SemaTemplate.cpp revision 2521813d45e0af47b27673a095329ee33932d49c
1793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//
3793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//                     The LLVM Compiler Infrastructure
4793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//
5793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler// This file is distributed under the University of Illinois Open Source
6793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler// License. See LICENSE.TXT for details.
7793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//===----------------------------------------------------------------------===/
8793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//
9793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//  This file implements semantic analysis for C++ templates.
10793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler//===----------------------------------------------------------------------===/
11793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
12793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "TreeTransform.h"
13793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/ASTContext.h"
14793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/ASTConsumer.h"
15793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/DeclFriend.h"
16793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/DeclTemplate.h"
17793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/Expr.h"
18793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/ExprCXX.h"
19793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/RecursiveASTVisitor.h"
20793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/AST/TypeVisitor.h"
21793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Basic/LangOptions.h"
22793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Basic/PartialDiagnostic.h"
23793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/DeclSpec.h"
24793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/Lookup.h"
25793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/ParsedTemplate.h"
26793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/Scope.h"
27793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/SemaInternal.h"
28793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/Template.h"
29793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "clang/Sema/TemplateDeduction.h"
30793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "llvm/ADT/SmallBitVector.h"
31793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "llvm/ADT/SmallString.h"
32793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler#include "llvm/ADT/StringExtras.h"
33793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslerusing namespace clang;
34793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslerusing namespace sema;
35793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
36793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler// Exported for use by Parser.
37793ee12c6df9cad3806238d32528c49a3ff9331dNoah PreslerSourceRange
38793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslerclang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                              unsigned N) {
40793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (!N) return SourceRange();
41793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler}
43793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
44793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler/// \brief Determine whether the declaration found is acceptable as the name
45793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler/// of a template and, if so, return that template declaration. Otherwise,
46793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler/// returns NULL.
47793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslerstatic NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                           NamedDecl *Orig,
49793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                           bool AllowFunctionTemplates) {
50793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  NamedDecl *D = Orig->getUnderlyingDecl();
51793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
52793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (isa<TemplateDecl>(D)) {
53793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      return 0;
55793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
56793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    return Orig;
57793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
58793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
59793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // C++ [temp.local]p1:
61793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   Like normal (non-template) classes, class templates have an
62793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   injected-class-name (Clause 9). The injected-class-name
63793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   can be used with or without a template-argument-list. When
64793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   it is used without a template-argument-list, it is
65793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   equivalent to the injected-class-name followed by the
66793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   template-parameters of the class template enclosed in
67793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   <>. When it is used with a template-argument-list, it
68793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   refers to the specified class template specialization,
69793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   which could be the current specialization or another
70793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    //   specialization.
71793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (Record->isInjectedClassName()) {
72793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      Record = cast<CXXRecordDecl>(Record->getDeclContext());
73793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      if (Record->getDescribedClassTemplate())
74793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler        return Record->getDescribedClassTemplate();
75793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
76793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      if (ClassTemplateSpecializationDecl *Spec
77793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler        return Spec->getSpecializedTemplate();
79793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    }
80793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
81793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    return 0;
82793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
83793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
84793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  return 0;
85793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler}
86793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
87793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslervoid Sema::FilterAcceptableTemplateNames(LookupResult &R,
88793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                         bool AllowFunctionTemplates) {
89793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // The set of class templates we've already seen.
90793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  LookupResult::Filter filter = R.makeFilter();
92793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  while (filter.hasNext()) {
93793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    NamedDecl *Orig = filter.next();
94793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                               AllowFunctionTemplates);
96793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (!Repl)
97793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      filter.erase();
98793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    else if (Repl != Orig) {
99793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
100793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // C++ [temp.local]p3:
101793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   A lookup that finds an injected-class-name (10.2) can result in an
102793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   ambiguity in certain cases (for example, if it is found in more than
103793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   one base class). If all of the injected-class-names that are found
104793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   refer to specializations of the same class template, and if the name
105793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   is used as a template-name, the reference refers to the class
106793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   template itself and not a specialization thereof, and is not
107793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   ambiguous.
108793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler        if (!ClassTemplates.insert(ClassTmpl)) {
110793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler          filter.erase();
111793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler          continue;
112793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler        }
113793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
114793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // FIXME: we promote access to public here as a workaround to
115793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // the fact that LookupResult doesn't let us remember that we
116793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // found this template through a particular injected class name,
117793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // which means we end up doing nasty things to the invariants.
118793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // Pretending that access is public is *much* safer.
119793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      filter.replace(Repl, AS_public);
120793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    }
121793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
122793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  filter.done();
123793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler}
124793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
125793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslerbool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                         bool AllowFunctionTemplates) {
127793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      return true;
130793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
131793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  return false;
132793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler}
133793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
134793ee12c6df9cad3806238d32528c49a3ff9331dNoah PreslerTemplateNameKind Sema::isTemplateName(Scope *S,
135793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      CXXScopeSpec &SS,
136793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      bool hasTemplateKeyword,
137793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      UnqualifiedId &Name,
138793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      ParsedType ObjectTypePtr,
139793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      bool EnteringContext,
140793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      TemplateTy &TemplateResult,
141793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                      bool &MemberOfUnknownSpecialization) {
142793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  assert(getLangOpts().CPlusPlus && "No template names in C!");
143793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
144793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  DeclarationName TName;
145793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  MemberOfUnknownSpecialization = false;
146793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
147793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  switch (Name.getKind()) {
148793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  case UnqualifiedId::IK_Identifier:
149793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    TName = DeclarationName(Name.Identifier);
150793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    break;
151793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
152793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  case UnqualifiedId::IK_OperatorFunctionId:
153793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    TName = Context.DeclarationNames.getCXXOperatorName(
154793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                              Name.OperatorFunctionId.Operator);
155793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    break;
156793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
157793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  case UnqualifiedId::IK_LiteralOperatorId:
158793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    break;
160793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
161793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  default:
162793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    return TNK_Non_template;
163793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
164793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
165793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  QualType ObjectType = ObjectTypePtr.get();
166793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
167793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                     MemberOfUnknownSpecialization);
170793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (R.empty()) return TNK_Non_template;
171793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (R.isAmbiguous()) {
172793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // Suppress diagnostics;  we'll redo this lookup later.
173793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    R.suppressDiagnostics();
174793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
175793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // FIXME: we might have ambiguous templates, in which case we
176793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // should at least parse them properly!
177793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    return TNK_Non_template;
178793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
179793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
180793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  TemplateName Template;
181793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  TemplateNameKind TemplateKind;
182793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
183793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  unsigned ResultCount = R.end() - R.begin();
184793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (ResultCount > 1) {
185793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // We assume that we'll preserve the qualifier from a function
186793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // template name in other ways.
187793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    TemplateKind = TNK_Function_template;
189793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
190793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // We'll do this lookup again later.
191793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    R.suppressDiagnostics();
192793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  } else {
193793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
195793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (SS.isSet() && !SS.isInvalid()) {
196793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      NestedNameSpecifier *Qualifier
197793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      Template = Context.getQualifiedTemplateName(Qualifier,
199793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                                  hasTemplateKeyword, TD);
200793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    } else {
201793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      Template = TemplateName(TD);
202793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    }
203793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
204793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (isa<FunctionTemplateDecl>(TD)) {
205793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      TemplateKind = TNK_Function_template;
206793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
207793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // We'll do this lookup again later.
208793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      R.suppressDiagnostics();
209793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    } else {
210793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler             isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      TemplateKind =
213793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler          isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    }
215793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
216793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
217793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  TemplateResult = TemplateTy::make(Template);
218793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  return TemplateKind;
219793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler}
220793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
221793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslerbool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                       SourceLocation IILoc,
223793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                       Scope *S,
224793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                       const CXXScopeSpec *SS,
225793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                       TemplateTy &SuggestedTemplate,
226793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                                       TemplateNameKind &SuggestedKind) {
227793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // We can't recover unless there's a dependent scope specifier preceding the
228793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // template name.
229793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // FIXME: Typo correction?
230793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      computeDeclContext(*SS))
232793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    return false;
233793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
234793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // The code is missing a 'template' keyword prior to the dependent template
235793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // name.
236793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  Diag(IILoc, diag::err_template_kw_missing)
238793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    << Qualifier << II.getName()
239793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    << FixItHint::CreateInsertion(IILoc, "template ");
240793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  SuggestedTemplate
241793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  SuggestedKind = TNK_Dependent_template_name;
243793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  return true;
244793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler}
245793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
246793ee12c6df9cad3806238d32528c49a3ff9331dNoah Preslervoid Sema::LookupTemplateName(LookupResult &Found,
247793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                              Scope *S, CXXScopeSpec &SS,
248793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                              QualType ObjectType,
249793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                              bool EnteringContext,
250793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler                              bool &MemberOfUnknownSpecialization) {
251793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  // Determine where to perform name lookup
252793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  MemberOfUnknownSpecialization = false;
253793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  DeclContext *LookupCtx = 0;
254793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  bool isDependent = false;
255793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (!ObjectType.isNull()) {
256793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // This nested-name-specifier occurs in a member access expression, e.g.,
257793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // x->B::f, and we are looking into the type of the object.
258793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    LookupCtx = computeDeclContext(ObjectType);
260793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    isDependent = ObjectType->isDependentType();
261793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    assert((isDependent || !ObjectType->isIncompleteType() ||
262793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler            ObjectType->castAs<TagType>()->isBeingDefined()) &&
263793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler           "Caller should have completed object type");
264793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
265793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // Template names cannot appear inside an Objective-C class or object type.
266793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (ObjectType->isObjCObjectOrInterfaceType()) {
267793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      Found.clear();
268793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      return;
269793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    }
270793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  } else if (SS.isSet()) {
271793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // This nested-name-specifier occurs after another nested-name-specifier,
272793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // so long into the context associated with the prior nested-name-specifier.
273793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    LookupCtx = computeDeclContext(SS, EnteringContext);
274793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    isDependent = isDependentScopeSpecifier(SS);
275793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
276793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // The declaration context must be complete.
277793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      return;
279793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  }
280793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler
281793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  bool ObjectTypeSearchedInScope = false;
282793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  bool AllowFunctionTemplatesInLookup = true;
283793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler  if (LookupCtx) {
284793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // Perform "qualified" name lookup into the declaration context we
285793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // computed, which is either the type of the base of a member access
286793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // expression or the declaration context associated with a prior
287793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    // nested-name-specifier.
288793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    LookupQualifiedName(Found, LookupCtx);
289793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    if (!ObjectType.isNull() && Found.empty()) {
290793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      // C++ [basic.lookup.classref]p1:
291793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   In a class member access expression (5.2.5), if the . or -> token is
292793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   immediately followed by an identifier followed by a <, the
293793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   identifier must be looked up to determine whether the < is the
294793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   beginning of a template argument list (14.2) or a less-than operator.
295793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   The identifier is first looked up in the class of the object
296793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   expression. If the identifier is not found, it is then looked up in
297793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   the context of the entire postfix-expression and shall name a class
298793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      //   or function template.
299793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      if (S) LookupName(Found, S);
300793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      ObjectTypeSearchedInScope = true;
301793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler      AllowFunctionTemplatesInLookup = false;
302793ee12c6df9cad3806238d32528c49a3ff9331dNoah Presler    }
303  } else if (isDependent && (!S || ObjectType.isNull())) {
304    // We cannot look into a dependent object type or nested nme
305    // specifier.
306    MemberOfUnknownSpecialization = true;
307    return;
308  } else {
309    // Perform unqualified name lookup in the current scope.
310    LookupName(Found, S);
311
312    if (!ObjectType.isNull())
313      AllowFunctionTemplatesInLookup = false;
314  }
315
316  if (Found.empty() && !isDependent) {
317    // If we did not find any names, attempt to correct any typos.
318    DeclarationName Name = Found.getLookupName();
319    Found.clear();
320    // Simple filter callback that, for keywords, only accepts the C++ *_cast
321    CorrectionCandidateCallback FilterCCC;
322    FilterCCC.WantTypeSpecifiers = false;
323    FilterCCC.WantExpressionKeywords = false;
324    FilterCCC.WantRemainingKeywords = false;
325    FilterCCC.WantCXXNamedCasts = true;
326    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                               Found.getLookupKind(), S, &SS,
328                                               FilterCCC, LookupCtx)) {
329      Found.setLookupName(Corrected.getCorrection());
330      if (Corrected.getCorrectionDecl())
331        Found.addDecl(Corrected.getCorrectionDecl());
332      FilterAcceptableTemplateNames(Found);
333      if (!Found.empty()) {
334        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
335        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
336        if (LookupCtx) {
337          bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
338                                  Name.getAsString() == CorrectedStr;
339          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
340            << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr
341            << SS.getRange()
342            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
343                                            CorrectedStr);
344        } else {
345          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
346            << Name << CorrectedQuotedStr
347            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
348        }
349        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
350          Diag(Template->getLocation(), diag::note_previous_decl)
351            << CorrectedQuotedStr;
352      }
353    } else {
354      Found.setLookupName(Name);
355    }
356  }
357
358  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
359  if (Found.empty()) {
360    if (isDependent)
361      MemberOfUnknownSpecialization = true;
362    return;
363  }
364
365  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
366      !(getLangOpts().CPlusPlus11 && !Found.empty())) {
367    // C++03 [basic.lookup.classref]p1:
368    //   [...] If the lookup in the class of the object expression finds a
369    //   template, the name is also looked up in the context of the entire
370    //   postfix-expression and [...]
371    //
372    // Note: C++11 does not perform this second lookup.
373    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
374                            LookupOrdinaryName);
375    LookupName(FoundOuter, S);
376    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
377
378    if (FoundOuter.empty()) {
379      //   - if the name is not found, the name found in the class of the
380      //     object expression is used, otherwise
381    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
382               FoundOuter.isAmbiguous()) {
383      //   - if the name is found in the context of the entire
384      //     postfix-expression and does not name a class template, the name
385      //     found in the class of the object expression is used, otherwise
386      FoundOuter.clear();
387    } else if (!Found.isSuppressingDiagnostics()) {
388      //   - if the name found is a class template, it must refer to the same
389      //     entity as the one found in the class of the object expression,
390      //     otherwise the program is ill-formed.
391      if (!Found.isSingleResult() ||
392          Found.getFoundDecl()->getCanonicalDecl()
393            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
394        Diag(Found.getNameLoc(),
395             diag::ext_nested_name_member_ref_lookup_ambiguous)
396          << Found.getLookupName()
397          << ObjectType;
398        Diag(Found.getRepresentativeDecl()->getLocation(),
399             diag::note_ambig_member_ref_object_type)
400          << ObjectType;
401        Diag(FoundOuter.getFoundDecl()->getLocation(),
402             diag::note_ambig_member_ref_scope);
403
404        // Recover by taking the template that we found in the object
405        // expression's type.
406      }
407    }
408  }
409}
410
411/// ActOnDependentIdExpression - Handle a dependent id-expression that
412/// was just parsed.  This is only possible with an explicit scope
413/// specifier naming a dependent type.
414ExprResult
415Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
416                                 SourceLocation TemplateKWLoc,
417                                 const DeclarationNameInfo &NameInfo,
418                                 bool isAddressOfOperand,
419                           const TemplateArgumentListInfo *TemplateArgs) {
420  DeclContext *DC = getFunctionLevelDeclContext();
421
422  if (!isAddressOfOperand &&
423      isa<CXXMethodDecl>(DC) &&
424      cast<CXXMethodDecl>(DC)->isInstance()) {
425    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
426
427    // Since the 'this' expression is synthesized, we don't need to
428    // perform the double-lookup check.
429    NamedDecl *FirstQualifierInScope = 0;
430
431    return Owned(CXXDependentScopeMemberExpr::Create(Context,
432                                                     /*This*/ 0, ThisType,
433                                                     /*IsArrow*/ true,
434                                                     /*Op*/ SourceLocation(),
435                                               SS.getWithLocInContext(Context),
436                                                     TemplateKWLoc,
437                                                     FirstQualifierInScope,
438                                                     NameInfo,
439                                                     TemplateArgs));
440  }
441
442  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
443}
444
445ExprResult
446Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
447                                SourceLocation TemplateKWLoc,
448                                const DeclarationNameInfo &NameInfo,
449                                const TemplateArgumentListInfo *TemplateArgs) {
450  return Owned(DependentScopeDeclRefExpr::Create(Context,
451                                               SS.getWithLocInContext(Context),
452                                                 TemplateKWLoc,
453                                                 NameInfo,
454                                                 TemplateArgs));
455}
456
457/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
458/// that the template parameter 'PrevDecl' is being shadowed by a new
459/// declaration at location Loc. Returns true to indicate that this is
460/// an error, and false otherwise.
461void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
462  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
463
464  // Microsoft Visual C++ permits template parameters to be shadowed.
465  if (getLangOpts().MicrosoftExt)
466    return;
467
468  // C++ [temp.local]p4:
469  //   A template-parameter shall not be redeclared within its
470  //   scope (including nested scopes).
471  Diag(Loc, diag::err_template_param_shadow)
472    << cast<NamedDecl>(PrevDecl)->getDeclName();
473  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
474  return;
475}
476
477/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
478/// the parameter D to reference the templated declaration and return a pointer
479/// to the template declaration. Otherwise, do nothing to D and return null.
480TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
481  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
482    D = Temp->getTemplatedDecl();
483    return Temp;
484  }
485  return 0;
486}
487
488ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
489                                             SourceLocation EllipsisLoc) const {
490  assert(Kind == Template &&
491         "Only template template arguments can be pack expansions here");
492  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
493         "Template template argument pack expansion without packs");
494  ParsedTemplateArgument Result(*this);
495  Result.EllipsisLoc = EllipsisLoc;
496  return Result;
497}
498
499static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
500                                            const ParsedTemplateArgument &Arg) {
501
502  switch (Arg.getKind()) {
503  case ParsedTemplateArgument::Type: {
504    TypeSourceInfo *DI;
505    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
506    if (!DI)
507      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
508    return TemplateArgumentLoc(TemplateArgument(T), DI);
509  }
510
511  case ParsedTemplateArgument::NonType: {
512    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
513    return TemplateArgumentLoc(TemplateArgument(E), E);
514  }
515
516  case ParsedTemplateArgument::Template: {
517    TemplateName Template = Arg.getAsTemplate().get();
518    TemplateArgument TArg;
519    if (Arg.getEllipsisLoc().isValid())
520      TArg = TemplateArgument(Template, Optional<unsigned int>());
521    else
522      TArg = Template;
523    return TemplateArgumentLoc(TArg,
524                               Arg.getScopeSpec().getWithLocInContext(
525                                                              SemaRef.Context),
526                               Arg.getLocation(),
527                               Arg.getEllipsisLoc());
528  }
529  }
530
531  llvm_unreachable("Unhandled parsed template argument");
532}
533
534/// \brief Translates template arguments as provided by the parser
535/// into template arguments used by semantic analysis.
536void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
537                                      TemplateArgumentListInfo &TemplateArgs) {
538 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
539   TemplateArgs.addArgument(translateTemplateArgument(*this,
540                                                      TemplateArgsIn[I]));
541}
542
543static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
544                                                 SourceLocation Loc,
545                                                 IdentifierInfo *Name) {
546  NamedDecl *PrevDecl = SemaRef.LookupSingleName(
547      S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
548  if (PrevDecl && PrevDecl->isTemplateParameter())
549    SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
550}
551
552/// ActOnTypeParameter - Called when a C++ template type parameter
553/// (e.g., "typename T") has been parsed. Typename specifies whether
554/// the keyword "typename" was used to declare the type parameter
555/// (otherwise, "class" was used), and KeyLoc is the location of the
556/// "class" or "typename" keyword. ParamName is the name of the
557/// parameter (NULL indicates an unnamed template parameter) and
558/// ParamNameLoc is the location of the parameter name (if any).
559/// If the type parameter has a default argument, it will be added
560/// later via ActOnTypeParameterDefault.
561Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
562                               SourceLocation EllipsisLoc,
563                               SourceLocation KeyLoc,
564                               IdentifierInfo *ParamName,
565                               SourceLocation ParamNameLoc,
566                               unsigned Depth, unsigned Position,
567                               SourceLocation EqualLoc,
568                               ParsedType DefaultArg) {
569  assert(S->isTemplateParamScope() &&
570         "Template type parameter not in template parameter scope!");
571  bool Invalid = false;
572
573  SourceLocation Loc = ParamNameLoc;
574  if (!ParamName)
575    Loc = KeyLoc;
576
577  TemplateTypeParmDecl *Param
578    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
579                                   KeyLoc, Loc, Depth, Position, ParamName,
580                                   Typename, Ellipsis);
581  Param->setAccess(AS_public);
582  if (Invalid)
583    Param->setInvalidDecl();
584
585  if (ParamName) {
586    maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
587
588    // Add the template parameter into the current scope.
589    S->AddDecl(Param);
590    IdResolver.AddDecl(Param);
591  }
592
593  // C++0x [temp.param]p9:
594  //   A default template-argument may be specified for any kind of
595  //   template-parameter that is not a template parameter pack.
596  if (DefaultArg && Ellipsis) {
597    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
598    DefaultArg = ParsedType();
599  }
600
601  // Handle the default argument, if provided.
602  if (DefaultArg) {
603    TypeSourceInfo *DefaultTInfo;
604    GetTypeFromParser(DefaultArg, &DefaultTInfo);
605
606    assert(DefaultTInfo && "expected source information for type");
607
608    // Check for unexpanded parameter packs.
609    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
610                                        UPPC_DefaultArgument))
611      return Param;
612
613    // Check the template argument itself.
614    if (CheckTemplateArgument(Param, DefaultTInfo)) {
615      Param->setInvalidDecl();
616      return Param;
617    }
618
619    Param->setDefaultArgument(DefaultTInfo, false);
620  }
621
622  return Param;
623}
624
625/// \brief Check that the type of a non-type template parameter is
626/// well-formed.
627///
628/// \returns the (possibly-promoted) parameter type if valid;
629/// otherwise, produces a diagnostic and returns a NULL type.
630QualType
631Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
632  // We don't allow variably-modified types as the type of non-type template
633  // parameters.
634  if (T->isVariablyModifiedType()) {
635    Diag(Loc, diag::err_variably_modified_nontype_template_param)
636      << T;
637    return QualType();
638  }
639
640  // C++ [temp.param]p4:
641  //
642  // A non-type template-parameter shall have one of the following
643  // (optionally cv-qualified) types:
644  //
645  //       -- integral or enumeration type,
646  if (T->isIntegralOrEnumerationType() ||
647      //   -- pointer to object or pointer to function,
648      T->isPointerType() ||
649      //   -- reference to object or reference to function,
650      T->isReferenceType() ||
651      //   -- pointer to member,
652      T->isMemberPointerType() ||
653      //   -- std::nullptr_t.
654      T->isNullPtrType() ||
655      // If T is a dependent type, we can't do the check now, so we
656      // assume that it is well-formed.
657      T->isDependentType()) {
658    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
659    // are ignored when determining its type.
660    return T.getUnqualifiedType();
661  }
662
663  // C++ [temp.param]p8:
664  //
665  //   A non-type template-parameter of type "array of T" or
666  //   "function returning T" is adjusted to be of type "pointer to
667  //   T" or "pointer to function returning T", respectively.
668  else if (T->isArrayType())
669    // FIXME: Keep the type prior to promotion?
670    return Context.getArrayDecayedType(T);
671  else if (T->isFunctionType())
672    // FIXME: Keep the type prior to promotion?
673    return Context.getPointerType(T);
674
675  Diag(Loc, diag::err_template_nontype_parm_bad_type)
676    << T;
677
678  return QualType();
679}
680
681Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
682                                          unsigned Depth,
683                                          unsigned Position,
684                                          SourceLocation EqualLoc,
685                                          Expr *Default) {
686  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
687  QualType T = TInfo->getType();
688
689  assert(S->isTemplateParamScope() &&
690         "Non-type template parameter not in template parameter scope!");
691  bool Invalid = false;
692
693  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694  if (T.isNull()) {
695    T = Context.IntTy; // Recover with an 'int' type.
696    Invalid = true;
697  }
698
699  IdentifierInfo *ParamName = D.getIdentifier();
700  bool IsParameterPack = D.hasEllipsis();
701  NonTypeTemplateParmDecl *Param
702    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
703                                      D.getLocStart(),
704                                      D.getIdentifierLoc(),
705                                      Depth, Position, ParamName, T,
706                                      IsParameterPack, TInfo);
707  Param->setAccess(AS_public);
708
709  if (Invalid)
710    Param->setInvalidDecl();
711
712  if (ParamName) {
713    maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
714                                         ParamName);
715
716    // Add the template parameter into the current scope.
717    S->AddDecl(Param);
718    IdResolver.AddDecl(Param);
719  }
720
721  // C++0x [temp.param]p9:
722  //   A default template-argument may be specified for any kind of
723  //   template-parameter that is not a template parameter pack.
724  if (Default && IsParameterPack) {
725    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
726    Default = 0;
727  }
728
729  // Check the well-formedness of the default template argument, if provided.
730  if (Default) {
731    // Check for unexpanded parameter packs.
732    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
733      return Param;
734
735    TemplateArgument Converted;
736    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
737    if (DefaultRes.isInvalid()) {
738      Param->setInvalidDecl();
739      return Param;
740    }
741    Default = DefaultRes.take();
742
743    Param->setDefaultArgument(Default, false);
744  }
745
746  return Param;
747}
748
749/// ActOnTemplateTemplateParameter - Called when a C++ template template
750/// parameter (e.g. T in template <template \<typename> class T> class array)
751/// has been parsed. S is the current scope.
752Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
753                                           SourceLocation TmpLoc,
754                                           TemplateParameterList *Params,
755                                           SourceLocation EllipsisLoc,
756                                           IdentifierInfo *Name,
757                                           SourceLocation NameLoc,
758                                           unsigned Depth,
759                                           unsigned Position,
760                                           SourceLocation EqualLoc,
761                                           ParsedTemplateArgument Default) {
762  assert(S->isTemplateParamScope() &&
763         "Template template parameter not in template parameter scope!");
764
765  // Construct the parameter object.
766  bool IsParameterPack = EllipsisLoc.isValid();
767  TemplateTemplateParmDecl *Param =
768    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
769                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
770                                     Depth, Position, IsParameterPack,
771                                     Name, Params);
772  Param->setAccess(AS_public);
773
774  // If the template template parameter has a name, then link the identifier
775  // into the scope and lookup mechanisms.
776  if (Name) {
777    maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
778
779    S->AddDecl(Param);
780    IdResolver.AddDecl(Param);
781  }
782
783  if (Params->size() == 0) {
784    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
785    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
786    Param->setInvalidDecl();
787  }
788
789  // C++0x [temp.param]p9:
790  //   A default template-argument may be specified for any kind of
791  //   template-parameter that is not a template parameter pack.
792  if (IsParameterPack && !Default.isInvalid()) {
793    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
794    Default = ParsedTemplateArgument();
795  }
796
797  if (!Default.isInvalid()) {
798    // Check only that we have a template template argument. We don't want to
799    // try to check well-formedness now, because our template template parameter
800    // might have dependent types in its template parameters, which we wouldn't
801    // be able to match now.
802    //
803    // If none of the template template parameter's template arguments mention
804    // other template parameters, we could actually perform more checking here.
805    // However, it isn't worth doing.
806    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
807    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
808      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
809        << DefaultArg.getSourceRange();
810      return Param;
811    }
812
813    // Check for unexpanded parameter packs.
814    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
815                                        DefaultArg.getArgument().getAsTemplate(),
816                                        UPPC_DefaultArgument))
817      return Param;
818
819    Param->setDefaultArgument(DefaultArg, false);
820  }
821
822  return Param;
823}
824
825/// ActOnTemplateParameterList - Builds a TemplateParameterList that
826/// contains the template parameters in Params/NumParams.
827TemplateParameterList *
828Sema::ActOnTemplateParameterList(unsigned Depth,
829                                 SourceLocation ExportLoc,
830                                 SourceLocation TemplateLoc,
831                                 SourceLocation LAngleLoc,
832                                 Decl **Params, unsigned NumParams,
833                                 SourceLocation RAngleLoc) {
834  if (ExportLoc.isValid())
835    Diag(ExportLoc, diag::warn_template_export_unsupported);
836
837  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
838                                       (NamedDecl**)Params, NumParams,
839                                       RAngleLoc);
840}
841
842static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
843  if (SS.isSet())
844    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
845}
846
847DeclResult
848Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
849                         SourceLocation KWLoc, CXXScopeSpec &SS,
850                         IdentifierInfo *Name, SourceLocation NameLoc,
851                         AttributeList *Attr,
852                         TemplateParameterList *TemplateParams,
853                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
854                         unsigned NumOuterTemplateParamLists,
855                         TemplateParameterList** OuterTemplateParamLists) {
856  assert(TemplateParams && TemplateParams->size() > 0 &&
857         "No template parameters");
858  assert(TUK != TUK_Reference && "Can only declare or define class templates");
859  bool Invalid = false;
860
861  // Check that we can declare a template here.
862  if (CheckTemplateDeclScope(S, TemplateParams))
863    return true;
864
865  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
866  assert(Kind != TTK_Enum && "can't build template of enumerated type");
867
868  // There is no such thing as an unnamed class template.
869  if (!Name) {
870    Diag(KWLoc, diag::err_template_unnamed_class);
871    return true;
872  }
873
874  // Find any previous declaration with this name. For a friend with no
875  // scope explicitly specified, we only look for tag declarations (per
876  // C++11 [basic.lookup.elab]p2).
877  DeclContext *SemanticContext;
878  LookupResult Previous(*this, Name, NameLoc,
879                        (SS.isEmpty() && TUK == TUK_Friend)
880                          ? LookupTagName : LookupOrdinaryName,
881                        ForRedeclaration);
882  if (SS.isNotEmpty() && !SS.isInvalid()) {
883    SemanticContext = computeDeclContext(SS, true);
884    if (!SemanticContext) {
885      // FIXME: Horrible, horrible hack! We can't currently represent this
886      // in the AST, and historically we have just ignored such friend
887      // class templates, so don't complain here.
888      if (TUK != TUK_Friend)
889        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
890          << SS.getScopeRep() << SS.getRange();
891      return true;
892    }
893
894    if (RequireCompleteDeclContext(SS, SemanticContext))
895      return true;
896
897    // If we're adding a template to a dependent context, we may need to
898    // rebuilding some of the types used within the template parameter list,
899    // now that we know what the current instantiation is.
900    if (SemanticContext->isDependentContext()) {
901      ContextRAII SavedContext(*this, SemanticContext);
902      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
903        Invalid = true;
904    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
905      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
906
907    LookupQualifiedName(Previous, SemanticContext);
908  } else {
909    SemanticContext = CurContext;
910    LookupName(Previous, S);
911  }
912
913  if (Previous.isAmbiguous())
914    return true;
915
916  NamedDecl *PrevDecl = 0;
917  if (Previous.begin() != Previous.end())
918    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
919
920  // If there is a previous declaration with the same name, check
921  // whether this is a valid redeclaration.
922  ClassTemplateDecl *PrevClassTemplate
923    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
924
925  // We may have found the injected-class-name of a class template,
926  // class template partial specialization, or class template specialization.
927  // In these cases, grab the template that is being defined or specialized.
928  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
929      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
930    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
931    PrevClassTemplate
932      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
933    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
934      PrevClassTemplate
935        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
936            ->getSpecializedTemplate();
937    }
938  }
939
940  if (TUK == TUK_Friend) {
941    // C++ [namespace.memdef]p3:
942    //   [...] When looking for a prior declaration of a class or a function
943    //   declared as a friend, and when the name of the friend class or
944    //   function is neither a qualified name nor a template-id, scopes outside
945    //   the innermost enclosing namespace scope are not considered.
946    if (!SS.isSet()) {
947      DeclContext *OutermostContext = CurContext;
948      while (!OutermostContext->isFileContext())
949        OutermostContext = OutermostContext->getLookupParent();
950
951      if (PrevDecl &&
952          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
953           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
954        SemanticContext = PrevDecl->getDeclContext();
955      } else {
956        // Declarations in outer scopes don't matter. However, the outermost
957        // context we computed is the semantic context for our new
958        // declaration.
959        PrevDecl = PrevClassTemplate = 0;
960        SemanticContext = OutermostContext;
961
962        // Check that the chosen semantic context doesn't already contain a
963        // declaration of this name as a non-tag type.
964        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
965                              ForRedeclaration);
966        DeclContext *LookupContext = SemanticContext;
967        while (LookupContext->isTransparentContext())
968          LookupContext = LookupContext->getLookupParent();
969        LookupQualifiedName(Previous, LookupContext);
970
971        if (Previous.isAmbiguous())
972          return true;
973
974        if (Previous.begin() != Previous.end())
975          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
976      }
977    }
978  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
979    PrevDecl = PrevClassTemplate = 0;
980
981  if (PrevClassTemplate) {
982    // Ensure that the template parameter lists are compatible. Skip this check
983    // for a friend in a dependent context: the template parameter list itself
984    // could be dependent.
985    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
986        !TemplateParameterListsAreEqual(TemplateParams,
987                                   PrevClassTemplate->getTemplateParameters(),
988                                        /*Complain=*/true,
989                                        TPL_TemplateMatch))
990      return true;
991
992    // C++ [temp.class]p4:
993    //   In a redeclaration, partial specialization, explicit
994    //   specialization or explicit instantiation of a class template,
995    //   the class-key shall agree in kind with the original class
996    //   template declaration (7.1.5.3).
997    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
998    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
999                                      TUK == TUK_Definition,  KWLoc, *Name)) {
1000      Diag(KWLoc, diag::err_use_with_wrong_tag)
1001        << Name
1002        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1003      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1004      Kind = PrevRecordDecl->getTagKind();
1005    }
1006
1007    // Check for redefinition of this class template.
1008    if (TUK == TUK_Definition) {
1009      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1010        Diag(NameLoc, diag::err_redefinition) << Name;
1011        Diag(Def->getLocation(), diag::note_previous_definition);
1012        // FIXME: Would it make sense to try to "forget" the previous
1013        // definition, as part of error recovery?
1014        return true;
1015      }
1016    }
1017  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1018    // Maybe we will complain about the shadowed template parameter.
1019    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1020    // Just pretend that we didn't see the previous declaration.
1021    PrevDecl = 0;
1022  } else if (PrevDecl) {
1023    // C++ [temp]p5:
1024    //   A class template shall not have the same name as any other
1025    //   template, class, function, object, enumeration, enumerator,
1026    //   namespace, or type in the same scope (3.3), except as specified
1027    //   in (14.5.4).
1028    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1029    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1030    return true;
1031  }
1032
1033  // Check the template parameter list of this declaration, possibly
1034  // merging in the template parameter list from the previous class
1035  // template declaration. Skip this check for a friend in a dependent
1036  // context, because the template parameter list might be dependent.
1037  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1038      CheckTemplateParameterList(
1039          TemplateParams,
1040          PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1041          (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1042           SemanticContext->isDependentContext())
1043              ? TPC_ClassTemplateMember
1044              : TUK == TUK_Friend ? TPC_FriendClassTemplate
1045                                  : TPC_ClassTemplate))
1046    Invalid = true;
1047
1048  if (SS.isSet()) {
1049    // If the name of the template was qualified, we must be defining the
1050    // template out-of-line.
1051    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1052      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1053                                      : diag::err_member_def_does_not_match)
1054        << Name << SemanticContext << SS.getRange();
1055      Invalid = true;
1056    }
1057  }
1058
1059  CXXRecordDecl *NewClass =
1060    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1061                          PrevClassTemplate?
1062                            PrevClassTemplate->getTemplatedDecl() : 0,
1063                          /*DelayTypeCreation=*/true);
1064  SetNestedNameSpecifier(NewClass, SS);
1065  if (NumOuterTemplateParamLists > 0)
1066    NewClass->setTemplateParameterListsInfo(Context,
1067                                            NumOuterTemplateParamLists,
1068                                            OuterTemplateParamLists);
1069
1070  // Add alignment attributes if necessary; these attributes are checked when
1071  // the ASTContext lays out the structure.
1072  if (TUK == TUK_Definition) {
1073    AddAlignmentAttributesForRecord(NewClass);
1074    AddMsStructLayoutForRecord(NewClass);
1075  }
1076
1077  ClassTemplateDecl *NewTemplate
1078    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1079                                DeclarationName(Name), TemplateParams,
1080                                NewClass, PrevClassTemplate);
1081  NewClass->setDescribedClassTemplate(NewTemplate);
1082
1083  if (ModulePrivateLoc.isValid())
1084    NewTemplate->setModulePrivate();
1085
1086  // Build the type for the class template declaration now.
1087  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1088  T = Context.getInjectedClassNameType(NewClass, T);
1089  assert(T->isDependentType() && "Class template type is not dependent?");
1090  (void)T;
1091
1092  // If we are providing an explicit specialization of a member that is a
1093  // class template, make a note of that.
1094  if (PrevClassTemplate &&
1095      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1096    PrevClassTemplate->setMemberSpecialization();
1097
1098  // Set the access specifier.
1099  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1100    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1101
1102  // Set the lexical context of these templates
1103  NewClass->setLexicalDeclContext(CurContext);
1104  NewTemplate->setLexicalDeclContext(CurContext);
1105
1106  if (TUK == TUK_Definition)
1107    NewClass->startDefinition();
1108
1109  if (Attr)
1110    ProcessDeclAttributeList(S, NewClass, Attr);
1111
1112  if (PrevClassTemplate)
1113    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1114
1115  AddPushedVisibilityAttribute(NewClass);
1116
1117  if (TUK != TUK_Friend)
1118    PushOnScopeChains(NewTemplate, S);
1119  else {
1120    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1121      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1122      NewClass->setAccess(PrevClassTemplate->getAccess());
1123    }
1124
1125    NewTemplate->setObjectOfFriendDecl();
1126
1127    // Friend templates are visible in fairly strange ways.
1128    if (!CurContext->isDependentContext()) {
1129      DeclContext *DC = SemanticContext->getRedeclContext();
1130      DC->makeDeclVisibleInContext(NewTemplate);
1131      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1132        PushOnScopeChains(NewTemplate, EnclosingScope,
1133                          /* AddToContext = */ false);
1134    }
1135
1136    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1137                                            NewClass->getLocation(),
1138                                            NewTemplate,
1139                                    /*FIXME:*/NewClass->getLocation());
1140    Friend->setAccess(AS_public);
1141    CurContext->addDecl(Friend);
1142  }
1143
1144  if (Invalid) {
1145    NewTemplate->setInvalidDecl();
1146    NewClass->setInvalidDecl();
1147  }
1148
1149  ActOnDocumentableDecl(NewTemplate);
1150
1151  return NewTemplate;
1152}
1153
1154/// \brief Diagnose the presence of a default template argument on a
1155/// template parameter, which is ill-formed in certain contexts.
1156///
1157/// \returns true if the default template argument should be dropped.
1158static bool DiagnoseDefaultTemplateArgument(Sema &S,
1159                                            Sema::TemplateParamListContext TPC,
1160                                            SourceLocation ParamLoc,
1161                                            SourceRange DefArgRange) {
1162  switch (TPC) {
1163  case Sema::TPC_ClassTemplate:
1164  case Sema::TPC_VarTemplate:
1165  case Sema::TPC_TypeAliasTemplate:
1166    return false;
1167
1168  case Sema::TPC_FunctionTemplate:
1169  case Sema::TPC_FriendFunctionTemplateDefinition:
1170    // C++ [temp.param]p9:
1171    //   A default template-argument shall not be specified in a
1172    //   function template declaration or a function template
1173    //   definition [...]
1174    //   If a friend function template declaration specifies a default
1175    //   template-argument, that declaration shall be a definition and shall be
1176    //   the only declaration of the function template in the translation unit.
1177    // (C++98/03 doesn't have this wording; see DR226).
1178    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1179         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1180           : diag::ext_template_parameter_default_in_function_template)
1181      << DefArgRange;
1182    return false;
1183
1184  case Sema::TPC_ClassTemplateMember:
1185    // C++0x [temp.param]p9:
1186    //   A default template-argument shall not be specified in the
1187    //   template-parameter-lists of the definition of a member of a
1188    //   class template that appears outside of the member's class.
1189    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1190      << DefArgRange;
1191    return true;
1192
1193  case Sema::TPC_FriendClassTemplate:
1194  case Sema::TPC_FriendFunctionTemplate:
1195    // C++ [temp.param]p9:
1196    //   A default template-argument shall not be specified in a
1197    //   friend template declaration.
1198    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1199      << DefArgRange;
1200    return true;
1201
1202    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1203    // for friend function templates if there is only a single
1204    // declaration (and it is a definition). Strange!
1205  }
1206
1207  llvm_unreachable("Invalid TemplateParamListContext!");
1208}
1209
1210/// \brief Check for unexpanded parameter packs within the template parameters
1211/// of a template template parameter, recursively.
1212static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1213                                             TemplateTemplateParmDecl *TTP) {
1214  // A template template parameter which is a parameter pack is also a pack
1215  // expansion.
1216  if (TTP->isParameterPack())
1217    return false;
1218
1219  TemplateParameterList *Params = TTP->getTemplateParameters();
1220  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1221    NamedDecl *P = Params->getParam(I);
1222    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1223      if (!NTTP->isParameterPack() &&
1224          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1225                                            NTTP->getTypeSourceInfo(),
1226                                      Sema::UPPC_NonTypeTemplateParameterType))
1227        return true;
1228
1229      continue;
1230    }
1231
1232    if (TemplateTemplateParmDecl *InnerTTP
1233                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1234      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1235        return true;
1236  }
1237
1238  return false;
1239}
1240
1241/// \brief Checks the validity of a template parameter list, possibly
1242/// considering the template parameter list from a previous
1243/// declaration.
1244///
1245/// If an "old" template parameter list is provided, it must be
1246/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1247/// template parameter list.
1248///
1249/// \param NewParams Template parameter list for a new template
1250/// declaration. This template parameter list will be updated with any
1251/// default arguments that are carried through from the previous
1252/// template parameter list.
1253///
1254/// \param OldParams If provided, template parameter list from a
1255/// previous declaration of the same template. Default template
1256/// arguments will be merged from the old template parameter list to
1257/// the new template parameter list.
1258///
1259/// \param TPC Describes the context in which we are checking the given
1260/// template parameter list.
1261///
1262/// \returns true if an error occurred, false otherwise.
1263bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1264                                      TemplateParameterList *OldParams,
1265                                      TemplateParamListContext TPC) {
1266  bool Invalid = false;
1267
1268  // C++ [temp.param]p10:
1269  //   The set of default template-arguments available for use with a
1270  //   template declaration or definition is obtained by merging the
1271  //   default arguments from the definition (if in scope) and all
1272  //   declarations in scope in the same way default function
1273  //   arguments are (8.3.6).
1274  bool SawDefaultArgument = false;
1275  SourceLocation PreviousDefaultArgLoc;
1276
1277  // Dummy initialization to avoid warnings.
1278  TemplateParameterList::iterator OldParam = NewParams->end();
1279  if (OldParams)
1280    OldParam = OldParams->begin();
1281
1282  bool RemoveDefaultArguments = false;
1283  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1284                                    NewParamEnd = NewParams->end();
1285       NewParam != NewParamEnd; ++NewParam) {
1286    // Variables used to diagnose redundant default arguments
1287    bool RedundantDefaultArg = false;
1288    SourceLocation OldDefaultLoc;
1289    SourceLocation NewDefaultLoc;
1290
1291    // Variable used to diagnose missing default arguments
1292    bool MissingDefaultArg = false;
1293
1294    // Variable used to diagnose non-final parameter packs
1295    bool SawParameterPack = false;
1296
1297    if (TemplateTypeParmDecl *NewTypeParm
1298          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1299      // Check the presence of a default argument here.
1300      if (NewTypeParm->hasDefaultArgument() &&
1301          DiagnoseDefaultTemplateArgument(*this, TPC,
1302                                          NewTypeParm->getLocation(),
1303               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1304                                                       .getSourceRange()))
1305        NewTypeParm->removeDefaultArgument();
1306
1307      // Merge default arguments for template type parameters.
1308      TemplateTypeParmDecl *OldTypeParm
1309          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1310
1311      if (NewTypeParm->isParameterPack()) {
1312        assert(!NewTypeParm->hasDefaultArgument() &&
1313               "Parameter packs can't have a default argument!");
1314        SawParameterPack = true;
1315      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1316                 NewTypeParm->hasDefaultArgument()) {
1317        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1318        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1319        SawDefaultArgument = true;
1320        RedundantDefaultArg = true;
1321        PreviousDefaultArgLoc = NewDefaultLoc;
1322      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1323        // Merge the default argument from the old declaration to the
1324        // new declaration.
1325        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1326                                        true);
1327        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1328      } else if (NewTypeParm->hasDefaultArgument()) {
1329        SawDefaultArgument = true;
1330        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1331      } else if (SawDefaultArgument)
1332        MissingDefaultArg = true;
1333    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1334               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1335      // Check for unexpanded parameter packs.
1336      if (!NewNonTypeParm->isParameterPack() &&
1337          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1338                                          NewNonTypeParm->getTypeSourceInfo(),
1339                                          UPPC_NonTypeTemplateParameterType)) {
1340        Invalid = true;
1341        continue;
1342      }
1343
1344      // Check the presence of a default argument here.
1345      if (NewNonTypeParm->hasDefaultArgument() &&
1346          DiagnoseDefaultTemplateArgument(*this, TPC,
1347                                          NewNonTypeParm->getLocation(),
1348                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1349        NewNonTypeParm->removeDefaultArgument();
1350      }
1351
1352      // Merge default arguments for non-type template parameters
1353      NonTypeTemplateParmDecl *OldNonTypeParm
1354        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1355      if (NewNonTypeParm->isParameterPack()) {
1356        assert(!NewNonTypeParm->hasDefaultArgument() &&
1357               "Parameter packs can't have a default argument!");
1358        if (!NewNonTypeParm->isPackExpansion())
1359          SawParameterPack = true;
1360      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1361                 NewNonTypeParm->hasDefaultArgument()) {
1362        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1363        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1364        SawDefaultArgument = true;
1365        RedundantDefaultArg = true;
1366        PreviousDefaultArgLoc = NewDefaultLoc;
1367      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1368        // Merge the default argument from the old declaration to the
1369        // new declaration.
1370        // FIXME: We need to create a new kind of "default argument"
1371        // expression that points to a previous non-type template
1372        // parameter.
1373        NewNonTypeParm->setDefaultArgument(
1374                                         OldNonTypeParm->getDefaultArgument(),
1375                                         /*Inherited=*/ true);
1376        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1377      } else if (NewNonTypeParm->hasDefaultArgument()) {
1378        SawDefaultArgument = true;
1379        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1380      } else if (SawDefaultArgument)
1381        MissingDefaultArg = true;
1382    } else {
1383      TemplateTemplateParmDecl *NewTemplateParm
1384        = cast<TemplateTemplateParmDecl>(*NewParam);
1385
1386      // Check for unexpanded parameter packs, recursively.
1387      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1388        Invalid = true;
1389        continue;
1390      }
1391
1392      // Check the presence of a default argument here.
1393      if (NewTemplateParm->hasDefaultArgument() &&
1394          DiagnoseDefaultTemplateArgument(*this, TPC,
1395                                          NewTemplateParm->getLocation(),
1396                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1397        NewTemplateParm->removeDefaultArgument();
1398
1399      // Merge default arguments for template template parameters
1400      TemplateTemplateParmDecl *OldTemplateParm
1401        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1402      if (NewTemplateParm->isParameterPack()) {
1403        assert(!NewTemplateParm->hasDefaultArgument() &&
1404               "Parameter packs can't have a default argument!");
1405        if (!NewTemplateParm->isPackExpansion())
1406          SawParameterPack = true;
1407      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1408          NewTemplateParm->hasDefaultArgument()) {
1409        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1410        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1411        SawDefaultArgument = true;
1412        RedundantDefaultArg = true;
1413        PreviousDefaultArgLoc = NewDefaultLoc;
1414      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1415        // Merge the default argument from the old declaration to the
1416        // new declaration.
1417        // FIXME: We need to create a new kind of "default argument" expression
1418        // that points to a previous template template parameter.
1419        NewTemplateParm->setDefaultArgument(
1420                                          OldTemplateParm->getDefaultArgument(),
1421                                          /*Inherited=*/ true);
1422        PreviousDefaultArgLoc
1423          = OldTemplateParm->getDefaultArgument().getLocation();
1424      } else if (NewTemplateParm->hasDefaultArgument()) {
1425        SawDefaultArgument = true;
1426        PreviousDefaultArgLoc
1427          = NewTemplateParm->getDefaultArgument().getLocation();
1428      } else if (SawDefaultArgument)
1429        MissingDefaultArg = true;
1430    }
1431
1432    // C++11 [temp.param]p11:
1433    //   If a template parameter of a primary class template or alias template
1434    //   is a template parameter pack, it shall be the last template parameter.
1435    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1436        (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1437         TPC == TPC_TypeAliasTemplate)) {
1438      Diag((*NewParam)->getLocation(),
1439           diag::err_template_param_pack_must_be_last_template_parameter);
1440      Invalid = true;
1441    }
1442
1443    if (RedundantDefaultArg) {
1444      // C++ [temp.param]p12:
1445      //   A template-parameter shall not be given default arguments
1446      //   by two different declarations in the same scope.
1447      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1448      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1449      Invalid = true;
1450    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1451      // C++ [temp.param]p11:
1452      //   If a template-parameter of a class template has a default
1453      //   template-argument, each subsequent template-parameter shall either
1454      //   have a default template-argument supplied or be a template parameter
1455      //   pack.
1456      Diag((*NewParam)->getLocation(),
1457           diag::err_template_param_default_arg_missing);
1458      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1459      Invalid = true;
1460      RemoveDefaultArguments = true;
1461    }
1462
1463    // If we have an old template parameter list that we're merging
1464    // in, move on to the next parameter.
1465    if (OldParams)
1466      ++OldParam;
1467  }
1468
1469  // We were missing some default arguments at the end of the list, so remove
1470  // all of the default arguments.
1471  if (RemoveDefaultArguments) {
1472    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1473                                      NewParamEnd = NewParams->end();
1474         NewParam != NewParamEnd; ++NewParam) {
1475      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1476        TTP->removeDefaultArgument();
1477      else if (NonTypeTemplateParmDecl *NTTP
1478                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1479        NTTP->removeDefaultArgument();
1480      else
1481        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1482    }
1483  }
1484
1485  return Invalid;
1486}
1487
1488namespace {
1489
1490/// A class which looks for a use of a certain level of template
1491/// parameter.
1492struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1493  typedef RecursiveASTVisitor<DependencyChecker> super;
1494
1495  unsigned Depth;
1496  bool Match;
1497
1498  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1499    NamedDecl *ND = Params->getParam(0);
1500    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1501      Depth = PD->getDepth();
1502    } else if (NonTypeTemplateParmDecl *PD =
1503                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1504      Depth = PD->getDepth();
1505    } else {
1506      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1507    }
1508  }
1509
1510  bool Matches(unsigned ParmDepth) {
1511    if (ParmDepth >= Depth) {
1512      Match = true;
1513      return true;
1514    }
1515    return false;
1516  }
1517
1518  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1519    return !Matches(T->getDepth());
1520  }
1521
1522  bool TraverseTemplateName(TemplateName N) {
1523    if (TemplateTemplateParmDecl *PD =
1524          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1525      if (Matches(PD->getDepth())) return false;
1526    return super::TraverseTemplateName(N);
1527  }
1528
1529  bool VisitDeclRefExpr(DeclRefExpr *E) {
1530    if (NonTypeTemplateParmDecl *PD =
1531          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1532      if (PD->getDepth() == Depth) {
1533        Match = true;
1534        return false;
1535      }
1536    }
1537    return super::VisitDeclRefExpr(E);
1538  }
1539
1540  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1541    return TraverseType(T->getInjectedSpecializationType());
1542  }
1543};
1544}
1545
1546/// Determines whether a given type depends on the given parameter
1547/// list.
1548static bool
1549DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1550  DependencyChecker Checker(Params);
1551  Checker.TraverseType(T);
1552  return Checker.Match;
1553}
1554
1555// Find the source range corresponding to the named type in the given
1556// nested-name-specifier, if any.
1557static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1558                                                       QualType T,
1559                                                       const CXXScopeSpec &SS) {
1560  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1561  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1562    if (const Type *CurType = NNS->getAsType()) {
1563      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1564        return NNSLoc.getTypeLoc().getSourceRange();
1565    } else
1566      break;
1567
1568    NNSLoc = NNSLoc.getPrefix();
1569  }
1570
1571  return SourceRange();
1572}
1573
1574/// \brief Match the given template parameter lists to the given scope
1575/// specifier, returning the template parameter list that applies to the
1576/// name.
1577///
1578/// \param DeclStartLoc the start of the declaration that has a scope
1579/// specifier or a template parameter list.
1580///
1581/// \param DeclLoc The location of the declaration itself.
1582///
1583/// \param SS the scope specifier that will be matched to the given template
1584/// parameter lists. This scope specifier precedes a qualified name that is
1585/// being declared.
1586///
1587/// \param ParamLists the template parameter lists, from the outermost to the
1588/// innermost template parameter lists.
1589///
1590/// \param IsFriend Whether to apply the slightly different rules for
1591/// matching template parameters to scope specifiers in friend
1592/// declarations.
1593///
1594/// \param IsExplicitSpecialization will be set true if the entity being
1595/// declared is an explicit specialization, false otherwise.
1596///
1597/// \returns the template parameter list, if any, that corresponds to the
1598/// name that is preceded by the scope specifier @p SS. This template
1599/// parameter list may have template parameters (if we're declaring a
1600/// template) or may have no template parameters (if we're declaring a
1601/// template specialization), or may be NULL (if what we're declaring isn't
1602/// itself a template).
1603TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1604    SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1605    ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1606    bool &IsExplicitSpecialization, bool &Invalid) {
1607  IsExplicitSpecialization = false;
1608  Invalid = false;
1609
1610  // The sequence of nested types to which we will match up the template
1611  // parameter lists. We first build this list by starting with the type named
1612  // by the nested-name-specifier and walking out until we run out of types.
1613  SmallVector<QualType, 4> NestedTypes;
1614  QualType T;
1615  if (SS.getScopeRep()) {
1616    if (CXXRecordDecl *Record
1617              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1618      T = Context.getTypeDeclType(Record);
1619    else
1620      T = QualType(SS.getScopeRep()->getAsType(), 0);
1621  }
1622
1623  // If we found an explicit specialization that prevents us from needing
1624  // 'template<>' headers, this will be set to the location of that
1625  // explicit specialization.
1626  SourceLocation ExplicitSpecLoc;
1627
1628  while (!T.isNull()) {
1629    NestedTypes.push_back(T);
1630
1631    // Retrieve the parent of a record type.
1632    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1633      // If this type is an explicit specialization, we're done.
1634      if (ClassTemplateSpecializationDecl *Spec
1635          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1636        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1637            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1638          ExplicitSpecLoc = Spec->getLocation();
1639          break;
1640        }
1641      } else if (Record->getTemplateSpecializationKind()
1642                                                == TSK_ExplicitSpecialization) {
1643        ExplicitSpecLoc = Record->getLocation();
1644        break;
1645      }
1646
1647      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1648        T = Context.getTypeDeclType(Parent);
1649      else
1650        T = QualType();
1651      continue;
1652    }
1653
1654    if (const TemplateSpecializationType *TST
1655                                     = T->getAs<TemplateSpecializationType>()) {
1656      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1657        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1658          T = Context.getTypeDeclType(Parent);
1659        else
1660          T = QualType();
1661        continue;
1662      }
1663    }
1664
1665    // Look one step prior in a dependent template specialization type.
1666    if (const DependentTemplateSpecializationType *DependentTST
1667                          = T->getAs<DependentTemplateSpecializationType>()) {
1668      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1669        T = QualType(NNS->getAsType(), 0);
1670      else
1671        T = QualType();
1672      continue;
1673    }
1674
1675    // Look one step prior in a dependent name type.
1676    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1677      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1678        T = QualType(NNS->getAsType(), 0);
1679      else
1680        T = QualType();
1681      continue;
1682    }
1683
1684    // Retrieve the parent of an enumeration type.
1685    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1686      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1687      // check here.
1688      EnumDecl *Enum = EnumT->getDecl();
1689
1690      // Get to the parent type.
1691      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1692        T = Context.getTypeDeclType(Parent);
1693      else
1694        T = QualType();
1695      continue;
1696    }
1697
1698    T = QualType();
1699  }
1700  // Reverse the nested types list, since we want to traverse from the outermost
1701  // to the innermost while checking template-parameter-lists.
1702  std::reverse(NestedTypes.begin(), NestedTypes.end());
1703
1704  // C++0x [temp.expl.spec]p17:
1705  //   A member or a member template may be nested within many
1706  //   enclosing class templates. In an explicit specialization for
1707  //   such a member, the member declaration shall be preceded by a
1708  //   template<> for each enclosing class template that is
1709  //   explicitly specialized.
1710  bool SawNonEmptyTemplateParameterList = false;
1711  unsigned ParamIdx = 0;
1712  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1713       ++TypeIdx) {
1714    T = NestedTypes[TypeIdx];
1715
1716    // Whether we expect a 'template<>' header.
1717    bool NeedEmptyTemplateHeader = false;
1718
1719    // Whether we expect a template header with parameters.
1720    bool NeedNonemptyTemplateHeader = false;
1721
1722    // For a dependent type, the set of template parameters that we
1723    // expect to see.
1724    TemplateParameterList *ExpectedTemplateParams = 0;
1725
1726    // C++0x [temp.expl.spec]p15:
1727    //   A member or a member template may be nested within many enclosing
1728    //   class templates. In an explicit specialization for such a member, the
1729    //   member declaration shall be preceded by a template<> for each
1730    //   enclosing class template that is explicitly specialized.
1731    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1732      if (ClassTemplatePartialSpecializationDecl *Partial
1733            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1734        ExpectedTemplateParams = Partial->getTemplateParameters();
1735        NeedNonemptyTemplateHeader = true;
1736      } else if (Record->isDependentType()) {
1737        if (Record->getDescribedClassTemplate()) {
1738          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1739                                                      ->getTemplateParameters();
1740          NeedNonemptyTemplateHeader = true;
1741        }
1742      } else if (ClassTemplateSpecializationDecl *Spec
1743                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1744        // C++0x [temp.expl.spec]p4:
1745        //   Members of an explicitly specialized class template are defined
1746        //   in the same manner as members of normal classes, and not using
1747        //   the template<> syntax.
1748        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1749          NeedEmptyTemplateHeader = true;
1750        else
1751          continue;
1752      } else if (Record->getTemplateSpecializationKind()) {
1753        if (Record->getTemplateSpecializationKind()
1754                                                != TSK_ExplicitSpecialization &&
1755            TypeIdx == NumTypes - 1)
1756          IsExplicitSpecialization = true;
1757
1758        continue;
1759      }
1760    } else if (const TemplateSpecializationType *TST
1761                                     = T->getAs<TemplateSpecializationType>()) {
1762      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1763        ExpectedTemplateParams = Template->getTemplateParameters();
1764        NeedNonemptyTemplateHeader = true;
1765      }
1766    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1767      // FIXME:  We actually could/should check the template arguments here
1768      // against the corresponding template parameter list.
1769      NeedNonemptyTemplateHeader = false;
1770    }
1771
1772    // C++ [temp.expl.spec]p16:
1773    //   In an explicit specialization declaration for a member of a class
1774    //   template or a member template that ap- pears in namespace scope, the
1775    //   member template and some of its enclosing class templates may remain
1776    //   unspecialized, except that the declaration shall not explicitly
1777    //   specialize a class member template if its en- closing class templates
1778    //   are not explicitly specialized as well.
1779    if (ParamIdx < ParamLists.size()) {
1780      if (ParamLists[ParamIdx]->size() == 0) {
1781        if (SawNonEmptyTemplateParameterList) {
1782          Diag(DeclLoc, diag::err_specialize_member_of_template)
1783            << ParamLists[ParamIdx]->getSourceRange();
1784          Invalid = true;
1785          IsExplicitSpecialization = false;
1786          return 0;
1787        }
1788      } else
1789        SawNonEmptyTemplateParameterList = true;
1790    }
1791
1792    if (NeedEmptyTemplateHeader) {
1793      // If we're on the last of the types, and we need a 'template<>' header
1794      // here, then it's an explicit specialization.
1795      if (TypeIdx == NumTypes - 1)
1796        IsExplicitSpecialization = true;
1797
1798      if (ParamIdx < ParamLists.size()) {
1799        if (ParamLists[ParamIdx]->size() > 0) {
1800          // The header has template parameters when it shouldn't. Complain.
1801          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1802               diag::err_template_param_list_matches_nontemplate)
1803            << T
1804            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1805                           ParamLists[ParamIdx]->getRAngleLoc())
1806            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1807          Invalid = true;
1808          return 0;
1809        }
1810
1811        // Consume this template header.
1812        ++ParamIdx;
1813        continue;
1814      }
1815
1816      if (!IsFriend) {
1817        // We don't have a template header, but we should.
1818        SourceLocation ExpectedTemplateLoc;
1819        if (!ParamLists.empty())
1820          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1821        else
1822          ExpectedTemplateLoc = DeclStartLoc;
1823
1824        Diag(DeclLoc, diag::err_template_spec_needs_header)
1825          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1826          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1827      }
1828
1829      continue;
1830    }
1831
1832    if (NeedNonemptyTemplateHeader) {
1833      // In friend declarations we can have template-ids which don't
1834      // depend on the corresponding template parameter lists.  But
1835      // assume that empty parameter lists are supposed to match this
1836      // template-id.
1837      if (IsFriend && T->isDependentType()) {
1838        if (ParamIdx < ParamLists.size() &&
1839            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1840          ExpectedTemplateParams = 0;
1841        else
1842          continue;
1843      }
1844
1845      if (ParamIdx < ParamLists.size()) {
1846        // Check the template parameter list, if we can.
1847        if (ExpectedTemplateParams &&
1848            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1849                                            ExpectedTemplateParams,
1850                                            true, TPL_TemplateMatch))
1851          Invalid = true;
1852
1853        if (!Invalid &&
1854            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1855                                       TPC_ClassTemplateMember))
1856          Invalid = true;
1857
1858        ++ParamIdx;
1859        continue;
1860      }
1861
1862      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1863        << T
1864        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1865      Invalid = true;
1866      continue;
1867    }
1868  }
1869
1870  // If there were at least as many template-ids as there were template
1871  // parameter lists, then there are no template parameter lists remaining for
1872  // the declaration itself.
1873  if (ParamIdx >= ParamLists.size())
1874    return 0;
1875
1876  // If there were too many template parameter lists, complain about that now.
1877  if (ParamIdx < ParamLists.size() - 1) {
1878    bool HasAnyExplicitSpecHeader = false;
1879    bool AllExplicitSpecHeaders = true;
1880    for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1881      if (ParamLists[I]->size() == 0)
1882        HasAnyExplicitSpecHeader = true;
1883      else
1884        AllExplicitSpecHeaders = false;
1885    }
1886
1887    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1888         AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1889                                : diag::err_template_spec_extra_headers)
1890        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1891                       ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1892
1893    // If there was a specialization somewhere, such that 'template<>' is
1894    // not required, and there were any 'template<>' headers, note where the
1895    // specialization occurred.
1896    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1897      Diag(ExplicitSpecLoc,
1898           diag::note_explicit_template_spec_does_not_need_header)
1899        << NestedTypes.back();
1900
1901    // We have a template parameter list with no corresponding scope, which
1902    // means that the resulting template declaration can't be instantiated
1903    // properly (we'll end up with dependent nodes when we shouldn't).
1904    if (!AllExplicitSpecHeaders)
1905      Invalid = true;
1906  }
1907
1908  // C++ [temp.expl.spec]p16:
1909  //   In an explicit specialization declaration for a member of a class
1910  //   template or a member template that ap- pears in namespace scope, the
1911  //   member template and some of its enclosing class templates may remain
1912  //   unspecialized, except that the declaration shall not explicitly
1913  //   specialize a class member template if its en- closing class templates
1914  //   are not explicitly specialized as well.
1915  if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1916    Diag(DeclLoc, diag::err_specialize_member_of_template)
1917      << ParamLists[ParamIdx]->getSourceRange();
1918    Invalid = true;
1919    IsExplicitSpecialization = false;
1920    return 0;
1921  }
1922
1923  // Return the last template parameter list, which corresponds to the
1924  // entity being declared.
1925  return ParamLists.back();
1926}
1927
1928void Sema::NoteAllFoundTemplates(TemplateName Name) {
1929  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1930    Diag(Template->getLocation(), diag::note_template_declared_here)
1931        << (isa<FunctionTemplateDecl>(Template)
1932                ? 0
1933                : isa<ClassTemplateDecl>(Template)
1934                      ? 1
1935                      : isa<VarTemplateDecl>(Template)
1936                            ? 2
1937                            : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1938        << Template->getDeclName();
1939    return;
1940  }
1941
1942  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1943    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1944                                          IEnd = OST->end();
1945         I != IEnd; ++I)
1946      Diag((*I)->getLocation(), diag::note_template_declared_here)
1947        << 0 << (*I)->getDeclName();
1948
1949    return;
1950  }
1951}
1952
1953QualType Sema::CheckTemplateIdType(TemplateName Name,
1954                                   SourceLocation TemplateLoc,
1955                                   TemplateArgumentListInfo &TemplateArgs) {
1956  DependentTemplateName *DTN
1957    = Name.getUnderlying().getAsDependentTemplateName();
1958  if (DTN && DTN->isIdentifier())
1959    // When building a template-id where the template-name is dependent,
1960    // assume the template is a type template. Either our assumption is
1961    // correct, or the code is ill-formed and will be diagnosed when the
1962    // dependent name is substituted.
1963    return Context.getDependentTemplateSpecializationType(ETK_None,
1964                                                          DTN->getQualifier(),
1965                                                          DTN->getIdentifier(),
1966                                                          TemplateArgs);
1967
1968  TemplateDecl *Template = Name.getAsTemplateDecl();
1969  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1970    // We might have a substituted template template parameter pack. If so,
1971    // build a template specialization type for it.
1972    if (Name.getAsSubstTemplateTemplateParmPack())
1973      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1974
1975    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1976      << Name;
1977    NoteAllFoundTemplates(Name);
1978    return QualType();
1979  }
1980
1981  // Check that the template argument list is well-formed for this
1982  // template.
1983  SmallVector<TemplateArgument, 4> Converted;
1984  bool ExpansionIntoFixedList = false;
1985  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1986                                false, Converted, &ExpansionIntoFixedList))
1987    return QualType();
1988
1989  QualType CanonType;
1990
1991  bool InstantiationDependent = false;
1992  TypeAliasTemplateDecl *AliasTemplate = 0;
1993  if (!ExpansionIntoFixedList &&
1994      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1995    // Find the canonical type for this type alias template specialization.
1996    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1997    if (Pattern->isInvalidDecl())
1998      return QualType();
1999
2000    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2001                                      Converted.data(), Converted.size());
2002
2003    // Only substitute for the innermost template argument list.
2004    MultiLevelTemplateArgumentList TemplateArgLists;
2005    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2006    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2007    for (unsigned I = 0; I < Depth; ++I)
2008      TemplateArgLists.addOuterTemplateArguments(None);
2009
2010    LocalInstantiationScope Scope(*this);
2011    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2012    if (Inst)
2013      return QualType();
2014
2015    CanonType = SubstType(Pattern->getUnderlyingType(),
2016                          TemplateArgLists, AliasTemplate->getLocation(),
2017                          AliasTemplate->getDeclName());
2018    if (CanonType.isNull())
2019      return QualType();
2020  } else if (Name.isDependent() ||
2021             TemplateSpecializationType::anyDependentTemplateArguments(
2022               TemplateArgs, InstantiationDependent)) {
2023    // This class template specialization is a dependent
2024    // type. Therefore, its canonical type is another class template
2025    // specialization type that contains all of the converted
2026    // arguments in canonical form. This ensures that, e.g., A<T> and
2027    // A<T, T> have identical types when A is declared as:
2028    //
2029    //   template<typename T, typename U = T> struct A;
2030    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2031    CanonType = Context.getTemplateSpecializationType(CanonName,
2032                                                      Converted.data(),
2033                                                      Converted.size());
2034
2035    // FIXME: CanonType is not actually the canonical type, and unfortunately
2036    // it is a TemplateSpecializationType that we will never use again.
2037    // In the future, we need to teach getTemplateSpecializationType to only
2038    // build the canonical type and return that to us.
2039    CanonType = Context.getCanonicalType(CanonType);
2040
2041    // This might work out to be a current instantiation, in which
2042    // case the canonical type needs to be the InjectedClassNameType.
2043    //
2044    // TODO: in theory this could be a simple hashtable lookup; most
2045    // changes to CurContext don't change the set of current
2046    // instantiations.
2047    if (isa<ClassTemplateDecl>(Template)) {
2048      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2049        // If we get out to a namespace, we're done.
2050        if (Ctx->isFileContext()) break;
2051
2052        // If this isn't a record, keep looking.
2053        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2054        if (!Record) continue;
2055
2056        // Look for one of the two cases with InjectedClassNameTypes
2057        // and check whether it's the same template.
2058        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2059            !Record->getDescribedClassTemplate())
2060          continue;
2061
2062        // Fetch the injected class name type and check whether its
2063        // injected type is equal to the type we just built.
2064        QualType ICNT = Context.getTypeDeclType(Record);
2065        QualType Injected = cast<InjectedClassNameType>(ICNT)
2066          ->getInjectedSpecializationType();
2067
2068        if (CanonType != Injected->getCanonicalTypeInternal())
2069          continue;
2070
2071        // If so, the canonical type of this TST is the injected
2072        // class name type of the record we just found.
2073        assert(ICNT.isCanonical());
2074        CanonType = ICNT;
2075        break;
2076      }
2077    }
2078  } else if (ClassTemplateDecl *ClassTemplate
2079               = dyn_cast<ClassTemplateDecl>(Template)) {
2080    // Find the class template specialization declaration that
2081    // corresponds to these arguments.
2082    void *InsertPos = 0;
2083    ClassTemplateSpecializationDecl *Decl
2084      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2085                                          InsertPos);
2086    if (!Decl) {
2087      // This is the first time we have referenced this class template
2088      // specialization. Create the canonical declaration and add it to
2089      // the set of specializations.
2090      Decl = ClassTemplateSpecializationDecl::Create(Context,
2091                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2092                                                ClassTemplate->getDeclContext(),
2093                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2094                                                ClassTemplate->getLocation(),
2095                                                     ClassTemplate,
2096                                                     Converted.data(),
2097                                                     Converted.size(), 0);
2098      ClassTemplate->AddSpecialization(Decl, InsertPos);
2099      if (ClassTemplate->isOutOfLine())
2100        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2101    }
2102
2103    CanonType = Context.getTypeDeclType(Decl);
2104    assert(isa<RecordType>(CanonType) &&
2105           "type of non-dependent specialization is not a RecordType");
2106  }
2107
2108  // Build the fully-sugared type for this class template
2109  // specialization, which refers back to the class template
2110  // specialization we created or found.
2111  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2112}
2113
2114TypeResult
2115Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2116                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2117                          SourceLocation LAngleLoc,
2118                          ASTTemplateArgsPtr TemplateArgsIn,
2119                          SourceLocation RAngleLoc,
2120                          bool IsCtorOrDtorName) {
2121  if (SS.isInvalid())
2122    return true;
2123
2124  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2125
2126  // Translate the parser's template argument list in our AST format.
2127  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2128  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2129
2130  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2131    QualType T
2132      = Context.getDependentTemplateSpecializationType(ETK_None,
2133                                                       DTN->getQualifier(),
2134                                                       DTN->getIdentifier(),
2135                                                       TemplateArgs);
2136    // Build type-source information.
2137    TypeLocBuilder TLB;
2138    DependentTemplateSpecializationTypeLoc SpecTL
2139      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2140    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2141    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2142    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2143    SpecTL.setTemplateNameLoc(TemplateLoc);
2144    SpecTL.setLAngleLoc(LAngleLoc);
2145    SpecTL.setRAngleLoc(RAngleLoc);
2146    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2147      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2148    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2149  }
2150
2151  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2152
2153  if (Result.isNull())
2154    return true;
2155
2156  // Build type-source information.
2157  TypeLocBuilder TLB;
2158  TemplateSpecializationTypeLoc SpecTL
2159    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2160  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2161  SpecTL.setTemplateNameLoc(TemplateLoc);
2162  SpecTL.setLAngleLoc(LAngleLoc);
2163  SpecTL.setRAngleLoc(RAngleLoc);
2164  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2165    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2166
2167  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2168  // constructor or destructor name (in such a case, the scope specifier
2169  // will be attached to the enclosing Decl or Expr node).
2170  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2171    // Create an elaborated-type-specifier containing the nested-name-specifier.
2172    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2173    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2174    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2175    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2176  }
2177
2178  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2179}
2180
2181TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2182                                        TypeSpecifierType TagSpec,
2183                                        SourceLocation TagLoc,
2184                                        CXXScopeSpec &SS,
2185                                        SourceLocation TemplateKWLoc,
2186                                        TemplateTy TemplateD,
2187                                        SourceLocation TemplateLoc,
2188                                        SourceLocation LAngleLoc,
2189                                        ASTTemplateArgsPtr TemplateArgsIn,
2190                                        SourceLocation RAngleLoc) {
2191  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2192
2193  // Translate the parser's template argument list in our AST format.
2194  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2195  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2196
2197  // Determine the tag kind
2198  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2199  ElaboratedTypeKeyword Keyword
2200    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2201
2202  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2203    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2204                                                          DTN->getQualifier(),
2205                                                          DTN->getIdentifier(),
2206                                                                TemplateArgs);
2207
2208    // Build type-source information.
2209    TypeLocBuilder TLB;
2210    DependentTemplateSpecializationTypeLoc SpecTL
2211      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2212    SpecTL.setElaboratedKeywordLoc(TagLoc);
2213    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2214    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2215    SpecTL.setTemplateNameLoc(TemplateLoc);
2216    SpecTL.setLAngleLoc(LAngleLoc);
2217    SpecTL.setRAngleLoc(RAngleLoc);
2218    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2219      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2220    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2221  }
2222
2223  if (TypeAliasTemplateDecl *TAT =
2224        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2225    // C++0x [dcl.type.elab]p2:
2226    //   If the identifier resolves to a typedef-name or the simple-template-id
2227    //   resolves to an alias template specialization, the
2228    //   elaborated-type-specifier is ill-formed.
2229    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2230    Diag(TAT->getLocation(), diag::note_declared_at);
2231  }
2232
2233  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2234  if (Result.isNull())
2235    return TypeResult(true);
2236
2237  // Check the tag kind
2238  if (const RecordType *RT = Result->getAs<RecordType>()) {
2239    RecordDecl *D = RT->getDecl();
2240
2241    IdentifierInfo *Id = D->getIdentifier();
2242    assert(Id && "templated class must have an identifier");
2243
2244    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2245                                      TagLoc, *Id)) {
2246      Diag(TagLoc, diag::err_use_with_wrong_tag)
2247        << Result
2248        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2249      Diag(D->getLocation(), diag::note_previous_use);
2250    }
2251  }
2252
2253  // Provide source-location information for the template specialization.
2254  TypeLocBuilder TLB;
2255  TemplateSpecializationTypeLoc SpecTL
2256    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2257  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2258  SpecTL.setTemplateNameLoc(TemplateLoc);
2259  SpecTL.setLAngleLoc(LAngleLoc);
2260  SpecTL.setRAngleLoc(RAngleLoc);
2261  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2262    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2263
2264  // Construct an elaborated type containing the nested-name-specifier (if any)
2265  // and tag keyword.
2266  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2267  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2268  ElabTL.setElaboratedKeywordLoc(TagLoc);
2269  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2270  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2271}
2272
2273static bool CheckTemplatePartialSpecializationArgs(
2274    Sema &S, TemplateParameterList *TemplateParams,
2275    SmallVectorImpl<TemplateArgument> &TemplateArgs);
2276
2277static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2278                                             NamedDecl *PrevDecl,
2279                                             SourceLocation Loc,
2280                                             bool IsPartialSpecialization);
2281
2282static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2283/*
2284// Check the new variable specialization against the parsed input.
2285//
2286// FIXME: Model this against function specializations where
2287// a new function declaration is checked against the specialization
2288// as candidate for redefinition... (?)
2289static bool CheckVariableTemplateSpecializationType() {
2290
2291  if (ExpectedType is undeduced &&  ParsedType is not undeduced)
2292    ExpectedType = dedudeType();
2293
2294  if (both types are undeduced)
2295    ???;
2296
2297  bool CheckType = !ExpectedType()->
2298
2299  if (!Context.hasSameType(DI->getType(), ExpectedDI->getType())) {
2300    unsigned ErrStr = IsPartialSpecialization ? 2 : 1;
2301    Diag(D.getIdentifierLoc(), diag::err_invalid_var_template_spec_type)
2302        << ErrStr << VarTemplate << DI->getType() << ExpectedDI->getType();
2303    Diag(VarTemplate->getLocation(), diag::note_template_declared_here)
2304        << 2 << VarTemplate->getDeclName();
2305    return true;
2306  }
2307}
2308*/
2309
2310DeclResult Sema::ActOnVarTemplateSpecialization(
2311    Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2312    SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2313    VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2314  assert(VarTemplate && "A variable template id without template?");
2315
2316  // D must be variable template id.
2317  assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2318         "Variable template specialization is declared with a template it.");
2319
2320  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2321  SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2322  SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2323  SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2324  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2325                                     TemplateId->NumArgs);
2326  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2327  translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2328  TemplateName Name(VarTemplate);
2329
2330  // Check for unexpanded parameter packs in any of the template arguments.
2331  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2332    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2333                                        UPPC_PartialSpecialization))
2334      return true;
2335
2336  // Check that the template argument list is well-formed for this
2337  // template.
2338  SmallVector<TemplateArgument, 4> Converted;
2339  if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2340                                false, Converted))
2341    return true;
2342
2343  // Check that the type of this variable template specialization
2344  // matches the expected type.
2345  TypeSourceInfo *ExpectedDI;
2346  {
2347    // Do substitution on the type of the declaration
2348    TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2349                                         Converted.data(), Converted.size());
2350    InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2351    if (Inst)
2352      return true;
2353    VarDecl *Templated = VarTemplate->getTemplatedDecl();
2354    ExpectedDI =
2355        SubstType(Templated->getTypeSourceInfo(),
2356                  MultiLevelTemplateArgumentList(TemplateArgList),
2357                  Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2358  }
2359  if (!ExpectedDI)
2360    return true;
2361
2362  /*
2363  // Check the new variable specialization against the parsed input.
2364  // (Attributes are merged later below.)
2365  if (CheckVariableTemplateSpecializationType())
2366    return true;
2367  */
2368
2369  // Find the variable template (partial) specialization declaration that
2370  // corresponds to these arguments.
2371  if (IsPartialSpecialization) {
2372    if (CheckTemplatePartialSpecializationArgs(
2373            *this, VarTemplate->getTemplateParameters(), Converted))
2374      return true;
2375
2376    bool InstantiationDependent;
2377    if (!Name.isDependent() &&
2378        !TemplateSpecializationType::anyDependentTemplateArguments(
2379            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2380            InstantiationDependent)) {
2381      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2382          << VarTemplate->getDeclName();
2383      IsPartialSpecialization = false;
2384    }
2385  }
2386
2387  void *InsertPos = 0;
2388  VarTemplateSpecializationDecl *PrevDecl = 0;
2389
2390  if (IsPartialSpecialization)
2391    // FIXME: Template parameter list matters too
2392    PrevDecl = VarTemplate->findPartialSpecialization(
2393        Converted.data(), Converted.size(), InsertPos);
2394  else
2395    PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2396                                               Converted.size(), InsertPos);
2397
2398  VarTemplateSpecializationDecl *Specialization = 0;
2399
2400  // Check whether we can declare a variable template specialization in
2401  // the current scope.
2402  if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2403                                       TemplateNameLoc,
2404                                       IsPartialSpecialization))
2405    return true;
2406
2407  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2408    // Since the only prior variable template specialization with these
2409    // arguments was referenced but not declared,  reuse that
2410    // declaration node as our own, updating its source location and
2411    // the list of outer template parameters to reflect our new declaration.
2412    Specialization = PrevDecl;
2413    Specialization->setLocation(TemplateNameLoc);
2414    PrevDecl = 0;
2415  } else if (IsPartialSpecialization) {
2416    // Create a new class template partial specialization declaration node.
2417    VarTemplatePartialSpecializationDecl *PrevPartial =
2418        cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2419    unsigned SequenceNumber =
2420        PrevPartial ? PrevPartial->getSequenceNumber()
2421                    : VarTemplate->getNextPartialSpecSequenceNumber();
2422    VarTemplatePartialSpecializationDecl *Partial =
2423        VarTemplatePartialSpecializationDecl::Create(
2424            Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2425            TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2426            Converted.data(), Converted.size(), TemplateArgs, SequenceNumber);
2427
2428    if (!PrevPartial)
2429      VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2430    Specialization = Partial;
2431
2432    // If we are providing an explicit specialization of a member variable
2433    // template specialization, make a note of that.
2434    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2435      Partial->setMemberSpecialization();
2436
2437    // Check that all of the template parameters of the variable template
2438    // partial specialization are deducible from the template
2439    // arguments. If not, this variable template partial specialization
2440    // will never be used.
2441    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2442    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2443                               TemplateParams->getDepth(), DeducibleParams);
2444
2445    if (!DeducibleParams.all()) {
2446      unsigned NumNonDeducible =
2447          DeducibleParams.size() - DeducibleParams.count();
2448      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2449          << (NumNonDeducible > 1) << SourceRange(TemplateNameLoc, RAngleLoc);
2450      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2451        if (!DeducibleParams[I]) {
2452          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2453          if (Param->getDeclName())
2454            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2455                << Param->getDeclName();
2456          else
2457            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2458                << "<anonymous>";
2459        }
2460      }
2461    }
2462  } else {
2463    // Create a new class template specialization declaration node for
2464    // this explicit specialization or friend declaration.
2465    Specialization = VarTemplateSpecializationDecl::Create(
2466        Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2467        VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2468    Specialization->setTemplateArgsInfo(TemplateArgs);
2469
2470    if (!PrevDecl)
2471      VarTemplate->AddSpecialization(Specialization, InsertPos);
2472  }
2473
2474  // C++ [temp.expl.spec]p6:
2475  //   If a template, a member template or the member of a class template is
2476  //   explicitly specialized then that specialization shall be declared
2477  //   before the first use of that specialization that would cause an implicit
2478  //   instantiation to take place, in every translation unit in which such a
2479  //   use occurs; no diagnostic is required.
2480  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2481    bool Okay = false;
2482    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2483      // Is there any previous explicit specialization declaration?
2484      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2485        Okay = true;
2486        break;
2487      }
2488    }
2489
2490    if (!Okay) {
2491      SourceRange Range(TemplateNameLoc, RAngleLoc);
2492      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2493          << Name << Range;
2494
2495      Diag(PrevDecl->getPointOfInstantiation(),
2496           diag::note_instantiation_required_here)
2497          << (PrevDecl->getTemplateSpecializationKind() !=
2498              TSK_ImplicitInstantiation);
2499      return true;
2500    }
2501  }
2502
2503  Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2504  Specialization->setLexicalDeclContext(CurContext);
2505
2506  // Add the specialization into its lexical context, so that it can
2507  // be seen when iterating through the list of declarations in that
2508  // context. However, specializations are not found by name lookup.
2509  CurContext->addDecl(Specialization);
2510
2511  // Note that this is an explicit specialization.
2512  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2513
2514  if (PrevDecl) {
2515    // Check that this isn't a redefinition of this specialization,
2516    // merging with previous declarations.
2517    LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2518                          ForRedeclaration);
2519    PrevSpec.addDecl(PrevDecl);
2520    D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2521  }
2522
2523  // Link instantiations of static data members back to the template from
2524  // which they were instantiated.
2525  if (Specialization->isStaticDataMember())
2526    Specialization->setInstantiationOfStaticDataMember(
2527        VarTemplate->getTemplatedDecl(),
2528        Specialization->getSpecializationKind());
2529
2530  return Specialization;
2531}
2532
2533namespace {
2534/// \brief A partial specialization whose template arguments have matched
2535/// a given template-id.
2536struct PartialSpecMatchResult {
2537  VarTemplatePartialSpecializationDecl *Partial;
2538  TemplateArgumentList *Args;
2539};
2540}
2541
2542DeclResult
2543Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2544                         SourceLocation TemplateNameLoc,
2545                         const TemplateArgumentListInfo &TemplateArgs) {
2546  assert(Template && "A variable template id without template?");
2547
2548  // Check that the template argument list is well-formed for this template.
2549  SmallVector<TemplateArgument, 4> Converted;
2550  bool ExpansionIntoFixedList = false;
2551  if (CheckTemplateArgumentList(
2552          Template, TemplateNameLoc,
2553          const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2554          Converted, &ExpansionIntoFixedList))
2555    return true;
2556
2557  // Find the variable template specialization declaration that
2558  // corresponds to these arguments.
2559  void *InsertPos = 0;
2560  if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2561          Converted.data(), Converted.size(), InsertPos))
2562    // If we already have a variable template specialization, return it.
2563    return Spec;
2564
2565  // This is the first time we have referenced this variable template
2566  // specialization. Create the canonical declaration and add it to
2567  // the set of specializations, based on the closest partial specialization
2568  // that it represents. That is,
2569  VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2570  TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2571                                       Converted.data(), Converted.size());
2572  TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2573  bool AmbiguousPartialSpec = false;
2574  typedef PartialSpecMatchResult MatchResult;
2575  SmallVector<MatchResult, 4> Matched;
2576  SourceLocation PointOfInstantiation = TemplateNameLoc;
2577  TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2578
2579  // 1. Attempt to find the closest partial specialization that this
2580  // specializes, if any.
2581  // If any of the template arguments is dependent, then this is probably
2582  // a placeholder for an incomplete declarative context; which must be
2583  // complete by instantiation time. Thus, do not search through the partial
2584  // specializations yet.
2585  // FIXME: Unify with InstantiateClassTemplateSpecialization()?
2586  bool InstantiationDependent = false;
2587  if (!TemplateSpecializationType::anyDependentTemplateArguments(
2588          TemplateArgs, InstantiationDependent)) {
2589
2590    SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2591    Template->getPartialSpecializations(PartialSpecs);
2592
2593    for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2594      VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2595      TemplateDeductionInfo Info(FailedCandidates.getLocation());
2596
2597      if (TemplateDeductionResult Result =
2598              DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2599        // Store the failed-deduction information for use in diagnostics, later.
2600        FailedCandidates.addCandidate()
2601            .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2602        (void)Result;
2603      } else {
2604        Matched.push_back(PartialSpecMatchResult());
2605        Matched.back().Partial = Partial;
2606        Matched.back().Args = Info.take();
2607      }
2608    }
2609
2610    // If we're dealing with a member template where the template parameters
2611    // have been instantiated, this provides the original template parameters
2612    // from which the member template's parameters were instantiated.
2613    SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2614
2615    if (Matched.size() >= 1) {
2616      SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2617      if (Matched.size() == 1) {
2618        //   -- If exactly one matching specialization is found, the
2619        //      instantiation is generated from that specialization.
2620        // We don't need to do anything for this.
2621      } else {
2622        //   -- If more than one matching specialization is found, the
2623        //      partial order rules (14.5.4.2) are used to determine
2624        //      whether one of the specializations is more specialized
2625        //      than the others. If none of the specializations is more
2626        //      specialized than all of the other matching
2627        //      specializations, then the use of the variable template is
2628        //      ambiguous and the program is ill-formed.
2629        for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2630                                                   PEnd = Matched.end();
2631             P != PEnd; ++P) {
2632          if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2633                                                      PointOfInstantiation) ==
2634              P->Partial)
2635            Best = P;
2636        }
2637
2638        // Determine if the best partial specialization is more specialized than
2639        // the others.
2640        for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2641                                                   PEnd = Matched.end();
2642             P != PEnd; ++P) {
2643          if (P != Best && getMoreSpecializedPartialSpecialization(
2644                               P->Partial, Best->Partial,
2645                               PointOfInstantiation) != Best->Partial) {
2646            AmbiguousPartialSpec = true;
2647            break;
2648          }
2649        }
2650      }
2651
2652      // Instantiate using the best variable template partial specialization.
2653      InstantiationPattern = Best->Partial;
2654      InstantiationArgs = Best->Args;
2655    } else {
2656      //   -- If no match is found, the instantiation is generated
2657      //      from the primary template.
2658      // InstantiationPattern = Template->getTemplatedDecl();
2659    }
2660  }
2661
2662  // FIXME: Actually use FailedCandidates.
2663
2664  // 2. Create the canonical declaration.
2665  // Note that we do not instantiate the variable just yet, since
2666  // instantiation is handled in DoMarkVarDeclReferenced().
2667  // FIXME: LateAttrs et al.?
2668  VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2669      Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2670      Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2671  if (!Decl)
2672    return true;
2673
2674  if (AmbiguousPartialSpec) {
2675    // Partial ordering did not produce a clear winner. Complain.
2676    Decl->setInvalidDecl();
2677    Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2678        << Decl;
2679
2680    // Print the matching partial specializations.
2681    for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2682                                               PEnd = Matched.end();
2683         P != PEnd; ++P)
2684      Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2685          << getTemplateArgumentBindingsText(
2686                 P->Partial->getTemplateParameters(), *P->Args);
2687    return true;
2688  }
2689
2690  if (VarTemplatePartialSpecializationDecl *D =
2691          dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2692    Decl->setInstantiationOf(D, InstantiationArgs);
2693
2694  assert(Decl && "No variable template specialization?");
2695  return Decl;
2696}
2697
2698ExprResult
2699Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2700                         const DeclarationNameInfo &NameInfo,
2701                         VarTemplateDecl *Template, SourceLocation TemplateLoc,
2702                         const TemplateArgumentListInfo *TemplateArgs) {
2703
2704  DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2705                                       *TemplateArgs);
2706  if (Decl.isInvalid())
2707    return ExprError();
2708
2709  VarDecl *Var = cast<VarDecl>(Decl.get());
2710  if (!Var->getTemplateSpecializationKind())
2711    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2712                                       NameInfo.getLoc());
2713
2714  // Build an ordinary singleton decl ref.
2715  return BuildDeclarationNameExpr(SS, NameInfo, Var,
2716                                  /*FoundD=*/0, TemplateArgs);
2717}
2718
2719ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2720                                     SourceLocation TemplateKWLoc,
2721                                     LookupResult &R,
2722                                     bool RequiresADL,
2723                                 const TemplateArgumentListInfo *TemplateArgs) {
2724  // FIXME: Can we do any checking at this point? I guess we could check the
2725  // template arguments that we have against the template name, if the template
2726  // name refers to a single template. That's not a terribly common case,
2727  // though.
2728  // foo<int> could identify a single function unambiguously
2729  // This approach does NOT work, since f<int>(1);
2730  // gets resolved prior to resorting to overload resolution
2731  // i.e., template<class T> void f(double);
2732  //       vs template<class T, class U> void f(U);
2733
2734  // These should be filtered out by our callers.
2735  assert(!R.empty() && "empty lookup results when building templateid");
2736  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2737
2738  // In C++1y, check variable template ids.
2739  if (R.getAsSingle<VarTemplateDecl>()) {
2740    return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2741                                    R.getAsSingle<VarTemplateDecl>(),
2742                                    TemplateKWLoc, TemplateArgs));
2743  }
2744
2745  // We don't want lookup warnings at this point.
2746  R.suppressDiagnostics();
2747
2748  UnresolvedLookupExpr *ULE
2749    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2750                                   SS.getWithLocInContext(Context),
2751                                   TemplateKWLoc,
2752                                   R.getLookupNameInfo(),
2753                                   RequiresADL, TemplateArgs,
2754                                   R.begin(), R.end());
2755
2756  return Owned(ULE);
2757}
2758
2759// We actually only call this from template instantiation.
2760ExprResult
2761Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2762                                   SourceLocation TemplateKWLoc,
2763                                   const DeclarationNameInfo &NameInfo,
2764                             const TemplateArgumentListInfo *TemplateArgs) {
2765
2766  assert(TemplateArgs || TemplateKWLoc.isValid());
2767  DeclContext *DC;
2768  if (!(DC = computeDeclContext(SS, false)) ||
2769      DC->isDependentContext() ||
2770      RequireCompleteDeclContext(SS, DC))
2771    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2772
2773  bool MemberOfUnknownSpecialization;
2774  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2775  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2776                     MemberOfUnknownSpecialization);
2777
2778  if (R.isAmbiguous())
2779    return ExprError();
2780
2781  if (R.empty()) {
2782    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2783      << NameInfo.getName() << SS.getRange();
2784    return ExprError();
2785  }
2786
2787  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2788    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2789      << (NestedNameSpecifier*) SS.getScopeRep()
2790      << NameInfo.getName() << SS.getRange();
2791    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2792    return ExprError();
2793  }
2794
2795  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2796}
2797
2798/// \brief Form a dependent template name.
2799///
2800/// This action forms a dependent template name given the template
2801/// name and its (presumably dependent) scope specifier. For
2802/// example, given "MetaFun::template apply", the scope specifier \p
2803/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2804/// of the "template" keyword, and "apply" is the \p Name.
2805TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2806                                                  CXXScopeSpec &SS,
2807                                                  SourceLocation TemplateKWLoc,
2808                                                  UnqualifiedId &Name,
2809                                                  ParsedType ObjectType,
2810                                                  bool EnteringContext,
2811                                                  TemplateTy &Result) {
2812  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2813    Diag(TemplateKWLoc,
2814         getLangOpts().CPlusPlus11 ?
2815           diag::warn_cxx98_compat_template_outside_of_template :
2816           diag::ext_template_outside_of_template)
2817      << FixItHint::CreateRemoval(TemplateKWLoc);
2818
2819  DeclContext *LookupCtx = 0;
2820  if (SS.isSet())
2821    LookupCtx = computeDeclContext(SS, EnteringContext);
2822  if (!LookupCtx && ObjectType)
2823    LookupCtx = computeDeclContext(ObjectType.get());
2824  if (LookupCtx) {
2825    // C++0x [temp.names]p5:
2826    //   If a name prefixed by the keyword template is not the name of
2827    //   a template, the program is ill-formed. [Note: the keyword
2828    //   template may not be applied to non-template members of class
2829    //   templates. -end note ] [ Note: as is the case with the
2830    //   typename prefix, the template prefix is allowed in cases
2831    //   where it is not strictly necessary; i.e., when the
2832    //   nested-name-specifier or the expression on the left of the ->
2833    //   or . is not dependent on a template-parameter, or the use
2834    //   does not appear in the scope of a template. -end note]
2835    //
2836    // Note: C++03 was more strict here, because it banned the use of
2837    // the "template" keyword prior to a template-name that was not a
2838    // dependent name. C++ DR468 relaxed this requirement (the
2839    // "template" keyword is now permitted). We follow the C++0x
2840    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2841    bool MemberOfUnknownSpecialization;
2842    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2843                                          ObjectType, EnteringContext, Result,
2844                                          MemberOfUnknownSpecialization);
2845    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2846        isa<CXXRecordDecl>(LookupCtx) &&
2847        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2848         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2849      // This is a dependent template. Handle it below.
2850    } else if (TNK == TNK_Non_template) {
2851      Diag(Name.getLocStart(),
2852           diag::err_template_kw_refers_to_non_template)
2853        << GetNameFromUnqualifiedId(Name).getName()
2854        << Name.getSourceRange()
2855        << TemplateKWLoc;
2856      return TNK_Non_template;
2857    } else {
2858      // We found something; return it.
2859      return TNK;
2860    }
2861  }
2862
2863  NestedNameSpecifier *Qualifier
2864    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2865
2866  switch (Name.getKind()) {
2867  case UnqualifiedId::IK_Identifier:
2868    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2869                                                              Name.Identifier));
2870    return TNK_Dependent_template_name;
2871
2872  case UnqualifiedId::IK_OperatorFunctionId:
2873    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2874                                             Name.OperatorFunctionId.Operator));
2875    return TNK_Dependent_template_name;
2876
2877  case UnqualifiedId::IK_LiteralOperatorId:
2878    llvm_unreachable(
2879            "We don't support these; Parse shouldn't have allowed propagation");
2880
2881  default:
2882    break;
2883  }
2884
2885  Diag(Name.getLocStart(),
2886       diag::err_template_kw_refers_to_non_template)
2887    << GetNameFromUnqualifiedId(Name).getName()
2888    << Name.getSourceRange()
2889    << TemplateKWLoc;
2890  return TNK_Non_template;
2891}
2892
2893bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2894                                     const TemplateArgumentLoc &AL,
2895                          SmallVectorImpl<TemplateArgument> &Converted) {
2896  const TemplateArgument &Arg = AL.getArgument();
2897
2898  // Check template type parameter.
2899  switch(Arg.getKind()) {
2900  case TemplateArgument::Type:
2901    // C++ [temp.arg.type]p1:
2902    //   A template-argument for a template-parameter which is a
2903    //   type shall be a type-id.
2904    break;
2905  case TemplateArgument::Template: {
2906    // We have a template type parameter but the template argument
2907    // is a template without any arguments.
2908    SourceRange SR = AL.getSourceRange();
2909    TemplateName Name = Arg.getAsTemplate();
2910    Diag(SR.getBegin(), diag::err_template_missing_args)
2911      << Name << SR;
2912    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2913      Diag(Decl->getLocation(), diag::note_template_decl_here);
2914
2915    return true;
2916  }
2917  case TemplateArgument::Expression: {
2918    // We have a template type parameter but the template argument is an
2919    // expression; see if maybe it is missing the "typename" keyword.
2920    CXXScopeSpec SS;
2921    DeclarationNameInfo NameInfo;
2922
2923    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2924      SS.Adopt(ArgExpr->getQualifierLoc());
2925      NameInfo = ArgExpr->getNameInfo();
2926    } else if (DependentScopeDeclRefExpr *ArgExpr =
2927               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2928      SS.Adopt(ArgExpr->getQualifierLoc());
2929      NameInfo = ArgExpr->getNameInfo();
2930    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2931               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2932      if (ArgExpr->isImplicitAccess()) {
2933        SS.Adopt(ArgExpr->getQualifierLoc());
2934        NameInfo = ArgExpr->getMemberNameInfo();
2935      }
2936    }
2937
2938    if (NameInfo.getName().isIdentifier()) {
2939      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2940      LookupParsedName(Result, CurScope, &SS);
2941
2942      if (Result.getAsSingle<TypeDecl>() ||
2943          Result.getResultKind() ==
2944            LookupResult::NotFoundInCurrentInstantiation) {
2945        // FIXME: Add a FixIt and fix up the template argument for recovery.
2946        SourceLocation Loc = AL.getSourceRange().getBegin();
2947        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2948        Diag(Param->getLocation(), diag::note_template_param_here);
2949        return true;
2950      }
2951    }
2952    // fallthrough
2953  }
2954  default: {
2955    // We have a template type parameter but the template argument
2956    // is not a type.
2957    SourceRange SR = AL.getSourceRange();
2958    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2959    Diag(Param->getLocation(), diag::note_template_param_here);
2960
2961    return true;
2962  }
2963  }
2964
2965  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2966    return true;
2967
2968  // Add the converted template type argument.
2969  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2970
2971  // Objective-C ARC:
2972  //   If an explicitly-specified template argument type is a lifetime type
2973  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2974  if (getLangOpts().ObjCAutoRefCount &&
2975      ArgType->isObjCLifetimeType() &&
2976      !ArgType.getObjCLifetime()) {
2977    Qualifiers Qs;
2978    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2979    ArgType = Context.getQualifiedType(ArgType, Qs);
2980  }
2981
2982  Converted.push_back(TemplateArgument(ArgType));
2983  return false;
2984}
2985
2986/// \brief Substitute template arguments into the default template argument for
2987/// the given template type parameter.
2988///
2989/// \param SemaRef the semantic analysis object for which we are performing
2990/// the substitution.
2991///
2992/// \param Template the template that we are synthesizing template arguments
2993/// for.
2994///
2995/// \param TemplateLoc the location of the template name that started the
2996/// template-id we are checking.
2997///
2998/// \param RAngleLoc the location of the right angle bracket ('>') that
2999/// terminates the template-id.
3000///
3001/// \param Param the template template parameter whose default we are
3002/// substituting into.
3003///
3004/// \param Converted the list of template arguments provided for template
3005/// parameters that precede \p Param in the template parameter list.
3006/// \returns the substituted template argument, or NULL if an error occurred.
3007static TypeSourceInfo *
3008SubstDefaultTemplateArgument(Sema &SemaRef,
3009                             TemplateDecl *Template,
3010                             SourceLocation TemplateLoc,
3011                             SourceLocation RAngleLoc,
3012                             TemplateTypeParmDecl *Param,
3013                         SmallVectorImpl<TemplateArgument> &Converted) {
3014  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3015
3016  // If the argument type is dependent, instantiate it now based
3017  // on the previously-computed template arguments.
3018  if (ArgType->getType()->isDependentType()) {
3019    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3020                                      Converted.data(), Converted.size());
3021
3022    MultiLevelTemplateArgumentList AllTemplateArgs
3023      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3024
3025    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3026                                     Template, Converted,
3027                                     SourceRange(TemplateLoc, RAngleLoc));
3028    if (Inst)
3029      return 0;
3030
3031    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3032    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
3033                                Param->getDefaultArgumentLoc(),
3034                                Param->getDeclName());
3035  }
3036
3037  return ArgType;
3038}
3039
3040/// \brief Substitute template arguments into the default template argument for
3041/// the given non-type template parameter.
3042///
3043/// \param SemaRef the semantic analysis object for which we are performing
3044/// the substitution.
3045///
3046/// \param Template the template that we are synthesizing template arguments
3047/// for.
3048///
3049/// \param TemplateLoc the location of the template name that started the
3050/// template-id we are checking.
3051///
3052/// \param RAngleLoc the location of the right angle bracket ('>') that
3053/// terminates the template-id.
3054///
3055/// \param Param the non-type template parameter whose default we are
3056/// substituting into.
3057///
3058/// \param Converted the list of template arguments provided for template
3059/// parameters that precede \p Param in the template parameter list.
3060///
3061/// \returns the substituted template argument, or NULL if an error occurred.
3062static ExprResult
3063SubstDefaultTemplateArgument(Sema &SemaRef,
3064                             TemplateDecl *Template,
3065                             SourceLocation TemplateLoc,
3066                             SourceLocation RAngleLoc,
3067                             NonTypeTemplateParmDecl *Param,
3068                        SmallVectorImpl<TemplateArgument> &Converted) {
3069  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3070                                    Converted.data(), Converted.size());
3071
3072  MultiLevelTemplateArgumentList AllTemplateArgs
3073    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3074
3075  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3076                                   Template, Converted,
3077                                   SourceRange(TemplateLoc, RAngleLoc));
3078  if (Inst)
3079    return ExprError();
3080
3081  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3082  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3083  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
3084}
3085
3086/// \brief Substitute template arguments into the default template argument for
3087/// the given template template parameter.
3088///
3089/// \param SemaRef the semantic analysis object for which we are performing
3090/// the substitution.
3091///
3092/// \param Template the template that we are synthesizing template arguments
3093/// for.
3094///
3095/// \param TemplateLoc the location of the template name that started the
3096/// template-id we are checking.
3097///
3098/// \param RAngleLoc the location of the right angle bracket ('>') that
3099/// terminates the template-id.
3100///
3101/// \param Param the template template parameter whose default we are
3102/// substituting into.
3103///
3104/// \param Converted the list of template arguments provided for template
3105/// parameters that precede \p Param in the template parameter list.
3106///
3107/// \param QualifierLoc Will be set to the nested-name-specifier (with
3108/// source-location information) that precedes the template name.
3109///
3110/// \returns the substituted template argument, or NULL if an error occurred.
3111static TemplateName
3112SubstDefaultTemplateArgument(Sema &SemaRef,
3113                             TemplateDecl *Template,
3114                             SourceLocation TemplateLoc,
3115                             SourceLocation RAngleLoc,
3116                             TemplateTemplateParmDecl *Param,
3117                       SmallVectorImpl<TemplateArgument> &Converted,
3118                             NestedNameSpecifierLoc &QualifierLoc) {
3119  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3120                                    Converted.data(), Converted.size());
3121
3122  MultiLevelTemplateArgumentList AllTemplateArgs
3123    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3124
3125  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3126                                   Template, Converted,
3127                                   SourceRange(TemplateLoc, RAngleLoc));
3128  if (Inst)
3129    return TemplateName();
3130
3131  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3132  // Substitute into the nested-name-specifier first,
3133  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3134  if (QualifierLoc) {
3135    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
3136                                                       AllTemplateArgs);
3137    if (!QualifierLoc)
3138      return TemplateName();
3139  }
3140
3141  return SemaRef.SubstTemplateName(QualifierLoc,
3142                      Param->getDefaultArgument().getArgument().getAsTemplate(),
3143                              Param->getDefaultArgument().getTemplateNameLoc(),
3144                                   AllTemplateArgs);
3145}
3146
3147/// \brief If the given template parameter has a default template
3148/// argument, substitute into that default template argument and
3149/// return the corresponding template argument.
3150TemplateArgumentLoc
3151Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3152                                              SourceLocation TemplateLoc,
3153                                              SourceLocation RAngleLoc,
3154                                              Decl *Param,
3155                                              SmallVectorImpl<TemplateArgument>
3156                                                &Converted,
3157                                              bool &HasDefaultArg) {
3158  HasDefaultArg = false;
3159
3160  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3161    if (!TypeParm->hasDefaultArgument())
3162      return TemplateArgumentLoc();
3163
3164    HasDefaultArg = true;
3165    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3166                                                      TemplateLoc,
3167                                                      RAngleLoc,
3168                                                      TypeParm,
3169                                                      Converted);
3170    if (DI)
3171      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3172
3173    return TemplateArgumentLoc();
3174  }
3175
3176  if (NonTypeTemplateParmDecl *NonTypeParm
3177        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3178    if (!NonTypeParm->hasDefaultArgument())
3179      return TemplateArgumentLoc();
3180
3181    HasDefaultArg = true;
3182    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3183                                                  TemplateLoc,
3184                                                  RAngleLoc,
3185                                                  NonTypeParm,
3186                                                  Converted);
3187    if (Arg.isInvalid())
3188      return TemplateArgumentLoc();
3189
3190    Expr *ArgE = Arg.takeAs<Expr>();
3191    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3192  }
3193
3194  TemplateTemplateParmDecl *TempTempParm
3195    = cast<TemplateTemplateParmDecl>(Param);
3196  if (!TempTempParm->hasDefaultArgument())
3197    return TemplateArgumentLoc();
3198
3199  HasDefaultArg = true;
3200  NestedNameSpecifierLoc QualifierLoc;
3201  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3202                                                    TemplateLoc,
3203                                                    RAngleLoc,
3204                                                    TempTempParm,
3205                                                    Converted,
3206                                                    QualifierLoc);
3207  if (TName.isNull())
3208    return TemplateArgumentLoc();
3209
3210  return TemplateArgumentLoc(TemplateArgument(TName),
3211                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3212                TempTempParm->getDefaultArgument().getTemplateNameLoc());
3213}
3214
3215/// \brief Check that the given template argument corresponds to the given
3216/// template parameter.
3217///
3218/// \param Param The template parameter against which the argument will be
3219/// checked.
3220///
3221/// \param Arg The template argument.
3222///
3223/// \param Template The template in which the template argument resides.
3224///
3225/// \param TemplateLoc The location of the template name for the template
3226/// whose argument list we're matching.
3227///
3228/// \param RAngleLoc The location of the right angle bracket ('>') that closes
3229/// the template argument list.
3230///
3231/// \param ArgumentPackIndex The index into the argument pack where this
3232/// argument will be placed. Only valid if the parameter is a parameter pack.
3233///
3234/// \param Converted The checked, converted argument will be added to the
3235/// end of this small vector.
3236///
3237/// \param CTAK Describes how we arrived at this particular template argument:
3238/// explicitly written, deduced, etc.
3239///
3240/// \returns true on error, false otherwise.
3241bool Sema::CheckTemplateArgument(NamedDecl *Param,
3242                                 const TemplateArgumentLoc &Arg,
3243                                 NamedDecl *Template,
3244                                 SourceLocation TemplateLoc,
3245                                 SourceLocation RAngleLoc,
3246                                 unsigned ArgumentPackIndex,
3247                            SmallVectorImpl<TemplateArgument> &Converted,
3248                                 CheckTemplateArgumentKind CTAK) {
3249  // Check template type parameters.
3250  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3251    return CheckTemplateTypeArgument(TTP, Arg, Converted);
3252
3253  // Check non-type template parameters.
3254  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3255    // Do substitution on the type of the non-type template parameter
3256    // with the template arguments we've seen thus far.  But if the
3257    // template has a dependent context then we cannot substitute yet.
3258    QualType NTTPType = NTTP->getType();
3259    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3260      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3261
3262    if (NTTPType->isDependentType() &&
3263        !isa<TemplateTemplateParmDecl>(Template) &&
3264        !Template->getDeclContext()->isDependentContext()) {
3265      // Do substitution on the type of the non-type template parameter.
3266      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3267                                 NTTP, Converted,
3268                                 SourceRange(TemplateLoc, RAngleLoc));
3269      if (Inst)
3270        return true;
3271
3272      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3273                                        Converted.data(), Converted.size());
3274      NTTPType = SubstType(NTTPType,
3275                           MultiLevelTemplateArgumentList(TemplateArgs),
3276                           NTTP->getLocation(),
3277                           NTTP->getDeclName());
3278      // If that worked, check the non-type template parameter type
3279      // for validity.
3280      if (!NTTPType.isNull())
3281        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3282                                                     NTTP->getLocation());
3283      if (NTTPType.isNull())
3284        return true;
3285    }
3286
3287    switch (Arg.getArgument().getKind()) {
3288    case TemplateArgument::Null:
3289      llvm_unreachable("Should never see a NULL template argument here");
3290
3291    case TemplateArgument::Expression: {
3292      TemplateArgument Result;
3293      ExprResult Res =
3294        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3295                              Result, CTAK);
3296      if (Res.isInvalid())
3297        return true;
3298
3299      Converted.push_back(Result);
3300      break;
3301    }
3302
3303    case TemplateArgument::Declaration:
3304    case TemplateArgument::Integral:
3305    case TemplateArgument::NullPtr:
3306      // We've already checked this template argument, so just copy
3307      // it to the list of converted arguments.
3308      Converted.push_back(Arg.getArgument());
3309      break;
3310
3311    case TemplateArgument::Template:
3312    case TemplateArgument::TemplateExpansion:
3313      // We were given a template template argument. It may not be ill-formed;
3314      // see below.
3315      if (DependentTemplateName *DTN
3316            = Arg.getArgument().getAsTemplateOrTemplatePattern()
3317                                              .getAsDependentTemplateName()) {
3318        // We have a template argument such as \c T::template X, which we
3319        // parsed as a template template argument. However, since we now
3320        // know that we need a non-type template argument, convert this
3321        // template name into an expression.
3322
3323        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3324                                     Arg.getTemplateNameLoc());
3325
3326        CXXScopeSpec SS;
3327        SS.Adopt(Arg.getTemplateQualifierLoc());
3328        // FIXME: the template-template arg was a DependentTemplateName,
3329        // so it was provided with a template keyword. However, its source
3330        // location is not stored in the template argument structure.
3331        SourceLocation TemplateKWLoc;
3332        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3333                                                SS.getWithLocInContext(Context),
3334                                                               TemplateKWLoc,
3335                                                               NameInfo, 0));
3336
3337        // If we parsed the template argument as a pack expansion, create a
3338        // pack expansion expression.
3339        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3340          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3341          if (E.isInvalid())
3342            return true;
3343        }
3344
3345        TemplateArgument Result;
3346        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3347        if (E.isInvalid())
3348          return true;
3349
3350        Converted.push_back(Result);
3351        break;
3352      }
3353
3354      // We have a template argument that actually does refer to a class
3355      // template, alias template, or template template parameter, and
3356      // therefore cannot be a non-type template argument.
3357      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3358        << Arg.getSourceRange();
3359
3360      Diag(Param->getLocation(), diag::note_template_param_here);
3361      return true;
3362
3363    case TemplateArgument::Type: {
3364      // We have a non-type template parameter but the template
3365      // argument is a type.
3366
3367      // C++ [temp.arg]p2:
3368      //   In a template-argument, an ambiguity between a type-id and
3369      //   an expression is resolved to a type-id, regardless of the
3370      //   form of the corresponding template-parameter.
3371      //
3372      // We warn specifically about this case, since it can be rather
3373      // confusing for users.
3374      QualType T = Arg.getArgument().getAsType();
3375      SourceRange SR = Arg.getSourceRange();
3376      if (T->isFunctionType())
3377        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3378      else
3379        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3380      Diag(Param->getLocation(), diag::note_template_param_here);
3381      return true;
3382    }
3383
3384    case TemplateArgument::Pack:
3385      llvm_unreachable("Caller must expand template argument packs");
3386    }
3387
3388    return false;
3389  }
3390
3391
3392  // Check template template parameters.
3393  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3394
3395  // Substitute into the template parameter list of the template
3396  // template parameter, since previously-supplied template arguments
3397  // may appear within the template template parameter.
3398  {
3399    // Set up a template instantiation context.
3400    LocalInstantiationScope Scope(*this);
3401    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3402                               TempParm, Converted,
3403                               SourceRange(TemplateLoc, RAngleLoc));
3404    if (Inst)
3405      return true;
3406
3407    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3408                                      Converted.data(), Converted.size());
3409    TempParm = cast_or_null<TemplateTemplateParmDecl>(
3410                      SubstDecl(TempParm, CurContext,
3411                                MultiLevelTemplateArgumentList(TemplateArgs)));
3412    if (!TempParm)
3413      return true;
3414  }
3415
3416  switch (Arg.getArgument().getKind()) {
3417  case TemplateArgument::Null:
3418    llvm_unreachable("Should never see a NULL template argument here");
3419
3420  case TemplateArgument::Template:
3421  case TemplateArgument::TemplateExpansion:
3422    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3423      return true;
3424
3425    Converted.push_back(Arg.getArgument());
3426    break;
3427
3428  case TemplateArgument::Expression:
3429  case TemplateArgument::Type:
3430    // We have a template template parameter but the template
3431    // argument does not refer to a template.
3432    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3433      << getLangOpts().CPlusPlus11;
3434    return true;
3435
3436  case TemplateArgument::Declaration:
3437    llvm_unreachable("Declaration argument with template template parameter");
3438  case TemplateArgument::Integral:
3439    llvm_unreachable("Integral argument with template template parameter");
3440  case TemplateArgument::NullPtr:
3441    llvm_unreachable("Null pointer argument with template template parameter");
3442
3443  case TemplateArgument::Pack:
3444    llvm_unreachable("Caller must expand template argument packs");
3445  }
3446
3447  return false;
3448}
3449
3450/// \brief Diagnose an arity mismatch in the
3451static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3452                                  SourceLocation TemplateLoc,
3453                                  TemplateArgumentListInfo &TemplateArgs) {
3454  TemplateParameterList *Params = Template->getTemplateParameters();
3455  unsigned NumParams = Params->size();
3456  unsigned NumArgs = TemplateArgs.size();
3457
3458  SourceRange Range;
3459  if (NumArgs > NumParams)
3460    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3461                        TemplateArgs.getRAngleLoc());
3462  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3463    << (NumArgs > NumParams)
3464    << (isa<ClassTemplateDecl>(Template)? 0 :
3465        isa<FunctionTemplateDecl>(Template)? 1 :
3466        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3467    << Template << Range;
3468  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3469    << Params->getSourceRange();
3470  return true;
3471}
3472
3473/// \brief Check whether the template parameter is a pack expansion, and if so,
3474/// determine the number of parameters produced by that expansion. For instance:
3475///
3476/// \code
3477/// template<typename ...Ts> struct A {
3478///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3479/// };
3480/// \endcode
3481///
3482/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3483/// is not a pack expansion, so returns an empty Optional.
3484static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3485  if (NonTypeTemplateParmDecl *NTTP
3486        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3487    if (NTTP->isExpandedParameterPack())
3488      return NTTP->getNumExpansionTypes();
3489  }
3490
3491  if (TemplateTemplateParmDecl *TTP
3492        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3493    if (TTP->isExpandedParameterPack())
3494      return TTP->getNumExpansionTemplateParameters();
3495  }
3496
3497  return None;
3498}
3499
3500/// \brief Check that the given template argument list is well-formed
3501/// for specializing the given template.
3502bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3503                                     SourceLocation TemplateLoc,
3504                                     TemplateArgumentListInfo &TemplateArgs,
3505                                     bool PartialTemplateArgs,
3506                          SmallVectorImpl<TemplateArgument> &Converted,
3507                                     bool *ExpansionIntoFixedList) {
3508  if (ExpansionIntoFixedList)
3509    *ExpansionIntoFixedList = false;
3510
3511  TemplateParameterList *Params = Template->getTemplateParameters();
3512
3513  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3514
3515  // C++ [temp.arg]p1:
3516  //   [...] The type and form of each template-argument specified in
3517  //   a template-id shall match the type and form specified for the
3518  //   corresponding parameter declared by the template in its
3519  //   template-parameter-list.
3520  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3521  SmallVector<TemplateArgument, 2> ArgumentPack;
3522  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3523  LocalInstantiationScope InstScope(*this, true);
3524  for (TemplateParameterList::iterator Param = Params->begin(),
3525                                       ParamEnd = Params->end();
3526       Param != ParamEnd; /* increment in loop */) {
3527    // If we have an expanded parameter pack, make sure we don't have too
3528    // many arguments.
3529    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3530      if (*Expansions == ArgumentPack.size()) {
3531        // We're done with this parameter pack. Pack up its arguments and add
3532        // them to the list.
3533        Converted.push_back(
3534          TemplateArgument::CreatePackCopy(Context,
3535                                           ArgumentPack.data(),
3536                                           ArgumentPack.size()));
3537        ArgumentPack.clear();
3538
3539        // This argument is assigned to the next parameter.
3540        ++Param;
3541        continue;
3542      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3543        // Not enough arguments for this parameter pack.
3544        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3545          << false
3546          << (isa<ClassTemplateDecl>(Template)? 0 :
3547              isa<FunctionTemplateDecl>(Template)? 1 :
3548              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3549          << Template;
3550        Diag(Template->getLocation(), diag::note_template_decl_here)
3551          << Params->getSourceRange();
3552        return true;
3553      }
3554    }
3555
3556    if (ArgIdx < NumArgs) {
3557      // Check the template argument we were given.
3558      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3559                                TemplateLoc, RAngleLoc,
3560                                ArgumentPack.size(), Converted))
3561        return true;
3562
3563      // We're now done with this argument.
3564      ++ArgIdx;
3565
3566      if ((*Param)->isTemplateParameterPack()) {
3567        // The template parameter was a template parameter pack, so take the
3568        // deduced argument and place it on the argument pack. Note that we
3569        // stay on the same template parameter so that we can deduce more
3570        // arguments.
3571        ArgumentPack.push_back(Converted.back());
3572        Converted.pop_back();
3573      } else {
3574        // Move to the next template parameter.
3575        ++Param;
3576      }
3577
3578      // If we just saw a pack expansion, then directly convert the remaining
3579      // arguments, because we don't know what parameters they'll match up
3580      // with.
3581      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3582        bool InFinalParameterPack = Param != ParamEnd &&
3583                                    Param + 1 == ParamEnd &&
3584                                    (*Param)->isTemplateParameterPack() &&
3585                                    !getExpandedPackSize(*Param);
3586
3587        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3588          // If we were part way through filling in an expanded parameter pack,
3589          // fall back to just producing individual arguments.
3590          Converted.insert(Converted.end(),
3591                           ArgumentPack.begin(), ArgumentPack.end());
3592          ArgumentPack.clear();
3593        }
3594
3595        while (ArgIdx < NumArgs) {
3596          if (InFinalParameterPack)
3597            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3598          else
3599            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3600          ++ArgIdx;
3601        }
3602
3603        // Push the argument pack onto the list of converted arguments.
3604        if (InFinalParameterPack) {
3605          Converted.push_back(
3606            TemplateArgument::CreatePackCopy(Context,
3607                                             ArgumentPack.data(),
3608                                             ArgumentPack.size()));
3609          ArgumentPack.clear();
3610        } else if (ExpansionIntoFixedList) {
3611          // We have expanded a pack into a fixed list.
3612          *ExpansionIntoFixedList = true;
3613        }
3614
3615        return false;
3616      }
3617
3618      continue;
3619    }
3620
3621    // If we're checking a partial template argument list, we're done.
3622    if (PartialTemplateArgs) {
3623      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3624        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3625                                                         ArgumentPack.data(),
3626                                                         ArgumentPack.size()));
3627
3628      return false;
3629    }
3630
3631    // If we have a template parameter pack with no more corresponding
3632    // arguments, just break out now and we'll fill in the argument pack below.
3633    if ((*Param)->isTemplateParameterPack()) {
3634      assert(!getExpandedPackSize(*Param) &&
3635             "Should have dealt with this already");
3636
3637      // A non-expanded parameter pack before the end of the parameter list
3638      // only occurs for an ill-formed template parameter list, unless we've
3639      // got a partial argument list for a function template, so just bail out.
3640      if (Param + 1 != ParamEnd)
3641        return true;
3642
3643      Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3644                                                       ArgumentPack.data(),
3645                                                       ArgumentPack.size()));
3646      ArgumentPack.clear();
3647
3648      ++Param;
3649      continue;
3650    }
3651
3652    // Check whether we have a default argument.
3653    TemplateArgumentLoc Arg;
3654
3655    // Retrieve the default template argument from the template
3656    // parameter. For each kind of template parameter, we substitute the
3657    // template arguments provided thus far and any "outer" template arguments
3658    // (when the template parameter was part of a nested template) into
3659    // the default argument.
3660    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3661      if (!TTP->hasDefaultArgument())
3662        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3663                                     TemplateArgs);
3664
3665      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3666                                                             Template,
3667                                                             TemplateLoc,
3668                                                             RAngleLoc,
3669                                                             TTP,
3670                                                             Converted);
3671      if (!ArgType)
3672        return true;
3673
3674      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3675                                ArgType);
3676    } else if (NonTypeTemplateParmDecl *NTTP
3677                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3678      if (!NTTP->hasDefaultArgument())
3679        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3680                                     TemplateArgs);
3681
3682      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3683                                                              TemplateLoc,
3684                                                              RAngleLoc,
3685                                                              NTTP,
3686                                                              Converted);
3687      if (E.isInvalid())
3688        return true;
3689
3690      Expr *Ex = E.takeAs<Expr>();
3691      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3692    } else {
3693      TemplateTemplateParmDecl *TempParm
3694        = cast<TemplateTemplateParmDecl>(*Param);
3695
3696      if (!TempParm->hasDefaultArgument())
3697        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3698                                     TemplateArgs);
3699
3700      NestedNameSpecifierLoc QualifierLoc;
3701      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3702                                                       TemplateLoc,
3703                                                       RAngleLoc,
3704                                                       TempParm,
3705                                                       Converted,
3706                                                       QualifierLoc);
3707      if (Name.isNull())
3708        return true;
3709
3710      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3711                           TempParm->getDefaultArgument().getTemplateNameLoc());
3712    }
3713
3714    // Introduce an instantiation record that describes where we are using
3715    // the default template argument.
3716    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3717                                        *Param, Converted,
3718                                        SourceRange(TemplateLoc, RAngleLoc));
3719    if (Instantiating)
3720      return true;
3721
3722    // Check the default template argument.
3723    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3724                              RAngleLoc, 0, Converted))
3725      return true;
3726
3727    // Core issue 150 (assumed resolution): if this is a template template
3728    // parameter, keep track of the default template arguments from the
3729    // template definition.
3730    if (isTemplateTemplateParameter)
3731      TemplateArgs.addArgument(Arg);
3732
3733    // Move to the next template parameter and argument.
3734    ++Param;
3735    ++ArgIdx;
3736  }
3737
3738  // If we have any leftover arguments, then there were too many arguments.
3739  // Complain and fail.
3740  if (ArgIdx < NumArgs)
3741    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3742
3743  return false;
3744}
3745
3746namespace {
3747  class UnnamedLocalNoLinkageFinder
3748    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3749  {
3750    Sema &S;
3751    SourceRange SR;
3752
3753    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3754
3755  public:
3756    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3757
3758    bool Visit(QualType T) {
3759      return inherited::Visit(T.getTypePtr());
3760    }
3761
3762#define TYPE(Class, Parent) \
3763    bool Visit##Class##Type(const Class##Type *);
3764#define ABSTRACT_TYPE(Class, Parent) \
3765    bool Visit##Class##Type(const Class##Type *) { return false; }
3766#define NON_CANONICAL_TYPE(Class, Parent) \
3767    bool Visit##Class##Type(const Class##Type *) { return false; }
3768#include "clang/AST/TypeNodes.def"
3769
3770    bool VisitTagDecl(const TagDecl *Tag);
3771    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3772  };
3773}
3774
3775bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3776  return false;
3777}
3778
3779bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3780  return Visit(T->getElementType());
3781}
3782
3783bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3784  return Visit(T->getPointeeType());
3785}
3786
3787bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3788                                                    const BlockPointerType* T) {
3789  return Visit(T->getPointeeType());
3790}
3791
3792bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3793                                                const LValueReferenceType* T) {
3794  return Visit(T->getPointeeType());
3795}
3796
3797bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3798                                                const RValueReferenceType* T) {
3799  return Visit(T->getPointeeType());
3800}
3801
3802bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3803                                                  const MemberPointerType* T) {
3804  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3805}
3806
3807bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3808                                                  const ConstantArrayType* T) {
3809  return Visit(T->getElementType());
3810}
3811
3812bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3813                                                 const IncompleteArrayType* T) {
3814  return Visit(T->getElementType());
3815}
3816
3817bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3818                                                   const VariableArrayType* T) {
3819  return Visit(T->getElementType());
3820}
3821
3822bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3823                                            const DependentSizedArrayType* T) {
3824  return Visit(T->getElementType());
3825}
3826
3827bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3828                                         const DependentSizedExtVectorType* T) {
3829  return Visit(T->getElementType());
3830}
3831
3832bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3833  return Visit(T->getElementType());
3834}
3835
3836bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3837  return Visit(T->getElementType());
3838}
3839
3840bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3841                                                  const FunctionProtoType* T) {
3842  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3843                                         AEnd = T->arg_type_end();
3844       A != AEnd; ++A) {
3845    if (Visit(*A))
3846      return true;
3847  }
3848
3849  return Visit(T->getResultType());
3850}
3851
3852bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3853                                               const FunctionNoProtoType* T) {
3854  return Visit(T->getResultType());
3855}
3856
3857bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3858                                                  const UnresolvedUsingType*) {
3859  return false;
3860}
3861
3862bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3863  return false;
3864}
3865
3866bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3867  return Visit(T->getUnderlyingType());
3868}
3869
3870bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3871  return false;
3872}
3873
3874bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3875                                                    const UnaryTransformType*) {
3876  return false;
3877}
3878
3879bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3880  return Visit(T->getDeducedType());
3881}
3882
3883bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3884  return VisitTagDecl(T->getDecl());
3885}
3886
3887bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3888  return VisitTagDecl(T->getDecl());
3889}
3890
3891bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3892                                                 const TemplateTypeParmType*) {
3893  return false;
3894}
3895
3896bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3897                                        const SubstTemplateTypeParmPackType *) {
3898  return false;
3899}
3900
3901bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3902                                            const TemplateSpecializationType*) {
3903  return false;
3904}
3905
3906bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3907                                              const InjectedClassNameType* T) {
3908  return VisitTagDecl(T->getDecl());
3909}
3910
3911bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3912                                                   const DependentNameType* T) {
3913  return VisitNestedNameSpecifier(T->getQualifier());
3914}
3915
3916bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3917                                 const DependentTemplateSpecializationType* T) {
3918  return VisitNestedNameSpecifier(T->getQualifier());
3919}
3920
3921bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3922                                                   const PackExpansionType* T) {
3923  return Visit(T->getPattern());
3924}
3925
3926bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3927  return false;
3928}
3929
3930bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3931                                                   const ObjCInterfaceType *) {
3932  return false;
3933}
3934
3935bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3936                                                const ObjCObjectPointerType *) {
3937  return false;
3938}
3939
3940bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3941  return Visit(T->getValueType());
3942}
3943
3944bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3945  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3946    S.Diag(SR.getBegin(),
3947           S.getLangOpts().CPlusPlus11 ?
3948             diag::warn_cxx98_compat_template_arg_local_type :
3949             diag::ext_template_arg_local_type)
3950      << S.Context.getTypeDeclType(Tag) << SR;
3951    return true;
3952  }
3953
3954  if (!Tag->hasNameForLinkage()) {
3955    S.Diag(SR.getBegin(),
3956           S.getLangOpts().CPlusPlus11 ?
3957             diag::warn_cxx98_compat_template_arg_unnamed_type :
3958             diag::ext_template_arg_unnamed_type) << SR;
3959    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3960    return true;
3961  }
3962
3963  return false;
3964}
3965
3966bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3967                                                    NestedNameSpecifier *NNS) {
3968  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3969    return true;
3970
3971  switch (NNS->getKind()) {
3972  case NestedNameSpecifier::Identifier:
3973  case NestedNameSpecifier::Namespace:
3974  case NestedNameSpecifier::NamespaceAlias:
3975  case NestedNameSpecifier::Global:
3976    return false;
3977
3978  case NestedNameSpecifier::TypeSpec:
3979  case NestedNameSpecifier::TypeSpecWithTemplate:
3980    return Visit(QualType(NNS->getAsType(), 0));
3981  }
3982  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3983}
3984
3985
3986/// \brief Check a template argument against its corresponding
3987/// template type parameter.
3988///
3989/// This routine implements the semantics of C++ [temp.arg.type]. It
3990/// returns true if an error occurred, and false otherwise.
3991bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3992                                 TypeSourceInfo *ArgInfo) {
3993  assert(ArgInfo && "invalid TypeSourceInfo");
3994  QualType Arg = ArgInfo->getType();
3995  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3996
3997  if (Arg->isVariablyModifiedType()) {
3998    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3999  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4000    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4001  }
4002
4003  // C++03 [temp.arg.type]p2:
4004  //   A local type, a type with no linkage, an unnamed type or a type
4005  //   compounded from any of these types shall not be used as a
4006  //   template-argument for a template type-parameter.
4007  //
4008  // C++11 allows these, and even in C++03 we allow them as an extension with
4009  // a warning.
4010  if (LangOpts.CPlusPlus11 ?
4011     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
4012                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
4013      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
4014                               SR.getBegin()) != DiagnosticsEngine::Ignored :
4015      Arg->hasUnnamedOrLocalType()) {
4016    UnnamedLocalNoLinkageFinder Finder(*this, SR);
4017    (void)Finder.Visit(Context.getCanonicalType(Arg));
4018  }
4019
4020  return false;
4021}
4022
4023enum NullPointerValueKind {
4024  NPV_NotNullPointer,
4025  NPV_NullPointer,
4026  NPV_Error
4027};
4028
4029/// \brief Determine whether the given template argument is a null pointer
4030/// value of the appropriate type.
4031static NullPointerValueKind
4032isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4033                                   QualType ParamType, Expr *Arg) {
4034  if (Arg->isValueDependent() || Arg->isTypeDependent())
4035    return NPV_NotNullPointer;
4036
4037  if (!S.getLangOpts().CPlusPlus11)
4038    return NPV_NotNullPointer;
4039
4040  // Determine whether we have a constant expression.
4041  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4042  if (ArgRV.isInvalid())
4043    return NPV_Error;
4044  Arg = ArgRV.take();
4045
4046  Expr::EvalResult EvalResult;
4047  SmallVector<PartialDiagnosticAt, 8> Notes;
4048  EvalResult.Diag = &Notes;
4049  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4050      EvalResult.HasSideEffects) {
4051    SourceLocation DiagLoc = Arg->getExprLoc();
4052
4053    // If our only note is the usual "invalid subexpression" note, just point
4054    // the caret at its location rather than producing an essentially
4055    // redundant note.
4056    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4057        diag::note_invalid_subexpr_in_const_expr) {
4058      DiagLoc = Notes[0].first;
4059      Notes.clear();
4060    }
4061
4062    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4063      << Arg->getType() << Arg->getSourceRange();
4064    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4065      S.Diag(Notes[I].first, Notes[I].second);
4066
4067    S.Diag(Param->getLocation(), diag::note_template_param_here);
4068    return NPV_Error;
4069  }
4070
4071  // C++11 [temp.arg.nontype]p1:
4072  //   - an address constant expression of type std::nullptr_t
4073  if (Arg->getType()->isNullPtrType())
4074    return NPV_NullPointer;
4075
4076  //   - a constant expression that evaluates to a null pointer value (4.10); or
4077  //   - a constant expression that evaluates to a null member pointer value
4078  //     (4.11); or
4079  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4080      (EvalResult.Val.isMemberPointer() &&
4081       !EvalResult.Val.getMemberPointerDecl())) {
4082    // If our expression has an appropriate type, we've succeeded.
4083    bool ObjCLifetimeConversion;
4084    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4085        S.IsQualificationConversion(Arg->getType(), ParamType, false,
4086                                     ObjCLifetimeConversion))
4087      return NPV_NullPointer;
4088
4089    // The types didn't match, but we know we got a null pointer; complain,
4090    // then recover as if the types were correct.
4091    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4092      << Arg->getType() << ParamType << Arg->getSourceRange();
4093    S.Diag(Param->getLocation(), diag::note_template_param_here);
4094    return NPV_NullPointer;
4095  }
4096
4097  // If we don't have a null pointer value, but we do have a NULL pointer
4098  // constant, suggest a cast to the appropriate type.
4099  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4100    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4101    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4102      << ParamType
4103      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4104      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4105                                    ")");
4106    S.Diag(Param->getLocation(), diag::note_template_param_here);
4107    return NPV_NullPointer;
4108  }
4109
4110  // FIXME: If we ever want to support general, address-constant expressions
4111  // as non-type template arguments, we should return the ExprResult here to
4112  // be interpreted by the caller.
4113  return NPV_NotNullPointer;
4114}
4115
4116/// \brief Checks whether the given template argument is the address
4117/// of an object or function according to C++ [temp.arg.nontype]p1.
4118static bool
4119CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4120                                               NonTypeTemplateParmDecl *Param,
4121                                               QualType ParamType,
4122                                               Expr *ArgIn,
4123                                               TemplateArgument &Converted) {
4124  bool Invalid = false;
4125  Expr *Arg = ArgIn;
4126  QualType ArgType = Arg->getType();
4127
4128  // If our parameter has pointer type, check for a null template value.
4129  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4130    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4131    case NPV_NullPointer:
4132      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4133      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4134      return false;
4135
4136    case NPV_Error:
4137      return true;
4138
4139    case NPV_NotNullPointer:
4140      break;
4141    }
4142  }
4143
4144  // See through any implicit casts we added to fix the type.
4145  Arg = Arg->IgnoreImpCasts();
4146
4147  // C++ [temp.arg.nontype]p1:
4148  //
4149  //   A template-argument for a non-type, non-template
4150  //   template-parameter shall be one of: [...]
4151  //
4152  //     -- the address of an object or function with external
4153  //        linkage, including function templates and function
4154  //        template-ids but excluding non-static class members,
4155  //        expressed as & id-expression where the & is optional if
4156  //        the name refers to a function or array, or if the
4157  //        corresponding template-parameter is a reference; or
4158
4159  // In C++98/03 mode, give an extension warning on any extra parentheses.
4160  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4161  bool ExtraParens = false;
4162  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4163    if (!Invalid && !ExtraParens) {
4164      S.Diag(Arg->getLocStart(),
4165             S.getLangOpts().CPlusPlus11 ?
4166               diag::warn_cxx98_compat_template_arg_extra_parens :
4167               diag::ext_template_arg_extra_parens)
4168        << Arg->getSourceRange();
4169      ExtraParens = true;
4170    }
4171
4172    Arg = Parens->getSubExpr();
4173  }
4174
4175  while (SubstNonTypeTemplateParmExpr *subst =
4176           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4177    Arg = subst->getReplacement()->IgnoreImpCasts();
4178
4179  bool AddressTaken = false;
4180  SourceLocation AddrOpLoc;
4181  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4182    if (UnOp->getOpcode() == UO_AddrOf) {
4183      Arg = UnOp->getSubExpr();
4184      AddressTaken = true;
4185      AddrOpLoc = UnOp->getOperatorLoc();
4186    }
4187  }
4188
4189  if (isa<CXXUuidofExpr>(Arg)) {
4190    Converted = TemplateArgument(ArgIn);
4191    return false;
4192  }
4193
4194  while (SubstNonTypeTemplateParmExpr *subst =
4195           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4196    Arg = subst->getReplacement()->IgnoreImpCasts();
4197
4198  // Stop checking the precise nature of the argument if it is value dependent,
4199  // it should be checked when instantiated.
4200  if (Arg->isValueDependent()) {
4201    Converted = TemplateArgument(ArgIn);
4202    return false;
4203  }
4204
4205  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4206  if (!DRE) {
4207    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4208    << Arg->getSourceRange();
4209    S.Diag(Param->getLocation(), diag::note_template_param_here);
4210    return true;
4211  }
4212
4213  if (!isa<ValueDecl>(DRE->getDecl())) {
4214    S.Diag(Arg->getLocStart(),
4215           diag::err_template_arg_not_object_or_func_form)
4216      << Arg->getSourceRange();
4217    S.Diag(Param->getLocation(), diag::note_template_param_here);
4218    return true;
4219  }
4220
4221  ValueDecl *Entity = DRE->getDecl();
4222
4223  // Cannot refer to non-static data members
4224  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
4225    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4226      << Field << Arg->getSourceRange();
4227    S.Diag(Param->getLocation(), diag::note_template_param_here);
4228    return true;
4229  }
4230
4231  // Cannot refer to non-static member functions
4232  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4233    if (!Method->isStatic()) {
4234      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4235        << Method << Arg->getSourceRange();
4236      S.Diag(Param->getLocation(), diag::note_template_param_here);
4237      return true;
4238    }
4239  }
4240
4241  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4242  VarDecl *Var = dyn_cast<VarDecl>(Entity);
4243
4244  // A non-type template argument must refer to an object or function.
4245  if (!Func && !Var) {
4246    // We found something, but we don't know specifically what it is.
4247    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4248      << Arg->getSourceRange();
4249    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4250    return true;
4251  }
4252
4253  // Address / reference template args must have external linkage in C++98.
4254  if (Entity->getFormalLinkage() == InternalLinkage) {
4255    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4256             diag::warn_cxx98_compat_template_arg_object_internal :
4257             diag::ext_template_arg_object_internal)
4258      << !Func << Entity << Arg->getSourceRange();
4259    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4260      << !Func;
4261  } else if (!Entity->hasLinkage()) {
4262    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4263      << !Func << Entity << Arg->getSourceRange();
4264    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4265      << !Func;
4266    return true;
4267  }
4268
4269  if (Func) {
4270    // If the template parameter has pointer type, the function decays.
4271    if (ParamType->isPointerType() && !AddressTaken)
4272      ArgType = S.Context.getPointerType(Func->getType());
4273    else if (AddressTaken && ParamType->isReferenceType()) {
4274      // If we originally had an address-of operator, but the
4275      // parameter has reference type, complain and (if things look
4276      // like they will work) drop the address-of operator.
4277      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4278                                            ParamType.getNonReferenceType())) {
4279        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4280          << ParamType;
4281        S.Diag(Param->getLocation(), diag::note_template_param_here);
4282        return true;
4283      }
4284
4285      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4286        << ParamType
4287        << FixItHint::CreateRemoval(AddrOpLoc);
4288      S.Diag(Param->getLocation(), diag::note_template_param_here);
4289
4290      ArgType = Func->getType();
4291    }
4292  } else {
4293    // A value of reference type is not an object.
4294    if (Var->getType()->isReferenceType()) {
4295      S.Diag(Arg->getLocStart(),
4296             diag::err_template_arg_reference_var)
4297        << Var->getType() << Arg->getSourceRange();
4298      S.Diag(Param->getLocation(), diag::note_template_param_here);
4299      return true;
4300    }
4301
4302    // A template argument must have static storage duration.
4303    if (Var->getTLSKind()) {
4304      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4305        << Arg->getSourceRange();
4306      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4307      return true;
4308    }
4309
4310    // If the template parameter has pointer type, we must have taken
4311    // the address of this object.
4312    if (ParamType->isReferenceType()) {
4313      if (AddressTaken) {
4314        // If we originally had an address-of operator, but the
4315        // parameter has reference type, complain and (if things look
4316        // like they will work) drop the address-of operator.
4317        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4318                                            ParamType.getNonReferenceType())) {
4319          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4320            << ParamType;
4321          S.Diag(Param->getLocation(), diag::note_template_param_here);
4322          return true;
4323        }
4324
4325        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4326          << ParamType
4327          << FixItHint::CreateRemoval(AddrOpLoc);
4328        S.Diag(Param->getLocation(), diag::note_template_param_here);
4329
4330        ArgType = Var->getType();
4331      }
4332    } else if (!AddressTaken && ParamType->isPointerType()) {
4333      if (Var->getType()->isArrayType()) {
4334        // Array-to-pointer decay.
4335        ArgType = S.Context.getArrayDecayedType(Var->getType());
4336      } else {
4337        // If the template parameter has pointer type but the address of
4338        // this object was not taken, complain and (possibly) recover by
4339        // taking the address of the entity.
4340        ArgType = S.Context.getPointerType(Var->getType());
4341        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4342          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4343            << ParamType;
4344          S.Diag(Param->getLocation(), diag::note_template_param_here);
4345          return true;
4346        }
4347
4348        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4349          << ParamType
4350          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4351
4352        S.Diag(Param->getLocation(), diag::note_template_param_here);
4353      }
4354    }
4355  }
4356
4357  bool ObjCLifetimeConversion;
4358  if (ParamType->isPointerType() &&
4359      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4360      S.IsQualificationConversion(ArgType, ParamType, false,
4361                                  ObjCLifetimeConversion)) {
4362    // For pointer-to-object types, qualification conversions are
4363    // permitted.
4364  } else {
4365    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4366      if (!ParamRef->getPointeeType()->isFunctionType()) {
4367        // C++ [temp.arg.nontype]p5b3:
4368        //   For a non-type template-parameter of type reference to
4369        //   object, no conversions apply. The type referred to by the
4370        //   reference may be more cv-qualified than the (otherwise
4371        //   identical) type of the template- argument. The
4372        //   template-parameter is bound directly to the
4373        //   template-argument, which shall be an lvalue.
4374
4375        // FIXME: Other qualifiers?
4376        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4377        unsigned ArgQuals = ArgType.getCVRQualifiers();
4378
4379        if ((ParamQuals | ArgQuals) != ParamQuals) {
4380          S.Diag(Arg->getLocStart(),
4381                 diag::err_template_arg_ref_bind_ignores_quals)
4382            << ParamType << Arg->getType()
4383            << Arg->getSourceRange();
4384          S.Diag(Param->getLocation(), diag::note_template_param_here);
4385          return true;
4386        }
4387      }
4388    }
4389
4390    // At this point, the template argument refers to an object or
4391    // function with external linkage. We now need to check whether the
4392    // argument and parameter types are compatible.
4393    if (!S.Context.hasSameUnqualifiedType(ArgType,
4394                                          ParamType.getNonReferenceType())) {
4395      // We can't perform this conversion or binding.
4396      if (ParamType->isReferenceType())
4397        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4398          << ParamType << ArgIn->getType() << Arg->getSourceRange();
4399      else
4400        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4401          << ArgIn->getType() << ParamType << Arg->getSourceRange();
4402      S.Diag(Param->getLocation(), diag::note_template_param_here);
4403      return true;
4404    }
4405  }
4406
4407  // Create the template argument.
4408  Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4409                               ParamType->isReferenceType());
4410  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4411  return false;
4412}
4413
4414/// \brief Checks whether the given template argument is a pointer to
4415/// member constant according to C++ [temp.arg.nontype]p1.
4416static bool CheckTemplateArgumentPointerToMember(Sema &S,
4417                                                 NonTypeTemplateParmDecl *Param,
4418                                                 QualType ParamType,
4419                                                 Expr *&ResultArg,
4420                                                 TemplateArgument &Converted) {
4421  bool Invalid = false;
4422
4423  // Check for a null pointer value.
4424  Expr *Arg = ResultArg;
4425  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4426  case NPV_Error:
4427    return true;
4428  case NPV_NullPointer:
4429    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4430    Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4431    return false;
4432  case NPV_NotNullPointer:
4433    break;
4434  }
4435
4436  bool ObjCLifetimeConversion;
4437  if (S.IsQualificationConversion(Arg->getType(),
4438                                  ParamType.getNonReferenceType(),
4439                                  false, ObjCLifetimeConversion)) {
4440    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4441                              Arg->getValueKind()).take();
4442    ResultArg = Arg;
4443  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4444                ParamType.getNonReferenceType())) {
4445    // We can't perform this conversion.
4446    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4447      << Arg->getType() << ParamType << Arg->getSourceRange();
4448    S.Diag(Param->getLocation(), diag::note_template_param_here);
4449    return true;
4450  }
4451
4452  // See through any implicit casts we added to fix the type.
4453  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4454    Arg = Cast->getSubExpr();
4455
4456  // C++ [temp.arg.nontype]p1:
4457  //
4458  //   A template-argument for a non-type, non-template
4459  //   template-parameter shall be one of: [...]
4460  //
4461  //     -- a pointer to member expressed as described in 5.3.1.
4462  DeclRefExpr *DRE = 0;
4463
4464  // In C++98/03 mode, give an extension warning on any extra parentheses.
4465  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4466  bool ExtraParens = false;
4467  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4468    if (!Invalid && !ExtraParens) {
4469      S.Diag(Arg->getLocStart(),
4470             S.getLangOpts().CPlusPlus11 ?
4471               diag::warn_cxx98_compat_template_arg_extra_parens :
4472               diag::ext_template_arg_extra_parens)
4473        << Arg->getSourceRange();
4474      ExtraParens = true;
4475    }
4476
4477    Arg = Parens->getSubExpr();
4478  }
4479
4480  while (SubstNonTypeTemplateParmExpr *subst =
4481           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4482    Arg = subst->getReplacement()->IgnoreImpCasts();
4483
4484  // A pointer-to-member constant written &Class::member.
4485  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4486    if (UnOp->getOpcode() == UO_AddrOf) {
4487      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4488      if (DRE && !DRE->getQualifier())
4489        DRE = 0;
4490    }
4491  }
4492  // A constant of pointer-to-member type.
4493  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4494    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4495      if (VD->getType()->isMemberPointerType()) {
4496        if (isa<NonTypeTemplateParmDecl>(VD) ||
4497            (isa<VarDecl>(VD) &&
4498             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4499          if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4500            Converted = TemplateArgument(Arg);
4501          } else {
4502            VD = cast<ValueDecl>(VD->getCanonicalDecl());
4503            Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4504          }
4505          return Invalid;
4506        }
4507      }
4508    }
4509
4510    DRE = 0;
4511  }
4512
4513  if (!DRE)
4514    return S.Diag(Arg->getLocStart(),
4515                  diag::err_template_arg_not_pointer_to_member_form)
4516      << Arg->getSourceRange();
4517
4518  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4519    assert((isa<FieldDecl>(DRE->getDecl()) ||
4520            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4521           "Only non-static member pointers can make it here");
4522
4523    // Okay: this is the address of a non-static member, and therefore
4524    // a member pointer constant.
4525    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4526      Converted = TemplateArgument(Arg);
4527    } else {
4528      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4529      Converted = TemplateArgument(D, /*isReferenceParam*/false);
4530    }
4531    return Invalid;
4532  }
4533
4534  // We found something else, but we don't know specifically what it is.
4535  S.Diag(Arg->getLocStart(),
4536         diag::err_template_arg_not_pointer_to_member_form)
4537    << Arg->getSourceRange();
4538  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4539  return true;
4540}
4541
4542/// \brief Check a template argument against its corresponding
4543/// non-type template parameter.
4544///
4545/// This routine implements the semantics of C++ [temp.arg.nontype].
4546/// If an error occurred, it returns ExprError(); otherwise, it
4547/// returns the converted template argument. \p
4548/// InstantiatedParamType is the type of the non-type template
4549/// parameter after it has been instantiated.
4550ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4551                                       QualType InstantiatedParamType, Expr *Arg,
4552                                       TemplateArgument &Converted,
4553                                       CheckTemplateArgumentKind CTAK) {
4554  SourceLocation StartLoc = Arg->getLocStart();
4555
4556  // If either the parameter has a dependent type or the argument is
4557  // type-dependent, there's nothing we can check now.
4558  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4559    // FIXME: Produce a cloned, canonical expression?
4560    Converted = TemplateArgument(Arg);
4561    return Owned(Arg);
4562  }
4563
4564  // C++ [temp.arg.nontype]p5:
4565  //   The following conversions are performed on each expression used
4566  //   as a non-type template-argument. If a non-type
4567  //   template-argument cannot be converted to the type of the
4568  //   corresponding template-parameter then the program is
4569  //   ill-formed.
4570  QualType ParamType = InstantiatedParamType;
4571  if (ParamType->isIntegralOrEnumerationType()) {
4572    // C++11:
4573    //   -- for a non-type template-parameter of integral or
4574    //      enumeration type, conversions permitted in a converted
4575    //      constant expression are applied.
4576    //
4577    // C++98:
4578    //   -- for a non-type template-parameter of integral or
4579    //      enumeration type, integral promotions (4.5) and integral
4580    //      conversions (4.7) are applied.
4581
4582    if (CTAK == CTAK_Deduced &&
4583        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4584      // C++ [temp.deduct.type]p17:
4585      //   If, in the declaration of a function template with a non-type
4586      //   template-parameter, the non-type template-parameter is used
4587      //   in an expression in the function parameter-list and, if the
4588      //   corresponding template-argument is deduced, the
4589      //   template-argument type shall match the type of the
4590      //   template-parameter exactly, except that a template-argument
4591      //   deduced from an array bound may be of any integral type.
4592      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4593        << Arg->getType().getUnqualifiedType()
4594        << ParamType.getUnqualifiedType();
4595      Diag(Param->getLocation(), diag::note_template_param_here);
4596      return ExprError();
4597    }
4598
4599    if (getLangOpts().CPlusPlus11) {
4600      // We can't check arbitrary value-dependent arguments.
4601      // FIXME: If there's no viable conversion to the template parameter type,
4602      // we should be able to diagnose that prior to instantiation.
4603      if (Arg->isValueDependent()) {
4604        Converted = TemplateArgument(Arg);
4605        return Owned(Arg);
4606      }
4607
4608      // C++ [temp.arg.nontype]p1:
4609      //   A template-argument for a non-type, non-template template-parameter
4610      //   shall be one of:
4611      //
4612      //     -- for a non-type template-parameter of integral or enumeration
4613      //        type, a converted constant expression of the type of the
4614      //        template-parameter; or
4615      llvm::APSInt Value;
4616      ExprResult ArgResult =
4617        CheckConvertedConstantExpression(Arg, ParamType, Value,
4618                                         CCEK_TemplateArg);
4619      if (ArgResult.isInvalid())
4620        return ExprError();
4621
4622      // Widen the argument value to sizeof(parameter type). This is almost
4623      // always a no-op, except when the parameter type is bool. In
4624      // that case, this may extend the argument from 1 bit to 8 bits.
4625      QualType IntegerType = ParamType;
4626      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4627        IntegerType = Enum->getDecl()->getIntegerType();
4628      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4629
4630      Converted = TemplateArgument(Context, Value,
4631                                   Context.getCanonicalType(ParamType));
4632      return ArgResult;
4633    }
4634
4635    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4636    if (ArgResult.isInvalid())
4637      return ExprError();
4638    Arg = ArgResult.take();
4639
4640    QualType ArgType = Arg->getType();
4641
4642    // C++ [temp.arg.nontype]p1:
4643    //   A template-argument for a non-type, non-template
4644    //   template-parameter shall be one of:
4645    //
4646    //     -- an integral constant-expression of integral or enumeration
4647    //        type; or
4648    //     -- the name of a non-type template-parameter; or
4649    SourceLocation NonConstantLoc;
4650    llvm::APSInt Value;
4651    if (!ArgType->isIntegralOrEnumerationType()) {
4652      Diag(Arg->getLocStart(),
4653           diag::err_template_arg_not_integral_or_enumeral)
4654        << ArgType << Arg->getSourceRange();
4655      Diag(Param->getLocation(), diag::note_template_param_here);
4656      return ExprError();
4657    } else if (!Arg->isValueDependent()) {
4658      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4659        QualType T;
4660
4661      public:
4662        TmplArgICEDiagnoser(QualType T) : T(T) { }
4663
4664        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4665                                    SourceRange SR) {
4666          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4667        }
4668      } Diagnoser(ArgType);
4669
4670      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4671                                            false).take();
4672      if (!Arg)
4673        return ExprError();
4674    }
4675
4676    // From here on out, all we care about are the unqualified forms
4677    // of the parameter and argument types.
4678    ParamType = ParamType.getUnqualifiedType();
4679    ArgType = ArgType.getUnqualifiedType();
4680
4681    // Try to convert the argument to the parameter's type.
4682    if (Context.hasSameType(ParamType, ArgType)) {
4683      // Okay: no conversion necessary
4684    } else if (ParamType->isBooleanType()) {
4685      // This is an integral-to-boolean conversion.
4686      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4687    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4688               !ParamType->isEnumeralType()) {
4689      // This is an integral promotion or conversion.
4690      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4691    } else {
4692      // We can't perform this conversion.
4693      Diag(Arg->getLocStart(),
4694           diag::err_template_arg_not_convertible)
4695        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4696      Diag(Param->getLocation(), diag::note_template_param_here);
4697      return ExprError();
4698    }
4699
4700    // Add the value of this argument to the list of converted
4701    // arguments. We use the bitwidth and signedness of the template
4702    // parameter.
4703    if (Arg->isValueDependent()) {
4704      // The argument is value-dependent. Create a new
4705      // TemplateArgument with the converted expression.
4706      Converted = TemplateArgument(Arg);
4707      return Owned(Arg);
4708    }
4709
4710    QualType IntegerType = Context.getCanonicalType(ParamType);
4711    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4712      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4713
4714    if (ParamType->isBooleanType()) {
4715      // Value must be zero or one.
4716      Value = Value != 0;
4717      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4718      if (Value.getBitWidth() != AllowedBits)
4719        Value = Value.extOrTrunc(AllowedBits);
4720      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4721    } else {
4722      llvm::APSInt OldValue = Value;
4723
4724      // Coerce the template argument's value to the value it will have
4725      // based on the template parameter's type.
4726      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4727      if (Value.getBitWidth() != AllowedBits)
4728        Value = Value.extOrTrunc(AllowedBits);
4729      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4730
4731      // Complain if an unsigned parameter received a negative value.
4732      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4733               && (OldValue.isSigned() && OldValue.isNegative())) {
4734        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4735          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4736          << Arg->getSourceRange();
4737        Diag(Param->getLocation(), diag::note_template_param_here);
4738      }
4739
4740      // Complain if we overflowed the template parameter's type.
4741      unsigned RequiredBits;
4742      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4743        RequiredBits = OldValue.getActiveBits();
4744      else if (OldValue.isUnsigned())
4745        RequiredBits = OldValue.getActiveBits() + 1;
4746      else
4747        RequiredBits = OldValue.getMinSignedBits();
4748      if (RequiredBits > AllowedBits) {
4749        Diag(Arg->getLocStart(),
4750             diag::warn_template_arg_too_large)
4751          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4752          << Arg->getSourceRange();
4753        Diag(Param->getLocation(), diag::note_template_param_here);
4754      }
4755    }
4756
4757    Converted = TemplateArgument(Context, Value,
4758                                 ParamType->isEnumeralType()
4759                                   ? Context.getCanonicalType(ParamType)
4760                                   : IntegerType);
4761    return Owned(Arg);
4762  }
4763
4764  QualType ArgType = Arg->getType();
4765  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4766
4767  // Handle pointer-to-function, reference-to-function, and
4768  // pointer-to-member-function all in (roughly) the same way.
4769  if (// -- For a non-type template-parameter of type pointer to
4770      //    function, only the function-to-pointer conversion (4.3) is
4771      //    applied. If the template-argument represents a set of
4772      //    overloaded functions (or a pointer to such), the matching
4773      //    function is selected from the set (13.4).
4774      (ParamType->isPointerType() &&
4775       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4776      // -- For a non-type template-parameter of type reference to
4777      //    function, no conversions apply. If the template-argument
4778      //    represents a set of overloaded functions, the matching
4779      //    function is selected from the set (13.4).
4780      (ParamType->isReferenceType() &&
4781       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4782      // -- For a non-type template-parameter of type pointer to
4783      //    member function, no conversions apply. If the
4784      //    template-argument represents a set of overloaded member
4785      //    functions, the matching member function is selected from
4786      //    the set (13.4).
4787      (ParamType->isMemberPointerType() &&
4788       ParamType->getAs<MemberPointerType>()->getPointeeType()
4789         ->isFunctionType())) {
4790
4791    if (Arg->getType() == Context.OverloadTy) {
4792      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4793                                                                true,
4794                                                                FoundResult)) {
4795        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4796          return ExprError();
4797
4798        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4799        ArgType = Arg->getType();
4800      } else
4801        return ExprError();
4802    }
4803
4804    if (!ParamType->isMemberPointerType()) {
4805      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4806                                                         ParamType,
4807                                                         Arg, Converted))
4808        return ExprError();
4809      return Owned(Arg);
4810    }
4811
4812    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4813                                             Converted))
4814      return ExprError();
4815    return Owned(Arg);
4816  }
4817
4818  if (ParamType->isPointerType()) {
4819    //   -- for a non-type template-parameter of type pointer to
4820    //      object, qualification conversions (4.4) and the
4821    //      array-to-pointer conversion (4.2) are applied.
4822    // C++0x also allows a value of std::nullptr_t.
4823    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4824           "Only object pointers allowed here");
4825
4826    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4827                                                       ParamType,
4828                                                       Arg, Converted))
4829      return ExprError();
4830    return Owned(Arg);
4831  }
4832
4833  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4834    //   -- For a non-type template-parameter of type reference to
4835    //      object, no conversions apply. The type referred to by the
4836    //      reference may be more cv-qualified than the (otherwise
4837    //      identical) type of the template-argument. The
4838    //      template-parameter is bound directly to the
4839    //      template-argument, which must be an lvalue.
4840    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4841           "Only object references allowed here");
4842
4843    if (Arg->getType() == Context.OverloadTy) {
4844      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4845                                                 ParamRefType->getPointeeType(),
4846                                                                true,
4847                                                                FoundResult)) {
4848        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4849          return ExprError();
4850
4851        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4852        ArgType = Arg->getType();
4853      } else
4854        return ExprError();
4855    }
4856
4857    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4858                                                       ParamType,
4859                                                       Arg, Converted))
4860      return ExprError();
4861    return Owned(Arg);
4862  }
4863
4864  // Deal with parameters of type std::nullptr_t.
4865  if (ParamType->isNullPtrType()) {
4866    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4867      Converted = TemplateArgument(Arg);
4868      return Owned(Arg);
4869    }
4870
4871    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4872    case NPV_NotNullPointer:
4873      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4874        << Arg->getType() << ParamType;
4875      Diag(Param->getLocation(), diag::note_template_param_here);
4876      return ExprError();
4877
4878    case NPV_Error:
4879      return ExprError();
4880
4881    case NPV_NullPointer:
4882      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4883      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4884      return Owned(Arg);
4885    }
4886  }
4887
4888  //     -- For a non-type template-parameter of type pointer to data
4889  //        member, qualification conversions (4.4) are applied.
4890  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4891
4892  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4893                                           Converted))
4894    return ExprError();
4895  return Owned(Arg);
4896}
4897
4898/// \brief Check a template argument against its corresponding
4899/// template template parameter.
4900///
4901/// This routine implements the semantics of C++ [temp.arg.template].
4902/// It returns true if an error occurred, and false otherwise.
4903bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4904                                 const TemplateArgumentLoc &Arg,
4905                                 unsigned ArgumentPackIndex) {
4906  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
4907  TemplateDecl *Template = Name.getAsTemplateDecl();
4908  if (!Template) {
4909    // Any dependent template name is fine.
4910    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4911    return false;
4912  }
4913
4914  // C++0x [temp.arg.template]p1:
4915  //   A template-argument for a template template-parameter shall be
4916  //   the name of a class template or an alias template, expressed as an
4917  //   id-expression. When the template-argument names a class template, only
4918  //   primary class templates are considered when matching the
4919  //   template template argument with the corresponding parameter;
4920  //   partial specializations are not considered even if their
4921  //   parameter lists match that of the template template parameter.
4922  //
4923  // Note that we also allow template template parameters here, which
4924  // will happen when we are dealing with, e.g., class template
4925  // partial specializations.
4926  if (!isa<ClassTemplateDecl>(Template) &&
4927      !isa<TemplateTemplateParmDecl>(Template) &&
4928      !isa<TypeAliasTemplateDecl>(Template)) {
4929    assert(isa<FunctionTemplateDecl>(Template) &&
4930           "Only function templates are possible here");
4931    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4932    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4933      << Template;
4934  }
4935
4936  TemplateParameterList *Params = Param->getTemplateParameters();
4937  if (Param->isExpandedParameterPack())
4938    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4939
4940  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4941                                         Params,
4942                                         true,
4943                                         TPL_TemplateTemplateArgumentMatch,
4944                                         Arg.getLocation());
4945}
4946
4947/// \brief Given a non-type template argument that refers to a
4948/// declaration and the type of its corresponding non-type template
4949/// parameter, produce an expression that properly refers to that
4950/// declaration.
4951ExprResult
4952Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4953                                              QualType ParamType,
4954                                              SourceLocation Loc) {
4955  // C++ [temp.param]p8:
4956  //
4957  //   A non-type template-parameter of type "array of T" or
4958  //   "function returning T" is adjusted to be of type "pointer to
4959  //   T" or "pointer to function returning T", respectively.
4960  if (ParamType->isArrayType())
4961    ParamType = Context.getArrayDecayedType(ParamType);
4962  else if (ParamType->isFunctionType())
4963    ParamType = Context.getPointerType(ParamType);
4964
4965  // For a NULL non-type template argument, return nullptr casted to the
4966  // parameter's type.
4967  if (Arg.getKind() == TemplateArgument::NullPtr) {
4968    return ImpCastExprToType(
4969             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4970                             ParamType,
4971                             ParamType->getAs<MemberPointerType>()
4972                               ? CK_NullToMemberPointer
4973                               : CK_NullToPointer);
4974  }
4975  assert(Arg.getKind() == TemplateArgument::Declaration &&
4976         "Only declaration template arguments permitted here");
4977
4978  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4979
4980  if (VD->getDeclContext()->isRecord() &&
4981      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4982    // If the value is a class member, we might have a pointer-to-member.
4983    // Determine whether the non-type template template parameter is of
4984    // pointer-to-member type. If so, we need to build an appropriate
4985    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4986    // would refer to the member itself.
4987    if (ParamType->isMemberPointerType()) {
4988      QualType ClassType
4989        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4990      NestedNameSpecifier *Qualifier
4991        = NestedNameSpecifier::Create(Context, 0, false,
4992                                      ClassType.getTypePtr());
4993      CXXScopeSpec SS;
4994      SS.MakeTrivial(Context, Qualifier, Loc);
4995
4996      // The actual value-ness of this is unimportant, but for
4997      // internal consistency's sake, references to instance methods
4998      // are r-values.
4999      ExprValueKind VK = VK_LValue;
5000      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5001        VK = VK_RValue;
5002
5003      ExprResult RefExpr = BuildDeclRefExpr(VD,
5004                                            VD->getType().getNonReferenceType(),
5005                                            VK,
5006                                            Loc,
5007                                            &SS);
5008      if (RefExpr.isInvalid())
5009        return ExprError();
5010
5011      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5012
5013      // We might need to perform a trailing qualification conversion, since
5014      // the element type on the parameter could be more qualified than the
5015      // element type in the expression we constructed.
5016      bool ObjCLifetimeConversion;
5017      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5018                                    ParamType.getUnqualifiedType(), false,
5019                                    ObjCLifetimeConversion))
5020        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5021
5022      assert(!RefExpr.isInvalid() &&
5023             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5024                                 ParamType.getUnqualifiedType()));
5025      return RefExpr;
5026    }
5027  }
5028
5029  QualType T = VD->getType().getNonReferenceType();
5030
5031  if (ParamType->isPointerType()) {
5032    // When the non-type template parameter is a pointer, take the
5033    // address of the declaration.
5034    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5035    if (RefExpr.isInvalid())
5036      return ExprError();
5037
5038    if (T->isFunctionType() || T->isArrayType()) {
5039      // Decay functions and arrays.
5040      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5041      if (RefExpr.isInvalid())
5042        return ExprError();
5043
5044      return RefExpr;
5045    }
5046
5047    // Take the address of everything else
5048    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5049  }
5050
5051  ExprValueKind VK = VK_RValue;
5052
5053  // If the non-type template parameter has reference type, qualify the
5054  // resulting declaration reference with the extra qualifiers on the
5055  // type that the reference refers to.
5056  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5057    VK = VK_LValue;
5058    T = Context.getQualifiedType(T,
5059                              TargetRef->getPointeeType().getQualifiers());
5060  } else if (isa<FunctionDecl>(VD)) {
5061    // References to functions are always lvalues.
5062    VK = VK_LValue;
5063  }
5064
5065  return BuildDeclRefExpr(VD, T, VK, Loc);
5066}
5067
5068/// \brief Construct a new expression that refers to the given
5069/// integral template argument with the given source-location
5070/// information.
5071///
5072/// This routine takes care of the mapping from an integral template
5073/// argument (which may have any integral type) to the appropriate
5074/// literal value.
5075ExprResult
5076Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5077                                                  SourceLocation Loc) {
5078  assert(Arg.getKind() == TemplateArgument::Integral &&
5079         "Operation is only valid for integral template arguments");
5080  QualType OrigT = Arg.getIntegralType();
5081
5082  // If this is an enum type that we're instantiating, we need to use an integer
5083  // type the same size as the enumerator.  We don't want to build an
5084  // IntegerLiteral with enum type.  The integer type of an enum type can be of
5085  // any integral type with C++11 enum classes, make sure we create the right
5086  // type of literal for it.
5087  QualType T = OrigT;
5088  if (const EnumType *ET = OrigT->getAs<EnumType>())
5089    T = ET->getDecl()->getIntegerType();
5090
5091  Expr *E;
5092  if (T->isAnyCharacterType()) {
5093    CharacterLiteral::CharacterKind Kind;
5094    if (T->isWideCharType())
5095      Kind = CharacterLiteral::Wide;
5096    else if (T->isChar16Type())
5097      Kind = CharacterLiteral::UTF16;
5098    else if (T->isChar32Type())
5099      Kind = CharacterLiteral::UTF32;
5100    else
5101      Kind = CharacterLiteral::Ascii;
5102
5103    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5104                                       Kind, T, Loc);
5105  } else if (T->isBooleanType()) {
5106    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5107                                         T, Loc);
5108  } else if (T->isNullPtrType()) {
5109    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5110  } else {
5111    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5112  }
5113
5114  if (OrigT->isEnumeralType()) {
5115    // FIXME: This is a hack. We need a better way to handle substituted
5116    // non-type template parameters.
5117    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5118                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
5119                               Loc, Loc);
5120  }
5121
5122  return Owned(E);
5123}
5124
5125/// \brief Match two template parameters within template parameter lists.
5126static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5127                                       bool Complain,
5128                                     Sema::TemplateParameterListEqualKind Kind,
5129                                       SourceLocation TemplateArgLoc) {
5130  // Check the actual kind (type, non-type, template).
5131  if (Old->getKind() != New->getKind()) {
5132    if (Complain) {
5133      unsigned NextDiag = diag::err_template_param_different_kind;
5134      if (TemplateArgLoc.isValid()) {
5135        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5136        NextDiag = diag::note_template_param_different_kind;
5137      }
5138      S.Diag(New->getLocation(), NextDiag)
5139        << (Kind != Sema::TPL_TemplateMatch);
5140      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5141        << (Kind != Sema::TPL_TemplateMatch);
5142    }
5143
5144    return false;
5145  }
5146
5147  // Check that both are parameter packs are neither are parameter packs.
5148  // However, if we are matching a template template argument to a
5149  // template template parameter, the template template parameter can have
5150  // a parameter pack where the template template argument does not.
5151  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5152      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5153        Old->isTemplateParameterPack())) {
5154    if (Complain) {
5155      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5156      if (TemplateArgLoc.isValid()) {
5157        S.Diag(TemplateArgLoc,
5158             diag::err_template_arg_template_params_mismatch);
5159        NextDiag = diag::note_template_parameter_pack_non_pack;
5160      }
5161
5162      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5163                      : isa<NonTypeTemplateParmDecl>(New)? 1
5164                      : 2;
5165      S.Diag(New->getLocation(), NextDiag)
5166        << ParamKind << New->isParameterPack();
5167      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5168        << ParamKind << Old->isParameterPack();
5169    }
5170
5171    return false;
5172  }
5173
5174  // For non-type template parameters, check the type of the parameter.
5175  if (NonTypeTemplateParmDecl *OldNTTP
5176                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5177    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5178
5179    // If we are matching a template template argument to a template
5180    // template parameter and one of the non-type template parameter types
5181    // is dependent, then we must wait until template instantiation time
5182    // to actually compare the arguments.
5183    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5184        (OldNTTP->getType()->isDependentType() ||
5185         NewNTTP->getType()->isDependentType()))
5186      return true;
5187
5188    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5189      if (Complain) {
5190        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5191        if (TemplateArgLoc.isValid()) {
5192          S.Diag(TemplateArgLoc,
5193                 diag::err_template_arg_template_params_mismatch);
5194          NextDiag = diag::note_template_nontype_parm_different_type;
5195        }
5196        S.Diag(NewNTTP->getLocation(), NextDiag)
5197          << NewNTTP->getType()
5198          << (Kind != Sema::TPL_TemplateMatch);
5199        S.Diag(OldNTTP->getLocation(),
5200               diag::note_template_nontype_parm_prev_declaration)
5201          << OldNTTP->getType();
5202      }
5203
5204      return false;
5205    }
5206
5207    return true;
5208  }
5209
5210  // For template template parameters, check the template parameter types.
5211  // The template parameter lists of template template
5212  // parameters must agree.
5213  if (TemplateTemplateParmDecl *OldTTP
5214                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5215    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5216    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5217                                            OldTTP->getTemplateParameters(),
5218                                            Complain,
5219                                        (Kind == Sema::TPL_TemplateMatch
5220                                           ? Sema::TPL_TemplateTemplateParmMatch
5221                                           : Kind),
5222                                            TemplateArgLoc);
5223  }
5224
5225  return true;
5226}
5227
5228/// \brief Diagnose a known arity mismatch when comparing template argument
5229/// lists.
5230static
5231void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5232                                                TemplateParameterList *New,
5233                                                TemplateParameterList *Old,
5234                                      Sema::TemplateParameterListEqualKind Kind,
5235                                                SourceLocation TemplateArgLoc) {
5236  unsigned NextDiag = diag::err_template_param_list_different_arity;
5237  if (TemplateArgLoc.isValid()) {
5238    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5239    NextDiag = diag::note_template_param_list_different_arity;
5240  }
5241  S.Diag(New->getTemplateLoc(), NextDiag)
5242    << (New->size() > Old->size())
5243    << (Kind != Sema::TPL_TemplateMatch)
5244    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5245  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5246    << (Kind != Sema::TPL_TemplateMatch)
5247    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5248}
5249
5250/// \brief Determine whether the given template parameter lists are
5251/// equivalent.
5252///
5253/// \param New  The new template parameter list, typically written in the
5254/// source code as part of a new template declaration.
5255///
5256/// \param Old  The old template parameter list, typically found via
5257/// name lookup of the template declared with this template parameter
5258/// list.
5259///
5260/// \param Complain  If true, this routine will produce a diagnostic if
5261/// the template parameter lists are not equivalent.
5262///
5263/// \param Kind describes how we are to match the template parameter lists.
5264///
5265/// \param TemplateArgLoc If this source location is valid, then we
5266/// are actually checking the template parameter list of a template
5267/// argument (New) against the template parameter list of its
5268/// corresponding template template parameter (Old). We produce
5269/// slightly different diagnostics in this scenario.
5270///
5271/// \returns True if the template parameter lists are equal, false
5272/// otherwise.
5273bool
5274Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5275                                     TemplateParameterList *Old,
5276                                     bool Complain,
5277                                     TemplateParameterListEqualKind Kind,
5278                                     SourceLocation TemplateArgLoc) {
5279  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5280    if (Complain)
5281      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5282                                                 TemplateArgLoc);
5283
5284    return false;
5285  }
5286
5287  // C++0x [temp.arg.template]p3:
5288  //   A template-argument matches a template template-parameter (call it P)
5289  //   when each of the template parameters in the template-parameter-list of
5290  //   the template-argument's corresponding class template or alias template
5291  //   (call it A) matches the corresponding template parameter in the
5292  //   template-parameter-list of P. [...]
5293  TemplateParameterList::iterator NewParm = New->begin();
5294  TemplateParameterList::iterator NewParmEnd = New->end();
5295  for (TemplateParameterList::iterator OldParm = Old->begin(),
5296                                    OldParmEnd = Old->end();
5297       OldParm != OldParmEnd; ++OldParm) {
5298    if (Kind != TPL_TemplateTemplateArgumentMatch ||
5299        !(*OldParm)->isTemplateParameterPack()) {
5300      if (NewParm == NewParmEnd) {
5301        if (Complain)
5302          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5303                                                     TemplateArgLoc);
5304
5305        return false;
5306      }
5307
5308      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5309                                      Kind, TemplateArgLoc))
5310        return false;
5311
5312      ++NewParm;
5313      continue;
5314    }
5315
5316    // C++0x [temp.arg.template]p3:
5317    //   [...] When P's template- parameter-list contains a template parameter
5318    //   pack (14.5.3), the template parameter pack will match zero or more
5319    //   template parameters or template parameter packs in the
5320    //   template-parameter-list of A with the same type and form as the
5321    //   template parameter pack in P (ignoring whether those template
5322    //   parameters are template parameter packs).
5323    for (; NewParm != NewParmEnd; ++NewParm) {
5324      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5325                                      Kind, TemplateArgLoc))
5326        return false;
5327    }
5328  }
5329
5330  // Make sure we exhausted all of the arguments.
5331  if (NewParm != NewParmEnd) {
5332    if (Complain)
5333      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5334                                                 TemplateArgLoc);
5335
5336    return false;
5337  }
5338
5339  return true;
5340}
5341
5342/// \brief Check whether a template can be declared within this scope.
5343///
5344/// If the template declaration is valid in this scope, returns
5345/// false. Otherwise, issues a diagnostic and returns true.
5346bool
5347Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5348  if (!S)
5349    return false;
5350
5351  // Find the nearest enclosing declaration scope.
5352  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5353         (S->getFlags() & Scope::TemplateParamScope) != 0)
5354    S = S->getParent();
5355
5356  // C++ [temp]p2:
5357  //   A template-declaration can appear only as a namespace scope or
5358  //   class scope declaration.
5359  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
5360  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5361      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5362    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5363             << TemplateParams->getSourceRange();
5364
5365  while (Ctx && isa<LinkageSpecDecl>(Ctx))
5366    Ctx = Ctx->getParent();
5367
5368  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
5369    return false;
5370
5371  return Diag(TemplateParams->getTemplateLoc(),
5372              diag::err_template_outside_namespace_or_class_scope)
5373    << TemplateParams->getSourceRange();
5374}
5375
5376/// \brief Determine what kind of template specialization the given declaration
5377/// is.
5378static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5379  if (!D)
5380    return TSK_Undeclared;
5381
5382  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5383    return Record->getTemplateSpecializationKind();
5384  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5385    return Function->getTemplateSpecializationKind();
5386  if (VarDecl *Var = dyn_cast<VarDecl>(D))
5387    return Var->getTemplateSpecializationKind();
5388
5389  return TSK_Undeclared;
5390}
5391
5392/// \brief Check whether a specialization is well-formed in the current
5393/// context.
5394///
5395/// This routine determines whether a template specialization can be declared
5396/// in the current context (C++ [temp.expl.spec]p2).
5397///
5398/// \param S the semantic analysis object for which this check is being
5399/// performed.
5400///
5401/// \param Specialized the entity being specialized or instantiated, which
5402/// may be a kind of template (class template, function template, etc.) or
5403/// a member of a class template (member function, static data member,
5404/// member class).
5405///
5406/// \param PrevDecl the previous declaration of this entity, if any.
5407///
5408/// \param Loc the location of the explicit specialization or instantiation of
5409/// this entity.
5410///
5411/// \param IsPartialSpecialization whether this is a partial specialization of
5412/// a class template.
5413///
5414/// \returns true if there was an error that we cannot recover from, false
5415/// otherwise.
5416static bool CheckTemplateSpecializationScope(Sema &S,
5417                                             NamedDecl *Specialized,
5418                                             NamedDecl *PrevDecl,
5419                                             SourceLocation Loc,
5420                                             bool IsPartialSpecialization) {
5421  // Keep these "kind" numbers in sync with the %select statements in the
5422  // various diagnostics emitted by this routine.
5423  int EntityKind = 0;
5424  if (isa<ClassTemplateDecl>(Specialized))
5425    EntityKind = IsPartialSpecialization? 1 : 0;
5426  else if (isa<VarTemplateDecl>(Specialized))
5427    EntityKind = IsPartialSpecialization ? 3 : 2;
5428  else if (isa<FunctionTemplateDecl>(Specialized))
5429    EntityKind = 4;
5430  else if (isa<CXXMethodDecl>(Specialized))
5431    EntityKind = 5;
5432  else if (isa<VarDecl>(Specialized))
5433    EntityKind = 6;
5434  else if (isa<RecordDecl>(Specialized))
5435    EntityKind = 7;
5436  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5437    EntityKind = 8;
5438  else {
5439    S.Diag(Loc, diag::err_template_spec_unknown_kind)
5440      << S.getLangOpts().CPlusPlus11;
5441    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5442    return true;
5443  }
5444
5445  // C++ [temp.expl.spec]p2:
5446  //   An explicit specialization shall be declared in the namespace
5447  //   of which the template is a member, or, for member templates, in
5448  //   the namespace of which the enclosing class or enclosing class
5449  //   template is a member. An explicit specialization of a member
5450  //   function, member class or static data member of a class
5451  //   template shall be declared in the namespace of which the class
5452  //   template is a member. Such a declaration may also be a
5453  //   definition. If the declaration is not a definition, the
5454  //   specialization may be defined later in the name- space in which
5455  //   the explicit specialization was declared, or in a namespace
5456  //   that encloses the one in which the explicit specialization was
5457  //   declared.
5458  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5459    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5460      << Specialized;
5461    return true;
5462  }
5463
5464  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5465    if (S.getLangOpts().MicrosoftExt) {
5466      // Do not warn for class scope explicit specialization during
5467      // instantiation, warning was already emitted during pattern
5468      // semantic analysis.
5469      if (!S.ActiveTemplateInstantiations.size())
5470        S.Diag(Loc, diag::ext_function_specialization_in_class)
5471          << Specialized;
5472    } else {
5473      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5474        << Specialized;
5475      return true;
5476    }
5477  }
5478
5479  if (S.CurContext->isRecord() &&
5480      !S.CurContext->Equals(Specialized->getDeclContext())) {
5481    // Make sure that we're specializing in the right record context.
5482    // Otherwise, things can go horribly wrong.
5483    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5484      << Specialized;
5485    return true;
5486  }
5487
5488  // C++ [temp.class.spec]p6:
5489  //   A class template partial specialization may be declared or redeclared
5490  //   in any namespace scope in which its definition may be defined (14.5.1
5491  //   and 14.5.2).
5492  bool ComplainedAboutScope = false;
5493  DeclContext *SpecializedContext
5494    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5495  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5496  if ((!PrevDecl ||
5497       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5498       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5499    // C++ [temp.exp.spec]p2:
5500    //   An explicit specialization shall be declared in the namespace of which
5501    //   the template is a member, or, for member templates, in the namespace
5502    //   of which the enclosing class or enclosing class template is a member.
5503    //   An explicit specialization of a member function, member class or
5504    //   static data member of a class template shall be declared in the
5505    //   namespace of which the class template is a member.
5506    //
5507    // C++0x [temp.expl.spec]p2:
5508    //   An explicit specialization shall be declared in a namespace enclosing
5509    //   the specialized template.
5510    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5511      bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5512      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5513        assert(!IsCPlusPlus11Extension &&
5514               "DC encloses TU but isn't in enclosing namespace set");
5515        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5516          << EntityKind << Specialized;
5517      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5518        int Diag;
5519        if (!IsCPlusPlus11Extension)
5520          Diag = diag::err_template_spec_decl_out_of_scope;
5521        else if (!S.getLangOpts().CPlusPlus11)
5522          Diag = diag::ext_template_spec_decl_out_of_scope;
5523        else
5524          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5525        S.Diag(Loc, Diag)
5526          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5527      }
5528
5529      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5530      ComplainedAboutScope =
5531        !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5532    }
5533  }
5534
5535  // Make sure that this redeclaration (or definition) occurs in an enclosing
5536  // namespace.
5537  // Note that HandleDeclarator() performs this check for explicit
5538  // specializations of function templates, static data members, and member
5539  // functions, so we skip the check here for those kinds of entities.
5540  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5541  // Should we refactor that check, so that it occurs later?
5542  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5543      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5544        isa<FunctionDecl>(Specialized))) {
5545    if (isa<TranslationUnitDecl>(SpecializedContext))
5546      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5547        << EntityKind << Specialized;
5548    else if (isa<NamespaceDecl>(SpecializedContext))
5549      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5550        << EntityKind << Specialized
5551        << cast<NamedDecl>(SpecializedContext);
5552
5553    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5554  }
5555
5556  // FIXME: check for specialization-after-instantiation errors and such.
5557
5558  return false;
5559}
5560
5561/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5562/// that checks non-type template partial specialization arguments.
5563static bool CheckNonTypeTemplatePartialSpecializationArgs(
5564    Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5565    unsigned NumArgs) {
5566  for (unsigned I = 0; I != NumArgs; ++I) {
5567    if (Args[I].getKind() == TemplateArgument::Pack) {
5568      if (CheckNonTypeTemplatePartialSpecializationArgs(
5569              S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5570        return true;
5571
5572      continue;
5573    }
5574
5575    if (Args[I].getKind() != TemplateArgument::Expression)
5576      continue;
5577
5578    Expr *ArgExpr = Args[I].getAsExpr();
5579
5580    // We can have a pack expansion of any of the bullets below.
5581    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5582      ArgExpr = Expansion->getPattern();
5583
5584    // Strip off any implicit casts we added as part of type checking.
5585    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5586      ArgExpr = ICE->getSubExpr();
5587
5588    // C++ [temp.class.spec]p8:
5589    //   A non-type argument is non-specialized if it is the name of a
5590    //   non-type parameter. All other non-type arguments are
5591    //   specialized.
5592    //
5593    // Below, we check the two conditions that only apply to
5594    // specialized non-type arguments, so skip any non-specialized
5595    // arguments.
5596    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5597      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5598        continue;
5599
5600    // C++ [temp.class.spec]p9:
5601    //   Within the argument list of a class template partial
5602    //   specialization, the following restrictions apply:
5603    //     -- A partially specialized non-type argument expression
5604    //        shall not involve a template parameter of the partial
5605    //        specialization except when the argument expression is a
5606    //        simple identifier.
5607    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5608      S.Diag(ArgExpr->getLocStart(),
5609           diag::err_dependent_non_type_arg_in_partial_spec)
5610        << ArgExpr->getSourceRange();
5611      return true;
5612    }
5613
5614    //     -- The type of a template parameter corresponding to a
5615    //        specialized non-type argument shall not be dependent on a
5616    //        parameter of the specialization.
5617    if (Param->getType()->isDependentType()) {
5618      S.Diag(ArgExpr->getLocStart(),
5619           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5620        << Param->getType()
5621        << ArgExpr->getSourceRange();
5622      S.Diag(Param->getLocation(), diag::note_template_param_here);
5623      return true;
5624    }
5625  }
5626
5627  return false;
5628}
5629
5630/// \brief Check the non-type template arguments of a class template
5631/// partial specialization according to C++ [temp.class.spec]p9.
5632///
5633/// \param TemplateParams the template parameters of the primary class
5634/// template.
5635///
5636/// \param TemplateArgs the template arguments of the class template
5637/// partial specialization.
5638///
5639/// \returns true if there was an error, false otherwise.
5640static bool CheckTemplatePartialSpecializationArgs(
5641    Sema &S, TemplateParameterList *TemplateParams,
5642    SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5643  const TemplateArgument *ArgList = TemplateArgs.data();
5644
5645  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5646    NonTypeTemplateParmDecl *Param
5647      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5648    if (!Param)
5649      continue;
5650
5651    if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5652      return true;
5653  }
5654
5655  return false;
5656}
5657
5658DeclResult
5659Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5660                                       TagUseKind TUK,
5661                                       SourceLocation KWLoc,
5662                                       SourceLocation ModulePrivateLoc,
5663                                       CXXScopeSpec &SS,
5664                                       TemplateTy TemplateD,
5665                                       SourceLocation TemplateNameLoc,
5666                                       SourceLocation LAngleLoc,
5667                                       ASTTemplateArgsPtr TemplateArgsIn,
5668                                       SourceLocation RAngleLoc,
5669                                       AttributeList *Attr,
5670                               MultiTemplateParamsArg TemplateParameterLists) {
5671  assert(TUK != TUK_Reference && "References are not specializations");
5672
5673  // NOTE: KWLoc is the location of the tag keyword. This will instead
5674  // store the location of the outermost template keyword in the declaration.
5675  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5676    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5677
5678  // Find the class template we're specializing
5679  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5680  ClassTemplateDecl *ClassTemplate
5681    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5682
5683  if (!ClassTemplate) {
5684    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5685      << (Name.getAsTemplateDecl() &&
5686          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5687    return true;
5688  }
5689
5690  bool isExplicitSpecialization = false;
5691  bool isPartialSpecialization = false;
5692
5693  // Check the validity of the template headers that introduce this
5694  // template.
5695  // FIXME: We probably shouldn't complain about these headers for
5696  // friend declarations.
5697  bool Invalid = false;
5698  TemplateParameterList *TemplateParams =
5699      MatchTemplateParametersToScopeSpecifier(
5700          TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5701          TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5702  if (Invalid)
5703    return true;
5704
5705  if (TemplateParams && TemplateParams->size() > 0) {
5706    isPartialSpecialization = true;
5707
5708    if (TUK == TUK_Friend) {
5709      Diag(KWLoc, diag::err_partial_specialization_friend)
5710        << SourceRange(LAngleLoc, RAngleLoc);
5711      return true;
5712    }
5713
5714    // C++ [temp.class.spec]p10:
5715    //   The template parameter list of a specialization shall not
5716    //   contain default template argument values.
5717    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5718      Decl *Param = TemplateParams->getParam(I);
5719      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5720        if (TTP->hasDefaultArgument()) {
5721          Diag(TTP->getDefaultArgumentLoc(),
5722               diag::err_default_arg_in_partial_spec);
5723          TTP->removeDefaultArgument();
5724        }
5725      } else if (NonTypeTemplateParmDecl *NTTP
5726                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5727        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5728          Diag(NTTP->getDefaultArgumentLoc(),
5729               diag::err_default_arg_in_partial_spec)
5730            << DefArg->getSourceRange();
5731          NTTP->removeDefaultArgument();
5732        }
5733      } else {
5734        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5735        if (TTP->hasDefaultArgument()) {
5736          Diag(TTP->getDefaultArgument().getLocation(),
5737               diag::err_default_arg_in_partial_spec)
5738            << TTP->getDefaultArgument().getSourceRange();
5739          TTP->removeDefaultArgument();
5740        }
5741      }
5742    }
5743  } else if (TemplateParams) {
5744    if (TUK == TUK_Friend)
5745      Diag(KWLoc, diag::err_template_spec_friend)
5746        << FixItHint::CreateRemoval(
5747                                SourceRange(TemplateParams->getTemplateLoc(),
5748                                            TemplateParams->getRAngleLoc()))
5749        << SourceRange(LAngleLoc, RAngleLoc);
5750    else
5751      isExplicitSpecialization = true;
5752  } else if (TUK != TUK_Friend) {
5753    Diag(KWLoc, diag::err_template_spec_needs_header)
5754      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5755    TemplateKWLoc = KWLoc;
5756    isExplicitSpecialization = true;
5757  }
5758
5759  // Check that the specialization uses the same tag kind as the
5760  // original template.
5761  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5762  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5763  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5764                                    Kind, TUK == TUK_Definition, KWLoc,
5765                                    *ClassTemplate->getIdentifier())) {
5766    Diag(KWLoc, diag::err_use_with_wrong_tag)
5767      << ClassTemplate
5768      << FixItHint::CreateReplacement(KWLoc,
5769                            ClassTemplate->getTemplatedDecl()->getKindName());
5770    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5771         diag::note_previous_use);
5772    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5773  }
5774
5775  // Translate the parser's template argument list in our AST format.
5776  TemplateArgumentListInfo TemplateArgs;
5777  TemplateArgs.setLAngleLoc(LAngleLoc);
5778  TemplateArgs.setRAngleLoc(RAngleLoc);
5779  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5780
5781  // Check for unexpanded parameter packs in any of the template arguments.
5782  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5783    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5784                                        UPPC_PartialSpecialization))
5785      return true;
5786
5787  // Check that the template argument list is well-formed for this
5788  // template.
5789  SmallVector<TemplateArgument, 4> Converted;
5790  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5791                                TemplateArgs, false, Converted))
5792    return true;
5793
5794  // Find the class template (partial) specialization declaration that
5795  // corresponds to these arguments.
5796  if (isPartialSpecialization) {
5797    if (CheckTemplatePartialSpecializationArgs(
5798            *this, ClassTemplate->getTemplateParameters(), Converted))
5799      return true;
5800
5801    bool InstantiationDependent;
5802    if (!Name.isDependent() &&
5803        !TemplateSpecializationType::anyDependentTemplateArguments(
5804                                             TemplateArgs.getArgumentArray(),
5805                                                         TemplateArgs.size(),
5806                                                     InstantiationDependent)) {
5807      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5808        << ClassTemplate->getDeclName();
5809      isPartialSpecialization = false;
5810    }
5811  }
5812
5813  void *InsertPos = 0;
5814  ClassTemplateSpecializationDecl *PrevDecl = 0;
5815
5816  if (isPartialSpecialization)
5817    // FIXME: Template parameter list matters, too
5818    PrevDecl
5819      = ClassTemplate->findPartialSpecialization(Converted.data(),
5820                                                 Converted.size(),
5821                                                 InsertPos);
5822  else
5823    PrevDecl
5824      = ClassTemplate->findSpecialization(Converted.data(),
5825                                          Converted.size(), InsertPos);
5826
5827  ClassTemplateSpecializationDecl *Specialization = 0;
5828
5829  // Check whether we can declare a class template specialization in
5830  // the current scope.
5831  if (TUK != TUK_Friend &&
5832      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5833                                       TemplateNameLoc,
5834                                       isPartialSpecialization))
5835    return true;
5836
5837  // The canonical type
5838  QualType CanonType;
5839  if (PrevDecl &&
5840      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5841               TUK == TUK_Friend)) {
5842    // Since the only prior class template specialization with these
5843    // arguments was referenced but not declared, or we're only
5844    // referencing this specialization as a friend, reuse that
5845    // declaration node as our own, updating its source location and
5846    // the list of outer template parameters to reflect our new declaration.
5847    Specialization = PrevDecl;
5848    Specialization->setLocation(TemplateNameLoc);
5849    if (TemplateParameterLists.size() > 0) {
5850      Specialization->setTemplateParameterListsInfo(Context,
5851                                              TemplateParameterLists.size(),
5852                                              TemplateParameterLists.data());
5853    }
5854    PrevDecl = 0;
5855    CanonType = Context.getTypeDeclType(Specialization);
5856  } else if (isPartialSpecialization) {
5857    // Build the canonical type that describes the converted template
5858    // arguments of the class template partial specialization.
5859    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5860    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5861                                                      Converted.data(),
5862                                                      Converted.size());
5863
5864    if (Context.hasSameType(CanonType,
5865                        ClassTemplate->getInjectedClassNameSpecialization())) {
5866      // C++ [temp.class.spec]p9b3:
5867      //
5868      //   -- The argument list of the specialization shall not be identical
5869      //      to the implicit argument list of the primary template.
5870      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5871        << (TUK == TUK_Definition)
5872        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5873      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5874                                ClassTemplate->getIdentifier(),
5875                                TemplateNameLoc,
5876                                Attr,
5877                                TemplateParams,
5878                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5879                                TemplateParameterLists.size() - 1,
5880                                TemplateParameterLists.data());
5881    }
5882
5883    // Create a new class template partial specialization declaration node.
5884    ClassTemplatePartialSpecializationDecl *PrevPartial
5885      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5886    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5887                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5888    ClassTemplatePartialSpecializationDecl *Partial
5889      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5890                                             ClassTemplate->getDeclContext(),
5891                                                       KWLoc, TemplateNameLoc,
5892                                                       TemplateParams,
5893                                                       ClassTemplate,
5894                                                       Converted.data(),
5895                                                       Converted.size(),
5896                                                       TemplateArgs,
5897                                                       CanonType,
5898                                                       PrevPartial,
5899                                                       SequenceNumber);
5900    SetNestedNameSpecifier(Partial, SS);
5901    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5902      Partial->setTemplateParameterListsInfo(Context,
5903                                             TemplateParameterLists.size() - 1,
5904                                             TemplateParameterLists.data());
5905    }
5906
5907    if (!PrevPartial)
5908      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5909    Specialization = Partial;
5910
5911    // If we are providing an explicit specialization of a member class
5912    // template specialization, make a note of that.
5913    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5914      PrevPartial->setMemberSpecialization();
5915
5916    // Check that all of the template parameters of the class template
5917    // partial specialization are deducible from the template
5918    // arguments. If not, this class template partial specialization
5919    // will never be used.
5920    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5921    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5922                               TemplateParams->getDepth(),
5923                               DeducibleParams);
5924
5925    if (!DeducibleParams.all()) {
5926      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5927      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5928        << (NumNonDeducible > 1)
5929        << SourceRange(TemplateNameLoc, RAngleLoc);
5930      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5931        if (!DeducibleParams[I]) {
5932          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5933          if (Param->getDeclName())
5934            Diag(Param->getLocation(),
5935                 diag::note_partial_spec_unused_parameter)
5936              << Param->getDeclName();
5937          else
5938            Diag(Param->getLocation(),
5939                 diag::note_partial_spec_unused_parameter)
5940              << "<anonymous>";
5941        }
5942      }
5943    }
5944  } else {
5945    // Create a new class template specialization declaration node for
5946    // this explicit specialization or friend declaration.
5947    Specialization
5948      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5949                                             ClassTemplate->getDeclContext(),
5950                                                KWLoc, TemplateNameLoc,
5951                                                ClassTemplate,
5952                                                Converted.data(),
5953                                                Converted.size(),
5954                                                PrevDecl);
5955    SetNestedNameSpecifier(Specialization, SS);
5956    if (TemplateParameterLists.size() > 0) {
5957      Specialization->setTemplateParameterListsInfo(Context,
5958                                              TemplateParameterLists.size(),
5959                                              TemplateParameterLists.data());
5960    }
5961
5962    if (!PrevDecl)
5963      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5964
5965    CanonType = Context.getTypeDeclType(Specialization);
5966  }
5967
5968  // C++ [temp.expl.spec]p6:
5969  //   If a template, a member template or the member of a class template is
5970  //   explicitly specialized then that specialization shall be declared
5971  //   before the first use of that specialization that would cause an implicit
5972  //   instantiation to take place, in every translation unit in which such a
5973  //   use occurs; no diagnostic is required.
5974  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5975    bool Okay = false;
5976    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5977      // Is there any previous explicit specialization declaration?
5978      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5979        Okay = true;
5980        break;
5981      }
5982    }
5983
5984    if (!Okay) {
5985      SourceRange Range(TemplateNameLoc, RAngleLoc);
5986      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5987        << Context.getTypeDeclType(Specialization) << Range;
5988
5989      Diag(PrevDecl->getPointOfInstantiation(),
5990           diag::note_instantiation_required_here)
5991        << (PrevDecl->getTemplateSpecializationKind()
5992                                                != TSK_ImplicitInstantiation);
5993      return true;
5994    }
5995  }
5996
5997  // If this is not a friend, note that this is an explicit specialization.
5998  if (TUK != TUK_Friend)
5999    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6000
6001  // Check that this isn't a redefinition of this specialization.
6002  if (TUK == TUK_Definition) {
6003    if (RecordDecl *Def = Specialization->getDefinition()) {
6004      SourceRange Range(TemplateNameLoc, RAngleLoc);
6005      Diag(TemplateNameLoc, diag::err_redefinition)
6006        << Context.getTypeDeclType(Specialization) << Range;
6007      Diag(Def->getLocation(), diag::note_previous_definition);
6008      Specialization->setInvalidDecl();
6009      return true;
6010    }
6011  }
6012
6013  if (Attr)
6014    ProcessDeclAttributeList(S, Specialization, Attr);
6015
6016  // Add alignment attributes if necessary; these attributes are checked when
6017  // the ASTContext lays out the structure.
6018  if (TUK == TUK_Definition) {
6019    AddAlignmentAttributesForRecord(Specialization);
6020    AddMsStructLayoutForRecord(Specialization);
6021  }
6022
6023  if (ModulePrivateLoc.isValid())
6024    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6025      << (isPartialSpecialization? 1 : 0)
6026      << FixItHint::CreateRemoval(ModulePrivateLoc);
6027
6028  // Build the fully-sugared type for this class template
6029  // specialization as the user wrote in the specialization
6030  // itself. This means that we'll pretty-print the type retrieved
6031  // from the specialization's declaration the way that the user
6032  // actually wrote the specialization, rather than formatting the
6033  // name based on the "canonical" representation used to store the
6034  // template arguments in the specialization.
6035  TypeSourceInfo *WrittenTy
6036    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6037                                                TemplateArgs, CanonType);
6038  if (TUK != TUK_Friend) {
6039    Specialization->setTypeAsWritten(WrittenTy);
6040    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6041  }
6042
6043  // C++ [temp.expl.spec]p9:
6044  //   A template explicit specialization is in the scope of the
6045  //   namespace in which the template was defined.
6046  //
6047  // We actually implement this paragraph where we set the semantic
6048  // context (in the creation of the ClassTemplateSpecializationDecl),
6049  // but we also maintain the lexical context where the actual
6050  // definition occurs.
6051  Specialization->setLexicalDeclContext(CurContext);
6052
6053  // We may be starting the definition of this specialization.
6054  if (TUK == TUK_Definition)
6055    Specialization->startDefinition();
6056
6057  if (TUK == TUK_Friend) {
6058    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6059                                            TemplateNameLoc,
6060                                            WrittenTy,
6061                                            /*FIXME:*/KWLoc);
6062    Friend->setAccess(AS_public);
6063    CurContext->addDecl(Friend);
6064  } else {
6065    // Add the specialization into its lexical context, so that it can
6066    // be seen when iterating through the list of declarations in that
6067    // context. However, specializations are not found by name lookup.
6068    CurContext->addDecl(Specialization);
6069  }
6070  return Specialization;
6071}
6072
6073Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6074                              MultiTemplateParamsArg TemplateParameterLists,
6075                                    Declarator &D) {
6076  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6077  ActOnDocumentableDecl(NewDecl);
6078  return NewDecl;
6079}
6080
6081Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6082                               MultiTemplateParamsArg TemplateParameterLists,
6083                                            Declarator &D) {
6084  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6085  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6086
6087  if (FTI.hasPrototype) {
6088    // FIXME: Diagnose arguments without names in C.
6089  }
6090
6091  Scope *ParentScope = FnBodyScope->getParent();
6092
6093  D.setFunctionDefinitionKind(FDK_Definition);
6094  Decl *DP = HandleDeclarator(ParentScope, D,
6095                              TemplateParameterLists);
6096  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6097}
6098
6099/// \brief Strips various properties off an implicit instantiation
6100/// that has just been explicitly specialized.
6101static void StripImplicitInstantiation(NamedDecl *D) {
6102  D->dropAttrs();
6103
6104  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6105    FD->setInlineSpecified(false);
6106
6107    for (FunctionDecl::param_iterator I = FD->param_begin(),
6108                                      E = FD->param_end();
6109         I != E; ++I)
6110      (*I)->dropAttrs();
6111  }
6112}
6113
6114/// \brief Compute the diagnostic location for an explicit instantiation
6115//  declaration or definition.
6116static SourceLocation DiagLocForExplicitInstantiation(
6117    NamedDecl* D, SourceLocation PointOfInstantiation) {
6118  // Explicit instantiations following a specialization have no effect and
6119  // hence no PointOfInstantiation. In that case, walk decl backwards
6120  // until a valid name loc is found.
6121  SourceLocation PrevDiagLoc = PointOfInstantiation;
6122  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6123       Prev = Prev->getPreviousDecl()) {
6124    PrevDiagLoc = Prev->getLocation();
6125  }
6126  assert(PrevDiagLoc.isValid() &&
6127         "Explicit instantiation without point of instantiation?");
6128  return PrevDiagLoc;
6129}
6130
6131/// \brief Diagnose cases where we have an explicit template specialization
6132/// before/after an explicit template instantiation, producing diagnostics
6133/// for those cases where they are required and determining whether the
6134/// new specialization/instantiation will have any effect.
6135///
6136/// \param NewLoc the location of the new explicit specialization or
6137/// instantiation.
6138///
6139/// \param NewTSK the kind of the new explicit specialization or instantiation.
6140///
6141/// \param PrevDecl the previous declaration of the entity.
6142///
6143/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6144///
6145/// \param PrevPointOfInstantiation if valid, indicates where the previus
6146/// declaration was instantiated (either implicitly or explicitly).
6147///
6148/// \param HasNoEffect will be set to true to indicate that the new
6149/// specialization or instantiation has no effect and should be ignored.
6150///
6151/// \returns true if there was an error that should prevent the introduction of
6152/// the new declaration into the AST, false otherwise.
6153bool
6154Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6155                                             TemplateSpecializationKind NewTSK,
6156                                             NamedDecl *PrevDecl,
6157                                             TemplateSpecializationKind PrevTSK,
6158                                        SourceLocation PrevPointOfInstantiation,
6159                                             bool &HasNoEffect) {
6160  HasNoEffect = false;
6161
6162  switch (NewTSK) {
6163  case TSK_Undeclared:
6164  case TSK_ImplicitInstantiation:
6165    llvm_unreachable("Don't check implicit instantiations here");
6166
6167  case TSK_ExplicitSpecialization:
6168    switch (PrevTSK) {
6169    case TSK_Undeclared:
6170    case TSK_ExplicitSpecialization:
6171      // Okay, we're just specializing something that is either already
6172      // explicitly specialized or has merely been mentioned without any
6173      // instantiation.
6174      return false;
6175
6176    case TSK_ImplicitInstantiation:
6177      if (PrevPointOfInstantiation.isInvalid()) {
6178        // The declaration itself has not actually been instantiated, so it is
6179        // still okay to specialize it.
6180        StripImplicitInstantiation(PrevDecl);
6181        return false;
6182      }
6183      // Fall through
6184
6185    case TSK_ExplicitInstantiationDeclaration:
6186    case TSK_ExplicitInstantiationDefinition:
6187      assert((PrevTSK == TSK_ImplicitInstantiation ||
6188              PrevPointOfInstantiation.isValid()) &&
6189             "Explicit instantiation without point of instantiation?");
6190
6191      // C++ [temp.expl.spec]p6:
6192      //   If a template, a member template or the member of a class template
6193      //   is explicitly specialized then that specialization shall be declared
6194      //   before the first use of that specialization that would cause an
6195      //   implicit instantiation to take place, in every translation unit in
6196      //   which such a use occurs; no diagnostic is required.
6197      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6198        // Is there any previous explicit specialization declaration?
6199        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6200          return false;
6201      }
6202
6203      Diag(NewLoc, diag::err_specialization_after_instantiation)
6204        << PrevDecl;
6205      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6206        << (PrevTSK != TSK_ImplicitInstantiation);
6207
6208      return true;
6209    }
6210
6211  case TSK_ExplicitInstantiationDeclaration:
6212    switch (PrevTSK) {
6213    case TSK_ExplicitInstantiationDeclaration:
6214      // This explicit instantiation declaration is redundant (that's okay).
6215      HasNoEffect = true;
6216      return false;
6217
6218    case TSK_Undeclared:
6219    case TSK_ImplicitInstantiation:
6220      // We're explicitly instantiating something that may have already been
6221      // implicitly instantiated; that's fine.
6222      return false;
6223
6224    case TSK_ExplicitSpecialization:
6225      // C++0x [temp.explicit]p4:
6226      //   For a given set of template parameters, if an explicit instantiation
6227      //   of a template appears after a declaration of an explicit
6228      //   specialization for that template, the explicit instantiation has no
6229      //   effect.
6230      HasNoEffect = true;
6231      return false;
6232
6233    case TSK_ExplicitInstantiationDefinition:
6234      // C++0x [temp.explicit]p10:
6235      //   If an entity is the subject of both an explicit instantiation
6236      //   declaration and an explicit instantiation definition in the same
6237      //   translation unit, the definition shall follow the declaration.
6238      Diag(NewLoc,
6239           diag::err_explicit_instantiation_declaration_after_definition);
6240
6241      // Explicit instantiations following a specialization have no effect and
6242      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6243      // until a valid name loc is found.
6244      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6245           diag::note_explicit_instantiation_definition_here);
6246      HasNoEffect = true;
6247      return false;
6248    }
6249
6250  case TSK_ExplicitInstantiationDefinition:
6251    switch (PrevTSK) {
6252    case TSK_Undeclared:
6253    case TSK_ImplicitInstantiation:
6254      // We're explicitly instantiating something that may have already been
6255      // implicitly instantiated; that's fine.
6256      return false;
6257
6258    case TSK_ExplicitSpecialization:
6259      // C++ DR 259, C++0x [temp.explicit]p4:
6260      //   For a given set of template parameters, if an explicit
6261      //   instantiation of a template appears after a declaration of
6262      //   an explicit specialization for that template, the explicit
6263      //   instantiation has no effect.
6264      //
6265      // In C++98/03 mode, we only give an extension warning here, because it
6266      // is not harmful to try to explicitly instantiate something that
6267      // has been explicitly specialized.
6268      Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6269           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6270           diag::ext_explicit_instantiation_after_specialization)
6271        << PrevDecl;
6272      Diag(PrevDecl->getLocation(),
6273           diag::note_previous_template_specialization);
6274      HasNoEffect = true;
6275      return false;
6276
6277    case TSK_ExplicitInstantiationDeclaration:
6278      // We're explicity instantiating a definition for something for which we
6279      // were previously asked to suppress instantiations. That's fine.
6280
6281      // C++0x [temp.explicit]p4:
6282      //   For a given set of template parameters, if an explicit instantiation
6283      //   of a template appears after a declaration of an explicit
6284      //   specialization for that template, the explicit instantiation has no
6285      //   effect.
6286      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6287        // Is there any previous explicit specialization declaration?
6288        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6289          HasNoEffect = true;
6290          break;
6291        }
6292      }
6293
6294      return false;
6295
6296    case TSK_ExplicitInstantiationDefinition:
6297      // C++0x [temp.spec]p5:
6298      //   For a given template and a given set of template-arguments,
6299      //     - an explicit instantiation definition shall appear at most once
6300      //       in a program,
6301      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6302        << PrevDecl;
6303      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6304           diag::note_previous_explicit_instantiation);
6305      HasNoEffect = true;
6306      return false;
6307    }
6308  }
6309
6310  llvm_unreachable("Missing specialization/instantiation case?");
6311}
6312
6313/// \brief Perform semantic analysis for the given dependent function
6314/// template specialization.
6315///
6316/// The only possible way to get a dependent function template specialization
6317/// is with a friend declaration, like so:
6318///
6319/// \code
6320///   template \<class T> void foo(T);
6321///   template \<class T> class A {
6322///     friend void foo<>(T);
6323///   };
6324/// \endcode
6325///
6326/// There really isn't any useful analysis we can do here, so we
6327/// just store the information.
6328bool
6329Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6330                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
6331                                                   LookupResult &Previous) {
6332  // Remove anything from Previous that isn't a function template in
6333  // the correct context.
6334  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6335  LookupResult::Filter F = Previous.makeFilter();
6336  while (F.hasNext()) {
6337    NamedDecl *D = F.next()->getUnderlyingDecl();
6338    if (!isa<FunctionTemplateDecl>(D) ||
6339        !FDLookupContext->InEnclosingNamespaceSetOf(
6340                              D->getDeclContext()->getRedeclContext()))
6341      F.erase();
6342  }
6343  F.done();
6344
6345  // Should this be diagnosed here?
6346  if (Previous.empty()) return true;
6347
6348  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6349                                         ExplicitTemplateArgs);
6350  return false;
6351}
6352
6353/// \brief Perform semantic analysis for the given function template
6354/// specialization.
6355///
6356/// This routine performs all of the semantic analysis required for an
6357/// explicit function template specialization. On successful completion,
6358/// the function declaration \p FD will become a function template
6359/// specialization.
6360///
6361/// \param FD the function declaration, which will be updated to become a
6362/// function template specialization.
6363///
6364/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6365/// if any. Note that this may be valid info even when 0 arguments are
6366/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6367/// as it anyway contains info on the angle brackets locations.
6368///
6369/// \param Previous the set of declarations that may be specialized by
6370/// this function specialization.
6371bool Sema::CheckFunctionTemplateSpecialization(
6372    FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6373    LookupResult &Previous) {
6374  // The set of function template specializations that could match this
6375  // explicit function template specialization.
6376  UnresolvedSet<8> Candidates;
6377  TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6378
6379  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6380  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6381         I != E; ++I) {
6382    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6383    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6384      // Only consider templates found within the same semantic lookup scope as
6385      // FD.
6386      if (!FDLookupContext->InEnclosingNamespaceSetOf(
6387                                Ovl->getDeclContext()->getRedeclContext()))
6388        continue;
6389
6390      // When matching a constexpr member function template specialization
6391      // against the primary template, we don't yet know whether the
6392      // specialization has an implicit 'const' (because we don't know whether
6393      // it will be a static member function until we know which template it
6394      // specializes), so adjust it now assuming it specializes this template.
6395      QualType FT = FD->getType();
6396      if (FD->isConstexpr()) {
6397        CXXMethodDecl *OldMD =
6398          dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6399        if (OldMD && OldMD->isConst()) {
6400          const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6401          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6402          EPI.TypeQuals |= Qualifiers::Const;
6403          FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6404                                       EPI);
6405        }
6406      }
6407
6408      // C++ [temp.expl.spec]p11:
6409      //   A trailing template-argument can be left unspecified in the
6410      //   template-id naming an explicit function template specialization
6411      //   provided it can be deduced from the function argument type.
6412      // Perform template argument deduction to determine whether we may be
6413      // specializing this template.
6414      // FIXME: It is somewhat wasteful to build
6415      TemplateDeductionInfo Info(FailedCandidates.getLocation());
6416      FunctionDecl *Specialization = 0;
6417      if (TemplateDeductionResult TDK
6418            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6419                                      Specialization, Info)) {
6420        // Template argument deduction failed; record why it failed, so
6421        // that we can provide nifty diagnostics.
6422        FailedCandidates.addCandidate()
6423            .set(FunTmpl->getTemplatedDecl(),
6424                 MakeDeductionFailureInfo(Context, TDK, Info));
6425        (void)TDK;
6426        continue;
6427      }
6428
6429      // Record this candidate.
6430      Candidates.addDecl(Specialization, I.getAccess());
6431    }
6432  }
6433
6434  // Find the most specialized function template.
6435  UnresolvedSetIterator Result = getMostSpecialized(
6436      Candidates.begin(), Candidates.end(), FailedCandidates, TPOC_Other, 0,
6437      FD->getLocation(),
6438      PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6439      PDiag(diag::err_function_template_spec_ambiguous)
6440          << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6441      PDiag(diag::note_function_template_spec_matched));
6442
6443  if (Result == Candidates.end())
6444    return true;
6445
6446  // Ignore access information;  it doesn't figure into redeclaration checking.
6447  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6448
6449  FunctionTemplateSpecializationInfo *SpecInfo
6450    = Specialization->getTemplateSpecializationInfo();
6451  assert(SpecInfo && "Function template specialization info missing?");
6452
6453  // Note: do not overwrite location info if previous template
6454  // specialization kind was explicit.
6455  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6456  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6457    Specialization->setLocation(FD->getLocation());
6458    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6459    // function can differ from the template declaration with respect to
6460    // the constexpr specifier.
6461    Specialization->setConstexpr(FD->isConstexpr());
6462  }
6463
6464  // FIXME: Check if the prior specialization has a point of instantiation.
6465  // If so, we have run afoul of .
6466
6467  // If this is a friend declaration, then we're not really declaring
6468  // an explicit specialization.
6469  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6470
6471  // Check the scope of this explicit specialization.
6472  if (!isFriend &&
6473      CheckTemplateSpecializationScope(*this,
6474                                       Specialization->getPrimaryTemplate(),
6475                                       Specialization, FD->getLocation(),
6476                                       false))
6477    return true;
6478
6479  // C++ [temp.expl.spec]p6:
6480  //   If a template, a member template or the member of a class template is
6481  //   explicitly specialized then that specialization shall be declared
6482  //   before the first use of that specialization that would cause an implicit
6483  //   instantiation to take place, in every translation unit in which such a
6484  //   use occurs; no diagnostic is required.
6485  bool HasNoEffect = false;
6486  if (!isFriend &&
6487      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6488                                             TSK_ExplicitSpecialization,
6489                                             Specialization,
6490                                   SpecInfo->getTemplateSpecializationKind(),
6491                                         SpecInfo->getPointOfInstantiation(),
6492                                             HasNoEffect))
6493    return true;
6494
6495  // Mark the prior declaration as an explicit specialization, so that later
6496  // clients know that this is an explicit specialization.
6497  if (!isFriend) {
6498    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6499    MarkUnusedFileScopedDecl(Specialization);
6500  }
6501
6502  // Turn the given function declaration into a function template
6503  // specialization, with the template arguments from the previous
6504  // specialization.
6505  // Take copies of (semantic and syntactic) template argument lists.
6506  const TemplateArgumentList* TemplArgs = new (Context)
6507    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6508  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6509                                        TemplArgs, /*InsertPos=*/0,
6510                                    SpecInfo->getTemplateSpecializationKind(),
6511                                        ExplicitTemplateArgs);
6512
6513  // The "previous declaration" for this function template specialization is
6514  // the prior function template specialization.
6515  Previous.clear();
6516  Previous.addDecl(Specialization);
6517  return false;
6518}
6519
6520/// \brief Perform semantic analysis for the given non-template member
6521/// specialization.
6522///
6523/// This routine performs all of the semantic analysis required for an
6524/// explicit member function specialization. On successful completion,
6525/// the function declaration \p FD will become a member function
6526/// specialization.
6527///
6528/// \param Member the member declaration, which will be updated to become a
6529/// specialization.
6530///
6531/// \param Previous the set of declarations, one of which may be specialized
6532/// by this function specialization;  the set will be modified to contain the
6533/// redeclared member.
6534bool
6535Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6536  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6537
6538  // Try to find the member we are instantiating.
6539  NamedDecl *Instantiation = 0;
6540  NamedDecl *InstantiatedFrom = 0;
6541  MemberSpecializationInfo *MSInfo = 0;
6542
6543  if (Previous.empty()) {
6544    // Nowhere to look anyway.
6545  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6546    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6547           I != E; ++I) {
6548      NamedDecl *D = (*I)->getUnderlyingDecl();
6549      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6550        if (Context.hasSameType(Function->getType(), Method->getType())) {
6551          Instantiation = Method;
6552          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6553          MSInfo = Method->getMemberSpecializationInfo();
6554          break;
6555        }
6556      }
6557    }
6558  } else if (isa<VarDecl>(Member)) {
6559    VarDecl *PrevVar;
6560    if (Previous.isSingleResult() &&
6561        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6562      if (PrevVar->isStaticDataMember()) {
6563        Instantiation = PrevVar;
6564        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6565        MSInfo = PrevVar->getMemberSpecializationInfo();
6566      }
6567  } else if (isa<RecordDecl>(Member)) {
6568    CXXRecordDecl *PrevRecord;
6569    if (Previous.isSingleResult() &&
6570        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6571      Instantiation = PrevRecord;
6572      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6573      MSInfo = PrevRecord->getMemberSpecializationInfo();
6574    }
6575  } else if (isa<EnumDecl>(Member)) {
6576    EnumDecl *PrevEnum;
6577    if (Previous.isSingleResult() &&
6578        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6579      Instantiation = PrevEnum;
6580      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6581      MSInfo = PrevEnum->getMemberSpecializationInfo();
6582    }
6583  }
6584
6585  if (!Instantiation) {
6586    // There is no previous declaration that matches. Since member
6587    // specializations are always out-of-line, the caller will complain about
6588    // this mismatch later.
6589    return false;
6590  }
6591
6592  // If this is a friend, just bail out here before we start turning
6593  // things into explicit specializations.
6594  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6595    // Preserve instantiation information.
6596    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6597      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6598                                      cast<CXXMethodDecl>(InstantiatedFrom),
6599        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6600    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6601      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6602                                      cast<CXXRecordDecl>(InstantiatedFrom),
6603        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6604    }
6605
6606    Previous.clear();
6607    Previous.addDecl(Instantiation);
6608    return false;
6609  }
6610
6611  // Make sure that this is a specialization of a member.
6612  if (!InstantiatedFrom) {
6613    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6614      << Member;
6615    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6616    return true;
6617  }
6618
6619  // C++ [temp.expl.spec]p6:
6620  //   If a template, a member template or the member of a class template is
6621  //   explicitly specialized then that specialization shall be declared
6622  //   before the first use of that specialization that would cause an implicit
6623  //   instantiation to take place, in every translation unit in which such a
6624  //   use occurs; no diagnostic is required.
6625  assert(MSInfo && "Member specialization info missing?");
6626
6627  bool HasNoEffect = false;
6628  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6629                                             TSK_ExplicitSpecialization,
6630                                             Instantiation,
6631                                     MSInfo->getTemplateSpecializationKind(),
6632                                           MSInfo->getPointOfInstantiation(),
6633                                             HasNoEffect))
6634    return true;
6635
6636  // Check the scope of this explicit specialization.
6637  if (CheckTemplateSpecializationScope(*this,
6638                                       InstantiatedFrom,
6639                                       Instantiation, Member->getLocation(),
6640                                       false))
6641    return true;
6642
6643  // Note that this is an explicit instantiation of a member.
6644  // the original declaration to note that it is an explicit specialization
6645  // (if it was previously an implicit instantiation). This latter step
6646  // makes bookkeeping easier.
6647  if (isa<FunctionDecl>(Member)) {
6648    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6649    if (InstantiationFunction->getTemplateSpecializationKind() ==
6650          TSK_ImplicitInstantiation) {
6651      InstantiationFunction->setTemplateSpecializationKind(
6652                                                  TSK_ExplicitSpecialization);
6653      InstantiationFunction->setLocation(Member->getLocation());
6654    }
6655
6656    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6657                                        cast<CXXMethodDecl>(InstantiatedFrom),
6658                                                  TSK_ExplicitSpecialization);
6659    MarkUnusedFileScopedDecl(InstantiationFunction);
6660  } else if (isa<VarDecl>(Member)) {
6661    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6662    if (InstantiationVar->getTemplateSpecializationKind() ==
6663          TSK_ImplicitInstantiation) {
6664      InstantiationVar->setTemplateSpecializationKind(
6665                                                  TSK_ExplicitSpecialization);
6666      InstantiationVar->setLocation(Member->getLocation());
6667    }
6668
6669    cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6670        cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6671    MarkUnusedFileScopedDecl(InstantiationVar);
6672  } else if (isa<CXXRecordDecl>(Member)) {
6673    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6674    if (InstantiationClass->getTemplateSpecializationKind() ==
6675          TSK_ImplicitInstantiation) {
6676      InstantiationClass->setTemplateSpecializationKind(
6677                                                   TSK_ExplicitSpecialization);
6678      InstantiationClass->setLocation(Member->getLocation());
6679    }
6680
6681    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6682                                        cast<CXXRecordDecl>(InstantiatedFrom),
6683                                                   TSK_ExplicitSpecialization);
6684  } else {
6685    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6686    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6687    if (InstantiationEnum->getTemplateSpecializationKind() ==
6688          TSK_ImplicitInstantiation) {
6689      InstantiationEnum->setTemplateSpecializationKind(
6690                                                   TSK_ExplicitSpecialization);
6691      InstantiationEnum->setLocation(Member->getLocation());
6692    }
6693
6694    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6695        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6696  }
6697
6698  // Save the caller the trouble of having to figure out which declaration
6699  // this specialization matches.
6700  Previous.clear();
6701  Previous.addDecl(Instantiation);
6702  return false;
6703}
6704
6705/// \brief Check the scope of an explicit instantiation.
6706///
6707/// \returns true if a serious error occurs, false otherwise.
6708static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6709                                            SourceLocation InstLoc,
6710                                            bool WasQualifiedName) {
6711  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6712  DeclContext *CurContext = S.CurContext->getRedeclContext();
6713
6714  if (CurContext->isRecord()) {
6715    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6716      << D;
6717    return true;
6718  }
6719
6720  // C++11 [temp.explicit]p3:
6721  //   An explicit instantiation shall appear in an enclosing namespace of its
6722  //   template. If the name declared in the explicit instantiation is an
6723  //   unqualified name, the explicit instantiation shall appear in the
6724  //   namespace where its template is declared or, if that namespace is inline
6725  //   (7.3.1), any namespace from its enclosing namespace set.
6726  //
6727  // This is DR275, which we do not retroactively apply to C++98/03.
6728  if (WasQualifiedName) {
6729    if (CurContext->Encloses(OrigContext))
6730      return false;
6731  } else {
6732    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6733      return false;
6734  }
6735
6736  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6737    if (WasQualifiedName)
6738      S.Diag(InstLoc,
6739             S.getLangOpts().CPlusPlus11?
6740               diag::err_explicit_instantiation_out_of_scope :
6741               diag::warn_explicit_instantiation_out_of_scope_0x)
6742        << D << NS;
6743    else
6744      S.Diag(InstLoc,
6745             S.getLangOpts().CPlusPlus11?
6746               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6747               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6748        << D << NS;
6749  } else
6750    S.Diag(InstLoc,
6751           S.getLangOpts().CPlusPlus11?
6752             diag::err_explicit_instantiation_must_be_global :
6753             diag::warn_explicit_instantiation_must_be_global_0x)
6754      << D;
6755  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6756  return false;
6757}
6758
6759/// \brief Determine whether the given scope specifier has a template-id in it.
6760static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6761  if (!SS.isSet())
6762    return false;
6763
6764  // C++11 [temp.explicit]p3:
6765  //   If the explicit instantiation is for a member function, a member class
6766  //   or a static data member of a class template specialization, the name of
6767  //   the class template specialization in the qualified-id for the member
6768  //   name shall be a simple-template-id.
6769  //
6770  // C++98 has the same restriction, just worded differently.
6771  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6772       NNS; NNS = NNS->getPrefix())
6773    if (const Type *T = NNS->getAsType())
6774      if (isa<TemplateSpecializationType>(T))
6775        return true;
6776
6777  return false;
6778}
6779
6780// Explicit instantiation of a class template specialization
6781DeclResult
6782Sema::ActOnExplicitInstantiation(Scope *S,
6783                                 SourceLocation ExternLoc,
6784                                 SourceLocation TemplateLoc,
6785                                 unsigned TagSpec,
6786                                 SourceLocation KWLoc,
6787                                 const CXXScopeSpec &SS,
6788                                 TemplateTy TemplateD,
6789                                 SourceLocation TemplateNameLoc,
6790                                 SourceLocation LAngleLoc,
6791                                 ASTTemplateArgsPtr TemplateArgsIn,
6792                                 SourceLocation RAngleLoc,
6793                                 AttributeList *Attr) {
6794  // Find the class template we're specializing
6795  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6796  TemplateDecl *TD = Name.getAsTemplateDecl();
6797  // Check that the specialization uses the same tag kind as the
6798  // original template.
6799  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6800  assert(Kind != TTK_Enum &&
6801         "Invalid enum tag in class template explicit instantiation!");
6802
6803  if (isa<TypeAliasTemplateDecl>(TD)) {
6804      Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6805      Diag(TD->getTemplatedDecl()->getLocation(),
6806           diag::note_previous_use);
6807    return true;
6808  }
6809
6810  ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6811
6812  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6813                                    Kind, /*isDefinition*/false, KWLoc,
6814                                    *ClassTemplate->getIdentifier())) {
6815    Diag(KWLoc, diag::err_use_with_wrong_tag)
6816      << ClassTemplate
6817      << FixItHint::CreateReplacement(KWLoc,
6818                            ClassTemplate->getTemplatedDecl()->getKindName());
6819    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6820         diag::note_previous_use);
6821    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6822  }
6823
6824  // C++0x [temp.explicit]p2:
6825  //   There are two forms of explicit instantiation: an explicit instantiation
6826  //   definition and an explicit instantiation declaration. An explicit
6827  //   instantiation declaration begins with the extern keyword. [...]
6828  TemplateSpecializationKind TSK
6829    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6830                           : TSK_ExplicitInstantiationDeclaration;
6831
6832  // Translate the parser's template argument list in our AST format.
6833  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6834  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6835
6836  // Check that the template argument list is well-formed for this
6837  // template.
6838  SmallVector<TemplateArgument, 4> Converted;
6839  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6840                                TemplateArgs, false, Converted))
6841    return true;
6842
6843  // Find the class template specialization declaration that
6844  // corresponds to these arguments.
6845  void *InsertPos = 0;
6846  ClassTemplateSpecializationDecl *PrevDecl
6847    = ClassTemplate->findSpecialization(Converted.data(),
6848                                        Converted.size(), InsertPos);
6849
6850  TemplateSpecializationKind PrevDecl_TSK
6851    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6852
6853  // C++0x [temp.explicit]p2:
6854  //   [...] An explicit instantiation shall appear in an enclosing
6855  //   namespace of its template. [...]
6856  //
6857  // This is C++ DR 275.
6858  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6859                                      SS.isSet()))
6860    return true;
6861
6862  ClassTemplateSpecializationDecl *Specialization = 0;
6863
6864  bool HasNoEffect = false;
6865  if (PrevDecl) {
6866    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6867                                               PrevDecl, PrevDecl_TSK,
6868                                            PrevDecl->getPointOfInstantiation(),
6869                                               HasNoEffect))
6870      return PrevDecl;
6871
6872    // Even though HasNoEffect == true means that this explicit instantiation
6873    // has no effect on semantics, we go on to put its syntax in the AST.
6874
6875    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6876        PrevDecl_TSK == TSK_Undeclared) {
6877      // Since the only prior class template specialization with these
6878      // arguments was referenced but not declared, reuse that
6879      // declaration node as our own, updating the source location
6880      // for the template name to reflect our new declaration.
6881      // (Other source locations will be updated later.)
6882      Specialization = PrevDecl;
6883      Specialization->setLocation(TemplateNameLoc);
6884      PrevDecl = 0;
6885    }
6886  }
6887
6888  if (!Specialization) {
6889    // Create a new class template specialization declaration node for
6890    // this explicit specialization.
6891    Specialization
6892      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6893                                             ClassTemplate->getDeclContext(),
6894                                                KWLoc, TemplateNameLoc,
6895                                                ClassTemplate,
6896                                                Converted.data(),
6897                                                Converted.size(),
6898                                                PrevDecl);
6899    SetNestedNameSpecifier(Specialization, SS);
6900
6901    if (!HasNoEffect && !PrevDecl) {
6902      // Insert the new specialization.
6903      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6904    }
6905  }
6906
6907  // Build the fully-sugared type for this explicit instantiation as
6908  // the user wrote in the explicit instantiation itself. This means
6909  // that we'll pretty-print the type retrieved from the
6910  // specialization's declaration the way that the user actually wrote
6911  // the explicit instantiation, rather than formatting the name based
6912  // on the "canonical" representation used to store the template
6913  // arguments in the specialization.
6914  TypeSourceInfo *WrittenTy
6915    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6916                                                TemplateArgs,
6917                                  Context.getTypeDeclType(Specialization));
6918  Specialization->setTypeAsWritten(WrittenTy);
6919
6920  // Set source locations for keywords.
6921  Specialization->setExternLoc(ExternLoc);
6922  Specialization->setTemplateKeywordLoc(TemplateLoc);
6923  Specialization->setRBraceLoc(SourceLocation());
6924
6925  if (Attr)
6926    ProcessDeclAttributeList(S, Specialization, Attr);
6927
6928  // Add the explicit instantiation into its lexical context. However,
6929  // since explicit instantiations are never found by name lookup, we
6930  // just put it into the declaration context directly.
6931  Specialization->setLexicalDeclContext(CurContext);
6932  CurContext->addDecl(Specialization);
6933
6934  // Syntax is now OK, so return if it has no other effect on semantics.
6935  if (HasNoEffect) {
6936    // Set the template specialization kind.
6937    Specialization->setTemplateSpecializationKind(TSK);
6938    return Specialization;
6939  }
6940
6941  // C++ [temp.explicit]p3:
6942  //   A definition of a class template or class member template
6943  //   shall be in scope at the point of the explicit instantiation of
6944  //   the class template or class member template.
6945  //
6946  // This check comes when we actually try to perform the
6947  // instantiation.
6948  ClassTemplateSpecializationDecl *Def
6949    = cast_or_null<ClassTemplateSpecializationDecl>(
6950                                              Specialization->getDefinition());
6951  if (!Def)
6952    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6953  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6954    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6955    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6956  }
6957
6958  // Instantiate the members of this class template specialization.
6959  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6960                                       Specialization->getDefinition());
6961  if (Def) {
6962    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6963
6964    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6965    // TSK_ExplicitInstantiationDefinition
6966    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6967        TSK == TSK_ExplicitInstantiationDefinition)
6968      Def->setTemplateSpecializationKind(TSK);
6969
6970    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6971  }
6972
6973  // Set the template specialization kind.
6974  Specialization->setTemplateSpecializationKind(TSK);
6975  return Specialization;
6976}
6977
6978// Explicit instantiation of a member class of a class template.
6979DeclResult
6980Sema::ActOnExplicitInstantiation(Scope *S,
6981                                 SourceLocation ExternLoc,
6982                                 SourceLocation TemplateLoc,
6983                                 unsigned TagSpec,
6984                                 SourceLocation KWLoc,
6985                                 CXXScopeSpec &SS,
6986                                 IdentifierInfo *Name,
6987                                 SourceLocation NameLoc,
6988                                 AttributeList *Attr) {
6989
6990  bool Owned = false;
6991  bool IsDependent = false;
6992  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6993                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6994                        /*ModulePrivateLoc=*/SourceLocation(),
6995                        MultiTemplateParamsArg(), Owned, IsDependent,
6996                        SourceLocation(), false, TypeResult());
6997  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6998
6999  if (!TagD)
7000    return true;
7001
7002  TagDecl *Tag = cast<TagDecl>(TagD);
7003  assert(!Tag->isEnum() && "shouldn't see enumerations here");
7004
7005  if (Tag->isInvalidDecl())
7006    return true;
7007
7008  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7009  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7010  if (!Pattern) {
7011    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7012      << Context.getTypeDeclType(Record);
7013    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7014    return true;
7015  }
7016
7017  // C++0x [temp.explicit]p2:
7018  //   If the explicit instantiation is for a class or member class, the
7019  //   elaborated-type-specifier in the declaration shall include a
7020  //   simple-template-id.
7021  //
7022  // C++98 has the same restriction, just worded differently.
7023  if (!ScopeSpecifierHasTemplateId(SS))
7024    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7025      << Record << SS.getRange();
7026
7027  // C++0x [temp.explicit]p2:
7028  //   There are two forms of explicit instantiation: an explicit instantiation
7029  //   definition and an explicit instantiation declaration. An explicit
7030  //   instantiation declaration begins with the extern keyword. [...]
7031  TemplateSpecializationKind TSK
7032    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7033                           : TSK_ExplicitInstantiationDeclaration;
7034
7035  // C++0x [temp.explicit]p2:
7036  //   [...] An explicit instantiation shall appear in an enclosing
7037  //   namespace of its template. [...]
7038  //
7039  // This is C++ DR 275.
7040  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7041
7042  // Verify that it is okay to explicitly instantiate here.
7043  CXXRecordDecl *PrevDecl
7044    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7045  if (!PrevDecl && Record->getDefinition())
7046    PrevDecl = Record;
7047  if (PrevDecl) {
7048    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7049    bool HasNoEffect = false;
7050    assert(MSInfo && "No member specialization information?");
7051    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7052                                               PrevDecl,
7053                                        MSInfo->getTemplateSpecializationKind(),
7054                                             MSInfo->getPointOfInstantiation(),
7055                                               HasNoEffect))
7056      return true;
7057    if (HasNoEffect)
7058      return TagD;
7059  }
7060
7061  CXXRecordDecl *RecordDef
7062    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7063  if (!RecordDef) {
7064    // C++ [temp.explicit]p3:
7065    //   A definition of a member class of a class template shall be in scope
7066    //   at the point of an explicit instantiation of the member class.
7067    CXXRecordDecl *Def
7068      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7069    if (!Def) {
7070      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7071        << 0 << Record->getDeclName() << Record->getDeclContext();
7072      Diag(Pattern->getLocation(), diag::note_forward_declaration)
7073        << Pattern;
7074      return true;
7075    } else {
7076      if (InstantiateClass(NameLoc, Record, Def,
7077                           getTemplateInstantiationArgs(Record),
7078                           TSK))
7079        return true;
7080
7081      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7082      if (!RecordDef)
7083        return true;
7084    }
7085  }
7086
7087  // Instantiate all of the members of the class.
7088  InstantiateClassMembers(NameLoc, RecordDef,
7089                          getTemplateInstantiationArgs(Record), TSK);
7090
7091  if (TSK == TSK_ExplicitInstantiationDefinition)
7092    MarkVTableUsed(NameLoc, RecordDef, true);
7093
7094  // FIXME: We don't have any representation for explicit instantiations of
7095  // member classes. Such a representation is not needed for compilation, but it
7096  // should be available for clients that want to see all of the declarations in
7097  // the source code.
7098  return TagD;
7099}
7100
7101DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7102                                            SourceLocation ExternLoc,
7103                                            SourceLocation TemplateLoc,
7104                                            Declarator &D) {
7105  // Explicit instantiations always require a name.
7106  // TODO: check if/when DNInfo should replace Name.
7107  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7108  DeclarationName Name = NameInfo.getName();
7109  if (!Name) {
7110    if (!D.isInvalidType())
7111      Diag(D.getDeclSpec().getLocStart(),
7112           diag::err_explicit_instantiation_requires_name)
7113        << D.getDeclSpec().getSourceRange()
7114        << D.getSourceRange();
7115
7116    return true;
7117  }
7118
7119  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7120  // we find one that is.
7121  while ((S->getFlags() & Scope::DeclScope) == 0 ||
7122         (S->getFlags() & Scope::TemplateParamScope) != 0)
7123    S = S->getParent();
7124
7125  // Determine the type of the declaration.
7126  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7127  QualType R = T->getType();
7128  if (R.isNull())
7129    return true;
7130
7131  // C++ [dcl.stc]p1:
7132  //   A storage-class-specifier shall not be specified in [...] an explicit
7133  //   instantiation (14.7.2) directive.
7134  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7135    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7136      << Name;
7137    return true;
7138  } else if (D.getDeclSpec().getStorageClassSpec()
7139                                                != DeclSpec::SCS_unspecified) {
7140    // Complain about then remove the storage class specifier.
7141    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7142      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7143
7144    D.getMutableDeclSpec().ClearStorageClassSpecs();
7145  }
7146
7147  // C++0x [temp.explicit]p1:
7148  //   [...] An explicit instantiation of a function template shall not use the
7149  //   inline or constexpr specifiers.
7150  // Presumably, this also applies to member functions of class templates as
7151  // well.
7152  if (D.getDeclSpec().isInlineSpecified())
7153    Diag(D.getDeclSpec().getInlineSpecLoc(),
7154         getLangOpts().CPlusPlus11 ?
7155           diag::err_explicit_instantiation_inline :
7156           diag::warn_explicit_instantiation_inline_0x)
7157      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7158  if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7159    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7160    // not already specified.
7161    Diag(D.getDeclSpec().getConstexprSpecLoc(),
7162         diag::err_explicit_instantiation_constexpr);
7163
7164  // C++0x [temp.explicit]p2:
7165  //   There are two forms of explicit instantiation: an explicit instantiation
7166  //   definition and an explicit instantiation declaration. An explicit
7167  //   instantiation declaration begins with the extern keyword. [...]
7168  TemplateSpecializationKind TSK
7169    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7170                           : TSK_ExplicitInstantiationDeclaration;
7171
7172  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7173  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7174
7175  if (!R->isFunctionType()) {
7176    // C++ [temp.explicit]p1:
7177    //   A [...] static data member of a class template can be explicitly
7178    //   instantiated from the member definition associated with its class
7179    //   template.
7180    // C++1y [temp.explicit]p1:
7181    //   A [...] variable [...] template specialization can be explicitly
7182    //   instantiated from its template.
7183    if (Previous.isAmbiguous())
7184      return true;
7185
7186    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7187    VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7188
7189    if (!PrevTemplate) {
7190      if (!Prev || !Prev->isStaticDataMember()) {
7191        // We expect to see a data data member here.
7192        Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7193            << Name;
7194        for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7195             P != PEnd; ++P)
7196          Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7197        return true;
7198      }
7199
7200      if (!Prev->getInstantiatedFromStaticDataMember()) {
7201        // FIXME: Check for explicit specialization?
7202        Diag(D.getIdentifierLoc(),
7203             diag::err_explicit_instantiation_data_member_not_instantiated)
7204            << Prev;
7205        Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7206        // FIXME: Can we provide a note showing where this was declared?
7207        return true;
7208      }
7209    } else {
7210      // Explicitly instantiate a variable template.
7211
7212      // C++1y [dcl.spec.auto]p6:
7213      //   ... A program that uses auto or decltype(auto) in a context not
7214      //   explicitly allowed in this section is ill-formed.
7215      //
7216      // This includes auto-typed variable template instantiations.
7217      if (R->isUndeducedType()) {
7218        Diag(T->getTypeLoc().getLocStart(),
7219             diag::err_auto_not_allowed_var_inst);
7220        return true;
7221      }
7222
7223      TemplateArgumentListInfo TemplateArgs;
7224      if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7225        // Translate the parser's template argument list into our AST format.
7226        TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7227        TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7228        TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7229        ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7230                                           TemplateId->NumArgs);
7231        translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7232      }
7233
7234      DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7235                                          D.getIdentifierLoc(), TemplateArgs);
7236      if (Res.isInvalid())
7237        return true;
7238
7239      // Ignore access control bits, we don't need them for redeclaration
7240      // checking.
7241      Prev = cast<VarDecl>(Res.get());
7242    }
7243
7244    // C++0x [temp.explicit]p2:
7245    //   If the explicit instantiation is for a member function, a member class
7246    //   or a static data member of a class template specialization, the name of
7247    //   the class template specialization in the qualified-id for the member
7248    //   name shall be a simple-template-id.
7249    //
7250    // C++98 has the same restriction, just worded differently.
7251    //
7252    // C++1y If the explicit instantiation is for a variable, the
7253    // unqualified-id in the declaration shall be a template-id.
7254    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) &&
7255        (!PrevTemplate ||
7256         (D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
7257          D.getCXXScopeSpec().isSet())))
7258      Diag(D.getIdentifierLoc(),
7259           diag::ext_explicit_instantiation_without_qualified_id)
7260        << Prev << D.getCXXScopeSpec().getRange();
7261
7262    // Check the scope of this explicit instantiation.
7263    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7264
7265    // Verify that it is okay to explicitly instantiate here.
7266    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
7267    TemplateSpecializationKind PrevTSK =
7268        MSInfo ? MSInfo->getTemplateSpecializationKind()
7269               : Prev->getTemplateSpecializationKind();
7270    SourceLocation POI = MSInfo ? MSInfo->getPointOfInstantiation()
7271                                : cast<VarTemplateSpecializationDecl>(Prev)
7272                                      ->getPointOfInstantiation();
7273    bool HasNoEffect = false;
7274    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7275                                               PrevTSK, POI, HasNoEffect))
7276      return true;
7277
7278    if (!HasNoEffect) {
7279      // Instantiate static data member or variable template.
7280
7281      Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7282      if (PrevTemplate) {
7283        // Merge attributes.
7284        if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7285          ProcessDeclAttributeList(S, Prev, Attr);
7286      }
7287      if (TSK == TSK_ExplicitInstantiationDefinition)
7288        InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7289    }
7290
7291    // Check the new variable specialization against the parsed input.
7292    if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7293      Diag(T->getTypeLoc().getLocStart(),
7294           diag::err_invalid_var_template_spec_type)
7295          << 0 << PrevTemplate << R << Prev->getType();
7296      Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7297          << 2 << PrevTemplate->getDeclName();
7298      return true;
7299    }
7300
7301    // FIXME: Create an ExplicitInstantiation node?
7302    return (Decl*) 0;
7303  }
7304
7305  // If the declarator is a template-id, translate the parser's template
7306  // argument list into our AST format.
7307  bool HasExplicitTemplateArgs = false;
7308  TemplateArgumentListInfo TemplateArgs;
7309  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7310    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7311    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7312    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7313    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7314                                       TemplateId->NumArgs);
7315    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7316    HasExplicitTemplateArgs = true;
7317  }
7318
7319  // C++ [temp.explicit]p1:
7320  //   A [...] function [...] can be explicitly instantiated from its template.
7321  //   A member function [...] of a class template can be explicitly
7322  //  instantiated from the member definition associated with its class
7323  //  template.
7324  UnresolvedSet<8> Matches;
7325  TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7326  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7327       P != PEnd; ++P) {
7328    NamedDecl *Prev = *P;
7329    if (!HasExplicitTemplateArgs) {
7330      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7331        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7332          Matches.clear();
7333
7334          Matches.addDecl(Method, P.getAccess());
7335          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7336            break;
7337        }
7338      }
7339    }
7340
7341    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7342    if (!FunTmpl)
7343      continue;
7344
7345    TemplateDeductionInfo Info(FailedCandidates.getLocation());
7346    FunctionDecl *Specialization = 0;
7347    if (TemplateDeductionResult TDK
7348          = DeduceTemplateArguments(FunTmpl,
7349                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7350                                    R, Specialization, Info)) {
7351      // Keep track of almost-matches.
7352      FailedCandidates.addCandidate()
7353          .set(FunTmpl->getTemplatedDecl(),
7354               MakeDeductionFailureInfo(Context, TDK, Info));
7355      (void)TDK;
7356      continue;
7357    }
7358
7359    Matches.addDecl(Specialization, P.getAccess());
7360  }
7361
7362  // Find the most specialized function template specialization.
7363  UnresolvedSetIterator Result = getMostSpecialized(
7364      Matches.begin(), Matches.end(), FailedCandidates, TPOC_Other, 0,
7365      D.getIdentifierLoc(),
7366      PDiag(diag::err_explicit_instantiation_not_known) << Name,
7367      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7368      PDiag(diag::note_explicit_instantiation_candidate));
7369
7370  if (Result == Matches.end())
7371    return true;
7372
7373  // Ignore access control bits, we don't need them for redeclaration checking.
7374  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7375
7376  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7377    Diag(D.getIdentifierLoc(),
7378         diag::err_explicit_instantiation_member_function_not_instantiated)
7379      << Specialization
7380      << (Specialization->getTemplateSpecializationKind() ==
7381          TSK_ExplicitSpecialization);
7382    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7383    return true;
7384  }
7385
7386  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7387  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7388    PrevDecl = Specialization;
7389
7390  if (PrevDecl) {
7391    bool HasNoEffect = false;
7392    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7393                                               PrevDecl,
7394                                     PrevDecl->getTemplateSpecializationKind(),
7395                                          PrevDecl->getPointOfInstantiation(),
7396                                               HasNoEffect))
7397      return true;
7398
7399    // FIXME: We may still want to build some representation of this
7400    // explicit specialization.
7401    if (HasNoEffect)
7402      return (Decl*) 0;
7403  }
7404
7405  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7406  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7407  if (Attr)
7408    ProcessDeclAttributeList(S, Specialization, Attr);
7409
7410  if (TSK == TSK_ExplicitInstantiationDefinition)
7411    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7412
7413  // C++0x [temp.explicit]p2:
7414  //   If the explicit instantiation is for a member function, a member class
7415  //   or a static data member of a class template specialization, the name of
7416  //   the class template specialization in the qualified-id for the member
7417  //   name shall be a simple-template-id.
7418  //
7419  // C++98 has the same restriction, just worded differently.
7420  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7421  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7422      D.getCXXScopeSpec().isSet() &&
7423      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7424    Diag(D.getIdentifierLoc(),
7425         diag::ext_explicit_instantiation_without_qualified_id)
7426    << Specialization << D.getCXXScopeSpec().getRange();
7427
7428  CheckExplicitInstantiationScope(*this,
7429                   FunTmpl? (NamedDecl *)FunTmpl
7430                          : Specialization->getInstantiatedFromMemberFunction(),
7431                                  D.getIdentifierLoc(),
7432                                  D.getCXXScopeSpec().isSet());
7433
7434  // FIXME: Create some kind of ExplicitInstantiationDecl here.
7435  return (Decl*) 0;
7436}
7437
7438TypeResult
7439Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7440                        const CXXScopeSpec &SS, IdentifierInfo *Name,
7441                        SourceLocation TagLoc, SourceLocation NameLoc) {
7442  // This has to hold, because SS is expected to be defined.
7443  assert(Name && "Expected a name in a dependent tag");
7444
7445  NestedNameSpecifier *NNS
7446    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7447  if (!NNS)
7448    return true;
7449
7450  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7451
7452  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7453    Diag(NameLoc, diag::err_dependent_tag_decl)
7454      << (TUK == TUK_Definition) << Kind << SS.getRange();
7455    return true;
7456  }
7457
7458  // Create the resulting type.
7459  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7460  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7461
7462  // Create type-source location information for this type.
7463  TypeLocBuilder TLB;
7464  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7465  TL.setElaboratedKeywordLoc(TagLoc);
7466  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7467  TL.setNameLoc(NameLoc);
7468  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7469}
7470
7471TypeResult
7472Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7473                        const CXXScopeSpec &SS, const IdentifierInfo &II,
7474                        SourceLocation IdLoc) {
7475  if (SS.isInvalid())
7476    return true;
7477
7478  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7479    Diag(TypenameLoc,
7480         getLangOpts().CPlusPlus11 ?
7481           diag::warn_cxx98_compat_typename_outside_of_template :
7482           diag::ext_typename_outside_of_template)
7483      << FixItHint::CreateRemoval(TypenameLoc);
7484
7485  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7486  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7487                                 TypenameLoc, QualifierLoc, II, IdLoc);
7488  if (T.isNull())
7489    return true;
7490
7491  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7492  if (isa<DependentNameType>(T)) {
7493    DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7494    TL.setElaboratedKeywordLoc(TypenameLoc);
7495    TL.setQualifierLoc(QualifierLoc);
7496    TL.setNameLoc(IdLoc);
7497  } else {
7498    ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7499    TL.setElaboratedKeywordLoc(TypenameLoc);
7500    TL.setQualifierLoc(QualifierLoc);
7501    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7502  }
7503
7504  return CreateParsedType(T, TSI);
7505}
7506
7507TypeResult
7508Sema::ActOnTypenameType(Scope *S,
7509                        SourceLocation TypenameLoc,
7510                        const CXXScopeSpec &SS,
7511                        SourceLocation TemplateKWLoc,
7512                        TemplateTy TemplateIn,
7513                        SourceLocation TemplateNameLoc,
7514                        SourceLocation LAngleLoc,
7515                        ASTTemplateArgsPtr TemplateArgsIn,
7516                        SourceLocation RAngleLoc) {
7517  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7518    Diag(TypenameLoc,
7519         getLangOpts().CPlusPlus11 ?
7520           diag::warn_cxx98_compat_typename_outside_of_template :
7521           diag::ext_typename_outside_of_template)
7522      << FixItHint::CreateRemoval(TypenameLoc);
7523
7524  // Translate the parser's template argument list in our AST format.
7525  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7526  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7527
7528  TemplateName Template = TemplateIn.get();
7529  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7530    // Construct a dependent template specialization type.
7531    assert(DTN && "dependent template has non-dependent name?");
7532    assert(DTN->getQualifier()
7533           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7534    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7535                                                          DTN->getQualifier(),
7536                                                          DTN->getIdentifier(),
7537                                                                TemplateArgs);
7538
7539    // Create source-location information for this type.
7540    TypeLocBuilder Builder;
7541    DependentTemplateSpecializationTypeLoc SpecTL
7542    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7543    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7544    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7545    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7546    SpecTL.setTemplateNameLoc(TemplateNameLoc);
7547    SpecTL.setLAngleLoc(LAngleLoc);
7548    SpecTL.setRAngleLoc(RAngleLoc);
7549    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7550      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7551    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7552  }
7553
7554  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7555  if (T.isNull())
7556    return true;
7557
7558  // Provide source-location information for the template specialization type.
7559  TypeLocBuilder Builder;
7560  TemplateSpecializationTypeLoc SpecTL
7561    = Builder.push<TemplateSpecializationTypeLoc>(T);
7562  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7563  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7564  SpecTL.setLAngleLoc(LAngleLoc);
7565  SpecTL.setRAngleLoc(RAngleLoc);
7566  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7567    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7568
7569  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7570  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7571  TL.setElaboratedKeywordLoc(TypenameLoc);
7572  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7573
7574  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7575  return CreateParsedType(T, TSI);
7576}
7577
7578
7579/// Determine whether this failed name lookup should be treated as being
7580/// disabled by a usage of std::enable_if.
7581static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7582                       SourceRange &CondRange) {
7583  // We must be looking for a ::type...
7584  if (!II.isStr("type"))
7585    return false;
7586
7587  // ... within an explicitly-written template specialization...
7588  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7589    return false;
7590  TypeLoc EnableIfTy = NNS.getTypeLoc();
7591  TemplateSpecializationTypeLoc EnableIfTSTLoc =
7592      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7593  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7594    return false;
7595  const TemplateSpecializationType *EnableIfTST =
7596    cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7597
7598  // ... which names a complete class template declaration...
7599  const TemplateDecl *EnableIfDecl =
7600    EnableIfTST->getTemplateName().getAsTemplateDecl();
7601  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7602    return false;
7603
7604  // ... called "enable_if".
7605  const IdentifierInfo *EnableIfII =
7606    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7607  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7608    return false;
7609
7610  // Assume the first template argument is the condition.
7611  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7612  return true;
7613}
7614
7615/// \brief Build the type that describes a C++ typename specifier,
7616/// e.g., "typename T::type".
7617QualType
7618Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7619                        SourceLocation KeywordLoc,
7620                        NestedNameSpecifierLoc QualifierLoc,
7621                        const IdentifierInfo &II,
7622                        SourceLocation IILoc) {
7623  CXXScopeSpec SS;
7624  SS.Adopt(QualifierLoc);
7625
7626  DeclContext *Ctx = computeDeclContext(SS);
7627  if (!Ctx) {
7628    // If the nested-name-specifier is dependent and couldn't be
7629    // resolved to a type, build a typename type.
7630    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7631    return Context.getDependentNameType(Keyword,
7632                                        QualifierLoc.getNestedNameSpecifier(),
7633                                        &II);
7634  }
7635
7636  // If the nested-name-specifier refers to the current instantiation,
7637  // the "typename" keyword itself is superfluous. In C++03, the
7638  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7639  // allows such extraneous "typename" keywords, and we retroactively
7640  // apply this DR to C++03 code with only a warning. In any case we continue.
7641
7642  if (RequireCompleteDeclContext(SS, Ctx))
7643    return QualType();
7644
7645  DeclarationName Name(&II);
7646  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7647  LookupQualifiedName(Result, Ctx);
7648  unsigned DiagID = 0;
7649  Decl *Referenced = 0;
7650  switch (Result.getResultKind()) {
7651  case LookupResult::NotFound: {
7652    // If we're looking up 'type' within a template named 'enable_if', produce
7653    // a more specific diagnostic.
7654    SourceRange CondRange;
7655    if (isEnableIf(QualifierLoc, II, CondRange)) {
7656      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7657        << Ctx << CondRange;
7658      return QualType();
7659    }
7660
7661    DiagID = diag::err_typename_nested_not_found;
7662    break;
7663  }
7664
7665  case LookupResult::FoundUnresolvedValue: {
7666    // We found a using declaration that is a value. Most likely, the using
7667    // declaration itself is meant to have the 'typename' keyword.
7668    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7669                          IILoc);
7670    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7671      << Name << Ctx << FullRange;
7672    if (UnresolvedUsingValueDecl *Using
7673          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7674      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7675      Diag(Loc, diag::note_using_value_decl_missing_typename)
7676        << FixItHint::CreateInsertion(Loc, "typename ");
7677    }
7678  }
7679  // Fall through to create a dependent typename type, from which we can recover
7680  // better.
7681
7682  case LookupResult::NotFoundInCurrentInstantiation:
7683    // Okay, it's a member of an unknown instantiation.
7684    return Context.getDependentNameType(Keyword,
7685                                        QualifierLoc.getNestedNameSpecifier(),
7686                                        &II);
7687
7688  case LookupResult::Found:
7689    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7690      // We found a type. Build an ElaboratedType, since the
7691      // typename-specifier was just sugar.
7692      return Context.getElaboratedType(ETK_Typename,
7693                                       QualifierLoc.getNestedNameSpecifier(),
7694                                       Context.getTypeDeclType(Type));
7695    }
7696
7697    DiagID = diag::err_typename_nested_not_type;
7698    Referenced = Result.getFoundDecl();
7699    break;
7700
7701  case LookupResult::FoundOverloaded:
7702    DiagID = diag::err_typename_nested_not_type;
7703    Referenced = *Result.begin();
7704    break;
7705
7706  case LookupResult::Ambiguous:
7707    return QualType();
7708  }
7709
7710  // If we get here, it's because name lookup did not find a
7711  // type. Emit an appropriate diagnostic and return an error.
7712  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7713                        IILoc);
7714  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7715  if (Referenced)
7716    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7717      << Name;
7718  return QualType();
7719}
7720
7721namespace {
7722  // See Sema::RebuildTypeInCurrentInstantiation
7723  class CurrentInstantiationRebuilder
7724    : public TreeTransform<CurrentInstantiationRebuilder> {
7725    SourceLocation Loc;
7726    DeclarationName Entity;
7727
7728  public:
7729    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7730
7731    CurrentInstantiationRebuilder(Sema &SemaRef,
7732                                  SourceLocation Loc,
7733                                  DeclarationName Entity)
7734    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7735      Loc(Loc), Entity(Entity) { }
7736
7737    /// \brief Determine whether the given type \p T has already been
7738    /// transformed.
7739    ///
7740    /// For the purposes of type reconstruction, a type has already been
7741    /// transformed if it is NULL or if it is not dependent.
7742    bool AlreadyTransformed(QualType T) {
7743      return T.isNull() || !T->isDependentType();
7744    }
7745
7746    /// \brief Returns the location of the entity whose type is being
7747    /// rebuilt.
7748    SourceLocation getBaseLocation() { return Loc; }
7749
7750    /// \brief Returns the name of the entity whose type is being rebuilt.
7751    DeclarationName getBaseEntity() { return Entity; }
7752
7753    /// \brief Sets the "base" location and entity when that
7754    /// information is known based on another transformation.
7755    void setBase(SourceLocation Loc, DeclarationName Entity) {
7756      this->Loc = Loc;
7757      this->Entity = Entity;
7758    }
7759
7760    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7761      // Lambdas never need to be transformed.
7762      return E;
7763    }
7764  };
7765}
7766
7767/// \brief Rebuilds a type within the context of the current instantiation.
7768///
7769/// The type \p T is part of the type of an out-of-line member definition of
7770/// a class template (or class template partial specialization) that was parsed
7771/// and constructed before we entered the scope of the class template (or
7772/// partial specialization thereof). This routine will rebuild that type now
7773/// that we have entered the declarator's scope, which may produce different
7774/// canonical types, e.g.,
7775///
7776/// \code
7777/// template<typename T>
7778/// struct X {
7779///   typedef T* pointer;
7780///   pointer data();
7781/// };
7782///
7783/// template<typename T>
7784/// typename X<T>::pointer X<T>::data() { ... }
7785/// \endcode
7786///
7787/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7788/// since we do not know that we can look into X<T> when we parsed the type.
7789/// This function will rebuild the type, performing the lookup of "pointer"
7790/// in X<T> and returning an ElaboratedType whose canonical type is the same
7791/// as the canonical type of T*, allowing the return types of the out-of-line
7792/// definition and the declaration to match.
7793TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7794                                                        SourceLocation Loc,
7795                                                        DeclarationName Name) {
7796  if (!T || !T->getType()->isDependentType())
7797    return T;
7798
7799  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7800  return Rebuilder.TransformType(T);
7801}
7802
7803ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7804  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7805                                          DeclarationName());
7806  return Rebuilder.TransformExpr(E);
7807}
7808
7809bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7810  if (SS.isInvalid())
7811    return true;
7812
7813  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7814  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7815                                          DeclarationName());
7816  NestedNameSpecifierLoc Rebuilt
7817    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7818  if (!Rebuilt)
7819    return true;
7820
7821  SS.Adopt(Rebuilt);
7822  return false;
7823}
7824
7825/// \brief Rebuild the template parameters now that we know we're in a current
7826/// instantiation.
7827bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7828                                               TemplateParameterList *Params) {
7829  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7830    Decl *Param = Params->getParam(I);
7831
7832    // There is nothing to rebuild in a type parameter.
7833    if (isa<TemplateTypeParmDecl>(Param))
7834      continue;
7835
7836    // Rebuild the template parameter list of a template template parameter.
7837    if (TemplateTemplateParmDecl *TTP
7838        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7839      if (RebuildTemplateParamsInCurrentInstantiation(
7840            TTP->getTemplateParameters()))
7841        return true;
7842
7843      continue;
7844    }
7845
7846    // Rebuild the type of a non-type template parameter.
7847    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7848    TypeSourceInfo *NewTSI
7849      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7850                                          NTTP->getLocation(),
7851                                          NTTP->getDeclName());
7852    if (!NewTSI)
7853      return true;
7854
7855    if (NewTSI != NTTP->getTypeSourceInfo()) {
7856      NTTP->setTypeSourceInfo(NewTSI);
7857      NTTP->setType(NewTSI->getType());
7858    }
7859  }
7860
7861  return false;
7862}
7863
7864/// \brief Produces a formatted string that describes the binding of
7865/// template parameters to template arguments.
7866std::string
7867Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7868                                      const TemplateArgumentList &Args) {
7869  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7870}
7871
7872std::string
7873Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7874                                      const TemplateArgument *Args,
7875                                      unsigned NumArgs) {
7876  SmallString<128> Str;
7877  llvm::raw_svector_ostream Out(Str);
7878
7879  if (!Params || Params->size() == 0 || NumArgs == 0)
7880    return std::string();
7881
7882  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7883    if (I >= NumArgs)
7884      break;
7885
7886    if (I == 0)
7887      Out << "[with ";
7888    else
7889      Out << ", ";
7890
7891    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7892      Out << Id->getName();
7893    } else {
7894      Out << '$' << I;
7895    }
7896
7897    Out << " = ";
7898    Args[I].print(getPrintingPolicy(), Out);
7899  }
7900
7901  Out << ']';
7902  return Out.str();
7903}
7904
7905void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7906  if (!FD)
7907    return;
7908  FD->setLateTemplateParsed(Flag);
7909}
7910
7911bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7912  DeclContext *DC = CurContext;
7913
7914  while (DC) {
7915    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7916      const FunctionDecl *FD = RD->isLocalClass();
7917      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7918    } else if (DC->isTranslationUnit() || DC->isNamespace())
7919      return false;
7920
7921    DC = DC->getParent();
7922  }
7923  return false;
7924}
7925