SemaTemplate.cpp revision 282e7e66748cc6dd14d6f7f2cb52e5373c531e61
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/StringExtras.h" 31using namespace clang; 32using namespace sema; 33 34// Exported for use by Parser. 35SourceRange 36clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 37 unsigned N) { 38 if (!N) return SourceRange(); 39 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 40} 41 42/// \brief Determine whether the declaration found is acceptable as the name 43/// of a template and, if so, return that template declaration. Otherwise, 44/// returns NULL. 45static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 46 NamedDecl *Orig) { 47 NamedDecl *D = Orig->getUnderlyingDecl(); 48 49 if (isa<TemplateDecl>(D)) 50 return Orig; 51 52 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 53 // C++ [temp.local]p1: 54 // Like normal (non-template) classes, class templates have an 55 // injected-class-name (Clause 9). The injected-class-name 56 // can be used with or without a template-argument-list. When 57 // it is used without a template-argument-list, it is 58 // equivalent to the injected-class-name followed by the 59 // template-parameters of the class template enclosed in 60 // <>. When it is used with a template-argument-list, it 61 // refers to the specified class template specialization, 62 // which could be the current specialization or another 63 // specialization. 64 if (Record->isInjectedClassName()) { 65 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 66 if (Record->getDescribedClassTemplate()) 67 return Record->getDescribedClassTemplate(); 68 69 if (ClassTemplateSpecializationDecl *Spec 70 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 71 return Spec->getSpecializedTemplate(); 72 } 73 74 return 0; 75 } 76 77 return 0; 78} 79 80void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 81 // The set of class templates we've already seen. 82 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 83 LookupResult::Filter filter = R.makeFilter(); 84 while (filter.hasNext()) { 85 NamedDecl *Orig = filter.next(); 86 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 87 if (!Repl) 88 filter.erase(); 89 else if (Repl != Orig) { 90 91 // C++ [temp.local]p3: 92 // A lookup that finds an injected-class-name (10.2) can result in an 93 // ambiguity in certain cases (for example, if it is found in more than 94 // one base class). If all of the injected-class-names that are found 95 // refer to specializations of the same class template, and if the name 96 // is used as a template-name, the reference refers to the class 97 // template itself and not a specialization thereof, and is not 98 // ambiguous. 99 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 100 if (!ClassTemplates.insert(ClassTmpl)) { 101 filter.erase(); 102 continue; 103 } 104 105 // FIXME: we promote access to public here as a workaround to 106 // the fact that LookupResult doesn't let us remember that we 107 // found this template through a particular injected class name, 108 // which means we end up doing nasty things to the invariants. 109 // Pretending that access is public is *much* safer. 110 filter.replace(Repl, AS_public); 111 } 112 } 113 filter.done(); 114} 115 116bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 117 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 118 if (isAcceptableTemplateName(Context, *I)) 119 return true; 120 121 return false; 122} 123 124TemplateNameKind Sema::isTemplateName(Scope *S, 125 CXXScopeSpec &SS, 126 bool hasTemplateKeyword, 127 UnqualifiedId &Name, 128 ParsedType ObjectTypePtr, 129 bool EnteringContext, 130 TemplateTy &TemplateResult, 131 bool &MemberOfUnknownSpecialization) { 132 assert(getLangOptions().CPlusPlus && "No template names in C!"); 133 134 DeclarationName TName; 135 MemberOfUnknownSpecialization = false; 136 137 switch (Name.getKind()) { 138 case UnqualifiedId::IK_Identifier: 139 TName = DeclarationName(Name.Identifier); 140 break; 141 142 case UnqualifiedId::IK_OperatorFunctionId: 143 TName = Context.DeclarationNames.getCXXOperatorName( 144 Name.OperatorFunctionId.Operator); 145 break; 146 147 case UnqualifiedId::IK_LiteralOperatorId: 148 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 149 break; 150 151 default: 152 return TNK_Non_template; 153 } 154 155 QualType ObjectType = ObjectTypePtr.get(); 156 157 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 158 LookupOrdinaryName); 159 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 160 MemberOfUnknownSpecialization); 161 if (R.empty()) return TNK_Non_template; 162 if (R.isAmbiguous()) { 163 // Suppress diagnostics; we'll redo this lookup later. 164 R.suppressDiagnostics(); 165 166 // FIXME: we might have ambiguous templates, in which case we 167 // should at least parse them properly! 168 return TNK_Non_template; 169 } 170 171 TemplateName Template; 172 TemplateNameKind TemplateKind; 173 174 unsigned ResultCount = R.end() - R.begin(); 175 if (ResultCount > 1) { 176 // We assume that we'll preserve the qualifier from a function 177 // template name in other ways. 178 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 179 TemplateKind = TNK_Function_template; 180 181 // We'll do this lookup again later. 182 R.suppressDiagnostics(); 183 } else { 184 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 185 186 if (SS.isSet() && !SS.isInvalid()) { 187 NestedNameSpecifier *Qualifier 188 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 189 Template = Context.getQualifiedTemplateName(Qualifier, 190 hasTemplateKeyword, TD); 191 } else { 192 Template = TemplateName(TD); 193 } 194 195 if (isa<FunctionTemplateDecl>(TD)) { 196 TemplateKind = TNK_Function_template; 197 198 // We'll do this lookup again later. 199 R.suppressDiagnostics(); 200 } else { 201 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 202 isa<TypeAliasTemplateDecl>(TD)); 203 TemplateKind = TNK_Type_template; 204 } 205 } 206 207 TemplateResult = TemplateTy::make(Template); 208 return TemplateKind; 209} 210 211bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 212 SourceLocation IILoc, 213 Scope *S, 214 const CXXScopeSpec *SS, 215 TemplateTy &SuggestedTemplate, 216 TemplateNameKind &SuggestedKind) { 217 // We can't recover unless there's a dependent scope specifier preceding the 218 // template name. 219 // FIXME: Typo correction? 220 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 221 computeDeclContext(*SS)) 222 return false; 223 224 // The code is missing a 'template' keyword prior to the dependent template 225 // name. 226 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 227 Diag(IILoc, diag::err_template_kw_missing) 228 << Qualifier << II.getName() 229 << FixItHint::CreateInsertion(IILoc, "template "); 230 SuggestedTemplate 231 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 232 SuggestedKind = TNK_Dependent_template_name; 233 return true; 234} 235 236void Sema::LookupTemplateName(LookupResult &Found, 237 Scope *S, CXXScopeSpec &SS, 238 QualType ObjectType, 239 bool EnteringContext, 240 bool &MemberOfUnknownSpecialization) { 241 // Determine where to perform name lookup 242 MemberOfUnknownSpecialization = false; 243 DeclContext *LookupCtx = 0; 244 bool isDependent = false; 245 if (!ObjectType.isNull()) { 246 // This nested-name-specifier occurs in a member access expression, e.g., 247 // x->B::f, and we are looking into the type of the object. 248 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 249 LookupCtx = computeDeclContext(ObjectType); 250 isDependent = ObjectType->isDependentType(); 251 assert((isDependent || !ObjectType->isIncompleteType()) && 252 "Caller should have completed object type"); 253 254 // Template names cannot appear inside an Objective-C class or object type. 255 if (ObjectType->isObjCObjectOrInterfaceType()) { 256 Found.clear(); 257 return; 258 } 259 } else if (SS.isSet()) { 260 // This nested-name-specifier occurs after another nested-name-specifier, 261 // so long into the context associated with the prior nested-name-specifier. 262 LookupCtx = computeDeclContext(SS, EnteringContext); 263 isDependent = isDependentScopeSpecifier(SS); 264 265 // The declaration context must be complete. 266 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 267 return; 268 } 269 270 bool ObjectTypeSearchedInScope = false; 271 if (LookupCtx) { 272 // Perform "qualified" name lookup into the declaration context we 273 // computed, which is either the type of the base of a member access 274 // expression or the declaration context associated with a prior 275 // nested-name-specifier. 276 LookupQualifiedName(Found, LookupCtx); 277 278 if (!ObjectType.isNull() && Found.empty()) { 279 // C++ [basic.lookup.classref]p1: 280 // In a class member access expression (5.2.5), if the . or -> token is 281 // immediately followed by an identifier followed by a <, the 282 // identifier must be looked up to determine whether the < is the 283 // beginning of a template argument list (14.2) or a less-than operator. 284 // The identifier is first looked up in the class of the object 285 // expression. If the identifier is not found, it is then looked up in 286 // the context of the entire postfix-expression and shall name a class 287 // or function template. 288 if (S) LookupName(Found, S); 289 ObjectTypeSearchedInScope = true; 290 } 291 } else if (isDependent && (!S || ObjectType.isNull())) { 292 // We cannot look into a dependent object type or nested nme 293 // specifier. 294 MemberOfUnknownSpecialization = true; 295 return; 296 } else { 297 // Perform unqualified name lookup in the current scope. 298 LookupName(Found, S); 299 } 300 301 if (Found.empty() && !isDependent) { 302 // If we did not find any names, attempt to correct any typos. 303 DeclarationName Name = Found.getLookupName(); 304 Found.clear(); 305 // Simple filter callback that, for keywords, only accepts the C++ *_cast 306 CorrectionCandidateCallback FilterCCC; 307 FilterCCC.WantTypeSpecifiers = false; 308 FilterCCC.WantExpressionKeywords = false; 309 FilterCCC.WantRemainingKeywords = false; 310 FilterCCC.WantCXXNamedCasts = true; 311 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 312 Found.getLookupKind(), S, &SS, 313 FilterCCC, LookupCtx)) { 314 Found.setLookupName(Corrected.getCorrection()); 315 if (Corrected.getCorrectionDecl()) 316 Found.addDecl(Corrected.getCorrectionDecl()); 317 FilterAcceptableTemplateNames(Found); 318 if (!Found.empty()) { 319 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 320 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 321 if (LookupCtx) 322 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 323 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 324 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 325 else 326 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 327 << Name << CorrectedQuotedStr 328 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 329 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 330 Diag(Template->getLocation(), diag::note_previous_decl) 331 << CorrectedQuotedStr; 332 } 333 } else { 334 Found.setLookupName(Name); 335 } 336 } 337 338 FilterAcceptableTemplateNames(Found); 339 if (Found.empty()) { 340 if (isDependent) 341 MemberOfUnknownSpecialization = true; 342 return; 343 } 344 345 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 346 // C++ [basic.lookup.classref]p1: 347 // [...] If the lookup in the class of the object expression finds a 348 // template, the name is also looked up in the context of the entire 349 // postfix-expression and [...] 350 // 351 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 352 LookupOrdinaryName); 353 LookupName(FoundOuter, S); 354 FilterAcceptableTemplateNames(FoundOuter); 355 356 if (FoundOuter.empty()) { 357 // - if the name is not found, the name found in the class of the 358 // object expression is used, otherwise 359 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 360 FoundOuter.isAmbiguous()) { 361 // - if the name is found in the context of the entire 362 // postfix-expression and does not name a class template, the name 363 // found in the class of the object expression is used, otherwise 364 FoundOuter.clear(); 365 } else if (!Found.isSuppressingDiagnostics()) { 366 // - if the name found is a class template, it must refer to the same 367 // entity as the one found in the class of the object expression, 368 // otherwise the program is ill-formed. 369 if (!Found.isSingleResult() || 370 Found.getFoundDecl()->getCanonicalDecl() 371 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 372 Diag(Found.getNameLoc(), 373 diag::ext_nested_name_member_ref_lookup_ambiguous) 374 << Found.getLookupName() 375 << ObjectType; 376 Diag(Found.getRepresentativeDecl()->getLocation(), 377 diag::note_ambig_member_ref_object_type) 378 << ObjectType; 379 Diag(FoundOuter.getFoundDecl()->getLocation(), 380 diag::note_ambig_member_ref_scope); 381 382 // Recover by taking the template that we found in the object 383 // expression's type. 384 } 385 } 386 } 387} 388 389/// ActOnDependentIdExpression - Handle a dependent id-expression that 390/// was just parsed. This is only possible with an explicit scope 391/// specifier naming a dependent type. 392ExprResult 393Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 394 SourceLocation TemplateKWLoc, 395 const DeclarationNameInfo &NameInfo, 396 bool isAddressOfOperand, 397 const TemplateArgumentListInfo *TemplateArgs) { 398 DeclContext *DC = getFunctionLevelDeclContext(); 399 400 if (!isAddressOfOperand && 401 isa<CXXMethodDecl>(DC) && 402 cast<CXXMethodDecl>(DC)->isInstance()) { 403 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 404 405 // Since the 'this' expression is synthesized, we don't need to 406 // perform the double-lookup check. 407 NamedDecl *FirstQualifierInScope = 0; 408 409 return Owned(CXXDependentScopeMemberExpr::Create(Context, 410 /*This*/ 0, ThisType, 411 /*IsArrow*/ true, 412 /*Op*/ SourceLocation(), 413 SS.getWithLocInContext(Context), 414 TemplateKWLoc, 415 FirstQualifierInScope, 416 NameInfo, 417 TemplateArgs)); 418 } 419 420 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 421} 422 423ExprResult 424Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 425 SourceLocation TemplateKWLoc, 426 const DeclarationNameInfo &NameInfo, 427 const TemplateArgumentListInfo *TemplateArgs) { 428 return Owned(DependentScopeDeclRefExpr::Create(Context, 429 SS.getWithLocInContext(Context), 430 TemplateKWLoc, 431 NameInfo, 432 TemplateArgs)); 433} 434 435/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 436/// that the template parameter 'PrevDecl' is being shadowed by a new 437/// declaration at location Loc. Returns true to indicate that this is 438/// an error, and false otherwise. 439void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 440 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 441 442 // Microsoft Visual C++ permits template parameters to be shadowed. 443 if (getLangOptions().MicrosoftExt) 444 return; 445 446 // C++ [temp.local]p4: 447 // A template-parameter shall not be redeclared within its 448 // scope (including nested scopes). 449 Diag(Loc, diag::err_template_param_shadow) 450 << cast<NamedDecl>(PrevDecl)->getDeclName(); 451 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 452 return; 453} 454 455/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 456/// the parameter D to reference the templated declaration and return a pointer 457/// to the template declaration. Otherwise, do nothing to D and return null. 458TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 459 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 460 D = Temp->getTemplatedDecl(); 461 return Temp; 462 } 463 return 0; 464} 465 466ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 467 SourceLocation EllipsisLoc) const { 468 assert(Kind == Template && 469 "Only template template arguments can be pack expansions here"); 470 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 471 "Template template argument pack expansion without packs"); 472 ParsedTemplateArgument Result(*this); 473 Result.EllipsisLoc = EllipsisLoc; 474 return Result; 475} 476 477static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 478 const ParsedTemplateArgument &Arg) { 479 480 switch (Arg.getKind()) { 481 case ParsedTemplateArgument::Type: { 482 TypeSourceInfo *DI; 483 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 484 if (!DI) 485 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 486 return TemplateArgumentLoc(TemplateArgument(T), DI); 487 } 488 489 case ParsedTemplateArgument::NonType: { 490 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 491 return TemplateArgumentLoc(TemplateArgument(E), E); 492 } 493 494 case ParsedTemplateArgument::Template: { 495 TemplateName Template = Arg.getAsTemplate().get(); 496 TemplateArgument TArg; 497 if (Arg.getEllipsisLoc().isValid()) 498 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 499 else 500 TArg = Template; 501 return TemplateArgumentLoc(TArg, 502 Arg.getScopeSpec().getWithLocInContext( 503 SemaRef.Context), 504 Arg.getLocation(), 505 Arg.getEllipsisLoc()); 506 } 507 } 508 509 llvm_unreachable("Unhandled parsed template argument"); 510} 511 512/// \brief Translates template arguments as provided by the parser 513/// into template arguments used by semantic analysis. 514void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 515 TemplateArgumentListInfo &TemplateArgs) { 516 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 517 TemplateArgs.addArgument(translateTemplateArgument(*this, 518 TemplateArgsIn[I])); 519} 520 521/// ActOnTypeParameter - Called when a C++ template type parameter 522/// (e.g., "typename T") has been parsed. Typename specifies whether 523/// the keyword "typename" was used to declare the type parameter 524/// (otherwise, "class" was used), and KeyLoc is the location of the 525/// "class" or "typename" keyword. ParamName is the name of the 526/// parameter (NULL indicates an unnamed template parameter) and 527/// ParamNameLoc is the location of the parameter name (if any). 528/// If the type parameter has a default argument, it will be added 529/// later via ActOnTypeParameterDefault. 530Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 531 SourceLocation EllipsisLoc, 532 SourceLocation KeyLoc, 533 IdentifierInfo *ParamName, 534 SourceLocation ParamNameLoc, 535 unsigned Depth, unsigned Position, 536 SourceLocation EqualLoc, 537 ParsedType DefaultArg) { 538 assert(S->isTemplateParamScope() && 539 "Template type parameter not in template parameter scope!"); 540 bool Invalid = false; 541 542 if (ParamName) { 543 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 544 LookupOrdinaryName, 545 ForRedeclaration); 546 if (PrevDecl && PrevDecl->isTemplateParameter()) { 547 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 548 PrevDecl = 0; 549 } 550 } 551 552 SourceLocation Loc = ParamNameLoc; 553 if (!ParamName) 554 Loc = KeyLoc; 555 556 TemplateTypeParmDecl *Param 557 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 558 KeyLoc, Loc, Depth, Position, ParamName, 559 Typename, Ellipsis); 560 Param->setAccess(AS_public); 561 if (Invalid) 562 Param->setInvalidDecl(); 563 564 if (ParamName) { 565 // Add the template parameter into the current scope. 566 S->AddDecl(Param); 567 IdResolver.AddDecl(Param); 568 } 569 570 // C++0x [temp.param]p9: 571 // A default template-argument may be specified for any kind of 572 // template-parameter that is not a template parameter pack. 573 if (DefaultArg && Ellipsis) { 574 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 575 DefaultArg = ParsedType(); 576 } 577 578 // Handle the default argument, if provided. 579 if (DefaultArg) { 580 TypeSourceInfo *DefaultTInfo; 581 GetTypeFromParser(DefaultArg, &DefaultTInfo); 582 583 assert(DefaultTInfo && "expected source information for type"); 584 585 // Check for unexpanded parameter packs. 586 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 587 UPPC_DefaultArgument)) 588 return Param; 589 590 // Check the template argument itself. 591 if (CheckTemplateArgument(Param, DefaultTInfo)) { 592 Param->setInvalidDecl(); 593 return Param; 594 } 595 596 Param->setDefaultArgument(DefaultTInfo, false); 597 } 598 599 return Param; 600} 601 602/// \brief Check that the type of a non-type template parameter is 603/// well-formed. 604/// 605/// \returns the (possibly-promoted) parameter type if valid; 606/// otherwise, produces a diagnostic and returns a NULL type. 607QualType 608Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 609 // We don't allow variably-modified types as the type of non-type template 610 // parameters. 611 if (T->isVariablyModifiedType()) { 612 Diag(Loc, diag::err_variably_modified_nontype_template_param) 613 << T; 614 return QualType(); 615 } 616 617 // C++ [temp.param]p4: 618 // 619 // A non-type template-parameter shall have one of the following 620 // (optionally cv-qualified) types: 621 // 622 // -- integral or enumeration type, 623 if (T->isIntegralOrEnumerationType() || 624 // -- pointer to object or pointer to function, 625 T->isPointerType() || 626 // -- reference to object or reference to function, 627 T->isReferenceType() || 628 // -- pointer to member, 629 T->isMemberPointerType() || 630 // -- std::nullptr_t. 631 T->isNullPtrType() || 632 // If T is a dependent type, we can't do the check now, so we 633 // assume that it is well-formed. 634 T->isDependentType()) 635 return T; 636 // C++ [temp.param]p8: 637 // 638 // A non-type template-parameter of type "array of T" or 639 // "function returning T" is adjusted to be of type "pointer to 640 // T" or "pointer to function returning T", respectively. 641 else if (T->isArrayType()) 642 // FIXME: Keep the type prior to promotion? 643 return Context.getArrayDecayedType(T); 644 else if (T->isFunctionType()) 645 // FIXME: Keep the type prior to promotion? 646 return Context.getPointerType(T); 647 648 Diag(Loc, diag::err_template_nontype_parm_bad_type) 649 << T; 650 651 return QualType(); 652} 653 654Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 655 unsigned Depth, 656 unsigned Position, 657 SourceLocation EqualLoc, 658 Expr *Default) { 659 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 660 QualType T = TInfo->getType(); 661 662 assert(S->isTemplateParamScope() && 663 "Non-type template parameter not in template parameter scope!"); 664 bool Invalid = false; 665 666 IdentifierInfo *ParamName = D.getIdentifier(); 667 if (ParamName) { 668 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 669 LookupOrdinaryName, 670 ForRedeclaration); 671 if (PrevDecl && PrevDecl->isTemplateParameter()) { 672 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 673 PrevDecl = 0; 674 } 675 } 676 677 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 678 if (T.isNull()) { 679 T = Context.IntTy; // Recover with an 'int' type. 680 Invalid = true; 681 } 682 683 bool IsParameterPack = D.hasEllipsis(); 684 NonTypeTemplateParmDecl *Param 685 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 686 D.getSourceRange().getBegin(), 687 D.getIdentifierLoc(), 688 Depth, Position, ParamName, T, 689 IsParameterPack, TInfo); 690 Param->setAccess(AS_public); 691 692 if (Invalid) 693 Param->setInvalidDecl(); 694 695 if (D.getIdentifier()) { 696 // Add the template parameter into the current scope. 697 S->AddDecl(Param); 698 IdResolver.AddDecl(Param); 699 } 700 701 // C++0x [temp.param]p9: 702 // A default template-argument may be specified for any kind of 703 // template-parameter that is not a template parameter pack. 704 if (Default && IsParameterPack) { 705 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 706 Default = 0; 707 } 708 709 // Check the well-formedness of the default template argument, if provided. 710 if (Default) { 711 // Check for unexpanded parameter packs. 712 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 713 return Param; 714 715 TemplateArgument Converted; 716 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 717 if (DefaultRes.isInvalid()) { 718 Param->setInvalidDecl(); 719 return Param; 720 } 721 Default = DefaultRes.take(); 722 723 Param->setDefaultArgument(Default, false); 724 } 725 726 return Param; 727} 728 729/// ActOnTemplateTemplateParameter - Called when a C++ template template 730/// parameter (e.g. T in template <template <typename> class T> class array) 731/// has been parsed. S is the current scope. 732Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 733 SourceLocation TmpLoc, 734 TemplateParameterList *Params, 735 SourceLocation EllipsisLoc, 736 IdentifierInfo *Name, 737 SourceLocation NameLoc, 738 unsigned Depth, 739 unsigned Position, 740 SourceLocation EqualLoc, 741 ParsedTemplateArgument Default) { 742 assert(S->isTemplateParamScope() && 743 "Template template parameter not in template parameter scope!"); 744 745 // Construct the parameter object. 746 bool IsParameterPack = EllipsisLoc.isValid(); 747 TemplateTemplateParmDecl *Param = 748 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 749 NameLoc.isInvalid()? TmpLoc : NameLoc, 750 Depth, Position, IsParameterPack, 751 Name, Params); 752 Param->setAccess(AS_public); 753 754 // If the template template parameter has a name, then link the identifier 755 // into the scope and lookup mechanisms. 756 if (Name) { 757 S->AddDecl(Param); 758 IdResolver.AddDecl(Param); 759 } 760 761 if (Params->size() == 0) { 762 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 763 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 764 Param->setInvalidDecl(); 765 } 766 767 // C++0x [temp.param]p9: 768 // A default template-argument may be specified for any kind of 769 // template-parameter that is not a template parameter pack. 770 if (IsParameterPack && !Default.isInvalid()) { 771 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 772 Default = ParsedTemplateArgument(); 773 } 774 775 if (!Default.isInvalid()) { 776 // Check only that we have a template template argument. We don't want to 777 // try to check well-formedness now, because our template template parameter 778 // might have dependent types in its template parameters, which we wouldn't 779 // be able to match now. 780 // 781 // If none of the template template parameter's template arguments mention 782 // other template parameters, we could actually perform more checking here. 783 // However, it isn't worth doing. 784 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 785 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 786 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 787 << DefaultArg.getSourceRange(); 788 return Param; 789 } 790 791 // Check for unexpanded parameter packs. 792 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 793 DefaultArg.getArgument().getAsTemplate(), 794 UPPC_DefaultArgument)) 795 return Param; 796 797 Param->setDefaultArgument(DefaultArg, false); 798 } 799 800 return Param; 801} 802 803/// ActOnTemplateParameterList - Builds a TemplateParameterList that 804/// contains the template parameters in Params/NumParams. 805TemplateParameterList * 806Sema::ActOnTemplateParameterList(unsigned Depth, 807 SourceLocation ExportLoc, 808 SourceLocation TemplateLoc, 809 SourceLocation LAngleLoc, 810 Decl **Params, unsigned NumParams, 811 SourceLocation RAngleLoc) { 812 if (ExportLoc.isValid()) 813 Diag(ExportLoc, diag::warn_template_export_unsupported); 814 815 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 816 (NamedDecl**)Params, NumParams, 817 RAngleLoc); 818} 819 820static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 821 if (SS.isSet()) 822 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 823} 824 825DeclResult 826Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 827 SourceLocation KWLoc, CXXScopeSpec &SS, 828 IdentifierInfo *Name, SourceLocation NameLoc, 829 AttributeList *Attr, 830 TemplateParameterList *TemplateParams, 831 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 832 unsigned NumOuterTemplateParamLists, 833 TemplateParameterList** OuterTemplateParamLists) { 834 assert(TemplateParams && TemplateParams->size() > 0 && 835 "No template parameters"); 836 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 837 bool Invalid = false; 838 839 // Check that we can declare a template here. 840 if (CheckTemplateDeclScope(S, TemplateParams)) 841 return true; 842 843 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 844 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 845 846 // There is no such thing as an unnamed class template. 847 if (!Name) { 848 Diag(KWLoc, diag::err_template_unnamed_class); 849 return true; 850 } 851 852 // Find any previous declaration with this name. 853 DeclContext *SemanticContext; 854 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 855 ForRedeclaration); 856 if (SS.isNotEmpty() && !SS.isInvalid()) { 857 SemanticContext = computeDeclContext(SS, true); 858 if (!SemanticContext) { 859 // FIXME: Produce a reasonable diagnostic here 860 return true; 861 } 862 863 if (RequireCompleteDeclContext(SS, SemanticContext)) 864 return true; 865 866 // If we're adding a template to a dependent context, we may need to 867 // rebuilding some of the types used within the template parameter list, 868 // now that we know what the current instantiation is. 869 if (SemanticContext->isDependentContext()) { 870 ContextRAII SavedContext(*this, SemanticContext); 871 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 872 Invalid = true; 873 } 874 875 LookupQualifiedName(Previous, SemanticContext); 876 } else { 877 SemanticContext = CurContext; 878 LookupName(Previous, S); 879 } 880 881 if (Previous.isAmbiguous()) 882 return true; 883 884 NamedDecl *PrevDecl = 0; 885 if (Previous.begin() != Previous.end()) 886 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 887 888 // If there is a previous declaration with the same name, check 889 // whether this is a valid redeclaration. 890 ClassTemplateDecl *PrevClassTemplate 891 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 892 893 // We may have found the injected-class-name of a class template, 894 // class template partial specialization, or class template specialization. 895 // In these cases, grab the template that is being defined or specialized. 896 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 897 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 898 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 899 PrevClassTemplate 900 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 901 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 902 PrevClassTemplate 903 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 904 ->getSpecializedTemplate(); 905 } 906 } 907 908 if (TUK == TUK_Friend) { 909 // C++ [namespace.memdef]p3: 910 // [...] When looking for a prior declaration of a class or a function 911 // declared as a friend, and when the name of the friend class or 912 // function is neither a qualified name nor a template-id, scopes outside 913 // the innermost enclosing namespace scope are not considered. 914 if (!SS.isSet()) { 915 DeclContext *OutermostContext = CurContext; 916 while (!OutermostContext->isFileContext()) 917 OutermostContext = OutermostContext->getLookupParent(); 918 919 if (PrevDecl && 920 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 921 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 922 SemanticContext = PrevDecl->getDeclContext(); 923 } else { 924 // Declarations in outer scopes don't matter. However, the outermost 925 // context we computed is the semantic context for our new 926 // declaration. 927 PrevDecl = PrevClassTemplate = 0; 928 SemanticContext = OutermostContext; 929 } 930 } 931 932 if (CurContext->isDependentContext()) { 933 // If this is a dependent context, we don't want to link the friend 934 // class template to the template in scope, because that would perform 935 // checking of the template parameter lists that can't be performed 936 // until the outer context is instantiated. 937 PrevDecl = PrevClassTemplate = 0; 938 } 939 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 940 PrevDecl = PrevClassTemplate = 0; 941 942 if (PrevClassTemplate) { 943 // Ensure that the template parameter lists are compatible. 944 if (!TemplateParameterListsAreEqual(TemplateParams, 945 PrevClassTemplate->getTemplateParameters(), 946 /*Complain=*/true, 947 TPL_TemplateMatch)) 948 return true; 949 950 // C++ [temp.class]p4: 951 // In a redeclaration, partial specialization, explicit 952 // specialization or explicit instantiation of a class template, 953 // the class-key shall agree in kind with the original class 954 // template declaration (7.1.5.3). 955 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 956 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 957 TUK == TUK_Definition, KWLoc, *Name)) { 958 Diag(KWLoc, diag::err_use_with_wrong_tag) 959 << Name 960 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 961 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 962 Kind = PrevRecordDecl->getTagKind(); 963 } 964 965 // Check for redefinition of this class template. 966 if (TUK == TUK_Definition) { 967 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 968 Diag(NameLoc, diag::err_redefinition) << Name; 969 Diag(Def->getLocation(), diag::note_previous_definition); 970 // FIXME: Would it make sense to try to "forget" the previous 971 // definition, as part of error recovery? 972 return true; 973 } 974 } 975 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 976 // Maybe we will complain about the shadowed template parameter. 977 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 978 // Just pretend that we didn't see the previous declaration. 979 PrevDecl = 0; 980 } else if (PrevDecl) { 981 // C++ [temp]p5: 982 // A class template shall not have the same name as any other 983 // template, class, function, object, enumeration, enumerator, 984 // namespace, or type in the same scope (3.3), except as specified 985 // in (14.5.4). 986 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 987 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 988 return true; 989 } 990 991 // Check the template parameter list of this declaration, possibly 992 // merging in the template parameter list from the previous class 993 // template declaration. 994 if (CheckTemplateParameterList(TemplateParams, 995 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 996 (SS.isSet() && SemanticContext && 997 SemanticContext->isRecord() && 998 SemanticContext->isDependentContext()) 999 ? TPC_ClassTemplateMember 1000 : TPC_ClassTemplate)) 1001 Invalid = true; 1002 1003 if (SS.isSet()) { 1004 // If the name of the template was qualified, we must be defining the 1005 // template out-of-line. 1006 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 1007 !(TUK == TUK_Friend && CurContext->isDependentContext())) { 1008 Diag(NameLoc, diag::err_member_def_does_not_match) 1009 << Name << SemanticContext << SS.getRange(); 1010 Invalid = true; 1011 } 1012 } 1013 1014 CXXRecordDecl *NewClass = 1015 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1016 PrevClassTemplate? 1017 PrevClassTemplate->getTemplatedDecl() : 0, 1018 /*DelayTypeCreation=*/true); 1019 SetNestedNameSpecifier(NewClass, SS); 1020 if (NumOuterTemplateParamLists > 0) 1021 NewClass->setTemplateParameterListsInfo(Context, 1022 NumOuterTemplateParamLists, 1023 OuterTemplateParamLists); 1024 1025 ClassTemplateDecl *NewTemplate 1026 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1027 DeclarationName(Name), TemplateParams, 1028 NewClass, PrevClassTemplate); 1029 NewClass->setDescribedClassTemplate(NewTemplate); 1030 1031 if (ModulePrivateLoc.isValid()) 1032 NewTemplate->setModulePrivate(); 1033 1034 // Build the type for the class template declaration now. 1035 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1036 T = Context.getInjectedClassNameType(NewClass, T); 1037 assert(T->isDependentType() && "Class template type is not dependent?"); 1038 (void)T; 1039 1040 // If we are providing an explicit specialization of a member that is a 1041 // class template, make a note of that. 1042 if (PrevClassTemplate && 1043 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1044 PrevClassTemplate->setMemberSpecialization(); 1045 1046 // Set the access specifier. 1047 if (!Invalid && TUK != TUK_Friend) 1048 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1049 1050 // Set the lexical context of these templates 1051 NewClass->setLexicalDeclContext(CurContext); 1052 NewTemplate->setLexicalDeclContext(CurContext); 1053 1054 if (TUK == TUK_Definition) 1055 NewClass->startDefinition(); 1056 1057 if (Attr) 1058 ProcessDeclAttributeList(S, NewClass, Attr); 1059 1060 if (TUK != TUK_Friend) 1061 PushOnScopeChains(NewTemplate, S); 1062 else { 1063 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1064 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1065 NewClass->setAccess(PrevClassTemplate->getAccess()); 1066 } 1067 1068 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1069 PrevClassTemplate != NULL); 1070 1071 // Friend templates are visible in fairly strange ways. 1072 if (!CurContext->isDependentContext()) { 1073 DeclContext *DC = SemanticContext->getRedeclContext(); 1074 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1075 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1076 PushOnScopeChains(NewTemplate, EnclosingScope, 1077 /* AddToContext = */ false); 1078 } 1079 1080 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1081 NewClass->getLocation(), 1082 NewTemplate, 1083 /*FIXME:*/NewClass->getLocation()); 1084 Friend->setAccess(AS_public); 1085 CurContext->addDecl(Friend); 1086 } 1087 1088 if (Invalid) { 1089 NewTemplate->setInvalidDecl(); 1090 NewClass->setInvalidDecl(); 1091 } 1092 return NewTemplate; 1093} 1094 1095/// \brief Diagnose the presence of a default template argument on a 1096/// template parameter, which is ill-formed in certain contexts. 1097/// 1098/// \returns true if the default template argument should be dropped. 1099static bool DiagnoseDefaultTemplateArgument(Sema &S, 1100 Sema::TemplateParamListContext TPC, 1101 SourceLocation ParamLoc, 1102 SourceRange DefArgRange) { 1103 switch (TPC) { 1104 case Sema::TPC_ClassTemplate: 1105 case Sema::TPC_TypeAliasTemplate: 1106 return false; 1107 1108 case Sema::TPC_FunctionTemplate: 1109 case Sema::TPC_FriendFunctionTemplateDefinition: 1110 // C++ [temp.param]p9: 1111 // A default template-argument shall not be specified in a 1112 // function template declaration or a function template 1113 // definition [...] 1114 // If a friend function template declaration specifies a default 1115 // template-argument, that declaration shall be a definition and shall be 1116 // the only declaration of the function template in the translation unit. 1117 // (C++98/03 doesn't have this wording; see DR226). 1118 S.Diag(ParamLoc, S.getLangOptions().CPlusPlus0x ? 1119 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1120 : diag::ext_template_parameter_default_in_function_template) 1121 << DefArgRange; 1122 return false; 1123 1124 case Sema::TPC_ClassTemplateMember: 1125 // C++0x [temp.param]p9: 1126 // A default template-argument shall not be specified in the 1127 // template-parameter-lists of the definition of a member of a 1128 // class template that appears outside of the member's class. 1129 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1130 << DefArgRange; 1131 return true; 1132 1133 case Sema::TPC_FriendFunctionTemplate: 1134 // C++ [temp.param]p9: 1135 // A default template-argument shall not be specified in a 1136 // friend template declaration. 1137 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1138 << DefArgRange; 1139 return true; 1140 1141 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1142 // for friend function templates if there is only a single 1143 // declaration (and it is a definition). Strange! 1144 } 1145 1146 llvm_unreachable("Invalid TemplateParamListContext!"); 1147} 1148 1149/// \brief Check for unexpanded parameter packs within the template parameters 1150/// of a template template parameter, recursively. 1151static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1152 TemplateTemplateParmDecl *TTP) { 1153 TemplateParameterList *Params = TTP->getTemplateParameters(); 1154 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1155 NamedDecl *P = Params->getParam(I); 1156 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1157 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1158 NTTP->getTypeSourceInfo(), 1159 Sema::UPPC_NonTypeTemplateParameterType)) 1160 return true; 1161 1162 continue; 1163 } 1164 1165 if (TemplateTemplateParmDecl *InnerTTP 1166 = dyn_cast<TemplateTemplateParmDecl>(P)) 1167 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1168 return true; 1169 } 1170 1171 return false; 1172} 1173 1174/// \brief Checks the validity of a template parameter list, possibly 1175/// considering the template parameter list from a previous 1176/// declaration. 1177/// 1178/// If an "old" template parameter list is provided, it must be 1179/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1180/// template parameter list. 1181/// 1182/// \param NewParams Template parameter list for a new template 1183/// declaration. This template parameter list will be updated with any 1184/// default arguments that are carried through from the previous 1185/// template parameter list. 1186/// 1187/// \param OldParams If provided, template parameter list from a 1188/// previous declaration of the same template. Default template 1189/// arguments will be merged from the old template parameter list to 1190/// the new template parameter list. 1191/// 1192/// \param TPC Describes the context in which we are checking the given 1193/// template parameter list. 1194/// 1195/// \returns true if an error occurred, false otherwise. 1196bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1197 TemplateParameterList *OldParams, 1198 TemplateParamListContext TPC) { 1199 bool Invalid = false; 1200 1201 // C++ [temp.param]p10: 1202 // The set of default template-arguments available for use with a 1203 // template declaration or definition is obtained by merging the 1204 // default arguments from the definition (if in scope) and all 1205 // declarations in scope in the same way default function 1206 // arguments are (8.3.6). 1207 bool SawDefaultArgument = false; 1208 SourceLocation PreviousDefaultArgLoc; 1209 1210 // Dummy initialization to avoid warnings. 1211 TemplateParameterList::iterator OldParam = NewParams->end(); 1212 if (OldParams) 1213 OldParam = OldParams->begin(); 1214 1215 bool RemoveDefaultArguments = false; 1216 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1217 NewParamEnd = NewParams->end(); 1218 NewParam != NewParamEnd; ++NewParam) { 1219 // Variables used to diagnose redundant default arguments 1220 bool RedundantDefaultArg = false; 1221 SourceLocation OldDefaultLoc; 1222 SourceLocation NewDefaultLoc; 1223 1224 // Variable used to diagnose missing default arguments 1225 bool MissingDefaultArg = false; 1226 1227 // Variable used to diagnose non-final parameter packs 1228 bool SawParameterPack = false; 1229 1230 if (TemplateTypeParmDecl *NewTypeParm 1231 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1232 // Check the presence of a default argument here. 1233 if (NewTypeParm->hasDefaultArgument() && 1234 DiagnoseDefaultTemplateArgument(*this, TPC, 1235 NewTypeParm->getLocation(), 1236 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1237 .getSourceRange())) 1238 NewTypeParm->removeDefaultArgument(); 1239 1240 // Merge default arguments for template type parameters. 1241 TemplateTypeParmDecl *OldTypeParm 1242 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1243 1244 if (NewTypeParm->isParameterPack()) { 1245 assert(!NewTypeParm->hasDefaultArgument() && 1246 "Parameter packs can't have a default argument!"); 1247 SawParameterPack = true; 1248 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1249 NewTypeParm->hasDefaultArgument()) { 1250 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1251 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1252 SawDefaultArgument = true; 1253 RedundantDefaultArg = true; 1254 PreviousDefaultArgLoc = NewDefaultLoc; 1255 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1256 // Merge the default argument from the old declaration to the 1257 // new declaration. 1258 SawDefaultArgument = true; 1259 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1260 true); 1261 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1262 } else if (NewTypeParm->hasDefaultArgument()) { 1263 SawDefaultArgument = true; 1264 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1265 } else if (SawDefaultArgument) 1266 MissingDefaultArg = true; 1267 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1268 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1269 // Check for unexpanded parameter packs. 1270 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1271 NewNonTypeParm->getTypeSourceInfo(), 1272 UPPC_NonTypeTemplateParameterType)) { 1273 Invalid = true; 1274 continue; 1275 } 1276 1277 // Check the presence of a default argument here. 1278 if (NewNonTypeParm->hasDefaultArgument() && 1279 DiagnoseDefaultTemplateArgument(*this, TPC, 1280 NewNonTypeParm->getLocation(), 1281 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1282 NewNonTypeParm->removeDefaultArgument(); 1283 } 1284 1285 // Merge default arguments for non-type template parameters 1286 NonTypeTemplateParmDecl *OldNonTypeParm 1287 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1288 if (NewNonTypeParm->isParameterPack()) { 1289 assert(!NewNonTypeParm->hasDefaultArgument() && 1290 "Parameter packs can't have a default argument!"); 1291 SawParameterPack = true; 1292 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1293 NewNonTypeParm->hasDefaultArgument()) { 1294 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1295 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1296 SawDefaultArgument = true; 1297 RedundantDefaultArg = true; 1298 PreviousDefaultArgLoc = NewDefaultLoc; 1299 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1300 // Merge the default argument from the old declaration to the 1301 // new declaration. 1302 SawDefaultArgument = true; 1303 // FIXME: We need to create a new kind of "default argument" 1304 // expression that points to a previous non-type template 1305 // parameter. 1306 NewNonTypeParm->setDefaultArgument( 1307 OldNonTypeParm->getDefaultArgument(), 1308 /*Inherited=*/ true); 1309 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1310 } else if (NewNonTypeParm->hasDefaultArgument()) { 1311 SawDefaultArgument = true; 1312 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1313 } else if (SawDefaultArgument) 1314 MissingDefaultArg = true; 1315 } else { 1316 TemplateTemplateParmDecl *NewTemplateParm 1317 = cast<TemplateTemplateParmDecl>(*NewParam); 1318 1319 // Check for unexpanded parameter packs, recursively. 1320 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1321 Invalid = true; 1322 continue; 1323 } 1324 1325 // Check the presence of a default argument here. 1326 if (NewTemplateParm->hasDefaultArgument() && 1327 DiagnoseDefaultTemplateArgument(*this, TPC, 1328 NewTemplateParm->getLocation(), 1329 NewTemplateParm->getDefaultArgument().getSourceRange())) 1330 NewTemplateParm->removeDefaultArgument(); 1331 1332 // Merge default arguments for template template parameters 1333 TemplateTemplateParmDecl *OldTemplateParm 1334 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1335 if (NewTemplateParm->isParameterPack()) { 1336 assert(!NewTemplateParm->hasDefaultArgument() && 1337 "Parameter packs can't have a default argument!"); 1338 SawParameterPack = true; 1339 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1340 NewTemplateParm->hasDefaultArgument()) { 1341 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1342 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1343 SawDefaultArgument = true; 1344 RedundantDefaultArg = true; 1345 PreviousDefaultArgLoc = NewDefaultLoc; 1346 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1347 // Merge the default argument from the old declaration to the 1348 // new declaration. 1349 SawDefaultArgument = true; 1350 // FIXME: We need to create a new kind of "default argument" expression 1351 // that points to a previous template template parameter. 1352 NewTemplateParm->setDefaultArgument( 1353 OldTemplateParm->getDefaultArgument(), 1354 /*Inherited=*/ true); 1355 PreviousDefaultArgLoc 1356 = OldTemplateParm->getDefaultArgument().getLocation(); 1357 } else if (NewTemplateParm->hasDefaultArgument()) { 1358 SawDefaultArgument = true; 1359 PreviousDefaultArgLoc 1360 = NewTemplateParm->getDefaultArgument().getLocation(); 1361 } else if (SawDefaultArgument) 1362 MissingDefaultArg = true; 1363 } 1364 1365 // C++0x [temp.param]p11: 1366 // If a template parameter of a primary class template or alias template 1367 // is a template parameter pack, it shall be the last template parameter. 1368 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1369 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1370 Diag((*NewParam)->getLocation(), 1371 diag::err_template_param_pack_must_be_last_template_parameter); 1372 Invalid = true; 1373 } 1374 1375 if (RedundantDefaultArg) { 1376 // C++ [temp.param]p12: 1377 // A template-parameter shall not be given default arguments 1378 // by two different declarations in the same scope. 1379 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1380 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1381 Invalid = true; 1382 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1383 // C++ [temp.param]p11: 1384 // If a template-parameter of a class template has a default 1385 // template-argument, each subsequent template-parameter shall either 1386 // have a default template-argument supplied or be a template parameter 1387 // pack. 1388 Diag((*NewParam)->getLocation(), 1389 diag::err_template_param_default_arg_missing); 1390 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1391 Invalid = true; 1392 RemoveDefaultArguments = true; 1393 } 1394 1395 // If we have an old template parameter list that we're merging 1396 // in, move on to the next parameter. 1397 if (OldParams) 1398 ++OldParam; 1399 } 1400 1401 // We were missing some default arguments at the end of the list, so remove 1402 // all of the default arguments. 1403 if (RemoveDefaultArguments) { 1404 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1405 NewParamEnd = NewParams->end(); 1406 NewParam != NewParamEnd; ++NewParam) { 1407 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1408 TTP->removeDefaultArgument(); 1409 else if (NonTypeTemplateParmDecl *NTTP 1410 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1411 NTTP->removeDefaultArgument(); 1412 else 1413 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1414 } 1415 } 1416 1417 return Invalid; 1418} 1419 1420namespace { 1421 1422/// A class which looks for a use of a certain level of template 1423/// parameter. 1424struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1425 typedef RecursiveASTVisitor<DependencyChecker> super; 1426 1427 unsigned Depth; 1428 bool Match; 1429 1430 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1431 NamedDecl *ND = Params->getParam(0); 1432 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1433 Depth = PD->getDepth(); 1434 } else if (NonTypeTemplateParmDecl *PD = 1435 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1436 Depth = PD->getDepth(); 1437 } else { 1438 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1439 } 1440 } 1441 1442 bool Matches(unsigned ParmDepth) { 1443 if (ParmDepth >= Depth) { 1444 Match = true; 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1451 return !Matches(T->getDepth()); 1452 } 1453 1454 bool TraverseTemplateName(TemplateName N) { 1455 if (TemplateTemplateParmDecl *PD = 1456 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1457 if (Matches(PD->getDepth())) return false; 1458 return super::TraverseTemplateName(N); 1459 } 1460 1461 bool VisitDeclRefExpr(DeclRefExpr *E) { 1462 if (NonTypeTemplateParmDecl *PD = 1463 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1464 if (PD->getDepth() == Depth) { 1465 Match = true; 1466 return false; 1467 } 1468 } 1469 return super::VisitDeclRefExpr(E); 1470 } 1471 1472 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1473 return TraverseType(T->getInjectedSpecializationType()); 1474 } 1475}; 1476} 1477 1478/// Determines whether a given type depends on the given parameter 1479/// list. 1480static bool 1481DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1482 DependencyChecker Checker(Params); 1483 Checker.TraverseType(T); 1484 return Checker.Match; 1485} 1486 1487// Find the source range corresponding to the named type in the given 1488// nested-name-specifier, if any. 1489static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1490 QualType T, 1491 const CXXScopeSpec &SS) { 1492 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1493 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1494 if (const Type *CurType = NNS->getAsType()) { 1495 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1496 return NNSLoc.getTypeLoc().getSourceRange(); 1497 } else 1498 break; 1499 1500 NNSLoc = NNSLoc.getPrefix(); 1501 } 1502 1503 return SourceRange(); 1504} 1505 1506/// \brief Match the given template parameter lists to the given scope 1507/// specifier, returning the template parameter list that applies to the 1508/// name. 1509/// 1510/// \param DeclStartLoc the start of the declaration that has a scope 1511/// specifier or a template parameter list. 1512/// 1513/// \param DeclLoc The location of the declaration itself. 1514/// 1515/// \param SS the scope specifier that will be matched to the given template 1516/// parameter lists. This scope specifier precedes a qualified name that is 1517/// being declared. 1518/// 1519/// \param ParamLists the template parameter lists, from the outermost to the 1520/// innermost template parameter lists. 1521/// 1522/// \param NumParamLists the number of template parameter lists in ParamLists. 1523/// 1524/// \param IsFriend Whether to apply the slightly different rules for 1525/// matching template parameters to scope specifiers in friend 1526/// declarations. 1527/// 1528/// \param IsExplicitSpecialization will be set true if the entity being 1529/// declared is an explicit specialization, false otherwise. 1530/// 1531/// \returns the template parameter list, if any, that corresponds to the 1532/// name that is preceded by the scope specifier @p SS. This template 1533/// parameter list may have template parameters (if we're declaring a 1534/// template) or may have no template parameters (if we're declaring a 1535/// template specialization), or may be NULL (if what we're declaring isn't 1536/// itself a template). 1537TemplateParameterList * 1538Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1539 SourceLocation DeclLoc, 1540 const CXXScopeSpec &SS, 1541 TemplateParameterList **ParamLists, 1542 unsigned NumParamLists, 1543 bool IsFriend, 1544 bool &IsExplicitSpecialization, 1545 bool &Invalid) { 1546 IsExplicitSpecialization = false; 1547 Invalid = false; 1548 1549 // The sequence of nested types to which we will match up the template 1550 // parameter lists. We first build this list by starting with the type named 1551 // by the nested-name-specifier and walking out until we run out of types. 1552 SmallVector<QualType, 4> NestedTypes; 1553 QualType T; 1554 if (SS.getScopeRep()) { 1555 if (CXXRecordDecl *Record 1556 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1557 T = Context.getTypeDeclType(Record); 1558 else 1559 T = QualType(SS.getScopeRep()->getAsType(), 0); 1560 } 1561 1562 // If we found an explicit specialization that prevents us from needing 1563 // 'template<>' headers, this will be set to the location of that 1564 // explicit specialization. 1565 SourceLocation ExplicitSpecLoc; 1566 1567 while (!T.isNull()) { 1568 NestedTypes.push_back(T); 1569 1570 // Retrieve the parent of a record type. 1571 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1572 // If this type is an explicit specialization, we're done. 1573 if (ClassTemplateSpecializationDecl *Spec 1574 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1575 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1576 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1577 ExplicitSpecLoc = Spec->getLocation(); 1578 break; 1579 } 1580 } else if (Record->getTemplateSpecializationKind() 1581 == TSK_ExplicitSpecialization) { 1582 ExplicitSpecLoc = Record->getLocation(); 1583 break; 1584 } 1585 1586 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1587 T = Context.getTypeDeclType(Parent); 1588 else 1589 T = QualType(); 1590 continue; 1591 } 1592 1593 if (const TemplateSpecializationType *TST 1594 = T->getAs<TemplateSpecializationType>()) { 1595 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1596 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1597 T = Context.getTypeDeclType(Parent); 1598 else 1599 T = QualType(); 1600 continue; 1601 } 1602 } 1603 1604 // Look one step prior in a dependent template specialization type. 1605 if (const DependentTemplateSpecializationType *DependentTST 1606 = T->getAs<DependentTemplateSpecializationType>()) { 1607 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1608 T = QualType(NNS->getAsType(), 0); 1609 else 1610 T = QualType(); 1611 continue; 1612 } 1613 1614 // Look one step prior in a dependent name type. 1615 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1616 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1617 T = QualType(NNS->getAsType(), 0); 1618 else 1619 T = QualType(); 1620 continue; 1621 } 1622 1623 // Retrieve the parent of an enumeration type. 1624 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1625 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1626 // check here. 1627 EnumDecl *Enum = EnumT->getDecl(); 1628 1629 // Get to the parent type. 1630 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1631 T = Context.getTypeDeclType(Parent); 1632 else 1633 T = QualType(); 1634 continue; 1635 } 1636 1637 T = QualType(); 1638 } 1639 // Reverse the nested types list, since we want to traverse from the outermost 1640 // to the innermost while checking template-parameter-lists. 1641 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1642 1643 // C++0x [temp.expl.spec]p17: 1644 // A member or a member template may be nested within many 1645 // enclosing class templates. In an explicit specialization for 1646 // such a member, the member declaration shall be preceded by a 1647 // template<> for each enclosing class template that is 1648 // explicitly specialized. 1649 bool SawNonEmptyTemplateParameterList = false; 1650 unsigned ParamIdx = 0; 1651 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1652 ++TypeIdx) { 1653 T = NestedTypes[TypeIdx]; 1654 1655 // Whether we expect a 'template<>' header. 1656 bool NeedEmptyTemplateHeader = false; 1657 1658 // Whether we expect a template header with parameters. 1659 bool NeedNonemptyTemplateHeader = false; 1660 1661 // For a dependent type, the set of template parameters that we 1662 // expect to see. 1663 TemplateParameterList *ExpectedTemplateParams = 0; 1664 1665 // C++0x [temp.expl.spec]p15: 1666 // A member or a member template may be nested within many enclosing 1667 // class templates. In an explicit specialization for such a member, the 1668 // member declaration shall be preceded by a template<> for each 1669 // enclosing class template that is explicitly specialized. 1670 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1671 if (ClassTemplatePartialSpecializationDecl *Partial 1672 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1673 ExpectedTemplateParams = Partial->getTemplateParameters(); 1674 NeedNonemptyTemplateHeader = true; 1675 } else if (Record->isDependentType()) { 1676 if (Record->getDescribedClassTemplate()) { 1677 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1678 ->getTemplateParameters(); 1679 NeedNonemptyTemplateHeader = true; 1680 } 1681 } else if (ClassTemplateSpecializationDecl *Spec 1682 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1683 // C++0x [temp.expl.spec]p4: 1684 // Members of an explicitly specialized class template are defined 1685 // in the same manner as members of normal classes, and not using 1686 // the template<> syntax. 1687 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1688 NeedEmptyTemplateHeader = true; 1689 else 1690 continue; 1691 } else if (Record->getTemplateSpecializationKind()) { 1692 if (Record->getTemplateSpecializationKind() 1693 != TSK_ExplicitSpecialization && 1694 TypeIdx == NumTypes - 1) 1695 IsExplicitSpecialization = true; 1696 1697 continue; 1698 } 1699 } else if (const TemplateSpecializationType *TST 1700 = T->getAs<TemplateSpecializationType>()) { 1701 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1702 ExpectedTemplateParams = Template->getTemplateParameters(); 1703 NeedNonemptyTemplateHeader = true; 1704 } 1705 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1706 // FIXME: We actually could/should check the template arguments here 1707 // against the corresponding template parameter list. 1708 NeedNonemptyTemplateHeader = false; 1709 } 1710 1711 // C++ [temp.expl.spec]p16: 1712 // In an explicit specialization declaration for a member of a class 1713 // template or a member template that ap- pears in namespace scope, the 1714 // member template and some of its enclosing class templates may remain 1715 // unspecialized, except that the declaration shall not explicitly 1716 // specialize a class member template if its en- closing class templates 1717 // are not explicitly specialized as well. 1718 if (ParamIdx < NumParamLists) { 1719 if (ParamLists[ParamIdx]->size() == 0) { 1720 if (SawNonEmptyTemplateParameterList) { 1721 Diag(DeclLoc, diag::err_specialize_member_of_template) 1722 << ParamLists[ParamIdx]->getSourceRange(); 1723 Invalid = true; 1724 IsExplicitSpecialization = false; 1725 return 0; 1726 } 1727 } else 1728 SawNonEmptyTemplateParameterList = true; 1729 } 1730 1731 if (NeedEmptyTemplateHeader) { 1732 // If we're on the last of the types, and we need a 'template<>' header 1733 // here, then it's an explicit specialization. 1734 if (TypeIdx == NumTypes - 1) 1735 IsExplicitSpecialization = true; 1736 1737 if (ParamIdx < NumParamLists) { 1738 if (ParamLists[ParamIdx]->size() > 0) { 1739 // The header has template parameters when it shouldn't. Complain. 1740 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1741 diag::err_template_param_list_matches_nontemplate) 1742 << T 1743 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1744 ParamLists[ParamIdx]->getRAngleLoc()) 1745 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1746 Invalid = true; 1747 return 0; 1748 } 1749 1750 // Consume this template header. 1751 ++ParamIdx; 1752 continue; 1753 } 1754 1755 if (!IsFriend) { 1756 // We don't have a template header, but we should. 1757 SourceLocation ExpectedTemplateLoc; 1758 if (NumParamLists > 0) 1759 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1760 else 1761 ExpectedTemplateLoc = DeclStartLoc; 1762 1763 Diag(DeclLoc, diag::err_template_spec_needs_header) 1764 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1765 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1766 } 1767 1768 continue; 1769 } 1770 1771 if (NeedNonemptyTemplateHeader) { 1772 // In friend declarations we can have template-ids which don't 1773 // depend on the corresponding template parameter lists. But 1774 // assume that empty parameter lists are supposed to match this 1775 // template-id. 1776 if (IsFriend && T->isDependentType()) { 1777 if (ParamIdx < NumParamLists && 1778 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1779 ExpectedTemplateParams = 0; 1780 else 1781 continue; 1782 } 1783 1784 if (ParamIdx < NumParamLists) { 1785 // Check the template parameter list, if we can. 1786 if (ExpectedTemplateParams && 1787 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1788 ExpectedTemplateParams, 1789 true, TPL_TemplateMatch)) 1790 Invalid = true; 1791 1792 if (!Invalid && 1793 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1794 TPC_ClassTemplateMember)) 1795 Invalid = true; 1796 1797 ++ParamIdx; 1798 continue; 1799 } 1800 1801 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1802 << T 1803 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1804 Invalid = true; 1805 continue; 1806 } 1807 } 1808 1809 // If there were at least as many template-ids as there were template 1810 // parameter lists, then there are no template parameter lists remaining for 1811 // the declaration itself. 1812 if (ParamIdx >= NumParamLists) 1813 return 0; 1814 1815 // If there were too many template parameter lists, complain about that now. 1816 if (ParamIdx < NumParamLists - 1) { 1817 bool HasAnyExplicitSpecHeader = false; 1818 bool AllExplicitSpecHeaders = true; 1819 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1820 if (ParamLists[I]->size() == 0) 1821 HasAnyExplicitSpecHeader = true; 1822 else 1823 AllExplicitSpecHeaders = false; 1824 } 1825 1826 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1827 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1828 : diag::err_template_spec_extra_headers) 1829 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1830 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1831 1832 // If there was a specialization somewhere, such that 'template<>' is 1833 // not required, and there were any 'template<>' headers, note where the 1834 // specialization occurred. 1835 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1836 Diag(ExplicitSpecLoc, 1837 diag::note_explicit_template_spec_does_not_need_header) 1838 << NestedTypes.back(); 1839 1840 // We have a template parameter list with no corresponding scope, which 1841 // means that the resulting template declaration can't be instantiated 1842 // properly (we'll end up with dependent nodes when we shouldn't). 1843 if (!AllExplicitSpecHeaders) 1844 Invalid = true; 1845 } 1846 1847 // C++ [temp.expl.spec]p16: 1848 // In an explicit specialization declaration for a member of a class 1849 // template or a member template that ap- pears in namespace scope, the 1850 // member template and some of its enclosing class templates may remain 1851 // unspecialized, except that the declaration shall not explicitly 1852 // specialize a class member template if its en- closing class templates 1853 // are not explicitly specialized as well. 1854 if (ParamLists[NumParamLists - 1]->size() == 0 && 1855 SawNonEmptyTemplateParameterList) { 1856 Diag(DeclLoc, diag::err_specialize_member_of_template) 1857 << ParamLists[ParamIdx]->getSourceRange(); 1858 Invalid = true; 1859 IsExplicitSpecialization = false; 1860 return 0; 1861 } 1862 1863 // Return the last template parameter list, which corresponds to the 1864 // entity being declared. 1865 return ParamLists[NumParamLists - 1]; 1866} 1867 1868void Sema::NoteAllFoundTemplates(TemplateName Name) { 1869 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1870 Diag(Template->getLocation(), diag::note_template_declared_here) 1871 << (isa<FunctionTemplateDecl>(Template)? 0 1872 : isa<ClassTemplateDecl>(Template)? 1 1873 : isa<TypeAliasTemplateDecl>(Template)? 2 1874 : 3) 1875 << Template->getDeclName(); 1876 return; 1877 } 1878 1879 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1880 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1881 IEnd = OST->end(); 1882 I != IEnd; ++I) 1883 Diag((*I)->getLocation(), diag::note_template_declared_here) 1884 << 0 << (*I)->getDeclName(); 1885 1886 return; 1887 } 1888} 1889 1890QualType Sema::CheckTemplateIdType(TemplateName Name, 1891 SourceLocation TemplateLoc, 1892 TemplateArgumentListInfo &TemplateArgs) { 1893 DependentTemplateName *DTN 1894 = Name.getUnderlying().getAsDependentTemplateName(); 1895 if (DTN && DTN->isIdentifier()) 1896 // When building a template-id where the template-name is dependent, 1897 // assume the template is a type template. Either our assumption is 1898 // correct, or the code is ill-formed and will be diagnosed when the 1899 // dependent name is substituted. 1900 return Context.getDependentTemplateSpecializationType(ETK_None, 1901 DTN->getQualifier(), 1902 DTN->getIdentifier(), 1903 TemplateArgs); 1904 1905 TemplateDecl *Template = Name.getAsTemplateDecl(); 1906 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1907 // We might have a substituted template template parameter pack. If so, 1908 // build a template specialization type for it. 1909 if (Name.getAsSubstTemplateTemplateParmPack()) 1910 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1911 1912 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1913 << Name; 1914 NoteAllFoundTemplates(Name); 1915 return QualType(); 1916 } 1917 1918 // Check that the template argument list is well-formed for this 1919 // template. 1920 SmallVector<TemplateArgument, 4> Converted; 1921 bool ExpansionIntoFixedList = false; 1922 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1923 false, Converted, &ExpansionIntoFixedList)) 1924 return QualType(); 1925 1926 QualType CanonType; 1927 1928 bool InstantiationDependent = false; 1929 TypeAliasTemplateDecl *AliasTemplate = 0; 1930 if (!ExpansionIntoFixedList && 1931 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1932 // Find the canonical type for this type alias template specialization. 1933 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1934 if (Pattern->isInvalidDecl()) 1935 return QualType(); 1936 1937 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1938 Converted.data(), Converted.size()); 1939 1940 // Only substitute for the innermost template argument list. 1941 MultiLevelTemplateArgumentList TemplateArgLists; 1942 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1943 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1944 for (unsigned I = 0; I < Depth; ++I) 1945 TemplateArgLists.addOuterTemplateArguments(0, 0); 1946 1947 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1948 CanonType = SubstType(Pattern->getUnderlyingType(), 1949 TemplateArgLists, AliasTemplate->getLocation(), 1950 AliasTemplate->getDeclName()); 1951 if (CanonType.isNull()) 1952 return QualType(); 1953 } else if (Name.isDependent() || 1954 TemplateSpecializationType::anyDependentTemplateArguments( 1955 TemplateArgs, InstantiationDependent)) { 1956 // This class template specialization is a dependent 1957 // type. Therefore, its canonical type is another class template 1958 // specialization type that contains all of the converted 1959 // arguments in canonical form. This ensures that, e.g., A<T> and 1960 // A<T, T> have identical types when A is declared as: 1961 // 1962 // template<typename T, typename U = T> struct A; 1963 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1964 CanonType = Context.getTemplateSpecializationType(CanonName, 1965 Converted.data(), 1966 Converted.size()); 1967 1968 // FIXME: CanonType is not actually the canonical type, and unfortunately 1969 // it is a TemplateSpecializationType that we will never use again. 1970 // In the future, we need to teach getTemplateSpecializationType to only 1971 // build the canonical type and return that to us. 1972 CanonType = Context.getCanonicalType(CanonType); 1973 1974 // This might work out to be a current instantiation, in which 1975 // case the canonical type needs to be the InjectedClassNameType. 1976 // 1977 // TODO: in theory this could be a simple hashtable lookup; most 1978 // changes to CurContext don't change the set of current 1979 // instantiations. 1980 if (isa<ClassTemplateDecl>(Template)) { 1981 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1982 // If we get out to a namespace, we're done. 1983 if (Ctx->isFileContext()) break; 1984 1985 // If this isn't a record, keep looking. 1986 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1987 if (!Record) continue; 1988 1989 // Look for one of the two cases with InjectedClassNameTypes 1990 // and check whether it's the same template. 1991 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1992 !Record->getDescribedClassTemplate()) 1993 continue; 1994 1995 // Fetch the injected class name type and check whether its 1996 // injected type is equal to the type we just built. 1997 QualType ICNT = Context.getTypeDeclType(Record); 1998 QualType Injected = cast<InjectedClassNameType>(ICNT) 1999 ->getInjectedSpecializationType(); 2000 2001 if (CanonType != Injected->getCanonicalTypeInternal()) 2002 continue; 2003 2004 // If so, the canonical type of this TST is the injected 2005 // class name type of the record we just found. 2006 assert(ICNT.isCanonical()); 2007 CanonType = ICNT; 2008 break; 2009 } 2010 } 2011 } else if (ClassTemplateDecl *ClassTemplate 2012 = dyn_cast<ClassTemplateDecl>(Template)) { 2013 // Find the class template specialization declaration that 2014 // corresponds to these arguments. 2015 void *InsertPos = 0; 2016 ClassTemplateSpecializationDecl *Decl 2017 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2018 InsertPos); 2019 if (!Decl) { 2020 // This is the first time we have referenced this class template 2021 // specialization. Create the canonical declaration and add it to 2022 // the set of specializations. 2023 Decl = ClassTemplateSpecializationDecl::Create(Context, 2024 ClassTemplate->getTemplatedDecl()->getTagKind(), 2025 ClassTemplate->getDeclContext(), 2026 ClassTemplate->getTemplatedDecl()->getLocStart(), 2027 ClassTemplate->getLocation(), 2028 ClassTemplate, 2029 Converted.data(), 2030 Converted.size(), 0); 2031 ClassTemplate->AddSpecialization(Decl, InsertPos); 2032 Decl->setLexicalDeclContext(CurContext); 2033 } 2034 2035 CanonType = Context.getTypeDeclType(Decl); 2036 assert(isa<RecordType>(CanonType) && 2037 "type of non-dependent specialization is not a RecordType"); 2038 } 2039 2040 // Build the fully-sugared type for this class template 2041 // specialization, which refers back to the class template 2042 // specialization we created or found. 2043 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2044} 2045 2046TypeResult 2047Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 2048 TemplateTy TemplateD, SourceLocation TemplateLoc, 2049 SourceLocation LAngleLoc, 2050 ASTTemplateArgsPtr TemplateArgsIn, 2051 SourceLocation RAngleLoc, 2052 bool IsCtorOrDtorName) { 2053 if (SS.isInvalid()) 2054 return true; 2055 2056 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2057 2058 // Translate the parser's template argument list in our AST format. 2059 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2060 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2061 2062 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2063 QualType T 2064 = Context.getDependentTemplateSpecializationType(ETK_None, 2065 DTN->getQualifier(), 2066 DTN->getIdentifier(), 2067 TemplateArgs); 2068 // Build type-source information. 2069 TypeLocBuilder TLB; 2070 DependentTemplateSpecializationTypeLoc SpecTL 2071 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2072 SpecTL.setKeywordLoc(SourceLocation()); 2073 SpecTL.setNameLoc(TemplateLoc); 2074 SpecTL.setLAngleLoc(LAngleLoc); 2075 SpecTL.setRAngleLoc(RAngleLoc); 2076 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2077 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2078 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2079 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2080 } 2081 2082 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2083 TemplateArgsIn.release(); 2084 2085 if (Result.isNull()) 2086 return true; 2087 2088 // Build type-source information. 2089 TypeLocBuilder TLB; 2090 TemplateSpecializationTypeLoc SpecTL 2091 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2092 SpecTL.setTemplateNameLoc(TemplateLoc); 2093 SpecTL.setLAngleLoc(LAngleLoc); 2094 SpecTL.setRAngleLoc(RAngleLoc); 2095 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2096 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2097 2098 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2099 // constructor or destructor name (in such a case, the scope specifier 2100 // will be attached to the enclosing Decl or Expr node). 2101 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2102 // Create an elaborated-type-specifier containing the nested-name-specifier. 2103 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2104 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2105 ElabTL.setKeywordLoc(SourceLocation()); 2106 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2107 } 2108 2109 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2110} 2111 2112TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2113 TypeSpecifierType TagSpec, 2114 SourceLocation TagLoc, 2115 CXXScopeSpec &SS, 2116 TemplateTy TemplateD, 2117 SourceLocation TemplateLoc, 2118 SourceLocation LAngleLoc, 2119 ASTTemplateArgsPtr TemplateArgsIn, 2120 SourceLocation RAngleLoc) { 2121 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2122 2123 // Translate the parser's template argument list in our AST format. 2124 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2125 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2126 2127 // Determine the tag kind 2128 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2129 ElaboratedTypeKeyword Keyword 2130 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2131 2132 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2133 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2134 DTN->getQualifier(), 2135 DTN->getIdentifier(), 2136 TemplateArgs); 2137 2138 // Build type-source information. 2139 TypeLocBuilder TLB; 2140 DependentTemplateSpecializationTypeLoc SpecTL 2141 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2142 SpecTL.setKeywordLoc(TagLoc); 2143 SpecTL.setNameLoc(TemplateLoc); 2144 SpecTL.setLAngleLoc(LAngleLoc); 2145 SpecTL.setRAngleLoc(RAngleLoc); 2146 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2147 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2148 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2149 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2150 } 2151 2152 if (TypeAliasTemplateDecl *TAT = 2153 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2154 // C++0x [dcl.type.elab]p2: 2155 // If the identifier resolves to a typedef-name or the simple-template-id 2156 // resolves to an alias template specialization, the 2157 // elaborated-type-specifier is ill-formed. 2158 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2159 Diag(TAT->getLocation(), diag::note_declared_at); 2160 } 2161 2162 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2163 if (Result.isNull()) 2164 return TypeResult(true); 2165 2166 // Check the tag kind 2167 if (const RecordType *RT = Result->getAs<RecordType>()) { 2168 RecordDecl *D = RT->getDecl(); 2169 2170 IdentifierInfo *Id = D->getIdentifier(); 2171 assert(Id && "templated class must have an identifier"); 2172 2173 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2174 TagLoc, *Id)) { 2175 Diag(TagLoc, diag::err_use_with_wrong_tag) 2176 << Result 2177 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2178 Diag(D->getLocation(), diag::note_previous_use); 2179 } 2180 } 2181 2182 // Provide source-location information for the template specialization. 2183 TypeLocBuilder TLB; 2184 TemplateSpecializationTypeLoc SpecTL 2185 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2186 SpecTL.setTemplateNameLoc(TemplateLoc); 2187 SpecTL.setLAngleLoc(LAngleLoc); 2188 SpecTL.setRAngleLoc(RAngleLoc); 2189 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2190 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2191 2192 // Construct an elaborated type containing the nested-name-specifier (if any) 2193 // and keyword. 2194 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2195 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2196 ElabTL.setKeywordLoc(TagLoc); 2197 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2198 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2199} 2200 2201ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2202 SourceLocation TemplateKWLoc, 2203 LookupResult &R, 2204 bool RequiresADL, 2205 const TemplateArgumentListInfo &TemplateArgs) { 2206 // FIXME: Can we do any checking at this point? I guess we could check the 2207 // template arguments that we have against the template name, if the template 2208 // name refers to a single template. That's not a terribly common case, 2209 // though. 2210 // foo<int> could identify a single function unambiguously 2211 // This approach does NOT work, since f<int>(1); 2212 // gets resolved prior to resorting to overload resolution 2213 // i.e., template<class T> void f(double); 2214 // vs template<class T, class U> void f(U); 2215 2216 // These should be filtered out by our callers. 2217 assert(!R.empty() && "empty lookup results when building templateid"); 2218 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2219 2220 // We don't want lookup warnings at this point. 2221 R.suppressDiagnostics(); 2222 2223 UnresolvedLookupExpr *ULE 2224 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2225 SS.getWithLocInContext(Context), 2226 TemplateKWLoc, 2227 R.getLookupNameInfo(), 2228 RequiresADL, TemplateArgs, 2229 R.begin(), R.end()); 2230 2231 return Owned(ULE); 2232} 2233 2234// We actually only call this from template instantiation. 2235ExprResult 2236Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2237 SourceLocation TemplateKWLoc, 2238 const DeclarationNameInfo &NameInfo, 2239 const TemplateArgumentListInfo &TemplateArgs) { 2240 DeclContext *DC; 2241 if (!(DC = computeDeclContext(SS, false)) || 2242 DC->isDependentContext() || 2243 RequireCompleteDeclContext(SS, DC)) 2244 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, 2245 &TemplateArgs); 2246 2247 bool MemberOfUnknownSpecialization; 2248 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2249 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2250 MemberOfUnknownSpecialization); 2251 2252 if (R.isAmbiguous()) 2253 return ExprError(); 2254 2255 if (R.empty()) { 2256 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2257 << NameInfo.getName() << SS.getRange(); 2258 return ExprError(); 2259 } 2260 2261 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2262 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2263 << (NestedNameSpecifier*) SS.getScopeRep() 2264 << NameInfo.getName() << SS.getRange(); 2265 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2266 return ExprError(); 2267 } 2268 2269 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2270} 2271 2272/// \brief Form a dependent template name. 2273/// 2274/// This action forms a dependent template name given the template 2275/// name and its (presumably dependent) scope specifier. For 2276/// example, given "MetaFun::template apply", the scope specifier \p 2277/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2278/// of the "template" keyword, and "apply" is the \p Name. 2279TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2280 CXXScopeSpec &SS, 2281 SourceLocation TemplateKWLoc, 2282 UnqualifiedId &Name, 2283 ParsedType ObjectType, 2284 bool EnteringContext, 2285 TemplateTy &Result) { 2286 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2287 Diag(TemplateKWLoc, 2288 getLangOptions().CPlusPlus0x ? 2289 diag::warn_cxx98_compat_template_outside_of_template : 2290 diag::ext_template_outside_of_template) 2291 << FixItHint::CreateRemoval(TemplateKWLoc); 2292 2293 DeclContext *LookupCtx = 0; 2294 if (SS.isSet()) 2295 LookupCtx = computeDeclContext(SS, EnteringContext); 2296 if (!LookupCtx && ObjectType) 2297 LookupCtx = computeDeclContext(ObjectType.get()); 2298 if (LookupCtx) { 2299 // C++0x [temp.names]p5: 2300 // If a name prefixed by the keyword template is not the name of 2301 // a template, the program is ill-formed. [Note: the keyword 2302 // template may not be applied to non-template members of class 2303 // templates. -end note ] [ Note: as is the case with the 2304 // typename prefix, the template prefix is allowed in cases 2305 // where it is not strictly necessary; i.e., when the 2306 // nested-name-specifier or the expression on the left of the -> 2307 // or . is not dependent on a template-parameter, or the use 2308 // does not appear in the scope of a template. -end note] 2309 // 2310 // Note: C++03 was more strict here, because it banned the use of 2311 // the "template" keyword prior to a template-name that was not a 2312 // dependent name. C++ DR468 relaxed this requirement (the 2313 // "template" keyword is now permitted). We follow the C++0x 2314 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2315 bool MemberOfUnknownSpecialization; 2316 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2317 ObjectType, EnteringContext, Result, 2318 MemberOfUnknownSpecialization); 2319 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2320 isa<CXXRecordDecl>(LookupCtx) && 2321 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2322 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2323 // This is a dependent template. Handle it below. 2324 } else if (TNK == TNK_Non_template) { 2325 Diag(Name.getSourceRange().getBegin(), 2326 diag::err_template_kw_refers_to_non_template) 2327 << GetNameFromUnqualifiedId(Name).getName() 2328 << Name.getSourceRange() 2329 << TemplateKWLoc; 2330 return TNK_Non_template; 2331 } else { 2332 // We found something; return it. 2333 return TNK; 2334 } 2335 } 2336 2337 NestedNameSpecifier *Qualifier 2338 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2339 2340 switch (Name.getKind()) { 2341 case UnqualifiedId::IK_Identifier: 2342 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2343 Name.Identifier)); 2344 return TNK_Dependent_template_name; 2345 2346 case UnqualifiedId::IK_OperatorFunctionId: 2347 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2348 Name.OperatorFunctionId.Operator)); 2349 return TNK_Dependent_template_name; 2350 2351 case UnqualifiedId::IK_LiteralOperatorId: 2352 llvm_unreachable( 2353 "We don't support these; Parse shouldn't have allowed propagation"); 2354 2355 default: 2356 break; 2357 } 2358 2359 Diag(Name.getSourceRange().getBegin(), 2360 diag::err_template_kw_refers_to_non_template) 2361 << GetNameFromUnqualifiedId(Name).getName() 2362 << Name.getSourceRange() 2363 << TemplateKWLoc; 2364 return TNK_Non_template; 2365} 2366 2367bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2368 const TemplateArgumentLoc &AL, 2369 SmallVectorImpl<TemplateArgument> &Converted) { 2370 const TemplateArgument &Arg = AL.getArgument(); 2371 2372 // Check template type parameter. 2373 switch(Arg.getKind()) { 2374 case TemplateArgument::Type: 2375 // C++ [temp.arg.type]p1: 2376 // A template-argument for a template-parameter which is a 2377 // type shall be a type-id. 2378 break; 2379 case TemplateArgument::Template: { 2380 // We have a template type parameter but the template argument 2381 // is a template without any arguments. 2382 SourceRange SR = AL.getSourceRange(); 2383 TemplateName Name = Arg.getAsTemplate(); 2384 Diag(SR.getBegin(), diag::err_template_missing_args) 2385 << Name << SR; 2386 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2387 Diag(Decl->getLocation(), diag::note_template_decl_here); 2388 2389 return true; 2390 } 2391 default: { 2392 // We have a template type parameter but the template argument 2393 // is not a type. 2394 SourceRange SR = AL.getSourceRange(); 2395 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2396 Diag(Param->getLocation(), diag::note_template_param_here); 2397 2398 return true; 2399 } 2400 } 2401 2402 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2403 return true; 2404 2405 // Add the converted template type argument. 2406 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2407 2408 // Objective-C ARC: 2409 // If an explicitly-specified template argument type is a lifetime type 2410 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2411 if (getLangOptions().ObjCAutoRefCount && 2412 ArgType->isObjCLifetimeType() && 2413 !ArgType.getObjCLifetime()) { 2414 Qualifiers Qs; 2415 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2416 ArgType = Context.getQualifiedType(ArgType, Qs); 2417 } 2418 2419 Converted.push_back(TemplateArgument(ArgType)); 2420 return false; 2421} 2422 2423/// \brief Substitute template arguments into the default template argument for 2424/// the given template type parameter. 2425/// 2426/// \param SemaRef the semantic analysis object for which we are performing 2427/// the substitution. 2428/// 2429/// \param Template the template that we are synthesizing template arguments 2430/// for. 2431/// 2432/// \param TemplateLoc the location of the template name that started the 2433/// template-id we are checking. 2434/// 2435/// \param RAngleLoc the location of the right angle bracket ('>') that 2436/// terminates the template-id. 2437/// 2438/// \param Param the template template parameter whose default we are 2439/// substituting into. 2440/// 2441/// \param Converted the list of template arguments provided for template 2442/// parameters that precede \p Param in the template parameter list. 2443/// \returns the substituted template argument, or NULL if an error occurred. 2444static TypeSourceInfo * 2445SubstDefaultTemplateArgument(Sema &SemaRef, 2446 TemplateDecl *Template, 2447 SourceLocation TemplateLoc, 2448 SourceLocation RAngleLoc, 2449 TemplateTypeParmDecl *Param, 2450 SmallVectorImpl<TemplateArgument> &Converted) { 2451 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2452 2453 // If the argument type is dependent, instantiate it now based 2454 // on the previously-computed template arguments. 2455 if (ArgType->getType()->isDependentType()) { 2456 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2457 Converted.data(), Converted.size()); 2458 2459 MultiLevelTemplateArgumentList AllTemplateArgs 2460 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2461 2462 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2463 Template, Converted.data(), 2464 Converted.size(), 2465 SourceRange(TemplateLoc, RAngleLoc)); 2466 2467 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2468 Param->getDefaultArgumentLoc(), 2469 Param->getDeclName()); 2470 } 2471 2472 return ArgType; 2473} 2474 2475/// \brief Substitute template arguments into the default template argument for 2476/// the given non-type template parameter. 2477/// 2478/// \param SemaRef the semantic analysis object for which we are performing 2479/// the substitution. 2480/// 2481/// \param Template the template that we are synthesizing template arguments 2482/// for. 2483/// 2484/// \param TemplateLoc the location of the template name that started the 2485/// template-id we are checking. 2486/// 2487/// \param RAngleLoc the location of the right angle bracket ('>') that 2488/// terminates the template-id. 2489/// 2490/// \param Param the non-type template parameter whose default we are 2491/// substituting into. 2492/// 2493/// \param Converted the list of template arguments provided for template 2494/// parameters that precede \p Param in the template parameter list. 2495/// 2496/// \returns the substituted template argument, or NULL if an error occurred. 2497static ExprResult 2498SubstDefaultTemplateArgument(Sema &SemaRef, 2499 TemplateDecl *Template, 2500 SourceLocation TemplateLoc, 2501 SourceLocation RAngleLoc, 2502 NonTypeTemplateParmDecl *Param, 2503 SmallVectorImpl<TemplateArgument> &Converted) { 2504 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2505 Converted.data(), Converted.size()); 2506 2507 MultiLevelTemplateArgumentList AllTemplateArgs 2508 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2509 2510 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2511 Template, Converted.data(), 2512 Converted.size(), 2513 SourceRange(TemplateLoc, RAngleLoc)); 2514 2515 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2516} 2517 2518/// \brief Substitute template arguments into the default template argument for 2519/// the given template template parameter. 2520/// 2521/// \param SemaRef the semantic analysis object for which we are performing 2522/// the substitution. 2523/// 2524/// \param Template the template that we are synthesizing template arguments 2525/// for. 2526/// 2527/// \param TemplateLoc the location of the template name that started the 2528/// template-id we are checking. 2529/// 2530/// \param RAngleLoc the location of the right angle bracket ('>') that 2531/// terminates the template-id. 2532/// 2533/// \param Param the template template parameter whose default we are 2534/// substituting into. 2535/// 2536/// \param Converted the list of template arguments provided for template 2537/// parameters that precede \p Param in the template parameter list. 2538/// 2539/// \param QualifierLoc Will be set to the nested-name-specifier (with 2540/// source-location information) that precedes the template name. 2541/// 2542/// \returns the substituted template argument, or NULL if an error occurred. 2543static TemplateName 2544SubstDefaultTemplateArgument(Sema &SemaRef, 2545 TemplateDecl *Template, 2546 SourceLocation TemplateLoc, 2547 SourceLocation RAngleLoc, 2548 TemplateTemplateParmDecl *Param, 2549 SmallVectorImpl<TemplateArgument> &Converted, 2550 NestedNameSpecifierLoc &QualifierLoc) { 2551 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2552 Converted.data(), Converted.size()); 2553 2554 MultiLevelTemplateArgumentList AllTemplateArgs 2555 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2556 2557 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2558 Template, Converted.data(), 2559 Converted.size(), 2560 SourceRange(TemplateLoc, RAngleLoc)); 2561 2562 // Substitute into the nested-name-specifier first, 2563 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2564 if (QualifierLoc) { 2565 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2566 AllTemplateArgs); 2567 if (!QualifierLoc) 2568 return TemplateName(); 2569 } 2570 2571 return SemaRef.SubstTemplateName(QualifierLoc, 2572 Param->getDefaultArgument().getArgument().getAsTemplate(), 2573 Param->getDefaultArgument().getTemplateNameLoc(), 2574 AllTemplateArgs); 2575} 2576 2577/// \brief If the given template parameter has a default template 2578/// argument, substitute into that default template argument and 2579/// return the corresponding template argument. 2580TemplateArgumentLoc 2581Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2582 SourceLocation TemplateLoc, 2583 SourceLocation RAngleLoc, 2584 Decl *Param, 2585 SmallVectorImpl<TemplateArgument> &Converted) { 2586 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2587 if (!TypeParm->hasDefaultArgument()) 2588 return TemplateArgumentLoc(); 2589 2590 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2591 TemplateLoc, 2592 RAngleLoc, 2593 TypeParm, 2594 Converted); 2595 if (DI) 2596 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2597 2598 return TemplateArgumentLoc(); 2599 } 2600 2601 if (NonTypeTemplateParmDecl *NonTypeParm 2602 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2603 if (!NonTypeParm->hasDefaultArgument()) 2604 return TemplateArgumentLoc(); 2605 2606 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2607 TemplateLoc, 2608 RAngleLoc, 2609 NonTypeParm, 2610 Converted); 2611 if (Arg.isInvalid()) 2612 return TemplateArgumentLoc(); 2613 2614 Expr *ArgE = Arg.takeAs<Expr>(); 2615 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2616 } 2617 2618 TemplateTemplateParmDecl *TempTempParm 2619 = cast<TemplateTemplateParmDecl>(Param); 2620 if (!TempTempParm->hasDefaultArgument()) 2621 return TemplateArgumentLoc(); 2622 2623 2624 NestedNameSpecifierLoc QualifierLoc; 2625 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2626 TemplateLoc, 2627 RAngleLoc, 2628 TempTempParm, 2629 Converted, 2630 QualifierLoc); 2631 if (TName.isNull()) 2632 return TemplateArgumentLoc(); 2633 2634 return TemplateArgumentLoc(TemplateArgument(TName), 2635 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2636 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2637} 2638 2639/// \brief Check that the given template argument corresponds to the given 2640/// template parameter. 2641/// 2642/// \param Param The template parameter against which the argument will be 2643/// checked. 2644/// 2645/// \param Arg The template argument. 2646/// 2647/// \param Template The template in which the template argument resides. 2648/// 2649/// \param TemplateLoc The location of the template name for the template 2650/// whose argument list we're matching. 2651/// 2652/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2653/// the template argument list. 2654/// 2655/// \param ArgumentPackIndex The index into the argument pack where this 2656/// argument will be placed. Only valid if the parameter is a parameter pack. 2657/// 2658/// \param Converted The checked, converted argument will be added to the 2659/// end of this small vector. 2660/// 2661/// \param CTAK Describes how we arrived at this particular template argument: 2662/// explicitly written, deduced, etc. 2663/// 2664/// \returns true on error, false otherwise. 2665bool Sema::CheckTemplateArgument(NamedDecl *Param, 2666 const TemplateArgumentLoc &Arg, 2667 NamedDecl *Template, 2668 SourceLocation TemplateLoc, 2669 SourceLocation RAngleLoc, 2670 unsigned ArgumentPackIndex, 2671 SmallVectorImpl<TemplateArgument> &Converted, 2672 CheckTemplateArgumentKind CTAK) { 2673 // Check template type parameters. 2674 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2675 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2676 2677 // Check non-type template parameters. 2678 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2679 // Do substitution on the type of the non-type template parameter 2680 // with the template arguments we've seen thus far. But if the 2681 // template has a dependent context then we cannot substitute yet. 2682 QualType NTTPType = NTTP->getType(); 2683 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2684 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2685 2686 if (NTTPType->isDependentType() && 2687 !isa<TemplateTemplateParmDecl>(Template) && 2688 !Template->getDeclContext()->isDependentContext()) { 2689 // Do substitution on the type of the non-type template parameter. 2690 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2691 NTTP, Converted.data(), Converted.size(), 2692 SourceRange(TemplateLoc, RAngleLoc)); 2693 2694 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2695 Converted.data(), Converted.size()); 2696 NTTPType = SubstType(NTTPType, 2697 MultiLevelTemplateArgumentList(TemplateArgs), 2698 NTTP->getLocation(), 2699 NTTP->getDeclName()); 2700 // If that worked, check the non-type template parameter type 2701 // for validity. 2702 if (!NTTPType.isNull()) 2703 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2704 NTTP->getLocation()); 2705 if (NTTPType.isNull()) 2706 return true; 2707 } 2708 2709 switch (Arg.getArgument().getKind()) { 2710 case TemplateArgument::Null: 2711 llvm_unreachable("Should never see a NULL template argument here"); 2712 2713 case TemplateArgument::Expression: { 2714 TemplateArgument Result; 2715 ExprResult Res = 2716 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2717 Result, CTAK); 2718 if (Res.isInvalid()) 2719 return true; 2720 2721 Converted.push_back(Result); 2722 break; 2723 } 2724 2725 case TemplateArgument::Declaration: 2726 case TemplateArgument::Integral: 2727 // We've already checked this template argument, so just copy 2728 // it to the list of converted arguments. 2729 Converted.push_back(Arg.getArgument()); 2730 break; 2731 2732 case TemplateArgument::Template: 2733 case TemplateArgument::TemplateExpansion: 2734 // We were given a template template argument. It may not be ill-formed; 2735 // see below. 2736 if (DependentTemplateName *DTN 2737 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2738 .getAsDependentTemplateName()) { 2739 // We have a template argument such as \c T::template X, which we 2740 // parsed as a template template argument. However, since we now 2741 // know that we need a non-type template argument, convert this 2742 // template name into an expression. 2743 2744 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2745 Arg.getTemplateNameLoc()); 2746 2747 CXXScopeSpec SS; 2748 SS.Adopt(Arg.getTemplateQualifierLoc()); 2749 // FIXME: the template-template arg was a DependentTemplateName, 2750 // so it was provided with a template keyword. However, its source 2751 // location is not stored in the template argument structure. 2752 SourceLocation TemplateKWLoc; 2753 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2754 SS.getWithLocInContext(Context), 2755 TemplateKWLoc, 2756 NameInfo, 0)); 2757 2758 // If we parsed the template argument as a pack expansion, create a 2759 // pack expansion expression. 2760 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2761 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2762 if (E.isInvalid()) 2763 return true; 2764 } 2765 2766 TemplateArgument Result; 2767 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2768 if (E.isInvalid()) 2769 return true; 2770 2771 Converted.push_back(Result); 2772 break; 2773 } 2774 2775 // We have a template argument that actually does refer to a class 2776 // template, alias template, or template template parameter, and 2777 // therefore cannot be a non-type template argument. 2778 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2779 << Arg.getSourceRange(); 2780 2781 Diag(Param->getLocation(), diag::note_template_param_here); 2782 return true; 2783 2784 case TemplateArgument::Type: { 2785 // We have a non-type template parameter but the template 2786 // argument is a type. 2787 2788 // C++ [temp.arg]p2: 2789 // In a template-argument, an ambiguity between a type-id and 2790 // an expression is resolved to a type-id, regardless of the 2791 // form of the corresponding template-parameter. 2792 // 2793 // We warn specifically about this case, since it can be rather 2794 // confusing for users. 2795 QualType T = Arg.getArgument().getAsType(); 2796 SourceRange SR = Arg.getSourceRange(); 2797 if (T->isFunctionType()) 2798 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2799 else 2800 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2801 Diag(Param->getLocation(), diag::note_template_param_here); 2802 return true; 2803 } 2804 2805 case TemplateArgument::Pack: 2806 llvm_unreachable("Caller must expand template argument packs"); 2807 } 2808 2809 return false; 2810 } 2811 2812 2813 // Check template template parameters. 2814 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2815 2816 // Substitute into the template parameter list of the template 2817 // template parameter, since previously-supplied template arguments 2818 // may appear within the template template parameter. 2819 { 2820 // Set up a template instantiation context. 2821 LocalInstantiationScope Scope(*this); 2822 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2823 TempParm, Converted.data(), Converted.size(), 2824 SourceRange(TemplateLoc, RAngleLoc)); 2825 2826 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2827 Converted.data(), Converted.size()); 2828 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2829 SubstDecl(TempParm, CurContext, 2830 MultiLevelTemplateArgumentList(TemplateArgs))); 2831 if (!TempParm) 2832 return true; 2833 } 2834 2835 switch (Arg.getArgument().getKind()) { 2836 case TemplateArgument::Null: 2837 llvm_unreachable("Should never see a NULL template argument here"); 2838 2839 case TemplateArgument::Template: 2840 case TemplateArgument::TemplateExpansion: 2841 if (CheckTemplateArgument(TempParm, Arg)) 2842 return true; 2843 2844 Converted.push_back(Arg.getArgument()); 2845 break; 2846 2847 case TemplateArgument::Expression: 2848 case TemplateArgument::Type: 2849 // We have a template template parameter but the template 2850 // argument does not refer to a template. 2851 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2852 << getLangOptions().CPlusPlus0x; 2853 return true; 2854 2855 case TemplateArgument::Declaration: 2856 llvm_unreachable("Declaration argument with template template parameter"); 2857 case TemplateArgument::Integral: 2858 llvm_unreachable("Integral argument with template template parameter"); 2859 2860 case TemplateArgument::Pack: 2861 llvm_unreachable("Caller must expand template argument packs"); 2862 } 2863 2864 return false; 2865} 2866 2867/// \brief Diagnose an arity mismatch in the 2868static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2869 SourceLocation TemplateLoc, 2870 TemplateArgumentListInfo &TemplateArgs) { 2871 TemplateParameterList *Params = Template->getTemplateParameters(); 2872 unsigned NumParams = Params->size(); 2873 unsigned NumArgs = TemplateArgs.size(); 2874 2875 SourceRange Range; 2876 if (NumArgs > NumParams) 2877 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 2878 TemplateArgs.getRAngleLoc()); 2879 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2880 << (NumArgs > NumParams) 2881 << (isa<ClassTemplateDecl>(Template)? 0 : 2882 isa<FunctionTemplateDecl>(Template)? 1 : 2883 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2884 << Template << Range; 2885 S.Diag(Template->getLocation(), diag::note_template_decl_here) 2886 << Params->getSourceRange(); 2887 return true; 2888} 2889 2890/// \brief Check that the given template argument list is well-formed 2891/// for specializing the given template. 2892bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2893 SourceLocation TemplateLoc, 2894 TemplateArgumentListInfo &TemplateArgs, 2895 bool PartialTemplateArgs, 2896 SmallVectorImpl<TemplateArgument> &Converted, 2897 bool *ExpansionIntoFixedList) { 2898 if (ExpansionIntoFixedList) 2899 *ExpansionIntoFixedList = false; 2900 2901 TemplateParameterList *Params = Template->getTemplateParameters(); 2902 unsigned NumParams = Params->size(); 2903 unsigned NumArgs = TemplateArgs.size(); 2904 bool Invalid = false; 2905 2906 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2907 2908 bool HasParameterPack = 2909 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2910 2911 // C++ [temp.arg]p1: 2912 // [...] The type and form of each template-argument specified in 2913 // a template-id shall match the type and form specified for the 2914 // corresponding parameter declared by the template in its 2915 // template-parameter-list. 2916 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2917 SmallVector<TemplateArgument, 2> ArgumentPack; 2918 TemplateParameterList::iterator Param = Params->begin(), 2919 ParamEnd = Params->end(); 2920 unsigned ArgIdx = 0; 2921 LocalInstantiationScope InstScope(*this, true); 2922 bool SawPackExpansion = false; 2923 while (Param != ParamEnd) { 2924 if (ArgIdx < NumArgs) { 2925 // If we have an expanded parameter pack, make sure we don't have too 2926 // many arguments. 2927 // FIXME: This really should fall out from the normal arity checking. 2928 if (NonTypeTemplateParmDecl *NTTP 2929 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2930 if (NTTP->isExpandedParameterPack() && 2931 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2932 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2933 << true 2934 << (isa<ClassTemplateDecl>(Template)? 0 : 2935 isa<FunctionTemplateDecl>(Template)? 1 : 2936 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2937 << Template; 2938 Diag(Template->getLocation(), diag::note_template_decl_here) 2939 << Params->getSourceRange(); 2940 return true; 2941 } 2942 } 2943 2944 // Check the template argument we were given. 2945 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2946 TemplateLoc, RAngleLoc, 2947 ArgumentPack.size(), Converted)) 2948 return true; 2949 2950 if ((*Param)->isTemplateParameterPack()) { 2951 // The template parameter was a template parameter pack, so take the 2952 // deduced argument and place it on the argument pack. Note that we 2953 // stay on the same template parameter so that we can deduce more 2954 // arguments. 2955 ArgumentPack.push_back(Converted.back()); 2956 Converted.pop_back(); 2957 } else { 2958 // Move to the next template parameter. 2959 ++Param; 2960 } 2961 2962 // If this template argument is a pack expansion, record that fact 2963 // and break out; we can't actually check any more. 2964 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) { 2965 SawPackExpansion = true; 2966 ++ArgIdx; 2967 break; 2968 } 2969 2970 ++ArgIdx; 2971 continue; 2972 } 2973 2974 // If we're checking a partial template argument list, we're done. 2975 if (PartialTemplateArgs) { 2976 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2977 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2978 ArgumentPack.data(), 2979 ArgumentPack.size())); 2980 2981 return Invalid; 2982 } 2983 2984 // If we have a template parameter pack with no more corresponding 2985 // arguments, just break out now and we'll fill in the argument pack below. 2986 if ((*Param)->isTemplateParameterPack()) 2987 break; 2988 2989 // Check whether we have a default argument. 2990 TemplateArgumentLoc Arg; 2991 2992 // Retrieve the default template argument from the template 2993 // parameter. For each kind of template parameter, we substitute the 2994 // template arguments provided thus far and any "outer" template arguments 2995 // (when the template parameter was part of a nested template) into 2996 // the default argument. 2997 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2998 if (!TTP->hasDefaultArgument()) 2999 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3000 TemplateArgs); 3001 3002 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3003 Template, 3004 TemplateLoc, 3005 RAngleLoc, 3006 TTP, 3007 Converted); 3008 if (!ArgType) 3009 return true; 3010 3011 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3012 ArgType); 3013 } else if (NonTypeTemplateParmDecl *NTTP 3014 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3015 if (!NTTP->hasDefaultArgument()) 3016 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3017 TemplateArgs); 3018 3019 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3020 TemplateLoc, 3021 RAngleLoc, 3022 NTTP, 3023 Converted); 3024 if (E.isInvalid()) 3025 return true; 3026 3027 Expr *Ex = E.takeAs<Expr>(); 3028 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3029 } else { 3030 TemplateTemplateParmDecl *TempParm 3031 = cast<TemplateTemplateParmDecl>(*Param); 3032 3033 if (!TempParm->hasDefaultArgument()) 3034 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3035 TemplateArgs); 3036 3037 NestedNameSpecifierLoc QualifierLoc; 3038 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3039 TemplateLoc, 3040 RAngleLoc, 3041 TempParm, 3042 Converted, 3043 QualifierLoc); 3044 if (Name.isNull()) 3045 return true; 3046 3047 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3048 TempParm->getDefaultArgument().getTemplateNameLoc()); 3049 } 3050 3051 // Introduce an instantiation record that describes where we are using 3052 // the default template argument. 3053 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3054 Converted.data(), Converted.size(), 3055 SourceRange(TemplateLoc, RAngleLoc)); 3056 3057 // Check the default template argument. 3058 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3059 RAngleLoc, 0, Converted)) 3060 return true; 3061 3062 // Core issue 150 (assumed resolution): if this is a template template 3063 // parameter, keep track of the default template arguments from the 3064 // template definition. 3065 if (isTemplateTemplateParameter) 3066 TemplateArgs.addArgument(Arg); 3067 3068 // Move to the next template parameter and argument. 3069 ++Param; 3070 ++ArgIdx; 3071 } 3072 3073 // If we saw a pack expansion, then directly convert the remaining arguments, 3074 // because we don't know what parameters they'll match up with. 3075 if (SawPackExpansion) { 3076 bool AddToArgumentPack 3077 = Param != ParamEnd && (*Param)->isTemplateParameterPack(); 3078 while (ArgIdx < NumArgs) { 3079 if (AddToArgumentPack) 3080 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3081 else 3082 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3083 ++ArgIdx; 3084 } 3085 3086 // Push the argument pack onto the list of converted arguments. 3087 if (AddToArgumentPack) { 3088 if (ArgumentPack.empty()) 3089 Converted.push_back(TemplateArgument(0, 0)); 3090 else { 3091 Converted.push_back( 3092 TemplateArgument::CreatePackCopy(Context, 3093 ArgumentPack.data(), 3094 ArgumentPack.size())); 3095 ArgumentPack.clear(); 3096 } 3097 } else if (ExpansionIntoFixedList) { 3098 // We have expanded a pack into a fixed list. 3099 *ExpansionIntoFixedList = true; 3100 } 3101 3102 return Invalid; 3103 } 3104 3105 // If we have any leftover arguments, then there were too many arguments. 3106 // Complain and fail. 3107 if (ArgIdx < NumArgs) 3108 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3109 3110 // If we have an expanded parameter pack, make sure we don't have too 3111 // many arguments. 3112 // FIXME: This really should fall out from the normal arity checking. 3113 if (Param != ParamEnd) { 3114 if (NonTypeTemplateParmDecl *NTTP 3115 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3116 if (NTTP->isExpandedParameterPack() && 3117 ArgumentPack.size() < NTTP->getNumExpansionTypes()) { 3118 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3119 << false 3120 << (isa<ClassTemplateDecl>(Template)? 0 : 3121 isa<FunctionTemplateDecl>(Template)? 1 : 3122 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3123 << Template; 3124 Diag(Template->getLocation(), diag::note_template_decl_here) 3125 << Params->getSourceRange(); 3126 return true; 3127 } 3128 } 3129 } 3130 3131 // Form argument packs for each of the parameter packs remaining. 3132 while (Param != ParamEnd) { 3133 // If we're checking a partial list of template arguments, don't fill 3134 // in arguments for non-template parameter packs. 3135 if ((*Param)->isTemplateParameterPack()) { 3136 if (!HasParameterPack) 3137 return true; 3138 if (ArgumentPack.empty()) 3139 Converted.push_back(TemplateArgument(0, 0)); 3140 else { 3141 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3142 ArgumentPack.data(), 3143 ArgumentPack.size())); 3144 ArgumentPack.clear(); 3145 } 3146 } else if (!PartialTemplateArgs) 3147 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3148 3149 ++Param; 3150 } 3151 3152 return Invalid; 3153} 3154 3155namespace { 3156 class UnnamedLocalNoLinkageFinder 3157 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3158 { 3159 Sema &S; 3160 SourceRange SR; 3161 3162 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3163 3164 public: 3165 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3166 3167 bool Visit(QualType T) { 3168 return inherited::Visit(T.getTypePtr()); 3169 } 3170 3171#define TYPE(Class, Parent) \ 3172 bool Visit##Class##Type(const Class##Type *); 3173#define ABSTRACT_TYPE(Class, Parent) \ 3174 bool Visit##Class##Type(const Class##Type *) { return false; } 3175#define NON_CANONICAL_TYPE(Class, Parent) \ 3176 bool Visit##Class##Type(const Class##Type *) { return false; } 3177#include "clang/AST/TypeNodes.def" 3178 3179 bool VisitTagDecl(const TagDecl *Tag); 3180 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3181 }; 3182} 3183 3184bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3185 return false; 3186} 3187 3188bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3189 return Visit(T->getElementType()); 3190} 3191 3192bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3193 return Visit(T->getPointeeType()); 3194} 3195 3196bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3197 const BlockPointerType* T) { 3198 return Visit(T->getPointeeType()); 3199} 3200 3201bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3202 const LValueReferenceType* T) { 3203 return Visit(T->getPointeeType()); 3204} 3205 3206bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3207 const RValueReferenceType* T) { 3208 return Visit(T->getPointeeType()); 3209} 3210 3211bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3212 const MemberPointerType* T) { 3213 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3214} 3215 3216bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3217 const ConstantArrayType* T) { 3218 return Visit(T->getElementType()); 3219} 3220 3221bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3222 const IncompleteArrayType* T) { 3223 return Visit(T->getElementType()); 3224} 3225 3226bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3227 const VariableArrayType* T) { 3228 return Visit(T->getElementType()); 3229} 3230 3231bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3232 const DependentSizedArrayType* T) { 3233 return Visit(T->getElementType()); 3234} 3235 3236bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3237 const DependentSizedExtVectorType* T) { 3238 return Visit(T->getElementType()); 3239} 3240 3241bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3242 return Visit(T->getElementType()); 3243} 3244 3245bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3246 return Visit(T->getElementType()); 3247} 3248 3249bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3250 const FunctionProtoType* T) { 3251 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3252 AEnd = T->arg_type_end(); 3253 A != AEnd; ++A) { 3254 if (Visit(*A)) 3255 return true; 3256 } 3257 3258 return Visit(T->getResultType()); 3259} 3260 3261bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3262 const FunctionNoProtoType* T) { 3263 return Visit(T->getResultType()); 3264} 3265 3266bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3267 const UnresolvedUsingType*) { 3268 return false; 3269} 3270 3271bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3272 return false; 3273} 3274 3275bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3276 return Visit(T->getUnderlyingType()); 3277} 3278 3279bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3280 return false; 3281} 3282 3283bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3284 const UnaryTransformType*) { 3285 return false; 3286} 3287 3288bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3289 return Visit(T->getDeducedType()); 3290} 3291 3292bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3293 return VisitTagDecl(T->getDecl()); 3294} 3295 3296bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3297 return VisitTagDecl(T->getDecl()); 3298} 3299 3300bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3301 const TemplateTypeParmType*) { 3302 return false; 3303} 3304 3305bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3306 const SubstTemplateTypeParmPackType *) { 3307 return false; 3308} 3309 3310bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3311 const TemplateSpecializationType*) { 3312 return false; 3313} 3314 3315bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3316 const InjectedClassNameType* T) { 3317 return VisitTagDecl(T->getDecl()); 3318} 3319 3320bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3321 const DependentNameType* T) { 3322 return VisitNestedNameSpecifier(T->getQualifier()); 3323} 3324 3325bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3326 const DependentTemplateSpecializationType* T) { 3327 return VisitNestedNameSpecifier(T->getQualifier()); 3328} 3329 3330bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3331 const PackExpansionType* T) { 3332 return Visit(T->getPattern()); 3333} 3334 3335bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3336 return false; 3337} 3338 3339bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3340 const ObjCInterfaceType *) { 3341 return false; 3342} 3343 3344bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3345 const ObjCObjectPointerType *) { 3346 return false; 3347} 3348 3349bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3350 return Visit(T->getValueType()); 3351} 3352 3353bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3354 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3355 S.Diag(SR.getBegin(), 3356 S.getLangOptions().CPlusPlus0x ? 3357 diag::warn_cxx98_compat_template_arg_local_type : 3358 diag::ext_template_arg_local_type) 3359 << S.Context.getTypeDeclType(Tag) << SR; 3360 return true; 3361 } 3362 3363 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3364 S.Diag(SR.getBegin(), 3365 S.getLangOptions().CPlusPlus0x ? 3366 diag::warn_cxx98_compat_template_arg_unnamed_type : 3367 diag::ext_template_arg_unnamed_type) << SR; 3368 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3369 return true; 3370 } 3371 3372 return false; 3373} 3374 3375bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3376 NestedNameSpecifier *NNS) { 3377 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3378 return true; 3379 3380 switch (NNS->getKind()) { 3381 case NestedNameSpecifier::Identifier: 3382 case NestedNameSpecifier::Namespace: 3383 case NestedNameSpecifier::NamespaceAlias: 3384 case NestedNameSpecifier::Global: 3385 return false; 3386 3387 case NestedNameSpecifier::TypeSpec: 3388 case NestedNameSpecifier::TypeSpecWithTemplate: 3389 return Visit(QualType(NNS->getAsType(), 0)); 3390 } 3391 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3392} 3393 3394 3395/// \brief Check a template argument against its corresponding 3396/// template type parameter. 3397/// 3398/// This routine implements the semantics of C++ [temp.arg.type]. It 3399/// returns true if an error occurred, and false otherwise. 3400bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3401 TypeSourceInfo *ArgInfo) { 3402 assert(ArgInfo && "invalid TypeSourceInfo"); 3403 QualType Arg = ArgInfo->getType(); 3404 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3405 3406 if (Arg->isVariablyModifiedType()) { 3407 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3408 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3409 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3410 } 3411 3412 // C++03 [temp.arg.type]p2: 3413 // A local type, a type with no linkage, an unnamed type or a type 3414 // compounded from any of these types shall not be used as a 3415 // template-argument for a template type-parameter. 3416 // 3417 // C++11 allows these, and even in C++03 we allow them as an extension with 3418 // a warning. 3419 if (LangOpts.CPlusPlus0x ? 3420 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3421 SR.getBegin()) != DiagnosticsEngine::Ignored || 3422 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3423 SR.getBegin()) != DiagnosticsEngine::Ignored : 3424 Arg->hasUnnamedOrLocalType()) { 3425 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3426 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3427 } 3428 3429 return false; 3430} 3431 3432/// \brief Checks whether the given template argument is the address 3433/// of an object or function according to C++ [temp.arg.nontype]p1. 3434static bool 3435CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3436 NonTypeTemplateParmDecl *Param, 3437 QualType ParamType, 3438 Expr *ArgIn, 3439 TemplateArgument &Converted) { 3440 bool Invalid = false; 3441 Expr *Arg = ArgIn; 3442 QualType ArgType = Arg->getType(); 3443 3444 // See through any implicit casts we added to fix the type. 3445 Arg = Arg->IgnoreImpCasts(); 3446 3447 // C++ [temp.arg.nontype]p1: 3448 // 3449 // A template-argument for a non-type, non-template 3450 // template-parameter shall be one of: [...] 3451 // 3452 // -- the address of an object or function with external 3453 // linkage, including function templates and function 3454 // template-ids but excluding non-static class members, 3455 // expressed as & id-expression where the & is optional if 3456 // the name refers to a function or array, or if the 3457 // corresponding template-parameter is a reference; or 3458 3459 // In C++98/03 mode, give an extension warning on any extra parentheses. 3460 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3461 bool ExtraParens = false; 3462 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3463 if (!Invalid && !ExtraParens) { 3464 S.Diag(Arg->getSourceRange().getBegin(), 3465 S.getLangOptions().CPlusPlus0x ? 3466 diag::warn_cxx98_compat_template_arg_extra_parens : 3467 diag::ext_template_arg_extra_parens) 3468 << Arg->getSourceRange(); 3469 ExtraParens = true; 3470 } 3471 3472 Arg = Parens->getSubExpr(); 3473 } 3474 3475 while (SubstNonTypeTemplateParmExpr *subst = 3476 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3477 Arg = subst->getReplacement()->IgnoreImpCasts(); 3478 3479 bool AddressTaken = false; 3480 SourceLocation AddrOpLoc; 3481 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3482 if (UnOp->getOpcode() == UO_AddrOf) { 3483 Arg = UnOp->getSubExpr(); 3484 AddressTaken = true; 3485 AddrOpLoc = UnOp->getOperatorLoc(); 3486 } 3487 } 3488 3489 if (S.getLangOptions().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3490 Converted = TemplateArgument(ArgIn); 3491 return false; 3492 } 3493 3494 while (SubstNonTypeTemplateParmExpr *subst = 3495 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3496 Arg = subst->getReplacement()->IgnoreImpCasts(); 3497 3498 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3499 if (!DRE) { 3500 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3501 << Arg->getSourceRange(); 3502 S.Diag(Param->getLocation(), diag::note_template_param_here); 3503 return true; 3504 } 3505 3506 // Stop checking the precise nature of the argument if it is value dependent, 3507 // it should be checked when instantiated. 3508 if (Arg->isValueDependent()) { 3509 Converted = TemplateArgument(ArgIn); 3510 return false; 3511 } 3512 3513 if (!isa<ValueDecl>(DRE->getDecl())) { 3514 S.Diag(Arg->getSourceRange().getBegin(), 3515 diag::err_template_arg_not_object_or_func_form) 3516 << Arg->getSourceRange(); 3517 S.Diag(Param->getLocation(), diag::note_template_param_here); 3518 return true; 3519 } 3520 3521 NamedDecl *Entity = 0; 3522 3523 // Cannot refer to non-static data members 3524 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3525 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3526 << Field << Arg->getSourceRange(); 3527 S.Diag(Param->getLocation(), diag::note_template_param_here); 3528 return true; 3529 } 3530 3531 // Cannot refer to non-static member functions 3532 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3533 if (!Method->isStatic()) { 3534 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3535 << Method << Arg->getSourceRange(); 3536 S.Diag(Param->getLocation(), diag::note_template_param_here); 3537 return true; 3538 } 3539 3540 // Functions must have external linkage. 3541 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3542 if (!isExternalLinkage(Func->getLinkage())) { 3543 S.Diag(Arg->getSourceRange().getBegin(), 3544 diag::err_template_arg_function_not_extern) 3545 << Func << Arg->getSourceRange(); 3546 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3547 << true; 3548 return true; 3549 } 3550 3551 // Okay: we've named a function with external linkage. 3552 Entity = Func; 3553 3554 // If the template parameter has pointer type, the function decays. 3555 if (ParamType->isPointerType() && !AddressTaken) 3556 ArgType = S.Context.getPointerType(Func->getType()); 3557 else if (AddressTaken && ParamType->isReferenceType()) { 3558 // If we originally had an address-of operator, but the 3559 // parameter has reference type, complain and (if things look 3560 // like they will work) drop the address-of operator. 3561 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3562 ParamType.getNonReferenceType())) { 3563 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3564 << ParamType; 3565 S.Diag(Param->getLocation(), diag::note_template_param_here); 3566 return true; 3567 } 3568 3569 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3570 << ParamType 3571 << FixItHint::CreateRemoval(AddrOpLoc); 3572 S.Diag(Param->getLocation(), diag::note_template_param_here); 3573 3574 ArgType = Func->getType(); 3575 } 3576 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3577 if (!isExternalLinkage(Var->getLinkage())) { 3578 S.Diag(Arg->getSourceRange().getBegin(), 3579 diag::err_template_arg_object_not_extern) 3580 << Var << Arg->getSourceRange(); 3581 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3582 << true; 3583 return true; 3584 } 3585 3586 // A value of reference type is not an object. 3587 if (Var->getType()->isReferenceType()) { 3588 S.Diag(Arg->getSourceRange().getBegin(), 3589 diag::err_template_arg_reference_var) 3590 << Var->getType() << Arg->getSourceRange(); 3591 S.Diag(Param->getLocation(), diag::note_template_param_here); 3592 return true; 3593 } 3594 3595 // Okay: we've named an object with external linkage 3596 Entity = Var; 3597 3598 // If the template parameter has pointer type, we must have taken 3599 // the address of this object. 3600 if (ParamType->isReferenceType()) { 3601 if (AddressTaken) { 3602 // If we originally had an address-of operator, but the 3603 // parameter has reference type, complain and (if things look 3604 // like they will work) drop the address-of operator. 3605 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3606 ParamType.getNonReferenceType())) { 3607 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3608 << ParamType; 3609 S.Diag(Param->getLocation(), diag::note_template_param_here); 3610 return true; 3611 } 3612 3613 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3614 << ParamType 3615 << FixItHint::CreateRemoval(AddrOpLoc); 3616 S.Diag(Param->getLocation(), diag::note_template_param_here); 3617 3618 ArgType = Var->getType(); 3619 } 3620 } else if (!AddressTaken && ParamType->isPointerType()) { 3621 if (Var->getType()->isArrayType()) { 3622 // Array-to-pointer decay. 3623 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3624 } else { 3625 // If the template parameter has pointer type but the address of 3626 // this object was not taken, complain and (possibly) recover by 3627 // taking the address of the entity. 3628 ArgType = S.Context.getPointerType(Var->getType()); 3629 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3630 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3631 << ParamType; 3632 S.Diag(Param->getLocation(), diag::note_template_param_here); 3633 return true; 3634 } 3635 3636 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3637 << ParamType 3638 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3639 3640 S.Diag(Param->getLocation(), diag::note_template_param_here); 3641 } 3642 } 3643 } else { 3644 // We found something else, but we don't know specifically what it is. 3645 S.Diag(Arg->getSourceRange().getBegin(), 3646 diag::err_template_arg_not_object_or_func) 3647 << Arg->getSourceRange(); 3648 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3649 return true; 3650 } 3651 3652 bool ObjCLifetimeConversion; 3653 if (ParamType->isPointerType() && 3654 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3655 S.IsQualificationConversion(ArgType, ParamType, false, 3656 ObjCLifetimeConversion)) { 3657 // For pointer-to-object types, qualification conversions are 3658 // permitted. 3659 } else { 3660 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3661 if (!ParamRef->getPointeeType()->isFunctionType()) { 3662 // C++ [temp.arg.nontype]p5b3: 3663 // For a non-type template-parameter of type reference to 3664 // object, no conversions apply. The type referred to by the 3665 // reference may be more cv-qualified than the (otherwise 3666 // identical) type of the template- argument. The 3667 // template-parameter is bound directly to the 3668 // template-argument, which shall be an lvalue. 3669 3670 // FIXME: Other qualifiers? 3671 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3672 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3673 3674 if ((ParamQuals | ArgQuals) != ParamQuals) { 3675 S.Diag(Arg->getSourceRange().getBegin(), 3676 diag::err_template_arg_ref_bind_ignores_quals) 3677 << ParamType << Arg->getType() 3678 << Arg->getSourceRange(); 3679 S.Diag(Param->getLocation(), diag::note_template_param_here); 3680 return true; 3681 } 3682 } 3683 } 3684 3685 // At this point, the template argument refers to an object or 3686 // function with external linkage. We now need to check whether the 3687 // argument and parameter types are compatible. 3688 if (!S.Context.hasSameUnqualifiedType(ArgType, 3689 ParamType.getNonReferenceType())) { 3690 // We can't perform this conversion or binding. 3691 if (ParamType->isReferenceType()) 3692 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3693 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3694 else 3695 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3696 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3697 S.Diag(Param->getLocation(), diag::note_template_param_here); 3698 return true; 3699 } 3700 } 3701 3702 // Create the template argument. 3703 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3704 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity); 3705 return false; 3706} 3707 3708/// \brief Checks whether the given template argument is a pointer to 3709/// member constant according to C++ [temp.arg.nontype]p1. 3710bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3711 TemplateArgument &Converted) { 3712 bool Invalid = false; 3713 3714 // See through any implicit casts we added to fix the type. 3715 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3716 Arg = Cast->getSubExpr(); 3717 3718 // C++ [temp.arg.nontype]p1: 3719 // 3720 // A template-argument for a non-type, non-template 3721 // template-parameter shall be one of: [...] 3722 // 3723 // -- a pointer to member expressed as described in 5.3.1. 3724 DeclRefExpr *DRE = 0; 3725 3726 // In C++98/03 mode, give an extension warning on any extra parentheses. 3727 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3728 bool ExtraParens = false; 3729 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3730 if (!Invalid && !ExtraParens) { 3731 Diag(Arg->getSourceRange().getBegin(), 3732 getLangOptions().CPlusPlus0x ? 3733 diag::warn_cxx98_compat_template_arg_extra_parens : 3734 diag::ext_template_arg_extra_parens) 3735 << Arg->getSourceRange(); 3736 ExtraParens = true; 3737 } 3738 3739 Arg = Parens->getSubExpr(); 3740 } 3741 3742 while (SubstNonTypeTemplateParmExpr *subst = 3743 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3744 Arg = subst->getReplacement()->IgnoreImpCasts(); 3745 3746 // A pointer-to-member constant written &Class::member. 3747 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3748 if (UnOp->getOpcode() == UO_AddrOf) { 3749 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3750 if (DRE && !DRE->getQualifier()) 3751 DRE = 0; 3752 } 3753 } 3754 // A constant of pointer-to-member type. 3755 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3756 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3757 if (VD->getType()->isMemberPointerType()) { 3758 if (isa<NonTypeTemplateParmDecl>(VD) || 3759 (isa<VarDecl>(VD) && 3760 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3761 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3762 Converted = TemplateArgument(Arg); 3763 else 3764 Converted = TemplateArgument(VD->getCanonicalDecl()); 3765 return Invalid; 3766 } 3767 } 3768 } 3769 3770 DRE = 0; 3771 } 3772 3773 if (!DRE) 3774 return Diag(Arg->getSourceRange().getBegin(), 3775 diag::err_template_arg_not_pointer_to_member_form) 3776 << Arg->getSourceRange(); 3777 3778 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3779 assert((isa<FieldDecl>(DRE->getDecl()) || 3780 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3781 "Only non-static member pointers can make it here"); 3782 3783 // Okay: this is the address of a non-static member, and therefore 3784 // a member pointer constant. 3785 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3786 Converted = TemplateArgument(Arg); 3787 else 3788 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3789 return Invalid; 3790 } 3791 3792 // We found something else, but we don't know specifically what it is. 3793 Diag(Arg->getSourceRange().getBegin(), 3794 diag::err_template_arg_not_pointer_to_member_form) 3795 << Arg->getSourceRange(); 3796 Diag(DRE->getDecl()->getLocation(), 3797 diag::note_template_arg_refers_here); 3798 return true; 3799} 3800 3801/// \brief Check a template argument against its corresponding 3802/// non-type template parameter. 3803/// 3804/// This routine implements the semantics of C++ [temp.arg.nontype]. 3805/// If an error occurred, it returns ExprError(); otherwise, it 3806/// returns the converted template argument. \p 3807/// InstantiatedParamType is the type of the non-type template 3808/// parameter after it has been instantiated. 3809ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3810 QualType InstantiatedParamType, Expr *Arg, 3811 TemplateArgument &Converted, 3812 CheckTemplateArgumentKind CTAK) { 3813 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3814 3815 // If either the parameter has a dependent type or the argument is 3816 // type-dependent, there's nothing we can check now. 3817 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3818 // FIXME: Produce a cloned, canonical expression? 3819 Converted = TemplateArgument(Arg); 3820 return Owned(Arg); 3821 } 3822 3823 // C++ [temp.arg.nontype]p5: 3824 // The following conversions are performed on each expression used 3825 // as a non-type template-argument. If a non-type 3826 // template-argument cannot be converted to the type of the 3827 // corresponding template-parameter then the program is 3828 // ill-formed. 3829 QualType ParamType = InstantiatedParamType; 3830 if (ParamType->isIntegralOrEnumerationType()) { 3831 // C++11: 3832 // -- for a non-type template-parameter of integral or 3833 // enumeration type, conversions permitted in a converted 3834 // constant expression are applied. 3835 // 3836 // C++98: 3837 // -- for a non-type template-parameter of integral or 3838 // enumeration type, integral promotions (4.5) and integral 3839 // conversions (4.7) are applied. 3840 3841 if (CTAK == CTAK_Deduced && 3842 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 3843 // C++ [temp.deduct.type]p17: 3844 // If, in the declaration of a function template with a non-type 3845 // template-parameter, the non-type template-parameter is used 3846 // in an expression in the function parameter-list and, if the 3847 // corresponding template-argument is deduced, the 3848 // template-argument type shall match the type of the 3849 // template-parameter exactly, except that a template-argument 3850 // deduced from an array bound may be of any integral type. 3851 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3852 << Arg->getType().getUnqualifiedType() 3853 << ParamType.getUnqualifiedType(); 3854 Diag(Param->getLocation(), diag::note_template_param_here); 3855 return ExprError(); 3856 } 3857 3858 if (getLangOptions().CPlusPlus0x) { 3859 // We can't check arbitrary value-dependent arguments. 3860 // FIXME: If there's no viable conversion to the template parameter type, 3861 // we should be able to diagnose that prior to instantiation. 3862 if (Arg->isValueDependent()) { 3863 Converted = TemplateArgument(Arg); 3864 return Owned(Arg); 3865 } 3866 3867 // C++ [temp.arg.nontype]p1: 3868 // A template-argument for a non-type, non-template template-parameter 3869 // shall be one of: 3870 // 3871 // -- for a non-type template-parameter of integral or enumeration 3872 // type, a converted constant expression of the type of the 3873 // template-parameter; or 3874 llvm::APSInt Value; 3875 ExprResult ArgResult = 3876 CheckConvertedConstantExpression(Arg, ParamType, Value, 3877 CCEK_TemplateArg); 3878 if (ArgResult.isInvalid()) 3879 return ExprError(); 3880 3881 // Widen the argument value to sizeof(parameter type). This is almost 3882 // always a no-op, except when the parameter type is bool. In 3883 // that case, this may extend the argument from 1 bit to 8 bits. 3884 QualType IntegerType = ParamType; 3885 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3886 IntegerType = Enum->getDecl()->getIntegerType(); 3887 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 3888 3889 Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType)); 3890 return ArgResult; 3891 } 3892 3893 ExprResult ArgResult = DefaultLvalueConversion(Arg); 3894 if (ArgResult.isInvalid()) 3895 return ExprError(); 3896 Arg = ArgResult.take(); 3897 3898 QualType ArgType = Arg->getType(); 3899 3900 // C++ [temp.arg.nontype]p1: 3901 // A template-argument for a non-type, non-template 3902 // template-parameter shall be one of: 3903 // 3904 // -- an integral constant-expression of integral or enumeration 3905 // type; or 3906 // -- the name of a non-type template-parameter; or 3907 SourceLocation NonConstantLoc; 3908 llvm::APSInt Value; 3909 if (!ArgType->isIntegralOrEnumerationType()) { 3910 Diag(Arg->getSourceRange().getBegin(), 3911 diag::err_template_arg_not_integral_or_enumeral) 3912 << ArgType << Arg->getSourceRange(); 3913 Diag(Param->getLocation(), diag::note_template_param_here); 3914 return ExprError(); 3915 } else if (!Arg->isValueDependent()) { 3916 Arg = VerifyIntegerConstantExpression(Arg, &Value, 3917 PDiag(diag::err_template_arg_not_ice) << ArgType, false).take(); 3918 if (!Arg) 3919 return ExprError(); 3920 } 3921 3922 // From here on out, all we care about are the unqualified forms 3923 // of the parameter and argument types. 3924 ParamType = ParamType.getUnqualifiedType(); 3925 ArgType = ArgType.getUnqualifiedType(); 3926 3927 // Try to convert the argument to the parameter's type. 3928 if (Context.hasSameType(ParamType, ArgType)) { 3929 // Okay: no conversion necessary 3930 } else if (ParamType->isBooleanType()) { 3931 // This is an integral-to-boolean conversion. 3932 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3933 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3934 !ParamType->isEnumeralType()) { 3935 // This is an integral promotion or conversion. 3936 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3937 } else { 3938 // We can't perform this conversion. 3939 Diag(Arg->getSourceRange().getBegin(), 3940 diag::err_template_arg_not_convertible) 3941 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3942 Diag(Param->getLocation(), diag::note_template_param_here); 3943 return ExprError(); 3944 } 3945 3946 // Add the value of this argument to the list of converted 3947 // arguments. We use the bitwidth and signedness of the template 3948 // parameter. 3949 if (Arg->isValueDependent()) { 3950 // The argument is value-dependent. Create a new 3951 // TemplateArgument with the converted expression. 3952 Converted = TemplateArgument(Arg); 3953 return Owned(Arg); 3954 } 3955 3956 QualType IntegerType = Context.getCanonicalType(ParamType); 3957 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3958 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3959 3960 if (ParamType->isBooleanType()) { 3961 // Value must be zero or one. 3962 Value = Value != 0; 3963 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3964 if (Value.getBitWidth() != AllowedBits) 3965 Value = Value.extOrTrunc(AllowedBits); 3966 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3967 } else { 3968 llvm::APSInt OldValue = Value; 3969 3970 // Coerce the template argument's value to the value it will have 3971 // based on the template parameter's type. 3972 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3973 if (Value.getBitWidth() != AllowedBits) 3974 Value = Value.extOrTrunc(AllowedBits); 3975 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3976 3977 // Complain if an unsigned parameter received a negative value. 3978 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3979 && (OldValue.isSigned() && OldValue.isNegative())) { 3980 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3981 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3982 << Arg->getSourceRange(); 3983 Diag(Param->getLocation(), diag::note_template_param_here); 3984 } 3985 3986 // Complain if we overflowed the template parameter's type. 3987 unsigned RequiredBits; 3988 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3989 RequiredBits = OldValue.getActiveBits(); 3990 else if (OldValue.isUnsigned()) 3991 RequiredBits = OldValue.getActiveBits() + 1; 3992 else 3993 RequiredBits = OldValue.getMinSignedBits(); 3994 if (RequiredBits > AllowedBits) { 3995 Diag(Arg->getSourceRange().getBegin(), 3996 diag::warn_template_arg_too_large) 3997 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3998 << Arg->getSourceRange(); 3999 Diag(Param->getLocation(), diag::note_template_param_here); 4000 } 4001 } 4002 4003 Converted = TemplateArgument(Value, 4004 ParamType->isEnumeralType() 4005 ? Context.getCanonicalType(ParamType) 4006 : IntegerType); 4007 return Owned(Arg); 4008 } 4009 4010 QualType ArgType = Arg->getType(); 4011 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4012 4013 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 4014 // from a template argument of type std::nullptr_t to a non-type 4015 // template parameter of type pointer to object, pointer to 4016 // function, or pointer-to-member, respectively. 4017 if (ArgType->isNullPtrType()) { 4018 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 4019 Converted = TemplateArgument((NamedDecl *)0); 4020 return Owned(Arg); 4021 } 4022 4023 if (ParamType->isNullPtrType()) { 4024 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 4025 Converted = TemplateArgument(Zero, Context.NullPtrTy); 4026 return Owned(Arg); 4027 } 4028 } 4029 4030 // Handle pointer-to-function, reference-to-function, and 4031 // pointer-to-member-function all in (roughly) the same way. 4032 if (// -- For a non-type template-parameter of type pointer to 4033 // function, only the function-to-pointer conversion (4.3) is 4034 // applied. If the template-argument represents a set of 4035 // overloaded functions (or a pointer to such), the matching 4036 // function is selected from the set (13.4). 4037 (ParamType->isPointerType() && 4038 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4039 // -- For a non-type template-parameter of type reference to 4040 // function, no conversions apply. If the template-argument 4041 // represents a set of overloaded functions, the matching 4042 // function is selected from the set (13.4). 4043 (ParamType->isReferenceType() && 4044 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4045 // -- For a non-type template-parameter of type pointer to 4046 // member function, no conversions apply. If the 4047 // template-argument represents a set of overloaded member 4048 // functions, the matching member function is selected from 4049 // the set (13.4). 4050 (ParamType->isMemberPointerType() && 4051 ParamType->getAs<MemberPointerType>()->getPointeeType() 4052 ->isFunctionType())) { 4053 4054 if (Arg->getType() == Context.OverloadTy) { 4055 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4056 true, 4057 FoundResult)) { 4058 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 4059 return ExprError(); 4060 4061 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4062 ArgType = Arg->getType(); 4063 } else 4064 return ExprError(); 4065 } 4066 4067 if (!ParamType->isMemberPointerType()) { 4068 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4069 ParamType, 4070 Arg, Converted)) 4071 return ExprError(); 4072 return Owned(Arg); 4073 } 4074 4075 bool ObjCLifetimeConversion; 4076 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 4077 false, ObjCLifetimeConversion)) { 4078 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, 4079 Arg->getValueKind()).take(); 4080 } else if (!Context.hasSameUnqualifiedType(ArgType, 4081 ParamType.getNonReferenceType())) { 4082 // We can't perform this conversion. 4083 Diag(Arg->getSourceRange().getBegin(), 4084 diag::err_template_arg_not_convertible) 4085 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4086 Diag(Param->getLocation(), diag::note_template_param_here); 4087 return ExprError(); 4088 } 4089 4090 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 4091 return ExprError(); 4092 return Owned(Arg); 4093 } 4094 4095 if (ParamType->isPointerType()) { 4096 // -- for a non-type template-parameter of type pointer to 4097 // object, qualification conversions (4.4) and the 4098 // array-to-pointer conversion (4.2) are applied. 4099 // C++0x also allows a value of std::nullptr_t. 4100 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4101 "Only object pointers allowed here"); 4102 4103 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4104 ParamType, 4105 Arg, Converted)) 4106 return ExprError(); 4107 return Owned(Arg); 4108 } 4109 4110 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4111 // -- For a non-type template-parameter of type reference to 4112 // object, no conversions apply. The type referred to by the 4113 // reference may be more cv-qualified than the (otherwise 4114 // identical) type of the template-argument. The 4115 // template-parameter is bound directly to the 4116 // template-argument, which must be an lvalue. 4117 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4118 "Only object references allowed here"); 4119 4120 if (Arg->getType() == Context.OverloadTy) { 4121 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4122 ParamRefType->getPointeeType(), 4123 true, 4124 FoundResult)) { 4125 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 4126 return ExprError(); 4127 4128 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4129 ArgType = Arg->getType(); 4130 } else 4131 return ExprError(); 4132 } 4133 4134 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4135 ParamType, 4136 Arg, Converted)) 4137 return ExprError(); 4138 return Owned(Arg); 4139 } 4140 4141 // -- For a non-type template-parameter of type pointer to data 4142 // member, qualification conversions (4.4) are applied. 4143 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4144 4145 bool ObjCLifetimeConversion; 4146 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 4147 // Types match exactly: nothing more to do here. 4148 } else if (IsQualificationConversion(ArgType, ParamType, false, 4149 ObjCLifetimeConversion)) { 4150 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, 4151 Arg->getValueKind()).take(); 4152 } else { 4153 // We can't perform this conversion. 4154 Diag(Arg->getSourceRange().getBegin(), 4155 diag::err_template_arg_not_convertible) 4156 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4157 Diag(Param->getLocation(), diag::note_template_param_here); 4158 return ExprError(); 4159 } 4160 4161 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 4162 return ExprError(); 4163 return Owned(Arg); 4164} 4165 4166/// \brief Check a template argument against its corresponding 4167/// template template parameter. 4168/// 4169/// This routine implements the semantics of C++ [temp.arg.template]. 4170/// It returns true if an error occurred, and false otherwise. 4171bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4172 const TemplateArgumentLoc &Arg) { 4173 TemplateName Name = Arg.getArgument().getAsTemplate(); 4174 TemplateDecl *Template = Name.getAsTemplateDecl(); 4175 if (!Template) { 4176 // Any dependent template name is fine. 4177 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4178 return false; 4179 } 4180 4181 // C++0x [temp.arg.template]p1: 4182 // A template-argument for a template template-parameter shall be 4183 // the name of a class template or an alias template, expressed as an 4184 // id-expression. When the template-argument names a class template, only 4185 // primary class templates are considered when matching the 4186 // template template argument with the corresponding parameter; 4187 // partial specializations are not considered even if their 4188 // parameter lists match that of the template template parameter. 4189 // 4190 // Note that we also allow template template parameters here, which 4191 // will happen when we are dealing with, e.g., class template 4192 // partial specializations. 4193 if (!isa<ClassTemplateDecl>(Template) && 4194 !isa<TemplateTemplateParmDecl>(Template) && 4195 !isa<TypeAliasTemplateDecl>(Template)) { 4196 assert(isa<FunctionTemplateDecl>(Template) && 4197 "Only function templates are possible here"); 4198 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4199 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4200 << Template; 4201 } 4202 4203 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4204 Param->getTemplateParameters(), 4205 true, 4206 TPL_TemplateTemplateArgumentMatch, 4207 Arg.getLocation()); 4208} 4209 4210/// \brief Given a non-type template argument that refers to a 4211/// declaration and the type of its corresponding non-type template 4212/// parameter, produce an expression that properly refers to that 4213/// declaration. 4214ExprResult 4215Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4216 QualType ParamType, 4217 SourceLocation Loc) { 4218 assert(Arg.getKind() == TemplateArgument::Declaration && 4219 "Only declaration template arguments permitted here"); 4220 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4221 4222 if (VD->getDeclContext()->isRecord() && 4223 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4224 // If the value is a class member, we might have a pointer-to-member. 4225 // Determine whether the non-type template template parameter is of 4226 // pointer-to-member type. If so, we need to build an appropriate 4227 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4228 // would refer to the member itself. 4229 if (ParamType->isMemberPointerType()) { 4230 QualType ClassType 4231 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4232 NestedNameSpecifier *Qualifier 4233 = NestedNameSpecifier::Create(Context, 0, false, 4234 ClassType.getTypePtr()); 4235 CXXScopeSpec SS; 4236 SS.MakeTrivial(Context, Qualifier, Loc); 4237 4238 // The actual value-ness of this is unimportant, but for 4239 // internal consistency's sake, references to instance methods 4240 // are r-values. 4241 ExprValueKind VK = VK_LValue; 4242 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4243 VK = VK_RValue; 4244 4245 ExprResult RefExpr = BuildDeclRefExpr(VD, 4246 VD->getType().getNonReferenceType(), 4247 VK, 4248 Loc, 4249 &SS); 4250 if (RefExpr.isInvalid()) 4251 return ExprError(); 4252 4253 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4254 4255 // We might need to perform a trailing qualification conversion, since 4256 // the element type on the parameter could be more qualified than the 4257 // element type in the expression we constructed. 4258 bool ObjCLifetimeConversion; 4259 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4260 ParamType.getUnqualifiedType(), false, 4261 ObjCLifetimeConversion)) 4262 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4263 4264 assert(!RefExpr.isInvalid() && 4265 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4266 ParamType.getUnqualifiedType())); 4267 return move(RefExpr); 4268 } 4269 } 4270 4271 QualType T = VD->getType().getNonReferenceType(); 4272 if (ParamType->isPointerType()) { 4273 // When the non-type template parameter is a pointer, take the 4274 // address of the declaration. 4275 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4276 if (RefExpr.isInvalid()) 4277 return ExprError(); 4278 4279 if (T->isFunctionType() || T->isArrayType()) { 4280 // Decay functions and arrays. 4281 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4282 if (RefExpr.isInvalid()) 4283 return ExprError(); 4284 4285 return move(RefExpr); 4286 } 4287 4288 // Take the address of everything else 4289 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4290 } 4291 4292 ExprValueKind VK = VK_RValue; 4293 4294 // If the non-type template parameter has reference type, qualify the 4295 // resulting declaration reference with the extra qualifiers on the 4296 // type that the reference refers to. 4297 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4298 VK = VK_LValue; 4299 T = Context.getQualifiedType(T, 4300 TargetRef->getPointeeType().getQualifiers()); 4301 } 4302 4303 return BuildDeclRefExpr(VD, T, VK, Loc); 4304} 4305 4306/// \brief Construct a new expression that refers to the given 4307/// integral template argument with the given source-location 4308/// information. 4309/// 4310/// This routine takes care of the mapping from an integral template 4311/// argument (which may have any integral type) to the appropriate 4312/// literal value. 4313ExprResult 4314Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4315 SourceLocation Loc) { 4316 assert(Arg.getKind() == TemplateArgument::Integral && 4317 "Operation is only valid for integral template arguments"); 4318 QualType T = Arg.getIntegralType(); 4319 if (T->isAnyCharacterType()) { 4320 CharacterLiteral::CharacterKind Kind; 4321 if (T->isWideCharType()) 4322 Kind = CharacterLiteral::Wide; 4323 else if (T->isChar16Type()) 4324 Kind = CharacterLiteral::UTF16; 4325 else if (T->isChar32Type()) 4326 Kind = CharacterLiteral::UTF32; 4327 else 4328 Kind = CharacterLiteral::Ascii; 4329 4330 return Owned(new (Context) CharacterLiteral( 4331 Arg.getAsIntegral()->getZExtValue(), 4332 Kind, T, Loc)); 4333 } 4334 4335 if (T->isBooleanType()) 4336 return Owned(new (Context) CXXBoolLiteralExpr( 4337 Arg.getAsIntegral()->getBoolValue(), 4338 T, Loc)); 4339 4340 if (T->isNullPtrType()) 4341 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4342 4343 // If this is an enum type that we're instantiating, we need to use an integer 4344 // type the same size as the enumerator. We don't want to build an 4345 // IntegerLiteral with enum type. 4346 QualType BT; 4347 if (const EnumType *ET = T->getAs<EnumType>()) 4348 BT = ET->getDecl()->getIntegerType(); 4349 else 4350 BT = T; 4351 4352 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4353 if (T->isEnumeralType()) { 4354 // FIXME: This is a hack. We need a better way to handle substituted 4355 // non-type template parameters. 4356 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4357 Context.getTrivialTypeSourceInfo(T, Loc), 4358 Loc, Loc); 4359 } 4360 4361 return Owned(E); 4362} 4363 4364/// \brief Match two template parameters within template parameter lists. 4365static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4366 bool Complain, 4367 Sema::TemplateParameterListEqualKind Kind, 4368 SourceLocation TemplateArgLoc) { 4369 // Check the actual kind (type, non-type, template). 4370 if (Old->getKind() != New->getKind()) { 4371 if (Complain) { 4372 unsigned NextDiag = diag::err_template_param_different_kind; 4373 if (TemplateArgLoc.isValid()) { 4374 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4375 NextDiag = diag::note_template_param_different_kind; 4376 } 4377 S.Diag(New->getLocation(), NextDiag) 4378 << (Kind != Sema::TPL_TemplateMatch); 4379 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4380 << (Kind != Sema::TPL_TemplateMatch); 4381 } 4382 4383 return false; 4384 } 4385 4386 // Check that both are parameter packs are neither are parameter packs. 4387 // However, if we are matching a template template argument to a 4388 // template template parameter, the template template parameter can have 4389 // a parameter pack where the template template argument does not. 4390 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4391 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4392 Old->isTemplateParameterPack())) { 4393 if (Complain) { 4394 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4395 if (TemplateArgLoc.isValid()) { 4396 S.Diag(TemplateArgLoc, 4397 diag::err_template_arg_template_params_mismatch); 4398 NextDiag = diag::note_template_parameter_pack_non_pack; 4399 } 4400 4401 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4402 : isa<NonTypeTemplateParmDecl>(New)? 1 4403 : 2; 4404 S.Diag(New->getLocation(), NextDiag) 4405 << ParamKind << New->isParameterPack(); 4406 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4407 << ParamKind << Old->isParameterPack(); 4408 } 4409 4410 return false; 4411 } 4412 4413 // For non-type template parameters, check the type of the parameter. 4414 if (NonTypeTemplateParmDecl *OldNTTP 4415 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4416 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4417 4418 // If we are matching a template template argument to a template 4419 // template parameter and one of the non-type template parameter types 4420 // is dependent, then we must wait until template instantiation time 4421 // to actually compare the arguments. 4422 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4423 (OldNTTP->getType()->isDependentType() || 4424 NewNTTP->getType()->isDependentType())) 4425 return true; 4426 4427 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4428 if (Complain) { 4429 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4430 if (TemplateArgLoc.isValid()) { 4431 S.Diag(TemplateArgLoc, 4432 diag::err_template_arg_template_params_mismatch); 4433 NextDiag = diag::note_template_nontype_parm_different_type; 4434 } 4435 S.Diag(NewNTTP->getLocation(), NextDiag) 4436 << NewNTTP->getType() 4437 << (Kind != Sema::TPL_TemplateMatch); 4438 S.Diag(OldNTTP->getLocation(), 4439 diag::note_template_nontype_parm_prev_declaration) 4440 << OldNTTP->getType(); 4441 } 4442 4443 return false; 4444 } 4445 4446 return true; 4447 } 4448 4449 // For template template parameters, check the template parameter types. 4450 // The template parameter lists of template template 4451 // parameters must agree. 4452 if (TemplateTemplateParmDecl *OldTTP 4453 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4454 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4455 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4456 OldTTP->getTemplateParameters(), 4457 Complain, 4458 (Kind == Sema::TPL_TemplateMatch 4459 ? Sema::TPL_TemplateTemplateParmMatch 4460 : Kind), 4461 TemplateArgLoc); 4462 } 4463 4464 return true; 4465} 4466 4467/// \brief Diagnose a known arity mismatch when comparing template argument 4468/// lists. 4469static 4470void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4471 TemplateParameterList *New, 4472 TemplateParameterList *Old, 4473 Sema::TemplateParameterListEqualKind Kind, 4474 SourceLocation TemplateArgLoc) { 4475 unsigned NextDiag = diag::err_template_param_list_different_arity; 4476 if (TemplateArgLoc.isValid()) { 4477 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4478 NextDiag = diag::note_template_param_list_different_arity; 4479 } 4480 S.Diag(New->getTemplateLoc(), NextDiag) 4481 << (New->size() > Old->size()) 4482 << (Kind != Sema::TPL_TemplateMatch) 4483 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4484 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4485 << (Kind != Sema::TPL_TemplateMatch) 4486 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4487} 4488 4489/// \brief Determine whether the given template parameter lists are 4490/// equivalent. 4491/// 4492/// \param New The new template parameter list, typically written in the 4493/// source code as part of a new template declaration. 4494/// 4495/// \param Old The old template parameter list, typically found via 4496/// name lookup of the template declared with this template parameter 4497/// list. 4498/// 4499/// \param Complain If true, this routine will produce a diagnostic if 4500/// the template parameter lists are not equivalent. 4501/// 4502/// \param Kind describes how we are to match the template parameter lists. 4503/// 4504/// \param TemplateArgLoc If this source location is valid, then we 4505/// are actually checking the template parameter list of a template 4506/// argument (New) against the template parameter list of its 4507/// corresponding template template parameter (Old). We produce 4508/// slightly different diagnostics in this scenario. 4509/// 4510/// \returns True if the template parameter lists are equal, false 4511/// otherwise. 4512bool 4513Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4514 TemplateParameterList *Old, 4515 bool Complain, 4516 TemplateParameterListEqualKind Kind, 4517 SourceLocation TemplateArgLoc) { 4518 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4519 if (Complain) 4520 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4521 TemplateArgLoc); 4522 4523 return false; 4524 } 4525 4526 // C++0x [temp.arg.template]p3: 4527 // A template-argument matches a template template-parameter (call it P) 4528 // when each of the template parameters in the template-parameter-list of 4529 // the template-argument's corresponding class template or alias template 4530 // (call it A) matches the corresponding template parameter in the 4531 // template-parameter-list of P. [...] 4532 TemplateParameterList::iterator NewParm = New->begin(); 4533 TemplateParameterList::iterator NewParmEnd = New->end(); 4534 for (TemplateParameterList::iterator OldParm = Old->begin(), 4535 OldParmEnd = Old->end(); 4536 OldParm != OldParmEnd; ++OldParm) { 4537 if (Kind != TPL_TemplateTemplateArgumentMatch || 4538 !(*OldParm)->isTemplateParameterPack()) { 4539 if (NewParm == NewParmEnd) { 4540 if (Complain) 4541 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4542 TemplateArgLoc); 4543 4544 return false; 4545 } 4546 4547 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4548 Kind, TemplateArgLoc)) 4549 return false; 4550 4551 ++NewParm; 4552 continue; 4553 } 4554 4555 // C++0x [temp.arg.template]p3: 4556 // [...] When P's template- parameter-list contains a template parameter 4557 // pack (14.5.3), the template parameter pack will match zero or more 4558 // template parameters or template parameter packs in the 4559 // template-parameter-list of A with the same type and form as the 4560 // template parameter pack in P (ignoring whether those template 4561 // parameters are template parameter packs). 4562 for (; NewParm != NewParmEnd; ++NewParm) { 4563 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4564 Kind, TemplateArgLoc)) 4565 return false; 4566 } 4567 } 4568 4569 // Make sure we exhausted all of the arguments. 4570 if (NewParm != NewParmEnd) { 4571 if (Complain) 4572 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4573 TemplateArgLoc); 4574 4575 return false; 4576 } 4577 4578 return true; 4579} 4580 4581/// \brief Check whether a template can be declared within this scope. 4582/// 4583/// If the template declaration is valid in this scope, returns 4584/// false. Otherwise, issues a diagnostic and returns true. 4585bool 4586Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4587 if (!S) 4588 return false; 4589 4590 // Find the nearest enclosing declaration scope. 4591 while ((S->getFlags() & Scope::DeclScope) == 0 || 4592 (S->getFlags() & Scope::TemplateParamScope) != 0) 4593 S = S->getParent(); 4594 4595 // C++ [temp]p2: 4596 // A template-declaration can appear only as a namespace scope or 4597 // class scope declaration. 4598 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4599 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4600 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4601 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4602 << TemplateParams->getSourceRange(); 4603 4604 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4605 Ctx = Ctx->getParent(); 4606 4607 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4608 return false; 4609 4610 return Diag(TemplateParams->getTemplateLoc(), 4611 diag::err_template_outside_namespace_or_class_scope) 4612 << TemplateParams->getSourceRange(); 4613} 4614 4615/// \brief Determine what kind of template specialization the given declaration 4616/// is. 4617static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4618 if (!D) 4619 return TSK_Undeclared; 4620 4621 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4622 return Record->getTemplateSpecializationKind(); 4623 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4624 return Function->getTemplateSpecializationKind(); 4625 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4626 return Var->getTemplateSpecializationKind(); 4627 4628 return TSK_Undeclared; 4629} 4630 4631/// \brief Check whether a specialization is well-formed in the current 4632/// context. 4633/// 4634/// This routine determines whether a template specialization can be declared 4635/// in the current context (C++ [temp.expl.spec]p2). 4636/// 4637/// \param S the semantic analysis object for which this check is being 4638/// performed. 4639/// 4640/// \param Specialized the entity being specialized or instantiated, which 4641/// may be a kind of template (class template, function template, etc.) or 4642/// a member of a class template (member function, static data member, 4643/// member class). 4644/// 4645/// \param PrevDecl the previous declaration of this entity, if any. 4646/// 4647/// \param Loc the location of the explicit specialization or instantiation of 4648/// this entity. 4649/// 4650/// \param IsPartialSpecialization whether this is a partial specialization of 4651/// a class template. 4652/// 4653/// \returns true if there was an error that we cannot recover from, false 4654/// otherwise. 4655static bool CheckTemplateSpecializationScope(Sema &S, 4656 NamedDecl *Specialized, 4657 NamedDecl *PrevDecl, 4658 SourceLocation Loc, 4659 bool IsPartialSpecialization) { 4660 // Keep these "kind" numbers in sync with the %select statements in the 4661 // various diagnostics emitted by this routine. 4662 int EntityKind = 0; 4663 if (isa<ClassTemplateDecl>(Specialized)) 4664 EntityKind = IsPartialSpecialization? 1 : 0; 4665 else if (isa<FunctionTemplateDecl>(Specialized)) 4666 EntityKind = 2; 4667 else if (isa<CXXMethodDecl>(Specialized)) 4668 EntityKind = 3; 4669 else if (isa<VarDecl>(Specialized)) 4670 EntityKind = 4; 4671 else if (isa<RecordDecl>(Specialized)) 4672 EntityKind = 5; 4673 else { 4674 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4675 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4676 return true; 4677 } 4678 4679 // C++ [temp.expl.spec]p2: 4680 // An explicit specialization shall be declared in the namespace 4681 // of which the template is a member, or, for member templates, in 4682 // the namespace of which the enclosing class or enclosing class 4683 // template is a member. An explicit specialization of a member 4684 // function, member class or static data member of a class 4685 // template shall be declared in the namespace of which the class 4686 // template is a member. Such a declaration may also be a 4687 // definition. If the declaration is not a definition, the 4688 // specialization may be defined later in the name- space in which 4689 // the explicit specialization was declared, or in a namespace 4690 // that encloses the one in which the explicit specialization was 4691 // declared. 4692 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4693 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4694 << Specialized; 4695 return true; 4696 } 4697 4698 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4699 if (S.getLangOptions().MicrosoftExt) { 4700 // Do not warn for class scope explicit specialization during 4701 // instantiation, warning was already emitted during pattern 4702 // semantic analysis. 4703 if (!S.ActiveTemplateInstantiations.size()) 4704 S.Diag(Loc, diag::ext_function_specialization_in_class) 4705 << Specialized; 4706 } else { 4707 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4708 << Specialized; 4709 return true; 4710 } 4711 } 4712 4713 if (S.CurContext->isRecord() && 4714 !S.CurContext->Equals(Specialized->getDeclContext())) { 4715 // Make sure that we're specializing in the right record context. 4716 // Otherwise, things can go horribly wrong. 4717 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4718 << Specialized; 4719 return true; 4720 } 4721 4722 // C++ [temp.class.spec]p6: 4723 // A class template partial specialization may be declared or redeclared 4724 // in any namespace scope in which its definition may be defined (14.5.1 4725 // and 14.5.2). 4726 bool ComplainedAboutScope = false; 4727 DeclContext *SpecializedContext 4728 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4729 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4730 if ((!PrevDecl || 4731 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4732 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4733 // C++ [temp.exp.spec]p2: 4734 // An explicit specialization shall be declared in the namespace of which 4735 // the template is a member, or, for member templates, in the namespace 4736 // of which the enclosing class or enclosing class template is a member. 4737 // An explicit specialization of a member function, member class or 4738 // static data member of a class template shall be declared in the 4739 // namespace of which the class template is a member. 4740 // 4741 // C++0x [temp.expl.spec]p2: 4742 // An explicit specialization shall be declared in a namespace enclosing 4743 // the specialized template. 4744 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 4745 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 4746 if (isa<TranslationUnitDecl>(SpecializedContext)) { 4747 assert(!IsCPlusPlus0xExtension && 4748 "DC encloses TU but isn't in enclosing namespace set"); 4749 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 4750 << EntityKind << Specialized; 4751 } else if (isa<NamespaceDecl>(SpecializedContext)) { 4752 int Diag; 4753 if (!IsCPlusPlus0xExtension) 4754 Diag = diag::err_template_spec_decl_out_of_scope; 4755 else if (!S.getLangOptions().CPlusPlus0x) 4756 Diag = diag::ext_template_spec_decl_out_of_scope; 4757 else 4758 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 4759 S.Diag(Loc, Diag) 4760 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 4761 } 4762 4763 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4764 ComplainedAboutScope = 4765 !(IsCPlusPlus0xExtension && S.getLangOptions().CPlusPlus0x); 4766 } 4767 } 4768 4769 // Make sure that this redeclaration (or definition) occurs in an enclosing 4770 // namespace. 4771 // Note that HandleDeclarator() performs this check for explicit 4772 // specializations of function templates, static data members, and member 4773 // functions, so we skip the check here for those kinds of entities. 4774 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4775 // Should we refactor that check, so that it occurs later? 4776 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4777 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4778 isa<FunctionDecl>(Specialized))) { 4779 if (isa<TranslationUnitDecl>(SpecializedContext)) 4780 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4781 << EntityKind << Specialized; 4782 else if (isa<NamespaceDecl>(SpecializedContext)) 4783 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4784 << EntityKind << Specialized 4785 << cast<NamedDecl>(SpecializedContext); 4786 4787 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4788 } 4789 4790 // FIXME: check for specialization-after-instantiation errors and such. 4791 4792 return false; 4793} 4794 4795/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4796/// that checks non-type template partial specialization arguments. 4797static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4798 NonTypeTemplateParmDecl *Param, 4799 const TemplateArgument *Args, 4800 unsigned NumArgs) { 4801 for (unsigned I = 0; I != NumArgs; ++I) { 4802 if (Args[I].getKind() == TemplateArgument::Pack) { 4803 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4804 Args[I].pack_begin(), 4805 Args[I].pack_size())) 4806 return true; 4807 4808 continue; 4809 } 4810 4811 Expr *ArgExpr = Args[I].getAsExpr(); 4812 if (!ArgExpr) { 4813 continue; 4814 } 4815 4816 // We can have a pack expansion of any of the bullets below. 4817 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4818 ArgExpr = Expansion->getPattern(); 4819 4820 // Strip off any implicit casts we added as part of type checking. 4821 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4822 ArgExpr = ICE->getSubExpr(); 4823 4824 // C++ [temp.class.spec]p8: 4825 // A non-type argument is non-specialized if it is the name of a 4826 // non-type parameter. All other non-type arguments are 4827 // specialized. 4828 // 4829 // Below, we check the two conditions that only apply to 4830 // specialized non-type arguments, so skip any non-specialized 4831 // arguments. 4832 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4833 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4834 continue; 4835 4836 // C++ [temp.class.spec]p9: 4837 // Within the argument list of a class template partial 4838 // specialization, the following restrictions apply: 4839 // -- A partially specialized non-type argument expression 4840 // shall not involve a template parameter of the partial 4841 // specialization except when the argument expression is a 4842 // simple identifier. 4843 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4844 S.Diag(ArgExpr->getLocStart(), 4845 diag::err_dependent_non_type_arg_in_partial_spec) 4846 << ArgExpr->getSourceRange(); 4847 return true; 4848 } 4849 4850 // -- The type of a template parameter corresponding to a 4851 // specialized non-type argument shall not be dependent on a 4852 // parameter of the specialization. 4853 if (Param->getType()->isDependentType()) { 4854 S.Diag(ArgExpr->getLocStart(), 4855 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4856 << Param->getType() 4857 << ArgExpr->getSourceRange(); 4858 S.Diag(Param->getLocation(), diag::note_template_param_here); 4859 return true; 4860 } 4861 } 4862 4863 return false; 4864} 4865 4866/// \brief Check the non-type template arguments of a class template 4867/// partial specialization according to C++ [temp.class.spec]p9. 4868/// 4869/// \param TemplateParams the template parameters of the primary class 4870/// template. 4871/// 4872/// \param TemplateArg the template arguments of the class template 4873/// partial specialization. 4874/// 4875/// \returns true if there was an error, false otherwise. 4876static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4877 TemplateParameterList *TemplateParams, 4878 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4879 const TemplateArgument *ArgList = TemplateArgs.data(); 4880 4881 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4882 NonTypeTemplateParmDecl *Param 4883 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4884 if (!Param) 4885 continue; 4886 4887 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4888 &ArgList[I], 1)) 4889 return true; 4890 } 4891 4892 return false; 4893} 4894 4895DeclResult 4896Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4897 TagUseKind TUK, 4898 SourceLocation KWLoc, 4899 SourceLocation ModulePrivateLoc, 4900 CXXScopeSpec &SS, 4901 TemplateTy TemplateD, 4902 SourceLocation TemplateNameLoc, 4903 SourceLocation LAngleLoc, 4904 ASTTemplateArgsPtr TemplateArgsIn, 4905 SourceLocation RAngleLoc, 4906 AttributeList *Attr, 4907 MultiTemplateParamsArg TemplateParameterLists) { 4908 assert(TUK != TUK_Reference && "References are not specializations"); 4909 4910 // NOTE: KWLoc is the location of the tag keyword. This will instead 4911 // store the location of the outermost template keyword in the declaration. 4912 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4913 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4914 4915 // Find the class template we're specializing 4916 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4917 ClassTemplateDecl *ClassTemplate 4918 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4919 4920 if (!ClassTemplate) { 4921 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4922 << (Name.getAsTemplateDecl() && 4923 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4924 return true; 4925 } 4926 4927 bool isExplicitSpecialization = false; 4928 bool isPartialSpecialization = false; 4929 4930 // Check the validity of the template headers that introduce this 4931 // template. 4932 // FIXME: We probably shouldn't complain about these headers for 4933 // friend declarations. 4934 bool Invalid = false; 4935 TemplateParameterList *TemplateParams 4936 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4937 TemplateNameLoc, 4938 SS, 4939 (TemplateParameterList**)TemplateParameterLists.get(), 4940 TemplateParameterLists.size(), 4941 TUK == TUK_Friend, 4942 isExplicitSpecialization, 4943 Invalid); 4944 if (Invalid) 4945 return true; 4946 4947 if (TemplateParams && TemplateParams->size() > 0) { 4948 isPartialSpecialization = true; 4949 4950 if (TUK == TUK_Friend) { 4951 Diag(KWLoc, diag::err_partial_specialization_friend) 4952 << SourceRange(LAngleLoc, RAngleLoc); 4953 return true; 4954 } 4955 4956 // C++ [temp.class.spec]p10: 4957 // The template parameter list of a specialization shall not 4958 // contain default template argument values. 4959 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4960 Decl *Param = TemplateParams->getParam(I); 4961 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4962 if (TTP->hasDefaultArgument()) { 4963 Diag(TTP->getDefaultArgumentLoc(), 4964 diag::err_default_arg_in_partial_spec); 4965 TTP->removeDefaultArgument(); 4966 } 4967 } else if (NonTypeTemplateParmDecl *NTTP 4968 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4969 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4970 Diag(NTTP->getDefaultArgumentLoc(), 4971 diag::err_default_arg_in_partial_spec) 4972 << DefArg->getSourceRange(); 4973 NTTP->removeDefaultArgument(); 4974 } 4975 } else { 4976 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4977 if (TTP->hasDefaultArgument()) { 4978 Diag(TTP->getDefaultArgument().getLocation(), 4979 diag::err_default_arg_in_partial_spec) 4980 << TTP->getDefaultArgument().getSourceRange(); 4981 TTP->removeDefaultArgument(); 4982 } 4983 } 4984 } 4985 } else if (TemplateParams) { 4986 if (TUK == TUK_Friend) 4987 Diag(KWLoc, diag::err_template_spec_friend) 4988 << FixItHint::CreateRemoval( 4989 SourceRange(TemplateParams->getTemplateLoc(), 4990 TemplateParams->getRAngleLoc())) 4991 << SourceRange(LAngleLoc, RAngleLoc); 4992 else 4993 isExplicitSpecialization = true; 4994 } else if (TUK != TUK_Friend) { 4995 Diag(KWLoc, diag::err_template_spec_needs_header) 4996 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4997 isExplicitSpecialization = true; 4998 } 4999 5000 // Check that the specialization uses the same tag kind as the 5001 // original template. 5002 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5003 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5004 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5005 Kind, TUK == TUK_Definition, KWLoc, 5006 *ClassTemplate->getIdentifier())) { 5007 Diag(KWLoc, diag::err_use_with_wrong_tag) 5008 << ClassTemplate 5009 << FixItHint::CreateReplacement(KWLoc, 5010 ClassTemplate->getTemplatedDecl()->getKindName()); 5011 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5012 diag::note_previous_use); 5013 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5014 } 5015 5016 // Translate the parser's template argument list in our AST format. 5017 TemplateArgumentListInfo TemplateArgs; 5018 TemplateArgs.setLAngleLoc(LAngleLoc); 5019 TemplateArgs.setRAngleLoc(RAngleLoc); 5020 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5021 5022 // Check for unexpanded parameter packs in any of the template arguments. 5023 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5024 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5025 UPPC_PartialSpecialization)) 5026 return true; 5027 5028 // Check that the template argument list is well-formed for this 5029 // template. 5030 SmallVector<TemplateArgument, 4> Converted; 5031 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5032 TemplateArgs, false, Converted)) 5033 return true; 5034 5035 // Find the class template (partial) specialization declaration that 5036 // corresponds to these arguments. 5037 if (isPartialSpecialization) { 5038 if (CheckClassTemplatePartialSpecializationArgs(*this, 5039 ClassTemplate->getTemplateParameters(), 5040 Converted)) 5041 return true; 5042 5043 bool InstantiationDependent; 5044 if (!Name.isDependent() && 5045 !TemplateSpecializationType::anyDependentTemplateArguments( 5046 TemplateArgs.getArgumentArray(), 5047 TemplateArgs.size(), 5048 InstantiationDependent)) { 5049 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5050 << ClassTemplate->getDeclName(); 5051 isPartialSpecialization = false; 5052 } 5053 } 5054 5055 void *InsertPos = 0; 5056 ClassTemplateSpecializationDecl *PrevDecl = 0; 5057 5058 if (isPartialSpecialization) 5059 // FIXME: Template parameter list matters, too 5060 PrevDecl 5061 = ClassTemplate->findPartialSpecialization(Converted.data(), 5062 Converted.size(), 5063 InsertPos); 5064 else 5065 PrevDecl 5066 = ClassTemplate->findSpecialization(Converted.data(), 5067 Converted.size(), InsertPos); 5068 5069 ClassTemplateSpecializationDecl *Specialization = 0; 5070 5071 // Check whether we can declare a class template specialization in 5072 // the current scope. 5073 if (TUK != TUK_Friend && 5074 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5075 TemplateNameLoc, 5076 isPartialSpecialization)) 5077 return true; 5078 5079 // The canonical type 5080 QualType CanonType; 5081 if (PrevDecl && 5082 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5083 TUK == TUK_Friend)) { 5084 // Since the only prior class template specialization with these 5085 // arguments was referenced but not declared, or we're only 5086 // referencing this specialization as a friend, reuse that 5087 // declaration node as our own, updating its source location and 5088 // the list of outer template parameters to reflect our new declaration. 5089 Specialization = PrevDecl; 5090 Specialization->setLocation(TemplateNameLoc); 5091 if (TemplateParameterLists.size() > 0) { 5092 Specialization->setTemplateParameterListsInfo(Context, 5093 TemplateParameterLists.size(), 5094 (TemplateParameterList**) TemplateParameterLists.release()); 5095 } 5096 PrevDecl = 0; 5097 CanonType = Context.getTypeDeclType(Specialization); 5098 } else if (isPartialSpecialization) { 5099 // Build the canonical type that describes the converted template 5100 // arguments of the class template partial specialization. 5101 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5102 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5103 Converted.data(), 5104 Converted.size()); 5105 5106 if (Context.hasSameType(CanonType, 5107 ClassTemplate->getInjectedClassNameSpecialization())) { 5108 // C++ [temp.class.spec]p9b3: 5109 // 5110 // -- The argument list of the specialization shall not be identical 5111 // to the implicit argument list of the primary template. 5112 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5113 << (TUK == TUK_Definition) 5114 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5115 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5116 ClassTemplate->getIdentifier(), 5117 TemplateNameLoc, 5118 Attr, 5119 TemplateParams, 5120 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5121 TemplateParameterLists.size() - 1, 5122 (TemplateParameterList**) TemplateParameterLists.release()); 5123 } 5124 5125 // Create a new class template partial specialization declaration node. 5126 ClassTemplatePartialSpecializationDecl *PrevPartial 5127 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5128 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5129 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5130 ClassTemplatePartialSpecializationDecl *Partial 5131 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5132 ClassTemplate->getDeclContext(), 5133 KWLoc, TemplateNameLoc, 5134 TemplateParams, 5135 ClassTemplate, 5136 Converted.data(), 5137 Converted.size(), 5138 TemplateArgs, 5139 CanonType, 5140 PrevPartial, 5141 SequenceNumber); 5142 SetNestedNameSpecifier(Partial, SS); 5143 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5144 Partial->setTemplateParameterListsInfo(Context, 5145 TemplateParameterLists.size() - 1, 5146 (TemplateParameterList**) TemplateParameterLists.release()); 5147 } 5148 5149 if (!PrevPartial) 5150 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5151 Specialization = Partial; 5152 5153 // If we are providing an explicit specialization of a member class 5154 // template specialization, make a note of that. 5155 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5156 PrevPartial->setMemberSpecialization(); 5157 5158 // Check that all of the template parameters of the class template 5159 // partial specialization are deducible from the template 5160 // arguments. If not, this class template partial specialization 5161 // will never be used. 5162 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5163 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5164 TemplateParams->getDepth(), 5165 DeducibleParams); 5166 5167 if (!DeducibleParams.all()) { 5168 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5169 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5170 << (NumNonDeducible > 1) 5171 << SourceRange(TemplateNameLoc, RAngleLoc); 5172 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5173 if (!DeducibleParams[I]) { 5174 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5175 if (Param->getDeclName()) 5176 Diag(Param->getLocation(), 5177 diag::note_partial_spec_unused_parameter) 5178 << Param->getDeclName(); 5179 else 5180 Diag(Param->getLocation(), 5181 diag::note_partial_spec_unused_parameter) 5182 << "<anonymous>"; 5183 } 5184 } 5185 } 5186 } else { 5187 // Create a new class template specialization declaration node for 5188 // this explicit specialization or friend declaration. 5189 Specialization 5190 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5191 ClassTemplate->getDeclContext(), 5192 KWLoc, TemplateNameLoc, 5193 ClassTemplate, 5194 Converted.data(), 5195 Converted.size(), 5196 PrevDecl); 5197 SetNestedNameSpecifier(Specialization, SS); 5198 if (TemplateParameterLists.size() > 0) { 5199 Specialization->setTemplateParameterListsInfo(Context, 5200 TemplateParameterLists.size(), 5201 (TemplateParameterList**) TemplateParameterLists.release()); 5202 } 5203 5204 if (!PrevDecl) 5205 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5206 5207 CanonType = Context.getTypeDeclType(Specialization); 5208 } 5209 5210 // C++ [temp.expl.spec]p6: 5211 // If a template, a member template or the member of a class template is 5212 // explicitly specialized then that specialization shall be declared 5213 // before the first use of that specialization that would cause an implicit 5214 // instantiation to take place, in every translation unit in which such a 5215 // use occurs; no diagnostic is required. 5216 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5217 bool Okay = false; 5218 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5219 // Is there any previous explicit specialization declaration? 5220 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5221 Okay = true; 5222 break; 5223 } 5224 } 5225 5226 if (!Okay) { 5227 SourceRange Range(TemplateNameLoc, RAngleLoc); 5228 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5229 << Context.getTypeDeclType(Specialization) << Range; 5230 5231 Diag(PrevDecl->getPointOfInstantiation(), 5232 diag::note_instantiation_required_here) 5233 << (PrevDecl->getTemplateSpecializationKind() 5234 != TSK_ImplicitInstantiation); 5235 return true; 5236 } 5237 } 5238 5239 // If this is not a friend, note that this is an explicit specialization. 5240 if (TUK != TUK_Friend) 5241 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5242 5243 // Check that this isn't a redefinition of this specialization. 5244 if (TUK == TUK_Definition) { 5245 if (RecordDecl *Def = Specialization->getDefinition()) { 5246 SourceRange Range(TemplateNameLoc, RAngleLoc); 5247 Diag(TemplateNameLoc, diag::err_redefinition) 5248 << Context.getTypeDeclType(Specialization) << Range; 5249 Diag(Def->getLocation(), diag::note_previous_definition); 5250 Specialization->setInvalidDecl(); 5251 return true; 5252 } 5253 } 5254 5255 if (Attr) 5256 ProcessDeclAttributeList(S, Specialization, Attr); 5257 5258 if (ModulePrivateLoc.isValid()) 5259 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5260 << (isPartialSpecialization? 1 : 0) 5261 << FixItHint::CreateRemoval(ModulePrivateLoc); 5262 5263 // Build the fully-sugared type for this class template 5264 // specialization as the user wrote in the specialization 5265 // itself. This means that we'll pretty-print the type retrieved 5266 // from the specialization's declaration the way that the user 5267 // actually wrote the specialization, rather than formatting the 5268 // name based on the "canonical" representation used to store the 5269 // template arguments in the specialization. 5270 TypeSourceInfo *WrittenTy 5271 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5272 TemplateArgs, CanonType); 5273 if (TUK != TUK_Friend) { 5274 Specialization->setTypeAsWritten(WrittenTy); 5275 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5276 } 5277 TemplateArgsIn.release(); 5278 5279 // C++ [temp.expl.spec]p9: 5280 // A template explicit specialization is in the scope of the 5281 // namespace in which the template was defined. 5282 // 5283 // We actually implement this paragraph where we set the semantic 5284 // context (in the creation of the ClassTemplateSpecializationDecl), 5285 // but we also maintain the lexical context where the actual 5286 // definition occurs. 5287 Specialization->setLexicalDeclContext(CurContext); 5288 5289 // We may be starting the definition of this specialization. 5290 if (TUK == TUK_Definition) 5291 Specialization->startDefinition(); 5292 5293 if (TUK == TUK_Friend) { 5294 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5295 TemplateNameLoc, 5296 WrittenTy, 5297 /*FIXME:*/KWLoc); 5298 Friend->setAccess(AS_public); 5299 CurContext->addDecl(Friend); 5300 } else { 5301 // Add the specialization into its lexical context, so that it can 5302 // be seen when iterating through the list of declarations in that 5303 // context. However, specializations are not found by name lookup. 5304 CurContext->addDecl(Specialization); 5305 } 5306 return Specialization; 5307} 5308 5309Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5310 MultiTemplateParamsArg TemplateParameterLists, 5311 Declarator &D) { 5312 return HandleDeclarator(S, D, move(TemplateParameterLists)); 5313} 5314 5315Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5316 MultiTemplateParamsArg TemplateParameterLists, 5317 Declarator &D) { 5318 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5319 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5320 5321 if (FTI.hasPrototype) { 5322 // FIXME: Diagnose arguments without names in C. 5323 } 5324 5325 Scope *ParentScope = FnBodyScope->getParent(); 5326 5327 D.setFunctionDefinitionKind(FDK_Definition); 5328 Decl *DP = HandleDeclarator(ParentScope, D, 5329 move(TemplateParameterLists)); 5330 if (FunctionTemplateDecl *FunctionTemplate 5331 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5332 return ActOnStartOfFunctionDef(FnBodyScope, 5333 FunctionTemplate->getTemplatedDecl()); 5334 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5335 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5336 return 0; 5337} 5338 5339/// \brief Strips various properties off an implicit instantiation 5340/// that has just been explicitly specialized. 5341static void StripImplicitInstantiation(NamedDecl *D) { 5342 D->dropAttrs(); 5343 5344 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5345 FD->setInlineSpecified(false); 5346 } 5347} 5348 5349/// \brief Compute the diagnostic location for an explicit instantiation 5350// declaration or definition. 5351static SourceLocation DiagLocForExplicitInstantiation( 5352 NamedDecl* D, SourceLocation PointOfInstantiation) { 5353 // Explicit instantiations following a specialization have no effect and 5354 // hence no PointOfInstantiation. In that case, walk decl backwards 5355 // until a valid name loc is found. 5356 SourceLocation PrevDiagLoc = PointOfInstantiation; 5357 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5358 Prev = Prev->getPreviousDecl()) { 5359 PrevDiagLoc = Prev->getLocation(); 5360 } 5361 assert(PrevDiagLoc.isValid() && 5362 "Explicit instantiation without point of instantiation?"); 5363 return PrevDiagLoc; 5364} 5365 5366/// \brief Diagnose cases where we have an explicit template specialization 5367/// before/after an explicit template instantiation, producing diagnostics 5368/// for those cases where they are required and determining whether the 5369/// new specialization/instantiation will have any effect. 5370/// 5371/// \param NewLoc the location of the new explicit specialization or 5372/// instantiation. 5373/// 5374/// \param NewTSK the kind of the new explicit specialization or instantiation. 5375/// 5376/// \param PrevDecl the previous declaration of the entity. 5377/// 5378/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5379/// 5380/// \param PrevPointOfInstantiation if valid, indicates where the previus 5381/// declaration was instantiated (either implicitly or explicitly). 5382/// 5383/// \param HasNoEffect will be set to true to indicate that the new 5384/// specialization or instantiation has no effect and should be ignored. 5385/// 5386/// \returns true if there was an error that should prevent the introduction of 5387/// the new declaration into the AST, false otherwise. 5388bool 5389Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5390 TemplateSpecializationKind NewTSK, 5391 NamedDecl *PrevDecl, 5392 TemplateSpecializationKind PrevTSK, 5393 SourceLocation PrevPointOfInstantiation, 5394 bool &HasNoEffect) { 5395 HasNoEffect = false; 5396 5397 switch (NewTSK) { 5398 case TSK_Undeclared: 5399 case TSK_ImplicitInstantiation: 5400 llvm_unreachable("Don't check implicit instantiations here"); 5401 5402 case TSK_ExplicitSpecialization: 5403 switch (PrevTSK) { 5404 case TSK_Undeclared: 5405 case TSK_ExplicitSpecialization: 5406 // Okay, we're just specializing something that is either already 5407 // explicitly specialized or has merely been mentioned without any 5408 // instantiation. 5409 return false; 5410 5411 case TSK_ImplicitInstantiation: 5412 if (PrevPointOfInstantiation.isInvalid()) { 5413 // The declaration itself has not actually been instantiated, so it is 5414 // still okay to specialize it. 5415 StripImplicitInstantiation(PrevDecl); 5416 return false; 5417 } 5418 // Fall through 5419 5420 case TSK_ExplicitInstantiationDeclaration: 5421 case TSK_ExplicitInstantiationDefinition: 5422 assert((PrevTSK == TSK_ImplicitInstantiation || 5423 PrevPointOfInstantiation.isValid()) && 5424 "Explicit instantiation without point of instantiation?"); 5425 5426 // C++ [temp.expl.spec]p6: 5427 // If a template, a member template or the member of a class template 5428 // is explicitly specialized then that specialization shall be declared 5429 // before the first use of that specialization that would cause an 5430 // implicit instantiation to take place, in every translation unit in 5431 // which such a use occurs; no diagnostic is required. 5432 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5433 // Is there any previous explicit specialization declaration? 5434 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5435 return false; 5436 } 5437 5438 Diag(NewLoc, diag::err_specialization_after_instantiation) 5439 << PrevDecl; 5440 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5441 << (PrevTSK != TSK_ImplicitInstantiation); 5442 5443 return true; 5444 } 5445 5446 case TSK_ExplicitInstantiationDeclaration: 5447 switch (PrevTSK) { 5448 case TSK_ExplicitInstantiationDeclaration: 5449 // This explicit instantiation declaration is redundant (that's okay). 5450 HasNoEffect = true; 5451 return false; 5452 5453 case TSK_Undeclared: 5454 case TSK_ImplicitInstantiation: 5455 // We're explicitly instantiating something that may have already been 5456 // implicitly instantiated; that's fine. 5457 return false; 5458 5459 case TSK_ExplicitSpecialization: 5460 // C++0x [temp.explicit]p4: 5461 // For a given set of template parameters, if an explicit instantiation 5462 // of a template appears after a declaration of an explicit 5463 // specialization for that template, the explicit instantiation has no 5464 // effect. 5465 HasNoEffect = true; 5466 return false; 5467 5468 case TSK_ExplicitInstantiationDefinition: 5469 // C++0x [temp.explicit]p10: 5470 // If an entity is the subject of both an explicit instantiation 5471 // declaration and an explicit instantiation definition in the same 5472 // translation unit, the definition shall follow the declaration. 5473 Diag(NewLoc, 5474 diag::err_explicit_instantiation_declaration_after_definition); 5475 5476 // Explicit instantiations following a specialization have no effect and 5477 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5478 // until a valid name loc is found. 5479 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5480 diag::note_explicit_instantiation_definition_here); 5481 HasNoEffect = true; 5482 return false; 5483 } 5484 5485 case TSK_ExplicitInstantiationDefinition: 5486 switch (PrevTSK) { 5487 case TSK_Undeclared: 5488 case TSK_ImplicitInstantiation: 5489 // We're explicitly instantiating something that may have already been 5490 // implicitly instantiated; that's fine. 5491 return false; 5492 5493 case TSK_ExplicitSpecialization: 5494 // C++ DR 259, C++0x [temp.explicit]p4: 5495 // For a given set of template parameters, if an explicit 5496 // instantiation of a template appears after a declaration of 5497 // an explicit specialization for that template, the explicit 5498 // instantiation has no effect. 5499 // 5500 // In C++98/03 mode, we only give an extension warning here, because it 5501 // is not harmful to try to explicitly instantiate something that 5502 // has been explicitly specialized. 5503 Diag(NewLoc, getLangOptions().CPlusPlus0x ? 5504 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5505 diag::ext_explicit_instantiation_after_specialization) 5506 << PrevDecl; 5507 Diag(PrevDecl->getLocation(), 5508 diag::note_previous_template_specialization); 5509 HasNoEffect = true; 5510 return false; 5511 5512 case TSK_ExplicitInstantiationDeclaration: 5513 // We're explicity instantiating a definition for something for which we 5514 // were previously asked to suppress instantiations. That's fine. 5515 5516 // C++0x [temp.explicit]p4: 5517 // For a given set of template parameters, if an explicit instantiation 5518 // of a template appears after a declaration of an explicit 5519 // specialization for that template, the explicit instantiation has no 5520 // effect. 5521 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5522 // Is there any previous explicit specialization declaration? 5523 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5524 HasNoEffect = true; 5525 break; 5526 } 5527 } 5528 5529 return false; 5530 5531 case TSK_ExplicitInstantiationDefinition: 5532 // C++0x [temp.spec]p5: 5533 // For a given template and a given set of template-arguments, 5534 // - an explicit instantiation definition shall appear at most once 5535 // in a program, 5536 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5537 << PrevDecl; 5538 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5539 diag::note_previous_explicit_instantiation); 5540 HasNoEffect = true; 5541 return false; 5542 } 5543 } 5544 5545 llvm_unreachable("Missing specialization/instantiation case?"); 5546} 5547 5548/// \brief Perform semantic analysis for the given dependent function 5549/// template specialization. The only possible way to get a dependent 5550/// function template specialization is with a friend declaration, 5551/// like so: 5552/// 5553/// template <class T> void foo(T); 5554/// template <class T> class A { 5555/// friend void foo<>(T); 5556/// }; 5557/// 5558/// There really isn't any useful analysis we can do here, so we 5559/// just store the information. 5560bool 5561Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5562 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5563 LookupResult &Previous) { 5564 // Remove anything from Previous that isn't a function template in 5565 // the correct context. 5566 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5567 LookupResult::Filter F = Previous.makeFilter(); 5568 while (F.hasNext()) { 5569 NamedDecl *D = F.next()->getUnderlyingDecl(); 5570 if (!isa<FunctionTemplateDecl>(D) || 5571 !FDLookupContext->InEnclosingNamespaceSetOf( 5572 D->getDeclContext()->getRedeclContext())) 5573 F.erase(); 5574 } 5575 F.done(); 5576 5577 // Should this be diagnosed here? 5578 if (Previous.empty()) return true; 5579 5580 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5581 ExplicitTemplateArgs); 5582 return false; 5583} 5584 5585/// \brief Perform semantic analysis for the given function template 5586/// specialization. 5587/// 5588/// This routine performs all of the semantic analysis required for an 5589/// explicit function template specialization. On successful completion, 5590/// the function declaration \p FD will become a function template 5591/// specialization. 5592/// 5593/// \param FD the function declaration, which will be updated to become a 5594/// function template specialization. 5595/// 5596/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5597/// if any. Note that this may be valid info even when 0 arguments are 5598/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5599/// as it anyway contains info on the angle brackets locations. 5600/// 5601/// \param Previous the set of declarations that may be specialized by 5602/// this function specialization. 5603bool 5604Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5605 TemplateArgumentListInfo *ExplicitTemplateArgs, 5606 LookupResult &Previous) { 5607 // The set of function template specializations that could match this 5608 // explicit function template specialization. 5609 UnresolvedSet<8> Candidates; 5610 5611 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5612 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5613 I != E; ++I) { 5614 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5615 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5616 // Only consider templates found within the same semantic lookup scope as 5617 // FD. 5618 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5619 Ovl->getDeclContext()->getRedeclContext())) 5620 continue; 5621 5622 // C++ [temp.expl.spec]p11: 5623 // A trailing template-argument can be left unspecified in the 5624 // template-id naming an explicit function template specialization 5625 // provided it can be deduced from the function argument type. 5626 // Perform template argument deduction to determine whether we may be 5627 // specializing this template. 5628 // FIXME: It is somewhat wasteful to build 5629 TemplateDeductionInfo Info(Context, FD->getLocation()); 5630 FunctionDecl *Specialization = 0; 5631 if (TemplateDeductionResult TDK 5632 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5633 FD->getType(), 5634 Specialization, 5635 Info)) { 5636 // FIXME: Template argument deduction failed; record why it failed, so 5637 // that we can provide nifty diagnostics. 5638 (void)TDK; 5639 continue; 5640 } 5641 5642 // Record this candidate. 5643 Candidates.addDecl(Specialization, I.getAccess()); 5644 } 5645 } 5646 5647 // Find the most specialized function template. 5648 UnresolvedSetIterator Result 5649 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5650 TPOC_Other, 0, FD->getLocation(), 5651 PDiag(diag::err_function_template_spec_no_match) 5652 << FD->getDeclName(), 5653 PDiag(diag::err_function_template_spec_ambiguous) 5654 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5655 PDiag(diag::note_function_template_spec_matched)); 5656 if (Result == Candidates.end()) 5657 return true; 5658 5659 // Ignore access information; it doesn't figure into redeclaration checking. 5660 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5661 5662 FunctionTemplateSpecializationInfo *SpecInfo 5663 = Specialization->getTemplateSpecializationInfo(); 5664 assert(SpecInfo && "Function template specialization info missing?"); 5665 5666 // Note: do not overwrite location info if previous template 5667 // specialization kind was explicit. 5668 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5669 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5670 Specialization->setLocation(FD->getLocation()); 5671 5672 // FIXME: Check if the prior specialization has a point of instantiation. 5673 // If so, we have run afoul of . 5674 5675 // If this is a friend declaration, then we're not really declaring 5676 // an explicit specialization. 5677 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5678 5679 // Check the scope of this explicit specialization. 5680 if (!isFriend && 5681 CheckTemplateSpecializationScope(*this, 5682 Specialization->getPrimaryTemplate(), 5683 Specialization, FD->getLocation(), 5684 false)) 5685 return true; 5686 5687 // C++ [temp.expl.spec]p6: 5688 // If a template, a member template or the member of a class template is 5689 // explicitly specialized then that specialization shall be declared 5690 // before the first use of that specialization that would cause an implicit 5691 // instantiation to take place, in every translation unit in which such a 5692 // use occurs; no diagnostic is required. 5693 bool HasNoEffect = false; 5694 if (!isFriend && 5695 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5696 TSK_ExplicitSpecialization, 5697 Specialization, 5698 SpecInfo->getTemplateSpecializationKind(), 5699 SpecInfo->getPointOfInstantiation(), 5700 HasNoEffect)) 5701 return true; 5702 5703 // Mark the prior declaration as an explicit specialization, so that later 5704 // clients know that this is an explicit specialization. 5705 if (!isFriend) { 5706 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5707 MarkUnusedFileScopedDecl(Specialization); 5708 } 5709 5710 // Turn the given function declaration into a function template 5711 // specialization, with the template arguments from the previous 5712 // specialization. 5713 // Take copies of (semantic and syntactic) template argument lists. 5714 const TemplateArgumentList* TemplArgs = new (Context) 5715 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5716 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5717 TemplArgs, /*InsertPos=*/0, 5718 SpecInfo->getTemplateSpecializationKind(), 5719 ExplicitTemplateArgs); 5720 FD->setStorageClass(Specialization->getStorageClass()); 5721 5722 // The "previous declaration" for this function template specialization is 5723 // the prior function template specialization. 5724 Previous.clear(); 5725 Previous.addDecl(Specialization); 5726 return false; 5727} 5728 5729/// \brief Perform semantic analysis for the given non-template member 5730/// specialization. 5731/// 5732/// This routine performs all of the semantic analysis required for an 5733/// explicit member function specialization. On successful completion, 5734/// the function declaration \p FD will become a member function 5735/// specialization. 5736/// 5737/// \param Member the member declaration, which will be updated to become a 5738/// specialization. 5739/// 5740/// \param Previous the set of declarations, one of which may be specialized 5741/// by this function specialization; the set will be modified to contain the 5742/// redeclared member. 5743bool 5744Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5745 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5746 5747 // Try to find the member we are instantiating. 5748 NamedDecl *Instantiation = 0; 5749 NamedDecl *InstantiatedFrom = 0; 5750 MemberSpecializationInfo *MSInfo = 0; 5751 5752 if (Previous.empty()) { 5753 // Nowhere to look anyway. 5754 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5755 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5756 I != E; ++I) { 5757 NamedDecl *D = (*I)->getUnderlyingDecl(); 5758 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5759 if (Context.hasSameType(Function->getType(), Method->getType())) { 5760 Instantiation = Method; 5761 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5762 MSInfo = Method->getMemberSpecializationInfo(); 5763 break; 5764 } 5765 } 5766 } 5767 } else if (isa<VarDecl>(Member)) { 5768 VarDecl *PrevVar; 5769 if (Previous.isSingleResult() && 5770 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5771 if (PrevVar->isStaticDataMember()) { 5772 Instantiation = PrevVar; 5773 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5774 MSInfo = PrevVar->getMemberSpecializationInfo(); 5775 } 5776 } else if (isa<RecordDecl>(Member)) { 5777 CXXRecordDecl *PrevRecord; 5778 if (Previous.isSingleResult() && 5779 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5780 Instantiation = PrevRecord; 5781 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5782 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5783 } 5784 } 5785 5786 if (!Instantiation) { 5787 // There is no previous declaration that matches. Since member 5788 // specializations are always out-of-line, the caller will complain about 5789 // this mismatch later. 5790 return false; 5791 } 5792 5793 // If this is a friend, just bail out here before we start turning 5794 // things into explicit specializations. 5795 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5796 // Preserve instantiation information. 5797 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5798 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5799 cast<CXXMethodDecl>(InstantiatedFrom), 5800 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5801 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5802 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5803 cast<CXXRecordDecl>(InstantiatedFrom), 5804 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5805 } 5806 5807 Previous.clear(); 5808 Previous.addDecl(Instantiation); 5809 return false; 5810 } 5811 5812 // Make sure that this is a specialization of a member. 5813 if (!InstantiatedFrom) { 5814 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5815 << Member; 5816 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5817 return true; 5818 } 5819 5820 // C++ [temp.expl.spec]p6: 5821 // If a template, a member template or the member of a class template is 5822 // explicitly specialized then that specialization shall be declared 5823 // before the first use of that specialization that would cause an implicit 5824 // instantiation to take place, in every translation unit in which such a 5825 // use occurs; no diagnostic is required. 5826 assert(MSInfo && "Member specialization info missing?"); 5827 5828 bool HasNoEffect = false; 5829 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5830 TSK_ExplicitSpecialization, 5831 Instantiation, 5832 MSInfo->getTemplateSpecializationKind(), 5833 MSInfo->getPointOfInstantiation(), 5834 HasNoEffect)) 5835 return true; 5836 5837 // Check the scope of this explicit specialization. 5838 if (CheckTemplateSpecializationScope(*this, 5839 InstantiatedFrom, 5840 Instantiation, Member->getLocation(), 5841 false)) 5842 return true; 5843 5844 // Note that this is an explicit instantiation of a member. 5845 // the original declaration to note that it is an explicit specialization 5846 // (if it was previously an implicit instantiation). This latter step 5847 // makes bookkeeping easier. 5848 if (isa<FunctionDecl>(Member)) { 5849 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5850 if (InstantiationFunction->getTemplateSpecializationKind() == 5851 TSK_ImplicitInstantiation) { 5852 InstantiationFunction->setTemplateSpecializationKind( 5853 TSK_ExplicitSpecialization); 5854 InstantiationFunction->setLocation(Member->getLocation()); 5855 } 5856 5857 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5858 cast<CXXMethodDecl>(InstantiatedFrom), 5859 TSK_ExplicitSpecialization); 5860 MarkUnusedFileScopedDecl(InstantiationFunction); 5861 } else if (isa<VarDecl>(Member)) { 5862 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5863 if (InstantiationVar->getTemplateSpecializationKind() == 5864 TSK_ImplicitInstantiation) { 5865 InstantiationVar->setTemplateSpecializationKind( 5866 TSK_ExplicitSpecialization); 5867 InstantiationVar->setLocation(Member->getLocation()); 5868 } 5869 5870 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5871 cast<VarDecl>(InstantiatedFrom), 5872 TSK_ExplicitSpecialization); 5873 MarkUnusedFileScopedDecl(InstantiationVar); 5874 } else { 5875 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5876 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5877 if (InstantiationClass->getTemplateSpecializationKind() == 5878 TSK_ImplicitInstantiation) { 5879 InstantiationClass->setTemplateSpecializationKind( 5880 TSK_ExplicitSpecialization); 5881 InstantiationClass->setLocation(Member->getLocation()); 5882 } 5883 5884 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5885 cast<CXXRecordDecl>(InstantiatedFrom), 5886 TSK_ExplicitSpecialization); 5887 } 5888 5889 // Save the caller the trouble of having to figure out which declaration 5890 // this specialization matches. 5891 Previous.clear(); 5892 Previous.addDecl(Instantiation); 5893 return false; 5894} 5895 5896/// \brief Check the scope of an explicit instantiation. 5897/// 5898/// \returns true if a serious error occurs, false otherwise. 5899static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5900 SourceLocation InstLoc, 5901 bool WasQualifiedName) { 5902 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5903 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5904 5905 if (CurContext->isRecord()) { 5906 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5907 << D; 5908 return true; 5909 } 5910 5911 // C++11 [temp.explicit]p3: 5912 // An explicit instantiation shall appear in an enclosing namespace of its 5913 // template. If the name declared in the explicit instantiation is an 5914 // unqualified name, the explicit instantiation shall appear in the 5915 // namespace where its template is declared or, if that namespace is inline 5916 // (7.3.1), any namespace from its enclosing namespace set. 5917 // 5918 // This is DR275, which we do not retroactively apply to C++98/03. 5919 if (WasQualifiedName) { 5920 if (CurContext->Encloses(OrigContext)) 5921 return false; 5922 } else { 5923 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5924 return false; 5925 } 5926 5927 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 5928 if (WasQualifiedName) 5929 S.Diag(InstLoc, 5930 S.getLangOptions().CPlusPlus0x? 5931 diag::err_explicit_instantiation_out_of_scope : 5932 diag::warn_explicit_instantiation_out_of_scope_0x) 5933 << D << NS; 5934 else 5935 S.Diag(InstLoc, 5936 S.getLangOptions().CPlusPlus0x? 5937 diag::err_explicit_instantiation_unqualified_wrong_namespace : 5938 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5939 << D << NS; 5940 } else 5941 S.Diag(InstLoc, 5942 S.getLangOptions().CPlusPlus0x? 5943 diag::err_explicit_instantiation_must_be_global : 5944 diag::warn_explicit_instantiation_must_be_global_0x) 5945 << D; 5946 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5947 return false; 5948} 5949 5950/// \brief Determine whether the given scope specifier has a template-id in it. 5951static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5952 if (!SS.isSet()) 5953 return false; 5954 5955 // C++11 [temp.explicit]p3: 5956 // If the explicit instantiation is for a member function, a member class 5957 // or a static data member of a class template specialization, the name of 5958 // the class template specialization in the qualified-id for the member 5959 // name shall be a simple-template-id. 5960 // 5961 // C++98 has the same restriction, just worded differently. 5962 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5963 NNS; NNS = NNS->getPrefix()) 5964 if (const Type *T = NNS->getAsType()) 5965 if (isa<TemplateSpecializationType>(T)) 5966 return true; 5967 5968 return false; 5969} 5970 5971// Explicit instantiation of a class template specialization 5972DeclResult 5973Sema::ActOnExplicitInstantiation(Scope *S, 5974 SourceLocation ExternLoc, 5975 SourceLocation TemplateLoc, 5976 unsigned TagSpec, 5977 SourceLocation KWLoc, 5978 const CXXScopeSpec &SS, 5979 TemplateTy TemplateD, 5980 SourceLocation TemplateNameLoc, 5981 SourceLocation LAngleLoc, 5982 ASTTemplateArgsPtr TemplateArgsIn, 5983 SourceLocation RAngleLoc, 5984 AttributeList *Attr) { 5985 // Find the class template we're specializing 5986 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5987 ClassTemplateDecl *ClassTemplate 5988 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5989 5990 // Check that the specialization uses the same tag kind as the 5991 // original template. 5992 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5993 assert(Kind != TTK_Enum && 5994 "Invalid enum tag in class template explicit instantiation!"); 5995 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5996 Kind, /*isDefinition*/false, KWLoc, 5997 *ClassTemplate->getIdentifier())) { 5998 Diag(KWLoc, diag::err_use_with_wrong_tag) 5999 << ClassTemplate 6000 << FixItHint::CreateReplacement(KWLoc, 6001 ClassTemplate->getTemplatedDecl()->getKindName()); 6002 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6003 diag::note_previous_use); 6004 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6005 } 6006 6007 // C++0x [temp.explicit]p2: 6008 // There are two forms of explicit instantiation: an explicit instantiation 6009 // definition and an explicit instantiation declaration. An explicit 6010 // instantiation declaration begins with the extern keyword. [...] 6011 TemplateSpecializationKind TSK 6012 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6013 : TSK_ExplicitInstantiationDeclaration; 6014 6015 // Translate the parser's template argument list in our AST format. 6016 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6017 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6018 6019 // Check that the template argument list is well-formed for this 6020 // template. 6021 SmallVector<TemplateArgument, 4> Converted; 6022 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6023 TemplateArgs, false, Converted)) 6024 return true; 6025 6026 // Find the class template specialization declaration that 6027 // corresponds to these arguments. 6028 void *InsertPos = 0; 6029 ClassTemplateSpecializationDecl *PrevDecl 6030 = ClassTemplate->findSpecialization(Converted.data(), 6031 Converted.size(), InsertPos); 6032 6033 TemplateSpecializationKind PrevDecl_TSK 6034 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6035 6036 // C++0x [temp.explicit]p2: 6037 // [...] An explicit instantiation shall appear in an enclosing 6038 // namespace of its template. [...] 6039 // 6040 // This is C++ DR 275. 6041 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6042 SS.isSet())) 6043 return true; 6044 6045 ClassTemplateSpecializationDecl *Specialization = 0; 6046 6047 bool HasNoEffect = false; 6048 if (PrevDecl) { 6049 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6050 PrevDecl, PrevDecl_TSK, 6051 PrevDecl->getPointOfInstantiation(), 6052 HasNoEffect)) 6053 return PrevDecl; 6054 6055 // Even though HasNoEffect == true means that this explicit instantiation 6056 // has no effect on semantics, we go on to put its syntax in the AST. 6057 6058 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6059 PrevDecl_TSK == TSK_Undeclared) { 6060 // Since the only prior class template specialization with these 6061 // arguments was referenced but not declared, reuse that 6062 // declaration node as our own, updating the source location 6063 // for the template name to reflect our new declaration. 6064 // (Other source locations will be updated later.) 6065 Specialization = PrevDecl; 6066 Specialization->setLocation(TemplateNameLoc); 6067 PrevDecl = 0; 6068 } 6069 } 6070 6071 if (!Specialization) { 6072 // Create a new class template specialization declaration node for 6073 // this explicit specialization. 6074 Specialization 6075 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6076 ClassTemplate->getDeclContext(), 6077 KWLoc, TemplateNameLoc, 6078 ClassTemplate, 6079 Converted.data(), 6080 Converted.size(), 6081 PrevDecl); 6082 SetNestedNameSpecifier(Specialization, SS); 6083 6084 if (!HasNoEffect && !PrevDecl) { 6085 // Insert the new specialization. 6086 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6087 } 6088 } 6089 6090 // Build the fully-sugared type for this explicit instantiation as 6091 // the user wrote in the explicit instantiation itself. This means 6092 // that we'll pretty-print the type retrieved from the 6093 // specialization's declaration the way that the user actually wrote 6094 // the explicit instantiation, rather than formatting the name based 6095 // on the "canonical" representation used to store the template 6096 // arguments in the specialization. 6097 TypeSourceInfo *WrittenTy 6098 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6099 TemplateArgs, 6100 Context.getTypeDeclType(Specialization)); 6101 Specialization->setTypeAsWritten(WrittenTy); 6102 TemplateArgsIn.release(); 6103 6104 // Set source locations for keywords. 6105 Specialization->setExternLoc(ExternLoc); 6106 Specialization->setTemplateKeywordLoc(TemplateLoc); 6107 6108 if (Attr) 6109 ProcessDeclAttributeList(S, Specialization, Attr); 6110 6111 // Add the explicit instantiation into its lexical context. However, 6112 // since explicit instantiations are never found by name lookup, we 6113 // just put it into the declaration context directly. 6114 Specialization->setLexicalDeclContext(CurContext); 6115 CurContext->addDecl(Specialization); 6116 6117 // Syntax is now OK, so return if it has no other effect on semantics. 6118 if (HasNoEffect) { 6119 // Set the template specialization kind. 6120 Specialization->setTemplateSpecializationKind(TSK); 6121 return Specialization; 6122 } 6123 6124 // C++ [temp.explicit]p3: 6125 // A definition of a class template or class member template 6126 // shall be in scope at the point of the explicit instantiation of 6127 // the class template or class member template. 6128 // 6129 // This check comes when we actually try to perform the 6130 // instantiation. 6131 ClassTemplateSpecializationDecl *Def 6132 = cast_or_null<ClassTemplateSpecializationDecl>( 6133 Specialization->getDefinition()); 6134 if (!Def) 6135 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6136 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6137 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6138 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6139 } 6140 6141 // Instantiate the members of this class template specialization. 6142 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6143 Specialization->getDefinition()); 6144 if (Def) { 6145 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6146 6147 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6148 // TSK_ExplicitInstantiationDefinition 6149 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6150 TSK == TSK_ExplicitInstantiationDefinition) 6151 Def->setTemplateSpecializationKind(TSK); 6152 6153 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6154 } 6155 6156 // Set the template specialization kind. 6157 Specialization->setTemplateSpecializationKind(TSK); 6158 return Specialization; 6159} 6160 6161// Explicit instantiation of a member class of a class template. 6162DeclResult 6163Sema::ActOnExplicitInstantiation(Scope *S, 6164 SourceLocation ExternLoc, 6165 SourceLocation TemplateLoc, 6166 unsigned TagSpec, 6167 SourceLocation KWLoc, 6168 CXXScopeSpec &SS, 6169 IdentifierInfo *Name, 6170 SourceLocation NameLoc, 6171 AttributeList *Attr) { 6172 6173 bool Owned = false; 6174 bool IsDependent = false; 6175 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6176 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6177 /*ModulePrivateLoc=*/SourceLocation(), 6178 MultiTemplateParamsArg(*this, 0, 0), 6179 Owned, IsDependent, SourceLocation(), false, 6180 TypeResult()); 6181 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6182 6183 if (!TagD) 6184 return true; 6185 6186 TagDecl *Tag = cast<TagDecl>(TagD); 6187 if (Tag->isEnum()) { 6188 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 6189 << Context.getTypeDeclType(Tag); 6190 return true; 6191 } 6192 6193 if (Tag->isInvalidDecl()) 6194 return true; 6195 6196 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6197 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6198 if (!Pattern) { 6199 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6200 << Context.getTypeDeclType(Record); 6201 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6202 return true; 6203 } 6204 6205 // C++0x [temp.explicit]p2: 6206 // If the explicit instantiation is for a class or member class, the 6207 // elaborated-type-specifier in the declaration shall include a 6208 // simple-template-id. 6209 // 6210 // C++98 has the same restriction, just worded differently. 6211 if (!ScopeSpecifierHasTemplateId(SS)) 6212 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6213 << Record << SS.getRange(); 6214 6215 // C++0x [temp.explicit]p2: 6216 // There are two forms of explicit instantiation: an explicit instantiation 6217 // definition and an explicit instantiation declaration. An explicit 6218 // instantiation declaration begins with the extern keyword. [...] 6219 TemplateSpecializationKind TSK 6220 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6221 : TSK_ExplicitInstantiationDeclaration; 6222 6223 // C++0x [temp.explicit]p2: 6224 // [...] An explicit instantiation shall appear in an enclosing 6225 // namespace of its template. [...] 6226 // 6227 // This is C++ DR 275. 6228 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6229 6230 // Verify that it is okay to explicitly instantiate here. 6231 CXXRecordDecl *PrevDecl 6232 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6233 if (!PrevDecl && Record->getDefinition()) 6234 PrevDecl = Record; 6235 if (PrevDecl) { 6236 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6237 bool HasNoEffect = false; 6238 assert(MSInfo && "No member specialization information?"); 6239 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6240 PrevDecl, 6241 MSInfo->getTemplateSpecializationKind(), 6242 MSInfo->getPointOfInstantiation(), 6243 HasNoEffect)) 6244 return true; 6245 if (HasNoEffect) 6246 return TagD; 6247 } 6248 6249 CXXRecordDecl *RecordDef 6250 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6251 if (!RecordDef) { 6252 // C++ [temp.explicit]p3: 6253 // A definition of a member class of a class template shall be in scope 6254 // at the point of an explicit instantiation of the member class. 6255 CXXRecordDecl *Def 6256 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6257 if (!Def) { 6258 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6259 << 0 << Record->getDeclName() << Record->getDeclContext(); 6260 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6261 << Pattern; 6262 return true; 6263 } else { 6264 if (InstantiateClass(NameLoc, Record, Def, 6265 getTemplateInstantiationArgs(Record), 6266 TSK)) 6267 return true; 6268 6269 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6270 if (!RecordDef) 6271 return true; 6272 } 6273 } 6274 6275 // Instantiate all of the members of the class. 6276 InstantiateClassMembers(NameLoc, RecordDef, 6277 getTemplateInstantiationArgs(Record), TSK); 6278 6279 if (TSK == TSK_ExplicitInstantiationDefinition) 6280 MarkVTableUsed(NameLoc, RecordDef, true); 6281 6282 // FIXME: We don't have any representation for explicit instantiations of 6283 // member classes. Such a representation is not needed for compilation, but it 6284 // should be available for clients that want to see all of the declarations in 6285 // the source code. 6286 return TagD; 6287} 6288 6289DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6290 SourceLocation ExternLoc, 6291 SourceLocation TemplateLoc, 6292 Declarator &D) { 6293 // Explicit instantiations always require a name. 6294 // TODO: check if/when DNInfo should replace Name. 6295 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6296 DeclarationName Name = NameInfo.getName(); 6297 if (!Name) { 6298 if (!D.isInvalidType()) 6299 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6300 diag::err_explicit_instantiation_requires_name) 6301 << D.getDeclSpec().getSourceRange() 6302 << D.getSourceRange(); 6303 6304 return true; 6305 } 6306 6307 // The scope passed in may not be a decl scope. Zip up the scope tree until 6308 // we find one that is. 6309 while ((S->getFlags() & Scope::DeclScope) == 0 || 6310 (S->getFlags() & Scope::TemplateParamScope) != 0) 6311 S = S->getParent(); 6312 6313 // Determine the type of the declaration. 6314 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6315 QualType R = T->getType(); 6316 if (R.isNull()) 6317 return true; 6318 6319 // C++ [dcl.stc]p1: 6320 // A storage-class-specifier shall not be specified in [...] an explicit 6321 // instantiation (14.7.2) directive. 6322 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6323 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6324 << Name; 6325 return true; 6326 } else if (D.getDeclSpec().getStorageClassSpec() 6327 != DeclSpec::SCS_unspecified) { 6328 // Complain about then remove the storage class specifier. 6329 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6330 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6331 6332 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6333 } 6334 6335 // C++0x [temp.explicit]p1: 6336 // [...] An explicit instantiation of a function template shall not use the 6337 // inline or constexpr specifiers. 6338 // Presumably, this also applies to member functions of class templates as 6339 // well. 6340 if (D.getDeclSpec().isInlineSpecified()) 6341 Diag(D.getDeclSpec().getInlineSpecLoc(), 6342 getLangOptions().CPlusPlus0x ? 6343 diag::err_explicit_instantiation_inline : 6344 diag::warn_explicit_instantiation_inline_0x) 6345 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6346 if (D.getDeclSpec().isConstexprSpecified()) 6347 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6348 // not already specified. 6349 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6350 diag::err_explicit_instantiation_constexpr); 6351 6352 // C++0x [temp.explicit]p2: 6353 // There are two forms of explicit instantiation: an explicit instantiation 6354 // definition and an explicit instantiation declaration. An explicit 6355 // instantiation declaration begins with the extern keyword. [...] 6356 TemplateSpecializationKind TSK 6357 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6358 : TSK_ExplicitInstantiationDeclaration; 6359 6360 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6361 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6362 6363 if (!R->isFunctionType()) { 6364 // C++ [temp.explicit]p1: 6365 // A [...] static data member of a class template can be explicitly 6366 // instantiated from the member definition associated with its class 6367 // template. 6368 if (Previous.isAmbiguous()) 6369 return true; 6370 6371 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6372 if (!Prev || !Prev->isStaticDataMember()) { 6373 // We expect to see a data data member here. 6374 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6375 << Name; 6376 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6377 P != PEnd; ++P) 6378 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6379 return true; 6380 } 6381 6382 if (!Prev->getInstantiatedFromStaticDataMember()) { 6383 // FIXME: Check for explicit specialization? 6384 Diag(D.getIdentifierLoc(), 6385 diag::err_explicit_instantiation_data_member_not_instantiated) 6386 << Prev; 6387 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6388 // FIXME: Can we provide a note showing where this was declared? 6389 return true; 6390 } 6391 6392 // C++0x [temp.explicit]p2: 6393 // If the explicit instantiation is for a member function, a member class 6394 // or a static data member of a class template specialization, the name of 6395 // the class template specialization in the qualified-id for the member 6396 // name shall be a simple-template-id. 6397 // 6398 // C++98 has the same restriction, just worded differently. 6399 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6400 Diag(D.getIdentifierLoc(), 6401 diag::ext_explicit_instantiation_without_qualified_id) 6402 << Prev << D.getCXXScopeSpec().getRange(); 6403 6404 // Check the scope of this explicit instantiation. 6405 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6406 6407 // Verify that it is okay to explicitly instantiate here. 6408 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6409 assert(MSInfo && "Missing static data member specialization info?"); 6410 bool HasNoEffect = false; 6411 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6412 MSInfo->getTemplateSpecializationKind(), 6413 MSInfo->getPointOfInstantiation(), 6414 HasNoEffect)) 6415 return true; 6416 if (HasNoEffect) 6417 return (Decl*) 0; 6418 6419 // Instantiate static data member. 6420 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6421 if (TSK == TSK_ExplicitInstantiationDefinition) 6422 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6423 6424 // FIXME: Create an ExplicitInstantiation node? 6425 return (Decl*) 0; 6426 } 6427 6428 // If the declarator is a template-id, translate the parser's template 6429 // argument list into our AST format. 6430 bool HasExplicitTemplateArgs = false; 6431 TemplateArgumentListInfo TemplateArgs; 6432 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6433 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6434 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6435 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6436 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6437 TemplateId->getTemplateArgs(), 6438 TemplateId->NumArgs); 6439 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6440 HasExplicitTemplateArgs = true; 6441 TemplateArgsPtr.release(); 6442 } 6443 6444 // C++ [temp.explicit]p1: 6445 // A [...] function [...] can be explicitly instantiated from its template. 6446 // A member function [...] of a class template can be explicitly 6447 // instantiated from the member definition associated with its class 6448 // template. 6449 UnresolvedSet<8> Matches; 6450 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6451 P != PEnd; ++P) { 6452 NamedDecl *Prev = *P; 6453 if (!HasExplicitTemplateArgs) { 6454 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6455 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6456 Matches.clear(); 6457 6458 Matches.addDecl(Method, P.getAccess()); 6459 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6460 break; 6461 } 6462 } 6463 } 6464 6465 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6466 if (!FunTmpl) 6467 continue; 6468 6469 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6470 FunctionDecl *Specialization = 0; 6471 if (TemplateDeductionResult TDK 6472 = DeduceTemplateArguments(FunTmpl, 6473 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6474 R, Specialization, Info)) { 6475 // FIXME: Keep track of almost-matches? 6476 (void)TDK; 6477 continue; 6478 } 6479 6480 Matches.addDecl(Specialization, P.getAccess()); 6481 } 6482 6483 // Find the most specialized function template specialization. 6484 UnresolvedSetIterator Result 6485 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6486 D.getIdentifierLoc(), 6487 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6488 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6489 PDiag(diag::note_explicit_instantiation_candidate)); 6490 6491 if (Result == Matches.end()) 6492 return true; 6493 6494 // Ignore access control bits, we don't need them for redeclaration checking. 6495 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6496 6497 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6498 Diag(D.getIdentifierLoc(), 6499 diag::err_explicit_instantiation_member_function_not_instantiated) 6500 << Specialization 6501 << (Specialization->getTemplateSpecializationKind() == 6502 TSK_ExplicitSpecialization); 6503 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6504 return true; 6505 } 6506 6507 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6508 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6509 PrevDecl = Specialization; 6510 6511 if (PrevDecl) { 6512 bool HasNoEffect = false; 6513 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6514 PrevDecl, 6515 PrevDecl->getTemplateSpecializationKind(), 6516 PrevDecl->getPointOfInstantiation(), 6517 HasNoEffect)) 6518 return true; 6519 6520 // FIXME: We may still want to build some representation of this 6521 // explicit specialization. 6522 if (HasNoEffect) 6523 return (Decl*) 0; 6524 } 6525 6526 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6527 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6528 if (Attr) 6529 ProcessDeclAttributeList(S, Specialization, Attr); 6530 6531 if (TSK == TSK_ExplicitInstantiationDefinition) 6532 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6533 6534 // C++0x [temp.explicit]p2: 6535 // If the explicit instantiation is for a member function, a member class 6536 // or a static data member of a class template specialization, the name of 6537 // the class template specialization in the qualified-id for the member 6538 // name shall be a simple-template-id. 6539 // 6540 // C++98 has the same restriction, just worded differently. 6541 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6542 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6543 D.getCXXScopeSpec().isSet() && 6544 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6545 Diag(D.getIdentifierLoc(), 6546 diag::ext_explicit_instantiation_without_qualified_id) 6547 << Specialization << D.getCXXScopeSpec().getRange(); 6548 6549 CheckExplicitInstantiationScope(*this, 6550 FunTmpl? (NamedDecl *)FunTmpl 6551 : Specialization->getInstantiatedFromMemberFunction(), 6552 D.getIdentifierLoc(), 6553 D.getCXXScopeSpec().isSet()); 6554 6555 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6556 return (Decl*) 0; 6557} 6558 6559TypeResult 6560Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6561 const CXXScopeSpec &SS, IdentifierInfo *Name, 6562 SourceLocation TagLoc, SourceLocation NameLoc) { 6563 // This has to hold, because SS is expected to be defined. 6564 assert(Name && "Expected a name in a dependent tag"); 6565 6566 NestedNameSpecifier *NNS 6567 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6568 if (!NNS) 6569 return true; 6570 6571 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6572 6573 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6574 Diag(NameLoc, diag::err_dependent_tag_decl) 6575 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6576 return true; 6577 } 6578 6579 // Create the resulting type. 6580 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6581 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6582 6583 // Create type-source location information for this type. 6584 TypeLocBuilder TLB; 6585 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6586 TL.setKeywordLoc(TagLoc); 6587 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6588 TL.setNameLoc(NameLoc); 6589 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6590} 6591 6592TypeResult 6593Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6594 const CXXScopeSpec &SS, const IdentifierInfo &II, 6595 SourceLocation IdLoc) { 6596 if (SS.isInvalid()) 6597 return true; 6598 6599 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6600 Diag(TypenameLoc, 6601 getLangOptions().CPlusPlus0x ? 6602 diag::warn_cxx98_compat_typename_outside_of_template : 6603 diag::ext_typename_outside_of_template) 6604 << FixItHint::CreateRemoval(TypenameLoc); 6605 6606 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6607 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6608 TypenameLoc, QualifierLoc, II, IdLoc); 6609 if (T.isNull()) 6610 return true; 6611 6612 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6613 if (isa<DependentNameType>(T)) { 6614 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6615 TL.setKeywordLoc(TypenameLoc); 6616 TL.setQualifierLoc(QualifierLoc); 6617 TL.setNameLoc(IdLoc); 6618 } else { 6619 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6620 TL.setKeywordLoc(TypenameLoc); 6621 TL.setQualifierLoc(QualifierLoc); 6622 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6623 } 6624 6625 return CreateParsedType(T, TSI); 6626} 6627 6628TypeResult 6629Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6630 const CXXScopeSpec &SS, 6631 SourceLocation TemplateLoc, 6632 TemplateTy TemplateIn, 6633 SourceLocation TemplateNameLoc, 6634 SourceLocation LAngleLoc, 6635 ASTTemplateArgsPtr TemplateArgsIn, 6636 SourceLocation RAngleLoc) { 6637 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6638 Diag(TypenameLoc, 6639 getLangOptions().CPlusPlus0x ? 6640 diag::warn_cxx98_compat_typename_outside_of_template : 6641 diag::ext_typename_outside_of_template) 6642 << FixItHint::CreateRemoval(TypenameLoc); 6643 6644 // Translate the parser's template argument list in our AST format. 6645 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6646 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6647 6648 TemplateName Template = TemplateIn.get(); 6649 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6650 // Construct a dependent template specialization type. 6651 assert(DTN && "dependent template has non-dependent name?"); 6652 assert(DTN->getQualifier() 6653 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6654 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6655 DTN->getQualifier(), 6656 DTN->getIdentifier(), 6657 TemplateArgs); 6658 6659 // Create source-location information for this type. 6660 TypeLocBuilder Builder; 6661 DependentTemplateSpecializationTypeLoc SpecTL 6662 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6663 SpecTL.setLAngleLoc(LAngleLoc); 6664 SpecTL.setRAngleLoc(RAngleLoc); 6665 SpecTL.setKeywordLoc(TypenameLoc); 6666 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6667 SpecTL.setNameLoc(TemplateNameLoc); 6668 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6669 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6670 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6671 } 6672 6673 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6674 if (T.isNull()) 6675 return true; 6676 6677 // Provide source-location information for the template specialization 6678 // type. 6679 TypeLocBuilder Builder; 6680 TemplateSpecializationTypeLoc SpecTL 6681 = Builder.push<TemplateSpecializationTypeLoc>(T); 6682 6683 // FIXME: No place to set the location of the 'template' keyword! 6684 SpecTL.setLAngleLoc(LAngleLoc); 6685 SpecTL.setRAngleLoc(RAngleLoc); 6686 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6687 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6688 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6689 6690 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6691 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6692 TL.setKeywordLoc(TypenameLoc); 6693 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6694 6695 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6696 return CreateParsedType(T, TSI); 6697} 6698 6699 6700/// \brief Build the type that describes a C++ typename specifier, 6701/// e.g., "typename T::type". 6702QualType 6703Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6704 SourceLocation KeywordLoc, 6705 NestedNameSpecifierLoc QualifierLoc, 6706 const IdentifierInfo &II, 6707 SourceLocation IILoc) { 6708 CXXScopeSpec SS; 6709 SS.Adopt(QualifierLoc); 6710 6711 DeclContext *Ctx = computeDeclContext(SS); 6712 if (!Ctx) { 6713 // If the nested-name-specifier is dependent and couldn't be 6714 // resolved to a type, build a typename type. 6715 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6716 return Context.getDependentNameType(Keyword, 6717 QualifierLoc.getNestedNameSpecifier(), 6718 &II); 6719 } 6720 6721 // If the nested-name-specifier refers to the current instantiation, 6722 // the "typename" keyword itself is superfluous. In C++03, the 6723 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6724 // allows such extraneous "typename" keywords, and we retroactively 6725 // apply this DR to C++03 code with only a warning. In any case we continue. 6726 6727 if (RequireCompleteDeclContext(SS, Ctx)) 6728 return QualType(); 6729 6730 DeclarationName Name(&II); 6731 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6732 LookupQualifiedName(Result, Ctx); 6733 unsigned DiagID = 0; 6734 Decl *Referenced = 0; 6735 switch (Result.getResultKind()) { 6736 case LookupResult::NotFound: 6737 DiagID = diag::err_typename_nested_not_found; 6738 break; 6739 6740 case LookupResult::FoundUnresolvedValue: { 6741 // We found a using declaration that is a value. Most likely, the using 6742 // declaration itself is meant to have the 'typename' keyword. 6743 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6744 IILoc); 6745 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6746 << Name << Ctx << FullRange; 6747 if (UnresolvedUsingValueDecl *Using 6748 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6749 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6750 Diag(Loc, diag::note_using_value_decl_missing_typename) 6751 << FixItHint::CreateInsertion(Loc, "typename "); 6752 } 6753 } 6754 // Fall through to create a dependent typename type, from which we can recover 6755 // better. 6756 6757 case LookupResult::NotFoundInCurrentInstantiation: 6758 // Okay, it's a member of an unknown instantiation. 6759 return Context.getDependentNameType(Keyword, 6760 QualifierLoc.getNestedNameSpecifier(), 6761 &II); 6762 6763 case LookupResult::Found: 6764 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6765 // We found a type. Build an ElaboratedType, since the 6766 // typename-specifier was just sugar. 6767 return Context.getElaboratedType(ETK_Typename, 6768 QualifierLoc.getNestedNameSpecifier(), 6769 Context.getTypeDeclType(Type)); 6770 } 6771 6772 DiagID = diag::err_typename_nested_not_type; 6773 Referenced = Result.getFoundDecl(); 6774 break; 6775 6776 case LookupResult::FoundOverloaded: 6777 DiagID = diag::err_typename_nested_not_type; 6778 Referenced = *Result.begin(); 6779 break; 6780 6781 case LookupResult::Ambiguous: 6782 return QualType(); 6783 } 6784 6785 // If we get here, it's because name lookup did not find a 6786 // type. Emit an appropriate diagnostic and return an error. 6787 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6788 IILoc); 6789 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6790 if (Referenced) 6791 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6792 << Name; 6793 return QualType(); 6794} 6795 6796namespace { 6797 // See Sema::RebuildTypeInCurrentInstantiation 6798 class CurrentInstantiationRebuilder 6799 : public TreeTransform<CurrentInstantiationRebuilder> { 6800 SourceLocation Loc; 6801 DeclarationName Entity; 6802 6803 public: 6804 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6805 6806 CurrentInstantiationRebuilder(Sema &SemaRef, 6807 SourceLocation Loc, 6808 DeclarationName Entity) 6809 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6810 Loc(Loc), Entity(Entity) { } 6811 6812 /// \brief Determine whether the given type \p T has already been 6813 /// transformed. 6814 /// 6815 /// For the purposes of type reconstruction, a type has already been 6816 /// transformed if it is NULL or if it is not dependent. 6817 bool AlreadyTransformed(QualType T) { 6818 return T.isNull() || !T->isDependentType(); 6819 } 6820 6821 /// \brief Returns the location of the entity whose type is being 6822 /// rebuilt. 6823 SourceLocation getBaseLocation() { return Loc; } 6824 6825 /// \brief Returns the name of the entity whose type is being rebuilt. 6826 DeclarationName getBaseEntity() { return Entity; } 6827 6828 /// \brief Sets the "base" location and entity when that 6829 /// information is known based on another transformation. 6830 void setBase(SourceLocation Loc, DeclarationName Entity) { 6831 this->Loc = Loc; 6832 this->Entity = Entity; 6833 } 6834 }; 6835} 6836 6837/// \brief Rebuilds a type within the context of the current instantiation. 6838/// 6839/// The type \p T is part of the type of an out-of-line member definition of 6840/// a class template (or class template partial specialization) that was parsed 6841/// and constructed before we entered the scope of the class template (or 6842/// partial specialization thereof). This routine will rebuild that type now 6843/// that we have entered the declarator's scope, which may produce different 6844/// canonical types, e.g., 6845/// 6846/// \code 6847/// template<typename T> 6848/// struct X { 6849/// typedef T* pointer; 6850/// pointer data(); 6851/// }; 6852/// 6853/// template<typename T> 6854/// typename X<T>::pointer X<T>::data() { ... } 6855/// \endcode 6856/// 6857/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6858/// since we do not know that we can look into X<T> when we parsed the type. 6859/// This function will rebuild the type, performing the lookup of "pointer" 6860/// in X<T> and returning an ElaboratedType whose canonical type is the same 6861/// as the canonical type of T*, allowing the return types of the out-of-line 6862/// definition and the declaration to match. 6863TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6864 SourceLocation Loc, 6865 DeclarationName Name) { 6866 if (!T || !T->getType()->isDependentType()) 6867 return T; 6868 6869 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6870 return Rebuilder.TransformType(T); 6871} 6872 6873ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6874 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6875 DeclarationName()); 6876 return Rebuilder.TransformExpr(E); 6877} 6878 6879bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6880 if (SS.isInvalid()) 6881 return true; 6882 6883 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6884 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6885 DeclarationName()); 6886 NestedNameSpecifierLoc Rebuilt 6887 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6888 if (!Rebuilt) 6889 return true; 6890 6891 SS.Adopt(Rebuilt); 6892 return false; 6893} 6894 6895/// \brief Rebuild the template parameters now that we know we're in a current 6896/// instantiation. 6897bool Sema::RebuildTemplateParamsInCurrentInstantiation( 6898 TemplateParameterList *Params) { 6899 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6900 Decl *Param = Params->getParam(I); 6901 6902 // There is nothing to rebuild in a type parameter. 6903 if (isa<TemplateTypeParmDecl>(Param)) 6904 continue; 6905 6906 // Rebuild the template parameter list of a template template parameter. 6907 if (TemplateTemplateParmDecl *TTP 6908 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 6909 if (RebuildTemplateParamsInCurrentInstantiation( 6910 TTP->getTemplateParameters())) 6911 return true; 6912 6913 continue; 6914 } 6915 6916 // Rebuild the type of a non-type template parameter. 6917 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 6918 TypeSourceInfo *NewTSI 6919 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 6920 NTTP->getLocation(), 6921 NTTP->getDeclName()); 6922 if (!NewTSI) 6923 return true; 6924 6925 if (NewTSI != NTTP->getTypeSourceInfo()) { 6926 NTTP->setTypeSourceInfo(NewTSI); 6927 NTTP->setType(NewTSI->getType()); 6928 } 6929 } 6930 6931 return false; 6932} 6933 6934/// \brief Produces a formatted string that describes the binding of 6935/// template parameters to template arguments. 6936std::string 6937Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6938 const TemplateArgumentList &Args) { 6939 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6940} 6941 6942std::string 6943Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6944 const TemplateArgument *Args, 6945 unsigned NumArgs) { 6946 llvm::SmallString<128> Str; 6947 llvm::raw_svector_ostream Out(Str); 6948 6949 if (!Params || Params->size() == 0 || NumArgs == 0) 6950 return std::string(); 6951 6952 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6953 if (I >= NumArgs) 6954 break; 6955 6956 if (I == 0) 6957 Out << "[with "; 6958 else 6959 Out << ", "; 6960 6961 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6962 Out << Id->getName(); 6963 } else { 6964 Out << '$' << I; 6965 } 6966 6967 Out << " = "; 6968 Args[I].print(getPrintingPolicy(), Out); 6969 } 6970 6971 Out << ']'; 6972 return Out.str(); 6973} 6974 6975void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6976 if (!FD) 6977 return; 6978 FD->setLateTemplateParsed(Flag); 6979} 6980 6981bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6982 DeclContext *DC = CurContext; 6983 6984 while (DC) { 6985 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6986 const FunctionDecl *FD = RD->isLocalClass(); 6987 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6988 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6989 return false; 6990 6991 DC = DC->getParent(); 6992 } 6993 return false; 6994} 6995