SemaTemplate.cpp revision 26416068d3eb883a280fdceeffa74fffc9131031
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
63  if (!Ovl)
64    return 0;
65
66  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
67                                              FEnd = Ovl->function_end();
68       F != FEnd; ++F) {
69    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
70      // We've found a function template. Determine whether there are
71      // any other function templates we need to bundle together in an
72      // OverloadedFunctionDecl
73      for (++F; F != FEnd; ++F) {
74        if (isa<FunctionTemplateDecl>(*F))
75          break;
76      }
77
78      if (F != FEnd) {
79        // Build an overloaded function decl containing only the
80        // function templates in Ovl.
81        OverloadedFunctionDecl *OvlTemplate
82          = OverloadedFunctionDecl::Create(Context,
83                                           Ovl->getDeclContext(),
84                                           Ovl->getDeclName());
85        OvlTemplate->addOverload(FuncTmpl);
86        OvlTemplate->addOverload(*F);
87        for (++F; F != FEnd; ++F) {
88          if (isa<FunctionTemplateDecl>(*F))
89            OvlTemplate->addOverload(*F);
90        }
91
92        return OvlTemplate;
93      }
94
95      return FuncTmpl;
96    }
97  }
98
99  return 0;
100}
101
102static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
103  LookupResult::Filter filter = R.makeFilter();
104  while (filter.hasNext()) {
105    NamedDecl *Orig = filter.next();
106    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
107    if (!Repl)
108      filter.erase();
109    else if (Repl != Orig)
110      filter.replace(Repl);
111  }
112  filter.done();
113}
114
115TemplateNameKind Sema::isTemplateName(Scope *S,
116                                      const CXXScopeSpec &SS,
117                                      UnqualifiedId &Name,
118                                      TypeTy *ObjectTypePtr,
119                                      bool EnteringContext,
120                                      TemplateTy &TemplateResult) {
121  DeclarationName TName;
122
123  switch (Name.getKind()) {
124  case UnqualifiedId::IK_Identifier:
125    TName = DeclarationName(Name.Identifier);
126    break;
127
128  case UnqualifiedId::IK_OperatorFunctionId:
129    TName = Context.DeclarationNames.getCXXOperatorName(
130                                              Name.OperatorFunctionId.Operator);
131    break;
132
133  default:
134    return TNK_Non_template;
135  }
136
137  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
138
139  LookupResult R(*this, TName, SourceLocation(), LookupOrdinaryName);
140  R.suppressDiagnostics();
141  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
142  if (R.empty())
143    return TNK_Non_template;
144
145  NamedDecl *Template = R.getAsSingleDecl(Context);
146
147  if (SS.isSet() && !SS.isInvalid()) {
148    NestedNameSpecifier *Qualifier
149      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
150    if (OverloadedFunctionDecl *Ovl
151          = dyn_cast<OverloadedFunctionDecl>(Template))
152      TemplateResult
153        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
154                                                            Ovl));
155    else
156      TemplateResult
157        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
158                                                 cast<TemplateDecl>(Template)));
159  } else if (OverloadedFunctionDecl *Ovl
160               = dyn_cast<OverloadedFunctionDecl>(Template)) {
161    TemplateResult = TemplateTy::make(TemplateName(Ovl));
162  } else {
163    TemplateResult = TemplateTy::make(
164                                  TemplateName(cast<TemplateDecl>(Template)));
165  }
166
167  if (isa<ClassTemplateDecl>(Template) ||
168      isa<TemplateTemplateParmDecl>(Template))
169    return TNK_Type_template;
170
171  assert((isa<FunctionTemplateDecl>(Template) ||
172          isa<OverloadedFunctionDecl>(Template)) &&
173         "Unhandled template kind in Sema::isTemplateName");
174  return TNK_Function_template;
175}
176
177void Sema::LookupTemplateName(LookupResult &Found,
178                              Scope *S, const CXXScopeSpec &SS,
179                              QualType ObjectType,
180                              bool EnteringContext) {
181  // Determine where to perform name lookup
182  DeclContext *LookupCtx = 0;
183  bool isDependent = false;
184  if (!ObjectType.isNull()) {
185    // This nested-name-specifier occurs in a member access expression, e.g.,
186    // x->B::f, and we are looking into the type of the object.
187    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
188    LookupCtx = computeDeclContext(ObjectType);
189    isDependent = ObjectType->isDependentType();
190    assert((isDependent || !ObjectType->isIncompleteType()) &&
191           "Caller should have completed object type");
192  } else if (SS.isSet()) {
193    // This nested-name-specifier occurs after another nested-name-specifier,
194    // so long into the context associated with the prior nested-name-specifier.
195    LookupCtx = computeDeclContext(SS, EnteringContext);
196    isDependent = isDependentScopeSpecifier(SS);
197
198    // The declaration context must be complete.
199    if (LookupCtx && RequireCompleteDeclContext(SS))
200      return;
201  }
202
203  bool ObjectTypeSearchedInScope = false;
204  if (LookupCtx) {
205    // Perform "qualified" name lookup into the declaration context we
206    // computed, which is either the type of the base of a member access
207    // expression or the declaration context associated with a prior
208    // nested-name-specifier.
209    LookupQualifiedName(Found, LookupCtx);
210
211    if (!ObjectType.isNull() && Found.empty()) {
212      // C++ [basic.lookup.classref]p1:
213      //   In a class member access expression (5.2.5), if the . or -> token is
214      //   immediately followed by an identifier followed by a <, the
215      //   identifier must be looked up to determine whether the < is the
216      //   beginning of a template argument list (14.2) or a less-than operator.
217      //   The identifier is first looked up in the class of the object
218      //   expression. If the identifier is not found, it is then looked up in
219      //   the context of the entire postfix-expression and shall name a class
220      //   or function template.
221      //
222      // FIXME: When we're instantiating a template, do we actually have to
223      // look in the scope of the template? Seems fishy...
224      if (S) LookupName(Found, S);
225      ObjectTypeSearchedInScope = true;
226    }
227  } else if (isDependent) {
228    // We cannot look into a dependent object type or
229    return;
230  } else {
231    // Perform unqualified name lookup in the current scope.
232    LookupName(Found, S);
233  }
234
235  // FIXME: Cope with ambiguous name-lookup results.
236  assert(!Found.isAmbiguous() &&
237         "Cannot handle template name-lookup ambiguities");
238
239  FilterAcceptableTemplateNames(Context, Found);
240  if (Found.empty())
241    return;
242
243  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
244    // C++ [basic.lookup.classref]p1:
245    //   [...] If the lookup in the class of the object expression finds a
246    //   template, the name is also looked up in the context of the entire
247    //   postfix-expression and [...]
248    //
249    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
250                            LookupOrdinaryName);
251    LookupName(FoundOuter, S);
252    FilterAcceptableTemplateNames(Context, FoundOuter);
253    // FIXME: Handle ambiguities in this lookup better
254
255    if (FoundOuter.empty()) {
256      //   - if the name is not found, the name found in the class of the
257      //     object expression is used, otherwise
258    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
259      //   - if the name is found in the context of the entire
260      //     postfix-expression and does not name a class template, the name
261      //     found in the class of the object expression is used, otherwise
262    } else {
263      //   - if the name found is a class template, it must refer to the same
264      //     entity as the one found in the class of the object expression,
265      //     otherwise the program is ill-formed.
266      if (!Found.isSingleResult() ||
267          Found.getFoundDecl()->getCanonicalDecl()
268            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
269        Diag(Found.getNameLoc(),
270             diag::err_nested_name_member_ref_lookup_ambiguous)
271          << Found.getLookupName();
272        Diag(Found.getRepresentativeDecl()->getLocation(),
273             diag::note_ambig_member_ref_object_type)
274          << ObjectType;
275        Diag(FoundOuter.getFoundDecl()->getLocation(),
276             diag::note_ambig_member_ref_scope);
277
278        // Recover by taking the template that we found in the object
279        // expression's type.
280      }
281    }
282  }
283}
284
285/// Constructs a full type for the given nested-name-specifier.
286static QualType GetTypeForQualifier(ASTContext &Context,
287                                    NestedNameSpecifier *Qualifier) {
288  // Three possibilities:
289
290  // 1.  A namespace (global or not).
291  assert(!Qualifier->getAsNamespace() && "can't construct type for namespace");
292
293  // 2.  A type (templated or not).
294  Type *Ty = Qualifier->getAsType();
295  if (Ty) return QualType(Ty, 0);
296
297  // 3.  A dependent identifier.
298  assert(Qualifier->getAsIdentifier());
299  return Context.getTypenameType(Qualifier->getPrefix(),
300                                 Qualifier->getAsIdentifier());
301}
302
303static bool HasDependentTypeAsBase(ASTContext &Context,
304                                   CXXRecordDecl *Record,
305                                   CanQualType T) {
306  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
307         E = Record->bases_end(); I != E; ++I) {
308    CanQualType BaseT = Context.getCanonicalType((*I).getType());
309    if (BaseT == T)
310      return true;
311
312    // We have to recurse here to cover some really bizarre cases.
313    // Obviously, we can only have the dependent type as an indirect
314    // base class through a dependent base class, and usually it's
315    // impossible to know which instantiation a dependent base class
316    // will have.  But!  If we're actually *inside* the dependent base
317    // class, then we know its instantiation and can therefore be
318    // reasonably expected to look into it.
319
320    // template <class T> class A : Base<T> {
321    //   class Inner : A<T> {
322    //     void foo() {
323    //       Base<T>::foo(); // statically known to be an implicit member
324    //                          reference
325    //     }
326    //   };
327    // };
328
329    CanQual<RecordType> RT = BaseT->getAs<RecordType>();
330
331    // Base might be a dependent member type, in which case we
332    // obviously can't look into it.
333    if (!RT) continue;
334
335    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(RT->getDecl());
336    if (BaseRecord->isDefinition() &&
337        HasDependentTypeAsBase(Context, BaseRecord, T))
338      return true;
339  }
340
341  return false;
342}
343
344/// Checks whether the given dependent nested-name specifier
345/// introduces an implicit member reference.  This is only true if the
346/// nested-name specifier names a type identical to one of the current
347/// instance method's context's (possibly indirect) base classes.
348static bool IsImplicitDependentMemberReference(Sema &SemaRef,
349                                               NestedNameSpecifier *Qualifier,
350                                               QualType &ThisType) {
351  // If the context isn't a C++ method, then it isn't an implicit
352  // member reference.
353  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext);
354  if (!MD || MD->isStatic())
355    return false;
356
357  ASTContext &Context = SemaRef.Context;
358
359  // We want to check whether the method's context is known to inherit
360  // from the type named by the nested name specifier.  The trivial
361  // case here is:
362  //   template <class T> class Base { ... };
363  //   template <class T> class Derived : Base<T> {
364  //     void foo() {
365  //       Base<T>::foo();
366  //     }
367  //   };
368
369  QualType QT = GetTypeForQualifier(Context, Qualifier);
370  CanQualType T = Context.getCanonicalType(QT);
371
372  // And now, just walk the non-dependent type hierarchy, trying to
373  // find the given type as a literal base class.
374  CXXRecordDecl *Record = cast<CXXRecordDecl>(MD->getParent());
375  if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T ||
376      HasDependentTypeAsBase(Context, Record, T)) {
377    ThisType = MD->getThisType(Context);
378    return true;
379  }
380
381  return false;
382}
383
384/// ActOnDependentIdExpression - Handle a dependent declaration name
385/// that was just parsed.
386Sema::OwningExprResult
387Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
388                                 DeclarationName Name,
389                                 SourceLocation NameLoc,
390                                 bool CheckForImplicitMember,
391                           const TemplateArgumentListInfo *TemplateArgs) {
392  NestedNameSpecifier *Qualifier
393    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
394
395  QualType ThisType;
396  if (CheckForImplicitMember &&
397      IsImplicitDependentMemberReference(*this, Qualifier, ThisType)) {
398    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
399
400    // Since the 'this' expression is synthesized, we don't need to
401    // perform the double-lookup check.
402    NamedDecl *FirstQualifierInScope = 0;
403
404    return Owned(CXXDependentScopeMemberExpr::Create(Context, This, true,
405                                                     /*Op*/ SourceLocation(),
406                                                     Qualifier, SS.getRange(),
407                                                     FirstQualifierInScope,
408                                                     Name, NameLoc,
409                                                     TemplateArgs));
410  }
411
412  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
413}
414
415Sema::OwningExprResult
416Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
417                                DeclarationName Name,
418                                SourceLocation NameLoc,
419                                const TemplateArgumentListInfo *TemplateArgs) {
420  return Owned(DependentScopeDeclRefExpr::Create(Context,
421               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
422                                                 SS.getRange(),
423                                                 Name, NameLoc,
424                                                 TemplateArgs));
425}
426
427/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
428/// that the template parameter 'PrevDecl' is being shadowed by a new
429/// declaration at location Loc. Returns true to indicate that this is
430/// an error, and false otherwise.
431bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
432  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
433
434  // Microsoft Visual C++ permits template parameters to be shadowed.
435  if (getLangOptions().Microsoft)
436    return false;
437
438  // C++ [temp.local]p4:
439  //   A template-parameter shall not be redeclared within its
440  //   scope (including nested scopes).
441  Diag(Loc, diag::err_template_param_shadow)
442    << cast<NamedDecl>(PrevDecl)->getDeclName();
443  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
444  return true;
445}
446
447/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
448/// the parameter D to reference the templated declaration and return a pointer
449/// to the template declaration. Otherwise, do nothing to D and return null.
450TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
451  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
452    D = DeclPtrTy::make(Temp->getTemplatedDecl());
453    return Temp;
454  }
455  return 0;
456}
457
458static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
459                                            const ParsedTemplateArgument &Arg) {
460
461  switch (Arg.getKind()) {
462  case ParsedTemplateArgument::Type: {
463    DeclaratorInfo *DI;
464    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
465    if (!DI)
466      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
467    return TemplateArgumentLoc(TemplateArgument(T), DI);
468  }
469
470  case ParsedTemplateArgument::NonType: {
471    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
472    return TemplateArgumentLoc(TemplateArgument(E), E);
473  }
474
475  case ParsedTemplateArgument::Template: {
476    TemplateName Template
477      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
478    return TemplateArgumentLoc(TemplateArgument(Template),
479                               Arg.getScopeSpec().getRange(),
480                               Arg.getLocation());
481  }
482  }
483
484  llvm::llvm_unreachable("Unhandled parsed template argument");
485  return TemplateArgumentLoc();
486}
487
488/// \brief Translates template arguments as provided by the parser
489/// into template arguments used by semantic analysis.
490void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
491                                      TemplateArgumentListInfo &TemplateArgs) {
492 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
493   TemplateArgs.addArgument(translateTemplateArgument(*this,
494                                                      TemplateArgsIn[I]));
495}
496
497/// ActOnTypeParameter - Called when a C++ template type parameter
498/// (e.g., "typename T") has been parsed. Typename specifies whether
499/// the keyword "typename" was used to declare the type parameter
500/// (otherwise, "class" was used), and KeyLoc is the location of the
501/// "class" or "typename" keyword. ParamName is the name of the
502/// parameter (NULL indicates an unnamed template parameter) and
503/// ParamName is the location of the parameter name (if any).
504/// If the type parameter has a default argument, it will be added
505/// later via ActOnTypeParameterDefault.
506Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
507                                         SourceLocation EllipsisLoc,
508                                         SourceLocation KeyLoc,
509                                         IdentifierInfo *ParamName,
510                                         SourceLocation ParamNameLoc,
511                                         unsigned Depth, unsigned Position) {
512  assert(S->isTemplateParamScope() &&
513         "Template type parameter not in template parameter scope!");
514  bool Invalid = false;
515
516  if (ParamName) {
517    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
518    if (PrevDecl && PrevDecl->isTemplateParameter())
519      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
520                                                           PrevDecl);
521  }
522
523  SourceLocation Loc = ParamNameLoc;
524  if (!ParamName)
525    Loc = KeyLoc;
526
527  TemplateTypeParmDecl *Param
528    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
529                                   Depth, Position, ParamName, Typename,
530                                   Ellipsis);
531  if (Invalid)
532    Param->setInvalidDecl();
533
534  if (ParamName) {
535    // Add the template parameter into the current scope.
536    S->AddDecl(DeclPtrTy::make(Param));
537    IdResolver.AddDecl(Param);
538  }
539
540  return DeclPtrTy::make(Param);
541}
542
543/// ActOnTypeParameterDefault - Adds a default argument (the type
544/// Default) to the given template type parameter (TypeParam).
545void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
546                                     SourceLocation EqualLoc,
547                                     SourceLocation DefaultLoc,
548                                     TypeTy *DefaultT) {
549  TemplateTypeParmDecl *Parm
550    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
551
552  DeclaratorInfo *DefaultDInfo;
553  GetTypeFromParser(DefaultT, &DefaultDInfo);
554
555  assert(DefaultDInfo && "expected source information for type");
556
557  // C++0x [temp.param]p9:
558  // A default template-argument may be specified for any kind of
559  // template-parameter that is not a template parameter pack.
560  if (Parm->isParameterPack()) {
561    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
562    return;
563  }
564
565  // C++ [temp.param]p14:
566  //   A template-parameter shall not be used in its own default argument.
567  // FIXME: Implement this check! Needs a recursive walk over the types.
568
569  // Check the template argument itself.
570  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
571    Parm->setInvalidDecl();
572    return;
573  }
574
575  Parm->setDefaultArgument(DefaultDInfo, false);
576}
577
578/// \brief Check that the type of a non-type template parameter is
579/// well-formed.
580///
581/// \returns the (possibly-promoted) parameter type if valid;
582/// otherwise, produces a diagnostic and returns a NULL type.
583QualType
584Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
585  // C++ [temp.param]p4:
586  //
587  // A non-type template-parameter shall have one of the following
588  // (optionally cv-qualified) types:
589  //
590  //       -- integral or enumeration type,
591  if (T->isIntegralType() || T->isEnumeralType() ||
592      //   -- pointer to object or pointer to function,
593      (T->isPointerType() &&
594       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
595        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
596      //   -- reference to object or reference to function,
597      T->isReferenceType() ||
598      //   -- pointer to member.
599      T->isMemberPointerType() ||
600      // If T is a dependent type, we can't do the check now, so we
601      // assume that it is well-formed.
602      T->isDependentType())
603    return T;
604  // C++ [temp.param]p8:
605  //
606  //   A non-type template-parameter of type "array of T" or
607  //   "function returning T" is adjusted to be of type "pointer to
608  //   T" or "pointer to function returning T", respectively.
609  else if (T->isArrayType())
610    // FIXME: Keep the type prior to promotion?
611    return Context.getArrayDecayedType(T);
612  else if (T->isFunctionType())
613    // FIXME: Keep the type prior to promotion?
614    return Context.getPointerType(T);
615
616  Diag(Loc, diag::err_template_nontype_parm_bad_type)
617    << T;
618
619  return QualType();
620}
621
622/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
623/// template parameter (e.g., "int Size" in "template<int Size>
624/// class Array") has been parsed. S is the current scope and D is
625/// the parsed declarator.
626Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
627                                                    unsigned Depth,
628                                                    unsigned Position) {
629  DeclaratorInfo *DInfo = 0;
630  QualType T = GetTypeForDeclarator(D, S, &DInfo);
631
632  assert(S->isTemplateParamScope() &&
633         "Non-type template parameter not in template parameter scope!");
634  bool Invalid = false;
635
636  IdentifierInfo *ParamName = D.getIdentifier();
637  if (ParamName) {
638    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
639    if (PrevDecl && PrevDecl->isTemplateParameter())
640      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
641                                                           PrevDecl);
642  }
643
644  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
645  if (T.isNull()) {
646    T = Context.IntTy; // Recover with an 'int' type.
647    Invalid = true;
648  }
649
650  NonTypeTemplateParmDecl *Param
651    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
652                                      Depth, Position, ParamName, T, DInfo);
653  if (Invalid)
654    Param->setInvalidDecl();
655
656  if (D.getIdentifier()) {
657    // Add the template parameter into the current scope.
658    S->AddDecl(DeclPtrTy::make(Param));
659    IdResolver.AddDecl(Param);
660  }
661  return DeclPtrTy::make(Param);
662}
663
664/// \brief Adds a default argument to the given non-type template
665/// parameter.
666void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
667                                                SourceLocation EqualLoc,
668                                                ExprArg DefaultE) {
669  NonTypeTemplateParmDecl *TemplateParm
670    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
671  Expr *Default = static_cast<Expr *>(DefaultE.get());
672
673  // C++ [temp.param]p14:
674  //   A template-parameter shall not be used in its own default argument.
675  // FIXME: Implement this check! Needs a recursive walk over the types.
676
677  // Check the well-formedness of the default template argument.
678  TemplateArgument Converted;
679  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
680                            Converted)) {
681    TemplateParm->setInvalidDecl();
682    return;
683  }
684
685  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
686}
687
688
689/// ActOnTemplateTemplateParameter - Called when a C++ template template
690/// parameter (e.g. T in template <template <typename> class T> class array)
691/// has been parsed. S is the current scope.
692Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
693                                                     SourceLocation TmpLoc,
694                                                     TemplateParamsTy *Params,
695                                                     IdentifierInfo *Name,
696                                                     SourceLocation NameLoc,
697                                                     unsigned Depth,
698                                                     unsigned Position) {
699  assert(S->isTemplateParamScope() &&
700         "Template template parameter not in template parameter scope!");
701
702  // Construct the parameter object.
703  TemplateTemplateParmDecl *Param =
704    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
705                                     Position, Name,
706                                     (TemplateParameterList*)Params);
707
708  // Make sure the parameter is valid.
709  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
710  // do anything yet. However, if the template parameter list or (eventual)
711  // default value is ever invalidated, that will propagate here.
712  bool Invalid = false;
713  if (Invalid) {
714    Param->setInvalidDecl();
715  }
716
717  // If the tt-param has a name, then link the identifier into the scope
718  // and lookup mechanisms.
719  if (Name) {
720    S->AddDecl(DeclPtrTy::make(Param));
721    IdResolver.AddDecl(Param);
722  }
723
724  return DeclPtrTy::make(Param);
725}
726
727/// \brief Adds a default argument to the given template template
728/// parameter.
729void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
730                                                 SourceLocation EqualLoc,
731                                        const ParsedTemplateArgument &Default) {
732  TemplateTemplateParmDecl *TemplateParm
733    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
734
735  // C++ [temp.param]p14:
736  //   A template-parameter shall not be used in its own default argument.
737  // FIXME: Implement this check! Needs a recursive walk over the types.
738
739  // Check only that we have a template template argument. We don't want to
740  // try to check well-formedness now, because our template template parameter
741  // might have dependent types in its template parameters, which we wouldn't
742  // be able to match now.
743  //
744  // If none of the template template parameter's template arguments mention
745  // other template parameters, we could actually perform more checking here.
746  // However, it isn't worth doing.
747  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
748  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
749    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
750      << DefaultArg.getSourceRange();
751    return;
752  }
753
754  TemplateParm->setDefaultArgument(DefaultArg);
755}
756
757/// ActOnTemplateParameterList - Builds a TemplateParameterList that
758/// contains the template parameters in Params/NumParams.
759Sema::TemplateParamsTy *
760Sema::ActOnTemplateParameterList(unsigned Depth,
761                                 SourceLocation ExportLoc,
762                                 SourceLocation TemplateLoc,
763                                 SourceLocation LAngleLoc,
764                                 DeclPtrTy *Params, unsigned NumParams,
765                                 SourceLocation RAngleLoc) {
766  if (ExportLoc.isValid())
767    Diag(ExportLoc, diag::note_template_export_unsupported);
768
769  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
770                                       (NamedDecl**)Params, NumParams,
771                                       RAngleLoc);
772}
773
774Sema::DeclResult
775Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
776                         SourceLocation KWLoc, const CXXScopeSpec &SS,
777                         IdentifierInfo *Name, SourceLocation NameLoc,
778                         AttributeList *Attr,
779                         TemplateParameterList *TemplateParams,
780                         AccessSpecifier AS) {
781  assert(TemplateParams && TemplateParams->size() > 0 &&
782         "No template parameters");
783  assert(TUK != TUK_Reference && "Can only declare or define class templates");
784  bool Invalid = false;
785
786  // Check that we can declare a template here.
787  if (CheckTemplateDeclScope(S, TemplateParams))
788    return true;
789
790  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
791  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
792
793  // There is no such thing as an unnamed class template.
794  if (!Name) {
795    Diag(KWLoc, diag::err_template_unnamed_class);
796    return true;
797  }
798
799  // Find any previous declaration with this name.
800  DeclContext *SemanticContext;
801  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
802                        ForRedeclaration);
803  if (SS.isNotEmpty() && !SS.isInvalid()) {
804    if (RequireCompleteDeclContext(SS))
805      return true;
806
807    SemanticContext = computeDeclContext(SS, true);
808    if (!SemanticContext) {
809      // FIXME: Produce a reasonable diagnostic here
810      return true;
811    }
812
813    LookupQualifiedName(Previous, SemanticContext);
814  } else {
815    SemanticContext = CurContext;
816    LookupName(Previous, S);
817  }
818
819  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
820  NamedDecl *PrevDecl = 0;
821  if (Previous.begin() != Previous.end())
822    PrevDecl = *Previous.begin();
823
824  if (PrevDecl && TUK == TUK_Friend) {
825    // C++ [namespace.memdef]p3:
826    //   [...] When looking for a prior declaration of a class or a function
827    //   declared as a friend, and when the name of the friend class or
828    //   function is neither a qualified name nor a template-id, scopes outside
829    //   the innermost enclosing namespace scope are not considered.
830    DeclContext *OutermostContext = CurContext;
831    while (!OutermostContext->isFileContext())
832      OutermostContext = OutermostContext->getLookupParent();
833
834    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
835        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
836      SemanticContext = PrevDecl->getDeclContext();
837    } else {
838      // Declarations in outer scopes don't matter. However, the outermost
839      // context we computed is the semantic context for our new
840      // declaration.
841      PrevDecl = 0;
842      SemanticContext = OutermostContext;
843    }
844
845    if (CurContext->isDependentContext()) {
846      // If this is a dependent context, we don't want to link the friend
847      // class template to the template in scope, because that would perform
848      // checking of the template parameter lists that can't be performed
849      // until the outer context is instantiated.
850      PrevDecl = 0;
851    }
852  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
853    PrevDecl = 0;
854
855  // If there is a previous declaration with the same name, check
856  // whether this is a valid redeclaration.
857  ClassTemplateDecl *PrevClassTemplate
858    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
859
860  // We may have found the injected-class-name of a class template,
861  // class template partial specialization, or class template specialization.
862  // In these cases, grab the template that is being defined or specialized.
863  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
864      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
865    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
866    PrevClassTemplate
867      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
868    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
869      PrevClassTemplate
870        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
871            ->getSpecializedTemplate();
872    }
873  }
874
875  if (PrevClassTemplate) {
876    // Ensure that the template parameter lists are compatible.
877    if (!TemplateParameterListsAreEqual(TemplateParams,
878                                   PrevClassTemplate->getTemplateParameters(),
879                                        /*Complain=*/true,
880                                        TPL_TemplateMatch))
881      return true;
882
883    // C++ [temp.class]p4:
884    //   In a redeclaration, partial specialization, explicit
885    //   specialization or explicit instantiation of a class template,
886    //   the class-key shall agree in kind with the original class
887    //   template declaration (7.1.5.3).
888    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
889    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
890      Diag(KWLoc, diag::err_use_with_wrong_tag)
891        << Name
892        << CodeModificationHint::CreateReplacement(KWLoc,
893                            PrevRecordDecl->getKindName());
894      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
895      Kind = PrevRecordDecl->getTagKind();
896    }
897
898    // Check for redefinition of this class template.
899    if (TUK == TUK_Definition) {
900      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
901        Diag(NameLoc, diag::err_redefinition) << Name;
902        Diag(Def->getLocation(), diag::note_previous_definition);
903        // FIXME: Would it make sense to try to "forget" the previous
904        // definition, as part of error recovery?
905        return true;
906      }
907    }
908  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
909    // Maybe we will complain about the shadowed template parameter.
910    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
911    // Just pretend that we didn't see the previous declaration.
912    PrevDecl = 0;
913  } else if (PrevDecl) {
914    // C++ [temp]p5:
915    //   A class template shall not have the same name as any other
916    //   template, class, function, object, enumeration, enumerator,
917    //   namespace, or type in the same scope (3.3), except as specified
918    //   in (14.5.4).
919    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
920    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
921    return true;
922  }
923
924  // Check the template parameter list of this declaration, possibly
925  // merging in the template parameter list from the previous class
926  // template declaration.
927  if (CheckTemplateParameterList(TemplateParams,
928            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
929    Invalid = true;
930
931  // FIXME: If we had a scope specifier, we better have a previous template
932  // declaration!
933
934  CXXRecordDecl *NewClass =
935    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
936                          PrevClassTemplate?
937                            PrevClassTemplate->getTemplatedDecl() : 0,
938                          /*DelayTypeCreation=*/true);
939
940  ClassTemplateDecl *NewTemplate
941    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
942                                DeclarationName(Name), TemplateParams,
943                                NewClass, PrevClassTemplate);
944  NewClass->setDescribedClassTemplate(NewTemplate);
945
946  // Build the type for the class template declaration now.
947  QualType T =
948    Context.getTypeDeclType(NewClass,
949                            PrevClassTemplate?
950                              PrevClassTemplate->getTemplatedDecl() : 0);
951  assert(T->isDependentType() && "Class template type is not dependent?");
952  (void)T;
953
954  // If we are providing an explicit specialization of a member that is a
955  // class template, make a note of that.
956  if (PrevClassTemplate &&
957      PrevClassTemplate->getInstantiatedFromMemberTemplate())
958    PrevClassTemplate->setMemberSpecialization();
959
960  // Set the access specifier.
961  if (!Invalid && TUK != TUK_Friend)
962    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
963
964  // Set the lexical context of these templates
965  NewClass->setLexicalDeclContext(CurContext);
966  NewTemplate->setLexicalDeclContext(CurContext);
967
968  if (TUK == TUK_Definition)
969    NewClass->startDefinition();
970
971  if (Attr)
972    ProcessDeclAttributeList(S, NewClass, Attr);
973
974  if (TUK != TUK_Friend)
975    PushOnScopeChains(NewTemplate, S);
976  else {
977    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
978      NewTemplate->setAccess(PrevClassTemplate->getAccess());
979      NewClass->setAccess(PrevClassTemplate->getAccess());
980    }
981
982    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
983                                       PrevClassTemplate != NULL);
984
985    // Friend templates are visible in fairly strange ways.
986    if (!CurContext->isDependentContext()) {
987      DeclContext *DC = SemanticContext->getLookupContext();
988      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
989      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
990        PushOnScopeChains(NewTemplate, EnclosingScope,
991                          /* AddToContext = */ false);
992    }
993
994    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
995                                            NewClass->getLocation(),
996                                            NewTemplate,
997                                    /*FIXME:*/NewClass->getLocation());
998    Friend->setAccess(AS_public);
999    CurContext->addDecl(Friend);
1000  }
1001
1002  if (Invalid) {
1003    NewTemplate->setInvalidDecl();
1004    NewClass->setInvalidDecl();
1005  }
1006  return DeclPtrTy::make(NewTemplate);
1007}
1008
1009/// \brief Checks the validity of a template parameter list, possibly
1010/// considering the template parameter list from a previous
1011/// declaration.
1012///
1013/// If an "old" template parameter list is provided, it must be
1014/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1015/// template parameter list.
1016///
1017/// \param NewParams Template parameter list for a new template
1018/// declaration. This template parameter list will be updated with any
1019/// default arguments that are carried through from the previous
1020/// template parameter list.
1021///
1022/// \param OldParams If provided, template parameter list from a
1023/// previous declaration of the same template. Default template
1024/// arguments will be merged from the old template parameter list to
1025/// the new template parameter list.
1026///
1027/// \returns true if an error occurred, false otherwise.
1028bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1029                                      TemplateParameterList *OldParams) {
1030  bool Invalid = false;
1031
1032  // C++ [temp.param]p10:
1033  //   The set of default template-arguments available for use with a
1034  //   template declaration or definition is obtained by merging the
1035  //   default arguments from the definition (if in scope) and all
1036  //   declarations in scope in the same way default function
1037  //   arguments are (8.3.6).
1038  bool SawDefaultArgument = false;
1039  SourceLocation PreviousDefaultArgLoc;
1040
1041  bool SawParameterPack = false;
1042  SourceLocation ParameterPackLoc;
1043
1044  // Dummy initialization to avoid warnings.
1045  TemplateParameterList::iterator OldParam = NewParams->end();
1046  if (OldParams)
1047    OldParam = OldParams->begin();
1048
1049  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1050                                    NewParamEnd = NewParams->end();
1051       NewParam != NewParamEnd; ++NewParam) {
1052    // Variables used to diagnose redundant default arguments
1053    bool RedundantDefaultArg = false;
1054    SourceLocation OldDefaultLoc;
1055    SourceLocation NewDefaultLoc;
1056
1057    // Variables used to diagnose missing default arguments
1058    bool MissingDefaultArg = false;
1059
1060    // C++0x [temp.param]p11:
1061    // If a template parameter of a class template is a template parameter pack,
1062    // it must be the last template parameter.
1063    if (SawParameterPack) {
1064      Diag(ParameterPackLoc,
1065           diag::err_template_param_pack_must_be_last_template_parameter);
1066      Invalid = true;
1067    }
1068
1069    // Merge default arguments for template type parameters.
1070    if (TemplateTypeParmDecl *NewTypeParm
1071          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1072      TemplateTypeParmDecl *OldTypeParm
1073          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1074
1075      if (NewTypeParm->isParameterPack()) {
1076        assert(!NewTypeParm->hasDefaultArgument() &&
1077               "Parameter packs can't have a default argument!");
1078        SawParameterPack = true;
1079        ParameterPackLoc = NewTypeParm->getLocation();
1080      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1081                 NewTypeParm->hasDefaultArgument()) {
1082        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1083        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1084        SawDefaultArgument = true;
1085        RedundantDefaultArg = true;
1086        PreviousDefaultArgLoc = NewDefaultLoc;
1087      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1088        // Merge the default argument from the old declaration to the
1089        // new declaration.
1090        SawDefaultArgument = true;
1091        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1092                                        true);
1093        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1094      } else if (NewTypeParm->hasDefaultArgument()) {
1095        SawDefaultArgument = true;
1096        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1097      } else if (SawDefaultArgument)
1098        MissingDefaultArg = true;
1099    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1100               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1101      // Merge default arguments for non-type template parameters
1102      NonTypeTemplateParmDecl *OldNonTypeParm
1103        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1104      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1105          NewNonTypeParm->hasDefaultArgument()) {
1106        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1107        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1108        SawDefaultArgument = true;
1109        RedundantDefaultArg = true;
1110        PreviousDefaultArgLoc = NewDefaultLoc;
1111      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1112        // Merge the default argument from the old declaration to the
1113        // new declaration.
1114        SawDefaultArgument = true;
1115        // FIXME: We need to create a new kind of "default argument"
1116        // expression that points to a previous template template
1117        // parameter.
1118        NewNonTypeParm->setDefaultArgument(
1119                                        OldNonTypeParm->getDefaultArgument());
1120        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1121      } else if (NewNonTypeParm->hasDefaultArgument()) {
1122        SawDefaultArgument = true;
1123        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1124      } else if (SawDefaultArgument)
1125        MissingDefaultArg = true;
1126    } else {
1127    // Merge default arguments for template template parameters
1128      TemplateTemplateParmDecl *NewTemplateParm
1129        = cast<TemplateTemplateParmDecl>(*NewParam);
1130      TemplateTemplateParmDecl *OldTemplateParm
1131        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1132      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1133          NewTemplateParm->hasDefaultArgument()) {
1134        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1135        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1136        SawDefaultArgument = true;
1137        RedundantDefaultArg = true;
1138        PreviousDefaultArgLoc = NewDefaultLoc;
1139      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1140        // Merge the default argument from the old declaration to the
1141        // new declaration.
1142        SawDefaultArgument = true;
1143        // FIXME: We need to create a new kind of "default argument" expression
1144        // that points to a previous template template parameter.
1145        NewTemplateParm->setDefaultArgument(
1146                                        OldTemplateParm->getDefaultArgument());
1147        PreviousDefaultArgLoc
1148          = OldTemplateParm->getDefaultArgument().getLocation();
1149      } else if (NewTemplateParm->hasDefaultArgument()) {
1150        SawDefaultArgument = true;
1151        PreviousDefaultArgLoc
1152          = NewTemplateParm->getDefaultArgument().getLocation();
1153      } else if (SawDefaultArgument)
1154        MissingDefaultArg = true;
1155    }
1156
1157    if (RedundantDefaultArg) {
1158      // C++ [temp.param]p12:
1159      //   A template-parameter shall not be given default arguments
1160      //   by two different declarations in the same scope.
1161      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1162      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1163      Invalid = true;
1164    } else if (MissingDefaultArg) {
1165      // C++ [temp.param]p11:
1166      //   If a template-parameter has a default template-argument,
1167      //   all subsequent template-parameters shall have a default
1168      //   template-argument supplied.
1169      Diag((*NewParam)->getLocation(),
1170           diag::err_template_param_default_arg_missing);
1171      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1172      Invalid = true;
1173    }
1174
1175    // If we have an old template parameter list that we're merging
1176    // in, move on to the next parameter.
1177    if (OldParams)
1178      ++OldParam;
1179  }
1180
1181  return Invalid;
1182}
1183
1184/// \brief Match the given template parameter lists to the given scope
1185/// specifier, returning the template parameter list that applies to the
1186/// name.
1187///
1188/// \param DeclStartLoc the start of the declaration that has a scope
1189/// specifier or a template parameter list.
1190///
1191/// \param SS the scope specifier that will be matched to the given template
1192/// parameter lists. This scope specifier precedes a qualified name that is
1193/// being declared.
1194///
1195/// \param ParamLists the template parameter lists, from the outermost to the
1196/// innermost template parameter lists.
1197///
1198/// \param NumParamLists the number of template parameter lists in ParamLists.
1199///
1200/// \param IsExplicitSpecialization will be set true if the entity being
1201/// declared is an explicit specialization, false otherwise.
1202///
1203/// \returns the template parameter list, if any, that corresponds to the
1204/// name that is preceded by the scope specifier @p SS. This template
1205/// parameter list may be have template parameters (if we're declaring a
1206/// template) or may have no template parameters (if we're declaring a
1207/// template specialization), or may be NULL (if we were's declaring isn't
1208/// itself a template).
1209TemplateParameterList *
1210Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1211                                              const CXXScopeSpec &SS,
1212                                          TemplateParameterList **ParamLists,
1213                                              unsigned NumParamLists,
1214                                              bool &IsExplicitSpecialization) {
1215  IsExplicitSpecialization = false;
1216
1217  // Find the template-ids that occur within the nested-name-specifier. These
1218  // template-ids will match up with the template parameter lists.
1219  llvm::SmallVector<const TemplateSpecializationType *, 4>
1220    TemplateIdsInSpecifier;
1221  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1222    ExplicitSpecializationsInSpecifier;
1223  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1224       NNS; NNS = NNS->getPrefix()) {
1225    if (const TemplateSpecializationType *SpecType
1226          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1227      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1228      if (!Template)
1229        continue; // FIXME: should this be an error? probably...
1230
1231      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1232        ClassTemplateSpecializationDecl *SpecDecl
1233          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1234        // If the nested name specifier refers to an explicit specialization,
1235        // we don't need a template<> header.
1236        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1237          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1238          continue;
1239        }
1240      }
1241
1242      TemplateIdsInSpecifier.push_back(SpecType);
1243    }
1244  }
1245
1246  // Reverse the list of template-ids in the scope specifier, so that we can
1247  // more easily match up the template-ids and the template parameter lists.
1248  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1249
1250  SourceLocation FirstTemplateLoc = DeclStartLoc;
1251  if (NumParamLists)
1252    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1253
1254  // Match the template-ids found in the specifier to the template parameter
1255  // lists.
1256  unsigned Idx = 0;
1257  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1258       Idx != NumTemplateIds; ++Idx) {
1259    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1260    bool DependentTemplateId = TemplateId->isDependentType();
1261    if (Idx >= NumParamLists) {
1262      // We have a template-id without a corresponding template parameter
1263      // list.
1264      if (DependentTemplateId) {
1265        // FIXME: the location information here isn't great.
1266        Diag(SS.getRange().getBegin(),
1267             diag::err_template_spec_needs_template_parameters)
1268          << TemplateId
1269          << SS.getRange();
1270      } else {
1271        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1272          << SS.getRange()
1273          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1274                                                   "template<> ");
1275        IsExplicitSpecialization = true;
1276      }
1277      return 0;
1278    }
1279
1280    // Check the template parameter list against its corresponding template-id.
1281    if (DependentTemplateId) {
1282      TemplateDecl *Template
1283        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1284
1285      if (ClassTemplateDecl *ClassTemplate
1286            = dyn_cast<ClassTemplateDecl>(Template)) {
1287        TemplateParameterList *ExpectedTemplateParams = 0;
1288        // Is this template-id naming the primary template?
1289        if (Context.hasSameType(TemplateId,
1290                             ClassTemplate->getInjectedClassNameType(Context)))
1291          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1292        // ... or a partial specialization?
1293        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1294                   = ClassTemplate->findPartialSpecialization(TemplateId))
1295          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1296
1297        if (ExpectedTemplateParams)
1298          TemplateParameterListsAreEqual(ParamLists[Idx],
1299                                         ExpectedTemplateParams,
1300                                         true, TPL_TemplateMatch);
1301      }
1302    } else if (ParamLists[Idx]->size() > 0)
1303      Diag(ParamLists[Idx]->getTemplateLoc(),
1304           diag::err_template_param_list_matches_nontemplate)
1305        << TemplateId
1306        << ParamLists[Idx]->getSourceRange();
1307    else
1308      IsExplicitSpecialization = true;
1309  }
1310
1311  // If there were at least as many template-ids as there were template
1312  // parameter lists, then there are no template parameter lists remaining for
1313  // the declaration itself.
1314  if (Idx >= NumParamLists)
1315    return 0;
1316
1317  // If there were too many template parameter lists, complain about that now.
1318  if (Idx != NumParamLists - 1) {
1319    while (Idx < NumParamLists - 1) {
1320      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1321      Diag(ParamLists[Idx]->getTemplateLoc(),
1322           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1323                               : diag::err_template_spec_extra_headers)
1324        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1325                       ParamLists[Idx]->getRAngleLoc());
1326
1327      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1328        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1329             diag::note_explicit_template_spec_does_not_need_header)
1330          << ExplicitSpecializationsInSpecifier.back();
1331        ExplicitSpecializationsInSpecifier.pop_back();
1332      }
1333
1334      ++Idx;
1335    }
1336  }
1337
1338  // Return the last template parameter list, which corresponds to the
1339  // entity being declared.
1340  return ParamLists[NumParamLists - 1];
1341}
1342
1343QualType Sema::CheckTemplateIdType(TemplateName Name,
1344                                   SourceLocation TemplateLoc,
1345                              const TemplateArgumentListInfo &TemplateArgs) {
1346  TemplateDecl *Template = Name.getAsTemplateDecl();
1347  if (!Template) {
1348    // The template name does not resolve to a template, so we just
1349    // build a dependent template-id type.
1350    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1351  }
1352
1353  // Check that the template argument list is well-formed for this
1354  // template.
1355  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1356                                        TemplateArgs.size());
1357  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1358                                false, Converted))
1359    return QualType();
1360
1361  assert((Converted.structuredSize() ==
1362            Template->getTemplateParameters()->size()) &&
1363         "Converted template argument list is too short!");
1364
1365  QualType CanonType;
1366
1367  if (Name.isDependent() ||
1368      TemplateSpecializationType::anyDependentTemplateArguments(
1369                                                      TemplateArgs)) {
1370    // This class template specialization is a dependent
1371    // type. Therefore, its canonical type is another class template
1372    // specialization type that contains all of the converted
1373    // arguments in canonical form. This ensures that, e.g., A<T> and
1374    // A<T, T> have identical types when A is declared as:
1375    //
1376    //   template<typename T, typename U = T> struct A;
1377    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1378    CanonType = Context.getTemplateSpecializationType(CanonName,
1379                                                   Converted.getFlatArguments(),
1380                                                   Converted.flatSize());
1381
1382    // FIXME: CanonType is not actually the canonical type, and unfortunately
1383    // it is a TemplateSpecializationType that we will never use again.
1384    // In the future, we need to teach getTemplateSpecializationType to only
1385    // build the canonical type and return that to us.
1386    CanonType = Context.getCanonicalType(CanonType);
1387  } else if (ClassTemplateDecl *ClassTemplate
1388               = dyn_cast<ClassTemplateDecl>(Template)) {
1389    // Find the class template specialization declaration that
1390    // corresponds to these arguments.
1391    llvm::FoldingSetNodeID ID;
1392    ClassTemplateSpecializationDecl::Profile(ID,
1393                                             Converted.getFlatArguments(),
1394                                             Converted.flatSize(),
1395                                             Context);
1396    void *InsertPos = 0;
1397    ClassTemplateSpecializationDecl *Decl
1398      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1399    if (!Decl) {
1400      // This is the first time we have referenced this class template
1401      // specialization. Create the canonical declaration and add it to
1402      // the set of specializations.
1403      Decl = ClassTemplateSpecializationDecl::Create(Context,
1404                                    ClassTemplate->getDeclContext(),
1405                                    ClassTemplate->getLocation(),
1406                                    ClassTemplate,
1407                                    Converted, 0);
1408      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1409      Decl->setLexicalDeclContext(CurContext);
1410    }
1411
1412    CanonType = Context.getTypeDeclType(Decl);
1413  }
1414
1415  // Build the fully-sugared type for this class template
1416  // specialization, which refers back to the class template
1417  // specialization we created or found.
1418  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1419}
1420
1421Action::TypeResult
1422Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1423                          SourceLocation LAngleLoc,
1424                          ASTTemplateArgsPtr TemplateArgsIn,
1425                          SourceLocation RAngleLoc) {
1426  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1427
1428  // Translate the parser's template argument list in our AST format.
1429  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1430  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1431
1432  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1433  TemplateArgsIn.release();
1434
1435  if (Result.isNull())
1436    return true;
1437
1438  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1439  TemplateSpecializationTypeLoc TL
1440    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1441  TL.setTemplateNameLoc(TemplateLoc);
1442  TL.setLAngleLoc(LAngleLoc);
1443  TL.setRAngleLoc(RAngleLoc);
1444  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1445    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1446
1447  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1448}
1449
1450Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1451                                              TagUseKind TUK,
1452                                              DeclSpec::TST TagSpec,
1453                                              SourceLocation TagLoc) {
1454  if (TypeResult.isInvalid())
1455    return Sema::TypeResult();
1456
1457  // FIXME: preserve source info, ideally without copying the DI.
1458  DeclaratorInfo *DI;
1459  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1460
1461  // Verify the tag specifier.
1462  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1463
1464  if (const RecordType *RT = Type->getAs<RecordType>()) {
1465    RecordDecl *D = RT->getDecl();
1466
1467    IdentifierInfo *Id = D->getIdentifier();
1468    assert(Id && "templated class must have an identifier");
1469
1470    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1471      Diag(TagLoc, diag::err_use_with_wrong_tag)
1472        << Type
1473        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1474                                                   D->getKindName());
1475      Diag(D->getLocation(), diag::note_previous_use);
1476    }
1477  }
1478
1479  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1480
1481  return ElabType.getAsOpaquePtr();
1482}
1483
1484Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1485                                                 LookupResult &R,
1486                                                 bool RequiresADL,
1487                                 const TemplateArgumentListInfo &TemplateArgs) {
1488  // FIXME: Can we do any checking at this point? I guess we could check the
1489  // template arguments that we have against the template name, if the template
1490  // name refers to a single template. That's not a terribly common case,
1491  // though.
1492
1493  // These should be filtered out by our callers.
1494  assert(!R.empty() && "empty lookup results when building templateid");
1495  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1496
1497  NestedNameSpecifier *Qualifier = 0;
1498  SourceRange QualifierRange;
1499  if (SS.isSet()) {
1500    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1501    QualifierRange = SS.getRange();
1502  }
1503
1504  bool Dependent
1505    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1506                                              &TemplateArgs);
1507  UnresolvedLookupExpr *ULE
1508    = UnresolvedLookupExpr::Create(Context, Dependent,
1509                                   Qualifier, QualifierRange,
1510                                   R.getLookupName(), R.getNameLoc(),
1511                                   RequiresADL, TemplateArgs);
1512  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1513    ULE->addDecl(*I);
1514
1515  return Owned(ULE);
1516}
1517
1518// We actually only call this from template instantiation.
1519Sema::OwningExprResult
1520Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1521                                   DeclarationName Name,
1522                                   SourceLocation NameLoc,
1523                             const TemplateArgumentListInfo &TemplateArgs) {
1524  DeclContext *DC;
1525  if (!(DC = computeDeclContext(SS, false)) ||
1526      DC->isDependentContext() ||
1527      RequireCompleteDeclContext(SS))
1528    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1529
1530  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1531  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1532
1533  if (R.isAmbiguous())
1534    return ExprError();
1535
1536  if (R.empty()) {
1537    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1538      << Name << SS.getRange();
1539    return ExprError();
1540  }
1541
1542  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1543    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1544      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1545    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1546    return ExprError();
1547  }
1548
1549  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1550}
1551
1552/// \brief Form a dependent template name.
1553///
1554/// This action forms a dependent template name given the template
1555/// name and its (presumably dependent) scope specifier. For
1556/// example, given "MetaFun::template apply", the scope specifier \p
1557/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1558/// of the "template" keyword, and "apply" is the \p Name.
1559Sema::TemplateTy
1560Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1561                                 const CXXScopeSpec &SS,
1562                                 UnqualifiedId &Name,
1563                                 TypeTy *ObjectType,
1564                                 bool EnteringContext) {
1565  if ((ObjectType &&
1566       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1567      (SS.isSet() && computeDeclContext(SS, EnteringContext))) {
1568    // C++0x [temp.names]p5:
1569    //   If a name prefixed by the keyword template is not the name of
1570    //   a template, the program is ill-formed. [Note: the keyword
1571    //   template may not be applied to non-template members of class
1572    //   templates. -end note ] [ Note: as is the case with the
1573    //   typename prefix, the template prefix is allowed in cases
1574    //   where it is not strictly necessary; i.e., when the
1575    //   nested-name-specifier or the expression on the left of the ->
1576    //   or . is not dependent on a template-parameter, or the use
1577    //   does not appear in the scope of a template. -end note]
1578    //
1579    // Note: C++03 was more strict here, because it banned the use of
1580    // the "template" keyword prior to a template-name that was not a
1581    // dependent name. C++ DR468 relaxed this requirement (the
1582    // "template" keyword is now permitted). We follow the C++0x
1583    // rules, even in C++03 mode, retroactively applying the DR.
1584    TemplateTy Template;
1585    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1586                                          EnteringContext, Template);
1587    if (TNK == TNK_Non_template) {
1588      Diag(Name.getSourceRange().getBegin(),
1589           diag::err_template_kw_refers_to_non_template)
1590        << GetNameFromUnqualifiedId(Name)
1591        << Name.getSourceRange();
1592      return TemplateTy();
1593    }
1594
1595    return Template;
1596  }
1597
1598  NestedNameSpecifier *Qualifier
1599    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1600
1601  switch (Name.getKind()) {
1602  case UnqualifiedId::IK_Identifier:
1603    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1604                                                             Name.Identifier));
1605
1606  case UnqualifiedId::IK_OperatorFunctionId:
1607    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1608                                             Name.OperatorFunctionId.Operator));
1609
1610  default:
1611    break;
1612  }
1613
1614  Diag(Name.getSourceRange().getBegin(),
1615       diag::err_template_kw_refers_to_non_template)
1616    << GetNameFromUnqualifiedId(Name)
1617    << Name.getSourceRange();
1618  return TemplateTy();
1619}
1620
1621bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1622                                     const TemplateArgumentLoc &AL,
1623                                     TemplateArgumentListBuilder &Converted) {
1624  const TemplateArgument &Arg = AL.getArgument();
1625
1626  // Check template type parameter.
1627  if (Arg.getKind() != TemplateArgument::Type) {
1628    // C++ [temp.arg.type]p1:
1629    //   A template-argument for a template-parameter which is a
1630    //   type shall be a type-id.
1631
1632    // We have a template type parameter but the template argument
1633    // is not a type.
1634    SourceRange SR = AL.getSourceRange();
1635    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1636    Diag(Param->getLocation(), diag::note_template_param_here);
1637
1638    return true;
1639  }
1640
1641  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1642    return true;
1643
1644  // Add the converted template type argument.
1645  Converted.Append(
1646                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1647  return false;
1648}
1649
1650/// \brief Substitute template arguments into the default template argument for
1651/// the given template type parameter.
1652///
1653/// \param SemaRef the semantic analysis object for which we are performing
1654/// the substitution.
1655///
1656/// \param Template the template that we are synthesizing template arguments
1657/// for.
1658///
1659/// \param TemplateLoc the location of the template name that started the
1660/// template-id we are checking.
1661///
1662/// \param RAngleLoc the location of the right angle bracket ('>') that
1663/// terminates the template-id.
1664///
1665/// \param Param the template template parameter whose default we are
1666/// substituting into.
1667///
1668/// \param Converted the list of template arguments provided for template
1669/// parameters that precede \p Param in the template parameter list.
1670///
1671/// \returns the substituted template argument, or NULL if an error occurred.
1672static DeclaratorInfo *
1673SubstDefaultTemplateArgument(Sema &SemaRef,
1674                             TemplateDecl *Template,
1675                             SourceLocation TemplateLoc,
1676                             SourceLocation RAngleLoc,
1677                             TemplateTypeParmDecl *Param,
1678                             TemplateArgumentListBuilder &Converted) {
1679  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
1680
1681  // If the argument type is dependent, instantiate it now based
1682  // on the previously-computed template arguments.
1683  if (ArgType->getType()->isDependentType()) {
1684    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1685                                      /*TakeArgs=*/false);
1686
1687    MultiLevelTemplateArgumentList AllTemplateArgs
1688      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1689
1690    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1691                                     Template, Converted.getFlatArguments(),
1692                                     Converted.flatSize(),
1693                                     SourceRange(TemplateLoc, RAngleLoc));
1694
1695    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1696                                Param->getDefaultArgumentLoc(),
1697                                Param->getDeclName());
1698  }
1699
1700  return ArgType;
1701}
1702
1703/// \brief Substitute template arguments into the default template argument for
1704/// the given non-type template parameter.
1705///
1706/// \param SemaRef the semantic analysis object for which we are performing
1707/// the substitution.
1708///
1709/// \param Template the template that we are synthesizing template arguments
1710/// for.
1711///
1712/// \param TemplateLoc the location of the template name that started the
1713/// template-id we are checking.
1714///
1715/// \param RAngleLoc the location of the right angle bracket ('>') that
1716/// terminates the template-id.
1717///
1718/// \param Param the non-type template parameter whose default we are
1719/// substituting into.
1720///
1721/// \param Converted the list of template arguments provided for template
1722/// parameters that precede \p Param in the template parameter list.
1723///
1724/// \returns the substituted template argument, or NULL if an error occurred.
1725static Sema::OwningExprResult
1726SubstDefaultTemplateArgument(Sema &SemaRef,
1727                             TemplateDecl *Template,
1728                             SourceLocation TemplateLoc,
1729                             SourceLocation RAngleLoc,
1730                             NonTypeTemplateParmDecl *Param,
1731                             TemplateArgumentListBuilder &Converted) {
1732  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1733                                    /*TakeArgs=*/false);
1734
1735  MultiLevelTemplateArgumentList AllTemplateArgs
1736    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1737
1738  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1739                                   Template, Converted.getFlatArguments(),
1740                                   Converted.flatSize(),
1741                                   SourceRange(TemplateLoc, RAngleLoc));
1742
1743  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1744}
1745
1746/// \brief Substitute template arguments into the default template argument for
1747/// the given template template parameter.
1748///
1749/// \param SemaRef the semantic analysis object for which we are performing
1750/// the substitution.
1751///
1752/// \param Template the template that we are synthesizing template arguments
1753/// for.
1754///
1755/// \param TemplateLoc the location of the template name that started the
1756/// template-id we are checking.
1757///
1758/// \param RAngleLoc the location of the right angle bracket ('>') that
1759/// terminates the template-id.
1760///
1761/// \param Param the template template parameter whose default we are
1762/// substituting into.
1763///
1764/// \param Converted the list of template arguments provided for template
1765/// parameters that precede \p Param in the template parameter list.
1766///
1767/// \returns the substituted template argument, or NULL if an error occurred.
1768static TemplateName
1769SubstDefaultTemplateArgument(Sema &SemaRef,
1770                             TemplateDecl *Template,
1771                             SourceLocation TemplateLoc,
1772                             SourceLocation RAngleLoc,
1773                             TemplateTemplateParmDecl *Param,
1774                             TemplateArgumentListBuilder &Converted) {
1775  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1776                                    /*TakeArgs=*/false);
1777
1778  MultiLevelTemplateArgumentList AllTemplateArgs
1779    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1780
1781  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1782                                   Template, Converted.getFlatArguments(),
1783                                   Converted.flatSize(),
1784                                   SourceRange(TemplateLoc, RAngleLoc));
1785
1786  return SemaRef.SubstTemplateName(
1787                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1788                              Param->getDefaultArgument().getTemplateNameLoc(),
1789                                   AllTemplateArgs);
1790}
1791
1792/// \brief Check that the given template argument corresponds to the given
1793/// template parameter.
1794bool Sema::CheckTemplateArgument(NamedDecl *Param,
1795                                 const TemplateArgumentLoc &Arg,
1796                                 TemplateDecl *Template,
1797                                 SourceLocation TemplateLoc,
1798                                 SourceLocation RAngleLoc,
1799                                 TemplateArgumentListBuilder &Converted) {
1800  // Check template type parameters.
1801  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1802    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1803
1804  // Check non-type template parameters.
1805  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1806    // Do substitution on the type of the non-type template parameter
1807    // with the template arguments we've seen thus far.
1808    QualType NTTPType = NTTP->getType();
1809    if (NTTPType->isDependentType()) {
1810      // Do substitution on the type of the non-type template parameter.
1811      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1812                                 NTTP, Converted.getFlatArguments(),
1813                                 Converted.flatSize(),
1814                                 SourceRange(TemplateLoc, RAngleLoc));
1815
1816      TemplateArgumentList TemplateArgs(Context, Converted,
1817                                        /*TakeArgs=*/false);
1818      NTTPType = SubstType(NTTPType,
1819                           MultiLevelTemplateArgumentList(TemplateArgs),
1820                           NTTP->getLocation(),
1821                           NTTP->getDeclName());
1822      // If that worked, check the non-type template parameter type
1823      // for validity.
1824      if (!NTTPType.isNull())
1825        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1826                                                     NTTP->getLocation());
1827      if (NTTPType.isNull())
1828        return true;
1829    }
1830
1831    switch (Arg.getArgument().getKind()) {
1832    case TemplateArgument::Null:
1833      assert(false && "Should never see a NULL template argument here");
1834      return true;
1835
1836    case TemplateArgument::Expression: {
1837      Expr *E = Arg.getArgument().getAsExpr();
1838      TemplateArgument Result;
1839      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1840        return true;
1841
1842      Converted.Append(Result);
1843      break;
1844    }
1845
1846    case TemplateArgument::Declaration:
1847    case TemplateArgument::Integral:
1848      // We've already checked this template argument, so just copy
1849      // it to the list of converted arguments.
1850      Converted.Append(Arg.getArgument());
1851      break;
1852
1853    case TemplateArgument::Template:
1854      // We were given a template template argument. It may not be ill-formed;
1855      // see below.
1856      if (DependentTemplateName *DTN
1857            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1858        // We have a template argument such as \c T::template X, which we
1859        // parsed as a template template argument. However, since we now
1860        // know that we need a non-type template argument, convert this
1861        // template name into an expression.
1862        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1863                                                    DTN->getQualifier(),
1864                                               Arg.getTemplateQualifierRange(),
1865                                                    DTN->getIdentifier(),
1866                                                    Arg.getTemplateNameLoc());
1867
1868        TemplateArgument Result;
1869        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1870          return true;
1871
1872        Converted.Append(Result);
1873        break;
1874      }
1875
1876      // We have a template argument that actually does refer to a class
1877      // template, template alias, or template template parameter, and
1878      // therefore cannot be a non-type template argument.
1879      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1880        << Arg.getSourceRange();
1881
1882      Diag(Param->getLocation(), diag::note_template_param_here);
1883      return true;
1884
1885    case TemplateArgument::Type: {
1886      // We have a non-type template parameter but the template
1887      // argument is a type.
1888
1889      // C++ [temp.arg]p2:
1890      //   In a template-argument, an ambiguity between a type-id and
1891      //   an expression is resolved to a type-id, regardless of the
1892      //   form of the corresponding template-parameter.
1893      //
1894      // We warn specifically about this case, since it can be rather
1895      // confusing for users.
1896      QualType T = Arg.getArgument().getAsType();
1897      SourceRange SR = Arg.getSourceRange();
1898      if (T->isFunctionType())
1899        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1900      else
1901        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1902      Diag(Param->getLocation(), diag::note_template_param_here);
1903      return true;
1904    }
1905
1906    case TemplateArgument::Pack:
1907      llvm::llvm_unreachable("Caller must expand template argument packs");
1908      break;
1909    }
1910
1911    return false;
1912  }
1913
1914
1915  // Check template template parameters.
1916  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
1917
1918  // Substitute into the template parameter list of the template
1919  // template parameter, since previously-supplied template arguments
1920  // may appear within the template template parameter.
1921  {
1922    // Set up a template instantiation context.
1923    LocalInstantiationScope Scope(*this);
1924    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1925                               TempParm, Converted.getFlatArguments(),
1926                               Converted.flatSize(),
1927                               SourceRange(TemplateLoc, RAngleLoc));
1928
1929    TemplateArgumentList TemplateArgs(Context, Converted,
1930                                      /*TakeArgs=*/false);
1931    TempParm = cast_or_null<TemplateTemplateParmDecl>(
1932                      SubstDecl(TempParm, CurContext,
1933                                MultiLevelTemplateArgumentList(TemplateArgs)));
1934    if (!TempParm)
1935      return true;
1936
1937    // FIXME: TempParam is leaked.
1938  }
1939
1940  switch (Arg.getArgument().getKind()) {
1941  case TemplateArgument::Null:
1942    assert(false && "Should never see a NULL template argument here");
1943    return true;
1944
1945  case TemplateArgument::Template:
1946    if (CheckTemplateArgument(TempParm, Arg))
1947      return true;
1948
1949    Converted.Append(Arg.getArgument());
1950    break;
1951
1952  case TemplateArgument::Expression:
1953  case TemplateArgument::Type:
1954    // We have a template template parameter but the template
1955    // argument does not refer to a template.
1956    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1957    return true;
1958
1959  case TemplateArgument::Declaration:
1960    llvm::llvm_unreachable(
1961                       "Declaration argument with template template parameter");
1962    break;
1963  case TemplateArgument::Integral:
1964    llvm::llvm_unreachable(
1965                          "Integral argument with template template parameter");
1966    break;
1967
1968  case TemplateArgument::Pack:
1969    llvm::llvm_unreachable("Caller must expand template argument packs");
1970    break;
1971  }
1972
1973  return false;
1974}
1975
1976/// \brief Check that the given template argument list is well-formed
1977/// for specializing the given template.
1978bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1979                                     SourceLocation TemplateLoc,
1980                                const TemplateArgumentListInfo &TemplateArgs,
1981                                     bool PartialTemplateArgs,
1982                                     TemplateArgumentListBuilder &Converted) {
1983  TemplateParameterList *Params = Template->getTemplateParameters();
1984  unsigned NumParams = Params->size();
1985  unsigned NumArgs = TemplateArgs.size();
1986  bool Invalid = false;
1987
1988  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
1989
1990  bool HasParameterPack =
1991    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1992
1993  if ((NumArgs > NumParams && !HasParameterPack) ||
1994      (NumArgs < Params->getMinRequiredArguments() &&
1995       !PartialTemplateArgs)) {
1996    // FIXME: point at either the first arg beyond what we can handle,
1997    // or the '>', depending on whether we have too many or too few
1998    // arguments.
1999    SourceRange Range;
2000    if (NumArgs > NumParams)
2001      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2002    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2003      << (NumArgs > NumParams)
2004      << (isa<ClassTemplateDecl>(Template)? 0 :
2005          isa<FunctionTemplateDecl>(Template)? 1 :
2006          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2007      << Template << Range;
2008    Diag(Template->getLocation(), diag::note_template_decl_here)
2009      << Params->getSourceRange();
2010    Invalid = true;
2011  }
2012
2013  // C++ [temp.arg]p1:
2014  //   [...] The type and form of each template-argument specified in
2015  //   a template-id shall match the type and form specified for the
2016  //   corresponding parameter declared by the template in its
2017  //   template-parameter-list.
2018  unsigned ArgIdx = 0;
2019  for (TemplateParameterList::iterator Param = Params->begin(),
2020                                       ParamEnd = Params->end();
2021       Param != ParamEnd; ++Param, ++ArgIdx) {
2022    if (ArgIdx > NumArgs && PartialTemplateArgs)
2023      break;
2024
2025    // If we have a template parameter pack, check every remaining template
2026    // argument against that template parameter pack.
2027    if ((*Param)->isTemplateParameterPack()) {
2028      Converted.BeginPack();
2029      for (; ArgIdx < NumArgs; ++ArgIdx) {
2030        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2031                                  TemplateLoc, RAngleLoc, Converted)) {
2032          Invalid = true;
2033          break;
2034        }
2035      }
2036      Converted.EndPack();
2037      continue;
2038    }
2039
2040    if (ArgIdx < NumArgs) {
2041      // Check the template argument we were given.
2042      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2043                                TemplateLoc, RAngleLoc, Converted))
2044        return true;
2045
2046      continue;
2047    }
2048
2049    // We have a default template argument that we will use.
2050    TemplateArgumentLoc Arg;
2051
2052    // Retrieve the default template argument from the template
2053    // parameter. For each kind of template parameter, we substitute the
2054    // template arguments provided thus far and any "outer" template arguments
2055    // (when the template parameter was part of a nested template) into
2056    // the default argument.
2057    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2058      if (!TTP->hasDefaultArgument()) {
2059        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2060        break;
2061      }
2062
2063      DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this,
2064                                                             Template,
2065                                                             TemplateLoc,
2066                                                             RAngleLoc,
2067                                                             TTP,
2068                                                             Converted);
2069      if (!ArgType)
2070        return true;
2071
2072      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2073                                ArgType);
2074    } else if (NonTypeTemplateParmDecl *NTTP
2075                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2076      if (!NTTP->hasDefaultArgument()) {
2077        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2078        break;
2079      }
2080
2081      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2082                                                              TemplateLoc,
2083                                                              RAngleLoc,
2084                                                              NTTP,
2085                                                              Converted);
2086      if (E.isInvalid())
2087        return true;
2088
2089      Expr *Ex = E.takeAs<Expr>();
2090      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2091    } else {
2092      TemplateTemplateParmDecl *TempParm
2093        = cast<TemplateTemplateParmDecl>(*Param);
2094
2095      if (!TempParm->hasDefaultArgument()) {
2096        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2097        break;
2098      }
2099
2100      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2101                                                       TemplateLoc,
2102                                                       RAngleLoc,
2103                                                       TempParm,
2104                                                       Converted);
2105      if (Name.isNull())
2106        return true;
2107
2108      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2109                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2110                  TempParm->getDefaultArgument().getTemplateNameLoc());
2111    }
2112
2113    // Introduce an instantiation record that describes where we are using
2114    // the default template argument.
2115    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2116                                        Converted.getFlatArguments(),
2117                                        Converted.flatSize(),
2118                                        SourceRange(TemplateLoc, RAngleLoc));
2119
2120    // Check the default template argument.
2121    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2122                              RAngleLoc, Converted))
2123      return true;
2124  }
2125
2126  return Invalid;
2127}
2128
2129/// \brief Check a template argument against its corresponding
2130/// template type parameter.
2131///
2132/// This routine implements the semantics of C++ [temp.arg.type]. It
2133/// returns true if an error occurred, and false otherwise.
2134bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2135                                 DeclaratorInfo *ArgInfo) {
2136  assert(ArgInfo && "invalid DeclaratorInfo");
2137  QualType Arg = ArgInfo->getType();
2138
2139  // C++ [temp.arg.type]p2:
2140  //   A local type, a type with no linkage, an unnamed type or a type
2141  //   compounded from any of these types shall not be used as a
2142  //   template-argument for a template type-parameter.
2143  //
2144  // FIXME: Perform the recursive and no-linkage type checks.
2145  const TagType *Tag = 0;
2146  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2147    Tag = EnumT;
2148  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2149    Tag = RecordT;
2150  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2151    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2152    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2153      << QualType(Tag, 0) << SR;
2154  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2155           !Tag->getDecl()->getTypedefForAnonDecl()) {
2156    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2157    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2158    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2159    return true;
2160  }
2161
2162  return false;
2163}
2164
2165/// \brief Checks whether the given template argument is the address
2166/// of an object or function according to C++ [temp.arg.nontype]p1.
2167bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2168                                                          NamedDecl *&Entity) {
2169  bool Invalid = false;
2170
2171  // See through any implicit casts we added to fix the type.
2172  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2173    Arg = Cast->getSubExpr();
2174
2175  // C++0x allows nullptr, and there's no further checking to be done for that.
2176  if (Arg->getType()->isNullPtrType())
2177    return false;
2178
2179  // C++ [temp.arg.nontype]p1:
2180  //
2181  //   A template-argument for a non-type, non-template
2182  //   template-parameter shall be one of: [...]
2183  //
2184  //     -- the address of an object or function with external
2185  //        linkage, including function templates and function
2186  //        template-ids but excluding non-static class members,
2187  //        expressed as & id-expression where the & is optional if
2188  //        the name refers to a function or array, or if the
2189  //        corresponding template-parameter is a reference; or
2190  DeclRefExpr *DRE = 0;
2191
2192  // Ignore (and complain about) any excess parentheses.
2193  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2194    if (!Invalid) {
2195      Diag(Arg->getSourceRange().getBegin(),
2196           diag::err_template_arg_extra_parens)
2197        << Arg->getSourceRange();
2198      Invalid = true;
2199    }
2200
2201    Arg = Parens->getSubExpr();
2202  }
2203
2204  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2205    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2206      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2207  } else
2208    DRE = dyn_cast<DeclRefExpr>(Arg);
2209
2210  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2211    return Diag(Arg->getSourceRange().getBegin(),
2212                diag::err_template_arg_not_object_or_func_form)
2213      << Arg->getSourceRange();
2214
2215  // Cannot refer to non-static data members
2216  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2217    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2218      << Field << Arg->getSourceRange();
2219
2220  // Cannot refer to non-static member functions
2221  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2222    if (!Method->isStatic())
2223      return Diag(Arg->getSourceRange().getBegin(),
2224                  diag::err_template_arg_method)
2225        << Method << Arg->getSourceRange();
2226
2227  // Functions must have external linkage.
2228  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2229    if (Func->getStorageClass() == FunctionDecl::Static) {
2230      Diag(Arg->getSourceRange().getBegin(),
2231           diag::err_template_arg_function_not_extern)
2232        << Func << Arg->getSourceRange();
2233      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2234        << true;
2235      return true;
2236    }
2237
2238    // Okay: we've named a function with external linkage.
2239    Entity = Func;
2240    return Invalid;
2241  }
2242
2243  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2244    if (!Var->hasGlobalStorage()) {
2245      Diag(Arg->getSourceRange().getBegin(),
2246           diag::err_template_arg_object_not_extern)
2247        << Var << Arg->getSourceRange();
2248      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2249        << true;
2250      return true;
2251    }
2252
2253    // Okay: we've named an object with external linkage
2254    Entity = Var;
2255    return Invalid;
2256  }
2257
2258  // We found something else, but we don't know specifically what it is.
2259  Diag(Arg->getSourceRange().getBegin(),
2260       diag::err_template_arg_not_object_or_func)
2261      << Arg->getSourceRange();
2262  Diag(DRE->getDecl()->getLocation(),
2263       diag::note_template_arg_refers_here);
2264  return true;
2265}
2266
2267/// \brief Checks whether the given template argument is a pointer to
2268/// member constant according to C++ [temp.arg.nontype]p1.
2269bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2270                                                TemplateArgument &Converted) {
2271  bool Invalid = false;
2272
2273  // See through any implicit casts we added to fix the type.
2274  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2275    Arg = Cast->getSubExpr();
2276
2277  // C++0x allows nullptr, and there's no further checking to be done for that.
2278  if (Arg->getType()->isNullPtrType())
2279    return false;
2280
2281  // C++ [temp.arg.nontype]p1:
2282  //
2283  //   A template-argument for a non-type, non-template
2284  //   template-parameter shall be one of: [...]
2285  //
2286  //     -- a pointer to member expressed as described in 5.3.1.
2287  DeclRefExpr *DRE = 0;
2288
2289  // Ignore (and complain about) any excess parentheses.
2290  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2291    if (!Invalid) {
2292      Diag(Arg->getSourceRange().getBegin(),
2293           diag::err_template_arg_extra_parens)
2294        << Arg->getSourceRange();
2295      Invalid = true;
2296    }
2297
2298    Arg = Parens->getSubExpr();
2299  }
2300
2301  // A pointer-to-member constant written &Class::member.
2302  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2303    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2304      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2305      if (DRE && !DRE->getQualifier())
2306        DRE = 0;
2307    }
2308  }
2309  // A constant of pointer-to-member type.
2310  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2311    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2312      if (VD->getType()->isMemberPointerType()) {
2313        if (isa<NonTypeTemplateParmDecl>(VD) ||
2314            (isa<VarDecl>(VD) &&
2315             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2316          if (Arg->isTypeDependent() || Arg->isValueDependent())
2317            Converted = TemplateArgument(Arg->Retain());
2318          else
2319            Converted = TemplateArgument(VD->getCanonicalDecl());
2320          return Invalid;
2321        }
2322      }
2323    }
2324
2325    DRE = 0;
2326  }
2327
2328  if (!DRE)
2329    return Diag(Arg->getSourceRange().getBegin(),
2330                diag::err_template_arg_not_pointer_to_member_form)
2331      << Arg->getSourceRange();
2332
2333  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2334    assert((isa<FieldDecl>(DRE->getDecl()) ||
2335            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2336           "Only non-static member pointers can make it here");
2337
2338    // Okay: this is the address of a non-static member, and therefore
2339    // a member pointer constant.
2340    if (Arg->isTypeDependent() || Arg->isValueDependent())
2341      Converted = TemplateArgument(Arg->Retain());
2342    else
2343      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2344    return Invalid;
2345  }
2346
2347  // We found something else, but we don't know specifically what it is.
2348  Diag(Arg->getSourceRange().getBegin(),
2349       diag::err_template_arg_not_pointer_to_member_form)
2350      << Arg->getSourceRange();
2351  Diag(DRE->getDecl()->getLocation(),
2352       diag::note_template_arg_refers_here);
2353  return true;
2354}
2355
2356/// \brief Check a template argument against its corresponding
2357/// non-type template parameter.
2358///
2359/// This routine implements the semantics of C++ [temp.arg.nontype].
2360/// It returns true if an error occurred, and false otherwise. \p
2361/// InstantiatedParamType is the type of the non-type template
2362/// parameter after it has been instantiated.
2363///
2364/// If no error was detected, Converted receives the converted template argument.
2365bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2366                                 QualType InstantiatedParamType, Expr *&Arg,
2367                                 TemplateArgument &Converted) {
2368  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2369
2370  // If either the parameter has a dependent type or the argument is
2371  // type-dependent, there's nothing we can check now.
2372  // FIXME: Add template argument to Converted!
2373  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2374    // FIXME: Produce a cloned, canonical expression?
2375    Converted = TemplateArgument(Arg);
2376    return false;
2377  }
2378
2379  // C++ [temp.arg.nontype]p5:
2380  //   The following conversions are performed on each expression used
2381  //   as a non-type template-argument. If a non-type
2382  //   template-argument cannot be converted to the type of the
2383  //   corresponding template-parameter then the program is
2384  //   ill-formed.
2385  //
2386  //     -- for a non-type template-parameter of integral or
2387  //        enumeration type, integral promotions (4.5) and integral
2388  //        conversions (4.7) are applied.
2389  QualType ParamType = InstantiatedParamType;
2390  QualType ArgType = Arg->getType();
2391  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2392    // C++ [temp.arg.nontype]p1:
2393    //   A template-argument for a non-type, non-template
2394    //   template-parameter shall be one of:
2395    //
2396    //     -- an integral constant-expression of integral or enumeration
2397    //        type; or
2398    //     -- the name of a non-type template-parameter; or
2399    SourceLocation NonConstantLoc;
2400    llvm::APSInt Value;
2401    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2402      Diag(Arg->getSourceRange().getBegin(),
2403           diag::err_template_arg_not_integral_or_enumeral)
2404        << ArgType << Arg->getSourceRange();
2405      Diag(Param->getLocation(), diag::note_template_param_here);
2406      return true;
2407    } else if (!Arg->isValueDependent() &&
2408               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2409      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2410        << ArgType << Arg->getSourceRange();
2411      return true;
2412    }
2413
2414    // FIXME: We need some way to more easily get the unqualified form
2415    // of the types without going all the way to the
2416    // canonical type.
2417    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2418      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2419    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2420      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2421
2422    // Try to convert the argument to the parameter's type.
2423    if (Context.hasSameType(ParamType, ArgType)) {
2424      // Okay: no conversion necessary
2425    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2426               !ParamType->isEnumeralType()) {
2427      // This is an integral promotion or conversion.
2428      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2429    } else {
2430      // We can't perform this conversion.
2431      Diag(Arg->getSourceRange().getBegin(),
2432           diag::err_template_arg_not_convertible)
2433        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2434      Diag(Param->getLocation(), diag::note_template_param_here);
2435      return true;
2436    }
2437
2438    QualType IntegerType = Context.getCanonicalType(ParamType);
2439    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2440      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2441
2442    if (!Arg->isValueDependent()) {
2443      // Check that an unsigned parameter does not receive a negative
2444      // value.
2445      if (IntegerType->isUnsignedIntegerType()
2446          && (Value.isSigned() && Value.isNegative())) {
2447        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2448          << Value.toString(10) << Param->getType()
2449          << Arg->getSourceRange();
2450        Diag(Param->getLocation(), diag::note_template_param_here);
2451        return true;
2452      }
2453
2454      // Check that we don't overflow the template parameter type.
2455      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2456      if (Value.getActiveBits() > AllowedBits) {
2457        Diag(Arg->getSourceRange().getBegin(),
2458             diag::err_template_arg_too_large)
2459          << Value.toString(10) << Param->getType()
2460          << Arg->getSourceRange();
2461        Diag(Param->getLocation(), diag::note_template_param_here);
2462        return true;
2463      }
2464
2465      if (Value.getBitWidth() != AllowedBits)
2466        Value.extOrTrunc(AllowedBits);
2467      Value.setIsSigned(IntegerType->isSignedIntegerType());
2468    }
2469
2470    // Add the value of this argument to the list of converted
2471    // arguments. We use the bitwidth and signedness of the template
2472    // parameter.
2473    if (Arg->isValueDependent()) {
2474      // The argument is value-dependent. Create a new
2475      // TemplateArgument with the converted expression.
2476      Converted = TemplateArgument(Arg);
2477      return false;
2478    }
2479
2480    Converted = TemplateArgument(Value,
2481                                 ParamType->isEnumeralType() ? ParamType
2482                                                             : IntegerType);
2483    return false;
2484  }
2485
2486  // Handle pointer-to-function, reference-to-function, and
2487  // pointer-to-member-function all in (roughly) the same way.
2488  if (// -- For a non-type template-parameter of type pointer to
2489      //    function, only the function-to-pointer conversion (4.3) is
2490      //    applied. If the template-argument represents a set of
2491      //    overloaded functions (or a pointer to such), the matching
2492      //    function is selected from the set (13.4).
2493      // In C++0x, any std::nullptr_t value can be converted.
2494      (ParamType->isPointerType() &&
2495       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2496      // -- For a non-type template-parameter of type reference to
2497      //    function, no conversions apply. If the template-argument
2498      //    represents a set of overloaded functions, the matching
2499      //    function is selected from the set (13.4).
2500      (ParamType->isReferenceType() &&
2501       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2502      // -- For a non-type template-parameter of type pointer to
2503      //    member function, no conversions apply. If the
2504      //    template-argument represents a set of overloaded member
2505      //    functions, the matching member function is selected from
2506      //    the set (13.4).
2507      // Again, C++0x allows a std::nullptr_t value.
2508      (ParamType->isMemberPointerType() &&
2509       ParamType->getAs<MemberPointerType>()->getPointeeType()
2510         ->isFunctionType())) {
2511    if (Context.hasSameUnqualifiedType(ArgType,
2512                                       ParamType.getNonReferenceType())) {
2513      // We don't have to do anything: the types already match.
2514    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2515                 ParamType->isMemberPointerType())) {
2516      ArgType = ParamType;
2517      if (ParamType->isMemberPointerType())
2518        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2519      else
2520        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2521    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2522      ArgType = Context.getPointerType(ArgType);
2523      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2524    } else if (FunctionDecl *Fn
2525                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2526      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2527        return true;
2528
2529      Arg = FixOverloadedFunctionReference(Arg, Fn);
2530      ArgType = Arg->getType();
2531      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2532        ArgType = Context.getPointerType(Arg->getType());
2533        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2534      }
2535    }
2536
2537    if (!Context.hasSameUnqualifiedType(ArgType,
2538                                        ParamType.getNonReferenceType())) {
2539      // We can't perform this conversion.
2540      Diag(Arg->getSourceRange().getBegin(),
2541           diag::err_template_arg_not_convertible)
2542        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2543      Diag(Param->getLocation(), diag::note_template_param_here);
2544      return true;
2545    }
2546
2547    if (ParamType->isMemberPointerType())
2548      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2549
2550    NamedDecl *Entity = 0;
2551    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2552      return true;
2553
2554    if (Entity)
2555      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2556    Converted = TemplateArgument(Entity);
2557    return false;
2558  }
2559
2560  if (ParamType->isPointerType()) {
2561    //   -- for a non-type template-parameter of type pointer to
2562    //      object, qualification conversions (4.4) and the
2563    //      array-to-pointer conversion (4.2) are applied.
2564    // C++0x also allows a value of std::nullptr_t.
2565    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2566           "Only object pointers allowed here");
2567
2568    if (ArgType->isNullPtrType()) {
2569      ArgType = ParamType;
2570      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2571    } else if (ArgType->isArrayType()) {
2572      ArgType = Context.getArrayDecayedType(ArgType);
2573      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2574    }
2575
2576    if (IsQualificationConversion(ArgType, ParamType)) {
2577      ArgType = ParamType;
2578      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2579    }
2580
2581    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2582      // We can't perform this conversion.
2583      Diag(Arg->getSourceRange().getBegin(),
2584           diag::err_template_arg_not_convertible)
2585        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2586      Diag(Param->getLocation(), diag::note_template_param_here);
2587      return true;
2588    }
2589
2590    NamedDecl *Entity = 0;
2591    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2592      return true;
2593
2594    if (Entity)
2595      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2596    Converted = TemplateArgument(Entity);
2597    return false;
2598  }
2599
2600  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2601    //   -- For a non-type template-parameter of type reference to
2602    //      object, no conversions apply. The type referred to by the
2603    //      reference may be more cv-qualified than the (otherwise
2604    //      identical) type of the template-argument. The
2605    //      template-parameter is bound directly to the
2606    //      template-argument, which must be an lvalue.
2607    assert(ParamRefType->getPointeeType()->isObjectType() &&
2608           "Only object references allowed here");
2609
2610    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2611      Diag(Arg->getSourceRange().getBegin(),
2612           diag::err_template_arg_no_ref_bind)
2613        << InstantiatedParamType << Arg->getType()
2614        << Arg->getSourceRange();
2615      Diag(Param->getLocation(), diag::note_template_param_here);
2616      return true;
2617    }
2618
2619    unsigned ParamQuals
2620      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2621    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2622
2623    if ((ParamQuals | ArgQuals) != ParamQuals) {
2624      Diag(Arg->getSourceRange().getBegin(),
2625           diag::err_template_arg_ref_bind_ignores_quals)
2626        << InstantiatedParamType << Arg->getType()
2627        << Arg->getSourceRange();
2628      Diag(Param->getLocation(), diag::note_template_param_here);
2629      return true;
2630    }
2631
2632    NamedDecl *Entity = 0;
2633    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2634      return true;
2635
2636    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2637    Converted = TemplateArgument(Entity);
2638    return false;
2639  }
2640
2641  //     -- For a non-type template-parameter of type pointer to data
2642  //        member, qualification conversions (4.4) are applied.
2643  // C++0x allows std::nullptr_t values.
2644  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2645
2646  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2647    // Types match exactly: nothing more to do here.
2648  } else if (ArgType->isNullPtrType()) {
2649    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2650  } else if (IsQualificationConversion(ArgType, ParamType)) {
2651    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2652  } else {
2653    // We can't perform this conversion.
2654    Diag(Arg->getSourceRange().getBegin(),
2655         diag::err_template_arg_not_convertible)
2656      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2657    Diag(Param->getLocation(), diag::note_template_param_here);
2658    return true;
2659  }
2660
2661  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2662}
2663
2664/// \brief Check a template argument against its corresponding
2665/// template template parameter.
2666///
2667/// This routine implements the semantics of C++ [temp.arg.template].
2668/// It returns true if an error occurred, and false otherwise.
2669bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2670                                 const TemplateArgumentLoc &Arg) {
2671  TemplateName Name = Arg.getArgument().getAsTemplate();
2672  TemplateDecl *Template = Name.getAsTemplateDecl();
2673  if (!Template) {
2674    // Any dependent template name is fine.
2675    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2676    return false;
2677  }
2678
2679  // C++ [temp.arg.template]p1:
2680  //   A template-argument for a template template-parameter shall be
2681  //   the name of a class template, expressed as id-expression. Only
2682  //   primary class templates are considered when matching the
2683  //   template template argument with the corresponding parameter;
2684  //   partial specializations are not considered even if their
2685  //   parameter lists match that of the template template parameter.
2686  //
2687  // Note that we also allow template template parameters here, which
2688  // will happen when we are dealing with, e.g., class template
2689  // partial specializations.
2690  if (!isa<ClassTemplateDecl>(Template) &&
2691      !isa<TemplateTemplateParmDecl>(Template)) {
2692    assert(isa<FunctionTemplateDecl>(Template) &&
2693           "Only function templates are possible here");
2694    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2695    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2696      << Template;
2697  }
2698
2699  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2700                                         Param->getTemplateParameters(),
2701                                         true,
2702                                         TPL_TemplateTemplateArgumentMatch,
2703                                         Arg.getLocation());
2704}
2705
2706/// \brief Determine whether the given template parameter lists are
2707/// equivalent.
2708///
2709/// \param New  The new template parameter list, typically written in the
2710/// source code as part of a new template declaration.
2711///
2712/// \param Old  The old template parameter list, typically found via
2713/// name lookup of the template declared with this template parameter
2714/// list.
2715///
2716/// \param Complain  If true, this routine will produce a diagnostic if
2717/// the template parameter lists are not equivalent.
2718///
2719/// \param Kind describes how we are to match the template parameter lists.
2720///
2721/// \param TemplateArgLoc If this source location is valid, then we
2722/// are actually checking the template parameter list of a template
2723/// argument (New) against the template parameter list of its
2724/// corresponding template template parameter (Old). We produce
2725/// slightly different diagnostics in this scenario.
2726///
2727/// \returns True if the template parameter lists are equal, false
2728/// otherwise.
2729bool
2730Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2731                                     TemplateParameterList *Old,
2732                                     bool Complain,
2733                                     TemplateParameterListEqualKind Kind,
2734                                     SourceLocation TemplateArgLoc) {
2735  if (Old->size() != New->size()) {
2736    if (Complain) {
2737      unsigned NextDiag = diag::err_template_param_list_different_arity;
2738      if (TemplateArgLoc.isValid()) {
2739        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2740        NextDiag = diag::note_template_param_list_different_arity;
2741      }
2742      Diag(New->getTemplateLoc(), NextDiag)
2743          << (New->size() > Old->size())
2744          << (Kind != TPL_TemplateMatch)
2745          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2746      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2747        << (Kind != TPL_TemplateMatch)
2748        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2749    }
2750
2751    return false;
2752  }
2753
2754  for (TemplateParameterList::iterator OldParm = Old->begin(),
2755         OldParmEnd = Old->end(), NewParm = New->begin();
2756       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2757    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2758      if (Complain) {
2759        unsigned NextDiag = diag::err_template_param_different_kind;
2760        if (TemplateArgLoc.isValid()) {
2761          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2762          NextDiag = diag::note_template_param_different_kind;
2763        }
2764        Diag((*NewParm)->getLocation(), NextDiag)
2765          << (Kind != TPL_TemplateMatch);
2766        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2767          << (Kind != TPL_TemplateMatch);
2768      }
2769      return false;
2770    }
2771
2772    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2773      // Okay; all template type parameters are equivalent (since we
2774      // know we're at the same index).
2775    } else if (NonTypeTemplateParmDecl *OldNTTP
2776                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2777      // The types of non-type template parameters must agree.
2778      NonTypeTemplateParmDecl *NewNTTP
2779        = cast<NonTypeTemplateParmDecl>(*NewParm);
2780
2781      // If we are matching a template template argument to a template
2782      // template parameter and one of the non-type template parameter types
2783      // is dependent, then we must wait until template instantiation time
2784      // to actually compare the arguments.
2785      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2786          (OldNTTP->getType()->isDependentType() ||
2787           NewNTTP->getType()->isDependentType()))
2788        continue;
2789
2790      if (Context.getCanonicalType(OldNTTP->getType()) !=
2791            Context.getCanonicalType(NewNTTP->getType())) {
2792        if (Complain) {
2793          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2794          if (TemplateArgLoc.isValid()) {
2795            Diag(TemplateArgLoc,
2796                 diag::err_template_arg_template_params_mismatch);
2797            NextDiag = diag::note_template_nontype_parm_different_type;
2798          }
2799          Diag(NewNTTP->getLocation(), NextDiag)
2800            << NewNTTP->getType()
2801            << (Kind != TPL_TemplateMatch);
2802          Diag(OldNTTP->getLocation(),
2803               diag::note_template_nontype_parm_prev_declaration)
2804            << OldNTTP->getType();
2805        }
2806        return false;
2807      }
2808    } else {
2809      // The template parameter lists of template template
2810      // parameters must agree.
2811      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2812             "Only template template parameters handled here");
2813      TemplateTemplateParmDecl *OldTTP
2814        = cast<TemplateTemplateParmDecl>(*OldParm);
2815      TemplateTemplateParmDecl *NewTTP
2816        = cast<TemplateTemplateParmDecl>(*NewParm);
2817      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2818                                          OldTTP->getTemplateParameters(),
2819                                          Complain,
2820              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2821                                          TemplateArgLoc))
2822        return false;
2823    }
2824  }
2825
2826  return true;
2827}
2828
2829/// \brief Check whether a template can be declared within this scope.
2830///
2831/// If the template declaration is valid in this scope, returns
2832/// false. Otherwise, issues a diagnostic and returns true.
2833bool
2834Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2835  // Find the nearest enclosing declaration scope.
2836  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2837         (S->getFlags() & Scope::TemplateParamScope) != 0)
2838    S = S->getParent();
2839
2840  // C++ [temp]p2:
2841  //   A template-declaration can appear only as a namespace scope or
2842  //   class scope declaration.
2843  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2844  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2845      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2846    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2847             << TemplateParams->getSourceRange();
2848
2849  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2850    Ctx = Ctx->getParent();
2851
2852  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2853    return false;
2854
2855  return Diag(TemplateParams->getTemplateLoc(),
2856              diag::err_template_outside_namespace_or_class_scope)
2857    << TemplateParams->getSourceRange();
2858}
2859
2860/// \brief Determine what kind of template specialization the given declaration
2861/// is.
2862static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2863  if (!D)
2864    return TSK_Undeclared;
2865
2866  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2867    return Record->getTemplateSpecializationKind();
2868  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2869    return Function->getTemplateSpecializationKind();
2870  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2871    return Var->getTemplateSpecializationKind();
2872
2873  return TSK_Undeclared;
2874}
2875
2876/// \brief Check whether a specialization is well-formed in the current
2877/// context.
2878///
2879/// This routine determines whether a template specialization can be declared
2880/// in the current context (C++ [temp.expl.spec]p2).
2881///
2882/// \param S the semantic analysis object for which this check is being
2883/// performed.
2884///
2885/// \param Specialized the entity being specialized or instantiated, which
2886/// may be a kind of template (class template, function template, etc.) or
2887/// a member of a class template (member function, static data member,
2888/// member class).
2889///
2890/// \param PrevDecl the previous declaration of this entity, if any.
2891///
2892/// \param Loc the location of the explicit specialization or instantiation of
2893/// this entity.
2894///
2895/// \param IsPartialSpecialization whether this is a partial specialization of
2896/// a class template.
2897///
2898/// \returns true if there was an error that we cannot recover from, false
2899/// otherwise.
2900static bool CheckTemplateSpecializationScope(Sema &S,
2901                                             NamedDecl *Specialized,
2902                                             NamedDecl *PrevDecl,
2903                                             SourceLocation Loc,
2904                                             bool IsPartialSpecialization) {
2905  // Keep these "kind" numbers in sync with the %select statements in the
2906  // various diagnostics emitted by this routine.
2907  int EntityKind = 0;
2908  bool isTemplateSpecialization = false;
2909  if (isa<ClassTemplateDecl>(Specialized)) {
2910    EntityKind = IsPartialSpecialization? 1 : 0;
2911    isTemplateSpecialization = true;
2912  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2913    EntityKind = 2;
2914    isTemplateSpecialization = true;
2915  } else if (isa<CXXMethodDecl>(Specialized))
2916    EntityKind = 3;
2917  else if (isa<VarDecl>(Specialized))
2918    EntityKind = 4;
2919  else if (isa<RecordDecl>(Specialized))
2920    EntityKind = 5;
2921  else {
2922    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2923    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2924    return true;
2925  }
2926
2927  // C++ [temp.expl.spec]p2:
2928  //   An explicit specialization shall be declared in the namespace
2929  //   of which the template is a member, or, for member templates, in
2930  //   the namespace of which the enclosing class or enclosing class
2931  //   template is a member. An explicit specialization of a member
2932  //   function, member class or static data member of a class
2933  //   template shall be declared in the namespace of which the class
2934  //   template is a member. Such a declaration may also be a
2935  //   definition. If the declaration is not a definition, the
2936  //   specialization may be defined later in the name- space in which
2937  //   the explicit specialization was declared, or in a namespace
2938  //   that encloses the one in which the explicit specialization was
2939  //   declared.
2940  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2941    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2942      << Specialized;
2943    return true;
2944  }
2945
2946  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2947    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2948      << Specialized;
2949    return true;
2950  }
2951
2952  // C++ [temp.class.spec]p6:
2953  //   A class template partial specialization may be declared or redeclared
2954  //   in any namespace scope in which its definition may be defined (14.5.1
2955  //   and 14.5.2).
2956  bool ComplainedAboutScope = false;
2957  DeclContext *SpecializedContext
2958    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2959  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2960  if ((!PrevDecl ||
2961       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2962       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2963    // There is no prior declaration of this entity, so this
2964    // specialization must be in the same context as the template
2965    // itself.
2966    if (!DC->Equals(SpecializedContext)) {
2967      if (isa<TranslationUnitDecl>(SpecializedContext))
2968        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2969        << EntityKind << Specialized;
2970      else if (isa<NamespaceDecl>(SpecializedContext))
2971        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2972        << EntityKind << Specialized
2973        << cast<NamedDecl>(SpecializedContext);
2974
2975      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2976      ComplainedAboutScope = true;
2977    }
2978  }
2979
2980  // Make sure that this redeclaration (or definition) occurs in an enclosing
2981  // namespace.
2982  // Note that HandleDeclarator() performs this check for explicit
2983  // specializations of function templates, static data members, and member
2984  // functions, so we skip the check here for those kinds of entities.
2985  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2986  // Should we refactor that check, so that it occurs later?
2987  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2988      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2989        isa<FunctionDecl>(Specialized))) {
2990    if (isa<TranslationUnitDecl>(SpecializedContext))
2991      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2992        << EntityKind << Specialized;
2993    else if (isa<NamespaceDecl>(SpecializedContext))
2994      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2995        << EntityKind << Specialized
2996        << cast<NamedDecl>(SpecializedContext);
2997
2998    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2999  }
3000
3001  // FIXME: check for specialization-after-instantiation errors and such.
3002
3003  return false;
3004}
3005
3006/// \brief Check the non-type template arguments of a class template
3007/// partial specialization according to C++ [temp.class.spec]p9.
3008///
3009/// \param TemplateParams the template parameters of the primary class
3010/// template.
3011///
3012/// \param TemplateArg the template arguments of the class template
3013/// partial specialization.
3014///
3015/// \param MirrorsPrimaryTemplate will be set true if the class
3016/// template partial specialization arguments are identical to the
3017/// implicit template arguments of the primary template. This is not
3018/// necessarily an error (C++0x), and it is left to the caller to diagnose
3019/// this condition when it is an error.
3020///
3021/// \returns true if there was an error, false otherwise.
3022bool Sema::CheckClassTemplatePartialSpecializationArgs(
3023                                        TemplateParameterList *TemplateParams,
3024                             const TemplateArgumentListBuilder &TemplateArgs,
3025                                        bool &MirrorsPrimaryTemplate) {
3026  // FIXME: the interface to this function will have to change to
3027  // accommodate variadic templates.
3028  MirrorsPrimaryTemplate = true;
3029
3030  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3031
3032  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3033    // Determine whether the template argument list of the partial
3034    // specialization is identical to the implicit argument list of
3035    // the primary template. The caller may need to diagnostic this as
3036    // an error per C++ [temp.class.spec]p9b3.
3037    if (MirrorsPrimaryTemplate) {
3038      if (TemplateTypeParmDecl *TTP
3039            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3040        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3041              Context.getCanonicalType(ArgList[I].getAsType()))
3042          MirrorsPrimaryTemplate = false;
3043      } else if (TemplateTemplateParmDecl *TTP
3044                   = dyn_cast<TemplateTemplateParmDecl>(
3045                                                 TemplateParams->getParam(I))) {
3046        TemplateName Name = ArgList[I].getAsTemplate();
3047        TemplateTemplateParmDecl *ArgDecl
3048          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3049        if (!ArgDecl ||
3050            ArgDecl->getIndex() != TTP->getIndex() ||
3051            ArgDecl->getDepth() != TTP->getDepth())
3052          MirrorsPrimaryTemplate = false;
3053      }
3054    }
3055
3056    NonTypeTemplateParmDecl *Param
3057      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3058    if (!Param) {
3059      continue;
3060    }
3061
3062    Expr *ArgExpr = ArgList[I].getAsExpr();
3063    if (!ArgExpr) {
3064      MirrorsPrimaryTemplate = false;
3065      continue;
3066    }
3067
3068    // C++ [temp.class.spec]p8:
3069    //   A non-type argument is non-specialized if it is the name of a
3070    //   non-type parameter. All other non-type arguments are
3071    //   specialized.
3072    //
3073    // Below, we check the two conditions that only apply to
3074    // specialized non-type arguments, so skip any non-specialized
3075    // arguments.
3076    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3077      if (NonTypeTemplateParmDecl *NTTP
3078            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3079        if (MirrorsPrimaryTemplate &&
3080            (Param->getIndex() != NTTP->getIndex() ||
3081             Param->getDepth() != NTTP->getDepth()))
3082          MirrorsPrimaryTemplate = false;
3083
3084        continue;
3085      }
3086
3087    // C++ [temp.class.spec]p9:
3088    //   Within the argument list of a class template partial
3089    //   specialization, the following restrictions apply:
3090    //     -- A partially specialized non-type argument expression
3091    //        shall not involve a template parameter of the partial
3092    //        specialization except when the argument expression is a
3093    //        simple identifier.
3094    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3095      Diag(ArgExpr->getLocStart(),
3096           diag::err_dependent_non_type_arg_in_partial_spec)
3097        << ArgExpr->getSourceRange();
3098      return true;
3099    }
3100
3101    //     -- The type of a template parameter corresponding to a
3102    //        specialized non-type argument shall not be dependent on a
3103    //        parameter of the specialization.
3104    if (Param->getType()->isDependentType()) {
3105      Diag(ArgExpr->getLocStart(),
3106           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3107        << Param->getType()
3108        << ArgExpr->getSourceRange();
3109      Diag(Param->getLocation(), diag::note_template_param_here);
3110      return true;
3111    }
3112
3113    MirrorsPrimaryTemplate = false;
3114  }
3115
3116  return false;
3117}
3118
3119Sema::DeclResult
3120Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3121                                       TagUseKind TUK,
3122                                       SourceLocation KWLoc,
3123                                       const CXXScopeSpec &SS,
3124                                       TemplateTy TemplateD,
3125                                       SourceLocation TemplateNameLoc,
3126                                       SourceLocation LAngleLoc,
3127                                       ASTTemplateArgsPtr TemplateArgsIn,
3128                                       SourceLocation RAngleLoc,
3129                                       AttributeList *Attr,
3130                               MultiTemplateParamsArg TemplateParameterLists) {
3131  assert(TUK != TUK_Reference && "References are not specializations");
3132
3133  // Find the class template we're specializing
3134  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3135  ClassTemplateDecl *ClassTemplate
3136    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3137
3138  if (!ClassTemplate) {
3139    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3140      << (Name.getAsTemplateDecl() &&
3141          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3142    return true;
3143  }
3144
3145  bool isExplicitSpecialization = false;
3146  bool isPartialSpecialization = false;
3147
3148  // Check the validity of the template headers that introduce this
3149  // template.
3150  // FIXME: We probably shouldn't complain about these headers for
3151  // friend declarations.
3152  TemplateParameterList *TemplateParams
3153    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3154                        (TemplateParameterList**)TemplateParameterLists.get(),
3155                                              TemplateParameterLists.size(),
3156                                              isExplicitSpecialization);
3157  if (TemplateParams && TemplateParams->size() > 0) {
3158    isPartialSpecialization = true;
3159
3160    // C++ [temp.class.spec]p10:
3161    //   The template parameter list of a specialization shall not
3162    //   contain default template argument values.
3163    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3164      Decl *Param = TemplateParams->getParam(I);
3165      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3166        if (TTP->hasDefaultArgument()) {
3167          Diag(TTP->getDefaultArgumentLoc(),
3168               diag::err_default_arg_in_partial_spec);
3169          TTP->removeDefaultArgument();
3170        }
3171      } else if (NonTypeTemplateParmDecl *NTTP
3172                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3173        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3174          Diag(NTTP->getDefaultArgumentLoc(),
3175               diag::err_default_arg_in_partial_spec)
3176            << DefArg->getSourceRange();
3177          NTTP->setDefaultArgument(0);
3178          DefArg->Destroy(Context);
3179        }
3180      } else {
3181        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3182        if (TTP->hasDefaultArgument()) {
3183          Diag(TTP->getDefaultArgument().getLocation(),
3184               diag::err_default_arg_in_partial_spec)
3185            << TTP->getDefaultArgument().getSourceRange();
3186          TTP->setDefaultArgument(TemplateArgumentLoc());
3187        }
3188      }
3189    }
3190  } else if (TemplateParams) {
3191    if (TUK == TUK_Friend)
3192      Diag(KWLoc, diag::err_template_spec_friend)
3193        << CodeModificationHint::CreateRemoval(
3194                                SourceRange(TemplateParams->getTemplateLoc(),
3195                                            TemplateParams->getRAngleLoc()))
3196        << SourceRange(LAngleLoc, RAngleLoc);
3197    else
3198      isExplicitSpecialization = true;
3199  } else if (TUK != TUK_Friend) {
3200    Diag(KWLoc, diag::err_template_spec_needs_header)
3201      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3202    isExplicitSpecialization = true;
3203  }
3204
3205  // Check that the specialization uses the same tag kind as the
3206  // original template.
3207  TagDecl::TagKind Kind;
3208  switch (TagSpec) {
3209  default: assert(0 && "Unknown tag type!");
3210  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3211  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3212  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3213  }
3214  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3215                                    Kind, KWLoc,
3216                                    *ClassTemplate->getIdentifier())) {
3217    Diag(KWLoc, diag::err_use_with_wrong_tag)
3218      << ClassTemplate
3219      << CodeModificationHint::CreateReplacement(KWLoc,
3220                            ClassTemplate->getTemplatedDecl()->getKindName());
3221    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3222         diag::note_previous_use);
3223    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3224  }
3225
3226  // Translate the parser's template argument list in our AST format.
3227  TemplateArgumentListInfo TemplateArgs;
3228  TemplateArgs.setLAngleLoc(LAngleLoc);
3229  TemplateArgs.setRAngleLoc(RAngleLoc);
3230  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3231
3232  // Check that the template argument list is well-formed for this
3233  // template.
3234  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3235                                        TemplateArgs.size());
3236  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3237                                TemplateArgs, false, Converted))
3238    return true;
3239
3240  assert((Converted.structuredSize() ==
3241            ClassTemplate->getTemplateParameters()->size()) &&
3242         "Converted template argument list is too short!");
3243
3244  // Find the class template (partial) specialization declaration that
3245  // corresponds to these arguments.
3246  llvm::FoldingSetNodeID ID;
3247  if (isPartialSpecialization) {
3248    bool MirrorsPrimaryTemplate;
3249    if (CheckClassTemplatePartialSpecializationArgs(
3250                                         ClassTemplate->getTemplateParameters(),
3251                                         Converted, MirrorsPrimaryTemplate))
3252      return true;
3253
3254    if (MirrorsPrimaryTemplate) {
3255      // C++ [temp.class.spec]p9b3:
3256      //
3257      //   -- The argument list of the specialization shall not be identical
3258      //      to the implicit argument list of the primary template.
3259      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3260        << (TUK == TUK_Definition)
3261        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3262                                                           RAngleLoc));
3263      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3264                                ClassTemplate->getIdentifier(),
3265                                TemplateNameLoc,
3266                                Attr,
3267                                TemplateParams,
3268                                AS_none);
3269    }
3270
3271    // FIXME: Diagnose friend partial specializations
3272
3273    // FIXME: Template parameter list matters, too
3274    ClassTemplatePartialSpecializationDecl::Profile(ID,
3275                                                   Converted.getFlatArguments(),
3276                                                   Converted.flatSize(),
3277                                                    Context);
3278  } else
3279    ClassTemplateSpecializationDecl::Profile(ID,
3280                                             Converted.getFlatArguments(),
3281                                             Converted.flatSize(),
3282                                             Context);
3283  void *InsertPos = 0;
3284  ClassTemplateSpecializationDecl *PrevDecl = 0;
3285
3286  if (isPartialSpecialization)
3287    PrevDecl
3288      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3289                                                                    InsertPos);
3290  else
3291    PrevDecl
3292      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3293
3294  ClassTemplateSpecializationDecl *Specialization = 0;
3295
3296  // Check whether we can declare a class template specialization in
3297  // the current scope.
3298  if (TUK != TUK_Friend &&
3299      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3300                                       TemplateNameLoc,
3301                                       isPartialSpecialization))
3302    return true;
3303
3304  // The canonical type
3305  QualType CanonType;
3306  if (PrevDecl &&
3307      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3308       TUK == TUK_Friend)) {
3309    // Since the only prior class template specialization with these
3310    // arguments was referenced but not declared, or we're only
3311    // referencing this specialization as a friend, reuse that
3312    // declaration node as our own, updating its source location to
3313    // reflect our new declaration.
3314    Specialization = PrevDecl;
3315    Specialization->setLocation(TemplateNameLoc);
3316    PrevDecl = 0;
3317    CanonType = Context.getTypeDeclType(Specialization);
3318  } else if (isPartialSpecialization) {
3319    // Build the canonical type that describes the converted template
3320    // arguments of the class template partial specialization.
3321    CanonType = Context.getTemplateSpecializationType(
3322                                                  TemplateName(ClassTemplate),
3323                                                  Converted.getFlatArguments(),
3324                                                  Converted.flatSize());
3325
3326    // Create a new class template partial specialization declaration node.
3327    ClassTemplatePartialSpecializationDecl *PrevPartial
3328      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3329    ClassTemplatePartialSpecializationDecl *Partial
3330      = ClassTemplatePartialSpecializationDecl::Create(Context,
3331                                             ClassTemplate->getDeclContext(),
3332                                                       TemplateNameLoc,
3333                                                       TemplateParams,
3334                                                       ClassTemplate,
3335                                                       Converted,
3336                                                       TemplateArgs,
3337                                                       PrevPartial);
3338
3339    if (PrevPartial) {
3340      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3341      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3342    } else {
3343      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3344    }
3345    Specialization = Partial;
3346
3347    // If we are providing an explicit specialization of a member class
3348    // template specialization, make a note of that.
3349    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3350      PrevPartial->setMemberSpecialization();
3351
3352    // Check that all of the template parameters of the class template
3353    // partial specialization are deducible from the template
3354    // arguments. If not, this class template partial specialization
3355    // will never be used.
3356    llvm::SmallVector<bool, 8> DeducibleParams;
3357    DeducibleParams.resize(TemplateParams->size());
3358    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3359                               TemplateParams->getDepth(),
3360                               DeducibleParams);
3361    unsigned NumNonDeducible = 0;
3362    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3363      if (!DeducibleParams[I])
3364        ++NumNonDeducible;
3365
3366    if (NumNonDeducible) {
3367      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3368        << (NumNonDeducible > 1)
3369        << SourceRange(TemplateNameLoc, RAngleLoc);
3370      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3371        if (!DeducibleParams[I]) {
3372          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3373          if (Param->getDeclName())
3374            Diag(Param->getLocation(),
3375                 diag::note_partial_spec_unused_parameter)
3376              << Param->getDeclName();
3377          else
3378            Diag(Param->getLocation(),
3379                 diag::note_partial_spec_unused_parameter)
3380              << std::string("<anonymous>");
3381        }
3382      }
3383    }
3384  } else {
3385    // Create a new class template specialization declaration node for
3386    // this explicit specialization or friend declaration.
3387    Specialization
3388      = ClassTemplateSpecializationDecl::Create(Context,
3389                                             ClassTemplate->getDeclContext(),
3390                                                TemplateNameLoc,
3391                                                ClassTemplate,
3392                                                Converted,
3393                                                PrevDecl);
3394
3395    if (PrevDecl) {
3396      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3397      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3398    } else {
3399      ClassTemplate->getSpecializations().InsertNode(Specialization,
3400                                                     InsertPos);
3401    }
3402
3403    CanonType = Context.getTypeDeclType(Specialization);
3404  }
3405
3406  // C++ [temp.expl.spec]p6:
3407  //   If a template, a member template or the member of a class template is
3408  //   explicitly specialized then that specialization shall be declared
3409  //   before the first use of that specialization that would cause an implicit
3410  //   instantiation to take place, in every translation unit in which such a
3411  //   use occurs; no diagnostic is required.
3412  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3413    SourceRange Range(TemplateNameLoc, RAngleLoc);
3414    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3415      << Context.getTypeDeclType(Specialization) << Range;
3416
3417    Diag(PrevDecl->getPointOfInstantiation(),
3418         diag::note_instantiation_required_here)
3419      << (PrevDecl->getTemplateSpecializationKind()
3420                                                != TSK_ImplicitInstantiation);
3421    return true;
3422  }
3423
3424  // If this is not a friend, note that this is an explicit specialization.
3425  if (TUK != TUK_Friend)
3426    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3427
3428  // Check that this isn't a redefinition of this specialization.
3429  if (TUK == TUK_Definition) {
3430    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3431      SourceRange Range(TemplateNameLoc, RAngleLoc);
3432      Diag(TemplateNameLoc, diag::err_redefinition)
3433        << Context.getTypeDeclType(Specialization) << Range;
3434      Diag(Def->getLocation(), diag::note_previous_definition);
3435      Specialization->setInvalidDecl();
3436      return true;
3437    }
3438  }
3439
3440  // Build the fully-sugared type for this class template
3441  // specialization as the user wrote in the specialization
3442  // itself. This means that we'll pretty-print the type retrieved
3443  // from the specialization's declaration the way that the user
3444  // actually wrote the specialization, rather than formatting the
3445  // name based on the "canonical" representation used to store the
3446  // template arguments in the specialization.
3447  QualType WrittenTy
3448    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3449  if (TUK != TUK_Friend)
3450    Specialization->setTypeAsWritten(WrittenTy);
3451  TemplateArgsIn.release();
3452
3453  // C++ [temp.expl.spec]p9:
3454  //   A template explicit specialization is in the scope of the
3455  //   namespace in which the template was defined.
3456  //
3457  // We actually implement this paragraph where we set the semantic
3458  // context (in the creation of the ClassTemplateSpecializationDecl),
3459  // but we also maintain the lexical context where the actual
3460  // definition occurs.
3461  Specialization->setLexicalDeclContext(CurContext);
3462
3463  // We may be starting the definition of this specialization.
3464  if (TUK == TUK_Definition)
3465    Specialization->startDefinition();
3466
3467  if (TUK == TUK_Friend) {
3468    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3469                                            TemplateNameLoc,
3470                                            WrittenTy.getTypePtr(),
3471                                            /*FIXME:*/KWLoc);
3472    Friend->setAccess(AS_public);
3473    CurContext->addDecl(Friend);
3474  } else {
3475    // Add the specialization into its lexical context, so that it can
3476    // be seen when iterating through the list of declarations in that
3477    // context. However, specializations are not found by name lookup.
3478    CurContext->addDecl(Specialization);
3479  }
3480  return DeclPtrTy::make(Specialization);
3481}
3482
3483Sema::DeclPtrTy
3484Sema::ActOnTemplateDeclarator(Scope *S,
3485                              MultiTemplateParamsArg TemplateParameterLists,
3486                              Declarator &D) {
3487  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3488}
3489
3490Sema::DeclPtrTy
3491Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3492                               MultiTemplateParamsArg TemplateParameterLists,
3493                                      Declarator &D) {
3494  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3495  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3496         "Not a function declarator!");
3497  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3498
3499  if (FTI.hasPrototype) {
3500    // FIXME: Diagnose arguments without names in C.
3501  }
3502
3503  Scope *ParentScope = FnBodyScope->getParent();
3504
3505  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3506                                  move(TemplateParameterLists),
3507                                  /*IsFunctionDefinition=*/true);
3508  if (FunctionTemplateDecl *FunctionTemplate
3509        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3510    return ActOnStartOfFunctionDef(FnBodyScope,
3511                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3512  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3513    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3514  return DeclPtrTy();
3515}
3516
3517/// \brief Diagnose cases where we have an explicit template specialization
3518/// before/after an explicit template instantiation, producing diagnostics
3519/// for those cases where they are required and determining whether the
3520/// new specialization/instantiation will have any effect.
3521///
3522/// \param NewLoc the location of the new explicit specialization or
3523/// instantiation.
3524///
3525/// \param NewTSK the kind of the new explicit specialization or instantiation.
3526///
3527/// \param PrevDecl the previous declaration of the entity.
3528///
3529/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3530///
3531/// \param PrevPointOfInstantiation if valid, indicates where the previus
3532/// declaration was instantiated (either implicitly or explicitly).
3533///
3534/// \param SuppressNew will be set to true to indicate that the new
3535/// specialization or instantiation has no effect and should be ignored.
3536///
3537/// \returns true if there was an error that should prevent the introduction of
3538/// the new declaration into the AST, false otherwise.
3539bool
3540Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3541                                             TemplateSpecializationKind NewTSK,
3542                                             NamedDecl *PrevDecl,
3543                                             TemplateSpecializationKind PrevTSK,
3544                                        SourceLocation PrevPointOfInstantiation,
3545                                             bool &SuppressNew) {
3546  SuppressNew = false;
3547
3548  switch (NewTSK) {
3549  case TSK_Undeclared:
3550  case TSK_ImplicitInstantiation:
3551    assert(false && "Don't check implicit instantiations here");
3552    return false;
3553
3554  case TSK_ExplicitSpecialization:
3555    switch (PrevTSK) {
3556    case TSK_Undeclared:
3557    case TSK_ExplicitSpecialization:
3558      // Okay, we're just specializing something that is either already
3559      // explicitly specialized or has merely been mentioned without any
3560      // instantiation.
3561      return false;
3562
3563    case TSK_ImplicitInstantiation:
3564      if (PrevPointOfInstantiation.isInvalid()) {
3565        // The declaration itself has not actually been instantiated, so it is
3566        // still okay to specialize it.
3567        return false;
3568      }
3569      // Fall through
3570
3571    case TSK_ExplicitInstantiationDeclaration:
3572    case TSK_ExplicitInstantiationDefinition:
3573      assert((PrevTSK == TSK_ImplicitInstantiation ||
3574              PrevPointOfInstantiation.isValid()) &&
3575             "Explicit instantiation without point of instantiation?");
3576
3577      // C++ [temp.expl.spec]p6:
3578      //   If a template, a member template or the member of a class template
3579      //   is explicitly specialized then that specialization shall be declared
3580      //   before the first use of that specialization that would cause an
3581      //   implicit instantiation to take place, in every translation unit in
3582      //   which such a use occurs; no diagnostic is required.
3583      Diag(NewLoc, diag::err_specialization_after_instantiation)
3584        << PrevDecl;
3585      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3586        << (PrevTSK != TSK_ImplicitInstantiation);
3587
3588      return true;
3589    }
3590    break;
3591
3592  case TSK_ExplicitInstantiationDeclaration:
3593    switch (PrevTSK) {
3594    case TSK_ExplicitInstantiationDeclaration:
3595      // This explicit instantiation declaration is redundant (that's okay).
3596      SuppressNew = true;
3597      return false;
3598
3599    case TSK_Undeclared:
3600    case TSK_ImplicitInstantiation:
3601      // We're explicitly instantiating something that may have already been
3602      // implicitly instantiated; that's fine.
3603      return false;
3604
3605    case TSK_ExplicitSpecialization:
3606      // C++0x [temp.explicit]p4:
3607      //   For a given set of template parameters, if an explicit instantiation
3608      //   of a template appears after a declaration of an explicit
3609      //   specialization for that template, the explicit instantiation has no
3610      //   effect.
3611      return false;
3612
3613    case TSK_ExplicitInstantiationDefinition:
3614      // C++0x [temp.explicit]p10:
3615      //   If an entity is the subject of both an explicit instantiation
3616      //   declaration and an explicit instantiation definition in the same
3617      //   translation unit, the definition shall follow the declaration.
3618      Diag(NewLoc,
3619           diag::err_explicit_instantiation_declaration_after_definition);
3620      Diag(PrevPointOfInstantiation,
3621           diag::note_explicit_instantiation_definition_here);
3622      assert(PrevPointOfInstantiation.isValid() &&
3623             "Explicit instantiation without point of instantiation?");
3624      SuppressNew = true;
3625      return false;
3626    }
3627    break;
3628
3629  case TSK_ExplicitInstantiationDefinition:
3630    switch (PrevTSK) {
3631    case TSK_Undeclared:
3632    case TSK_ImplicitInstantiation:
3633      // We're explicitly instantiating something that may have already been
3634      // implicitly instantiated; that's fine.
3635      return false;
3636
3637    case TSK_ExplicitSpecialization:
3638      // C++ DR 259, C++0x [temp.explicit]p4:
3639      //   For a given set of template parameters, if an explicit
3640      //   instantiation of a template appears after a declaration of
3641      //   an explicit specialization for that template, the explicit
3642      //   instantiation has no effect.
3643      //
3644      // In C++98/03 mode, we only give an extension warning here, because it
3645      // is not not harmful to try to explicitly instantiate something that
3646      // has been explicitly specialized.
3647      if (!getLangOptions().CPlusPlus0x) {
3648        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3649          << PrevDecl;
3650        Diag(PrevDecl->getLocation(),
3651             diag::note_previous_template_specialization);
3652      }
3653      SuppressNew = true;
3654      return false;
3655
3656    case TSK_ExplicitInstantiationDeclaration:
3657      // We're explicity instantiating a definition for something for which we
3658      // were previously asked to suppress instantiations. That's fine.
3659      return false;
3660
3661    case TSK_ExplicitInstantiationDefinition:
3662      // C++0x [temp.spec]p5:
3663      //   For a given template and a given set of template-arguments,
3664      //     - an explicit instantiation definition shall appear at most once
3665      //       in a program,
3666      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3667        << PrevDecl;
3668      Diag(PrevPointOfInstantiation,
3669           diag::note_previous_explicit_instantiation);
3670      SuppressNew = true;
3671      return false;
3672    }
3673    break;
3674  }
3675
3676  assert(false && "Missing specialization/instantiation case?");
3677
3678  return false;
3679}
3680
3681/// \brief Perform semantic analysis for the given function template
3682/// specialization.
3683///
3684/// This routine performs all of the semantic analysis required for an
3685/// explicit function template specialization. On successful completion,
3686/// the function declaration \p FD will become a function template
3687/// specialization.
3688///
3689/// \param FD the function declaration, which will be updated to become a
3690/// function template specialization.
3691///
3692/// \param HasExplicitTemplateArgs whether any template arguments were
3693/// explicitly provided.
3694///
3695/// \param LAngleLoc the location of the left angle bracket ('<'), if
3696/// template arguments were explicitly provided.
3697///
3698/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3699/// if any.
3700///
3701/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3702/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3703/// true as in, e.g., \c void sort<>(char*, char*);
3704///
3705/// \param RAngleLoc the location of the right angle bracket ('>'), if
3706/// template arguments were explicitly provided.
3707///
3708/// \param PrevDecl the set of declarations that
3709bool
3710Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3711                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3712                                          LookupResult &Previous) {
3713  // The set of function template specializations that could match this
3714  // explicit function template specialization.
3715  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3716  CandidateSet Candidates;
3717
3718  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3719  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3720         I != E; ++I) {
3721    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3722    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3723      // Only consider templates found within the same semantic lookup scope as
3724      // FD.
3725      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3726        continue;
3727
3728      // C++ [temp.expl.spec]p11:
3729      //   A trailing template-argument can be left unspecified in the
3730      //   template-id naming an explicit function template specialization
3731      //   provided it can be deduced from the function argument type.
3732      // Perform template argument deduction to determine whether we may be
3733      // specializing this template.
3734      // FIXME: It is somewhat wasteful to build
3735      TemplateDeductionInfo Info(Context);
3736      FunctionDecl *Specialization = 0;
3737      if (TemplateDeductionResult TDK
3738            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3739                                      FD->getType(),
3740                                      Specialization,
3741                                      Info)) {
3742        // FIXME: Template argument deduction failed; record why it failed, so
3743        // that we can provide nifty diagnostics.
3744        (void)TDK;
3745        continue;
3746      }
3747
3748      // Record this candidate.
3749      Candidates.push_back(Specialization);
3750    }
3751  }
3752
3753  // Find the most specialized function template.
3754  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3755                                                    Candidates.size(),
3756                                                    TPOC_Other,
3757                                                    FD->getLocation(),
3758                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3759                    << FD->getDeclName(),
3760                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3761                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3762                  PartialDiagnostic(diag::note_function_template_spec_matched));
3763  if (!Specialization)
3764    return true;
3765
3766  // FIXME: Check if the prior specialization has a point of instantiation.
3767  // If so, we have run afoul of .
3768
3769  // Check the scope of this explicit specialization.
3770  if (CheckTemplateSpecializationScope(*this,
3771                                       Specialization->getPrimaryTemplate(),
3772                                       Specialization, FD->getLocation(),
3773                                       false))
3774    return true;
3775
3776  // C++ [temp.expl.spec]p6:
3777  //   If a template, a member template or the member of a class template is
3778  //   explicitly specialized then that specialization shall be declared
3779  //   before the first use of that specialization that would cause an implicit
3780  //   instantiation to take place, in every translation unit in which such a
3781  //   use occurs; no diagnostic is required.
3782  FunctionTemplateSpecializationInfo *SpecInfo
3783    = Specialization->getTemplateSpecializationInfo();
3784  assert(SpecInfo && "Function template specialization info missing?");
3785  if (SpecInfo->getPointOfInstantiation().isValid()) {
3786    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3787      << FD;
3788    Diag(SpecInfo->getPointOfInstantiation(),
3789         diag::note_instantiation_required_here)
3790      << (Specialization->getTemplateSpecializationKind()
3791                                                != TSK_ImplicitInstantiation);
3792    return true;
3793  }
3794
3795  // Mark the prior declaration as an explicit specialization, so that later
3796  // clients know that this is an explicit specialization.
3797  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3798
3799  // Turn the given function declaration into a function template
3800  // specialization, with the template arguments from the previous
3801  // specialization.
3802  FD->setFunctionTemplateSpecialization(Context,
3803                                        Specialization->getPrimaryTemplate(),
3804                         new (Context) TemplateArgumentList(
3805                             *Specialization->getTemplateSpecializationArgs()),
3806                                        /*InsertPos=*/0,
3807                                        TSK_ExplicitSpecialization);
3808
3809  // The "previous declaration" for this function template specialization is
3810  // the prior function template specialization.
3811  Previous.clear();
3812  Previous.addDecl(Specialization);
3813  return false;
3814}
3815
3816/// \brief Perform semantic analysis for the given non-template member
3817/// specialization.
3818///
3819/// This routine performs all of the semantic analysis required for an
3820/// explicit member function specialization. On successful completion,
3821/// the function declaration \p FD will become a member function
3822/// specialization.
3823///
3824/// \param Member the member declaration, which will be updated to become a
3825/// specialization.
3826///
3827/// \param Previous the set of declarations, one of which may be specialized
3828/// by this function specialization;  the set will be modified to contain the
3829/// redeclared member.
3830bool
3831Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3832  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3833
3834  // Try to find the member we are instantiating.
3835  NamedDecl *Instantiation = 0;
3836  NamedDecl *InstantiatedFrom = 0;
3837  MemberSpecializationInfo *MSInfo = 0;
3838
3839  if (Previous.empty()) {
3840    // Nowhere to look anyway.
3841  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3842    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3843           I != E; ++I) {
3844      NamedDecl *D = (*I)->getUnderlyingDecl();
3845      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3846        if (Context.hasSameType(Function->getType(), Method->getType())) {
3847          Instantiation = Method;
3848          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3849          MSInfo = Method->getMemberSpecializationInfo();
3850          break;
3851        }
3852      }
3853    }
3854  } else if (isa<VarDecl>(Member)) {
3855    VarDecl *PrevVar;
3856    if (Previous.isSingleResult() &&
3857        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
3858      if (PrevVar->isStaticDataMember()) {
3859        Instantiation = PrevVar;
3860        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3861        MSInfo = PrevVar->getMemberSpecializationInfo();
3862      }
3863  } else if (isa<RecordDecl>(Member)) {
3864    CXXRecordDecl *PrevRecord;
3865    if (Previous.isSingleResult() &&
3866        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
3867      Instantiation = PrevRecord;
3868      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3869      MSInfo = PrevRecord->getMemberSpecializationInfo();
3870    }
3871  }
3872
3873  if (!Instantiation) {
3874    // There is no previous declaration that matches. Since member
3875    // specializations are always out-of-line, the caller will complain about
3876    // this mismatch later.
3877    return false;
3878  }
3879
3880  // Make sure that this is a specialization of a member.
3881  if (!InstantiatedFrom) {
3882    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3883      << Member;
3884    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3885    return true;
3886  }
3887
3888  // C++ [temp.expl.spec]p6:
3889  //   If a template, a member template or the member of a class template is
3890  //   explicitly specialized then that spe- cialization shall be declared
3891  //   before the first use of that specialization that would cause an implicit
3892  //   instantiation to take place, in every translation unit in which such a
3893  //   use occurs; no diagnostic is required.
3894  assert(MSInfo && "Member specialization info missing?");
3895  if (MSInfo->getPointOfInstantiation().isValid()) {
3896    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3897      << Member;
3898    Diag(MSInfo->getPointOfInstantiation(),
3899         diag::note_instantiation_required_here)
3900      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3901    return true;
3902  }
3903
3904  // Check the scope of this explicit specialization.
3905  if (CheckTemplateSpecializationScope(*this,
3906                                       InstantiatedFrom,
3907                                       Instantiation, Member->getLocation(),
3908                                       false))
3909    return true;
3910
3911  // Note that this is an explicit instantiation of a member.
3912  // the original declaration to note that it is an explicit specialization
3913  // (if it was previously an implicit instantiation). This latter step
3914  // makes bookkeeping easier.
3915  if (isa<FunctionDecl>(Member)) {
3916    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3917    if (InstantiationFunction->getTemplateSpecializationKind() ==
3918          TSK_ImplicitInstantiation) {
3919      InstantiationFunction->setTemplateSpecializationKind(
3920                                                  TSK_ExplicitSpecialization);
3921      InstantiationFunction->setLocation(Member->getLocation());
3922    }
3923
3924    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3925                                        cast<CXXMethodDecl>(InstantiatedFrom),
3926                                                  TSK_ExplicitSpecialization);
3927  } else if (isa<VarDecl>(Member)) {
3928    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3929    if (InstantiationVar->getTemplateSpecializationKind() ==
3930          TSK_ImplicitInstantiation) {
3931      InstantiationVar->setTemplateSpecializationKind(
3932                                                  TSK_ExplicitSpecialization);
3933      InstantiationVar->setLocation(Member->getLocation());
3934    }
3935
3936    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3937                                                cast<VarDecl>(InstantiatedFrom),
3938                                                TSK_ExplicitSpecialization);
3939  } else {
3940    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3941    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3942    if (InstantiationClass->getTemplateSpecializationKind() ==
3943          TSK_ImplicitInstantiation) {
3944      InstantiationClass->setTemplateSpecializationKind(
3945                                                   TSK_ExplicitSpecialization);
3946      InstantiationClass->setLocation(Member->getLocation());
3947    }
3948
3949    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3950                                        cast<CXXRecordDecl>(InstantiatedFrom),
3951                                                   TSK_ExplicitSpecialization);
3952  }
3953
3954  // Save the caller the trouble of having to figure out which declaration
3955  // this specialization matches.
3956  Previous.clear();
3957  Previous.addDecl(Instantiation);
3958  return false;
3959}
3960
3961/// \brief Check the scope of an explicit instantiation.
3962static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3963                                            SourceLocation InstLoc,
3964                                            bool WasQualifiedName) {
3965  DeclContext *ExpectedContext
3966    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3967  DeclContext *CurContext = S.CurContext->getLookupContext();
3968
3969  // C++0x [temp.explicit]p2:
3970  //   An explicit instantiation shall appear in an enclosing namespace of its
3971  //   template.
3972  //
3973  // This is DR275, which we do not retroactively apply to C++98/03.
3974  if (S.getLangOptions().CPlusPlus0x &&
3975      !CurContext->Encloses(ExpectedContext)) {
3976    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3977      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3978        << D << NS;
3979    else
3980      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3981        << D;
3982    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3983    return;
3984  }
3985
3986  // C++0x [temp.explicit]p2:
3987  //   If the name declared in the explicit instantiation is an unqualified
3988  //   name, the explicit instantiation shall appear in the namespace where
3989  //   its template is declared or, if that namespace is inline (7.3.1), any
3990  //   namespace from its enclosing namespace set.
3991  if (WasQualifiedName)
3992    return;
3993
3994  if (CurContext->Equals(ExpectedContext))
3995    return;
3996
3997  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3998    << D << ExpectedContext;
3999  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4000}
4001
4002/// \brief Determine whether the given scope specifier has a template-id in it.
4003static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4004  if (!SS.isSet())
4005    return false;
4006
4007  // C++0x [temp.explicit]p2:
4008  //   If the explicit instantiation is for a member function, a member class
4009  //   or a static data member of a class template specialization, the name of
4010  //   the class template specialization in the qualified-id for the member
4011  //   name shall be a simple-template-id.
4012  //
4013  // C++98 has the same restriction, just worded differently.
4014  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4015       NNS; NNS = NNS->getPrefix())
4016    if (Type *T = NNS->getAsType())
4017      if (isa<TemplateSpecializationType>(T))
4018        return true;
4019
4020  return false;
4021}
4022
4023// Explicit instantiation of a class template specialization
4024// FIXME: Implement extern template semantics
4025Sema::DeclResult
4026Sema::ActOnExplicitInstantiation(Scope *S,
4027                                 SourceLocation ExternLoc,
4028                                 SourceLocation TemplateLoc,
4029                                 unsigned TagSpec,
4030                                 SourceLocation KWLoc,
4031                                 const CXXScopeSpec &SS,
4032                                 TemplateTy TemplateD,
4033                                 SourceLocation TemplateNameLoc,
4034                                 SourceLocation LAngleLoc,
4035                                 ASTTemplateArgsPtr TemplateArgsIn,
4036                                 SourceLocation RAngleLoc,
4037                                 AttributeList *Attr) {
4038  // Find the class template we're specializing
4039  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4040  ClassTemplateDecl *ClassTemplate
4041    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4042
4043  // Check that the specialization uses the same tag kind as the
4044  // original template.
4045  TagDecl::TagKind Kind;
4046  switch (TagSpec) {
4047  default: assert(0 && "Unknown tag type!");
4048  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4049  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4050  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4051  }
4052  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4053                                    Kind, KWLoc,
4054                                    *ClassTemplate->getIdentifier())) {
4055    Diag(KWLoc, diag::err_use_with_wrong_tag)
4056      << ClassTemplate
4057      << CodeModificationHint::CreateReplacement(KWLoc,
4058                            ClassTemplate->getTemplatedDecl()->getKindName());
4059    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4060         diag::note_previous_use);
4061    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4062  }
4063
4064  // C++0x [temp.explicit]p2:
4065  //   There are two forms of explicit instantiation: an explicit instantiation
4066  //   definition and an explicit instantiation declaration. An explicit
4067  //   instantiation declaration begins with the extern keyword. [...]
4068  TemplateSpecializationKind TSK
4069    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4070                           : TSK_ExplicitInstantiationDeclaration;
4071
4072  // Translate the parser's template argument list in our AST format.
4073  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4074  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4075
4076  // Check that the template argument list is well-formed for this
4077  // template.
4078  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4079                                        TemplateArgs.size());
4080  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4081                                TemplateArgs, false, Converted))
4082    return true;
4083
4084  assert((Converted.structuredSize() ==
4085            ClassTemplate->getTemplateParameters()->size()) &&
4086         "Converted template argument list is too short!");
4087
4088  // Find the class template specialization declaration that
4089  // corresponds to these arguments.
4090  llvm::FoldingSetNodeID ID;
4091  ClassTemplateSpecializationDecl::Profile(ID,
4092                                           Converted.getFlatArguments(),
4093                                           Converted.flatSize(),
4094                                           Context);
4095  void *InsertPos = 0;
4096  ClassTemplateSpecializationDecl *PrevDecl
4097    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4098
4099  // C++0x [temp.explicit]p2:
4100  //   [...] An explicit instantiation shall appear in an enclosing
4101  //   namespace of its template. [...]
4102  //
4103  // This is C++ DR 275.
4104  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4105                                  SS.isSet());
4106
4107  ClassTemplateSpecializationDecl *Specialization = 0;
4108
4109  if (PrevDecl) {
4110    bool SuppressNew = false;
4111    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4112                                               PrevDecl,
4113                                              PrevDecl->getSpecializationKind(),
4114                                            PrevDecl->getPointOfInstantiation(),
4115                                               SuppressNew))
4116      return DeclPtrTy::make(PrevDecl);
4117
4118    if (SuppressNew)
4119      return DeclPtrTy::make(PrevDecl);
4120
4121    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4122        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4123      // Since the only prior class template specialization with these
4124      // arguments was referenced but not declared, reuse that
4125      // declaration node as our own, updating its source location to
4126      // reflect our new declaration.
4127      Specialization = PrevDecl;
4128      Specialization->setLocation(TemplateNameLoc);
4129      PrevDecl = 0;
4130    }
4131  }
4132
4133  if (!Specialization) {
4134    // Create a new class template specialization declaration node for
4135    // this explicit specialization.
4136    Specialization
4137      = ClassTemplateSpecializationDecl::Create(Context,
4138                                             ClassTemplate->getDeclContext(),
4139                                                TemplateNameLoc,
4140                                                ClassTemplate,
4141                                                Converted, PrevDecl);
4142
4143    if (PrevDecl) {
4144      // Remove the previous declaration from the folding set, since we want
4145      // to introduce a new declaration.
4146      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4147      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4148    }
4149
4150    // Insert the new specialization.
4151    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4152  }
4153
4154  // Build the fully-sugared type for this explicit instantiation as
4155  // the user wrote in the explicit instantiation itself. This means
4156  // that we'll pretty-print the type retrieved from the
4157  // specialization's declaration the way that the user actually wrote
4158  // the explicit instantiation, rather than formatting the name based
4159  // on the "canonical" representation used to store the template
4160  // arguments in the specialization.
4161  QualType WrittenTy
4162    = Context.getTemplateSpecializationType(Name, TemplateArgs,
4163                                  Context.getTypeDeclType(Specialization));
4164  Specialization->setTypeAsWritten(WrittenTy);
4165  TemplateArgsIn.release();
4166
4167  // Add the explicit instantiation into its lexical context. However,
4168  // since explicit instantiations are never found by name lookup, we
4169  // just put it into the declaration context directly.
4170  Specialization->setLexicalDeclContext(CurContext);
4171  CurContext->addDecl(Specialization);
4172
4173  // C++ [temp.explicit]p3:
4174  //   A definition of a class template or class member template
4175  //   shall be in scope at the point of the explicit instantiation of
4176  //   the class template or class member template.
4177  //
4178  // This check comes when we actually try to perform the
4179  // instantiation.
4180  ClassTemplateSpecializationDecl *Def
4181    = cast_or_null<ClassTemplateSpecializationDecl>(
4182                                        Specialization->getDefinition(Context));
4183  if (!Def)
4184    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4185
4186  // Instantiate the members of this class template specialization.
4187  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4188                                       Specialization->getDefinition(Context));
4189  if (Def)
4190    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4191
4192  return DeclPtrTy::make(Specialization);
4193}
4194
4195// Explicit instantiation of a member class of a class template.
4196Sema::DeclResult
4197Sema::ActOnExplicitInstantiation(Scope *S,
4198                                 SourceLocation ExternLoc,
4199                                 SourceLocation TemplateLoc,
4200                                 unsigned TagSpec,
4201                                 SourceLocation KWLoc,
4202                                 const CXXScopeSpec &SS,
4203                                 IdentifierInfo *Name,
4204                                 SourceLocation NameLoc,
4205                                 AttributeList *Attr) {
4206
4207  bool Owned = false;
4208  bool IsDependent = false;
4209  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4210                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4211                            MultiTemplateParamsArg(*this, 0, 0),
4212                            Owned, IsDependent);
4213  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4214
4215  if (!TagD)
4216    return true;
4217
4218  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4219  if (Tag->isEnum()) {
4220    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4221      << Context.getTypeDeclType(Tag);
4222    return true;
4223  }
4224
4225  if (Tag->isInvalidDecl())
4226    return true;
4227
4228  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4229  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4230  if (!Pattern) {
4231    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4232      << Context.getTypeDeclType(Record);
4233    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4234    return true;
4235  }
4236
4237  // C++0x [temp.explicit]p2:
4238  //   If the explicit instantiation is for a class or member class, the
4239  //   elaborated-type-specifier in the declaration shall include a
4240  //   simple-template-id.
4241  //
4242  // C++98 has the same restriction, just worded differently.
4243  if (!ScopeSpecifierHasTemplateId(SS))
4244    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4245      << Record << SS.getRange();
4246
4247  // C++0x [temp.explicit]p2:
4248  //   There are two forms of explicit instantiation: an explicit instantiation
4249  //   definition and an explicit instantiation declaration. An explicit
4250  //   instantiation declaration begins with the extern keyword. [...]
4251  TemplateSpecializationKind TSK
4252    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4253                           : TSK_ExplicitInstantiationDeclaration;
4254
4255  // C++0x [temp.explicit]p2:
4256  //   [...] An explicit instantiation shall appear in an enclosing
4257  //   namespace of its template. [...]
4258  //
4259  // This is C++ DR 275.
4260  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4261
4262  // Verify that it is okay to explicitly instantiate here.
4263  CXXRecordDecl *PrevDecl
4264    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4265  if (!PrevDecl && Record->getDefinition(Context))
4266    PrevDecl = Record;
4267  if (PrevDecl) {
4268    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4269    bool SuppressNew = false;
4270    assert(MSInfo && "No member specialization information?");
4271    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4272                                               PrevDecl,
4273                                        MSInfo->getTemplateSpecializationKind(),
4274                                             MSInfo->getPointOfInstantiation(),
4275                                               SuppressNew))
4276      return true;
4277    if (SuppressNew)
4278      return TagD;
4279  }
4280
4281  CXXRecordDecl *RecordDef
4282    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4283  if (!RecordDef) {
4284    // C++ [temp.explicit]p3:
4285    //   A definition of a member class of a class template shall be in scope
4286    //   at the point of an explicit instantiation of the member class.
4287    CXXRecordDecl *Def
4288      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4289    if (!Def) {
4290      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4291        << 0 << Record->getDeclName() << Record->getDeclContext();
4292      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4293        << Pattern;
4294      return true;
4295    } else {
4296      if (InstantiateClass(NameLoc, Record, Def,
4297                           getTemplateInstantiationArgs(Record),
4298                           TSK))
4299        return true;
4300
4301      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4302      if (!RecordDef)
4303        return true;
4304    }
4305  }
4306
4307  // Instantiate all of the members of the class.
4308  InstantiateClassMembers(NameLoc, RecordDef,
4309                          getTemplateInstantiationArgs(Record), TSK);
4310
4311  // FIXME: We don't have any representation for explicit instantiations of
4312  // member classes. Such a representation is not needed for compilation, but it
4313  // should be available for clients that want to see all of the declarations in
4314  // the source code.
4315  return TagD;
4316}
4317
4318Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4319                                                  SourceLocation ExternLoc,
4320                                                  SourceLocation TemplateLoc,
4321                                                  Declarator &D) {
4322  // Explicit instantiations always require a name.
4323  DeclarationName Name = GetNameForDeclarator(D);
4324  if (!Name) {
4325    if (!D.isInvalidType())
4326      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4327           diag::err_explicit_instantiation_requires_name)
4328        << D.getDeclSpec().getSourceRange()
4329        << D.getSourceRange();
4330
4331    return true;
4332  }
4333
4334  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4335  // we find one that is.
4336  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4337         (S->getFlags() & Scope::TemplateParamScope) != 0)
4338    S = S->getParent();
4339
4340  // Determine the type of the declaration.
4341  QualType R = GetTypeForDeclarator(D, S, 0);
4342  if (R.isNull())
4343    return true;
4344
4345  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4346    // Cannot explicitly instantiate a typedef.
4347    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4348      << Name;
4349    return true;
4350  }
4351
4352  // C++0x [temp.explicit]p1:
4353  //   [...] An explicit instantiation of a function template shall not use the
4354  //   inline or constexpr specifiers.
4355  // Presumably, this also applies to member functions of class templates as
4356  // well.
4357  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4358    Diag(D.getDeclSpec().getInlineSpecLoc(),
4359         diag::err_explicit_instantiation_inline)
4360      << CodeModificationHint::CreateRemoval(
4361                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
4362
4363  // FIXME: check for constexpr specifier.
4364
4365  // C++0x [temp.explicit]p2:
4366  //   There are two forms of explicit instantiation: an explicit instantiation
4367  //   definition and an explicit instantiation declaration. An explicit
4368  //   instantiation declaration begins with the extern keyword. [...]
4369  TemplateSpecializationKind TSK
4370    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4371                           : TSK_ExplicitInstantiationDeclaration;
4372
4373  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4374  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4375
4376  if (!R->isFunctionType()) {
4377    // C++ [temp.explicit]p1:
4378    //   A [...] static data member of a class template can be explicitly
4379    //   instantiated from the member definition associated with its class
4380    //   template.
4381    if (Previous.isAmbiguous())
4382      return true;
4383
4384    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
4385        Previous.getAsSingleDecl(Context));
4386    if (!Prev || !Prev->isStaticDataMember()) {
4387      // We expect to see a data data member here.
4388      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4389        << Name;
4390      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4391           P != PEnd; ++P)
4392        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4393      return true;
4394    }
4395
4396    if (!Prev->getInstantiatedFromStaticDataMember()) {
4397      // FIXME: Check for explicit specialization?
4398      Diag(D.getIdentifierLoc(),
4399           diag::err_explicit_instantiation_data_member_not_instantiated)
4400        << Prev;
4401      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4402      // FIXME: Can we provide a note showing where this was declared?
4403      return true;
4404    }
4405
4406    // C++0x [temp.explicit]p2:
4407    //   If the explicit instantiation is for a member function, a member class
4408    //   or a static data member of a class template specialization, the name of
4409    //   the class template specialization in the qualified-id for the member
4410    //   name shall be a simple-template-id.
4411    //
4412    // C++98 has the same restriction, just worded differently.
4413    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4414      Diag(D.getIdentifierLoc(),
4415           diag::err_explicit_instantiation_without_qualified_id)
4416        << Prev << D.getCXXScopeSpec().getRange();
4417
4418    // Check the scope of this explicit instantiation.
4419    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4420
4421    // Verify that it is okay to explicitly instantiate here.
4422    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4423    assert(MSInfo && "Missing static data member specialization info?");
4424    bool SuppressNew = false;
4425    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4426                                        MSInfo->getTemplateSpecializationKind(),
4427                                              MSInfo->getPointOfInstantiation(),
4428                                               SuppressNew))
4429      return true;
4430    if (SuppressNew)
4431      return DeclPtrTy();
4432
4433    // Instantiate static data member.
4434    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4435    if (TSK == TSK_ExplicitInstantiationDefinition)
4436      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4437                                            /*DefinitionRequired=*/true);
4438
4439    // FIXME: Create an ExplicitInstantiation node?
4440    return DeclPtrTy();
4441  }
4442
4443  // If the declarator is a template-id, translate the parser's template
4444  // argument list into our AST format.
4445  bool HasExplicitTemplateArgs = false;
4446  TemplateArgumentListInfo TemplateArgs;
4447  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4448    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4449    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4450    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4451    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4452                                       TemplateId->getTemplateArgs(),
4453                                       TemplateId->NumArgs);
4454    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4455    HasExplicitTemplateArgs = true;
4456    TemplateArgsPtr.release();
4457  }
4458
4459  // C++ [temp.explicit]p1:
4460  //   A [...] function [...] can be explicitly instantiated from its template.
4461  //   A member function [...] of a class template can be explicitly
4462  //  instantiated from the member definition associated with its class
4463  //  template.
4464  llvm::SmallVector<FunctionDecl *, 8> Matches;
4465  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4466       P != PEnd; ++P) {
4467    NamedDecl *Prev = *P;
4468    if (!HasExplicitTemplateArgs) {
4469      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4470        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4471          Matches.clear();
4472          Matches.push_back(Method);
4473          break;
4474        }
4475      }
4476    }
4477
4478    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4479    if (!FunTmpl)
4480      continue;
4481
4482    TemplateDeductionInfo Info(Context);
4483    FunctionDecl *Specialization = 0;
4484    if (TemplateDeductionResult TDK
4485          = DeduceTemplateArguments(FunTmpl,
4486                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4487                                    R, Specialization, Info)) {
4488      // FIXME: Keep track of almost-matches?
4489      (void)TDK;
4490      continue;
4491    }
4492
4493    Matches.push_back(Specialization);
4494  }
4495
4496  // Find the most specialized function template specialization.
4497  FunctionDecl *Specialization
4498    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4499                         D.getIdentifierLoc(),
4500          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4501          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4502                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4503
4504  if (!Specialization)
4505    return true;
4506
4507  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4508    Diag(D.getIdentifierLoc(),
4509         diag::err_explicit_instantiation_member_function_not_instantiated)
4510      << Specialization
4511      << (Specialization->getTemplateSpecializationKind() ==
4512          TSK_ExplicitSpecialization);
4513    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4514    return true;
4515  }
4516
4517  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4518  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4519    PrevDecl = Specialization;
4520
4521  if (PrevDecl) {
4522    bool SuppressNew = false;
4523    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4524                                               PrevDecl,
4525                                     PrevDecl->getTemplateSpecializationKind(),
4526                                          PrevDecl->getPointOfInstantiation(),
4527                                               SuppressNew))
4528      return true;
4529
4530    // FIXME: We may still want to build some representation of this
4531    // explicit specialization.
4532    if (SuppressNew)
4533      return DeclPtrTy();
4534  }
4535
4536  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4537
4538  if (TSK == TSK_ExplicitInstantiationDefinition)
4539    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4540                                  false, /*DefinitionRequired=*/true);
4541
4542  // C++0x [temp.explicit]p2:
4543  //   If the explicit instantiation is for a member function, a member class
4544  //   or a static data member of a class template specialization, the name of
4545  //   the class template specialization in the qualified-id for the member
4546  //   name shall be a simple-template-id.
4547  //
4548  // C++98 has the same restriction, just worded differently.
4549  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4550  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4551      D.getCXXScopeSpec().isSet() &&
4552      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4553    Diag(D.getIdentifierLoc(),
4554         diag::err_explicit_instantiation_without_qualified_id)
4555    << Specialization << D.getCXXScopeSpec().getRange();
4556
4557  CheckExplicitInstantiationScope(*this,
4558                   FunTmpl? (NamedDecl *)FunTmpl
4559                          : Specialization->getInstantiatedFromMemberFunction(),
4560                                  D.getIdentifierLoc(),
4561                                  D.getCXXScopeSpec().isSet());
4562
4563  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4564  return DeclPtrTy();
4565}
4566
4567Sema::TypeResult
4568Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4569                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4570                        SourceLocation TagLoc, SourceLocation NameLoc) {
4571  // This has to hold, because SS is expected to be defined.
4572  assert(Name && "Expected a name in a dependent tag");
4573
4574  NestedNameSpecifier *NNS
4575    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4576  if (!NNS)
4577    return true;
4578
4579  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4580  if (T.isNull())
4581    return true;
4582
4583  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4584  QualType ElabType = Context.getElaboratedType(T, TagKind);
4585
4586  return ElabType.getAsOpaquePtr();
4587}
4588
4589Sema::TypeResult
4590Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4591                        const IdentifierInfo &II, SourceLocation IdLoc) {
4592  NestedNameSpecifier *NNS
4593    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4594  if (!NNS)
4595    return true;
4596
4597  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4598  if (T.isNull())
4599    return true;
4600  return T.getAsOpaquePtr();
4601}
4602
4603Sema::TypeResult
4604Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4605                        SourceLocation TemplateLoc, TypeTy *Ty) {
4606  QualType T = GetTypeFromParser(Ty);
4607  NestedNameSpecifier *NNS
4608    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4609  const TemplateSpecializationType *TemplateId
4610    = T->getAs<TemplateSpecializationType>();
4611  assert(TemplateId && "Expected a template specialization type");
4612
4613  if (computeDeclContext(SS, false)) {
4614    // If we can compute a declaration context, then the "typename"
4615    // keyword was superfluous. Just build a QualifiedNameType to keep
4616    // track of the nested-name-specifier.
4617
4618    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4619    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4620  }
4621
4622  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4623}
4624
4625/// \brief Build the type that describes a C++ typename specifier,
4626/// e.g., "typename T::type".
4627QualType
4628Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4629                        SourceRange Range) {
4630  CXXRecordDecl *CurrentInstantiation = 0;
4631  if (NNS->isDependent()) {
4632    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4633
4634    // If the nested-name-specifier does not refer to the current
4635    // instantiation, then build a typename type.
4636    if (!CurrentInstantiation)
4637      return Context.getTypenameType(NNS, &II);
4638
4639    // The nested-name-specifier refers to the current instantiation, so the
4640    // "typename" keyword itself is superfluous. In C++03, the program is
4641    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4642    // extraneous "typename" keywords, and we retroactively apply this DR to
4643    // C++03 code.
4644  }
4645
4646  DeclContext *Ctx = 0;
4647
4648  if (CurrentInstantiation)
4649    Ctx = CurrentInstantiation;
4650  else {
4651    CXXScopeSpec SS;
4652    SS.setScopeRep(NNS);
4653    SS.setRange(Range);
4654    if (RequireCompleteDeclContext(SS))
4655      return QualType();
4656
4657    Ctx = computeDeclContext(SS);
4658  }
4659  assert(Ctx && "No declaration context?");
4660
4661  DeclarationName Name(&II);
4662  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4663  LookupQualifiedName(Result, Ctx);
4664  unsigned DiagID = 0;
4665  Decl *Referenced = 0;
4666  switch (Result.getResultKind()) {
4667  case LookupResult::NotFound:
4668    DiagID = diag::err_typename_nested_not_found;
4669    break;
4670
4671  case LookupResult::Found:
4672    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4673      // We found a type. Build a QualifiedNameType, since the
4674      // typename-specifier was just sugar. FIXME: Tell
4675      // QualifiedNameType that it has a "typename" prefix.
4676      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4677    }
4678
4679    DiagID = diag::err_typename_nested_not_type;
4680    Referenced = Result.getFoundDecl();
4681    break;
4682
4683  case LookupResult::FoundUnresolvedValue:
4684    llvm::llvm_unreachable("unresolved using decl in non-dependent context");
4685    return QualType();
4686
4687  case LookupResult::FoundOverloaded:
4688    DiagID = diag::err_typename_nested_not_type;
4689    Referenced = *Result.begin();
4690    break;
4691
4692  case LookupResult::Ambiguous:
4693    return QualType();
4694  }
4695
4696  // If we get here, it's because name lookup did not find a
4697  // type. Emit an appropriate diagnostic and return an error.
4698  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4699  if (Referenced)
4700    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4701      << Name;
4702  return QualType();
4703}
4704
4705namespace {
4706  // See Sema::RebuildTypeInCurrentInstantiation
4707  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4708    : public TreeTransform<CurrentInstantiationRebuilder> {
4709    SourceLocation Loc;
4710    DeclarationName Entity;
4711
4712  public:
4713    CurrentInstantiationRebuilder(Sema &SemaRef,
4714                                  SourceLocation Loc,
4715                                  DeclarationName Entity)
4716    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4717      Loc(Loc), Entity(Entity) { }
4718
4719    /// \brief Determine whether the given type \p T has already been
4720    /// transformed.
4721    ///
4722    /// For the purposes of type reconstruction, a type has already been
4723    /// transformed if it is NULL or if it is not dependent.
4724    bool AlreadyTransformed(QualType T) {
4725      return T.isNull() || !T->isDependentType();
4726    }
4727
4728    /// \brief Returns the location of the entity whose type is being
4729    /// rebuilt.
4730    SourceLocation getBaseLocation() { return Loc; }
4731
4732    /// \brief Returns the name of the entity whose type is being rebuilt.
4733    DeclarationName getBaseEntity() { return Entity; }
4734
4735    /// \brief Sets the "base" location and entity when that
4736    /// information is known based on another transformation.
4737    void setBase(SourceLocation Loc, DeclarationName Entity) {
4738      this->Loc = Loc;
4739      this->Entity = Entity;
4740    }
4741
4742    /// \brief Transforms an expression by returning the expression itself
4743    /// (an identity function).
4744    ///
4745    /// FIXME: This is completely unsafe; we will need to actually clone the
4746    /// expressions.
4747    Sema::OwningExprResult TransformExpr(Expr *E) {
4748      return getSema().Owned(E);
4749    }
4750
4751    /// \brief Transforms a typename type by determining whether the type now
4752    /// refers to a member of the current instantiation, and then
4753    /// type-checking and building a QualifiedNameType (when possible).
4754    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4755  };
4756}
4757
4758QualType
4759CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4760                                                     TypenameTypeLoc TL) {
4761  TypenameType *T = TL.getTypePtr();
4762
4763  NestedNameSpecifier *NNS
4764    = TransformNestedNameSpecifier(T->getQualifier(),
4765                              /*FIXME:*/SourceRange(getBaseLocation()));
4766  if (!NNS)
4767    return QualType();
4768
4769  // If the nested-name-specifier did not change, and we cannot compute the
4770  // context corresponding to the nested-name-specifier, then this
4771  // typename type will not change; exit early.
4772  CXXScopeSpec SS;
4773  SS.setRange(SourceRange(getBaseLocation()));
4774  SS.setScopeRep(NNS);
4775
4776  QualType Result;
4777  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4778    Result = QualType(T, 0);
4779
4780  // Rebuild the typename type, which will probably turn into a
4781  // QualifiedNameType.
4782  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4783    QualType NewTemplateId
4784      = TransformType(QualType(TemplateId, 0));
4785    if (NewTemplateId.isNull())
4786      return QualType();
4787
4788    if (NNS == T->getQualifier() &&
4789        NewTemplateId == QualType(TemplateId, 0))
4790      Result = QualType(T, 0);
4791    else
4792      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4793  } else
4794    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4795                                              SourceRange(TL.getNameLoc()));
4796
4797  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4798  NewTL.setNameLoc(TL.getNameLoc());
4799  return Result;
4800}
4801
4802/// \brief Rebuilds a type within the context of the current instantiation.
4803///
4804/// The type \p T is part of the type of an out-of-line member definition of
4805/// a class template (or class template partial specialization) that was parsed
4806/// and constructed before we entered the scope of the class template (or
4807/// partial specialization thereof). This routine will rebuild that type now
4808/// that we have entered the declarator's scope, which may produce different
4809/// canonical types, e.g.,
4810///
4811/// \code
4812/// template<typename T>
4813/// struct X {
4814///   typedef T* pointer;
4815///   pointer data();
4816/// };
4817///
4818/// template<typename T>
4819/// typename X<T>::pointer X<T>::data() { ... }
4820/// \endcode
4821///
4822/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4823/// since we do not know that we can look into X<T> when we parsed the type.
4824/// This function will rebuild the type, performing the lookup of "pointer"
4825/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4826/// as the canonical type of T*, allowing the return types of the out-of-line
4827/// definition and the declaration to match.
4828QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4829                                                 DeclarationName Name) {
4830  if (T.isNull() || !T->isDependentType())
4831    return T;
4832
4833  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4834  return Rebuilder.TransformType(T);
4835}
4836
4837/// \brief Produces a formatted string that describes the binding of
4838/// template parameters to template arguments.
4839std::string
4840Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4841                                      const TemplateArgumentList &Args) {
4842  // FIXME: For variadic templates, we'll need to get the structured list.
4843  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4844                                         Args.flat_size());
4845}
4846
4847std::string
4848Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4849                                      const TemplateArgument *Args,
4850                                      unsigned NumArgs) {
4851  std::string Result;
4852
4853  if (!Params || Params->size() == 0 || NumArgs == 0)
4854    return Result;
4855
4856  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4857    if (I >= NumArgs)
4858      break;
4859
4860    if (I == 0)
4861      Result += "[with ";
4862    else
4863      Result += ", ";
4864
4865    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4866      Result += Id->getName();
4867    } else {
4868      Result += '$';
4869      Result += llvm::utostr(I);
4870    }
4871
4872    Result += " = ";
4873
4874    switch (Args[I].getKind()) {
4875      case TemplateArgument::Null:
4876        Result += "<no value>";
4877        break;
4878
4879      case TemplateArgument::Type: {
4880        std::string TypeStr;
4881        Args[I].getAsType().getAsStringInternal(TypeStr,
4882                                                Context.PrintingPolicy);
4883        Result += TypeStr;
4884        break;
4885      }
4886
4887      case TemplateArgument::Declaration: {
4888        bool Unnamed = true;
4889        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4890          if (ND->getDeclName()) {
4891            Unnamed = false;
4892            Result += ND->getNameAsString();
4893          }
4894        }
4895
4896        if (Unnamed) {
4897          Result += "<anonymous>";
4898        }
4899        break;
4900      }
4901
4902      case TemplateArgument::Template: {
4903        std::string Str;
4904        llvm::raw_string_ostream OS(Str);
4905        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
4906        Result += OS.str();
4907        break;
4908      }
4909
4910      case TemplateArgument::Integral: {
4911        Result += Args[I].getAsIntegral()->toString(10);
4912        break;
4913      }
4914
4915      case TemplateArgument::Expression: {
4916        assert(false && "No expressions in deduced template arguments!");
4917        Result += "<expression>";
4918        break;
4919      }
4920
4921      case TemplateArgument::Pack:
4922        // FIXME: Format template argument packs
4923        Result += "<template argument pack>";
4924        break;
4925    }
4926  }
4927
4928  Result += ']';
4929  return Result;
4930}
4931