SemaTemplate.cpp revision 1af83c444e5a2f6f50a6e1c15e6ebc618ae18a5f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337        else
338          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339            << Name << CorrectedQuotedStr
340            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342          Diag(Template->getLocation(), diag::note_previous_decl)
343            << CorrectedQuotedStr;
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
358    // C++ [basic.lookup.classref]p1:
359    //   [...] If the lookup in the class of the object expression finds a
360    //   template, the name is also looked up in the context of the entire
361    //   postfix-expression and [...]
362    //
363    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
364                            LookupOrdinaryName);
365    LookupName(FoundOuter, S);
366    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
367
368    if (FoundOuter.empty()) {
369      //   - if the name is not found, the name found in the class of the
370      //     object expression is used, otherwise
371    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
372               FoundOuter.isAmbiguous()) {
373      //   - if the name is found in the context of the entire
374      //     postfix-expression and does not name a class template, the name
375      //     found in the class of the object expression is used, otherwise
376      FoundOuter.clear();
377    } else if (!Found.isSuppressingDiagnostics()) {
378      //   - if the name found is a class template, it must refer to the same
379      //     entity as the one found in the class of the object expression,
380      //     otherwise the program is ill-formed.
381      if (!Found.isSingleResult() ||
382          Found.getFoundDecl()->getCanonicalDecl()
383            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
384        Diag(Found.getNameLoc(),
385             diag::ext_nested_name_member_ref_lookup_ambiguous)
386          << Found.getLookupName()
387          << ObjectType;
388        Diag(Found.getRepresentativeDecl()->getLocation(),
389             diag::note_ambig_member_ref_object_type)
390          << ObjectType;
391        Diag(FoundOuter.getFoundDecl()->getLocation(),
392             diag::note_ambig_member_ref_scope);
393
394        // Recover by taking the template that we found in the object
395        // expression's type.
396      }
397    }
398  }
399}
400
401/// ActOnDependentIdExpression - Handle a dependent id-expression that
402/// was just parsed.  This is only possible with an explicit scope
403/// specifier naming a dependent type.
404ExprResult
405Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
406                                 SourceLocation TemplateKWLoc,
407                                 const DeclarationNameInfo &NameInfo,
408                                 bool isAddressOfOperand,
409                           const TemplateArgumentListInfo *TemplateArgs) {
410  DeclContext *DC = getFunctionLevelDeclContext();
411
412  if (!isAddressOfOperand &&
413      isa<CXXMethodDecl>(DC) &&
414      cast<CXXMethodDecl>(DC)->isInstance()) {
415    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
416
417    // Since the 'this' expression is synthesized, we don't need to
418    // perform the double-lookup check.
419    NamedDecl *FirstQualifierInScope = 0;
420
421    return Owned(CXXDependentScopeMemberExpr::Create(Context,
422                                                     /*This*/ 0, ThisType,
423                                                     /*IsArrow*/ true,
424                                                     /*Op*/ SourceLocation(),
425                                               SS.getWithLocInContext(Context),
426                                                     TemplateKWLoc,
427                                                     FirstQualifierInScope,
428                                                     NameInfo,
429                                                     TemplateArgs));
430  }
431
432  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
433}
434
435ExprResult
436Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
437                                SourceLocation TemplateKWLoc,
438                                const DeclarationNameInfo &NameInfo,
439                                const TemplateArgumentListInfo *TemplateArgs) {
440  return Owned(DependentScopeDeclRefExpr::Create(Context,
441                                               SS.getWithLocInContext(Context),
442                                                 TemplateKWLoc,
443                                                 NameInfo,
444                                                 TemplateArgs));
445}
446
447/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
448/// that the template parameter 'PrevDecl' is being shadowed by a new
449/// declaration at location Loc. Returns true to indicate that this is
450/// an error, and false otherwise.
451void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
452  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
453
454  // Microsoft Visual C++ permits template parameters to be shadowed.
455  if (getLangOpts().MicrosoftExt)
456    return;
457
458  // C++ [temp.local]p4:
459  //   A template-parameter shall not be redeclared within its
460  //   scope (including nested scopes).
461  Diag(Loc, diag::err_template_param_shadow)
462    << cast<NamedDecl>(PrevDecl)->getDeclName();
463  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
464  return;
465}
466
467/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
468/// the parameter D to reference the templated declaration and return a pointer
469/// to the template declaration. Otherwise, do nothing to D and return null.
470TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
471  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
472    D = Temp->getTemplatedDecl();
473    return Temp;
474  }
475  return 0;
476}
477
478ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
479                                             SourceLocation EllipsisLoc) const {
480  assert(Kind == Template &&
481         "Only template template arguments can be pack expansions here");
482  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
483         "Template template argument pack expansion without packs");
484  ParsedTemplateArgument Result(*this);
485  Result.EllipsisLoc = EllipsisLoc;
486  return Result;
487}
488
489static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
490                                            const ParsedTemplateArgument &Arg) {
491
492  switch (Arg.getKind()) {
493  case ParsedTemplateArgument::Type: {
494    TypeSourceInfo *DI;
495    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
496    if (!DI)
497      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
498    return TemplateArgumentLoc(TemplateArgument(T), DI);
499  }
500
501  case ParsedTemplateArgument::NonType: {
502    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
503    return TemplateArgumentLoc(TemplateArgument(E), E);
504  }
505
506  case ParsedTemplateArgument::Template: {
507    TemplateName Template = Arg.getAsTemplate().get();
508    TemplateArgument TArg;
509    if (Arg.getEllipsisLoc().isValid())
510      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
511    else
512      TArg = Template;
513    return TemplateArgumentLoc(TArg,
514                               Arg.getScopeSpec().getWithLocInContext(
515                                                              SemaRef.Context),
516                               Arg.getLocation(),
517                               Arg.getEllipsisLoc());
518  }
519  }
520
521  llvm_unreachable("Unhandled parsed template argument");
522}
523
524/// \brief Translates template arguments as provided by the parser
525/// into template arguments used by semantic analysis.
526void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
527                                      TemplateArgumentListInfo &TemplateArgs) {
528 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
529   TemplateArgs.addArgument(translateTemplateArgument(*this,
530                                                      TemplateArgsIn[I]));
531}
532
533/// ActOnTypeParameter - Called when a C++ template type parameter
534/// (e.g., "typename T") has been parsed. Typename specifies whether
535/// the keyword "typename" was used to declare the type parameter
536/// (otherwise, "class" was used), and KeyLoc is the location of the
537/// "class" or "typename" keyword. ParamName is the name of the
538/// parameter (NULL indicates an unnamed template parameter) and
539/// ParamNameLoc is the location of the parameter name (if any).
540/// If the type parameter has a default argument, it will be added
541/// later via ActOnTypeParameterDefault.
542Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
543                               SourceLocation EllipsisLoc,
544                               SourceLocation KeyLoc,
545                               IdentifierInfo *ParamName,
546                               SourceLocation ParamNameLoc,
547                               unsigned Depth, unsigned Position,
548                               SourceLocation EqualLoc,
549                               ParsedType DefaultArg) {
550  assert(S->isTemplateParamScope() &&
551         "Template type parameter not in template parameter scope!");
552  bool Invalid = false;
553
554  if (ParamName) {
555    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
556                                           LookupOrdinaryName,
557                                           ForRedeclaration);
558    if (PrevDecl && PrevDecl->isTemplateParameter()) {
559      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
560      PrevDecl = 0;
561    }
562  }
563
564  SourceLocation Loc = ParamNameLoc;
565  if (!ParamName)
566    Loc = KeyLoc;
567
568  TemplateTypeParmDecl *Param
569    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
570                                   KeyLoc, Loc, Depth, Position, ParamName,
571                                   Typename, Ellipsis);
572  Param->setAccess(AS_public);
573  if (Invalid)
574    Param->setInvalidDecl();
575
576  if (ParamName) {
577    // Add the template parameter into the current scope.
578    S->AddDecl(Param);
579    IdResolver.AddDecl(Param);
580  }
581
582  // C++0x [temp.param]p9:
583  //   A default template-argument may be specified for any kind of
584  //   template-parameter that is not a template parameter pack.
585  if (DefaultArg && Ellipsis) {
586    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
587    DefaultArg = ParsedType();
588  }
589
590  // Handle the default argument, if provided.
591  if (DefaultArg) {
592    TypeSourceInfo *DefaultTInfo;
593    GetTypeFromParser(DefaultArg, &DefaultTInfo);
594
595    assert(DefaultTInfo && "expected source information for type");
596
597    // Check for unexpanded parameter packs.
598    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
599                                        UPPC_DefaultArgument))
600      return Param;
601
602    // Check the template argument itself.
603    if (CheckTemplateArgument(Param, DefaultTInfo)) {
604      Param->setInvalidDecl();
605      return Param;
606    }
607
608    Param->setDefaultArgument(DefaultTInfo, false);
609  }
610
611  return Param;
612}
613
614/// \brief Check that the type of a non-type template parameter is
615/// well-formed.
616///
617/// \returns the (possibly-promoted) parameter type if valid;
618/// otherwise, produces a diagnostic and returns a NULL type.
619QualType
620Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
621  // We don't allow variably-modified types as the type of non-type template
622  // parameters.
623  if (T->isVariablyModifiedType()) {
624    Diag(Loc, diag::err_variably_modified_nontype_template_param)
625      << T;
626    return QualType();
627  }
628
629  // C++ [temp.param]p4:
630  //
631  // A non-type template-parameter shall have one of the following
632  // (optionally cv-qualified) types:
633  //
634  //       -- integral or enumeration type,
635  if (T->isIntegralOrEnumerationType() ||
636      //   -- pointer to object or pointer to function,
637      T->isPointerType() ||
638      //   -- reference to object or reference to function,
639      T->isReferenceType() ||
640      //   -- pointer to member,
641      T->isMemberPointerType() ||
642      //   -- std::nullptr_t.
643      T->isNullPtrType() ||
644      // If T is a dependent type, we can't do the check now, so we
645      // assume that it is well-formed.
646      T->isDependentType()) {
647    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
648    // are ignored when determining its type.
649    return T.getUnqualifiedType();
650  }
651
652  // C++ [temp.param]p8:
653  //
654  //   A non-type template-parameter of type "array of T" or
655  //   "function returning T" is adjusted to be of type "pointer to
656  //   T" or "pointer to function returning T", respectively.
657  else if (T->isArrayType())
658    // FIXME: Keep the type prior to promotion?
659    return Context.getArrayDecayedType(T);
660  else if (T->isFunctionType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getPointerType(T);
663
664  Diag(Loc, diag::err_template_nontype_parm_bad_type)
665    << T;
666
667  return QualType();
668}
669
670Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
671                                          unsigned Depth,
672                                          unsigned Position,
673                                          SourceLocation EqualLoc,
674                                          Expr *Default) {
675  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
676  QualType T = TInfo->getType();
677
678  assert(S->isTemplateParamScope() &&
679         "Non-type template parameter not in template parameter scope!");
680  bool Invalid = false;
681
682  IdentifierInfo *ParamName = D.getIdentifier();
683  if (ParamName) {
684    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
685                                           LookupOrdinaryName,
686                                           ForRedeclaration);
687    if (PrevDecl && PrevDecl->isTemplateParameter()) {
688      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
689      PrevDecl = 0;
690    }
691  }
692
693  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694  if (T.isNull()) {
695    T = Context.IntTy; // Recover with an 'int' type.
696    Invalid = true;
697  }
698
699  bool IsParameterPack = D.hasEllipsis();
700  NonTypeTemplateParmDecl *Param
701    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
702                                      D.getLocStart(),
703                                      D.getIdentifierLoc(),
704                                      Depth, Position, ParamName, T,
705                                      IsParameterPack, TInfo);
706  Param->setAccess(AS_public);
707
708  if (Invalid)
709    Param->setInvalidDecl();
710
711  if (D.getIdentifier()) {
712    // Add the template parameter into the current scope.
713    S->AddDecl(Param);
714    IdResolver.AddDecl(Param);
715  }
716
717  // C++0x [temp.param]p9:
718  //   A default template-argument may be specified for any kind of
719  //   template-parameter that is not a template parameter pack.
720  if (Default && IsParameterPack) {
721    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
722    Default = 0;
723  }
724
725  // Check the well-formedness of the default template argument, if provided.
726  if (Default) {
727    // Check for unexpanded parameter packs.
728    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
729      return Param;
730
731    TemplateArgument Converted;
732    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
733    if (DefaultRes.isInvalid()) {
734      Param->setInvalidDecl();
735      return Param;
736    }
737    Default = DefaultRes.take();
738
739    Param->setDefaultArgument(Default, false);
740  }
741
742  return Param;
743}
744
745/// ActOnTemplateTemplateParameter - Called when a C++ template template
746/// parameter (e.g. T in template <template <typename> class T> class array)
747/// has been parsed. S is the current scope.
748Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
749                                           SourceLocation TmpLoc,
750                                           TemplateParameterList *Params,
751                                           SourceLocation EllipsisLoc,
752                                           IdentifierInfo *Name,
753                                           SourceLocation NameLoc,
754                                           unsigned Depth,
755                                           unsigned Position,
756                                           SourceLocation EqualLoc,
757                                           ParsedTemplateArgument Default) {
758  assert(S->isTemplateParamScope() &&
759         "Template template parameter not in template parameter scope!");
760
761  // Construct the parameter object.
762  bool IsParameterPack = EllipsisLoc.isValid();
763  TemplateTemplateParmDecl *Param =
764    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
765                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
766                                     Depth, Position, IsParameterPack,
767                                     Name, Params);
768  Param->setAccess(AS_public);
769
770  // If the template template parameter has a name, then link the identifier
771  // into the scope and lookup mechanisms.
772  if (Name) {
773    S->AddDecl(Param);
774    IdResolver.AddDecl(Param);
775  }
776
777  if (Params->size() == 0) {
778    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
779    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
780    Param->setInvalidDecl();
781  }
782
783  // C++0x [temp.param]p9:
784  //   A default template-argument may be specified for any kind of
785  //   template-parameter that is not a template parameter pack.
786  if (IsParameterPack && !Default.isInvalid()) {
787    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
788    Default = ParsedTemplateArgument();
789  }
790
791  if (!Default.isInvalid()) {
792    // Check only that we have a template template argument. We don't want to
793    // try to check well-formedness now, because our template template parameter
794    // might have dependent types in its template parameters, which we wouldn't
795    // be able to match now.
796    //
797    // If none of the template template parameter's template arguments mention
798    // other template parameters, we could actually perform more checking here.
799    // However, it isn't worth doing.
800    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
801    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
802      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
803        << DefaultArg.getSourceRange();
804      return Param;
805    }
806
807    // Check for unexpanded parameter packs.
808    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
809                                        DefaultArg.getArgument().getAsTemplate(),
810                                        UPPC_DefaultArgument))
811      return Param;
812
813    Param->setDefaultArgument(DefaultArg, false);
814  }
815
816  return Param;
817}
818
819/// ActOnTemplateParameterList - Builds a TemplateParameterList that
820/// contains the template parameters in Params/NumParams.
821TemplateParameterList *
822Sema::ActOnTemplateParameterList(unsigned Depth,
823                                 SourceLocation ExportLoc,
824                                 SourceLocation TemplateLoc,
825                                 SourceLocation LAngleLoc,
826                                 Decl **Params, unsigned NumParams,
827                                 SourceLocation RAngleLoc) {
828  if (ExportLoc.isValid())
829    Diag(ExportLoc, diag::warn_template_export_unsupported);
830
831  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
832                                       (NamedDecl**)Params, NumParams,
833                                       RAngleLoc);
834}
835
836static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
837  if (SS.isSet())
838    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
839}
840
841DeclResult
842Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
843                         SourceLocation KWLoc, CXXScopeSpec &SS,
844                         IdentifierInfo *Name, SourceLocation NameLoc,
845                         AttributeList *Attr,
846                         TemplateParameterList *TemplateParams,
847                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
848                         unsigned NumOuterTemplateParamLists,
849                         TemplateParameterList** OuterTemplateParamLists) {
850  assert(TemplateParams && TemplateParams->size() > 0 &&
851         "No template parameters");
852  assert(TUK != TUK_Reference && "Can only declare or define class templates");
853  bool Invalid = false;
854
855  // Check that we can declare a template here.
856  if (CheckTemplateDeclScope(S, TemplateParams))
857    return true;
858
859  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
860  assert(Kind != TTK_Enum && "can't build template of enumerated type");
861
862  // There is no such thing as an unnamed class template.
863  if (!Name) {
864    Diag(KWLoc, diag::err_template_unnamed_class);
865    return true;
866  }
867
868  // Find any previous declaration with this name.
869  DeclContext *SemanticContext;
870  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
871                        ForRedeclaration);
872  if (SS.isNotEmpty() && !SS.isInvalid()) {
873    SemanticContext = computeDeclContext(SS, true);
874    if (!SemanticContext) {
875      Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
876        << SS.getScopeRep() << SS.getRange();
877      return true;
878    }
879
880    if (RequireCompleteDeclContext(SS, SemanticContext))
881      return true;
882
883    // If we're adding a template to a dependent context, we may need to
884    // rebuilding some of the types used within the template parameter list,
885    // now that we know what the current instantiation is.
886    if (SemanticContext->isDependentContext()) {
887      ContextRAII SavedContext(*this, SemanticContext);
888      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
889        Invalid = true;
890    } else if (CurContext->isRecord() && TUK != TUK_Friend &&
891               TUK != TUK_Reference)
892      diagnoseQualifiedDeclInClass(SS, SemanticContext, Name, NameLoc);
893
894    LookupQualifiedName(Previous, SemanticContext);
895  } else {
896    SemanticContext = CurContext;
897    LookupName(Previous, S);
898  }
899
900  if (Previous.isAmbiguous())
901    return true;
902
903  NamedDecl *PrevDecl = 0;
904  if (Previous.begin() != Previous.end())
905    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
906
907  // If there is a previous declaration with the same name, check
908  // whether this is a valid redeclaration.
909  ClassTemplateDecl *PrevClassTemplate
910    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
911
912  // We may have found the injected-class-name of a class template,
913  // class template partial specialization, or class template specialization.
914  // In these cases, grab the template that is being defined or specialized.
915  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
916      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
917    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
918    PrevClassTemplate
919      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
920    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
921      PrevClassTemplate
922        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
923            ->getSpecializedTemplate();
924    }
925  }
926
927  if (TUK == TUK_Friend) {
928    // C++ [namespace.memdef]p3:
929    //   [...] When looking for a prior declaration of a class or a function
930    //   declared as a friend, and when the name of the friend class or
931    //   function is neither a qualified name nor a template-id, scopes outside
932    //   the innermost enclosing namespace scope are not considered.
933    if (!SS.isSet()) {
934      DeclContext *OutermostContext = CurContext;
935      while (!OutermostContext->isFileContext())
936        OutermostContext = OutermostContext->getLookupParent();
937
938      if (PrevDecl &&
939          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
940           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
941        SemanticContext = PrevDecl->getDeclContext();
942      } else {
943        // Declarations in outer scopes don't matter. However, the outermost
944        // context we computed is the semantic context for our new
945        // declaration.
946        PrevDecl = PrevClassTemplate = 0;
947        SemanticContext = OutermostContext;
948      }
949    }
950
951    if (CurContext->isDependentContext()) {
952      // If this is a dependent context, we don't want to link the friend
953      // class template to the template in scope, because that would perform
954      // checking of the template parameter lists that can't be performed
955      // until the outer context is instantiated.
956      PrevDecl = PrevClassTemplate = 0;
957    }
958  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
959    PrevDecl = PrevClassTemplate = 0;
960
961  if (PrevClassTemplate) {
962    // Ensure that the template parameter lists are compatible.
963    if (!TemplateParameterListsAreEqual(TemplateParams,
964                                   PrevClassTemplate->getTemplateParameters(),
965                                        /*Complain=*/true,
966                                        TPL_TemplateMatch))
967      return true;
968
969    // C++ [temp.class]p4:
970    //   In a redeclaration, partial specialization, explicit
971    //   specialization or explicit instantiation of a class template,
972    //   the class-key shall agree in kind with the original class
973    //   template declaration (7.1.5.3).
974    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
975    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
976                                      TUK == TUK_Definition,  KWLoc, *Name)) {
977      Diag(KWLoc, diag::err_use_with_wrong_tag)
978        << Name
979        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
980      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
981      Kind = PrevRecordDecl->getTagKind();
982    }
983
984    // Check for redefinition of this class template.
985    if (TUK == TUK_Definition) {
986      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
987        Diag(NameLoc, diag::err_redefinition) << Name;
988        Diag(Def->getLocation(), diag::note_previous_definition);
989        // FIXME: Would it make sense to try to "forget" the previous
990        // definition, as part of error recovery?
991        return true;
992      }
993    }
994  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
995    // Maybe we will complain about the shadowed template parameter.
996    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
997    // Just pretend that we didn't see the previous declaration.
998    PrevDecl = 0;
999  } else if (PrevDecl) {
1000    // C++ [temp]p5:
1001    //   A class template shall not have the same name as any other
1002    //   template, class, function, object, enumeration, enumerator,
1003    //   namespace, or type in the same scope (3.3), except as specified
1004    //   in (14.5.4).
1005    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1006    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1007    return true;
1008  }
1009
1010  // Check the template parameter list of this declaration, possibly
1011  // merging in the template parameter list from the previous class
1012  // template declaration.
1013  if (CheckTemplateParameterList(TemplateParams,
1014            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1015                                 (SS.isSet() && SemanticContext &&
1016                                  SemanticContext->isRecord() &&
1017                                  SemanticContext->isDependentContext())
1018                                   ? TPC_ClassTemplateMember
1019                                   : TPC_ClassTemplate))
1020    Invalid = true;
1021
1022  if (SS.isSet()) {
1023    // If the name of the template was qualified, we must be defining the
1024    // template out-of-line.
1025    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1026        !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1027      Diag(NameLoc, diag::err_member_def_does_not_match)
1028        << Name << SemanticContext << SS.getRange();
1029      Invalid = true;
1030    }
1031  }
1032
1033  CXXRecordDecl *NewClass =
1034    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1035                          PrevClassTemplate?
1036                            PrevClassTemplate->getTemplatedDecl() : 0,
1037                          /*DelayTypeCreation=*/true);
1038  SetNestedNameSpecifier(NewClass, SS);
1039  if (NumOuterTemplateParamLists > 0)
1040    NewClass->setTemplateParameterListsInfo(Context,
1041                                            NumOuterTemplateParamLists,
1042                                            OuterTemplateParamLists);
1043
1044  // Add alignment attributes if necessary; these attributes are checked when
1045  // the ASTContext lays out the structure.
1046  AddAlignmentAttributesForRecord(NewClass);
1047  AddMsStructLayoutForRecord(NewClass);
1048
1049  ClassTemplateDecl *NewTemplate
1050    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1051                                DeclarationName(Name), TemplateParams,
1052                                NewClass, PrevClassTemplate);
1053  NewClass->setDescribedClassTemplate(NewTemplate);
1054
1055  if (ModulePrivateLoc.isValid())
1056    NewTemplate->setModulePrivate();
1057
1058  // Build the type for the class template declaration now.
1059  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1060  T = Context.getInjectedClassNameType(NewClass, T);
1061  assert(T->isDependentType() && "Class template type is not dependent?");
1062  (void)T;
1063
1064  // If we are providing an explicit specialization of a member that is a
1065  // class template, make a note of that.
1066  if (PrevClassTemplate &&
1067      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1068    PrevClassTemplate->setMemberSpecialization();
1069
1070  // Set the access specifier.
1071  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1072    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1073
1074  // Set the lexical context of these templates
1075  NewClass->setLexicalDeclContext(CurContext);
1076  NewTemplate->setLexicalDeclContext(CurContext);
1077
1078  if (TUK == TUK_Definition)
1079    NewClass->startDefinition();
1080
1081  if (Attr)
1082    ProcessDeclAttributeList(S, NewClass, Attr);
1083
1084  if (TUK != TUK_Friend)
1085    PushOnScopeChains(NewTemplate, S);
1086  else {
1087    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1088      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1089      NewClass->setAccess(PrevClassTemplate->getAccess());
1090    }
1091
1092    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1093                                       PrevClassTemplate != NULL);
1094
1095    // Friend templates are visible in fairly strange ways.
1096    if (!CurContext->isDependentContext()) {
1097      DeclContext *DC = SemanticContext->getRedeclContext();
1098      DC->makeDeclVisibleInContext(NewTemplate);
1099      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1100        PushOnScopeChains(NewTemplate, EnclosingScope,
1101                          /* AddToContext = */ false);
1102    }
1103
1104    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1105                                            NewClass->getLocation(),
1106                                            NewTemplate,
1107                                    /*FIXME:*/NewClass->getLocation());
1108    Friend->setAccess(AS_public);
1109    CurContext->addDecl(Friend);
1110  }
1111
1112  if (Invalid) {
1113    NewTemplate->setInvalidDecl();
1114    NewClass->setInvalidDecl();
1115  }
1116  return NewTemplate;
1117}
1118
1119/// \brief Diagnose the presence of a default template argument on a
1120/// template parameter, which is ill-formed in certain contexts.
1121///
1122/// \returns true if the default template argument should be dropped.
1123static bool DiagnoseDefaultTemplateArgument(Sema &S,
1124                                            Sema::TemplateParamListContext TPC,
1125                                            SourceLocation ParamLoc,
1126                                            SourceRange DefArgRange) {
1127  switch (TPC) {
1128  case Sema::TPC_ClassTemplate:
1129  case Sema::TPC_TypeAliasTemplate:
1130    return false;
1131
1132  case Sema::TPC_FunctionTemplate:
1133  case Sema::TPC_FriendFunctionTemplateDefinition:
1134    // C++ [temp.param]p9:
1135    //   A default template-argument shall not be specified in a
1136    //   function template declaration or a function template
1137    //   definition [...]
1138    //   If a friend function template declaration specifies a default
1139    //   template-argument, that declaration shall be a definition and shall be
1140    //   the only declaration of the function template in the translation unit.
1141    // (C++98/03 doesn't have this wording; see DR226).
1142    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1143         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1144           : diag::ext_template_parameter_default_in_function_template)
1145      << DefArgRange;
1146    return false;
1147
1148  case Sema::TPC_ClassTemplateMember:
1149    // C++0x [temp.param]p9:
1150    //   A default template-argument shall not be specified in the
1151    //   template-parameter-lists of the definition of a member of a
1152    //   class template that appears outside of the member's class.
1153    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1154      << DefArgRange;
1155    return true;
1156
1157  case Sema::TPC_FriendFunctionTemplate:
1158    // C++ [temp.param]p9:
1159    //   A default template-argument shall not be specified in a
1160    //   friend template declaration.
1161    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1162      << DefArgRange;
1163    return true;
1164
1165    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1166    // for friend function templates if there is only a single
1167    // declaration (and it is a definition). Strange!
1168  }
1169
1170  llvm_unreachable("Invalid TemplateParamListContext!");
1171}
1172
1173/// \brief Check for unexpanded parameter packs within the template parameters
1174/// of a template template parameter, recursively.
1175static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1176                                             TemplateTemplateParmDecl *TTP) {
1177  TemplateParameterList *Params = TTP->getTemplateParameters();
1178  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1179    NamedDecl *P = Params->getParam(I);
1180    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1181      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1182                                            NTTP->getTypeSourceInfo(),
1183                                      Sema::UPPC_NonTypeTemplateParameterType))
1184        return true;
1185
1186      continue;
1187    }
1188
1189    if (TemplateTemplateParmDecl *InnerTTP
1190                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1191      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1192        return true;
1193  }
1194
1195  return false;
1196}
1197
1198/// \brief Checks the validity of a template parameter list, possibly
1199/// considering the template parameter list from a previous
1200/// declaration.
1201///
1202/// If an "old" template parameter list is provided, it must be
1203/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1204/// template parameter list.
1205///
1206/// \param NewParams Template parameter list for a new template
1207/// declaration. This template parameter list will be updated with any
1208/// default arguments that are carried through from the previous
1209/// template parameter list.
1210///
1211/// \param OldParams If provided, template parameter list from a
1212/// previous declaration of the same template. Default template
1213/// arguments will be merged from the old template parameter list to
1214/// the new template parameter list.
1215///
1216/// \param TPC Describes the context in which we are checking the given
1217/// template parameter list.
1218///
1219/// \returns true if an error occurred, false otherwise.
1220bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1221                                      TemplateParameterList *OldParams,
1222                                      TemplateParamListContext TPC) {
1223  bool Invalid = false;
1224
1225  // C++ [temp.param]p10:
1226  //   The set of default template-arguments available for use with a
1227  //   template declaration or definition is obtained by merging the
1228  //   default arguments from the definition (if in scope) and all
1229  //   declarations in scope in the same way default function
1230  //   arguments are (8.3.6).
1231  bool SawDefaultArgument = false;
1232  SourceLocation PreviousDefaultArgLoc;
1233
1234  // Dummy initialization to avoid warnings.
1235  TemplateParameterList::iterator OldParam = NewParams->end();
1236  if (OldParams)
1237    OldParam = OldParams->begin();
1238
1239  bool RemoveDefaultArguments = false;
1240  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1241                                    NewParamEnd = NewParams->end();
1242       NewParam != NewParamEnd; ++NewParam) {
1243    // Variables used to diagnose redundant default arguments
1244    bool RedundantDefaultArg = false;
1245    SourceLocation OldDefaultLoc;
1246    SourceLocation NewDefaultLoc;
1247
1248    // Variable used to diagnose missing default arguments
1249    bool MissingDefaultArg = false;
1250
1251    // Variable used to diagnose non-final parameter packs
1252    bool SawParameterPack = false;
1253
1254    if (TemplateTypeParmDecl *NewTypeParm
1255          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1256      // Check the presence of a default argument here.
1257      if (NewTypeParm->hasDefaultArgument() &&
1258          DiagnoseDefaultTemplateArgument(*this, TPC,
1259                                          NewTypeParm->getLocation(),
1260               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1261                                                       .getSourceRange()))
1262        NewTypeParm->removeDefaultArgument();
1263
1264      // Merge default arguments for template type parameters.
1265      TemplateTypeParmDecl *OldTypeParm
1266          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1267
1268      if (NewTypeParm->isParameterPack()) {
1269        assert(!NewTypeParm->hasDefaultArgument() &&
1270               "Parameter packs can't have a default argument!");
1271        SawParameterPack = true;
1272      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1273                 NewTypeParm->hasDefaultArgument()) {
1274        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1275        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1276        SawDefaultArgument = true;
1277        RedundantDefaultArg = true;
1278        PreviousDefaultArgLoc = NewDefaultLoc;
1279      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1280        // Merge the default argument from the old declaration to the
1281        // new declaration.
1282        SawDefaultArgument = true;
1283        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1284                                        true);
1285        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1286      } else if (NewTypeParm->hasDefaultArgument()) {
1287        SawDefaultArgument = true;
1288        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1289      } else if (SawDefaultArgument)
1290        MissingDefaultArg = true;
1291    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1292               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1293      // Check for unexpanded parameter packs.
1294      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1295                                          NewNonTypeParm->getTypeSourceInfo(),
1296                                          UPPC_NonTypeTemplateParameterType)) {
1297        Invalid = true;
1298        continue;
1299      }
1300
1301      // Check the presence of a default argument here.
1302      if (NewNonTypeParm->hasDefaultArgument() &&
1303          DiagnoseDefaultTemplateArgument(*this, TPC,
1304                                          NewNonTypeParm->getLocation(),
1305                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1306        NewNonTypeParm->removeDefaultArgument();
1307      }
1308
1309      // Merge default arguments for non-type template parameters
1310      NonTypeTemplateParmDecl *OldNonTypeParm
1311        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1312      if (NewNonTypeParm->isParameterPack()) {
1313        assert(!NewNonTypeParm->hasDefaultArgument() &&
1314               "Parameter packs can't have a default argument!");
1315        SawParameterPack = true;
1316      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1317          NewNonTypeParm->hasDefaultArgument()) {
1318        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1319        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1320        SawDefaultArgument = true;
1321        RedundantDefaultArg = true;
1322        PreviousDefaultArgLoc = NewDefaultLoc;
1323      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1324        // Merge the default argument from the old declaration to the
1325        // new declaration.
1326        SawDefaultArgument = true;
1327        // FIXME: We need to create a new kind of "default argument"
1328        // expression that points to a previous non-type template
1329        // parameter.
1330        NewNonTypeParm->setDefaultArgument(
1331                                         OldNonTypeParm->getDefaultArgument(),
1332                                         /*Inherited=*/ true);
1333        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1334      } else if (NewNonTypeParm->hasDefaultArgument()) {
1335        SawDefaultArgument = true;
1336        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1337      } else if (SawDefaultArgument)
1338        MissingDefaultArg = true;
1339    } else {
1340      TemplateTemplateParmDecl *NewTemplateParm
1341        = cast<TemplateTemplateParmDecl>(*NewParam);
1342
1343      // Check for unexpanded parameter packs, recursively.
1344      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1345        Invalid = true;
1346        continue;
1347      }
1348
1349      // Check the presence of a default argument here.
1350      if (NewTemplateParm->hasDefaultArgument() &&
1351          DiagnoseDefaultTemplateArgument(*this, TPC,
1352                                          NewTemplateParm->getLocation(),
1353                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1354        NewTemplateParm->removeDefaultArgument();
1355
1356      // Merge default arguments for template template parameters
1357      TemplateTemplateParmDecl *OldTemplateParm
1358        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1359      if (NewTemplateParm->isParameterPack()) {
1360        assert(!NewTemplateParm->hasDefaultArgument() &&
1361               "Parameter packs can't have a default argument!");
1362        SawParameterPack = true;
1363      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1364          NewTemplateParm->hasDefaultArgument()) {
1365        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1366        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1367        SawDefaultArgument = true;
1368        RedundantDefaultArg = true;
1369        PreviousDefaultArgLoc = NewDefaultLoc;
1370      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1371        // Merge the default argument from the old declaration to the
1372        // new declaration.
1373        SawDefaultArgument = true;
1374        // FIXME: We need to create a new kind of "default argument" expression
1375        // that points to a previous template template parameter.
1376        NewTemplateParm->setDefaultArgument(
1377                                          OldTemplateParm->getDefaultArgument(),
1378                                          /*Inherited=*/ true);
1379        PreviousDefaultArgLoc
1380          = OldTemplateParm->getDefaultArgument().getLocation();
1381      } else if (NewTemplateParm->hasDefaultArgument()) {
1382        SawDefaultArgument = true;
1383        PreviousDefaultArgLoc
1384          = NewTemplateParm->getDefaultArgument().getLocation();
1385      } else if (SawDefaultArgument)
1386        MissingDefaultArg = true;
1387    }
1388
1389    // C++0x [temp.param]p11:
1390    //   If a template parameter of a primary class template or alias template
1391    //   is a template parameter pack, it shall be the last template parameter.
1392    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1393        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1394      Diag((*NewParam)->getLocation(),
1395           diag::err_template_param_pack_must_be_last_template_parameter);
1396      Invalid = true;
1397    }
1398
1399    if (RedundantDefaultArg) {
1400      // C++ [temp.param]p12:
1401      //   A template-parameter shall not be given default arguments
1402      //   by two different declarations in the same scope.
1403      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1404      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1405      Invalid = true;
1406    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1407      // C++ [temp.param]p11:
1408      //   If a template-parameter of a class template has a default
1409      //   template-argument, each subsequent template-parameter shall either
1410      //   have a default template-argument supplied or be a template parameter
1411      //   pack.
1412      Diag((*NewParam)->getLocation(),
1413           diag::err_template_param_default_arg_missing);
1414      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1415      Invalid = true;
1416      RemoveDefaultArguments = true;
1417    }
1418
1419    // If we have an old template parameter list that we're merging
1420    // in, move on to the next parameter.
1421    if (OldParams)
1422      ++OldParam;
1423  }
1424
1425  // We were missing some default arguments at the end of the list, so remove
1426  // all of the default arguments.
1427  if (RemoveDefaultArguments) {
1428    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1429                                      NewParamEnd = NewParams->end();
1430         NewParam != NewParamEnd; ++NewParam) {
1431      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1432        TTP->removeDefaultArgument();
1433      else if (NonTypeTemplateParmDecl *NTTP
1434                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1435        NTTP->removeDefaultArgument();
1436      else
1437        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1438    }
1439  }
1440
1441  return Invalid;
1442}
1443
1444namespace {
1445
1446/// A class which looks for a use of a certain level of template
1447/// parameter.
1448struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1449  typedef RecursiveASTVisitor<DependencyChecker> super;
1450
1451  unsigned Depth;
1452  bool Match;
1453
1454  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1455    NamedDecl *ND = Params->getParam(0);
1456    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1457      Depth = PD->getDepth();
1458    } else if (NonTypeTemplateParmDecl *PD =
1459                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1460      Depth = PD->getDepth();
1461    } else {
1462      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1463    }
1464  }
1465
1466  bool Matches(unsigned ParmDepth) {
1467    if (ParmDepth >= Depth) {
1468      Match = true;
1469      return true;
1470    }
1471    return false;
1472  }
1473
1474  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1475    return !Matches(T->getDepth());
1476  }
1477
1478  bool TraverseTemplateName(TemplateName N) {
1479    if (TemplateTemplateParmDecl *PD =
1480          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1481      if (Matches(PD->getDepth())) return false;
1482    return super::TraverseTemplateName(N);
1483  }
1484
1485  bool VisitDeclRefExpr(DeclRefExpr *E) {
1486    if (NonTypeTemplateParmDecl *PD =
1487          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1488      if (PD->getDepth() == Depth) {
1489        Match = true;
1490        return false;
1491      }
1492    }
1493    return super::VisitDeclRefExpr(E);
1494  }
1495
1496  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1497    return TraverseType(T->getInjectedSpecializationType());
1498  }
1499};
1500}
1501
1502/// Determines whether a given type depends on the given parameter
1503/// list.
1504static bool
1505DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1506  DependencyChecker Checker(Params);
1507  Checker.TraverseType(T);
1508  return Checker.Match;
1509}
1510
1511// Find the source range corresponding to the named type in the given
1512// nested-name-specifier, if any.
1513static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1514                                                       QualType T,
1515                                                       const CXXScopeSpec &SS) {
1516  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1517  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1518    if (const Type *CurType = NNS->getAsType()) {
1519      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1520        return NNSLoc.getTypeLoc().getSourceRange();
1521    } else
1522      break;
1523
1524    NNSLoc = NNSLoc.getPrefix();
1525  }
1526
1527  return SourceRange();
1528}
1529
1530/// \brief Match the given template parameter lists to the given scope
1531/// specifier, returning the template parameter list that applies to the
1532/// name.
1533///
1534/// \param DeclStartLoc the start of the declaration that has a scope
1535/// specifier or a template parameter list.
1536///
1537/// \param DeclLoc The location of the declaration itself.
1538///
1539/// \param SS the scope specifier that will be matched to the given template
1540/// parameter lists. This scope specifier precedes a qualified name that is
1541/// being declared.
1542///
1543/// \param ParamLists the template parameter lists, from the outermost to the
1544/// innermost template parameter lists.
1545///
1546/// \param NumParamLists the number of template parameter lists in ParamLists.
1547///
1548/// \param IsFriend Whether to apply the slightly different rules for
1549/// matching template parameters to scope specifiers in friend
1550/// declarations.
1551///
1552/// \param IsExplicitSpecialization will be set true if the entity being
1553/// declared is an explicit specialization, false otherwise.
1554///
1555/// \returns the template parameter list, if any, that corresponds to the
1556/// name that is preceded by the scope specifier @p SS. This template
1557/// parameter list may have template parameters (if we're declaring a
1558/// template) or may have no template parameters (if we're declaring a
1559/// template specialization), or may be NULL (if what we're declaring isn't
1560/// itself a template).
1561TemplateParameterList *
1562Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1563                                              SourceLocation DeclLoc,
1564                                              const CXXScopeSpec &SS,
1565                                          TemplateParameterList **ParamLists,
1566                                              unsigned NumParamLists,
1567                                              bool IsFriend,
1568                                              bool &IsExplicitSpecialization,
1569                                              bool &Invalid) {
1570  IsExplicitSpecialization = false;
1571  Invalid = false;
1572
1573  // The sequence of nested types to which we will match up the template
1574  // parameter lists. We first build this list by starting with the type named
1575  // by the nested-name-specifier and walking out until we run out of types.
1576  SmallVector<QualType, 4> NestedTypes;
1577  QualType T;
1578  if (SS.getScopeRep()) {
1579    if (CXXRecordDecl *Record
1580              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1581      T = Context.getTypeDeclType(Record);
1582    else
1583      T = QualType(SS.getScopeRep()->getAsType(), 0);
1584  }
1585
1586  // If we found an explicit specialization that prevents us from needing
1587  // 'template<>' headers, this will be set to the location of that
1588  // explicit specialization.
1589  SourceLocation ExplicitSpecLoc;
1590
1591  while (!T.isNull()) {
1592    NestedTypes.push_back(T);
1593
1594    // Retrieve the parent of a record type.
1595    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1596      // If this type is an explicit specialization, we're done.
1597      if (ClassTemplateSpecializationDecl *Spec
1598          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1599        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1600            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1601          ExplicitSpecLoc = Spec->getLocation();
1602          break;
1603        }
1604      } else if (Record->getTemplateSpecializationKind()
1605                                                == TSK_ExplicitSpecialization) {
1606        ExplicitSpecLoc = Record->getLocation();
1607        break;
1608      }
1609
1610      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1611        T = Context.getTypeDeclType(Parent);
1612      else
1613        T = QualType();
1614      continue;
1615    }
1616
1617    if (const TemplateSpecializationType *TST
1618                                     = T->getAs<TemplateSpecializationType>()) {
1619      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1620        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1621          T = Context.getTypeDeclType(Parent);
1622        else
1623          T = QualType();
1624        continue;
1625      }
1626    }
1627
1628    // Look one step prior in a dependent template specialization type.
1629    if (const DependentTemplateSpecializationType *DependentTST
1630                          = T->getAs<DependentTemplateSpecializationType>()) {
1631      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1632        T = QualType(NNS->getAsType(), 0);
1633      else
1634        T = QualType();
1635      continue;
1636    }
1637
1638    // Look one step prior in a dependent name type.
1639    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1640      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1641        T = QualType(NNS->getAsType(), 0);
1642      else
1643        T = QualType();
1644      continue;
1645    }
1646
1647    // Retrieve the parent of an enumeration type.
1648    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1649      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1650      // check here.
1651      EnumDecl *Enum = EnumT->getDecl();
1652
1653      // Get to the parent type.
1654      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1655        T = Context.getTypeDeclType(Parent);
1656      else
1657        T = QualType();
1658      continue;
1659    }
1660
1661    T = QualType();
1662  }
1663  // Reverse the nested types list, since we want to traverse from the outermost
1664  // to the innermost while checking template-parameter-lists.
1665  std::reverse(NestedTypes.begin(), NestedTypes.end());
1666
1667  // C++0x [temp.expl.spec]p17:
1668  //   A member or a member template may be nested within many
1669  //   enclosing class templates. In an explicit specialization for
1670  //   such a member, the member declaration shall be preceded by a
1671  //   template<> for each enclosing class template that is
1672  //   explicitly specialized.
1673  bool SawNonEmptyTemplateParameterList = false;
1674  unsigned ParamIdx = 0;
1675  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1676       ++TypeIdx) {
1677    T = NestedTypes[TypeIdx];
1678
1679    // Whether we expect a 'template<>' header.
1680    bool NeedEmptyTemplateHeader = false;
1681
1682    // Whether we expect a template header with parameters.
1683    bool NeedNonemptyTemplateHeader = false;
1684
1685    // For a dependent type, the set of template parameters that we
1686    // expect to see.
1687    TemplateParameterList *ExpectedTemplateParams = 0;
1688
1689    // C++0x [temp.expl.spec]p15:
1690    //   A member or a member template may be nested within many enclosing
1691    //   class templates. In an explicit specialization for such a member, the
1692    //   member declaration shall be preceded by a template<> for each
1693    //   enclosing class template that is explicitly specialized.
1694    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1695      if (ClassTemplatePartialSpecializationDecl *Partial
1696            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1697        ExpectedTemplateParams = Partial->getTemplateParameters();
1698        NeedNonemptyTemplateHeader = true;
1699      } else if (Record->isDependentType()) {
1700        if (Record->getDescribedClassTemplate()) {
1701          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1702                                                      ->getTemplateParameters();
1703          NeedNonemptyTemplateHeader = true;
1704        }
1705      } else if (ClassTemplateSpecializationDecl *Spec
1706                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1707        // C++0x [temp.expl.spec]p4:
1708        //   Members of an explicitly specialized class template are defined
1709        //   in the same manner as members of normal classes, and not using
1710        //   the template<> syntax.
1711        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1712          NeedEmptyTemplateHeader = true;
1713        else
1714          continue;
1715      } else if (Record->getTemplateSpecializationKind()) {
1716        if (Record->getTemplateSpecializationKind()
1717                                                != TSK_ExplicitSpecialization &&
1718            TypeIdx == NumTypes - 1)
1719          IsExplicitSpecialization = true;
1720
1721        continue;
1722      }
1723    } else if (const TemplateSpecializationType *TST
1724                                     = T->getAs<TemplateSpecializationType>()) {
1725      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1726        ExpectedTemplateParams = Template->getTemplateParameters();
1727        NeedNonemptyTemplateHeader = true;
1728      }
1729    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1730      // FIXME:  We actually could/should check the template arguments here
1731      // against the corresponding template parameter list.
1732      NeedNonemptyTemplateHeader = false;
1733    }
1734
1735    // C++ [temp.expl.spec]p16:
1736    //   In an explicit specialization declaration for a member of a class
1737    //   template or a member template that ap- pears in namespace scope, the
1738    //   member template and some of its enclosing class templates may remain
1739    //   unspecialized, except that the declaration shall not explicitly
1740    //   specialize a class member template if its en- closing class templates
1741    //   are not explicitly specialized as well.
1742    if (ParamIdx < NumParamLists) {
1743      if (ParamLists[ParamIdx]->size() == 0) {
1744        if (SawNonEmptyTemplateParameterList) {
1745          Diag(DeclLoc, diag::err_specialize_member_of_template)
1746            << ParamLists[ParamIdx]->getSourceRange();
1747          Invalid = true;
1748          IsExplicitSpecialization = false;
1749          return 0;
1750        }
1751      } else
1752        SawNonEmptyTemplateParameterList = true;
1753    }
1754
1755    if (NeedEmptyTemplateHeader) {
1756      // If we're on the last of the types, and we need a 'template<>' header
1757      // here, then it's an explicit specialization.
1758      if (TypeIdx == NumTypes - 1)
1759        IsExplicitSpecialization = true;
1760
1761      if (ParamIdx < NumParamLists) {
1762        if (ParamLists[ParamIdx]->size() > 0) {
1763          // The header has template parameters when it shouldn't. Complain.
1764          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1765               diag::err_template_param_list_matches_nontemplate)
1766            << T
1767            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1768                           ParamLists[ParamIdx]->getRAngleLoc())
1769            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1770          Invalid = true;
1771          return 0;
1772        }
1773
1774        // Consume this template header.
1775        ++ParamIdx;
1776        continue;
1777      }
1778
1779      if (!IsFriend) {
1780        // We don't have a template header, but we should.
1781        SourceLocation ExpectedTemplateLoc;
1782        if (NumParamLists > 0)
1783          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1784        else
1785          ExpectedTemplateLoc = DeclStartLoc;
1786
1787        Diag(DeclLoc, diag::err_template_spec_needs_header)
1788          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1789          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1790      }
1791
1792      continue;
1793    }
1794
1795    if (NeedNonemptyTemplateHeader) {
1796      // In friend declarations we can have template-ids which don't
1797      // depend on the corresponding template parameter lists.  But
1798      // assume that empty parameter lists are supposed to match this
1799      // template-id.
1800      if (IsFriend && T->isDependentType()) {
1801        if (ParamIdx < NumParamLists &&
1802            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1803          ExpectedTemplateParams = 0;
1804        else
1805          continue;
1806      }
1807
1808      if (ParamIdx < NumParamLists) {
1809        // Check the template parameter list, if we can.
1810        if (ExpectedTemplateParams &&
1811            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1812                                            ExpectedTemplateParams,
1813                                            true, TPL_TemplateMatch))
1814          Invalid = true;
1815
1816        if (!Invalid &&
1817            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1818                                       TPC_ClassTemplateMember))
1819          Invalid = true;
1820
1821        ++ParamIdx;
1822        continue;
1823      }
1824
1825      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1826        << T
1827        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1828      Invalid = true;
1829      continue;
1830    }
1831  }
1832
1833  // If there were at least as many template-ids as there were template
1834  // parameter lists, then there are no template parameter lists remaining for
1835  // the declaration itself.
1836  if (ParamIdx >= NumParamLists)
1837    return 0;
1838
1839  // If there were too many template parameter lists, complain about that now.
1840  if (ParamIdx < NumParamLists - 1) {
1841    bool HasAnyExplicitSpecHeader = false;
1842    bool AllExplicitSpecHeaders = true;
1843    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1844      if (ParamLists[I]->size() == 0)
1845        HasAnyExplicitSpecHeader = true;
1846      else
1847        AllExplicitSpecHeaders = false;
1848    }
1849
1850    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1851         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1852                               : diag::err_template_spec_extra_headers)
1853      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1854                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1855
1856    // If there was a specialization somewhere, such that 'template<>' is
1857    // not required, and there were any 'template<>' headers, note where the
1858    // specialization occurred.
1859    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1860      Diag(ExplicitSpecLoc,
1861           diag::note_explicit_template_spec_does_not_need_header)
1862        << NestedTypes.back();
1863
1864    // We have a template parameter list with no corresponding scope, which
1865    // means that the resulting template declaration can't be instantiated
1866    // properly (we'll end up with dependent nodes when we shouldn't).
1867    if (!AllExplicitSpecHeaders)
1868      Invalid = true;
1869  }
1870
1871  // C++ [temp.expl.spec]p16:
1872  //   In an explicit specialization declaration for a member of a class
1873  //   template or a member template that ap- pears in namespace scope, the
1874  //   member template and some of its enclosing class templates may remain
1875  //   unspecialized, except that the declaration shall not explicitly
1876  //   specialize a class member template if its en- closing class templates
1877  //   are not explicitly specialized as well.
1878  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1879      SawNonEmptyTemplateParameterList) {
1880    Diag(DeclLoc, diag::err_specialize_member_of_template)
1881      << ParamLists[ParamIdx]->getSourceRange();
1882    Invalid = true;
1883    IsExplicitSpecialization = false;
1884    return 0;
1885  }
1886
1887  // Return the last template parameter list, which corresponds to the
1888  // entity being declared.
1889  return ParamLists[NumParamLists - 1];
1890}
1891
1892void Sema::NoteAllFoundTemplates(TemplateName Name) {
1893  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1894    Diag(Template->getLocation(), diag::note_template_declared_here)
1895      << (isa<FunctionTemplateDecl>(Template)? 0
1896          : isa<ClassTemplateDecl>(Template)? 1
1897          : isa<TypeAliasTemplateDecl>(Template)? 2
1898          : 3)
1899      << Template->getDeclName();
1900    return;
1901  }
1902
1903  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1904    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1905                                          IEnd = OST->end();
1906         I != IEnd; ++I)
1907      Diag((*I)->getLocation(), diag::note_template_declared_here)
1908        << 0 << (*I)->getDeclName();
1909
1910    return;
1911  }
1912}
1913
1914QualType Sema::CheckTemplateIdType(TemplateName Name,
1915                                   SourceLocation TemplateLoc,
1916                                   TemplateArgumentListInfo &TemplateArgs) {
1917  DependentTemplateName *DTN
1918    = Name.getUnderlying().getAsDependentTemplateName();
1919  if (DTN && DTN->isIdentifier())
1920    // When building a template-id where the template-name is dependent,
1921    // assume the template is a type template. Either our assumption is
1922    // correct, or the code is ill-formed and will be diagnosed when the
1923    // dependent name is substituted.
1924    return Context.getDependentTemplateSpecializationType(ETK_None,
1925                                                          DTN->getQualifier(),
1926                                                          DTN->getIdentifier(),
1927                                                          TemplateArgs);
1928
1929  TemplateDecl *Template = Name.getAsTemplateDecl();
1930  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1931    // We might have a substituted template template parameter pack. If so,
1932    // build a template specialization type for it.
1933    if (Name.getAsSubstTemplateTemplateParmPack())
1934      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1935
1936    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1937      << Name;
1938    NoteAllFoundTemplates(Name);
1939    return QualType();
1940  }
1941
1942  // Check that the template argument list is well-formed for this
1943  // template.
1944  SmallVector<TemplateArgument, 4> Converted;
1945  bool ExpansionIntoFixedList = false;
1946  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1947                                false, Converted, &ExpansionIntoFixedList))
1948    return QualType();
1949
1950  QualType CanonType;
1951
1952  bool InstantiationDependent = false;
1953  TypeAliasTemplateDecl *AliasTemplate = 0;
1954  if (!ExpansionIntoFixedList &&
1955      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1956    // Find the canonical type for this type alias template specialization.
1957    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1958    if (Pattern->isInvalidDecl())
1959      return QualType();
1960
1961    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1962                                      Converted.data(), Converted.size());
1963
1964    // Only substitute for the innermost template argument list.
1965    MultiLevelTemplateArgumentList TemplateArgLists;
1966    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1967    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1968    for (unsigned I = 0; I < Depth; ++I)
1969      TemplateArgLists.addOuterTemplateArguments(0, 0);
1970
1971    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1972    CanonType = SubstType(Pattern->getUnderlyingType(),
1973                          TemplateArgLists, AliasTemplate->getLocation(),
1974                          AliasTemplate->getDeclName());
1975    if (CanonType.isNull())
1976      return QualType();
1977  } else if (Name.isDependent() ||
1978             TemplateSpecializationType::anyDependentTemplateArguments(
1979               TemplateArgs, InstantiationDependent)) {
1980    // This class template specialization is a dependent
1981    // type. Therefore, its canonical type is another class template
1982    // specialization type that contains all of the converted
1983    // arguments in canonical form. This ensures that, e.g., A<T> and
1984    // A<T, T> have identical types when A is declared as:
1985    //
1986    //   template<typename T, typename U = T> struct A;
1987    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1988    CanonType = Context.getTemplateSpecializationType(CanonName,
1989                                                      Converted.data(),
1990                                                      Converted.size());
1991
1992    // FIXME: CanonType is not actually the canonical type, and unfortunately
1993    // it is a TemplateSpecializationType that we will never use again.
1994    // In the future, we need to teach getTemplateSpecializationType to only
1995    // build the canonical type and return that to us.
1996    CanonType = Context.getCanonicalType(CanonType);
1997
1998    // This might work out to be a current instantiation, in which
1999    // case the canonical type needs to be the InjectedClassNameType.
2000    //
2001    // TODO: in theory this could be a simple hashtable lookup; most
2002    // changes to CurContext don't change the set of current
2003    // instantiations.
2004    if (isa<ClassTemplateDecl>(Template)) {
2005      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2006        // If we get out to a namespace, we're done.
2007        if (Ctx->isFileContext()) break;
2008
2009        // If this isn't a record, keep looking.
2010        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2011        if (!Record) continue;
2012
2013        // Look for one of the two cases with InjectedClassNameTypes
2014        // and check whether it's the same template.
2015        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2016            !Record->getDescribedClassTemplate())
2017          continue;
2018
2019        // Fetch the injected class name type and check whether its
2020        // injected type is equal to the type we just built.
2021        QualType ICNT = Context.getTypeDeclType(Record);
2022        QualType Injected = cast<InjectedClassNameType>(ICNT)
2023          ->getInjectedSpecializationType();
2024
2025        if (CanonType != Injected->getCanonicalTypeInternal())
2026          continue;
2027
2028        // If so, the canonical type of this TST is the injected
2029        // class name type of the record we just found.
2030        assert(ICNT.isCanonical());
2031        CanonType = ICNT;
2032        break;
2033      }
2034    }
2035  } else if (ClassTemplateDecl *ClassTemplate
2036               = dyn_cast<ClassTemplateDecl>(Template)) {
2037    // Find the class template specialization declaration that
2038    // corresponds to these arguments.
2039    void *InsertPos = 0;
2040    ClassTemplateSpecializationDecl *Decl
2041      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2042                                          InsertPos);
2043    if (!Decl) {
2044      // This is the first time we have referenced this class template
2045      // specialization. Create the canonical declaration and add it to
2046      // the set of specializations.
2047      Decl = ClassTemplateSpecializationDecl::Create(Context,
2048                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2049                                                ClassTemplate->getDeclContext(),
2050                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2051                                                ClassTemplate->getLocation(),
2052                                                     ClassTemplate,
2053                                                     Converted.data(),
2054                                                     Converted.size(), 0);
2055      ClassTemplate->AddSpecialization(Decl, InsertPos);
2056      Decl->setLexicalDeclContext(CurContext);
2057    }
2058
2059    CanonType = Context.getTypeDeclType(Decl);
2060    assert(isa<RecordType>(CanonType) &&
2061           "type of non-dependent specialization is not a RecordType");
2062  }
2063
2064  // Build the fully-sugared type for this class template
2065  // specialization, which refers back to the class template
2066  // specialization we created or found.
2067  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2068}
2069
2070TypeResult
2071Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2072                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2073                          SourceLocation LAngleLoc,
2074                          ASTTemplateArgsPtr TemplateArgsIn,
2075                          SourceLocation RAngleLoc,
2076                          bool IsCtorOrDtorName) {
2077  if (SS.isInvalid())
2078    return true;
2079
2080  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2081
2082  // Translate the parser's template argument list in our AST format.
2083  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2084  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2085
2086  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2087    QualType T
2088      = Context.getDependentTemplateSpecializationType(ETK_None,
2089                                                       DTN->getQualifier(),
2090                                                       DTN->getIdentifier(),
2091                                                       TemplateArgs);
2092    // Build type-source information.
2093    TypeLocBuilder TLB;
2094    DependentTemplateSpecializationTypeLoc SpecTL
2095      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2096    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2097    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2098    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2099    SpecTL.setTemplateNameLoc(TemplateLoc);
2100    SpecTL.setLAngleLoc(LAngleLoc);
2101    SpecTL.setRAngleLoc(RAngleLoc);
2102    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2103      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2104    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2105  }
2106
2107  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2108  TemplateArgsIn.release();
2109
2110  if (Result.isNull())
2111    return true;
2112
2113  // Build type-source information.
2114  TypeLocBuilder TLB;
2115  TemplateSpecializationTypeLoc SpecTL
2116    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2117  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2118  SpecTL.setTemplateNameLoc(TemplateLoc);
2119  SpecTL.setLAngleLoc(LAngleLoc);
2120  SpecTL.setRAngleLoc(RAngleLoc);
2121  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2122    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2123
2124  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2125  // constructor or destructor name (in such a case, the scope specifier
2126  // will be attached to the enclosing Decl or Expr node).
2127  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2128    // Create an elaborated-type-specifier containing the nested-name-specifier.
2129    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2130    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2131    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2132    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2133  }
2134
2135  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2136}
2137
2138TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2139                                        TypeSpecifierType TagSpec,
2140                                        SourceLocation TagLoc,
2141                                        CXXScopeSpec &SS,
2142                                        SourceLocation TemplateKWLoc,
2143                                        TemplateTy TemplateD,
2144                                        SourceLocation TemplateLoc,
2145                                        SourceLocation LAngleLoc,
2146                                        ASTTemplateArgsPtr TemplateArgsIn,
2147                                        SourceLocation RAngleLoc) {
2148  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2149
2150  // Translate the parser's template argument list in our AST format.
2151  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2152  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2153
2154  // Determine the tag kind
2155  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2156  ElaboratedTypeKeyword Keyword
2157    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2158
2159  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2160    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2161                                                          DTN->getQualifier(),
2162                                                          DTN->getIdentifier(),
2163                                                                TemplateArgs);
2164
2165    // Build type-source information.
2166    TypeLocBuilder TLB;
2167    DependentTemplateSpecializationTypeLoc SpecTL
2168      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2169    SpecTL.setElaboratedKeywordLoc(TagLoc);
2170    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2171    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2172    SpecTL.setTemplateNameLoc(TemplateLoc);
2173    SpecTL.setLAngleLoc(LAngleLoc);
2174    SpecTL.setRAngleLoc(RAngleLoc);
2175    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2176      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2177    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2178  }
2179
2180  if (TypeAliasTemplateDecl *TAT =
2181        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2182    // C++0x [dcl.type.elab]p2:
2183    //   If the identifier resolves to a typedef-name or the simple-template-id
2184    //   resolves to an alias template specialization, the
2185    //   elaborated-type-specifier is ill-formed.
2186    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2187    Diag(TAT->getLocation(), diag::note_declared_at);
2188  }
2189
2190  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2191  if (Result.isNull())
2192    return TypeResult(true);
2193
2194  // Check the tag kind
2195  if (const RecordType *RT = Result->getAs<RecordType>()) {
2196    RecordDecl *D = RT->getDecl();
2197
2198    IdentifierInfo *Id = D->getIdentifier();
2199    assert(Id && "templated class must have an identifier");
2200
2201    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2202                                      TagLoc, *Id)) {
2203      Diag(TagLoc, diag::err_use_with_wrong_tag)
2204        << Result
2205        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2206      Diag(D->getLocation(), diag::note_previous_use);
2207    }
2208  }
2209
2210  // Provide source-location information for the template specialization.
2211  TypeLocBuilder TLB;
2212  TemplateSpecializationTypeLoc SpecTL
2213    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2214  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2215  SpecTL.setTemplateNameLoc(TemplateLoc);
2216  SpecTL.setLAngleLoc(LAngleLoc);
2217  SpecTL.setRAngleLoc(RAngleLoc);
2218  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2219    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2220
2221  // Construct an elaborated type containing the nested-name-specifier (if any)
2222  // and tag keyword.
2223  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2224  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2225  ElabTL.setElaboratedKeywordLoc(TagLoc);
2226  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2227  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2228}
2229
2230ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2231                                     SourceLocation TemplateKWLoc,
2232                                     LookupResult &R,
2233                                     bool RequiresADL,
2234                                 const TemplateArgumentListInfo *TemplateArgs) {
2235  // FIXME: Can we do any checking at this point? I guess we could check the
2236  // template arguments that we have against the template name, if the template
2237  // name refers to a single template. That's not a terribly common case,
2238  // though.
2239  // foo<int> could identify a single function unambiguously
2240  // This approach does NOT work, since f<int>(1);
2241  // gets resolved prior to resorting to overload resolution
2242  // i.e., template<class T> void f(double);
2243  //       vs template<class T, class U> void f(U);
2244
2245  // These should be filtered out by our callers.
2246  assert(!R.empty() && "empty lookup results when building templateid");
2247  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2248
2249  // We don't want lookup warnings at this point.
2250  R.suppressDiagnostics();
2251
2252  UnresolvedLookupExpr *ULE
2253    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2254                                   SS.getWithLocInContext(Context),
2255                                   TemplateKWLoc,
2256                                   R.getLookupNameInfo(),
2257                                   RequiresADL, TemplateArgs,
2258                                   R.begin(), R.end());
2259
2260  return Owned(ULE);
2261}
2262
2263// We actually only call this from template instantiation.
2264ExprResult
2265Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2266                                   SourceLocation TemplateKWLoc,
2267                                   const DeclarationNameInfo &NameInfo,
2268                             const TemplateArgumentListInfo *TemplateArgs) {
2269  assert(TemplateArgs || TemplateKWLoc.isValid());
2270  DeclContext *DC;
2271  if (!(DC = computeDeclContext(SS, false)) ||
2272      DC->isDependentContext() ||
2273      RequireCompleteDeclContext(SS, DC))
2274    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2275
2276  bool MemberOfUnknownSpecialization;
2277  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2278  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2279                     MemberOfUnknownSpecialization);
2280
2281  if (R.isAmbiguous())
2282    return ExprError();
2283
2284  if (R.empty()) {
2285    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2286      << NameInfo.getName() << SS.getRange();
2287    return ExprError();
2288  }
2289
2290  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2291    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2292      << (NestedNameSpecifier*) SS.getScopeRep()
2293      << NameInfo.getName() << SS.getRange();
2294    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2295    return ExprError();
2296  }
2297
2298  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2299}
2300
2301/// \brief Form a dependent template name.
2302///
2303/// This action forms a dependent template name given the template
2304/// name and its (presumably dependent) scope specifier. For
2305/// example, given "MetaFun::template apply", the scope specifier \p
2306/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2307/// of the "template" keyword, and "apply" is the \p Name.
2308TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2309                                                  CXXScopeSpec &SS,
2310                                                  SourceLocation TemplateKWLoc,
2311                                                  UnqualifiedId &Name,
2312                                                  ParsedType ObjectType,
2313                                                  bool EnteringContext,
2314                                                  TemplateTy &Result) {
2315  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2316    Diag(TemplateKWLoc,
2317         getLangOpts().CPlusPlus0x ?
2318           diag::warn_cxx98_compat_template_outside_of_template :
2319           diag::ext_template_outside_of_template)
2320      << FixItHint::CreateRemoval(TemplateKWLoc);
2321
2322  DeclContext *LookupCtx = 0;
2323  if (SS.isSet())
2324    LookupCtx = computeDeclContext(SS, EnteringContext);
2325  if (!LookupCtx && ObjectType)
2326    LookupCtx = computeDeclContext(ObjectType.get());
2327  if (LookupCtx) {
2328    // C++0x [temp.names]p5:
2329    //   If a name prefixed by the keyword template is not the name of
2330    //   a template, the program is ill-formed. [Note: the keyword
2331    //   template may not be applied to non-template members of class
2332    //   templates. -end note ] [ Note: as is the case with the
2333    //   typename prefix, the template prefix is allowed in cases
2334    //   where it is not strictly necessary; i.e., when the
2335    //   nested-name-specifier or the expression on the left of the ->
2336    //   or . is not dependent on a template-parameter, or the use
2337    //   does not appear in the scope of a template. -end note]
2338    //
2339    // Note: C++03 was more strict here, because it banned the use of
2340    // the "template" keyword prior to a template-name that was not a
2341    // dependent name. C++ DR468 relaxed this requirement (the
2342    // "template" keyword is now permitted). We follow the C++0x
2343    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2344    bool MemberOfUnknownSpecialization;
2345    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2346                                          ObjectType, EnteringContext, Result,
2347                                          MemberOfUnknownSpecialization);
2348    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2349        isa<CXXRecordDecl>(LookupCtx) &&
2350        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2351         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2352      // This is a dependent template. Handle it below.
2353    } else if (TNK == TNK_Non_template) {
2354      Diag(Name.getLocStart(),
2355           diag::err_template_kw_refers_to_non_template)
2356        << GetNameFromUnqualifiedId(Name).getName()
2357        << Name.getSourceRange()
2358        << TemplateKWLoc;
2359      return TNK_Non_template;
2360    } else {
2361      // We found something; return it.
2362      return TNK;
2363    }
2364  }
2365
2366  NestedNameSpecifier *Qualifier
2367    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2368
2369  switch (Name.getKind()) {
2370  case UnqualifiedId::IK_Identifier:
2371    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2372                                                              Name.Identifier));
2373    return TNK_Dependent_template_name;
2374
2375  case UnqualifiedId::IK_OperatorFunctionId:
2376    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2377                                             Name.OperatorFunctionId.Operator));
2378    return TNK_Dependent_template_name;
2379
2380  case UnqualifiedId::IK_LiteralOperatorId:
2381    llvm_unreachable(
2382            "We don't support these; Parse shouldn't have allowed propagation");
2383
2384  default:
2385    break;
2386  }
2387
2388  Diag(Name.getLocStart(),
2389       diag::err_template_kw_refers_to_non_template)
2390    << GetNameFromUnqualifiedId(Name).getName()
2391    << Name.getSourceRange()
2392    << TemplateKWLoc;
2393  return TNK_Non_template;
2394}
2395
2396bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2397                                     const TemplateArgumentLoc &AL,
2398                          SmallVectorImpl<TemplateArgument> &Converted) {
2399  const TemplateArgument &Arg = AL.getArgument();
2400
2401  // Check template type parameter.
2402  switch(Arg.getKind()) {
2403  case TemplateArgument::Type:
2404    // C++ [temp.arg.type]p1:
2405    //   A template-argument for a template-parameter which is a
2406    //   type shall be a type-id.
2407    break;
2408  case TemplateArgument::Template: {
2409    // We have a template type parameter but the template argument
2410    // is a template without any arguments.
2411    SourceRange SR = AL.getSourceRange();
2412    TemplateName Name = Arg.getAsTemplate();
2413    Diag(SR.getBegin(), diag::err_template_missing_args)
2414      << Name << SR;
2415    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2416      Diag(Decl->getLocation(), diag::note_template_decl_here);
2417
2418    return true;
2419  }
2420  default: {
2421    // We have a template type parameter but the template argument
2422    // is not a type.
2423    SourceRange SR = AL.getSourceRange();
2424    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2425    Diag(Param->getLocation(), diag::note_template_param_here);
2426
2427    return true;
2428  }
2429  }
2430
2431  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2432    return true;
2433
2434  // Add the converted template type argument.
2435  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2436
2437  // Objective-C ARC:
2438  //   If an explicitly-specified template argument type is a lifetime type
2439  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2440  if (getLangOpts().ObjCAutoRefCount &&
2441      ArgType->isObjCLifetimeType() &&
2442      !ArgType.getObjCLifetime()) {
2443    Qualifiers Qs;
2444    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2445    ArgType = Context.getQualifiedType(ArgType, Qs);
2446  }
2447
2448  Converted.push_back(TemplateArgument(ArgType));
2449  return false;
2450}
2451
2452/// \brief Substitute template arguments into the default template argument for
2453/// the given template type parameter.
2454///
2455/// \param SemaRef the semantic analysis object for which we are performing
2456/// the substitution.
2457///
2458/// \param Template the template that we are synthesizing template arguments
2459/// for.
2460///
2461/// \param TemplateLoc the location of the template name that started the
2462/// template-id we are checking.
2463///
2464/// \param RAngleLoc the location of the right angle bracket ('>') that
2465/// terminates the template-id.
2466///
2467/// \param Param the template template parameter whose default we are
2468/// substituting into.
2469///
2470/// \param Converted the list of template arguments provided for template
2471/// parameters that precede \p Param in the template parameter list.
2472/// \returns the substituted template argument, or NULL if an error occurred.
2473static TypeSourceInfo *
2474SubstDefaultTemplateArgument(Sema &SemaRef,
2475                             TemplateDecl *Template,
2476                             SourceLocation TemplateLoc,
2477                             SourceLocation RAngleLoc,
2478                             TemplateTypeParmDecl *Param,
2479                         SmallVectorImpl<TemplateArgument> &Converted) {
2480  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2481
2482  // If the argument type is dependent, instantiate it now based
2483  // on the previously-computed template arguments.
2484  if (ArgType->getType()->isDependentType()) {
2485    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2486                                      Converted.data(), Converted.size());
2487
2488    MultiLevelTemplateArgumentList AllTemplateArgs
2489      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2490
2491    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2492                                     Template, Converted.data(),
2493                                     Converted.size(),
2494                                     SourceRange(TemplateLoc, RAngleLoc));
2495
2496    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2497                                Param->getDefaultArgumentLoc(),
2498                                Param->getDeclName());
2499  }
2500
2501  return ArgType;
2502}
2503
2504/// \brief Substitute template arguments into the default template argument for
2505/// the given non-type template parameter.
2506///
2507/// \param SemaRef the semantic analysis object for which we are performing
2508/// the substitution.
2509///
2510/// \param Template the template that we are synthesizing template arguments
2511/// for.
2512///
2513/// \param TemplateLoc the location of the template name that started the
2514/// template-id we are checking.
2515///
2516/// \param RAngleLoc the location of the right angle bracket ('>') that
2517/// terminates the template-id.
2518///
2519/// \param Param the non-type template parameter whose default we are
2520/// substituting into.
2521///
2522/// \param Converted the list of template arguments provided for template
2523/// parameters that precede \p Param in the template parameter list.
2524///
2525/// \returns the substituted template argument, or NULL if an error occurred.
2526static ExprResult
2527SubstDefaultTemplateArgument(Sema &SemaRef,
2528                             TemplateDecl *Template,
2529                             SourceLocation TemplateLoc,
2530                             SourceLocation RAngleLoc,
2531                             NonTypeTemplateParmDecl *Param,
2532                        SmallVectorImpl<TemplateArgument> &Converted) {
2533  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2534                                    Converted.data(), Converted.size());
2535
2536  MultiLevelTemplateArgumentList AllTemplateArgs
2537    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2538
2539  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2540                                   Template, Converted.data(),
2541                                   Converted.size(),
2542                                   SourceRange(TemplateLoc, RAngleLoc));
2543
2544  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2545}
2546
2547/// \brief Substitute template arguments into the default template argument for
2548/// the given template template parameter.
2549///
2550/// \param SemaRef the semantic analysis object for which we are performing
2551/// the substitution.
2552///
2553/// \param Template the template that we are synthesizing template arguments
2554/// for.
2555///
2556/// \param TemplateLoc the location of the template name that started the
2557/// template-id we are checking.
2558///
2559/// \param RAngleLoc the location of the right angle bracket ('>') that
2560/// terminates the template-id.
2561///
2562/// \param Param the template template parameter whose default we are
2563/// substituting into.
2564///
2565/// \param Converted the list of template arguments provided for template
2566/// parameters that precede \p Param in the template parameter list.
2567///
2568/// \param QualifierLoc Will be set to the nested-name-specifier (with
2569/// source-location information) that precedes the template name.
2570///
2571/// \returns the substituted template argument, or NULL if an error occurred.
2572static TemplateName
2573SubstDefaultTemplateArgument(Sema &SemaRef,
2574                             TemplateDecl *Template,
2575                             SourceLocation TemplateLoc,
2576                             SourceLocation RAngleLoc,
2577                             TemplateTemplateParmDecl *Param,
2578                       SmallVectorImpl<TemplateArgument> &Converted,
2579                             NestedNameSpecifierLoc &QualifierLoc) {
2580  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2581                                    Converted.data(), Converted.size());
2582
2583  MultiLevelTemplateArgumentList AllTemplateArgs
2584    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2585
2586  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2587                                   Template, Converted.data(),
2588                                   Converted.size(),
2589                                   SourceRange(TemplateLoc, RAngleLoc));
2590
2591  // Substitute into the nested-name-specifier first,
2592  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2593  if (QualifierLoc) {
2594    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2595                                                       AllTemplateArgs);
2596    if (!QualifierLoc)
2597      return TemplateName();
2598  }
2599
2600  return SemaRef.SubstTemplateName(QualifierLoc,
2601                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2602                              Param->getDefaultArgument().getTemplateNameLoc(),
2603                                   AllTemplateArgs);
2604}
2605
2606/// \brief If the given template parameter has a default template
2607/// argument, substitute into that default template argument and
2608/// return the corresponding template argument.
2609TemplateArgumentLoc
2610Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2611                                              SourceLocation TemplateLoc,
2612                                              SourceLocation RAngleLoc,
2613                                              Decl *Param,
2614                      SmallVectorImpl<TemplateArgument> &Converted) {
2615   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2616    if (!TypeParm->hasDefaultArgument())
2617      return TemplateArgumentLoc();
2618
2619    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2620                                                      TemplateLoc,
2621                                                      RAngleLoc,
2622                                                      TypeParm,
2623                                                      Converted);
2624    if (DI)
2625      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2626
2627    return TemplateArgumentLoc();
2628  }
2629
2630  if (NonTypeTemplateParmDecl *NonTypeParm
2631        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2632    if (!NonTypeParm->hasDefaultArgument())
2633      return TemplateArgumentLoc();
2634
2635    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2636                                                  TemplateLoc,
2637                                                  RAngleLoc,
2638                                                  NonTypeParm,
2639                                                  Converted);
2640    if (Arg.isInvalid())
2641      return TemplateArgumentLoc();
2642
2643    Expr *ArgE = Arg.takeAs<Expr>();
2644    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2645  }
2646
2647  TemplateTemplateParmDecl *TempTempParm
2648    = cast<TemplateTemplateParmDecl>(Param);
2649  if (!TempTempParm->hasDefaultArgument())
2650    return TemplateArgumentLoc();
2651
2652
2653  NestedNameSpecifierLoc QualifierLoc;
2654  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2655                                                    TemplateLoc,
2656                                                    RAngleLoc,
2657                                                    TempTempParm,
2658                                                    Converted,
2659                                                    QualifierLoc);
2660  if (TName.isNull())
2661    return TemplateArgumentLoc();
2662
2663  return TemplateArgumentLoc(TemplateArgument(TName),
2664                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2665                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2666}
2667
2668/// \brief Check that the given template argument corresponds to the given
2669/// template parameter.
2670///
2671/// \param Param The template parameter against which the argument will be
2672/// checked.
2673///
2674/// \param Arg The template argument.
2675///
2676/// \param Template The template in which the template argument resides.
2677///
2678/// \param TemplateLoc The location of the template name for the template
2679/// whose argument list we're matching.
2680///
2681/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2682/// the template argument list.
2683///
2684/// \param ArgumentPackIndex The index into the argument pack where this
2685/// argument will be placed. Only valid if the parameter is a parameter pack.
2686///
2687/// \param Converted The checked, converted argument will be added to the
2688/// end of this small vector.
2689///
2690/// \param CTAK Describes how we arrived at this particular template argument:
2691/// explicitly written, deduced, etc.
2692///
2693/// \returns true on error, false otherwise.
2694bool Sema::CheckTemplateArgument(NamedDecl *Param,
2695                                 const TemplateArgumentLoc &Arg,
2696                                 NamedDecl *Template,
2697                                 SourceLocation TemplateLoc,
2698                                 SourceLocation RAngleLoc,
2699                                 unsigned ArgumentPackIndex,
2700                            SmallVectorImpl<TemplateArgument> &Converted,
2701                                 CheckTemplateArgumentKind CTAK) {
2702  // Check template type parameters.
2703  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2704    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2705
2706  // Check non-type template parameters.
2707  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2708    // Do substitution on the type of the non-type template parameter
2709    // with the template arguments we've seen thus far.  But if the
2710    // template has a dependent context then we cannot substitute yet.
2711    QualType NTTPType = NTTP->getType();
2712    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2713      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2714
2715    if (NTTPType->isDependentType() &&
2716        !isa<TemplateTemplateParmDecl>(Template) &&
2717        !Template->getDeclContext()->isDependentContext()) {
2718      // Do substitution on the type of the non-type template parameter.
2719      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2720                                 NTTP, Converted.data(), Converted.size(),
2721                                 SourceRange(TemplateLoc, RAngleLoc));
2722
2723      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2724                                        Converted.data(), Converted.size());
2725      NTTPType = SubstType(NTTPType,
2726                           MultiLevelTemplateArgumentList(TemplateArgs),
2727                           NTTP->getLocation(),
2728                           NTTP->getDeclName());
2729      // If that worked, check the non-type template parameter type
2730      // for validity.
2731      if (!NTTPType.isNull())
2732        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2733                                                     NTTP->getLocation());
2734      if (NTTPType.isNull())
2735        return true;
2736    }
2737
2738    switch (Arg.getArgument().getKind()) {
2739    case TemplateArgument::Null:
2740      llvm_unreachable("Should never see a NULL template argument here");
2741
2742    case TemplateArgument::Expression: {
2743      TemplateArgument Result;
2744      ExprResult Res =
2745        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2746                              Result, CTAK);
2747      if (Res.isInvalid())
2748        return true;
2749
2750      Converted.push_back(Result);
2751      break;
2752    }
2753
2754    case TemplateArgument::Declaration:
2755    case TemplateArgument::Integral:
2756      // We've already checked this template argument, so just copy
2757      // it to the list of converted arguments.
2758      Converted.push_back(Arg.getArgument());
2759      break;
2760
2761    case TemplateArgument::Template:
2762    case TemplateArgument::TemplateExpansion:
2763      // We were given a template template argument. It may not be ill-formed;
2764      // see below.
2765      if (DependentTemplateName *DTN
2766            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2767                                              .getAsDependentTemplateName()) {
2768        // We have a template argument such as \c T::template X, which we
2769        // parsed as a template template argument. However, since we now
2770        // know that we need a non-type template argument, convert this
2771        // template name into an expression.
2772
2773        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2774                                     Arg.getTemplateNameLoc());
2775
2776        CXXScopeSpec SS;
2777        SS.Adopt(Arg.getTemplateQualifierLoc());
2778        // FIXME: the template-template arg was a DependentTemplateName,
2779        // so it was provided with a template keyword. However, its source
2780        // location is not stored in the template argument structure.
2781        SourceLocation TemplateKWLoc;
2782        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2783                                                SS.getWithLocInContext(Context),
2784                                                               TemplateKWLoc,
2785                                                               NameInfo, 0));
2786
2787        // If we parsed the template argument as a pack expansion, create a
2788        // pack expansion expression.
2789        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2790          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2791          if (E.isInvalid())
2792            return true;
2793        }
2794
2795        TemplateArgument Result;
2796        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2797        if (E.isInvalid())
2798          return true;
2799
2800        Converted.push_back(Result);
2801        break;
2802      }
2803
2804      // We have a template argument that actually does refer to a class
2805      // template, alias template, or template template parameter, and
2806      // therefore cannot be a non-type template argument.
2807      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2808        << Arg.getSourceRange();
2809
2810      Diag(Param->getLocation(), diag::note_template_param_here);
2811      return true;
2812
2813    case TemplateArgument::Type: {
2814      // We have a non-type template parameter but the template
2815      // argument is a type.
2816
2817      // C++ [temp.arg]p2:
2818      //   In a template-argument, an ambiguity between a type-id and
2819      //   an expression is resolved to a type-id, regardless of the
2820      //   form of the corresponding template-parameter.
2821      //
2822      // We warn specifically about this case, since it can be rather
2823      // confusing for users.
2824      QualType T = Arg.getArgument().getAsType();
2825      SourceRange SR = Arg.getSourceRange();
2826      if (T->isFunctionType())
2827        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2828      else
2829        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2830      Diag(Param->getLocation(), diag::note_template_param_here);
2831      return true;
2832    }
2833
2834    case TemplateArgument::Pack:
2835      llvm_unreachable("Caller must expand template argument packs");
2836    }
2837
2838    return false;
2839  }
2840
2841
2842  // Check template template parameters.
2843  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2844
2845  // Substitute into the template parameter list of the template
2846  // template parameter, since previously-supplied template arguments
2847  // may appear within the template template parameter.
2848  {
2849    // Set up a template instantiation context.
2850    LocalInstantiationScope Scope(*this);
2851    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2852                               TempParm, Converted.data(), Converted.size(),
2853                               SourceRange(TemplateLoc, RAngleLoc));
2854
2855    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2856                                      Converted.data(), Converted.size());
2857    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2858                      SubstDecl(TempParm, CurContext,
2859                                MultiLevelTemplateArgumentList(TemplateArgs)));
2860    if (!TempParm)
2861      return true;
2862  }
2863
2864  switch (Arg.getArgument().getKind()) {
2865  case TemplateArgument::Null:
2866    llvm_unreachable("Should never see a NULL template argument here");
2867
2868  case TemplateArgument::Template:
2869  case TemplateArgument::TemplateExpansion:
2870    if (CheckTemplateArgument(TempParm, Arg))
2871      return true;
2872
2873    Converted.push_back(Arg.getArgument());
2874    break;
2875
2876  case TemplateArgument::Expression:
2877  case TemplateArgument::Type:
2878    // We have a template template parameter but the template
2879    // argument does not refer to a template.
2880    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2881      << getLangOpts().CPlusPlus0x;
2882    return true;
2883
2884  case TemplateArgument::Declaration:
2885    llvm_unreachable("Declaration argument with template template parameter");
2886  case TemplateArgument::Integral:
2887    llvm_unreachable("Integral argument with template template parameter");
2888
2889  case TemplateArgument::Pack:
2890    llvm_unreachable("Caller must expand template argument packs");
2891  }
2892
2893  return false;
2894}
2895
2896/// \brief Diagnose an arity mismatch in the
2897static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2898                                  SourceLocation TemplateLoc,
2899                                  TemplateArgumentListInfo &TemplateArgs) {
2900  TemplateParameterList *Params = Template->getTemplateParameters();
2901  unsigned NumParams = Params->size();
2902  unsigned NumArgs = TemplateArgs.size();
2903
2904  SourceRange Range;
2905  if (NumArgs > NumParams)
2906    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2907                        TemplateArgs.getRAngleLoc());
2908  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2909    << (NumArgs > NumParams)
2910    << (isa<ClassTemplateDecl>(Template)? 0 :
2911        isa<FunctionTemplateDecl>(Template)? 1 :
2912        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2913    << Template << Range;
2914  S.Diag(Template->getLocation(), diag::note_template_decl_here)
2915    << Params->getSourceRange();
2916  return true;
2917}
2918
2919/// \brief Check that the given template argument list is well-formed
2920/// for specializing the given template.
2921bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2922                                     SourceLocation TemplateLoc,
2923                                     TemplateArgumentListInfo &TemplateArgs,
2924                                     bool PartialTemplateArgs,
2925                          SmallVectorImpl<TemplateArgument> &Converted,
2926                                     bool *ExpansionIntoFixedList) {
2927  if (ExpansionIntoFixedList)
2928    *ExpansionIntoFixedList = false;
2929
2930  TemplateParameterList *Params = Template->getTemplateParameters();
2931  unsigned NumParams = Params->size();
2932  unsigned NumArgs = TemplateArgs.size();
2933  bool Invalid = false;
2934
2935  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2936
2937  bool HasParameterPack =
2938    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2939
2940  // C++ [temp.arg]p1:
2941  //   [...] The type and form of each template-argument specified in
2942  //   a template-id shall match the type and form specified for the
2943  //   corresponding parameter declared by the template in its
2944  //   template-parameter-list.
2945  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2946  SmallVector<TemplateArgument, 2> ArgumentPack;
2947  TemplateParameterList::iterator Param = Params->begin(),
2948                               ParamEnd = Params->end();
2949  unsigned ArgIdx = 0;
2950  LocalInstantiationScope InstScope(*this, true);
2951  bool SawPackExpansion = false;
2952  while (Param != ParamEnd) {
2953    if (ArgIdx < NumArgs) {
2954      // If we have an expanded parameter pack, make sure we don't have too
2955      // many arguments.
2956      // FIXME: This really should fall out from the normal arity checking.
2957      if (NonTypeTemplateParmDecl *NTTP
2958                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2959        if (NTTP->isExpandedParameterPack() &&
2960            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2961          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2962            << true
2963            << (isa<ClassTemplateDecl>(Template)? 0 :
2964                isa<FunctionTemplateDecl>(Template)? 1 :
2965                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2966            << Template;
2967          Diag(Template->getLocation(), diag::note_template_decl_here)
2968            << Params->getSourceRange();
2969          return true;
2970        }
2971      }
2972
2973      // Check the template argument we were given.
2974      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2975                                TemplateLoc, RAngleLoc,
2976                                ArgumentPack.size(), Converted))
2977        return true;
2978
2979      if ((*Param)->isTemplateParameterPack()) {
2980        // The template parameter was a template parameter pack, so take the
2981        // deduced argument and place it on the argument pack. Note that we
2982        // stay on the same template parameter so that we can deduce more
2983        // arguments.
2984        ArgumentPack.push_back(Converted.back());
2985        Converted.pop_back();
2986      } else {
2987        // Move to the next template parameter.
2988        ++Param;
2989      }
2990
2991      // If this template argument is a pack expansion, record that fact
2992      // and break out; we can't actually check any more.
2993      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
2994        SawPackExpansion = true;
2995        ++ArgIdx;
2996        break;
2997      }
2998
2999      ++ArgIdx;
3000      continue;
3001    }
3002
3003    // If we're checking a partial template argument list, we're done.
3004    if (PartialTemplateArgs) {
3005      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3006        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3007                                                         ArgumentPack.data(),
3008                                                         ArgumentPack.size()));
3009
3010      return Invalid;
3011    }
3012
3013    // If we have a template parameter pack with no more corresponding
3014    // arguments, just break out now and we'll fill in the argument pack below.
3015    if ((*Param)->isTemplateParameterPack())
3016      break;
3017
3018    // Check whether we have a default argument.
3019    TemplateArgumentLoc Arg;
3020
3021    // Retrieve the default template argument from the template
3022    // parameter. For each kind of template parameter, we substitute the
3023    // template arguments provided thus far and any "outer" template arguments
3024    // (when the template parameter was part of a nested template) into
3025    // the default argument.
3026    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3027      if (!TTP->hasDefaultArgument())
3028        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3029                                     TemplateArgs);
3030
3031      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3032                                                             Template,
3033                                                             TemplateLoc,
3034                                                             RAngleLoc,
3035                                                             TTP,
3036                                                             Converted);
3037      if (!ArgType)
3038        return true;
3039
3040      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3041                                ArgType);
3042    } else if (NonTypeTemplateParmDecl *NTTP
3043                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3044      if (!NTTP->hasDefaultArgument())
3045        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3046                                     TemplateArgs);
3047
3048      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3049                                                              TemplateLoc,
3050                                                              RAngleLoc,
3051                                                              NTTP,
3052                                                              Converted);
3053      if (E.isInvalid())
3054        return true;
3055
3056      Expr *Ex = E.takeAs<Expr>();
3057      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3058    } else {
3059      TemplateTemplateParmDecl *TempParm
3060        = cast<TemplateTemplateParmDecl>(*Param);
3061
3062      if (!TempParm->hasDefaultArgument())
3063        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3064                                     TemplateArgs);
3065
3066      NestedNameSpecifierLoc QualifierLoc;
3067      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3068                                                       TemplateLoc,
3069                                                       RAngleLoc,
3070                                                       TempParm,
3071                                                       Converted,
3072                                                       QualifierLoc);
3073      if (Name.isNull())
3074        return true;
3075
3076      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3077                           TempParm->getDefaultArgument().getTemplateNameLoc());
3078    }
3079
3080    // Introduce an instantiation record that describes where we are using
3081    // the default template argument.
3082    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3083                                        Converted.data(), Converted.size(),
3084                                        SourceRange(TemplateLoc, RAngleLoc));
3085
3086    // Check the default template argument.
3087    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3088                              RAngleLoc, 0, Converted))
3089      return true;
3090
3091    // Core issue 150 (assumed resolution): if this is a template template
3092    // parameter, keep track of the default template arguments from the
3093    // template definition.
3094    if (isTemplateTemplateParameter)
3095      TemplateArgs.addArgument(Arg);
3096
3097    // Move to the next template parameter and argument.
3098    ++Param;
3099    ++ArgIdx;
3100  }
3101
3102  // If we saw a pack expansion, then directly convert the remaining arguments,
3103  // because we don't know what parameters they'll match up with.
3104  if (SawPackExpansion) {
3105    bool AddToArgumentPack
3106      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3107    while (ArgIdx < NumArgs) {
3108      if (AddToArgumentPack)
3109        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3110      else
3111        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3112      ++ArgIdx;
3113    }
3114
3115    // Push the argument pack onto the list of converted arguments.
3116    if (AddToArgumentPack) {
3117      if (ArgumentPack.empty())
3118        Converted.push_back(TemplateArgument(0, 0));
3119      else {
3120        Converted.push_back(
3121          TemplateArgument::CreatePackCopy(Context,
3122                                           ArgumentPack.data(),
3123                                           ArgumentPack.size()));
3124        ArgumentPack.clear();
3125      }
3126    } else if (ExpansionIntoFixedList) {
3127      // We have expanded a pack into a fixed list.
3128      *ExpansionIntoFixedList = true;
3129    }
3130
3131    return Invalid;
3132  }
3133
3134  // If we have any leftover arguments, then there were too many arguments.
3135  // Complain and fail.
3136  if (ArgIdx < NumArgs)
3137    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3138
3139  // If we have an expanded parameter pack, make sure we don't have too
3140  // many arguments.
3141  // FIXME: This really should fall out from the normal arity checking.
3142  if (Param != ParamEnd) {
3143    if (NonTypeTemplateParmDecl *NTTP
3144          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3145      if (NTTP->isExpandedParameterPack() &&
3146          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3147        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3148          << false
3149          << (isa<ClassTemplateDecl>(Template)? 0 :
3150              isa<FunctionTemplateDecl>(Template)? 1 :
3151              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3152          << Template;
3153        Diag(Template->getLocation(), diag::note_template_decl_here)
3154          << Params->getSourceRange();
3155        return true;
3156      }
3157    }
3158  }
3159
3160  // Form argument packs for each of the parameter packs remaining.
3161  while (Param != ParamEnd) {
3162    // If we're checking a partial list of template arguments, don't fill
3163    // in arguments for non-template parameter packs.
3164    if ((*Param)->isTemplateParameterPack()) {
3165      if (!HasParameterPack)
3166        return true;
3167      if (ArgumentPack.empty())
3168        Converted.push_back(TemplateArgument(0, 0));
3169      else {
3170        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3171                                                          ArgumentPack.data(),
3172                                                         ArgumentPack.size()));
3173        ArgumentPack.clear();
3174      }
3175    } else if (!PartialTemplateArgs)
3176      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3177
3178    ++Param;
3179  }
3180
3181  return Invalid;
3182}
3183
3184namespace {
3185  class UnnamedLocalNoLinkageFinder
3186    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3187  {
3188    Sema &S;
3189    SourceRange SR;
3190
3191    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3192
3193  public:
3194    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3195
3196    bool Visit(QualType T) {
3197      return inherited::Visit(T.getTypePtr());
3198    }
3199
3200#define TYPE(Class, Parent) \
3201    bool Visit##Class##Type(const Class##Type *);
3202#define ABSTRACT_TYPE(Class, Parent) \
3203    bool Visit##Class##Type(const Class##Type *) { return false; }
3204#define NON_CANONICAL_TYPE(Class, Parent) \
3205    bool Visit##Class##Type(const Class##Type *) { return false; }
3206#include "clang/AST/TypeNodes.def"
3207
3208    bool VisitTagDecl(const TagDecl *Tag);
3209    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3210  };
3211}
3212
3213bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3214  return false;
3215}
3216
3217bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3218  return Visit(T->getElementType());
3219}
3220
3221bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3222  return Visit(T->getPointeeType());
3223}
3224
3225bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3226                                                    const BlockPointerType* T) {
3227  return Visit(T->getPointeeType());
3228}
3229
3230bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3231                                                const LValueReferenceType* T) {
3232  return Visit(T->getPointeeType());
3233}
3234
3235bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3236                                                const RValueReferenceType* T) {
3237  return Visit(T->getPointeeType());
3238}
3239
3240bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3241                                                  const MemberPointerType* T) {
3242  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3243}
3244
3245bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3246                                                  const ConstantArrayType* T) {
3247  return Visit(T->getElementType());
3248}
3249
3250bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3251                                                 const IncompleteArrayType* T) {
3252  return Visit(T->getElementType());
3253}
3254
3255bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3256                                                   const VariableArrayType* T) {
3257  return Visit(T->getElementType());
3258}
3259
3260bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3261                                            const DependentSizedArrayType* T) {
3262  return Visit(T->getElementType());
3263}
3264
3265bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3266                                         const DependentSizedExtVectorType* T) {
3267  return Visit(T->getElementType());
3268}
3269
3270bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3271  return Visit(T->getElementType());
3272}
3273
3274bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3275  return Visit(T->getElementType());
3276}
3277
3278bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3279                                                  const FunctionProtoType* T) {
3280  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3281                                         AEnd = T->arg_type_end();
3282       A != AEnd; ++A) {
3283    if (Visit(*A))
3284      return true;
3285  }
3286
3287  return Visit(T->getResultType());
3288}
3289
3290bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3291                                               const FunctionNoProtoType* T) {
3292  return Visit(T->getResultType());
3293}
3294
3295bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3296                                                  const UnresolvedUsingType*) {
3297  return false;
3298}
3299
3300bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3301  return false;
3302}
3303
3304bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3305  return Visit(T->getUnderlyingType());
3306}
3307
3308bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3309  return false;
3310}
3311
3312bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3313                                                    const UnaryTransformType*) {
3314  return false;
3315}
3316
3317bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3318  return Visit(T->getDeducedType());
3319}
3320
3321bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3322  return VisitTagDecl(T->getDecl());
3323}
3324
3325bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3326  return VisitTagDecl(T->getDecl());
3327}
3328
3329bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3330                                                 const TemplateTypeParmType*) {
3331  return false;
3332}
3333
3334bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3335                                        const SubstTemplateTypeParmPackType *) {
3336  return false;
3337}
3338
3339bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3340                                            const TemplateSpecializationType*) {
3341  return false;
3342}
3343
3344bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3345                                              const InjectedClassNameType* T) {
3346  return VisitTagDecl(T->getDecl());
3347}
3348
3349bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3350                                                   const DependentNameType* T) {
3351  return VisitNestedNameSpecifier(T->getQualifier());
3352}
3353
3354bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3355                                 const DependentTemplateSpecializationType* T) {
3356  return VisitNestedNameSpecifier(T->getQualifier());
3357}
3358
3359bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3360                                                   const PackExpansionType* T) {
3361  return Visit(T->getPattern());
3362}
3363
3364bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3365  return false;
3366}
3367
3368bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3369                                                   const ObjCInterfaceType *) {
3370  return false;
3371}
3372
3373bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3374                                                const ObjCObjectPointerType *) {
3375  return false;
3376}
3377
3378bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3379  return Visit(T->getValueType());
3380}
3381
3382bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3383  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3384    S.Diag(SR.getBegin(),
3385           S.getLangOpts().CPlusPlus0x ?
3386             diag::warn_cxx98_compat_template_arg_local_type :
3387             diag::ext_template_arg_local_type)
3388      << S.Context.getTypeDeclType(Tag) << SR;
3389    return true;
3390  }
3391
3392  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3393    S.Diag(SR.getBegin(),
3394           S.getLangOpts().CPlusPlus0x ?
3395             diag::warn_cxx98_compat_template_arg_unnamed_type :
3396             diag::ext_template_arg_unnamed_type) << SR;
3397    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3398    return true;
3399  }
3400
3401  return false;
3402}
3403
3404bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3405                                                    NestedNameSpecifier *NNS) {
3406  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3407    return true;
3408
3409  switch (NNS->getKind()) {
3410  case NestedNameSpecifier::Identifier:
3411  case NestedNameSpecifier::Namespace:
3412  case NestedNameSpecifier::NamespaceAlias:
3413  case NestedNameSpecifier::Global:
3414    return false;
3415
3416  case NestedNameSpecifier::TypeSpec:
3417  case NestedNameSpecifier::TypeSpecWithTemplate:
3418    return Visit(QualType(NNS->getAsType(), 0));
3419  }
3420  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3421}
3422
3423
3424/// \brief Check a template argument against its corresponding
3425/// template type parameter.
3426///
3427/// This routine implements the semantics of C++ [temp.arg.type]. It
3428/// returns true if an error occurred, and false otherwise.
3429bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3430                                 TypeSourceInfo *ArgInfo) {
3431  assert(ArgInfo && "invalid TypeSourceInfo");
3432  QualType Arg = ArgInfo->getType();
3433  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3434
3435  if (Arg->isVariablyModifiedType()) {
3436    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3437  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3438    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3439  }
3440
3441  // C++03 [temp.arg.type]p2:
3442  //   A local type, a type with no linkage, an unnamed type or a type
3443  //   compounded from any of these types shall not be used as a
3444  //   template-argument for a template type-parameter.
3445  //
3446  // C++11 allows these, and even in C++03 we allow them as an extension with
3447  // a warning.
3448  if (LangOpts.CPlusPlus0x ?
3449     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3450                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3451      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3452                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3453      Arg->hasUnnamedOrLocalType()) {
3454    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3455    (void)Finder.Visit(Context.getCanonicalType(Arg));
3456  }
3457
3458  return false;
3459}
3460
3461/// \brief Checks whether the given template argument is the address
3462/// of an object or function according to C++ [temp.arg.nontype]p1.
3463static bool
3464CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3465                                               NonTypeTemplateParmDecl *Param,
3466                                               QualType ParamType,
3467                                               Expr *ArgIn,
3468                                               TemplateArgument &Converted) {
3469  bool Invalid = false;
3470  Expr *Arg = ArgIn;
3471  QualType ArgType = Arg->getType();
3472
3473  // See through any implicit casts we added to fix the type.
3474  Arg = Arg->IgnoreImpCasts();
3475
3476  // C++ [temp.arg.nontype]p1:
3477  //
3478  //   A template-argument for a non-type, non-template
3479  //   template-parameter shall be one of: [...]
3480  //
3481  //     -- the address of an object or function with external
3482  //        linkage, including function templates and function
3483  //        template-ids but excluding non-static class members,
3484  //        expressed as & id-expression where the & is optional if
3485  //        the name refers to a function or array, or if the
3486  //        corresponding template-parameter is a reference; or
3487
3488  // In C++98/03 mode, give an extension warning on any extra parentheses.
3489  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3490  bool ExtraParens = false;
3491  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3492    if (!Invalid && !ExtraParens) {
3493      S.Diag(Arg->getLocStart(),
3494             S.getLangOpts().CPlusPlus0x ?
3495               diag::warn_cxx98_compat_template_arg_extra_parens :
3496               diag::ext_template_arg_extra_parens)
3497        << Arg->getSourceRange();
3498      ExtraParens = true;
3499    }
3500
3501    Arg = Parens->getSubExpr();
3502  }
3503
3504  while (SubstNonTypeTemplateParmExpr *subst =
3505           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3506    Arg = subst->getReplacement()->IgnoreImpCasts();
3507
3508  bool AddressTaken = false;
3509  SourceLocation AddrOpLoc;
3510  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3511    if (UnOp->getOpcode() == UO_AddrOf) {
3512      Arg = UnOp->getSubExpr();
3513      AddressTaken = true;
3514      AddrOpLoc = UnOp->getOperatorLoc();
3515    }
3516  }
3517
3518  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3519    Converted = TemplateArgument(ArgIn);
3520    return false;
3521  }
3522
3523  while (SubstNonTypeTemplateParmExpr *subst =
3524           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3525    Arg = subst->getReplacement()->IgnoreImpCasts();
3526
3527  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3528  if (!DRE) {
3529    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3530      << Arg->getSourceRange();
3531    S.Diag(Param->getLocation(), diag::note_template_param_here);
3532    return true;
3533  }
3534
3535  // Stop checking the precise nature of the argument if it is value dependent,
3536  // it should be checked when instantiated.
3537  if (Arg->isValueDependent()) {
3538    Converted = TemplateArgument(ArgIn);
3539    return false;
3540  }
3541
3542  if (!isa<ValueDecl>(DRE->getDecl())) {
3543    S.Diag(Arg->getLocStart(),
3544           diag::err_template_arg_not_object_or_func_form)
3545      << Arg->getSourceRange();
3546    S.Diag(Param->getLocation(), diag::note_template_param_here);
3547    return true;
3548  }
3549
3550  NamedDecl *Entity = 0;
3551
3552  // Cannot refer to non-static data members
3553  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3554    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3555      << Field << Arg->getSourceRange();
3556    S.Diag(Param->getLocation(), diag::note_template_param_here);
3557    return true;
3558  }
3559
3560  // Cannot refer to non-static member functions
3561  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3562    if (!Method->isStatic()) {
3563      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3564        << Method << Arg->getSourceRange();
3565      S.Diag(Param->getLocation(), diag::note_template_param_here);
3566      return true;
3567    }
3568
3569  // Functions must have external linkage.
3570  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3571    if (!isExternalLinkage(Func->getLinkage())) {
3572      S.Diag(Arg->getLocStart(),
3573             diag::err_template_arg_function_not_extern)
3574        << Func << Arg->getSourceRange();
3575      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3576        << true;
3577      return true;
3578    }
3579
3580    // Okay: we've named a function with external linkage.
3581    Entity = Func;
3582
3583    // If the template parameter has pointer type, the function decays.
3584    if (ParamType->isPointerType() && !AddressTaken)
3585      ArgType = S.Context.getPointerType(Func->getType());
3586    else if (AddressTaken && ParamType->isReferenceType()) {
3587      // If we originally had an address-of operator, but the
3588      // parameter has reference type, complain and (if things look
3589      // like they will work) drop the address-of operator.
3590      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3591                                            ParamType.getNonReferenceType())) {
3592        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3593          << ParamType;
3594        S.Diag(Param->getLocation(), diag::note_template_param_here);
3595        return true;
3596      }
3597
3598      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3599        << ParamType
3600        << FixItHint::CreateRemoval(AddrOpLoc);
3601      S.Diag(Param->getLocation(), diag::note_template_param_here);
3602
3603      ArgType = Func->getType();
3604    }
3605  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3606    if (!isExternalLinkage(Var->getLinkage())) {
3607      S.Diag(Arg->getLocStart(),
3608             diag::err_template_arg_object_not_extern)
3609        << Var << Arg->getSourceRange();
3610      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3611        << true;
3612      return true;
3613    }
3614
3615    // A value of reference type is not an object.
3616    if (Var->getType()->isReferenceType()) {
3617      S.Diag(Arg->getLocStart(),
3618             diag::err_template_arg_reference_var)
3619        << Var->getType() << Arg->getSourceRange();
3620      S.Diag(Param->getLocation(), diag::note_template_param_here);
3621      return true;
3622    }
3623
3624    // Okay: we've named an object with external linkage
3625    Entity = Var;
3626
3627    // If the template parameter has pointer type, we must have taken
3628    // the address of this object.
3629    if (ParamType->isReferenceType()) {
3630      if (AddressTaken) {
3631        // If we originally had an address-of operator, but the
3632        // parameter has reference type, complain and (if things look
3633        // like they will work) drop the address-of operator.
3634        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3635                                            ParamType.getNonReferenceType())) {
3636          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3637            << ParamType;
3638          S.Diag(Param->getLocation(), diag::note_template_param_here);
3639          return true;
3640        }
3641
3642        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3643          << ParamType
3644          << FixItHint::CreateRemoval(AddrOpLoc);
3645        S.Diag(Param->getLocation(), diag::note_template_param_here);
3646
3647        ArgType = Var->getType();
3648      }
3649    } else if (!AddressTaken && ParamType->isPointerType()) {
3650      if (Var->getType()->isArrayType()) {
3651        // Array-to-pointer decay.
3652        ArgType = S.Context.getArrayDecayedType(Var->getType());
3653      } else {
3654        // If the template parameter has pointer type but the address of
3655        // this object was not taken, complain and (possibly) recover by
3656        // taking the address of the entity.
3657        ArgType = S.Context.getPointerType(Var->getType());
3658        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3659          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3660            << ParamType;
3661          S.Diag(Param->getLocation(), diag::note_template_param_here);
3662          return true;
3663        }
3664
3665        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3666          << ParamType
3667          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3668
3669        S.Diag(Param->getLocation(), diag::note_template_param_here);
3670      }
3671    }
3672  } else {
3673    // We found something else, but we don't know specifically what it is.
3674    S.Diag(Arg->getLocStart(),
3675           diag::err_template_arg_not_object_or_func)
3676      << Arg->getSourceRange();
3677    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3678    return true;
3679  }
3680
3681  bool ObjCLifetimeConversion;
3682  if (ParamType->isPointerType() &&
3683      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3684      S.IsQualificationConversion(ArgType, ParamType, false,
3685                                  ObjCLifetimeConversion)) {
3686    // For pointer-to-object types, qualification conversions are
3687    // permitted.
3688  } else {
3689    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3690      if (!ParamRef->getPointeeType()->isFunctionType()) {
3691        // C++ [temp.arg.nontype]p5b3:
3692        //   For a non-type template-parameter of type reference to
3693        //   object, no conversions apply. The type referred to by the
3694        //   reference may be more cv-qualified than the (otherwise
3695        //   identical) type of the template- argument. The
3696        //   template-parameter is bound directly to the
3697        //   template-argument, which shall be an lvalue.
3698
3699        // FIXME: Other qualifiers?
3700        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3701        unsigned ArgQuals = ArgType.getCVRQualifiers();
3702
3703        if ((ParamQuals | ArgQuals) != ParamQuals) {
3704          S.Diag(Arg->getLocStart(),
3705                 diag::err_template_arg_ref_bind_ignores_quals)
3706            << ParamType << Arg->getType()
3707            << Arg->getSourceRange();
3708          S.Diag(Param->getLocation(), diag::note_template_param_here);
3709          return true;
3710        }
3711      }
3712    }
3713
3714    // At this point, the template argument refers to an object or
3715    // function with external linkage. We now need to check whether the
3716    // argument and parameter types are compatible.
3717    if (!S.Context.hasSameUnqualifiedType(ArgType,
3718                                          ParamType.getNonReferenceType())) {
3719      // We can't perform this conversion or binding.
3720      if (ParamType->isReferenceType())
3721        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3722          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3723      else
3724        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3725          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3726      S.Diag(Param->getLocation(), diag::note_template_param_here);
3727      return true;
3728    }
3729  }
3730
3731  // Create the template argument.
3732  Converted = TemplateArgument(Entity->getCanonicalDecl());
3733  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3734  return false;
3735}
3736
3737/// \brief Checks whether the given template argument is a pointer to
3738/// member constant according to C++ [temp.arg.nontype]p1.
3739bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3740                                                TemplateArgument &Converted) {
3741  bool Invalid = false;
3742
3743  // See through any implicit casts we added to fix the type.
3744  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3745    Arg = Cast->getSubExpr();
3746
3747  // C++ [temp.arg.nontype]p1:
3748  //
3749  //   A template-argument for a non-type, non-template
3750  //   template-parameter shall be one of: [...]
3751  //
3752  //     -- a pointer to member expressed as described in 5.3.1.
3753  DeclRefExpr *DRE = 0;
3754
3755  // In C++98/03 mode, give an extension warning on any extra parentheses.
3756  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3757  bool ExtraParens = false;
3758  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3759    if (!Invalid && !ExtraParens) {
3760      Diag(Arg->getLocStart(),
3761           getLangOpts().CPlusPlus0x ?
3762             diag::warn_cxx98_compat_template_arg_extra_parens :
3763             diag::ext_template_arg_extra_parens)
3764        << Arg->getSourceRange();
3765      ExtraParens = true;
3766    }
3767
3768    Arg = Parens->getSubExpr();
3769  }
3770
3771  while (SubstNonTypeTemplateParmExpr *subst =
3772           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3773    Arg = subst->getReplacement()->IgnoreImpCasts();
3774
3775  // A pointer-to-member constant written &Class::member.
3776  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3777    if (UnOp->getOpcode() == UO_AddrOf) {
3778      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3779      if (DRE && !DRE->getQualifier())
3780        DRE = 0;
3781    }
3782  }
3783  // A constant of pointer-to-member type.
3784  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3785    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3786      if (VD->getType()->isMemberPointerType()) {
3787        if (isa<NonTypeTemplateParmDecl>(VD) ||
3788            (isa<VarDecl>(VD) &&
3789             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3790          if (Arg->isTypeDependent() || Arg->isValueDependent())
3791            Converted = TemplateArgument(Arg);
3792          else
3793            Converted = TemplateArgument(VD->getCanonicalDecl());
3794          return Invalid;
3795        }
3796      }
3797    }
3798
3799    DRE = 0;
3800  }
3801
3802  if (!DRE)
3803    return Diag(Arg->getLocStart(),
3804                diag::err_template_arg_not_pointer_to_member_form)
3805      << Arg->getSourceRange();
3806
3807  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3808    assert((isa<FieldDecl>(DRE->getDecl()) ||
3809            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3810           "Only non-static member pointers can make it here");
3811
3812    // Okay: this is the address of a non-static member, and therefore
3813    // a member pointer constant.
3814    if (Arg->isTypeDependent() || Arg->isValueDependent())
3815      Converted = TemplateArgument(Arg);
3816    else
3817      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3818    return Invalid;
3819  }
3820
3821  // We found something else, but we don't know specifically what it is.
3822  Diag(Arg->getLocStart(),
3823       diag::err_template_arg_not_pointer_to_member_form)
3824      << Arg->getSourceRange();
3825  Diag(DRE->getDecl()->getLocation(),
3826       diag::note_template_arg_refers_here);
3827  return true;
3828}
3829
3830/// \brief Check a template argument against its corresponding
3831/// non-type template parameter.
3832///
3833/// This routine implements the semantics of C++ [temp.arg.nontype].
3834/// If an error occurred, it returns ExprError(); otherwise, it
3835/// returns the converted template argument. \p
3836/// InstantiatedParamType is the type of the non-type template
3837/// parameter after it has been instantiated.
3838ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3839                                       QualType InstantiatedParamType, Expr *Arg,
3840                                       TemplateArgument &Converted,
3841                                       CheckTemplateArgumentKind CTAK) {
3842  SourceLocation StartLoc = Arg->getLocStart();
3843
3844  // If either the parameter has a dependent type or the argument is
3845  // type-dependent, there's nothing we can check now.
3846  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3847    // FIXME: Produce a cloned, canonical expression?
3848    Converted = TemplateArgument(Arg);
3849    return Owned(Arg);
3850  }
3851
3852  // C++ [temp.arg.nontype]p5:
3853  //   The following conversions are performed on each expression used
3854  //   as a non-type template-argument. If a non-type
3855  //   template-argument cannot be converted to the type of the
3856  //   corresponding template-parameter then the program is
3857  //   ill-formed.
3858  QualType ParamType = InstantiatedParamType;
3859  if (ParamType->isIntegralOrEnumerationType()) {
3860    // C++11:
3861    //   -- for a non-type template-parameter of integral or
3862    //      enumeration type, conversions permitted in a converted
3863    //      constant expression are applied.
3864    //
3865    // C++98:
3866    //   -- for a non-type template-parameter of integral or
3867    //      enumeration type, integral promotions (4.5) and integral
3868    //      conversions (4.7) are applied.
3869
3870    if (CTAK == CTAK_Deduced &&
3871        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
3872      // C++ [temp.deduct.type]p17:
3873      //   If, in the declaration of a function template with a non-type
3874      //   template-parameter, the non-type template-parameter is used
3875      //   in an expression in the function parameter-list and, if the
3876      //   corresponding template-argument is deduced, the
3877      //   template-argument type shall match the type of the
3878      //   template-parameter exactly, except that a template-argument
3879      //   deduced from an array bound may be of any integral type.
3880      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3881        << Arg->getType().getUnqualifiedType()
3882        << ParamType.getUnqualifiedType();
3883      Diag(Param->getLocation(), diag::note_template_param_here);
3884      return ExprError();
3885    }
3886
3887    if (getLangOpts().CPlusPlus0x) {
3888      // We can't check arbitrary value-dependent arguments.
3889      // FIXME: If there's no viable conversion to the template parameter type,
3890      // we should be able to diagnose that prior to instantiation.
3891      if (Arg->isValueDependent()) {
3892        Converted = TemplateArgument(Arg);
3893        return Owned(Arg);
3894      }
3895
3896      // C++ [temp.arg.nontype]p1:
3897      //   A template-argument for a non-type, non-template template-parameter
3898      //   shall be one of:
3899      //
3900      //     -- for a non-type template-parameter of integral or enumeration
3901      //        type, a converted constant expression of the type of the
3902      //        template-parameter; or
3903      llvm::APSInt Value;
3904      ExprResult ArgResult =
3905        CheckConvertedConstantExpression(Arg, ParamType, Value,
3906                                         CCEK_TemplateArg);
3907      if (ArgResult.isInvalid())
3908        return ExprError();
3909
3910      // Widen the argument value to sizeof(parameter type). This is almost
3911      // always a no-op, except when the parameter type is bool. In
3912      // that case, this may extend the argument from 1 bit to 8 bits.
3913      QualType IntegerType = ParamType;
3914      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3915        IntegerType = Enum->getDecl()->getIntegerType();
3916      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
3917
3918      Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
3919      return ArgResult;
3920    }
3921
3922    ExprResult ArgResult = DefaultLvalueConversion(Arg);
3923    if (ArgResult.isInvalid())
3924      return ExprError();
3925    Arg = ArgResult.take();
3926
3927    QualType ArgType = Arg->getType();
3928
3929    // C++ [temp.arg.nontype]p1:
3930    //   A template-argument for a non-type, non-template
3931    //   template-parameter shall be one of:
3932    //
3933    //     -- an integral constant-expression of integral or enumeration
3934    //        type; or
3935    //     -- the name of a non-type template-parameter; or
3936    SourceLocation NonConstantLoc;
3937    llvm::APSInt Value;
3938    if (!ArgType->isIntegralOrEnumerationType()) {
3939      Diag(Arg->getLocStart(),
3940           diag::err_template_arg_not_integral_or_enumeral)
3941        << ArgType << Arg->getSourceRange();
3942      Diag(Param->getLocation(), diag::note_template_param_here);
3943      return ExprError();
3944    } else if (!Arg->isValueDependent()) {
3945      Arg = VerifyIntegerConstantExpression(Arg, &Value,
3946        PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
3947      if (!Arg)
3948        return ExprError();
3949    }
3950
3951    // From here on out, all we care about are the unqualified forms
3952    // of the parameter and argument types.
3953    ParamType = ParamType.getUnqualifiedType();
3954    ArgType = ArgType.getUnqualifiedType();
3955
3956    // Try to convert the argument to the parameter's type.
3957    if (Context.hasSameType(ParamType, ArgType)) {
3958      // Okay: no conversion necessary
3959    } else if (ParamType->isBooleanType()) {
3960      // This is an integral-to-boolean conversion.
3961      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3962    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3963               !ParamType->isEnumeralType()) {
3964      // This is an integral promotion or conversion.
3965      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3966    } else {
3967      // We can't perform this conversion.
3968      Diag(Arg->getLocStart(),
3969           diag::err_template_arg_not_convertible)
3970        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3971      Diag(Param->getLocation(), diag::note_template_param_here);
3972      return ExprError();
3973    }
3974
3975    // Add the value of this argument to the list of converted
3976    // arguments. We use the bitwidth and signedness of the template
3977    // parameter.
3978    if (Arg->isValueDependent()) {
3979      // The argument is value-dependent. Create a new
3980      // TemplateArgument with the converted expression.
3981      Converted = TemplateArgument(Arg);
3982      return Owned(Arg);
3983    }
3984
3985    QualType IntegerType = Context.getCanonicalType(ParamType);
3986    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3987      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3988
3989    if (ParamType->isBooleanType()) {
3990      // Value must be zero or one.
3991      Value = Value != 0;
3992      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3993      if (Value.getBitWidth() != AllowedBits)
3994        Value = Value.extOrTrunc(AllowedBits);
3995      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3996    } else {
3997      llvm::APSInt OldValue = Value;
3998
3999      // Coerce the template argument's value to the value it will have
4000      // based on the template parameter's type.
4001      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4002      if (Value.getBitWidth() != AllowedBits)
4003        Value = Value.extOrTrunc(AllowedBits);
4004      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4005
4006      // Complain if an unsigned parameter received a negative value.
4007      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4008               && (OldValue.isSigned() && OldValue.isNegative())) {
4009        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4010          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4011          << Arg->getSourceRange();
4012        Diag(Param->getLocation(), diag::note_template_param_here);
4013      }
4014
4015      // Complain if we overflowed the template parameter's type.
4016      unsigned RequiredBits;
4017      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4018        RequiredBits = OldValue.getActiveBits();
4019      else if (OldValue.isUnsigned())
4020        RequiredBits = OldValue.getActiveBits() + 1;
4021      else
4022        RequiredBits = OldValue.getMinSignedBits();
4023      if (RequiredBits > AllowedBits) {
4024        Diag(Arg->getLocStart(),
4025             diag::warn_template_arg_too_large)
4026          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4027          << Arg->getSourceRange();
4028        Diag(Param->getLocation(), diag::note_template_param_here);
4029      }
4030    }
4031
4032    Converted = TemplateArgument(Value,
4033                                 ParamType->isEnumeralType()
4034                                   ? Context.getCanonicalType(ParamType)
4035                                   : IntegerType);
4036    return Owned(Arg);
4037  }
4038
4039  QualType ArgType = Arg->getType();
4040  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4041
4042  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
4043  // from a template argument of type std::nullptr_t to a non-type
4044  // template parameter of type pointer to object, pointer to
4045  // function, or pointer-to-member, respectively.
4046  if (ArgType->isNullPtrType()) {
4047    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
4048      Converted = TemplateArgument((NamedDecl *)0);
4049      return Owned(Arg);
4050    }
4051
4052    if (ParamType->isNullPtrType()) {
4053      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
4054      Converted = TemplateArgument(Zero, Context.NullPtrTy);
4055      return Owned(Arg);
4056    }
4057  }
4058
4059  // Handle pointer-to-function, reference-to-function, and
4060  // pointer-to-member-function all in (roughly) the same way.
4061  if (// -- For a non-type template-parameter of type pointer to
4062      //    function, only the function-to-pointer conversion (4.3) is
4063      //    applied. If the template-argument represents a set of
4064      //    overloaded functions (or a pointer to such), the matching
4065      //    function is selected from the set (13.4).
4066      (ParamType->isPointerType() &&
4067       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4068      // -- For a non-type template-parameter of type reference to
4069      //    function, no conversions apply. If the template-argument
4070      //    represents a set of overloaded functions, the matching
4071      //    function is selected from the set (13.4).
4072      (ParamType->isReferenceType() &&
4073       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4074      // -- For a non-type template-parameter of type pointer to
4075      //    member function, no conversions apply. If the
4076      //    template-argument represents a set of overloaded member
4077      //    functions, the matching member function is selected from
4078      //    the set (13.4).
4079      (ParamType->isMemberPointerType() &&
4080       ParamType->getAs<MemberPointerType>()->getPointeeType()
4081         ->isFunctionType())) {
4082
4083    if (Arg->getType() == Context.OverloadTy) {
4084      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4085                                                                true,
4086                                                                FoundResult)) {
4087        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4088          return ExprError();
4089
4090        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4091        ArgType = Arg->getType();
4092      } else
4093        return ExprError();
4094    }
4095
4096    if (!ParamType->isMemberPointerType()) {
4097      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4098                                                         ParamType,
4099                                                         Arg, Converted))
4100        return ExprError();
4101      return Owned(Arg);
4102    }
4103
4104    bool ObjCLifetimeConversion;
4105    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
4106                                  false, ObjCLifetimeConversion)) {
4107      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4108                              Arg->getValueKind()).take();
4109    } else if (!Context.hasSameUnqualifiedType(ArgType,
4110                                           ParamType.getNonReferenceType())) {
4111      // We can't perform this conversion.
4112      Diag(Arg->getLocStart(),
4113           diag::err_template_arg_not_convertible)
4114        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4115      Diag(Param->getLocation(), diag::note_template_param_here);
4116      return ExprError();
4117    }
4118
4119    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4120      return ExprError();
4121    return Owned(Arg);
4122  }
4123
4124  if (ParamType->isPointerType()) {
4125    //   -- for a non-type template-parameter of type pointer to
4126    //      object, qualification conversions (4.4) and the
4127    //      array-to-pointer conversion (4.2) are applied.
4128    // C++0x also allows a value of std::nullptr_t.
4129    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4130           "Only object pointers allowed here");
4131
4132    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4133                                                       ParamType,
4134                                                       Arg, Converted))
4135      return ExprError();
4136    return Owned(Arg);
4137  }
4138
4139  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4140    //   -- For a non-type template-parameter of type reference to
4141    //      object, no conversions apply. The type referred to by the
4142    //      reference may be more cv-qualified than the (otherwise
4143    //      identical) type of the template-argument. The
4144    //      template-parameter is bound directly to the
4145    //      template-argument, which must be an lvalue.
4146    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4147           "Only object references allowed here");
4148
4149    if (Arg->getType() == Context.OverloadTy) {
4150      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4151                                                 ParamRefType->getPointeeType(),
4152                                                                true,
4153                                                                FoundResult)) {
4154        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4155          return ExprError();
4156
4157        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4158        ArgType = Arg->getType();
4159      } else
4160        return ExprError();
4161    }
4162
4163    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4164                                                       ParamType,
4165                                                       Arg, Converted))
4166      return ExprError();
4167    return Owned(Arg);
4168  }
4169
4170  //     -- For a non-type template-parameter of type pointer to data
4171  //        member, qualification conversions (4.4) are applied.
4172  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4173
4174  bool ObjCLifetimeConversion;
4175  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
4176    // Types match exactly: nothing more to do here.
4177  } else if (IsQualificationConversion(ArgType, ParamType, false,
4178                                       ObjCLifetimeConversion)) {
4179    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4180                            Arg->getValueKind()).take();
4181  } else {
4182    // We can't perform this conversion.
4183    Diag(Arg->getLocStart(),
4184         diag::err_template_arg_not_convertible)
4185      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4186    Diag(Param->getLocation(), diag::note_template_param_here);
4187    return ExprError();
4188  }
4189
4190  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4191    return ExprError();
4192  return Owned(Arg);
4193}
4194
4195/// \brief Check a template argument against its corresponding
4196/// template template parameter.
4197///
4198/// This routine implements the semantics of C++ [temp.arg.template].
4199/// It returns true if an error occurred, and false otherwise.
4200bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4201                                 const TemplateArgumentLoc &Arg) {
4202  TemplateName Name = Arg.getArgument().getAsTemplate();
4203  TemplateDecl *Template = Name.getAsTemplateDecl();
4204  if (!Template) {
4205    // Any dependent template name is fine.
4206    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4207    return false;
4208  }
4209
4210  // C++0x [temp.arg.template]p1:
4211  //   A template-argument for a template template-parameter shall be
4212  //   the name of a class template or an alias template, expressed as an
4213  //   id-expression. When the template-argument names a class template, only
4214  //   primary class templates are considered when matching the
4215  //   template template argument with the corresponding parameter;
4216  //   partial specializations are not considered even if their
4217  //   parameter lists match that of the template template parameter.
4218  //
4219  // Note that we also allow template template parameters here, which
4220  // will happen when we are dealing with, e.g., class template
4221  // partial specializations.
4222  if (!isa<ClassTemplateDecl>(Template) &&
4223      !isa<TemplateTemplateParmDecl>(Template) &&
4224      !isa<TypeAliasTemplateDecl>(Template)) {
4225    assert(isa<FunctionTemplateDecl>(Template) &&
4226           "Only function templates are possible here");
4227    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4228    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4229      << Template;
4230  }
4231
4232  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4233                                         Param->getTemplateParameters(),
4234                                         true,
4235                                         TPL_TemplateTemplateArgumentMatch,
4236                                         Arg.getLocation());
4237}
4238
4239/// \brief Given a non-type template argument that refers to a
4240/// declaration and the type of its corresponding non-type template
4241/// parameter, produce an expression that properly refers to that
4242/// declaration.
4243ExprResult
4244Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4245                                              QualType ParamType,
4246                                              SourceLocation Loc) {
4247  assert(Arg.getKind() == TemplateArgument::Declaration &&
4248         "Only declaration template arguments permitted here");
4249  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4250
4251  if (VD->getDeclContext()->isRecord() &&
4252      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4253    // If the value is a class member, we might have a pointer-to-member.
4254    // Determine whether the non-type template template parameter is of
4255    // pointer-to-member type. If so, we need to build an appropriate
4256    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4257    // would refer to the member itself.
4258    if (ParamType->isMemberPointerType()) {
4259      QualType ClassType
4260        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4261      NestedNameSpecifier *Qualifier
4262        = NestedNameSpecifier::Create(Context, 0, false,
4263                                      ClassType.getTypePtr());
4264      CXXScopeSpec SS;
4265      SS.MakeTrivial(Context, Qualifier, Loc);
4266
4267      // The actual value-ness of this is unimportant, but for
4268      // internal consistency's sake, references to instance methods
4269      // are r-values.
4270      ExprValueKind VK = VK_LValue;
4271      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4272        VK = VK_RValue;
4273
4274      ExprResult RefExpr = BuildDeclRefExpr(VD,
4275                                            VD->getType().getNonReferenceType(),
4276                                            VK,
4277                                            Loc,
4278                                            &SS);
4279      if (RefExpr.isInvalid())
4280        return ExprError();
4281
4282      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4283
4284      // We might need to perform a trailing qualification conversion, since
4285      // the element type on the parameter could be more qualified than the
4286      // element type in the expression we constructed.
4287      bool ObjCLifetimeConversion;
4288      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4289                                    ParamType.getUnqualifiedType(), false,
4290                                    ObjCLifetimeConversion))
4291        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4292
4293      assert(!RefExpr.isInvalid() &&
4294             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4295                                 ParamType.getUnqualifiedType()));
4296      return move(RefExpr);
4297    }
4298  }
4299
4300  QualType T = VD->getType().getNonReferenceType();
4301  if (ParamType->isPointerType()) {
4302    // When the non-type template parameter is a pointer, take the
4303    // address of the declaration.
4304    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4305    if (RefExpr.isInvalid())
4306      return ExprError();
4307
4308    if (T->isFunctionType() || T->isArrayType()) {
4309      // Decay functions and arrays.
4310      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4311      if (RefExpr.isInvalid())
4312        return ExprError();
4313
4314      return move(RefExpr);
4315    }
4316
4317    // Take the address of everything else
4318    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4319  }
4320
4321  ExprValueKind VK = VK_RValue;
4322
4323  // If the non-type template parameter has reference type, qualify the
4324  // resulting declaration reference with the extra qualifiers on the
4325  // type that the reference refers to.
4326  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4327    VK = VK_LValue;
4328    T = Context.getQualifiedType(T,
4329                              TargetRef->getPointeeType().getQualifiers());
4330  }
4331
4332  return BuildDeclRefExpr(VD, T, VK, Loc);
4333}
4334
4335/// \brief Construct a new expression that refers to the given
4336/// integral template argument with the given source-location
4337/// information.
4338///
4339/// This routine takes care of the mapping from an integral template
4340/// argument (which may have any integral type) to the appropriate
4341/// literal value.
4342ExprResult
4343Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4344                                                  SourceLocation Loc) {
4345  assert(Arg.getKind() == TemplateArgument::Integral &&
4346         "Operation is only valid for integral template arguments");
4347  QualType T = Arg.getIntegralType();
4348  if (T->isAnyCharacterType()) {
4349    CharacterLiteral::CharacterKind Kind;
4350    if (T->isWideCharType())
4351      Kind = CharacterLiteral::Wide;
4352    else if (T->isChar16Type())
4353      Kind = CharacterLiteral::UTF16;
4354    else if (T->isChar32Type())
4355      Kind = CharacterLiteral::UTF32;
4356    else
4357      Kind = CharacterLiteral::Ascii;
4358
4359    return Owned(new (Context) CharacterLiteral(
4360                                            Arg.getAsIntegral()->getZExtValue(),
4361                                            Kind, T, Loc));
4362  }
4363
4364  if (T->isBooleanType())
4365    return Owned(new (Context) CXXBoolLiteralExpr(
4366                                            Arg.getAsIntegral()->getBoolValue(),
4367                                            T, Loc));
4368
4369  if (T->isNullPtrType())
4370    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4371
4372  // If this is an enum type that we're instantiating, we need to use an integer
4373  // type the same size as the enumerator.  We don't want to build an
4374  // IntegerLiteral with enum type.
4375  QualType BT;
4376  if (const EnumType *ET = T->getAs<EnumType>())
4377    BT = ET->getDecl()->getIntegerType();
4378  else
4379    BT = T;
4380
4381  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4382  if (T->isEnumeralType()) {
4383    // FIXME: This is a hack. We need a better way to handle substituted
4384    // non-type template parameters.
4385    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4386                               Context.getTrivialTypeSourceInfo(T, Loc),
4387                               Loc, Loc);
4388  }
4389
4390  return Owned(E);
4391}
4392
4393/// \brief Match two template parameters within template parameter lists.
4394static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4395                                       bool Complain,
4396                                     Sema::TemplateParameterListEqualKind Kind,
4397                                       SourceLocation TemplateArgLoc) {
4398  // Check the actual kind (type, non-type, template).
4399  if (Old->getKind() != New->getKind()) {
4400    if (Complain) {
4401      unsigned NextDiag = diag::err_template_param_different_kind;
4402      if (TemplateArgLoc.isValid()) {
4403        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4404        NextDiag = diag::note_template_param_different_kind;
4405      }
4406      S.Diag(New->getLocation(), NextDiag)
4407        << (Kind != Sema::TPL_TemplateMatch);
4408      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4409        << (Kind != Sema::TPL_TemplateMatch);
4410    }
4411
4412    return false;
4413  }
4414
4415  // Check that both are parameter packs are neither are parameter packs.
4416  // However, if we are matching a template template argument to a
4417  // template template parameter, the template template parameter can have
4418  // a parameter pack where the template template argument does not.
4419  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4420      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4421        Old->isTemplateParameterPack())) {
4422    if (Complain) {
4423      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4424      if (TemplateArgLoc.isValid()) {
4425        S.Diag(TemplateArgLoc,
4426             diag::err_template_arg_template_params_mismatch);
4427        NextDiag = diag::note_template_parameter_pack_non_pack;
4428      }
4429
4430      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4431                      : isa<NonTypeTemplateParmDecl>(New)? 1
4432                      : 2;
4433      S.Diag(New->getLocation(), NextDiag)
4434        << ParamKind << New->isParameterPack();
4435      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4436        << ParamKind << Old->isParameterPack();
4437    }
4438
4439    return false;
4440  }
4441
4442  // For non-type template parameters, check the type of the parameter.
4443  if (NonTypeTemplateParmDecl *OldNTTP
4444                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4445    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4446
4447    // If we are matching a template template argument to a template
4448    // template parameter and one of the non-type template parameter types
4449    // is dependent, then we must wait until template instantiation time
4450    // to actually compare the arguments.
4451    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4452        (OldNTTP->getType()->isDependentType() ||
4453         NewNTTP->getType()->isDependentType()))
4454      return true;
4455
4456    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4457      if (Complain) {
4458        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4459        if (TemplateArgLoc.isValid()) {
4460          S.Diag(TemplateArgLoc,
4461                 diag::err_template_arg_template_params_mismatch);
4462          NextDiag = diag::note_template_nontype_parm_different_type;
4463        }
4464        S.Diag(NewNTTP->getLocation(), NextDiag)
4465          << NewNTTP->getType()
4466          << (Kind != Sema::TPL_TemplateMatch);
4467        S.Diag(OldNTTP->getLocation(),
4468               diag::note_template_nontype_parm_prev_declaration)
4469          << OldNTTP->getType();
4470      }
4471
4472      return false;
4473    }
4474
4475    return true;
4476  }
4477
4478  // For template template parameters, check the template parameter types.
4479  // The template parameter lists of template template
4480  // parameters must agree.
4481  if (TemplateTemplateParmDecl *OldTTP
4482                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4483    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4484    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4485                                            OldTTP->getTemplateParameters(),
4486                                            Complain,
4487                                        (Kind == Sema::TPL_TemplateMatch
4488                                           ? Sema::TPL_TemplateTemplateParmMatch
4489                                           : Kind),
4490                                            TemplateArgLoc);
4491  }
4492
4493  return true;
4494}
4495
4496/// \brief Diagnose a known arity mismatch when comparing template argument
4497/// lists.
4498static
4499void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4500                                                TemplateParameterList *New,
4501                                                TemplateParameterList *Old,
4502                                      Sema::TemplateParameterListEqualKind Kind,
4503                                                SourceLocation TemplateArgLoc) {
4504  unsigned NextDiag = diag::err_template_param_list_different_arity;
4505  if (TemplateArgLoc.isValid()) {
4506    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4507    NextDiag = diag::note_template_param_list_different_arity;
4508  }
4509  S.Diag(New->getTemplateLoc(), NextDiag)
4510    << (New->size() > Old->size())
4511    << (Kind != Sema::TPL_TemplateMatch)
4512    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4513  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4514    << (Kind != Sema::TPL_TemplateMatch)
4515    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4516}
4517
4518/// \brief Determine whether the given template parameter lists are
4519/// equivalent.
4520///
4521/// \param New  The new template parameter list, typically written in the
4522/// source code as part of a new template declaration.
4523///
4524/// \param Old  The old template parameter list, typically found via
4525/// name lookup of the template declared with this template parameter
4526/// list.
4527///
4528/// \param Complain  If true, this routine will produce a diagnostic if
4529/// the template parameter lists are not equivalent.
4530///
4531/// \param Kind describes how we are to match the template parameter lists.
4532///
4533/// \param TemplateArgLoc If this source location is valid, then we
4534/// are actually checking the template parameter list of a template
4535/// argument (New) against the template parameter list of its
4536/// corresponding template template parameter (Old). We produce
4537/// slightly different diagnostics in this scenario.
4538///
4539/// \returns True if the template parameter lists are equal, false
4540/// otherwise.
4541bool
4542Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4543                                     TemplateParameterList *Old,
4544                                     bool Complain,
4545                                     TemplateParameterListEqualKind Kind,
4546                                     SourceLocation TemplateArgLoc) {
4547  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4548    if (Complain)
4549      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4550                                                 TemplateArgLoc);
4551
4552    return false;
4553  }
4554
4555  // C++0x [temp.arg.template]p3:
4556  //   A template-argument matches a template template-parameter (call it P)
4557  //   when each of the template parameters in the template-parameter-list of
4558  //   the template-argument's corresponding class template or alias template
4559  //   (call it A) matches the corresponding template parameter in the
4560  //   template-parameter-list of P. [...]
4561  TemplateParameterList::iterator NewParm = New->begin();
4562  TemplateParameterList::iterator NewParmEnd = New->end();
4563  for (TemplateParameterList::iterator OldParm = Old->begin(),
4564                                    OldParmEnd = Old->end();
4565       OldParm != OldParmEnd; ++OldParm) {
4566    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4567        !(*OldParm)->isTemplateParameterPack()) {
4568      if (NewParm == NewParmEnd) {
4569        if (Complain)
4570          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4571                                                     TemplateArgLoc);
4572
4573        return false;
4574      }
4575
4576      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4577                                      Kind, TemplateArgLoc))
4578        return false;
4579
4580      ++NewParm;
4581      continue;
4582    }
4583
4584    // C++0x [temp.arg.template]p3:
4585    //   [...] When P's template- parameter-list contains a template parameter
4586    //   pack (14.5.3), the template parameter pack will match zero or more
4587    //   template parameters or template parameter packs in the
4588    //   template-parameter-list of A with the same type and form as the
4589    //   template parameter pack in P (ignoring whether those template
4590    //   parameters are template parameter packs).
4591    for (; NewParm != NewParmEnd; ++NewParm) {
4592      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4593                                      Kind, TemplateArgLoc))
4594        return false;
4595    }
4596  }
4597
4598  // Make sure we exhausted all of the arguments.
4599  if (NewParm != NewParmEnd) {
4600    if (Complain)
4601      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4602                                                 TemplateArgLoc);
4603
4604    return false;
4605  }
4606
4607  return true;
4608}
4609
4610/// \brief Check whether a template can be declared within this scope.
4611///
4612/// If the template declaration is valid in this scope, returns
4613/// false. Otherwise, issues a diagnostic and returns true.
4614bool
4615Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4616  if (!S)
4617    return false;
4618
4619  // Find the nearest enclosing declaration scope.
4620  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4621         (S->getFlags() & Scope::TemplateParamScope) != 0)
4622    S = S->getParent();
4623
4624  // C++ [temp]p2:
4625  //   A template-declaration can appear only as a namespace scope or
4626  //   class scope declaration.
4627  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4628  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4629      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4630    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4631             << TemplateParams->getSourceRange();
4632
4633  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4634    Ctx = Ctx->getParent();
4635
4636  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4637    return false;
4638
4639  return Diag(TemplateParams->getTemplateLoc(),
4640              diag::err_template_outside_namespace_or_class_scope)
4641    << TemplateParams->getSourceRange();
4642}
4643
4644/// \brief Determine what kind of template specialization the given declaration
4645/// is.
4646static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4647  if (!D)
4648    return TSK_Undeclared;
4649
4650  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4651    return Record->getTemplateSpecializationKind();
4652  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4653    return Function->getTemplateSpecializationKind();
4654  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4655    return Var->getTemplateSpecializationKind();
4656
4657  return TSK_Undeclared;
4658}
4659
4660/// \brief Check whether a specialization is well-formed in the current
4661/// context.
4662///
4663/// This routine determines whether a template specialization can be declared
4664/// in the current context (C++ [temp.expl.spec]p2).
4665///
4666/// \param S the semantic analysis object for which this check is being
4667/// performed.
4668///
4669/// \param Specialized the entity being specialized or instantiated, which
4670/// may be a kind of template (class template, function template, etc.) or
4671/// a member of a class template (member function, static data member,
4672/// member class).
4673///
4674/// \param PrevDecl the previous declaration of this entity, if any.
4675///
4676/// \param Loc the location of the explicit specialization or instantiation of
4677/// this entity.
4678///
4679/// \param IsPartialSpecialization whether this is a partial specialization of
4680/// a class template.
4681///
4682/// \returns true if there was an error that we cannot recover from, false
4683/// otherwise.
4684static bool CheckTemplateSpecializationScope(Sema &S,
4685                                             NamedDecl *Specialized,
4686                                             NamedDecl *PrevDecl,
4687                                             SourceLocation Loc,
4688                                             bool IsPartialSpecialization) {
4689  // Keep these "kind" numbers in sync with the %select statements in the
4690  // various diagnostics emitted by this routine.
4691  int EntityKind = 0;
4692  if (isa<ClassTemplateDecl>(Specialized))
4693    EntityKind = IsPartialSpecialization? 1 : 0;
4694  else if (isa<FunctionTemplateDecl>(Specialized))
4695    EntityKind = 2;
4696  else if (isa<CXXMethodDecl>(Specialized))
4697    EntityKind = 3;
4698  else if (isa<VarDecl>(Specialized))
4699    EntityKind = 4;
4700  else if (isa<RecordDecl>(Specialized))
4701    EntityKind = 5;
4702  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4703    EntityKind = 6;
4704  else {
4705    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4706      << S.getLangOpts().CPlusPlus0x;
4707    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4708    return true;
4709  }
4710
4711  // C++ [temp.expl.spec]p2:
4712  //   An explicit specialization shall be declared in the namespace
4713  //   of which the template is a member, or, for member templates, in
4714  //   the namespace of which the enclosing class or enclosing class
4715  //   template is a member. An explicit specialization of a member
4716  //   function, member class or static data member of a class
4717  //   template shall be declared in the namespace of which the class
4718  //   template is a member. Such a declaration may also be a
4719  //   definition. If the declaration is not a definition, the
4720  //   specialization may be defined later in the name- space in which
4721  //   the explicit specialization was declared, or in a namespace
4722  //   that encloses the one in which the explicit specialization was
4723  //   declared.
4724  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4725    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4726      << Specialized;
4727    return true;
4728  }
4729
4730  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4731    if (S.getLangOpts().MicrosoftExt) {
4732      // Do not warn for class scope explicit specialization during
4733      // instantiation, warning was already emitted during pattern
4734      // semantic analysis.
4735      if (!S.ActiveTemplateInstantiations.size())
4736        S.Diag(Loc, diag::ext_function_specialization_in_class)
4737          << Specialized;
4738    } else {
4739      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4740        << Specialized;
4741      return true;
4742    }
4743  }
4744
4745  if (S.CurContext->isRecord() &&
4746      !S.CurContext->Equals(Specialized->getDeclContext())) {
4747    // Make sure that we're specializing in the right record context.
4748    // Otherwise, things can go horribly wrong.
4749    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4750      << Specialized;
4751    return true;
4752  }
4753
4754  // C++ [temp.class.spec]p6:
4755  //   A class template partial specialization may be declared or redeclared
4756  //   in any namespace scope in which its definition may be defined (14.5.1
4757  //   and 14.5.2).
4758  bool ComplainedAboutScope = false;
4759  DeclContext *SpecializedContext
4760    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4761  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4762  if ((!PrevDecl ||
4763       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4764       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4765    // C++ [temp.exp.spec]p2:
4766    //   An explicit specialization shall be declared in the namespace of which
4767    //   the template is a member, or, for member templates, in the namespace
4768    //   of which the enclosing class or enclosing class template is a member.
4769    //   An explicit specialization of a member function, member class or
4770    //   static data member of a class template shall be declared in the
4771    //   namespace of which the class template is a member.
4772    //
4773    // C++0x [temp.expl.spec]p2:
4774    //   An explicit specialization shall be declared in a namespace enclosing
4775    //   the specialized template.
4776    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4777      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4778      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4779        assert(!IsCPlusPlus0xExtension &&
4780               "DC encloses TU but isn't in enclosing namespace set");
4781        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4782          << EntityKind << Specialized;
4783      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4784        int Diag;
4785        if (!IsCPlusPlus0xExtension)
4786          Diag = diag::err_template_spec_decl_out_of_scope;
4787        else if (!S.getLangOpts().CPlusPlus0x)
4788          Diag = diag::ext_template_spec_decl_out_of_scope;
4789        else
4790          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4791        S.Diag(Loc, Diag)
4792          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4793      }
4794
4795      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4796      ComplainedAboutScope =
4797        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
4798    }
4799  }
4800
4801  // Make sure that this redeclaration (or definition) occurs in an enclosing
4802  // namespace.
4803  // Note that HandleDeclarator() performs this check for explicit
4804  // specializations of function templates, static data members, and member
4805  // functions, so we skip the check here for those kinds of entities.
4806  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4807  // Should we refactor that check, so that it occurs later?
4808  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4809      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4810        isa<FunctionDecl>(Specialized))) {
4811    if (isa<TranslationUnitDecl>(SpecializedContext))
4812      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4813        << EntityKind << Specialized;
4814    else if (isa<NamespaceDecl>(SpecializedContext))
4815      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4816        << EntityKind << Specialized
4817        << cast<NamedDecl>(SpecializedContext);
4818
4819    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4820  }
4821
4822  // FIXME: check for specialization-after-instantiation errors and such.
4823
4824  return false;
4825}
4826
4827/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4828/// that checks non-type template partial specialization arguments.
4829static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4830                                                NonTypeTemplateParmDecl *Param,
4831                                                  const TemplateArgument *Args,
4832                                                        unsigned NumArgs) {
4833  for (unsigned I = 0; I != NumArgs; ++I) {
4834    if (Args[I].getKind() == TemplateArgument::Pack) {
4835      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4836                                                           Args[I].pack_begin(),
4837                                                           Args[I].pack_size()))
4838        return true;
4839
4840      continue;
4841    }
4842
4843    Expr *ArgExpr = Args[I].getAsExpr();
4844    if (!ArgExpr) {
4845      continue;
4846    }
4847
4848    // We can have a pack expansion of any of the bullets below.
4849    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4850      ArgExpr = Expansion->getPattern();
4851
4852    // Strip off any implicit casts we added as part of type checking.
4853    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4854      ArgExpr = ICE->getSubExpr();
4855
4856    // C++ [temp.class.spec]p8:
4857    //   A non-type argument is non-specialized if it is the name of a
4858    //   non-type parameter. All other non-type arguments are
4859    //   specialized.
4860    //
4861    // Below, we check the two conditions that only apply to
4862    // specialized non-type arguments, so skip any non-specialized
4863    // arguments.
4864    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4865      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4866        continue;
4867
4868    // C++ [temp.class.spec]p9:
4869    //   Within the argument list of a class template partial
4870    //   specialization, the following restrictions apply:
4871    //     -- A partially specialized non-type argument expression
4872    //        shall not involve a template parameter of the partial
4873    //        specialization except when the argument expression is a
4874    //        simple identifier.
4875    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4876      S.Diag(ArgExpr->getLocStart(),
4877           diag::err_dependent_non_type_arg_in_partial_spec)
4878        << ArgExpr->getSourceRange();
4879      return true;
4880    }
4881
4882    //     -- The type of a template parameter corresponding to a
4883    //        specialized non-type argument shall not be dependent on a
4884    //        parameter of the specialization.
4885    if (Param->getType()->isDependentType()) {
4886      S.Diag(ArgExpr->getLocStart(),
4887           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4888        << Param->getType()
4889        << ArgExpr->getSourceRange();
4890      S.Diag(Param->getLocation(), diag::note_template_param_here);
4891      return true;
4892    }
4893  }
4894
4895  return false;
4896}
4897
4898/// \brief Check the non-type template arguments of a class template
4899/// partial specialization according to C++ [temp.class.spec]p9.
4900///
4901/// \param TemplateParams the template parameters of the primary class
4902/// template.
4903///
4904/// \param TemplateArg the template arguments of the class template
4905/// partial specialization.
4906///
4907/// \returns true if there was an error, false otherwise.
4908static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4909                                        TemplateParameterList *TemplateParams,
4910                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4911  const TemplateArgument *ArgList = TemplateArgs.data();
4912
4913  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4914    NonTypeTemplateParmDecl *Param
4915      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4916    if (!Param)
4917      continue;
4918
4919    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4920                                                           &ArgList[I], 1))
4921      return true;
4922  }
4923
4924  return false;
4925}
4926
4927DeclResult
4928Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4929                                       TagUseKind TUK,
4930                                       SourceLocation KWLoc,
4931                                       SourceLocation ModulePrivateLoc,
4932                                       CXXScopeSpec &SS,
4933                                       TemplateTy TemplateD,
4934                                       SourceLocation TemplateNameLoc,
4935                                       SourceLocation LAngleLoc,
4936                                       ASTTemplateArgsPtr TemplateArgsIn,
4937                                       SourceLocation RAngleLoc,
4938                                       AttributeList *Attr,
4939                               MultiTemplateParamsArg TemplateParameterLists) {
4940  assert(TUK != TUK_Reference && "References are not specializations");
4941
4942  // NOTE: KWLoc is the location of the tag keyword. This will instead
4943  // store the location of the outermost template keyword in the declaration.
4944  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4945    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4946
4947  // Find the class template we're specializing
4948  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4949  ClassTemplateDecl *ClassTemplate
4950    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4951
4952  if (!ClassTemplate) {
4953    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4954      << (Name.getAsTemplateDecl() &&
4955          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4956    return true;
4957  }
4958
4959  bool isExplicitSpecialization = false;
4960  bool isPartialSpecialization = false;
4961
4962  // Check the validity of the template headers that introduce this
4963  // template.
4964  // FIXME: We probably shouldn't complain about these headers for
4965  // friend declarations.
4966  bool Invalid = false;
4967  TemplateParameterList *TemplateParams
4968    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4969                                              TemplateNameLoc,
4970                                              SS,
4971                        (TemplateParameterList**)TemplateParameterLists.get(),
4972                                              TemplateParameterLists.size(),
4973                                              TUK == TUK_Friend,
4974                                              isExplicitSpecialization,
4975                                              Invalid);
4976  if (Invalid)
4977    return true;
4978
4979  if (TemplateParams && TemplateParams->size() > 0) {
4980    isPartialSpecialization = true;
4981
4982    if (TUK == TUK_Friend) {
4983      Diag(KWLoc, diag::err_partial_specialization_friend)
4984        << SourceRange(LAngleLoc, RAngleLoc);
4985      return true;
4986    }
4987
4988    // C++ [temp.class.spec]p10:
4989    //   The template parameter list of a specialization shall not
4990    //   contain default template argument values.
4991    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4992      Decl *Param = TemplateParams->getParam(I);
4993      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4994        if (TTP->hasDefaultArgument()) {
4995          Diag(TTP->getDefaultArgumentLoc(),
4996               diag::err_default_arg_in_partial_spec);
4997          TTP->removeDefaultArgument();
4998        }
4999      } else if (NonTypeTemplateParmDecl *NTTP
5000                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5001        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5002          Diag(NTTP->getDefaultArgumentLoc(),
5003               diag::err_default_arg_in_partial_spec)
5004            << DefArg->getSourceRange();
5005          NTTP->removeDefaultArgument();
5006        }
5007      } else {
5008        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5009        if (TTP->hasDefaultArgument()) {
5010          Diag(TTP->getDefaultArgument().getLocation(),
5011               diag::err_default_arg_in_partial_spec)
5012            << TTP->getDefaultArgument().getSourceRange();
5013          TTP->removeDefaultArgument();
5014        }
5015      }
5016    }
5017  } else if (TemplateParams) {
5018    if (TUK == TUK_Friend)
5019      Diag(KWLoc, diag::err_template_spec_friend)
5020        << FixItHint::CreateRemoval(
5021                                SourceRange(TemplateParams->getTemplateLoc(),
5022                                            TemplateParams->getRAngleLoc()))
5023        << SourceRange(LAngleLoc, RAngleLoc);
5024    else
5025      isExplicitSpecialization = true;
5026  } else if (TUK != TUK_Friend) {
5027    Diag(KWLoc, diag::err_template_spec_needs_header)
5028      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5029    isExplicitSpecialization = true;
5030  }
5031
5032  // Check that the specialization uses the same tag kind as the
5033  // original template.
5034  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5035  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5036  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5037                                    Kind, TUK == TUK_Definition, KWLoc,
5038                                    *ClassTemplate->getIdentifier())) {
5039    Diag(KWLoc, diag::err_use_with_wrong_tag)
5040      << ClassTemplate
5041      << FixItHint::CreateReplacement(KWLoc,
5042                            ClassTemplate->getTemplatedDecl()->getKindName());
5043    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5044         diag::note_previous_use);
5045    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5046  }
5047
5048  // Translate the parser's template argument list in our AST format.
5049  TemplateArgumentListInfo TemplateArgs;
5050  TemplateArgs.setLAngleLoc(LAngleLoc);
5051  TemplateArgs.setRAngleLoc(RAngleLoc);
5052  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5053
5054  // Check for unexpanded parameter packs in any of the template arguments.
5055  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5056    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5057                                        UPPC_PartialSpecialization))
5058      return true;
5059
5060  // Check that the template argument list is well-formed for this
5061  // template.
5062  SmallVector<TemplateArgument, 4> Converted;
5063  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5064                                TemplateArgs, false, Converted))
5065    return true;
5066
5067  // Find the class template (partial) specialization declaration that
5068  // corresponds to these arguments.
5069  if (isPartialSpecialization) {
5070    if (CheckClassTemplatePartialSpecializationArgs(*this,
5071                                         ClassTemplate->getTemplateParameters(),
5072                                         Converted))
5073      return true;
5074
5075    bool InstantiationDependent;
5076    if (!Name.isDependent() &&
5077        !TemplateSpecializationType::anyDependentTemplateArguments(
5078                                             TemplateArgs.getArgumentArray(),
5079                                                         TemplateArgs.size(),
5080                                                     InstantiationDependent)) {
5081      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5082        << ClassTemplate->getDeclName();
5083      isPartialSpecialization = false;
5084    }
5085  }
5086
5087  void *InsertPos = 0;
5088  ClassTemplateSpecializationDecl *PrevDecl = 0;
5089
5090  if (isPartialSpecialization)
5091    // FIXME: Template parameter list matters, too
5092    PrevDecl
5093      = ClassTemplate->findPartialSpecialization(Converted.data(),
5094                                                 Converted.size(),
5095                                                 InsertPos);
5096  else
5097    PrevDecl
5098      = ClassTemplate->findSpecialization(Converted.data(),
5099                                          Converted.size(), InsertPos);
5100
5101  ClassTemplateSpecializationDecl *Specialization = 0;
5102
5103  // Check whether we can declare a class template specialization in
5104  // the current scope.
5105  if (TUK != TUK_Friend &&
5106      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5107                                       TemplateNameLoc,
5108                                       isPartialSpecialization))
5109    return true;
5110
5111  // The canonical type
5112  QualType CanonType;
5113  if (PrevDecl &&
5114      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5115               TUK == TUK_Friend)) {
5116    // Since the only prior class template specialization with these
5117    // arguments was referenced but not declared, or we're only
5118    // referencing this specialization as a friend, reuse that
5119    // declaration node as our own, updating its source location and
5120    // the list of outer template parameters to reflect our new declaration.
5121    Specialization = PrevDecl;
5122    Specialization->setLocation(TemplateNameLoc);
5123    if (TemplateParameterLists.size() > 0) {
5124      Specialization->setTemplateParameterListsInfo(Context,
5125                                              TemplateParameterLists.size(),
5126                    (TemplateParameterList**) TemplateParameterLists.release());
5127    }
5128    PrevDecl = 0;
5129    CanonType = Context.getTypeDeclType(Specialization);
5130  } else if (isPartialSpecialization) {
5131    // Build the canonical type that describes the converted template
5132    // arguments of the class template partial specialization.
5133    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5134    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5135                                                      Converted.data(),
5136                                                      Converted.size());
5137
5138    if (Context.hasSameType(CanonType,
5139                        ClassTemplate->getInjectedClassNameSpecialization())) {
5140      // C++ [temp.class.spec]p9b3:
5141      //
5142      //   -- The argument list of the specialization shall not be identical
5143      //      to the implicit argument list of the primary template.
5144      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5145        << (TUK == TUK_Definition)
5146        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5147      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5148                                ClassTemplate->getIdentifier(),
5149                                TemplateNameLoc,
5150                                Attr,
5151                                TemplateParams,
5152                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5153                                TemplateParameterLists.size() - 1,
5154                  (TemplateParameterList**) TemplateParameterLists.release());
5155    }
5156
5157    // Create a new class template partial specialization declaration node.
5158    ClassTemplatePartialSpecializationDecl *PrevPartial
5159      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5160    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5161                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5162    ClassTemplatePartialSpecializationDecl *Partial
5163      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5164                                             ClassTemplate->getDeclContext(),
5165                                                       KWLoc, TemplateNameLoc,
5166                                                       TemplateParams,
5167                                                       ClassTemplate,
5168                                                       Converted.data(),
5169                                                       Converted.size(),
5170                                                       TemplateArgs,
5171                                                       CanonType,
5172                                                       PrevPartial,
5173                                                       SequenceNumber);
5174    SetNestedNameSpecifier(Partial, SS);
5175    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5176      Partial->setTemplateParameterListsInfo(Context,
5177                                             TemplateParameterLists.size() - 1,
5178                    (TemplateParameterList**) TemplateParameterLists.release());
5179    }
5180
5181    if (!PrevPartial)
5182      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5183    Specialization = Partial;
5184
5185    // If we are providing an explicit specialization of a member class
5186    // template specialization, make a note of that.
5187    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5188      PrevPartial->setMemberSpecialization();
5189
5190    // Check that all of the template parameters of the class template
5191    // partial specialization are deducible from the template
5192    // arguments. If not, this class template partial specialization
5193    // will never be used.
5194    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5195    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5196                               TemplateParams->getDepth(),
5197                               DeducibleParams);
5198
5199    if (!DeducibleParams.all()) {
5200      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5201      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5202        << (NumNonDeducible > 1)
5203        << SourceRange(TemplateNameLoc, RAngleLoc);
5204      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5205        if (!DeducibleParams[I]) {
5206          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5207          if (Param->getDeclName())
5208            Diag(Param->getLocation(),
5209                 diag::note_partial_spec_unused_parameter)
5210              << Param->getDeclName();
5211          else
5212            Diag(Param->getLocation(),
5213                 diag::note_partial_spec_unused_parameter)
5214              << "<anonymous>";
5215        }
5216      }
5217    }
5218  } else {
5219    // Create a new class template specialization declaration node for
5220    // this explicit specialization or friend declaration.
5221    Specialization
5222      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5223                                             ClassTemplate->getDeclContext(),
5224                                                KWLoc, TemplateNameLoc,
5225                                                ClassTemplate,
5226                                                Converted.data(),
5227                                                Converted.size(),
5228                                                PrevDecl);
5229    SetNestedNameSpecifier(Specialization, SS);
5230    if (TemplateParameterLists.size() > 0) {
5231      Specialization->setTemplateParameterListsInfo(Context,
5232                                              TemplateParameterLists.size(),
5233                    (TemplateParameterList**) TemplateParameterLists.release());
5234    }
5235
5236    if (!PrevDecl)
5237      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5238
5239    CanonType = Context.getTypeDeclType(Specialization);
5240  }
5241
5242  // C++ [temp.expl.spec]p6:
5243  //   If a template, a member template or the member of a class template is
5244  //   explicitly specialized then that specialization shall be declared
5245  //   before the first use of that specialization that would cause an implicit
5246  //   instantiation to take place, in every translation unit in which such a
5247  //   use occurs; no diagnostic is required.
5248  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5249    bool Okay = false;
5250    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5251      // Is there any previous explicit specialization declaration?
5252      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5253        Okay = true;
5254        break;
5255      }
5256    }
5257
5258    if (!Okay) {
5259      SourceRange Range(TemplateNameLoc, RAngleLoc);
5260      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5261        << Context.getTypeDeclType(Specialization) << Range;
5262
5263      Diag(PrevDecl->getPointOfInstantiation(),
5264           diag::note_instantiation_required_here)
5265        << (PrevDecl->getTemplateSpecializationKind()
5266                                                != TSK_ImplicitInstantiation);
5267      return true;
5268    }
5269  }
5270
5271  // If this is not a friend, note that this is an explicit specialization.
5272  if (TUK != TUK_Friend)
5273    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5274
5275  // Check that this isn't a redefinition of this specialization.
5276  if (TUK == TUK_Definition) {
5277    if (RecordDecl *Def = Specialization->getDefinition()) {
5278      SourceRange Range(TemplateNameLoc, RAngleLoc);
5279      Diag(TemplateNameLoc, diag::err_redefinition)
5280        << Context.getTypeDeclType(Specialization) << Range;
5281      Diag(Def->getLocation(), diag::note_previous_definition);
5282      Specialization->setInvalidDecl();
5283      return true;
5284    }
5285  }
5286
5287  if (Attr)
5288    ProcessDeclAttributeList(S, Specialization, Attr);
5289
5290  if (ModulePrivateLoc.isValid())
5291    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5292      << (isPartialSpecialization? 1 : 0)
5293      << FixItHint::CreateRemoval(ModulePrivateLoc);
5294
5295  // Build the fully-sugared type for this class template
5296  // specialization as the user wrote in the specialization
5297  // itself. This means that we'll pretty-print the type retrieved
5298  // from the specialization's declaration the way that the user
5299  // actually wrote the specialization, rather than formatting the
5300  // name based on the "canonical" representation used to store the
5301  // template arguments in the specialization.
5302  TypeSourceInfo *WrittenTy
5303    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5304                                                TemplateArgs, CanonType);
5305  if (TUK != TUK_Friend) {
5306    Specialization->setTypeAsWritten(WrittenTy);
5307    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5308  }
5309  TemplateArgsIn.release();
5310
5311  // C++ [temp.expl.spec]p9:
5312  //   A template explicit specialization is in the scope of the
5313  //   namespace in which the template was defined.
5314  //
5315  // We actually implement this paragraph where we set the semantic
5316  // context (in the creation of the ClassTemplateSpecializationDecl),
5317  // but we also maintain the lexical context where the actual
5318  // definition occurs.
5319  Specialization->setLexicalDeclContext(CurContext);
5320
5321  // We may be starting the definition of this specialization.
5322  if (TUK == TUK_Definition)
5323    Specialization->startDefinition();
5324
5325  if (TUK == TUK_Friend) {
5326    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5327                                            TemplateNameLoc,
5328                                            WrittenTy,
5329                                            /*FIXME:*/KWLoc);
5330    Friend->setAccess(AS_public);
5331    CurContext->addDecl(Friend);
5332  } else {
5333    // Add the specialization into its lexical context, so that it can
5334    // be seen when iterating through the list of declarations in that
5335    // context. However, specializations are not found by name lookup.
5336    CurContext->addDecl(Specialization);
5337  }
5338  return Specialization;
5339}
5340
5341Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5342                              MultiTemplateParamsArg TemplateParameterLists,
5343                                    Declarator &D) {
5344  return HandleDeclarator(S, D, move(TemplateParameterLists));
5345}
5346
5347Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5348                               MultiTemplateParamsArg TemplateParameterLists,
5349                                            Declarator &D) {
5350  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5351  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5352
5353  if (FTI.hasPrototype) {
5354    // FIXME: Diagnose arguments without names in C.
5355  }
5356
5357  Scope *ParentScope = FnBodyScope->getParent();
5358
5359  D.setFunctionDefinitionKind(FDK_Definition);
5360  Decl *DP = HandleDeclarator(ParentScope, D,
5361                              move(TemplateParameterLists));
5362  if (FunctionTemplateDecl *FunctionTemplate
5363        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5364    return ActOnStartOfFunctionDef(FnBodyScope,
5365                                   FunctionTemplate->getTemplatedDecl());
5366  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5367    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5368  return 0;
5369}
5370
5371/// \brief Strips various properties off an implicit instantiation
5372/// that has just been explicitly specialized.
5373static void StripImplicitInstantiation(NamedDecl *D) {
5374  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5375  D->dropAttrs();
5376
5377  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5378    FD->setInlineSpecified(false);
5379  }
5380}
5381
5382/// \brief Compute the diagnostic location for an explicit instantiation
5383//  declaration or definition.
5384static SourceLocation DiagLocForExplicitInstantiation(
5385    NamedDecl* D, SourceLocation PointOfInstantiation) {
5386  // Explicit instantiations following a specialization have no effect and
5387  // hence no PointOfInstantiation. In that case, walk decl backwards
5388  // until a valid name loc is found.
5389  SourceLocation PrevDiagLoc = PointOfInstantiation;
5390  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5391       Prev = Prev->getPreviousDecl()) {
5392    PrevDiagLoc = Prev->getLocation();
5393  }
5394  assert(PrevDiagLoc.isValid() &&
5395         "Explicit instantiation without point of instantiation?");
5396  return PrevDiagLoc;
5397}
5398
5399/// \brief Diagnose cases where we have an explicit template specialization
5400/// before/after an explicit template instantiation, producing diagnostics
5401/// for those cases where they are required and determining whether the
5402/// new specialization/instantiation will have any effect.
5403///
5404/// \param NewLoc the location of the new explicit specialization or
5405/// instantiation.
5406///
5407/// \param NewTSK the kind of the new explicit specialization or instantiation.
5408///
5409/// \param PrevDecl the previous declaration of the entity.
5410///
5411/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5412///
5413/// \param PrevPointOfInstantiation if valid, indicates where the previus
5414/// declaration was instantiated (either implicitly or explicitly).
5415///
5416/// \param HasNoEffect will be set to true to indicate that the new
5417/// specialization or instantiation has no effect and should be ignored.
5418///
5419/// \returns true if there was an error that should prevent the introduction of
5420/// the new declaration into the AST, false otherwise.
5421bool
5422Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5423                                             TemplateSpecializationKind NewTSK,
5424                                             NamedDecl *PrevDecl,
5425                                             TemplateSpecializationKind PrevTSK,
5426                                        SourceLocation PrevPointOfInstantiation,
5427                                             bool &HasNoEffect) {
5428  HasNoEffect = false;
5429
5430  switch (NewTSK) {
5431  case TSK_Undeclared:
5432  case TSK_ImplicitInstantiation:
5433    llvm_unreachable("Don't check implicit instantiations here");
5434
5435  case TSK_ExplicitSpecialization:
5436    switch (PrevTSK) {
5437    case TSK_Undeclared:
5438    case TSK_ExplicitSpecialization:
5439      // Okay, we're just specializing something that is either already
5440      // explicitly specialized or has merely been mentioned without any
5441      // instantiation.
5442      return false;
5443
5444    case TSK_ImplicitInstantiation:
5445      if (PrevPointOfInstantiation.isInvalid()) {
5446        // The declaration itself has not actually been instantiated, so it is
5447        // still okay to specialize it.
5448        StripImplicitInstantiation(PrevDecl);
5449        return false;
5450      }
5451      // Fall through
5452
5453    case TSK_ExplicitInstantiationDeclaration:
5454    case TSK_ExplicitInstantiationDefinition:
5455      assert((PrevTSK == TSK_ImplicitInstantiation ||
5456              PrevPointOfInstantiation.isValid()) &&
5457             "Explicit instantiation without point of instantiation?");
5458
5459      // C++ [temp.expl.spec]p6:
5460      //   If a template, a member template or the member of a class template
5461      //   is explicitly specialized then that specialization shall be declared
5462      //   before the first use of that specialization that would cause an
5463      //   implicit instantiation to take place, in every translation unit in
5464      //   which such a use occurs; no diagnostic is required.
5465      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5466        // Is there any previous explicit specialization declaration?
5467        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5468          return false;
5469      }
5470
5471      Diag(NewLoc, diag::err_specialization_after_instantiation)
5472        << PrevDecl;
5473      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5474        << (PrevTSK != TSK_ImplicitInstantiation);
5475
5476      return true;
5477    }
5478
5479  case TSK_ExplicitInstantiationDeclaration:
5480    switch (PrevTSK) {
5481    case TSK_ExplicitInstantiationDeclaration:
5482      // This explicit instantiation declaration is redundant (that's okay).
5483      HasNoEffect = true;
5484      return false;
5485
5486    case TSK_Undeclared:
5487    case TSK_ImplicitInstantiation:
5488      // We're explicitly instantiating something that may have already been
5489      // implicitly instantiated; that's fine.
5490      return false;
5491
5492    case TSK_ExplicitSpecialization:
5493      // C++0x [temp.explicit]p4:
5494      //   For a given set of template parameters, if an explicit instantiation
5495      //   of a template appears after a declaration of an explicit
5496      //   specialization for that template, the explicit instantiation has no
5497      //   effect.
5498      HasNoEffect = true;
5499      return false;
5500
5501    case TSK_ExplicitInstantiationDefinition:
5502      // C++0x [temp.explicit]p10:
5503      //   If an entity is the subject of both an explicit instantiation
5504      //   declaration and an explicit instantiation definition in the same
5505      //   translation unit, the definition shall follow the declaration.
5506      Diag(NewLoc,
5507           diag::err_explicit_instantiation_declaration_after_definition);
5508
5509      // Explicit instantiations following a specialization have no effect and
5510      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5511      // until a valid name loc is found.
5512      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5513           diag::note_explicit_instantiation_definition_here);
5514      HasNoEffect = true;
5515      return false;
5516    }
5517
5518  case TSK_ExplicitInstantiationDefinition:
5519    switch (PrevTSK) {
5520    case TSK_Undeclared:
5521    case TSK_ImplicitInstantiation:
5522      // We're explicitly instantiating something that may have already been
5523      // implicitly instantiated; that's fine.
5524      return false;
5525
5526    case TSK_ExplicitSpecialization:
5527      // C++ DR 259, C++0x [temp.explicit]p4:
5528      //   For a given set of template parameters, if an explicit
5529      //   instantiation of a template appears after a declaration of
5530      //   an explicit specialization for that template, the explicit
5531      //   instantiation has no effect.
5532      //
5533      // In C++98/03 mode, we only give an extension warning here, because it
5534      // is not harmful to try to explicitly instantiate something that
5535      // has been explicitly specialized.
5536      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5537           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5538           diag::ext_explicit_instantiation_after_specialization)
5539        << PrevDecl;
5540      Diag(PrevDecl->getLocation(),
5541           diag::note_previous_template_specialization);
5542      HasNoEffect = true;
5543      return false;
5544
5545    case TSK_ExplicitInstantiationDeclaration:
5546      // We're explicity instantiating a definition for something for which we
5547      // were previously asked to suppress instantiations. That's fine.
5548
5549      // C++0x [temp.explicit]p4:
5550      //   For a given set of template parameters, if an explicit instantiation
5551      //   of a template appears after a declaration of an explicit
5552      //   specialization for that template, the explicit instantiation has no
5553      //   effect.
5554      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5555        // Is there any previous explicit specialization declaration?
5556        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5557          HasNoEffect = true;
5558          break;
5559        }
5560      }
5561
5562      return false;
5563
5564    case TSK_ExplicitInstantiationDefinition:
5565      // C++0x [temp.spec]p5:
5566      //   For a given template and a given set of template-arguments,
5567      //     - an explicit instantiation definition shall appear at most once
5568      //       in a program,
5569      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5570        << PrevDecl;
5571      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5572           diag::note_previous_explicit_instantiation);
5573      HasNoEffect = true;
5574      return false;
5575    }
5576  }
5577
5578  llvm_unreachable("Missing specialization/instantiation case?");
5579}
5580
5581/// \brief Perform semantic analysis for the given dependent function
5582/// template specialization.  The only possible way to get a dependent
5583/// function template specialization is with a friend declaration,
5584/// like so:
5585///
5586///   template <class T> void foo(T);
5587///   template <class T> class A {
5588///     friend void foo<>(T);
5589///   };
5590///
5591/// There really isn't any useful analysis we can do here, so we
5592/// just store the information.
5593bool
5594Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5595                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5596                                                   LookupResult &Previous) {
5597  // Remove anything from Previous that isn't a function template in
5598  // the correct context.
5599  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5600  LookupResult::Filter F = Previous.makeFilter();
5601  while (F.hasNext()) {
5602    NamedDecl *D = F.next()->getUnderlyingDecl();
5603    if (!isa<FunctionTemplateDecl>(D) ||
5604        !FDLookupContext->InEnclosingNamespaceSetOf(
5605                              D->getDeclContext()->getRedeclContext()))
5606      F.erase();
5607  }
5608  F.done();
5609
5610  // Should this be diagnosed here?
5611  if (Previous.empty()) return true;
5612
5613  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5614                                         ExplicitTemplateArgs);
5615  return false;
5616}
5617
5618/// \brief Perform semantic analysis for the given function template
5619/// specialization.
5620///
5621/// This routine performs all of the semantic analysis required for an
5622/// explicit function template specialization. On successful completion,
5623/// the function declaration \p FD will become a function template
5624/// specialization.
5625///
5626/// \param FD the function declaration, which will be updated to become a
5627/// function template specialization.
5628///
5629/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5630/// if any. Note that this may be valid info even when 0 arguments are
5631/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5632/// as it anyway contains info on the angle brackets locations.
5633///
5634/// \param Previous the set of declarations that may be specialized by
5635/// this function specialization.
5636bool
5637Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5638                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5639                                          LookupResult &Previous) {
5640  // The set of function template specializations that could match this
5641  // explicit function template specialization.
5642  UnresolvedSet<8> Candidates;
5643
5644  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5645  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5646         I != E; ++I) {
5647    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5648    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5649      // Only consider templates found within the same semantic lookup scope as
5650      // FD.
5651      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5652                                Ovl->getDeclContext()->getRedeclContext()))
5653        continue;
5654
5655      // C++ [temp.expl.spec]p11:
5656      //   A trailing template-argument can be left unspecified in the
5657      //   template-id naming an explicit function template specialization
5658      //   provided it can be deduced from the function argument type.
5659      // Perform template argument deduction to determine whether we may be
5660      // specializing this template.
5661      // FIXME: It is somewhat wasteful to build
5662      TemplateDeductionInfo Info(Context, FD->getLocation());
5663      FunctionDecl *Specialization = 0;
5664      if (TemplateDeductionResult TDK
5665            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5666                                      FD->getType(),
5667                                      Specialization,
5668                                      Info)) {
5669        // FIXME: Template argument deduction failed; record why it failed, so
5670        // that we can provide nifty diagnostics.
5671        (void)TDK;
5672        continue;
5673      }
5674
5675      // Record this candidate.
5676      Candidates.addDecl(Specialization, I.getAccess());
5677    }
5678  }
5679
5680  // Find the most specialized function template.
5681  UnresolvedSetIterator Result
5682    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5683                         TPOC_Other, 0, FD->getLocation(),
5684                  PDiag(diag::err_function_template_spec_no_match)
5685                    << FD->getDeclName(),
5686                  PDiag(diag::err_function_template_spec_ambiguous)
5687                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5688                  PDiag(diag::note_function_template_spec_matched));
5689  if (Result == Candidates.end())
5690    return true;
5691
5692  // Ignore access information;  it doesn't figure into redeclaration checking.
5693  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5694
5695  FunctionTemplateSpecializationInfo *SpecInfo
5696    = Specialization->getTemplateSpecializationInfo();
5697  assert(SpecInfo && "Function template specialization info missing?");
5698
5699  // Note: do not overwrite location info if previous template
5700  // specialization kind was explicit.
5701  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5702  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5703    Specialization->setLocation(FD->getLocation());
5704    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5705    // function can differ from the template declaration with respect to
5706    // the constexpr specifier.
5707    Specialization->setConstexpr(FD->isConstexpr());
5708  }
5709
5710  // FIXME: Check if the prior specialization has a point of instantiation.
5711  // If so, we have run afoul of .
5712
5713  // If this is a friend declaration, then we're not really declaring
5714  // an explicit specialization.
5715  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5716
5717  // Check the scope of this explicit specialization.
5718  if (!isFriend &&
5719      CheckTemplateSpecializationScope(*this,
5720                                       Specialization->getPrimaryTemplate(),
5721                                       Specialization, FD->getLocation(),
5722                                       false))
5723    return true;
5724
5725  // C++ [temp.expl.spec]p6:
5726  //   If a template, a member template or the member of a class template is
5727  //   explicitly specialized then that specialization shall be declared
5728  //   before the first use of that specialization that would cause an implicit
5729  //   instantiation to take place, in every translation unit in which such a
5730  //   use occurs; no diagnostic is required.
5731  bool HasNoEffect = false;
5732  if (!isFriend &&
5733      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5734                                             TSK_ExplicitSpecialization,
5735                                             Specialization,
5736                                   SpecInfo->getTemplateSpecializationKind(),
5737                                         SpecInfo->getPointOfInstantiation(),
5738                                             HasNoEffect))
5739    return true;
5740
5741  // Mark the prior declaration as an explicit specialization, so that later
5742  // clients know that this is an explicit specialization.
5743  if (!isFriend) {
5744    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5745    MarkUnusedFileScopedDecl(Specialization);
5746  }
5747
5748  // Turn the given function declaration into a function template
5749  // specialization, with the template arguments from the previous
5750  // specialization.
5751  // Take copies of (semantic and syntactic) template argument lists.
5752  const TemplateArgumentList* TemplArgs = new (Context)
5753    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5754  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5755                                        TemplArgs, /*InsertPos=*/0,
5756                                    SpecInfo->getTemplateSpecializationKind(),
5757                                        ExplicitTemplateArgs);
5758  FD->setStorageClass(Specialization->getStorageClass());
5759
5760  // The "previous declaration" for this function template specialization is
5761  // the prior function template specialization.
5762  Previous.clear();
5763  Previous.addDecl(Specialization);
5764  return false;
5765}
5766
5767/// \brief Perform semantic analysis for the given non-template member
5768/// specialization.
5769///
5770/// This routine performs all of the semantic analysis required for an
5771/// explicit member function specialization. On successful completion,
5772/// the function declaration \p FD will become a member function
5773/// specialization.
5774///
5775/// \param Member the member declaration, which will be updated to become a
5776/// specialization.
5777///
5778/// \param Previous the set of declarations, one of which may be specialized
5779/// by this function specialization;  the set will be modified to contain the
5780/// redeclared member.
5781bool
5782Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5783  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5784
5785  // Try to find the member we are instantiating.
5786  NamedDecl *Instantiation = 0;
5787  NamedDecl *InstantiatedFrom = 0;
5788  MemberSpecializationInfo *MSInfo = 0;
5789
5790  if (Previous.empty()) {
5791    // Nowhere to look anyway.
5792  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5793    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5794           I != E; ++I) {
5795      NamedDecl *D = (*I)->getUnderlyingDecl();
5796      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5797        if (Context.hasSameType(Function->getType(), Method->getType())) {
5798          Instantiation = Method;
5799          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5800          MSInfo = Method->getMemberSpecializationInfo();
5801          break;
5802        }
5803      }
5804    }
5805  } else if (isa<VarDecl>(Member)) {
5806    VarDecl *PrevVar;
5807    if (Previous.isSingleResult() &&
5808        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5809      if (PrevVar->isStaticDataMember()) {
5810        Instantiation = PrevVar;
5811        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5812        MSInfo = PrevVar->getMemberSpecializationInfo();
5813      }
5814  } else if (isa<RecordDecl>(Member)) {
5815    CXXRecordDecl *PrevRecord;
5816    if (Previous.isSingleResult() &&
5817        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5818      Instantiation = PrevRecord;
5819      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5820      MSInfo = PrevRecord->getMemberSpecializationInfo();
5821    }
5822  } else if (isa<EnumDecl>(Member)) {
5823    EnumDecl *PrevEnum;
5824    if (Previous.isSingleResult() &&
5825        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
5826      Instantiation = PrevEnum;
5827      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
5828      MSInfo = PrevEnum->getMemberSpecializationInfo();
5829    }
5830  }
5831
5832  if (!Instantiation) {
5833    // There is no previous declaration that matches. Since member
5834    // specializations are always out-of-line, the caller will complain about
5835    // this mismatch later.
5836    return false;
5837  }
5838
5839  // If this is a friend, just bail out here before we start turning
5840  // things into explicit specializations.
5841  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5842    // Preserve instantiation information.
5843    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5844      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5845                                      cast<CXXMethodDecl>(InstantiatedFrom),
5846        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5847    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5848      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5849                                      cast<CXXRecordDecl>(InstantiatedFrom),
5850        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5851    }
5852
5853    Previous.clear();
5854    Previous.addDecl(Instantiation);
5855    return false;
5856  }
5857
5858  // Make sure that this is a specialization of a member.
5859  if (!InstantiatedFrom) {
5860    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5861      << Member;
5862    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5863    return true;
5864  }
5865
5866  // C++ [temp.expl.spec]p6:
5867  //   If a template, a member template or the member of a class template is
5868  //   explicitly specialized then that specialization shall be declared
5869  //   before the first use of that specialization that would cause an implicit
5870  //   instantiation to take place, in every translation unit in which such a
5871  //   use occurs; no diagnostic is required.
5872  assert(MSInfo && "Member specialization info missing?");
5873
5874  bool HasNoEffect = false;
5875  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5876                                             TSK_ExplicitSpecialization,
5877                                             Instantiation,
5878                                     MSInfo->getTemplateSpecializationKind(),
5879                                           MSInfo->getPointOfInstantiation(),
5880                                             HasNoEffect))
5881    return true;
5882
5883  // Check the scope of this explicit specialization.
5884  if (CheckTemplateSpecializationScope(*this,
5885                                       InstantiatedFrom,
5886                                       Instantiation, Member->getLocation(),
5887                                       false))
5888    return true;
5889
5890  // Note that this is an explicit instantiation of a member.
5891  // the original declaration to note that it is an explicit specialization
5892  // (if it was previously an implicit instantiation). This latter step
5893  // makes bookkeeping easier.
5894  if (isa<FunctionDecl>(Member)) {
5895    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5896    if (InstantiationFunction->getTemplateSpecializationKind() ==
5897          TSK_ImplicitInstantiation) {
5898      InstantiationFunction->setTemplateSpecializationKind(
5899                                                  TSK_ExplicitSpecialization);
5900      InstantiationFunction->setLocation(Member->getLocation());
5901    }
5902
5903    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5904                                        cast<CXXMethodDecl>(InstantiatedFrom),
5905                                                  TSK_ExplicitSpecialization);
5906    MarkUnusedFileScopedDecl(InstantiationFunction);
5907  } else if (isa<VarDecl>(Member)) {
5908    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5909    if (InstantiationVar->getTemplateSpecializationKind() ==
5910          TSK_ImplicitInstantiation) {
5911      InstantiationVar->setTemplateSpecializationKind(
5912                                                  TSK_ExplicitSpecialization);
5913      InstantiationVar->setLocation(Member->getLocation());
5914    }
5915
5916    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5917                                                cast<VarDecl>(InstantiatedFrom),
5918                                                TSK_ExplicitSpecialization);
5919    MarkUnusedFileScopedDecl(InstantiationVar);
5920  } else if (isa<CXXRecordDecl>(Member)) {
5921    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5922    if (InstantiationClass->getTemplateSpecializationKind() ==
5923          TSK_ImplicitInstantiation) {
5924      InstantiationClass->setTemplateSpecializationKind(
5925                                                   TSK_ExplicitSpecialization);
5926      InstantiationClass->setLocation(Member->getLocation());
5927    }
5928
5929    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5930                                        cast<CXXRecordDecl>(InstantiatedFrom),
5931                                                   TSK_ExplicitSpecialization);
5932  } else {
5933    assert(isa<EnumDecl>(Member) && "Only member enums remain");
5934    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
5935    if (InstantiationEnum->getTemplateSpecializationKind() ==
5936          TSK_ImplicitInstantiation) {
5937      InstantiationEnum->setTemplateSpecializationKind(
5938                                                   TSK_ExplicitSpecialization);
5939      InstantiationEnum->setLocation(Member->getLocation());
5940    }
5941
5942    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
5943        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
5944  }
5945
5946  // Save the caller the trouble of having to figure out which declaration
5947  // this specialization matches.
5948  Previous.clear();
5949  Previous.addDecl(Instantiation);
5950  return false;
5951}
5952
5953/// \brief Check the scope of an explicit instantiation.
5954///
5955/// \returns true if a serious error occurs, false otherwise.
5956static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5957                                            SourceLocation InstLoc,
5958                                            bool WasQualifiedName) {
5959  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5960  DeclContext *CurContext = S.CurContext->getRedeclContext();
5961
5962  if (CurContext->isRecord()) {
5963    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5964      << D;
5965    return true;
5966  }
5967
5968  // C++11 [temp.explicit]p3:
5969  //   An explicit instantiation shall appear in an enclosing namespace of its
5970  //   template. If the name declared in the explicit instantiation is an
5971  //   unqualified name, the explicit instantiation shall appear in the
5972  //   namespace where its template is declared or, if that namespace is inline
5973  //   (7.3.1), any namespace from its enclosing namespace set.
5974  //
5975  // This is DR275, which we do not retroactively apply to C++98/03.
5976  if (WasQualifiedName) {
5977    if (CurContext->Encloses(OrigContext))
5978      return false;
5979  } else {
5980    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5981      return false;
5982  }
5983
5984  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
5985    if (WasQualifiedName)
5986      S.Diag(InstLoc,
5987             S.getLangOpts().CPlusPlus0x?
5988               diag::err_explicit_instantiation_out_of_scope :
5989               diag::warn_explicit_instantiation_out_of_scope_0x)
5990        << D << NS;
5991    else
5992      S.Diag(InstLoc,
5993             S.getLangOpts().CPlusPlus0x?
5994               diag::err_explicit_instantiation_unqualified_wrong_namespace :
5995               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5996        << D << NS;
5997  } else
5998    S.Diag(InstLoc,
5999           S.getLangOpts().CPlusPlus0x?
6000             diag::err_explicit_instantiation_must_be_global :
6001             diag::warn_explicit_instantiation_must_be_global_0x)
6002      << D;
6003  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6004  return false;
6005}
6006
6007/// \brief Determine whether the given scope specifier has a template-id in it.
6008static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6009  if (!SS.isSet())
6010    return false;
6011
6012  // C++11 [temp.explicit]p3:
6013  //   If the explicit instantiation is for a member function, a member class
6014  //   or a static data member of a class template specialization, the name of
6015  //   the class template specialization in the qualified-id for the member
6016  //   name shall be a simple-template-id.
6017  //
6018  // C++98 has the same restriction, just worded differently.
6019  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6020       NNS; NNS = NNS->getPrefix())
6021    if (const Type *T = NNS->getAsType())
6022      if (isa<TemplateSpecializationType>(T))
6023        return true;
6024
6025  return false;
6026}
6027
6028// Explicit instantiation of a class template specialization
6029DeclResult
6030Sema::ActOnExplicitInstantiation(Scope *S,
6031                                 SourceLocation ExternLoc,
6032                                 SourceLocation TemplateLoc,
6033                                 unsigned TagSpec,
6034                                 SourceLocation KWLoc,
6035                                 const CXXScopeSpec &SS,
6036                                 TemplateTy TemplateD,
6037                                 SourceLocation TemplateNameLoc,
6038                                 SourceLocation LAngleLoc,
6039                                 ASTTemplateArgsPtr TemplateArgsIn,
6040                                 SourceLocation RAngleLoc,
6041                                 AttributeList *Attr) {
6042  // Find the class template we're specializing
6043  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6044  ClassTemplateDecl *ClassTemplate
6045    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6046
6047  // Check that the specialization uses the same tag kind as the
6048  // original template.
6049  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6050  assert(Kind != TTK_Enum &&
6051         "Invalid enum tag in class template explicit instantiation!");
6052  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6053                                    Kind, /*isDefinition*/false, KWLoc,
6054                                    *ClassTemplate->getIdentifier())) {
6055    Diag(KWLoc, diag::err_use_with_wrong_tag)
6056      << ClassTemplate
6057      << FixItHint::CreateReplacement(KWLoc,
6058                            ClassTemplate->getTemplatedDecl()->getKindName());
6059    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6060         diag::note_previous_use);
6061    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6062  }
6063
6064  // C++0x [temp.explicit]p2:
6065  //   There are two forms of explicit instantiation: an explicit instantiation
6066  //   definition and an explicit instantiation declaration. An explicit
6067  //   instantiation declaration begins with the extern keyword. [...]
6068  TemplateSpecializationKind TSK
6069    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6070                           : TSK_ExplicitInstantiationDeclaration;
6071
6072  // Translate the parser's template argument list in our AST format.
6073  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6074  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6075
6076  // Check that the template argument list is well-formed for this
6077  // template.
6078  SmallVector<TemplateArgument, 4> Converted;
6079  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6080                                TemplateArgs, false, Converted))
6081    return true;
6082
6083  // Find the class template specialization declaration that
6084  // corresponds to these arguments.
6085  void *InsertPos = 0;
6086  ClassTemplateSpecializationDecl *PrevDecl
6087    = ClassTemplate->findSpecialization(Converted.data(),
6088                                        Converted.size(), InsertPos);
6089
6090  TemplateSpecializationKind PrevDecl_TSK
6091    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6092
6093  // C++0x [temp.explicit]p2:
6094  //   [...] An explicit instantiation shall appear in an enclosing
6095  //   namespace of its template. [...]
6096  //
6097  // This is C++ DR 275.
6098  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6099                                      SS.isSet()))
6100    return true;
6101
6102  ClassTemplateSpecializationDecl *Specialization = 0;
6103
6104  bool HasNoEffect = false;
6105  if (PrevDecl) {
6106    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6107                                               PrevDecl, PrevDecl_TSK,
6108                                            PrevDecl->getPointOfInstantiation(),
6109                                               HasNoEffect))
6110      return PrevDecl;
6111
6112    // Even though HasNoEffect == true means that this explicit instantiation
6113    // has no effect on semantics, we go on to put its syntax in the AST.
6114
6115    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6116        PrevDecl_TSK == TSK_Undeclared) {
6117      // Since the only prior class template specialization with these
6118      // arguments was referenced but not declared, reuse that
6119      // declaration node as our own, updating the source location
6120      // for the template name to reflect our new declaration.
6121      // (Other source locations will be updated later.)
6122      Specialization = PrevDecl;
6123      Specialization->setLocation(TemplateNameLoc);
6124      PrevDecl = 0;
6125    }
6126  }
6127
6128  if (!Specialization) {
6129    // Create a new class template specialization declaration node for
6130    // this explicit specialization.
6131    Specialization
6132      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6133                                             ClassTemplate->getDeclContext(),
6134                                                KWLoc, TemplateNameLoc,
6135                                                ClassTemplate,
6136                                                Converted.data(),
6137                                                Converted.size(),
6138                                                PrevDecl);
6139    SetNestedNameSpecifier(Specialization, SS);
6140
6141    if (!HasNoEffect && !PrevDecl) {
6142      // Insert the new specialization.
6143      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6144    }
6145  }
6146
6147  // Build the fully-sugared type for this explicit instantiation as
6148  // the user wrote in the explicit instantiation itself. This means
6149  // that we'll pretty-print the type retrieved from the
6150  // specialization's declaration the way that the user actually wrote
6151  // the explicit instantiation, rather than formatting the name based
6152  // on the "canonical" representation used to store the template
6153  // arguments in the specialization.
6154  TypeSourceInfo *WrittenTy
6155    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6156                                                TemplateArgs,
6157                                  Context.getTypeDeclType(Specialization));
6158  Specialization->setTypeAsWritten(WrittenTy);
6159  TemplateArgsIn.release();
6160
6161  // Set source locations for keywords.
6162  Specialization->setExternLoc(ExternLoc);
6163  Specialization->setTemplateKeywordLoc(TemplateLoc);
6164
6165  if (Attr)
6166    ProcessDeclAttributeList(S, Specialization, Attr);
6167
6168  // Add the explicit instantiation into its lexical context. However,
6169  // since explicit instantiations are never found by name lookup, we
6170  // just put it into the declaration context directly.
6171  Specialization->setLexicalDeclContext(CurContext);
6172  CurContext->addDecl(Specialization);
6173
6174  // Syntax is now OK, so return if it has no other effect on semantics.
6175  if (HasNoEffect) {
6176    // Set the template specialization kind.
6177    Specialization->setTemplateSpecializationKind(TSK);
6178    return Specialization;
6179  }
6180
6181  // C++ [temp.explicit]p3:
6182  //   A definition of a class template or class member template
6183  //   shall be in scope at the point of the explicit instantiation of
6184  //   the class template or class member template.
6185  //
6186  // This check comes when we actually try to perform the
6187  // instantiation.
6188  ClassTemplateSpecializationDecl *Def
6189    = cast_or_null<ClassTemplateSpecializationDecl>(
6190                                              Specialization->getDefinition());
6191  if (!Def)
6192    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6193  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6194    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6195    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6196  }
6197
6198  // Instantiate the members of this class template specialization.
6199  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6200                                       Specialization->getDefinition());
6201  if (Def) {
6202    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6203
6204    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6205    // TSK_ExplicitInstantiationDefinition
6206    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6207        TSK == TSK_ExplicitInstantiationDefinition)
6208      Def->setTemplateSpecializationKind(TSK);
6209
6210    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6211  }
6212
6213  // Set the template specialization kind.
6214  Specialization->setTemplateSpecializationKind(TSK);
6215  return Specialization;
6216}
6217
6218// Explicit instantiation of a member class of a class template.
6219DeclResult
6220Sema::ActOnExplicitInstantiation(Scope *S,
6221                                 SourceLocation ExternLoc,
6222                                 SourceLocation TemplateLoc,
6223                                 unsigned TagSpec,
6224                                 SourceLocation KWLoc,
6225                                 CXXScopeSpec &SS,
6226                                 IdentifierInfo *Name,
6227                                 SourceLocation NameLoc,
6228                                 AttributeList *Attr) {
6229
6230  bool Owned = false;
6231  bool IsDependent = false;
6232  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6233                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6234                        /*ModulePrivateLoc=*/SourceLocation(),
6235                        MultiTemplateParamsArg(*this, 0, 0),
6236                        Owned, IsDependent, SourceLocation(), false,
6237                        TypeResult());
6238  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6239
6240  if (!TagD)
6241    return true;
6242
6243  TagDecl *Tag = cast<TagDecl>(TagD);
6244  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6245
6246  if (Tag->isInvalidDecl())
6247    return true;
6248
6249  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6250  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6251  if (!Pattern) {
6252    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6253      << Context.getTypeDeclType(Record);
6254    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6255    return true;
6256  }
6257
6258  // C++0x [temp.explicit]p2:
6259  //   If the explicit instantiation is for a class or member class, the
6260  //   elaborated-type-specifier in the declaration shall include a
6261  //   simple-template-id.
6262  //
6263  // C++98 has the same restriction, just worded differently.
6264  if (!ScopeSpecifierHasTemplateId(SS))
6265    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6266      << Record << SS.getRange();
6267
6268  // C++0x [temp.explicit]p2:
6269  //   There are two forms of explicit instantiation: an explicit instantiation
6270  //   definition and an explicit instantiation declaration. An explicit
6271  //   instantiation declaration begins with the extern keyword. [...]
6272  TemplateSpecializationKind TSK
6273    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6274                           : TSK_ExplicitInstantiationDeclaration;
6275
6276  // C++0x [temp.explicit]p2:
6277  //   [...] An explicit instantiation shall appear in an enclosing
6278  //   namespace of its template. [...]
6279  //
6280  // This is C++ DR 275.
6281  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6282
6283  // Verify that it is okay to explicitly instantiate here.
6284  CXXRecordDecl *PrevDecl
6285    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6286  if (!PrevDecl && Record->getDefinition())
6287    PrevDecl = Record;
6288  if (PrevDecl) {
6289    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6290    bool HasNoEffect = false;
6291    assert(MSInfo && "No member specialization information?");
6292    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6293                                               PrevDecl,
6294                                        MSInfo->getTemplateSpecializationKind(),
6295                                             MSInfo->getPointOfInstantiation(),
6296                                               HasNoEffect))
6297      return true;
6298    if (HasNoEffect)
6299      return TagD;
6300  }
6301
6302  CXXRecordDecl *RecordDef
6303    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6304  if (!RecordDef) {
6305    // C++ [temp.explicit]p3:
6306    //   A definition of a member class of a class template shall be in scope
6307    //   at the point of an explicit instantiation of the member class.
6308    CXXRecordDecl *Def
6309      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6310    if (!Def) {
6311      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6312        << 0 << Record->getDeclName() << Record->getDeclContext();
6313      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6314        << Pattern;
6315      return true;
6316    } else {
6317      if (InstantiateClass(NameLoc, Record, Def,
6318                           getTemplateInstantiationArgs(Record),
6319                           TSK))
6320        return true;
6321
6322      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6323      if (!RecordDef)
6324        return true;
6325    }
6326  }
6327
6328  // Instantiate all of the members of the class.
6329  InstantiateClassMembers(NameLoc, RecordDef,
6330                          getTemplateInstantiationArgs(Record), TSK);
6331
6332  if (TSK == TSK_ExplicitInstantiationDefinition)
6333    MarkVTableUsed(NameLoc, RecordDef, true);
6334
6335  // FIXME: We don't have any representation for explicit instantiations of
6336  // member classes. Such a representation is not needed for compilation, but it
6337  // should be available for clients that want to see all of the declarations in
6338  // the source code.
6339  return TagD;
6340}
6341
6342DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6343                                            SourceLocation ExternLoc,
6344                                            SourceLocation TemplateLoc,
6345                                            Declarator &D) {
6346  // Explicit instantiations always require a name.
6347  // TODO: check if/when DNInfo should replace Name.
6348  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6349  DeclarationName Name = NameInfo.getName();
6350  if (!Name) {
6351    if (!D.isInvalidType())
6352      Diag(D.getDeclSpec().getLocStart(),
6353           diag::err_explicit_instantiation_requires_name)
6354        << D.getDeclSpec().getSourceRange()
6355        << D.getSourceRange();
6356
6357    return true;
6358  }
6359
6360  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6361  // we find one that is.
6362  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6363         (S->getFlags() & Scope::TemplateParamScope) != 0)
6364    S = S->getParent();
6365
6366  // Determine the type of the declaration.
6367  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6368  QualType R = T->getType();
6369  if (R.isNull())
6370    return true;
6371
6372  // C++ [dcl.stc]p1:
6373  //   A storage-class-specifier shall not be specified in [...] an explicit
6374  //   instantiation (14.7.2) directive.
6375  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6376    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6377      << Name;
6378    return true;
6379  } else if (D.getDeclSpec().getStorageClassSpec()
6380                                                != DeclSpec::SCS_unspecified) {
6381    // Complain about then remove the storage class specifier.
6382    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6383      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6384
6385    D.getMutableDeclSpec().ClearStorageClassSpecs();
6386  }
6387
6388  // C++0x [temp.explicit]p1:
6389  //   [...] An explicit instantiation of a function template shall not use the
6390  //   inline or constexpr specifiers.
6391  // Presumably, this also applies to member functions of class templates as
6392  // well.
6393  if (D.getDeclSpec().isInlineSpecified())
6394    Diag(D.getDeclSpec().getInlineSpecLoc(),
6395         getLangOpts().CPlusPlus0x ?
6396           diag::err_explicit_instantiation_inline :
6397           diag::warn_explicit_instantiation_inline_0x)
6398      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6399  if (D.getDeclSpec().isConstexprSpecified())
6400    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6401    // not already specified.
6402    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6403         diag::err_explicit_instantiation_constexpr);
6404
6405  // C++0x [temp.explicit]p2:
6406  //   There are two forms of explicit instantiation: an explicit instantiation
6407  //   definition and an explicit instantiation declaration. An explicit
6408  //   instantiation declaration begins with the extern keyword. [...]
6409  TemplateSpecializationKind TSK
6410    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6411                           : TSK_ExplicitInstantiationDeclaration;
6412
6413  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6414  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6415
6416  if (!R->isFunctionType()) {
6417    // C++ [temp.explicit]p1:
6418    //   A [...] static data member of a class template can be explicitly
6419    //   instantiated from the member definition associated with its class
6420    //   template.
6421    if (Previous.isAmbiguous())
6422      return true;
6423
6424    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6425    if (!Prev || !Prev->isStaticDataMember()) {
6426      // We expect to see a data data member here.
6427      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6428        << Name;
6429      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6430           P != PEnd; ++P)
6431        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6432      return true;
6433    }
6434
6435    if (!Prev->getInstantiatedFromStaticDataMember()) {
6436      // FIXME: Check for explicit specialization?
6437      Diag(D.getIdentifierLoc(),
6438           diag::err_explicit_instantiation_data_member_not_instantiated)
6439        << Prev;
6440      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6441      // FIXME: Can we provide a note showing where this was declared?
6442      return true;
6443    }
6444
6445    // C++0x [temp.explicit]p2:
6446    //   If the explicit instantiation is for a member function, a member class
6447    //   or a static data member of a class template specialization, the name of
6448    //   the class template specialization in the qualified-id for the member
6449    //   name shall be a simple-template-id.
6450    //
6451    // C++98 has the same restriction, just worded differently.
6452    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6453      Diag(D.getIdentifierLoc(),
6454           diag::ext_explicit_instantiation_without_qualified_id)
6455        << Prev << D.getCXXScopeSpec().getRange();
6456
6457    // Check the scope of this explicit instantiation.
6458    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6459
6460    // Verify that it is okay to explicitly instantiate here.
6461    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6462    assert(MSInfo && "Missing static data member specialization info?");
6463    bool HasNoEffect = false;
6464    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6465                                        MSInfo->getTemplateSpecializationKind(),
6466                                              MSInfo->getPointOfInstantiation(),
6467                                               HasNoEffect))
6468      return true;
6469    if (HasNoEffect)
6470      return (Decl*) 0;
6471
6472    // Instantiate static data member.
6473    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6474    if (TSK == TSK_ExplicitInstantiationDefinition)
6475      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6476
6477    // FIXME: Create an ExplicitInstantiation node?
6478    return (Decl*) 0;
6479  }
6480
6481  // If the declarator is a template-id, translate the parser's template
6482  // argument list into our AST format.
6483  bool HasExplicitTemplateArgs = false;
6484  TemplateArgumentListInfo TemplateArgs;
6485  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6486    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6487    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6488    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6489    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6490                                       TemplateId->getTemplateArgs(),
6491                                       TemplateId->NumArgs);
6492    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6493    HasExplicitTemplateArgs = true;
6494    TemplateArgsPtr.release();
6495  }
6496
6497  // C++ [temp.explicit]p1:
6498  //   A [...] function [...] can be explicitly instantiated from its template.
6499  //   A member function [...] of a class template can be explicitly
6500  //  instantiated from the member definition associated with its class
6501  //  template.
6502  UnresolvedSet<8> Matches;
6503  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6504       P != PEnd; ++P) {
6505    NamedDecl *Prev = *P;
6506    if (!HasExplicitTemplateArgs) {
6507      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6508        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6509          Matches.clear();
6510
6511          Matches.addDecl(Method, P.getAccess());
6512          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6513            break;
6514        }
6515      }
6516    }
6517
6518    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6519    if (!FunTmpl)
6520      continue;
6521
6522    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6523    FunctionDecl *Specialization = 0;
6524    if (TemplateDeductionResult TDK
6525          = DeduceTemplateArguments(FunTmpl,
6526                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6527                                    R, Specialization, Info)) {
6528      // FIXME: Keep track of almost-matches?
6529      (void)TDK;
6530      continue;
6531    }
6532
6533    Matches.addDecl(Specialization, P.getAccess());
6534  }
6535
6536  // Find the most specialized function template specialization.
6537  UnresolvedSetIterator Result
6538    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6539                         D.getIdentifierLoc(),
6540                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6541                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6542                         PDiag(diag::note_explicit_instantiation_candidate));
6543
6544  if (Result == Matches.end())
6545    return true;
6546
6547  // Ignore access control bits, we don't need them for redeclaration checking.
6548  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6549
6550  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6551    Diag(D.getIdentifierLoc(),
6552         diag::err_explicit_instantiation_member_function_not_instantiated)
6553      << Specialization
6554      << (Specialization->getTemplateSpecializationKind() ==
6555          TSK_ExplicitSpecialization);
6556    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6557    return true;
6558  }
6559
6560  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6561  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6562    PrevDecl = Specialization;
6563
6564  if (PrevDecl) {
6565    bool HasNoEffect = false;
6566    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6567                                               PrevDecl,
6568                                     PrevDecl->getTemplateSpecializationKind(),
6569                                          PrevDecl->getPointOfInstantiation(),
6570                                               HasNoEffect))
6571      return true;
6572
6573    // FIXME: We may still want to build some representation of this
6574    // explicit specialization.
6575    if (HasNoEffect)
6576      return (Decl*) 0;
6577  }
6578
6579  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6580  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6581  if (Attr)
6582    ProcessDeclAttributeList(S, Specialization, Attr);
6583
6584  if (TSK == TSK_ExplicitInstantiationDefinition)
6585    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6586
6587  // C++0x [temp.explicit]p2:
6588  //   If the explicit instantiation is for a member function, a member class
6589  //   or a static data member of a class template specialization, the name of
6590  //   the class template specialization in the qualified-id for the member
6591  //   name shall be a simple-template-id.
6592  //
6593  // C++98 has the same restriction, just worded differently.
6594  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6595  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6596      D.getCXXScopeSpec().isSet() &&
6597      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6598    Diag(D.getIdentifierLoc(),
6599         diag::ext_explicit_instantiation_without_qualified_id)
6600    << Specialization << D.getCXXScopeSpec().getRange();
6601
6602  CheckExplicitInstantiationScope(*this,
6603                   FunTmpl? (NamedDecl *)FunTmpl
6604                          : Specialization->getInstantiatedFromMemberFunction(),
6605                                  D.getIdentifierLoc(),
6606                                  D.getCXXScopeSpec().isSet());
6607
6608  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6609  return (Decl*) 0;
6610}
6611
6612TypeResult
6613Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6614                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6615                        SourceLocation TagLoc, SourceLocation NameLoc) {
6616  // This has to hold, because SS is expected to be defined.
6617  assert(Name && "Expected a name in a dependent tag");
6618
6619  NestedNameSpecifier *NNS
6620    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6621  if (!NNS)
6622    return true;
6623
6624  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6625
6626  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6627    Diag(NameLoc, diag::err_dependent_tag_decl)
6628      << (TUK == TUK_Definition) << Kind << SS.getRange();
6629    return true;
6630  }
6631
6632  // Create the resulting type.
6633  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6634  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6635
6636  // Create type-source location information for this type.
6637  TypeLocBuilder TLB;
6638  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6639  TL.setElaboratedKeywordLoc(TagLoc);
6640  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6641  TL.setNameLoc(NameLoc);
6642  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6643}
6644
6645TypeResult
6646Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6647                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6648                        SourceLocation IdLoc) {
6649  if (SS.isInvalid())
6650    return true;
6651
6652  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6653    Diag(TypenameLoc,
6654         getLangOpts().CPlusPlus0x ?
6655           diag::warn_cxx98_compat_typename_outside_of_template :
6656           diag::ext_typename_outside_of_template)
6657      << FixItHint::CreateRemoval(TypenameLoc);
6658
6659  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6660  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6661                                 TypenameLoc, QualifierLoc, II, IdLoc);
6662  if (T.isNull())
6663    return true;
6664
6665  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6666  if (isa<DependentNameType>(T)) {
6667    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6668    TL.setElaboratedKeywordLoc(TypenameLoc);
6669    TL.setQualifierLoc(QualifierLoc);
6670    TL.setNameLoc(IdLoc);
6671  } else {
6672    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6673    TL.setElaboratedKeywordLoc(TypenameLoc);
6674    TL.setQualifierLoc(QualifierLoc);
6675    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6676  }
6677
6678  return CreateParsedType(T, TSI);
6679}
6680
6681TypeResult
6682Sema::ActOnTypenameType(Scope *S,
6683                        SourceLocation TypenameLoc,
6684                        const CXXScopeSpec &SS,
6685                        SourceLocation TemplateKWLoc,
6686                        TemplateTy TemplateIn,
6687                        SourceLocation TemplateNameLoc,
6688                        SourceLocation LAngleLoc,
6689                        ASTTemplateArgsPtr TemplateArgsIn,
6690                        SourceLocation RAngleLoc) {
6691  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6692    Diag(TypenameLoc,
6693         getLangOpts().CPlusPlus0x ?
6694           diag::warn_cxx98_compat_typename_outside_of_template :
6695           diag::ext_typename_outside_of_template)
6696      << FixItHint::CreateRemoval(TypenameLoc);
6697
6698  // Translate the parser's template argument list in our AST format.
6699  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6700  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6701
6702  TemplateName Template = TemplateIn.get();
6703  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6704    // Construct a dependent template specialization type.
6705    assert(DTN && "dependent template has non-dependent name?");
6706    assert(DTN->getQualifier()
6707           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6708    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6709                                                          DTN->getQualifier(),
6710                                                          DTN->getIdentifier(),
6711                                                                TemplateArgs);
6712
6713    // Create source-location information for this type.
6714    TypeLocBuilder Builder;
6715    DependentTemplateSpecializationTypeLoc SpecTL
6716    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6717    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6718    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6719    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6720    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6721    SpecTL.setLAngleLoc(LAngleLoc);
6722    SpecTL.setRAngleLoc(RAngleLoc);
6723    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6724      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6725    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6726  }
6727
6728  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6729  if (T.isNull())
6730    return true;
6731
6732  // Provide source-location information for the template specialization type.
6733  TypeLocBuilder Builder;
6734  TemplateSpecializationTypeLoc SpecTL
6735    = Builder.push<TemplateSpecializationTypeLoc>(T);
6736  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6737  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6738  SpecTL.setLAngleLoc(LAngleLoc);
6739  SpecTL.setRAngleLoc(RAngleLoc);
6740  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6741    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6742
6743  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6744  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6745  TL.setElaboratedKeywordLoc(TypenameLoc);
6746  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6747
6748  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6749  return CreateParsedType(T, TSI);
6750}
6751
6752
6753/// \brief Build the type that describes a C++ typename specifier,
6754/// e.g., "typename T::type".
6755QualType
6756Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6757                        SourceLocation KeywordLoc,
6758                        NestedNameSpecifierLoc QualifierLoc,
6759                        const IdentifierInfo &II,
6760                        SourceLocation IILoc) {
6761  CXXScopeSpec SS;
6762  SS.Adopt(QualifierLoc);
6763
6764  DeclContext *Ctx = computeDeclContext(SS);
6765  if (!Ctx) {
6766    // If the nested-name-specifier is dependent and couldn't be
6767    // resolved to a type, build a typename type.
6768    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6769    return Context.getDependentNameType(Keyword,
6770                                        QualifierLoc.getNestedNameSpecifier(),
6771                                        &II);
6772  }
6773
6774  // If the nested-name-specifier refers to the current instantiation,
6775  // the "typename" keyword itself is superfluous. In C++03, the
6776  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6777  // allows such extraneous "typename" keywords, and we retroactively
6778  // apply this DR to C++03 code with only a warning. In any case we continue.
6779
6780  if (RequireCompleteDeclContext(SS, Ctx))
6781    return QualType();
6782
6783  DeclarationName Name(&II);
6784  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6785  LookupQualifiedName(Result, Ctx);
6786  unsigned DiagID = 0;
6787  Decl *Referenced = 0;
6788  switch (Result.getResultKind()) {
6789  case LookupResult::NotFound:
6790    DiagID = diag::err_typename_nested_not_found;
6791    break;
6792
6793  case LookupResult::FoundUnresolvedValue: {
6794    // We found a using declaration that is a value. Most likely, the using
6795    // declaration itself is meant to have the 'typename' keyword.
6796    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6797                          IILoc);
6798    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6799      << Name << Ctx << FullRange;
6800    if (UnresolvedUsingValueDecl *Using
6801          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6802      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6803      Diag(Loc, diag::note_using_value_decl_missing_typename)
6804        << FixItHint::CreateInsertion(Loc, "typename ");
6805    }
6806  }
6807  // Fall through to create a dependent typename type, from which we can recover
6808  // better.
6809
6810  case LookupResult::NotFoundInCurrentInstantiation:
6811    // Okay, it's a member of an unknown instantiation.
6812    return Context.getDependentNameType(Keyword,
6813                                        QualifierLoc.getNestedNameSpecifier(),
6814                                        &II);
6815
6816  case LookupResult::Found:
6817    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6818      // We found a type. Build an ElaboratedType, since the
6819      // typename-specifier was just sugar.
6820      return Context.getElaboratedType(ETK_Typename,
6821                                       QualifierLoc.getNestedNameSpecifier(),
6822                                       Context.getTypeDeclType(Type));
6823    }
6824
6825    DiagID = diag::err_typename_nested_not_type;
6826    Referenced = Result.getFoundDecl();
6827    break;
6828
6829  case LookupResult::FoundOverloaded:
6830    DiagID = diag::err_typename_nested_not_type;
6831    Referenced = *Result.begin();
6832    break;
6833
6834  case LookupResult::Ambiguous:
6835    return QualType();
6836  }
6837
6838  // If we get here, it's because name lookup did not find a
6839  // type. Emit an appropriate diagnostic and return an error.
6840  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6841                        IILoc);
6842  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6843  if (Referenced)
6844    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6845      << Name;
6846  return QualType();
6847}
6848
6849namespace {
6850  // See Sema::RebuildTypeInCurrentInstantiation
6851  class CurrentInstantiationRebuilder
6852    : public TreeTransform<CurrentInstantiationRebuilder> {
6853    SourceLocation Loc;
6854    DeclarationName Entity;
6855
6856  public:
6857    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6858
6859    CurrentInstantiationRebuilder(Sema &SemaRef,
6860                                  SourceLocation Loc,
6861                                  DeclarationName Entity)
6862    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6863      Loc(Loc), Entity(Entity) { }
6864
6865    /// \brief Determine whether the given type \p T has already been
6866    /// transformed.
6867    ///
6868    /// For the purposes of type reconstruction, a type has already been
6869    /// transformed if it is NULL or if it is not dependent.
6870    bool AlreadyTransformed(QualType T) {
6871      return T.isNull() || !T->isDependentType();
6872    }
6873
6874    /// \brief Returns the location of the entity whose type is being
6875    /// rebuilt.
6876    SourceLocation getBaseLocation() { return Loc; }
6877
6878    /// \brief Returns the name of the entity whose type is being rebuilt.
6879    DeclarationName getBaseEntity() { return Entity; }
6880
6881    /// \brief Sets the "base" location and entity when that
6882    /// information is known based on another transformation.
6883    void setBase(SourceLocation Loc, DeclarationName Entity) {
6884      this->Loc = Loc;
6885      this->Entity = Entity;
6886    }
6887
6888    ExprResult TransformLambdaExpr(LambdaExpr *E) {
6889      // Lambdas never need to be transformed.
6890      return E;
6891    }
6892  };
6893}
6894
6895/// \brief Rebuilds a type within the context of the current instantiation.
6896///
6897/// The type \p T is part of the type of an out-of-line member definition of
6898/// a class template (or class template partial specialization) that was parsed
6899/// and constructed before we entered the scope of the class template (or
6900/// partial specialization thereof). This routine will rebuild that type now
6901/// that we have entered the declarator's scope, which may produce different
6902/// canonical types, e.g.,
6903///
6904/// \code
6905/// template<typename T>
6906/// struct X {
6907///   typedef T* pointer;
6908///   pointer data();
6909/// };
6910///
6911/// template<typename T>
6912/// typename X<T>::pointer X<T>::data() { ... }
6913/// \endcode
6914///
6915/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6916/// since we do not know that we can look into X<T> when we parsed the type.
6917/// This function will rebuild the type, performing the lookup of "pointer"
6918/// in X<T> and returning an ElaboratedType whose canonical type is the same
6919/// as the canonical type of T*, allowing the return types of the out-of-line
6920/// definition and the declaration to match.
6921TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6922                                                        SourceLocation Loc,
6923                                                        DeclarationName Name) {
6924  if (!T || !T->getType()->isDependentType())
6925    return T;
6926
6927  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6928  return Rebuilder.TransformType(T);
6929}
6930
6931ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6932  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6933                                          DeclarationName());
6934  return Rebuilder.TransformExpr(E);
6935}
6936
6937bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6938  if (SS.isInvalid())
6939    return true;
6940
6941  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6942  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6943                                          DeclarationName());
6944  NestedNameSpecifierLoc Rebuilt
6945    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6946  if (!Rebuilt)
6947    return true;
6948
6949  SS.Adopt(Rebuilt);
6950  return false;
6951}
6952
6953/// \brief Rebuild the template parameters now that we know we're in a current
6954/// instantiation.
6955bool Sema::RebuildTemplateParamsInCurrentInstantiation(
6956                                               TemplateParameterList *Params) {
6957  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6958    Decl *Param = Params->getParam(I);
6959
6960    // There is nothing to rebuild in a type parameter.
6961    if (isa<TemplateTypeParmDecl>(Param))
6962      continue;
6963
6964    // Rebuild the template parameter list of a template template parameter.
6965    if (TemplateTemplateParmDecl *TTP
6966        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
6967      if (RebuildTemplateParamsInCurrentInstantiation(
6968            TTP->getTemplateParameters()))
6969        return true;
6970
6971      continue;
6972    }
6973
6974    // Rebuild the type of a non-type template parameter.
6975    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
6976    TypeSourceInfo *NewTSI
6977      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
6978                                          NTTP->getLocation(),
6979                                          NTTP->getDeclName());
6980    if (!NewTSI)
6981      return true;
6982
6983    if (NewTSI != NTTP->getTypeSourceInfo()) {
6984      NTTP->setTypeSourceInfo(NewTSI);
6985      NTTP->setType(NewTSI->getType());
6986    }
6987  }
6988
6989  return false;
6990}
6991
6992/// \brief Produces a formatted string that describes the binding of
6993/// template parameters to template arguments.
6994std::string
6995Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6996                                      const TemplateArgumentList &Args) {
6997  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6998}
6999
7000std::string
7001Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7002                                      const TemplateArgument *Args,
7003                                      unsigned NumArgs) {
7004  SmallString<128> Str;
7005  llvm::raw_svector_ostream Out(Str);
7006
7007  if (!Params || Params->size() == 0 || NumArgs == 0)
7008    return std::string();
7009
7010  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7011    if (I >= NumArgs)
7012      break;
7013
7014    if (I == 0)
7015      Out << "[with ";
7016    else
7017      Out << ", ";
7018
7019    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7020      Out << Id->getName();
7021    } else {
7022      Out << '$' << I;
7023    }
7024
7025    Out << " = ";
7026    Args[I].print(getPrintingPolicy(), Out);
7027  }
7028
7029  Out << ']';
7030  return Out.str();
7031}
7032
7033void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7034  if (!FD)
7035    return;
7036  FD->setLateTemplateParsed(Flag);
7037}
7038
7039bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7040  DeclContext *DC = CurContext;
7041
7042  while (DC) {
7043    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7044      const FunctionDecl *FD = RD->isLocalClass();
7045      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7046    } else if (DC->isTranslationUnit() || DC->isNamespace())
7047      return false;
7048
7049    DC = DC->getParent();
7050  }
7051  return false;
7052}
7053