SemaTemplate.cpp revision 1274ccd90aec0b205fc838c3d504821ccfb55482
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "llvm/ADT/StringExtras.h"
28using namespace clang;
29using namespace sema;
30
31/// \brief Determine whether the declaration found is acceptable as the name
32/// of a template and, if so, return that template declaration. Otherwise,
33/// returns NULL.
34static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
35                                           NamedDecl *Orig) {
36  NamedDecl *D = Orig->getUnderlyingDecl();
37
38  if (isa<TemplateDecl>(D))
39    return Orig;
40
41  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
42    // C++ [temp.local]p1:
43    //   Like normal (non-template) classes, class templates have an
44    //   injected-class-name (Clause 9). The injected-class-name
45    //   can be used with or without a template-argument-list. When
46    //   it is used without a template-argument-list, it is
47    //   equivalent to the injected-class-name followed by the
48    //   template-parameters of the class template enclosed in
49    //   <>. When it is used with a template-argument-list, it
50    //   refers to the specified class template specialization,
51    //   which could be the current specialization or another
52    //   specialization.
53    if (Record->isInjectedClassName()) {
54      Record = cast<CXXRecordDecl>(Record->getDeclContext());
55      if (Record->getDescribedClassTemplate())
56        return Record->getDescribedClassTemplate();
57
58      if (ClassTemplateSpecializationDecl *Spec
59            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
60        return Spec->getSpecializedTemplate();
61    }
62
63    return 0;
64  }
65
66  return 0;
67}
68
69static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
70  // The set of class templates we've already seen.
71  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
72  LookupResult::Filter filter = R.makeFilter();
73  while (filter.hasNext()) {
74    NamedDecl *Orig = filter.next();
75    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
76    if (!Repl)
77      filter.erase();
78    else if (Repl != Orig) {
79
80      // C++ [temp.local]p3:
81      //   A lookup that finds an injected-class-name (10.2) can result in an
82      //   ambiguity in certain cases (for example, if it is found in more than
83      //   one base class). If all of the injected-class-names that are found
84      //   refer to specializations of the same class template, and if the name
85      //   is followed by a template-argument-list, the reference refers to the
86      //   class template itself and not a specialization thereof, and is not
87      //   ambiguous.
88      //
89      // FIXME: Will we eventually have to do the same for alias templates?
90      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
91        if (!ClassTemplates.insert(ClassTmpl)) {
92          filter.erase();
93          continue;
94        }
95
96      // FIXME: we promote access to public here as a workaround to
97      // the fact that LookupResult doesn't let us remember that we
98      // found this template through a particular injected class name,
99      // which means we end up doing nasty things to the invariants.
100      // Pretending that access is public is *much* safer.
101      filter.replace(Repl, AS_public);
102    }
103  }
104  filter.done();
105}
106
107TemplateNameKind Sema::isTemplateName(Scope *S,
108                                      CXXScopeSpec &SS,
109                                      bool hasTemplateKeyword,
110                                      UnqualifiedId &Name,
111                                      ParsedType ObjectTypePtr,
112                                      bool EnteringContext,
113                                      TemplateTy &TemplateResult,
114                                      bool &MemberOfUnknownSpecialization) {
115  assert(getLangOptions().CPlusPlus && "No template names in C!");
116
117  DeclarationName TName;
118  MemberOfUnknownSpecialization = false;
119
120  switch (Name.getKind()) {
121  case UnqualifiedId::IK_Identifier:
122    TName = DeclarationName(Name.Identifier);
123    break;
124
125  case UnqualifiedId::IK_OperatorFunctionId:
126    TName = Context.DeclarationNames.getCXXOperatorName(
127                                              Name.OperatorFunctionId.Operator);
128    break;
129
130  case UnqualifiedId::IK_LiteralOperatorId:
131    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
132    break;
133
134  default:
135    return TNK_Non_template;
136  }
137
138  QualType ObjectType = ObjectTypePtr.get();
139
140  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
141                 LookupOrdinaryName);
142  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
143                     MemberOfUnknownSpecialization);
144  if (R.empty()) return TNK_Non_template;
145  if (R.isAmbiguous()) {
146    // Suppress diagnostics;  we'll redo this lookup later.
147    R.suppressDiagnostics();
148
149    // FIXME: we might have ambiguous templates, in which case we
150    // should at least parse them properly!
151    return TNK_Non_template;
152  }
153
154  TemplateName Template;
155  TemplateNameKind TemplateKind;
156
157  unsigned ResultCount = R.end() - R.begin();
158  if (ResultCount > 1) {
159    // We assume that we'll preserve the qualifier from a function
160    // template name in other ways.
161    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
162    TemplateKind = TNK_Function_template;
163
164    // We'll do this lookup again later.
165    R.suppressDiagnostics();
166  } else {
167    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
168
169    if (SS.isSet() && !SS.isInvalid()) {
170      NestedNameSpecifier *Qualifier
171        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
172      Template = Context.getQualifiedTemplateName(Qualifier,
173                                                  hasTemplateKeyword, TD);
174    } else {
175      Template = TemplateName(TD);
176    }
177
178    if (isa<FunctionTemplateDecl>(TD)) {
179      TemplateKind = TNK_Function_template;
180
181      // We'll do this lookup again later.
182      R.suppressDiagnostics();
183    } else {
184      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
185      TemplateKind = TNK_Type_template;
186    }
187  }
188
189  TemplateResult = TemplateTy::make(Template);
190  return TemplateKind;
191}
192
193bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
194                                       SourceLocation IILoc,
195                                       Scope *S,
196                                       const CXXScopeSpec *SS,
197                                       TemplateTy &SuggestedTemplate,
198                                       TemplateNameKind &SuggestedKind) {
199  // We can't recover unless there's a dependent scope specifier preceding the
200  // template name.
201  // FIXME: Typo correction?
202  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
203      computeDeclContext(*SS))
204    return false;
205
206  // The code is missing a 'template' keyword prior to the dependent template
207  // name.
208  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
209  Diag(IILoc, diag::err_template_kw_missing)
210    << Qualifier << II.getName()
211    << FixItHint::CreateInsertion(IILoc, "template ");
212  SuggestedTemplate
213    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
214  SuggestedKind = TNK_Dependent_template_name;
215  return true;
216}
217
218void Sema::LookupTemplateName(LookupResult &Found,
219                              Scope *S, CXXScopeSpec &SS,
220                              QualType ObjectType,
221                              bool EnteringContext,
222                              bool &MemberOfUnknownSpecialization) {
223  // Determine where to perform name lookup
224  MemberOfUnknownSpecialization = false;
225  DeclContext *LookupCtx = 0;
226  bool isDependent = false;
227  if (!ObjectType.isNull()) {
228    // This nested-name-specifier occurs in a member access expression, e.g.,
229    // x->B::f, and we are looking into the type of the object.
230    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
231    LookupCtx = computeDeclContext(ObjectType);
232    isDependent = ObjectType->isDependentType();
233    assert((isDependent || !ObjectType->isIncompleteType()) &&
234           "Caller should have completed object type");
235  } else if (SS.isSet()) {
236    // This nested-name-specifier occurs after another nested-name-specifier,
237    // so long into the context associated with the prior nested-name-specifier.
238    LookupCtx = computeDeclContext(SS, EnteringContext);
239    isDependent = isDependentScopeSpecifier(SS);
240
241    // The declaration context must be complete.
242    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
243      return;
244  }
245
246  bool ObjectTypeSearchedInScope = false;
247  if (LookupCtx) {
248    // Perform "qualified" name lookup into the declaration context we
249    // computed, which is either the type of the base of a member access
250    // expression or the declaration context associated with a prior
251    // nested-name-specifier.
252    LookupQualifiedName(Found, LookupCtx);
253
254    if (!ObjectType.isNull() && Found.empty()) {
255      // C++ [basic.lookup.classref]p1:
256      //   In a class member access expression (5.2.5), if the . or -> token is
257      //   immediately followed by an identifier followed by a <, the
258      //   identifier must be looked up to determine whether the < is the
259      //   beginning of a template argument list (14.2) or a less-than operator.
260      //   The identifier is first looked up in the class of the object
261      //   expression. If the identifier is not found, it is then looked up in
262      //   the context of the entire postfix-expression and shall name a class
263      //   or function template.
264      if (S) LookupName(Found, S);
265      ObjectTypeSearchedInScope = true;
266    }
267  } else if (isDependent && (!S || ObjectType.isNull())) {
268    // We cannot look into a dependent object type or nested nme
269    // specifier.
270    MemberOfUnknownSpecialization = true;
271    return;
272  } else {
273    // Perform unqualified name lookup in the current scope.
274    LookupName(Found, S);
275  }
276
277  if (Found.empty() && !isDependent) {
278    // If we did not find any names, attempt to correct any typos.
279    DeclarationName Name = Found.getLookupName();
280    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
281                                                false, CTC_CXXCasts)) {
282      FilterAcceptableTemplateNames(Context, Found);
283      if (!Found.empty()) {
284        if (LookupCtx)
285          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
286            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
287            << FixItHint::CreateReplacement(Found.getNameLoc(),
288                                          Found.getLookupName().getAsString());
289        else
290          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
291            << Name << Found.getLookupName()
292            << FixItHint::CreateReplacement(Found.getNameLoc(),
293                                          Found.getLookupName().getAsString());
294        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
295          Diag(Template->getLocation(), diag::note_previous_decl)
296            << Template->getDeclName();
297      }
298    } else {
299      Found.clear();
300      Found.setLookupName(Name);
301    }
302  }
303
304  FilterAcceptableTemplateNames(Context, Found);
305  if (Found.empty()) {
306    if (isDependent)
307      MemberOfUnknownSpecialization = true;
308    return;
309  }
310
311  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
312    // C++ [basic.lookup.classref]p1:
313    //   [...] If the lookup in the class of the object expression finds a
314    //   template, the name is also looked up in the context of the entire
315    //   postfix-expression and [...]
316    //
317    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
318                            LookupOrdinaryName);
319    LookupName(FoundOuter, S);
320    FilterAcceptableTemplateNames(Context, FoundOuter);
321
322    if (FoundOuter.empty()) {
323      //   - if the name is not found, the name found in the class of the
324      //     object expression is used, otherwise
325    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
326      //   - if the name is found in the context of the entire
327      //     postfix-expression and does not name a class template, the name
328      //     found in the class of the object expression is used, otherwise
329    } else if (!Found.isSuppressingDiagnostics()) {
330      //   - if the name found is a class template, it must refer to the same
331      //     entity as the one found in the class of the object expression,
332      //     otherwise the program is ill-formed.
333      if (!Found.isSingleResult() ||
334          Found.getFoundDecl()->getCanonicalDecl()
335            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
336        Diag(Found.getNameLoc(),
337             diag::ext_nested_name_member_ref_lookup_ambiguous)
338          << Found.getLookupName()
339          << ObjectType;
340        Diag(Found.getRepresentativeDecl()->getLocation(),
341             diag::note_ambig_member_ref_object_type)
342          << ObjectType;
343        Diag(FoundOuter.getFoundDecl()->getLocation(),
344             diag::note_ambig_member_ref_scope);
345
346        // Recover by taking the template that we found in the object
347        // expression's type.
348      }
349    }
350  }
351}
352
353/// ActOnDependentIdExpression - Handle a dependent id-expression that
354/// was just parsed.  This is only possible with an explicit scope
355/// specifier naming a dependent type.
356ExprResult
357Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
358                                 const DeclarationNameInfo &NameInfo,
359                                 bool isAddressOfOperand,
360                           const TemplateArgumentListInfo *TemplateArgs) {
361  NestedNameSpecifier *Qualifier
362    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
363
364  DeclContext *DC = getFunctionLevelDeclContext();
365
366  if (!isAddressOfOperand &&
367      isa<CXXMethodDecl>(DC) &&
368      cast<CXXMethodDecl>(DC)->isInstance()) {
369    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
370
371    // Since the 'this' expression is synthesized, we don't need to
372    // perform the double-lookup check.
373    NamedDecl *FirstQualifierInScope = 0;
374
375    return Owned(CXXDependentScopeMemberExpr::Create(Context,
376                                                     /*This*/ 0, ThisType,
377                                                     /*IsArrow*/ true,
378                                                     /*Op*/ SourceLocation(),
379                                                     Qualifier, SS.getRange(),
380                                                     FirstQualifierInScope,
381                                                     NameInfo,
382                                                     TemplateArgs));
383  }
384
385  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
386}
387
388ExprResult
389Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
390                                const DeclarationNameInfo &NameInfo,
391                                const TemplateArgumentListInfo *TemplateArgs) {
392  return Owned(DependentScopeDeclRefExpr::Create(Context,
393               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
394                                                 SS.getRange(),
395                                                 NameInfo,
396                                                 TemplateArgs));
397}
398
399/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
400/// that the template parameter 'PrevDecl' is being shadowed by a new
401/// declaration at location Loc. Returns true to indicate that this is
402/// an error, and false otherwise.
403bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
404  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
405
406  // Microsoft Visual C++ permits template parameters to be shadowed.
407  if (getLangOptions().Microsoft)
408    return false;
409
410  // C++ [temp.local]p4:
411  //   A template-parameter shall not be redeclared within its
412  //   scope (including nested scopes).
413  Diag(Loc, diag::err_template_param_shadow)
414    << cast<NamedDecl>(PrevDecl)->getDeclName();
415  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
416  return true;
417}
418
419/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
420/// the parameter D to reference the templated declaration and return a pointer
421/// to the template declaration. Otherwise, do nothing to D and return null.
422TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
423  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
424    D = Temp->getTemplatedDecl();
425    return Temp;
426  }
427  return 0;
428}
429
430static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
431                                            const ParsedTemplateArgument &Arg) {
432
433  switch (Arg.getKind()) {
434  case ParsedTemplateArgument::Type: {
435    TypeSourceInfo *DI;
436    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
437    if (!DI)
438      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
439    return TemplateArgumentLoc(TemplateArgument(T), DI);
440  }
441
442  case ParsedTemplateArgument::NonType: {
443    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
444    return TemplateArgumentLoc(TemplateArgument(E), E);
445  }
446
447  case ParsedTemplateArgument::Template: {
448    TemplateName Template = Arg.getAsTemplate().get();
449    return TemplateArgumentLoc(TemplateArgument(Template),
450                               Arg.getScopeSpec().getRange(),
451                               Arg.getLocation());
452  }
453  }
454
455  llvm_unreachable("Unhandled parsed template argument");
456  return TemplateArgumentLoc();
457}
458
459/// \brief Translates template arguments as provided by the parser
460/// into template arguments used by semantic analysis.
461void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
462                                      TemplateArgumentListInfo &TemplateArgs) {
463 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
464   TemplateArgs.addArgument(translateTemplateArgument(*this,
465                                                      TemplateArgsIn[I]));
466}
467
468/// ActOnTypeParameter - Called when a C++ template type parameter
469/// (e.g., "typename T") has been parsed. Typename specifies whether
470/// the keyword "typename" was used to declare the type parameter
471/// (otherwise, "class" was used), and KeyLoc is the location of the
472/// "class" or "typename" keyword. ParamName is the name of the
473/// parameter (NULL indicates an unnamed template parameter) and
474/// ParamName is the location of the parameter name (if any).
475/// If the type parameter has a default argument, it will be added
476/// later via ActOnTypeParameterDefault.
477Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
478                               SourceLocation EllipsisLoc,
479                               SourceLocation KeyLoc,
480                               IdentifierInfo *ParamName,
481                               SourceLocation ParamNameLoc,
482                               unsigned Depth, unsigned Position,
483                               SourceLocation EqualLoc,
484                               ParsedType DefaultArg) {
485  assert(S->isTemplateParamScope() &&
486         "Template type parameter not in template parameter scope!");
487  bool Invalid = false;
488
489  if (ParamName) {
490    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
491                                           LookupOrdinaryName,
492                                           ForRedeclaration);
493    if (PrevDecl && PrevDecl->isTemplateParameter())
494      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
495                                                           PrevDecl);
496  }
497
498  SourceLocation Loc = ParamNameLoc;
499  if (!ParamName)
500    Loc = KeyLoc;
501
502  TemplateTypeParmDecl *Param
503    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
504                                   Loc, Depth, Position, ParamName, Typename,
505                                   Ellipsis);
506  if (Invalid)
507    Param->setInvalidDecl();
508
509  if (ParamName) {
510    // Add the template parameter into the current scope.
511    S->AddDecl(Param);
512    IdResolver.AddDecl(Param);
513  }
514
515  // Handle the default argument, if provided.
516  if (DefaultArg) {
517    TypeSourceInfo *DefaultTInfo;
518    GetTypeFromParser(DefaultArg, &DefaultTInfo);
519
520    assert(DefaultTInfo && "expected source information for type");
521
522    // C++0x [temp.param]p9:
523    // A default template-argument may be specified for any kind of
524    // template-parameter that is not a template parameter pack.
525    if (Ellipsis) {
526      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
527      return Param;
528    }
529
530    // Check the template argument itself.
531    if (CheckTemplateArgument(Param, DefaultTInfo)) {
532      Param->setInvalidDecl();
533      return Param;
534    }
535
536    Param->setDefaultArgument(DefaultTInfo, false);
537  }
538
539  return Param;
540}
541
542/// \brief Check that the type of a non-type template parameter is
543/// well-formed.
544///
545/// \returns the (possibly-promoted) parameter type if valid;
546/// otherwise, produces a diagnostic and returns a NULL type.
547QualType
548Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
549  // We don't allow variably-modified types as the type of non-type template
550  // parameters.
551  if (T->isVariablyModifiedType()) {
552    Diag(Loc, diag::err_variably_modified_nontype_template_param)
553      << T;
554    return QualType();
555  }
556
557  // C++ [temp.param]p4:
558  //
559  // A non-type template-parameter shall have one of the following
560  // (optionally cv-qualified) types:
561  //
562  //       -- integral or enumeration type,
563  if (T->isIntegralOrEnumerationType() ||
564      //   -- pointer to object or pointer to function,
565      T->isPointerType() ||
566      //   -- reference to object or reference to function,
567      T->isReferenceType() ||
568      //   -- pointer to member.
569      T->isMemberPointerType() ||
570      // If T is a dependent type, we can't do the check now, so we
571      // assume that it is well-formed.
572      T->isDependentType())
573    return T;
574  // C++ [temp.param]p8:
575  //
576  //   A non-type template-parameter of type "array of T" or
577  //   "function returning T" is adjusted to be of type "pointer to
578  //   T" or "pointer to function returning T", respectively.
579  else if (T->isArrayType())
580    // FIXME: Keep the type prior to promotion?
581    return Context.getArrayDecayedType(T);
582  else if (T->isFunctionType())
583    // FIXME: Keep the type prior to promotion?
584    return Context.getPointerType(T);
585
586  Diag(Loc, diag::err_template_nontype_parm_bad_type)
587    << T;
588
589  return QualType();
590}
591
592Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
593                                          unsigned Depth,
594                                          unsigned Position,
595                                          SourceLocation EqualLoc,
596                                          Expr *Default) {
597  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
598  QualType T = TInfo->getType();
599
600  assert(S->isTemplateParamScope() &&
601         "Non-type template parameter not in template parameter scope!");
602  bool Invalid = false;
603
604  IdentifierInfo *ParamName = D.getIdentifier();
605  if (ParamName) {
606    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
607                                           LookupOrdinaryName,
608                                           ForRedeclaration);
609    if (PrevDecl && PrevDecl->isTemplateParameter())
610      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
611                                                           PrevDecl);
612  }
613
614  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
615  if (T.isNull()) {
616    T = Context.IntTy; // Recover with an 'int' type.
617    Invalid = true;
618  }
619
620  NonTypeTemplateParmDecl *Param
621    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
622                                      D.getIdentifierLoc(),
623                                      Depth, Position, ParamName, T, TInfo);
624  if (Invalid)
625    Param->setInvalidDecl();
626
627  if (D.getIdentifier()) {
628    // Add the template parameter into the current scope.
629    S->AddDecl(Param);
630    IdResolver.AddDecl(Param);
631  }
632
633  // Check the well-formedness of the default template argument, if provided.
634  if (Default) {
635    TemplateArgument Converted;
636    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
637      Param->setInvalidDecl();
638      return Param;
639    }
640
641    Param->setDefaultArgument(Default, false);
642  }
643
644  return Param;
645}
646
647/// ActOnTemplateTemplateParameter - Called when a C++ template template
648/// parameter (e.g. T in template <template <typename> class T> class array)
649/// has been parsed. S is the current scope.
650Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
651                                           SourceLocation TmpLoc,
652                                           TemplateParamsTy *Params,
653                                           IdentifierInfo *Name,
654                                           SourceLocation NameLoc,
655                                           unsigned Depth,
656                                           unsigned Position,
657                                           SourceLocation EqualLoc,
658                                       const ParsedTemplateArgument &Default) {
659  assert(S->isTemplateParamScope() &&
660         "Template template parameter not in template parameter scope!");
661
662  // Construct the parameter object.
663  TemplateTemplateParmDecl *Param =
664    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
665                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
666                                     Depth, Position, Name,
667                                     (TemplateParameterList*)Params);
668
669  // If the template template parameter has a name, then link the identifier
670  // into the scope and lookup mechanisms.
671  if (Name) {
672    S->AddDecl(Param);
673    IdResolver.AddDecl(Param);
674  }
675
676  if (!Default.isInvalid()) {
677    // Check only that we have a template template argument. We don't want to
678    // try to check well-formedness now, because our template template parameter
679    // might have dependent types in its template parameters, which we wouldn't
680    // be able to match now.
681    //
682    // If none of the template template parameter's template arguments mention
683    // other template parameters, we could actually perform more checking here.
684    // However, it isn't worth doing.
685    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
686    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
687      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
688        << DefaultArg.getSourceRange();
689      return Param;
690    }
691
692    Param->setDefaultArgument(DefaultArg, false);
693  }
694
695  return Param;
696}
697
698/// ActOnTemplateParameterList - Builds a TemplateParameterList that
699/// contains the template parameters in Params/NumParams.
700Sema::TemplateParamsTy *
701Sema::ActOnTemplateParameterList(unsigned Depth,
702                                 SourceLocation ExportLoc,
703                                 SourceLocation TemplateLoc,
704                                 SourceLocation LAngleLoc,
705                                 Decl **Params, unsigned NumParams,
706                                 SourceLocation RAngleLoc) {
707  if (ExportLoc.isValid())
708    Diag(ExportLoc, diag::warn_template_export_unsupported);
709
710  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
711                                       (NamedDecl**)Params, NumParams,
712                                       RAngleLoc);
713}
714
715static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
716  if (SS.isSet())
717    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
718                        SS.getRange());
719}
720
721DeclResult
722Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
723                         SourceLocation KWLoc, CXXScopeSpec &SS,
724                         IdentifierInfo *Name, SourceLocation NameLoc,
725                         AttributeList *Attr,
726                         TemplateParameterList *TemplateParams,
727                         AccessSpecifier AS) {
728  assert(TemplateParams && TemplateParams->size() > 0 &&
729         "No template parameters");
730  assert(TUK != TUK_Reference && "Can only declare or define class templates");
731  bool Invalid = false;
732
733  // Check that we can declare a template here.
734  if (CheckTemplateDeclScope(S, TemplateParams))
735    return true;
736
737  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
738  assert(Kind != TTK_Enum && "can't build template of enumerated type");
739
740  // There is no such thing as an unnamed class template.
741  if (!Name) {
742    Diag(KWLoc, diag::err_template_unnamed_class);
743    return true;
744  }
745
746  // Find any previous declaration with this name.
747  DeclContext *SemanticContext;
748  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
749                        ForRedeclaration);
750  if (SS.isNotEmpty() && !SS.isInvalid()) {
751    SemanticContext = computeDeclContext(SS, true);
752    if (!SemanticContext) {
753      // FIXME: Produce a reasonable diagnostic here
754      return true;
755    }
756
757    if (RequireCompleteDeclContext(SS, SemanticContext))
758      return true;
759
760    LookupQualifiedName(Previous, SemanticContext);
761  } else {
762    SemanticContext = CurContext;
763    LookupName(Previous, S);
764  }
765
766  if (Previous.isAmbiguous())
767    return true;
768
769  NamedDecl *PrevDecl = 0;
770  if (Previous.begin() != Previous.end())
771    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
772
773  // If there is a previous declaration with the same name, check
774  // whether this is a valid redeclaration.
775  ClassTemplateDecl *PrevClassTemplate
776    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
777
778  // We may have found the injected-class-name of a class template,
779  // class template partial specialization, or class template specialization.
780  // In these cases, grab the template that is being defined or specialized.
781  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
782      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
783    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
784    PrevClassTemplate
785      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
786    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
787      PrevClassTemplate
788        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
789            ->getSpecializedTemplate();
790    }
791  }
792
793  if (TUK == TUK_Friend) {
794    // C++ [namespace.memdef]p3:
795    //   [...] When looking for a prior declaration of a class or a function
796    //   declared as a friend, and when the name of the friend class or
797    //   function is neither a qualified name nor a template-id, scopes outside
798    //   the innermost enclosing namespace scope are not considered.
799    if (!SS.isSet()) {
800      DeclContext *OutermostContext = CurContext;
801      while (!OutermostContext->isFileContext())
802        OutermostContext = OutermostContext->getLookupParent();
803
804      if (PrevDecl &&
805          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
806           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
807        SemanticContext = PrevDecl->getDeclContext();
808      } else {
809        // Declarations in outer scopes don't matter. However, the outermost
810        // context we computed is the semantic context for our new
811        // declaration.
812        PrevDecl = PrevClassTemplate = 0;
813        SemanticContext = OutermostContext;
814      }
815    }
816
817    if (CurContext->isDependentContext()) {
818      // If this is a dependent context, we don't want to link the friend
819      // class template to the template in scope, because that would perform
820      // checking of the template parameter lists that can't be performed
821      // until the outer context is instantiated.
822      PrevDecl = PrevClassTemplate = 0;
823    }
824  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
825    PrevDecl = PrevClassTemplate = 0;
826
827  if (PrevClassTemplate) {
828    // Ensure that the template parameter lists are compatible.
829    if (!TemplateParameterListsAreEqual(TemplateParams,
830                                   PrevClassTemplate->getTemplateParameters(),
831                                        /*Complain=*/true,
832                                        TPL_TemplateMatch))
833      return true;
834
835    // C++ [temp.class]p4:
836    //   In a redeclaration, partial specialization, explicit
837    //   specialization or explicit instantiation of a class template,
838    //   the class-key shall agree in kind with the original class
839    //   template declaration (7.1.5.3).
840    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
841    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
842      Diag(KWLoc, diag::err_use_with_wrong_tag)
843        << Name
844        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
845      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
846      Kind = PrevRecordDecl->getTagKind();
847    }
848
849    // Check for redefinition of this class template.
850    if (TUK == TUK_Definition) {
851      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
852        Diag(NameLoc, diag::err_redefinition) << Name;
853        Diag(Def->getLocation(), diag::note_previous_definition);
854        // FIXME: Would it make sense to try to "forget" the previous
855        // definition, as part of error recovery?
856        return true;
857      }
858    }
859  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
860    // Maybe we will complain about the shadowed template parameter.
861    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
862    // Just pretend that we didn't see the previous declaration.
863    PrevDecl = 0;
864  } else if (PrevDecl) {
865    // C++ [temp]p5:
866    //   A class template shall not have the same name as any other
867    //   template, class, function, object, enumeration, enumerator,
868    //   namespace, or type in the same scope (3.3), except as specified
869    //   in (14.5.4).
870    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
871    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
872    return true;
873  }
874
875  // Check the template parameter list of this declaration, possibly
876  // merging in the template parameter list from the previous class
877  // template declaration.
878  if (CheckTemplateParameterList(TemplateParams,
879            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
880                                 TPC_ClassTemplate))
881    Invalid = true;
882
883  if (SS.isSet()) {
884    // If the name of the template was qualified, we must be defining the
885    // template out-of-line.
886    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
887        !(TUK == TUK_Friend && CurContext->isDependentContext()))
888      Diag(NameLoc, diag::err_member_def_does_not_match)
889        << Name << SemanticContext << SS.getRange();
890  }
891
892  CXXRecordDecl *NewClass =
893    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
894                          PrevClassTemplate?
895                            PrevClassTemplate->getTemplatedDecl() : 0,
896                          /*DelayTypeCreation=*/true);
897  SetNestedNameSpecifier(NewClass, SS);
898
899  ClassTemplateDecl *NewTemplate
900    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
901                                DeclarationName(Name), TemplateParams,
902                                NewClass, PrevClassTemplate);
903  NewClass->setDescribedClassTemplate(NewTemplate);
904
905  // Build the type for the class template declaration now.
906  QualType T = NewTemplate->getInjectedClassNameSpecialization();
907  T = Context.getInjectedClassNameType(NewClass, T);
908  assert(T->isDependentType() && "Class template type is not dependent?");
909  (void)T;
910
911  // If we are providing an explicit specialization of a member that is a
912  // class template, make a note of that.
913  if (PrevClassTemplate &&
914      PrevClassTemplate->getInstantiatedFromMemberTemplate())
915    PrevClassTemplate->setMemberSpecialization();
916
917  // Set the access specifier.
918  if (!Invalid && TUK != TUK_Friend)
919    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
920
921  // Set the lexical context of these templates
922  NewClass->setLexicalDeclContext(CurContext);
923  NewTemplate->setLexicalDeclContext(CurContext);
924
925  if (TUK == TUK_Definition)
926    NewClass->startDefinition();
927
928  if (Attr)
929    ProcessDeclAttributeList(S, NewClass, Attr);
930
931  if (TUK != TUK_Friend)
932    PushOnScopeChains(NewTemplate, S);
933  else {
934    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
935      NewTemplate->setAccess(PrevClassTemplate->getAccess());
936      NewClass->setAccess(PrevClassTemplate->getAccess());
937    }
938
939    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
940                                       PrevClassTemplate != NULL);
941
942    // Friend templates are visible in fairly strange ways.
943    if (!CurContext->isDependentContext()) {
944      DeclContext *DC = SemanticContext->getRedeclContext();
945      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
946      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
947        PushOnScopeChains(NewTemplate, EnclosingScope,
948                          /* AddToContext = */ false);
949    }
950
951    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
952                                            NewClass->getLocation(),
953                                            NewTemplate,
954                                    /*FIXME:*/NewClass->getLocation());
955    Friend->setAccess(AS_public);
956    CurContext->addDecl(Friend);
957  }
958
959  if (Invalid) {
960    NewTemplate->setInvalidDecl();
961    NewClass->setInvalidDecl();
962  }
963  return NewTemplate;
964}
965
966/// \brief Diagnose the presence of a default template argument on a
967/// template parameter, which is ill-formed in certain contexts.
968///
969/// \returns true if the default template argument should be dropped.
970static bool DiagnoseDefaultTemplateArgument(Sema &S,
971                                            Sema::TemplateParamListContext TPC,
972                                            SourceLocation ParamLoc,
973                                            SourceRange DefArgRange) {
974  switch (TPC) {
975  case Sema::TPC_ClassTemplate:
976    return false;
977
978  case Sema::TPC_FunctionTemplate:
979    // C++ [temp.param]p9:
980    //   A default template-argument shall not be specified in a
981    //   function template declaration or a function template
982    //   definition [...]
983    // (This sentence is not in C++0x, per DR226).
984    if (!S.getLangOptions().CPlusPlus0x)
985      S.Diag(ParamLoc,
986             diag::err_template_parameter_default_in_function_template)
987        << DefArgRange;
988    return false;
989
990  case Sema::TPC_ClassTemplateMember:
991    // C++0x [temp.param]p9:
992    //   A default template-argument shall not be specified in the
993    //   template-parameter-lists of the definition of a member of a
994    //   class template that appears outside of the member's class.
995    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
996      << DefArgRange;
997    return true;
998
999  case Sema::TPC_FriendFunctionTemplate:
1000    // C++ [temp.param]p9:
1001    //   A default template-argument shall not be specified in a
1002    //   friend template declaration.
1003    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1004      << DefArgRange;
1005    return true;
1006
1007    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1008    // for friend function templates if there is only a single
1009    // declaration (and it is a definition). Strange!
1010  }
1011
1012  return false;
1013}
1014
1015/// \brief Checks the validity of a template parameter list, possibly
1016/// considering the template parameter list from a previous
1017/// declaration.
1018///
1019/// If an "old" template parameter list is provided, it must be
1020/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1021/// template parameter list.
1022///
1023/// \param NewParams Template parameter list for a new template
1024/// declaration. This template parameter list will be updated with any
1025/// default arguments that are carried through from the previous
1026/// template parameter list.
1027///
1028/// \param OldParams If provided, template parameter list from a
1029/// previous declaration of the same template. Default template
1030/// arguments will be merged from the old template parameter list to
1031/// the new template parameter list.
1032///
1033/// \param TPC Describes the context in which we are checking the given
1034/// template parameter list.
1035///
1036/// \returns true if an error occurred, false otherwise.
1037bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1038                                      TemplateParameterList *OldParams,
1039                                      TemplateParamListContext TPC) {
1040  bool Invalid = false;
1041
1042  // C++ [temp.param]p10:
1043  //   The set of default template-arguments available for use with a
1044  //   template declaration or definition is obtained by merging the
1045  //   default arguments from the definition (if in scope) and all
1046  //   declarations in scope in the same way default function
1047  //   arguments are (8.3.6).
1048  bool SawDefaultArgument = false;
1049  SourceLocation PreviousDefaultArgLoc;
1050
1051  bool SawParameterPack = false;
1052  SourceLocation ParameterPackLoc;
1053
1054  // Dummy initialization to avoid warnings.
1055  TemplateParameterList::iterator OldParam = NewParams->end();
1056  if (OldParams)
1057    OldParam = OldParams->begin();
1058
1059  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1060                                    NewParamEnd = NewParams->end();
1061       NewParam != NewParamEnd; ++NewParam) {
1062    // Variables used to diagnose redundant default arguments
1063    bool RedundantDefaultArg = false;
1064    SourceLocation OldDefaultLoc;
1065    SourceLocation NewDefaultLoc;
1066
1067    // Variables used to diagnose missing default arguments
1068    bool MissingDefaultArg = false;
1069
1070    // C++0x [temp.param]p11:
1071    // If a template parameter of a class template is a template parameter pack,
1072    // it must be the last template parameter.
1073    if (SawParameterPack) {
1074      Diag(ParameterPackLoc,
1075           diag::err_template_param_pack_must_be_last_template_parameter);
1076      Invalid = true;
1077    }
1078
1079    if (TemplateTypeParmDecl *NewTypeParm
1080          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1081      // Check the presence of a default argument here.
1082      if (NewTypeParm->hasDefaultArgument() &&
1083          DiagnoseDefaultTemplateArgument(*this, TPC,
1084                                          NewTypeParm->getLocation(),
1085               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1086                                                       .getSourceRange()))
1087        NewTypeParm->removeDefaultArgument();
1088
1089      // Merge default arguments for template type parameters.
1090      TemplateTypeParmDecl *OldTypeParm
1091          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1092
1093      if (NewTypeParm->isParameterPack()) {
1094        assert(!NewTypeParm->hasDefaultArgument() &&
1095               "Parameter packs can't have a default argument!");
1096        SawParameterPack = true;
1097        ParameterPackLoc = NewTypeParm->getLocation();
1098      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1099                 NewTypeParm->hasDefaultArgument()) {
1100        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1101        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1102        SawDefaultArgument = true;
1103        RedundantDefaultArg = true;
1104        PreviousDefaultArgLoc = NewDefaultLoc;
1105      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1106        // Merge the default argument from the old declaration to the
1107        // new declaration.
1108        SawDefaultArgument = true;
1109        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1110                                        true);
1111        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1112      } else if (NewTypeParm->hasDefaultArgument()) {
1113        SawDefaultArgument = true;
1114        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1115      } else if (SawDefaultArgument)
1116        MissingDefaultArg = true;
1117    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1118               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1119      // Check the presence of a default argument here.
1120      if (NewNonTypeParm->hasDefaultArgument() &&
1121          DiagnoseDefaultTemplateArgument(*this, TPC,
1122                                          NewNonTypeParm->getLocation(),
1123                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1124        NewNonTypeParm->removeDefaultArgument();
1125      }
1126
1127      // Merge default arguments for non-type template parameters
1128      NonTypeTemplateParmDecl *OldNonTypeParm
1129        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1130      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1131          NewNonTypeParm->hasDefaultArgument()) {
1132        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1133        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1134        SawDefaultArgument = true;
1135        RedundantDefaultArg = true;
1136        PreviousDefaultArgLoc = NewDefaultLoc;
1137      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1138        // Merge the default argument from the old declaration to the
1139        // new declaration.
1140        SawDefaultArgument = true;
1141        // FIXME: We need to create a new kind of "default argument"
1142        // expression that points to a previous template template
1143        // parameter.
1144        NewNonTypeParm->setDefaultArgument(
1145                                         OldNonTypeParm->getDefaultArgument(),
1146                                         /*Inherited=*/ true);
1147        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148      } else if (NewNonTypeParm->hasDefaultArgument()) {
1149        SawDefaultArgument = true;
1150        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1151      } else if (SawDefaultArgument)
1152        MissingDefaultArg = true;
1153    } else {
1154      // Check the presence of a default argument here.
1155      TemplateTemplateParmDecl *NewTemplateParm
1156        = cast<TemplateTemplateParmDecl>(*NewParam);
1157      if (NewTemplateParm->hasDefaultArgument() &&
1158          DiagnoseDefaultTemplateArgument(*this, TPC,
1159                                          NewTemplateParm->getLocation(),
1160                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1161        NewTemplateParm->removeDefaultArgument();
1162
1163      // Merge default arguments for template template parameters
1164      TemplateTemplateParmDecl *OldTemplateParm
1165        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1166      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1167          NewTemplateParm->hasDefaultArgument()) {
1168        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1169        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1170        SawDefaultArgument = true;
1171        RedundantDefaultArg = true;
1172        PreviousDefaultArgLoc = NewDefaultLoc;
1173      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1174        // Merge the default argument from the old declaration to the
1175        // new declaration.
1176        SawDefaultArgument = true;
1177        // FIXME: We need to create a new kind of "default argument" expression
1178        // that points to a previous template template parameter.
1179        NewTemplateParm->setDefaultArgument(
1180                                          OldTemplateParm->getDefaultArgument(),
1181                                          /*Inherited=*/ true);
1182        PreviousDefaultArgLoc
1183          = OldTemplateParm->getDefaultArgument().getLocation();
1184      } else if (NewTemplateParm->hasDefaultArgument()) {
1185        SawDefaultArgument = true;
1186        PreviousDefaultArgLoc
1187          = NewTemplateParm->getDefaultArgument().getLocation();
1188      } else if (SawDefaultArgument)
1189        MissingDefaultArg = true;
1190    }
1191
1192    if (RedundantDefaultArg) {
1193      // C++ [temp.param]p12:
1194      //   A template-parameter shall not be given default arguments
1195      //   by two different declarations in the same scope.
1196      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1197      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1198      Invalid = true;
1199    } else if (MissingDefaultArg) {
1200      // C++ [temp.param]p11:
1201      //   If a template-parameter has a default template-argument,
1202      //   all subsequent template-parameters shall have a default
1203      //   template-argument supplied.
1204      Diag((*NewParam)->getLocation(),
1205           diag::err_template_param_default_arg_missing);
1206      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1207      Invalid = true;
1208    }
1209
1210    // If we have an old template parameter list that we're merging
1211    // in, move on to the next parameter.
1212    if (OldParams)
1213      ++OldParam;
1214  }
1215
1216  return Invalid;
1217}
1218
1219/// \brief Match the given template parameter lists to the given scope
1220/// specifier, returning the template parameter list that applies to the
1221/// name.
1222///
1223/// \param DeclStartLoc the start of the declaration that has a scope
1224/// specifier or a template parameter list.
1225///
1226/// \param SS the scope specifier that will be matched to the given template
1227/// parameter lists. This scope specifier precedes a qualified name that is
1228/// being declared.
1229///
1230/// \param ParamLists the template parameter lists, from the outermost to the
1231/// innermost template parameter lists.
1232///
1233/// \param NumParamLists the number of template parameter lists in ParamLists.
1234///
1235/// \param IsFriend Whether to apply the slightly different rules for
1236/// matching template parameters to scope specifiers in friend
1237/// declarations.
1238///
1239/// \param IsExplicitSpecialization will be set true if the entity being
1240/// declared is an explicit specialization, false otherwise.
1241///
1242/// \returns the template parameter list, if any, that corresponds to the
1243/// name that is preceded by the scope specifier @p SS. This template
1244/// parameter list may be have template parameters (if we're declaring a
1245/// template) or may have no template parameters (if we're declaring a
1246/// template specialization), or may be NULL (if we were's declaring isn't
1247/// itself a template).
1248TemplateParameterList *
1249Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1250                                              const CXXScopeSpec &SS,
1251                                          TemplateParameterList **ParamLists,
1252                                              unsigned NumParamLists,
1253                                              bool IsFriend,
1254                                              bool &IsExplicitSpecialization,
1255                                              bool &Invalid) {
1256  IsExplicitSpecialization = false;
1257
1258  // Find the template-ids that occur within the nested-name-specifier. These
1259  // template-ids will match up with the template parameter lists.
1260  llvm::SmallVector<const TemplateSpecializationType *, 4>
1261    TemplateIdsInSpecifier;
1262  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1263    ExplicitSpecializationsInSpecifier;
1264  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1265       NNS; NNS = NNS->getPrefix()) {
1266    const Type *T = NNS->getAsType();
1267    if (!T) break;
1268
1269    // C++0x [temp.expl.spec]p17:
1270    //   A member or a member template may be nested within many
1271    //   enclosing class templates. In an explicit specialization for
1272    //   such a member, the member declaration shall be preceded by a
1273    //   template<> for each enclosing class template that is
1274    //   explicitly specialized.
1275    //
1276    // Following the existing practice of GNU and EDG, we allow a typedef of a
1277    // template specialization type.
1278    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1279      T = TT->LookThroughTypedefs().getTypePtr();
1280
1281    if (const TemplateSpecializationType *SpecType
1282                                  = dyn_cast<TemplateSpecializationType>(T)) {
1283      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1284      if (!Template)
1285        continue; // FIXME: should this be an error? probably...
1286
1287      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1288        ClassTemplateSpecializationDecl *SpecDecl
1289          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1290        // If the nested name specifier refers to an explicit specialization,
1291        // we don't need a template<> header.
1292        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1293          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1294          continue;
1295        }
1296      }
1297
1298      TemplateIdsInSpecifier.push_back(SpecType);
1299    }
1300  }
1301
1302  // Reverse the list of template-ids in the scope specifier, so that we can
1303  // more easily match up the template-ids and the template parameter lists.
1304  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1305
1306  SourceLocation FirstTemplateLoc = DeclStartLoc;
1307  if (NumParamLists)
1308    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1309
1310  // Match the template-ids found in the specifier to the template parameter
1311  // lists.
1312  unsigned Idx = 0;
1313  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1314       Idx != NumTemplateIds; ++Idx) {
1315    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1316    bool DependentTemplateId = TemplateId->isDependentType();
1317    if (Idx >= NumParamLists) {
1318      // We have a template-id without a corresponding template parameter
1319      // list.
1320
1321      // ...which is fine if this is a friend declaration.
1322      if (IsFriend) {
1323        IsExplicitSpecialization = true;
1324        break;
1325      }
1326
1327      if (DependentTemplateId) {
1328        // FIXME: the location information here isn't great.
1329        Diag(SS.getRange().getBegin(),
1330             diag::err_template_spec_needs_template_parameters)
1331          << TemplateId
1332          << SS.getRange();
1333        Invalid = true;
1334      } else {
1335        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1336          << SS.getRange()
1337          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1338        IsExplicitSpecialization = true;
1339      }
1340      return 0;
1341    }
1342
1343    // Check the template parameter list against its corresponding template-id.
1344    if (DependentTemplateId) {
1345      TemplateParameterList *ExpectedTemplateParams = 0;
1346
1347      // Are there cases in (e.g.) friends where this won't match?
1348      if (const InjectedClassNameType *Injected
1349            = TemplateId->getAs<InjectedClassNameType>()) {
1350        CXXRecordDecl *Record = Injected->getDecl();
1351        if (ClassTemplatePartialSpecializationDecl *Partial =
1352              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1353          ExpectedTemplateParams = Partial->getTemplateParameters();
1354        else
1355          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1356            ->getTemplateParameters();
1357      }
1358
1359      if (ExpectedTemplateParams)
1360        TemplateParameterListsAreEqual(ParamLists[Idx],
1361                                       ExpectedTemplateParams,
1362                                       true, TPL_TemplateMatch);
1363
1364      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1365    } else if (ParamLists[Idx]->size() > 0)
1366      Diag(ParamLists[Idx]->getTemplateLoc(),
1367           diag::err_template_param_list_matches_nontemplate)
1368        << TemplateId
1369        << ParamLists[Idx]->getSourceRange();
1370    else
1371      IsExplicitSpecialization = true;
1372  }
1373
1374  // If there were at least as many template-ids as there were template
1375  // parameter lists, then there are no template parameter lists remaining for
1376  // the declaration itself.
1377  if (Idx >= NumParamLists)
1378    return 0;
1379
1380  // If there were too many template parameter lists, complain about that now.
1381  if (Idx != NumParamLists - 1) {
1382    while (Idx < NumParamLists - 1) {
1383      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1384      Diag(ParamLists[Idx]->getTemplateLoc(),
1385           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1386                               : diag::err_template_spec_extra_headers)
1387        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1388                       ParamLists[Idx]->getRAngleLoc());
1389
1390      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1391        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1392             diag::note_explicit_template_spec_does_not_need_header)
1393          << ExplicitSpecializationsInSpecifier.back();
1394        ExplicitSpecializationsInSpecifier.pop_back();
1395      }
1396
1397      // We have a template parameter list with no corresponding scope, which
1398      // means that the resulting template declaration can't be instantiated
1399      // properly (we'll end up with dependent nodes when we shouldn't).
1400      if (!isExplicitSpecHeader)
1401        Invalid = true;
1402
1403      ++Idx;
1404    }
1405  }
1406
1407  // Return the last template parameter list, which corresponds to the
1408  // entity being declared.
1409  return ParamLists[NumParamLists - 1];
1410}
1411
1412QualType Sema::CheckTemplateIdType(TemplateName Name,
1413                                   SourceLocation TemplateLoc,
1414                              const TemplateArgumentListInfo &TemplateArgs) {
1415  TemplateDecl *Template = Name.getAsTemplateDecl();
1416  if (!Template) {
1417    // The template name does not resolve to a template, so we just
1418    // build a dependent template-id type.
1419    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1420  }
1421
1422  // Check that the template argument list is well-formed for this
1423  // template.
1424  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1425                                        TemplateArgs.size());
1426  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1427                                false, Converted))
1428    return QualType();
1429
1430  assert((Converted.structuredSize() ==
1431            Template->getTemplateParameters()->size()) &&
1432         "Converted template argument list is too short!");
1433
1434  QualType CanonType;
1435
1436  if (Name.isDependent() ||
1437      TemplateSpecializationType::anyDependentTemplateArguments(
1438                                                      TemplateArgs)) {
1439    // This class template specialization is a dependent
1440    // type. Therefore, its canonical type is another class template
1441    // specialization type that contains all of the converted
1442    // arguments in canonical form. This ensures that, e.g., A<T> and
1443    // A<T, T> have identical types when A is declared as:
1444    //
1445    //   template<typename T, typename U = T> struct A;
1446    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1447    CanonType = Context.getTemplateSpecializationType(CanonName,
1448                                                   Converted.getFlatArguments(),
1449                                                   Converted.flatSize());
1450
1451    // FIXME: CanonType is not actually the canonical type, and unfortunately
1452    // it is a TemplateSpecializationType that we will never use again.
1453    // In the future, we need to teach getTemplateSpecializationType to only
1454    // build the canonical type and return that to us.
1455    CanonType = Context.getCanonicalType(CanonType);
1456
1457    // This might work out to be a current instantiation, in which
1458    // case the canonical type needs to be the InjectedClassNameType.
1459    //
1460    // TODO: in theory this could be a simple hashtable lookup; most
1461    // changes to CurContext don't change the set of current
1462    // instantiations.
1463    if (isa<ClassTemplateDecl>(Template)) {
1464      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1465        // If we get out to a namespace, we're done.
1466        if (Ctx->isFileContext()) break;
1467
1468        // If this isn't a record, keep looking.
1469        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1470        if (!Record) continue;
1471
1472        // Look for one of the two cases with InjectedClassNameTypes
1473        // and check whether it's the same template.
1474        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1475            !Record->getDescribedClassTemplate())
1476          continue;
1477
1478        // Fetch the injected class name type and check whether its
1479        // injected type is equal to the type we just built.
1480        QualType ICNT = Context.getTypeDeclType(Record);
1481        QualType Injected = cast<InjectedClassNameType>(ICNT)
1482          ->getInjectedSpecializationType();
1483
1484        if (CanonType != Injected->getCanonicalTypeInternal())
1485          continue;
1486
1487        // If so, the canonical type of this TST is the injected
1488        // class name type of the record we just found.
1489        assert(ICNT.isCanonical());
1490        CanonType = ICNT;
1491        break;
1492      }
1493    }
1494  } else if (ClassTemplateDecl *ClassTemplate
1495               = dyn_cast<ClassTemplateDecl>(Template)) {
1496    // Find the class template specialization declaration that
1497    // corresponds to these arguments.
1498    void *InsertPos = 0;
1499    ClassTemplateSpecializationDecl *Decl
1500      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1501                                          Converted.flatSize(), InsertPos);
1502    if (!Decl) {
1503      // This is the first time we have referenced this class template
1504      // specialization. Create the canonical declaration and add it to
1505      // the set of specializations.
1506      Decl = ClassTemplateSpecializationDecl::Create(Context,
1507                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1508                                                ClassTemplate->getDeclContext(),
1509                                                ClassTemplate->getLocation(),
1510                                                ClassTemplate,
1511                                                Converted, 0);
1512      ClassTemplate->AddSpecialization(Decl, InsertPos);
1513      Decl->setLexicalDeclContext(CurContext);
1514    }
1515
1516    CanonType = Context.getTypeDeclType(Decl);
1517    assert(isa<RecordType>(CanonType) &&
1518           "type of non-dependent specialization is not a RecordType");
1519  }
1520
1521  // Build the fully-sugared type for this class template
1522  // specialization, which refers back to the class template
1523  // specialization we created or found.
1524  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1525}
1526
1527TypeResult
1528Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1529                          SourceLocation LAngleLoc,
1530                          ASTTemplateArgsPtr TemplateArgsIn,
1531                          SourceLocation RAngleLoc) {
1532  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1533
1534  // Translate the parser's template argument list in our AST format.
1535  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1536  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1537
1538  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1539  TemplateArgsIn.release();
1540
1541  if (Result.isNull())
1542    return true;
1543
1544  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1545  TemplateSpecializationTypeLoc TL
1546    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1547  TL.setTemplateNameLoc(TemplateLoc);
1548  TL.setLAngleLoc(LAngleLoc);
1549  TL.setRAngleLoc(RAngleLoc);
1550  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1551    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1552
1553  return CreateParsedType(Result, DI);
1554}
1555
1556TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1557                                        TagUseKind TUK,
1558                                        TypeSpecifierType TagSpec,
1559                                        SourceLocation TagLoc) {
1560  if (TypeResult.isInvalid())
1561    return ::TypeResult();
1562
1563  // FIXME: preserve source info, ideally without copying the DI.
1564  TypeSourceInfo *DI;
1565  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1566
1567  // Verify the tag specifier.
1568  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1569
1570  if (const RecordType *RT = Type->getAs<RecordType>()) {
1571    RecordDecl *D = RT->getDecl();
1572
1573    IdentifierInfo *Id = D->getIdentifier();
1574    assert(Id && "templated class must have an identifier");
1575
1576    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1577      Diag(TagLoc, diag::err_use_with_wrong_tag)
1578        << Type
1579        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1580      Diag(D->getLocation(), diag::note_previous_use);
1581    }
1582  }
1583
1584  ElaboratedTypeKeyword Keyword
1585    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1586  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1587
1588  return ParsedType::make(ElabType);
1589}
1590
1591ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1592                                                 LookupResult &R,
1593                                                 bool RequiresADL,
1594                                 const TemplateArgumentListInfo &TemplateArgs) {
1595  // FIXME: Can we do any checking at this point? I guess we could check the
1596  // template arguments that we have against the template name, if the template
1597  // name refers to a single template. That's not a terribly common case,
1598  // though.
1599
1600  // These should be filtered out by our callers.
1601  assert(!R.empty() && "empty lookup results when building templateid");
1602  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1603
1604  NestedNameSpecifier *Qualifier = 0;
1605  SourceRange QualifierRange;
1606  if (SS.isSet()) {
1607    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1608    QualifierRange = SS.getRange();
1609  }
1610
1611  // We don't want lookup warnings at this point.
1612  R.suppressDiagnostics();
1613
1614  bool Dependent
1615    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1616                                              &TemplateArgs);
1617  UnresolvedLookupExpr *ULE
1618    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1619                                   Qualifier, QualifierRange,
1620                                   R.getLookupNameInfo(),
1621                                   RequiresADL, TemplateArgs,
1622                                   R.begin(), R.end());
1623
1624  return Owned(ULE);
1625}
1626
1627// We actually only call this from template instantiation.
1628ExprResult
1629Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1630                                   const DeclarationNameInfo &NameInfo,
1631                             const TemplateArgumentListInfo &TemplateArgs) {
1632  DeclContext *DC;
1633  if (!(DC = computeDeclContext(SS, false)) ||
1634      DC->isDependentContext() ||
1635      RequireCompleteDeclContext(SS, DC))
1636    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1637
1638  bool MemberOfUnknownSpecialization;
1639  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1640  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1641                     MemberOfUnknownSpecialization);
1642
1643  if (R.isAmbiguous())
1644    return ExprError();
1645
1646  if (R.empty()) {
1647    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1648      << NameInfo.getName() << SS.getRange();
1649    return ExprError();
1650  }
1651
1652  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1653    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1654      << (NestedNameSpecifier*) SS.getScopeRep()
1655      << NameInfo.getName() << SS.getRange();
1656    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1657    return ExprError();
1658  }
1659
1660  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1661}
1662
1663/// \brief Form a dependent template name.
1664///
1665/// This action forms a dependent template name given the template
1666/// name and its (presumably dependent) scope specifier. For
1667/// example, given "MetaFun::template apply", the scope specifier \p
1668/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1669/// of the "template" keyword, and "apply" is the \p Name.
1670TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1671                                                  SourceLocation TemplateKWLoc,
1672                                                  CXXScopeSpec &SS,
1673                                                  UnqualifiedId &Name,
1674                                                  ParsedType ObjectType,
1675                                                  bool EnteringContext,
1676                                                  TemplateTy &Result) {
1677  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1678      !getLangOptions().CPlusPlus0x)
1679    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1680      << FixItHint::CreateRemoval(TemplateKWLoc);
1681
1682  DeclContext *LookupCtx = 0;
1683  if (SS.isSet())
1684    LookupCtx = computeDeclContext(SS, EnteringContext);
1685  if (!LookupCtx && ObjectType)
1686    LookupCtx = computeDeclContext(ObjectType.get());
1687  if (LookupCtx) {
1688    // C++0x [temp.names]p5:
1689    //   If a name prefixed by the keyword template is not the name of
1690    //   a template, the program is ill-formed. [Note: the keyword
1691    //   template may not be applied to non-template members of class
1692    //   templates. -end note ] [ Note: as is the case with the
1693    //   typename prefix, the template prefix is allowed in cases
1694    //   where it is not strictly necessary; i.e., when the
1695    //   nested-name-specifier or the expression on the left of the ->
1696    //   or . is not dependent on a template-parameter, or the use
1697    //   does not appear in the scope of a template. -end note]
1698    //
1699    // Note: C++03 was more strict here, because it banned the use of
1700    // the "template" keyword prior to a template-name that was not a
1701    // dependent name. C++ DR468 relaxed this requirement (the
1702    // "template" keyword is now permitted). We follow the C++0x
1703    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1704    bool MemberOfUnknownSpecialization;
1705    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1706                                          ObjectType, EnteringContext, Result,
1707                                          MemberOfUnknownSpecialization);
1708    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1709        isa<CXXRecordDecl>(LookupCtx) &&
1710        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1711      // This is a dependent template. Handle it below.
1712    } else if (TNK == TNK_Non_template) {
1713      Diag(Name.getSourceRange().getBegin(),
1714           diag::err_template_kw_refers_to_non_template)
1715        << GetNameFromUnqualifiedId(Name).getName()
1716        << Name.getSourceRange()
1717        << TemplateKWLoc;
1718      return TNK_Non_template;
1719    } else {
1720      // We found something; return it.
1721      return TNK;
1722    }
1723  }
1724
1725  NestedNameSpecifier *Qualifier
1726    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1727
1728  switch (Name.getKind()) {
1729  case UnqualifiedId::IK_Identifier:
1730    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1731                                                              Name.Identifier));
1732    return TNK_Dependent_template_name;
1733
1734  case UnqualifiedId::IK_OperatorFunctionId:
1735    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1736                                             Name.OperatorFunctionId.Operator));
1737    return TNK_Dependent_template_name;
1738
1739  case UnqualifiedId::IK_LiteralOperatorId:
1740    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1741
1742  default:
1743    break;
1744  }
1745
1746  Diag(Name.getSourceRange().getBegin(),
1747       diag::err_template_kw_refers_to_non_template)
1748    << GetNameFromUnqualifiedId(Name).getName()
1749    << Name.getSourceRange()
1750    << TemplateKWLoc;
1751  return TNK_Non_template;
1752}
1753
1754bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1755                                     const TemplateArgumentLoc &AL,
1756                                     TemplateArgumentListBuilder &Converted) {
1757  const TemplateArgument &Arg = AL.getArgument();
1758
1759  // Check template type parameter.
1760  switch(Arg.getKind()) {
1761  case TemplateArgument::Type:
1762    // C++ [temp.arg.type]p1:
1763    //   A template-argument for a template-parameter which is a
1764    //   type shall be a type-id.
1765    break;
1766  case TemplateArgument::Template: {
1767    // We have a template type parameter but the template argument
1768    // is a template without any arguments.
1769    SourceRange SR = AL.getSourceRange();
1770    TemplateName Name = Arg.getAsTemplate();
1771    Diag(SR.getBegin(), diag::err_template_missing_args)
1772      << Name << SR;
1773    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1774      Diag(Decl->getLocation(), diag::note_template_decl_here);
1775
1776    return true;
1777  }
1778  default: {
1779    // We have a template type parameter but the template argument
1780    // is not a type.
1781    SourceRange SR = AL.getSourceRange();
1782    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1783    Diag(Param->getLocation(), diag::note_template_param_here);
1784
1785    return true;
1786  }
1787  }
1788
1789  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1790    return true;
1791
1792  // Add the converted template type argument.
1793  Converted.Append(
1794                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1795  return false;
1796}
1797
1798/// \brief Substitute template arguments into the default template argument for
1799/// the given template type parameter.
1800///
1801/// \param SemaRef the semantic analysis object for which we are performing
1802/// the substitution.
1803///
1804/// \param Template the template that we are synthesizing template arguments
1805/// for.
1806///
1807/// \param TemplateLoc the location of the template name that started the
1808/// template-id we are checking.
1809///
1810/// \param RAngleLoc the location of the right angle bracket ('>') that
1811/// terminates the template-id.
1812///
1813/// \param Param the template template parameter whose default we are
1814/// substituting into.
1815///
1816/// \param Converted the list of template arguments provided for template
1817/// parameters that precede \p Param in the template parameter list.
1818///
1819/// \returns the substituted template argument, or NULL if an error occurred.
1820static TypeSourceInfo *
1821SubstDefaultTemplateArgument(Sema &SemaRef,
1822                             TemplateDecl *Template,
1823                             SourceLocation TemplateLoc,
1824                             SourceLocation RAngleLoc,
1825                             TemplateTypeParmDecl *Param,
1826                             TemplateArgumentListBuilder &Converted) {
1827  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1828
1829  // If the argument type is dependent, instantiate it now based
1830  // on the previously-computed template arguments.
1831  if (ArgType->getType()->isDependentType()) {
1832    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1833                                      /*TakeArgs=*/false);
1834
1835    MultiLevelTemplateArgumentList AllTemplateArgs
1836      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1837
1838    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1839                                     Template, Converted.getFlatArguments(),
1840                                     Converted.flatSize(),
1841                                     SourceRange(TemplateLoc, RAngleLoc));
1842
1843    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1844                                Param->getDefaultArgumentLoc(),
1845                                Param->getDeclName());
1846  }
1847
1848  return ArgType;
1849}
1850
1851/// \brief Substitute template arguments into the default template argument for
1852/// the given non-type template parameter.
1853///
1854/// \param SemaRef the semantic analysis object for which we are performing
1855/// the substitution.
1856///
1857/// \param Template the template that we are synthesizing template arguments
1858/// for.
1859///
1860/// \param TemplateLoc the location of the template name that started the
1861/// template-id we are checking.
1862///
1863/// \param RAngleLoc the location of the right angle bracket ('>') that
1864/// terminates the template-id.
1865///
1866/// \param Param the non-type template parameter whose default we are
1867/// substituting into.
1868///
1869/// \param Converted the list of template arguments provided for template
1870/// parameters that precede \p Param in the template parameter list.
1871///
1872/// \returns the substituted template argument, or NULL if an error occurred.
1873static ExprResult
1874SubstDefaultTemplateArgument(Sema &SemaRef,
1875                             TemplateDecl *Template,
1876                             SourceLocation TemplateLoc,
1877                             SourceLocation RAngleLoc,
1878                             NonTypeTemplateParmDecl *Param,
1879                             TemplateArgumentListBuilder &Converted) {
1880  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1881                                    /*TakeArgs=*/false);
1882
1883  MultiLevelTemplateArgumentList AllTemplateArgs
1884    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1885
1886  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1887                                   Template, Converted.getFlatArguments(),
1888                                   Converted.flatSize(),
1889                                   SourceRange(TemplateLoc, RAngleLoc));
1890
1891  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1892}
1893
1894/// \brief Substitute template arguments into the default template argument for
1895/// the given template template parameter.
1896///
1897/// \param SemaRef the semantic analysis object for which we are performing
1898/// the substitution.
1899///
1900/// \param Template the template that we are synthesizing template arguments
1901/// for.
1902///
1903/// \param TemplateLoc the location of the template name that started the
1904/// template-id we are checking.
1905///
1906/// \param RAngleLoc the location of the right angle bracket ('>') that
1907/// terminates the template-id.
1908///
1909/// \param Param the template template parameter whose default we are
1910/// substituting into.
1911///
1912/// \param Converted the list of template arguments provided for template
1913/// parameters that precede \p Param in the template parameter list.
1914///
1915/// \returns the substituted template argument, or NULL if an error occurred.
1916static TemplateName
1917SubstDefaultTemplateArgument(Sema &SemaRef,
1918                             TemplateDecl *Template,
1919                             SourceLocation TemplateLoc,
1920                             SourceLocation RAngleLoc,
1921                             TemplateTemplateParmDecl *Param,
1922                             TemplateArgumentListBuilder &Converted) {
1923  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1924                                    /*TakeArgs=*/false);
1925
1926  MultiLevelTemplateArgumentList AllTemplateArgs
1927    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1928
1929  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1930                                   Template, Converted.getFlatArguments(),
1931                                   Converted.flatSize(),
1932                                   SourceRange(TemplateLoc, RAngleLoc));
1933
1934  return SemaRef.SubstTemplateName(
1935                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1936                              Param->getDefaultArgument().getTemplateNameLoc(),
1937                                   AllTemplateArgs);
1938}
1939
1940/// \brief If the given template parameter has a default template
1941/// argument, substitute into that default template argument and
1942/// return the corresponding template argument.
1943TemplateArgumentLoc
1944Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1945                                              SourceLocation TemplateLoc,
1946                                              SourceLocation RAngleLoc,
1947                                              Decl *Param,
1948                                     TemplateArgumentListBuilder &Converted) {
1949  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1950    if (!TypeParm->hasDefaultArgument())
1951      return TemplateArgumentLoc();
1952
1953    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1954                                                      TemplateLoc,
1955                                                      RAngleLoc,
1956                                                      TypeParm,
1957                                                      Converted);
1958    if (DI)
1959      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1960
1961    return TemplateArgumentLoc();
1962  }
1963
1964  if (NonTypeTemplateParmDecl *NonTypeParm
1965        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1966    if (!NonTypeParm->hasDefaultArgument())
1967      return TemplateArgumentLoc();
1968
1969    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1970                                                        TemplateLoc,
1971                                                        RAngleLoc,
1972                                                        NonTypeParm,
1973                                                        Converted);
1974    if (Arg.isInvalid())
1975      return TemplateArgumentLoc();
1976
1977    Expr *ArgE = Arg.takeAs<Expr>();
1978    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1979  }
1980
1981  TemplateTemplateParmDecl *TempTempParm
1982    = cast<TemplateTemplateParmDecl>(Param);
1983  if (!TempTempParm->hasDefaultArgument())
1984    return TemplateArgumentLoc();
1985
1986  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1987                                                    TemplateLoc,
1988                                                    RAngleLoc,
1989                                                    TempTempParm,
1990                                                    Converted);
1991  if (TName.isNull())
1992    return TemplateArgumentLoc();
1993
1994  return TemplateArgumentLoc(TemplateArgument(TName),
1995                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1996                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1997}
1998
1999/// \brief Check that the given template argument corresponds to the given
2000/// template parameter.
2001bool Sema::CheckTemplateArgument(NamedDecl *Param,
2002                                 const TemplateArgumentLoc &Arg,
2003                                 TemplateDecl *Template,
2004                                 SourceLocation TemplateLoc,
2005                                 SourceLocation RAngleLoc,
2006                                 TemplateArgumentListBuilder &Converted,
2007                                 CheckTemplateArgumentKind CTAK) {
2008  // Check template type parameters.
2009  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2010    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2011
2012  // Check non-type template parameters.
2013  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2014    // Do substitution on the type of the non-type template parameter
2015    // with the template arguments we've seen thus far.
2016    QualType NTTPType = NTTP->getType();
2017    if (NTTPType->isDependentType()) {
2018      // Do substitution on the type of the non-type template parameter.
2019      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2020                                 NTTP, Converted.getFlatArguments(),
2021                                 Converted.flatSize(),
2022                                 SourceRange(TemplateLoc, RAngleLoc));
2023
2024      TemplateArgumentList TemplateArgs(Context, Converted,
2025                                        /*TakeArgs=*/false);
2026      NTTPType = SubstType(NTTPType,
2027                           MultiLevelTemplateArgumentList(TemplateArgs),
2028                           NTTP->getLocation(),
2029                           NTTP->getDeclName());
2030      // If that worked, check the non-type template parameter type
2031      // for validity.
2032      if (!NTTPType.isNull())
2033        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2034                                                     NTTP->getLocation());
2035      if (NTTPType.isNull())
2036        return true;
2037    }
2038
2039    switch (Arg.getArgument().getKind()) {
2040    case TemplateArgument::Null:
2041      assert(false && "Should never see a NULL template argument here");
2042      return true;
2043
2044    case TemplateArgument::Expression: {
2045      Expr *E = Arg.getArgument().getAsExpr();
2046      TemplateArgument Result;
2047      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2048        return true;
2049
2050      Converted.Append(Result);
2051      break;
2052    }
2053
2054    case TemplateArgument::Declaration:
2055    case TemplateArgument::Integral:
2056      // We've already checked this template argument, so just copy
2057      // it to the list of converted arguments.
2058      Converted.Append(Arg.getArgument());
2059      break;
2060
2061    case TemplateArgument::Template:
2062      // We were given a template template argument. It may not be ill-formed;
2063      // see below.
2064      if (DependentTemplateName *DTN
2065            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2066        // We have a template argument such as \c T::template X, which we
2067        // parsed as a template template argument. However, since we now
2068        // know that we need a non-type template argument, convert this
2069        // template name into an expression.
2070
2071        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2072                                     Arg.getTemplateNameLoc());
2073
2074        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2075                                                    DTN->getQualifier(),
2076                                               Arg.getTemplateQualifierRange(),
2077                                                    NameInfo);
2078
2079        TemplateArgument Result;
2080        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2081          return true;
2082
2083        Converted.Append(Result);
2084        break;
2085      }
2086
2087      // We have a template argument that actually does refer to a class
2088      // template, template alias, or template template parameter, and
2089      // therefore cannot be a non-type template argument.
2090      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2091        << Arg.getSourceRange();
2092
2093      Diag(Param->getLocation(), diag::note_template_param_here);
2094      return true;
2095
2096    case TemplateArgument::Type: {
2097      // We have a non-type template parameter but the template
2098      // argument is a type.
2099
2100      // C++ [temp.arg]p2:
2101      //   In a template-argument, an ambiguity between a type-id and
2102      //   an expression is resolved to a type-id, regardless of the
2103      //   form of the corresponding template-parameter.
2104      //
2105      // We warn specifically about this case, since it can be rather
2106      // confusing for users.
2107      QualType T = Arg.getArgument().getAsType();
2108      SourceRange SR = Arg.getSourceRange();
2109      if (T->isFunctionType())
2110        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2111      else
2112        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2113      Diag(Param->getLocation(), diag::note_template_param_here);
2114      return true;
2115    }
2116
2117    case TemplateArgument::Pack:
2118      llvm_unreachable("Caller must expand template argument packs");
2119      break;
2120    }
2121
2122    return false;
2123  }
2124
2125
2126  // Check template template parameters.
2127  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2128
2129  // Substitute into the template parameter list of the template
2130  // template parameter, since previously-supplied template arguments
2131  // may appear within the template template parameter.
2132  {
2133    // Set up a template instantiation context.
2134    LocalInstantiationScope Scope(*this);
2135    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2136                               TempParm, Converted.getFlatArguments(),
2137                               Converted.flatSize(),
2138                               SourceRange(TemplateLoc, RAngleLoc));
2139
2140    TemplateArgumentList TemplateArgs(Context, Converted,
2141                                      /*TakeArgs=*/false);
2142    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2143                      SubstDecl(TempParm, CurContext,
2144                                MultiLevelTemplateArgumentList(TemplateArgs)));
2145    if (!TempParm)
2146      return true;
2147
2148    // FIXME: TempParam is leaked.
2149  }
2150
2151  switch (Arg.getArgument().getKind()) {
2152  case TemplateArgument::Null:
2153    assert(false && "Should never see a NULL template argument here");
2154    return true;
2155
2156  case TemplateArgument::Template:
2157    if (CheckTemplateArgument(TempParm, Arg))
2158      return true;
2159
2160    Converted.Append(Arg.getArgument());
2161    break;
2162
2163  case TemplateArgument::Expression:
2164  case TemplateArgument::Type:
2165    // We have a template template parameter but the template
2166    // argument does not refer to a template.
2167    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2168    return true;
2169
2170  case TemplateArgument::Declaration:
2171    llvm_unreachable(
2172                       "Declaration argument with template template parameter");
2173    break;
2174  case TemplateArgument::Integral:
2175    llvm_unreachable(
2176                          "Integral argument with template template parameter");
2177    break;
2178
2179  case TemplateArgument::Pack:
2180    llvm_unreachable("Caller must expand template argument packs");
2181    break;
2182  }
2183
2184  return false;
2185}
2186
2187/// \brief Check that the given template argument list is well-formed
2188/// for specializing the given template.
2189bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2190                                     SourceLocation TemplateLoc,
2191                                const TemplateArgumentListInfo &TemplateArgs,
2192                                     bool PartialTemplateArgs,
2193                                     TemplateArgumentListBuilder &Converted) {
2194  TemplateParameterList *Params = Template->getTemplateParameters();
2195  unsigned NumParams = Params->size();
2196  unsigned NumArgs = TemplateArgs.size();
2197  bool Invalid = false;
2198
2199  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2200
2201  bool HasParameterPack =
2202    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2203
2204  if ((NumArgs > NumParams && !HasParameterPack) ||
2205      (NumArgs < Params->getMinRequiredArguments() &&
2206       !PartialTemplateArgs)) {
2207    // FIXME: point at either the first arg beyond what we can handle,
2208    // or the '>', depending on whether we have too many or too few
2209    // arguments.
2210    SourceRange Range;
2211    if (NumArgs > NumParams)
2212      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2213    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2214      << (NumArgs > NumParams)
2215      << (isa<ClassTemplateDecl>(Template)? 0 :
2216          isa<FunctionTemplateDecl>(Template)? 1 :
2217          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2218      << Template << Range;
2219    Diag(Template->getLocation(), diag::note_template_decl_here)
2220      << Params->getSourceRange();
2221    Invalid = true;
2222  }
2223
2224  // C++ [temp.arg]p1:
2225  //   [...] The type and form of each template-argument specified in
2226  //   a template-id shall match the type and form specified for the
2227  //   corresponding parameter declared by the template in its
2228  //   template-parameter-list.
2229  unsigned ArgIdx = 0;
2230  for (TemplateParameterList::iterator Param = Params->begin(),
2231                                       ParamEnd = Params->end();
2232       Param != ParamEnd; ++Param, ++ArgIdx) {
2233    if (ArgIdx > NumArgs && PartialTemplateArgs)
2234      break;
2235
2236    // If we have a template parameter pack, check every remaining template
2237    // argument against that template parameter pack.
2238    if ((*Param)->isTemplateParameterPack()) {
2239      Converted.BeginPack();
2240      for (; ArgIdx < NumArgs; ++ArgIdx) {
2241        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2242                                  TemplateLoc, RAngleLoc, Converted)) {
2243          Invalid = true;
2244          break;
2245        }
2246      }
2247      Converted.EndPack();
2248      continue;
2249    }
2250
2251    if (ArgIdx < NumArgs) {
2252      // Check the template argument we were given.
2253      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2254                                TemplateLoc, RAngleLoc, Converted))
2255        return true;
2256
2257      continue;
2258    }
2259
2260    // We have a default template argument that we will use.
2261    TemplateArgumentLoc Arg;
2262
2263    // Retrieve the default template argument from the template
2264    // parameter. For each kind of template parameter, we substitute the
2265    // template arguments provided thus far and any "outer" template arguments
2266    // (when the template parameter was part of a nested template) into
2267    // the default argument.
2268    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2269      if (!TTP->hasDefaultArgument()) {
2270        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2271        break;
2272      }
2273
2274      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2275                                                             Template,
2276                                                             TemplateLoc,
2277                                                             RAngleLoc,
2278                                                             TTP,
2279                                                             Converted);
2280      if (!ArgType)
2281        return true;
2282
2283      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2284                                ArgType);
2285    } else if (NonTypeTemplateParmDecl *NTTP
2286                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2287      if (!NTTP->hasDefaultArgument()) {
2288        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2289        break;
2290      }
2291
2292      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2293                                                              TemplateLoc,
2294                                                              RAngleLoc,
2295                                                              NTTP,
2296                                                              Converted);
2297      if (E.isInvalid())
2298        return true;
2299
2300      Expr *Ex = E.takeAs<Expr>();
2301      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2302    } else {
2303      TemplateTemplateParmDecl *TempParm
2304        = cast<TemplateTemplateParmDecl>(*Param);
2305
2306      if (!TempParm->hasDefaultArgument()) {
2307        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2308        break;
2309      }
2310
2311      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2312                                                       TemplateLoc,
2313                                                       RAngleLoc,
2314                                                       TempParm,
2315                                                       Converted);
2316      if (Name.isNull())
2317        return true;
2318
2319      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2320                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2321                  TempParm->getDefaultArgument().getTemplateNameLoc());
2322    }
2323
2324    // Introduce an instantiation record that describes where we are using
2325    // the default template argument.
2326    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2327                                        Converted.getFlatArguments(),
2328                                        Converted.flatSize(),
2329                                        SourceRange(TemplateLoc, RAngleLoc));
2330
2331    // Check the default template argument.
2332    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2333                              RAngleLoc, Converted))
2334      return true;
2335  }
2336
2337  return Invalid;
2338}
2339
2340/// \brief Check a template argument against its corresponding
2341/// template type parameter.
2342///
2343/// This routine implements the semantics of C++ [temp.arg.type]. It
2344/// returns true if an error occurred, and false otherwise.
2345bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2346                                 TypeSourceInfo *ArgInfo) {
2347  assert(ArgInfo && "invalid TypeSourceInfo");
2348  QualType Arg = ArgInfo->getType();
2349
2350  // C++03 [temp.arg.type]p2:
2351  //   A local type, a type with no linkage, an unnamed type or a type
2352  //   compounded from any of these types shall not be used as a
2353  //   template-argument for a template type-parameter.
2354  // C++0x allows these, and even in C++03 we allow them as an extension with
2355  // a warning.
2356  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2357  if (!LangOpts.CPlusPlus0x) {
2358    const TagType *Tag = 0;
2359    if (const EnumType *EnumT = Arg->getAs<EnumType>())
2360      Tag = EnumT;
2361    else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2362      Tag = RecordT;
2363    if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2364      SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2365      Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2366        << QualType(Tag, 0) << SR;
2367    } else if (Tag && !Tag->getDecl()->getDeclName() &&
2368               !Tag->getDecl()->getTypedefForAnonDecl()) {
2369      Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2370      Diag(Tag->getDecl()->getLocation(),
2371           diag::note_template_unnamed_type_here);
2372    }
2373  }
2374
2375  if (Arg->isVariablyModifiedType()) {
2376    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2377  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2378    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2379  }
2380
2381  return false;
2382}
2383
2384/// \brief Checks whether the given template argument is the address
2385/// of an object or function according to C++ [temp.arg.nontype]p1.
2386static bool
2387CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2388                                               NonTypeTemplateParmDecl *Param,
2389                                               QualType ParamType,
2390                                               Expr *ArgIn,
2391                                               TemplateArgument &Converted) {
2392  bool Invalid = false;
2393  Expr *Arg = ArgIn;
2394  QualType ArgType = Arg->getType();
2395
2396  // See through any implicit casts we added to fix the type.
2397  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2398    Arg = Cast->getSubExpr();
2399
2400  // C++ [temp.arg.nontype]p1:
2401  //
2402  //   A template-argument for a non-type, non-template
2403  //   template-parameter shall be one of: [...]
2404  //
2405  //     -- the address of an object or function with external
2406  //        linkage, including function templates and function
2407  //        template-ids but excluding non-static class members,
2408  //        expressed as & id-expression where the & is optional if
2409  //        the name refers to a function or array, or if the
2410  //        corresponding template-parameter is a reference; or
2411  DeclRefExpr *DRE = 0;
2412
2413  // In C++98/03 mode, give an extension warning on any extra parentheses.
2414  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2415  bool ExtraParens = false;
2416  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2417    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2418      S.Diag(Arg->getSourceRange().getBegin(),
2419             diag::ext_template_arg_extra_parens)
2420        << Arg->getSourceRange();
2421      ExtraParens = true;
2422    }
2423
2424    Arg = Parens->getSubExpr();
2425  }
2426
2427  bool AddressTaken = false;
2428  SourceLocation AddrOpLoc;
2429  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2430    if (UnOp->getOpcode() == UO_AddrOf) {
2431      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2432      AddressTaken = true;
2433      AddrOpLoc = UnOp->getOperatorLoc();
2434    }
2435  } else
2436    DRE = dyn_cast<DeclRefExpr>(Arg);
2437
2438  if (!DRE) {
2439    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2440      << Arg->getSourceRange();
2441    S.Diag(Param->getLocation(), diag::note_template_param_here);
2442    return true;
2443  }
2444
2445  // Stop checking the precise nature of the argument if it is value dependent,
2446  // it should be checked when instantiated.
2447  if (Arg->isValueDependent()) {
2448    Converted = TemplateArgument(ArgIn->Retain());
2449    return false;
2450  }
2451
2452  if (!isa<ValueDecl>(DRE->getDecl())) {
2453    S.Diag(Arg->getSourceRange().getBegin(),
2454           diag::err_template_arg_not_object_or_func_form)
2455      << Arg->getSourceRange();
2456    S.Diag(Param->getLocation(), diag::note_template_param_here);
2457    return true;
2458  }
2459
2460  NamedDecl *Entity = 0;
2461
2462  // Cannot refer to non-static data members
2463  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2464    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2465      << Field << Arg->getSourceRange();
2466    S.Diag(Param->getLocation(), diag::note_template_param_here);
2467    return true;
2468  }
2469
2470  // Cannot refer to non-static member functions
2471  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2472    if (!Method->isStatic()) {
2473      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2474        << Method << Arg->getSourceRange();
2475      S.Diag(Param->getLocation(), diag::note_template_param_here);
2476      return true;
2477    }
2478
2479  // Functions must have external linkage.
2480  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2481    if (!isExternalLinkage(Func->getLinkage())) {
2482      S.Diag(Arg->getSourceRange().getBegin(),
2483             diag::err_template_arg_function_not_extern)
2484        << Func << Arg->getSourceRange();
2485      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2486        << true;
2487      return true;
2488    }
2489
2490    // Okay: we've named a function with external linkage.
2491    Entity = Func;
2492
2493    // If the template parameter has pointer type, the function decays.
2494    if (ParamType->isPointerType() && !AddressTaken)
2495      ArgType = S.Context.getPointerType(Func->getType());
2496    else if (AddressTaken && ParamType->isReferenceType()) {
2497      // If we originally had an address-of operator, but the
2498      // parameter has reference type, complain and (if things look
2499      // like they will work) drop the address-of operator.
2500      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2501                                            ParamType.getNonReferenceType())) {
2502        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2503          << ParamType;
2504        S.Diag(Param->getLocation(), diag::note_template_param_here);
2505        return true;
2506      }
2507
2508      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2509        << ParamType
2510        << FixItHint::CreateRemoval(AddrOpLoc);
2511      S.Diag(Param->getLocation(), diag::note_template_param_here);
2512
2513      ArgType = Func->getType();
2514    }
2515  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2516    if (!isExternalLinkage(Var->getLinkage())) {
2517      S.Diag(Arg->getSourceRange().getBegin(),
2518             diag::err_template_arg_object_not_extern)
2519        << Var << Arg->getSourceRange();
2520      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2521        << true;
2522      return true;
2523    }
2524
2525    // A value of reference type is not an object.
2526    if (Var->getType()->isReferenceType()) {
2527      S.Diag(Arg->getSourceRange().getBegin(),
2528             diag::err_template_arg_reference_var)
2529        << Var->getType() << Arg->getSourceRange();
2530      S.Diag(Param->getLocation(), diag::note_template_param_here);
2531      return true;
2532    }
2533
2534    // Okay: we've named an object with external linkage
2535    Entity = Var;
2536
2537    // If the template parameter has pointer type, we must have taken
2538    // the address of this object.
2539    if (ParamType->isReferenceType()) {
2540      if (AddressTaken) {
2541        // If we originally had an address-of operator, but the
2542        // parameter has reference type, complain and (if things look
2543        // like they will work) drop the address-of operator.
2544        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2545                                            ParamType.getNonReferenceType())) {
2546          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2547            << ParamType;
2548          S.Diag(Param->getLocation(), diag::note_template_param_here);
2549          return true;
2550        }
2551
2552        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2553          << ParamType
2554          << FixItHint::CreateRemoval(AddrOpLoc);
2555        S.Diag(Param->getLocation(), diag::note_template_param_here);
2556
2557        ArgType = Var->getType();
2558      }
2559    } else if (!AddressTaken && ParamType->isPointerType()) {
2560      if (Var->getType()->isArrayType()) {
2561        // Array-to-pointer decay.
2562        ArgType = S.Context.getArrayDecayedType(Var->getType());
2563      } else {
2564        // If the template parameter has pointer type but the address of
2565        // this object was not taken, complain and (possibly) recover by
2566        // taking the address of the entity.
2567        ArgType = S.Context.getPointerType(Var->getType());
2568        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2569          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2570            << ParamType;
2571          S.Diag(Param->getLocation(), diag::note_template_param_here);
2572          return true;
2573        }
2574
2575        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2576          << ParamType
2577          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2578
2579        S.Diag(Param->getLocation(), diag::note_template_param_here);
2580      }
2581    }
2582  } else {
2583    // We found something else, but we don't know specifically what it is.
2584    S.Diag(Arg->getSourceRange().getBegin(),
2585           diag::err_template_arg_not_object_or_func)
2586      << Arg->getSourceRange();
2587    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2588    return true;
2589  }
2590
2591  if (ParamType->isPointerType() &&
2592      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2593      S.IsQualificationConversion(ArgType, ParamType)) {
2594    // For pointer-to-object types, qualification conversions are
2595    // permitted.
2596  } else {
2597    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2598      if (!ParamRef->getPointeeType()->isFunctionType()) {
2599        // C++ [temp.arg.nontype]p5b3:
2600        //   For a non-type template-parameter of type reference to
2601        //   object, no conversions apply. The type referred to by the
2602        //   reference may be more cv-qualified than the (otherwise
2603        //   identical) type of the template- argument. The
2604        //   template-parameter is bound directly to the
2605        //   template-argument, which shall be an lvalue.
2606
2607        // FIXME: Other qualifiers?
2608        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2609        unsigned ArgQuals = ArgType.getCVRQualifiers();
2610
2611        if ((ParamQuals | ArgQuals) != ParamQuals) {
2612          S.Diag(Arg->getSourceRange().getBegin(),
2613                 diag::err_template_arg_ref_bind_ignores_quals)
2614            << ParamType << Arg->getType()
2615            << Arg->getSourceRange();
2616          S.Diag(Param->getLocation(), diag::note_template_param_here);
2617          return true;
2618        }
2619      }
2620    }
2621
2622    // At this point, the template argument refers to an object or
2623    // function with external linkage. We now need to check whether the
2624    // argument and parameter types are compatible.
2625    if (!S.Context.hasSameUnqualifiedType(ArgType,
2626                                          ParamType.getNonReferenceType())) {
2627      // We can't perform this conversion or binding.
2628      if (ParamType->isReferenceType())
2629        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2630          << ParamType << Arg->getType() << Arg->getSourceRange();
2631      else
2632        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2633          << Arg->getType() << ParamType << Arg->getSourceRange();
2634      S.Diag(Param->getLocation(), diag::note_template_param_here);
2635      return true;
2636    }
2637  }
2638
2639  // Create the template argument.
2640  Converted = TemplateArgument(Entity->getCanonicalDecl());
2641  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2642  return false;
2643}
2644
2645/// \brief Checks whether the given template argument is a pointer to
2646/// member constant according to C++ [temp.arg.nontype]p1.
2647bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2648                                                TemplateArgument &Converted) {
2649  bool Invalid = false;
2650
2651  // See through any implicit casts we added to fix the type.
2652  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2653    Arg = Cast->getSubExpr();
2654
2655  // C++ [temp.arg.nontype]p1:
2656  //
2657  //   A template-argument for a non-type, non-template
2658  //   template-parameter shall be one of: [...]
2659  //
2660  //     -- a pointer to member expressed as described in 5.3.1.
2661  DeclRefExpr *DRE = 0;
2662
2663  // In C++98/03 mode, give an extension warning on any extra parentheses.
2664  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2665  bool ExtraParens = false;
2666  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2667    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2668      Diag(Arg->getSourceRange().getBegin(),
2669           diag::ext_template_arg_extra_parens)
2670        << Arg->getSourceRange();
2671      ExtraParens = true;
2672    }
2673
2674    Arg = Parens->getSubExpr();
2675  }
2676
2677  // A pointer-to-member constant written &Class::member.
2678  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2679    if (UnOp->getOpcode() == UO_AddrOf) {
2680      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2681      if (DRE && !DRE->getQualifier())
2682        DRE = 0;
2683    }
2684  }
2685  // A constant of pointer-to-member type.
2686  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2687    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2688      if (VD->getType()->isMemberPointerType()) {
2689        if (isa<NonTypeTemplateParmDecl>(VD) ||
2690            (isa<VarDecl>(VD) &&
2691             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2692          if (Arg->isTypeDependent() || Arg->isValueDependent())
2693            Converted = TemplateArgument(Arg->Retain());
2694          else
2695            Converted = TemplateArgument(VD->getCanonicalDecl());
2696          return Invalid;
2697        }
2698      }
2699    }
2700
2701    DRE = 0;
2702  }
2703
2704  if (!DRE)
2705    return Diag(Arg->getSourceRange().getBegin(),
2706                diag::err_template_arg_not_pointer_to_member_form)
2707      << Arg->getSourceRange();
2708
2709  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2710    assert((isa<FieldDecl>(DRE->getDecl()) ||
2711            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2712           "Only non-static member pointers can make it here");
2713
2714    // Okay: this is the address of a non-static member, and therefore
2715    // a member pointer constant.
2716    if (Arg->isTypeDependent() || Arg->isValueDependent())
2717      Converted = TemplateArgument(Arg->Retain());
2718    else
2719      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2720    return Invalid;
2721  }
2722
2723  // We found something else, but we don't know specifically what it is.
2724  Diag(Arg->getSourceRange().getBegin(),
2725       diag::err_template_arg_not_pointer_to_member_form)
2726      << Arg->getSourceRange();
2727  Diag(DRE->getDecl()->getLocation(),
2728       diag::note_template_arg_refers_here);
2729  return true;
2730}
2731
2732/// \brief Check a template argument against its corresponding
2733/// non-type template parameter.
2734///
2735/// This routine implements the semantics of C++ [temp.arg.nontype].
2736/// It returns true if an error occurred, and false otherwise. \p
2737/// InstantiatedParamType is the type of the non-type template
2738/// parameter after it has been instantiated.
2739///
2740/// If no error was detected, Converted receives the converted template argument.
2741bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2742                                 QualType InstantiatedParamType, Expr *&Arg,
2743                                 TemplateArgument &Converted,
2744                                 CheckTemplateArgumentKind CTAK) {
2745  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2746
2747  // If either the parameter has a dependent type or the argument is
2748  // type-dependent, there's nothing we can check now.
2749  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2750    // FIXME: Produce a cloned, canonical expression?
2751    Converted = TemplateArgument(Arg);
2752    return false;
2753  }
2754
2755  // C++ [temp.arg.nontype]p5:
2756  //   The following conversions are performed on each expression used
2757  //   as a non-type template-argument. If a non-type
2758  //   template-argument cannot be converted to the type of the
2759  //   corresponding template-parameter then the program is
2760  //   ill-formed.
2761  //
2762  //     -- for a non-type template-parameter of integral or
2763  //        enumeration type, integral promotions (4.5) and integral
2764  //        conversions (4.7) are applied.
2765  QualType ParamType = InstantiatedParamType;
2766  QualType ArgType = Arg->getType();
2767  if (ParamType->isIntegralOrEnumerationType()) {
2768    // C++ [temp.arg.nontype]p1:
2769    //   A template-argument for a non-type, non-template
2770    //   template-parameter shall be one of:
2771    //
2772    //     -- an integral constant-expression of integral or enumeration
2773    //        type; or
2774    //     -- the name of a non-type template-parameter; or
2775    SourceLocation NonConstantLoc;
2776    llvm::APSInt Value;
2777    if (!ArgType->isIntegralOrEnumerationType()) {
2778      Diag(Arg->getSourceRange().getBegin(),
2779           diag::err_template_arg_not_integral_or_enumeral)
2780        << ArgType << Arg->getSourceRange();
2781      Diag(Param->getLocation(), diag::note_template_param_here);
2782      return true;
2783    } else if (!Arg->isValueDependent() &&
2784               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2785      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2786        << ArgType << Arg->getSourceRange();
2787      return true;
2788    }
2789
2790    // From here on out, all we care about are the unqualified forms
2791    // of the parameter and argument types.
2792    ParamType = ParamType.getUnqualifiedType();
2793    ArgType = ArgType.getUnqualifiedType();
2794
2795    // Try to convert the argument to the parameter's type.
2796    if (Context.hasSameType(ParamType, ArgType)) {
2797      // Okay: no conversion necessary
2798    } else if (CTAK == CTAK_Deduced) {
2799      // C++ [temp.deduct.type]p17:
2800      //   If, in the declaration of a function template with a non-type
2801      //   template-parameter, the non-type template- parameter is used
2802      //   in an expression in the function parameter-list and, if the
2803      //   corresponding template-argument is deduced, the
2804      //   template-argument type shall match the type of the
2805      //   template-parameter exactly, except that a template-argument
2806      //   deduced from an array bound may be of any integral type.
2807      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2808        << ArgType << ParamType;
2809      Diag(Param->getLocation(), diag::note_template_param_here);
2810      return true;
2811    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2812               !ParamType->isEnumeralType()) {
2813      // This is an integral promotion or conversion.
2814      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
2815    } else {
2816      // We can't perform this conversion.
2817      Diag(Arg->getSourceRange().getBegin(),
2818           diag::err_template_arg_not_convertible)
2819        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2820      Diag(Param->getLocation(), diag::note_template_param_here);
2821      return true;
2822    }
2823
2824    QualType IntegerType = Context.getCanonicalType(ParamType);
2825    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2826      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2827
2828    if (!Arg->isValueDependent()) {
2829      llvm::APSInt OldValue = Value;
2830
2831      // Coerce the template argument's value to the value it will have
2832      // based on the template parameter's type.
2833      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2834      if (Value.getBitWidth() != AllowedBits)
2835        Value.extOrTrunc(AllowedBits);
2836      Value.setIsSigned(IntegerType->isSignedIntegerType());
2837
2838      // Complain if an unsigned parameter received a negative value.
2839      if (IntegerType->isUnsignedIntegerType()
2840          && (OldValue.isSigned() && OldValue.isNegative())) {
2841        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2842          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2843          << Arg->getSourceRange();
2844        Diag(Param->getLocation(), diag::note_template_param_here);
2845      }
2846
2847      // Complain if we overflowed the template parameter's type.
2848      unsigned RequiredBits;
2849      if (IntegerType->isUnsignedIntegerType())
2850        RequiredBits = OldValue.getActiveBits();
2851      else if (OldValue.isUnsigned())
2852        RequiredBits = OldValue.getActiveBits() + 1;
2853      else
2854        RequiredBits = OldValue.getMinSignedBits();
2855      if (RequiredBits > AllowedBits) {
2856        Diag(Arg->getSourceRange().getBegin(),
2857             diag::warn_template_arg_too_large)
2858          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2859          << Arg->getSourceRange();
2860        Diag(Param->getLocation(), diag::note_template_param_here);
2861      }
2862    }
2863
2864    // Add the value of this argument to the list of converted
2865    // arguments. We use the bitwidth and signedness of the template
2866    // parameter.
2867    if (Arg->isValueDependent()) {
2868      // The argument is value-dependent. Create a new
2869      // TemplateArgument with the converted expression.
2870      Converted = TemplateArgument(Arg);
2871      return false;
2872    }
2873
2874    Converted = TemplateArgument(Value,
2875                                 ParamType->isEnumeralType() ? ParamType
2876                                                             : IntegerType);
2877    return false;
2878  }
2879
2880  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2881
2882  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2883  // from a template argument of type std::nullptr_t to a non-type
2884  // template parameter of type pointer to object, pointer to
2885  // function, or pointer-to-member, respectively.
2886  if (ArgType->isNullPtrType() &&
2887      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2888    Converted = TemplateArgument((NamedDecl *)0);
2889    return false;
2890  }
2891
2892  // Handle pointer-to-function, reference-to-function, and
2893  // pointer-to-member-function all in (roughly) the same way.
2894  if (// -- For a non-type template-parameter of type pointer to
2895      //    function, only the function-to-pointer conversion (4.3) is
2896      //    applied. If the template-argument represents a set of
2897      //    overloaded functions (or a pointer to such), the matching
2898      //    function is selected from the set (13.4).
2899      (ParamType->isPointerType() &&
2900       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2901      // -- For a non-type template-parameter of type reference to
2902      //    function, no conversions apply. If the template-argument
2903      //    represents a set of overloaded functions, the matching
2904      //    function is selected from the set (13.4).
2905      (ParamType->isReferenceType() &&
2906       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2907      // -- For a non-type template-parameter of type pointer to
2908      //    member function, no conversions apply. If the
2909      //    template-argument represents a set of overloaded member
2910      //    functions, the matching member function is selected from
2911      //    the set (13.4).
2912      (ParamType->isMemberPointerType() &&
2913       ParamType->getAs<MemberPointerType>()->getPointeeType()
2914         ->isFunctionType())) {
2915
2916    if (Arg->getType() == Context.OverloadTy) {
2917      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2918                                                                true,
2919                                                                FoundResult)) {
2920        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2921          return true;
2922
2923        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2924        ArgType = Arg->getType();
2925      } else
2926        return true;
2927    }
2928
2929    if (!ParamType->isMemberPointerType())
2930      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2931                                                            ParamType,
2932                                                            Arg, Converted);
2933
2934    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2935      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2936    } else if (!Context.hasSameUnqualifiedType(ArgType,
2937                                           ParamType.getNonReferenceType())) {
2938      // We can't perform this conversion.
2939      Diag(Arg->getSourceRange().getBegin(),
2940           diag::err_template_arg_not_convertible)
2941        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2942      Diag(Param->getLocation(), diag::note_template_param_here);
2943      return true;
2944    }
2945
2946    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2947  }
2948
2949  if (ParamType->isPointerType()) {
2950    //   -- for a non-type template-parameter of type pointer to
2951    //      object, qualification conversions (4.4) and the
2952    //      array-to-pointer conversion (4.2) are applied.
2953    // C++0x also allows a value of std::nullptr_t.
2954    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
2955           "Only object pointers allowed here");
2956
2957    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2958                                                          ParamType,
2959                                                          Arg, Converted);
2960  }
2961
2962  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2963    //   -- For a non-type template-parameter of type reference to
2964    //      object, no conversions apply. The type referred to by the
2965    //      reference may be more cv-qualified than the (otherwise
2966    //      identical) type of the template-argument. The
2967    //      template-parameter is bound directly to the
2968    //      template-argument, which must be an lvalue.
2969    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
2970           "Only object references allowed here");
2971
2972    if (Arg->getType() == Context.OverloadTy) {
2973      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2974                                                 ParamRefType->getPointeeType(),
2975                                                                true,
2976                                                                FoundResult)) {
2977        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2978          return true;
2979
2980        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2981        ArgType = Arg->getType();
2982      } else
2983        return true;
2984    }
2985
2986    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2987                                                          ParamType,
2988                                                          Arg, Converted);
2989  }
2990
2991  //     -- For a non-type template-parameter of type pointer to data
2992  //        member, qualification conversions (4.4) are applied.
2993  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2994
2995  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2996    // Types match exactly: nothing more to do here.
2997  } else if (IsQualificationConversion(ArgType, ParamType)) {
2998    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2999  } else {
3000    // We can't perform this conversion.
3001    Diag(Arg->getSourceRange().getBegin(),
3002         diag::err_template_arg_not_convertible)
3003      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3004    Diag(Param->getLocation(), diag::note_template_param_here);
3005    return true;
3006  }
3007
3008  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3009}
3010
3011/// \brief Check a template argument against its corresponding
3012/// template template parameter.
3013///
3014/// This routine implements the semantics of C++ [temp.arg.template].
3015/// It returns true if an error occurred, and false otherwise.
3016bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3017                                 const TemplateArgumentLoc &Arg) {
3018  TemplateName Name = Arg.getArgument().getAsTemplate();
3019  TemplateDecl *Template = Name.getAsTemplateDecl();
3020  if (!Template) {
3021    // Any dependent template name is fine.
3022    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3023    return false;
3024  }
3025
3026  // C++ [temp.arg.template]p1:
3027  //   A template-argument for a template template-parameter shall be
3028  //   the name of a class template, expressed as id-expression. Only
3029  //   primary class templates are considered when matching the
3030  //   template template argument with the corresponding parameter;
3031  //   partial specializations are not considered even if their
3032  //   parameter lists match that of the template template parameter.
3033  //
3034  // Note that we also allow template template parameters here, which
3035  // will happen when we are dealing with, e.g., class template
3036  // partial specializations.
3037  if (!isa<ClassTemplateDecl>(Template) &&
3038      !isa<TemplateTemplateParmDecl>(Template)) {
3039    assert(isa<FunctionTemplateDecl>(Template) &&
3040           "Only function templates are possible here");
3041    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3042    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3043      << Template;
3044  }
3045
3046  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3047                                         Param->getTemplateParameters(),
3048                                         true,
3049                                         TPL_TemplateTemplateArgumentMatch,
3050                                         Arg.getLocation());
3051}
3052
3053/// \brief Given a non-type template argument that refers to a
3054/// declaration and the type of its corresponding non-type template
3055/// parameter, produce an expression that properly refers to that
3056/// declaration.
3057ExprResult
3058Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3059                                              QualType ParamType,
3060                                              SourceLocation Loc) {
3061  assert(Arg.getKind() == TemplateArgument::Declaration &&
3062         "Only declaration template arguments permitted here");
3063  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3064
3065  if (VD->getDeclContext()->isRecord() &&
3066      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3067    // If the value is a class member, we might have a pointer-to-member.
3068    // Determine whether the non-type template template parameter is of
3069    // pointer-to-member type. If so, we need to build an appropriate
3070    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3071    // would refer to the member itself.
3072    if (ParamType->isMemberPointerType()) {
3073      QualType ClassType
3074        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3075      NestedNameSpecifier *Qualifier
3076        = NestedNameSpecifier::Create(Context, 0, false,
3077                                      ClassType.getTypePtr());
3078      CXXScopeSpec SS;
3079      SS.setScopeRep(Qualifier);
3080      ExprResult RefExpr = BuildDeclRefExpr(VD,
3081                                           VD->getType().getNonReferenceType(),
3082                                                  Loc,
3083                                                  &SS);
3084      if (RefExpr.isInvalid())
3085        return ExprError();
3086
3087      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3088
3089      // We might need to perform a trailing qualification conversion, since
3090      // the element type on the parameter could be more qualified than the
3091      // element type in the expression we constructed.
3092      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3093                                    ParamType.getUnqualifiedType())) {
3094        Expr *RefE = RefExpr.takeAs<Expr>();
3095        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3096        RefExpr = Owned(RefE);
3097      }
3098
3099      assert(!RefExpr.isInvalid() &&
3100             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3101                                 ParamType.getUnqualifiedType()));
3102      return move(RefExpr);
3103    }
3104  }
3105
3106  QualType T = VD->getType().getNonReferenceType();
3107  if (ParamType->isPointerType()) {
3108    // When the non-type template parameter is a pointer, take the
3109    // address of the declaration.
3110    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3111    if (RefExpr.isInvalid())
3112      return ExprError();
3113
3114    if (T->isFunctionType() || T->isArrayType()) {
3115      // Decay functions and arrays.
3116      Expr *RefE = (Expr *)RefExpr.get();
3117      DefaultFunctionArrayConversion(RefE);
3118      if (RefE != RefExpr.get()) {
3119        RefExpr.release();
3120        RefExpr = Owned(RefE);
3121      }
3122
3123      return move(RefExpr);
3124    }
3125
3126    // Take the address of everything else
3127    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3128  }
3129
3130  // If the non-type template parameter has reference type, qualify the
3131  // resulting declaration reference with the extra qualifiers on the
3132  // type that the reference refers to.
3133  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3134    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3135
3136  return BuildDeclRefExpr(VD, T, Loc);
3137}
3138
3139/// \brief Construct a new expression that refers to the given
3140/// integral template argument with the given source-location
3141/// information.
3142///
3143/// This routine takes care of the mapping from an integral template
3144/// argument (which may have any integral type) to the appropriate
3145/// literal value.
3146ExprResult
3147Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3148                                                  SourceLocation Loc) {
3149  assert(Arg.getKind() == TemplateArgument::Integral &&
3150         "Operation is only value for integral template arguments");
3151  QualType T = Arg.getIntegralType();
3152  if (T->isCharType() || T->isWideCharType())
3153    return Owned(new (Context) CharacterLiteral(
3154                                             Arg.getAsIntegral()->getZExtValue(),
3155                                             T->isWideCharType(),
3156                                             T,
3157                                             Loc));
3158  if (T->isBooleanType())
3159    return Owned(new (Context) CXXBoolLiteralExpr(
3160                                            Arg.getAsIntegral()->getBoolValue(),
3161                                            T,
3162                                            Loc));
3163
3164  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3165}
3166
3167
3168/// \brief Determine whether the given template parameter lists are
3169/// equivalent.
3170///
3171/// \param New  The new template parameter list, typically written in the
3172/// source code as part of a new template declaration.
3173///
3174/// \param Old  The old template parameter list, typically found via
3175/// name lookup of the template declared with this template parameter
3176/// list.
3177///
3178/// \param Complain  If true, this routine will produce a diagnostic if
3179/// the template parameter lists are not equivalent.
3180///
3181/// \param Kind describes how we are to match the template parameter lists.
3182///
3183/// \param TemplateArgLoc If this source location is valid, then we
3184/// are actually checking the template parameter list of a template
3185/// argument (New) against the template parameter list of its
3186/// corresponding template template parameter (Old). We produce
3187/// slightly different diagnostics in this scenario.
3188///
3189/// \returns True if the template parameter lists are equal, false
3190/// otherwise.
3191bool
3192Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3193                                     TemplateParameterList *Old,
3194                                     bool Complain,
3195                                     TemplateParameterListEqualKind Kind,
3196                                     SourceLocation TemplateArgLoc) {
3197  if (Old->size() != New->size()) {
3198    if (Complain) {
3199      unsigned NextDiag = diag::err_template_param_list_different_arity;
3200      if (TemplateArgLoc.isValid()) {
3201        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3202        NextDiag = diag::note_template_param_list_different_arity;
3203      }
3204      Diag(New->getTemplateLoc(), NextDiag)
3205          << (New->size() > Old->size())
3206          << (Kind != TPL_TemplateMatch)
3207          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3208      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3209        << (Kind != TPL_TemplateMatch)
3210        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3211    }
3212
3213    return false;
3214  }
3215
3216  for (TemplateParameterList::iterator OldParm = Old->begin(),
3217         OldParmEnd = Old->end(), NewParm = New->begin();
3218       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3219    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3220      if (Complain) {
3221        unsigned NextDiag = diag::err_template_param_different_kind;
3222        if (TemplateArgLoc.isValid()) {
3223          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3224          NextDiag = diag::note_template_param_different_kind;
3225        }
3226        Diag((*NewParm)->getLocation(), NextDiag)
3227          << (Kind != TPL_TemplateMatch);
3228        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3229          << (Kind != TPL_TemplateMatch);
3230      }
3231      return false;
3232    }
3233
3234    if (TemplateTypeParmDecl *OldTTP
3235                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3236      // Template type parameters are equivalent if either both are template
3237      // type parameter packs or neither are (since we know we're at the same
3238      // index).
3239      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3240      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3241        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3242        // allow one to match a template parameter pack in the template
3243        // parameter list of a template template parameter to one or more
3244        // template parameters in the template parameter list of the
3245        // corresponding template template argument.
3246        if (Complain) {
3247          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3248          if (TemplateArgLoc.isValid()) {
3249            Diag(TemplateArgLoc,
3250                 diag::err_template_arg_template_params_mismatch);
3251            NextDiag = diag::note_template_parameter_pack_non_pack;
3252          }
3253          Diag(NewTTP->getLocation(), NextDiag)
3254            << 0 << NewTTP->isParameterPack();
3255          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3256            << 0 << OldTTP->isParameterPack();
3257        }
3258        return false;
3259      }
3260    } else if (NonTypeTemplateParmDecl *OldNTTP
3261                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3262      // The types of non-type template parameters must agree.
3263      NonTypeTemplateParmDecl *NewNTTP
3264        = cast<NonTypeTemplateParmDecl>(*NewParm);
3265
3266      // If we are matching a template template argument to a template
3267      // template parameter and one of the non-type template parameter types
3268      // is dependent, then we must wait until template instantiation time
3269      // to actually compare the arguments.
3270      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3271          (OldNTTP->getType()->isDependentType() ||
3272           NewNTTP->getType()->isDependentType()))
3273        continue;
3274
3275      if (Context.getCanonicalType(OldNTTP->getType()) !=
3276            Context.getCanonicalType(NewNTTP->getType())) {
3277        if (Complain) {
3278          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3279          if (TemplateArgLoc.isValid()) {
3280            Diag(TemplateArgLoc,
3281                 diag::err_template_arg_template_params_mismatch);
3282            NextDiag = diag::note_template_nontype_parm_different_type;
3283          }
3284          Diag(NewNTTP->getLocation(), NextDiag)
3285            << NewNTTP->getType()
3286            << (Kind != TPL_TemplateMatch);
3287          Diag(OldNTTP->getLocation(),
3288               diag::note_template_nontype_parm_prev_declaration)
3289            << OldNTTP->getType();
3290        }
3291        return false;
3292      }
3293    } else {
3294      // The template parameter lists of template template
3295      // parameters must agree.
3296      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3297             "Only template template parameters handled here");
3298      TemplateTemplateParmDecl *OldTTP
3299        = cast<TemplateTemplateParmDecl>(*OldParm);
3300      TemplateTemplateParmDecl *NewTTP
3301        = cast<TemplateTemplateParmDecl>(*NewParm);
3302      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3303                                          OldTTP->getTemplateParameters(),
3304                                          Complain,
3305              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3306                                          TemplateArgLoc))
3307        return false;
3308    }
3309  }
3310
3311  return true;
3312}
3313
3314/// \brief Check whether a template can be declared within this scope.
3315///
3316/// If the template declaration is valid in this scope, returns
3317/// false. Otherwise, issues a diagnostic and returns true.
3318bool
3319Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3320  // Find the nearest enclosing declaration scope.
3321  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3322         (S->getFlags() & Scope::TemplateParamScope) != 0)
3323    S = S->getParent();
3324
3325  // C++ [temp]p2:
3326  //   A template-declaration can appear only as a namespace scope or
3327  //   class scope declaration.
3328  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3329  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3330      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3331    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3332             << TemplateParams->getSourceRange();
3333
3334  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3335    Ctx = Ctx->getParent();
3336
3337  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3338    return false;
3339
3340  return Diag(TemplateParams->getTemplateLoc(),
3341              diag::err_template_outside_namespace_or_class_scope)
3342    << TemplateParams->getSourceRange();
3343}
3344
3345/// \brief Determine what kind of template specialization the given declaration
3346/// is.
3347static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3348  if (!D)
3349    return TSK_Undeclared;
3350
3351  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3352    return Record->getTemplateSpecializationKind();
3353  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3354    return Function->getTemplateSpecializationKind();
3355  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3356    return Var->getTemplateSpecializationKind();
3357
3358  return TSK_Undeclared;
3359}
3360
3361/// \brief Check whether a specialization is well-formed in the current
3362/// context.
3363///
3364/// This routine determines whether a template specialization can be declared
3365/// in the current context (C++ [temp.expl.spec]p2).
3366///
3367/// \param S the semantic analysis object for which this check is being
3368/// performed.
3369///
3370/// \param Specialized the entity being specialized or instantiated, which
3371/// may be a kind of template (class template, function template, etc.) or
3372/// a member of a class template (member function, static data member,
3373/// member class).
3374///
3375/// \param PrevDecl the previous declaration of this entity, if any.
3376///
3377/// \param Loc the location of the explicit specialization or instantiation of
3378/// this entity.
3379///
3380/// \param IsPartialSpecialization whether this is a partial specialization of
3381/// a class template.
3382///
3383/// \returns true if there was an error that we cannot recover from, false
3384/// otherwise.
3385static bool CheckTemplateSpecializationScope(Sema &S,
3386                                             NamedDecl *Specialized,
3387                                             NamedDecl *PrevDecl,
3388                                             SourceLocation Loc,
3389                                             bool IsPartialSpecialization) {
3390  // Keep these "kind" numbers in sync with the %select statements in the
3391  // various diagnostics emitted by this routine.
3392  int EntityKind = 0;
3393  bool isTemplateSpecialization = false;
3394  if (isa<ClassTemplateDecl>(Specialized)) {
3395    EntityKind = IsPartialSpecialization? 1 : 0;
3396    isTemplateSpecialization = true;
3397  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3398    EntityKind = 2;
3399    isTemplateSpecialization = true;
3400  } else if (isa<CXXMethodDecl>(Specialized))
3401    EntityKind = 3;
3402  else if (isa<VarDecl>(Specialized))
3403    EntityKind = 4;
3404  else if (isa<RecordDecl>(Specialized))
3405    EntityKind = 5;
3406  else {
3407    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3408    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3409    return true;
3410  }
3411
3412  // C++ [temp.expl.spec]p2:
3413  //   An explicit specialization shall be declared in the namespace
3414  //   of which the template is a member, or, for member templates, in
3415  //   the namespace of which the enclosing class or enclosing class
3416  //   template is a member. An explicit specialization of a member
3417  //   function, member class or static data member of a class
3418  //   template shall be declared in the namespace of which the class
3419  //   template is a member. Such a declaration may also be a
3420  //   definition. If the declaration is not a definition, the
3421  //   specialization may be defined later in the name- space in which
3422  //   the explicit specialization was declared, or in a namespace
3423  //   that encloses the one in which the explicit specialization was
3424  //   declared.
3425  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3426    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3427      << Specialized;
3428    return true;
3429  }
3430
3431  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3432    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3433      << Specialized;
3434    return true;
3435  }
3436
3437  // C++ [temp.class.spec]p6:
3438  //   A class template partial specialization may be declared or redeclared
3439  //   in any namespace scope in which its definition may be defined (14.5.1
3440  //   and 14.5.2).
3441  bool ComplainedAboutScope = false;
3442  DeclContext *SpecializedContext
3443    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3444  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3445  if ((!PrevDecl ||
3446       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3447       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3448    // C++ [temp.exp.spec]p2:
3449    //   An explicit specialization shall be declared in the namespace of which
3450    //   the template is a member, or, for member templates, in the namespace
3451    //   of which the enclosing class or enclosing class template is a member.
3452    //   An explicit specialization of a member function, member class or
3453    //   static data member of a class template shall be declared in the
3454    //   namespace of which the class template is a member.
3455    //
3456    // C++0x [temp.expl.spec]p2:
3457    //   An explicit specialization shall be declared in a namespace enclosing
3458    //   the specialized template.
3459    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3460        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3461      bool IsCPlusPlus0xExtension
3462        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3463      if (isa<TranslationUnitDecl>(SpecializedContext))
3464        S.Diag(Loc, IsCPlusPlus0xExtension
3465                      ? diag::ext_template_spec_decl_out_of_scope_global
3466                      : diag::err_template_spec_decl_out_of_scope_global)
3467          << EntityKind << Specialized;
3468      else if (isa<NamespaceDecl>(SpecializedContext))
3469        S.Diag(Loc, IsCPlusPlus0xExtension
3470                      ? diag::ext_template_spec_decl_out_of_scope
3471                      : diag::err_template_spec_decl_out_of_scope)
3472          << EntityKind << Specialized
3473          << cast<NamedDecl>(SpecializedContext);
3474
3475      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3476      ComplainedAboutScope = true;
3477    }
3478  }
3479
3480  // Make sure that this redeclaration (or definition) occurs in an enclosing
3481  // namespace.
3482  // Note that HandleDeclarator() performs this check for explicit
3483  // specializations of function templates, static data members, and member
3484  // functions, so we skip the check here for those kinds of entities.
3485  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3486  // Should we refactor that check, so that it occurs later?
3487  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3488      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3489        isa<FunctionDecl>(Specialized))) {
3490    if (isa<TranslationUnitDecl>(SpecializedContext))
3491      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3492        << EntityKind << Specialized;
3493    else if (isa<NamespaceDecl>(SpecializedContext))
3494      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3495        << EntityKind << Specialized
3496        << cast<NamedDecl>(SpecializedContext);
3497
3498    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3499  }
3500
3501  // FIXME: check for specialization-after-instantiation errors and such.
3502
3503  return false;
3504}
3505
3506/// \brief Check the non-type template arguments of a class template
3507/// partial specialization according to C++ [temp.class.spec]p9.
3508///
3509/// \param TemplateParams the template parameters of the primary class
3510/// template.
3511///
3512/// \param TemplateArg the template arguments of the class template
3513/// partial specialization.
3514///
3515/// \param MirrorsPrimaryTemplate will be set true if the class
3516/// template partial specialization arguments are identical to the
3517/// implicit template arguments of the primary template. This is not
3518/// necessarily an error (C++0x), and it is left to the caller to diagnose
3519/// this condition when it is an error.
3520///
3521/// \returns true if there was an error, false otherwise.
3522bool Sema::CheckClassTemplatePartialSpecializationArgs(
3523                                        TemplateParameterList *TemplateParams,
3524                             const TemplateArgumentListBuilder &TemplateArgs,
3525                                        bool &MirrorsPrimaryTemplate) {
3526  // FIXME: the interface to this function will have to change to
3527  // accommodate variadic templates.
3528  MirrorsPrimaryTemplate = true;
3529
3530  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3531
3532  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3533    // Determine whether the template argument list of the partial
3534    // specialization is identical to the implicit argument list of
3535    // the primary template. The caller may need to diagnostic this as
3536    // an error per C++ [temp.class.spec]p9b3.
3537    if (MirrorsPrimaryTemplate) {
3538      if (TemplateTypeParmDecl *TTP
3539            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3540        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3541              Context.getCanonicalType(ArgList[I].getAsType()))
3542          MirrorsPrimaryTemplate = false;
3543      } else if (TemplateTemplateParmDecl *TTP
3544                   = dyn_cast<TemplateTemplateParmDecl>(
3545                                                 TemplateParams->getParam(I))) {
3546        TemplateName Name = ArgList[I].getAsTemplate();
3547        TemplateTemplateParmDecl *ArgDecl
3548          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3549        if (!ArgDecl ||
3550            ArgDecl->getIndex() != TTP->getIndex() ||
3551            ArgDecl->getDepth() != TTP->getDepth())
3552          MirrorsPrimaryTemplate = false;
3553      }
3554    }
3555
3556    NonTypeTemplateParmDecl *Param
3557      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3558    if (!Param) {
3559      continue;
3560    }
3561
3562    Expr *ArgExpr = ArgList[I].getAsExpr();
3563    if (!ArgExpr) {
3564      MirrorsPrimaryTemplate = false;
3565      continue;
3566    }
3567
3568    // C++ [temp.class.spec]p8:
3569    //   A non-type argument is non-specialized if it is the name of a
3570    //   non-type parameter. All other non-type arguments are
3571    //   specialized.
3572    //
3573    // Below, we check the two conditions that only apply to
3574    // specialized non-type arguments, so skip any non-specialized
3575    // arguments.
3576    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3577      if (NonTypeTemplateParmDecl *NTTP
3578            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3579        if (MirrorsPrimaryTemplate &&
3580            (Param->getIndex() != NTTP->getIndex() ||
3581             Param->getDepth() != NTTP->getDepth()))
3582          MirrorsPrimaryTemplate = false;
3583
3584        continue;
3585      }
3586
3587    // C++ [temp.class.spec]p9:
3588    //   Within the argument list of a class template partial
3589    //   specialization, the following restrictions apply:
3590    //     -- A partially specialized non-type argument expression
3591    //        shall not involve a template parameter of the partial
3592    //        specialization except when the argument expression is a
3593    //        simple identifier.
3594    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3595      Diag(ArgExpr->getLocStart(),
3596           diag::err_dependent_non_type_arg_in_partial_spec)
3597        << ArgExpr->getSourceRange();
3598      return true;
3599    }
3600
3601    //     -- The type of a template parameter corresponding to a
3602    //        specialized non-type argument shall not be dependent on a
3603    //        parameter of the specialization.
3604    if (Param->getType()->isDependentType()) {
3605      Diag(ArgExpr->getLocStart(),
3606           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3607        << Param->getType()
3608        << ArgExpr->getSourceRange();
3609      Diag(Param->getLocation(), diag::note_template_param_here);
3610      return true;
3611    }
3612
3613    MirrorsPrimaryTemplate = false;
3614  }
3615
3616  return false;
3617}
3618
3619/// \brief Retrieve the previous declaration of the given declaration.
3620static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3621  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3622    return VD->getPreviousDeclaration();
3623  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3624    return FD->getPreviousDeclaration();
3625  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3626    return TD->getPreviousDeclaration();
3627  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3628    return TD->getPreviousDeclaration();
3629  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3630    return FTD->getPreviousDeclaration();
3631  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3632    return CTD->getPreviousDeclaration();
3633  return 0;
3634}
3635
3636DeclResult
3637Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3638                                       TagUseKind TUK,
3639                                       SourceLocation KWLoc,
3640                                       CXXScopeSpec &SS,
3641                                       TemplateTy TemplateD,
3642                                       SourceLocation TemplateNameLoc,
3643                                       SourceLocation LAngleLoc,
3644                                       ASTTemplateArgsPtr TemplateArgsIn,
3645                                       SourceLocation RAngleLoc,
3646                                       AttributeList *Attr,
3647                               MultiTemplateParamsArg TemplateParameterLists) {
3648  assert(TUK != TUK_Reference && "References are not specializations");
3649
3650  // Find the class template we're specializing
3651  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3652  ClassTemplateDecl *ClassTemplate
3653    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3654
3655  if (!ClassTemplate) {
3656    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3657      << (Name.getAsTemplateDecl() &&
3658          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3659    return true;
3660  }
3661
3662  bool isExplicitSpecialization = false;
3663  bool isPartialSpecialization = false;
3664
3665  // Check the validity of the template headers that introduce this
3666  // template.
3667  // FIXME: We probably shouldn't complain about these headers for
3668  // friend declarations.
3669  bool Invalid = false;
3670  TemplateParameterList *TemplateParams
3671    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3672                        (TemplateParameterList**)TemplateParameterLists.get(),
3673                                              TemplateParameterLists.size(),
3674                                              TUK == TUK_Friend,
3675                                              isExplicitSpecialization,
3676                                              Invalid);
3677  if (Invalid)
3678    return true;
3679
3680  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3681  if (TemplateParams)
3682    --NumMatchedTemplateParamLists;
3683
3684  if (TemplateParams && TemplateParams->size() > 0) {
3685    isPartialSpecialization = true;
3686
3687    // C++ [temp.class.spec]p10:
3688    //   The template parameter list of a specialization shall not
3689    //   contain default template argument values.
3690    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3691      Decl *Param = TemplateParams->getParam(I);
3692      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3693        if (TTP->hasDefaultArgument()) {
3694          Diag(TTP->getDefaultArgumentLoc(),
3695               diag::err_default_arg_in_partial_spec);
3696          TTP->removeDefaultArgument();
3697        }
3698      } else if (NonTypeTemplateParmDecl *NTTP
3699                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3700        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3701          Diag(NTTP->getDefaultArgumentLoc(),
3702               diag::err_default_arg_in_partial_spec)
3703            << DefArg->getSourceRange();
3704          NTTP->removeDefaultArgument();
3705        }
3706      } else {
3707        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3708        if (TTP->hasDefaultArgument()) {
3709          Diag(TTP->getDefaultArgument().getLocation(),
3710               diag::err_default_arg_in_partial_spec)
3711            << TTP->getDefaultArgument().getSourceRange();
3712          TTP->removeDefaultArgument();
3713        }
3714      }
3715    }
3716  } else if (TemplateParams) {
3717    if (TUK == TUK_Friend)
3718      Diag(KWLoc, diag::err_template_spec_friend)
3719        << FixItHint::CreateRemoval(
3720                                SourceRange(TemplateParams->getTemplateLoc(),
3721                                            TemplateParams->getRAngleLoc()))
3722        << SourceRange(LAngleLoc, RAngleLoc);
3723    else
3724      isExplicitSpecialization = true;
3725  } else if (TUK != TUK_Friend) {
3726    Diag(KWLoc, diag::err_template_spec_needs_header)
3727      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3728    isExplicitSpecialization = true;
3729  }
3730
3731  // Check that the specialization uses the same tag kind as the
3732  // original template.
3733  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3734  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3735  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3736                                    Kind, KWLoc,
3737                                    *ClassTemplate->getIdentifier())) {
3738    Diag(KWLoc, diag::err_use_with_wrong_tag)
3739      << ClassTemplate
3740      << FixItHint::CreateReplacement(KWLoc,
3741                            ClassTemplate->getTemplatedDecl()->getKindName());
3742    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3743         diag::note_previous_use);
3744    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3745  }
3746
3747  // Translate the parser's template argument list in our AST format.
3748  TemplateArgumentListInfo TemplateArgs;
3749  TemplateArgs.setLAngleLoc(LAngleLoc);
3750  TemplateArgs.setRAngleLoc(RAngleLoc);
3751  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3752
3753  // Check that the template argument list is well-formed for this
3754  // template.
3755  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3756                                        TemplateArgs.size());
3757  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3758                                TemplateArgs, false, Converted))
3759    return true;
3760
3761  assert((Converted.structuredSize() ==
3762            ClassTemplate->getTemplateParameters()->size()) &&
3763         "Converted template argument list is too short!");
3764
3765  // Find the class template (partial) specialization declaration that
3766  // corresponds to these arguments.
3767  if (isPartialSpecialization) {
3768    bool MirrorsPrimaryTemplate;
3769    if (CheckClassTemplatePartialSpecializationArgs(
3770                                         ClassTemplate->getTemplateParameters(),
3771                                         Converted, MirrorsPrimaryTemplate))
3772      return true;
3773
3774    if (MirrorsPrimaryTemplate) {
3775      // C++ [temp.class.spec]p9b3:
3776      //
3777      //   -- The argument list of the specialization shall not be identical
3778      //      to the implicit argument list of the primary template.
3779      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3780        << (TUK == TUK_Definition)
3781        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3782      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3783                                ClassTemplate->getIdentifier(),
3784                                TemplateNameLoc,
3785                                Attr,
3786                                TemplateParams,
3787                                AS_none);
3788    }
3789
3790    // FIXME: Diagnose friend partial specializations
3791
3792    if (!Name.isDependent() &&
3793        !TemplateSpecializationType::anyDependentTemplateArguments(
3794                                             TemplateArgs.getArgumentArray(),
3795                                                         TemplateArgs.size())) {
3796      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3797        << ClassTemplate->getDeclName();
3798      isPartialSpecialization = false;
3799    }
3800  }
3801
3802  void *InsertPos = 0;
3803  ClassTemplateSpecializationDecl *PrevDecl = 0;
3804
3805  if (isPartialSpecialization)
3806    // FIXME: Template parameter list matters, too
3807    PrevDecl
3808      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3809                                                 Converted.flatSize(),
3810                                                 InsertPos);
3811  else
3812    PrevDecl
3813      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3814                                          Converted.flatSize(), InsertPos);
3815
3816  ClassTemplateSpecializationDecl *Specialization = 0;
3817
3818  // Check whether we can declare a class template specialization in
3819  // the current scope.
3820  if (TUK != TUK_Friend &&
3821      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3822                                       TemplateNameLoc,
3823                                       isPartialSpecialization))
3824    return true;
3825
3826  // The canonical type
3827  QualType CanonType;
3828  if (PrevDecl &&
3829      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3830               TUK == TUK_Friend)) {
3831    // Since the only prior class template specialization with these
3832    // arguments was referenced but not declared, or we're only
3833    // referencing this specialization as a friend, reuse that
3834    // declaration node as our own, updating its source location to
3835    // reflect our new declaration.
3836    Specialization = PrevDecl;
3837    Specialization->setLocation(TemplateNameLoc);
3838    PrevDecl = 0;
3839    CanonType = Context.getTypeDeclType(Specialization);
3840  } else if (isPartialSpecialization) {
3841    // Build the canonical type that describes the converted template
3842    // arguments of the class template partial specialization.
3843    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3844    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3845                                                  Converted.getFlatArguments(),
3846                                                  Converted.flatSize());
3847
3848    // Create a new class template partial specialization declaration node.
3849    ClassTemplatePartialSpecializationDecl *PrevPartial
3850      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3851    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3852                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3853    ClassTemplatePartialSpecializationDecl *Partial
3854      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3855                                             ClassTemplate->getDeclContext(),
3856                                                       TemplateNameLoc,
3857                                                       TemplateParams,
3858                                                       ClassTemplate,
3859                                                       Converted,
3860                                                       TemplateArgs,
3861                                                       CanonType,
3862                                                       PrevPartial,
3863                                                       SequenceNumber);
3864    SetNestedNameSpecifier(Partial, SS);
3865    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3866      Partial->setTemplateParameterListsInfo(Context,
3867                                             NumMatchedTemplateParamLists,
3868                    (TemplateParameterList**) TemplateParameterLists.release());
3869    }
3870
3871    if (!PrevPartial)
3872      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3873    Specialization = Partial;
3874
3875    // If we are providing an explicit specialization of a member class
3876    // template specialization, make a note of that.
3877    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3878      PrevPartial->setMemberSpecialization();
3879
3880    // Check that all of the template parameters of the class template
3881    // partial specialization are deducible from the template
3882    // arguments. If not, this class template partial specialization
3883    // will never be used.
3884    llvm::SmallVector<bool, 8> DeducibleParams;
3885    DeducibleParams.resize(TemplateParams->size());
3886    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3887                               TemplateParams->getDepth(),
3888                               DeducibleParams);
3889    unsigned NumNonDeducible = 0;
3890    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3891      if (!DeducibleParams[I])
3892        ++NumNonDeducible;
3893
3894    if (NumNonDeducible) {
3895      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3896        << (NumNonDeducible > 1)
3897        << SourceRange(TemplateNameLoc, RAngleLoc);
3898      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3899        if (!DeducibleParams[I]) {
3900          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3901          if (Param->getDeclName())
3902            Diag(Param->getLocation(),
3903                 diag::note_partial_spec_unused_parameter)
3904              << Param->getDeclName();
3905          else
3906            Diag(Param->getLocation(),
3907                 diag::note_partial_spec_unused_parameter)
3908              << "<anonymous>";
3909        }
3910      }
3911    }
3912  } else {
3913    // Create a new class template specialization declaration node for
3914    // this explicit specialization or friend declaration.
3915    Specialization
3916      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3917                                             ClassTemplate->getDeclContext(),
3918                                                TemplateNameLoc,
3919                                                ClassTemplate,
3920                                                Converted,
3921                                                PrevDecl);
3922    SetNestedNameSpecifier(Specialization, SS);
3923    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3924      Specialization->setTemplateParameterListsInfo(Context,
3925                                                  NumMatchedTemplateParamLists,
3926                    (TemplateParameterList**) TemplateParameterLists.release());
3927    }
3928
3929    if (!PrevDecl)
3930      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3931
3932    CanonType = Context.getTypeDeclType(Specialization);
3933  }
3934
3935  // C++ [temp.expl.spec]p6:
3936  //   If a template, a member template or the member of a class template is
3937  //   explicitly specialized then that specialization shall be declared
3938  //   before the first use of that specialization that would cause an implicit
3939  //   instantiation to take place, in every translation unit in which such a
3940  //   use occurs; no diagnostic is required.
3941  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3942    bool Okay = false;
3943    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3944      // Is there any previous explicit specialization declaration?
3945      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3946        Okay = true;
3947        break;
3948      }
3949    }
3950
3951    if (!Okay) {
3952      SourceRange Range(TemplateNameLoc, RAngleLoc);
3953      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3954        << Context.getTypeDeclType(Specialization) << Range;
3955
3956      Diag(PrevDecl->getPointOfInstantiation(),
3957           diag::note_instantiation_required_here)
3958        << (PrevDecl->getTemplateSpecializationKind()
3959                                                != TSK_ImplicitInstantiation);
3960      return true;
3961    }
3962  }
3963
3964  // If this is not a friend, note that this is an explicit specialization.
3965  if (TUK != TUK_Friend)
3966    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3967
3968  // Check that this isn't a redefinition of this specialization.
3969  if (TUK == TUK_Definition) {
3970    if (RecordDecl *Def = Specialization->getDefinition()) {
3971      SourceRange Range(TemplateNameLoc, RAngleLoc);
3972      Diag(TemplateNameLoc, diag::err_redefinition)
3973        << Context.getTypeDeclType(Specialization) << Range;
3974      Diag(Def->getLocation(), diag::note_previous_definition);
3975      Specialization->setInvalidDecl();
3976      return true;
3977    }
3978  }
3979
3980  // Build the fully-sugared type for this class template
3981  // specialization as the user wrote in the specialization
3982  // itself. This means that we'll pretty-print the type retrieved
3983  // from the specialization's declaration the way that the user
3984  // actually wrote the specialization, rather than formatting the
3985  // name based on the "canonical" representation used to store the
3986  // template arguments in the specialization.
3987  TypeSourceInfo *WrittenTy
3988    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3989                                                TemplateArgs, CanonType);
3990  if (TUK != TUK_Friend) {
3991    Specialization->setTypeAsWritten(WrittenTy);
3992    if (TemplateParams)
3993      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
3994  }
3995  TemplateArgsIn.release();
3996
3997  // C++ [temp.expl.spec]p9:
3998  //   A template explicit specialization is in the scope of the
3999  //   namespace in which the template was defined.
4000  //
4001  // We actually implement this paragraph where we set the semantic
4002  // context (in the creation of the ClassTemplateSpecializationDecl),
4003  // but we also maintain the lexical context where the actual
4004  // definition occurs.
4005  Specialization->setLexicalDeclContext(CurContext);
4006
4007  // We may be starting the definition of this specialization.
4008  if (TUK == TUK_Definition)
4009    Specialization->startDefinition();
4010
4011  if (TUK == TUK_Friend) {
4012    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4013                                            TemplateNameLoc,
4014                                            WrittenTy,
4015                                            /*FIXME:*/KWLoc);
4016    Friend->setAccess(AS_public);
4017    CurContext->addDecl(Friend);
4018  } else {
4019    // Add the specialization into its lexical context, so that it can
4020    // be seen when iterating through the list of declarations in that
4021    // context. However, specializations are not found by name lookup.
4022    CurContext->addDecl(Specialization);
4023  }
4024  return Specialization;
4025}
4026
4027Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4028                              MultiTemplateParamsArg TemplateParameterLists,
4029                                    Declarator &D) {
4030  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4031}
4032
4033Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4034                               MultiTemplateParamsArg TemplateParameterLists,
4035                                            Declarator &D) {
4036  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4037  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4038         "Not a function declarator!");
4039  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4040
4041  if (FTI.hasPrototype) {
4042    // FIXME: Diagnose arguments without names in C.
4043  }
4044
4045  Scope *ParentScope = FnBodyScope->getParent();
4046
4047  Decl *DP = HandleDeclarator(ParentScope, D,
4048                              move(TemplateParameterLists),
4049                              /*IsFunctionDefinition=*/true);
4050  if (FunctionTemplateDecl *FunctionTemplate
4051        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4052    return ActOnStartOfFunctionDef(FnBodyScope,
4053                                   FunctionTemplate->getTemplatedDecl());
4054  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4055    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4056  return 0;
4057}
4058
4059/// \brief Strips various properties off an implicit instantiation
4060/// that has just been explicitly specialized.
4061static void StripImplicitInstantiation(NamedDecl *D) {
4062  D->dropAttrs();
4063
4064  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4065    FD->setInlineSpecified(false);
4066  }
4067}
4068
4069/// \brief Diagnose cases where we have an explicit template specialization
4070/// before/after an explicit template instantiation, producing diagnostics
4071/// for those cases where they are required and determining whether the
4072/// new specialization/instantiation will have any effect.
4073///
4074/// \param NewLoc the location of the new explicit specialization or
4075/// instantiation.
4076///
4077/// \param NewTSK the kind of the new explicit specialization or instantiation.
4078///
4079/// \param PrevDecl the previous declaration of the entity.
4080///
4081/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4082///
4083/// \param PrevPointOfInstantiation if valid, indicates where the previus
4084/// declaration was instantiated (either implicitly or explicitly).
4085///
4086/// \param HasNoEffect will be set to true to indicate that the new
4087/// specialization or instantiation has no effect and should be ignored.
4088///
4089/// \returns true if there was an error that should prevent the introduction of
4090/// the new declaration into the AST, false otherwise.
4091bool
4092Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4093                                             TemplateSpecializationKind NewTSK,
4094                                             NamedDecl *PrevDecl,
4095                                             TemplateSpecializationKind PrevTSK,
4096                                        SourceLocation PrevPointOfInstantiation,
4097                                             bool &HasNoEffect) {
4098  HasNoEffect = false;
4099
4100  switch (NewTSK) {
4101  case TSK_Undeclared:
4102  case TSK_ImplicitInstantiation:
4103    assert(false && "Don't check implicit instantiations here");
4104    return false;
4105
4106  case TSK_ExplicitSpecialization:
4107    switch (PrevTSK) {
4108    case TSK_Undeclared:
4109    case TSK_ExplicitSpecialization:
4110      // Okay, we're just specializing something that is either already
4111      // explicitly specialized or has merely been mentioned without any
4112      // instantiation.
4113      return false;
4114
4115    case TSK_ImplicitInstantiation:
4116      if (PrevPointOfInstantiation.isInvalid()) {
4117        // The declaration itself has not actually been instantiated, so it is
4118        // still okay to specialize it.
4119        StripImplicitInstantiation(PrevDecl);
4120        return false;
4121      }
4122      // Fall through
4123
4124    case TSK_ExplicitInstantiationDeclaration:
4125    case TSK_ExplicitInstantiationDefinition:
4126      assert((PrevTSK == TSK_ImplicitInstantiation ||
4127              PrevPointOfInstantiation.isValid()) &&
4128             "Explicit instantiation without point of instantiation?");
4129
4130      // C++ [temp.expl.spec]p6:
4131      //   If a template, a member template or the member of a class template
4132      //   is explicitly specialized then that specialization shall be declared
4133      //   before the first use of that specialization that would cause an
4134      //   implicit instantiation to take place, in every translation unit in
4135      //   which such a use occurs; no diagnostic is required.
4136      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4137        // Is there any previous explicit specialization declaration?
4138        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4139          return false;
4140      }
4141
4142      Diag(NewLoc, diag::err_specialization_after_instantiation)
4143        << PrevDecl;
4144      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4145        << (PrevTSK != TSK_ImplicitInstantiation);
4146
4147      return true;
4148    }
4149    break;
4150
4151  case TSK_ExplicitInstantiationDeclaration:
4152    switch (PrevTSK) {
4153    case TSK_ExplicitInstantiationDeclaration:
4154      // This explicit instantiation declaration is redundant (that's okay).
4155      HasNoEffect = true;
4156      return false;
4157
4158    case TSK_Undeclared:
4159    case TSK_ImplicitInstantiation:
4160      // We're explicitly instantiating something that may have already been
4161      // implicitly instantiated; that's fine.
4162      return false;
4163
4164    case TSK_ExplicitSpecialization:
4165      // C++0x [temp.explicit]p4:
4166      //   For a given set of template parameters, if an explicit instantiation
4167      //   of a template appears after a declaration of an explicit
4168      //   specialization for that template, the explicit instantiation has no
4169      //   effect.
4170      HasNoEffect = true;
4171      return false;
4172
4173    case TSK_ExplicitInstantiationDefinition:
4174      // C++0x [temp.explicit]p10:
4175      //   If an entity is the subject of both an explicit instantiation
4176      //   declaration and an explicit instantiation definition in the same
4177      //   translation unit, the definition shall follow the declaration.
4178      Diag(NewLoc,
4179           diag::err_explicit_instantiation_declaration_after_definition);
4180      Diag(PrevPointOfInstantiation,
4181           diag::note_explicit_instantiation_definition_here);
4182      assert(PrevPointOfInstantiation.isValid() &&
4183             "Explicit instantiation without point of instantiation?");
4184      HasNoEffect = true;
4185      return false;
4186    }
4187    break;
4188
4189  case TSK_ExplicitInstantiationDefinition:
4190    switch (PrevTSK) {
4191    case TSK_Undeclared:
4192    case TSK_ImplicitInstantiation:
4193      // We're explicitly instantiating something that may have already been
4194      // implicitly instantiated; that's fine.
4195      return false;
4196
4197    case TSK_ExplicitSpecialization:
4198      // C++ DR 259, C++0x [temp.explicit]p4:
4199      //   For a given set of template parameters, if an explicit
4200      //   instantiation of a template appears after a declaration of
4201      //   an explicit specialization for that template, the explicit
4202      //   instantiation has no effect.
4203      //
4204      // In C++98/03 mode, we only give an extension warning here, because it
4205      // is not harmful to try to explicitly instantiate something that
4206      // has been explicitly specialized.
4207      if (!getLangOptions().CPlusPlus0x) {
4208        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4209          << PrevDecl;
4210        Diag(PrevDecl->getLocation(),
4211             diag::note_previous_template_specialization);
4212      }
4213      HasNoEffect = true;
4214      return false;
4215
4216    case TSK_ExplicitInstantiationDeclaration:
4217      // We're explicity instantiating a definition for something for which we
4218      // were previously asked to suppress instantiations. That's fine.
4219      return false;
4220
4221    case TSK_ExplicitInstantiationDefinition:
4222      // C++0x [temp.spec]p5:
4223      //   For a given template and a given set of template-arguments,
4224      //     - an explicit instantiation definition shall appear at most once
4225      //       in a program,
4226      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4227        << PrevDecl;
4228      Diag(PrevPointOfInstantiation,
4229           diag::note_previous_explicit_instantiation);
4230      HasNoEffect = true;
4231      return false;
4232    }
4233    break;
4234  }
4235
4236  assert(false && "Missing specialization/instantiation case?");
4237
4238  return false;
4239}
4240
4241/// \brief Perform semantic analysis for the given dependent function
4242/// template specialization.  The only possible way to get a dependent
4243/// function template specialization is with a friend declaration,
4244/// like so:
4245///
4246///   template <class T> void foo(T);
4247///   template <class T> class A {
4248///     friend void foo<>(T);
4249///   };
4250///
4251/// There really isn't any useful analysis we can do here, so we
4252/// just store the information.
4253bool
4254Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4255                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4256                                                   LookupResult &Previous) {
4257  // Remove anything from Previous that isn't a function template in
4258  // the correct context.
4259  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4260  LookupResult::Filter F = Previous.makeFilter();
4261  while (F.hasNext()) {
4262    NamedDecl *D = F.next()->getUnderlyingDecl();
4263    if (!isa<FunctionTemplateDecl>(D) ||
4264        !FDLookupContext->InEnclosingNamespaceSetOf(
4265                              D->getDeclContext()->getRedeclContext()))
4266      F.erase();
4267  }
4268  F.done();
4269
4270  // Should this be diagnosed here?
4271  if (Previous.empty()) return true;
4272
4273  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4274                                         ExplicitTemplateArgs);
4275  return false;
4276}
4277
4278/// \brief Perform semantic analysis for the given function template
4279/// specialization.
4280///
4281/// This routine performs all of the semantic analysis required for an
4282/// explicit function template specialization. On successful completion,
4283/// the function declaration \p FD will become a function template
4284/// specialization.
4285///
4286/// \param FD the function declaration, which will be updated to become a
4287/// function template specialization.
4288///
4289/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4290/// if any. Note that this may be valid info even when 0 arguments are
4291/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4292/// as it anyway contains info on the angle brackets locations.
4293///
4294/// \param PrevDecl the set of declarations that may be specialized by
4295/// this function specialization.
4296bool
4297Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4298                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4299                                          LookupResult &Previous) {
4300  // The set of function template specializations that could match this
4301  // explicit function template specialization.
4302  UnresolvedSet<8> Candidates;
4303
4304  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4305  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4306         I != E; ++I) {
4307    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4308    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4309      // Only consider templates found within the same semantic lookup scope as
4310      // FD.
4311      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4312                                Ovl->getDeclContext()->getRedeclContext()))
4313        continue;
4314
4315      // C++ [temp.expl.spec]p11:
4316      //   A trailing template-argument can be left unspecified in the
4317      //   template-id naming an explicit function template specialization
4318      //   provided it can be deduced from the function argument type.
4319      // Perform template argument deduction to determine whether we may be
4320      // specializing this template.
4321      // FIXME: It is somewhat wasteful to build
4322      TemplateDeductionInfo Info(Context, FD->getLocation());
4323      FunctionDecl *Specialization = 0;
4324      if (TemplateDeductionResult TDK
4325            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4326                                      FD->getType(),
4327                                      Specialization,
4328                                      Info)) {
4329        // FIXME: Template argument deduction failed; record why it failed, so
4330        // that we can provide nifty diagnostics.
4331        (void)TDK;
4332        continue;
4333      }
4334
4335      // Record this candidate.
4336      Candidates.addDecl(Specialization, I.getAccess());
4337    }
4338  }
4339
4340  // Find the most specialized function template.
4341  UnresolvedSetIterator Result
4342    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4343                         TPOC_Other, FD->getLocation(),
4344                  PDiag(diag::err_function_template_spec_no_match)
4345                    << FD->getDeclName(),
4346                  PDiag(diag::err_function_template_spec_ambiguous)
4347                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4348                  PDiag(diag::note_function_template_spec_matched));
4349  if (Result == Candidates.end())
4350    return true;
4351
4352  // Ignore access information;  it doesn't figure into redeclaration checking.
4353  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4354  Specialization->setLocation(FD->getLocation());
4355
4356  // FIXME: Check if the prior specialization has a point of instantiation.
4357  // If so, we have run afoul of .
4358
4359  // If this is a friend declaration, then we're not really declaring
4360  // an explicit specialization.
4361  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4362
4363  // Check the scope of this explicit specialization.
4364  if (!isFriend &&
4365      CheckTemplateSpecializationScope(*this,
4366                                       Specialization->getPrimaryTemplate(),
4367                                       Specialization, FD->getLocation(),
4368                                       false))
4369    return true;
4370
4371  // C++ [temp.expl.spec]p6:
4372  //   If a template, a member template or the member of a class template is
4373  //   explicitly specialized then that specialization shall be declared
4374  //   before the first use of that specialization that would cause an implicit
4375  //   instantiation to take place, in every translation unit in which such a
4376  //   use occurs; no diagnostic is required.
4377  FunctionTemplateSpecializationInfo *SpecInfo
4378    = Specialization->getTemplateSpecializationInfo();
4379  assert(SpecInfo && "Function template specialization info missing?");
4380
4381  bool HasNoEffect = false;
4382  if (!isFriend &&
4383      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4384                                             TSK_ExplicitSpecialization,
4385                                             Specialization,
4386                                   SpecInfo->getTemplateSpecializationKind(),
4387                                         SpecInfo->getPointOfInstantiation(),
4388                                             HasNoEffect))
4389    return true;
4390
4391  // Mark the prior declaration as an explicit specialization, so that later
4392  // clients know that this is an explicit specialization.
4393  if (!isFriend) {
4394    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4395    MarkUnusedFileScopedDecl(Specialization);
4396  }
4397
4398  // Turn the given function declaration into a function template
4399  // specialization, with the template arguments from the previous
4400  // specialization.
4401  // Take copies of (semantic and syntactic) template argument lists.
4402  const TemplateArgumentList* TemplArgs = new (Context)
4403    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4404  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4405    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4406  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4407                                        TemplArgs, /*InsertPos=*/0,
4408                                    SpecInfo->getTemplateSpecializationKind(),
4409                                        TemplArgsAsWritten);
4410
4411  // The "previous declaration" for this function template specialization is
4412  // the prior function template specialization.
4413  Previous.clear();
4414  Previous.addDecl(Specialization);
4415  return false;
4416}
4417
4418/// \brief Perform semantic analysis for the given non-template member
4419/// specialization.
4420///
4421/// This routine performs all of the semantic analysis required for an
4422/// explicit member function specialization. On successful completion,
4423/// the function declaration \p FD will become a member function
4424/// specialization.
4425///
4426/// \param Member the member declaration, which will be updated to become a
4427/// specialization.
4428///
4429/// \param Previous the set of declarations, one of which may be specialized
4430/// by this function specialization;  the set will be modified to contain the
4431/// redeclared member.
4432bool
4433Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4434  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4435
4436  // Try to find the member we are instantiating.
4437  NamedDecl *Instantiation = 0;
4438  NamedDecl *InstantiatedFrom = 0;
4439  MemberSpecializationInfo *MSInfo = 0;
4440
4441  if (Previous.empty()) {
4442    // Nowhere to look anyway.
4443  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4444    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4445           I != E; ++I) {
4446      NamedDecl *D = (*I)->getUnderlyingDecl();
4447      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4448        if (Context.hasSameType(Function->getType(), Method->getType())) {
4449          Instantiation = Method;
4450          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4451          MSInfo = Method->getMemberSpecializationInfo();
4452          break;
4453        }
4454      }
4455    }
4456  } else if (isa<VarDecl>(Member)) {
4457    VarDecl *PrevVar;
4458    if (Previous.isSingleResult() &&
4459        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4460      if (PrevVar->isStaticDataMember()) {
4461        Instantiation = PrevVar;
4462        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4463        MSInfo = PrevVar->getMemberSpecializationInfo();
4464      }
4465  } else if (isa<RecordDecl>(Member)) {
4466    CXXRecordDecl *PrevRecord;
4467    if (Previous.isSingleResult() &&
4468        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4469      Instantiation = PrevRecord;
4470      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4471      MSInfo = PrevRecord->getMemberSpecializationInfo();
4472    }
4473  }
4474
4475  if (!Instantiation) {
4476    // There is no previous declaration that matches. Since member
4477    // specializations are always out-of-line, the caller will complain about
4478    // this mismatch later.
4479    return false;
4480  }
4481
4482  // If this is a friend, just bail out here before we start turning
4483  // things into explicit specializations.
4484  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4485    // Preserve instantiation information.
4486    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4487      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4488                                      cast<CXXMethodDecl>(InstantiatedFrom),
4489        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4490    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4491      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4492                                      cast<CXXRecordDecl>(InstantiatedFrom),
4493        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4494    }
4495
4496    Previous.clear();
4497    Previous.addDecl(Instantiation);
4498    return false;
4499  }
4500
4501  // Make sure that this is a specialization of a member.
4502  if (!InstantiatedFrom) {
4503    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4504      << Member;
4505    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4506    return true;
4507  }
4508
4509  // C++ [temp.expl.spec]p6:
4510  //   If a template, a member template or the member of a class template is
4511  //   explicitly specialized then that spe- cialization shall be declared
4512  //   before the first use of that specialization that would cause an implicit
4513  //   instantiation to take place, in every translation unit in which such a
4514  //   use occurs; no diagnostic is required.
4515  assert(MSInfo && "Member specialization info missing?");
4516
4517  bool HasNoEffect = false;
4518  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4519                                             TSK_ExplicitSpecialization,
4520                                             Instantiation,
4521                                     MSInfo->getTemplateSpecializationKind(),
4522                                           MSInfo->getPointOfInstantiation(),
4523                                             HasNoEffect))
4524    return true;
4525
4526  // Check the scope of this explicit specialization.
4527  if (CheckTemplateSpecializationScope(*this,
4528                                       InstantiatedFrom,
4529                                       Instantiation, Member->getLocation(),
4530                                       false))
4531    return true;
4532
4533  // Note that this is an explicit instantiation of a member.
4534  // the original declaration to note that it is an explicit specialization
4535  // (if it was previously an implicit instantiation). This latter step
4536  // makes bookkeeping easier.
4537  if (isa<FunctionDecl>(Member)) {
4538    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4539    if (InstantiationFunction->getTemplateSpecializationKind() ==
4540          TSK_ImplicitInstantiation) {
4541      InstantiationFunction->setTemplateSpecializationKind(
4542                                                  TSK_ExplicitSpecialization);
4543      InstantiationFunction->setLocation(Member->getLocation());
4544    }
4545
4546    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4547                                        cast<CXXMethodDecl>(InstantiatedFrom),
4548                                                  TSK_ExplicitSpecialization);
4549    MarkUnusedFileScopedDecl(InstantiationFunction);
4550  } else if (isa<VarDecl>(Member)) {
4551    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4552    if (InstantiationVar->getTemplateSpecializationKind() ==
4553          TSK_ImplicitInstantiation) {
4554      InstantiationVar->setTemplateSpecializationKind(
4555                                                  TSK_ExplicitSpecialization);
4556      InstantiationVar->setLocation(Member->getLocation());
4557    }
4558
4559    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4560                                                cast<VarDecl>(InstantiatedFrom),
4561                                                TSK_ExplicitSpecialization);
4562    MarkUnusedFileScopedDecl(InstantiationVar);
4563  } else {
4564    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4565    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4566    if (InstantiationClass->getTemplateSpecializationKind() ==
4567          TSK_ImplicitInstantiation) {
4568      InstantiationClass->setTemplateSpecializationKind(
4569                                                   TSK_ExplicitSpecialization);
4570      InstantiationClass->setLocation(Member->getLocation());
4571    }
4572
4573    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4574                                        cast<CXXRecordDecl>(InstantiatedFrom),
4575                                                   TSK_ExplicitSpecialization);
4576  }
4577
4578  // Save the caller the trouble of having to figure out which declaration
4579  // this specialization matches.
4580  Previous.clear();
4581  Previous.addDecl(Instantiation);
4582  return false;
4583}
4584
4585/// \brief Check the scope of an explicit instantiation.
4586///
4587/// \returns true if a serious error occurs, false otherwise.
4588static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4589                                            SourceLocation InstLoc,
4590                                            bool WasQualifiedName) {
4591  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4592  DeclContext *CurContext = S.CurContext->getRedeclContext();
4593
4594  if (CurContext->isRecord()) {
4595    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4596      << D;
4597    return true;
4598  }
4599
4600  // C++0x [temp.explicit]p2:
4601  //   An explicit instantiation shall appear in an enclosing namespace of its
4602  //   template.
4603  //
4604  // This is DR275, which we do not retroactively apply to C++98/03.
4605  if (S.getLangOptions().CPlusPlus0x &&
4606      !CurContext->Encloses(OrigContext)) {
4607    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4608      S.Diag(InstLoc,
4609             S.getLangOptions().CPlusPlus0x?
4610                 diag::err_explicit_instantiation_out_of_scope
4611               : diag::warn_explicit_instantiation_out_of_scope_0x)
4612        << D << NS;
4613    else
4614      S.Diag(InstLoc,
4615             S.getLangOptions().CPlusPlus0x?
4616                 diag::err_explicit_instantiation_must_be_global
4617               : diag::warn_explicit_instantiation_out_of_scope_0x)
4618        << D;
4619    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4620    return false;
4621  }
4622
4623  // C++0x [temp.explicit]p2:
4624  //   If the name declared in the explicit instantiation is an unqualified
4625  //   name, the explicit instantiation shall appear in the namespace where
4626  //   its template is declared or, if that namespace is inline (7.3.1), any
4627  //   namespace from its enclosing namespace set.
4628  if (WasQualifiedName)
4629    return false;
4630
4631  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4632    return false;
4633
4634  S.Diag(InstLoc,
4635         S.getLangOptions().CPlusPlus0x?
4636             diag::err_explicit_instantiation_unqualified_wrong_namespace
4637           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4638    << D << OrigContext;
4639  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4640  return false;
4641}
4642
4643/// \brief Determine whether the given scope specifier has a template-id in it.
4644static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4645  if (!SS.isSet())
4646    return false;
4647
4648  // C++0x [temp.explicit]p2:
4649  //   If the explicit instantiation is for a member function, a member class
4650  //   or a static data member of a class template specialization, the name of
4651  //   the class template specialization in the qualified-id for the member
4652  //   name shall be a simple-template-id.
4653  //
4654  // C++98 has the same restriction, just worded differently.
4655  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4656       NNS; NNS = NNS->getPrefix())
4657    if (Type *T = NNS->getAsType())
4658      if (isa<TemplateSpecializationType>(T))
4659        return true;
4660
4661  return false;
4662}
4663
4664// Explicit instantiation of a class template specialization
4665DeclResult
4666Sema::ActOnExplicitInstantiation(Scope *S,
4667                                 SourceLocation ExternLoc,
4668                                 SourceLocation TemplateLoc,
4669                                 unsigned TagSpec,
4670                                 SourceLocation KWLoc,
4671                                 const CXXScopeSpec &SS,
4672                                 TemplateTy TemplateD,
4673                                 SourceLocation TemplateNameLoc,
4674                                 SourceLocation LAngleLoc,
4675                                 ASTTemplateArgsPtr TemplateArgsIn,
4676                                 SourceLocation RAngleLoc,
4677                                 AttributeList *Attr) {
4678  // Find the class template we're specializing
4679  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4680  ClassTemplateDecl *ClassTemplate
4681    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4682
4683  // Check that the specialization uses the same tag kind as the
4684  // original template.
4685  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4686  assert(Kind != TTK_Enum &&
4687         "Invalid enum tag in class template explicit instantiation!");
4688  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4689                                    Kind, KWLoc,
4690                                    *ClassTemplate->getIdentifier())) {
4691    Diag(KWLoc, diag::err_use_with_wrong_tag)
4692      << ClassTemplate
4693      << FixItHint::CreateReplacement(KWLoc,
4694                            ClassTemplate->getTemplatedDecl()->getKindName());
4695    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4696         diag::note_previous_use);
4697    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4698  }
4699
4700  // C++0x [temp.explicit]p2:
4701  //   There are two forms of explicit instantiation: an explicit instantiation
4702  //   definition and an explicit instantiation declaration. An explicit
4703  //   instantiation declaration begins with the extern keyword. [...]
4704  TemplateSpecializationKind TSK
4705    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4706                           : TSK_ExplicitInstantiationDeclaration;
4707
4708  // Translate the parser's template argument list in our AST format.
4709  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4710  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4711
4712  // Check that the template argument list is well-formed for this
4713  // template.
4714  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4715                                        TemplateArgs.size());
4716  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4717                                TemplateArgs, false, Converted))
4718    return true;
4719
4720  assert((Converted.structuredSize() ==
4721            ClassTemplate->getTemplateParameters()->size()) &&
4722         "Converted template argument list is too short!");
4723
4724  // Find the class template specialization declaration that
4725  // corresponds to these arguments.
4726  void *InsertPos = 0;
4727  ClassTemplateSpecializationDecl *PrevDecl
4728    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4729                                        Converted.flatSize(), InsertPos);
4730
4731  TemplateSpecializationKind PrevDecl_TSK
4732    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4733
4734  // C++0x [temp.explicit]p2:
4735  //   [...] An explicit instantiation shall appear in an enclosing
4736  //   namespace of its template. [...]
4737  //
4738  // This is C++ DR 275.
4739  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4740                                      SS.isSet()))
4741    return true;
4742
4743  ClassTemplateSpecializationDecl *Specialization = 0;
4744
4745  bool ReusedDecl = false;
4746  bool HasNoEffect = false;
4747  if (PrevDecl) {
4748    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4749                                               PrevDecl, PrevDecl_TSK,
4750                                            PrevDecl->getPointOfInstantiation(),
4751                                               HasNoEffect))
4752      return PrevDecl;
4753
4754    // Even though HasNoEffect == true means that this explicit instantiation
4755    // has no effect on semantics, we go on to put its syntax in the AST.
4756
4757    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4758        PrevDecl_TSK == TSK_Undeclared) {
4759      // Since the only prior class template specialization with these
4760      // arguments was referenced but not declared, reuse that
4761      // declaration node as our own, updating the source location
4762      // for the template name to reflect our new declaration.
4763      // (Other source locations will be updated later.)
4764      Specialization = PrevDecl;
4765      Specialization->setLocation(TemplateNameLoc);
4766      PrevDecl = 0;
4767      ReusedDecl = true;
4768    }
4769  }
4770
4771  if (!Specialization) {
4772    // Create a new class template specialization declaration node for
4773    // this explicit specialization.
4774    Specialization
4775      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4776                                             ClassTemplate->getDeclContext(),
4777                                                TemplateNameLoc,
4778                                                ClassTemplate,
4779                                                Converted, PrevDecl);
4780    SetNestedNameSpecifier(Specialization, SS);
4781
4782    if (!HasNoEffect && !PrevDecl) {
4783      // Insert the new specialization.
4784      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4785    }
4786  }
4787
4788  // Build the fully-sugared type for this explicit instantiation as
4789  // the user wrote in the explicit instantiation itself. This means
4790  // that we'll pretty-print the type retrieved from the
4791  // specialization's declaration the way that the user actually wrote
4792  // the explicit instantiation, rather than formatting the name based
4793  // on the "canonical" representation used to store the template
4794  // arguments in the specialization.
4795  TypeSourceInfo *WrittenTy
4796    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4797                                                TemplateArgs,
4798                                  Context.getTypeDeclType(Specialization));
4799  Specialization->setTypeAsWritten(WrittenTy);
4800  TemplateArgsIn.release();
4801
4802  // Set source locations for keywords.
4803  Specialization->setExternLoc(ExternLoc);
4804  Specialization->setTemplateKeywordLoc(TemplateLoc);
4805
4806  // Add the explicit instantiation into its lexical context. However,
4807  // since explicit instantiations are never found by name lookup, we
4808  // just put it into the declaration context directly.
4809  Specialization->setLexicalDeclContext(CurContext);
4810  CurContext->addDecl(Specialization);
4811
4812  // Syntax is now OK, so return if it has no other effect on semantics.
4813  if (HasNoEffect) {
4814    // Set the template specialization kind.
4815    Specialization->setTemplateSpecializationKind(TSK);
4816    return Specialization;
4817  }
4818
4819  // C++ [temp.explicit]p3:
4820  //   A definition of a class template or class member template
4821  //   shall be in scope at the point of the explicit instantiation of
4822  //   the class template or class member template.
4823  //
4824  // This check comes when we actually try to perform the
4825  // instantiation.
4826  ClassTemplateSpecializationDecl *Def
4827    = cast_or_null<ClassTemplateSpecializationDecl>(
4828                                              Specialization->getDefinition());
4829  if (!Def)
4830    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4831  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4832    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4833    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4834  }
4835
4836  // Instantiate the members of this class template specialization.
4837  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4838                                       Specialization->getDefinition());
4839  if (Def) {
4840    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4841
4842    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4843    // TSK_ExplicitInstantiationDefinition
4844    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4845        TSK == TSK_ExplicitInstantiationDefinition)
4846      Def->setTemplateSpecializationKind(TSK);
4847
4848    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4849  }
4850
4851  // Set the template specialization kind.
4852  Specialization->setTemplateSpecializationKind(TSK);
4853  return Specialization;
4854}
4855
4856// Explicit instantiation of a member class of a class template.
4857DeclResult
4858Sema::ActOnExplicitInstantiation(Scope *S,
4859                                 SourceLocation ExternLoc,
4860                                 SourceLocation TemplateLoc,
4861                                 unsigned TagSpec,
4862                                 SourceLocation KWLoc,
4863                                 CXXScopeSpec &SS,
4864                                 IdentifierInfo *Name,
4865                                 SourceLocation NameLoc,
4866                                 AttributeList *Attr) {
4867
4868  bool Owned = false;
4869  bool IsDependent = false;
4870  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
4871                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
4872                        MultiTemplateParamsArg(*this, 0, 0),
4873                        Owned, IsDependent, false,
4874                        TypeResult());
4875  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4876
4877  if (!TagD)
4878    return true;
4879
4880  TagDecl *Tag = cast<TagDecl>(TagD);
4881  if (Tag->isEnum()) {
4882    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4883      << Context.getTypeDeclType(Tag);
4884    return true;
4885  }
4886
4887  if (Tag->isInvalidDecl())
4888    return true;
4889
4890  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4891  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4892  if (!Pattern) {
4893    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4894      << Context.getTypeDeclType(Record);
4895    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4896    return true;
4897  }
4898
4899  // C++0x [temp.explicit]p2:
4900  //   If the explicit instantiation is for a class or member class, the
4901  //   elaborated-type-specifier in the declaration shall include a
4902  //   simple-template-id.
4903  //
4904  // C++98 has the same restriction, just worded differently.
4905  if (!ScopeSpecifierHasTemplateId(SS))
4906    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4907      << Record << SS.getRange();
4908
4909  // C++0x [temp.explicit]p2:
4910  //   There are two forms of explicit instantiation: an explicit instantiation
4911  //   definition and an explicit instantiation declaration. An explicit
4912  //   instantiation declaration begins with the extern keyword. [...]
4913  TemplateSpecializationKind TSK
4914    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4915                           : TSK_ExplicitInstantiationDeclaration;
4916
4917  // C++0x [temp.explicit]p2:
4918  //   [...] An explicit instantiation shall appear in an enclosing
4919  //   namespace of its template. [...]
4920  //
4921  // This is C++ DR 275.
4922  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4923
4924  // Verify that it is okay to explicitly instantiate here.
4925  CXXRecordDecl *PrevDecl
4926    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4927  if (!PrevDecl && Record->getDefinition())
4928    PrevDecl = Record;
4929  if (PrevDecl) {
4930    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4931    bool HasNoEffect = false;
4932    assert(MSInfo && "No member specialization information?");
4933    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4934                                               PrevDecl,
4935                                        MSInfo->getTemplateSpecializationKind(),
4936                                             MSInfo->getPointOfInstantiation(),
4937                                               HasNoEffect))
4938      return true;
4939    if (HasNoEffect)
4940      return TagD;
4941  }
4942
4943  CXXRecordDecl *RecordDef
4944    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4945  if (!RecordDef) {
4946    // C++ [temp.explicit]p3:
4947    //   A definition of a member class of a class template shall be in scope
4948    //   at the point of an explicit instantiation of the member class.
4949    CXXRecordDecl *Def
4950      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4951    if (!Def) {
4952      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4953        << 0 << Record->getDeclName() << Record->getDeclContext();
4954      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4955        << Pattern;
4956      return true;
4957    } else {
4958      if (InstantiateClass(NameLoc, Record, Def,
4959                           getTemplateInstantiationArgs(Record),
4960                           TSK))
4961        return true;
4962
4963      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4964      if (!RecordDef)
4965        return true;
4966    }
4967  }
4968
4969  // Instantiate all of the members of the class.
4970  InstantiateClassMembers(NameLoc, RecordDef,
4971                          getTemplateInstantiationArgs(Record), TSK);
4972
4973  if (TSK == TSK_ExplicitInstantiationDefinition)
4974    MarkVTableUsed(NameLoc, RecordDef, true);
4975
4976  // FIXME: We don't have any representation for explicit instantiations of
4977  // member classes. Such a representation is not needed for compilation, but it
4978  // should be available for clients that want to see all of the declarations in
4979  // the source code.
4980  return TagD;
4981}
4982
4983DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4984                                            SourceLocation ExternLoc,
4985                                            SourceLocation TemplateLoc,
4986                                            Declarator &D) {
4987  // Explicit instantiations always require a name.
4988  // TODO: check if/when DNInfo should replace Name.
4989  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4990  DeclarationName Name = NameInfo.getName();
4991  if (!Name) {
4992    if (!D.isInvalidType())
4993      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4994           diag::err_explicit_instantiation_requires_name)
4995        << D.getDeclSpec().getSourceRange()
4996        << D.getSourceRange();
4997
4998    return true;
4999  }
5000
5001  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5002  // we find one that is.
5003  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5004         (S->getFlags() & Scope::TemplateParamScope) != 0)
5005    S = S->getParent();
5006
5007  // Determine the type of the declaration.
5008  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5009  QualType R = T->getType();
5010  if (R.isNull())
5011    return true;
5012
5013  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5014    // Cannot explicitly instantiate a typedef.
5015    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5016      << Name;
5017    return true;
5018  }
5019
5020  // C++0x [temp.explicit]p1:
5021  //   [...] An explicit instantiation of a function template shall not use the
5022  //   inline or constexpr specifiers.
5023  // Presumably, this also applies to member functions of class templates as
5024  // well.
5025  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5026    Diag(D.getDeclSpec().getInlineSpecLoc(),
5027         diag::err_explicit_instantiation_inline)
5028      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5029
5030  // FIXME: check for constexpr specifier.
5031
5032  // C++0x [temp.explicit]p2:
5033  //   There are two forms of explicit instantiation: an explicit instantiation
5034  //   definition and an explicit instantiation declaration. An explicit
5035  //   instantiation declaration begins with the extern keyword. [...]
5036  TemplateSpecializationKind TSK
5037    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5038                           : TSK_ExplicitInstantiationDeclaration;
5039
5040  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5041  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5042
5043  if (!R->isFunctionType()) {
5044    // C++ [temp.explicit]p1:
5045    //   A [...] static data member of a class template can be explicitly
5046    //   instantiated from the member definition associated with its class
5047    //   template.
5048    if (Previous.isAmbiguous())
5049      return true;
5050
5051    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5052    if (!Prev || !Prev->isStaticDataMember()) {
5053      // We expect to see a data data member here.
5054      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5055        << Name;
5056      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5057           P != PEnd; ++P)
5058        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5059      return true;
5060    }
5061
5062    if (!Prev->getInstantiatedFromStaticDataMember()) {
5063      // FIXME: Check for explicit specialization?
5064      Diag(D.getIdentifierLoc(),
5065           diag::err_explicit_instantiation_data_member_not_instantiated)
5066        << Prev;
5067      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5068      // FIXME: Can we provide a note showing where this was declared?
5069      return true;
5070    }
5071
5072    // C++0x [temp.explicit]p2:
5073    //   If the explicit instantiation is for a member function, a member class
5074    //   or a static data member of a class template specialization, the name of
5075    //   the class template specialization in the qualified-id for the member
5076    //   name shall be a simple-template-id.
5077    //
5078    // C++98 has the same restriction, just worded differently.
5079    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5080      Diag(D.getIdentifierLoc(),
5081           diag::ext_explicit_instantiation_without_qualified_id)
5082        << Prev << D.getCXXScopeSpec().getRange();
5083
5084    // Check the scope of this explicit instantiation.
5085    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5086
5087    // Verify that it is okay to explicitly instantiate here.
5088    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5089    assert(MSInfo && "Missing static data member specialization info?");
5090    bool HasNoEffect = false;
5091    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5092                                        MSInfo->getTemplateSpecializationKind(),
5093                                              MSInfo->getPointOfInstantiation(),
5094                                               HasNoEffect))
5095      return true;
5096    if (HasNoEffect)
5097      return (Decl*) 0;
5098
5099    // Instantiate static data member.
5100    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5101    if (TSK == TSK_ExplicitInstantiationDefinition)
5102      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5103
5104    // FIXME: Create an ExplicitInstantiation node?
5105    return (Decl*) 0;
5106  }
5107
5108  // If the declarator is a template-id, translate the parser's template
5109  // argument list into our AST format.
5110  bool HasExplicitTemplateArgs = false;
5111  TemplateArgumentListInfo TemplateArgs;
5112  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5113    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5114    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5115    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5116    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5117                                       TemplateId->getTemplateArgs(),
5118                                       TemplateId->NumArgs);
5119    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5120    HasExplicitTemplateArgs = true;
5121    TemplateArgsPtr.release();
5122  }
5123
5124  // C++ [temp.explicit]p1:
5125  //   A [...] function [...] can be explicitly instantiated from its template.
5126  //   A member function [...] of a class template can be explicitly
5127  //  instantiated from the member definition associated with its class
5128  //  template.
5129  UnresolvedSet<8> Matches;
5130  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5131       P != PEnd; ++P) {
5132    NamedDecl *Prev = *P;
5133    if (!HasExplicitTemplateArgs) {
5134      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5135        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5136          Matches.clear();
5137
5138          Matches.addDecl(Method, P.getAccess());
5139          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5140            break;
5141        }
5142      }
5143    }
5144
5145    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5146    if (!FunTmpl)
5147      continue;
5148
5149    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5150    FunctionDecl *Specialization = 0;
5151    if (TemplateDeductionResult TDK
5152          = DeduceTemplateArguments(FunTmpl,
5153                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5154                                    R, Specialization, Info)) {
5155      // FIXME: Keep track of almost-matches?
5156      (void)TDK;
5157      continue;
5158    }
5159
5160    Matches.addDecl(Specialization, P.getAccess());
5161  }
5162
5163  // Find the most specialized function template specialization.
5164  UnresolvedSetIterator Result
5165    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5166                         D.getIdentifierLoc(),
5167                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5168                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5169                         PDiag(diag::note_explicit_instantiation_candidate));
5170
5171  if (Result == Matches.end())
5172    return true;
5173
5174  // Ignore access control bits, we don't need them for redeclaration checking.
5175  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5176
5177  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5178    Diag(D.getIdentifierLoc(),
5179         diag::err_explicit_instantiation_member_function_not_instantiated)
5180      << Specialization
5181      << (Specialization->getTemplateSpecializationKind() ==
5182          TSK_ExplicitSpecialization);
5183    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5184    return true;
5185  }
5186
5187  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5188  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5189    PrevDecl = Specialization;
5190
5191  if (PrevDecl) {
5192    bool HasNoEffect = false;
5193    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5194                                               PrevDecl,
5195                                     PrevDecl->getTemplateSpecializationKind(),
5196                                          PrevDecl->getPointOfInstantiation(),
5197                                               HasNoEffect))
5198      return true;
5199
5200    // FIXME: We may still want to build some representation of this
5201    // explicit specialization.
5202    if (HasNoEffect)
5203      return (Decl*) 0;
5204  }
5205
5206  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5207
5208  if (TSK == TSK_ExplicitInstantiationDefinition)
5209    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5210
5211  // C++0x [temp.explicit]p2:
5212  //   If the explicit instantiation is for a member function, a member class
5213  //   or a static data member of a class template specialization, the name of
5214  //   the class template specialization in the qualified-id for the member
5215  //   name shall be a simple-template-id.
5216  //
5217  // C++98 has the same restriction, just worded differently.
5218  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5219  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5220      D.getCXXScopeSpec().isSet() &&
5221      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5222    Diag(D.getIdentifierLoc(),
5223         diag::ext_explicit_instantiation_without_qualified_id)
5224    << Specialization << D.getCXXScopeSpec().getRange();
5225
5226  CheckExplicitInstantiationScope(*this,
5227                   FunTmpl? (NamedDecl *)FunTmpl
5228                          : Specialization->getInstantiatedFromMemberFunction(),
5229                                  D.getIdentifierLoc(),
5230                                  D.getCXXScopeSpec().isSet());
5231
5232  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5233  return (Decl*) 0;
5234}
5235
5236TypeResult
5237Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5238                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5239                        SourceLocation TagLoc, SourceLocation NameLoc) {
5240  // This has to hold, because SS is expected to be defined.
5241  assert(Name && "Expected a name in a dependent tag");
5242
5243  NestedNameSpecifier *NNS
5244    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5245  if (!NNS)
5246    return true;
5247
5248  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5249
5250  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5251    Diag(NameLoc, diag::err_dependent_tag_decl)
5252      << (TUK == TUK_Definition) << Kind << SS.getRange();
5253    return true;
5254  }
5255
5256  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5257  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5258}
5259
5260TypeResult
5261Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5262                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5263                        SourceLocation IdLoc) {
5264  NestedNameSpecifier *NNS
5265    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5266  if (!NNS)
5267    return true;
5268
5269  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5270      !getLangOptions().CPlusPlus0x)
5271    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5272      << FixItHint::CreateRemoval(TypenameLoc);
5273
5274  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5275                                 TypenameLoc, SS.getRange(), IdLoc);
5276  if (T.isNull())
5277    return true;
5278
5279  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5280  if (isa<DependentNameType>(T)) {
5281    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5282    TL.setKeywordLoc(TypenameLoc);
5283    TL.setQualifierRange(SS.getRange());
5284    TL.setNameLoc(IdLoc);
5285  } else {
5286    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5287    TL.setKeywordLoc(TypenameLoc);
5288    TL.setQualifierRange(SS.getRange());
5289    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5290  }
5291
5292  return CreateParsedType(T, TSI);
5293}
5294
5295TypeResult
5296Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5297                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5298                        ParsedType Ty) {
5299  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5300      !getLangOptions().CPlusPlus0x)
5301    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5302      << FixItHint::CreateRemoval(TypenameLoc);
5303
5304  TypeSourceInfo *InnerTSI = 0;
5305  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5306
5307  assert(isa<TemplateSpecializationType>(T) &&
5308         "Expected a template specialization type");
5309
5310  if (computeDeclContext(SS, false)) {
5311    // If we can compute a declaration context, then the "typename"
5312    // keyword was superfluous. Just build an ElaboratedType to keep
5313    // track of the nested-name-specifier.
5314
5315    // Push the inner type, preserving its source locations if possible.
5316    TypeLocBuilder Builder;
5317    if (InnerTSI)
5318      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5319    else
5320      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5321
5322    /* Note: NNS already embedded in template specialization type T. */
5323    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5324    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5325    TL.setKeywordLoc(TypenameLoc);
5326    TL.setQualifierRange(SS.getRange());
5327
5328    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5329    return CreateParsedType(T, TSI);
5330  }
5331
5332  // TODO: it's really silly that we make a template specialization
5333  // type earlier only to drop it again here.
5334  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5335  DependentTemplateName *DTN =
5336    TST->getTemplateName().getAsDependentTemplateName();
5337  assert(DTN && "dependent template has non-dependent name?");
5338  assert(DTN->getQualifier()
5339         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5340  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5341                                                     DTN->getQualifier(),
5342                                                     DTN->getIdentifier(),
5343                                                     TST->getNumArgs(),
5344                                                     TST->getArgs());
5345  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5346  DependentTemplateSpecializationTypeLoc TL =
5347    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5348  if (InnerTSI) {
5349    TemplateSpecializationTypeLoc TSTL =
5350      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5351    TL.setLAngleLoc(TSTL.getLAngleLoc());
5352    TL.setRAngleLoc(TSTL.getRAngleLoc());
5353    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5354      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5355  } else {
5356    TL.initializeLocal(SourceLocation());
5357  }
5358  TL.setKeywordLoc(TypenameLoc);
5359  TL.setQualifierRange(SS.getRange());
5360  return CreateParsedType(T, TSI);
5361}
5362
5363/// \brief Build the type that describes a C++ typename specifier,
5364/// e.g., "typename T::type".
5365QualType
5366Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5367                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5368                        SourceLocation KeywordLoc, SourceRange NNSRange,
5369                        SourceLocation IILoc) {
5370  CXXScopeSpec SS;
5371  SS.setScopeRep(NNS);
5372  SS.setRange(NNSRange);
5373
5374  DeclContext *Ctx = computeDeclContext(SS);
5375  if (!Ctx) {
5376    // If the nested-name-specifier is dependent and couldn't be
5377    // resolved to a type, build a typename type.
5378    assert(NNS->isDependent());
5379    return Context.getDependentNameType(Keyword, NNS, &II);
5380  }
5381
5382  // If the nested-name-specifier refers to the current instantiation,
5383  // the "typename" keyword itself is superfluous. In C++03, the
5384  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5385  // allows such extraneous "typename" keywords, and we retroactively
5386  // apply this DR to C++03 code with only a warning. In any case we continue.
5387
5388  if (RequireCompleteDeclContext(SS, Ctx))
5389    return QualType();
5390
5391  DeclarationName Name(&II);
5392  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5393  LookupQualifiedName(Result, Ctx);
5394  unsigned DiagID = 0;
5395  Decl *Referenced = 0;
5396  switch (Result.getResultKind()) {
5397  case LookupResult::NotFound:
5398    DiagID = diag::err_typename_nested_not_found;
5399    break;
5400
5401  case LookupResult::NotFoundInCurrentInstantiation:
5402    // Okay, it's a member of an unknown instantiation.
5403    return Context.getDependentNameType(Keyword, NNS, &II);
5404
5405  case LookupResult::Found:
5406    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5407      // We found a type. Build an ElaboratedType, since the
5408      // typename-specifier was just sugar.
5409      return Context.getElaboratedType(ETK_Typename, NNS,
5410                                       Context.getTypeDeclType(Type));
5411    }
5412
5413    DiagID = diag::err_typename_nested_not_type;
5414    Referenced = Result.getFoundDecl();
5415    break;
5416
5417  case LookupResult::FoundUnresolvedValue:
5418    llvm_unreachable("unresolved using decl in non-dependent context");
5419    return QualType();
5420
5421  case LookupResult::FoundOverloaded:
5422    DiagID = diag::err_typename_nested_not_type;
5423    Referenced = *Result.begin();
5424    break;
5425
5426  case LookupResult::Ambiguous:
5427    return QualType();
5428  }
5429
5430  // If we get here, it's because name lookup did not find a
5431  // type. Emit an appropriate diagnostic and return an error.
5432  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5433                        IILoc);
5434  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5435  if (Referenced)
5436    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5437      << Name;
5438  return QualType();
5439}
5440
5441namespace {
5442  // See Sema::RebuildTypeInCurrentInstantiation
5443  class CurrentInstantiationRebuilder
5444    : public TreeTransform<CurrentInstantiationRebuilder> {
5445    SourceLocation Loc;
5446    DeclarationName Entity;
5447
5448  public:
5449    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5450
5451    CurrentInstantiationRebuilder(Sema &SemaRef,
5452                                  SourceLocation Loc,
5453                                  DeclarationName Entity)
5454    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5455      Loc(Loc), Entity(Entity) { }
5456
5457    /// \brief Determine whether the given type \p T has already been
5458    /// transformed.
5459    ///
5460    /// For the purposes of type reconstruction, a type has already been
5461    /// transformed if it is NULL or if it is not dependent.
5462    bool AlreadyTransformed(QualType T) {
5463      return T.isNull() || !T->isDependentType();
5464    }
5465
5466    /// \brief Returns the location of the entity whose type is being
5467    /// rebuilt.
5468    SourceLocation getBaseLocation() { return Loc; }
5469
5470    /// \brief Returns the name of the entity whose type is being rebuilt.
5471    DeclarationName getBaseEntity() { return Entity; }
5472
5473    /// \brief Sets the "base" location and entity when that
5474    /// information is known based on another transformation.
5475    void setBase(SourceLocation Loc, DeclarationName Entity) {
5476      this->Loc = Loc;
5477      this->Entity = Entity;
5478    }
5479  };
5480}
5481
5482/// \brief Rebuilds a type within the context of the current instantiation.
5483///
5484/// The type \p T is part of the type of an out-of-line member definition of
5485/// a class template (or class template partial specialization) that was parsed
5486/// and constructed before we entered the scope of the class template (or
5487/// partial specialization thereof). This routine will rebuild that type now
5488/// that we have entered the declarator's scope, which may produce different
5489/// canonical types, e.g.,
5490///
5491/// \code
5492/// template<typename T>
5493/// struct X {
5494///   typedef T* pointer;
5495///   pointer data();
5496/// };
5497///
5498/// template<typename T>
5499/// typename X<T>::pointer X<T>::data() { ... }
5500/// \endcode
5501///
5502/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5503/// since we do not know that we can look into X<T> when we parsed the type.
5504/// This function will rebuild the type, performing the lookup of "pointer"
5505/// in X<T> and returning an ElaboratedType whose canonical type is the same
5506/// as the canonical type of T*, allowing the return types of the out-of-line
5507/// definition and the declaration to match.
5508TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5509                                                        SourceLocation Loc,
5510                                                        DeclarationName Name) {
5511  if (!T || !T->getType()->isDependentType())
5512    return T;
5513
5514  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5515  return Rebuilder.TransformType(T);
5516}
5517
5518ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5519  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5520                                          DeclarationName());
5521  return Rebuilder.TransformExpr(E);
5522}
5523
5524bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5525  if (SS.isInvalid()) return true;
5526
5527  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5528  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5529                                          DeclarationName());
5530  NestedNameSpecifier *Rebuilt =
5531    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5532  if (!Rebuilt) return true;
5533
5534  SS.setScopeRep(Rebuilt);
5535  return false;
5536}
5537
5538/// \brief Produces a formatted string that describes the binding of
5539/// template parameters to template arguments.
5540std::string
5541Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5542                                      const TemplateArgumentList &Args) {
5543  // FIXME: For variadic templates, we'll need to get the structured list.
5544  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5545                                         Args.flat_size());
5546}
5547
5548std::string
5549Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5550                                      const TemplateArgument *Args,
5551                                      unsigned NumArgs) {
5552  std::string Result;
5553
5554  if (!Params || Params->size() == 0 || NumArgs == 0)
5555    return Result;
5556
5557  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5558    if (I >= NumArgs)
5559      break;
5560
5561    if (I == 0)
5562      Result += "[with ";
5563    else
5564      Result += ", ";
5565
5566    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5567      Result += Id->getName();
5568    } else {
5569      Result += '$';
5570      Result += llvm::utostr(I);
5571    }
5572
5573    Result += " = ";
5574
5575    switch (Args[I].getKind()) {
5576      case TemplateArgument::Null:
5577        Result += "<no value>";
5578        break;
5579
5580      case TemplateArgument::Type: {
5581        std::string TypeStr;
5582        Args[I].getAsType().getAsStringInternal(TypeStr,
5583                                                Context.PrintingPolicy);
5584        Result += TypeStr;
5585        break;
5586      }
5587
5588      case TemplateArgument::Declaration: {
5589        bool Unnamed = true;
5590        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5591          if (ND->getDeclName()) {
5592            Unnamed = false;
5593            Result += ND->getNameAsString();
5594          }
5595        }
5596
5597        if (Unnamed) {
5598          Result += "<anonymous>";
5599        }
5600        break;
5601      }
5602
5603      case TemplateArgument::Template: {
5604        std::string Str;
5605        llvm::raw_string_ostream OS(Str);
5606        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5607        Result += OS.str();
5608        break;
5609      }
5610
5611      case TemplateArgument::Integral: {
5612        Result += Args[I].getAsIntegral()->toString(10);
5613        break;
5614      }
5615
5616      case TemplateArgument::Expression: {
5617        // FIXME: This is non-optimal, since we're regurgitating the
5618        // expression we were given.
5619        std::string Str;
5620        {
5621          llvm::raw_string_ostream OS(Str);
5622          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5623                                           Context.PrintingPolicy);
5624        }
5625        Result += Str;
5626        break;
5627      }
5628
5629      case TemplateArgument::Pack:
5630        // FIXME: Format template argument packs
5631        Result += "<template argument pack>";
5632        break;
5633    }
5634  }
5635
5636  Result += ']';
5637  return Result;
5638}
5639