SemaTemplate.cpp revision 2dd078ae50ff7be1fb25ebeedde45e9ab691a4f0
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Basic/LangOptions.h" 20#include "llvm/Support/Compiler.h" 21 22using namespace clang; 23 24/// \brief Determine whether the declaration found is acceptable as the name 25/// of a template and, if so, return that template declaration. Otherwise, 26/// returns NULL. 27static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 28 if (!D) 29 return 0; 30 31 if (isa<TemplateDecl>(D)) 32 return D; 33 34 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 35 // C++ [temp.local]p1: 36 // Like normal (non-template) classes, class templates have an 37 // injected-class-name (Clause 9). The injected-class-name 38 // can be used with or without a template-argument-list. When 39 // it is used without a template-argument-list, it is 40 // equivalent to the injected-class-name followed by the 41 // template-parameters of the class template enclosed in 42 // <>. When it is used with a template-argument-list, it 43 // refers to the specified class template specialization, 44 // which could be the current specialization or another 45 // specialization. 46 if (Record->isInjectedClassName()) { 47 Record = cast<CXXRecordDecl>(Record->getCanonicalDecl()); 48 if (Record->getDescribedClassTemplate()) 49 return Record->getDescribedClassTemplate(); 50 51 if (ClassTemplateSpecializationDecl *Spec 52 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 53 return Spec->getSpecializedTemplate(); 54 } 55 56 return 0; 57 } 58 59 OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D); 60 if (!Ovl) 61 return 0; 62 63 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 64 FEnd = Ovl->function_end(); 65 F != FEnd; ++F) { 66 if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) { 67 // We've found a function template. Determine whether there are 68 // any other function templates we need to bundle together in an 69 // OverloadedFunctionDecl 70 for (++F; F != FEnd; ++F) { 71 if (isa<FunctionTemplateDecl>(*F)) 72 break; 73 } 74 75 if (F != FEnd) { 76 // Build an overloaded function decl containing only the 77 // function templates in Ovl. 78 OverloadedFunctionDecl *OvlTemplate 79 = OverloadedFunctionDecl::Create(Context, 80 Ovl->getDeclContext(), 81 Ovl->getDeclName()); 82 OvlTemplate->addOverload(FuncTmpl); 83 OvlTemplate->addOverload(*F); 84 for (++F; F != FEnd; ++F) { 85 if (isa<FunctionTemplateDecl>(*F)) 86 OvlTemplate->addOverload(*F); 87 } 88 89 return OvlTemplate; 90 } 91 92 return FuncTmpl; 93 } 94 } 95 96 return 0; 97} 98 99TemplateNameKind Sema::isTemplateName(Scope *S, 100 const IdentifierInfo &II, 101 SourceLocation IdLoc, 102 const CXXScopeSpec *SS, 103 TypeTy *ObjectTypePtr, 104 bool EnteringContext, 105 TemplateTy &TemplateResult) { 106 // Determine where to perform name lookup 107 DeclContext *LookupCtx = 0; 108 bool isDependent = false; 109 if (ObjectTypePtr) { 110 // This nested-name-specifier occurs in a member access expression, e.g., 111 // x->B::f, and we are looking into the type of the object. 112 assert((!SS || !SS->isSet()) && 113 "ObjectType and scope specifier cannot coexist"); 114 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 115 LookupCtx = computeDeclContext(ObjectType); 116 isDependent = ObjectType->isDependentType(); 117 } else if (SS && SS->isSet()) { 118 // This nested-name-specifier occurs after another nested-name-specifier, 119 // so long into the context associated with the prior nested-name-specifier. 120 121 LookupCtx = computeDeclContext(*SS, EnteringContext); 122 isDependent = isDependentScopeSpecifier(*SS); 123 } 124 125 LookupResult Found; 126 bool ObjectTypeSearchedInScope = false; 127 if (LookupCtx) { 128 // Perform "qualified" name lookup into the declaration context we 129 // computed, which is either the type of the base of a member access 130 // expression or the declaration context associated with a prior 131 // nested-name-specifier. 132 133 // The declaration context must be complete. 134 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS)) 135 return TNK_Non_template; 136 137 Found = LookupQualifiedName(LookupCtx, &II, LookupOrdinaryName); 138 139 if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { 140 // C++ [basic.lookup.classref]p1: 141 // In a class member access expression (5.2.5), if the . or -> token is 142 // immediately followed by an identifier followed by a <, the 143 // identifier must be looked up to determine whether the < is the 144 // beginning of a template argument list (14.2) or a less-than operator. 145 // The identifier is first looked up in the class of the object 146 // expression. If the identifier is not found, it is then looked up in 147 // the context of the entire postfix-expression and shall name a class 148 // or function template. 149 // 150 // FIXME: When we're instantiating a template, do we actually have to 151 // look in the scope of the template? Seems fishy... 152 Found = LookupName(S, &II, LookupOrdinaryName); 153 ObjectTypeSearchedInScope = true; 154 } 155 } else if (isDependent) { 156 // We cannot look into a dependent object type or 157 return TNK_Non_template; 158 } else { 159 // Perform unqualified name lookup in the current scope. 160 Found = LookupName(S, &II, LookupOrdinaryName); 161 } 162 163 // FIXME: Cope with ambiguous name-lookup results. 164 assert(!Found.isAmbiguous() && 165 "Cannot handle template name-lookup ambiguities"); 166 167 NamedDecl *Template = isAcceptableTemplateName(Context, Found); 168 if (!Template) 169 return TNK_Non_template; 170 171 if (ObjectTypePtr && !ObjectTypeSearchedInScope) { 172 // C++ [basic.lookup.classref]p1: 173 // [...] If the lookup in the class of the object expression finds a 174 // template, the name is also looked up in the context of the entire 175 // postfix-expression and [...] 176 // 177 LookupResult FoundOuter = LookupName(S, &II, LookupOrdinaryName); 178 // FIXME: Handle ambiguities in this lookup better 179 NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter); 180 181 if (!OuterTemplate) { 182 // - if the name is not found, the name found in the class of the 183 // object expression is used, otherwise 184 } else if (!isa<ClassTemplateDecl>(OuterTemplate)) { 185 // - if the name is found in the context of the entire 186 // postfix-expression and does not name a class template, the name 187 // found in the class of the object expression is used, otherwise 188 } else { 189 // - if the name found is a class template, it must refer to the same 190 // entity as the one found in the class of the object expression, 191 // otherwise the program is ill-formed. 192 if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { 193 Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) 194 << &II; 195 Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) 196 << QualType::getFromOpaquePtr(ObjectTypePtr); 197 Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); 198 199 // Recover by taking the template that we found in the object 200 // expression's type. 201 } 202 } 203 } 204 205 if (SS && SS->isSet() && !SS->isInvalid()) { 206 NestedNameSpecifier *Qualifier 207 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 208 if (OverloadedFunctionDecl *Ovl 209 = dyn_cast<OverloadedFunctionDecl>(Template)) 210 TemplateResult 211 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 212 Ovl)); 213 else 214 TemplateResult 215 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 216 cast<TemplateDecl>(Template))); 217 } else if (OverloadedFunctionDecl *Ovl 218 = dyn_cast<OverloadedFunctionDecl>(Template)) { 219 TemplateResult = TemplateTy::make(TemplateName(Ovl)); 220 } else { 221 TemplateResult = TemplateTy::make( 222 TemplateName(cast<TemplateDecl>(Template))); 223 } 224 225 if (isa<ClassTemplateDecl>(Template) || 226 isa<TemplateTemplateParmDecl>(Template)) 227 return TNK_Type_template; 228 229 assert((isa<FunctionTemplateDecl>(Template) || 230 isa<OverloadedFunctionDecl>(Template)) && 231 "Unhandled template kind in Sema::isTemplateName"); 232 return TNK_Function_template; 233} 234 235/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 236/// that the template parameter 'PrevDecl' is being shadowed by a new 237/// declaration at location Loc. Returns true to indicate that this is 238/// an error, and false otherwise. 239bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 240 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 241 242 // Microsoft Visual C++ permits template parameters to be shadowed. 243 if (getLangOptions().Microsoft) 244 return false; 245 246 // C++ [temp.local]p4: 247 // A template-parameter shall not be redeclared within its 248 // scope (including nested scopes). 249 Diag(Loc, diag::err_template_param_shadow) 250 << cast<NamedDecl>(PrevDecl)->getDeclName(); 251 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 252 return true; 253} 254 255/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 256/// the parameter D to reference the templated declaration and return a pointer 257/// to the template declaration. Otherwise, do nothing to D and return null. 258TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 259 if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) { 260 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 261 return Temp; 262 } 263 return 0; 264} 265 266/// ActOnTypeParameter - Called when a C++ template type parameter 267/// (e.g., "typename T") has been parsed. Typename specifies whether 268/// the keyword "typename" was used to declare the type parameter 269/// (otherwise, "class" was used), and KeyLoc is the location of the 270/// "class" or "typename" keyword. ParamName is the name of the 271/// parameter (NULL indicates an unnamed template parameter) and 272/// ParamName is the location of the parameter name (if any). 273/// If the type parameter has a default argument, it will be added 274/// later via ActOnTypeParameterDefault. 275Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 276 SourceLocation EllipsisLoc, 277 SourceLocation KeyLoc, 278 IdentifierInfo *ParamName, 279 SourceLocation ParamNameLoc, 280 unsigned Depth, unsigned Position) { 281 assert(S->isTemplateParamScope() && 282 "Template type parameter not in template parameter scope!"); 283 bool Invalid = false; 284 285 if (ParamName) { 286 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 287 if (PrevDecl && PrevDecl->isTemplateParameter()) 288 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 289 PrevDecl); 290 } 291 292 SourceLocation Loc = ParamNameLoc; 293 if (!ParamName) 294 Loc = KeyLoc; 295 296 TemplateTypeParmDecl *Param 297 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 298 Depth, Position, ParamName, Typename, 299 Ellipsis); 300 if (Invalid) 301 Param->setInvalidDecl(); 302 303 if (ParamName) { 304 // Add the template parameter into the current scope. 305 S->AddDecl(DeclPtrTy::make(Param)); 306 IdResolver.AddDecl(Param); 307 } 308 309 return DeclPtrTy::make(Param); 310} 311 312/// ActOnTypeParameterDefault - Adds a default argument (the type 313/// Default) to the given template type parameter (TypeParam). 314void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 315 SourceLocation EqualLoc, 316 SourceLocation DefaultLoc, 317 TypeTy *DefaultT) { 318 TemplateTypeParmDecl *Parm 319 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 320 // FIXME: Preserve type source info. 321 QualType Default = GetTypeFromParser(DefaultT); 322 323 // C++0x [temp.param]p9: 324 // A default template-argument may be specified for any kind of 325 // template-parameter that is not a template parameter pack. 326 if (Parm->isParameterPack()) { 327 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 328 return; 329 } 330 331 // C++ [temp.param]p14: 332 // A template-parameter shall not be used in its own default argument. 333 // FIXME: Implement this check! Needs a recursive walk over the types. 334 335 // Check the template argument itself. 336 if (CheckTemplateArgument(Parm, Default, DefaultLoc)) { 337 Parm->setInvalidDecl(); 338 return; 339 } 340 341 Parm->setDefaultArgument(Default, DefaultLoc, false); 342} 343 344/// \brief Check that the type of a non-type template parameter is 345/// well-formed. 346/// 347/// \returns the (possibly-promoted) parameter type if valid; 348/// otherwise, produces a diagnostic and returns a NULL type. 349QualType 350Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 351 // C++ [temp.param]p4: 352 // 353 // A non-type template-parameter shall have one of the following 354 // (optionally cv-qualified) types: 355 // 356 // -- integral or enumeration type, 357 if (T->isIntegralType() || T->isEnumeralType() || 358 // -- pointer to object or pointer to function, 359 (T->isPointerType() && 360 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 361 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 362 // -- reference to object or reference to function, 363 T->isReferenceType() || 364 // -- pointer to member. 365 T->isMemberPointerType() || 366 // If T is a dependent type, we can't do the check now, so we 367 // assume that it is well-formed. 368 T->isDependentType()) 369 return T; 370 // C++ [temp.param]p8: 371 // 372 // A non-type template-parameter of type "array of T" or 373 // "function returning T" is adjusted to be of type "pointer to 374 // T" or "pointer to function returning T", respectively. 375 else if (T->isArrayType()) 376 // FIXME: Keep the type prior to promotion? 377 return Context.getArrayDecayedType(T); 378 else if (T->isFunctionType()) 379 // FIXME: Keep the type prior to promotion? 380 return Context.getPointerType(T); 381 382 Diag(Loc, diag::err_template_nontype_parm_bad_type) 383 << T; 384 385 return QualType(); 386} 387 388/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 389/// template parameter (e.g., "int Size" in "template<int Size> 390/// class Array") has been parsed. S is the current scope and D is 391/// the parsed declarator. 392Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 393 unsigned Depth, 394 unsigned Position) { 395 DeclaratorInfo *DInfo = 0; 396 QualType T = GetTypeForDeclarator(D, S, &DInfo); 397 398 assert(S->isTemplateParamScope() && 399 "Non-type template parameter not in template parameter scope!"); 400 bool Invalid = false; 401 402 IdentifierInfo *ParamName = D.getIdentifier(); 403 if (ParamName) { 404 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 405 if (PrevDecl && PrevDecl->isTemplateParameter()) 406 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 407 PrevDecl); 408 } 409 410 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 411 if (T.isNull()) { 412 T = Context.IntTy; // Recover with an 'int' type. 413 Invalid = true; 414 } 415 416 NonTypeTemplateParmDecl *Param 417 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 418 Depth, Position, ParamName, T, DInfo); 419 if (Invalid) 420 Param->setInvalidDecl(); 421 422 if (D.getIdentifier()) { 423 // Add the template parameter into the current scope. 424 S->AddDecl(DeclPtrTy::make(Param)); 425 IdResolver.AddDecl(Param); 426 } 427 return DeclPtrTy::make(Param); 428} 429 430/// \brief Adds a default argument to the given non-type template 431/// parameter. 432void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 433 SourceLocation EqualLoc, 434 ExprArg DefaultE) { 435 NonTypeTemplateParmDecl *TemplateParm 436 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 437 Expr *Default = static_cast<Expr *>(DefaultE.get()); 438 439 // C++ [temp.param]p14: 440 // A template-parameter shall not be used in its own default argument. 441 // FIXME: Implement this check! Needs a recursive walk over the types. 442 443 // Check the well-formedness of the default template argument. 444 TemplateArgument Converted; 445 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 446 Converted)) { 447 TemplateParm->setInvalidDecl(); 448 return; 449 } 450 451 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 452} 453 454 455/// ActOnTemplateTemplateParameter - Called when a C++ template template 456/// parameter (e.g. T in template <template <typename> class T> class array) 457/// has been parsed. S is the current scope. 458Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 459 SourceLocation TmpLoc, 460 TemplateParamsTy *Params, 461 IdentifierInfo *Name, 462 SourceLocation NameLoc, 463 unsigned Depth, 464 unsigned Position) 465{ 466 assert(S->isTemplateParamScope() && 467 "Template template parameter not in template parameter scope!"); 468 469 // Construct the parameter object. 470 TemplateTemplateParmDecl *Param = 471 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 472 Position, Name, 473 (TemplateParameterList*)Params); 474 475 // Make sure the parameter is valid. 476 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 477 // do anything yet. However, if the template parameter list or (eventual) 478 // default value is ever invalidated, that will propagate here. 479 bool Invalid = false; 480 if (Invalid) { 481 Param->setInvalidDecl(); 482 } 483 484 // If the tt-param has a name, then link the identifier into the scope 485 // and lookup mechanisms. 486 if (Name) { 487 S->AddDecl(DeclPtrTy::make(Param)); 488 IdResolver.AddDecl(Param); 489 } 490 491 return DeclPtrTy::make(Param); 492} 493 494/// \brief Adds a default argument to the given template template 495/// parameter. 496void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 497 SourceLocation EqualLoc, 498 ExprArg DefaultE) { 499 TemplateTemplateParmDecl *TemplateParm 500 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 501 502 // Since a template-template parameter's default argument is an 503 // id-expression, it must be a DeclRefExpr. 504 DeclRefExpr *Default 505 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 506 507 // C++ [temp.param]p14: 508 // A template-parameter shall not be used in its own default argument. 509 // FIXME: Implement this check! Needs a recursive walk over the types. 510 511 // Check the well-formedness of the template argument. 512 if (!isa<TemplateDecl>(Default->getDecl())) { 513 Diag(Default->getSourceRange().getBegin(), 514 diag::err_template_arg_must_be_template) 515 << Default->getSourceRange(); 516 TemplateParm->setInvalidDecl(); 517 return; 518 } 519 if (CheckTemplateArgument(TemplateParm, Default)) { 520 TemplateParm->setInvalidDecl(); 521 return; 522 } 523 524 DefaultE.release(); 525 TemplateParm->setDefaultArgument(Default); 526} 527 528/// ActOnTemplateParameterList - Builds a TemplateParameterList that 529/// contains the template parameters in Params/NumParams. 530Sema::TemplateParamsTy * 531Sema::ActOnTemplateParameterList(unsigned Depth, 532 SourceLocation ExportLoc, 533 SourceLocation TemplateLoc, 534 SourceLocation LAngleLoc, 535 DeclPtrTy *Params, unsigned NumParams, 536 SourceLocation RAngleLoc) { 537 if (ExportLoc.isValid()) 538 Diag(ExportLoc, diag::note_template_export_unsupported); 539 540 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 541 (Decl**)Params, NumParams, RAngleLoc); 542} 543 544Sema::DeclResult 545Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 546 SourceLocation KWLoc, const CXXScopeSpec &SS, 547 IdentifierInfo *Name, SourceLocation NameLoc, 548 AttributeList *Attr, 549 TemplateParameterList *TemplateParams, 550 AccessSpecifier AS) { 551 assert(TemplateParams && TemplateParams->size() > 0 && 552 "No template parameters"); 553 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 554 bool Invalid = false; 555 556 // Check that we can declare a template here. 557 if (CheckTemplateDeclScope(S, TemplateParams)) 558 return true; 559 560 TagDecl::TagKind Kind; 561 switch (TagSpec) { 562 default: assert(0 && "Unknown tag type!"); 563 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 564 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 565 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 566 } 567 568 // There is no such thing as an unnamed class template. 569 if (!Name) { 570 Diag(KWLoc, diag::err_template_unnamed_class); 571 return true; 572 } 573 574 // Find any previous declaration with this name. 575 DeclContext *SemanticContext; 576 LookupResult Previous; 577 if (SS.isNotEmpty() && !SS.isInvalid()) { 578 SemanticContext = computeDeclContext(SS, true); 579 if (!SemanticContext) { 580 // FIXME: Produce a reasonable diagnostic here 581 return true; 582 } 583 584 Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName, 585 true); 586 } else { 587 SemanticContext = CurContext; 588 Previous = LookupName(S, Name, LookupOrdinaryName, true); 589 } 590 591 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 592 NamedDecl *PrevDecl = 0; 593 if (Previous.begin() != Previous.end()) 594 PrevDecl = *Previous.begin(); 595 596 if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 597 PrevDecl = 0; 598 599 // If there is a previous declaration with the same name, check 600 // whether this is a valid redeclaration. 601 ClassTemplateDecl *PrevClassTemplate 602 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 603 if (PrevClassTemplate) { 604 // Ensure that the template parameter lists are compatible. 605 if (!TemplateParameterListsAreEqual(TemplateParams, 606 PrevClassTemplate->getTemplateParameters(), 607 /*Complain=*/true)) 608 return true; 609 610 // C++ [temp.class]p4: 611 // In a redeclaration, partial specialization, explicit 612 // specialization or explicit instantiation of a class template, 613 // the class-key shall agree in kind with the original class 614 // template declaration (7.1.5.3). 615 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 616 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 617 Diag(KWLoc, diag::err_use_with_wrong_tag) 618 << Name 619 << CodeModificationHint::CreateReplacement(KWLoc, 620 PrevRecordDecl->getKindName()); 621 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 622 Kind = PrevRecordDecl->getTagKind(); 623 } 624 625 // Check for redefinition of this class template. 626 if (TUK == TUK_Definition) { 627 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 628 Diag(NameLoc, diag::err_redefinition) << Name; 629 Diag(Def->getLocation(), diag::note_previous_definition); 630 // FIXME: Would it make sense to try to "forget" the previous 631 // definition, as part of error recovery? 632 return true; 633 } 634 } 635 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 636 // Maybe we will complain about the shadowed template parameter. 637 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 638 // Just pretend that we didn't see the previous declaration. 639 PrevDecl = 0; 640 } else if (PrevDecl) { 641 // C++ [temp]p5: 642 // A class template shall not have the same name as any other 643 // template, class, function, object, enumeration, enumerator, 644 // namespace, or type in the same scope (3.3), except as specified 645 // in (14.5.4). 646 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 647 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 648 return true; 649 } 650 651 // Check the template parameter list of this declaration, possibly 652 // merging in the template parameter list from the previous class 653 // template declaration. 654 if (CheckTemplateParameterList(TemplateParams, 655 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 656 Invalid = true; 657 658 // FIXME: If we had a scope specifier, we better have a previous template 659 // declaration! 660 661 CXXRecordDecl *NewClass = 662 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 663 PrevClassTemplate? 664 PrevClassTemplate->getTemplatedDecl() : 0, 665 /*DelayTypeCreation=*/true); 666 667 ClassTemplateDecl *NewTemplate 668 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 669 DeclarationName(Name), TemplateParams, 670 NewClass, PrevClassTemplate); 671 NewClass->setDescribedClassTemplate(NewTemplate); 672 673 // Build the type for the class template declaration now. 674 QualType T = 675 Context.getTypeDeclType(NewClass, 676 PrevClassTemplate? 677 PrevClassTemplate->getTemplatedDecl() : 0); 678 assert(T->isDependentType() && "Class template type is not dependent?"); 679 (void)T; 680 681 // Set the access specifier. 682 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 683 684 // Set the lexical context of these templates 685 NewClass->setLexicalDeclContext(CurContext); 686 NewTemplate->setLexicalDeclContext(CurContext); 687 688 if (TUK == TUK_Definition) 689 NewClass->startDefinition(); 690 691 if (Attr) 692 ProcessDeclAttributeList(S, NewClass, Attr); 693 694 PushOnScopeChains(NewTemplate, S); 695 696 if (Invalid) { 697 NewTemplate->setInvalidDecl(); 698 NewClass->setInvalidDecl(); 699 } 700 return DeclPtrTy::make(NewTemplate); 701} 702 703/// \brief Checks the validity of a template parameter list, possibly 704/// considering the template parameter list from a previous 705/// declaration. 706/// 707/// If an "old" template parameter list is provided, it must be 708/// equivalent (per TemplateParameterListsAreEqual) to the "new" 709/// template parameter list. 710/// 711/// \param NewParams Template parameter list for a new template 712/// declaration. This template parameter list will be updated with any 713/// default arguments that are carried through from the previous 714/// template parameter list. 715/// 716/// \param OldParams If provided, template parameter list from a 717/// previous declaration of the same template. Default template 718/// arguments will be merged from the old template parameter list to 719/// the new template parameter list. 720/// 721/// \returns true if an error occurred, false otherwise. 722bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 723 TemplateParameterList *OldParams) { 724 bool Invalid = false; 725 726 // C++ [temp.param]p10: 727 // The set of default template-arguments available for use with a 728 // template declaration or definition is obtained by merging the 729 // default arguments from the definition (if in scope) and all 730 // declarations in scope in the same way default function 731 // arguments are (8.3.6). 732 bool SawDefaultArgument = false; 733 SourceLocation PreviousDefaultArgLoc; 734 735 bool SawParameterPack = false; 736 SourceLocation ParameterPackLoc; 737 738 // Dummy initialization to avoid warnings. 739 TemplateParameterList::iterator OldParam = NewParams->end(); 740 if (OldParams) 741 OldParam = OldParams->begin(); 742 743 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 744 NewParamEnd = NewParams->end(); 745 NewParam != NewParamEnd; ++NewParam) { 746 // Variables used to diagnose redundant default arguments 747 bool RedundantDefaultArg = false; 748 SourceLocation OldDefaultLoc; 749 SourceLocation NewDefaultLoc; 750 751 // Variables used to diagnose missing default arguments 752 bool MissingDefaultArg = false; 753 754 // C++0x [temp.param]p11: 755 // If a template parameter of a class template is a template parameter pack, 756 // it must be the last template parameter. 757 if (SawParameterPack) { 758 Diag(ParameterPackLoc, 759 diag::err_template_param_pack_must_be_last_template_parameter); 760 Invalid = true; 761 } 762 763 // Merge default arguments for template type parameters. 764 if (TemplateTypeParmDecl *NewTypeParm 765 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 766 TemplateTypeParmDecl *OldTypeParm 767 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 768 769 if (NewTypeParm->isParameterPack()) { 770 assert(!NewTypeParm->hasDefaultArgument() && 771 "Parameter packs can't have a default argument!"); 772 SawParameterPack = true; 773 ParameterPackLoc = NewTypeParm->getLocation(); 774 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 775 NewTypeParm->hasDefaultArgument()) { 776 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 777 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 778 SawDefaultArgument = true; 779 RedundantDefaultArg = true; 780 PreviousDefaultArgLoc = NewDefaultLoc; 781 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 782 // Merge the default argument from the old declaration to the 783 // new declaration. 784 SawDefaultArgument = true; 785 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(), 786 OldTypeParm->getDefaultArgumentLoc(), 787 true); 788 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 789 } else if (NewTypeParm->hasDefaultArgument()) { 790 SawDefaultArgument = true; 791 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 792 } else if (SawDefaultArgument) 793 MissingDefaultArg = true; 794 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 795 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 796 // Merge default arguments for non-type template parameters 797 NonTypeTemplateParmDecl *OldNonTypeParm 798 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 799 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 800 NewNonTypeParm->hasDefaultArgument()) { 801 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 802 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 803 SawDefaultArgument = true; 804 RedundantDefaultArg = true; 805 PreviousDefaultArgLoc = NewDefaultLoc; 806 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 807 // Merge the default argument from the old declaration to the 808 // new declaration. 809 SawDefaultArgument = true; 810 // FIXME: We need to create a new kind of "default argument" 811 // expression that points to a previous template template 812 // parameter. 813 NewNonTypeParm->setDefaultArgument( 814 OldNonTypeParm->getDefaultArgument()); 815 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 816 } else if (NewNonTypeParm->hasDefaultArgument()) { 817 SawDefaultArgument = true; 818 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 819 } else if (SawDefaultArgument) 820 MissingDefaultArg = true; 821 } else { 822 // Merge default arguments for template template parameters 823 TemplateTemplateParmDecl *NewTemplateParm 824 = cast<TemplateTemplateParmDecl>(*NewParam); 825 TemplateTemplateParmDecl *OldTemplateParm 826 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 827 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 828 NewTemplateParm->hasDefaultArgument()) { 829 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 830 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 831 SawDefaultArgument = true; 832 RedundantDefaultArg = true; 833 PreviousDefaultArgLoc = NewDefaultLoc; 834 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 835 // Merge the default argument from the old declaration to the 836 // new declaration. 837 SawDefaultArgument = true; 838 // FIXME: We need to create a new kind of "default argument" expression 839 // that points to a previous template template parameter. 840 NewTemplateParm->setDefaultArgument( 841 OldTemplateParm->getDefaultArgument()); 842 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 843 } else if (NewTemplateParm->hasDefaultArgument()) { 844 SawDefaultArgument = true; 845 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 846 } else if (SawDefaultArgument) 847 MissingDefaultArg = true; 848 } 849 850 if (RedundantDefaultArg) { 851 // C++ [temp.param]p12: 852 // A template-parameter shall not be given default arguments 853 // by two different declarations in the same scope. 854 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 855 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 856 Invalid = true; 857 } else if (MissingDefaultArg) { 858 // C++ [temp.param]p11: 859 // If a template-parameter has a default template-argument, 860 // all subsequent template-parameters shall have a default 861 // template-argument supplied. 862 Diag((*NewParam)->getLocation(), 863 diag::err_template_param_default_arg_missing); 864 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 865 Invalid = true; 866 } 867 868 // If we have an old template parameter list that we're merging 869 // in, move on to the next parameter. 870 if (OldParams) 871 ++OldParam; 872 } 873 874 return Invalid; 875} 876 877/// \brief Match the given template parameter lists to the given scope 878/// specifier, returning the template parameter list that applies to the 879/// name. 880/// 881/// \param DeclStartLoc the start of the declaration that has a scope 882/// specifier or a template parameter list. 883/// 884/// \param SS the scope specifier that will be matched to the given template 885/// parameter lists. This scope specifier precedes a qualified name that is 886/// being declared. 887/// 888/// \param ParamLists the template parameter lists, from the outermost to the 889/// innermost template parameter lists. 890/// 891/// \param NumParamLists the number of template parameter lists in ParamLists. 892/// 893/// \returns the template parameter list, if any, that corresponds to the 894/// name that is preceded by the scope specifier @p SS. This template 895/// parameter list may be have template parameters (if we're declaring a 896/// template) or may have no template parameters (if we're declaring a 897/// template specialization), or may be NULL (if we were's declaring isn't 898/// itself a template). 899TemplateParameterList * 900Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 901 const CXXScopeSpec &SS, 902 TemplateParameterList **ParamLists, 903 unsigned NumParamLists) { 904 // Find the template-ids that occur within the nested-name-specifier. These 905 // template-ids will match up with the template parameter lists. 906 llvm::SmallVector<const TemplateSpecializationType *, 4> 907 TemplateIdsInSpecifier; 908 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 909 NNS; NNS = NNS->getPrefix()) { 910 if (const TemplateSpecializationType *SpecType 911 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 912 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 913 if (!Template) 914 continue; // FIXME: should this be an error? probably... 915 916 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 917 ClassTemplateSpecializationDecl *SpecDecl 918 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 919 // If the nested name specifier refers to an explicit specialization, 920 // we don't need a template<> header. 921 // FIXME: revisit this approach once we cope with specialization 922 // properly. 923 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 924 continue; 925 } 926 927 TemplateIdsInSpecifier.push_back(SpecType); 928 } 929 } 930 931 // Reverse the list of template-ids in the scope specifier, so that we can 932 // more easily match up the template-ids and the template parameter lists. 933 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 934 935 SourceLocation FirstTemplateLoc = DeclStartLoc; 936 if (NumParamLists) 937 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 938 939 // Match the template-ids found in the specifier to the template parameter 940 // lists. 941 unsigned Idx = 0; 942 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 943 Idx != NumTemplateIds; ++Idx) { 944 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 945 bool DependentTemplateId = TemplateId->isDependentType(); 946 if (Idx >= NumParamLists) { 947 // We have a template-id without a corresponding template parameter 948 // list. 949 if (DependentTemplateId) { 950 // FIXME: the location information here isn't great. 951 Diag(SS.getRange().getBegin(), 952 diag::err_template_spec_needs_template_parameters) 953 << TemplateId 954 << SS.getRange(); 955 } else { 956 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 957 << SS.getRange() 958 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 959 "template<> "); 960 } 961 return 0; 962 } 963 964 // Check the template parameter list against its corresponding template-id. 965 if (DependentTemplateId) { 966 TemplateDecl *Template 967 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 968 969 if (ClassTemplateDecl *ClassTemplate 970 = dyn_cast<ClassTemplateDecl>(Template)) { 971 TemplateParameterList *ExpectedTemplateParams = 0; 972 // Is this template-id naming the primary template? 973 if (Context.hasSameType(TemplateId, 974 ClassTemplate->getInjectedClassNameType(Context))) 975 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 976 // ... or a partial specialization? 977 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 978 = ClassTemplate->findPartialSpecialization(TemplateId)) 979 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 980 981 if (ExpectedTemplateParams) 982 TemplateParameterListsAreEqual(ParamLists[Idx], 983 ExpectedTemplateParams, 984 true); 985 } 986 } else if (ParamLists[Idx]->size() > 0) 987 Diag(ParamLists[Idx]->getTemplateLoc(), 988 diag::err_template_param_list_matches_nontemplate) 989 << TemplateId 990 << ParamLists[Idx]->getSourceRange(); 991 } 992 993 // If there were at least as many template-ids as there were template 994 // parameter lists, then there are no template parameter lists remaining for 995 // the declaration itself. 996 if (Idx >= NumParamLists) 997 return 0; 998 999 // If there were too many template parameter lists, complain about that now. 1000 if (Idx != NumParamLists - 1) { 1001 while (Idx < NumParamLists - 1) { 1002 Diag(ParamLists[Idx]->getTemplateLoc(), 1003 diag::err_template_spec_extra_headers) 1004 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1005 ParamLists[Idx]->getRAngleLoc()); 1006 ++Idx; 1007 } 1008 } 1009 1010 // Return the last template parameter list, which corresponds to the 1011 // entity being declared. 1012 return ParamLists[NumParamLists - 1]; 1013} 1014 1015/// \brief Translates template arguments as provided by the parser 1016/// into template arguments used by semantic analysis. 1017static void 1018translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 1019 SourceLocation *TemplateArgLocs, 1020 llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) { 1021 TemplateArgs.reserve(TemplateArgsIn.size()); 1022 1023 void **Args = TemplateArgsIn.getArgs(); 1024 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 1025 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 1026 TemplateArgs.push_back( 1027 ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg], 1028 //FIXME: Preserve type source info. 1029 Sema::GetTypeFromParser(Args[Arg])) 1030 : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg]))); 1031 } 1032} 1033 1034QualType Sema::CheckTemplateIdType(TemplateName Name, 1035 SourceLocation TemplateLoc, 1036 SourceLocation LAngleLoc, 1037 const TemplateArgument *TemplateArgs, 1038 unsigned NumTemplateArgs, 1039 SourceLocation RAngleLoc) { 1040 TemplateDecl *Template = Name.getAsTemplateDecl(); 1041 if (!Template) { 1042 // The template name does not resolve to a template, so we just 1043 // build a dependent template-id type. 1044 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1045 NumTemplateArgs); 1046 } 1047 1048 // Check that the template argument list is well-formed for this 1049 // template. 1050 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1051 NumTemplateArgs); 1052 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 1053 TemplateArgs, NumTemplateArgs, RAngleLoc, 1054 false, Converted)) 1055 return QualType(); 1056 1057 assert((Converted.structuredSize() == 1058 Template->getTemplateParameters()->size()) && 1059 "Converted template argument list is too short!"); 1060 1061 QualType CanonType; 1062 1063 if (TemplateSpecializationType::anyDependentTemplateArguments( 1064 TemplateArgs, 1065 NumTemplateArgs)) { 1066 // This class template specialization is a dependent 1067 // type. Therefore, its canonical type is another class template 1068 // specialization type that contains all of the converted 1069 // arguments in canonical form. This ensures that, e.g., A<T> and 1070 // A<T, T> have identical types when A is declared as: 1071 // 1072 // template<typename T, typename U = T> struct A; 1073 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1074 CanonType = Context.getTemplateSpecializationType(CanonName, 1075 Converted.getFlatArguments(), 1076 Converted.flatSize()); 1077 1078 // FIXME: CanonType is not actually the canonical type, and unfortunately 1079 // it is a TemplateTypeSpecializationType that we will never use again. 1080 // In the future, we need to teach getTemplateSpecializationType to only 1081 // build the canonical type and return that to us. 1082 CanonType = Context.getCanonicalType(CanonType); 1083 } else if (ClassTemplateDecl *ClassTemplate 1084 = dyn_cast<ClassTemplateDecl>(Template)) { 1085 // Find the class template specialization declaration that 1086 // corresponds to these arguments. 1087 llvm::FoldingSetNodeID ID; 1088 ClassTemplateSpecializationDecl::Profile(ID, 1089 Converted.getFlatArguments(), 1090 Converted.flatSize(), 1091 Context); 1092 void *InsertPos = 0; 1093 ClassTemplateSpecializationDecl *Decl 1094 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1095 if (!Decl) { 1096 // This is the first time we have referenced this class template 1097 // specialization. Create the canonical declaration and add it to 1098 // the set of specializations. 1099 Decl = ClassTemplateSpecializationDecl::Create(Context, 1100 ClassTemplate->getDeclContext(), 1101 TemplateLoc, 1102 ClassTemplate, 1103 Converted, 0); 1104 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1105 Decl->setLexicalDeclContext(CurContext); 1106 } 1107 1108 CanonType = Context.getTypeDeclType(Decl); 1109 } 1110 1111 // Build the fully-sugared type for this class template 1112 // specialization, which refers back to the class template 1113 // specialization we created or found. 1114 //FIXME: Preserve type source info. 1115 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1116 NumTemplateArgs, CanonType); 1117} 1118 1119Action::TypeResult 1120Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1121 SourceLocation LAngleLoc, 1122 ASTTemplateArgsPtr TemplateArgsIn, 1123 SourceLocation *TemplateArgLocs, 1124 SourceLocation RAngleLoc) { 1125 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1126 1127 // Translate the parser's template argument list in our AST format. 1128 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1129 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1130 1131 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1132 TemplateArgs.data(), 1133 TemplateArgs.size(), 1134 RAngleLoc); 1135 TemplateArgsIn.release(); 1136 1137 if (Result.isNull()) 1138 return true; 1139 1140 return Result.getAsOpaquePtr(); 1141} 1142 1143Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template, 1144 SourceLocation TemplateNameLoc, 1145 SourceLocation LAngleLoc, 1146 const TemplateArgument *TemplateArgs, 1147 unsigned NumTemplateArgs, 1148 SourceLocation RAngleLoc) { 1149 // FIXME: Can we do any checking at this point? I guess we could check the 1150 // template arguments that we have against the template name, if the template 1151 // name refers to a single template. That's not a terribly common case, 1152 // though. 1153 return Owned(TemplateIdRefExpr::Create(Context, 1154 /*FIXME: New type?*/Context.OverloadTy, 1155 /*FIXME: Necessary?*/0, 1156 /*FIXME: Necessary?*/SourceRange(), 1157 Template, TemplateNameLoc, LAngleLoc, 1158 TemplateArgs, 1159 NumTemplateArgs, RAngleLoc)); 1160} 1161 1162Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD, 1163 SourceLocation TemplateNameLoc, 1164 SourceLocation LAngleLoc, 1165 ASTTemplateArgsPtr TemplateArgsIn, 1166 SourceLocation *TemplateArgLocs, 1167 SourceLocation RAngleLoc) { 1168 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1169 1170 // Translate the parser's template argument list in our AST format. 1171 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1172 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1173 TemplateArgsIn.release(); 1174 1175 return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc, 1176 TemplateArgs.data(), TemplateArgs.size(), 1177 RAngleLoc); 1178} 1179 1180Sema::OwningExprResult 1181Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base, 1182 SourceLocation OpLoc, 1183 tok::TokenKind OpKind, 1184 const CXXScopeSpec &SS, 1185 TemplateTy TemplateD, 1186 SourceLocation TemplateNameLoc, 1187 SourceLocation LAngleLoc, 1188 ASTTemplateArgsPtr TemplateArgsIn, 1189 SourceLocation *TemplateArgLocs, 1190 SourceLocation RAngleLoc) { 1191 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1192 1193 // FIXME: We're going to end up looking up the template based on its name, 1194 // twice! 1195 DeclarationName Name; 1196 if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl()) 1197 Name = ActualTemplate->getDeclName(); 1198 else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl()) 1199 Name = Ovl->getDeclName(); 1200 else 1201 assert(false && "Cannot support dependent template names yet"); 1202 1203 // Translate the parser's template argument list in our AST format. 1204 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1205 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1206 TemplateArgsIn.release(); 1207 1208 // Do we have the save the actual template name? We might need it... 1209 return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc, 1210 Name, true, LAngleLoc, 1211 TemplateArgs.data(), TemplateArgs.size(), 1212 RAngleLoc, DeclPtrTy(), &SS); 1213} 1214 1215/// \brief Form a dependent template name. 1216/// 1217/// This action forms a dependent template name given the template 1218/// name and its (presumably dependent) scope specifier. For 1219/// example, given "MetaFun::template apply", the scope specifier \p 1220/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1221/// of the "template" keyword, and "apply" is the \p Name. 1222Sema::TemplateTy 1223Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1224 const IdentifierInfo &Name, 1225 SourceLocation NameLoc, 1226 const CXXScopeSpec &SS, 1227 TypeTy *ObjectType) { 1228 if ((ObjectType && 1229 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1230 (SS.isSet() && computeDeclContext(SS, false))) { 1231 // C++0x [temp.names]p5: 1232 // If a name prefixed by the keyword template is not the name of 1233 // a template, the program is ill-formed. [Note: the keyword 1234 // template may not be applied to non-template members of class 1235 // templates. -end note ] [ Note: as is the case with the 1236 // typename prefix, the template prefix is allowed in cases 1237 // where it is not strictly necessary; i.e., when the 1238 // nested-name-specifier or the expression on the left of the -> 1239 // or . is not dependent on a template-parameter, or the use 1240 // does not appear in the scope of a template. -end note] 1241 // 1242 // Note: C++03 was more strict here, because it banned the use of 1243 // the "template" keyword prior to a template-name that was not a 1244 // dependent name. C++ DR468 relaxed this requirement (the 1245 // "template" keyword is now permitted). We follow the C++0x 1246 // rules, even in C++03 mode, retroactively applying the DR. 1247 TemplateTy Template; 1248 TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType, 1249 false, Template); 1250 if (TNK == TNK_Non_template) { 1251 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1252 << &Name; 1253 return TemplateTy(); 1254 } 1255 1256 return Template; 1257 } 1258 1259 // FIXME: We need to be able to create a dependent template name with just 1260 // an identifier, to handle the x->template f<T> case. 1261 assert(!ObjectType && 1262 "Cannot handle dependent template names without a nested-name-specifier"); 1263 1264 NestedNameSpecifier *Qualifier 1265 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1266 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name)); 1267} 1268 1269bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1270 const TemplateArgument &Arg, 1271 TemplateArgumentListBuilder &Converted) { 1272 // Check template type parameter. 1273 if (Arg.getKind() != TemplateArgument::Type) { 1274 // C++ [temp.arg.type]p1: 1275 // A template-argument for a template-parameter which is a 1276 // type shall be a type-id. 1277 1278 // We have a template type parameter but the template argument 1279 // is not a type. 1280 Diag(Arg.getLocation(), diag::err_template_arg_must_be_type); 1281 Diag(Param->getLocation(), diag::note_template_param_here); 1282 1283 return true; 1284 } 1285 1286 if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation())) 1287 return true; 1288 1289 // Add the converted template type argument. 1290 Converted.Append( 1291 TemplateArgument(Arg.getLocation(), 1292 Context.getCanonicalType(Arg.getAsType()))); 1293 return false; 1294} 1295 1296/// \brief Check that the given template argument list is well-formed 1297/// for specializing the given template. 1298bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1299 SourceLocation TemplateLoc, 1300 SourceLocation LAngleLoc, 1301 const TemplateArgument *TemplateArgs, 1302 unsigned NumTemplateArgs, 1303 SourceLocation RAngleLoc, 1304 bool PartialTemplateArgs, 1305 TemplateArgumentListBuilder &Converted) { 1306 TemplateParameterList *Params = Template->getTemplateParameters(); 1307 unsigned NumParams = Params->size(); 1308 unsigned NumArgs = NumTemplateArgs; 1309 bool Invalid = false; 1310 1311 bool HasParameterPack = 1312 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1313 1314 if ((NumArgs > NumParams && !HasParameterPack) || 1315 (NumArgs < Params->getMinRequiredArguments() && 1316 !PartialTemplateArgs)) { 1317 // FIXME: point at either the first arg beyond what we can handle, 1318 // or the '>', depending on whether we have too many or too few 1319 // arguments. 1320 SourceRange Range; 1321 if (NumArgs > NumParams) 1322 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1323 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1324 << (NumArgs > NumParams) 1325 << (isa<ClassTemplateDecl>(Template)? 0 : 1326 isa<FunctionTemplateDecl>(Template)? 1 : 1327 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1328 << Template << Range; 1329 Diag(Template->getLocation(), diag::note_template_decl_here) 1330 << Params->getSourceRange(); 1331 Invalid = true; 1332 } 1333 1334 // C++ [temp.arg]p1: 1335 // [...] The type and form of each template-argument specified in 1336 // a template-id shall match the type and form specified for the 1337 // corresponding parameter declared by the template in its 1338 // template-parameter-list. 1339 unsigned ArgIdx = 0; 1340 for (TemplateParameterList::iterator Param = Params->begin(), 1341 ParamEnd = Params->end(); 1342 Param != ParamEnd; ++Param, ++ArgIdx) { 1343 if (ArgIdx > NumArgs && PartialTemplateArgs) 1344 break; 1345 1346 // Decode the template argument 1347 TemplateArgument Arg; 1348 if (ArgIdx >= NumArgs) { 1349 // Retrieve the default template argument from the template 1350 // parameter. 1351 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1352 if (TTP->isParameterPack()) { 1353 // We have an empty argument pack. 1354 Converted.BeginPack(); 1355 Converted.EndPack(); 1356 break; 1357 } 1358 1359 if (!TTP->hasDefaultArgument()) 1360 break; 1361 1362 QualType ArgType = TTP->getDefaultArgument(); 1363 1364 // If the argument type is dependent, instantiate it now based 1365 // on the previously-computed template arguments. 1366 if (ArgType->isDependentType()) { 1367 InstantiatingTemplate Inst(*this, TemplateLoc, 1368 Template, Converted.getFlatArguments(), 1369 Converted.flatSize(), 1370 SourceRange(TemplateLoc, RAngleLoc)); 1371 1372 TemplateArgumentList TemplateArgs(Context, Converted, 1373 /*TakeArgs=*/false); 1374 ArgType = SubstType(ArgType, 1375 MultiLevelTemplateArgumentList(TemplateArgs), 1376 TTP->getDefaultArgumentLoc(), 1377 TTP->getDeclName()); 1378 } 1379 1380 if (ArgType.isNull()) 1381 return true; 1382 1383 Arg = TemplateArgument(TTP->getLocation(), ArgType); 1384 } else if (NonTypeTemplateParmDecl *NTTP 1385 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1386 if (!NTTP->hasDefaultArgument()) 1387 break; 1388 1389 InstantiatingTemplate Inst(*this, TemplateLoc, 1390 Template, Converted.getFlatArguments(), 1391 Converted.flatSize(), 1392 SourceRange(TemplateLoc, RAngleLoc)); 1393 1394 TemplateArgumentList TemplateArgs(Context, Converted, 1395 /*TakeArgs=*/false); 1396 1397 Sema::OwningExprResult E 1398 = SubstExpr(NTTP->getDefaultArgument(), 1399 MultiLevelTemplateArgumentList(TemplateArgs)); 1400 if (E.isInvalid()) 1401 return true; 1402 1403 Arg = TemplateArgument(E.takeAs<Expr>()); 1404 } else { 1405 TemplateTemplateParmDecl *TempParm 1406 = cast<TemplateTemplateParmDecl>(*Param); 1407 1408 if (!TempParm->hasDefaultArgument()) 1409 break; 1410 1411 // FIXME: Subst default argument 1412 Arg = TemplateArgument(TempParm->getDefaultArgument()); 1413 } 1414 } else { 1415 // Retrieve the template argument produced by the user. 1416 Arg = TemplateArgs[ArgIdx]; 1417 } 1418 1419 1420 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1421 if (TTP->isParameterPack()) { 1422 Converted.BeginPack(); 1423 // Check all the remaining arguments (if any). 1424 for (; ArgIdx < NumArgs; ++ArgIdx) { 1425 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1426 Invalid = true; 1427 } 1428 1429 Converted.EndPack(); 1430 } else { 1431 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1432 Invalid = true; 1433 } 1434 } else if (NonTypeTemplateParmDecl *NTTP 1435 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1436 // Check non-type template parameters. 1437 1438 // Do substitution on the type of the non-type template parameter 1439 // with the template arguments we've seen thus far. 1440 QualType NTTPType = NTTP->getType(); 1441 if (NTTPType->isDependentType()) { 1442 // Do substitution on the type of the non-type template parameter. 1443 InstantiatingTemplate Inst(*this, TemplateLoc, 1444 Template, Converted.getFlatArguments(), 1445 Converted.flatSize(), 1446 SourceRange(TemplateLoc, RAngleLoc)); 1447 1448 TemplateArgumentList TemplateArgs(Context, Converted, 1449 /*TakeArgs=*/false); 1450 NTTPType = SubstType(NTTPType, 1451 MultiLevelTemplateArgumentList(TemplateArgs), 1452 NTTP->getLocation(), 1453 NTTP->getDeclName()); 1454 // If that worked, check the non-type template parameter type 1455 // for validity. 1456 if (!NTTPType.isNull()) 1457 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1458 NTTP->getLocation()); 1459 if (NTTPType.isNull()) { 1460 Invalid = true; 1461 break; 1462 } 1463 } 1464 1465 switch (Arg.getKind()) { 1466 case TemplateArgument::Null: 1467 assert(false && "Should never see a NULL template argument here"); 1468 break; 1469 1470 case TemplateArgument::Expression: { 1471 Expr *E = Arg.getAsExpr(); 1472 TemplateArgument Result; 1473 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1474 Invalid = true; 1475 else 1476 Converted.Append(Result); 1477 break; 1478 } 1479 1480 case TemplateArgument::Declaration: 1481 case TemplateArgument::Integral: 1482 // We've already checked this template argument, so just copy 1483 // it to the list of converted arguments. 1484 Converted.Append(Arg); 1485 break; 1486 1487 case TemplateArgument::Type: 1488 // We have a non-type template parameter but the template 1489 // argument is a type. 1490 1491 // C++ [temp.arg]p2: 1492 // In a template-argument, an ambiguity between a type-id and 1493 // an expression is resolved to a type-id, regardless of the 1494 // form of the corresponding template-parameter. 1495 // 1496 // We warn specifically about this case, since it can be rather 1497 // confusing for users. 1498 if (Arg.getAsType()->isFunctionType()) 1499 Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig) 1500 << Arg.getAsType(); 1501 else 1502 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr); 1503 Diag((*Param)->getLocation(), diag::note_template_param_here); 1504 Invalid = true; 1505 break; 1506 1507 case TemplateArgument::Pack: 1508 assert(0 && "FIXME: Implement!"); 1509 break; 1510 } 1511 } else { 1512 // Check template template parameters. 1513 TemplateTemplateParmDecl *TempParm 1514 = cast<TemplateTemplateParmDecl>(*Param); 1515 1516 switch (Arg.getKind()) { 1517 case TemplateArgument::Null: 1518 assert(false && "Should never see a NULL template argument here"); 1519 break; 1520 1521 case TemplateArgument::Expression: { 1522 Expr *ArgExpr = Arg.getAsExpr(); 1523 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1524 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1525 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1526 Invalid = true; 1527 1528 // Add the converted template argument. 1529 Decl *D 1530 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1531 Converted.Append(TemplateArgument(Arg.getLocation(), D)); 1532 continue; 1533 } 1534 } 1535 // fall through 1536 1537 case TemplateArgument::Type: { 1538 // We have a template template parameter but the template 1539 // argument does not refer to a template. 1540 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1541 Invalid = true; 1542 break; 1543 } 1544 1545 case TemplateArgument::Declaration: 1546 // We've already checked this template argument, so just copy 1547 // it to the list of converted arguments. 1548 Converted.Append(Arg); 1549 break; 1550 1551 case TemplateArgument::Integral: 1552 assert(false && "Integral argument with template template parameter"); 1553 break; 1554 1555 case TemplateArgument::Pack: 1556 assert(0 && "FIXME: Implement!"); 1557 break; 1558 } 1559 } 1560 } 1561 1562 return Invalid; 1563} 1564 1565/// \brief Check a template argument against its corresponding 1566/// template type parameter. 1567/// 1568/// This routine implements the semantics of C++ [temp.arg.type]. It 1569/// returns true if an error occurred, and false otherwise. 1570bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1571 QualType Arg, SourceLocation ArgLoc) { 1572 // C++ [temp.arg.type]p2: 1573 // A local type, a type with no linkage, an unnamed type or a type 1574 // compounded from any of these types shall not be used as a 1575 // template-argument for a template type-parameter. 1576 // 1577 // FIXME: Perform the recursive and no-linkage type checks. 1578 const TagType *Tag = 0; 1579 if (const EnumType *EnumT = Arg->getAsEnumType()) 1580 Tag = EnumT; 1581 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1582 Tag = RecordT; 1583 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) 1584 return Diag(ArgLoc, diag::err_template_arg_local_type) 1585 << QualType(Tag, 0); 1586 else if (Tag && !Tag->getDecl()->getDeclName() && 1587 !Tag->getDecl()->getTypedefForAnonDecl()) { 1588 Diag(ArgLoc, diag::err_template_arg_unnamed_type); 1589 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1590 return true; 1591 } 1592 1593 return false; 1594} 1595 1596/// \brief Checks whether the given template argument is the address 1597/// of an object or function according to C++ [temp.arg.nontype]p1. 1598bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1599 NamedDecl *&Entity) { 1600 bool Invalid = false; 1601 1602 // See through any implicit casts we added to fix the type. 1603 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1604 Arg = Cast->getSubExpr(); 1605 1606 // C++0x allows nullptr, and there's no further checking to be done for that. 1607 if (Arg->getType()->isNullPtrType()) 1608 return false; 1609 1610 // C++ [temp.arg.nontype]p1: 1611 // 1612 // A template-argument for a non-type, non-template 1613 // template-parameter shall be one of: [...] 1614 // 1615 // -- the address of an object or function with external 1616 // linkage, including function templates and function 1617 // template-ids but excluding non-static class members, 1618 // expressed as & id-expression where the & is optional if 1619 // the name refers to a function or array, or if the 1620 // corresponding template-parameter is a reference; or 1621 DeclRefExpr *DRE = 0; 1622 1623 // Ignore (and complain about) any excess parentheses. 1624 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1625 if (!Invalid) { 1626 Diag(Arg->getSourceRange().getBegin(), 1627 diag::err_template_arg_extra_parens) 1628 << Arg->getSourceRange(); 1629 Invalid = true; 1630 } 1631 1632 Arg = Parens->getSubExpr(); 1633 } 1634 1635 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1636 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1637 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1638 } else 1639 DRE = dyn_cast<DeclRefExpr>(Arg); 1640 1641 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1642 return Diag(Arg->getSourceRange().getBegin(), 1643 diag::err_template_arg_not_object_or_func_form) 1644 << Arg->getSourceRange(); 1645 1646 // Cannot refer to non-static data members 1647 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1648 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1649 << Field << Arg->getSourceRange(); 1650 1651 // Cannot refer to non-static member functions 1652 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1653 if (!Method->isStatic()) 1654 return Diag(Arg->getSourceRange().getBegin(), 1655 diag::err_template_arg_method) 1656 << Method << Arg->getSourceRange(); 1657 1658 // Functions must have external linkage. 1659 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1660 if (Func->getStorageClass() == FunctionDecl::Static) { 1661 Diag(Arg->getSourceRange().getBegin(), 1662 diag::err_template_arg_function_not_extern) 1663 << Func << Arg->getSourceRange(); 1664 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1665 << true; 1666 return true; 1667 } 1668 1669 // Okay: we've named a function with external linkage. 1670 Entity = Func; 1671 return Invalid; 1672 } 1673 1674 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1675 if (!Var->hasGlobalStorage()) { 1676 Diag(Arg->getSourceRange().getBegin(), 1677 diag::err_template_arg_object_not_extern) 1678 << Var << Arg->getSourceRange(); 1679 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1680 << true; 1681 return true; 1682 } 1683 1684 // Okay: we've named an object with external linkage 1685 Entity = Var; 1686 return Invalid; 1687 } 1688 1689 // We found something else, but we don't know specifically what it is. 1690 Diag(Arg->getSourceRange().getBegin(), 1691 diag::err_template_arg_not_object_or_func) 1692 << Arg->getSourceRange(); 1693 Diag(DRE->getDecl()->getLocation(), 1694 diag::note_template_arg_refers_here); 1695 return true; 1696} 1697 1698/// \brief Checks whether the given template argument is a pointer to 1699/// member constant according to C++ [temp.arg.nontype]p1. 1700bool 1701Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1702 bool Invalid = false; 1703 1704 // See through any implicit casts we added to fix the type. 1705 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1706 Arg = Cast->getSubExpr(); 1707 1708 // C++0x allows nullptr, and there's no further checking to be done for that. 1709 if (Arg->getType()->isNullPtrType()) 1710 return false; 1711 1712 // C++ [temp.arg.nontype]p1: 1713 // 1714 // A template-argument for a non-type, non-template 1715 // template-parameter shall be one of: [...] 1716 // 1717 // -- a pointer to member expressed as described in 5.3.1. 1718 QualifiedDeclRefExpr *DRE = 0; 1719 1720 // Ignore (and complain about) any excess parentheses. 1721 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1722 if (!Invalid) { 1723 Diag(Arg->getSourceRange().getBegin(), 1724 diag::err_template_arg_extra_parens) 1725 << Arg->getSourceRange(); 1726 Invalid = true; 1727 } 1728 1729 Arg = Parens->getSubExpr(); 1730 } 1731 1732 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1733 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1734 DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr()); 1735 1736 if (!DRE) 1737 return Diag(Arg->getSourceRange().getBegin(), 1738 diag::err_template_arg_not_pointer_to_member_form) 1739 << Arg->getSourceRange(); 1740 1741 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1742 assert((isa<FieldDecl>(DRE->getDecl()) || 1743 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1744 "Only non-static member pointers can make it here"); 1745 1746 // Okay: this is the address of a non-static member, and therefore 1747 // a member pointer constant. 1748 Member = DRE->getDecl(); 1749 return Invalid; 1750 } 1751 1752 // We found something else, but we don't know specifically what it is. 1753 Diag(Arg->getSourceRange().getBegin(), 1754 diag::err_template_arg_not_pointer_to_member_form) 1755 << Arg->getSourceRange(); 1756 Diag(DRE->getDecl()->getLocation(), 1757 diag::note_template_arg_refers_here); 1758 return true; 1759} 1760 1761/// \brief Check a template argument against its corresponding 1762/// non-type template parameter. 1763/// 1764/// This routine implements the semantics of C++ [temp.arg.nontype]. 1765/// It returns true if an error occurred, and false otherwise. \p 1766/// InstantiatedParamType is the type of the non-type template 1767/// parameter after it has been instantiated. 1768/// 1769/// If no error was detected, Converted receives the converted template argument. 1770bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1771 QualType InstantiatedParamType, Expr *&Arg, 1772 TemplateArgument &Converted) { 1773 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1774 1775 // If either the parameter has a dependent type or the argument is 1776 // type-dependent, there's nothing we can check now. 1777 // FIXME: Add template argument to Converted! 1778 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1779 // FIXME: Produce a cloned, canonical expression? 1780 Converted = TemplateArgument(Arg); 1781 return false; 1782 } 1783 1784 // C++ [temp.arg.nontype]p5: 1785 // The following conversions are performed on each expression used 1786 // as a non-type template-argument. If a non-type 1787 // template-argument cannot be converted to the type of the 1788 // corresponding template-parameter then the program is 1789 // ill-formed. 1790 // 1791 // -- for a non-type template-parameter of integral or 1792 // enumeration type, integral promotions (4.5) and integral 1793 // conversions (4.7) are applied. 1794 QualType ParamType = InstantiatedParamType; 1795 QualType ArgType = Arg->getType(); 1796 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1797 // C++ [temp.arg.nontype]p1: 1798 // A template-argument for a non-type, non-template 1799 // template-parameter shall be one of: 1800 // 1801 // -- an integral constant-expression of integral or enumeration 1802 // type; or 1803 // -- the name of a non-type template-parameter; or 1804 SourceLocation NonConstantLoc; 1805 llvm::APSInt Value; 1806 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1807 Diag(Arg->getSourceRange().getBegin(), 1808 diag::err_template_arg_not_integral_or_enumeral) 1809 << ArgType << Arg->getSourceRange(); 1810 Diag(Param->getLocation(), diag::note_template_param_here); 1811 return true; 1812 } else if (!Arg->isValueDependent() && 1813 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1814 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1815 << ArgType << Arg->getSourceRange(); 1816 return true; 1817 } 1818 1819 // FIXME: We need some way to more easily get the unqualified form 1820 // of the types without going all the way to the 1821 // canonical type. 1822 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1823 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1824 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1825 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1826 1827 // Try to convert the argument to the parameter's type. 1828 if (ParamType == ArgType) { 1829 // Okay: no conversion necessary 1830 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 1831 !ParamType->isEnumeralType()) { 1832 // This is an integral promotion or conversion. 1833 ImpCastExprToType(Arg, ParamType); 1834 } else { 1835 // We can't perform this conversion. 1836 Diag(Arg->getSourceRange().getBegin(), 1837 diag::err_template_arg_not_convertible) 1838 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1839 Diag(Param->getLocation(), diag::note_template_param_here); 1840 return true; 1841 } 1842 1843 QualType IntegerType = Context.getCanonicalType(ParamType); 1844 if (const EnumType *Enum = IntegerType->getAsEnumType()) 1845 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 1846 1847 if (!Arg->isValueDependent()) { 1848 // Check that an unsigned parameter does not receive a negative 1849 // value. 1850 if (IntegerType->isUnsignedIntegerType() 1851 && (Value.isSigned() && Value.isNegative())) { 1852 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 1853 << Value.toString(10) << Param->getType() 1854 << Arg->getSourceRange(); 1855 Diag(Param->getLocation(), diag::note_template_param_here); 1856 return true; 1857 } 1858 1859 // Check that we don't overflow the template parameter type. 1860 unsigned AllowedBits = Context.getTypeSize(IntegerType); 1861 if (Value.getActiveBits() > AllowedBits) { 1862 Diag(Arg->getSourceRange().getBegin(), 1863 diag::err_template_arg_too_large) 1864 << Value.toString(10) << Param->getType() 1865 << Arg->getSourceRange(); 1866 Diag(Param->getLocation(), diag::note_template_param_here); 1867 return true; 1868 } 1869 1870 if (Value.getBitWidth() != AllowedBits) 1871 Value.extOrTrunc(AllowedBits); 1872 Value.setIsSigned(IntegerType->isSignedIntegerType()); 1873 } 1874 1875 // Add the value of this argument to the list of converted 1876 // arguments. We use the bitwidth and signedness of the template 1877 // parameter. 1878 if (Arg->isValueDependent()) { 1879 // The argument is value-dependent. Create a new 1880 // TemplateArgument with the converted expression. 1881 Converted = TemplateArgument(Arg); 1882 return false; 1883 } 1884 1885 Converted = TemplateArgument(StartLoc, Value, 1886 ParamType->isEnumeralType() ? ParamType 1887 : IntegerType); 1888 return false; 1889 } 1890 1891 // Handle pointer-to-function, reference-to-function, and 1892 // pointer-to-member-function all in (roughly) the same way. 1893 if (// -- For a non-type template-parameter of type pointer to 1894 // function, only the function-to-pointer conversion (4.3) is 1895 // applied. If the template-argument represents a set of 1896 // overloaded functions (or a pointer to such), the matching 1897 // function is selected from the set (13.4). 1898 // In C++0x, any std::nullptr_t value can be converted. 1899 (ParamType->isPointerType() && 1900 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 1901 // -- For a non-type template-parameter of type reference to 1902 // function, no conversions apply. If the template-argument 1903 // represents a set of overloaded functions, the matching 1904 // function is selected from the set (13.4). 1905 (ParamType->isReferenceType() && 1906 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 1907 // -- For a non-type template-parameter of type pointer to 1908 // member function, no conversions apply. If the 1909 // template-argument represents a set of overloaded member 1910 // functions, the matching member function is selected from 1911 // the set (13.4). 1912 // Again, C++0x allows a std::nullptr_t value. 1913 (ParamType->isMemberPointerType() && 1914 ParamType->getAs<MemberPointerType>()->getPointeeType() 1915 ->isFunctionType())) { 1916 if (Context.hasSameUnqualifiedType(ArgType, 1917 ParamType.getNonReferenceType())) { 1918 // We don't have to do anything: the types already match. 1919 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 1920 ParamType->isMemberPointerType())) { 1921 ArgType = ParamType; 1922 ImpCastExprToType(Arg, ParamType); 1923 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1924 ArgType = Context.getPointerType(ArgType); 1925 ImpCastExprToType(Arg, ArgType); 1926 } else if (FunctionDecl *Fn 1927 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 1928 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 1929 return true; 1930 1931 FixOverloadedFunctionReference(Arg, Fn); 1932 ArgType = Arg->getType(); 1933 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1934 ArgType = Context.getPointerType(Arg->getType()); 1935 ImpCastExprToType(Arg, ArgType); 1936 } 1937 } 1938 1939 if (!Context.hasSameUnqualifiedType(ArgType, 1940 ParamType.getNonReferenceType())) { 1941 // We can't perform this conversion. 1942 Diag(Arg->getSourceRange().getBegin(), 1943 diag::err_template_arg_not_convertible) 1944 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1945 Diag(Param->getLocation(), diag::note_template_param_here); 1946 return true; 1947 } 1948 1949 if (ParamType->isMemberPointerType()) { 1950 NamedDecl *Member = 0; 1951 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 1952 return true; 1953 1954 if (Member) 1955 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 1956 Converted = TemplateArgument(StartLoc, Member); 1957 return false; 1958 } 1959 1960 NamedDecl *Entity = 0; 1961 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1962 return true; 1963 1964 if (Entity) 1965 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1966 Converted = TemplateArgument(StartLoc, Entity); 1967 return false; 1968 } 1969 1970 if (ParamType->isPointerType()) { 1971 // -- for a non-type template-parameter of type pointer to 1972 // object, qualification conversions (4.4) and the 1973 // array-to-pointer conversion (4.2) are applied. 1974 // C++0x also allows a value of std::nullptr_t. 1975 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 1976 "Only object pointers allowed here"); 1977 1978 if (ArgType->isNullPtrType()) { 1979 ArgType = ParamType; 1980 ImpCastExprToType(Arg, ParamType); 1981 } else if (ArgType->isArrayType()) { 1982 ArgType = Context.getArrayDecayedType(ArgType); 1983 ImpCastExprToType(Arg, ArgType); 1984 } 1985 1986 if (IsQualificationConversion(ArgType, ParamType)) { 1987 ArgType = ParamType; 1988 ImpCastExprToType(Arg, ParamType); 1989 } 1990 1991 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 1992 // We can't perform this conversion. 1993 Diag(Arg->getSourceRange().getBegin(), 1994 diag::err_template_arg_not_convertible) 1995 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1996 Diag(Param->getLocation(), diag::note_template_param_here); 1997 return true; 1998 } 1999 2000 NamedDecl *Entity = 0; 2001 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2002 return true; 2003 2004 if (Entity) 2005 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2006 Converted = TemplateArgument(StartLoc, Entity); 2007 return false; 2008 } 2009 2010 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2011 // -- For a non-type template-parameter of type reference to 2012 // object, no conversions apply. The type referred to by the 2013 // reference may be more cv-qualified than the (otherwise 2014 // identical) type of the template-argument. The 2015 // template-parameter is bound directly to the 2016 // template-argument, which must be an lvalue. 2017 assert(ParamRefType->getPointeeType()->isObjectType() && 2018 "Only object references allowed here"); 2019 2020 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2021 Diag(Arg->getSourceRange().getBegin(), 2022 diag::err_template_arg_no_ref_bind) 2023 << InstantiatedParamType << Arg->getType() 2024 << Arg->getSourceRange(); 2025 Diag(Param->getLocation(), diag::note_template_param_here); 2026 return true; 2027 } 2028 2029 unsigned ParamQuals 2030 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2031 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2032 2033 if ((ParamQuals | ArgQuals) != ParamQuals) { 2034 Diag(Arg->getSourceRange().getBegin(), 2035 diag::err_template_arg_ref_bind_ignores_quals) 2036 << InstantiatedParamType << Arg->getType() 2037 << Arg->getSourceRange(); 2038 Diag(Param->getLocation(), diag::note_template_param_here); 2039 return true; 2040 } 2041 2042 NamedDecl *Entity = 0; 2043 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2044 return true; 2045 2046 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2047 Converted = TemplateArgument(StartLoc, Entity); 2048 return false; 2049 } 2050 2051 // -- For a non-type template-parameter of type pointer to data 2052 // member, qualification conversions (4.4) are applied. 2053 // C++0x allows std::nullptr_t values. 2054 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2055 2056 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2057 // Types match exactly: nothing more to do here. 2058 } else if (ArgType->isNullPtrType()) { 2059 ImpCastExprToType(Arg, ParamType); 2060 } else if (IsQualificationConversion(ArgType, ParamType)) { 2061 ImpCastExprToType(Arg, ParamType); 2062 } else { 2063 // We can't perform this conversion. 2064 Diag(Arg->getSourceRange().getBegin(), 2065 diag::err_template_arg_not_convertible) 2066 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2067 Diag(Param->getLocation(), diag::note_template_param_here); 2068 return true; 2069 } 2070 2071 NamedDecl *Member = 0; 2072 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2073 return true; 2074 2075 if (Member) 2076 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2077 Converted = TemplateArgument(StartLoc, Member); 2078 return false; 2079} 2080 2081/// \brief Check a template argument against its corresponding 2082/// template template parameter. 2083/// 2084/// This routine implements the semantics of C++ [temp.arg.template]. 2085/// It returns true if an error occurred, and false otherwise. 2086bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2087 DeclRefExpr *Arg) { 2088 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 2089 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 2090 2091 // C++ [temp.arg.template]p1: 2092 // A template-argument for a template template-parameter shall be 2093 // the name of a class template, expressed as id-expression. Only 2094 // primary class templates are considered when matching the 2095 // template template argument with the corresponding parameter; 2096 // partial specializations are not considered even if their 2097 // parameter lists match that of the template template parameter. 2098 // 2099 // Note that we also allow template template parameters here, which 2100 // will happen when we are dealing with, e.g., class template 2101 // partial specializations. 2102 if (!isa<ClassTemplateDecl>(Template) && 2103 !isa<TemplateTemplateParmDecl>(Template)) { 2104 assert(isa<FunctionTemplateDecl>(Template) && 2105 "Only function templates are possible here"); 2106 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 2107 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2108 << Template; 2109 } 2110 2111 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2112 Param->getTemplateParameters(), 2113 true, true, 2114 Arg->getSourceRange().getBegin()); 2115} 2116 2117/// \brief Determine whether the given template parameter lists are 2118/// equivalent. 2119/// 2120/// \param New The new template parameter list, typically written in the 2121/// source code as part of a new template declaration. 2122/// 2123/// \param Old The old template parameter list, typically found via 2124/// name lookup of the template declared with this template parameter 2125/// list. 2126/// 2127/// \param Complain If true, this routine will produce a diagnostic if 2128/// the template parameter lists are not equivalent. 2129/// 2130/// \param IsTemplateTemplateParm If true, this routine is being 2131/// called to compare the template parameter lists of a template 2132/// template parameter. 2133/// 2134/// \param TemplateArgLoc If this source location is valid, then we 2135/// are actually checking the template parameter list of a template 2136/// argument (New) against the template parameter list of its 2137/// corresponding template template parameter (Old). We produce 2138/// slightly different diagnostics in this scenario. 2139/// 2140/// \returns True if the template parameter lists are equal, false 2141/// otherwise. 2142bool 2143Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2144 TemplateParameterList *Old, 2145 bool Complain, 2146 bool IsTemplateTemplateParm, 2147 SourceLocation TemplateArgLoc) { 2148 if (Old->size() != New->size()) { 2149 if (Complain) { 2150 unsigned NextDiag = diag::err_template_param_list_different_arity; 2151 if (TemplateArgLoc.isValid()) { 2152 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2153 NextDiag = diag::note_template_param_list_different_arity; 2154 } 2155 Diag(New->getTemplateLoc(), NextDiag) 2156 << (New->size() > Old->size()) 2157 << IsTemplateTemplateParm 2158 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2159 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2160 << IsTemplateTemplateParm 2161 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2162 } 2163 2164 return false; 2165 } 2166 2167 for (TemplateParameterList::iterator OldParm = Old->begin(), 2168 OldParmEnd = Old->end(), NewParm = New->begin(); 2169 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2170 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2171 if (Complain) { 2172 unsigned NextDiag = diag::err_template_param_different_kind; 2173 if (TemplateArgLoc.isValid()) { 2174 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2175 NextDiag = diag::note_template_param_different_kind; 2176 } 2177 Diag((*NewParm)->getLocation(), NextDiag) 2178 << IsTemplateTemplateParm; 2179 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2180 << IsTemplateTemplateParm; 2181 } 2182 return false; 2183 } 2184 2185 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2186 // Okay; all template type parameters are equivalent (since we 2187 // know we're at the same index). 2188#if 0 2189 // FIXME: Enable this code in debug mode *after* we properly go through 2190 // and "instantiate" the template parameter lists of template template 2191 // parameters. It's only after this instantiation that (1) any dependent 2192 // types within the template parameter list of the template template 2193 // parameter can be checked, and (2) the template type parameter depths 2194 // will match up. 2195 QualType OldParmType 2196 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2197 QualType NewParmType 2198 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2199 assert(Context.getCanonicalType(OldParmType) == 2200 Context.getCanonicalType(NewParmType) && 2201 "type parameter mismatch?"); 2202#endif 2203 } else if (NonTypeTemplateParmDecl *OldNTTP 2204 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2205 // The types of non-type template parameters must agree. 2206 NonTypeTemplateParmDecl *NewNTTP 2207 = cast<NonTypeTemplateParmDecl>(*NewParm); 2208 if (Context.getCanonicalType(OldNTTP->getType()) != 2209 Context.getCanonicalType(NewNTTP->getType())) { 2210 if (Complain) { 2211 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2212 if (TemplateArgLoc.isValid()) { 2213 Diag(TemplateArgLoc, 2214 diag::err_template_arg_template_params_mismatch); 2215 NextDiag = diag::note_template_nontype_parm_different_type; 2216 } 2217 Diag(NewNTTP->getLocation(), NextDiag) 2218 << NewNTTP->getType() 2219 << IsTemplateTemplateParm; 2220 Diag(OldNTTP->getLocation(), 2221 diag::note_template_nontype_parm_prev_declaration) 2222 << OldNTTP->getType(); 2223 } 2224 return false; 2225 } 2226 } else { 2227 // The template parameter lists of template template 2228 // parameters must agree. 2229 // FIXME: Could we perform a faster "type" comparison here? 2230 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2231 "Only template template parameters handled here"); 2232 TemplateTemplateParmDecl *OldTTP 2233 = cast<TemplateTemplateParmDecl>(*OldParm); 2234 TemplateTemplateParmDecl *NewTTP 2235 = cast<TemplateTemplateParmDecl>(*NewParm); 2236 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2237 OldTTP->getTemplateParameters(), 2238 Complain, 2239 /*IsTemplateTemplateParm=*/true, 2240 TemplateArgLoc)) 2241 return false; 2242 } 2243 } 2244 2245 return true; 2246} 2247 2248/// \brief Check whether a template can be declared within this scope. 2249/// 2250/// If the template declaration is valid in this scope, returns 2251/// false. Otherwise, issues a diagnostic and returns true. 2252bool 2253Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2254 // Find the nearest enclosing declaration scope. 2255 while ((S->getFlags() & Scope::DeclScope) == 0 || 2256 (S->getFlags() & Scope::TemplateParamScope) != 0) 2257 S = S->getParent(); 2258 2259 // C++ [temp]p2: 2260 // A template-declaration can appear only as a namespace scope or 2261 // class scope declaration. 2262 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2263 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2264 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2265 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2266 << TemplateParams->getSourceRange(); 2267 2268 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2269 Ctx = Ctx->getParent(); 2270 2271 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2272 return false; 2273 2274 return Diag(TemplateParams->getTemplateLoc(), 2275 diag::err_template_outside_namespace_or_class_scope) 2276 << TemplateParams->getSourceRange(); 2277} 2278 2279/// \brief Check whether a class template specialization or explicit 2280/// instantiation in the current context is well-formed. 2281/// 2282/// This routine determines whether a class template specialization or 2283/// explicit instantiation can be declared in the current context 2284/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits 2285/// appropriate diagnostics if there was an error. It returns true if 2286// there was an error that we cannot recover from, and false otherwise. 2287bool 2288Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate, 2289 ClassTemplateSpecializationDecl *PrevDecl, 2290 SourceLocation TemplateNameLoc, 2291 SourceRange ScopeSpecifierRange, 2292 bool PartialSpecialization, 2293 bool ExplicitInstantiation) { 2294 // C++ [temp.expl.spec]p2: 2295 // An explicit specialization shall be declared in the namespace 2296 // of which the template is a member, or, for member templates, in 2297 // the namespace of which the enclosing class or enclosing class 2298 // template is a member. An explicit specialization of a member 2299 // function, member class or static data member of a class 2300 // template shall be declared in the namespace of which the class 2301 // template is a member. Such a declaration may also be a 2302 // definition. If the declaration is not a definition, the 2303 // specialization may be defined later in the name- space in which 2304 // the explicit specialization was declared, or in a namespace 2305 // that encloses the one in which the explicit specialization was 2306 // declared. 2307 if (CurContext->getLookupContext()->isFunctionOrMethod()) { 2308 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2309 Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope) 2310 << Kind << ClassTemplate; 2311 return true; 2312 } 2313 2314 DeclContext *DC = CurContext->getEnclosingNamespaceContext(); 2315 DeclContext *TemplateContext 2316 = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext(); 2317 if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) && 2318 !ExplicitInstantiation) { 2319 // There is no prior declaration of this entity, so this 2320 // specialization must be in the same context as the template 2321 // itself. 2322 if (DC != TemplateContext) { 2323 if (isa<TranslationUnitDecl>(TemplateContext)) 2324 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global) 2325 << PartialSpecialization 2326 << ClassTemplate << ScopeSpecifierRange; 2327 else if (isa<NamespaceDecl>(TemplateContext)) 2328 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope) 2329 << PartialSpecialization << ClassTemplate 2330 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2331 2332 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2333 } 2334 2335 return false; 2336 } 2337 2338 // We have a previous declaration of this entity. Make sure that 2339 // this redeclaration (or definition) occurs in an enclosing namespace. 2340 if (!CurContext->Encloses(TemplateContext)) { 2341 // FIXME: In C++98, we would like to turn these errors into warnings, 2342 // dependent on a -Wc++0x flag. 2343 bool SuppressedDiag = false; 2344 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2345 if (isa<TranslationUnitDecl>(TemplateContext)) { 2346 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2347 Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope) 2348 << Kind << ClassTemplate << ScopeSpecifierRange; 2349 else 2350 SuppressedDiag = true; 2351 } else if (isa<NamespaceDecl>(TemplateContext)) { 2352 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2353 Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope) 2354 << Kind << ClassTemplate 2355 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2356 else 2357 SuppressedDiag = true; 2358 } 2359 2360 if (!SuppressedDiag) 2361 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2362 } 2363 2364 return false; 2365} 2366 2367/// \brief Check the non-type template arguments of a class template 2368/// partial specialization according to C++ [temp.class.spec]p9. 2369/// 2370/// \param TemplateParams the template parameters of the primary class 2371/// template. 2372/// 2373/// \param TemplateArg the template arguments of the class template 2374/// partial specialization. 2375/// 2376/// \param MirrorsPrimaryTemplate will be set true if the class 2377/// template partial specialization arguments are identical to the 2378/// implicit template arguments of the primary template. This is not 2379/// necessarily an error (C++0x), and it is left to the caller to diagnose 2380/// this condition when it is an error. 2381/// 2382/// \returns true if there was an error, false otherwise. 2383bool Sema::CheckClassTemplatePartialSpecializationArgs( 2384 TemplateParameterList *TemplateParams, 2385 const TemplateArgumentListBuilder &TemplateArgs, 2386 bool &MirrorsPrimaryTemplate) { 2387 // FIXME: the interface to this function will have to change to 2388 // accommodate variadic templates. 2389 MirrorsPrimaryTemplate = true; 2390 2391 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2392 2393 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2394 // Determine whether the template argument list of the partial 2395 // specialization is identical to the implicit argument list of 2396 // the primary template. The caller may need to diagnostic this as 2397 // an error per C++ [temp.class.spec]p9b3. 2398 if (MirrorsPrimaryTemplate) { 2399 if (TemplateTypeParmDecl *TTP 2400 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2401 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2402 Context.getCanonicalType(ArgList[I].getAsType())) 2403 MirrorsPrimaryTemplate = false; 2404 } else if (TemplateTemplateParmDecl *TTP 2405 = dyn_cast<TemplateTemplateParmDecl>( 2406 TemplateParams->getParam(I))) { 2407 // FIXME: We should settle on either Declaration storage or 2408 // Expression storage for template template parameters. 2409 TemplateTemplateParmDecl *ArgDecl 2410 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2411 ArgList[I].getAsDecl()); 2412 if (!ArgDecl) 2413 if (DeclRefExpr *DRE 2414 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2415 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2416 2417 if (!ArgDecl || 2418 ArgDecl->getIndex() != TTP->getIndex() || 2419 ArgDecl->getDepth() != TTP->getDepth()) 2420 MirrorsPrimaryTemplate = false; 2421 } 2422 } 2423 2424 NonTypeTemplateParmDecl *Param 2425 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2426 if (!Param) { 2427 continue; 2428 } 2429 2430 Expr *ArgExpr = ArgList[I].getAsExpr(); 2431 if (!ArgExpr) { 2432 MirrorsPrimaryTemplate = false; 2433 continue; 2434 } 2435 2436 // C++ [temp.class.spec]p8: 2437 // A non-type argument is non-specialized if it is the name of a 2438 // non-type parameter. All other non-type arguments are 2439 // specialized. 2440 // 2441 // Below, we check the two conditions that only apply to 2442 // specialized non-type arguments, so skip any non-specialized 2443 // arguments. 2444 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2445 if (NonTypeTemplateParmDecl *NTTP 2446 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2447 if (MirrorsPrimaryTemplate && 2448 (Param->getIndex() != NTTP->getIndex() || 2449 Param->getDepth() != NTTP->getDepth())) 2450 MirrorsPrimaryTemplate = false; 2451 2452 continue; 2453 } 2454 2455 // C++ [temp.class.spec]p9: 2456 // Within the argument list of a class template partial 2457 // specialization, the following restrictions apply: 2458 // -- A partially specialized non-type argument expression 2459 // shall not involve a template parameter of the partial 2460 // specialization except when the argument expression is a 2461 // simple identifier. 2462 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2463 Diag(ArgExpr->getLocStart(), 2464 diag::err_dependent_non_type_arg_in_partial_spec) 2465 << ArgExpr->getSourceRange(); 2466 return true; 2467 } 2468 2469 // -- The type of a template parameter corresponding to a 2470 // specialized non-type argument shall not be dependent on a 2471 // parameter of the specialization. 2472 if (Param->getType()->isDependentType()) { 2473 Diag(ArgExpr->getLocStart(), 2474 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2475 << Param->getType() 2476 << ArgExpr->getSourceRange(); 2477 Diag(Param->getLocation(), diag::note_template_param_here); 2478 return true; 2479 } 2480 2481 MirrorsPrimaryTemplate = false; 2482 } 2483 2484 return false; 2485} 2486 2487Sema::DeclResult 2488Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2489 TagUseKind TUK, 2490 SourceLocation KWLoc, 2491 const CXXScopeSpec &SS, 2492 TemplateTy TemplateD, 2493 SourceLocation TemplateNameLoc, 2494 SourceLocation LAngleLoc, 2495 ASTTemplateArgsPtr TemplateArgsIn, 2496 SourceLocation *TemplateArgLocs, 2497 SourceLocation RAngleLoc, 2498 AttributeList *Attr, 2499 MultiTemplateParamsArg TemplateParameterLists) { 2500 // Find the class template we're specializing 2501 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2502 ClassTemplateDecl *ClassTemplate 2503 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2504 2505 bool isPartialSpecialization = false; 2506 2507 // Check the validity of the template headers that introduce this 2508 // template. 2509 TemplateParameterList *TemplateParams 2510 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2511 (TemplateParameterList**)TemplateParameterLists.get(), 2512 TemplateParameterLists.size()); 2513 if (TemplateParams && TemplateParams->size() > 0) { 2514 isPartialSpecialization = true; 2515 2516 // C++ [temp.class.spec]p10: 2517 // The template parameter list of a specialization shall not 2518 // contain default template argument values. 2519 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2520 Decl *Param = TemplateParams->getParam(I); 2521 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2522 if (TTP->hasDefaultArgument()) { 2523 Diag(TTP->getDefaultArgumentLoc(), 2524 diag::err_default_arg_in_partial_spec); 2525 TTP->setDefaultArgument(QualType(), SourceLocation(), false); 2526 } 2527 } else if (NonTypeTemplateParmDecl *NTTP 2528 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2529 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2530 Diag(NTTP->getDefaultArgumentLoc(), 2531 diag::err_default_arg_in_partial_spec) 2532 << DefArg->getSourceRange(); 2533 NTTP->setDefaultArgument(0); 2534 DefArg->Destroy(Context); 2535 } 2536 } else { 2537 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2538 if (Expr *DefArg = TTP->getDefaultArgument()) { 2539 Diag(TTP->getDefaultArgumentLoc(), 2540 diag::err_default_arg_in_partial_spec) 2541 << DefArg->getSourceRange(); 2542 TTP->setDefaultArgument(0); 2543 DefArg->Destroy(Context); 2544 } 2545 } 2546 } 2547 } else if (!TemplateParams) 2548 Diag(KWLoc, diag::err_template_spec_needs_header) 2549 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2550 2551 // Check that the specialization uses the same tag kind as the 2552 // original template. 2553 TagDecl::TagKind Kind; 2554 switch (TagSpec) { 2555 default: assert(0 && "Unknown tag type!"); 2556 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2557 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2558 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2559 } 2560 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2561 Kind, KWLoc, 2562 *ClassTemplate->getIdentifier())) { 2563 Diag(KWLoc, diag::err_use_with_wrong_tag) 2564 << ClassTemplate 2565 << CodeModificationHint::CreateReplacement(KWLoc, 2566 ClassTemplate->getTemplatedDecl()->getKindName()); 2567 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2568 diag::note_previous_use); 2569 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2570 } 2571 2572 // Translate the parser's template argument list in our AST format. 2573 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2574 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2575 2576 // Check that the template argument list is well-formed for this 2577 // template. 2578 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2579 TemplateArgs.size()); 2580 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2581 TemplateArgs.data(), TemplateArgs.size(), 2582 RAngleLoc, false, Converted)) 2583 return true; 2584 2585 assert((Converted.structuredSize() == 2586 ClassTemplate->getTemplateParameters()->size()) && 2587 "Converted template argument list is too short!"); 2588 2589 // Find the class template (partial) specialization declaration that 2590 // corresponds to these arguments. 2591 llvm::FoldingSetNodeID ID; 2592 if (isPartialSpecialization) { 2593 bool MirrorsPrimaryTemplate; 2594 if (CheckClassTemplatePartialSpecializationArgs( 2595 ClassTemplate->getTemplateParameters(), 2596 Converted, MirrorsPrimaryTemplate)) 2597 return true; 2598 2599 if (MirrorsPrimaryTemplate) { 2600 // C++ [temp.class.spec]p9b3: 2601 // 2602 // -- The argument list of the specialization shall not be identical 2603 // to the implicit argument list of the primary template. 2604 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2605 << (TUK == TUK_Definition) 2606 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2607 RAngleLoc)); 2608 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 2609 ClassTemplate->getIdentifier(), 2610 TemplateNameLoc, 2611 Attr, 2612 TemplateParams, 2613 AS_none); 2614 } 2615 2616 // FIXME: Template parameter list matters, too 2617 ClassTemplatePartialSpecializationDecl::Profile(ID, 2618 Converted.getFlatArguments(), 2619 Converted.flatSize(), 2620 Context); 2621 } else 2622 ClassTemplateSpecializationDecl::Profile(ID, 2623 Converted.getFlatArguments(), 2624 Converted.flatSize(), 2625 Context); 2626 void *InsertPos = 0; 2627 ClassTemplateSpecializationDecl *PrevDecl = 0; 2628 2629 if (isPartialSpecialization) 2630 PrevDecl 2631 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2632 InsertPos); 2633 else 2634 PrevDecl 2635 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2636 2637 ClassTemplateSpecializationDecl *Specialization = 0; 2638 2639 // Check whether we can declare a class template specialization in 2640 // the current scope. 2641 if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl, 2642 TemplateNameLoc, 2643 SS.getRange(), 2644 isPartialSpecialization, 2645 /*ExplicitInstantiation=*/false)) 2646 return true; 2647 2648 // The canonical type 2649 QualType CanonType; 2650 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2651 // Since the only prior class template specialization with these 2652 // arguments was referenced but not declared, reuse that 2653 // declaration node as our own, updating its source location to 2654 // reflect our new declaration. 2655 Specialization = PrevDecl; 2656 Specialization->setLocation(TemplateNameLoc); 2657 PrevDecl = 0; 2658 CanonType = Context.getTypeDeclType(Specialization); 2659 } else if (isPartialSpecialization) { 2660 // Build the canonical type that describes the converted template 2661 // arguments of the class template partial specialization. 2662 CanonType = Context.getTemplateSpecializationType( 2663 TemplateName(ClassTemplate), 2664 Converted.getFlatArguments(), 2665 Converted.flatSize()); 2666 2667 // Create a new class template partial specialization declaration node. 2668 TemplateParameterList *TemplateParams 2669 = static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2670 ClassTemplatePartialSpecializationDecl *PrevPartial 2671 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2672 ClassTemplatePartialSpecializationDecl *Partial 2673 = ClassTemplatePartialSpecializationDecl::Create(Context, 2674 ClassTemplate->getDeclContext(), 2675 TemplateNameLoc, 2676 TemplateParams, 2677 ClassTemplate, 2678 Converted, 2679 PrevPartial); 2680 2681 if (PrevPartial) { 2682 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2683 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2684 } else { 2685 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2686 } 2687 Specialization = Partial; 2688 2689 // Check that all of the template parameters of the class template 2690 // partial specialization are deducible from the template 2691 // arguments. If not, this class template partial specialization 2692 // will never be used. 2693 llvm::SmallVector<bool, 8> DeducibleParams; 2694 DeducibleParams.resize(TemplateParams->size()); 2695 MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams); 2696 unsigned NumNonDeducible = 0; 2697 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2698 if (!DeducibleParams[I]) 2699 ++NumNonDeducible; 2700 2701 if (NumNonDeducible) { 2702 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2703 << (NumNonDeducible > 1) 2704 << SourceRange(TemplateNameLoc, RAngleLoc); 2705 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2706 if (!DeducibleParams[I]) { 2707 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2708 if (Param->getDeclName()) 2709 Diag(Param->getLocation(), 2710 diag::note_partial_spec_unused_parameter) 2711 << Param->getDeclName(); 2712 else 2713 Diag(Param->getLocation(), 2714 diag::note_partial_spec_unused_parameter) 2715 << std::string("<anonymous>"); 2716 } 2717 } 2718 } 2719 } else { 2720 // Create a new class template specialization declaration node for 2721 // this explicit specialization. 2722 Specialization 2723 = ClassTemplateSpecializationDecl::Create(Context, 2724 ClassTemplate->getDeclContext(), 2725 TemplateNameLoc, 2726 ClassTemplate, 2727 Converted, 2728 PrevDecl); 2729 2730 if (PrevDecl) { 2731 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2732 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2733 } else { 2734 ClassTemplate->getSpecializations().InsertNode(Specialization, 2735 InsertPos); 2736 } 2737 2738 CanonType = Context.getTypeDeclType(Specialization); 2739 } 2740 2741 // Note that this is an explicit specialization. 2742 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2743 2744 // Check that this isn't a redefinition of this specialization. 2745 if (TUK == TUK_Definition) { 2746 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 2747 // FIXME: Should also handle explicit specialization after implicit 2748 // instantiation with a special diagnostic. 2749 SourceRange Range(TemplateNameLoc, RAngleLoc); 2750 Diag(TemplateNameLoc, diag::err_redefinition) 2751 << Context.getTypeDeclType(Specialization) << Range; 2752 Diag(Def->getLocation(), diag::note_previous_definition); 2753 Specialization->setInvalidDecl(); 2754 return true; 2755 } 2756 } 2757 2758 // Build the fully-sugared type for this class template 2759 // specialization as the user wrote in the specialization 2760 // itself. This means that we'll pretty-print the type retrieved 2761 // from the specialization's declaration the way that the user 2762 // actually wrote the specialization, rather than formatting the 2763 // name based on the "canonical" representation used to store the 2764 // template arguments in the specialization. 2765 QualType WrittenTy 2766 = Context.getTemplateSpecializationType(Name, 2767 TemplateArgs.data(), 2768 TemplateArgs.size(), 2769 CanonType); 2770 Specialization->setTypeAsWritten(WrittenTy); 2771 TemplateArgsIn.release(); 2772 2773 // C++ [temp.expl.spec]p9: 2774 // A template explicit specialization is in the scope of the 2775 // namespace in which the template was defined. 2776 // 2777 // We actually implement this paragraph where we set the semantic 2778 // context (in the creation of the ClassTemplateSpecializationDecl), 2779 // but we also maintain the lexical context where the actual 2780 // definition occurs. 2781 Specialization->setLexicalDeclContext(CurContext); 2782 2783 // We may be starting the definition of this specialization. 2784 if (TUK == TUK_Definition) 2785 Specialization->startDefinition(); 2786 2787 // Add the specialization into its lexical context, so that it can 2788 // be seen when iterating through the list of declarations in that 2789 // context. However, specializations are not found by name lookup. 2790 CurContext->addDecl(Specialization); 2791 return DeclPtrTy::make(Specialization); 2792} 2793 2794Sema::DeclPtrTy 2795Sema::ActOnTemplateDeclarator(Scope *S, 2796 MultiTemplateParamsArg TemplateParameterLists, 2797 Declarator &D) { 2798 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 2799} 2800 2801Sema::DeclPtrTy 2802Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 2803 MultiTemplateParamsArg TemplateParameterLists, 2804 Declarator &D) { 2805 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 2806 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 2807 "Not a function declarator!"); 2808 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 2809 2810 if (FTI.hasPrototype) { 2811 // FIXME: Diagnose arguments without names in C. 2812 } 2813 2814 Scope *ParentScope = FnBodyScope->getParent(); 2815 2816 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 2817 move(TemplateParameterLists), 2818 /*IsFunctionDefinition=*/true); 2819 if (FunctionTemplateDecl *FunctionTemplate 2820 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 2821 return ActOnStartOfFunctionDef(FnBodyScope, 2822 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 2823 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 2824 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 2825 return DeclPtrTy(); 2826} 2827 2828// Explicit instantiation of a class template specialization 2829Sema::DeclResult 2830Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc, 2831 unsigned TagSpec, 2832 SourceLocation KWLoc, 2833 const CXXScopeSpec &SS, 2834 TemplateTy TemplateD, 2835 SourceLocation TemplateNameLoc, 2836 SourceLocation LAngleLoc, 2837 ASTTemplateArgsPtr TemplateArgsIn, 2838 SourceLocation *TemplateArgLocs, 2839 SourceLocation RAngleLoc, 2840 AttributeList *Attr) { 2841 // Find the class template we're specializing 2842 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2843 ClassTemplateDecl *ClassTemplate 2844 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2845 2846 // Check that the specialization uses the same tag kind as the 2847 // original template. 2848 TagDecl::TagKind Kind; 2849 switch (TagSpec) { 2850 default: assert(0 && "Unknown tag type!"); 2851 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2852 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2853 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2854 } 2855 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2856 Kind, KWLoc, 2857 *ClassTemplate->getIdentifier())) { 2858 Diag(KWLoc, diag::err_use_with_wrong_tag) 2859 << ClassTemplate 2860 << CodeModificationHint::CreateReplacement(KWLoc, 2861 ClassTemplate->getTemplatedDecl()->getKindName()); 2862 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2863 diag::note_previous_use); 2864 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2865 } 2866 2867 // C++0x [temp.explicit]p2: 2868 // [...] An explicit instantiation shall appear in an enclosing 2869 // namespace of its template. [...] 2870 // 2871 // This is C++ DR 275. 2872 if (CheckClassTemplateSpecializationScope(ClassTemplate, 0, 2873 TemplateNameLoc, 2874 SS.getRange(), 2875 /*PartialSpecialization=*/false, 2876 /*ExplicitInstantiation=*/true)) 2877 return true; 2878 2879 // Translate the parser's template argument list in our AST format. 2880 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2881 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2882 2883 // Check that the template argument list is well-formed for this 2884 // template. 2885 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2886 TemplateArgs.size()); 2887 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2888 TemplateArgs.data(), TemplateArgs.size(), 2889 RAngleLoc, false, Converted)) 2890 return true; 2891 2892 assert((Converted.structuredSize() == 2893 ClassTemplate->getTemplateParameters()->size()) && 2894 "Converted template argument list is too short!"); 2895 2896 // Find the class template specialization declaration that 2897 // corresponds to these arguments. 2898 llvm::FoldingSetNodeID ID; 2899 ClassTemplateSpecializationDecl::Profile(ID, 2900 Converted.getFlatArguments(), 2901 Converted.flatSize(), 2902 Context); 2903 void *InsertPos = 0; 2904 ClassTemplateSpecializationDecl *PrevDecl 2905 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2906 2907 ClassTemplateSpecializationDecl *Specialization = 0; 2908 2909 bool SpecializationRequiresInstantiation = true; 2910 if (PrevDecl) { 2911 if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) { 2912 // This particular specialization has already been declared or 2913 // instantiated. We cannot explicitly instantiate it. 2914 Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate) 2915 << Context.getTypeDeclType(PrevDecl); 2916 Diag(PrevDecl->getLocation(), 2917 diag::note_previous_explicit_instantiation); 2918 return DeclPtrTy::make(PrevDecl); 2919 } 2920 2921 if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 2922 // C++ DR 259, C++0x [temp.explicit]p4: 2923 // For a given set of template parameters, if an explicit 2924 // instantiation of a template appears after a declaration of 2925 // an explicit specialization for that template, the explicit 2926 // instantiation has no effect. 2927 if (!getLangOptions().CPlusPlus0x) { 2928 Diag(TemplateNameLoc, 2929 diag::ext_explicit_instantiation_after_specialization) 2930 << Context.getTypeDeclType(PrevDecl); 2931 Diag(PrevDecl->getLocation(), 2932 diag::note_previous_template_specialization); 2933 } 2934 2935 // Create a new class template specialization declaration node 2936 // for this explicit specialization. This node is only used to 2937 // record the existence of this explicit instantiation for 2938 // accurate reproduction of the source code; we don't actually 2939 // use it for anything, since it is semantically irrelevant. 2940 Specialization 2941 = ClassTemplateSpecializationDecl::Create(Context, 2942 ClassTemplate->getDeclContext(), 2943 TemplateNameLoc, 2944 ClassTemplate, 2945 Converted, 0); 2946 Specialization->setLexicalDeclContext(CurContext); 2947 CurContext->addDecl(Specialization); 2948 return DeclPtrTy::make(Specialization); 2949 } 2950 2951 // If we have already (implicitly) instantiated this 2952 // specialization, there is less work to do. 2953 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation) 2954 SpecializationRequiresInstantiation = false; 2955 2956 // Since the only prior class template specialization with these 2957 // arguments was referenced but not declared, reuse that 2958 // declaration node as our own, updating its source location to 2959 // reflect our new declaration. 2960 Specialization = PrevDecl; 2961 Specialization->setLocation(TemplateNameLoc); 2962 PrevDecl = 0; 2963 } else { 2964 // Create a new class template specialization declaration node for 2965 // this explicit specialization. 2966 Specialization 2967 = ClassTemplateSpecializationDecl::Create(Context, 2968 ClassTemplate->getDeclContext(), 2969 TemplateNameLoc, 2970 ClassTemplate, 2971 Converted, 0); 2972 2973 ClassTemplate->getSpecializations().InsertNode(Specialization, 2974 InsertPos); 2975 } 2976 2977 // Build the fully-sugared type for this explicit instantiation as 2978 // the user wrote in the explicit instantiation itself. This means 2979 // that we'll pretty-print the type retrieved from the 2980 // specialization's declaration the way that the user actually wrote 2981 // the explicit instantiation, rather than formatting the name based 2982 // on the "canonical" representation used to store the template 2983 // arguments in the specialization. 2984 QualType WrittenTy 2985 = Context.getTemplateSpecializationType(Name, 2986 TemplateArgs.data(), 2987 TemplateArgs.size(), 2988 Context.getTypeDeclType(Specialization)); 2989 Specialization->setTypeAsWritten(WrittenTy); 2990 TemplateArgsIn.release(); 2991 2992 // Add the explicit instantiation into its lexical context. However, 2993 // since explicit instantiations are never found by name lookup, we 2994 // just put it into the declaration context directly. 2995 Specialization->setLexicalDeclContext(CurContext); 2996 CurContext->addDecl(Specialization); 2997 2998 // C++ [temp.explicit]p3: 2999 // A definition of a class template or class member template 3000 // shall be in scope at the point of the explicit instantiation of 3001 // the class template or class member template. 3002 // 3003 // This check comes when we actually try to perform the 3004 // instantiation. 3005 if (SpecializationRequiresInstantiation) 3006 InstantiateClassTemplateSpecialization(Specialization, true); 3007 else // Instantiate the members of this class template specialization. 3008 InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization); 3009 3010 return DeclPtrTy::make(Specialization); 3011} 3012 3013// Explicit instantiation of a member class of a class template. 3014Sema::DeclResult 3015Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc, 3016 unsigned TagSpec, 3017 SourceLocation KWLoc, 3018 const CXXScopeSpec &SS, 3019 IdentifierInfo *Name, 3020 SourceLocation NameLoc, 3021 AttributeList *Attr) { 3022 3023 bool Owned = false; 3024 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 3025 KWLoc, SS, Name, NameLoc, Attr, AS_none, 3026 MultiTemplateParamsArg(*this, 0, 0), Owned); 3027 if (!TagD) 3028 return true; 3029 3030 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 3031 if (Tag->isEnum()) { 3032 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 3033 << Context.getTypeDeclType(Tag); 3034 return true; 3035 } 3036 3037 if (Tag->isInvalidDecl()) 3038 return true; 3039 3040 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 3041 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 3042 if (!Pattern) { 3043 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 3044 << Context.getTypeDeclType(Record); 3045 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 3046 return true; 3047 } 3048 3049 // C++0x [temp.explicit]p2: 3050 // [...] An explicit instantiation shall appear in an enclosing 3051 // namespace of its template. [...] 3052 // 3053 // This is C++ DR 275. 3054 if (getLangOptions().CPlusPlus0x) { 3055 // FIXME: In C++98, we would like to turn these errors into warnings, 3056 // dependent on a -Wc++0x flag. 3057 DeclContext *PatternContext 3058 = Pattern->getDeclContext()->getEnclosingNamespaceContext(); 3059 if (!CurContext->Encloses(PatternContext)) { 3060 Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope) 3061 << Record << cast<NamedDecl>(PatternContext) << SS.getRange(); 3062 Diag(Pattern->getLocation(), diag::note_previous_declaration); 3063 } 3064 } 3065 3066 if (!Record->getDefinition(Context)) { 3067 // If the class has a definition, instantiate it (and all of its 3068 // members, recursively). 3069 Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 3070 if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern, 3071 getTemplateInstantiationArgs(Record), 3072 /*ExplicitInstantiation=*/true)) 3073 return true; 3074 } else // Instantiate all of the members of the class. 3075 InstantiateClassMembers(TemplateLoc, Record, 3076 getTemplateInstantiationArgs(Record)); 3077 3078 // FIXME: We don't have any representation for explicit instantiations of 3079 // member classes. Such a representation is not needed for compilation, but it 3080 // should be available for clients that want to see all of the declarations in 3081 // the source code. 3082 return TagD; 3083} 3084 3085Sema::TypeResult 3086Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 3087 const IdentifierInfo &II, SourceLocation IdLoc) { 3088 NestedNameSpecifier *NNS 3089 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 3090 if (!NNS) 3091 return true; 3092 3093 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 3094 if (T.isNull()) 3095 return true; 3096 return T.getAsOpaquePtr(); 3097} 3098 3099Sema::TypeResult 3100Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 3101 SourceLocation TemplateLoc, TypeTy *Ty) { 3102 QualType T = GetTypeFromParser(Ty); 3103 NestedNameSpecifier *NNS 3104 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 3105 const TemplateSpecializationType *TemplateId 3106 = T->getAsTemplateSpecializationType(); 3107 assert(TemplateId && "Expected a template specialization type"); 3108 3109 if (computeDeclContext(SS, false)) { 3110 // If we can compute a declaration context, then the "typename" 3111 // keyword was superfluous. Just build a QualifiedNameType to keep 3112 // track of the nested-name-specifier. 3113 3114 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 3115 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 3116 } 3117 3118 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 3119} 3120 3121/// \brief Build the type that describes a C++ typename specifier, 3122/// e.g., "typename T::type". 3123QualType 3124Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 3125 SourceRange Range) { 3126 CXXRecordDecl *CurrentInstantiation = 0; 3127 if (NNS->isDependent()) { 3128 CurrentInstantiation = getCurrentInstantiationOf(NNS); 3129 3130 // If the nested-name-specifier does not refer to the current 3131 // instantiation, then build a typename type. 3132 if (!CurrentInstantiation) 3133 return Context.getTypenameType(NNS, &II); 3134 3135 // The nested-name-specifier refers to the current instantiation, so the 3136 // "typename" keyword itself is superfluous. In C++03, the program is 3137 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 3138 // extraneous "typename" keywords, and we retroactively apply this DR to 3139 // C++03 code. 3140 } 3141 3142 DeclContext *Ctx = 0; 3143 3144 if (CurrentInstantiation) 3145 Ctx = CurrentInstantiation; 3146 else { 3147 CXXScopeSpec SS; 3148 SS.setScopeRep(NNS); 3149 SS.setRange(Range); 3150 if (RequireCompleteDeclContext(SS)) 3151 return QualType(); 3152 3153 Ctx = computeDeclContext(SS); 3154 } 3155 assert(Ctx && "No declaration context?"); 3156 3157 DeclarationName Name(&II); 3158 LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName, 3159 false); 3160 unsigned DiagID = 0; 3161 Decl *Referenced = 0; 3162 switch (Result.getKind()) { 3163 case LookupResult::NotFound: 3164 if (Ctx->isTranslationUnit()) 3165 DiagID = diag::err_typename_nested_not_found_global; 3166 else 3167 DiagID = diag::err_typename_nested_not_found; 3168 break; 3169 3170 case LookupResult::Found: 3171 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) { 3172 // We found a type. Build a QualifiedNameType, since the 3173 // typename-specifier was just sugar. FIXME: Tell 3174 // QualifiedNameType that it has a "typename" prefix. 3175 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 3176 } 3177 3178 DiagID = diag::err_typename_nested_not_type; 3179 Referenced = Result.getAsDecl(); 3180 break; 3181 3182 case LookupResult::FoundOverloaded: 3183 DiagID = diag::err_typename_nested_not_type; 3184 Referenced = *Result.begin(); 3185 break; 3186 3187 case LookupResult::AmbiguousBaseSubobjectTypes: 3188 case LookupResult::AmbiguousBaseSubobjects: 3189 case LookupResult::AmbiguousReference: 3190 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 3191 return QualType(); 3192 } 3193 3194 // If we get here, it's because name lookup did not find a 3195 // type. Emit an appropriate diagnostic and return an error. 3196 if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx)) 3197 Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx; 3198 else 3199 Diag(Range.getEnd(), DiagID) << Range << Name; 3200 if (Referenced) 3201 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 3202 << Name; 3203 return QualType(); 3204} 3205 3206namespace { 3207 // See Sema::RebuildTypeInCurrentInstantiation 3208 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 3209 : public TreeTransform<CurrentInstantiationRebuilder> 3210 { 3211 SourceLocation Loc; 3212 DeclarationName Entity; 3213 3214 public: 3215 CurrentInstantiationRebuilder(Sema &SemaRef, 3216 SourceLocation Loc, 3217 DeclarationName Entity) 3218 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 3219 Loc(Loc), Entity(Entity) { } 3220 3221 /// \brief Determine whether the given type \p T has already been 3222 /// transformed. 3223 /// 3224 /// For the purposes of type reconstruction, a type has already been 3225 /// transformed if it is NULL or if it is not dependent. 3226 bool AlreadyTransformed(QualType T) { 3227 return T.isNull() || !T->isDependentType(); 3228 } 3229 3230 /// \brief Returns the location of the entity whose type is being 3231 /// rebuilt. 3232 SourceLocation getBaseLocation() { return Loc; } 3233 3234 /// \brief Returns the name of the entity whose type is being rebuilt. 3235 DeclarationName getBaseEntity() { return Entity; } 3236 3237 /// \brief Transforms an expression by returning the expression itself 3238 /// (an identity function). 3239 /// 3240 /// FIXME: This is completely unsafe; we will need to actually clone the 3241 /// expressions. 3242 Sema::OwningExprResult TransformExpr(Expr *E) { 3243 return getSema().Owned(E); 3244 } 3245 3246 /// \brief Transforms a typename type by determining whether the type now 3247 /// refers to a member of the current instantiation, and then 3248 /// type-checking and building a QualifiedNameType (when possible). 3249 QualType TransformTypenameType(const TypenameType *T); 3250 }; 3251} 3252 3253QualType 3254CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) { 3255 NestedNameSpecifier *NNS 3256 = TransformNestedNameSpecifier(T->getQualifier(), 3257 /*FIXME:*/SourceRange(getBaseLocation())); 3258 if (!NNS) 3259 return QualType(); 3260 3261 // If the nested-name-specifier did not change, and we cannot compute the 3262 // context corresponding to the nested-name-specifier, then this 3263 // typename type will not change; exit early. 3264 CXXScopeSpec SS; 3265 SS.setRange(SourceRange(getBaseLocation())); 3266 SS.setScopeRep(NNS); 3267 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 3268 return QualType(T, 0); 3269 3270 // Rebuild the typename type, which will probably turn into a 3271 // QualifiedNameType. 3272 if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 3273 QualType NewTemplateId 3274 = TransformType(QualType(TemplateId, 0)); 3275 if (NewTemplateId.isNull()) 3276 return QualType(); 3277 3278 if (NNS == T->getQualifier() && 3279 NewTemplateId == QualType(TemplateId, 0)) 3280 return QualType(T, 0); 3281 3282 return getDerived().RebuildTypenameType(NNS, NewTemplateId); 3283 } 3284 3285 return getDerived().RebuildTypenameType(NNS, T->getIdentifier()); 3286} 3287 3288/// \brief Rebuilds a type within the context of the current instantiation. 3289/// 3290/// The type \p T is part of the type of an out-of-line member definition of 3291/// a class template (or class template partial specialization) that was parsed 3292/// and constructed before we entered the scope of the class template (or 3293/// partial specialization thereof). This routine will rebuild that type now 3294/// that we have entered the declarator's scope, which may produce different 3295/// canonical types, e.g., 3296/// 3297/// \code 3298/// template<typename T> 3299/// struct X { 3300/// typedef T* pointer; 3301/// pointer data(); 3302/// }; 3303/// 3304/// template<typename T> 3305/// typename X<T>::pointer X<T>::data() { ... } 3306/// \endcode 3307/// 3308/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 3309/// since we do not know that we can look into X<T> when we parsed the type. 3310/// This function will rebuild the type, performing the lookup of "pointer" 3311/// in X<T> and returning a QualifiedNameType whose canonical type is the same 3312/// as the canonical type of T*, allowing the return types of the out-of-line 3313/// definition and the declaration to match. 3314QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 3315 DeclarationName Name) { 3316 if (T.isNull() || !T->isDependentType()) 3317 return T; 3318 3319 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 3320 return Rebuilder.TransformType(T); 3321} 3322