral_or_enumeral) 2780 << ArgType << Arg->getSourceRange(); 2781 Diag(Param->getLocation(), diag::note_template_param_here); 2782 return true; 2783 } else if (!Arg->isValueDependent() && 2784 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2785 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2786 << ArgType << Arg->getSourceRange(); 2787 return true; 2788 } 2789 2790 // From here on out, all we care about are the unqualified forms 2791 // of the parameter and argument types. 2792 ParamType = ParamType.getUnqualifiedType(); 2793 ArgType = ArgType.getUnqualifiedType(); 2794 2795 // Try to convert the argument to the parameter's type. 2796 if (Context.hasSameType(ParamType, ArgType)) { 2797 // Okay: no conversion necessary 2798 } else if (CTAK == CTAK_Deduced) { 2799 // C++ [temp.deduct.type]p17: 2800 // If, in the declaration of a function template with a non-type 2801 // template-parameter, the non-type template- parameter is used 2802 // in an expression in the function parameter-list and, if the 2803 // corresponding template-argument is deduced, the 2804 // template-argument type shall match the type of the 2805 // template-parameter exactly, except that a template-argument 2806 // deduced from an array bound may be of any integral type. 2807 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2808 << ArgType << ParamType; 2809 Diag(Param->getLocation(), diag::note_template_param_here); 2810 return true; 2811 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2812 !ParamType->isEnumeralType()) { 2813 // This is an integral promotion or conversion. 2814 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 2815 } else { 2816 // We can't perform this conversion. 2817 Diag(Arg->getSourceRange().getBegin(), 2818 diag::err_template_arg_not_convertible) 2819 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2820 Diag(Param->getLocation(), diag::note_template_param_here); 2821 return true; 2822 } 2823 2824 QualType IntegerType = Context.getCanonicalType(ParamType); 2825 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2826 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2827 2828 if (!Arg->isValueDependent()) { 2829 llvm::APSInt OldValue = Value; 2830 2831 // Coerce the template argument's value to the value it will have 2832 // based on the template parameter's type. 2833 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2834 if (Value.getBitWidth() != AllowedBits) 2835 Value.extOrTrunc(AllowedBits); 2836 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2837 2838 // Complain if an unsigned parameter received a negative value. 2839 if (IntegerType->isUnsignedIntegerType() 2840 && (OldValue.isSigned() && OldValue.isNegative())) { 2841 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2842 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2843 << Arg->getSourceRange(); 2844 Diag(Param->getLocation(), diag::note_template_param_here); 2845 } 2846 2847 // Complain if we overflowed the template parameter's type. 2848 unsigned RequiredBits; 2849 if (IntegerType->isUnsignedIntegerType()) 2850 RequiredBits = OldValue.getActiveBits(); 2851 else if (OldValue.isUnsigned()) 2852 RequiredBits = OldValue.getActiveBits() + 1; 2853 else 2854 RequiredBits = OldValue.getMinSignedBits(); 2855 if (RequiredBits > AllowedBits) { 2856 Diag(Arg->getSourceRange().getBegin(), 2857 diag::warn_template_arg_too_large) 2858 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2859 << Arg->getSourceRange(); 2860 Diag(Param->getLocation(), diag::note_template_param_here); 2861 } 2862 } 2863 2864 // Add the value of this argument to the list of converted 2865 // arguments. We use the bitwidth and signedness of the template 2866 // parameter. 2867 if (Arg->isValueDependent()) { 2868 // The argument is value-dependent. Create a new 2869 // TemplateArgument with the converted expression. 2870 Converted = TemplateArgument(Arg); 2871 return false; 2872 } 2873 2874 Converted = TemplateArgument(Value, 2875 ParamType->isEnumeralType() ? ParamType 2876 : IntegerType); 2877 return false; 2878 } 2879 2880 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2881 2882 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2883 // from a template argument of type std::nullptr_t to a non-type 2884 // template parameter of type pointer to object, pointer to 2885 // function, or pointer-to-member, respectively. 2886 if (ArgType->isNullPtrType() && 2887 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2888 Converted = TemplateArgument((NamedDecl *)0); 2889 return false; 2890 } 2891 2892 // Handle pointer-to-function, reference-to-function, and 2893 // pointer-to-member-function all in (roughly) the same way. 2894 if (// -- For a non-type template-parameter of type pointer to 2895 // function, only the function-to-pointer conversion (4.3) is 2896 // applied. If the template-argument represents a set of 2897 // overloaded functions (or a pointer to such), the matching 2898 // function is selected from the set (13.4). 2899 (ParamType->isPointerType() && 2900 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2901 // -- For a non-type template-parameter of type reference to 2902 // function, no conversions apply. If the template-argument 2903 // represents a set of overloaded functions, the matching 2904 // function is selected from the set (13.4). 2905 (ParamType->isReferenceType() && 2906 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2907 // -- For a non-type template-parameter of type pointer to 2908 // member function, no conversions apply. If the 2909 // template-argument represents a set of overloaded member 2910 // functions, the matching member function is selected from 2911 // the set (13.4). 2912 (ParamType->isMemberPointerType() && 2913 ParamType->getAs<MemberPointerType>()->getPointeeType() 2914 ->isFunctionType())) { 2915 2916 if (Arg->getType() == Context.OverloadTy) { 2917 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2918 true, 2919 FoundResult)) { 2920 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2921 return true; 2922 2923 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2924 ArgType = Arg->getType(); 2925 } else 2926 return true; 2927 } 2928 2929 if (!ParamType->isMemberPointerType()) 2930 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2931 ParamType, 2932 Arg, Converted); 2933 2934 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2935 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 2936 } else if (!Context.hasSameUnqualifiedType(ArgType, 2937 ParamType.getNonReferenceType())) { 2938 // We can't perform this conversion. 2939 Diag(Arg->getSourceRange().getBegin(), 2940 diag::err_template_arg_not_convertible) 2941 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2942 Diag(Param->getLocation(), diag::note_template_param_here); 2943 return true; 2944 } 2945 2946 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2947 } 2948 2949 if (ParamType->isPointerType()) { 2950 // -- for a non-type template-parameter of type pointer to 2951 // object, qualification conversions (4.4) and the 2952 // array-to-pointer conversion (4.2) are applied. 2953 // C++0x also allows a value of std::nullptr_t. 2954 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 2955 "Only object pointers allowed here"); 2956 2957 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2958 ParamType, 2959 Arg, Converted); 2960 } 2961 2962 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2963 // -- For a non-type template-parameter of type reference to 2964 // object, no conversions apply. The type referred to by the 2965 // reference may be more cv-qualified than the (otherwise 2966 // identical) type of the template-argument. The 2967 // template-parameter is bound directly to the 2968 // template-argument, which must be an lvalue. 2969 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 2970 "Only object references allowed here"); 2971 2972 if (Arg->getType() == Context.OverloadTy) { 2973 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2974 ParamRefType->getPointeeType(), 2975 true, 2976 FoundResult)) { 2977 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2978 return true; 2979 2980 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2981 ArgType = Arg->getType(); 2982 } else 2983 return true; 2984 } 2985 2986 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2987 ParamType, 2988 Arg, Converted); 2989 } 2990 2991 // -- For a non-type template-parameter of type pointer to data 2992 // member, qualification conversions (4.4) are applied. 2993 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2994 2995 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2996 // Types match exactly: nothing more to do here. 2997 } else if (IsQualificationConversion(ArgType, ParamType)) { 2998 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 2999 } else { 3000 // We can't perform this conversion. 3001 Diag(Arg->getSourceRange().getBegin(), 3002 diag::err_template_arg_not_convertible) 3003 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3004 Diag(Param->getLocation(), diag::note_template_param_here); 3005 return true; 3006 } 3007 3008 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3009} 3010 3011/// \brief Check a template argument against its corresponding 3012/// template template parameter. 3013/// 3014/// This routine implements the semantics of C++ [temp.arg.template]. 3015/// It returns true if an error occurred, and false otherwise. 3016bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3017 const TemplateArgumentLoc &Arg) { 3018 TemplateName Name = Arg.getArgument().getAsTemplate(); 3019 TemplateDecl *Template = Name.getAsTemplateDecl(); 3020 if (!Template) { 3021 // Any dependent template name is fine. 3022 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3023 return false; 3024 } 3025 3026 // C++ [temp.arg.template]p1: 3027 // A template-argument for a template template-parameter shall be 3028 // the name of a class template, expressed as id-expression. Only 3029 // primary class templates are considered when matching the 3030 // template template argument with the corresponding parameter; 3031 // partial specializations are not considered even if their 3032 // parameter lists match that of the template template parameter. 3033 // 3034 // Note that we also allow template template parameters here, which 3035 // will happen when we are dealing with, e.g., class template 3036 // partial specializations. 3037 if (!isa<ClassTemplateDecl>(Template) && 3038 !isa<TemplateTemplateParmDecl>(Template)) { 3039 assert(isa<FunctionTemplateDecl>(Template) && 3040 "Only function templates are possible here"); 3041 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3042 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3043 << Template; 3044 } 3045 3046 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3047 Param->getTemplateParameters(), 3048 true, 3049 TPL_TemplateTemplateArgumentMatch, 3050 Arg.getLocation()); 3051} 3052 3053/// \brief Given a non-type template argument that refers to a 3054/// declaration and the type of its corresponding non-type template 3055/// parameter, produce an expression that properly refers to that 3056/// declaration. 3057ExprResult 3058Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3059 QualType ParamType, 3060 SourceLocation Loc) { 3061 assert(Arg.getKind() == TemplateArgument::Declaration && 3062 "Only declaration template arguments permitted here"); 3063 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3064 3065 if (VD->getDeclContext()->isRecord() && 3066 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3067 // If the value is a class member, we might have a pointer-to-member. 3068 // Determine whether the non-type template template parameter is of 3069 // pointer-to-member type. If so, we need to build an appropriate 3070 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3071 // would refer to the member itself. 3072 if (ParamType->isMemberPointerType()) { 3073 QualType ClassType 3074 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3075 NestedNameSpecifier *Qualifier 3076 = NestedNameSpecifier::Create(Context, 0, false, 3077 ClassType.getTypePtr()); 3078 CXXScopeSpec SS; 3079 SS.setScopeRep(Qualifier); 3080 ExprResult RefExpr = BuildDeclRefExpr(VD, 3081 VD->getType().getNonReferenceType(), 3082 Loc, 3083 &SS); 3084 if (RefExpr.isInvalid()) 3085 return ExprError(); 3086 3087 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3088 3089 // We might need to perform a trailing qualification conversion, since 3090 // the element type on the parameter could be more qualified than the 3091 // element type in the expression we constructed. 3092 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3093 ParamType.getUnqualifiedType())) { 3094 Expr *RefE = RefExpr.takeAs<Expr>(); 3095 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3096 RefExpr = Owned(RefE); 3097 } 3098 3099 assert(!RefExpr.isInvalid() && 3100 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3101 ParamType.getUnqualifiedType())); 3102 return move(RefExpr); 3103 } 3104 } 3105 3106 QualType T = VD->getType().getNonReferenceType(); 3107 if (ParamType->isPointerType()) { 3108 // When the non-type template parameter is a pointer, take the 3109 // address of the declaration. 3110 ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3111 if (RefExpr.isInvalid()) 3112 return ExprError(); 3113 3114 if (T->isFunctionType() || T->isArrayType()) { 3115 // Decay functions and arrays. 3116 Expr *RefE = (Expr *)RefExpr.get(); 3117 DefaultFunctionArrayConversion(RefE); 3118 if (RefE != RefExpr.get()) { 3119 RefExpr.release(); 3120 RefExpr = Owned(RefE); 3121 } 3122 3123 return move(RefExpr); 3124 } 3125 3126 // Take the address of everything else 3127 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3128 } 3129 3130 // If the non-type template parameter has reference type, qualify the 3131 // resulting declaration reference with the extra qualifiers on the 3132 // type that the reference refers to. 3133 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3134 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3135 3136 return BuildDeclRefExpr(VD, T, Loc); 3137} 3138 3139/// \brief Construct a new expression that refers to the given 3140/// integral template argument with the given source-location 3141/// information. 3142/// 3143/// This routine takes care of the mapping from an integral template 3144/// argument (which may have any integral type) to the appropriate 3145/// literal value. 3146ExprResult 3147Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3148 SourceLocation Loc) { 3149 assert(Arg.getKind() == TemplateArgument::Integral && 3150 "Operation is only value for integral template arguments"); 3151 QualType T = Arg.getIntegralType(); 3152 if (T->isCharType() || T->isWideCharType()) 3153 return Owned(new (Context) CharacterLiteral( 3154 Arg.getAsIntegral()->getZExtValue(), 3155 T->isWideCharType(), 3156 T, 3157 Loc)); 3158 if (T->isBooleanType()) 3159 return Owned(new (Context) CXXBoolLiteralExpr( 3160 Arg.getAsIntegral()->getBoolValue(), 3161 T, 3162 Loc)); 3163 3164 return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc)); 3165} 3166 3167 3168/// \brief Determine whether the given template parameter lists are 3169/// equivalent. 3170/// 3171/// \param New The new template parameter list, typically written in the 3172/// source code as part of a new template declaration. 3173/// 3174/// \param Old The old template parameter list, typically found via 3175/// name lookup of the template declared with this template parameter 3176/// list. 3177/// 3178/// \param Complain If true, this routine will produce a diagnostic if 3179/// the template parameter lists are not equivalent. 3180/// 3181/// \param Kind describes how we are to match the template parameter lists. 3182/// 3183/// \param TemplateArgLoc If this source location is valid, then we 3184/// are actually checking the template parameter list of a template 3185/// argument (New) against the template parameter list of its 3186/// corresponding template template parameter (Old). We produce 3187/// slightly different diagnostics in this scenario. 3188/// 3189/// \returns True if the template parameter lists are equal, false 3190/// otherwise. 3191bool 3192Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3193 TemplateParameterList *Old, 3194 bool Complain, 3195 TemplateParameterListEqualKind Kind, 3196 SourceLocation TemplateArgLoc) { 3197 if (Old->size() != New->size()) { 3198 if (Complain) { 3199 unsigned NextDiag = diag::err_template_param_list_different_arity; 3200 if (TemplateArgLoc.isValid()) { 3201 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3202 NextDiag = diag::note_template_param_list_different_arity; 3203 } 3204 Diag(New->getTemplateLoc(), NextDiag) 3205 << (New->size() > Old->size()) 3206 << (Kind != TPL_TemplateMatch) 3207 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3208 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3209 << (Kind != TPL_TemplateMatch) 3210 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3211 } 3212 3213 return false; 3214 } 3215 3216 for (TemplateParameterList::iterator OldParm = Old->begin(), 3217 OldParmEnd = Old->end(), NewParm = New->begin(); 3218 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3219 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3220 if (Complain) { 3221 unsigned NextDiag = diag::err_template_param_different_kind; 3222 if (TemplateArgLoc.isValid()) { 3223 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3224 NextDiag = diag::note_template_param_different_kind; 3225 } 3226 Diag((*NewParm)->getLocation(), NextDiag) 3227 << (Kind != TPL_TemplateMatch); 3228 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3229 << (Kind != TPL_TemplateMatch); 3230 } 3231 return false; 3232 } 3233 3234 if (TemplateTypeParmDecl *OldTTP 3235 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3236 // Template type parameters are equivalent if either both are template 3237 // type parameter packs or neither are (since we know we're at the same 3238 // index). 3239 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3240 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3241 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3242 // allow one to match a template parameter pack in the template 3243 // parameter list of a template template parameter to one or more 3244 // template parameters in the template parameter list of the 3245 // corresponding template template argument. 3246 if (Complain) { 3247 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3248 if (TemplateArgLoc.isValid()) { 3249 Diag(TemplateArgLoc, 3250 diag::err_template_arg_template_params_mismatch); 3251 NextDiag = diag::note_template_parameter_pack_non_pack; 3252 } 3253 Diag(NewTTP->getLocation(), NextDiag) 3254 << 0 << NewTTP->isParameterPack(); 3255 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3256 << 0 << OldTTP->isParameterPack(); 3257 } 3258 return false; 3259 } 3260 } else if (NonTypeTemplateParmDecl *OldNTTP 3261 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3262 // The types of non-type template parameters must agree. 3263 NonTypeTemplateParmDecl *NewNTTP 3264 = cast<NonTypeTemplateParmDecl>(*NewParm); 3265 3266 // If we are matching a template template argument to a template 3267 // template parameter and one of the non-type template parameter types 3268 // is dependent, then we must wait until template instantiation time 3269 // to actually compare the arguments. 3270 if (Kind == TPL_TemplateTemplateArgumentMatch && 3271 (OldNTTP->getType()->isDependentType() || 3272 NewNTTP->getType()->isDependentType())) 3273 continue; 3274 3275 if (Context.getCanonicalType(OldNTTP->getType()) != 3276 Context.getCanonicalType(NewNTTP->getType())) { 3277 if (Complain) { 3278 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3279 if (TemplateArgLoc.isValid()) { 3280 Diag(TemplateArgLoc, 3281 diag::err_template_arg_template_params_mismatch); 3282 NextDiag = diag::note_template_nontype_parm_different_type; 3283 } 3284 Diag(NewNTTP->getLocation(), NextDiag) 3285 << NewNTTP->getType() 3286 << (Kind != TPL_TemplateMatch); 3287 Diag(OldNTTP->getLocation(), 3288 diag::note_template_nontype_parm_prev_declaration) 3289 << OldNTTP->getType(); 3290 } 3291 return false; 3292 } 3293 } else { 3294 // The template parameter lists of template template 3295 // parameters must agree. 3296 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3297 "Only template template parameters handled here"); 3298 TemplateTemplateParmDecl *OldTTP 3299 = cast<TemplateTemplateParmDecl>(*OldParm); 3300 TemplateTemplateParmDecl *NewTTP 3301 = cast<TemplateTemplateParmDecl>(*NewParm); 3302 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3303 OldTTP->getTemplateParameters(), 3304 Complain, 3305 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3306 TemplateArgLoc)) 3307 return false; 3308 } 3309 } 3310 3311 return true; 3312} 3313 3314/// \brief Check whether a template can be declared within this scope. 3315/// 3316/// If the template declaration is valid in this scope, returns 3317/// false. Otherwise, issues a diagnostic and returns true. 3318bool 3319Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3320 // Find the nearest enclosing declaration scope. 3321 while ((S->getFlags() & Scope::DeclScope) == 0 || 3322 (S->getFlags() & Scope::TemplateParamScope) != 0) 3323 S = S->getParent(); 3324 3325 // C++ [temp]p2: 3326 // A template-declaration can appear only as a namespace scope or 3327 // class scope declaration. 3328 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3329 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3330 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3331 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3332 << TemplateParams->getSourceRange(); 3333 3334 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3335 Ctx = Ctx->getParent(); 3336 3337 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3338 return false; 3339 3340 return Diag(TemplateParams->getTemplateLoc(), 3341 diag::err_template_outside_namespace_or_class_scope) 3342 << TemplateParams->getSourceRange(); 3343} 3344 3345/// \brief Determine what kind of template specialization the given declaration 3346/// is. 3347static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3348 if (!D) 3349 return TSK_Undeclared; 3350 3351 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3352 return Record->getTemplateSpecializationKind(); 3353 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3354 return Function->getTemplateSpecializationKind(); 3355 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3356 return Var->getTemplateSpecializationKind(); 3357 3358 return TSK_Undeclared; 3359} 3360 3361/// \brief Check whether a specialization is well-formed in the current 3362/// context. 3363/// 3364/// This routine determines whether a template specialization can be declared 3365/// in the current context (C++ [temp.expl.spec]p2). 3366/// 3367/// \param S the semantic analysis object for which this check is being 3368/// performed. 3369/// 3370/// \param Specialized the entity being specialized or instantiated, which 3371/// may be a kind of template (class template, function template, etc.) or 3372/// a member of a class template (member function, static data member, 3373/// member class). 3374/// 3375/// \param PrevDecl the previous declaration of this entity, if any. 3376/// 3377/// \param Loc the location of the explicit specialization or instantiation of 3378/// this entity. 3379/// 3380/// \param IsPartialSpecialization whether this is a partial specialization of 3381/// a class template. 3382/// 3383/// \returns true if there was an error that we cannot recover from, false 3384/// otherwise. 3385static bool CheckTemplateSpecializationScope(Sema &S, 3386 NamedDecl *Specialized, 3387 NamedDecl *PrevDecl, 3388 SourceLocation Loc, 3389 bool IsPartialSpecialization) { 3390 // Keep these "kind" numbers in sync with the %select statements in the 3391 // various diagnostics emitted by this routine. 3392 int EntityKind = 0; 3393 bool isTemplateSpecialization = false; 3394 if (isa<ClassTemplateDecl>(Specialized)) { 3395 EntityKind = IsPartialSpecialization? 1 : 0; 3396 isTemplateSpecialization = true; 3397 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3398 EntityKind = 2; 3399 isTemplateSpecialization = true; 3400 } else if (isa<CXXMethodDecl>(Specialized)) 3401 EntityKind = 3; 3402 else if (isa<VarDecl>(Specialized)) 3403 EntityKind = 4; 3404 else if (isa<RecordDecl>(Specialized)) 3405 EntityKind = 5; 3406 else { 3407 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3408 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3409 return true; 3410 } 3411 3412 // C++ [temp.expl.spec]p2: 3413 // An explicit specialization shall be declared in the namespace 3414 // of which the template is a member, or, for member templates, in 3415 // the namespace of which the enclosing class or enclosing class 3416 // template is a member. An explicit specialization of a member 3417 // function, member class or static data member of a class 3418 // template shall be declared in the namespace of which the class 3419 // template is a member. Such a declaration may also be a 3420 // definition. If the declaration is not a definition, the 3421 // specialization may be defined later in the name- space in which 3422 // the explicit specialization was declared, or in a namespace 3423 // that encloses the one in which the explicit specialization was 3424 // declared. 3425 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 3426 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3427 << Specialized; 3428 return true; 3429 } 3430 3431 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3432 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3433 << Specialized; 3434 return true; 3435 } 3436 3437 // C++ [temp.class.spec]p6: 3438 // A class template partial specialization may be declared or redeclared 3439 // in any namespace scope in which its definition may be defined (14.5.1 3440 // and 14.5.2). 3441 bool ComplainedAboutScope = false; 3442 DeclContext *SpecializedContext 3443 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3444 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3445 if ((!PrevDecl || 3446 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3447 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3448 // C++ [temp.exp.spec]p2: 3449 // An explicit specialization shall be declared in the namespace of which 3450 // the template is a member, or, for member templates, in the namespace 3451 // of which the enclosing class or enclosing class template is a member. 3452 // An explicit specialization of a member function, member class or 3453 // static data member of a class template shall be declared in the 3454 // namespace of which the class template is a member. 3455 // 3456 // C++0x [temp.expl.spec]p2: 3457 // An explicit specialization shall be declared in a namespace enclosing 3458 // the specialized template. 3459 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 3460 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 3461 bool IsCPlusPlus0xExtension 3462 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 3463 if (isa<TranslationUnitDecl>(SpecializedContext)) 3464 S.Diag(Loc, IsCPlusPlus0xExtension 3465 ? diag::ext_template_spec_decl_out_of_scope_global 3466 : diag::err_template_spec_decl_out_of_scope_global) 3467 << EntityKind << Specialized; 3468 else if (isa<NamespaceDecl>(SpecializedContext)) 3469 S.Diag(Loc, IsCPlusPlus0xExtension 3470 ? diag::ext_template_spec_decl_out_of_scope 3471 : diag::err_template_spec_decl_out_of_scope) 3472 << EntityKind << Specialized 3473 << cast<NamedDecl>(SpecializedContext); 3474 3475 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3476 ComplainedAboutScope = true; 3477 } 3478 } 3479 3480 // Make sure that this redeclaration (or definition) occurs in an enclosing 3481 // namespace. 3482 // Note that HandleDeclarator() performs this check for explicit 3483 // specializations of function templates, static data members, and member 3484 // functions, so we skip the check here for those kinds of entities. 3485 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3486 // Should we refactor that check, so that it occurs later? 3487 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3488 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3489 isa<FunctionDecl>(Specialized))) { 3490 if (isa<TranslationUnitDecl>(SpecializedContext)) 3491 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3492 << EntityKind << Specialized; 3493 else if (isa<NamespaceDecl>(SpecializedContext)) 3494 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3495 << EntityKind << Specialized 3496 << cast<NamedDecl>(SpecializedContext); 3497 3498 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3499 } 3500 3501 // FIXME: check for specialization-after-instantiation errors and such. 3502 3503 return false; 3504} 3505 3506/// \brief Check the non-type template arguments of a class template 3507/// partial specialization according to C++ [temp.class.spec]p9. 3508/// 3509/// \param TemplateParams the template parameters of the primary class 3510/// template. 3511/// 3512/// \param TemplateArg the template arguments of the class template 3513/// partial specialization. 3514/// 3515/// \param MirrorsPrimaryTemplate will be set true if the class 3516/// template partial specialization arguments are identical to the 3517/// implicit template arguments of the primary template. This is not 3518/// necessarily an error (C++0x), and it is left to the caller to diagnose 3519/// this condition when it is an error. 3520/// 3521/// \returns true if there was an error, false otherwise. 3522bool Sema::CheckClassTemplatePartialSpecializationArgs( 3523 TemplateParameterList *TemplateParams, 3524 const TemplateArgumentListBuilder &TemplateArgs, 3525 bool &MirrorsPrimaryTemplate) { 3526 // FIXME: the interface to this function will have to change to 3527 // accommodate variadic templates. 3528 MirrorsPrimaryTemplate = true; 3529 3530 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3531 3532 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3533 // Determine whether the template argument list of the partial 3534 // specialization is identical to the implicit argument list of 3535 // the primary template. The caller may need to diagnostic this as 3536 // an error per C++ [temp.class.spec]p9b3. 3537 if (MirrorsPrimaryTemplate) { 3538 if (TemplateTypeParmDecl *TTP 3539 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3540 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3541 Context.getCanonicalType(ArgList[I].getAsType())) 3542 MirrorsPrimaryTemplate = false; 3543 } else if (TemplateTemplateParmDecl *TTP 3544 = dyn_cast<TemplateTemplateParmDecl>( 3545 TemplateParams->getParam(I))) { 3546 TemplateName Name = ArgList[I].getAsTemplate(); 3547 TemplateTemplateParmDecl *ArgDecl 3548 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3549 if (!ArgDecl || 3550 ArgDecl->getIndex() != TTP->getIndex() || 3551 ArgDecl->getDepth() != TTP->getDepth()) 3552 MirrorsPrimaryTemplate = false; 3553 } 3554 } 3555 3556 NonTypeTemplateParmDecl *Param 3557 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3558 if (!Param) { 3559 continue; 3560 } 3561 3562 Expr *ArgExpr = ArgList[I].getAsExpr(); 3563 if (!ArgExpr) { 3564 MirrorsPrimaryTemplate = false; 3565 continue; 3566 } 3567 3568 // C++ [temp.class.spec]p8: 3569 // A non-type argument is non-specialized if it is the name of a 3570 // non-type parameter. All other non-type arguments are 3571 // specialized. 3572 // 3573 // Below, we check the two conditions that only apply to 3574 // specialized non-type arguments, so skip any non-specialized 3575 // arguments. 3576 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3577 if (NonTypeTemplateParmDecl *NTTP 3578 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3579 if (MirrorsPrimaryTemplate && 3580 (Param->getIndex() != NTTP->getIndex() || 3581 Param->getDepth() != NTTP->getDepth())) 3582 MirrorsPrimaryTemplate = false; 3583 3584 continue; 3585 } 3586 3587 // C++ [temp.class.spec]p9: 3588 // Within the argument list of a class template partial 3589 // specialization, the following restrictions apply: 3590 // -- A partially specialized non-type argument expression 3591 // shall not involve a template parameter of the partial 3592 // specialization except when the argument expression is a 3593 // simple identifier. 3594 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3595 Diag(ArgExpr->getLocStart(), 3596 diag::err_dependent_non_type_arg_in_partial_spec) 3597 << ArgExpr->getSourceRange(); 3598 return true; 3599 } 3600 3601 // -- The type of a template parameter corresponding to a 3602 // specialized non-type argument shall not be dependent on a 3603 // parameter of the specialization. 3604 if (Param->getType()->isDependentType()) { 3605 Diag(ArgExpr->getLocStart(), 3606 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3607 << Param->getType() 3608 << ArgExpr->getSourceRange(); 3609 Diag(Param->getLocation(), diag::note_template_param_here); 3610 return true; 3611 } 3612 3613 MirrorsPrimaryTemplate = false; 3614 } 3615 3616 return false; 3617} 3618 3619/// \brief Retrieve the previous declaration of the given declaration. 3620static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3621 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3622 return VD->getPreviousDeclaration(); 3623 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3624 return FD->getPreviousDeclaration(); 3625 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3626 return TD->getPreviousDeclaration(); 3627 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3628 return TD->getPreviousDeclaration(); 3629 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3630 return FTD->getPreviousDeclaration(); 3631 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3632 return CTD->getPreviousDeclaration(); 3633 return 0; 3634} 3635 3636DeclResult 3637Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3638 TagUseKind TUK, 3639 SourceLocation KWLoc, 3640 CXXScopeSpec &SS, 3641 TemplateTy TemplateD, 3642 SourceLocation TemplateNameLoc, 3643 SourceLocation LAngleLoc, 3644 ASTTemplateArgsPtr TemplateArgsIn, 3645 SourceLocation RAngleLoc, 3646 AttributeList *Attr, 3647 MultiTemplateParamsArg TemplateParameterLists) { 3648 assert(TUK != TUK_Reference && "References are not specializations"); 3649 3650 // Find the class template we're specializing 3651 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3652 ClassTemplateDecl *ClassTemplate 3653 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3654 3655 if (!ClassTemplate) { 3656 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3657 << (Name.getAsTemplateDecl() && 3658 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3659 return true; 3660 } 3661 3662 bool isExplicitSpecialization = false; 3663 bool isPartialSpecialization = false; 3664 3665 // Check the validity of the template headers that introduce this 3666 // template. 3667 // FIXME: We probably shouldn't complain about these headers for 3668 // friend declarations. 3669 bool Invalid = false; 3670 TemplateParameterList *TemplateParams 3671 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3672 (TemplateParameterList**)TemplateParameterLists.get(), 3673 TemplateParameterLists.size(), 3674 TUK == TUK_Friend, 3675 isExplicitSpecialization, 3676 Invalid); 3677 if (Invalid) 3678 return true; 3679 3680 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3681 if (TemplateParams) 3682 --NumMatchedTemplateParamLists; 3683 3684 if (TemplateParams && TemplateParams->size() > 0) { 3685 isPartialSpecialization = true; 3686 3687 // C++ [temp.class.spec]p10: 3688 // The template parameter list of a specialization shall not 3689 // contain default template argument values. 3690 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3691 Decl *Param = TemplateParams->getParam(I); 3692 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3693 if (TTP->hasDefaultArgument()) { 3694 Diag(TTP->getDefaultArgumentLoc(), 3695 diag::err_default_arg_in_partial_spec); 3696 TTP->removeDefaultArgument(); 3697 } 3698 } else if (NonTypeTemplateParmDecl *NTTP 3699 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3700 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3701 Diag(NTTP->getDefaultArgumentLoc(), 3702 diag::err_default_arg_in_partial_spec) 3703 << DefArg->getSourceRange(); 3704 NTTP->removeDefaultArgument(); 3705 } 3706 } else { 3707 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3708 if (TTP->hasDefaultArgument()) { 3709 Diag(TTP->getDefaultArgument().getLocation(), 3710 diag::err_default_arg_in_partial_spec) 3711 << TTP->getDefaultArgument().getSourceRange(); 3712 TTP->removeDefaultArgument(); 3713 } 3714 } 3715 } 3716 } else if (TemplateParams) { 3717 if (TUK == TUK_Friend) 3718 Diag(KWLoc, diag::err_template_spec_friend) 3719 << FixItHint::CreateRemoval( 3720 SourceRange(TemplateParams->getTemplateLoc(), 3721 TemplateParams->getRAngleLoc())) 3722 << SourceRange(LAngleLoc, RAngleLoc); 3723 else 3724 isExplicitSpecialization = true; 3725 } else if (TUK != TUK_Friend) { 3726 Diag(KWLoc, diag::err_template_spec_needs_header) 3727 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3728 isExplicitSpecialization = true; 3729 } 3730 3731 // Check that the specialization uses the same tag kind as the 3732 // original template. 3733 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3734 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 3735 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3736 Kind, KWLoc, 3737 *ClassTemplate->getIdentifier())) { 3738 Diag(KWLoc, diag::err_use_with_wrong_tag) 3739 << ClassTemplate 3740 << FixItHint::CreateReplacement(KWLoc, 3741 ClassTemplate->getTemplatedDecl()->getKindName()); 3742 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3743 diag::note_previous_use); 3744 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3745 } 3746 3747 // Translate the parser's template argument list in our AST format. 3748 TemplateArgumentListInfo TemplateArgs; 3749 TemplateArgs.setLAngleLoc(LAngleLoc); 3750 TemplateArgs.setRAngleLoc(RAngleLoc); 3751 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3752 3753 // Check that the template argument list is well-formed for this 3754 // template. 3755 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3756 TemplateArgs.size()); 3757 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3758 TemplateArgs, false, Converted)) 3759 return true; 3760 3761 assert((Converted.structuredSize() == 3762 ClassTemplate->getTemplateParameters()->size()) && 3763 "Converted template argument list is too short!"); 3764 3765 // Find the class template (partial) specialization declaration that 3766 // corresponds to these arguments. 3767 if (isPartialSpecialization) { 3768 bool MirrorsPrimaryTemplate; 3769 if (CheckClassTemplatePartialSpecializationArgs( 3770 ClassTemplate->getTemplateParameters(), 3771 Converted, MirrorsPrimaryTemplate)) 3772 return true; 3773 3774 if (MirrorsPrimaryTemplate) { 3775 // C++ [temp.class.spec]p9b3: 3776 // 3777 // -- The argument list of the specialization shall not be identical 3778 // to the implicit argument list of the primary template. 3779 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3780 << (TUK == TUK_Definition) 3781 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3782 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3783 ClassTemplate->getIdentifier(), 3784 TemplateNameLoc, 3785 Attr, 3786 TemplateParams, 3787 AS_none); 3788 } 3789 3790 // FIXME: Diagnose friend partial specializations 3791 3792 if (!Name.isDependent() && 3793 !TemplateSpecializationType::anyDependentTemplateArguments( 3794 TemplateArgs.getArgumentArray(), 3795 TemplateArgs.size())) { 3796 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3797 << ClassTemplate->getDeclName(); 3798 isPartialSpecialization = false; 3799 } 3800 } 3801 3802 void *InsertPos = 0; 3803 ClassTemplateSpecializationDecl *PrevDecl = 0; 3804 3805 if (isPartialSpecialization) 3806 // FIXME: Template parameter list matters, too 3807 PrevDecl 3808 = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(), 3809 Converted.flatSize(), 3810 InsertPos); 3811 else 3812 PrevDecl 3813 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 3814 Converted.flatSize(), InsertPos); 3815 3816 ClassTemplateSpecializationDecl *Specialization = 0; 3817 3818 // Check whether we can declare a class template specialization in 3819 // the current scope. 3820 if (TUK != TUK_Friend && 3821 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3822 TemplateNameLoc, 3823 isPartialSpecialization)) 3824 return true; 3825 3826 // The canonical type 3827 QualType CanonType; 3828 if (PrevDecl && 3829 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3830 TUK == TUK_Friend)) { 3831 // Since the only prior class template specialization with these 3832 // arguments was referenced but not declared, or we're only 3833 // referencing this specialization as a friend, reuse that 3834 // declaration node as our own, updating its source location to 3835 // reflect our new declaration. 3836 Specialization = PrevDecl; 3837 Specialization->setLocation(TemplateNameLoc); 3838 PrevDecl = 0; 3839 CanonType = Context.getTypeDeclType(Specialization); 3840 } else if (isPartialSpecialization) { 3841 // Build the canonical type that describes the converted template 3842 // arguments of the class template partial specialization. 3843 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3844 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3845 Converted.getFlatArguments(), 3846 Converted.flatSize()); 3847 3848 // Create a new class template partial specialization declaration node. 3849 ClassTemplatePartialSpecializationDecl *PrevPartial 3850 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3851 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3852 : ClassTemplate->getNextPartialSpecSequenceNumber(); 3853 ClassTemplatePartialSpecializationDecl *Partial 3854 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 3855 ClassTemplate->getDeclContext(), 3856 TemplateNameLoc, 3857 TemplateParams, 3858 ClassTemplate, 3859 Converted, 3860 TemplateArgs, 3861 CanonType, 3862 PrevPartial, 3863 SequenceNumber); 3864 SetNestedNameSpecifier(Partial, SS); 3865 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 3866 Partial->setTemplateParameterListsInfo(Context, 3867 NumMatchedTemplateParamLists, 3868 (TemplateParameterList**) TemplateParameterLists.release()); 3869 } 3870 3871 if (!PrevPartial) 3872 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 3873 Specialization = Partial; 3874 3875 // If we are providing an explicit specialization of a member class 3876 // template specialization, make a note of that. 3877 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3878 PrevPartial->setMemberSpecialization(); 3879 3880 // Check that all of the template parameters of the class template 3881 // partial specialization are deducible from the template 3882 // arguments. If not, this class template partial specialization 3883 // will never be used. 3884 llvm::SmallVector<bool, 8> DeducibleParams; 3885 DeducibleParams.resize(TemplateParams->size()); 3886 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3887 TemplateParams->getDepth(), 3888 DeducibleParams); 3889 unsigned NumNonDeducible = 0; 3890 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3891 if (!DeducibleParams[I]) 3892 ++NumNonDeducible; 3893 3894 if (NumNonDeducible) { 3895 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3896 << (NumNonDeducible > 1) 3897 << SourceRange(TemplateNameLoc, RAngleLoc); 3898 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3899 if (!DeducibleParams[I]) { 3900 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3901 if (Param->getDeclName()) 3902 Diag(Param->getLocation(), 3903 diag::note_partial_spec_unused_parameter) 3904 << Param->getDeclName(); 3905 else 3906 Diag(Param->getLocation(), 3907 diag::note_partial_spec_unused_parameter) 3908 << "<anonymous>"; 3909 } 3910 } 3911 } 3912 } else { 3913 // Create a new class template specialization declaration node for 3914 // this explicit specialization or friend declaration. 3915 Specialization 3916 = ClassTemplateSpecializationDecl::Create(Context, Kind, 3917 ClassTemplate->getDeclContext(), 3918 TemplateNameLoc, 3919 ClassTemplate, 3920 Converted, 3921 PrevDecl); 3922 SetNestedNameSpecifier(Specialization, SS); 3923 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 3924 Specialization->setTemplateParameterListsInfo(Context, 3925 NumMatchedTemplateParamLists, 3926 (TemplateParameterList**) TemplateParameterLists.release()); 3927 } 3928 3929 if (!PrevDecl) 3930 ClassTemplate->AddSpecialization(Specialization, InsertPos); 3931 3932 CanonType = Context.getTypeDeclType(Specialization); 3933 } 3934 3935 // C++ [temp.expl.spec]p6: 3936 // If a template, a member template or the member of a class template is 3937 // explicitly specialized then that specialization shall be declared 3938 // before the first use of that specialization that would cause an implicit 3939 // instantiation to take place, in every translation unit in which such a 3940 // use occurs; no diagnostic is required. 3941 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3942 bool Okay = false; 3943 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3944 // Is there any previous explicit specialization declaration? 3945 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3946 Okay = true; 3947 break; 3948 } 3949 } 3950 3951 if (!Okay) { 3952 SourceRange Range(TemplateNameLoc, RAngleLoc); 3953 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3954 << Context.getTypeDeclType(Specialization) << Range; 3955 3956 Diag(PrevDecl->getPointOfInstantiation(), 3957 diag::note_instantiation_required_here) 3958 << (PrevDecl->getTemplateSpecializationKind() 3959 != TSK_ImplicitInstantiation); 3960 return true; 3961 } 3962 } 3963 3964 // If this is not a friend, note that this is an explicit specialization. 3965 if (TUK != TUK_Friend) 3966 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3967 3968 // Check that this isn't a redefinition of this specialization. 3969 if (TUK == TUK_Definition) { 3970 if (RecordDecl *Def = Specialization->getDefinition()) { 3971 SourceRange Range(TemplateNameLoc, RAngleLoc); 3972 Diag(TemplateNameLoc, diag::err_redefinition) 3973 << Context.getTypeDeclType(Specialization) << Range; 3974 Diag(Def->getLocation(), diag::note_previous_definition); 3975 Specialization->setInvalidDecl(); 3976 return true; 3977 } 3978 } 3979 3980 // Build the fully-sugared type for this class template 3981 // specialization as the user wrote in the specialization 3982 // itself. This means that we'll pretty-print the type retrieved 3983 // from the specialization's declaration the way that the user 3984 // actually wrote the specialization, rather than formatting the 3985 // name based on the "canonical" representation used to store the 3986 // template arguments in the specialization. 3987 TypeSourceInfo *WrittenTy 3988 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3989 TemplateArgs, CanonType); 3990 if (TUK != TUK_Friend) { 3991 Specialization->setTypeAsWritten(WrittenTy); 3992 if (TemplateParams) 3993 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 3994 } 3995 TemplateArgsIn.release(); 3996 3997 // C++ [temp.expl.spec]p9: 3998 // A template explicit specialization is in the scope of the 3999 // namespace in which the template was defined. 4000 // 4001 // We actually implement this paragraph where we set the semantic 4002 // context (in the creation of the ClassTemplateSpecializationDecl), 4003 // but we also maintain the lexical context where the actual 4004 // definition occurs. 4005 Specialization->setLexicalDeclContext(CurContext); 4006 4007 // We may be starting the definition of this specialization. 4008 if (TUK == TUK_Definition) 4009 Specialization->startDefinition(); 4010 4011 if (TUK == TUK_Friend) { 4012 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4013 TemplateNameLoc, 4014 WrittenTy, 4015 /*FIXME:*/KWLoc); 4016 Friend->setAccess(AS_public); 4017 CurContext->addDecl(Friend); 4018 } else { 4019 // Add the specialization into its lexical context, so that it can 4020 // be seen when iterating through the list of declarations in that 4021 // context. However, specializations are not found by name lookup. 4022 CurContext->addDecl(Specialization); 4023 } 4024 return Specialization; 4025} 4026 4027Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4028 MultiTemplateParamsArg TemplateParameterLists, 4029 Declarator &D) { 4030 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4031} 4032 4033Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4034 MultiTemplateParamsArg TemplateParameterLists, 4035 Declarator &D) { 4036 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4037 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 4038 "Not a function declarator!"); 4039 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 4040 4041 if (FTI.hasPrototype) { 4042 // FIXME: Diagnose arguments without names in C. 4043 } 4044 4045 Scope *ParentScope = FnBodyScope->getParent(); 4046 4047 Decl *DP = HandleDeclarator(ParentScope, D, 4048 move(TemplateParameterLists), 4049 /*IsFunctionDefinition=*/true); 4050 if (FunctionTemplateDecl *FunctionTemplate 4051 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4052 return ActOnStartOfFunctionDef(FnBodyScope, 4053 FunctionTemplate->getTemplatedDecl()); 4054 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4055 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4056 return 0; 4057} 4058 4059/// \brief Strips various properties off an implicit instantiation 4060/// that has just been explicitly specialized. 4061static void StripImplicitInstantiation(NamedDecl *D) { 4062 D->dropAttrs(); 4063 4064 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4065 FD->setInlineSpecified(false); 4066 } 4067} 4068 4069/// \brief Diagnose cases where we have an explicit template specialization 4070/// before/after an explicit template instantiation, producing diagnostics 4071/// for those cases where they are required and determining whether the 4072/// new specialization/instantiation will have any effect. 4073/// 4074/// \param NewLoc the location of the new explicit specialization or 4075/// instantiation. 4076/// 4077/// \param NewTSK the kind of the new explicit specialization or instantiation. 4078/// 4079/// \param PrevDecl the previous declaration of the entity. 4080/// 4081/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4082/// 4083/// \param PrevPointOfInstantiation if valid, indicates where the previus 4084/// declaration was instantiated (either implicitly or explicitly). 4085/// 4086/// \param HasNoEffect will be set to true to indicate that the new 4087/// specialization or instantiation has no effect and should be ignored. 4088/// 4089/// \returns true if there was an error that should prevent the introduction of 4090/// the new declaration into the AST, false otherwise. 4091bool 4092Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4093 TemplateSpecializationKind NewTSK, 4094 NamedDecl *PrevDecl, 4095 TemplateSpecializationKind PrevTSK, 4096 SourceLocation PrevPointOfInstantiation, 4097 bool &HasNoEffect) { 4098 HasNoEffect = false; 4099 4100 switch (NewTSK) { 4101 case TSK_Undeclared: 4102 case TSK_ImplicitInstantiation: 4103 assert(false && "Don't check implicit instantiations here"); 4104 return false; 4105 4106 case TSK_ExplicitSpecialization: 4107 switch (PrevTSK) { 4108 case TSK_Undeclared: 4109 case TSK_ExplicitSpecialization: 4110 // Okay, we're just specializing something that is either already 4111 // explicitly specialized or has merely been mentioned without any 4112 // instantiation. 4113 return false; 4114 4115 case TSK_ImplicitInstantiation: 4116 if (PrevPointOfInstantiation.isInvalid()) { 4117 // The declaration itself has not actually been instantiated, so it is 4118 // still okay to specialize it. 4119 StripImplicitInstantiation(PrevDecl); 4120 return false; 4121 } 4122 // Fall through 4123 4124 case TSK_ExplicitInstantiationDeclaration: 4125 case TSK_ExplicitInstantiationDefinition: 4126 assert((PrevTSK == TSK_ImplicitInstantiation || 4127 PrevPointOfInstantiation.isValid()) && 4128 "Explicit instantiation without point of instantiation?"); 4129 4130 // C++ [temp.expl.spec]p6: 4131 // If a template, a member template or the member of a class template 4132 // is explicitly specialized then that specialization shall be declared 4133 // before the first use of that specialization that would cause an 4134 // implicit instantiation to take place, in every translation unit in 4135 // which such a use occurs; no diagnostic is required. 4136 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4137 // Is there any previous explicit specialization declaration? 4138 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4139 return false; 4140 } 4141 4142 Diag(NewLoc, diag::err_specialization_after_instantiation) 4143 << PrevDecl; 4144 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4145 << (PrevTSK != TSK_ImplicitInstantiation); 4146 4147 return true; 4148 } 4149 break; 4150 4151 case TSK_ExplicitInstantiationDeclaration: 4152 switch (PrevTSK) { 4153 case TSK_ExplicitInstantiationDeclaration: 4154 // This explicit instantiation declaration is redundant (that's okay). 4155 HasNoEffect = true; 4156 return false; 4157 4158 case TSK_Undeclared: 4159 case TSK_ImplicitInstantiation: 4160 // We're explicitly instantiating something that may have already been 4161 // implicitly instantiated; that's fine. 4162 return false; 4163 4164 case TSK_ExplicitSpecialization: 4165 // C++0x [temp.explicit]p4: 4166 // For a given set of template parameters, if an explicit instantiation 4167 // of a template appears after a declaration of an explicit 4168 // specialization for that template, the explicit instantiation has no 4169 // effect. 4170 HasNoEffect = true; 4171 return false; 4172 4173 case TSK_ExplicitInstantiationDefinition: 4174 // C++0x [temp.explicit]p10: 4175 // If an entity is the subject of both an explicit instantiation 4176 // declaration and an explicit instantiation definition in the same 4177 // translation unit, the definition shall follow the declaration. 4178 Diag(NewLoc, 4179 diag::err_explicit_instantiation_declaration_after_definition); 4180 Diag(PrevPointOfInstantiation, 4181 diag::note_explicit_instantiation_definition_here); 4182 assert(PrevPointOfInstantiation.isValid() && 4183 "Explicit instantiation without point of instantiation?"); 4184 HasNoEffect = true; 4185 return false; 4186 } 4187 break; 4188 4189 case TSK_ExplicitInstantiationDefinition: 4190 switch (PrevTSK) { 4191 case TSK_Undeclared: 4192 case TSK_ImplicitInstantiation: 4193 // We're explicitly instantiating something that may have already been 4194 // implicitly instantiated; that's fine. 4195 return false; 4196 4197 case TSK_ExplicitSpecialization: 4198 // C++ DR 259, C++0x [temp.explicit]p4: 4199 // For a given set of template parameters, if an explicit 4200 // instantiation of a template appears after a declaration of 4201 // an explicit specialization for that template, the explicit 4202 // instantiation has no effect. 4203 // 4204 // In C++98/03 mode, we only give an extension warning here, because it 4205 // is not harmful to try to explicitly instantiate something that 4206 // has been explicitly specialized. 4207 if (!getLangOptions().CPlusPlus0x) { 4208 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4209 << PrevDecl; 4210 Diag(PrevDecl->getLocation(), 4211 diag::note_previous_template_specialization); 4212 } 4213 HasNoEffect = true; 4214 return false; 4215 4216 case TSK_ExplicitInstantiationDeclaration: 4217 // We're explicity instantiating a definition for something for which we 4218 // were previously asked to suppress instantiations. That's fine. 4219 return false; 4220 4221 case TSK_ExplicitInstantiationDefinition: 4222 // C++0x [temp.spec]p5: 4223 // For a given template and a given set of template-arguments, 4224 // - an explicit instantiation definition shall appear at most once 4225 // in a program, 4226 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4227 << PrevDecl; 4228 Diag(PrevPointOfInstantiation, 4229 diag::note_previous_explicit_instantiation); 4230 HasNoEffect = true; 4231 return false; 4232 } 4233 break; 4234 } 4235 4236 assert(false && "Missing specialization/instantiation case?"); 4237 4238 return false; 4239} 4240 4241/// \brief Perform semantic analysis for the given dependent function 4242/// template specialization. The only possible way to get a dependent 4243/// function template specialization is with a friend declaration, 4244/// like so: 4245/// 4246/// template <class T> void foo(T); 4247/// template <class T> class A { 4248/// friend void foo<>(T); 4249/// }; 4250/// 4251/// There really isn't any useful analysis we can do here, so we 4252/// just store the information. 4253bool 4254Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4255 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4256 LookupResult &Previous) { 4257 // Remove anything from Previous that isn't a function template in 4258 // the correct context. 4259 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4260 LookupResult::Filter F = Previous.makeFilter(); 4261 while (F.hasNext()) { 4262 NamedDecl *D = F.next()->getUnderlyingDecl(); 4263 if (!isa<FunctionTemplateDecl>(D) || 4264 !FDLookupContext->InEnclosingNamespaceSetOf( 4265 D->getDeclContext()->getRedeclContext())) 4266 F.erase(); 4267 } 4268 F.done(); 4269 4270 // Should this be diagnosed here? 4271 if (Previous.empty()) return true; 4272 4273 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4274 ExplicitTemplateArgs); 4275 return false; 4276} 4277 4278/// \brief Perform semantic analysis for the given function template 4279/// specialization. 4280/// 4281/// This routine performs all of the semantic analysis required for an 4282/// explicit function template specialization. On successful completion, 4283/// the function declaration \p FD will become a function template 4284/// specialization. 4285/// 4286/// \param FD the function declaration, which will be updated to become a 4287/// function template specialization. 4288/// 4289/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4290/// if any. Note that this may be valid info even when 0 arguments are 4291/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4292/// as it anyway contains info on the angle brackets locations. 4293/// 4294/// \param PrevDecl the set of declarations that may be specialized by 4295/// this function specialization. 4296bool 4297Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4298 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4299 LookupResult &Previous) { 4300 // The set of function template specializations that could match this 4301 // explicit function template specialization. 4302 UnresolvedSet<8> Candidates; 4303 4304 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4305 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4306 I != E; ++I) { 4307 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4308 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4309 // Only consider templates found within the same semantic lookup scope as 4310 // FD. 4311 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4312 Ovl->getDeclContext()->getRedeclContext())) 4313 continue; 4314 4315 // C++ [temp.expl.spec]p11: 4316 // A trailing template-argument can be left unspecified in the 4317 // template-id naming an explicit function template specialization 4318 // provided it can be deduced from the function argument type. 4319 // Perform template argument deduction to determine whether we may be 4320 // specializing this template. 4321 // FIXME: It is somewhat wasteful to build 4322 TemplateDeductionInfo Info(Context, FD->getLocation()); 4323 FunctionDecl *Specialization = 0; 4324 if (TemplateDeductionResult TDK 4325 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4326 FD->getType(), 4327 Specialization, 4328 Info)) { 4329 // FIXME: Template argument deduction failed; record why it failed, so 4330 // that we can provide nifty diagnostics. 4331 (void)TDK; 4332 continue; 4333 } 4334 4335 // Record this candidate. 4336 Candidates.addDecl(Specialization, I.getAccess()); 4337 } 4338 } 4339 4340 // Find the most specialized function template. 4341 UnresolvedSetIterator Result 4342 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4343 TPOC_Other, FD->getLocation(), 4344 PDiag(diag::err_function_template_spec_no_match) 4345 << FD->getDeclName(), 4346 PDiag(diag::err_function_template_spec_ambiguous) 4347 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4348 PDiag(diag::note_function_template_spec_matched)); 4349 if (Result == Candidates.end()) 4350 return true; 4351 4352 // Ignore access information; it doesn't figure into redeclaration checking. 4353 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4354 Specialization->setLocation(FD->getLocation()); 4355 4356 // FIXME: Check if the prior specialization has a point of instantiation. 4357 // If so, we have run afoul of . 4358 4359 // If this is a friend declaration, then we're not really declaring 4360 // an explicit specialization. 4361 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4362 4363 // Check the scope of this explicit specialization. 4364 if (!isFriend && 4365 CheckTemplateSpecializationScope(*this, 4366 Specialization->getPrimaryTemplate(), 4367 Specialization, FD->getLocation(), 4368 false)) 4369 return true; 4370 4371 // C++ [temp.expl.spec]p6: 4372 // If a template, a member template or the member of a class template is 4373 // explicitly specialized then that specialization shall be declared 4374 // before the first use of that specialization that would cause an implicit 4375 // instantiation to take place, in every translation unit in which such a 4376 // use occurs; no diagnostic is required. 4377 FunctionTemplateSpecializationInfo *SpecInfo 4378 = Specialization->getTemplateSpecializationInfo(); 4379 assert(SpecInfo && "Function template specialization info missing?"); 4380 4381 bool HasNoEffect = false; 4382 if (!isFriend && 4383 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4384 TSK_ExplicitSpecialization, 4385 Specialization, 4386 SpecInfo->getTemplateSpecializationKind(), 4387 SpecInfo->getPointOfInstantiation(), 4388 HasNoEffect)) 4389 return true; 4390 4391 // Mark the prior declaration as an explicit specialization, so that later 4392 // clients know that this is an explicit specialization. 4393 if (!isFriend) { 4394 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4395 MarkUnusedFileScopedDecl(Specialization); 4396 } 4397 4398 // Turn the given function declaration into a function template 4399 // specialization, with the template arguments from the previous 4400 // specialization. 4401 // Take copies of (semantic and syntactic) template argument lists. 4402 const TemplateArgumentList* TemplArgs = new (Context) 4403 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4404 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4405 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4406 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4407 TemplArgs, /*InsertPos=*/0, 4408 SpecInfo->getTemplateSpecializationKind(), 4409 TemplArgsAsWritten); 4410 4411 // The "previous declaration" for this function template specialization is 4412 // the prior function template specialization. 4413 Previous.clear(); 4414 Previous.addDecl(Specialization); 4415 return false; 4416} 4417 4418/// \brief Perform semantic analysis for the given non-template member 4419/// specialization. 4420/// 4421/// This routine performs all of the semantic analysis required for an 4422/// explicit member function specialization. On successful completion, 4423/// the function declaration \p FD will become a member function 4424/// specialization. 4425/// 4426/// \param Member the member declaration, which will be updated to become a 4427/// specialization. 4428/// 4429/// \param Previous the set of declarations, one of which may be specialized 4430/// by this function specialization; the set will be modified to contain the 4431/// redeclared member. 4432bool 4433Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4434 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4435 4436 // Try to find the member we are instantiating. 4437 NamedDecl *Instantiation = 0; 4438 NamedDecl *InstantiatedFrom = 0; 4439 MemberSpecializationInfo *MSInfo = 0; 4440 4441 if (Previous.empty()) { 4442 // Nowhere to look anyway. 4443 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4444 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4445 I != E; ++I) { 4446 NamedDecl *D = (*I)->getUnderlyingDecl(); 4447 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4448 if (Context.hasSameType(Function->getType(), Method->getType())) { 4449 Instantiation = Method; 4450 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4451 MSInfo = Method->getMemberSpecializationInfo(); 4452 break; 4453 } 4454 } 4455 } 4456 } else if (isa<VarDecl>(Member)) { 4457 VarDecl *PrevVar; 4458 if (Previous.isSingleResult() && 4459 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4460 if (PrevVar->isStaticDataMember()) { 4461 Instantiation = PrevVar; 4462 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4463 MSInfo = PrevVar->getMemberSpecializationInfo(); 4464 } 4465 } else if (isa<RecordDecl>(Member)) { 4466 CXXRecordDecl *PrevRecord; 4467 if (Previous.isSingleResult() && 4468 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4469 Instantiation = PrevRecord; 4470 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4471 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4472 } 4473 } 4474 4475 if (!Instantiation) { 4476 // There is no previous declaration that matches. Since member 4477 // specializations are always out-of-line, the caller will complain about 4478 // this mismatch later. 4479 return false; 4480 } 4481 4482 // If this is a friend, just bail out here before we start turning 4483 // things into explicit specializations. 4484 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4485 // Preserve instantiation information. 4486 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4487 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4488 cast<CXXMethodDecl>(InstantiatedFrom), 4489 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4490 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4491 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4492 cast<CXXRecordDecl>(InstantiatedFrom), 4493 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4494 } 4495 4496 Previous.clear(); 4497 Previous.addDecl(Instantiation); 4498 return false; 4499 } 4500 4501 // Make sure that this is a specialization of a member. 4502 if (!InstantiatedFrom) { 4503 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4504 << Member; 4505 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4506 return true; 4507 } 4508 4509 // C++ [temp.expl.spec]p6: 4510 // If a template, a member template or the member of a class template is 4511 // explicitly specialized then that spe- cialization shall be declared 4512 // before the first use of that specialization that would cause an implicit 4513 // instantiation to take place, in every translation unit in which such a 4514 // use occurs; no diagnostic is required. 4515 assert(MSInfo && "Member specialization info missing?"); 4516 4517 bool HasNoEffect = false; 4518 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4519 TSK_ExplicitSpecialization, 4520 Instantiation, 4521 MSInfo->getTemplateSpecializationKind(), 4522 MSInfo->getPointOfInstantiation(), 4523 HasNoEffect)) 4524 return true; 4525 4526 // Check the scope of this explicit specialization. 4527 if (CheckTemplateSpecializationScope(*this, 4528 InstantiatedFrom, 4529 Instantiation, Member->getLocation(), 4530 false)) 4531 return true; 4532 4533 // Note that this is an explicit instantiation of a member. 4534 // the original declaration to note that it is an explicit specialization 4535 // (if it was previously an implicit instantiation). This latter step 4536 // makes bookkeeping easier. 4537 if (isa<FunctionDecl>(Member)) { 4538 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4539 if (InstantiationFunction->getTemplateSpecializationKind() == 4540 TSK_ImplicitInstantiation) { 4541 InstantiationFunction->setTemplateSpecializationKind( 4542 TSK_ExplicitSpecialization); 4543 InstantiationFunction->setLocation(Member->getLocation()); 4544 } 4545 4546 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4547 cast<CXXMethodDecl>(InstantiatedFrom), 4548 TSK_ExplicitSpecialization); 4549 MarkUnusedFileScopedDecl(InstantiationFunction); 4550 } else if (isa<VarDecl>(Member)) { 4551 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4552 if (InstantiationVar->getTemplateSpecializationKind() == 4553 TSK_ImplicitInstantiation) { 4554 InstantiationVar->setTemplateSpecializationKind( 4555 TSK_ExplicitSpecialization); 4556 InstantiationVar->setLocation(Member->getLocation()); 4557 } 4558 4559 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4560 cast<VarDecl>(InstantiatedFrom), 4561 TSK_ExplicitSpecialization); 4562 MarkUnusedFileScopedDecl(InstantiationVar); 4563 } else { 4564 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4565 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4566 if (InstantiationClass->getTemplateSpecializationKind() == 4567 TSK_ImplicitInstantiation) { 4568 InstantiationClass->setTemplateSpecializationKind( 4569 TSK_ExplicitSpecialization); 4570 InstantiationClass->setLocation(Member->getLocation()); 4571 } 4572 4573 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4574 cast<CXXRecordDecl>(InstantiatedFrom), 4575 TSK_ExplicitSpecialization); 4576 } 4577 4578 // Save the caller the trouble of having to figure out which declaration 4579 // this specialization matches. 4580 Previous.clear(); 4581 Previous.addDecl(Instantiation); 4582 return false; 4583} 4584 4585/// \brief Check the scope of an explicit instantiation. 4586/// 4587/// \returns true if a serious error occurs, false otherwise. 4588static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4589 SourceLocation InstLoc, 4590 bool WasQualifiedName) { 4591 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 4592 DeclContext *CurContext = S.CurContext->getRedeclContext(); 4593 4594 if (CurContext->isRecord()) { 4595 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 4596 << D; 4597 return true; 4598 } 4599 4600 // C++0x [temp.explicit]p2: 4601 // An explicit instantiation shall appear in an enclosing namespace of its 4602 // template. 4603 // 4604 // This is DR275, which we do not retroactively apply to C++98/03. 4605 if (S.getLangOptions().CPlusPlus0x && 4606 !CurContext->Encloses(OrigContext)) { 4607 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 4608 S.Diag(InstLoc, 4609 S.getLangOptions().CPlusPlus0x? 4610 diag::err_explicit_instantiation_out_of_scope 4611 : diag::warn_explicit_instantiation_out_of_scope_0x) 4612 << D << NS; 4613 else 4614 S.Diag(InstLoc, 4615 S.getLangOptions().CPlusPlus0x? 4616 diag::err_explicit_instantiation_must_be_global 4617 : diag::warn_explicit_instantiation_out_of_scope_0x) 4618 << D; 4619 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4620 return false; 4621 } 4622 4623 // C++0x [temp.explicit]p2: 4624 // If the name declared in the explicit instantiation is an unqualified 4625 // name, the explicit instantiation shall appear in the namespace where 4626 // its template is declared or, if that namespace is inline (7.3.1), any 4627 // namespace from its enclosing namespace set. 4628 if (WasQualifiedName) 4629 return false; 4630 4631 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 4632 return false; 4633 4634 S.Diag(InstLoc, 4635 S.getLangOptions().CPlusPlus0x? 4636 diag::err_explicit_instantiation_unqualified_wrong_namespace 4637 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4638 << D << OrigContext; 4639 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4640 return false; 4641} 4642 4643/// \brief Determine whether the given scope specifier has a template-id in it. 4644static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4645 if (!SS.isSet()) 4646 return false; 4647 4648 // C++0x [temp.explicit]p2: 4649 // If the explicit instantiation is for a member function, a member class 4650 // or a static data member of a class template specialization, the name of 4651 // the class template specialization in the qualified-id for the member 4652 // name shall be a simple-template-id. 4653 // 4654 // C++98 has the same restriction, just worded differently. 4655 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4656 NNS; NNS = NNS->getPrefix()) 4657 if (Type *T = NNS->getAsType()) 4658 if (isa<TemplateSpecializationType>(T)) 4659 return true; 4660 4661 return false; 4662} 4663 4664// Explicit instantiation of a class template specialization 4665DeclResult 4666Sema::ActOnExplicitInstantiation(Scope *S, 4667 SourceLocation ExternLoc, 4668 SourceLocation TemplateLoc, 4669 unsigned TagSpec, 4670 SourceLocation KWLoc, 4671 const CXXScopeSpec &SS, 4672 TemplateTy TemplateD, 4673 SourceLocation TemplateNameLoc, 4674 SourceLocation LAngleLoc, 4675 ASTTemplateArgsPtr TemplateArgsIn, 4676 SourceLocation RAngleLoc, 4677 AttributeList *Attr) { 4678 // Find the class template we're specializing 4679 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4680 ClassTemplateDecl *ClassTemplate 4681 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4682 4683 // Check that the specialization uses the same tag kind as the 4684 // original template. 4685 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4686 assert(Kind != TTK_Enum && 4687 "Invalid enum tag in class template explicit instantiation!"); 4688 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4689 Kind, KWLoc, 4690 *ClassTemplate->getIdentifier())) { 4691 Diag(KWLoc, diag::err_use_with_wrong_tag) 4692 << ClassTemplate 4693 << FixItHint::CreateReplacement(KWLoc, 4694 ClassTemplate->getTemplatedDecl()->getKindName()); 4695 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4696 diag::note_previous_use); 4697 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4698 } 4699 4700 // C++0x [temp.explicit]p2: 4701 // There are two forms of explicit instantiation: an explicit instantiation 4702 // definition and an explicit instantiation declaration. An explicit 4703 // instantiation declaration begins with the extern keyword. [...] 4704 TemplateSpecializationKind TSK 4705 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4706 : TSK_ExplicitInstantiationDeclaration; 4707 4708 // Translate the parser's template argument list in our AST format. 4709 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4710 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4711 4712 // Check that the template argument list is well-formed for this 4713 // template. 4714 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4715 TemplateArgs.size()); 4716 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4717 TemplateArgs, false, Converted)) 4718 return true; 4719 4720 assert((Converted.structuredSize() == 4721 ClassTemplate->getTemplateParameters()->size()) && 4722 "Converted template argument list is too short!"); 4723 4724 // Find the class template specialization declaration that 4725 // corresponds to these arguments. 4726 void *InsertPos = 0; 4727 ClassTemplateSpecializationDecl *PrevDecl 4728 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 4729 Converted.flatSize(), InsertPos); 4730 4731 TemplateSpecializationKind PrevDecl_TSK 4732 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 4733 4734 // C++0x [temp.explicit]p2: 4735 // [...] An explicit instantiation shall appear in an enclosing 4736 // namespace of its template. [...] 4737 // 4738 // This is C++ DR 275. 4739 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4740 SS.isSet())) 4741 return true; 4742 4743 ClassTemplateSpecializationDecl *Specialization = 0; 4744 4745 bool ReusedDecl = false; 4746 bool HasNoEffect = false; 4747 if (PrevDecl) { 4748 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4749 PrevDecl, PrevDecl_TSK, 4750 PrevDecl->getPointOfInstantiation(), 4751 HasNoEffect)) 4752 return PrevDecl; 4753 4754 // Even though HasNoEffect == true means that this explicit instantiation 4755 // has no effect on semantics, we go on to put its syntax in the AST. 4756 4757 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 4758 PrevDecl_TSK == TSK_Undeclared) { 4759 // Since the only prior class template specialization with these 4760 // arguments was referenced but not declared, reuse that 4761 // declaration node as our own, updating the source location 4762 // for the template name to reflect our new declaration. 4763 // (Other source locations will be updated later.) 4764 Specialization = PrevDecl; 4765 Specialization->setLocation(TemplateNameLoc); 4766 PrevDecl = 0; 4767 ReusedDecl = true; 4768 } 4769 } 4770 4771 if (!Specialization) { 4772 // Create a new class template specialization declaration node for 4773 // this explicit specialization. 4774 Specialization 4775 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4776 ClassTemplate->getDeclContext(), 4777 TemplateNameLoc, 4778 ClassTemplate, 4779 Converted, PrevDecl); 4780 SetNestedNameSpecifier(Specialization, SS); 4781 4782 if (!HasNoEffect && !PrevDecl) { 4783 // Insert the new specialization. 4784 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4785 } 4786 } 4787 4788 // Build the fully-sugared type for this explicit instantiation as 4789 // the user wrote in the explicit instantiation itself. This means 4790 // that we'll pretty-print the type retrieved from the 4791 // specialization's declaration the way that the user actually wrote 4792 // the explicit instantiation, rather than formatting the name based 4793 // on the "canonical" representation used to store the template 4794 // arguments in the specialization. 4795 TypeSourceInfo *WrittenTy 4796 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4797 TemplateArgs, 4798 Context.getTypeDeclType(Specialization)); 4799 Specialization->setTypeAsWritten(WrittenTy); 4800 TemplateArgsIn.release(); 4801 4802 // Set source locations for keywords. 4803 Specialization->setExternLoc(ExternLoc); 4804 Specialization->setTemplateKeywordLoc(TemplateLoc); 4805 4806 // Add the explicit instantiation into its lexical context. However, 4807 // since explicit instantiations are never found by name lookup, we 4808 // just put it into the declaration context directly. 4809 Specialization->setLexicalDeclContext(CurContext); 4810 CurContext->addDecl(Specialization); 4811 4812 // Syntax is now OK, so return if it has no other effect on semantics. 4813 if (HasNoEffect) { 4814 // Set the template specialization kind. 4815 Specialization->setTemplateSpecializationKind(TSK); 4816 return Specialization; 4817 } 4818 4819 // C++ [temp.explicit]p3: 4820 // A definition of a class template or class member template 4821 // shall be in scope at the point of the explicit instantiation of 4822 // the class template or class member template. 4823 // 4824 // This check comes when we actually try to perform the 4825 // instantiation. 4826 ClassTemplateSpecializationDecl *Def 4827 = cast_or_null<ClassTemplateSpecializationDecl>( 4828 Specialization->getDefinition()); 4829 if (!Def) 4830 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4831 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4832 MarkVTableUsed(TemplateNameLoc, Specialization, true); 4833 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 4834 } 4835 4836 // Instantiate the members of this class template specialization. 4837 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4838 Specialization->getDefinition()); 4839 if (Def) { 4840 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4841 4842 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4843 // TSK_ExplicitInstantiationDefinition 4844 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4845 TSK == TSK_ExplicitInstantiationDefinition) 4846 Def->setTemplateSpecializationKind(TSK); 4847 4848 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4849 } 4850 4851 // Set the template specialization kind. 4852 Specialization->setTemplateSpecializationKind(TSK); 4853 return Specialization; 4854} 4855 4856// Explicit instantiation of a member class of a class template. 4857DeclResult 4858Sema::ActOnExplicitInstantiation(Scope *S, 4859 SourceLocation ExternLoc, 4860 SourceLocation TemplateLoc, 4861 unsigned TagSpec, 4862 SourceLocation KWLoc, 4863 CXXScopeSpec &SS, 4864 IdentifierInfo *Name, 4865 SourceLocation NameLoc, 4866 AttributeList *Attr) { 4867 4868 bool Owned = false; 4869 bool IsDependent = false; 4870 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 4871 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4872 MultiTemplateParamsArg(*this, 0, 0), 4873 Owned, IsDependent, false, 4874 TypeResult()); 4875 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4876 4877 if (!TagD) 4878 return true; 4879 4880 TagDecl *Tag = cast<TagDecl>(TagD); 4881 if (Tag->isEnum()) { 4882 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4883 << Context.getTypeDeclType(Tag); 4884 return true; 4885 } 4886 4887 if (Tag->isInvalidDecl()) 4888 return true; 4889 4890 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4891 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4892 if (!Pattern) { 4893 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4894 << Context.getTypeDeclType(Record); 4895 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4896 return true; 4897 } 4898 4899 // C++0x [temp.explicit]p2: 4900 // If the explicit instantiation is for a class or member class, the 4901 // elaborated-type-specifier in the declaration shall include a 4902 // simple-template-id. 4903 // 4904 // C++98 has the same restriction, just worded differently. 4905 if (!ScopeSpecifierHasTemplateId(SS)) 4906 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 4907 << Record << SS.getRange(); 4908 4909 // C++0x [temp.explicit]p2: 4910 // There are two forms of explicit instantiation: an explicit instantiation 4911 // definition and an explicit instantiation declaration. An explicit 4912 // instantiation declaration begins with the extern keyword. [...] 4913 TemplateSpecializationKind TSK 4914 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4915 : TSK_ExplicitInstantiationDeclaration; 4916 4917 // C++0x [temp.explicit]p2: 4918 // [...] An explicit instantiation shall appear in an enclosing 4919 // namespace of its template. [...] 4920 // 4921 // This is C++ DR 275. 4922 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4923 4924 // Verify that it is okay to explicitly instantiate here. 4925 CXXRecordDecl *PrevDecl 4926 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4927 if (!PrevDecl && Record->getDefinition()) 4928 PrevDecl = Record; 4929 if (PrevDecl) { 4930 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4931 bool HasNoEffect = false; 4932 assert(MSInfo && "No member specialization information?"); 4933 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4934 PrevDecl, 4935 MSInfo->getTemplateSpecializationKind(), 4936 MSInfo->getPointOfInstantiation(), 4937 HasNoEffect)) 4938 return true; 4939 if (HasNoEffect) 4940 return TagD; 4941 } 4942 4943 CXXRecordDecl *RecordDef 4944 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4945 if (!RecordDef) { 4946 // C++ [temp.explicit]p3: 4947 // A definition of a member class of a class template shall be in scope 4948 // at the point of an explicit instantiation of the member class. 4949 CXXRecordDecl *Def 4950 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4951 if (!Def) { 4952 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4953 << 0 << Record->getDeclName() << Record->getDeclContext(); 4954 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4955 << Pattern; 4956 return true; 4957 } else { 4958 if (InstantiateClass(NameLoc, Record, Def, 4959 getTemplateInstantiationArgs(Record), 4960 TSK)) 4961 return true; 4962 4963 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4964 if (!RecordDef) 4965 return true; 4966 } 4967 } 4968 4969 // Instantiate all of the members of the class. 4970 InstantiateClassMembers(NameLoc, RecordDef, 4971 getTemplateInstantiationArgs(Record), TSK); 4972 4973 if (TSK == TSK_ExplicitInstantiationDefinition) 4974 MarkVTableUsed(NameLoc, RecordDef, true); 4975 4976 // FIXME: We don't have any representation for explicit instantiations of 4977 // member classes. Such a representation is not needed for compilation, but it 4978 // should be available for clients that want to see all of the declarations in 4979 // the source code. 4980 return TagD; 4981} 4982 4983DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4984 SourceLocation ExternLoc, 4985 SourceLocation TemplateLoc, 4986 Declarator &D) { 4987 // Explicit instantiations always require a name. 4988 // TODO: check if/when DNInfo should replace Name. 4989 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 4990 DeclarationName Name = NameInfo.getName(); 4991 if (!Name) { 4992 if (!D.isInvalidType()) 4993 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4994 diag::err_explicit_instantiation_requires_name) 4995 << D.getDeclSpec().getSourceRange() 4996 << D.getSourceRange(); 4997 4998 return true; 4999 } 5000 5001 // The scope passed in may not be a decl scope. Zip up the scope tree until 5002 // we find one that is. 5003 while ((S->getFlags() & Scope::DeclScope) == 0 || 5004 (S->getFlags() & Scope::TemplateParamScope) != 0) 5005 S = S->getParent(); 5006 5007 // Determine the type of the declaration. 5008 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5009 QualType R = T->getType(); 5010 if (R.isNull()) 5011 return true; 5012 5013 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5014 // Cannot explicitly instantiate a typedef. 5015 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5016 << Name; 5017 return true; 5018 } 5019 5020 // C++0x [temp.explicit]p1: 5021 // [...] An explicit instantiation of a function template shall not use the 5022 // inline or constexpr specifiers. 5023 // Presumably, this also applies to member functions of class templates as 5024 // well. 5025 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5026 Diag(D.getDeclSpec().getInlineSpecLoc(), 5027 diag::err_explicit_instantiation_inline) 5028 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5029 5030 // FIXME: check for constexpr specifier. 5031 5032 // C++0x [temp.explicit]p2: 5033 // There are two forms of explicit instantiation: an explicit instantiation 5034 // definition and an explicit instantiation declaration. An explicit 5035 // instantiation declaration begins with the extern keyword. [...] 5036 TemplateSpecializationKind TSK 5037 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5038 : TSK_ExplicitInstantiationDeclaration; 5039 5040 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5041 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5042 5043 if (!R->isFunctionType()) { 5044 // C++ [temp.explicit]p1: 5045 // A [...] static data member of a class template can be explicitly 5046 // instantiated from the member definition associated with its class 5047 // template. 5048 if (Previous.isAmbiguous()) 5049 return true; 5050 5051 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5052 if (!Prev || !Prev->isStaticDataMember()) { 5053 // We expect to see a data data member here. 5054 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5055 << Name; 5056 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5057 P != PEnd; ++P) 5058 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5059 return true; 5060 } 5061 5062 if (!Prev->getInstantiatedFromStaticDataMember()) { 5063 // FIXME: Check for explicit specialization? 5064 Diag(D.getIdentifierLoc(), 5065 diag::err_explicit_instantiation_data_member_not_instantiated) 5066 << Prev; 5067 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5068 // FIXME: Can we provide a note showing where this was declared? 5069 return true; 5070 } 5071 5072 // C++0x [temp.explicit]p2: 5073 // If the explicit instantiation is for a member function, a member class 5074 // or a static data member of a class template specialization, the name of 5075 // the class template specialization in the qualified-id for the member 5076 // name shall be a simple-template-id. 5077 // 5078 // C++98 has the same restriction, just worded differently. 5079 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5080 Diag(D.getIdentifierLoc(), 5081 diag::ext_explicit_instantiation_without_qualified_id) 5082 << Prev << D.getCXXScopeSpec().getRange(); 5083 5084 // Check the scope of this explicit instantiation. 5085 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5086 5087 // Verify that it is okay to explicitly instantiate here. 5088 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5089 assert(MSInfo && "Missing static data member specialization info?"); 5090 bool HasNoEffect = false; 5091 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5092 MSInfo->getTemplateSpecializationKind(), 5093 MSInfo->getPointOfInstantiation(), 5094 HasNoEffect)) 5095 return true; 5096 if (HasNoEffect) 5097 return (Decl*) 0; 5098 5099 // Instantiate static data member. 5100 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5101 if (TSK == TSK_ExplicitInstantiationDefinition) 5102 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5103 5104 // FIXME: Create an ExplicitInstantiation node? 5105 return (Decl*) 0; 5106 } 5107 5108 // If the declarator is a template-id, translate the parser's template 5109 // argument list into our AST format. 5110 bool HasExplicitTemplateArgs = false; 5111 TemplateArgumentListInfo TemplateArgs; 5112 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5113 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5114 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5115 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5116 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5117 TemplateId->getTemplateArgs(), 5118 TemplateId->NumArgs); 5119 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5120 HasExplicitTemplateArgs = true; 5121 TemplateArgsPtr.release(); 5122 } 5123 5124 // C++ [temp.explicit]p1: 5125 // A [...] function [...] can be explicitly instantiated from its template. 5126 // A member function [...] of a class template can be explicitly 5127 // instantiated from the member definition associated with its class 5128 // template. 5129 UnresolvedSet<8> Matches; 5130 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5131 P != PEnd; ++P) { 5132 NamedDecl *Prev = *P; 5133 if (!HasExplicitTemplateArgs) { 5134 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5135 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5136 Matches.clear(); 5137 5138 Matches.addDecl(Method, P.getAccess()); 5139 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5140 break; 5141 } 5142 } 5143 } 5144 5145 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5146 if (!FunTmpl) 5147 continue; 5148 5149 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5150 FunctionDecl *Specialization = 0; 5151 if (TemplateDeductionResult TDK 5152 = DeduceTemplateArguments(FunTmpl, 5153 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5154 R, Specialization, Info)) { 5155 // FIXME: Keep track of almost-matches? 5156 (void)TDK; 5157 continue; 5158 } 5159 5160 Matches.addDecl(Specialization, P.getAccess()); 5161 } 5162 5163 // Find the most specialized function template specialization. 5164 UnresolvedSetIterator Result 5165 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5166 D.getIdentifierLoc(), 5167 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5168 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5169 PDiag(diag::note_explicit_instantiation_candidate)); 5170 5171 if (Result == Matches.end()) 5172 return true; 5173 5174 // Ignore access control bits, we don't need them for redeclaration checking. 5175 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5176 5177 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5178 Diag(D.getIdentifierLoc(), 5179 diag::err_explicit_instantiation_member_function_not_instantiated) 5180 << Specialization 5181 << (Specialization->getTemplateSpecializationKind() == 5182 TSK_ExplicitSpecialization); 5183 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5184 return true; 5185 } 5186 5187 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5188 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5189 PrevDecl = Specialization; 5190 5191 if (PrevDecl) { 5192 bool HasNoEffect = false; 5193 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5194 PrevDecl, 5195 PrevDecl->getTemplateSpecializationKind(), 5196 PrevDecl->getPointOfInstantiation(), 5197 HasNoEffect)) 5198 return true; 5199 5200 // FIXME: We may still want to build some representation of this 5201 // explicit specialization. 5202 if (HasNoEffect) 5203 return (Decl*) 0; 5204 } 5205 5206 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5207 5208 if (TSK == TSK_ExplicitInstantiationDefinition) 5209 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5210 5211 // C++0x [temp.explicit]p2: 5212 // If the explicit instantiation is for a member function, a member class 5213 // or a static data member of a class template specialization, the name of 5214 // the class template specialization in the qualified-id for the member 5215 // name shall be a simple-template-id. 5216 // 5217 // C++98 has the same restriction, just worded differently. 5218 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5219 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5220 D.getCXXScopeSpec().isSet() && 5221 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5222 Diag(D.getIdentifierLoc(), 5223 diag::ext_explicit_instantiation_without_qualified_id) 5224 << Specialization << D.getCXXScopeSpec().getRange(); 5225 5226 CheckExplicitInstantiationScope(*this, 5227 FunTmpl? (NamedDecl *)FunTmpl 5228 : Specialization->getInstantiatedFromMemberFunction(), 5229 D.getIdentifierLoc(), 5230 D.getCXXScopeSpec().isSet()); 5231 5232 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5233 return (Decl*) 0; 5234} 5235 5236TypeResult 5237Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5238 const CXXScopeSpec &SS, IdentifierInfo *Name, 5239 SourceLocation TagLoc, SourceLocation NameLoc) { 5240 // This has to hold, because SS is expected to be defined. 5241 assert(Name && "Expected a name in a dependent tag"); 5242 5243 NestedNameSpecifier *NNS 5244 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5245 if (!NNS) 5246 return true; 5247 5248 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5249 5250 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5251 Diag(NameLoc, diag::err_dependent_tag_decl) 5252 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5253 return true; 5254 } 5255 5256 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5257 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5258} 5259 5260TypeResult 5261Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5262 const CXXScopeSpec &SS, const IdentifierInfo &II, 5263 SourceLocation IdLoc) { 5264 NestedNameSpecifier *NNS 5265 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5266 if (!NNS) 5267 return true; 5268 5269 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5270 !getLangOptions().CPlusPlus0x) 5271 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5272 << FixItHint::CreateRemoval(TypenameLoc); 5273 5274 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5275 TypenameLoc, SS.getRange(), IdLoc); 5276 if (T.isNull()) 5277 return true; 5278 5279 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5280 if (isa<DependentNameType>(T)) { 5281 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5282 TL.setKeywordLoc(TypenameLoc); 5283 TL.setQualifierRange(SS.getRange()); 5284 TL.setNameLoc(IdLoc); 5285 } else { 5286 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5287 TL.setKeywordLoc(TypenameLoc); 5288 TL.setQualifierRange(SS.getRange()); 5289 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5290 } 5291 5292 return CreateParsedType(T, TSI); 5293} 5294 5295TypeResult 5296Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5297 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5298 ParsedType Ty) { 5299 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5300 !getLangOptions().CPlusPlus0x) 5301 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5302 << FixItHint::CreateRemoval(TypenameLoc); 5303 5304 TypeSourceInfo *InnerTSI = 0; 5305 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5306 5307 assert(isa<TemplateSpecializationType>(T) && 5308 "Expected a template specialization type"); 5309 5310 if (computeDeclContext(SS, false)) { 5311 // If we can compute a declaration context, then the "typename" 5312 // keyword was superfluous. Just build an ElaboratedType to keep 5313 // track of the nested-name-specifier. 5314 5315 // Push the inner type, preserving its source locations if possible. 5316 TypeLocBuilder Builder; 5317 if (InnerTSI) 5318 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5319 else 5320 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5321 5322 /* Note: NNS already embedded in template specialization type T. */ 5323 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5324 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5325 TL.setKeywordLoc(TypenameLoc); 5326 TL.setQualifierRange(SS.getRange()); 5327 5328 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5329 return CreateParsedType(T, TSI); 5330 } 5331 5332 // TODO: it's really silly that we make a template specialization 5333 // type earlier only to drop it again here. 5334 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5335 DependentTemplateName *DTN = 5336 TST->getTemplateName().getAsDependentTemplateName(); 5337 assert(DTN && "dependent template has non-dependent name?"); 5338 assert(DTN->getQualifier() 5339 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5340 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5341 DTN->getQualifier(), 5342 DTN->getIdentifier(), 5343 TST->getNumArgs(), 5344 TST->getArgs()); 5345 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5346 DependentTemplateSpecializationTypeLoc TL = 5347 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5348 if (InnerTSI) { 5349 TemplateSpecializationTypeLoc TSTL = 5350 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5351 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5352 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5353 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5354 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5355 } else { 5356 TL.initializeLocal(SourceLocation()); 5357 } 5358 TL.setKeywordLoc(TypenameLoc); 5359 TL.setQualifierRange(SS.getRange()); 5360 return CreateParsedType(T, TSI); 5361} 5362 5363/// \brief Build the type that describes a C++ typename specifier, 5364/// e.g., "typename T::type". 5365QualType 5366Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5367 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5368 SourceLocation KeywordLoc, SourceRange NNSRange, 5369 SourceLocation IILoc) { 5370 CXXScopeSpec SS; 5371 SS.setScopeRep(NNS); 5372 SS.setRange(NNSRange); 5373 5374 DeclContext *Ctx = computeDeclContext(SS); 5375 if (!Ctx) { 5376 // If the nested-name-specifier is dependent and couldn't be 5377 // resolved to a type, build a typename type. 5378 assert(NNS->isDependent()); 5379 return Context.getDependentNameType(Keyword, NNS, &II); 5380 } 5381 5382 // If the nested-name-specifier refers to the current instantiation, 5383 // the "typename" keyword itself is superfluous. In C++03, the 5384 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5385 // allows such extraneous "typename" keywords, and we retroactively 5386 // apply this DR to C++03 code with only a warning. In any case we continue. 5387 5388 if (RequireCompleteDeclContext(SS, Ctx)) 5389 return QualType(); 5390 5391 DeclarationName Name(&II); 5392 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5393 LookupQualifiedName(Result, Ctx); 5394 unsigned DiagID = 0; 5395 Decl *Referenced = 0; 5396 switch (Result.getResultKind()) { 5397 case LookupResult::NotFound: 5398 DiagID = diag::err_typename_nested_not_found; 5399 break; 5400 5401 case LookupResult::NotFoundInCurrentInstantiation: 5402 // Okay, it's a member of an unknown instantiation. 5403 return Context.getDependentNameType(Keyword, NNS, &II); 5404 5405 case LookupResult::Found: 5406 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5407 // We found a type. Build an ElaboratedType, since the 5408 // typename-specifier was just sugar. 5409 return Context.getElaboratedType(ETK_Typename, NNS, 5410 Context.getTypeDeclType(Type)); 5411 } 5412 5413 DiagID = diag::err_typename_nested_not_type; 5414 Referenced = Result.getFoundDecl(); 5415 break; 5416 5417 case LookupResult::FoundUnresolvedValue: 5418 llvm_unreachable("unresolved using decl in non-dependent context"); 5419 return QualType(); 5420 5421 case LookupResult::FoundOverloaded: 5422 DiagID = diag::err_typename_nested_not_type; 5423 Referenced = *Result.begin(); 5424 break; 5425 5426 case LookupResult::Ambiguous: 5427 return QualType(); 5428 } 5429 5430 // If we get here, it's because name lookup did not find a 5431 // type. Emit an appropriate diagnostic and return an error. 5432 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5433 IILoc); 5434 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5435 if (Referenced) 5436 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5437 << Name; 5438 return QualType(); 5439} 5440 5441namespace { 5442 // See Sema::RebuildTypeInCurrentInstantiation 5443 class CurrentInstantiationRebuilder 5444 : public TreeTransform<CurrentInstantiationRebuilder> { 5445 SourceLocation Loc; 5446 DeclarationName Entity; 5447 5448 public: 5449 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5450 5451 CurrentInstantiationRebuilder(Sema &SemaRef, 5452 SourceLocation Loc, 5453 DeclarationName Entity) 5454 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5455 Loc(Loc), Entity(Entity) { } 5456 5457 /// \brief Determine whether the given type \p T has already been 5458 /// transformed. 5459 /// 5460 /// For the purposes of type reconstruction, a type has already been 5461 /// transformed if it is NULL or if it is not dependent. 5462 bool AlreadyTransformed(QualType T) { 5463 return T.isNull() || !T->isDependentType(); 5464 } 5465 5466 /// \brief Returns the location of the entity whose type is being 5467 /// rebuilt. 5468 SourceLocation getBaseLocation() { return Loc; } 5469 5470 /// \brief Returns the name of the entity whose type is being rebuilt. 5471 DeclarationName getBaseEntity() { return Entity; } 5472 5473 /// \brief Sets the "base" location and entity when that 5474 /// information is known based on another transformation. 5475 void setBase(SourceLocation Loc, DeclarationName Entity) { 5476 this->Loc = Loc; 5477 this->Entity = Entity; 5478 } 5479 }; 5480} 5481 5482/// \brief Rebuilds a type within the context of the current instantiation. 5483/// 5484/// The type \p T is part of the type of an out-of-line member definition of 5485/// a class template (or class template partial specialization) that was parsed 5486/// and constructed before we entered the scope of the class template (or 5487/// partial specialization thereof). This routine will rebuild that type now 5488/// that we have entered the declarator's scope, which may produce different 5489/// canonical types, e.g., 5490/// 5491/// \code 5492/// template<typename T> 5493/// struct X { 5494/// typedef T* pointer; 5495/// pointer data(); 5496/// }; 5497/// 5498/// template<typename T> 5499/// typename X<T>::pointer X<T>::data() { ... } 5500/// \endcode 5501/// 5502/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5503/// since we do not know that we can look into X<T> when we parsed the type. 5504/// This function will rebuild the type, performing the lookup of "pointer" 5505/// in X<T> and returning an ElaboratedType whose canonical type is the same 5506/// as the canonical type of T*, allowing the return types of the out-of-line 5507/// definition and the declaration to match. 5508TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5509 SourceLocation Loc, 5510 DeclarationName Name) { 5511 if (!T || !T->getType()->isDependentType()) 5512 return T; 5513 5514 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5515 return Rebuilder.TransformType(T); 5516} 5517 5518ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 5519 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 5520 DeclarationName()); 5521 return Rebuilder.TransformExpr(E); 5522} 5523 5524bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5525 if (SS.isInvalid()) return true; 5526 5527 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5528 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5529 DeclarationName()); 5530 NestedNameSpecifier *Rebuilt = 5531 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5532 if (!Rebuilt) return true; 5533 5534 SS.setScopeRep(Rebuilt); 5535 return false; 5536} 5537 5538/// \brief Produces a formatted string that describes the binding of 5539/// template parameters to template arguments. 5540std::string 5541Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5542 const TemplateArgumentList &Args) { 5543 // FIXME: For variadic templates, we'll need to get the structured list. 5544 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5545 Args.flat_size()); 5546} 5547 5548std::string 5549Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5550 const TemplateArgument *Args, 5551 unsigned NumArgs) { 5552 std::string Result; 5553 5554 if (!Params || Params->size() == 0 || NumArgs == 0) 5555 return Result; 5556 5557 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5558 if (I >= NumArgs) 5559 break; 5560 5561 if (I == 0) 5562 Result += "[with "; 5563 else 5564 Result += ", "; 5565 5566 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5567 Result += Id->getName(); 5568 } else { 5569 Result += '$'; 5570 Result += llvm::utostr(I); 5571 } 5572 5573 Result += " = "; 5574 5575 switch (Args[I].getKind()) { 5576 case TemplateArgument::Null: 5577 Result += "<no value>"; 5578 break; 5579 5580 case TemplateArgument::Type: { 5581 std::string TypeStr; 5582 Args[I].getAsType().getAsStringInternal(TypeStr, 5583 Context.PrintingPolicy); 5584 Result += TypeStr; 5585 break; 5586 } 5587 5588 case TemplateArgument::Declaration: { 5589 bool Unnamed = true; 5590 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5591 if (ND->getDeclName()) { 5592 Unnamed = false; 5593 Result += ND->getNameAsString(); 5594 } 5595 } 5596 5597 if (Unnamed) { 5598 Result += "<anonymous>"; 5599 } 5600 break; 5601 } 5602 5603 case TemplateArgument::Template: { 5604 std::string Str; 5605 llvm::raw_string_ostream OS(Str); 5606 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5607 Result += OS.str(); 5608 break; 5609 } 5610 5611 case TemplateArgument::Integral: { 5612 Result += Args[I].getAsIntegral()->toString(10); 5613 break; 5614 } 5615 5616 case TemplateArgument::Expression: { 5617 // FIXME: This is non-optimal, since we're regurgitating the 5618 // expression we were given. 5619 std::string Str; 5620 { 5621 llvm::raw_string_ostream OS(Str); 5622 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5623 Context.PrintingPolicy); 5624 } 5625 Result += Str; 5626 break; 5627 } 5628 5629 case TemplateArgument::Pack: 5630 // FIXME: Format template argument packs 5631 Result += "<template argument pack>"; 5632 break; 5633 } 5634 } 5635 5636 Result += ']'; 5637 return Result; 5638} 5639