SemaTemplate.cpp revision 1afa611e36e0ab23dd3cde4bbe5aa74ceb7d77c5
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "TreeTransform.h" 13#include "clang/AST/ASTContext.h" 14#include "clang/AST/DeclFriend.h" 15#include "clang/AST/DeclTemplate.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/RecursiveASTVisitor.h" 19#include "clang/AST/TypeVisitor.h" 20#include "clang/Basic/LangOptions.h" 21#include "clang/Basic/PartialDiagnostic.h" 22#include "clang/Sema/DeclSpec.h" 23#include "clang/Sema/Lookup.h" 24#include "clang/Sema/ParsedTemplate.h" 25#include "clang/Sema/Scope.h" 26#include "clang/Sema/SemaInternal.h" 27#include "clang/Sema/Template.h" 28#include "clang/Sema/TemplateDeduction.h" 29#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/SmallString.h" 31#include "llvm/ADT/StringExtras.h" 32using namespace clang; 33using namespace sema; 34 35// Exported for use by Parser. 36SourceRange 37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41} 42 43/// \brief Determine whether the declaration found is acceptable as the name 44/// of a template and, if so, return that template declaration. Otherwise, 45/// returns NULL. 46static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84} 85 86void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122} 123 124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131} 132 133TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217} 218 219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242} 243 244void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType() || 260 ObjectType->castAs<TagType>()->isBeingDefined()) && 261 "Caller should have completed object type"); 262 263 // Template names cannot appear inside an Objective-C class or object type. 264 if (ObjectType->isObjCObjectOrInterfaceType()) { 265 Found.clear(); 266 return; 267 } 268 } else if (SS.isSet()) { 269 // This nested-name-specifier occurs after another nested-name-specifier, 270 // so long into the context associated with the prior nested-name-specifier. 271 LookupCtx = computeDeclContext(SS, EnteringContext); 272 isDependent = isDependentScopeSpecifier(SS); 273 274 // The declaration context must be complete. 275 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 276 return; 277 } 278 279 bool ObjectTypeSearchedInScope = false; 280 bool AllowFunctionTemplatesInLookup = true; 281 if (LookupCtx) { 282 // Perform "qualified" name lookup into the declaration context we 283 // computed, which is either the type of the base of a member access 284 // expression or the declaration context associated with a prior 285 // nested-name-specifier. 286 LookupQualifiedName(Found, LookupCtx); 287 if (!ObjectType.isNull() && Found.empty()) { 288 // C++ [basic.lookup.classref]p1: 289 // In a class member access expression (5.2.5), if the . or -> token is 290 // immediately followed by an identifier followed by a <, the 291 // identifier must be looked up to determine whether the < is the 292 // beginning of a template argument list (14.2) or a less-than operator. 293 // The identifier is first looked up in the class of the object 294 // expression. If the identifier is not found, it is then looked up in 295 // the context of the entire postfix-expression and shall name a class 296 // or function template. 297 if (S) LookupName(Found, S); 298 ObjectTypeSearchedInScope = true; 299 AllowFunctionTemplatesInLookup = false; 300 } 301 } else if (isDependent && (!S || ObjectType.isNull())) { 302 // We cannot look into a dependent object type or nested nme 303 // specifier. 304 MemberOfUnknownSpecialization = true; 305 return; 306 } else { 307 // Perform unqualified name lookup in the current scope. 308 LookupName(Found, S); 309 310 if (!ObjectType.isNull()) 311 AllowFunctionTemplatesInLookup = false; 312 } 313 314 if (Found.empty() && !isDependent) { 315 // If we did not find any names, attempt to correct any typos. 316 DeclarationName Name = Found.getLookupName(); 317 Found.clear(); 318 // Simple filter callback that, for keywords, only accepts the C++ *_cast 319 CorrectionCandidateCallback FilterCCC; 320 FilterCCC.WantTypeSpecifiers = false; 321 FilterCCC.WantExpressionKeywords = false; 322 FilterCCC.WantRemainingKeywords = false; 323 FilterCCC.WantCXXNamedCasts = true; 324 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 325 Found.getLookupKind(), S, &SS, 326 FilterCCC, LookupCtx)) { 327 Found.setLookupName(Corrected.getCorrection()); 328 if (Corrected.getCorrectionDecl()) 329 Found.addDecl(Corrected.getCorrectionDecl()); 330 FilterAcceptableTemplateNames(Found); 331 if (!Found.empty()) { 332 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 333 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 334 if (LookupCtx) { 335 bool droppedSpecifier = Corrected.WillReplaceSpecifier() && 336 Name.getAsString() == CorrectedStr; 337 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 338 << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr 339 << SS.getRange() 340 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(), 341 CorrectedStr); 342 } else { 343 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 344 << Name << CorrectedQuotedStr 345 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 346 } 347 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 348 Diag(Template->getLocation(), diag::note_previous_decl) 349 << CorrectedQuotedStr; 350 } 351 } else { 352 Found.setLookupName(Name); 353 } 354 } 355 356 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 357 if (Found.empty()) { 358 if (isDependent) 359 MemberOfUnknownSpecialization = true; 360 return; 361 } 362 363 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 364 !(getLangOpts().CPlusPlus11 && !Found.empty())) { 365 // C++03 [basic.lookup.classref]p1: 366 // [...] If the lookup in the class of the object expression finds a 367 // template, the name is also looked up in the context of the entire 368 // postfix-expression and [...] 369 // 370 // Note: C++11 does not perform this second lookup. 371 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 372 LookupOrdinaryName); 373 LookupName(FoundOuter, S); 374 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 375 376 if (FoundOuter.empty()) { 377 // - if the name is not found, the name found in the class of the 378 // object expression is used, otherwise 379 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 380 FoundOuter.isAmbiguous()) { 381 // - if the name is found in the context of the entire 382 // postfix-expression and does not name a class template, the name 383 // found in the class of the object expression is used, otherwise 384 FoundOuter.clear(); 385 } else if (!Found.isSuppressingDiagnostics()) { 386 // - if the name found is a class template, it must refer to the same 387 // entity as the one found in the class of the object expression, 388 // otherwise the program is ill-formed. 389 if (!Found.isSingleResult() || 390 Found.getFoundDecl()->getCanonicalDecl() 391 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 392 Diag(Found.getNameLoc(), 393 diag::ext_nested_name_member_ref_lookup_ambiguous) 394 << Found.getLookupName() 395 << ObjectType; 396 Diag(Found.getRepresentativeDecl()->getLocation(), 397 diag::note_ambig_member_ref_object_type) 398 << ObjectType; 399 Diag(FoundOuter.getFoundDecl()->getLocation(), 400 diag::note_ambig_member_ref_scope); 401 402 // Recover by taking the template that we found in the object 403 // expression's type. 404 } 405 } 406 } 407} 408 409/// ActOnDependentIdExpression - Handle a dependent id-expression that 410/// was just parsed. This is only possible with an explicit scope 411/// specifier naming a dependent type. 412ExprResult 413Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 414 SourceLocation TemplateKWLoc, 415 const DeclarationNameInfo &NameInfo, 416 bool isAddressOfOperand, 417 const TemplateArgumentListInfo *TemplateArgs) { 418 DeclContext *DC = getFunctionLevelDeclContext(); 419 420 if (!isAddressOfOperand && 421 isa<CXXMethodDecl>(DC) && 422 cast<CXXMethodDecl>(DC)->isInstance()) { 423 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 424 425 // Since the 'this' expression is synthesized, we don't need to 426 // perform the double-lookup check. 427 NamedDecl *FirstQualifierInScope = 0; 428 429 return Owned(CXXDependentScopeMemberExpr::Create(Context, 430 /*This*/ 0, ThisType, 431 /*IsArrow*/ true, 432 /*Op*/ SourceLocation(), 433 SS.getWithLocInContext(Context), 434 TemplateKWLoc, 435 FirstQualifierInScope, 436 NameInfo, 437 TemplateArgs)); 438 } 439 440 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 441} 442 443ExprResult 444Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 445 SourceLocation TemplateKWLoc, 446 const DeclarationNameInfo &NameInfo, 447 const TemplateArgumentListInfo *TemplateArgs) { 448 return Owned(DependentScopeDeclRefExpr::Create(Context, 449 SS.getWithLocInContext(Context), 450 TemplateKWLoc, 451 NameInfo, 452 TemplateArgs)); 453} 454 455/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 456/// that the template parameter 'PrevDecl' is being shadowed by a new 457/// declaration at location Loc. Returns true to indicate that this is 458/// an error, and false otherwise. 459void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 460 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 461 462 // Microsoft Visual C++ permits template parameters to be shadowed. 463 if (getLangOpts().MicrosoftExt) 464 return; 465 466 // C++ [temp.local]p4: 467 // A template-parameter shall not be redeclared within its 468 // scope (including nested scopes). 469 Diag(Loc, diag::err_template_param_shadow) 470 << cast<NamedDecl>(PrevDecl)->getDeclName(); 471 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 472 return; 473} 474 475/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 476/// the parameter D to reference the templated declaration and return a pointer 477/// to the template declaration. Otherwise, do nothing to D and return null. 478TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 479 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 480 D = Temp->getTemplatedDecl(); 481 return Temp; 482 } 483 return 0; 484} 485 486ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 487 SourceLocation EllipsisLoc) const { 488 assert(Kind == Template && 489 "Only template template arguments can be pack expansions here"); 490 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 491 "Template template argument pack expansion without packs"); 492 ParsedTemplateArgument Result(*this); 493 Result.EllipsisLoc = EllipsisLoc; 494 return Result; 495} 496 497static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 498 const ParsedTemplateArgument &Arg) { 499 500 switch (Arg.getKind()) { 501 case ParsedTemplateArgument::Type: { 502 TypeSourceInfo *DI; 503 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 504 if (!DI) 505 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 506 return TemplateArgumentLoc(TemplateArgument(T), DI); 507 } 508 509 case ParsedTemplateArgument::NonType: { 510 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 511 return TemplateArgumentLoc(TemplateArgument(E), E); 512 } 513 514 case ParsedTemplateArgument::Template: { 515 TemplateName Template = Arg.getAsTemplate().get(); 516 TemplateArgument TArg; 517 if (Arg.getEllipsisLoc().isValid()) 518 TArg = TemplateArgument(Template, Optional<unsigned int>()); 519 else 520 TArg = Template; 521 return TemplateArgumentLoc(TArg, 522 Arg.getScopeSpec().getWithLocInContext( 523 SemaRef.Context), 524 Arg.getLocation(), 525 Arg.getEllipsisLoc()); 526 } 527 } 528 529 llvm_unreachable("Unhandled parsed template argument"); 530} 531 532/// \brief Translates template arguments as provided by the parser 533/// into template arguments used by semantic analysis. 534void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 535 TemplateArgumentListInfo &TemplateArgs) { 536 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 537 TemplateArgs.addArgument(translateTemplateArgument(*this, 538 TemplateArgsIn[I])); 539} 540 541static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 542 SourceLocation Loc, 543 IdentifierInfo *Name) { 544 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 545 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration); 546 if (PrevDecl && PrevDecl->isTemplateParameter()) 547 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 548} 549 550/// ActOnTypeParameter - Called when a C++ template type parameter 551/// (e.g., "typename T") has been parsed. Typename specifies whether 552/// the keyword "typename" was used to declare the type parameter 553/// (otherwise, "class" was used), and KeyLoc is the location of the 554/// "class" or "typename" keyword. ParamName is the name of the 555/// parameter (NULL indicates an unnamed template parameter) and 556/// ParamNameLoc is the location of the parameter name (if any). 557/// If the type parameter has a default argument, it will be added 558/// later via ActOnTypeParameterDefault. 559Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 560 SourceLocation EllipsisLoc, 561 SourceLocation KeyLoc, 562 IdentifierInfo *ParamName, 563 SourceLocation ParamNameLoc, 564 unsigned Depth, unsigned Position, 565 SourceLocation EqualLoc, 566 ParsedType DefaultArg) { 567 assert(S->isTemplateParamScope() && 568 "Template type parameter not in template parameter scope!"); 569 bool Invalid = false; 570 571 SourceLocation Loc = ParamNameLoc; 572 if (!ParamName) 573 Loc = KeyLoc; 574 575 TemplateTypeParmDecl *Param 576 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 577 KeyLoc, Loc, Depth, Position, ParamName, 578 Typename, Ellipsis); 579 Param->setAccess(AS_public); 580 if (Invalid) 581 Param->setInvalidDecl(); 582 583 if (ParamName) { 584 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 585 586 // Add the template parameter into the current scope. 587 S->AddDecl(Param); 588 IdResolver.AddDecl(Param); 589 } 590 591 // C++0x [temp.param]p9: 592 // A default template-argument may be specified for any kind of 593 // template-parameter that is not a template parameter pack. 594 if (DefaultArg && Ellipsis) { 595 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 596 DefaultArg = ParsedType(); 597 } 598 599 // Handle the default argument, if provided. 600 if (DefaultArg) { 601 TypeSourceInfo *DefaultTInfo; 602 GetTypeFromParser(DefaultArg, &DefaultTInfo); 603 604 assert(DefaultTInfo && "expected source information for type"); 605 606 // Check for unexpanded parameter packs. 607 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 608 UPPC_DefaultArgument)) 609 return Param; 610 611 // Check the template argument itself. 612 if (CheckTemplateArgument(Param, DefaultTInfo)) { 613 Param->setInvalidDecl(); 614 return Param; 615 } 616 617 Param->setDefaultArgument(DefaultTInfo, false); 618 } 619 620 return Param; 621} 622 623/// \brief Check that the type of a non-type template parameter is 624/// well-formed. 625/// 626/// \returns the (possibly-promoted) parameter type if valid; 627/// otherwise, produces a diagnostic and returns a NULL type. 628QualType 629Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 630 // We don't allow variably-modified types as the type of non-type template 631 // parameters. 632 if (T->isVariablyModifiedType()) { 633 Diag(Loc, diag::err_variably_modified_nontype_template_param) 634 << T; 635 return QualType(); 636 } 637 638 // C++ [temp.param]p4: 639 // 640 // A non-type template-parameter shall have one of the following 641 // (optionally cv-qualified) types: 642 // 643 // -- integral or enumeration type, 644 if (T->isIntegralOrEnumerationType() || 645 // -- pointer to object or pointer to function, 646 T->isPointerType() || 647 // -- reference to object or reference to function, 648 T->isReferenceType() || 649 // -- pointer to member, 650 T->isMemberPointerType() || 651 // -- std::nullptr_t. 652 T->isNullPtrType() || 653 // If T is a dependent type, we can't do the check now, so we 654 // assume that it is well-formed. 655 T->isDependentType()) { 656 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 657 // are ignored when determining its type. 658 return T.getUnqualifiedType(); 659 } 660 661 // C++ [temp.param]p8: 662 // 663 // A non-type template-parameter of type "array of T" or 664 // "function returning T" is adjusted to be of type "pointer to 665 // T" or "pointer to function returning T", respectively. 666 else if (T->isArrayType()) 667 // FIXME: Keep the type prior to promotion? 668 return Context.getArrayDecayedType(T); 669 else if (T->isFunctionType()) 670 // FIXME: Keep the type prior to promotion? 671 return Context.getPointerType(T); 672 673 Diag(Loc, diag::err_template_nontype_parm_bad_type) 674 << T; 675 676 return QualType(); 677} 678 679Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 680 unsigned Depth, 681 unsigned Position, 682 SourceLocation EqualLoc, 683 Expr *Default) { 684 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 685 QualType T = TInfo->getType(); 686 687 assert(S->isTemplateParamScope() && 688 "Non-type template parameter not in template parameter scope!"); 689 bool Invalid = false; 690 691 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 692 if (T.isNull()) { 693 T = Context.IntTy; // Recover with an 'int' type. 694 Invalid = true; 695 } 696 697 IdentifierInfo *ParamName = D.getIdentifier(); 698 bool IsParameterPack = D.hasEllipsis(); 699 NonTypeTemplateParmDecl *Param 700 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 701 D.getLocStart(), 702 D.getIdentifierLoc(), 703 Depth, Position, ParamName, T, 704 IsParameterPack, TInfo); 705 Param->setAccess(AS_public); 706 707 if (Invalid) 708 Param->setInvalidDecl(); 709 710 if (ParamName) { 711 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 712 ParamName); 713 714 // Add the template parameter into the current scope. 715 S->AddDecl(Param); 716 IdResolver.AddDecl(Param); 717 } 718 719 // C++0x [temp.param]p9: 720 // A default template-argument may be specified for any kind of 721 // template-parameter that is not a template parameter pack. 722 if (Default && IsParameterPack) { 723 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 724 Default = 0; 725 } 726 727 // Check the well-formedness of the default template argument, if provided. 728 if (Default) { 729 // Check for unexpanded parameter packs. 730 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 731 return Param; 732 733 TemplateArgument Converted; 734 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 735 if (DefaultRes.isInvalid()) { 736 Param->setInvalidDecl(); 737 return Param; 738 } 739 Default = DefaultRes.take(); 740 741 Param->setDefaultArgument(Default, false); 742 } 743 744 return Param; 745} 746 747/// ActOnTemplateTemplateParameter - Called when a C++ template template 748/// parameter (e.g. T in template <template \<typename> class T> class array) 749/// has been parsed. S is the current scope. 750Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 751 SourceLocation TmpLoc, 752 TemplateParameterList *Params, 753 SourceLocation EllipsisLoc, 754 IdentifierInfo *Name, 755 SourceLocation NameLoc, 756 unsigned Depth, 757 unsigned Position, 758 SourceLocation EqualLoc, 759 ParsedTemplateArgument Default) { 760 assert(S->isTemplateParamScope() && 761 "Template template parameter not in template parameter scope!"); 762 763 // Construct the parameter object. 764 bool IsParameterPack = EllipsisLoc.isValid(); 765 TemplateTemplateParmDecl *Param = 766 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 767 NameLoc.isInvalid()? TmpLoc : NameLoc, 768 Depth, Position, IsParameterPack, 769 Name, Params); 770 Param->setAccess(AS_public); 771 772 // If the template template parameter has a name, then link the identifier 773 // into the scope and lookup mechanisms. 774 if (Name) { 775 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 776 777 S->AddDecl(Param); 778 IdResolver.AddDecl(Param); 779 } 780 781 if (Params->size() == 0) { 782 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 783 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 784 Param->setInvalidDecl(); 785 } 786 787 // C++0x [temp.param]p9: 788 // A default template-argument may be specified for any kind of 789 // template-parameter that is not a template parameter pack. 790 if (IsParameterPack && !Default.isInvalid()) { 791 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 792 Default = ParsedTemplateArgument(); 793 } 794 795 if (!Default.isInvalid()) { 796 // Check only that we have a template template argument. We don't want to 797 // try to check well-formedness now, because our template template parameter 798 // might have dependent types in its template parameters, which we wouldn't 799 // be able to match now. 800 // 801 // If none of the template template parameter's template arguments mention 802 // other template parameters, we could actually perform more checking here. 803 // However, it isn't worth doing. 804 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 805 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 806 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 807 << DefaultArg.getSourceRange(); 808 return Param; 809 } 810 811 // Check for unexpanded parameter packs. 812 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 813 DefaultArg.getArgument().getAsTemplate(), 814 UPPC_DefaultArgument)) 815 return Param; 816 817 Param->setDefaultArgument(DefaultArg, false); 818 } 819 820 return Param; 821} 822 823/// ActOnTemplateParameterList - Builds a TemplateParameterList that 824/// contains the template parameters in Params/NumParams. 825TemplateParameterList * 826Sema::ActOnTemplateParameterList(unsigned Depth, 827 SourceLocation ExportLoc, 828 SourceLocation TemplateLoc, 829 SourceLocation LAngleLoc, 830 Decl **Params, unsigned NumParams, 831 SourceLocation RAngleLoc) { 832 if (ExportLoc.isValid()) 833 Diag(ExportLoc, diag::warn_template_export_unsupported); 834 835 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 836 (NamedDecl**)Params, NumParams, 837 RAngleLoc); 838} 839 840static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 841 if (SS.isSet()) 842 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 843} 844 845DeclResult 846Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 847 SourceLocation KWLoc, CXXScopeSpec &SS, 848 IdentifierInfo *Name, SourceLocation NameLoc, 849 AttributeList *Attr, 850 TemplateParameterList *TemplateParams, 851 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 852 unsigned NumOuterTemplateParamLists, 853 TemplateParameterList** OuterTemplateParamLists) { 854 assert(TemplateParams && TemplateParams->size() > 0 && 855 "No template parameters"); 856 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 857 bool Invalid = false; 858 859 // Check that we can declare a template here. 860 if (CheckTemplateDeclScope(S, TemplateParams)) 861 return true; 862 863 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 864 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 865 866 // There is no such thing as an unnamed class template. 867 if (!Name) { 868 Diag(KWLoc, diag::err_template_unnamed_class); 869 return true; 870 } 871 872 // Find any previous declaration with this name. For a friend with no 873 // scope explicitly specified, we only look for tag declarations (per 874 // C++11 [basic.lookup.elab]p2). 875 DeclContext *SemanticContext; 876 LookupResult Previous(*this, Name, NameLoc, 877 (SS.isEmpty() && TUK == TUK_Friend) 878 ? LookupTagName : LookupOrdinaryName, 879 ForRedeclaration); 880 if (SS.isNotEmpty() && !SS.isInvalid()) { 881 SemanticContext = computeDeclContext(SS, true); 882 if (!SemanticContext) { 883 // FIXME: Horrible, horrible hack! We can't currently represent this 884 // in the AST, and historically we have just ignored such friend 885 // class templates, so don't complain here. 886 if (TUK != TUK_Friend) 887 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 888 << SS.getScopeRep() << SS.getRange(); 889 return true; 890 } 891 892 if (RequireCompleteDeclContext(SS, SemanticContext)) 893 return true; 894 895 // If we're adding a template to a dependent context, we may need to 896 // rebuilding some of the types used within the template parameter list, 897 // now that we know what the current instantiation is. 898 if (SemanticContext->isDependentContext()) { 899 ContextRAII SavedContext(*this, SemanticContext); 900 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 901 Invalid = true; 902 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 903 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 904 905 LookupQualifiedName(Previous, SemanticContext); 906 } else { 907 SemanticContext = CurContext; 908 LookupName(Previous, S); 909 } 910 911 if (Previous.isAmbiguous()) 912 return true; 913 914 NamedDecl *PrevDecl = 0; 915 if (Previous.begin() != Previous.end()) 916 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 917 918 // If there is a previous declaration with the same name, check 919 // whether this is a valid redeclaration. 920 ClassTemplateDecl *PrevClassTemplate 921 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 922 923 // We may have found the injected-class-name of a class template, 924 // class template partial specialization, or class template specialization. 925 // In these cases, grab the template that is being defined or specialized. 926 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 927 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 928 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 929 PrevClassTemplate 930 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 931 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 932 PrevClassTemplate 933 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 934 ->getSpecializedTemplate(); 935 } 936 } 937 938 if (TUK == TUK_Friend) { 939 // C++ [namespace.memdef]p3: 940 // [...] When looking for a prior declaration of a class or a function 941 // declared as a friend, and when the name of the friend class or 942 // function is neither a qualified name nor a template-id, scopes outside 943 // the innermost enclosing namespace scope are not considered. 944 if (!SS.isSet()) { 945 DeclContext *OutermostContext = CurContext; 946 while (!OutermostContext->isFileContext()) 947 OutermostContext = OutermostContext->getLookupParent(); 948 949 if (PrevDecl && 950 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 951 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 952 SemanticContext = PrevDecl->getDeclContext(); 953 } else { 954 // Declarations in outer scopes don't matter. However, the outermost 955 // context we computed is the semantic context for our new 956 // declaration. 957 PrevDecl = PrevClassTemplate = 0; 958 SemanticContext = OutermostContext; 959 960 // Check that the chosen semantic context doesn't already contain a 961 // declaration of this name as a non-tag type. 962 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 963 ForRedeclaration); 964 DeclContext *LookupContext = SemanticContext; 965 while (LookupContext->isTransparentContext()) 966 LookupContext = LookupContext->getLookupParent(); 967 LookupQualifiedName(Previous, LookupContext); 968 969 if (Previous.isAmbiguous()) 970 return true; 971 972 if (Previous.begin() != Previous.end()) 973 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 974 } 975 } 976 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 977 PrevDecl = PrevClassTemplate = 0; 978 979 if (PrevClassTemplate) { 980 // Ensure that the template parameter lists are compatible. Skip this check 981 // for a friend in a dependent context: the template parameter list itself 982 // could be dependent. 983 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 984 !TemplateParameterListsAreEqual(TemplateParams, 985 PrevClassTemplate->getTemplateParameters(), 986 /*Complain=*/true, 987 TPL_TemplateMatch)) 988 return true; 989 990 // C++ [temp.class]p4: 991 // In a redeclaration, partial specialization, explicit 992 // specialization or explicit instantiation of a class template, 993 // the class-key shall agree in kind with the original class 994 // template declaration (7.1.5.3). 995 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 996 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 997 TUK == TUK_Definition, KWLoc, *Name)) { 998 Diag(KWLoc, diag::err_use_with_wrong_tag) 999 << Name 1000 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1001 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1002 Kind = PrevRecordDecl->getTagKind(); 1003 } 1004 1005 // Check for redefinition of this class template. 1006 if (TUK == TUK_Definition) { 1007 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1008 Diag(NameLoc, diag::err_redefinition) << Name; 1009 Diag(Def->getLocation(), diag::note_previous_definition); 1010 // FIXME: Would it make sense to try to "forget" the previous 1011 // definition, as part of error recovery? 1012 return true; 1013 } 1014 } 1015 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1016 // Maybe we will complain about the shadowed template parameter. 1017 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1018 // Just pretend that we didn't see the previous declaration. 1019 PrevDecl = 0; 1020 } else if (PrevDecl) { 1021 // C++ [temp]p5: 1022 // A class template shall not have the same name as any other 1023 // template, class, function, object, enumeration, enumerator, 1024 // namespace, or type in the same scope (3.3), except as specified 1025 // in (14.5.4). 1026 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1027 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1028 return true; 1029 } 1030 1031 // Check the template parameter list of this declaration, possibly 1032 // merging in the template parameter list from the previous class 1033 // template declaration. Skip this check for a friend in a dependent 1034 // context, because the template parameter list might be dependent. 1035 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1036 CheckTemplateParameterList( 1037 TemplateParams, 1038 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0, 1039 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1040 SemanticContext->isDependentContext()) 1041 ? TPC_ClassTemplateMember 1042 : TUK == TUK_Friend ? TPC_FriendClassTemplate 1043 : TPC_ClassTemplate)) 1044 Invalid = true; 1045 1046 if (SS.isSet()) { 1047 // If the name of the template was qualified, we must be defining the 1048 // template out-of-line. 1049 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1050 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1051 : diag::err_member_def_does_not_match) 1052 << Name << SemanticContext << SS.getRange(); 1053 Invalid = true; 1054 } 1055 } 1056 1057 CXXRecordDecl *NewClass = 1058 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1059 PrevClassTemplate? 1060 PrevClassTemplate->getTemplatedDecl() : 0, 1061 /*DelayTypeCreation=*/true); 1062 SetNestedNameSpecifier(NewClass, SS); 1063 if (NumOuterTemplateParamLists > 0) 1064 NewClass->setTemplateParameterListsInfo(Context, 1065 NumOuterTemplateParamLists, 1066 OuterTemplateParamLists); 1067 1068 // Add alignment attributes if necessary; these attributes are checked when 1069 // the ASTContext lays out the structure. 1070 if (TUK == TUK_Definition) { 1071 AddAlignmentAttributesForRecord(NewClass); 1072 AddMsStructLayoutForRecord(NewClass); 1073 } 1074 1075 ClassTemplateDecl *NewTemplate 1076 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1077 DeclarationName(Name), TemplateParams, 1078 NewClass, PrevClassTemplate); 1079 NewClass->setDescribedClassTemplate(NewTemplate); 1080 1081 if (ModulePrivateLoc.isValid()) 1082 NewTemplate->setModulePrivate(); 1083 1084 // Build the type for the class template declaration now. 1085 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1086 T = Context.getInjectedClassNameType(NewClass, T); 1087 assert(T->isDependentType() && "Class template type is not dependent?"); 1088 (void)T; 1089 1090 // If we are providing an explicit specialization of a member that is a 1091 // class template, make a note of that. 1092 if (PrevClassTemplate && 1093 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1094 PrevClassTemplate->setMemberSpecialization(); 1095 1096 // Set the access specifier. 1097 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1098 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1099 1100 // Set the lexical context of these templates 1101 NewClass->setLexicalDeclContext(CurContext); 1102 NewTemplate->setLexicalDeclContext(CurContext); 1103 1104 if (TUK == TUK_Definition) 1105 NewClass->startDefinition(); 1106 1107 if (Attr) 1108 ProcessDeclAttributeList(S, NewClass, Attr); 1109 1110 if (PrevClassTemplate) 1111 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1112 1113 AddPushedVisibilityAttribute(NewClass); 1114 1115 if (TUK != TUK_Friend) 1116 PushOnScopeChains(NewTemplate, S); 1117 else { 1118 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1119 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1120 NewClass->setAccess(PrevClassTemplate->getAccess()); 1121 } 1122 1123 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1124 PrevClassTemplate != NULL); 1125 1126 // Friend templates are visible in fairly strange ways. 1127 if (!CurContext->isDependentContext()) { 1128 DeclContext *DC = SemanticContext->getRedeclContext(); 1129 DC->makeDeclVisibleInContext(NewTemplate); 1130 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1131 PushOnScopeChains(NewTemplate, EnclosingScope, 1132 /* AddToContext = */ false); 1133 } 1134 1135 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1136 NewClass->getLocation(), 1137 NewTemplate, 1138 /*FIXME:*/NewClass->getLocation()); 1139 Friend->setAccess(AS_public); 1140 CurContext->addDecl(Friend); 1141 } 1142 1143 if (Invalid) { 1144 NewTemplate->setInvalidDecl(); 1145 NewClass->setInvalidDecl(); 1146 } 1147 1148 ActOnDocumentableDecl(NewTemplate); 1149 1150 return NewTemplate; 1151} 1152 1153/// \brief Diagnose the presence of a default template argument on a 1154/// template parameter, which is ill-formed in certain contexts. 1155/// 1156/// \returns true if the default template argument should be dropped. 1157static bool DiagnoseDefaultTemplateArgument(Sema &S, 1158 Sema::TemplateParamListContext TPC, 1159 SourceLocation ParamLoc, 1160 SourceRange DefArgRange) { 1161 switch (TPC) { 1162 case Sema::TPC_ClassTemplate: 1163 case Sema::TPC_TypeAliasTemplate: 1164 return false; 1165 1166 case Sema::TPC_FunctionTemplate: 1167 case Sema::TPC_FriendFunctionTemplateDefinition: 1168 // C++ [temp.param]p9: 1169 // A default template-argument shall not be specified in a 1170 // function template declaration or a function template 1171 // definition [...] 1172 // If a friend function template declaration specifies a default 1173 // template-argument, that declaration shall be a definition and shall be 1174 // the only declaration of the function template in the translation unit. 1175 // (C++98/03 doesn't have this wording; see DR226). 1176 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 1177 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1178 : diag::ext_template_parameter_default_in_function_template) 1179 << DefArgRange; 1180 return false; 1181 1182 case Sema::TPC_ClassTemplateMember: 1183 // C++0x [temp.param]p9: 1184 // A default template-argument shall not be specified in the 1185 // template-parameter-lists of the definition of a member of a 1186 // class template that appears outside of the member's class. 1187 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1188 << DefArgRange; 1189 return true; 1190 1191 case Sema::TPC_FriendClassTemplate: 1192 case Sema::TPC_FriendFunctionTemplate: 1193 // C++ [temp.param]p9: 1194 // A default template-argument shall not be specified in a 1195 // friend template declaration. 1196 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1197 << DefArgRange; 1198 return true; 1199 1200 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1201 // for friend function templates if there is only a single 1202 // declaration (and it is a definition). Strange! 1203 } 1204 1205 llvm_unreachable("Invalid TemplateParamListContext!"); 1206} 1207 1208/// \brief Check for unexpanded parameter packs within the template parameters 1209/// of a template template parameter, recursively. 1210static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1211 TemplateTemplateParmDecl *TTP) { 1212 // A template template parameter which is a parameter pack is also a pack 1213 // expansion. 1214 if (TTP->isParameterPack()) 1215 return false; 1216 1217 TemplateParameterList *Params = TTP->getTemplateParameters(); 1218 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1219 NamedDecl *P = Params->getParam(I); 1220 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1221 if (!NTTP->isParameterPack() && 1222 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1223 NTTP->getTypeSourceInfo(), 1224 Sema::UPPC_NonTypeTemplateParameterType)) 1225 return true; 1226 1227 continue; 1228 } 1229 1230 if (TemplateTemplateParmDecl *InnerTTP 1231 = dyn_cast<TemplateTemplateParmDecl>(P)) 1232 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1233 return true; 1234 } 1235 1236 return false; 1237} 1238 1239/// \brief Checks the validity of a template parameter list, possibly 1240/// considering the template parameter list from a previous 1241/// declaration. 1242/// 1243/// If an "old" template parameter list is provided, it must be 1244/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1245/// template parameter list. 1246/// 1247/// \param NewParams Template parameter list for a new template 1248/// declaration. This template parameter list will be updated with any 1249/// default arguments that are carried through from the previous 1250/// template parameter list. 1251/// 1252/// \param OldParams If provided, template parameter list from a 1253/// previous declaration of the same template. Default template 1254/// arguments will be merged from the old template parameter list to 1255/// the new template parameter list. 1256/// 1257/// \param TPC Describes the context in which we are checking the given 1258/// template parameter list. 1259/// 1260/// \returns true if an error occurred, false otherwise. 1261bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1262 TemplateParameterList *OldParams, 1263 TemplateParamListContext TPC) { 1264 bool Invalid = false; 1265 1266 // C++ [temp.param]p10: 1267 // The set of default template-arguments available for use with a 1268 // template declaration or definition is obtained by merging the 1269 // default arguments from the definition (if in scope) and all 1270 // declarations in scope in the same way default function 1271 // arguments are (8.3.6). 1272 bool SawDefaultArgument = false; 1273 SourceLocation PreviousDefaultArgLoc; 1274 1275 // Dummy initialization to avoid warnings. 1276 TemplateParameterList::iterator OldParam = NewParams->end(); 1277 if (OldParams) 1278 OldParam = OldParams->begin(); 1279 1280 bool RemoveDefaultArguments = false; 1281 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1282 NewParamEnd = NewParams->end(); 1283 NewParam != NewParamEnd; ++NewParam) { 1284 // Variables used to diagnose redundant default arguments 1285 bool RedundantDefaultArg = false; 1286 SourceLocation OldDefaultLoc; 1287 SourceLocation NewDefaultLoc; 1288 1289 // Variable used to diagnose missing default arguments 1290 bool MissingDefaultArg = false; 1291 1292 // Variable used to diagnose non-final parameter packs 1293 bool SawParameterPack = false; 1294 1295 if (TemplateTypeParmDecl *NewTypeParm 1296 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1297 // Check the presence of a default argument here. 1298 if (NewTypeParm->hasDefaultArgument() && 1299 DiagnoseDefaultTemplateArgument(*this, TPC, 1300 NewTypeParm->getLocation(), 1301 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1302 .getSourceRange())) 1303 NewTypeParm->removeDefaultArgument(); 1304 1305 // Merge default arguments for template type parameters. 1306 TemplateTypeParmDecl *OldTypeParm 1307 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1308 1309 if (NewTypeParm->isParameterPack()) { 1310 assert(!NewTypeParm->hasDefaultArgument() && 1311 "Parameter packs can't have a default argument!"); 1312 SawParameterPack = true; 1313 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1314 NewTypeParm->hasDefaultArgument()) { 1315 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1316 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1317 SawDefaultArgument = true; 1318 RedundantDefaultArg = true; 1319 PreviousDefaultArgLoc = NewDefaultLoc; 1320 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1321 // Merge the default argument from the old declaration to the 1322 // new declaration. 1323 SawDefaultArgument = true; 1324 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1325 true); 1326 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1327 } else if (NewTypeParm->hasDefaultArgument()) { 1328 SawDefaultArgument = true; 1329 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1330 } else if (SawDefaultArgument) 1331 MissingDefaultArg = true; 1332 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1333 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1334 // Check for unexpanded parameter packs. 1335 if (!NewNonTypeParm->isParameterPack() && 1336 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1337 NewNonTypeParm->getTypeSourceInfo(), 1338 UPPC_NonTypeTemplateParameterType)) { 1339 Invalid = true; 1340 continue; 1341 } 1342 1343 // Check the presence of a default argument here. 1344 if (NewNonTypeParm->hasDefaultArgument() && 1345 DiagnoseDefaultTemplateArgument(*this, TPC, 1346 NewNonTypeParm->getLocation(), 1347 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1348 NewNonTypeParm->removeDefaultArgument(); 1349 } 1350 1351 // Merge default arguments for non-type template parameters 1352 NonTypeTemplateParmDecl *OldNonTypeParm 1353 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1354 if (NewNonTypeParm->isParameterPack()) { 1355 assert(!NewNonTypeParm->hasDefaultArgument() && 1356 "Parameter packs can't have a default argument!"); 1357 if (!NewNonTypeParm->isPackExpansion()) 1358 SawParameterPack = true; 1359 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1360 NewNonTypeParm->hasDefaultArgument()) { 1361 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1362 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1363 SawDefaultArgument = true; 1364 RedundantDefaultArg = true; 1365 PreviousDefaultArgLoc = NewDefaultLoc; 1366 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1367 // Merge the default argument from the old declaration to the 1368 // new declaration. 1369 SawDefaultArgument = true; 1370 // FIXME: We need to create a new kind of "default argument" 1371 // expression that points to a previous non-type template 1372 // parameter. 1373 NewNonTypeParm->setDefaultArgument( 1374 OldNonTypeParm->getDefaultArgument(), 1375 /*Inherited=*/ true); 1376 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1377 } else if (NewNonTypeParm->hasDefaultArgument()) { 1378 SawDefaultArgument = true; 1379 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1380 } else if (SawDefaultArgument) 1381 MissingDefaultArg = true; 1382 } else { 1383 TemplateTemplateParmDecl *NewTemplateParm 1384 = cast<TemplateTemplateParmDecl>(*NewParam); 1385 1386 // Check for unexpanded parameter packs, recursively. 1387 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1388 Invalid = true; 1389 continue; 1390 } 1391 1392 // Check the presence of a default argument here. 1393 if (NewTemplateParm->hasDefaultArgument() && 1394 DiagnoseDefaultTemplateArgument(*this, TPC, 1395 NewTemplateParm->getLocation(), 1396 NewTemplateParm->getDefaultArgument().getSourceRange())) 1397 NewTemplateParm->removeDefaultArgument(); 1398 1399 // Merge default arguments for template template parameters 1400 TemplateTemplateParmDecl *OldTemplateParm 1401 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1402 if (NewTemplateParm->isParameterPack()) { 1403 assert(!NewTemplateParm->hasDefaultArgument() && 1404 "Parameter packs can't have a default argument!"); 1405 if (!NewTemplateParm->isPackExpansion()) 1406 SawParameterPack = true; 1407 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1408 NewTemplateParm->hasDefaultArgument()) { 1409 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1410 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1411 SawDefaultArgument = true; 1412 RedundantDefaultArg = true; 1413 PreviousDefaultArgLoc = NewDefaultLoc; 1414 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1415 // Merge the default argument from the old declaration to the 1416 // new declaration. 1417 SawDefaultArgument = true; 1418 // FIXME: We need to create a new kind of "default argument" expression 1419 // that points to a previous template template parameter. 1420 NewTemplateParm->setDefaultArgument( 1421 OldTemplateParm->getDefaultArgument(), 1422 /*Inherited=*/ true); 1423 PreviousDefaultArgLoc 1424 = OldTemplateParm->getDefaultArgument().getLocation(); 1425 } else if (NewTemplateParm->hasDefaultArgument()) { 1426 SawDefaultArgument = true; 1427 PreviousDefaultArgLoc 1428 = NewTemplateParm->getDefaultArgument().getLocation(); 1429 } else if (SawDefaultArgument) 1430 MissingDefaultArg = true; 1431 } 1432 1433 // C++11 [temp.param]p11: 1434 // If a template parameter of a primary class template or alias template 1435 // is a template parameter pack, it shall be the last template parameter. 1436 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1437 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1438 Diag((*NewParam)->getLocation(), 1439 diag::err_template_param_pack_must_be_last_template_parameter); 1440 Invalid = true; 1441 } 1442 1443 if (RedundantDefaultArg) { 1444 // C++ [temp.param]p12: 1445 // A template-parameter shall not be given default arguments 1446 // by two different declarations in the same scope. 1447 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1448 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1449 Invalid = true; 1450 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1451 // C++ [temp.param]p11: 1452 // If a template-parameter of a class template has a default 1453 // template-argument, each subsequent template-parameter shall either 1454 // have a default template-argument supplied or be a template parameter 1455 // pack. 1456 Diag((*NewParam)->getLocation(), 1457 diag::err_template_param_default_arg_missing); 1458 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1459 Invalid = true; 1460 RemoveDefaultArguments = true; 1461 } 1462 1463 // If we have an old template parameter list that we're merging 1464 // in, move on to the next parameter. 1465 if (OldParams) 1466 ++OldParam; 1467 } 1468 1469 // We were missing some default arguments at the end of the list, so remove 1470 // all of the default arguments. 1471 if (RemoveDefaultArguments) { 1472 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1473 NewParamEnd = NewParams->end(); 1474 NewParam != NewParamEnd; ++NewParam) { 1475 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1476 TTP->removeDefaultArgument(); 1477 else if (NonTypeTemplateParmDecl *NTTP 1478 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1479 NTTP->removeDefaultArgument(); 1480 else 1481 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1482 } 1483 } 1484 1485 return Invalid; 1486} 1487 1488namespace { 1489 1490/// A class which looks for a use of a certain level of template 1491/// parameter. 1492struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1493 typedef RecursiveASTVisitor<DependencyChecker> super; 1494 1495 unsigned Depth; 1496 bool Match; 1497 1498 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1499 NamedDecl *ND = Params->getParam(0); 1500 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1501 Depth = PD->getDepth(); 1502 } else if (NonTypeTemplateParmDecl *PD = 1503 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1504 Depth = PD->getDepth(); 1505 } else { 1506 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1507 } 1508 } 1509 1510 bool Matches(unsigned ParmDepth) { 1511 if (ParmDepth >= Depth) { 1512 Match = true; 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1519 return !Matches(T->getDepth()); 1520 } 1521 1522 bool TraverseTemplateName(TemplateName N) { 1523 if (TemplateTemplateParmDecl *PD = 1524 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1525 if (Matches(PD->getDepth())) return false; 1526 return super::TraverseTemplateName(N); 1527 } 1528 1529 bool VisitDeclRefExpr(DeclRefExpr *E) { 1530 if (NonTypeTemplateParmDecl *PD = 1531 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1532 if (PD->getDepth() == Depth) { 1533 Match = true; 1534 return false; 1535 } 1536 } 1537 return super::VisitDeclRefExpr(E); 1538 } 1539 1540 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1541 return TraverseType(T->getInjectedSpecializationType()); 1542 } 1543}; 1544} 1545 1546/// Determines whether a given type depends on the given parameter 1547/// list. 1548static bool 1549DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1550 DependencyChecker Checker(Params); 1551 Checker.TraverseType(T); 1552 return Checker.Match; 1553} 1554 1555// Find the source range corresponding to the named type in the given 1556// nested-name-specifier, if any. 1557static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1558 QualType T, 1559 const CXXScopeSpec &SS) { 1560 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1561 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1562 if (const Type *CurType = NNS->getAsType()) { 1563 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1564 return NNSLoc.getTypeLoc().getSourceRange(); 1565 } else 1566 break; 1567 1568 NNSLoc = NNSLoc.getPrefix(); 1569 } 1570 1571 return SourceRange(); 1572} 1573 1574/// \brief Match the given template parameter lists to the given scope 1575/// specifier, returning the template parameter list that applies to the 1576/// name. 1577/// 1578/// \param DeclStartLoc the start of the declaration that has a scope 1579/// specifier or a template parameter list. 1580/// 1581/// \param DeclLoc The location of the declaration itself. 1582/// 1583/// \param SS the scope specifier that will be matched to the given template 1584/// parameter lists. This scope specifier precedes a qualified name that is 1585/// being declared. 1586/// 1587/// \param ParamLists the template parameter lists, from the outermost to the 1588/// innermost template parameter lists. 1589/// 1590/// \param NumParamLists the number of template parameter lists in ParamLists. 1591/// 1592/// \param IsFriend Whether to apply the slightly different rules for 1593/// matching template parameters to scope specifiers in friend 1594/// declarations. 1595/// 1596/// \param IsExplicitSpecialization will be set true if the entity being 1597/// declared is an explicit specialization, false otherwise. 1598/// 1599/// \returns the template parameter list, if any, that corresponds to the 1600/// name that is preceded by the scope specifier @p SS. This template 1601/// parameter list may have template parameters (if we're declaring a 1602/// template) or may have no template parameters (if we're declaring a 1603/// template specialization), or may be NULL (if what we're declaring isn't 1604/// itself a template). 1605TemplateParameterList * 1606Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1607 SourceLocation DeclLoc, 1608 const CXXScopeSpec &SS, 1609 TemplateParameterList **ParamLists, 1610 unsigned NumParamLists, 1611 bool IsFriend, 1612 bool &IsExplicitSpecialization, 1613 bool &Invalid) { 1614 IsExplicitSpecialization = false; 1615 Invalid = false; 1616 1617 // The sequence of nested types to which we will match up the template 1618 // parameter lists. We first build this list by starting with the type named 1619 // by the nested-name-specifier and walking out until we run out of types. 1620 SmallVector<QualType, 4> NestedTypes; 1621 QualType T; 1622 if (SS.getScopeRep()) { 1623 if (CXXRecordDecl *Record 1624 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1625 T = Context.getTypeDeclType(Record); 1626 else 1627 T = QualType(SS.getScopeRep()->getAsType(), 0); 1628 } 1629 1630 // If we found an explicit specialization that prevents us from needing 1631 // 'template<>' headers, this will be set to the location of that 1632 // explicit specialization. 1633 SourceLocation ExplicitSpecLoc; 1634 1635 while (!T.isNull()) { 1636 NestedTypes.push_back(T); 1637 1638 // Retrieve the parent of a record type. 1639 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1640 // If this type is an explicit specialization, we're done. 1641 if (ClassTemplateSpecializationDecl *Spec 1642 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1643 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1644 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1645 ExplicitSpecLoc = Spec->getLocation(); 1646 break; 1647 } 1648 } else if (Record->getTemplateSpecializationKind() 1649 == TSK_ExplicitSpecialization) { 1650 ExplicitSpecLoc = Record->getLocation(); 1651 break; 1652 } 1653 1654 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1655 T = Context.getTypeDeclType(Parent); 1656 else 1657 T = QualType(); 1658 continue; 1659 } 1660 1661 if (const TemplateSpecializationType *TST 1662 = T->getAs<TemplateSpecializationType>()) { 1663 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1664 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1665 T = Context.getTypeDeclType(Parent); 1666 else 1667 T = QualType(); 1668 continue; 1669 } 1670 } 1671 1672 // Look one step prior in a dependent template specialization type. 1673 if (const DependentTemplateSpecializationType *DependentTST 1674 = T->getAs<DependentTemplateSpecializationType>()) { 1675 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1676 T = QualType(NNS->getAsType(), 0); 1677 else 1678 T = QualType(); 1679 continue; 1680 } 1681 1682 // Look one step prior in a dependent name type. 1683 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1684 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1685 T = QualType(NNS->getAsType(), 0); 1686 else 1687 T = QualType(); 1688 continue; 1689 } 1690 1691 // Retrieve the parent of an enumeration type. 1692 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1693 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1694 // check here. 1695 EnumDecl *Enum = EnumT->getDecl(); 1696 1697 // Get to the parent type. 1698 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1699 T = Context.getTypeDeclType(Parent); 1700 else 1701 T = QualType(); 1702 continue; 1703 } 1704 1705 T = QualType(); 1706 } 1707 // Reverse the nested types list, since we want to traverse from the outermost 1708 // to the innermost while checking template-parameter-lists. 1709 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1710 1711 // C++0x [temp.expl.spec]p17: 1712 // A member or a member template may be nested within many 1713 // enclosing class templates. In an explicit specialization for 1714 // such a member, the member declaration shall be preceded by a 1715 // template<> for each enclosing class template that is 1716 // explicitly specialized. 1717 bool SawNonEmptyTemplateParameterList = false; 1718 unsigned ParamIdx = 0; 1719 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1720 ++TypeIdx) { 1721 T = NestedTypes[TypeIdx]; 1722 1723 // Whether we expect a 'template<>' header. 1724 bool NeedEmptyTemplateHeader = false; 1725 1726 // Whether we expect a template header with parameters. 1727 bool NeedNonemptyTemplateHeader = false; 1728 1729 // For a dependent type, the set of template parameters that we 1730 // expect to see. 1731 TemplateParameterList *ExpectedTemplateParams = 0; 1732 1733 // C++0x [temp.expl.spec]p15: 1734 // A member or a member template may be nested within many enclosing 1735 // class templates. In an explicit specialization for such a member, the 1736 // member declaration shall be preceded by a template<> for each 1737 // enclosing class template that is explicitly specialized. 1738 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1739 if (ClassTemplatePartialSpecializationDecl *Partial 1740 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1741 ExpectedTemplateParams = Partial->getTemplateParameters(); 1742 NeedNonemptyTemplateHeader = true; 1743 } else if (Record->isDependentType()) { 1744 if (Record->getDescribedClassTemplate()) { 1745 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1746 ->getTemplateParameters(); 1747 NeedNonemptyTemplateHeader = true; 1748 } 1749 } else if (ClassTemplateSpecializationDecl *Spec 1750 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1751 // C++0x [temp.expl.spec]p4: 1752 // Members of an explicitly specialized class template are defined 1753 // in the same manner as members of normal classes, and not using 1754 // the template<> syntax. 1755 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1756 NeedEmptyTemplateHeader = true; 1757 else 1758 continue; 1759 } else if (Record->getTemplateSpecializationKind()) { 1760 if (Record->getTemplateSpecializationKind() 1761 != TSK_ExplicitSpecialization && 1762 TypeIdx == NumTypes - 1) 1763 IsExplicitSpecialization = true; 1764 1765 continue; 1766 } 1767 } else if (const TemplateSpecializationType *TST 1768 = T->getAs<TemplateSpecializationType>()) { 1769 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1770 ExpectedTemplateParams = Template->getTemplateParameters(); 1771 NeedNonemptyTemplateHeader = true; 1772 } 1773 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1774 // FIXME: We actually could/should check the template arguments here 1775 // against the corresponding template parameter list. 1776 NeedNonemptyTemplateHeader = false; 1777 } 1778 1779 // C++ [temp.expl.spec]p16: 1780 // In an explicit specialization declaration for a member of a class 1781 // template or a member template that ap- pears in namespace scope, the 1782 // member template and some of its enclosing class templates may remain 1783 // unspecialized, except that the declaration shall not explicitly 1784 // specialize a class member template if its en- closing class templates 1785 // are not explicitly specialized as well. 1786 if (ParamIdx < NumParamLists) { 1787 if (ParamLists[ParamIdx]->size() == 0) { 1788 if (SawNonEmptyTemplateParameterList) { 1789 Diag(DeclLoc, diag::err_specialize_member_of_template) 1790 << ParamLists[ParamIdx]->getSourceRange(); 1791 Invalid = true; 1792 IsExplicitSpecialization = false; 1793 return 0; 1794 } 1795 } else 1796 SawNonEmptyTemplateParameterList = true; 1797 } 1798 1799 if (NeedEmptyTemplateHeader) { 1800 // If we're on the last of the types, and we need a 'template<>' header 1801 // here, then it's an explicit specialization. 1802 if (TypeIdx == NumTypes - 1) 1803 IsExplicitSpecialization = true; 1804 1805 if (ParamIdx < NumParamLists) { 1806 if (ParamLists[ParamIdx]->size() > 0) { 1807 // The header has template parameters when it shouldn't. Complain. 1808 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1809 diag::err_template_param_list_matches_nontemplate) 1810 << T 1811 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1812 ParamLists[ParamIdx]->getRAngleLoc()) 1813 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1814 Invalid = true; 1815 return 0; 1816 } 1817 1818 // Consume this template header. 1819 ++ParamIdx; 1820 continue; 1821 } 1822 1823 if (!IsFriend) { 1824 // We don't have a template header, but we should. 1825 SourceLocation ExpectedTemplateLoc; 1826 if (NumParamLists > 0) 1827 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1828 else 1829 ExpectedTemplateLoc = DeclStartLoc; 1830 1831 Diag(DeclLoc, diag::err_template_spec_needs_header) 1832 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1833 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1834 } 1835 1836 continue; 1837 } 1838 1839 if (NeedNonemptyTemplateHeader) { 1840 // In friend declarations we can have template-ids which don't 1841 // depend on the corresponding template parameter lists. But 1842 // assume that empty parameter lists are supposed to match this 1843 // template-id. 1844 if (IsFriend && T->isDependentType()) { 1845 if (ParamIdx < NumParamLists && 1846 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1847 ExpectedTemplateParams = 0; 1848 else 1849 continue; 1850 } 1851 1852 if (ParamIdx < NumParamLists) { 1853 // Check the template parameter list, if we can. 1854 if (ExpectedTemplateParams && 1855 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1856 ExpectedTemplateParams, 1857 true, TPL_TemplateMatch)) 1858 Invalid = true; 1859 1860 if (!Invalid && 1861 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1862 TPC_ClassTemplateMember)) 1863 Invalid = true; 1864 1865 ++ParamIdx; 1866 continue; 1867 } 1868 1869 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1870 << T 1871 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1872 Invalid = true; 1873 continue; 1874 } 1875 } 1876 1877 // If there were at least as many template-ids as there were template 1878 // parameter lists, then there are no template parameter lists remaining for 1879 // the declaration itself. 1880 if (ParamIdx >= NumParamLists) 1881 return 0; 1882 1883 // If there were too many template parameter lists, complain about that now. 1884 if (ParamIdx < NumParamLists - 1) { 1885 bool HasAnyExplicitSpecHeader = false; 1886 bool AllExplicitSpecHeaders = true; 1887 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1888 if (ParamLists[I]->size() == 0) 1889 HasAnyExplicitSpecHeader = true; 1890 else 1891 AllExplicitSpecHeaders = false; 1892 } 1893 1894 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1895 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1896 : diag::err_template_spec_extra_headers) 1897 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1898 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1899 1900 // If there was a specialization somewhere, such that 'template<>' is 1901 // not required, and there were any 'template<>' headers, note where the 1902 // specialization occurred. 1903 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1904 Diag(ExplicitSpecLoc, 1905 diag::note_explicit_template_spec_does_not_need_header) 1906 << NestedTypes.back(); 1907 1908 // We have a template parameter list with no corresponding scope, which 1909 // means that the resulting template declaration can't be instantiated 1910 // properly (we'll end up with dependent nodes when we shouldn't). 1911 if (!AllExplicitSpecHeaders) 1912 Invalid = true; 1913 } 1914 1915 // C++ [temp.expl.spec]p16: 1916 // In an explicit specialization declaration for a member of a class 1917 // template or a member template that ap- pears in namespace scope, the 1918 // member template and some of its enclosing class templates may remain 1919 // unspecialized, except that the declaration shall not explicitly 1920 // specialize a class member template if its en- closing class templates 1921 // are not explicitly specialized as well. 1922 if (ParamLists[NumParamLists - 1]->size() == 0 && 1923 SawNonEmptyTemplateParameterList) { 1924 Diag(DeclLoc, diag::err_specialize_member_of_template) 1925 << ParamLists[ParamIdx]->getSourceRange(); 1926 Invalid = true; 1927 IsExplicitSpecialization = false; 1928 return 0; 1929 } 1930 1931 // Return the last template parameter list, which corresponds to the 1932 // entity being declared. 1933 return ParamLists[NumParamLists - 1]; 1934} 1935 1936void Sema::NoteAllFoundTemplates(TemplateName Name) { 1937 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1938 Diag(Template->getLocation(), diag::note_template_declared_here) 1939 << (isa<FunctionTemplateDecl>(Template)? 0 1940 : isa<ClassTemplateDecl>(Template)? 1 1941 : isa<TypeAliasTemplateDecl>(Template)? 2 1942 : 3) 1943 << Template->getDeclName(); 1944 return; 1945 } 1946 1947 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1948 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1949 IEnd = OST->end(); 1950 I != IEnd; ++I) 1951 Diag((*I)->getLocation(), diag::note_template_declared_here) 1952 << 0 << (*I)->getDeclName(); 1953 1954 return; 1955 } 1956} 1957 1958QualType Sema::CheckTemplateIdType(TemplateName Name, 1959 SourceLocation TemplateLoc, 1960 TemplateArgumentListInfo &TemplateArgs) { 1961 DependentTemplateName *DTN 1962 = Name.getUnderlying().getAsDependentTemplateName(); 1963 if (DTN && DTN->isIdentifier()) 1964 // When building a template-id where the template-name is dependent, 1965 // assume the template is a type template. Either our assumption is 1966 // correct, or the code is ill-formed and will be diagnosed when the 1967 // dependent name is substituted. 1968 return Context.getDependentTemplateSpecializationType(ETK_None, 1969 DTN->getQualifier(), 1970 DTN->getIdentifier(), 1971 TemplateArgs); 1972 1973 TemplateDecl *Template = Name.getAsTemplateDecl(); 1974 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1975 // We might have a substituted template template parameter pack. If so, 1976 // build a template specialization type for it. 1977 if (Name.getAsSubstTemplateTemplateParmPack()) 1978 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1979 1980 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1981 << Name; 1982 NoteAllFoundTemplates(Name); 1983 return QualType(); 1984 } 1985 1986 // Check that the template argument list is well-formed for this 1987 // template. 1988 SmallVector<TemplateArgument, 4> Converted; 1989 bool ExpansionIntoFixedList = false; 1990 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1991 false, Converted, &ExpansionIntoFixedList)) 1992 return QualType(); 1993 1994 QualType CanonType; 1995 1996 bool InstantiationDependent = false; 1997 TypeAliasTemplateDecl *AliasTemplate = 0; 1998 if (!ExpansionIntoFixedList && 1999 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 2000 // Find the canonical type for this type alias template specialization. 2001 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 2002 if (Pattern->isInvalidDecl()) 2003 return QualType(); 2004 2005 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2006 Converted.data(), Converted.size()); 2007 2008 // Only substitute for the innermost template argument list. 2009 MultiLevelTemplateArgumentList TemplateArgLists; 2010 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2011 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 2012 for (unsigned I = 0; I < Depth; ++I) 2013 TemplateArgLists.addOuterTemplateArguments(None); 2014 2015 LocalInstantiationScope Scope(*this); 2016 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2017 if (Inst) 2018 return QualType(); 2019 2020 CanonType = SubstType(Pattern->getUnderlyingType(), 2021 TemplateArgLists, AliasTemplate->getLocation(), 2022 AliasTemplate->getDeclName()); 2023 if (CanonType.isNull()) 2024 return QualType(); 2025 } else if (Name.isDependent() || 2026 TemplateSpecializationType::anyDependentTemplateArguments( 2027 TemplateArgs, InstantiationDependent)) { 2028 // This class template specialization is a dependent 2029 // type. Therefore, its canonical type is another class template 2030 // specialization type that contains all of the converted 2031 // arguments in canonical form. This ensures that, e.g., A<T> and 2032 // A<T, T> have identical types when A is declared as: 2033 // 2034 // template<typename T, typename U = T> struct A; 2035 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2036 CanonType = Context.getTemplateSpecializationType(CanonName, 2037 Converted.data(), 2038 Converted.size()); 2039 2040 // FIXME: CanonType is not actually the canonical type, and unfortunately 2041 // it is a TemplateSpecializationType that we will never use again. 2042 // In the future, we need to teach getTemplateSpecializationType to only 2043 // build the canonical type and return that to us. 2044 CanonType = Context.getCanonicalType(CanonType); 2045 2046 // This might work out to be a current instantiation, in which 2047 // case the canonical type needs to be the InjectedClassNameType. 2048 // 2049 // TODO: in theory this could be a simple hashtable lookup; most 2050 // changes to CurContext don't change the set of current 2051 // instantiations. 2052 if (isa<ClassTemplateDecl>(Template)) { 2053 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2054 // If we get out to a namespace, we're done. 2055 if (Ctx->isFileContext()) break; 2056 2057 // If this isn't a record, keep looking. 2058 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2059 if (!Record) continue; 2060 2061 // Look for one of the two cases with InjectedClassNameTypes 2062 // and check whether it's the same template. 2063 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2064 !Record->getDescribedClassTemplate()) 2065 continue; 2066 2067 // Fetch the injected class name type and check whether its 2068 // injected type is equal to the type we just built. 2069 QualType ICNT = Context.getTypeDeclType(Record); 2070 QualType Injected = cast<InjectedClassNameType>(ICNT) 2071 ->getInjectedSpecializationType(); 2072 2073 if (CanonType != Injected->getCanonicalTypeInternal()) 2074 continue; 2075 2076 // If so, the canonical type of this TST is the injected 2077 // class name type of the record we just found. 2078 assert(ICNT.isCanonical()); 2079 CanonType = ICNT; 2080 break; 2081 } 2082 } 2083 } else if (ClassTemplateDecl *ClassTemplate 2084 = dyn_cast<ClassTemplateDecl>(Template)) { 2085 // Find the class template specialization declaration that 2086 // corresponds to these arguments. 2087 void *InsertPos = 0; 2088 ClassTemplateSpecializationDecl *Decl 2089 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2090 InsertPos); 2091 if (!Decl) { 2092 // This is the first time we have referenced this class template 2093 // specialization. Create the canonical declaration and add it to 2094 // the set of specializations. 2095 Decl = ClassTemplateSpecializationDecl::Create(Context, 2096 ClassTemplate->getTemplatedDecl()->getTagKind(), 2097 ClassTemplate->getDeclContext(), 2098 ClassTemplate->getTemplatedDecl()->getLocStart(), 2099 ClassTemplate->getLocation(), 2100 ClassTemplate, 2101 Converted.data(), 2102 Converted.size(), 0); 2103 ClassTemplate->AddSpecialization(Decl, InsertPos); 2104 if (ClassTemplate->isOutOfLine()) 2105 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2106 } 2107 2108 CanonType = Context.getTypeDeclType(Decl); 2109 assert(isa<RecordType>(CanonType) && 2110 "type of non-dependent specialization is not a RecordType"); 2111 } 2112 2113 // Build the fully-sugared type for this class template 2114 // specialization, which refers back to the class template 2115 // specialization we created or found. 2116 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2117} 2118 2119TypeResult 2120Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2121 TemplateTy TemplateD, SourceLocation TemplateLoc, 2122 SourceLocation LAngleLoc, 2123 ASTTemplateArgsPtr TemplateArgsIn, 2124 SourceLocation RAngleLoc, 2125 bool IsCtorOrDtorName) { 2126 if (SS.isInvalid()) 2127 return true; 2128 2129 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2130 2131 // Translate the parser's template argument list in our AST format. 2132 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2133 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2134 2135 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2136 QualType T 2137 = Context.getDependentTemplateSpecializationType(ETK_None, 2138 DTN->getQualifier(), 2139 DTN->getIdentifier(), 2140 TemplateArgs); 2141 // Build type-source information. 2142 TypeLocBuilder TLB; 2143 DependentTemplateSpecializationTypeLoc SpecTL 2144 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2145 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2146 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2147 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2148 SpecTL.setTemplateNameLoc(TemplateLoc); 2149 SpecTL.setLAngleLoc(LAngleLoc); 2150 SpecTL.setRAngleLoc(RAngleLoc); 2151 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2152 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2153 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2154 } 2155 2156 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2157 2158 if (Result.isNull()) 2159 return true; 2160 2161 // Build type-source information. 2162 TypeLocBuilder TLB; 2163 TemplateSpecializationTypeLoc SpecTL 2164 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2165 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2166 SpecTL.setTemplateNameLoc(TemplateLoc); 2167 SpecTL.setLAngleLoc(LAngleLoc); 2168 SpecTL.setRAngleLoc(RAngleLoc); 2169 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2170 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2171 2172 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2173 // constructor or destructor name (in such a case, the scope specifier 2174 // will be attached to the enclosing Decl or Expr node). 2175 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2176 // Create an elaborated-type-specifier containing the nested-name-specifier. 2177 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2178 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2179 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2180 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2181 } 2182 2183 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2184} 2185 2186TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2187 TypeSpecifierType TagSpec, 2188 SourceLocation TagLoc, 2189 CXXScopeSpec &SS, 2190 SourceLocation TemplateKWLoc, 2191 TemplateTy TemplateD, 2192 SourceLocation TemplateLoc, 2193 SourceLocation LAngleLoc, 2194 ASTTemplateArgsPtr TemplateArgsIn, 2195 SourceLocation RAngleLoc) { 2196 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2197 2198 // Translate the parser's template argument list in our AST format. 2199 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2200 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2201 2202 // Determine the tag kind 2203 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2204 ElaboratedTypeKeyword Keyword 2205 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2206 2207 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2208 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2209 DTN->getQualifier(), 2210 DTN->getIdentifier(), 2211 TemplateArgs); 2212 2213 // Build type-source information. 2214 TypeLocBuilder TLB; 2215 DependentTemplateSpecializationTypeLoc SpecTL 2216 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2217 SpecTL.setElaboratedKeywordLoc(TagLoc); 2218 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2219 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2220 SpecTL.setTemplateNameLoc(TemplateLoc); 2221 SpecTL.setLAngleLoc(LAngleLoc); 2222 SpecTL.setRAngleLoc(RAngleLoc); 2223 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2224 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2225 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2226 } 2227 2228 if (TypeAliasTemplateDecl *TAT = 2229 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2230 // C++0x [dcl.type.elab]p2: 2231 // If the identifier resolves to a typedef-name or the simple-template-id 2232 // resolves to an alias template specialization, the 2233 // elaborated-type-specifier is ill-formed. 2234 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2235 Diag(TAT->getLocation(), diag::note_declared_at); 2236 } 2237 2238 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2239 if (Result.isNull()) 2240 return TypeResult(true); 2241 2242 // Check the tag kind 2243 if (const RecordType *RT = Result->getAs<RecordType>()) { 2244 RecordDecl *D = RT->getDecl(); 2245 2246 IdentifierInfo *Id = D->getIdentifier(); 2247 assert(Id && "templated class must have an identifier"); 2248 2249 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2250 TagLoc, *Id)) { 2251 Diag(TagLoc, diag::err_use_with_wrong_tag) 2252 << Result 2253 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2254 Diag(D->getLocation(), diag::note_previous_use); 2255 } 2256 } 2257 2258 // Provide source-location information for the template specialization. 2259 TypeLocBuilder TLB; 2260 TemplateSpecializationTypeLoc SpecTL 2261 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2262 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2263 SpecTL.setTemplateNameLoc(TemplateLoc); 2264 SpecTL.setLAngleLoc(LAngleLoc); 2265 SpecTL.setRAngleLoc(RAngleLoc); 2266 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2267 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2268 2269 // Construct an elaborated type containing the nested-name-specifier (if any) 2270 // and tag keyword. 2271 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2272 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2273 ElabTL.setElaboratedKeywordLoc(TagLoc); 2274 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2275 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2276} 2277 2278ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2279 SourceLocation TemplateKWLoc, 2280 LookupResult &R, 2281 bool RequiresADL, 2282 const TemplateArgumentListInfo *TemplateArgs) { 2283 // FIXME: Can we do any checking at this point? I guess we could check the 2284 // template arguments that we have against the template name, if the template 2285 // name refers to a single template. That's not a terribly common case, 2286 // though. 2287 // foo<int> could identify a single function unambiguously 2288 // This approach does NOT work, since f<int>(1); 2289 // gets resolved prior to resorting to overload resolution 2290 // i.e., template<class T> void f(double); 2291 // vs template<class T, class U> void f(U); 2292 2293 // These should be filtered out by our callers. 2294 assert(!R.empty() && "empty lookup results when building templateid"); 2295 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2296 2297 // We don't want lookup warnings at this point. 2298 R.suppressDiagnostics(); 2299 2300 UnresolvedLookupExpr *ULE 2301 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2302 SS.getWithLocInContext(Context), 2303 TemplateKWLoc, 2304 R.getLookupNameInfo(), 2305 RequiresADL, TemplateArgs, 2306 R.begin(), R.end()); 2307 2308 return Owned(ULE); 2309} 2310 2311// We actually only call this from template instantiation. 2312ExprResult 2313Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2314 SourceLocation TemplateKWLoc, 2315 const DeclarationNameInfo &NameInfo, 2316 const TemplateArgumentListInfo *TemplateArgs) { 2317 assert(TemplateArgs || TemplateKWLoc.isValid()); 2318 DeclContext *DC; 2319 if (!(DC = computeDeclContext(SS, false)) || 2320 DC->isDependentContext() || 2321 RequireCompleteDeclContext(SS, DC)) 2322 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2323 2324 bool MemberOfUnknownSpecialization; 2325 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2326 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2327 MemberOfUnknownSpecialization); 2328 2329 if (R.isAmbiguous()) 2330 return ExprError(); 2331 2332 if (R.empty()) { 2333 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2334 << NameInfo.getName() << SS.getRange(); 2335 return ExprError(); 2336 } 2337 2338 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2339 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2340 << (NestedNameSpecifier*) SS.getScopeRep() 2341 << NameInfo.getName() << SS.getRange(); 2342 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2343 return ExprError(); 2344 } 2345 2346 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2347} 2348 2349/// \brief Form a dependent template name. 2350/// 2351/// This action forms a dependent template name given the template 2352/// name and its (presumably dependent) scope specifier. For 2353/// example, given "MetaFun::template apply", the scope specifier \p 2354/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2355/// of the "template" keyword, and "apply" is the \p Name. 2356TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2357 CXXScopeSpec &SS, 2358 SourceLocation TemplateKWLoc, 2359 UnqualifiedId &Name, 2360 ParsedType ObjectType, 2361 bool EnteringContext, 2362 TemplateTy &Result) { 2363 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2364 Diag(TemplateKWLoc, 2365 getLangOpts().CPlusPlus11 ? 2366 diag::warn_cxx98_compat_template_outside_of_template : 2367 diag::ext_template_outside_of_template) 2368 << FixItHint::CreateRemoval(TemplateKWLoc); 2369 2370 DeclContext *LookupCtx = 0; 2371 if (SS.isSet()) 2372 LookupCtx = computeDeclContext(SS, EnteringContext); 2373 if (!LookupCtx && ObjectType) 2374 LookupCtx = computeDeclContext(ObjectType.get()); 2375 if (LookupCtx) { 2376 // C++0x [temp.names]p5: 2377 // If a name prefixed by the keyword template is not the name of 2378 // a template, the program is ill-formed. [Note: the keyword 2379 // template may not be applied to non-template members of class 2380 // templates. -end note ] [ Note: as is the case with the 2381 // typename prefix, the template prefix is allowed in cases 2382 // where it is not strictly necessary; i.e., when the 2383 // nested-name-specifier or the expression on the left of the -> 2384 // or . is not dependent on a template-parameter, or the use 2385 // does not appear in the scope of a template. -end note] 2386 // 2387 // Note: C++03 was more strict here, because it banned the use of 2388 // the "template" keyword prior to a template-name that was not a 2389 // dependent name. C++ DR468 relaxed this requirement (the 2390 // "template" keyword is now permitted). We follow the C++0x 2391 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2392 bool MemberOfUnknownSpecialization; 2393 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 2394 ObjectType, EnteringContext, Result, 2395 MemberOfUnknownSpecialization); 2396 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2397 isa<CXXRecordDecl>(LookupCtx) && 2398 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2399 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2400 // This is a dependent template. Handle it below. 2401 } else if (TNK == TNK_Non_template) { 2402 Diag(Name.getLocStart(), 2403 diag::err_template_kw_refers_to_non_template) 2404 << GetNameFromUnqualifiedId(Name).getName() 2405 << Name.getSourceRange() 2406 << TemplateKWLoc; 2407 return TNK_Non_template; 2408 } else { 2409 // We found something; return it. 2410 return TNK; 2411 } 2412 } 2413 2414 NestedNameSpecifier *Qualifier 2415 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2416 2417 switch (Name.getKind()) { 2418 case UnqualifiedId::IK_Identifier: 2419 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2420 Name.Identifier)); 2421 return TNK_Dependent_template_name; 2422 2423 case UnqualifiedId::IK_OperatorFunctionId: 2424 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2425 Name.OperatorFunctionId.Operator)); 2426 return TNK_Dependent_template_name; 2427 2428 case UnqualifiedId::IK_LiteralOperatorId: 2429 llvm_unreachable( 2430 "We don't support these; Parse shouldn't have allowed propagation"); 2431 2432 default: 2433 break; 2434 } 2435 2436 Diag(Name.getLocStart(), 2437 diag::err_template_kw_refers_to_non_template) 2438 << GetNameFromUnqualifiedId(Name).getName() 2439 << Name.getSourceRange() 2440 << TemplateKWLoc; 2441 return TNK_Non_template; 2442} 2443 2444bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2445 const TemplateArgumentLoc &AL, 2446 SmallVectorImpl<TemplateArgument> &Converted) { 2447 const TemplateArgument &Arg = AL.getArgument(); 2448 2449 // Check template type parameter. 2450 switch(Arg.getKind()) { 2451 case TemplateArgument::Type: 2452 // C++ [temp.arg.type]p1: 2453 // A template-argument for a template-parameter which is a 2454 // type shall be a type-id. 2455 break; 2456 case TemplateArgument::Template: { 2457 // We have a template type parameter but the template argument 2458 // is a template without any arguments. 2459 SourceRange SR = AL.getSourceRange(); 2460 TemplateName Name = Arg.getAsTemplate(); 2461 Diag(SR.getBegin(), diag::err_template_missing_args) 2462 << Name << SR; 2463 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2464 Diag(Decl->getLocation(), diag::note_template_decl_here); 2465 2466 return true; 2467 } 2468 case TemplateArgument::Expression: { 2469 // We have a template type parameter but the template argument is an 2470 // expression; see if maybe it is missing the "typename" keyword. 2471 CXXScopeSpec SS; 2472 DeclarationNameInfo NameInfo; 2473 2474 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2475 SS.Adopt(ArgExpr->getQualifierLoc()); 2476 NameInfo = ArgExpr->getNameInfo(); 2477 } else if (DependentScopeDeclRefExpr *ArgExpr = 2478 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2479 SS.Adopt(ArgExpr->getQualifierLoc()); 2480 NameInfo = ArgExpr->getNameInfo(); 2481 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2482 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2483 if (ArgExpr->isImplicitAccess()) { 2484 SS.Adopt(ArgExpr->getQualifierLoc()); 2485 NameInfo = ArgExpr->getMemberNameInfo(); 2486 } 2487 } 2488 2489 if (NameInfo.getName().isIdentifier()) { 2490 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2491 LookupParsedName(Result, CurScope, &SS); 2492 2493 if (Result.getAsSingle<TypeDecl>() || 2494 Result.getResultKind() == 2495 LookupResult::NotFoundInCurrentInstantiation) { 2496 // FIXME: Add a FixIt and fix up the template argument for recovery. 2497 SourceLocation Loc = AL.getSourceRange().getBegin(); 2498 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2499 Diag(Param->getLocation(), diag::note_template_param_here); 2500 return true; 2501 } 2502 } 2503 // fallthrough 2504 } 2505 default: { 2506 // We have a template type parameter but the template argument 2507 // is not a type. 2508 SourceRange SR = AL.getSourceRange(); 2509 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2510 Diag(Param->getLocation(), diag::note_template_param_here); 2511 2512 return true; 2513 } 2514 } 2515 2516 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2517 return true; 2518 2519 // Add the converted template type argument. 2520 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2521 2522 // Objective-C ARC: 2523 // If an explicitly-specified template argument type is a lifetime type 2524 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2525 if (getLangOpts().ObjCAutoRefCount && 2526 ArgType->isObjCLifetimeType() && 2527 !ArgType.getObjCLifetime()) { 2528 Qualifiers Qs; 2529 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2530 ArgType = Context.getQualifiedType(ArgType, Qs); 2531 } 2532 2533 Converted.push_back(TemplateArgument(ArgType)); 2534 return false; 2535} 2536 2537/// \brief Substitute template arguments into the default template argument for 2538/// the given template type parameter. 2539/// 2540/// \param SemaRef the semantic analysis object for which we are performing 2541/// the substitution. 2542/// 2543/// \param Template the template that we are synthesizing template arguments 2544/// for. 2545/// 2546/// \param TemplateLoc the location of the template name that started the 2547/// template-id we are checking. 2548/// 2549/// \param RAngleLoc the location of the right angle bracket ('>') that 2550/// terminates the template-id. 2551/// 2552/// \param Param the template template parameter whose default we are 2553/// substituting into. 2554/// 2555/// \param Converted the list of template arguments provided for template 2556/// parameters that precede \p Param in the template parameter list. 2557/// \returns the substituted template argument, or NULL if an error occurred. 2558static TypeSourceInfo * 2559SubstDefaultTemplateArgument(Sema &SemaRef, 2560 TemplateDecl *Template, 2561 SourceLocation TemplateLoc, 2562 SourceLocation RAngleLoc, 2563 TemplateTypeParmDecl *Param, 2564 SmallVectorImpl<TemplateArgument> &Converted) { 2565 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2566 2567 // If the argument type is dependent, instantiate it now based 2568 // on the previously-computed template arguments. 2569 if (ArgType->getType()->isDependentType()) { 2570 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2571 Converted.data(), Converted.size()); 2572 2573 MultiLevelTemplateArgumentList AllTemplateArgs 2574 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2575 2576 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2577 Template, Converted, 2578 SourceRange(TemplateLoc, RAngleLoc)); 2579 if (Inst) 2580 return 0; 2581 2582 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2583 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2584 Param->getDefaultArgumentLoc(), 2585 Param->getDeclName()); 2586 } 2587 2588 return ArgType; 2589} 2590 2591/// \brief Substitute template arguments into the default template argument for 2592/// the given non-type template parameter. 2593/// 2594/// \param SemaRef the semantic analysis object for which we are performing 2595/// the substitution. 2596/// 2597/// \param Template the template that we are synthesizing template arguments 2598/// for. 2599/// 2600/// \param TemplateLoc the location of the template name that started the 2601/// template-id we are checking. 2602/// 2603/// \param RAngleLoc the location of the right angle bracket ('>') that 2604/// terminates the template-id. 2605/// 2606/// \param Param the non-type template parameter whose default we are 2607/// substituting into. 2608/// 2609/// \param Converted the list of template arguments provided for template 2610/// parameters that precede \p Param in the template parameter list. 2611/// 2612/// \returns the substituted template argument, or NULL if an error occurred. 2613static ExprResult 2614SubstDefaultTemplateArgument(Sema &SemaRef, 2615 TemplateDecl *Template, 2616 SourceLocation TemplateLoc, 2617 SourceLocation RAngleLoc, 2618 NonTypeTemplateParmDecl *Param, 2619 SmallVectorImpl<TemplateArgument> &Converted) { 2620 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2621 Converted.data(), Converted.size()); 2622 2623 MultiLevelTemplateArgumentList AllTemplateArgs 2624 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2625 2626 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2627 Template, Converted, 2628 SourceRange(TemplateLoc, RAngleLoc)); 2629 if (Inst) 2630 return ExprError(); 2631 2632 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2633 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 2634 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2635} 2636 2637/// \brief Substitute template arguments into the default template argument for 2638/// the given template template parameter. 2639/// 2640/// \param SemaRef the semantic analysis object for which we are performing 2641/// the substitution. 2642/// 2643/// \param Template the template that we are synthesizing template arguments 2644/// for. 2645/// 2646/// \param TemplateLoc the location of the template name that started the 2647/// template-id we are checking. 2648/// 2649/// \param RAngleLoc the location of the right angle bracket ('>') that 2650/// terminates the template-id. 2651/// 2652/// \param Param the template template parameter whose default we are 2653/// substituting into. 2654/// 2655/// \param Converted the list of template arguments provided for template 2656/// parameters that precede \p Param in the template parameter list. 2657/// 2658/// \param QualifierLoc Will be set to the nested-name-specifier (with 2659/// source-location information) that precedes the template name. 2660/// 2661/// \returns the substituted template argument, or NULL if an error occurred. 2662static TemplateName 2663SubstDefaultTemplateArgument(Sema &SemaRef, 2664 TemplateDecl *Template, 2665 SourceLocation TemplateLoc, 2666 SourceLocation RAngleLoc, 2667 TemplateTemplateParmDecl *Param, 2668 SmallVectorImpl<TemplateArgument> &Converted, 2669 NestedNameSpecifierLoc &QualifierLoc) { 2670 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2671 Converted.data(), Converted.size()); 2672 2673 MultiLevelTemplateArgumentList AllTemplateArgs 2674 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2675 2676 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2677 Template, Converted, 2678 SourceRange(TemplateLoc, RAngleLoc)); 2679 if (Inst) 2680 return TemplateName(); 2681 2682 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2683 // Substitute into the nested-name-specifier first, 2684 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2685 if (QualifierLoc) { 2686 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2687 AllTemplateArgs); 2688 if (!QualifierLoc) 2689 return TemplateName(); 2690 } 2691 2692 return SemaRef.SubstTemplateName(QualifierLoc, 2693 Param->getDefaultArgument().getArgument().getAsTemplate(), 2694 Param->getDefaultArgument().getTemplateNameLoc(), 2695 AllTemplateArgs); 2696} 2697 2698/// \brief If the given template parameter has a default template 2699/// argument, substitute into that default template argument and 2700/// return the corresponding template argument. 2701TemplateArgumentLoc 2702Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2703 SourceLocation TemplateLoc, 2704 SourceLocation RAngleLoc, 2705 Decl *Param, 2706 SmallVectorImpl<TemplateArgument> 2707 &Converted, 2708 bool &HasDefaultArg) { 2709 HasDefaultArg = false; 2710 2711 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2712 if (!TypeParm->hasDefaultArgument()) 2713 return TemplateArgumentLoc(); 2714 2715 HasDefaultArg = true; 2716 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2717 TemplateLoc, 2718 RAngleLoc, 2719 TypeParm, 2720 Converted); 2721 if (DI) 2722 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2723 2724 return TemplateArgumentLoc(); 2725 } 2726 2727 if (NonTypeTemplateParmDecl *NonTypeParm 2728 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2729 if (!NonTypeParm->hasDefaultArgument()) 2730 return TemplateArgumentLoc(); 2731 2732 HasDefaultArg = true; 2733 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2734 TemplateLoc, 2735 RAngleLoc, 2736 NonTypeParm, 2737 Converted); 2738 if (Arg.isInvalid()) 2739 return TemplateArgumentLoc(); 2740 2741 Expr *ArgE = Arg.takeAs<Expr>(); 2742 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2743 } 2744 2745 TemplateTemplateParmDecl *TempTempParm 2746 = cast<TemplateTemplateParmDecl>(Param); 2747 if (!TempTempParm->hasDefaultArgument()) 2748 return TemplateArgumentLoc(); 2749 2750 HasDefaultArg = true; 2751 NestedNameSpecifierLoc QualifierLoc; 2752 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2753 TemplateLoc, 2754 RAngleLoc, 2755 TempTempParm, 2756 Converted, 2757 QualifierLoc); 2758 if (TName.isNull()) 2759 return TemplateArgumentLoc(); 2760 2761 return TemplateArgumentLoc(TemplateArgument(TName), 2762 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2763 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2764} 2765 2766/// \brief Check that the given template argument corresponds to the given 2767/// template parameter. 2768/// 2769/// \param Param The template parameter against which the argument will be 2770/// checked. 2771/// 2772/// \param Arg The template argument. 2773/// 2774/// \param Template The template in which the template argument resides. 2775/// 2776/// \param TemplateLoc The location of the template name for the template 2777/// whose argument list we're matching. 2778/// 2779/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2780/// the template argument list. 2781/// 2782/// \param ArgumentPackIndex The index into the argument pack where this 2783/// argument will be placed. Only valid if the parameter is a parameter pack. 2784/// 2785/// \param Converted The checked, converted argument will be added to the 2786/// end of this small vector. 2787/// 2788/// \param CTAK Describes how we arrived at this particular template argument: 2789/// explicitly written, deduced, etc. 2790/// 2791/// \returns true on error, false otherwise. 2792bool Sema::CheckTemplateArgument(NamedDecl *Param, 2793 const TemplateArgumentLoc &Arg, 2794 NamedDecl *Template, 2795 SourceLocation TemplateLoc, 2796 SourceLocation RAngleLoc, 2797 unsigned ArgumentPackIndex, 2798 SmallVectorImpl<TemplateArgument> &Converted, 2799 CheckTemplateArgumentKind CTAK) { 2800 // Check template type parameters. 2801 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2802 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2803 2804 // Check non-type template parameters. 2805 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2806 // Do substitution on the type of the non-type template parameter 2807 // with the template arguments we've seen thus far. But if the 2808 // template has a dependent context then we cannot substitute yet. 2809 QualType NTTPType = NTTP->getType(); 2810 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2811 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2812 2813 if (NTTPType->isDependentType() && 2814 !isa<TemplateTemplateParmDecl>(Template) && 2815 !Template->getDeclContext()->isDependentContext()) { 2816 // Do substitution on the type of the non-type template parameter. 2817 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2818 NTTP, Converted, 2819 SourceRange(TemplateLoc, RAngleLoc)); 2820 if (Inst) 2821 return true; 2822 2823 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2824 Converted.data(), Converted.size()); 2825 NTTPType = SubstType(NTTPType, 2826 MultiLevelTemplateArgumentList(TemplateArgs), 2827 NTTP->getLocation(), 2828 NTTP->getDeclName()); 2829 // If that worked, check the non-type template parameter type 2830 // for validity. 2831 if (!NTTPType.isNull()) 2832 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2833 NTTP->getLocation()); 2834 if (NTTPType.isNull()) 2835 return true; 2836 } 2837 2838 switch (Arg.getArgument().getKind()) { 2839 case TemplateArgument::Null: 2840 llvm_unreachable("Should never see a NULL template argument here"); 2841 2842 case TemplateArgument::Expression: { 2843 TemplateArgument Result; 2844 ExprResult Res = 2845 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2846 Result, CTAK); 2847 if (Res.isInvalid()) 2848 return true; 2849 2850 Converted.push_back(Result); 2851 break; 2852 } 2853 2854 case TemplateArgument::Declaration: 2855 case TemplateArgument::Integral: 2856 case TemplateArgument::NullPtr: 2857 // We've already checked this template argument, so just copy 2858 // it to the list of converted arguments. 2859 Converted.push_back(Arg.getArgument()); 2860 break; 2861 2862 case TemplateArgument::Template: 2863 case TemplateArgument::TemplateExpansion: 2864 // We were given a template template argument. It may not be ill-formed; 2865 // see below. 2866 if (DependentTemplateName *DTN 2867 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2868 .getAsDependentTemplateName()) { 2869 // We have a template argument such as \c T::template X, which we 2870 // parsed as a template template argument. However, since we now 2871 // know that we need a non-type template argument, convert this 2872 // template name into an expression. 2873 2874 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2875 Arg.getTemplateNameLoc()); 2876 2877 CXXScopeSpec SS; 2878 SS.Adopt(Arg.getTemplateQualifierLoc()); 2879 // FIXME: the template-template arg was a DependentTemplateName, 2880 // so it was provided with a template keyword. However, its source 2881 // location is not stored in the template argument structure. 2882 SourceLocation TemplateKWLoc; 2883 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2884 SS.getWithLocInContext(Context), 2885 TemplateKWLoc, 2886 NameInfo, 0)); 2887 2888 // If we parsed the template argument as a pack expansion, create a 2889 // pack expansion expression. 2890 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2891 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2892 if (E.isInvalid()) 2893 return true; 2894 } 2895 2896 TemplateArgument Result; 2897 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2898 if (E.isInvalid()) 2899 return true; 2900 2901 Converted.push_back(Result); 2902 break; 2903 } 2904 2905 // We have a template argument that actually does refer to a class 2906 // template, alias template, or template template parameter, and 2907 // therefore cannot be a non-type template argument. 2908 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2909 << Arg.getSourceRange(); 2910 2911 Diag(Param->getLocation(), diag::note_template_param_here); 2912 return true; 2913 2914 case TemplateArgument::Type: { 2915 // We have a non-type template parameter but the template 2916 // argument is a type. 2917 2918 // C++ [temp.arg]p2: 2919 // In a template-argument, an ambiguity between a type-id and 2920 // an expression is resolved to a type-id, regardless of the 2921 // form of the corresponding template-parameter. 2922 // 2923 // We warn specifically about this case, since it can be rather 2924 // confusing for users. 2925 QualType T = Arg.getArgument().getAsType(); 2926 SourceRange SR = Arg.getSourceRange(); 2927 if (T->isFunctionType()) 2928 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2929 else 2930 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2931 Diag(Param->getLocation(), diag::note_template_param_here); 2932 return true; 2933 } 2934 2935 case TemplateArgument::Pack: 2936 llvm_unreachable("Caller must expand template argument packs"); 2937 } 2938 2939 return false; 2940 } 2941 2942 2943 // Check template template parameters. 2944 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2945 2946 // Substitute into the template parameter list of the template 2947 // template parameter, since previously-supplied template arguments 2948 // may appear within the template template parameter. 2949 { 2950 // Set up a template instantiation context. 2951 LocalInstantiationScope Scope(*this); 2952 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2953 TempParm, Converted, 2954 SourceRange(TemplateLoc, RAngleLoc)); 2955 if (Inst) 2956 return true; 2957 2958 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2959 Converted.data(), Converted.size()); 2960 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2961 SubstDecl(TempParm, CurContext, 2962 MultiLevelTemplateArgumentList(TemplateArgs))); 2963 if (!TempParm) 2964 return true; 2965 } 2966 2967 switch (Arg.getArgument().getKind()) { 2968 case TemplateArgument::Null: 2969 llvm_unreachable("Should never see a NULL template argument here"); 2970 2971 case TemplateArgument::Template: 2972 case TemplateArgument::TemplateExpansion: 2973 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 2974 return true; 2975 2976 Converted.push_back(Arg.getArgument()); 2977 break; 2978 2979 case TemplateArgument::Expression: 2980 case TemplateArgument::Type: 2981 // We have a template template parameter but the template 2982 // argument does not refer to a template. 2983 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2984 << getLangOpts().CPlusPlus11; 2985 return true; 2986 2987 case TemplateArgument::Declaration: 2988 llvm_unreachable("Declaration argument with template template parameter"); 2989 case TemplateArgument::Integral: 2990 llvm_unreachable("Integral argument with template template parameter"); 2991 case TemplateArgument::NullPtr: 2992 llvm_unreachable("Null pointer argument with template template parameter"); 2993 2994 case TemplateArgument::Pack: 2995 llvm_unreachable("Caller must expand template argument packs"); 2996 } 2997 2998 return false; 2999} 3000 3001/// \brief Diagnose an arity mismatch in the 3002static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 3003 SourceLocation TemplateLoc, 3004 TemplateArgumentListInfo &TemplateArgs) { 3005 TemplateParameterList *Params = Template->getTemplateParameters(); 3006 unsigned NumParams = Params->size(); 3007 unsigned NumArgs = TemplateArgs.size(); 3008 3009 SourceRange Range; 3010 if (NumArgs > NumParams) 3011 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 3012 TemplateArgs.getRAngleLoc()); 3013 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3014 << (NumArgs > NumParams) 3015 << (isa<ClassTemplateDecl>(Template)? 0 : 3016 isa<FunctionTemplateDecl>(Template)? 1 : 3017 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3018 << Template << Range; 3019 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3020 << Params->getSourceRange(); 3021 return true; 3022} 3023 3024/// \brief Check whether the template parameter is a pack expansion, and if so, 3025/// determine the number of parameters produced by that expansion. For instance: 3026/// 3027/// \code 3028/// template<typename ...Ts> struct A { 3029/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3030/// }; 3031/// \endcode 3032/// 3033/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3034/// is not a pack expansion, so returns an empty Optional. 3035static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3036 if (NonTypeTemplateParmDecl *NTTP 3037 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3038 if (NTTP->isExpandedParameterPack()) 3039 return NTTP->getNumExpansionTypes(); 3040 } 3041 3042 if (TemplateTemplateParmDecl *TTP 3043 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3044 if (TTP->isExpandedParameterPack()) 3045 return TTP->getNumExpansionTemplateParameters(); 3046 } 3047 3048 return None; 3049} 3050 3051/// \brief Check that the given template argument list is well-formed 3052/// for specializing the given template. 3053bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3054 SourceLocation TemplateLoc, 3055 TemplateArgumentListInfo &TemplateArgs, 3056 bool PartialTemplateArgs, 3057 SmallVectorImpl<TemplateArgument> &Converted, 3058 bool *ExpansionIntoFixedList) { 3059 if (ExpansionIntoFixedList) 3060 *ExpansionIntoFixedList = false; 3061 3062 TemplateParameterList *Params = Template->getTemplateParameters(); 3063 3064 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3065 3066 // C++ [temp.arg]p1: 3067 // [...] The type and form of each template-argument specified in 3068 // a template-id shall match the type and form specified for the 3069 // corresponding parameter declared by the template in its 3070 // template-parameter-list. 3071 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3072 SmallVector<TemplateArgument, 2> ArgumentPack; 3073 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 3074 LocalInstantiationScope InstScope(*this, true); 3075 for (TemplateParameterList::iterator Param = Params->begin(), 3076 ParamEnd = Params->end(); 3077 Param != ParamEnd; /* increment in loop */) { 3078 // If we have an expanded parameter pack, make sure we don't have too 3079 // many arguments. 3080 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3081 if (*Expansions == ArgumentPack.size()) { 3082 // We're done with this parameter pack. Pack up its arguments and add 3083 // them to the list. 3084 Converted.push_back( 3085 TemplateArgument::CreatePackCopy(Context, 3086 ArgumentPack.data(), 3087 ArgumentPack.size())); 3088 ArgumentPack.clear(); 3089 3090 // This argument is assigned to the next parameter. 3091 ++Param; 3092 continue; 3093 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3094 // Not enough arguments for this parameter pack. 3095 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3096 << false 3097 << (isa<ClassTemplateDecl>(Template)? 0 : 3098 isa<FunctionTemplateDecl>(Template)? 1 : 3099 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3100 << Template; 3101 Diag(Template->getLocation(), diag::note_template_decl_here) 3102 << Params->getSourceRange(); 3103 return true; 3104 } 3105 } 3106 3107 if (ArgIdx < NumArgs) { 3108 // Check the template argument we were given. 3109 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3110 TemplateLoc, RAngleLoc, 3111 ArgumentPack.size(), Converted)) 3112 return true; 3113 3114 // We're now done with this argument. 3115 ++ArgIdx; 3116 3117 if ((*Param)->isTemplateParameterPack()) { 3118 // The template parameter was a template parameter pack, so take the 3119 // deduced argument and place it on the argument pack. Note that we 3120 // stay on the same template parameter so that we can deduce more 3121 // arguments. 3122 ArgumentPack.push_back(Converted.back()); 3123 Converted.pop_back(); 3124 } else { 3125 // Move to the next template parameter. 3126 ++Param; 3127 } 3128 3129 // If we just saw a pack expansion, then directly convert the remaining 3130 // arguments, because we don't know what parameters they'll match up 3131 // with. 3132 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) { 3133 bool InFinalParameterPack = Param != ParamEnd && 3134 Param + 1 == ParamEnd && 3135 (*Param)->isTemplateParameterPack() && 3136 !getExpandedPackSize(*Param); 3137 3138 if (!InFinalParameterPack && !ArgumentPack.empty()) { 3139 // If we were part way through filling in an expanded parameter pack, 3140 // fall back to just producing individual arguments. 3141 Converted.insert(Converted.end(), 3142 ArgumentPack.begin(), ArgumentPack.end()); 3143 ArgumentPack.clear(); 3144 } 3145 3146 while (ArgIdx < NumArgs) { 3147 if (InFinalParameterPack) 3148 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3149 else 3150 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3151 ++ArgIdx; 3152 } 3153 3154 // Push the argument pack onto the list of converted arguments. 3155 if (InFinalParameterPack) { 3156 Converted.push_back( 3157 TemplateArgument::CreatePackCopy(Context, 3158 ArgumentPack.data(), 3159 ArgumentPack.size())); 3160 ArgumentPack.clear(); 3161 } else if (ExpansionIntoFixedList) { 3162 // We have expanded a pack into a fixed list. 3163 *ExpansionIntoFixedList = true; 3164 } 3165 3166 return false; 3167 } 3168 3169 continue; 3170 } 3171 3172 // If we're checking a partial template argument list, we're done. 3173 if (PartialTemplateArgs) { 3174 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3175 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3176 ArgumentPack.data(), 3177 ArgumentPack.size())); 3178 3179 return false; 3180 } 3181 3182 // If we have a template parameter pack with no more corresponding 3183 // arguments, just break out now and we'll fill in the argument pack below. 3184 if ((*Param)->isTemplateParameterPack()) { 3185 assert(!getExpandedPackSize(*Param) && 3186 "Should have dealt with this already"); 3187 3188 // A non-expanded parameter pack before the end of the parameter list 3189 // only occurs for an ill-formed template parameter list, unless we've 3190 // got a partial argument list for a function template, so just bail out. 3191 if (Param + 1 != ParamEnd) 3192 return true; 3193 3194 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3195 ArgumentPack.data(), 3196 ArgumentPack.size())); 3197 ArgumentPack.clear(); 3198 3199 ++Param; 3200 continue; 3201 } 3202 3203 // Check whether we have a default argument. 3204 TemplateArgumentLoc Arg; 3205 3206 // Retrieve the default template argument from the template 3207 // parameter. For each kind of template parameter, we substitute the 3208 // template arguments provided thus far and any "outer" template arguments 3209 // (when the template parameter was part of a nested template) into 3210 // the default argument. 3211 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3212 if (!TTP->hasDefaultArgument()) 3213 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3214 TemplateArgs); 3215 3216 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3217 Template, 3218 TemplateLoc, 3219 RAngleLoc, 3220 TTP, 3221 Converted); 3222 if (!ArgType) 3223 return true; 3224 3225 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3226 ArgType); 3227 } else if (NonTypeTemplateParmDecl *NTTP 3228 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3229 if (!NTTP->hasDefaultArgument()) 3230 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3231 TemplateArgs); 3232 3233 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3234 TemplateLoc, 3235 RAngleLoc, 3236 NTTP, 3237 Converted); 3238 if (E.isInvalid()) 3239 return true; 3240 3241 Expr *Ex = E.takeAs<Expr>(); 3242 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3243 } else { 3244 TemplateTemplateParmDecl *TempParm 3245 = cast<TemplateTemplateParmDecl>(*Param); 3246 3247 if (!TempParm->hasDefaultArgument()) 3248 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3249 TemplateArgs); 3250 3251 NestedNameSpecifierLoc QualifierLoc; 3252 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3253 TemplateLoc, 3254 RAngleLoc, 3255 TempParm, 3256 Converted, 3257 QualifierLoc); 3258 if (Name.isNull()) 3259 return true; 3260 3261 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3262 TempParm->getDefaultArgument().getTemplateNameLoc()); 3263 } 3264 3265 // Introduce an instantiation record that describes where we are using 3266 // the default template argument. 3267 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3268 *Param, Converted, 3269 SourceRange(TemplateLoc, RAngleLoc)); 3270 if (Instantiating) 3271 return true; 3272 3273 // Check the default template argument. 3274 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3275 RAngleLoc, 0, Converted)) 3276 return true; 3277 3278 // Core issue 150 (assumed resolution): if this is a template template 3279 // parameter, keep track of the default template arguments from the 3280 // template definition. 3281 if (isTemplateTemplateParameter) 3282 TemplateArgs.addArgument(Arg); 3283 3284 // Move to the next template parameter and argument. 3285 ++Param; 3286 ++ArgIdx; 3287 } 3288 3289 // If we have any leftover arguments, then there were too many arguments. 3290 // Complain and fail. 3291 if (ArgIdx < NumArgs) 3292 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3293 3294 return false; 3295} 3296 3297namespace { 3298 class UnnamedLocalNoLinkageFinder 3299 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3300 { 3301 Sema &S; 3302 SourceRange SR; 3303 3304 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3305 3306 public: 3307 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3308 3309 bool Visit(QualType T) { 3310 return inherited::Visit(T.getTypePtr()); 3311 } 3312 3313#define TYPE(Class, Parent) \ 3314 bool Visit##Class##Type(const Class##Type *); 3315#define ABSTRACT_TYPE(Class, Parent) \ 3316 bool Visit##Class##Type(const Class##Type *) { return false; } 3317#define NON_CANONICAL_TYPE(Class, Parent) \ 3318 bool Visit##Class##Type(const Class##Type *) { return false; } 3319#include "clang/AST/TypeNodes.def" 3320 3321 bool VisitTagDecl(const TagDecl *Tag); 3322 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3323 }; 3324} 3325 3326bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3327 return false; 3328} 3329 3330bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3331 return Visit(T->getElementType()); 3332} 3333 3334bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3335 return Visit(T->getPointeeType()); 3336} 3337 3338bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3339 const BlockPointerType* T) { 3340 return Visit(T->getPointeeType()); 3341} 3342 3343bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3344 const LValueReferenceType* T) { 3345 return Visit(T->getPointeeType()); 3346} 3347 3348bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3349 const RValueReferenceType* T) { 3350 return Visit(T->getPointeeType()); 3351} 3352 3353bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3354 const MemberPointerType* T) { 3355 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3356} 3357 3358bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3359 const ConstantArrayType* T) { 3360 return Visit(T->getElementType()); 3361} 3362 3363bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3364 const IncompleteArrayType* T) { 3365 return Visit(T->getElementType()); 3366} 3367 3368bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3369 const VariableArrayType* T) { 3370 return Visit(T->getElementType()); 3371} 3372 3373bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3374 const DependentSizedArrayType* T) { 3375 return Visit(T->getElementType()); 3376} 3377 3378bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3379 const DependentSizedExtVectorType* T) { 3380 return Visit(T->getElementType()); 3381} 3382 3383bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3384 return Visit(T->getElementType()); 3385} 3386 3387bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3388 return Visit(T->getElementType()); 3389} 3390 3391bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3392 const FunctionProtoType* T) { 3393 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3394 AEnd = T->arg_type_end(); 3395 A != AEnd; ++A) { 3396 if (Visit(*A)) 3397 return true; 3398 } 3399 3400 return Visit(T->getResultType()); 3401} 3402 3403bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3404 const FunctionNoProtoType* T) { 3405 return Visit(T->getResultType()); 3406} 3407 3408bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3409 const UnresolvedUsingType*) { 3410 return false; 3411} 3412 3413bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3414 return false; 3415} 3416 3417bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3418 return Visit(T->getUnderlyingType()); 3419} 3420 3421bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3422 return false; 3423} 3424 3425bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3426 const UnaryTransformType*) { 3427 return false; 3428} 3429 3430bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3431 return Visit(T->getDeducedType()); 3432} 3433 3434bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3435 return VisitTagDecl(T->getDecl()); 3436} 3437 3438bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3439 return VisitTagDecl(T->getDecl()); 3440} 3441 3442bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3443 const TemplateTypeParmType*) { 3444 return false; 3445} 3446 3447bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3448 const SubstTemplateTypeParmPackType *) { 3449 return false; 3450} 3451 3452bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3453 const TemplateSpecializationType*) { 3454 return false; 3455} 3456 3457bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3458 const InjectedClassNameType* T) { 3459 return VisitTagDecl(T->getDecl()); 3460} 3461 3462bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3463 const DependentNameType* T) { 3464 return VisitNestedNameSpecifier(T->getQualifier()); 3465} 3466 3467bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3468 const DependentTemplateSpecializationType* T) { 3469 return VisitNestedNameSpecifier(T->getQualifier()); 3470} 3471 3472bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3473 const PackExpansionType* T) { 3474 return Visit(T->getPattern()); 3475} 3476 3477bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3478 return false; 3479} 3480 3481bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3482 const ObjCInterfaceType *) { 3483 return false; 3484} 3485 3486bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3487 const ObjCObjectPointerType *) { 3488 return false; 3489} 3490 3491bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3492 return Visit(T->getValueType()); 3493} 3494 3495bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3496 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3497 S.Diag(SR.getBegin(), 3498 S.getLangOpts().CPlusPlus11 ? 3499 diag::warn_cxx98_compat_template_arg_local_type : 3500 diag::ext_template_arg_local_type) 3501 << S.Context.getTypeDeclType(Tag) << SR; 3502 return true; 3503 } 3504 3505 if (!Tag->hasNameForLinkage()) { 3506 S.Diag(SR.getBegin(), 3507 S.getLangOpts().CPlusPlus11 ? 3508 diag::warn_cxx98_compat_template_arg_unnamed_type : 3509 diag::ext_template_arg_unnamed_type) << SR; 3510 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3511 return true; 3512 } 3513 3514 return false; 3515} 3516 3517bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3518 NestedNameSpecifier *NNS) { 3519 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3520 return true; 3521 3522 switch (NNS->getKind()) { 3523 case NestedNameSpecifier::Identifier: 3524 case NestedNameSpecifier::Namespace: 3525 case NestedNameSpecifier::NamespaceAlias: 3526 case NestedNameSpecifier::Global: 3527 return false; 3528 3529 case NestedNameSpecifier::TypeSpec: 3530 case NestedNameSpecifier::TypeSpecWithTemplate: 3531 return Visit(QualType(NNS->getAsType(), 0)); 3532 } 3533 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3534} 3535 3536 3537/// \brief Check a template argument against its corresponding 3538/// template type parameter. 3539/// 3540/// This routine implements the semantics of C++ [temp.arg.type]. It 3541/// returns true if an error occurred, and false otherwise. 3542bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3543 TypeSourceInfo *ArgInfo) { 3544 assert(ArgInfo && "invalid TypeSourceInfo"); 3545 QualType Arg = ArgInfo->getType(); 3546 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3547 3548 if (Arg->isVariablyModifiedType()) { 3549 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3550 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3551 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3552 } 3553 3554 // C++03 [temp.arg.type]p2: 3555 // A local type, a type with no linkage, an unnamed type or a type 3556 // compounded from any of these types shall not be used as a 3557 // template-argument for a template type-parameter. 3558 // 3559 // C++11 allows these, and even in C++03 we allow them as an extension with 3560 // a warning. 3561 if (LangOpts.CPlusPlus11 ? 3562 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3563 SR.getBegin()) != DiagnosticsEngine::Ignored || 3564 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3565 SR.getBegin()) != DiagnosticsEngine::Ignored : 3566 Arg->hasUnnamedOrLocalType()) { 3567 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3568 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3569 } 3570 3571 return false; 3572} 3573 3574enum NullPointerValueKind { 3575 NPV_NotNullPointer, 3576 NPV_NullPointer, 3577 NPV_Error 3578}; 3579 3580/// \brief Determine whether the given template argument is a null pointer 3581/// value of the appropriate type. 3582static NullPointerValueKind 3583isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3584 QualType ParamType, Expr *Arg) { 3585 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3586 return NPV_NotNullPointer; 3587 3588 if (!S.getLangOpts().CPlusPlus11) 3589 return NPV_NotNullPointer; 3590 3591 // Determine whether we have a constant expression. 3592 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3593 if (ArgRV.isInvalid()) 3594 return NPV_Error; 3595 Arg = ArgRV.take(); 3596 3597 Expr::EvalResult EvalResult; 3598 SmallVector<PartialDiagnosticAt, 8> Notes; 3599 EvalResult.Diag = &Notes; 3600 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3601 EvalResult.HasSideEffects) { 3602 SourceLocation DiagLoc = Arg->getExprLoc(); 3603 3604 // If our only note is the usual "invalid subexpression" note, just point 3605 // the caret at its location rather than producing an essentially 3606 // redundant note. 3607 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3608 diag::note_invalid_subexpr_in_const_expr) { 3609 DiagLoc = Notes[0].first; 3610 Notes.clear(); 3611 } 3612 3613 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3614 << Arg->getType() << Arg->getSourceRange(); 3615 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3616 S.Diag(Notes[I].first, Notes[I].second); 3617 3618 S.Diag(Param->getLocation(), diag::note_template_param_here); 3619 return NPV_Error; 3620 } 3621 3622 // C++11 [temp.arg.nontype]p1: 3623 // - an address constant expression of type std::nullptr_t 3624 if (Arg->getType()->isNullPtrType()) 3625 return NPV_NullPointer; 3626 3627 // - a constant expression that evaluates to a null pointer value (4.10); or 3628 // - a constant expression that evaluates to a null member pointer value 3629 // (4.11); or 3630 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3631 (EvalResult.Val.isMemberPointer() && 3632 !EvalResult.Val.getMemberPointerDecl())) { 3633 // If our expression has an appropriate type, we've succeeded. 3634 bool ObjCLifetimeConversion; 3635 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3636 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3637 ObjCLifetimeConversion)) 3638 return NPV_NullPointer; 3639 3640 // The types didn't match, but we know we got a null pointer; complain, 3641 // then recover as if the types were correct. 3642 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3643 << Arg->getType() << ParamType << Arg->getSourceRange(); 3644 S.Diag(Param->getLocation(), diag::note_template_param_here); 3645 return NPV_NullPointer; 3646 } 3647 3648 // If we don't have a null pointer value, but we do have a NULL pointer 3649 // constant, suggest a cast to the appropriate type. 3650 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3651 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3652 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3653 << ParamType 3654 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3655 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3656 ")"); 3657 S.Diag(Param->getLocation(), diag::note_template_param_here); 3658 return NPV_NullPointer; 3659 } 3660 3661 // FIXME: If we ever want to support general, address-constant expressions 3662 // as non-type template arguments, we should return the ExprResult here to 3663 // be interpreted by the caller. 3664 return NPV_NotNullPointer; 3665} 3666 3667/// \brief Checks whether the given template argument is the address 3668/// of an object or function according to C++ [temp.arg.nontype]p1. 3669static bool 3670CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3671 NonTypeTemplateParmDecl *Param, 3672 QualType ParamType, 3673 Expr *ArgIn, 3674 TemplateArgument &Converted) { 3675 bool Invalid = false; 3676 Expr *Arg = ArgIn; 3677 QualType ArgType = Arg->getType(); 3678 3679 // If our parameter has pointer type, check for a null template value. 3680 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3681 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3682 case NPV_NullPointer: 3683 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3684 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 3685 return false; 3686 3687 case NPV_Error: 3688 return true; 3689 3690 case NPV_NotNullPointer: 3691 break; 3692 } 3693 } 3694 3695 // See through any implicit casts we added to fix the type. 3696 Arg = Arg->IgnoreImpCasts(); 3697 3698 // C++ [temp.arg.nontype]p1: 3699 // 3700 // A template-argument for a non-type, non-template 3701 // template-parameter shall be one of: [...] 3702 // 3703 // -- the address of an object or function with external 3704 // linkage, including function templates and function 3705 // template-ids but excluding non-static class members, 3706 // expressed as & id-expression where the & is optional if 3707 // the name refers to a function or array, or if the 3708 // corresponding template-parameter is a reference; or 3709 3710 // In C++98/03 mode, give an extension warning on any extra parentheses. 3711 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3712 bool ExtraParens = false; 3713 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3714 if (!Invalid && !ExtraParens) { 3715 S.Diag(Arg->getLocStart(), 3716 S.getLangOpts().CPlusPlus11 ? 3717 diag::warn_cxx98_compat_template_arg_extra_parens : 3718 diag::ext_template_arg_extra_parens) 3719 << Arg->getSourceRange(); 3720 ExtraParens = true; 3721 } 3722 3723 Arg = Parens->getSubExpr(); 3724 } 3725 3726 while (SubstNonTypeTemplateParmExpr *subst = 3727 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3728 Arg = subst->getReplacement()->IgnoreImpCasts(); 3729 3730 bool AddressTaken = false; 3731 SourceLocation AddrOpLoc; 3732 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3733 if (UnOp->getOpcode() == UO_AddrOf) { 3734 Arg = UnOp->getSubExpr(); 3735 AddressTaken = true; 3736 AddrOpLoc = UnOp->getOperatorLoc(); 3737 } 3738 } 3739 3740 if (isa<CXXUuidofExpr>(Arg)) { 3741 Converted = TemplateArgument(ArgIn); 3742 return false; 3743 } 3744 3745 while (SubstNonTypeTemplateParmExpr *subst = 3746 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3747 Arg = subst->getReplacement()->IgnoreImpCasts(); 3748 3749 // Stop checking the precise nature of the argument if it is value dependent, 3750 // it should be checked when instantiated. 3751 if (Arg->isValueDependent()) { 3752 Converted = TemplateArgument(ArgIn); 3753 return false; 3754 } 3755 3756 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3757 if (!DRE) { 3758 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3759 << Arg->getSourceRange(); 3760 S.Diag(Param->getLocation(), diag::note_template_param_here); 3761 return true; 3762 } 3763 3764 if (!isa<ValueDecl>(DRE->getDecl())) { 3765 S.Diag(Arg->getLocStart(), 3766 diag::err_template_arg_not_object_or_func_form) 3767 << Arg->getSourceRange(); 3768 S.Diag(Param->getLocation(), diag::note_template_param_here); 3769 return true; 3770 } 3771 3772 ValueDecl *Entity = DRE->getDecl(); 3773 3774 // Cannot refer to non-static data members 3775 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3776 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3777 << Field << Arg->getSourceRange(); 3778 S.Diag(Param->getLocation(), diag::note_template_param_here); 3779 return true; 3780 } 3781 3782 // Cannot refer to non-static member functions 3783 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3784 if (!Method->isStatic()) { 3785 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3786 << Method << Arg->getSourceRange(); 3787 S.Diag(Param->getLocation(), diag::note_template_param_here); 3788 return true; 3789 } 3790 } 3791 3792 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3793 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3794 3795 // A non-type template argument must refer to an object or function. 3796 if (!Func && !Var) { 3797 // We found something, but we don't know specifically what it is. 3798 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3799 << Arg->getSourceRange(); 3800 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3801 return true; 3802 } 3803 3804 // Address / reference template args must have external linkage in C++98. 3805 if (Entity->getFormalLinkage() == InternalLinkage) { 3806 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 3807 diag::warn_cxx98_compat_template_arg_object_internal : 3808 diag::ext_template_arg_object_internal) 3809 << !Func << Entity << Arg->getSourceRange(); 3810 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3811 << !Func; 3812 } else if (!Entity->hasLinkage()) { 3813 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3814 << !Func << Entity << Arg->getSourceRange(); 3815 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3816 << !Func; 3817 return true; 3818 } 3819 3820 if (Func) { 3821 // If the template parameter has pointer type, the function decays. 3822 if (ParamType->isPointerType() && !AddressTaken) 3823 ArgType = S.Context.getPointerType(Func->getType()); 3824 else if (AddressTaken && ParamType->isReferenceType()) { 3825 // If we originally had an address-of operator, but the 3826 // parameter has reference type, complain and (if things look 3827 // like they will work) drop the address-of operator. 3828 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3829 ParamType.getNonReferenceType())) { 3830 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3831 << ParamType; 3832 S.Diag(Param->getLocation(), diag::note_template_param_here); 3833 return true; 3834 } 3835 3836 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3837 << ParamType 3838 << FixItHint::CreateRemoval(AddrOpLoc); 3839 S.Diag(Param->getLocation(), diag::note_template_param_here); 3840 3841 ArgType = Func->getType(); 3842 } 3843 } else { 3844 // A value of reference type is not an object. 3845 if (Var->getType()->isReferenceType()) { 3846 S.Diag(Arg->getLocStart(), 3847 diag::err_template_arg_reference_var) 3848 << Var->getType() << Arg->getSourceRange(); 3849 S.Diag(Param->getLocation(), diag::note_template_param_here); 3850 return true; 3851 } 3852 3853 // A template argument must have static storage duration. 3854 if (Var->getTLSKind()) { 3855 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3856 << Arg->getSourceRange(); 3857 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3858 return true; 3859 } 3860 3861 // If the template parameter has pointer type, we must have taken 3862 // the address of this object. 3863 if (ParamType->isReferenceType()) { 3864 if (AddressTaken) { 3865 // If we originally had an address-of operator, but the 3866 // parameter has reference type, complain and (if things look 3867 // like they will work) drop the address-of operator. 3868 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3869 ParamType.getNonReferenceType())) { 3870 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3871 << ParamType; 3872 S.Diag(Param->getLocation(), diag::note_template_param_here); 3873 return true; 3874 } 3875 3876 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3877 << ParamType 3878 << FixItHint::CreateRemoval(AddrOpLoc); 3879 S.Diag(Param->getLocation(), diag::note_template_param_here); 3880 3881 ArgType = Var->getType(); 3882 } 3883 } else if (!AddressTaken && ParamType->isPointerType()) { 3884 if (Var->getType()->isArrayType()) { 3885 // Array-to-pointer decay. 3886 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3887 } else { 3888 // If the template parameter has pointer type but the address of 3889 // this object was not taken, complain and (possibly) recover by 3890 // taking the address of the entity. 3891 ArgType = S.Context.getPointerType(Var->getType()); 3892 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3893 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3894 << ParamType; 3895 S.Diag(Param->getLocation(), diag::note_template_param_here); 3896 return true; 3897 } 3898 3899 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3900 << ParamType 3901 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3902 3903 S.Diag(Param->getLocation(), diag::note_template_param_here); 3904 } 3905 } 3906 } 3907 3908 bool ObjCLifetimeConversion; 3909 if (ParamType->isPointerType() && 3910 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3911 S.IsQualificationConversion(ArgType, ParamType, false, 3912 ObjCLifetimeConversion)) { 3913 // For pointer-to-object types, qualification conversions are 3914 // permitted. 3915 } else { 3916 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3917 if (!ParamRef->getPointeeType()->isFunctionType()) { 3918 // C++ [temp.arg.nontype]p5b3: 3919 // For a non-type template-parameter of type reference to 3920 // object, no conversions apply. The type referred to by the 3921 // reference may be more cv-qualified than the (otherwise 3922 // identical) type of the template- argument. The 3923 // template-parameter is bound directly to the 3924 // template-argument, which shall be an lvalue. 3925 3926 // FIXME: Other qualifiers? 3927 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3928 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3929 3930 if ((ParamQuals | ArgQuals) != ParamQuals) { 3931 S.Diag(Arg->getLocStart(), 3932 diag::err_template_arg_ref_bind_ignores_quals) 3933 << ParamType << Arg->getType() 3934 << Arg->getSourceRange(); 3935 S.Diag(Param->getLocation(), diag::note_template_param_here); 3936 return true; 3937 } 3938 } 3939 } 3940 3941 // At this point, the template argument refers to an object or 3942 // function with external linkage. We now need to check whether the 3943 // argument and parameter types are compatible. 3944 if (!S.Context.hasSameUnqualifiedType(ArgType, 3945 ParamType.getNonReferenceType())) { 3946 // We can't perform this conversion or binding. 3947 if (ParamType->isReferenceType()) 3948 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3949 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3950 else 3951 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3952 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3953 S.Diag(Param->getLocation(), diag::note_template_param_here); 3954 return true; 3955 } 3956 } 3957 3958 // Create the template argument. 3959 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 3960 ParamType->isReferenceType()); 3961 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 3962 return false; 3963} 3964 3965/// \brief Checks whether the given template argument is a pointer to 3966/// member constant according to C++ [temp.arg.nontype]p1. 3967static bool CheckTemplateArgumentPointerToMember(Sema &S, 3968 NonTypeTemplateParmDecl *Param, 3969 QualType ParamType, 3970 Expr *&ResultArg, 3971 TemplateArgument &Converted) { 3972 bool Invalid = false; 3973 3974 // Check for a null pointer value. 3975 Expr *Arg = ResultArg; 3976 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3977 case NPV_Error: 3978 return true; 3979 case NPV_NullPointer: 3980 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3981 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 3982 return false; 3983 case NPV_NotNullPointer: 3984 break; 3985 } 3986 3987 bool ObjCLifetimeConversion; 3988 if (S.IsQualificationConversion(Arg->getType(), 3989 ParamType.getNonReferenceType(), 3990 false, ObjCLifetimeConversion)) { 3991 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3992 Arg->getValueKind()).take(); 3993 ResultArg = Arg; 3994 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3995 ParamType.getNonReferenceType())) { 3996 // We can't perform this conversion. 3997 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3998 << Arg->getType() << ParamType << Arg->getSourceRange(); 3999 S.Diag(Param->getLocation(), diag::note_template_param_here); 4000 return true; 4001 } 4002 4003 // See through any implicit casts we added to fix the type. 4004 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 4005 Arg = Cast->getSubExpr(); 4006 4007 // C++ [temp.arg.nontype]p1: 4008 // 4009 // A template-argument for a non-type, non-template 4010 // template-parameter shall be one of: [...] 4011 // 4012 // -- a pointer to member expressed as described in 5.3.1. 4013 DeclRefExpr *DRE = 0; 4014 4015 // In C++98/03 mode, give an extension warning on any extra parentheses. 4016 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4017 bool ExtraParens = false; 4018 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4019 if (!Invalid && !ExtraParens) { 4020 S.Diag(Arg->getLocStart(), 4021 S.getLangOpts().CPlusPlus11 ? 4022 diag::warn_cxx98_compat_template_arg_extra_parens : 4023 diag::ext_template_arg_extra_parens) 4024 << Arg->getSourceRange(); 4025 ExtraParens = true; 4026 } 4027 4028 Arg = Parens->getSubExpr(); 4029 } 4030 4031 while (SubstNonTypeTemplateParmExpr *subst = 4032 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4033 Arg = subst->getReplacement()->IgnoreImpCasts(); 4034 4035 // A pointer-to-member constant written &Class::member. 4036 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4037 if (UnOp->getOpcode() == UO_AddrOf) { 4038 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4039 if (DRE && !DRE->getQualifier()) 4040 DRE = 0; 4041 } 4042 } 4043 // A constant of pointer-to-member type. 4044 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4045 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4046 if (VD->getType()->isMemberPointerType()) { 4047 if (isa<NonTypeTemplateParmDecl>(VD) || 4048 (isa<VarDecl>(VD) && 4049 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4050 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4051 Converted = TemplateArgument(Arg); 4052 } else { 4053 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 4054 Converted = TemplateArgument(VD, /*isReferenceParam*/false); 4055 } 4056 return Invalid; 4057 } 4058 } 4059 } 4060 4061 DRE = 0; 4062 } 4063 4064 if (!DRE) 4065 return S.Diag(Arg->getLocStart(), 4066 diag::err_template_arg_not_pointer_to_member_form) 4067 << Arg->getSourceRange(); 4068 4069 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4070 assert((isa<FieldDecl>(DRE->getDecl()) || 4071 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4072 "Only non-static member pointers can make it here"); 4073 4074 // Okay: this is the address of a non-static member, and therefore 4075 // a member pointer constant. 4076 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4077 Converted = TemplateArgument(Arg); 4078 } else { 4079 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 4080 Converted = TemplateArgument(D, /*isReferenceParam*/false); 4081 } 4082 return Invalid; 4083 } 4084 4085 // We found something else, but we don't know specifically what it is. 4086 S.Diag(Arg->getLocStart(), 4087 diag::err_template_arg_not_pointer_to_member_form) 4088 << Arg->getSourceRange(); 4089 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4090 return true; 4091} 4092 4093/// \brief Check a template argument against its corresponding 4094/// non-type template parameter. 4095/// 4096/// This routine implements the semantics of C++ [temp.arg.nontype]. 4097/// If an error occurred, it returns ExprError(); otherwise, it 4098/// returns the converted template argument. \p 4099/// InstantiatedParamType is the type of the non-type template 4100/// parameter after it has been instantiated. 4101ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4102 QualType InstantiatedParamType, Expr *Arg, 4103 TemplateArgument &Converted, 4104 CheckTemplateArgumentKind CTAK) { 4105 SourceLocation StartLoc = Arg->getLocStart(); 4106 4107 // If either the parameter has a dependent type or the argument is 4108 // type-dependent, there's nothing we can check now. 4109 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4110 // FIXME: Produce a cloned, canonical expression? 4111 Converted = TemplateArgument(Arg); 4112 return Owned(Arg); 4113 } 4114 4115 // C++ [temp.arg.nontype]p5: 4116 // The following conversions are performed on each expression used 4117 // as a non-type template-argument. If a non-type 4118 // template-argument cannot be converted to the type of the 4119 // corresponding template-parameter then the program is 4120 // ill-formed. 4121 QualType ParamType = InstantiatedParamType; 4122 if (ParamType->isIntegralOrEnumerationType()) { 4123 // C++11: 4124 // -- for a non-type template-parameter of integral or 4125 // enumeration type, conversions permitted in a converted 4126 // constant expression are applied. 4127 // 4128 // C++98: 4129 // -- for a non-type template-parameter of integral or 4130 // enumeration type, integral promotions (4.5) and integral 4131 // conversions (4.7) are applied. 4132 4133 if (CTAK == CTAK_Deduced && 4134 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4135 // C++ [temp.deduct.type]p17: 4136 // If, in the declaration of a function template with a non-type 4137 // template-parameter, the non-type template-parameter is used 4138 // in an expression in the function parameter-list and, if the 4139 // corresponding template-argument is deduced, the 4140 // template-argument type shall match the type of the 4141 // template-parameter exactly, except that a template-argument 4142 // deduced from an array bound may be of any integral type. 4143 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4144 << Arg->getType().getUnqualifiedType() 4145 << ParamType.getUnqualifiedType(); 4146 Diag(Param->getLocation(), diag::note_template_param_here); 4147 return ExprError(); 4148 } 4149 4150 if (getLangOpts().CPlusPlus11) { 4151 // We can't check arbitrary value-dependent arguments. 4152 // FIXME: If there's no viable conversion to the template parameter type, 4153 // we should be able to diagnose that prior to instantiation. 4154 if (Arg->isValueDependent()) { 4155 Converted = TemplateArgument(Arg); 4156 return Owned(Arg); 4157 } 4158 4159 // C++ [temp.arg.nontype]p1: 4160 // A template-argument for a non-type, non-template template-parameter 4161 // shall be one of: 4162 // 4163 // -- for a non-type template-parameter of integral or enumeration 4164 // type, a converted constant expression of the type of the 4165 // template-parameter; or 4166 llvm::APSInt Value; 4167 ExprResult ArgResult = 4168 CheckConvertedConstantExpression(Arg, ParamType, Value, 4169 CCEK_TemplateArg); 4170 if (ArgResult.isInvalid()) 4171 return ExprError(); 4172 4173 // Widen the argument value to sizeof(parameter type). This is almost 4174 // always a no-op, except when the parameter type is bool. In 4175 // that case, this may extend the argument from 1 bit to 8 bits. 4176 QualType IntegerType = ParamType; 4177 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4178 IntegerType = Enum->getDecl()->getIntegerType(); 4179 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4180 4181 Converted = TemplateArgument(Context, Value, 4182 Context.getCanonicalType(ParamType)); 4183 return ArgResult; 4184 } 4185 4186 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4187 if (ArgResult.isInvalid()) 4188 return ExprError(); 4189 Arg = ArgResult.take(); 4190 4191 QualType ArgType = Arg->getType(); 4192 4193 // C++ [temp.arg.nontype]p1: 4194 // A template-argument for a non-type, non-template 4195 // template-parameter shall be one of: 4196 // 4197 // -- an integral constant-expression of integral or enumeration 4198 // type; or 4199 // -- the name of a non-type template-parameter; or 4200 SourceLocation NonConstantLoc; 4201 llvm::APSInt Value; 4202 if (!ArgType->isIntegralOrEnumerationType()) { 4203 Diag(Arg->getLocStart(), 4204 diag::err_template_arg_not_integral_or_enumeral) 4205 << ArgType << Arg->getSourceRange(); 4206 Diag(Param->getLocation(), diag::note_template_param_here); 4207 return ExprError(); 4208 } else if (!Arg->isValueDependent()) { 4209 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4210 QualType T; 4211 4212 public: 4213 TmplArgICEDiagnoser(QualType T) : T(T) { } 4214 4215 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4216 SourceRange SR) { 4217 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4218 } 4219 } Diagnoser(ArgType); 4220 4221 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4222 false).take(); 4223 if (!Arg) 4224 return ExprError(); 4225 } 4226 4227 // From here on out, all we care about are the unqualified forms 4228 // of the parameter and argument types. 4229 ParamType = ParamType.getUnqualifiedType(); 4230 ArgType = ArgType.getUnqualifiedType(); 4231 4232 // Try to convert the argument to the parameter's type. 4233 if (Context.hasSameType(ParamType, ArgType)) { 4234 // Okay: no conversion necessary 4235 } else if (ParamType->isBooleanType()) { 4236 // This is an integral-to-boolean conversion. 4237 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4238 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4239 !ParamType->isEnumeralType()) { 4240 // This is an integral promotion or conversion. 4241 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4242 } else { 4243 // We can't perform this conversion. 4244 Diag(Arg->getLocStart(), 4245 diag::err_template_arg_not_convertible) 4246 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4247 Diag(Param->getLocation(), diag::note_template_param_here); 4248 return ExprError(); 4249 } 4250 4251 // Add the value of this argument to the list of converted 4252 // arguments. We use the bitwidth and signedness of the template 4253 // parameter. 4254 if (Arg->isValueDependent()) { 4255 // The argument is value-dependent. Create a new 4256 // TemplateArgument with the converted expression. 4257 Converted = TemplateArgument(Arg); 4258 return Owned(Arg); 4259 } 4260 4261 QualType IntegerType = Context.getCanonicalType(ParamType); 4262 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4263 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4264 4265 if (ParamType->isBooleanType()) { 4266 // Value must be zero or one. 4267 Value = Value != 0; 4268 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4269 if (Value.getBitWidth() != AllowedBits) 4270 Value = Value.extOrTrunc(AllowedBits); 4271 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4272 } else { 4273 llvm::APSInt OldValue = Value; 4274 4275 // Coerce the template argument's value to the value it will have 4276 // based on the template parameter's type. 4277 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4278 if (Value.getBitWidth() != AllowedBits) 4279 Value = Value.extOrTrunc(AllowedBits); 4280 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4281 4282 // Complain if an unsigned parameter received a negative value. 4283 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4284 && (OldValue.isSigned() && OldValue.isNegative())) { 4285 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4286 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4287 << Arg->getSourceRange(); 4288 Diag(Param->getLocation(), diag::note_template_param_here); 4289 } 4290 4291 // Complain if we overflowed the template parameter's type. 4292 unsigned RequiredBits; 4293 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4294 RequiredBits = OldValue.getActiveBits(); 4295 else if (OldValue.isUnsigned()) 4296 RequiredBits = OldValue.getActiveBits() + 1; 4297 else 4298 RequiredBits = OldValue.getMinSignedBits(); 4299 if (RequiredBits > AllowedBits) { 4300 Diag(Arg->getLocStart(), 4301 diag::warn_template_arg_too_large) 4302 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4303 << Arg->getSourceRange(); 4304 Diag(Param->getLocation(), diag::note_template_param_here); 4305 } 4306 } 4307 4308 Converted = TemplateArgument(Context, Value, 4309 ParamType->isEnumeralType() 4310 ? Context.getCanonicalType(ParamType) 4311 : IntegerType); 4312 return Owned(Arg); 4313 } 4314 4315 QualType ArgType = Arg->getType(); 4316 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4317 4318 // Handle pointer-to-function, reference-to-function, and 4319 // pointer-to-member-function all in (roughly) the same way. 4320 if (// -- For a non-type template-parameter of type pointer to 4321 // function, only the function-to-pointer conversion (4.3) is 4322 // applied. If the template-argument represents a set of 4323 // overloaded functions (or a pointer to such), the matching 4324 // function is selected from the set (13.4). 4325 (ParamType->isPointerType() && 4326 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4327 // -- For a non-type template-parameter of type reference to 4328 // function, no conversions apply. If the template-argument 4329 // represents a set of overloaded functions, the matching 4330 // function is selected from the set (13.4). 4331 (ParamType->isReferenceType() && 4332 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4333 // -- For a non-type template-parameter of type pointer to 4334 // member function, no conversions apply. If the 4335 // template-argument represents a set of overloaded member 4336 // functions, the matching member function is selected from 4337 // the set (13.4). 4338 (ParamType->isMemberPointerType() && 4339 ParamType->getAs<MemberPointerType>()->getPointeeType() 4340 ->isFunctionType())) { 4341 4342 if (Arg->getType() == Context.OverloadTy) { 4343 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4344 true, 4345 FoundResult)) { 4346 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4347 return ExprError(); 4348 4349 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4350 ArgType = Arg->getType(); 4351 } else 4352 return ExprError(); 4353 } 4354 4355 if (!ParamType->isMemberPointerType()) { 4356 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4357 ParamType, 4358 Arg, Converted)) 4359 return ExprError(); 4360 return Owned(Arg); 4361 } 4362 4363 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4364 Converted)) 4365 return ExprError(); 4366 return Owned(Arg); 4367 } 4368 4369 if (ParamType->isPointerType()) { 4370 // -- for a non-type template-parameter of type pointer to 4371 // object, qualification conversions (4.4) and the 4372 // array-to-pointer conversion (4.2) are applied. 4373 // C++0x also allows a value of std::nullptr_t. 4374 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4375 "Only object pointers allowed here"); 4376 4377 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4378 ParamType, 4379 Arg, Converted)) 4380 return ExprError(); 4381 return Owned(Arg); 4382 } 4383 4384 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4385 // -- For a non-type template-parameter of type reference to 4386 // object, no conversions apply. The type referred to by the 4387 // reference may be more cv-qualified than the (otherwise 4388 // identical) type of the template-argument. The 4389 // template-parameter is bound directly to the 4390 // template-argument, which must be an lvalue. 4391 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4392 "Only object references allowed here"); 4393 4394 if (Arg->getType() == Context.OverloadTy) { 4395 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4396 ParamRefType->getPointeeType(), 4397 true, 4398 FoundResult)) { 4399 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4400 return ExprError(); 4401 4402 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4403 ArgType = Arg->getType(); 4404 } else 4405 return ExprError(); 4406 } 4407 4408 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4409 ParamType, 4410 Arg, Converted)) 4411 return ExprError(); 4412 return Owned(Arg); 4413 } 4414 4415 // Deal with parameters of type std::nullptr_t. 4416 if (ParamType->isNullPtrType()) { 4417 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4418 Converted = TemplateArgument(Arg); 4419 return Owned(Arg); 4420 } 4421 4422 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4423 case NPV_NotNullPointer: 4424 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4425 << Arg->getType() << ParamType; 4426 Diag(Param->getLocation(), diag::note_template_param_here); 4427 return ExprError(); 4428 4429 case NPV_Error: 4430 return ExprError(); 4431 4432 case NPV_NullPointer: 4433 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4434 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4435 return Owned(Arg); 4436 } 4437 } 4438 4439 // -- For a non-type template-parameter of type pointer to data 4440 // member, qualification conversions (4.4) are applied. 4441 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4442 4443 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4444 Converted)) 4445 return ExprError(); 4446 return Owned(Arg); 4447} 4448 4449/// \brief Check a template argument against its corresponding 4450/// template template parameter. 4451/// 4452/// This routine implements the semantics of C++ [temp.arg.template]. 4453/// It returns true if an error occurred, and false otherwise. 4454bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4455 const TemplateArgumentLoc &Arg, 4456 unsigned ArgumentPackIndex) { 4457 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 4458 TemplateDecl *Template = Name.getAsTemplateDecl(); 4459 if (!Template) { 4460 // Any dependent template name is fine. 4461 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4462 return false; 4463 } 4464 4465 // C++0x [temp.arg.template]p1: 4466 // A template-argument for a template template-parameter shall be 4467 // the name of a class template or an alias template, expressed as an 4468 // id-expression. When the template-argument names a class template, only 4469 // primary class templates are considered when matching the 4470 // template template argument with the corresponding parameter; 4471 // partial specializations are not considered even if their 4472 // parameter lists match that of the template template parameter. 4473 // 4474 // Note that we also allow template template parameters here, which 4475 // will happen when we are dealing with, e.g., class template 4476 // partial specializations. 4477 if (!isa<ClassTemplateDecl>(Template) && 4478 !isa<TemplateTemplateParmDecl>(Template) && 4479 !isa<TypeAliasTemplateDecl>(Template)) { 4480 assert(isa<FunctionTemplateDecl>(Template) && 4481 "Only function templates are possible here"); 4482 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4483 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4484 << Template; 4485 } 4486 4487 TemplateParameterList *Params = Param->getTemplateParameters(); 4488 if (Param->isExpandedParameterPack()) 4489 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 4490 4491 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4492 Params, 4493 true, 4494 TPL_TemplateTemplateArgumentMatch, 4495 Arg.getLocation()); 4496} 4497 4498/// \brief Given a non-type template argument that refers to a 4499/// declaration and the type of its corresponding non-type template 4500/// parameter, produce an expression that properly refers to that 4501/// declaration. 4502ExprResult 4503Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4504 QualType ParamType, 4505 SourceLocation Loc) { 4506 // C++ [temp.param]p8: 4507 // 4508 // A non-type template-parameter of type "array of T" or 4509 // "function returning T" is adjusted to be of type "pointer to 4510 // T" or "pointer to function returning T", respectively. 4511 if (ParamType->isArrayType()) 4512 ParamType = Context.getArrayDecayedType(ParamType); 4513 else if (ParamType->isFunctionType()) 4514 ParamType = Context.getPointerType(ParamType); 4515 4516 // For a NULL non-type template argument, return nullptr casted to the 4517 // parameter's type. 4518 if (Arg.getKind() == TemplateArgument::NullPtr) { 4519 return ImpCastExprToType( 4520 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4521 ParamType, 4522 ParamType->getAs<MemberPointerType>() 4523 ? CK_NullToMemberPointer 4524 : CK_NullToPointer); 4525 } 4526 assert(Arg.getKind() == TemplateArgument::Declaration && 4527 "Only declaration template arguments permitted here"); 4528 4529 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4530 4531 if (VD->getDeclContext()->isRecord() && 4532 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4533 // If the value is a class member, we might have a pointer-to-member. 4534 // Determine whether the non-type template template parameter is of 4535 // pointer-to-member type. If so, we need to build an appropriate 4536 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4537 // would refer to the member itself. 4538 if (ParamType->isMemberPointerType()) { 4539 QualType ClassType 4540 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4541 NestedNameSpecifier *Qualifier 4542 = NestedNameSpecifier::Create(Context, 0, false, 4543 ClassType.getTypePtr()); 4544 CXXScopeSpec SS; 4545 SS.MakeTrivial(Context, Qualifier, Loc); 4546 4547 // The actual value-ness of this is unimportant, but for 4548 // internal consistency's sake, references to instance methods 4549 // are r-values. 4550 ExprValueKind VK = VK_LValue; 4551 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4552 VK = VK_RValue; 4553 4554 ExprResult RefExpr = BuildDeclRefExpr(VD, 4555 VD->getType().getNonReferenceType(), 4556 VK, 4557 Loc, 4558 &SS); 4559 if (RefExpr.isInvalid()) 4560 return ExprError(); 4561 4562 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4563 4564 // We might need to perform a trailing qualification conversion, since 4565 // the element type on the parameter could be more qualified than the 4566 // element type in the expression we constructed. 4567 bool ObjCLifetimeConversion; 4568 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4569 ParamType.getUnqualifiedType(), false, 4570 ObjCLifetimeConversion)) 4571 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4572 4573 assert(!RefExpr.isInvalid() && 4574 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4575 ParamType.getUnqualifiedType())); 4576 return RefExpr; 4577 } 4578 } 4579 4580 QualType T = VD->getType().getNonReferenceType(); 4581 4582 if (ParamType->isPointerType()) { 4583 // When the non-type template parameter is a pointer, take the 4584 // address of the declaration. 4585 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4586 if (RefExpr.isInvalid()) 4587 return ExprError(); 4588 4589 if (T->isFunctionType() || T->isArrayType()) { 4590 // Decay functions and arrays. 4591 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4592 if (RefExpr.isInvalid()) 4593 return ExprError(); 4594 4595 return RefExpr; 4596 } 4597 4598 // Take the address of everything else 4599 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4600 } 4601 4602 ExprValueKind VK = VK_RValue; 4603 4604 // If the non-type template parameter has reference type, qualify the 4605 // resulting declaration reference with the extra qualifiers on the 4606 // type that the reference refers to. 4607 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4608 VK = VK_LValue; 4609 T = Context.getQualifiedType(T, 4610 TargetRef->getPointeeType().getQualifiers()); 4611 } else if (isa<FunctionDecl>(VD)) { 4612 // References to functions are always lvalues. 4613 VK = VK_LValue; 4614 } 4615 4616 return BuildDeclRefExpr(VD, T, VK, Loc); 4617} 4618 4619/// \brief Construct a new expression that refers to the given 4620/// integral template argument with the given source-location 4621/// information. 4622/// 4623/// This routine takes care of the mapping from an integral template 4624/// argument (which may have any integral type) to the appropriate 4625/// literal value. 4626ExprResult 4627Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4628 SourceLocation Loc) { 4629 assert(Arg.getKind() == TemplateArgument::Integral && 4630 "Operation is only valid for integral template arguments"); 4631 QualType OrigT = Arg.getIntegralType(); 4632 4633 // If this is an enum type that we're instantiating, we need to use an integer 4634 // type the same size as the enumerator. We don't want to build an 4635 // IntegerLiteral with enum type. The integer type of an enum type can be of 4636 // any integral type with C++11 enum classes, make sure we create the right 4637 // type of literal for it. 4638 QualType T = OrigT; 4639 if (const EnumType *ET = OrigT->getAs<EnumType>()) 4640 T = ET->getDecl()->getIntegerType(); 4641 4642 Expr *E; 4643 if (T->isAnyCharacterType()) { 4644 CharacterLiteral::CharacterKind Kind; 4645 if (T->isWideCharType()) 4646 Kind = CharacterLiteral::Wide; 4647 else if (T->isChar16Type()) 4648 Kind = CharacterLiteral::UTF16; 4649 else if (T->isChar32Type()) 4650 Kind = CharacterLiteral::UTF32; 4651 else 4652 Kind = CharacterLiteral::Ascii; 4653 4654 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 4655 Kind, T, Loc); 4656 } else if (T->isBooleanType()) { 4657 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 4658 T, Loc); 4659 } else if (T->isNullPtrType()) { 4660 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 4661 } else { 4662 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 4663 } 4664 4665 if (OrigT->isEnumeralType()) { 4666 // FIXME: This is a hack. We need a better way to handle substituted 4667 // non-type template parameters. 4668 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0, 4669 Context.getTrivialTypeSourceInfo(OrigT, Loc), 4670 Loc, Loc); 4671 } 4672 4673 return Owned(E); 4674} 4675 4676/// \brief Match two template parameters within template parameter lists. 4677static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4678 bool Complain, 4679 Sema::TemplateParameterListEqualKind Kind, 4680 SourceLocation TemplateArgLoc) { 4681 // Check the actual kind (type, non-type, template). 4682 if (Old->getKind() != New->getKind()) { 4683 if (Complain) { 4684 unsigned NextDiag = diag::err_template_param_different_kind; 4685 if (TemplateArgLoc.isValid()) { 4686 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4687 NextDiag = diag::note_template_param_different_kind; 4688 } 4689 S.Diag(New->getLocation(), NextDiag) 4690 << (Kind != Sema::TPL_TemplateMatch); 4691 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4692 << (Kind != Sema::TPL_TemplateMatch); 4693 } 4694 4695 return false; 4696 } 4697 4698 // Check that both are parameter packs are neither are parameter packs. 4699 // However, if we are matching a template template argument to a 4700 // template template parameter, the template template parameter can have 4701 // a parameter pack where the template template argument does not. 4702 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4703 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4704 Old->isTemplateParameterPack())) { 4705 if (Complain) { 4706 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4707 if (TemplateArgLoc.isValid()) { 4708 S.Diag(TemplateArgLoc, 4709 diag::err_template_arg_template_params_mismatch); 4710 NextDiag = diag::note_template_parameter_pack_non_pack; 4711 } 4712 4713 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4714 : isa<NonTypeTemplateParmDecl>(New)? 1 4715 : 2; 4716 S.Diag(New->getLocation(), NextDiag) 4717 << ParamKind << New->isParameterPack(); 4718 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4719 << ParamKind << Old->isParameterPack(); 4720 } 4721 4722 return false; 4723 } 4724 4725 // For non-type template parameters, check the type of the parameter. 4726 if (NonTypeTemplateParmDecl *OldNTTP 4727 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4728 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4729 4730 // If we are matching a template template argument to a template 4731 // template parameter and one of the non-type template parameter types 4732 // is dependent, then we must wait until template instantiation time 4733 // to actually compare the arguments. 4734 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4735 (OldNTTP->getType()->isDependentType() || 4736 NewNTTP->getType()->isDependentType())) 4737 return true; 4738 4739 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4740 if (Complain) { 4741 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4742 if (TemplateArgLoc.isValid()) { 4743 S.Diag(TemplateArgLoc, 4744 diag::err_template_arg_template_params_mismatch); 4745 NextDiag = diag::note_template_nontype_parm_different_type; 4746 } 4747 S.Diag(NewNTTP->getLocation(), NextDiag) 4748 << NewNTTP->getType() 4749 << (Kind != Sema::TPL_TemplateMatch); 4750 S.Diag(OldNTTP->getLocation(), 4751 diag::note_template_nontype_parm_prev_declaration) 4752 << OldNTTP->getType(); 4753 } 4754 4755 return false; 4756 } 4757 4758 return true; 4759 } 4760 4761 // For template template parameters, check the template parameter types. 4762 // The template parameter lists of template template 4763 // parameters must agree. 4764 if (TemplateTemplateParmDecl *OldTTP 4765 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4766 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4767 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4768 OldTTP->getTemplateParameters(), 4769 Complain, 4770 (Kind == Sema::TPL_TemplateMatch 4771 ? Sema::TPL_TemplateTemplateParmMatch 4772 : Kind), 4773 TemplateArgLoc); 4774 } 4775 4776 return true; 4777} 4778 4779/// \brief Diagnose a known arity mismatch when comparing template argument 4780/// lists. 4781static 4782void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4783 TemplateParameterList *New, 4784 TemplateParameterList *Old, 4785 Sema::TemplateParameterListEqualKind Kind, 4786 SourceLocation TemplateArgLoc) { 4787 unsigned NextDiag = diag::err_template_param_list_different_arity; 4788 if (TemplateArgLoc.isValid()) { 4789 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4790 NextDiag = diag::note_template_param_list_different_arity; 4791 } 4792 S.Diag(New->getTemplateLoc(), NextDiag) 4793 << (New->size() > Old->size()) 4794 << (Kind != Sema::TPL_TemplateMatch) 4795 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4796 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4797 << (Kind != Sema::TPL_TemplateMatch) 4798 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4799} 4800 4801/// \brief Determine whether the given template parameter lists are 4802/// equivalent. 4803/// 4804/// \param New The new template parameter list, typically written in the 4805/// source code as part of a new template declaration. 4806/// 4807/// \param Old The old template parameter list, typically found via 4808/// name lookup of the template declared with this template parameter 4809/// list. 4810/// 4811/// \param Complain If true, this routine will produce a diagnostic if 4812/// the template parameter lists are not equivalent. 4813/// 4814/// \param Kind describes how we are to match the template parameter lists. 4815/// 4816/// \param TemplateArgLoc If this source location is valid, then we 4817/// are actually checking the template parameter list of a template 4818/// argument (New) against the template parameter list of its 4819/// corresponding template template parameter (Old). We produce 4820/// slightly different diagnostics in this scenario. 4821/// 4822/// \returns True if the template parameter lists are equal, false 4823/// otherwise. 4824bool 4825Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4826 TemplateParameterList *Old, 4827 bool Complain, 4828 TemplateParameterListEqualKind Kind, 4829 SourceLocation TemplateArgLoc) { 4830 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4831 if (Complain) 4832 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4833 TemplateArgLoc); 4834 4835 return false; 4836 } 4837 4838 // C++0x [temp.arg.template]p3: 4839 // A template-argument matches a template template-parameter (call it P) 4840 // when each of the template parameters in the template-parameter-list of 4841 // the template-argument's corresponding class template or alias template 4842 // (call it A) matches the corresponding template parameter in the 4843 // template-parameter-list of P. [...] 4844 TemplateParameterList::iterator NewParm = New->begin(); 4845 TemplateParameterList::iterator NewParmEnd = New->end(); 4846 for (TemplateParameterList::iterator OldParm = Old->begin(), 4847 OldParmEnd = Old->end(); 4848 OldParm != OldParmEnd; ++OldParm) { 4849 if (Kind != TPL_TemplateTemplateArgumentMatch || 4850 !(*OldParm)->isTemplateParameterPack()) { 4851 if (NewParm == NewParmEnd) { 4852 if (Complain) 4853 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4854 TemplateArgLoc); 4855 4856 return false; 4857 } 4858 4859 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4860 Kind, TemplateArgLoc)) 4861 return false; 4862 4863 ++NewParm; 4864 continue; 4865 } 4866 4867 // C++0x [temp.arg.template]p3: 4868 // [...] When P's template- parameter-list contains a template parameter 4869 // pack (14.5.3), the template parameter pack will match zero or more 4870 // template parameters or template parameter packs in the 4871 // template-parameter-list of A with the same type and form as the 4872 // template parameter pack in P (ignoring whether those template 4873 // parameters are template parameter packs). 4874 for (; NewParm != NewParmEnd; ++NewParm) { 4875 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4876 Kind, TemplateArgLoc)) 4877 return false; 4878 } 4879 } 4880 4881 // Make sure we exhausted all of the arguments. 4882 if (NewParm != NewParmEnd) { 4883 if (Complain) 4884 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4885 TemplateArgLoc); 4886 4887 return false; 4888 } 4889 4890 return true; 4891} 4892 4893/// \brief Check whether a template can be declared within this scope. 4894/// 4895/// If the template declaration is valid in this scope, returns 4896/// false. Otherwise, issues a diagnostic and returns true. 4897bool 4898Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4899 if (!S) 4900 return false; 4901 4902 // Find the nearest enclosing declaration scope. 4903 while ((S->getFlags() & Scope::DeclScope) == 0 || 4904 (S->getFlags() & Scope::TemplateParamScope) != 0) 4905 S = S->getParent(); 4906 4907 // C++ [temp]p2: 4908 // A template-declaration can appear only as a namespace scope or 4909 // class scope declaration. 4910 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4911 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4912 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4913 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4914 << TemplateParams->getSourceRange(); 4915 4916 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4917 Ctx = Ctx->getParent(); 4918 4919 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4920 return false; 4921 4922 return Diag(TemplateParams->getTemplateLoc(), 4923 diag::err_template_outside_namespace_or_class_scope) 4924 << TemplateParams->getSourceRange(); 4925} 4926 4927/// \brief Determine what kind of template specialization the given declaration 4928/// is. 4929static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4930 if (!D) 4931 return TSK_Undeclared; 4932 4933 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4934 return Record->getTemplateSpecializationKind(); 4935 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4936 return Function->getTemplateSpecializationKind(); 4937 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4938 return Var->getTemplateSpecializationKind(); 4939 4940 return TSK_Undeclared; 4941} 4942 4943/// \brief Check whether a specialization is well-formed in the current 4944/// context. 4945/// 4946/// This routine determines whether a template specialization can be declared 4947/// in the current context (C++ [temp.expl.spec]p2). 4948/// 4949/// \param S the semantic analysis object for which this check is being 4950/// performed. 4951/// 4952/// \param Specialized the entity being specialized or instantiated, which 4953/// may be a kind of template (class template, function template, etc.) or 4954/// a member of a class template (member function, static data member, 4955/// member class). 4956/// 4957/// \param PrevDecl the previous declaration of this entity, if any. 4958/// 4959/// \param Loc the location of the explicit specialization or instantiation of 4960/// this entity. 4961/// 4962/// \param IsPartialSpecialization whether this is a partial specialization of 4963/// a class template. 4964/// 4965/// \returns true if there was an error that we cannot recover from, false 4966/// otherwise. 4967static bool CheckTemplateSpecializationScope(Sema &S, 4968 NamedDecl *Specialized, 4969 NamedDecl *PrevDecl, 4970 SourceLocation Loc, 4971 bool IsPartialSpecialization) { 4972 // Keep these "kind" numbers in sync with the %select statements in the 4973 // various diagnostics emitted by this routine. 4974 int EntityKind = 0; 4975 if (isa<ClassTemplateDecl>(Specialized)) 4976 EntityKind = IsPartialSpecialization? 1 : 0; 4977 else if (isa<FunctionTemplateDecl>(Specialized)) 4978 EntityKind = 2; 4979 else if (isa<CXXMethodDecl>(Specialized)) 4980 EntityKind = 3; 4981 else if (isa<VarDecl>(Specialized)) 4982 EntityKind = 4; 4983 else if (isa<RecordDecl>(Specialized)) 4984 EntityKind = 5; 4985 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 4986 EntityKind = 6; 4987 else { 4988 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4989 << S.getLangOpts().CPlusPlus11; 4990 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4991 return true; 4992 } 4993 4994 // C++ [temp.expl.spec]p2: 4995 // An explicit specialization shall be declared in the namespace 4996 // of which the template is a member, or, for member templates, in 4997 // the namespace of which the enclosing class or enclosing class 4998 // template is a member. An explicit specialization of a member 4999 // function, member class or static data member of a class 5000 // template shall be declared in the namespace of which the class 5001 // template is a member. Such a declaration may also be a 5002 // definition. If the declaration is not a definition, the 5003 // specialization may be defined later in the name- space in which 5004 // the explicit specialization was declared, or in a namespace 5005 // that encloses the one in which the explicit specialization was 5006 // declared. 5007 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 5008 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 5009 << Specialized; 5010 return true; 5011 } 5012 5013 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 5014 if (S.getLangOpts().MicrosoftExt) { 5015 // Do not warn for class scope explicit specialization during 5016 // instantiation, warning was already emitted during pattern 5017 // semantic analysis. 5018 if (!S.ActiveTemplateInstantiations.size()) 5019 S.Diag(Loc, diag::ext_function_specialization_in_class) 5020 << Specialized; 5021 } else { 5022 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5023 << Specialized; 5024 return true; 5025 } 5026 } 5027 5028 if (S.CurContext->isRecord() && 5029 !S.CurContext->Equals(Specialized->getDeclContext())) { 5030 // Make sure that we're specializing in the right record context. 5031 // Otherwise, things can go horribly wrong. 5032 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5033 << Specialized; 5034 return true; 5035 } 5036 5037 // C++ [temp.class.spec]p6: 5038 // A class template partial specialization may be declared or redeclared 5039 // in any namespace scope in which its definition may be defined (14.5.1 5040 // and 14.5.2). 5041 bool ComplainedAboutScope = false; 5042 DeclContext *SpecializedContext 5043 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5044 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5045 if ((!PrevDecl || 5046 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5047 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 5048 // C++ [temp.exp.spec]p2: 5049 // An explicit specialization shall be declared in the namespace of which 5050 // the template is a member, or, for member templates, in the namespace 5051 // of which the enclosing class or enclosing class template is a member. 5052 // An explicit specialization of a member function, member class or 5053 // static data member of a class template shall be declared in the 5054 // namespace of which the class template is a member. 5055 // 5056 // C++0x [temp.expl.spec]p2: 5057 // An explicit specialization shall be declared in a namespace enclosing 5058 // the specialized template. 5059 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5060 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 5061 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5062 assert(!IsCPlusPlus11Extension && 5063 "DC encloses TU but isn't in enclosing namespace set"); 5064 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5065 << EntityKind << Specialized; 5066 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5067 int Diag; 5068 if (!IsCPlusPlus11Extension) 5069 Diag = diag::err_template_spec_decl_out_of_scope; 5070 else if (!S.getLangOpts().CPlusPlus11) 5071 Diag = diag::ext_template_spec_decl_out_of_scope; 5072 else 5073 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5074 S.Diag(Loc, Diag) 5075 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5076 } 5077 5078 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5079 ComplainedAboutScope = 5080 !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11); 5081 } 5082 } 5083 5084 // Make sure that this redeclaration (or definition) occurs in an enclosing 5085 // namespace. 5086 // Note that HandleDeclarator() performs this check for explicit 5087 // specializations of function templates, static data members, and member 5088 // functions, so we skip the check here for those kinds of entities. 5089 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5090 // Should we refactor that check, so that it occurs later? 5091 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5092 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5093 isa<FunctionDecl>(Specialized))) { 5094 if (isa<TranslationUnitDecl>(SpecializedContext)) 5095 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5096 << EntityKind << Specialized; 5097 else if (isa<NamespaceDecl>(SpecializedContext)) 5098 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5099 << EntityKind << Specialized 5100 << cast<NamedDecl>(SpecializedContext); 5101 5102 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5103 } 5104 5105 // FIXME: check for specialization-after-instantiation errors and such. 5106 5107 return false; 5108} 5109 5110/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 5111/// that checks non-type template partial specialization arguments. 5112static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 5113 NonTypeTemplateParmDecl *Param, 5114 const TemplateArgument *Args, 5115 unsigned NumArgs) { 5116 for (unsigned I = 0; I != NumArgs; ++I) { 5117 if (Args[I].getKind() == TemplateArgument::Pack) { 5118 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5119 Args[I].pack_begin(), 5120 Args[I].pack_size())) 5121 return true; 5122 5123 continue; 5124 } 5125 5126 if (Args[I].getKind() != TemplateArgument::Expression) 5127 continue; 5128 5129 Expr *ArgExpr = Args[I].getAsExpr(); 5130 5131 // We can have a pack expansion of any of the bullets below. 5132 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5133 ArgExpr = Expansion->getPattern(); 5134 5135 // Strip off any implicit casts we added as part of type checking. 5136 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5137 ArgExpr = ICE->getSubExpr(); 5138 5139 // C++ [temp.class.spec]p8: 5140 // A non-type argument is non-specialized if it is the name of a 5141 // non-type parameter. All other non-type arguments are 5142 // specialized. 5143 // 5144 // Below, we check the two conditions that only apply to 5145 // specialized non-type arguments, so skip any non-specialized 5146 // arguments. 5147 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5148 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5149 continue; 5150 5151 // C++ [temp.class.spec]p9: 5152 // Within the argument list of a class template partial 5153 // specialization, the following restrictions apply: 5154 // -- A partially specialized non-type argument expression 5155 // shall not involve a template parameter of the partial 5156 // specialization except when the argument expression is a 5157 // simple identifier. 5158 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5159 S.Diag(ArgExpr->getLocStart(), 5160 diag::err_dependent_non_type_arg_in_partial_spec) 5161 << ArgExpr->getSourceRange(); 5162 return true; 5163 } 5164 5165 // -- The type of a template parameter corresponding to a 5166 // specialized non-type argument shall not be dependent on a 5167 // parameter of the specialization. 5168 if (Param->getType()->isDependentType()) { 5169 S.Diag(ArgExpr->getLocStart(), 5170 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5171 << Param->getType() 5172 << ArgExpr->getSourceRange(); 5173 S.Diag(Param->getLocation(), diag::note_template_param_here); 5174 return true; 5175 } 5176 } 5177 5178 return false; 5179} 5180 5181/// \brief Check the non-type template arguments of a class template 5182/// partial specialization according to C++ [temp.class.spec]p9. 5183/// 5184/// \param TemplateParams the template parameters of the primary class 5185/// template. 5186/// 5187/// \param TemplateArgs the template arguments of the class template 5188/// partial specialization. 5189/// 5190/// \returns true if there was an error, false otherwise. 5191static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5192 TemplateParameterList *TemplateParams, 5193 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5194 const TemplateArgument *ArgList = TemplateArgs.data(); 5195 5196 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5197 NonTypeTemplateParmDecl *Param 5198 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5199 if (!Param) 5200 continue; 5201 5202 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5203 &ArgList[I], 1)) 5204 return true; 5205 } 5206 5207 return false; 5208} 5209 5210DeclResult 5211Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5212 TagUseKind TUK, 5213 SourceLocation KWLoc, 5214 SourceLocation ModulePrivateLoc, 5215 CXXScopeSpec &SS, 5216 TemplateTy TemplateD, 5217 SourceLocation TemplateNameLoc, 5218 SourceLocation LAngleLoc, 5219 ASTTemplateArgsPtr TemplateArgsIn, 5220 SourceLocation RAngleLoc, 5221 AttributeList *Attr, 5222 MultiTemplateParamsArg TemplateParameterLists) { 5223 assert(TUK != TUK_Reference && "References are not specializations"); 5224 5225 // NOTE: KWLoc is the location of the tag keyword. This will instead 5226 // store the location of the outermost template keyword in the declaration. 5227 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5228 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation(); 5229 5230 // Find the class template we're specializing 5231 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5232 ClassTemplateDecl *ClassTemplate 5233 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5234 5235 if (!ClassTemplate) { 5236 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5237 << (Name.getAsTemplateDecl() && 5238 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5239 return true; 5240 } 5241 5242 bool isExplicitSpecialization = false; 5243 bool isPartialSpecialization = false; 5244 5245 // Check the validity of the template headers that introduce this 5246 // template. 5247 // FIXME: We probably shouldn't complain about these headers for 5248 // friend declarations. 5249 bool Invalid = false; 5250 TemplateParameterList *TemplateParams 5251 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5252 TemplateNameLoc, 5253 SS, 5254 TemplateParameterLists.data(), 5255 TemplateParameterLists.size(), 5256 TUK == TUK_Friend, 5257 isExplicitSpecialization, 5258 Invalid); 5259 if (Invalid) 5260 return true; 5261 5262 if (TemplateParams && TemplateParams->size() > 0) { 5263 isPartialSpecialization = true; 5264 5265 if (TUK == TUK_Friend) { 5266 Diag(KWLoc, diag::err_partial_specialization_friend) 5267 << SourceRange(LAngleLoc, RAngleLoc); 5268 return true; 5269 } 5270 5271 // C++ [temp.class.spec]p10: 5272 // The template parameter list of a specialization shall not 5273 // contain default template argument values. 5274 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5275 Decl *Param = TemplateParams->getParam(I); 5276 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5277 if (TTP->hasDefaultArgument()) { 5278 Diag(TTP->getDefaultArgumentLoc(), 5279 diag::err_default_arg_in_partial_spec); 5280 TTP->removeDefaultArgument(); 5281 } 5282 } else if (NonTypeTemplateParmDecl *NTTP 5283 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5284 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5285 Diag(NTTP->getDefaultArgumentLoc(), 5286 diag::err_default_arg_in_partial_spec) 5287 << DefArg->getSourceRange(); 5288 NTTP->removeDefaultArgument(); 5289 } 5290 } else { 5291 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5292 if (TTP->hasDefaultArgument()) { 5293 Diag(TTP->getDefaultArgument().getLocation(), 5294 diag::err_default_arg_in_partial_spec) 5295 << TTP->getDefaultArgument().getSourceRange(); 5296 TTP->removeDefaultArgument(); 5297 } 5298 } 5299 } 5300 } else if (TemplateParams) { 5301 if (TUK == TUK_Friend) 5302 Diag(KWLoc, diag::err_template_spec_friend) 5303 << FixItHint::CreateRemoval( 5304 SourceRange(TemplateParams->getTemplateLoc(), 5305 TemplateParams->getRAngleLoc())) 5306 << SourceRange(LAngleLoc, RAngleLoc); 5307 else 5308 isExplicitSpecialization = true; 5309 } else if (TUK != TUK_Friend) { 5310 Diag(KWLoc, diag::err_template_spec_needs_header) 5311 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5312 TemplateKWLoc = KWLoc; 5313 isExplicitSpecialization = true; 5314 } 5315 5316 // Check that the specialization uses the same tag kind as the 5317 // original template. 5318 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5319 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5320 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5321 Kind, TUK == TUK_Definition, KWLoc, 5322 *ClassTemplate->getIdentifier())) { 5323 Diag(KWLoc, diag::err_use_with_wrong_tag) 5324 << ClassTemplate 5325 << FixItHint::CreateReplacement(KWLoc, 5326 ClassTemplate->getTemplatedDecl()->getKindName()); 5327 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5328 diag::note_previous_use); 5329 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5330 } 5331 5332 // Translate the parser's template argument list in our AST format. 5333 TemplateArgumentListInfo TemplateArgs; 5334 TemplateArgs.setLAngleLoc(LAngleLoc); 5335 TemplateArgs.setRAngleLoc(RAngleLoc); 5336 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5337 5338 // Check for unexpanded parameter packs in any of the template arguments. 5339 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5340 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5341 UPPC_PartialSpecialization)) 5342 return true; 5343 5344 // Check that the template argument list is well-formed for this 5345 // template. 5346 SmallVector<TemplateArgument, 4> Converted; 5347 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5348 TemplateArgs, false, Converted)) 5349 return true; 5350 5351 // Find the class template (partial) specialization declaration that 5352 // corresponds to these arguments. 5353 if (isPartialSpecialization) { 5354 if (CheckClassTemplatePartialSpecializationArgs(*this, 5355 ClassTemplate->getTemplateParameters(), 5356 Converted)) 5357 return true; 5358 5359 bool InstantiationDependent; 5360 if (!Name.isDependent() && 5361 !TemplateSpecializationType::anyDependentTemplateArguments( 5362 TemplateArgs.getArgumentArray(), 5363 TemplateArgs.size(), 5364 InstantiationDependent)) { 5365 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5366 << ClassTemplate->getDeclName(); 5367 isPartialSpecialization = false; 5368 } 5369 } 5370 5371 void *InsertPos = 0; 5372 ClassTemplateSpecializationDecl *PrevDecl = 0; 5373 5374 if (isPartialSpecialization) 5375 // FIXME: Template parameter list matters, too 5376 PrevDecl 5377 = ClassTemplate->findPartialSpecialization(Converted.data(), 5378 Converted.size(), 5379 InsertPos); 5380 else 5381 PrevDecl 5382 = ClassTemplate->findSpecialization(Converted.data(), 5383 Converted.size(), InsertPos); 5384 5385 ClassTemplateSpecializationDecl *Specialization = 0; 5386 5387 // Check whether we can declare a class template specialization in 5388 // the current scope. 5389 if (TUK != TUK_Friend && 5390 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5391 TemplateNameLoc, 5392 isPartialSpecialization)) 5393 return true; 5394 5395 // The canonical type 5396 QualType CanonType; 5397 if (PrevDecl && 5398 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5399 TUK == TUK_Friend)) { 5400 // Since the only prior class template specialization with these 5401 // arguments was referenced but not declared, or we're only 5402 // referencing this specialization as a friend, reuse that 5403 // declaration node as our own, updating its source location and 5404 // the list of outer template parameters to reflect our new declaration. 5405 Specialization = PrevDecl; 5406 Specialization->setLocation(TemplateNameLoc); 5407 if (TemplateParameterLists.size() > 0) { 5408 Specialization->setTemplateParameterListsInfo(Context, 5409 TemplateParameterLists.size(), 5410 TemplateParameterLists.data()); 5411 } 5412 PrevDecl = 0; 5413 CanonType = Context.getTypeDeclType(Specialization); 5414 } else if (isPartialSpecialization) { 5415 // Build the canonical type that describes the converted template 5416 // arguments of the class template partial specialization. 5417 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5418 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5419 Converted.data(), 5420 Converted.size()); 5421 5422 if (Context.hasSameType(CanonType, 5423 ClassTemplate->getInjectedClassNameSpecialization())) { 5424 // C++ [temp.class.spec]p9b3: 5425 // 5426 // -- The argument list of the specialization shall not be identical 5427 // to the implicit argument list of the primary template. 5428 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5429 << (TUK == TUK_Definition) 5430 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5431 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5432 ClassTemplate->getIdentifier(), 5433 TemplateNameLoc, 5434 Attr, 5435 TemplateParams, 5436 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5437 TemplateParameterLists.size() - 1, 5438 TemplateParameterLists.data()); 5439 } 5440 5441 // Create a new class template partial specialization declaration node. 5442 ClassTemplatePartialSpecializationDecl *PrevPartial 5443 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5444 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5445 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5446 ClassTemplatePartialSpecializationDecl *Partial 5447 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5448 ClassTemplate->getDeclContext(), 5449 KWLoc, TemplateNameLoc, 5450 TemplateParams, 5451 ClassTemplate, 5452 Converted.data(), 5453 Converted.size(), 5454 TemplateArgs, 5455 CanonType, 5456 PrevPartial, 5457 SequenceNumber); 5458 SetNestedNameSpecifier(Partial, SS); 5459 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5460 Partial->setTemplateParameterListsInfo(Context, 5461 TemplateParameterLists.size() - 1, 5462 TemplateParameterLists.data()); 5463 } 5464 5465 if (!PrevPartial) 5466 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5467 Specialization = Partial; 5468 5469 // If we are providing an explicit specialization of a member class 5470 // template specialization, make a note of that. 5471 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5472 PrevPartial->setMemberSpecialization(); 5473 5474 // Check that all of the template parameters of the class template 5475 // partial specialization are deducible from the template 5476 // arguments. If not, this class template partial specialization 5477 // will never be used. 5478 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5479 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5480 TemplateParams->getDepth(), 5481 DeducibleParams); 5482 5483 if (!DeducibleParams.all()) { 5484 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5485 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5486 << (NumNonDeducible > 1) 5487 << SourceRange(TemplateNameLoc, RAngleLoc); 5488 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5489 if (!DeducibleParams[I]) { 5490 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5491 if (Param->getDeclName()) 5492 Diag(Param->getLocation(), 5493 diag::note_partial_spec_unused_parameter) 5494 << Param->getDeclName(); 5495 else 5496 Diag(Param->getLocation(), 5497 diag::note_partial_spec_unused_parameter) 5498 << "<anonymous>"; 5499 } 5500 } 5501 } 5502 } else { 5503 // Create a new class template specialization declaration node for 5504 // this explicit specialization or friend declaration. 5505 Specialization 5506 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5507 ClassTemplate->getDeclContext(), 5508 KWLoc, TemplateNameLoc, 5509 ClassTemplate, 5510 Converted.data(), 5511 Converted.size(), 5512 PrevDecl); 5513 SetNestedNameSpecifier(Specialization, SS); 5514 if (TemplateParameterLists.size() > 0) { 5515 Specialization->setTemplateParameterListsInfo(Context, 5516 TemplateParameterLists.size(), 5517 TemplateParameterLists.data()); 5518 } 5519 5520 if (!PrevDecl) 5521 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5522 5523 CanonType = Context.getTypeDeclType(Specialization); 5524 } 5525 5526 // C++ [temp.expl.spec]p6: 5527 // If a template, a member template or the member of a class template is 5528 // explicitly specialized then that specialization shall be declared 5529 // before the first use of that specialization that would cause an implicit 5530 // instantiation to take place, in every translation unit in which such a 5531 // use occurs; no diagnostic is required. 5532 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5533 bool Okay = false; 5534 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5535 // Is there any previous explicit specialization declaration? 5536 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5537 Okay = true; 5538 break; 5539 } 5540 } 5541 5542 if (!Okay) { 5543 SourceRange Range(TemplateNameLoc, RAngleLoc); 5544 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5545 << Context.getTypeDeclType(Specialization) << Range; 5546 5547 Diag(PrevDecl->getPointOfInstantiation(), 5548 diag::note_instantiation_required_here) 5549 << (PrevDecl->getTemplateSpecializationKind() 5550 != TSK_ImplicitInstantiation); 5551 return true; 5552 } 5553 } 5554 5555 // If this is not a friend, note that this is an explicit specialization. 5556 if (TUK != TUK_Friend) 5557 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5558 5559 // Check that this isn't a redefinition of this specialization. 5560 if (TUK == TUK_Definition) { 5561 if (RecordDecl *Def = Specialization->getDefinition()) { 5562 SourceRange Range(TemplateNameLoc, RAngleLoc); 5563 Diag(TemplateNameLoc, diag::err_redefinition) 5564 << Context.getTypeDeclType(Specialization) << Range; 5565 Diag(Def->getLocation(), diag::note_previous_definition); 5566 Specialization->setInvalidDecl(); 5567 return true; 5568 } 5569 } 5570 5571 if (Attr) 5572 ProcessDeclAttributeList(S, Specialization, Attr); 5573 5574 // Add alignment attributes if necessary; these attributes are checked when 5575 // the ASTContext lays out the structure. 5576 if (TUK == TUK_Definition) { 5577 AddAlignmentAttributesForRecord(Specialization); 5578 AddMsStructLayoutForRecord(Specialization); 5579 } 5580 5581 if (ModulePrivateLoc.isValid()) 5582 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5583 << (isPartialSpecialization? 1 : 0) 5584 << FixItHint::CreateRemoval(ModulePrivateLoc); 5585 5586 // Build the fully-sugared type for this class template 5587 // specialization as the user wrote in the specialization 5588 // itself. This means that we'll pretty-print the type retrieved 5589 // from the specialization's declaration the way that the user 5590 // actually wrote the specialization, rather than formatting the 5591 // name based on the "canonical" representation used to store the 5592 // template arguments in the specialization. 5593 TypeSourceInfo *WrittenTy 5594 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5595 TemplateArgs, CanonType); 5596 if (TUK != TUK_Friend) { 5597 Specialization->setTypeAsWritten(WrittenTy); 5598 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5599 } 5600 5601 // C++ [temp.expl.spec]p9: 5602 // A template explicit specialization is in the scope of the 5603 // namespace in which the template was defined. 5604 // 5605 // We actually implement this paragraph where we set the semantic 5606 // context (in the creation of the ClassTemplateSpecializationDecl), 5607 // but we also maintain the lexical context where the actual 5608 // definition occurs. 5609 Specialization->setLexicalDeclContext(CurContext); 5610 5611 // We may be starting the definition of this specialization. 5612 if (TUK == TUK_Definition) 5613 Specialization->startDefinition(); 5614 5615 if (TUK == TUK_Friend) { 5616 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5617 TemplateNameLoc, 5618 WrittenTy, 5619 /*FIXME:*/KWLoc); 5620 Friend->setAccess(AS_public); 5621 CurContext->addDecl(Friend); 5622 } else { 5623 // Add the specialization into its lexical context, so that it can 5624 // be seen when iterating through the list of declarations in that 5625 // context. However, specializations are not found by name lookup. 5626 CurContext->addDecl(Specialization); 5627 } 5628 return Specialization; 5629} 5630 5631Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5632 MultiTemplateParamsArg TemplateParameterLists, 5633 Declarator &D) { 5634 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 5635 ActOnDocumentableDecl(NewDecl); 5636 return NewDecl; 5637} 5638 5639Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5640 MultiTemplateParamsArg TemplateParameterLists, 5641 Declarator &D) { 5642 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5643 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5644 5645 if (FTI.hasPrototype) { 5646 // FIXME: Diagnose arguments without names in C. 5647 } 5648 5649 Scope *ParentScope = FnBodyScope->getParent(); 5650 5651 D.setFunctionDefinitionKind(FDK_Definition); 5652 Decl *DP = HandleDeclarator(ParentScope, D, 5653 TemplateParameterLists); 5654 return ActOnStartOfFunctionDef(FnBodyScope, DP); 5655} 5656 5657/// \brief Strips various properties off an implicit instantiation 5658/// that has just been explicitly specialized. 5659static void StripImplicitInstantiation(NamedDecl *D) { 5660 D->dropAttrs(); 5661 5662 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5663 FD->setInlineSpecified(false); 5664 5665 for (FunctionDecl::param_iterator I = FD->param_begin(), 5666 E = FD->param_end(); 5667 I != E; ++I) 5668 (*I)->dropAttrs(); 5669 } 5670} 5671 5672/// \brief Compute the diagnostic location for an explicit instantiation 5673// declaration or definition. 5674static SourceLocation DiagLocForExplicitInstantiation( 5675 NamedDecl* D, SourceLocation PointOfInstantiation) { 5676 // Explicit instantiations following a specialization have no effect and 5677 // hence no PointOfInstantiation. In that case, walk decl backwards 5678 // until a valid name loc is found. 5679 SourceLocation PrevDiagLoc = PointOfInstantiation; 5680 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5681 Prev = Prev->getPreviousDecl()) { 5682 PrevDiagLoc = Prev->getLocation(); 5683 } 5684 assert(PrevDiagLoc.isValid() && 5685 "Explicit instantiation without point of instantiation?"); 5686 return PrevDiagLoc; 5687} 5688 5689/// \brief Diagnose cases where we have an explicit template specialization 5690/// before/after an explicit template instantiation, producing diagnostics 5691/// for those cases where they are required and determining whether the 5692/// new specialization/instantiation will have any effect. 5693/// 5694/// \param NewLoc the location of the new explicit specialization or 5695/// instantiation. 5696/// 5697/// \param NewTSK the kind of the new explicit specialization or instantiation. 5698/// 5699/// \param PrevDecl the previous declaration of the entity. 5700/// 5701/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5702/// 5703/// \param PrevPointOfInstantiation if valid, indicates where the previus 5704/// declaration was instantiated (either implicitly or explicitly). 5705/// 5706/// \param HasNoEffect will be set to true to indicate that the new 5707/// specialization or instantiation has no effect and should be ignored. 5708/// 5709/// \returns true if there was an error that should prevent the introduction of 5710/// the new declaration into the AST, false otherwise. 5711bool 5712Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5713 TemplateSpecializationKind NewTSK, 5714 NamedDecl *PrevDecl, 5715 TemplateSpecializationKind PrevTSK, 5716 SourceLocation PrevPointOfInstantiation, 5717 bool &HasNoEffect) { 5718 HasNoEffect = false; 5719 5720 switch (NewTSK) { 5721 case TSK_Undeclared: 5722 case TSK_ImplicitInstantiation: 5723 llvm_unreachable("Don't check implicit instantiations here"); 5724 5725 case TSK_ExplicitSpecialization: 5726 switch (PrevTSK) { 5727 case TSK_Undeclared: 5728 case TSK_ExplicitSpecialization: 5729 // Okay, we're just specializing something that is either already 5730 // explicitly specialized or has merely been mentioned without any 5731 // instantiation. 5732 return false; 5733 5734 case TSK_ImplicitInstantiation: 5735 if (PrevPointOfInstantiation.isInvalid()) { 5736 // The declaration itself has not actually been instantiated, so it is 5737 // still okay to specialize it. 5738 StripImplicitInstantiation(PrevDecl); 5739 return false; 5740 } 5741 // Fall through 5742 5743 case TSK_ExplicitInstantiationDeclaration: 5744 case TSK_ExplicitInstantiationDefinition: 5745 assert((PrevTSK == TSK_ImplicitInstantiation || 5746 PrevPointOfInstantiation.isValid()) && 5747 "Explicit instantiation without point of instantiation?"); 5748 5749 // C++ [temp.expl.spec]p6: 5750 // If a template, a member template or the member of a class template 5751 // is explicitly specialized then that specialization shall be declared 5752 // before the first use of that specialization that would cause an 5753 // implicit instantiation to take place, in every translation unit in 5754 // which such a use occurs; no diagnostic is required. 5755 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5756 // Is there any previous explicit specialization declaration? 5757 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5758 return false; 5759 } 5760 5761 Diag(NewLoc, diag::err_specialization_after_instantiation) 5762 << PrevDecl; 5763 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5764 << (PrevTSK != TSK_ImplicitInstantiation); 5765 5766 return true; 5767 } 5768 5769 case TSK_ExplicitInstantiationDeclaration: 5770 switch (PrevTSK) { 5771 case TSK_ExplicitInstantiationDeclaration: 5772 // This explicit instantiation declaration is redundant (that's okay). 5773 HasNoEffect = true; 5774 return false; 5775 5776 case TSK_Undeclared: 5777 case TSK_ImplicitInstantiation: 5778 // We're explicitly instantiating something that may have already been 5779 // implicitly instantiated; that's fine. 5780 return false; 5781 5782 case TSK_ExplicitSpecialization: 5783 // C++0x [temp.explicit]p4: 5784 // For a given set of template parameters, if an explicit instantiation 5785 // of a template appears after a declaration of an explicit 5786 // specialization for that template, the explicit instantiation has no 5787 // effect. 5788 HasNoEffect = true; 5789 return false; 5790 5791 case TSK_ExplicitInstantiationDefinition: 5792 // C++0x [temp.explicit]p10: 5793 // If an entity is the subject of both an explicit instantiation 5794 // declaration and an explicit instantiation definition in the same 5795 // translation unit, the definition shall follow the declaration. 5796 Diag(NewLoc, 5797 diag::err_explicit_instantiation_declaration_after_definition); 5798 5799 // Explicit instantiations following a specialization have no effect and 5800 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5801 // until a valid name loc is found. 5802 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5803 diag::note_explicit_instantiation_definition_here); 5804 HasNoEffect = true; 5805 return false; 5806 } 5807 5808 case TSK_ExplicitInstantiationDefinition: 5809 switch (PrevTSK) { 5810 case TSK_Undeclared: 5811 case TSK_ImplicitInstantiation: 5812 // We're explicitly instantiating something that may have already been 5813 // implicitly instantiated; that's fine. 5814 return false; 5815 5816 case TSK_ExplicitSpecialization: 5817 // C++ DR 259, C++0x [temp.explicit]p4: 5818 // For a given set of template parameters, if an explicit 5819 // instantiation of a template appears after a declaration of 5820 // an explicit specialization for that template, the explicit 5821 // instantiation has no effect. 5822 // 5823 // In C++98/03 mode, we only give an extension warning here, because it 5824 // is not harmful to try to explicitly instantiate something that 5825 // has been explicitly specialized. 5826 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 5827 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5828 diag::ext_explicit_instantiation_after_specialization) 5829 << PrevDecl; 5830 Diag(PrevDecl->getLocation(), 5831 diag::note_previous_template_specialization); 5832 HasNoEffect = true; 5833 return false; 5834 5835 case TSK_ExplicitInstantiationDeclaration: 5836 // We're explicity instantiating a definition for something for which we 5837 // were previously asked to suppress instantiations. That's fine. 5838 5839 // C++0x [temp.explicit]p4: 5840 // For a given set of template parameters, if an explicit instantiation 5841 // of a template appears after a declaration of an explicit 5842 // specialization for that template, the explicit instantiation has no 5843 // effect. 5844 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5845 // Is there any previous explicit specialization declaration? 5846 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5847 HasNoEffect = true; 5848 break; 5849 } 5850 } 5851 5852 return false; 5853 5854 case TSK_ExplicitInstantiationDefinition: 5855 // C++0x [temp.spec]p5: 5856 // For a given template and a given set of template-arguments, 5857 // - an explicit instantiation definition shall appear at most once 5858 // in a program, 5859 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5860 << PrevDecl; 5861 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5862 diag::note_previous_explicit_instantiation); 5863 HasNoEffect = true; 5864 return false; 5865 } 5866 } 5867 5868 llvm_unreachable("Missing specialization/instantiation case?"); 5869} 5870 5871/// \brief Perform semantic analysis for the given dependent function 5872/// template specialization. 5873/// 5874/// The only possible way to get a dependent function template specialization 5875/// is with a friend declaration, like so: 5876/// 5877/// \code 5878/// template \<class T> void foo(T); 5879/// template \<class T> class A { 5880/// friend void foo<>(T); 5881/// }; 5882/// \endcode 5883/// 5884/// There really isn't any useful analysis we can do here, so we 5885/// just store the information. 5886bool 5887Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5888 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5889 LookupResult &Previous) { 5890 // Remove anything from Previous that isn't a function template in 5891 // the correct context. 5892 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5893 LookupResult::Filter F = Previous.makeFilter(); 5894 while (F.hasNext()) { 5895 NamedDecl *D = F.next()->getUnderlyingDecl(); 5896 if (!isa<FunctionTemplateDecl>(D) || 5897 !FDLookupContext->InEnclosingNamespaceSetOf( 5898 D->getDeclContext()->getRedeclContext())) 5899 F.erase(); 5900 } 5901 F.done(); 5902 5903 // Should this be diagnosed here? 5904 if (Previous.empty()) return true; 5905 5906 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5907 ExplicitTemplateArgs); 5908 return false; 5909} 5910 5911/// \brief Perform semantic analysis for the given function template 5912/// specialization. 5913/// 5914/// This routine performs all of the semantic analysis required for an 5915/// explicit function template specialization. On successful completion, 5916/// the function declaration \p FD will become a function template 5917/// specialization. 5918/// 5919/// \param FD the function declaration, which will be updated to become a 5920/// function template specialization. 5921/// 5922/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5923/// if any. Note that this may be valid info even when 0 arguments are 5924/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5925/// as it anyway contains info on the angle brackets locations. 5926/// 5927/// \param Previous the set of declarations that may be specialized by 5928/// this function specialization. 5929bool 5930Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5931 TemplateArgumentListInfo *ExplicitTemplateArgs, 5932 LookupResult &Previous) { 5933 // The set of function template specializations that could match this 5934 // explicit function template specialization. 5935 UnresolvedSet<8> Candidates; 5936 5937 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5938 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5939 I != E; ++I) { 5940 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5941 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5942 // Only consider templates found within the same semantic lookup scope as 5943 // FD. 5944 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5945 Ovl->getDeclContext()->getRedeclContext())) 5946 continue; 5947 5948 // When matching a constexpr member function template specialization 5949 // against the primary template, we don't yet know whether the 5950 // specialization has an implicit 'const' (because we don't know whether 5951 // it will be a static member function until we know which template it 5952 // specializes), so adjust it now assuming it specializes this template. 5953 QualType FT = FD->getType(); 5954 if (FD->isConstexpr()) { 5955 CXXMethodDecl *OldMD = 5956 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 5957 if (OldMD && OldMD->isConst()) { 5958 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 5959 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 5960 EPI.TypeQuals |= Qualifiers::Const; 5961 FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), 5962 EPI); 5963 } 5964 } 5965 5966 // C++ [temp.expl.spec]p11: 5967 // A trailing template-argument can be left unspecified in the 5968 // template-id naming an explicit function template specialization 5969 // provided it can be deduced from the function argument type. 5970 // Perform template argument deduction to determine whether we may be 5971 // specializing this template. 5972 // FIXME: It is somewhat wasteful to build 5973 TemplateDeductionInfo Info(FD->getLocation()); 5974 FunctionDecl *Specialization = 0; 5975 if (TemplateDeductionResult TDK 5976 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT, 5977 Specialization, Info)) { 5978 // FIXME: Template argument deduction failed; record why it failed, so 5979 // that we can provide nifty diagnostics. 5980 (void)TDK; 5981 continue; 5982 } 5983 5984 // Record this candidate. 5985 Candidates.addDecl(Specialization, I.getAccess()); 5986 } 5987 } 5988 5989 // Find the most specialized function template. 5990 UnresolvedSetIterator Result 5991 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5992 TPOC_Other, 0, FD->getLocation(), 5993 PDiag(diag::err_function_template_spec_no_match) 5994 << FD->getDeclName(), 5995 PDiag(diag::err_function_template_spec_ambiguous) 5996 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5997 PDiag(diag::note_function_template_spec_matched)); 5998 if (Result == Candidates.end()) 5999 return true; 6000 6001 // Ignore access information; it doesn't figure into redeclaration checking. 6002 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6003 6004 FunctionTemplateSpecializationInfo *SpecInfo 6005 = Specialization->getTemplateSpecializationInfo(); 6006 assert(SpecInfo && "Function template specialization info missing?"); 6007 6008 // Note: do not overwrite location info if previous template 6009 // specialization kind was explicit. 6010 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 6011 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 6012 Specialization->setLocation(FD->getLocation()); 6013 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 6014 // function can differ from the template declaration with respect to 6015 // the constexpr specifier. 6016 Specialization->setConstexpr(FD->isConstexpr()); 6017 } 6018 6019 // FIXME: Check if the prior specialization has a point of instantiation. 6020 // If so, we have run afoul of . 6021 6022 // If this is a friend declaration, then we're not really declaring 6023 // an explicit specialization. 6024 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 6025 6026 // Check the scope of this explicit specialization. 6027 if (!isFriend && 6028 CheckTemplateSpecializationScope(*this, 6029 Specialization->getPrimaryTemplate(), 6030 Specialization, FD->getLocation(), 6031 false)) 6032 return true; 6033 6034 // C++ [temp.expl.spec]p6: 6035 // If a template, a member template or the member of a class template is 6036 // explicitly specialized then that specialization shall be declared 6037 // before the first use of that specialization that would cause an implicit 6038 // instantiation to take place, in every translation unit in which such a 6039 // use occurs; no diagnostic is required. 6040 bool HasNoEffect = false; 6041 if (!isFriend && 6042 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6043 TSK_ExplicitSpecialization, 6044 Specialization, 6045 SpecInfo->getTemplateSpecializationKind(), 6046 SpecInfo->getPointOfInstantiation(), 6047 HasNoEffect)) 6048 return true; 6049 6050 // Mark the prior declaration as an explicit specialization, so that later 6051 // clients know that this is an explicit specialization. 6052 if (!isFriend) { 6053 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6054 MarkUnusedFileScopedDecl(Specialization); 6055 } 6056 6057 // Turn the given function declaration into a function template 6058 // specialization, with the template arguments from the previous 6059 // specialization. 6060 // Take copies of (semantic and syntactic) template argument lists. 6061 const TemplateArgumentList* TemplArgs = new (Context) 6062 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6063 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 6064 TemplArgs, /*InsertPos=*/0, 6065 SpecInfo->getTemplateSpecializationKind(), 6066 ExplicitTemplateArgs); 6067 6068 // The "previous declaration" for this function template specialization is 6069 // the prior function template specialization. 6070 Previous.clear(); 6071 Previous.addDecl(Specialization); 6072 return false; 6073} 6074 6075/// \brief Perform semantic analysis for the given non-template member 6076/// specialization. 6077/// 6078/// This routine performs all of the semantic analysis required for an 6079/// explicit member function specialization. On successful completion, 6080/// the function declaration \p FD will become a member function 6081/// specialization. 6082/// 6083/// \param Member the member declaration, which will be updated to become a 6084/// specialization. 6085/// 6086/// \param Previous the set of declarations, one of which may be specialized 6087/// by this function specialization; the set will be modified to contain the 6088/// redeclared member. 6089bool 6090Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6091 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6092 6093 // Try to find the member we are instantiating. 6094 NamedDecl *Instantiation = 0; 6095 NamedDecl *InstantiatedFrom = 0; 6096 MemberSpecializationInfo *MSInfo = 0; 6097 6098 if (Previous.empty()) { 6099 // Nowhere to look anyway. 6100 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6101 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6102 I != E; ++I) { 6103 NamedDecl *D = (*I)->getUnderlyingDecl(); 6104 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6105 if (Context.hasSameType(Function->getType(), Method->getType())) { 6106 Instantiation = Method; 6107 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6108 MSInfo = Method->getMemberSpecializationInfo(); 6109 break; 6110 } 6111 } 6112 } 6113 } else if (isa<VarDecl>(Member)) { 6114 VarDecl *PrevVar; 6115 if (Previous.isSingleResult() && 6116 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6117 if (PrevVar->isStaticDataMember()) { 6118 Instantiation = PrevVar; 6119 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6120 MSInfo = PrevVar->getMemberSpecializationInfo(); 6121 } 6122 } else if (isa<RecordDecl>(Member)) { 6123 CXXRecordDecl *PrevRecord; 6124 if (Previous.isSingleResult() && 6125 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6126 Instantiation = PrevRecord; 6127 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6128 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6129 } 6130 } else if (isa<EnumDecl>(Member)) { 6131 EnumDecl *PrevEnum; 6132 if (Previous.isSingleResult() && 6133 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6134 Instantiation = PrevEnum; 6135 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6136 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6137 } 6138 } 6139 6140 if (!Instantiation) { 6141 // There is no previous declaration that matches. Since member 6142 // specializations are always out-of-line, the caller will complain about 6143 // this mismatch later. 6144 return false; 6145 } 6146 6147 // If this is a friend, just bail out here before we start turning 6148 // things into explicit specializations. 6149 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6150 // Preserve instantiation information. 6151 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6152 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6153 cast<CXXMethodDecl>(InstantiatedFrom), 6154 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6155 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6156 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6157 cast<CXXRecordDecl>(InstantiatedFrom), 6158 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6159 } 6160 6161 Previous.clear(); 6162 Previous.addDecl(Instantiation); 6163 return false; 6164 } 6165 6166 // Make sure that this is a specialization of a member. 6167 if (!InstantiatedFrom) { 6168 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6169 << Member; 6170 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6171 return true; 6172 } 6173 6174 // C++ [temp.expl.spec]p6: 6175 // If a template, a member template or the member of a class template is 6176 // explicitly specialized then that specialization shall be declared 6177 // before the first use of that specialization that would cause an implicit 6178 // instantiation to take place, in every translation unit in which such a 6179 // use occurs; no diagnostic is required. 6180 assert(MSInfo && "Member specialization info missing?"); 6181 6182 bool HasNoEffect = false; 6183 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6184 TSK_ExplicitSpecialization, 6185 Instantiation, 6186 MSInfo->getTemplateSpecializationKind(), 6187 MSInfo->getPointOfInstantiation(), 6188 HasNoEffect)) 6189 return true; 6190 6191 // Check the scope of this explicit specialization. 6192 if (CheckTemplateSpecializationScope(*this, 6193 InstantiatedFrom, 6194 Instantiation, Member->getLocation(), 6195 false)) 6196 return true; 6197 6198 // Note that this is an explicit instantiation of a member. 6199 // the original declaration to note that it is an explicit specialization 6200 // (if it was previously an implicit instantiation). This latter step 6201 // makes bookkeeping easier. 6202 if (isa<FunctionDecl>(Member)) { 6203 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6204 if (InstantiationFunction->getTemplateSpecializationKind() == 6205 TSK_ImplicitInstantiation) { 6206 InstantiationFunction->setTemplateSpecializationKind( 6207 TSK_ExplicitSpecialization); 6208 InstantiationFunction->setLocation(Member->getLocation()); 6209 } 6210 6211 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6212 cast<CXXMethodDecl>(InstantiatedFrom), 6213 TSK_ExplicitSpecialization); 6214 MarkUnusedFileScopedDecl(InstantiationFunction); 6215 } else if (isa<VarDecl>(Member)) { 6216 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6217 if (InstantiationVar->getTemplateSpecializationKind() == 6218 TSK_ImplicitInstantiation) { 6219 InstantiationVar->setTemplateSpecializationKind( 6220 TSK_ExplicitSpecialization); 6221 InstantiationVar->setLocation(Member->getLocation()); 6222 } 6223 6224 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6225 cast<VarDecl>(InstantiatedFrom), 6226 TSK_ExplicitSpecialization); 6227 MarkUnusedFileScopedDecl(InstantiationVar); 6228 } else if (isa<CXXRecordDecl>(Member)) { 6229 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6230 if (InstantiationClass->getTemplateSpecializationKind() == 6231 TSK_ImplicitInstantiation) { 6232 InstantiationClass->setTemplateSpecializationKind( 6233 TSK_ExplicitSpecialization); 6234 InstantiationClass->setLocation(Member->getLocation()); 6235 } 6236 6237 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6238 cast<CXXRecordDecl>(InstantiatedFrom), 6239 TSK_ExplicitSpecialization); 6240 } else { 6241 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6242 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6243 if (InstantiationEnum->getTemplateSpecializationKind() == 6244 TSK_ImplicitInstantiation) { 6245 InstantiationEnum->setTemplateSpecializationKind( 6246 TSK_ExplicitSpecialization); 6247 InstantiationEnum->setLocation(Member->getLocation()); 6248 } 6249 6250 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6251 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6252 } 6253 6254 // Save the caller the trouble of having to figure out which declaration 6255 // this specialization matches. 6256 Previous.clear(); 6257 Previous.addDecl(Instantiation); 6258 return false; 6259} 6260 6261/// \brief Check the scope of an explicit instantiation. 6262/// 6263/// \returns true if a serious error occurs, false otherwise. 6264static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6265 SourceLocation InstLoc, 6266 bool WasQualifiedName) { 6267 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6268 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6269 6270 if (CurContext->isRecord()) { 6271 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6272 << D; 6273 return true; 6274 } 6275 6276 // C++11 [temp.explicit]p3: 6277 // An explicit instantiation shall appear in an enclosing namespace of its 6278 // template. If the name declared in the explicit instantiation is an 6279 // unqualified name, the explicit instantiation shall appear in the 6280 // namespace where its template is declared or, if that namespace is inline 6281 // (7.3.1), any namespace from its enclosing namespace set. 6282 // 6283 // This is DR275, which we do not retroactively apply to C++98/03. 6284 if (WasQualifiedName) { 6285 if (CurContext->Encloses(OrigContext)) 6286 return false; 6287 } else { 6288 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6289 return false; 6290 } 6291 6292 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6293 if (WasQualifiedName) 6294 S.Diag(InstLoc, 6295 S.getLangOpts().CPlusPlus11? 6296 diag::err_explicit_instantiation_out_of_scope : 6297 diag::warn_explicit_instantiation_out_of_scope_0x) 6298 << D << NS; 6299 else 6300 S.Diag(InstLoc, 6301 S.getLangOpts().CPlusPlus11? 6302 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6303 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6304 << D << NS; 6305 } else 6306 S.Diag(InstLoc, 6307 S.getLangOpts().CPlusPlus11? 6308 diag::err_explicit_instantiation_must_be_global : 6309 diag::warn_explicit_instantiation_must_be_global_0x) 6310 << D; 6311 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6312 return false; 6313} 6314 6315/// \brief Determine whether the given scope specifier has a template-id in it. 6316static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6317 if (!SS.isSet()) 6318 return false; 6319 6320 // C++11 [temp.explicit]p3: 6321 // If the explicit instantiation is for a member function, a member class 6322 // or a static data member of a class template specialization, the name of 6323 // the class template specialization in the qualified-id for the member 6324 // name shall be a simple-template-id. 6325 // 6326 // C++98 has the same restriction, just worded differently. 6327 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6328 NNS; NNS = NNS->getPrefix()) 6329 if (const Type *T = NNS->getAsType()) 6330 if (isa<TemplateSpecializationType>(T)) 6331 return true; 6332 6333 return false; 6334} 6335 6336// Explicit instantiation of a class template specialization 6337DeclResult 6338Sema::ActOnExplicitInstantiation(Scope *S, 6339 SourceLocation ExternLoc, 6340 SourceLocation TemplateLoc, 6341 unsigned TagSpec, 6342 SourceLocation KWLoc, 6343 const CXXScopeSpec &SS, 6344 TemplateTy TemplateD, 6345 SourceLocation TemplateNameLoc, 6346 SourceLocation LAngleLoc, 6347 ASTTemplateArgsPtr TemplateArgsIn, 6348 SourceLocation RAngleLoc, 6349 AttributeList *Attr) { 6350 // Find the class template we're specializing 6351 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6352 TemplateDecl *TD = Name.getAsTemplateDecl(); 6353 // Check that the specialization uses the same tag kind as the 6354 // original template. 6355 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6356 assert(Kind != TTK_Enum && 6357 "Invalid enum tag in class template explicit instantiation!"); 6358 6359 if (isa<TypeAliasTemplateDecl>(TD)) { 6360 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind; 6361 Diag(TD->getTemplatedDecl()->getLocation(), 6362 diag::note_previous_use); 6363 return true; 6364 } 6365 6366 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD); 6367 6368 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6369 Kind, /*isDefinition*/false, KWLoc, 6370 *ClassTemplate->getIdentifier())) { 6371 Diag(KWLoc, diag::err_use_with_wrong_tag) 6372 << ClassTemplate 6373 << FixItHint::CreateReplacement(KWLoc, 6374 ClassTemplate->getTemplatedDecl()->getKindName()); 6375 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6376 diag::note_previous_use); 6377 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6378 } 6379 6380 // C++0x [temp.explicit]p2: 6381 // There are two forms of explicit instantiation: an explicit instantiation 6382 // definition and an explicit instantiation declaration. An explicit 6383 // instantiation declaration begins with the extern keyword. [...] 6384 TemplateSpecializationKind TSK 6385 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6386 : TSK_ExplicitInstantiationDeclaration; 6387 6388 // Translate the parser's template argument list in our AST format. 6389 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6390 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6391 6392 // Check that the template argument list is well-formed for this 6393 // template. 6394 SmallVector<TemplateArgument, 4> Converted; 6395 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6396 TemplateArgs, false, Converted)) 6397 return true; 6398 6399 // Find the class template specialization declaration that 6400 // corresponds to these arguments. 6401 void *InsertPos = 0; 6402 ClassTemplateSpecializationDecl *PrevDecl 6403 = ClassTemplate->findSpecialization(Converted.data(), 6404 Converted.size(), InsertPos); 6405 6406 TemplateSpecializationKind PrevDecl_TSK 6407 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6408 6409 // C++0x [temp.explicit]p2: 6410 // [...] An explicit instantiation shall appear in an enclosing 6411 // namespace of its template. [...] 6412 // 6413 // This is C++ DR 275. 6414 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6415 SS.isSet())) 6416 return true; 6417 6418 ClassTemplateSpecializationDecl *Specialization = 0; 6419 6420 bool HasNoEffect = false; 6421 if (PrevDecl) { 6422 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6423 PrevDecl, PrevDecl_TSK, 6424 PrevDecl->getPointOfInstantiation(), 6425 HasNoEffect)) 6426 return PrevDecl; 6427 6428 // Even though HasNoEffect == true means that this explicit instantiation 6429 // has no effect on semantics, we go on to put its syntax in the AST. 6430 6431 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6432 PrevDecl_TSK == TSK_Undeclared) { 6433 // Since the only prior class template specialization with these 6434 // arguments was referenced but not declared, reuse that 6435 // declaration node as our own, updating the source location 6436 // for the template name to reflect our new declaration. 6437 // (Other source locations will be updated later.) 6438 Specialization = PrevDecl; 6439 Specialization->setLocation(TemplateNameLoc); 6440 PrevDecl = 0; 6441 } 6442 } 6443 6444 if (!Specialization) { 6445 // Create a new class template specialization declaration node for 6446 // this explicit specialization. 6447 Specialization 6448 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6449 ClassTemplate->getDeclContext(), 6450 KWLoc, TemplateNameLoc, 6451 ClassTemplate, 6452 Converted.data(), 6453 Converted.size(), 6454 PrevDecl); 6455 SetNestedNameSpecifier(Specialization, SS); 6456 6457 if (!HasNoEffect && !PrevDecl) { 6458 // Insert the new specialization. 6459 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6460 } 6461 } 6462 6463 // Build the fully-sugared type for this explicit instantiation as 6464 // the user wrote in the explicit instantiation itself. This means 6465 // that we'll pretty-print the type retrieved from the 6466 // specialization's declaration the way that the user actually wrote 6467 // the explicit instantiation, rather than formatting the name based 6468 // on the "canonical" representation used to store the template 6469 // arguments in the specialization. 6470 TypeSourceInfo *WrittenTy 6471 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6472 TemplateArgs, 6473 Context.getTypeDeclType(Specialization)); 6474 Specialization->setTypeAsWritten(WrittenTy); 6475 6476 // Set source locations for keywords. 6477 Specialization->setExternLoc(ExternLoc); 6478 Specialization->setTemplateKeywordLoc(TemplateLoc); 6479 Specialization->setRBraceLoc(SourceLocation()); 6480 6481 if (Attr) 6482 ProcessDeclAttributeList(S, Specialization, Attr); 6483 6484 // Add the explicit instantiation into its lexical context. However, 6485 // since explicit instantiations are never found by name lookup, we 6486 // just put it into the declaration context directly. 6487 Specialization->setLexicalDeclContext(CurContext); 6488 CurContext->addDecl(Specialization); 6489 6490 // Syntax is now OK, so return if it has no other effect on semantics. 6491 if (HasNoEffect) { 6492 // Set the template specialization kind. 6493 Specialization->setTemplateSpecializationKind(TSK); 6494 return Specialization; 6495 } 6496 6497 // C++ [temp.explicit]p3: 6498 // A definition of a class template or class member template 6499 // shall be in scope at the point of the explicit instantiation of 6500 // the class template or class member template. 6501 // 6502 // This check comes when we actually try to perform the 6503 // instantiation. 6504 ClassTemplateSpecializationDecl *Def 6505 = cast_or_null<ClassTemplateSpecializationDecl>( 6506 Specialization->getDefinition()); 6507 if (!Def) 6508 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6509 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6510 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6511 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6512 } 6513 6514 // Instantiate the members of this class template specialization. 6515 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6516 Specialization->getDefinition()); 6517 if (Def) { 6518 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6519 6520 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6521 // TSK_ExplicitInstantiationDefinition 6522 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6523 TSK == TSK_ExplicitInstantiationDefinition) 6524 Def->setTemplateSpecializationKind(TSK); 6525 6526 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6527 } 6528 6529 // Set the template specialization kind. 6530 Specialization->setTemplateSpecializationKind(TSK); 6531 return Specialization; 6532} 6533 6534// Explicit instantiation of a member class of a class template. 6535DeclResult 6536Sema::ActOnExplicitInstantiation(Scope *S, 6537 SourceLocation ExternLoc, 6538 SourceLocation TemplateLoc, 6539 unsigned TagSpec, 6540 SourceLocation KWLoc, 6541 CXXScopeSpec &SS, 6542 IdentifierInfo *Name, 6543 SourceLocation NameLoc, 6544 AttributeList *Attr) { 6545 6546 bool Owned = false; 6547 bool IsDependent = false; 6548 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6549 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6550 /*ModulePrivateLoc=*/SourceLocation(), 6551 MultiTemplateParamsArg(), Owned, IsDependent, 6552 SourceLocation(), false, TypeResult()); 6553 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6554 6555 if (!TagD) 6556 return true; 6557 6558 TagDecl *Tag = cast<TagDecl>(TagD); 6559 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6560 6561 if (Tag->isInvalidDecl()) 6562 return true; 6563 6564 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6565 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6566 if (!Pattern) { 6567 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6568 << Context.getTypeDeclType(Record); 6569 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6570 return true; 6571 } 6572 6573 // C++0x [temp.explicit]p2: 6574 // If the explicit instantiation is for a class or member class, the 6575 // elaborated-type-specifier in the declaration shall include a 6576 // simple-template-id. 6577 // 6578 // C++98 has the same restriction, just worded differently. 6579 if (!ScopeSpecifierHasTemplateId(SS)) 6580 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6581 << Record << SS.getRange(); 6582 6583 // C++0x [temp.explicit]p2: 6584 // There are two forms of explicit instantiation: an explicit instantiation 6585 // definition and an explicit instantiation declaration. An explicit 6586 // instantiation declaration begins with the extern keyword. [...] 6587 TemplateSpecializationKind TSK 6588 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6589 : TSK_ExplicitInstantiationDeclaration; 6590 6591 // C++0x [temp.explicit]p2: 6592 // [...] An explicit instantiation shall appear in an enclosing 6593 // namespace of its template. [...] 6594 // 6595 // This is C++ DR 275. 6596 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6597 6598 // Verify that it is okay to explicitly instantiate here. 6599 CXXRecordDecl *PrevDecl 6600 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6601 if (!PrevDecl && Record->getDefinition()) 6602 PrevDecl = Record; 6603 if (PrevDecl) { 6604 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6605 bool HasNoEffect = false; 6606 assert(MSInfo && "No member specialization information?"); 6607 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6608 PrevDecl, 6609 MSInfo->getTemplateSpecializationKind(), 6610 MSInfo->getPointOfInstantiation(), 6611 HasNoEffect)) 6612 return true; 6613 if (HasNoEffect) 6614 return TagD; 6615 } 6616 6617 CXXRecordDecl *RecordDef 6618 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6619 if (!RecordDef) { 6620 // C++ [temp.explicit]p3: 6621 // A definition of a member class of a class template shall be in scope 6622 // at the point of an explicit instantiation of the member class. 6623 CXXRecordDecl *Def 6624 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6625 if (!Def) { 6626 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6627 << 0 << Record->getDeclName() << Record->getDeclContext(); 6628 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6629 << Pattern; 6630 return true; 6631 } else { 6632 if (InstantiateClass(NameLoc, Record, Def, 6633 getTemplateInstantiationArgs(Record), 6634 TSK)) 6635 return true; 6636 6637 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6638 if (!RecordDef) 6639 return true; 6640 } 6641 } 6642 6643 // Instantiate all of the members of the class. 6644 InstantiateClassMembers(NameLoc, RecordDef, 6645 getTemplateInstantiationArgs(Record), TSK); 6646 6647 if (TSK == TSK_ExplicitInstantiationDefinition) 6648 MarkVTableUsed(NameLoc, RecordDef, true); 6649 6650 // FIXME: We don't have any representation for explicit instantiations of 6651 // member classes. Such a representation is not needed for compilation, but it 6652 // should be available for clients that want to see all of the declarations in 6653 // the source code. 6654 return TagD; 6655} 6656 6657DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6658 SourceLocation ExternLoc, 6659 SourceLocation TemplateLoc, 6660 Declarator &D) { 6661 // Explicit instantiations always require a name. 6662 // TODO: check if/when DNInfo should replace Name. 6663 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6664 DeclarationName Name = NameInfo.getName(); 6665 if (!Name) { 6666 if (!D.isInvalidType()) 6667 Diag(D.getDeclSpec().getLocStart(), 6668 diag::err_explicit_instantiation_requires_name) 6669 << D.getDeclSpec().getSourceRange() 6670 << D.getSourceRange(); 6671 6672 return true; 6673 } 6674 6675 // The scope passed in may not be a decl scope. Zip up the scope tree until 6676 // we find one that is. 6677 while ((S->getFlags() & Scope::DeclScope) == 0 || 6678 (S->getFlags() & Scope::TemplateParamScope) != 0) 6679 S = S->getParent(); 6680 6681 // Determine the type of the declaration. 6682 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6683 QualType R = T->getType(); 6684 if (R.isNull()) 6685 return true; 6686 6687 // C++ [dcl.stc]p1: 6688 // A storage-class-specifier shall not be specified in [...] an explicit 6689 // instantiation (14.7.2) directive. 6690 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6691 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6692 << Name; 6693 return true; 6694 } else if (D.getDeclSpec().getStorageClassSpec() 6695 != DeclSpec::SCS_unspecified) { 6696 // Complain about then remove the storage class specifier. 6697 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6698 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6699 6700 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6701 } 6702 6703 // C++0x [temp.explicit]p1: 6704 // [...] An explicit instantiation of a function template shall not use the 6705 // inline or constexpr specifiers. 6706 // Presumably, this also applies to member functions of class templates as 6707 // well. 6708 if (D.getDeclSpec().isInlineSpecified()) 6709 Diag(D.getDeclSpec().getInlineSpecLoc(), 6710 getLangOpts().CPlusPlus11 ? 6711 diag::err_explicit_instantiation_inline : 6712 diag::warn_explicit_instantiation_inline_0x) 6713 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6714 if (D.getDeclSpec().isConstexprSpecified()) 6715 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6716 // not already specified. 6717 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6718 diag::err_explicit_instantiation_constexpr); 6719 6720 // C++0x [temp.explicit]p2: 6721 // There are two forms of explicit instantiation: an explicit instantiation 6722 // definition and an explicit instantiation declaration. An explicit 6723 // instantiation declaration begins with the extern keyword. [...] 6724 TemplateSpecializationKind TSK 6725 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6726 : TSK_ExplicitInstantiationDeclaration; 6727 6728 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6729 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6730 6731 if (!R->isFunctionType()) { 6732 // C++ [temp.explicit]p1: 6733 // A [...] static data member of a class template can be explicitly 6734 // instantiated from the member definition associated with its class 6735 // template. 6736 if (Previous.isAmbiguous()) 6737 return true; 6738 6739 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6740 if (!Prev || !Prev->isStaticDataMember()) { 6741 // We expect to see a data data member here. 6742 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6743 << Name; 6744 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6745 P != PEnd; ++P) 6746 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6747 return true; 6748 } 6749 6750 if (!Prev->getInstantiatedFromStaticDataMember()) { 6751 // FIXME: Check for explicit specialization? 6752 Diag(D.getIdentifierLoc(), 6753 diag::err_explicit_instantiation_data_member_not_instantiated) 6754 << Prev; 6755 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6756 // FIXME: Can we provide a note showing where this was declared? 6757 return true; 6758 } 6759 6760 // C++0x [temp.explicit]p2: 6761 // If the explicit instantiation is for a member function, a member class 6762 // or a static data member of a class template specialization, the name of 6763 // the class template specialization in the qualified-id for the member 6764 // name shall be a simple-template-id. 6765 // 6766 // C++98 has the same restriction, just worded differently. 6767 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6768 Diag(D.getIdentifierLoc(), 6769 diag::ext_explicit_instantiation_without_qualified_id) 6770 << Prev << D.getCXXScopeSpec().getRange(); 6771 6772 // Check the scope of this explicit instantiation. 6773 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6774 6775 // Verify that it is okay to explicitly instantiate here. 6776 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6777 assert(MSInfo && "Missing static data member specialization info?"); 6778 bool HasNoEffect = false; 6779 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6780 MSInfo->getTemplateSpecializationKind(), 6781 MSInfo->getPointOfInstantiation(), 6782 HasNoEffect)) 6783 return true; 6784 if (HasNoEffect) 6785 return (Decl*) 0; 6786 6787 // Instantiate static data member. 6788 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6789 if (TSK == TSK_ExplicitInstantiationDefinition) 6790 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6791 6792 // FIXME: Create an ExplicitInstantiation node? 6793 return (Decl*) 0; 6794 } 6795 6796 // If the declarator is a template-id, translate the parser's template 6797 // argument list into our AST format. 6798 bool HasExplicitTemplateArgs = false; 6799 TemplateArgumentListInfo TemplateArgs; 6800 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6801 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6802 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6803 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6804 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6805 TemplateId->NumArgs); 6806 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6807 HasExplicitTemplateArgs = true; 6808 } 6809 6810 // C++ [temp.explicit]p1: 6811 // A [...] function [...] can be explicitly instantiated from its template. 6812 // A member function [...] of a class template can be explicitly 6813 // instantiated from the member definition associated with its class 6814 // template. 6815 UnresolvedSet<8> Matches; 6816 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6817 P != PEnd; ++P) { 6818 NamedDecl *Prev = *P; 6819 if (!HasExplicitTemplateArgs) { 6820 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6821 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6822 Matches.clear(); 6823 6824 Matches.addDecl(Method, P.getAccess()); 6825 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6826 break; 6827 } 6828 } 6829 } 6830 6831 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6832 if (!FunTmpl) 6833 continue; 6834 6835 TemplateDeductionInfo Info(D.getIdentifierLoc()); 6836 FunctionDecl *Specialization = 0; 6837 if (TemplateDeductionResult TDK 6838 = DeduceTemplateArguments(FunTmpl, 6839 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6840 R, Specialization, Info)) { 6841 // FIXME: Keep track of almost-matches? 6842 (void)TDK; 6843 continue; 6844 } 6845 6846 Matches.addDecl(Specialization, P.getAccess()); 6847 } 6848 6849 // Find the most specialized function template specialization. 6850 UnresolvedSetIterator Result 6851 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6852 D.getIdentifierLoc(), 6853 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6854 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6855 PDiag(diag::note_explicit_instantiation_candidate)); 6856 6857 if (Result == Matches.end()) 6858 return true; 6859 6860 // Ignore access control bits, we don't need them for redeclaration checking. 6861 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6862 6863 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6864 Diag(D.getIdentifierLoc(), 6865 diag::err_explicit_instantiation_member_function_not_instantiated) 6866 << Specialization 6867 << (Specialization->getTemplateSpecializationKind() == 6868 TSK_ExplicitSpecialization); 6869 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6870 return true; 6871 } 6872 6873 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6874 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6875 PrevDecl = Specialization; 6876 6877 if (PrevDecl) { 6878 bool HasNoEffect = false; 6879 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6880 PrevDecl, 6881 PrevDecl->getTemplateSpecializationKind(), 6882 PrevDecl->getPointOfInstantiation(), 6883 HasNoEffect)) 6884 return true; 6885 6886 // FIXME: We may still want to build some representation of this 6887 // explicit specialization. 6888 if (HasNoEffect) 6889 return (Decl*) 0; 6890 } 6891 6892 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6893 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6894 if (Attr) 6895 ProcessDeclAttributeList(S, Specialization, Attr); 6896 6897 if (TSK == TSK_ExplicitInstantiationDefinition) 6898 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6899 6900 // C++0x [temp.explicit]p2: 6901 // If the explicit instantiation is for a member function, a member class 6902 // or a static data member of a class template specialization, the name of 6903 // the class template specialization in the qualified-id for the member 6904 // name shall be a simple-template-id. 6905 // 6906 // C++98 has the same restriction, just worded differently. 6907 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6908 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6909 D.getCXXScopeSpec().isSet() && 6910 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6911 Diag(D.getIdentifierLoc(), 6912 diag::ext_explicit_instantiation_without_qualified_id) 6913 << Specialization << D.getCXXScopeSpec().getRange(); 6914 6915 CheckExplicitInstantiationScope(*this, 6916 FunTmpl? (NamedDecl *)FunTmpl 6917 : Specialization->getInstantiatedFromMemberFunction(), 6918 D.getIdentifierLoc(), 6919 D.getCXXScopeSpec().isSet()); 6920 6921 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6922 return (Decl*) 0; 6923} 6924 6925TypeResult 6926Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6927 const CXXScopeSpec &SS, IdentifierInfo *Name, 6928 SourceLocation TagLoc, SourceLocation NameLoc) { 6929 // This has to hold, because SS is expected to be defined. 6930 assert(Name && "Expected a name in a dependent tag"); 6931 6932 NestedNameSpecifier *NNS 6933 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6934 if (!NNS) 6935 return true; 6936 6937 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6938 6939 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6940 Diag(NameLoc, diag::err_dependent_tag_decl) 6941 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6942 return true; 6943 } 6944 6945 // Create the resulting type. 6946 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6947 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6948 6949 // Create type-source location information for this type. 6950 TypeLocBuilder TLB; 6951 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6952 TL.setElaboratedKeywordLoc(TagLoc); 6953 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6954 TL.setNameLoc(NameLoc); 6955 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6956} 6957 6958TypeResult 6959Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6960 const CXXScopeSpec &SS, const IdentifierInfo &II, 6961 SourceLocation IdLoc) { 6962 if (SS.isInvalid()) 6963 return true; 6964 6965 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6966 Diag(TypenameLoc, 6967 getLangOpts().CPlusPlus11 ? 6968 diag::warn_cxx98_compat_typename_outside_of_template : 6969 diag::ext_typename_outside_of_template) 6970 << FixItHint::CreateRemoval(TypenameLoc); 6971 6972 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6973 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6974 TypenameLoc, QualifierLoc, II, IdLoc); 6975 if (T.isNull()) 6976 return true; 6977 6978 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6979 if (isa<DependentNameType>(T)) { 6980 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 6981 TL.setElaboratedKeywordLoc(TypenameLoc); 6982 TL.setQualifierLoc(QualifierLoc); 6983 TL.setNameLoc(IdLoc); 6984 } else { 6985 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 6986 TL.setElaboratedKeywordLoc(TypenameLoc); 6987 TL.setQualifierLoc(QualifierLoc); 6988 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 6989 } 6990 6991 return CreateParsedType(T, TSI); 6992} 6993 6994TypeResult 6995Sema::ActOnTypenameType(Scope *S, 6996 SourceLocation TypenameLoc, 6997 const CXXScopeSpec &SS, 6998 SourceLocation TemplateKWLoc, 6999 TemplateTy TemplateIn, 7000 SourceLocation TemplateNameLoc, 7001 SourceLocation LAngleLoc, 7002 ASTTemplateArgsPtr TemplateArgsIn, 7003 SourceLocation RAngleLoc) { 7004 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 7005 Diag(TypenameLoc, 7006 getLangOpts().CPlusPlus11 ? 7007 diag::warn_cxx98_compat_typename_outside_of_template : 7008 diag::ext_typename_outside_of_template) 7009 << FixItHint::CreateRemoval(TypenameLoc); 7010 7011 // Translate the parser's template argument list in our AST format. 7012 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 7013 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 7014 7015 TemplateName Template = TemplateIn.get(); 7016 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 7017 // Construct a dependent template specialization type. 7018 assert(DTN && "dependent template has non-dependent name?"); 7019 assert(DTN->getQualifier() 7020 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 7021 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 7022 DTN->getQualifier(), 7023 DTN->getIdentifier(), 7024 TemplateArgs); 7025 7026 // Create source-location information for this type. 7027 TypeLocBuilder Builder; 7028 DependentTemplateSpecializationTypeLoc SpecTL 7029 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 7030 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 7031 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 7032 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7033 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7034 SpecTL.setLAngleLoc(LAngleLoc); 7035 SpecTL.setRAngleLoc(RAngleLoc); 7036 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7037 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7038 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 7039 } 7040 7041 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 7042 if (T.isNull()) 7043 return true; 7044 7045 // Provide source-location information for the template specialization type. 7046 TypeLocBuilder Builder; 7047 TemplateSpecializationTypeLoc SpecTL 7048 = Builder.push<TemplateSpecializationTypeLoc>(T); 7049 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7050 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7051 SpecTL.setLAngleLoc(LAngleLoc); 7052 SpecTL.setRAngleLoc(RAngleLoc); 7053 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7054 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7055 7056 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 7057 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 7058 TL.setElaboratedKeywordLoc(TypenameLoc); 7059 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7060 7061 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 7062 return CreateParsedType(T, TSI); 7063} 7064 7065 7066/// Determine whether this failed name lookup should be treated as being 7067/// disabled by a usage of std::enable_if. 7068static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7069 SourceRange &CondRange) { 7070 // We must be looking for a ::type... 7071 if (!II.isStr("type")) 7072 return false; 7073 7074 // ... within an explicitly-written template specialization... 7075 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7076 return false; 7077 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7078 TemplateSpecializationTypeLoc EnableIfTSTLoc = 7079 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 7080 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 7081 return false; 7082 const TemplateSpecializationType *EnableIfTST = 7083 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 7084 7085 // ... which names a complete class template declaration... 7086 const TemplateDecl *EnableIfDecl = 7087 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7088 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7089 return false; 7090 7091 // ... called "enable_if". 7092 const IdentifierInfo *EnableIfII = 7093 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7094 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7095 return false; 7096 7097 // Assume the first template argument is the condition. 7098 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 7099 return true; 7100} 7101 7102/// \brief Build the type that describes a C++ typename specifier, 7103/// e.g., "typename T::type". 7104QualType 7105Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7106 SourceLocation KeywordLoc, 7107 NestedNameSpecifierLoc QualifierLoc, 7108 const IdentifierInfo &II, 7109 SourceLocation IILoc) { 7110 CXXScopeSpec SS; 7111 SS.Adopt(QualifierLoc); 7112 7113 DeclContext *Ctx = computeDeclContext(SS); 7114 if (!Ctx) { 7115 // If the nested-name-specifier is dependent and couldn't be 7116 // resolved to a type, build a typename type. 7117 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7118 return Context.getDependentNameType(Keyword, 7119 QualifierLoc.getNestedNameSpecifier(), 7120 &II); 7121 } 7122 7123 // If the nested-name-specifier refers to the current instantiation, 7124 // the "typename" keyword itself is superfluous. In C++03, the 7125 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7126 // allows such extraneous "typename" keywords, and we retroactively 7127 // apply this DR to C++03 code with only a warning. In any case we continue. 7128 7129 if (RequireCompleteDeclContext(SS, Ctx)) 7130 return QualType(); 7131 7132 DeclarationName Name(&II); 7133 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7134 LookupQualifiedName(Result, Ctx); 7135 unsigned DiagID = 0; 7136 Decl *Referenced = 0; 7137 switch (Result.getResultKind()) { 7138 case LookupResult::NotFound: { 7139 // If we're looking up 'type' within a template named 'enable_if', produce 7140 // a more specific diagnostic. 7141 SourceRange CondRange; 7142 if (isEnableIf(QualifierLoc, II, CondRange)) { 7143 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7144 << Ctx << CondRange; 7145 return QualType(); 7146 } 7147 7148 DiagID = diag::err_typename_nested_not_found; 7149 break; 7150 } 7151 7152 case LookupResult::FoundUnresolvedValue: { 7153 // We found a using declaration that is a value. Most likely, the using 7154 // declaration itself is meant to have the 'typename' keyword. 7155 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7156 IILoc); 7157 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7158 << Name << Ctx << FullRange; 7159 if (UnresolvedUsingValueDecl *Using 7160 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7161 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7162 Diag(Loc, diag::note_using_value_decl_missing_typename) 7163 << FixItHint::CreateInsertion(Loc, "typename "); 7164 } 7165 } 7166 // Fall through to create a dependent typename type, from which we can recover 7167 // better. 7168 7169 case LookupResult::NotFoundInCurrentInstantiation: 7170 // Okay, it's a member of an unknown instantiation. 7171 return Context.getDependentNameType(Keyword, 7172 QualifierLoc.getNestedNameSpecifier(), 7173 &II); 7174 7175 case LookupResult::Found: 7176 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7177 // We found a type. Build an ElaboratedType, since the 7178 // typename-specifier was just sugar. 7179 return Context.getElaboratedType(ETK_Typename, 7180 QualifierLoc.getNestedNameSpecifier(), 7181 Context.getTypeDeclType(Type)); 7182 } 7183 7184 DiagID = diag::err_typename_nested_not_type; 7185 Referenced = Result.getFoundDecl(); 7186 break; 7187 7188 case LookupResult::FoundOverloaded: 7189 DiagID = diag::err_typename_nested_not_type; 7190 Referenced = *Result.begin(); 7191 break; 7192 7193 case LookupResult::Ambiguous: 7194 return QualType(); 7195 } 7196 7197 // If we get here, it's because name lookup did not find a 7198 // type. Emit an appropriate diagnostic and return an error. 7199 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7200 IILoc); 7201 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7202 if (Referenced) 7203 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7204 << Name; 7205 return QualType(); 7206} 7207 7208namespace { 7209 // See Sema::RebuildTypeInCurrentInstantiation 7210 class CurrentInstantiationRebuilder 7211 : public TreeTransform<CurrentInstantiationRebuilder> { 7212 SourceLocation Loc; 7213 DeclarationName Entity; 7214 7215 public: 7216 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7217 7218 CurrentInstantiationRebuilder(Sema &SemaRef, 7219 SourceLocation Loc, 7220 DeclarationName Entity) 7221 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7222 Loc(Loc), Entity(Entity) { } 7223 7224 /// \brief Determine whether the given type \p T has already been 7225 /// transformed. 7226 /// 7227 /// For the purposes of type reconstruction, a type has already been 7228 /// transformed if it is NULL or if it is not dependent. 7229 bool AlreadyTransformed(QualType T) { 7230 return T.isNull() || !T->isDependentType(); 7231 } 7232 7233 /// \brief Returns the location of the entity whose type is being 7234 /// rebuilt. 7235 SourceLocation getBaseLocation() { return Loc; } 7236 7237 /// \brief Returns the name of the entity whose type is being rebuilt. 7238 DeclarationName getBaseEntity() { return Entity; } 7239 7240 /// \brief Sets the "base" location and entity when that 7241 /// information is known based on another transformation. 7242 void setBase(SourceLocation Loc, DeclarationName Entity) { 7243 this->Loc = Loc; 7244 this->Entity = Entity; 7245 } 7246 7247 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7248 // Lambdas never need to be transformed. 7249 return E; 7250 } 7251 }; 7252} 7253 7254/// \brief Rebuilds a type within the context of the current instantiation. 7255/// 7256/// The type \p T is part of the type of an out-of-line member definition of 7257/// a class template (or class template partial specialization) that was parsed 7258/// and constructed before we entered the scope of the class template (or 7259/// partial specialization thereof). This routine will rebuild that type now 7260/// that we have entered the declarator's scope, which may produce different 7261/// canonical types, e.g., 7262/// 7263/// \code 7264/// template<typename T> 7265/// struct X { 7266/// typedef T* pointer; 7267/// pointer data(); 7268/// }; 7269/// 7270/// template<typename T> 7271/// typename X<T>::pointer X<T>::data() { ... } 7272/// \endcode 7273/// 7274/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7275/// since we do not know that we can look into X<T> when we parsed the type. 7276/// This function will rebuild the type, performing the lookup of "pointer" 7277/// in X<T> and returning an ElaboratedType whose canonical type is the same 7278/// as the canonical type of T*, allowing the return types of the out-of-line 7279/// definition and the declaration to match. 7280TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7281 SourceLocation Loc, 7282 DeclarationName Name) { 7283 if (!T || !T->getType()->isDependentType()) 7284 return T; 7285 7286 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7287 return Rebuilder.TransformType(T); 7288} 7289 7290ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7291 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7292 DeclarationName()); 7293 return Rebuilder.TransformExpr(E); 7294} 7295 7296bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7297 if (SS.isInvalid()) 7298 return true; 7299 7300 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7301 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7302 DeclarationName()); 7303 NestedNameSpecifierLoc Rebuilt 7304 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7305 if (!Rebuilt) 7306 return true; 7307 7308 SS.Adopt(Rebuilt); 7309 return false; 7310} 7311 7312/// \brief Rebuild the template parameters now that we know we're in a current 7313/// instantiation. 7314bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7315 TemplateParameterList *Params) { 7316 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7317 Decl *Param = Params->getParam(I); 7318 7319 // There is nothing to rebuild in a type parameter. 7320 if (isa<TemplateTypeParmDecl>(Param)) 7321 continue; 7322 7323 // Rebuild the template parameter list of a template template parameter. 7324 if (TemplateTemplateParmDecl *TTP 7325 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7326 if (RebuildTemplateParamsInCurrentInstantiation( 7327 TTP->getTemplateParameters())) 7328 return true; 7329 7330 continue; 7331 } 7332 7333 // Rebuild the type of a non-type template parameter. 7334 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7335 TypeSourceInfo *NewTSI 7336 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7337 NTTP->getLocation(), 7338 NTTP->getDeclName()); 7339 if (!NewTSI) 7340 return true; 7341 7342 if (NewTSI != NTTP->getTypeSourceInfo()) { 7343 NTTP->setTypeSourceInfo(NewTSI); 7344 NTTP->setType(NewTSI->getType()); 7345 } 7346 } 7347 7348 return false; 7349} 7350 7351/// \brief Produces a formatted string that describes the binding of 7352/// template parameters to template arguments. 7353std::string 7354Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7355 const TemplateArgumentList &Args) { 7356 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7357} 7358 7359std::string 7360Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7361 const TemplateArgument *Args, 7362 unsigned NumArgs) { 7363 SmallString<128> Str; 7364 llvm::raw_svector_ostream Out(Str); 7365 7366 if (!Params || Params->size() == 0 || NumArgs == 0) 7367 return std::string(); 7368 7369 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7370 if (I >= NumArgs) 7371 break; 7372 7373 if (I == 0) 7374 Out << "[with "; 7375 else 7376 Out << ", "; 7377 7378 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7379 Out << Id->getName(); 7380 } else { 7381 Out << '$' << I; 7382 } 7383 7384 Out << " = "; 7385 Args[I].print(getPrintingPolicy(), Out); 7386 } 7387 7388 Out << ']'; 7389 return Out.str(); 7390} 7391 7392void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7393 if (!FD) 7394 return; 7395 FD->setLateTemplateParsed(Flag); 7396} 7397 7398bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7399 DeclContext *DC = CurContext; 7400 7401 while (DC) { 7402 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7403 const FunctionDecl *FD = RD->isLocalClass(); 7404 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7405 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7406 return false; 7407 7408 DC = DC->getParent(); 7409 } 7410 return false; 7411} 7412