SemaTemplate.cpp revision 2dd078ae50ff7be1fb25ebeedde45e9ab691a4f0
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "llvm/Support/Compiler.h"
21
22using namespace clang;
23
24/// \brief Determine whether the declaration found is acceptable as the name
25/// of a template and, if so, return that template declaration. Otherwise,
26/// returns NULL.
27static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
28  if (!D)
29    return 0;
30
31  if (isa<TemplateDecl>(D))
32    return D;
33
34  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
35    // C++ [temp.local]p1:
36    //   Like normal (non-template) classes, class templates have an
37    //   injected-class-name (Clause 9). The injected-class-name
38    //   can be used with or without a template-argument-list. When
39    //   it is used without a template-argument-list, it is
40    //   equivalent to the injected-class-name followed by the
41    //   template-parameters of the class template enclosed in
42    //   <>. When it is used with a template-argument-list, it
43    //   refers to the specified class template specialization,
44    //   which could be the current specialization or another
45    //   specialization.
46    if (Record->isInjectedClassName()) {
47      Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
48      if (Record->getDescribedClassTemplate())
49        return Record->getDescribedClassTemplate();
50
51      if (ClassTemplateSpecializationDecl *Spec
52            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
53        return Spec->getSpecializedTemplate();
54    }
55
56    return 0;
57  }
58
59  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
60  if (!Ovl)
61    return 0;
62
63  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
64                                              FEnd = Ovl->function_end();
65       F != FEnd; ++F) {
66    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
67      // We've found a function template. Determine whether there are
68      // any other function templates we need to bundle together in an
69      // OverloadedFunctionDecl
70      for (++F; F != FEnd; ++F) {
71        if (isa<FunctionTemplateDecl>(*F))
72          break;
73      }
74
75      if (F != FEnd) {
76        // Build an overloaded function decl containing only the
77        // function templates in Ovl.
78        OverloadedFunctionDecl *OvlTemplate
79          = OverloadedFunctionDecl::Create(Context,
80                                           Ovl->getDeclContext(),
81                                           Ovl->getDeclName());
82        OvlTemplate->addOverload(FuncTmpl);
83        OvlTemplate->addOverload(*F);
84        for (++F; F != FEnd; ++F) {
85          if (isa<FunctionTemplateDecl>(*F))
86            OvlTemplate->addOverload(*F);
87        }
88
89        return OvlTemplate;
90      }
91
92      return FuncTmpl;
93    }
94  }
95
96  return 0;
97}
98
99TemplateNameKind Sema::isTemplateName(Scope *S,
100                                      const IdentifierInfo &II,
101                                      SourceLocation IdLoc,
102                                      const CXXScopeSpec *SS,
103                                      TypeTy *ObjectTypePtr,
104                                      bool EnteringContext,
105                                      TemplateTy &TemplateResult) {
106  // Determine where to perform name lookup
107  DeclContext *LookupCtx = 0;
108  bool isDependent = false;
109  if (ObjectTypePtr) {
110    // This nested-name-specifier occurs in a member access expression, e.g.,
111    // x->B::f, and we are looking into the type of the object.
112    assert((!SS || !SS->isSet()) &&
113           "ObjectType and scope specifier cannot coexist");
114    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
115    LookupCtx = computeDeclContext(ObjectType);
116    isDependent = ObjectType->isDependentType();
117  } else if (SS && SS->isSet()) {
118    // This nested-name-specifier occurs after another nested-name-specifier,
119    // so long into the context associated with the prior nested-name-specifier.
120
121    LookupCtx = computeDeclContext(*SS, EnteringContext);
122    isDependent = isDependentScopeSpecifier(*SS);
123  }
124
125  LookupResult Found;
126  bool ObjectTypeSearchedInScope = false;
127  if (LookupCtx) {
128    // Perform "qualified" name lookup into the declaration context we
129    // computed, which is either the type of the base of a member access
130    // expression or the declaration context associated with a prior
131    // nested-name-specifier.
132
133    // The declaration context must be complete.
134    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
135      return TNK_Non_template;
136
137    Found = LookupQualifiedName(LookupCtx, &II, LookupOrdinaryName);
138
139    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
140      // C++ [basic.lookup.classref]p1:
141      //   In a class member access expression (5.2.5), if the . or -> token is
142      //   immediately followed by an identifier followed by a <, the
143      //   identifier must be looked up to determine whether the < is the
144      //   beginning of a template argument list (14.2) or a less-than operator.
145      //   The identifier is first looked up in the class of the object
146      //   expression. If the identifier is not found, it is then looked up in
147      //   the context of the entire postfix-expression and shall name a class
148      //   or function template.
149      //
150      // FIXME: When we're instantiating a template, do we actually have to
151      // look in the scope of the template? Seems fishy...
152      Found = LookupName(S, &II, LookupOrdinaryName);
153      ObjectTypeSearchedInScope = true;
154    }
155  } else if (isDependent) {
156    // We cannot look into a dependent object type or
157    return TNK_Non_template;
158  } else {
159    // Perform unqualified name lookup in the current scope.
160    Found = LookupName(S, &II, LookupOrdinaryName);
161  }
162
163  // FIXME: Cope with ambiguous name-lookup results.
164  assert(!Found.isAmbiguous() &&
165         "Cannot handle template name-lookup ambiguities");
166
167  NamedDecl *Template = isAcceptableTemplateName(Context, Found);
168  if (!Template)
169    return TNK_Non_template;
170
171  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
172    // C++ [basic.lookup.classref]p1:
173    //   [...] If the lookup in the class of the object expression finds a
174    //   template, the name is also looked up in the context of the entire
175    //   postfix-expression and [...]
176    //
177    LookupResult FoundOuter = LookupName(S, &II, LookupOrdinaryName);
178    // FIXME: Handle ambiguities in this lookup better
179    NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter);
180
181    if (!OuterTemplate) {
182      //   - if the name is not found, the name found in the class of the
183      //     object expression is used, otherwise
184    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
185      //   - if the name is found in the context of the entire
186      //     postfix-expression and does not name a class template, the name
187      //     found in the class of the object expression is used, otherwise
188    } else {
189      //   - if the name found is a class template, it must refer to the same
190      //     entity as the one found in the class of the object expression,
191      //     otherwise the program is ill-formed.
192      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
193        Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
194          << &II;
195        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
196          << QualType::getFromOpaquePtr(ObjectTypePtr);
197        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
198
199        // Recover by taking the template that we found in the object
200        // expression's type.
201      }
202    }
203  }
204
205  if (SS && SS->isSet() && !SS->isInvalid()) {
206    NestedNameSpecifier *Qualifier
207      = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
208    if (OverloadedFunctionDecl *Ovl
209          = dyn_cast<OverloadedFunctionDecl>(Template))
210      TemplateResult
211        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
212                                                            Ovl));
213    else
214      TemplateResult
215        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
216                                                 cast<TemplateDecl>(Template)));
217  } else if (OverloadedFunctionDecl *Ovl
218               = dyn_cast<OverloadedFunctionDecl>(Template)) {
219    TemplateResult = TemplateTy::make(TemplateName(Ovl));
220  } else {
221    TemplateResult = TemplateTy::make(
222                                  TemplateName(cast<TemplateDecl>(Template)));
223  }
224
225  if (isa<ClassTemplateDecl>(Template) ||
226      isa<TemplateTemplateParmDecl>(Template))
227    return TNK_Type_template;
228
229  assert((isa<FunctionTemplateDecl>(Template) ||
230          isa<OverloadedFunctionDecl>(Template)) &&
231         "Unhandled template kind in Sema::isTemplateName");
232  return TNK_Function_template;
233}
234
235/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
236/// that the template parameter 'PrevDecl' is being shadowed by a new
237/// declaration at location Loc. Returns true to indicate that this is
238/// an error, and false otherwise.
239bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
240  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
241
242  // Microsoft Visual C++ permits template parameters to be shadowed.
243  if (getLangOptions().Microsoft)
244    return false;
245
246  // C++ [temp.local]p4:
247  //   A template-parameter shall not be redeclared within its
248  //   scope (including nested scopes).
249  Diag(Loc, diag::err_template_param_shadow)
250    << cast<NamedDecl>(PrevDecl)->getDeclName();
251  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
252  return true;
253}
254
255/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
256/// the parameter D to reference the templated declaration and return a pointer
257/// to the template declaration. Otherwise, do nothing to D and return null.
258TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
259  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
260    D = DeclPtrTy::make(Temp->getTemplatedDecl());
261    return Temp;
262  }
263  return 0;
264}
265
266/// ActOnTypeParameter - Called when a C++ template type parameter
267/// (e.g., "typename T") has been parsed. Typename specifies whether
268/// the keyword "typename" was used to declare the type parameter
269/// (otherwise, "class" was used), and KeyLoc is the location of the
270/// "class" or "typename" keyword. ParamName is the name of the
271/// parameter (NULL indicates an unnamed template parameter) and
272/// ParamName is the location of the parameter name (if any).
273/// If the type parameter has a default argument, it will be added
274/// later via ActOnTypeParameterDefault.
275Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
276                                         SourceLocation EllipsisLoc,
277                                         SourceLocation KeyLoc,
278                                         IdentifierInfo *ParamName,
279                                         SourceLocation ParamNameLoc,
280                                         unsigned Depth, unsigned Position) {
281  assert(S->isTemplateParamScope() &&
282	 "Template type parameter not in template parameter scope!");
283  bool Invalid = false;
284
285  if (ParamName) {
286    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
287    if (PrevDecl && PrevDecl->isTemplateParameter())
288      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
289							   PrevDecl);
290  }
291
292  SourceLocation Loc = ParamNameLoc;
293  if (!ParamName)
294    Loc = KeyLoc;
295
296  TemplateTypeParmDecl *Param
297    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
298                                   Depth, Position, ParamName, Typename,
299                                   Ellipsis);
300  if (Invalid)
301    Param->setInvalidDecl();
302
303  if (ParamName) {
304    // Add the template parameter into the current scope.
305    S->AddDecl(DeclPtrTy::make(Param));
306    IdResolver.AddDecl(Param);
307  }
308
309  return DeclPtrTy::make(Param);
310}
311
312/// ActOnTypeParameterDefault - Adds a default argument (the type
313/// Default) to the given template type parameter (TypeParam).
314void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
315                                     SourceLocation EqualLoc,
316                                     SourceLocation DefaultLoc,
317                                     TypeTy *DefaultT) {
318  TemplateTypeParmDecl *Parm
319    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
320  // FIXME: Preserve type source info.
321  QualType Default = GetTypeFromParser(DefaultT);
322
323  // C++0x [temp.param]p9:
324  // A default template-argument may be specified for any kind of
325  // template-parameter that is not a template parameter pack.
326  if (Parm->isParameterPack()) {
327    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
328    return;
329  }
330
331  // C++ [temp.param]p14:
332  //   A template-parameter shall not be used in its own default argument.
333  // FIXME: Implement this check! Needs a recursive walk over the types.
334
335  // Check the template argument itself.
336  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
337    Parm->setInvalidDecl();
338    return;
339  }
340
341  Parm->setDefaultArgument(Default, DefaultLoc, false);
342}
343
344/// \brief Check that the type of a non-type template parameter is
345/// well-formed.
346///
347/// \returns the (possibly-promoted) parameter type if valid;
348/// otherwise, produces a diagnostic and returns a NULL type.
349QualType
350Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
351  // C++ [temp.param]p4:
352  //
353  // A non-type template-parameter shall have one of the following
354  // (optionally cv-qualified) types:
355  //
356  //       -- integral or enumeration type,
357  if (T->isIntegralType() || T->isEnumeralType() ||
358      //   -- pointer to object or pointer to function,
359      (T->isPointerType() &&
360       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
361        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
362      //   -- reference to object or reference to function,
363      T->isReferenceType() ||
364      //   -- pointer to member.
365      T->isMemberPointerType() ||
366      // If T is a dependent type, we can't do the check now, so we
367      // assume that it is well-formed.
368      T->isDependentType())
369    return T;
370  // C++ [temp.param]p8:
371  //
372  //   A non-type template-parameter of type "array of T" or
373  //   "function returning T" is adjusted to be of type "pointer to
374  //   T" or "pointer to function returning T", respectively.
375  else if (T->isArrayType())
376    // FIXME: Keep the type prior to promotion?
377    return Context.getArrayDecayedType(T);
378  else if (T->isFunctionType())
379    // FIXME: Keep the type prior to promotion?
380    return Context.getPointerType(T);
381
382  Diag(Loc, diag::err_template_nontype_parm_bad_type)
383    << T;
384
385  return QualType();
386}
387
388/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
389/// template parameter (e.g., "int Size" in "template<int Size>
390/// class Array") has been parsed. S is the current scope and D is
391/// the parsed declarator.
392Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
393                                                    unsigned Depth,
394                                                    unsigned Position) {
395  DeclaratorInfo *DInfo = 0;
396  QualType T = GetTypeForDeclarator(D, S, &DInfo);
397
398  assert(S->isTemplateParamScope() &&
399         "Non-type template parameter not in template parameter scope!");
400  bool Invalid = false;
401
402  IdentifierInfo *ParamName = D.getIdentifier();
403  if (ParamName) {
404    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
405    if (PrevDecl && PrevDecl->isTemplateParameter())
406      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
407                                                           PrevDecl);
408  }
409
410  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
411  if (T.isNull()) {
412    T = Context.IntTy; // Recover with an 'int' type.
413    Invalid = true;
414  }
415
416  NonTypeTemplateParmDecl *Param
417    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
418                                      Depth, Position, ParamName, T, DInfo);
419  if (Invalid)
420    Param->setInvalidDecl();
421
422  if (D.getIdentifier()) {
423    // Add the template parameter into the current scope.
424    S->AddDecl(DeclPtrTy::make(Param));
425    IdResolver.AddDecl(Param);
426  }
427  return DeclPtrTy::make(Param);
428}
429
430/// \brief Adds a default argument to the given non-type template
431/// parameter.
432void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
433                                                SourceLocation EqualLoc,
434                                                ExprArg DefaultE) {
435  NonTypeTemplateParmDecl *TemplateParm
436    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
437  Expr *Default = static_cast<Expr *>(DefaultE.get());
438
439  // C++ [temp.param]p14:
440  //   A template-parameter shall not be used in its own default argument.
441  // FIXME: Implement this check! Needs a recursive walk over the types.
442
443  // Check the well-formedness of the default template argument.
444  TemplateArgument Converted;
445  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
446                            Converted)) {
447    TemplateParm->setInvalidDecl();
448    return;
449  }
450
451  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
452}
453
454
455/// ActOnTemplateTemplateParameter - Called when a C++ template template
456/// parameter (e.g. T in template <template <typename> class T> class array)
457/// has been parsed. S is the current scope.
458Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
459                                                     SourceLocation TmpLoc,
460                                                     TemplateParamsTy *Params,
461                                                     IdentifierInfo *Name,
462                                                     SourceLocation NameLoc,
463                                                     unsigned Depth,
464                                                     unsigned Position)
465{
466  assert(S->isTemplateParamScope() &&
467         "Template template parameter not in template parameter scope!");
468
469  // Construct the parameter object.
470  TemplateTemplateParmDecl *Param =
471    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
472                                     Position, Name,
473                                     (TemplateParameterList*)Params);
474
475  // Make sure the parameter is valid.
476  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
477  // do anything yet. However, if the template parameter list or (eventual)
478  // default value is ever invalidated, that will propagate here.
479  bool Invalid = false;
480  if (Invalid) {
481    Param->setInvalidDecl();
482  }
483
484  // If the tt-param has a name, then link the identifier into the scope
485  // and lookup mechanisms.
486  if (Name) {
487    S->AddDecl(DeclPtrTy::make(Param));
488    IdResolver.AddDecl(Param);
489  }
490
491  return DeclPtrTy::make(Param);
492}
493
494/// \brief Adds a default argument to the given template template
495/// parameter.
496void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
497                                                 SourceLocation EqualLoc,
498                                                 ExprArg DefaultE) {
499  TemplateTemplateParmDecl *TemplateParm
500    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
501
502  // Since a template-template parameter's default argument is an
503  // id-expression, it must be a DeclRefExpr.
504  DeclRefExpr *Default
505    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
506
507  // C++ [temp.param]p14:
508  //   A template-parameter shall not be used in its own default argument.
509  // FIXME: Implement this check! Needs a recursive walk over the types.
510
511  // Check the well-formedness of the template argument.
512  if (!isa<TemplateDecl>(Default->getDecl())) {
513    Diag(Default->getSourceRange().getBegin(),
514         diag::err_template_arg_must_be_template)
515      << Default->getSourceRange();
516    TemplateParm->setInvalidDecl();
517    return;
518  }
519  if (CheckTemplateArgument(TemplateParm, Default)) {
520    TemplateParm->setInvalidDecl();
521    return;
522  }
523
524  DefaultE.release();
525  TemplateParm->setDefaultArgument(Default);
526}
527
528/// ActOnTemplateParameterList - Builds a TemplateParameterList that
529/// contains the template parameters in Params/NumParams.
530Sema::TemplateParamsTy *
531Sema::ActOnTemplateParameterList(unsigned Depth,
532                                 SourceLocation ExportLoc,
533                                 SourceLocation TemplateLoc,
534                                 SourceLocation LAngleLoc,
535                                 DeclPtrTy *Params, unsigned NumParams,
536                                 SourceLocation RAngleLoc) {
537  if (ExportLoc.isValid())
538    Diag(ExportLoc, diag::note_template_export_unsupported);
539
540  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
541                                       (Decl**)Params, NumParams, RAngleLoc);
542}
543
544Sema::DeclResult
545Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
546                         SourceLocation KWLoc, const CXXScopeSpec &SS,
547                         IdentifierInfo *Name, SourceLocation NameLoc,
548                         AttributeList *Attr,
549                         TemplateParameterList *TemplateParams,
550                         AccessSpecifier AS) {
551  assert(TemplateParams && TemplateParams->size() > 0 &&
552         "No template parameters");
553  assert(TUK != TUK_Reference && "Can only declare or define class templates");
554  bool Invalid = false;
555
556  // Check that we can declare a template here.
557  if (CheckTemplateDeclScope(S, TemplateParams))
558    return true;
559
560  TagDecl::TagKind Kind;
561  switch (TagSpec) {
562  default: assert(0 && "Unknown tag type!");
563  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
564  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
565  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
566  }
567
568  // There is no such thing as an unnamed class template.
569  if (!Name) {
570    Diag(KWLoc, diag::err_template_unnamed_class);
571    return true;
572  }
573
574  // Find any previous declaration with this name.
575  DeclContext *SemanticContext;
576  LookupResult Previous;
577  if (SS.isNotEmpty() && !SS.isInvalid()) {
578    SemanticContext = computeDeclContext(SS, true);
579    if (!SemanticContext) {
580      // FIXME: Produce a reasonable diagnostic here
581      return true;
582    }
583
584    Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName,
585                                   true);
586  } else {
587    SemanticContext = CurContext;
588    Previous = LookupName(S, Name, LookupOrdinaryName, true);
589  }
590
591  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
592  NamedDecl *PrevDecl = 0;
593  if (Previous.begin() != Previous.end())
594    PrevDecl = *Previous.begin();
595
596  if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
597    PrevDecl = 0;
598
599  // If there is a previous declaration with the same name, check
600  // whether this is a valid redeclaration.
601  ClassTemplateDecl *PrevClassTemplate
602    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
603  if (PrevClassTemplate) {
604    // Ensure that the template parameter lists are compatible.
605    if (!TemplateParameterListsAreEqual(TemplateParams,
606                                   PrevClassTemplate->getTemplateParameters(),
607                                        /*Complain=*/true))
608      return true;
609
610    // C++ [temp.class]p4:
611    //   In a redeclaration, partial specialization, explicit
612    //   specialization or explicit instantiation of a class template,
613    //   the class-key shall agree in kind with the original class
614    //   template declaration (7.1.5.3).
615    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
616    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
617      Diag(KWLoc, diag::err_use_with_wrong_tag)
618        << Name
619        << CodeModificationHint::CreateReplacement(KWLoc,
620                            PrevRecordDecl->getKindName());
621      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
622      Kind = PrevRecordDecl->getTagKind();
623    }
624
625    // Check for redefinition of this class template.
626    if (TUK == TUK_Definition) {
627      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
628        Diag(NameLoc, diag::err_redefinition) << Name;
629        Diag(Def->getLocation(), diag::note_previous_definition);
630        // FIXME: Would it make sense to try to "forget" the previous
631        // definition, as part of error recovery?
632        return true;
633      }
634    }
635  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
636    // Maybe we will complain about the shadowed template parameter.
637    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
638    // Just pretend that we didn't see the previous declaration.
639    PrevDecl = 0;
640  } else if (PrevDecl) {
641    // C++ [temp]p5:
642    //   A class template shall not have the same name as any other
643    //   template, class, function, object, enumeration, enumerator,
644    //   namespace, or type in the same scope (3.3), except as specified
645    //   in (14.5.4).
646    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
647    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
648    return true;
649  }
650
651  // Check the template parameter list of this declaration, possibly
652  // merging in the template parameter list from the previous class
653  // template declaration.
654  if (CheckTemplateParameterList(TemplateParams,
655            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
656    Invalid = true;
657
658  // FIXME: If we had a scope specifier, we better have a previous template
659  // declaration!
660
661  CXXRecordDecl *NewClass =
662    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
663                          PrevClassTemplate?
664                            PrevClassTemplate->getTemplatedDecl() : 0,
665                          /*DelayTypeCreation=*/true);
666
667  ClassTemplateDecl *NewTemplate
668    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
669                                DeclarationName(Name), TemplateParams,
670                                NewClass, PrevClassTemplate);
671  NewClass->setDescribedClassTemplate(NewTemplate);
672
673  // Build the type for the class template declaration now.
674  QualType T =
675    Context.getTypeDeclType(NewClass,
676                            PrevClassTemplate?
677                              PrevClassTemplate->getTemplatedDecl() : 0);
678  assert(T->isDependentType() && "Class template type is not dependent?");
679  (void)T;
680
681  // Set the access specifier.
682  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
683
684  // Set the lexical context of these templates
685  NewClass->setLexicalDeclContext(CurContext);
686  NewTemplate->setLexicalDeclContext(CurContext);
687
688  if (TUK == TUK_Definition)
689    NewClass->startDefinition();
690
691  if (Attr)
692    ProcessDeclAttributeList(S, NewClass, Attr);
693
694  PushOnScopeChains(NewTemplate, S);
695
696  if (Invalid) {
697    NewTemplate->setInvalidDecl();
698    NewClass->setInvalidDecl();
699  }
700  return DeclPtrTy::make(NewTemplate);
701}
702
703/// \brief Checks the validity of a template parameter list, possibly
704/// considering the template parameter list from a previous
705/// declaration.
706///
707/// If an "old" template parameter list is provided, it must be
708/// equivalent (per TemplateParameterListsAreEqual) to the "new"
709/// template parameter list.
710///
711/// \param NewParams Template parameter list for a new template
712/// declaration. This template parameter list will be updated with any
713/// default arguments that are carried through from the previous
714/// template parameter list.
715///
716/// \param OldParams If provided, template parameter list from a
717/// previous declaration of the same template. Default template
718/// arguments will be merged from the old template parameter list to
719/// the new template parameter list.
720///
721/// \returns true if an error occurred, false otherwise.
722bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
723                                      TemplateParameterList *OldParams) {
724  bool Invalid = false;
725
726  // C++ [temp.param]p10:
727  //   The set of default template-arguments available for use with a
728  //   template declaration or definition is obtained by merging the
729  //   default arguments from the definition (if in scope) and all
730  //   declarations in scope in the same way default function
731  //   arguments are (8.3.6).
732  bool SawDefaultArgument = false;
733  SourceLocation PreviousDefaultArgLoc;
734
735  bool SawParameterPack = false;
736  SourceLocation ParameterPackLoc;
737
738  // Dummy initialization to avoid warnings.
739  TemplateParameterList::iterator OldParam = NewParams->end();
740  if (OldParams)
741    OldParam = OldParams->begin();
742
743  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
744                                    NewParamEnd = NewParams->end();
745       NewParam != NewParamEnd; ++NewParam) {
746    // Variables used to diagnose redundant default arguments
747    bool RedundantDefaultArg = false;
748    SourceLocation OldDefaultLoc;
749    SourceLocation NewDefaultLoc;
750
751    // Variables used to diagnose missing default arguments
752    bool MissingDefaultArg = false;
753
754    // C++0x [temp.param]p11:
755    // If a template parameter of a class template is a template parameter pack,
756    // it must be the last template parameter.
757    if (SawParameterPack) {
758      Diag(ParameterPackLoc,
759           diag::err_template_param_pack_must_be_last_template_parameter);
760      Invalid = true;
761    }
762
763    // Merge default arguments for template type parameters.
764    if (TemplateTypeParmDecl *NewTypeParm
765          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
766      TemplateTypeParmDecl *OldTypeParm
767          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
768
769      if (NewTypeParm->isParameterPack()) {
770        assert(!NewTypeParm->hasDefaultArgument() &&
771               "Parameter packs can't have a default argument!");
772        SawParameterPack = true;
773        ParameterPackLoc = NewTypeParm->getLocation();
774      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
775          NewTypeParm->hasDefaultArgument()) {
776        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
777        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
778        SawDefaultArgument = true;
779        RedundantDefaultArg = true;
780        PreviousDefaultArgLoc = NewDefaultLoc;
781      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
782        // Merge the default argument from the old declaration to the
783        // new declaration.
784        SawDefaultArgument = true;
785        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
786                                        OldTypeParm->getDefaultArgumentLoc(),
787                                        true);
788        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
789      } else if (NewTypeParm->hasDefaultArgument()) {
790        SawDefaultArgument = true;
791        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
792      } else if (SawDefaultArgument)
793        MissingDefaultArg = true;
794    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
795               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
796      // Merge default arguments for non-type template parameters
797      NonTypeTemplateParmDecl *OldNonTypeParm
798        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
799      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
800          NewNonTypeParm->hasDefaultArgument()) {
801        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
802        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
803        SawDefaultArgument = true;
804        RedundantDefaultArg = true;
805        PreviousDefaultArgLoc = NewDefaultLoc;
806      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
807        // Merge the default argument from the old declaration to the
808        // new declaration.
809        SawDefaultArgument = true;
810        // FIXME: We need to create a new kind of "default argument"
811        // expression that points to a previous template template
812        // parameter.
813        NewNonTypeParm->setDefaultArgument(
814                                        OldNonTypeParm->getDefaultArgument());
815        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
816      } else if (NewNonTypeParm->hasDefaultArgument()) {
817        SawDefaultArgument = true;
818        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
819      } else if (SawDefaultArgument)
820        MissingDefaultArg = true;
821    } else {
822    // Merge default arguments for template template parameters
823      TemplateTemplateParmDecl *NewTemplateParm
824        = cast<TemplateTemplateParmDecl>(*NewParam);
825      TemplateTemplateParmDecl *OldTemplateParm
826        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
827      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
828          NewTemplateParm->hasDefaultArgument()) {
829        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
830        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
831        SawDefaultArgument = true;
832        RedundantDefaultArg = true;
833        PreviousDefaultArgLoc = NewDefaultLoc;
834      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
835        // Merge the default argument from the old declaration to the
836        // new declaration.
837        SawDefaultArgument = true;
838        // FIXME: We need to create a new kind of "default argument" expression
839        // that points to a previous template template parameter.
840        NewTemplateParm->setDefaultArgument(
841                                        OldTemplateParm->getDefaultArgument());
842        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
843      } else if (NewTemplateParm->hasDefaultArgument()) {
844        SawDefaultArgument = true;
845        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
846      } else if (SawDefaultArgument)
847        MissingDefaultArg = true;
848    }
849
850    if (RedundantDefaultArg) {
851      // C++ [temp.param]p12:
852      //   A template-parameter shall not be given default arguments
853      //   by two different declarations in the same scope.
854      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
855      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
856      Invalid = true;
857    } else if (MissingDefaultArg) {
858      // C++ [temp.param]p11:
859      //   If a template-parameter has a default template-argument,
860      //   all subsequent template-parameters shall have a default
861      //   template-argument supplied.
862      Diag((*NewParam)->getLocation(),
863           diag::err_template_param_default_arg_missing);
864      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
865      Invalid = true;
866    }
867
868    // If we have an old template parameter list that we're merging
869    // in, move on to the next parameter.
870    if (OldParams)
871      ++OldParam;
872  }
873
874  return Invalid;
875}
876
877/// \brief Match the given template parameter lists to the given scope
878/// specifier, returning the template parameter list that applies to the
879/// name.
880///
881/// \param DeclStartLoc the start of the declaration that has a scope
882/// specifier or a template parameter list.
883///
884/// \param SS the scope specifier that will be matched to the given template
885/// parameter lists. This scope specifier precedes a qualified name that is
886/// being declared.
887///
888/// \param ParamLists the template parameter lists, from the outermost to the
889/// innermost template parameter lists.
890///
891/// \param NumParamLists the number of template parameter lists in ParamLists.
892///
893/// \returns the template parameter list, if any, that corresponds to the
894/// name that is preceded by the scope specifier @p SS. This template
895/// parameter list may be have template parameters (if we're declaring a
896/// template) or may have no template parameters (if we're declaring a
897/// template specialization), or may be NULL (if we were's declaring isn't
898/// itself a template).
899TemplateParameterList *
900Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
901                                              const CXXScopeSpec &SS,
902                                          TemplateParameterList **ParamLists,
903                                              unsigned NumParamLists) {
904  // Find the template-ids that occur within the nested-name-specifier. These
905  // template-ids will match up with the template parameter lists.
906  llvm::SmallVector<const TemplateSpecializationType *, 4>
907    TemplateIdsInSpecifier;
908  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
909       NNS; NNS = NNS->getPrefix()) {
910    if (const TemplateSpecializationType *SpecType
911          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
912      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
913      if (!Template)
914        continue; // FIXME: should this be an error? probably...
915
916      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
917        ClassTemplateSpecializationDecl *SpecDecl
918          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
919        // If the nested name specifier refers to an explicit specialization,
920        // we don't need a template<> header.
921        // FIXME: revisit this approach once we cope with specialization
922        // properly.
923        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
924          continue;
925      }
926
927      TemplateIdsInSpecifier.push_back(SpecType);
928    }
929  }
930
931  // Reverse the list of template-ids in the scope specifier, so that we can
932  // more easily match up the template-ids and the template parameter lists.
933  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
934
935  SourceLocation FirstTemplateLoc = DeclStartLoc;
936  if (NumParamLists)
937    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
938
939  // Match the template-ids found in the specifier to the template parameter
940  // lists.
941  unsigned Idx = 0;
942  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
943       Idx != NumTemplateIds; ++Idx) {
944    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
945    bool DependentTemplateId = TemplateId->isDependentType();
946    if (Idx >= NumParamLists) {
947      // We have a template-id without a corresponding template parameter
948      // list.
949      if (DependentTemplateId) {
950        // FIXME: the location information here isn't great.
951        Diag(SS.getRange().getBegin(),
952             diag::err_template_spec_needs_template_parameters)
953          << TemplateId
954          << SS.getRange();
955      } else {
956        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
957          << SS.getRange()
958          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
959                                                   "template<> ");
960      }
961      return 0;
962    }
963
964    // Check the template parameter list against its corresponding template-id.
965    if (DependentTemplateId) {
966      TemplateDecl *Template
967        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
968
969      if (ClassTemplateDecl *ClassTemplate
970            = dyn_cast<ClassTemplateDecl>(Template)) {
971        TemplateParameterList *ExpectedTemplateParams = 0;
972        // Is this template-id naming the primary template?
973        if (Context.hasSameType(TemplateId,
974                             ClassTemplate->getInjectedClassNameType(Context)))
975          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
976        // ... or a partial specialization?
977        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
978                   = ClassTemplate->findPartialSpecialization(TemplateId))
979          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
980
981        if (ExpectedTemplateParams)
982          TemplateParameterListsAreEqual(ParamLists[Idx],
983                                         ExpectedTemplateParams,
984                                         true);
985      }
986    } else if (ParamLists[Idx]->size() > 0)
987      Diag(ParamLists[Idx]->getTemplateLoc(),
988           diag::err_template_param_list_matches_nontemplate)
989        << TemplateId
990        << ParamLists[Idx]->getSourceRange();
991  }
992
993  // If there were at least as many template-ids as there were template
994  // parameter lists, then there are no template parameter lists remaining for
995  // the declaration itself.
996  if (Idx >= NumParamLists)
997    return 0;
998
999  // If there were too many template parameter lists, complain about that now.
1000  if (Idx != NumParamLists - 1) {
1001    while (Idx < NumParamLists - 1) {
1002      Diag(ParamLists[Idx]->getTemplateLoc(),
1003           diag::err_template_spec_extra_headers)
1004        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1005                       ParamLists[Idx]->getRAngleLoc());
1006      ++Idx;
1007    }
1008  }
1009
1010  // Return the last template parameter list, which corresponds to the
1011  // entity being declared.
1012  return ParamLists[NumParamLists - 1];
1013}
1014
1015/// \brief Translates template arguments as provided by the parser
1016/// into template arguments used by semantic analysis.
1017static void
1018translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
1019                           SourceLocation *TemplateArgLocs,
1020                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
1021  TemplateArgs.reserve(TemplateArgsIn.size());
1022
1023  void **Args = TemplateArgsIn.getArgs();
1024  bool *ArgIsType = TemplateArgsIn.getArgIsType();
1025  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
1026    TemplateArgs.push_back(
1027      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
1028                                       //FIXME: Preserve type source info.
1029                                       Sema::GetTypeFromParser(Args[Arg]))
1030                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
1031  }
1032}
1033
1034QualType Sema::CheckTemplateIdType(TemplateName Name,
1035                                   SourceLocation TemplateLoc,
1036                                   SourceLocation LAngleLoc,
1037                                   const TemplateArgument *TemplateArgs,
1038                                   unsigned NumTemplateArgs,
1039                                   SourceLocation RAngleLoc) {
1040  TemplateDecl *Template = Name.getAsTemplateDecl();
1041  if (!Template) {
1042    // The template name does not resolve to a template, so we just
1043    // build a dependent template-id type.
1044    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1045                                                 NumTemplateArgs);
1046  }
1047
1048  // Check that the template argument list is well-formed for this
1049  // template.
1050  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1051                                        NumTemplateArgs);
1052  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1053                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1054                                false, Converted))
1055    return QualType();
1056
1057  assert((Converted.structuredSize() ==
1058            Template->getTemplateParameters()->size()) &&
1059         "Converted template argument list is too short!");
1060
1061  QualType CanonType;
1062
1063  if (TemplateSpecializationType::anyDependentTemplateArguments(
1064                                                      TemplateArgs,
1065                                                      NumTemplateArgs)) {
1066    // This class template specialization is a dependent
1067    // type. Therefore, its canonical type is another class template
1068    // specialization type that contains all of the converted
1069    // arguments in canonical form. This ensures that, e.g., A<T> and
1070    // A<T, T> have identical types when A is declared as:
1071    //
1072    //   template<typename T, typename U = T> struct A;
1073    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1074    CanonType = Context.getTemplateSpecializationType(CanonName,
1075                                                   Converted.getFlatArguments(),
1076                                                   Converted.flatSize());
1077
1078    // FIXME: CanonType is not actually the canonical type, and unfortunately
1079    // it is a TemplateTypeSpecializationType that we will never use again.
1080    // In the future, we need to teach getTemplateSpecializationType to only
1081    // build the canonical type and return that to us.
1082    CanonType = Context.getCanonicalType(CanonType);
1083  } else if (ClassTemplateDecl *ClassTemplate
1084               = dyn_cast<ClassTemplateDecl>(Template)) {
1085    // Find the class template specialization declaration that
1086    // corresponds to these arguments.
1087    llvm::FoldingSetNodeID ID;
1088    ClassTemplateSpecializationDecl::Profile(ID,
1089                                             Converted.getFlatArguments(),
1090                                             Converted.flatSize(),
1091                                             Context);
1092    void *InsertPos = 0;
1093    ClassTemplateSpecializationDecl *Decl
1094      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1095    if (!Decl) {
1096      // This is the first time we have referenced this class template
1097      // specialization. Create the canonical declaration and add it to
1098      // the set of specializations.
1099      Decl = ClassTemplateSpecializationDecl::Create(Context,
1100                                    ClassTemplate->getDeclContext(),
1101                                    TemplateLoc,
1102                                    ClassTemplate,
1103                                    Converted, 0);
1104      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1105      Decl->setLexicalDeclContext(CurContext);
1106    }
1107
1108    CanonType = Context.getTypeDeclType(Decl);
1109  }
1110
1111  // Build the fully-sugared type for this class template
1112  // specialization, which refers back to the class template
1113  // specialization we created or found.
1114  //FIXME: Preserve type source info.
1115  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1116                                               NumTemplateArgs, CanonType);
1117}
1118
1119Action::TypeResult
1120Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1121                          SourceLocation LAngleLoc,
1122                          ASTTemplateArgsPtr TemplateArgsIn,
1123                          SourceLocation *TemplateArgLocs,
1124                          SourceLocation RAngleLoc) {
1125  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1126
1127  // Translate the parser's template argument list in our AST format.
1128  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1129  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1130
1131  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1132                                        TemplateArgs.data(),
1133                                        TemplateArgs.size(),
1134                                        RAngleLoc);
1135  TemplateArgsIn.release();
1136
1137  if (Result.isNull())
1138    return true;
1139
1140  return Result.getAsOpaquePtr();
1141}
1142
1143Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1144                                                 SourceLocation TemplateNameLoc,
1145                                                 SourceLocation LAngleLoc,
1146                                           const TemplateArgument *TemplateArgs,
1147                                                 unsigned NumTemplateArgs,
1148                                                 SourceLocation RAngleLoc) {
1149  // FIXME: Can we do any checking at this point? I guess we could check the
1150  // template arguments that we have against the template name, if the template
1151  // name refers to a single template. That's not a terribly common case,
1152  // though.
1153  return Owned(TemplateIdRefExpr::Create(Context,
1154                                         /*FIXME: New type?*/Context.OverloadTy,
1155                                         /*FIXME: Necessary?*/0,
1156                                         /*FIXME: Necessary?*/SourceRange(),
1157                                         Template, TemplateNameLoc, LAngleLoc,
1158                                         TemplateArgs,
1159                                         NumTemplateArgs, RAngleLoc));
1160}
1161
1162Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1163                                                 SourceLocation TemplateNameLoc,
1164                                                 SourceLocation LAngleLoc,
1165                                              ASTTemplateArgsPtr TemplateArgsIn,
1166                                                SourceLocation *TemplateArgLocs,
1167                                                 SourceLocation RAngleLoc) {
1168  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1169
1170  // Translate the parser's template argument list in our AST format.
1171  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1172  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1173  TemplateArgsIn.release();
1174
1175  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1176                             TemplateArgs.data(), TemplateArgs.size(),
1177                             RAngleLoc);
1178}
1179
1180Sema::OwningExprResult
1181Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base,
1182                                         SourceLocation OpLoc,
1183                                         tok::TokenKind OpKind,
1184                                         const CXXScopeSpec &SS,
1185                                         TemplateTy TemplateD,
1186                                         SourceLocation TemplateNameLoc,
1187                                         SourceLocation LAngleLoc,
1188                                         ASTTemplateArgsPtr TemplateArgsIn,
1189                                         SourceLocation *TemplateArgLocs,
1190                                         SourceLocation RAngleLoc) {
1191  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1192
1193  // FIXME: We're going to end up looking up the template based on its name,
1194  // twice!
1195  DeclarationName Name;
1196  if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
1197    Name = ActualTemplate->getDeclName();
1198  else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
1199    Name = Ovl->getDeclName();
1200  else
1201    assert(false && "Cannot support dependent template names yet");
1202
1203  // Translate the parser's template argument list in our AST format.
1204  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1205  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1206  TemplateArgsIn.release();
1207
1208  // Do we have the save the actual template name? We might need it...
1209  return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc,
1210                                  Name, true, LAngleLoc,
1211                                  TemplateArgs.data(), TemplateArgs.size(),
1212                                  RAngleLoc, DeclPtrTy(), &SS);
1213}
1214
1215/// \brief Form a dependent template name.
1216///
1217/// This action forms a dependent template name given the template
1218/// name and its (presumably dependent) scope specifier. For
1219/// example, given "MetaFun::template apply", the scope specifier \p
1220/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1221/// of the "template" keyword, and "apply" is the \p Name.
1222Sema::TemplateTy
1223Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1224                                 const IdentifierInfo &Name,
1225                                 SourceLocation NameLoc,
1226                                 const CXXScopeSpec &SS,
1227                                 TypeTy *ObjectType) {
1228  if ((ObjectType &&
1229       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1230      (SS.isSet() && computeDeclContext(SS, false))) {
1231    // C++0x [temp.names]p5:
1232    //   If a name prefixed by the keyword template is not the name of
1233    //   a template, the program is ill-formed. [Note: the keyword
1234    //   template may not be applied to non-template members of class
1235    //   templates. -end note ] [ Note: as is the case with the
1236    //   typename prefix, the template prefix is allowed in cases
1237    //   where it is not strictly necessary; i.e., when the
1238    //   nested-name-specifier or the expression on the left of the ->
1239    //   or . is not dependent on a template-parameter, or the use
1240    //   does not appear in the scope of a template. -end note]
1241    //
1242    // Note: C++03 was more strict here, because it banned the use of
1243    // the "template" keyword prior to a template-name that was not a
1244    // dependent name. C++ DR468 relaxed this requirement (the
1245    // "template" keyword is now permitted). We follow the C++0x
1246    // rules, even in C++03 mode, retroactively applying the DR.
1247    TemplateTy Template;
1248    TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType,
1249                                          false, Template);
1250    if (TNK == TNK_Non_template) {
1251      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1252        << &Name;
1253      return TemplateTy();
1254    }
1255
1256    return Template;
1257  }
1258
1259  // FIXME: We need to be able to create a dependent template name with just
1260  // an identifier, to handle the x->template f<T> case.
1261  assert(!ObjectType &&
1262      "Cannot handle dependent template names without a nested-name-specifier");
1263
1264  NestedNameSpecifier *Qualifier
1265    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1266  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1267}
1268
1269bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1270                                     const TemplateArgument &Arg,
1271                                     TemplateArgumentListBuilder &Converted) {
1272  // Check template type parameter.
1273  if (Arg.getKind() != TemplateArgument::Type) {
1274    // C++ [temp.arg.type]p1:
1275    //   A template-argument for a template-parameter which is a
1276    //   type shall be a type-id.
1277
1278    // We have a template type parameter but the template argument
1279    // is not a type.
1280    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1281    Diag(Param->getLocation(), diag::note_template_param_here);
1282
1283    return true;
1284  }
1285
1286  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1287    return true;
1288
1289  // Add the converted template type argument.
1290  Converted.Append(
1291                 TemplateArgument(Arg.getLocation(),
1292                                  Context.getCanonicalType(Arg.getAsType())));
1293  return false;
1294}
1295
1296/// \brief Check that the given template argument list is well-formed
1297/// for specializing the given template.
1298bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1299                                     SourceLocation TemplateLoc,
1300                                     SourceLocation LAngleLoc,
1301                                     const TemplateArgument *TemplateArgs,
1302                                     unsigned NumTemplateArgs,
1303                                     SourceLocation RAngleLoc,
1304                                     bool PartialTemplateArgs,
1305                                     TemplateArgumentListBuilder &Converted) {
1306  TemplateParameterList *Params = Template->getTemplateParameters();
1307  unsigned NumParams = Params->size();
1308  unsigned NumArgs = NumTemplateArgs;
1309  bool Invalid = false;
1310
1311  bool HasParameterPack =
1312    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1313
1314  if ((NumArgs > NumParams && !HasParameterPack) ||
1315      (NumArgs < Params->getMinRequiredArguments() &&
1316       !PartialTemplateArgs)) {
1317    // FIXME: point at either the first arg beyond what we can handle,
1318    // or the '>', depending on whether we have too many or too few
1319    // arguments.
1320    SourceRange Range;
1321    if (NumArgs > NumParams)
1322      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1323    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1324      << (NumArgs > NumParams)
1325      << (isa<ClassTemplateDecl>(Template)? 0 :
1326          isa<FunctionTemplateDecl>(Template)? 1 :
1327          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1328      << Template << Range;
1329    Diag(Template->getLocation(), diag::note_template_decl_here)
1330      << Params->getSourceRange();
1331    Invalid = true;
1332  }
1333
1334  // C++ [temp.arg]p1:
1335  //   [...] The type and form of each template-argument specified in
1336  //   a template-id shall match the type and form specified for the
1337  //   corresponding parameter declared by the template in its
1338  //   template-parameter-list.
1339  unsigned ArgIdx = 0;
1340  for (TemplateParameterList::iterator Param = Params->begin(),
1341                                       ParamEnd = Params->end();
1342       Param != ParamEnd; ++Param, ++ArgIdx) {
1343    if (ArgIdx > NumArgs && PartialTemplateArgs)
1344      break;
1345
1346    // Decode the template argument
1347    TemplateArgument Arg;
1348    if (ArgIdx >= NumArgs) {
1349      // Retrieve the default template argument from the template
1350      // parameter.
1351      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1352        if (TTP->isParameterPack()) {
1353          // We have an empty argument pack.
1354          Converted.BeginPack();
1355          Converted.EndPack();
1356          break;
1357        }
1358
1359        if (!TTP->hasDefaultArgument())
1360          break;
1361
1362        QualType ArgType = TTP->getDefaultArgument();
1363
1364        // If the argument type is dependent, instantiate it now based
1365        // on the previously-computed template arguments.
1366        if (ArgType->isDependentType()) {
1367          InstantiatingTemplate Inst(*this, TemplateLoc,
1368                                     Template, Converted.getFlatArguments(),
1369                                     Converted.flatSize(),
1370                                     SourceRange(TemplateLoc, RAngleLoc));
1371
1372          TemplateArgumentList TemplateArgs(Context, Converted,
1373                                            /*TakeArgs=*/false);
1374          ArgType = SubstType(ArgType,
1375                              MultiLevelTemplateArgumentList(TemplateArgs),
1376                              TTP->getDefaultArgumentLoc(),
1377                              TTP->getDeclName());
1378        }
1379
1380        if (ArgType.isNull())
1381          return true;
1382
1383        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1384      } else if (NonTypeTemplateParmDecl *NTTP
1385                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1386        if (!NTTP->hasDefaultArgument())
1387          break;
1388
1389        InstantiatingTemplate Inst(*this, TemplateLoc,
1390                                   Template, Converted.getFlatArguments(),
1391                                   Converted.flatSize(),
1392                                   SourceRange(TemplateLoc, RAngleLoc));
1393
1394        TemplateArgumentList TemplateArgs(Context, Converted,
1395                                          /*TakeArgs=*/false);
1396
1397        Sema::OwningExprResult E
1398          = SubstExpr(NTTP->getDefaultArgument(),
1399                      MultiLevelTemplateArgumentList(TemplateArgs));
1400        if (E.isInvalid())
1401          return true;
1402
1403        Arg = TemplateArgument(E.takeAs<Expr>());
1404      } else {
1405        TemplateTemplateParmDecl *TempParm
1406          = cast<TemplateTemplateParmDecl>(*Param);
1407
1408        if (!TempParm->hasDefaultArgument())
1409          break;
1410
1411        // FIXME: Subst default argument
1412        Arg = TemplateArgument(TempParm->getDefaultArgument());
1413      }
1414    } else {
1415      // Retrieve the template argument produced by the user.
1416      Arg = TemplateArgs[ArgIdx];
1417    }
1418
1419
1420    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1421      if (TTP->isParameterPack()) {
1422        Converted.BeginPack();
1423        // Check all the remaining arguments (if any).
1424        for (; ArgIdx < NumArgs; ++ArgIdx) {
1425          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1426            Invalid = true;
1427        }
1428
1429        Converted.EndPack();
1430      } else {
1431        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1432          Invalid = true;
1433      }
1434    } else if (NonTypeTemplateParmDecl *NTTP
1435                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1436      // Check non-type template parameters.
1437
1438      // Do substitution on the type of the non-type template parameter
1439      // with the template arguments we've seen thus far.
1440      QualType NTTPType = NTTP->getType();
1441      if (NTTPType->isDependentType()) {
1442        // Do substitution on the type of the non-type template parameter.
1443        InstantiatingTemplate Inst(*this, TemplateLoc,
1444                                   Template, Converted.getFlatArguments(),
1445                                   Converted.flatSize(),
1446                                   SourceRange(TemplateLoc, RAngleLoc));
1447
1448        TemplateArgumentList TemplateArgs(Context, Converted,
1449                                          /*TakeArgs=*/false);
1450        NTTPType = SubstType(NTTPType,
1451                             MultiLevelTemplateArgumentList(TemplateArgs),
1452                             NTTP->getLocation(),
1453                             NTTP->getDeclName());
1454        // If that worked, check the non-type template parameter type
1455        // for validity.
1456        if (!NTTPType.isNull())
1457          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1458                                                       NTTP->getLocation());
1459        if (NTTPType.isNull()) {
1460          Invalid = true;
1461          break;
1462        }
1463      }
1464
1465      switch (Arg.getKind()) {
1466      case TemplateArgument::Null:
1467        assert(false && "Should never see a NULL template argument here");
1468        break;
1469
1470      case TemplateArgument::Expression: {
1471        Expr *E = Arg.getAsExpr();
1472        TemplateArgument Result;
1473        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1474          Invalid = true;
1475        else
1476          Converted.Append(Result);
1477        break;
1478      }
1479
1480      case TemplateArgument::Declaration:
1481      case TemplateArgument::Integral:
1482        // We've already checked this template argument, so just copy
1483        // it to the list of converted arguments.
1484        Converted.Append(Arg);
1485        break;
1486
1487      case TemplateArgument::Type:
1488        // We have a non-type template parameter but the template
1489        // argument is a type.
1490
1491        // C++ [temp.arg]p2:
1492        //   In a template-argument, an ambiguity between a type-id and
1493        //   an expression is resolved to a type-id, regardless of the
1494        //   form of the corresponding template-parameter.
1495        //
1496        // We warn specifically about this case, since it can be rather
1497        // confusing for users.
1498        if (Arg.getAsType()->isFunctionType())
1499          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1500            << Arg.getAsType();
1501        else
1502          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1503        Diag((*Param)->getLocation(), diag::note_template_param_here);
1504        Invalid = true;
1505        break;
1506
1507      case TemplateArgument::Pack:
1508        assert(0 && "FIXME: Implement!");
1509        break;
1510      }
1511    } else {
1512      // Check template template parameters.
1513      TemplateTemplateParmDecl *TempParm
1514        = cast<TemplateTemplateParmDecl>(*Param);
1515
1516      switch (Arg.getKind()) {
1517      case TemplateArgument::Null:
1518        assert(false && "Should never see a NULL template argument here");
1519        break;
1520
1521      case TemplateArgument::Expression: {
1522        Expr *ArgExpr = Arg.getAsExpr();
1523        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1524            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1525          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1526            Invalid = true;
1527
1528          // Add the converted template argument.
1529          Decl *D
1530            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1531          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1532          continue;
1533        }
1534      }
1535        // fall through
1536
1537      case TemplateArgument::Type: {
1538        // We have a template template parameter but the template
1539        // argument does not refer to a template.
1540        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1541        Invalid = true;
1542        break;
1543      }
1544
1545      case TemplateArgument::Declaration:
1546        // We've already checked this template argument, so just copy
1547        // it to the list of converted arguments.
1548        Converted.Append(Arg);
1549        break;
1550
1551      case TemplateArgument::Integral:
1552        assert(false && "Integral argument with template template parameter");
1553        break;
1554
1555      case TemplateArgument::Pack:
1556        assert(0 && "FIXME: Implement!");
1557        break;
1558      }
1559    }
1560  }
1561
1562  return Invalid;
1563}
1564
1565/// \brief Check a template argument against its corresponding
1566/// template type parameter.
1567///
1568/// This routine implements the semantics of C++ [temp.arg.type]. It
1569/// returns true if an error occurred, and false otherwise.
1570bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1571                                 QualType Arg, SourceLocation ArgLoc) {
1572  // C++ [temp.arg.type]p2:
1573  //   A local type, a type with no linkage, an unnamed type or a type
1574  //   compounded from any of these types shall not be used as a
1575  //   template-argument for a template type-parameter.
1576  //
1577  // FIXME: Perform the recursive and no-linkage type checks.
1578  const TagType *Tag = 0;
1579  if (const EnumType *EnumT = Arg->getAsEnumType())
1580    Tag = EnumT;
1581  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1582    Tag = RecordT;
1583  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1584    return Diag(ArgLoc, diag::err_template_arg_local_type)
1585      << QualType(Tag, 0);
1586  else if (Tag && !Tag->getDecl()->getDeclName() &&
1587           !Tag->getDecl()->getTypedefForAnonDecl()) {
1588    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1589    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1590    return true;
1591  }
1592
1593  return false;
1594}
1595
1596/// \brief Checks whether the given template argument is the address
1597/// of an object or function according to C++ [temp.arg.nontype]p1.
1598bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1599                                                          NamedDecl *&Entity) {
1600  bool Invalid = false;
1601
1602  // See through any implicit casts we added to fix the type.
1603  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1604    Arg = Cast->getSubExpr();
1605
1606  // C++0x allows nullptr, and there's no further checking to be done for that.
1607  if (Arg->getType()->isNullPtrType())
1608    return false;
1609
1610  // C++ [temp.arg.nontype]p1:
1611  //
1612  //   A template-argument for a non-type, non-template
1613  //   template-parameter shall be one of: [...]
1614  //
1615  //     -- the address of an object or function with external
1616  //        linkage, including function templates and function
1617  //        template-ids but excluding non-static class members,
1618  //        expressed as & id-expression where the & is optional if
1619  //        the name refers to a function or array, or if the
1620  //        corresponding template-parameter is a reference; or
1621  DeclRefExpr *DRE = 0;
1622
1623  // Ignore (and complain about) any excess parentheses.
1624  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1625    if (!Invalid) {
1626      Diag(Arg->getSourceRange().getBegin(),
1627           diag::err_template_arg_extra_parens)
1628        << Arg->getSourceRange();
1629      Invalid = true;
1630    }
1631
1632    Arg = Parens->getSubExpr();
1633  }
1634
1635  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1636    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1637      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1638  } else
1639    DRE = dyn_cast<DeclRefExpr>(Arg);
1640
1641  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1642    return Diag(Arg->getSourceRange().getBegin(),
1643                diag::err_template_arg_not_object_or_func_form)
1644      << Arg->getSourceRange();
1645
1646  // Cannot refer to non-static data members
1647  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1648    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1649      << Field << Arg->getSourceRange();
1650
1651  // Cannot refer to non-static member functions
1652  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1653    if (!Method->isStatic())
1654      return Diag(Arg->getSourceRange().getBegin(),
1655                  diag::err_template_arg_method)
1656        << Method << Arg->getSourceRange();
1657
1658  // Functions must have external linkage.
1659  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1660    if (Func->getStorageClass() == FunctionDecl::Static) {
1661      Diag(Arg->getSourceRange().getBegin(),
1662           diag::err_template_arg_function_not_extern)
1663        << Func << Arg->getSourceRange();
1664      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1665        << true;
1666      return true;
1667    }
1668
1669    // Okay: we've named a function with external linkage.
1670    Entity = Func;
1671    return Invalid;
1672  }
1673
1674  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1675    if (!Var->hasGlobalStorage()) {
1676      Diag(Arg->getSourceRange().getBegin(),
1677           diag::err_template_arg_object_not_extern)
1678        << Var << Arg->getSourceRange();
1679      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1680        << true;
1681      return true;
1682    }
1683
1684    // Okay: we've named an object with external linkage
1685    Entity = Var;
1686    return Invalid;
1687  }
1688
1689  // We found something else, but we don't know specifically what it is.
1690  Diag(Arg->getSourceRange().getBegin(),
1691       diag::err_template_arg_not_object_or_func)
1692      << Arg->getSourceRange();
1693  Diag(DRE->getDecl()->getLocation(),
1694       diag::note_template_arg_refers_here);
1695  return true;
1696}
1697
1698/// \brief Checks whether the given template argument is a pointer to
1699/// member constant according to C++ [temp.arg.nontype]p1.
1700bool
1701Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1702  bool Invalid = false;
1703
1704  // See through any implicit casts we added to fix the type.
1705  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1706    Arg = Cast->getSubExpr();
1707
1708  // C++0x allows nullptr, and there's no further checking to be done for that.
1709  if (Arg->getType()->isNullPtrType())
1710    return false;
1711
1712  // C++ [temp.arg.nontype]p1:
1713  //
1714  //   A template-argument for a non-type, non-template
1715  //   template-parameter shall be one of: [...]
1716  //
1717  //     -- a pointer to member expressed as described in 5.3.1.
1718  QualifiedDeclRefExpr *DRE = 0;
1719
1720  // Ignore (and complain about) any excess parentheses.
1721  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1722    if (!Invalid) {
1723      Diag(Arg->getSourceRange().getBegin(),
1724           diag::err_template_arg_extra_parens)
1725        << Arg->getSourceRange();
1726      Invalid = true;
1727    }
1728
1729    Arg = Parens->getSubExpr();
1730  }
1731
1732  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1733    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1734      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1735
1736  if (!DRE)
1737    return Diag(Arg->getSourceRange().getBegin(),
1738                diag::err_template_arg_not_pointer_to_member_form)
1739      << Arg->getSourceRange();
1740
1741  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1742    assert((isa<FieldDecl>(DRE->getDecl()) ||
1743            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1744           "Only non-static member pointers can make it here");
1745
1746    // Okay: this is the address of a non-static member, and therefore
1747    // a member pointer constant.
1748    Member = DRE->getDecl();
1749    return Invalid;
1750  }
1751
1752  // We found something else, but we don't know specifically what it is.
1753  Diag(Arg->getSourceRange().getBegin(),
1754       diag::err_template_arg_not_pointer_to_member_form)
1755      << Arg->getSourceRange();
1756  Diag(DRE->getDecl()->getLocation(),
1757       diag::note_template_arg_refers_here);
1758  return true;
1759}
1760
1761/// \brief Check a template argument against its corresponding
1762/// non-type template parameter.
1763///
1764/// This routine implements the semantics of C++ [temp.arg.nontype].
1765/// It returns true if an error occurred, and false otherwise. \p
1766/// InstantiatedParamType is the type of the non-type template
1767/// parameter after it has been instantiated.
1768///
1769/// If no error was detected, Converted receives the converted template argument.
1770bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1771                                 QualType InstantiatedParamType, Expr *&Arg,
1772                                 TemplateArgument &Converted) {
1773  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1774
1775  // If either the parameter has a dependent type or the argument is
1776  // type-dependent, there's nothing we can check now.
1777  // FIXME: Add template argument to Converted!
1778  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1779    // FIXME: Produce a cloned, canonical expression?
1780    Converted = TemplateArgument(Arg);
1781    return false;
1782  }
1783
1784  // C++ [temp.arg.nontype]p5:
1785  //   The following conversions are performed on each expression used
1786  //   as a non-type template-argument. If a non-type
1787  //   template-argument cannot be converted to the type of the
1788  //   corresponding template-parameter then the program is
1789  //   ill-formed.
1790  //
1791  //     -- for a non-type template-parameter of integral or
1792  //        enumeration type, integral promotions (4.5) and integral
1793  //        conversions (4.7) are applied.
1794  QualType ParamType = InstantiatedParamType;
1795  QualType ArgType = Arg->getType();
1796  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1797    // C++ [temp.arg.nontype]p1:
1798    //   A template-argument for a non-type, non-template
1799    //   template-parameter shall be one of:
1800    //
1801    //     -- an integral constant-expression of integral or enumeration
1802    //        type; or
1803    //     -- the name of a non-type template-parameter; or
1804    SourceLocation NonConstantLoc;
1805    llvm::APSInt Value;
1806    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1807      Diag(Arg->getSourceRange().getBegin(),
1808           diag::err_template_arg_not_integral_or_enumeral)
1809        << ArgType << Arg->getSourceRange();
1810      Diag(Param->getLocation(), diag::note_template_param_here);
1811      return true;
1812    } else if (!Arg->isValueDependent() &&
1813               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1814      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1815        << ArgType << Arg->getSourceRange();
1816      return true;
1817    }
1818
1819    // FIXME: We need some way to more easily get the unqualified form
1820    // of the types without going all the way to the
1821    // canonical type.
1822    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1823      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1824    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1825      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1826
1827    // Try to convert the argument to the parameter's type.
1828    if (ParamType == ArgType) {
1829      // Okay: no conversion necessary
1830    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1831               !ParamType->isEnumeralType()) {
1832      // This is an integral promotion or conversion.
1833      ImpCastExprToType(Arg, ParamType);
1834    } else {
1835      // We can't perform this conversion.
1836      Diag(Arg->getSourceRange().getBegin(),
1837           diag::err_template_arg_not_convertible)
1838        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1839      Diag(Param->getLocation(), diag::note_template_param_here);
1840      return true;
1841    }
1842
1843    QualType IntegerType = Context.getCanonicalType(ParamType);
1844    if (const EnumType *Enum = IntegerType->getAsEnumType())
1845      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1846
1847    if (!Arg->isValueDependent()) {
1848      // Check that an unsigned parameter does not receive a negative
1849      // value.
1850      if (IntegerType->isUnsignedIntegerType()
1851          && (Value.isSigned() && Value.isNegative())) {
1852        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1853          << Value.toString(10) << Param->getType()
1854          << Arg->getSourceRange();
1855        Diag(Param->getLocation(), diag::note_template_param_here);
1856        return true;
1857      }
1858
1859      // Check that we don't overflow the template parameter type.
1860      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1861      if (Value.getActiveBits() > AllowedBits) {
1862        Diag(Arg->getSourceRange().getBegin(),
1863             diag::err_template_arg_too_large)
1864          << Value.toString(10) << Param->getType()
1865          << Arg->getSourceRange();
1866        Diag(Param->getLocation(), diag::note_template_param_here);
1867        return true;
1868      }
1869
1870      if (Value.getBitWidth() != AllowedBits)
1871        Value.extOrTrunc(AllowedBits);
1872      Value.setIsSigned(IntegerType->isSignedIntegerType());
1873    }
1874
1875    // Add the value of this argument to the list of converted
1876    // arguments. We use the bitwidth and signedness of the template
1877    // parameter.
1878    if (Arg->isValueDependent()) {
1879      // The argument is value-dependent. Create a new
1880      // TemplateArgument with the converted expression.
1881      Converted = TemplateArgument(Arg);
1882      return false;
1883    }
1884
1885    Converted = TemplateArgument(StartLoc, Value,
1886                                 ParamType->isEnumeralType() ? ParamType
1887                                                             : IntegerType);
1888    return false;
1889  }
1890
1891  // Handle pointer-to-function, reference-to-function, and
1892  // pointer-to-member-function all in (roughly) the same way.
1893  if (// -- For a non-type template-parameter of type pointer to
1894      //    function, only the function-to-pointer conversion (4.3) is
1895      //    applied. If the template-argument represents a set of
1896      //    overloaded functions (or a pointer to such), the matching
1897      //    function is selected from the set (13.4).
1898      // In C++0x, any std::nullptr_t value can be converted.
1899      (ParamType->isPointerType() &&
1900       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
1901      // -- For a non-type template-parameter of type reference to
1902      //    function, no conversions apply. If the template-argument
1903      //    represents a set of overloaded functions, the matching
1904      //    function is selected from the set (13.4).
1905      (ParamType->isReferenceType() &&
1906       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
1907      // -- For a non-type template-parameter of type pointer to
1908      //    member function, no conversions apply. If the
1909      //    template-argument represents a set of overloaded member
1910      //    functions, the matching member function is selected from
1911      //    the set (13.4).
1912      // Again, C++0x allows a std::nullptr_t value.
1913      (ParamType->isMemberPointerType() &&
1914       ParamType->getAs<MemberPointerType>()->getPointeeType()
1915         ->isFunctionType())) {
1916    if (Context.hasSameUnqualifiedType(ArgType,
1917                                       ParamType.getNonReferenceType())) {
1918      // We don't have to do anything: the types already match.
1919    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1920                 ParamType->isMemberPointerType())) {
1921      ArgType = ParamType;
1922      ImpCastExprToType(Arg, ParamType);
1923    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1924      ArgType = Context.getPointerType(ArgType);
1925      ImpCastExprToType(Arg, ArgType);
1926    } else if (FunctionDecl *Fn
1927                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1928      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1929        return true;
1930
1931      FixOverloadedFunctionReference(Arg, Fn);
1932      ArgType = Arg->getType();
1933      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1934        ArgType = Context.getPointerType(Arg->getType());
1935        ImpCastExprToType(Arg, ArgType);
1936      }
1937    }
1938
1939    if (!Context.hasSameUnqualifiedType(ArgType,
1940                                        ParamType.getNonReferenceType())) {
1941      // We can't perform this conversion.
1942      Diag(Arg->getSourceRange().getBegin(),
1943           diag::err_template_arg_not_convertible)
1944        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1945      Diag(Param->getLocation(), diag::note_template_param_here);
1946      return true;
1947    }
1948
1949    if (ParamType->isMemberPointerType()) {
1950      NamedDecl *Member = 0;
1951      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1952        return true;
1953
1954      if (Member)
1955        Member = cast<NamedDecl>(Member->getCanonicalDecl());
1956      Converted = TemplateArgument(StartLoc, Member);
1957      return false;
1958    }
1959
1960    NamedDecl *Entity = 0;
1961    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1962      return true;
1963
1964    if (Entity)
1965      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1966    Converted = TemplateArgument(StartLoc, Entity);
1967    return false;
1968  }
1969
1970  if (ParamType->isPointerType()) {
1971    //   -- for a non-type template-parameter of type pointer to
1972    //      object, qualification conversions (4.4) and the
1973    //      array-to-pointer conversion (4.2) are applied.
1974    // C++0x also allows a value of std::nullptr_t.
1975    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
1976           "Only object pointers allowed here");
1977
1978    if (ArgType->isNullPtrType()) {
1979      ArgType = ParamType;
1980      ImpCastExprToType(Arg, ParamType);
1981    } else if (ArgType->isArrayType()) {
1982      ArgType = Context.getArrayDecayedType(ArgType);
1983      ImpCastExprToType(Arg, ArgType);
1984    }
1985
1986    if (IsQualificationConversion(ArgType, ParamType)) {
1987      ArgType = ParamType;
1988      ImpCastExprToType(Arg, ParamType);
1989    }
1990
1991    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1992      // We can't perform this conversion.
1993      Diag(Arg->getSourceRange().getBegin(),
1994           diag::err_template_arg_not_convertible)
1995        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1996      Diag(Param->getLocation(), diag::note_template_param_here);
1997      return true;
1998    }
1999
2000    NamedDecl *Entity = 0;
2001    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2002      return true;
2003
2004    if (Entity)
2005      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2006    Converted = TemplateArgument(StartLoc, Entity);
2007    return false;
2008  }
2009
2010  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2011    //   -- For a non-type template-parameter of type reference to
2012    //      object, no conversions apply. The type referred to by the
2013    //      reference may be more cv-qualified than the (otherwise
2014    //      identical) type of the template-argument. The
2015    //      template-parameter is bound directly to the
2016    //      template-argument, which must be an lvalue.
2017    assert(ParamRefType->getPointeeType()->isObjectType() &&
2018           "Only object references allowed here");
2019
2020    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2021      Diag(Arg->getSourceRange().getBegin(),
2022           diag::err_template_arg_no_ref_bind)
2023        << InstantiatedParamType << Arg->getType()
2024        << Arg->getSourceRange();
2025      Diag(Param->getLocation(), diag::note_template_param_here);
2026      return true;
2027    }
2028
2029    unsigned ParamQuals
2030      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2031    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2032
2033    if ((ParamQuals | ArgQuals) != ParamQuals) {
2034      Diag(Arg->getSourceRange().getBegin(),
2035           diag::err_template_arg_ref_bind_ignores_quals)
2036        << InstantiatedParamType << Arg->getType()
2037        << Arg->getSourceRange();
2038      Diag(Param->getLocation(), diag::note_template_param_here);
2039      return true;
2040    }
2041
2042    NamedDecl *Entity = 0;
2043    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2044      return true;
2045
2046    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2047    Converted = TemplateArgument(StartLoc, Entity);
2048    return false;
2049  }
2050
2051  //     -- For a non-type template-parameter of type pointer to data
2052  //        member, qualification conversions (4.4) are applied.
2053  // C++0x allows std::nullptr_t values.
2054  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2055
2056  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2057    // Types match exactly: nothing more to do here.
2058  } else if (ArgType->isNullPtrType()) {
2059    ImpCastExprToType(Arg, ParamType);
2060  } else if (IsQualificationConversion(ArgType, ParamType)) {
2061    ImpCastExprToType(Arg, ParamType);
2062  } else {
2063    // We can't perform this conversion.
2064    Diag(Arg->getSourceRange().getBegin(),
2065         diag::err_template_arg_not_convertible)
2066      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2067    Diag(Param->getLocation(), diag::note_template_param_here);
2068    return true;
2069  }
2070
2071  NamedDecl *Member = 0;
2072  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2073    return true;
2074
2075  if (Member)
2076    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2077  Converted = TemplateArgument(StartLoc, Member);
2078  return false;
2079}
2080
2081/// \brief Check a template argument against its corresponding
2082/// template template parameter.
2083///
2084/// This routine implements the semantics of C++ [temp.arg.template].
2085/// It returns true if an error occurred, and false otherwise.
2086bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2087                                 DeclRefExpr *Arg) {
2088  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
2089  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
2090
2091  // C++ [temp.arg.template]p1:
2092  //   A template-argument for a template template-parameter shall be
2093  //   the name of a class template, expressed as id-expression. Only
2094  //   primary class templates are considered when matching the
2095  //   template template argument with the corresponding parameter;
2096  //   partial specializations are not considered even if their
2097  //   parameter lists match that of the template template parameter.
2098  //
2099  // Note that we also allow template template parameters here, which
2100  // will happen when we are dealing with, e.g., class template
2101  // partial specializations.
2102  if (!isa<ClassTemplateDecl>(Template) &&
2103      !isa<TemplateTemplateParmDecl>(Template)) {
2104    assert(isa<FunctionTemplateDecl>(Template) &&
2105           "Only function templates are possible here");
2106    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
2107    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2108      << Template;
2109  }
2110
2111  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2112                                         Param->getTemplateParameters(),
2113                                         true, true,
2114                                         Arg->getSourceRange().getBegin());
2115}
2116
2117/// \brief Determine whether the given template parameter lists are
2118/// equivalent.
2119///
2120/// \param New  The new template parameter list, typically written in the
2121/// source code as part of a new template declaration.
2122///
2123/// \param Old  The old template parameter list, typically found via
2124/// name lookup of the template declared with this template parameter
2125/// list.
2126///
2127/// \param Complain  If true, this routine will produce a diagnostic if
2128/// the template parameter lists are not equivalent.
2129///
2130/// \param IsTemplateTemplateParm  If true, this routine is being
2131/// called to compare the template parameter lists of a template
2132/// template parameter.
2133///
2134/// \param TemplateArgLoc If this source location is valid, then we
2135/// are actually checking the template parameter list of a template
2136/// argument (New) against the template parameter list of its
2137/// corresponding template template parameter (Old). We produce
2138/// slightly different diagnostics in this scenario.
2139///
2140/// \returns True if the template parameter lists are equal, false
2141/// otherwise.
2142bool
2143Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2144                                     TemplateParameterList *Old,
2145                                     bool Complain,
2146                                     bool IsTemplateTemplateParm,
2147                                     SourceLocation TemplateArgLoc) {
2148  if (Old->size() != New->size()) {
2149    if (Complain) {
2150      unsigned NextDiag = diag::err_template_param_list_different_arity;
2151      if (TemplateArgLoc.isValid()) {
2152        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2153        NextDiag = diag::note_template_param_list_different_arity;
2154      }
2155      Diag(New->getTemplateLoc(), NextDiag)
2156          << (New->size() > Old->size())
2157          << IsTemplateTemplateParm
2158          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2159      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2160        << IsTemplateTemplateParm
2161        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2162    }
2163
2164    return false;
2165  }
2166
2167  for (TemplateParameterList::iterator OldParm = Old->begin(),
2168         OldParmEnd = Old->end(), NewParm = New->begin();
2169       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2170    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2171      if (Complain) {
2172        unsigned NextDiag = diag::err_template_param_different_kind;
2173        if (TemplateArgLoc.isValid()) {
2174          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2175          NextDiag = diag::note_template_param_different_kind;
2176        }
2177        Diag((*NewParm)->getLocation(), NextDiag)
2178        << IsTemplateTemplateParm;
2179        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2180        << IsTemplateTemplateParm;
2181      }
2182      return false;
2183    }
2184
2185    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2186      // Okay; all template type parameters are equivalent (since we
2187      // know we're at the same index).
2188#if 0
2189      // FIXME: Enable this code in debug mode *after* we properly go through
2190      // and "instantiate" the template parameter lists of template template
2191      // parameters. It's only after this instantiation that (1) any dependent
2192      // types within the template parameter list of the template template
2193      // parameter can be checked, and (2) the template type parameter depths
2194      // will match up.
2195      QualType OldParmType
2196        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2197      QualType NewParmType
2198        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2199      assert(Context.getCanonicalType(OldParmType) ==
2200             Context.getCanonicalType(NewParmType) &&
2201             "type parameter mismatch?");
2202#endif
2203    } else if (NonTypeTemplateParmDecl *OldNTTP
2204                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2205      // The types of non-type template parameters must agree.
2206      NonTypeTemplateParmDecl *NewNTTP
2207        = cast<NonTypeTemplateParmDecl>(*NewParm);
2208      if (Context.getCanonicalType(OldNTTP->getType()) !=
2209            Context.getCanonicalType(NewNTTP->getType())) {
2210        if (Complain) {
2211          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2212          if (TemplateArgLoc.isValid()) {
2213            Diag(TemplateArgLoc,
2214                 diag::err_template_arg_template_params_mismatch);
2215            NextDiag = diag::note_template_nontype_parm_different_type;
2216          }
2217          Diag(NewNTTP->getLocation(), NextDiag)
2218            << NewNTTP->getType()
2219            << IsTemplateTemplateParm;
2220          Diag(OldNTTP->getLocation(),
2221               diag::note_template_nontype_parm_prev_declaration)
2222            << OldNTTP->getType();
2223        }
2224        return false;
2225      }
2226    } else {
2227      // The template parameter lists of template template
2228      // parameters must agree.
2229      // FIXME: Could we perform a faster "type" comparison here?
2230      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2231             "Only template template parameters handled here");
2232      TemplateTemplateParmDecl *OldTTP
2233        = cast<TemplateTemplateParmDecl>(*OldParm);
2234      TemplateTemplateParmDecl *NewTTP
2235        = cast<TemplateTemplateParmDecl>(*NewParm);
2236      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2237                                          OldTTP->getTemplateParameters(),
2238                                          Complain,
2239                                          /*IsTemplateTemplateParm=*/true,
2240                                          TemplateArgLoc))
2241        return false;
2242    }
2243  }
2244
2245  return true;
2246}
2247
2248/// \brief Check whether a template can be declared within this scope.
2249///
2250/// If the template declaration is valid in this scope, returns
2251/// false. Otherwise, issues a diagnostic and returns true.
2252bool
2253Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2254  // Find the nearest enclosing declaration scope.
2255  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2256         (S->getFlags() & Scope::TemplateParamScope) != 0)
2257    S = S->getParent();
2258
2259  // C++ [temp]p2:
2260  //   A template-declaration can appear only as a namespace scope or
2261  //   class scope declaration.
2262  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2263  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2264      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2265    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2266             << TemplateParams->getSourceRange();
2267
2268  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2269    Ctx = Ctx->getParent();
2270
2271  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2272    return false;
2273
2274  return Diag(TemplateParams->getTemplateLoc(),
2275              diag::err_template_outside_namespace_or_class_scope)
2276    << TemplateParams->getSourceRange();
2277}
2278
2279/// \brief Check whether a class template specialization or explicit
2280/// instantiation in the current context is well-formed.
2281///
2282/// This routine determines whether a class template specialization or
2283/// explicit instantiation can be declared in the current context
2284/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
2285/// appropriate diagnostics if there was an error. It returns true if
2286// there was an error that we cannot recover from, and false otherwise.
2287bool
2288Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
2289                                   ClassTemplateSpecializationDecl *PrevDecl,
2290                                            SourceLocation TemplateNameLoc,
2291                                            SourceRange ScopeSpecifierRange,
2292                                            bool PartialSpecialization,
2293                                            bool ExplicitInstantiation) {
2294  // C++ [temp.expl.spec]p2:
2295  //   An explicit specialization shall be declared in the namespace
2296  //   of which the template is a member, or, for member templates, in
2297  //   the namespace of which the enclosing class or enclosing class
2298  //   template is a member. An explicit specialization of a member
2299  //   function, member class or static data member of a class
2300  //   template shall be declared in the namespace of which the class
2301  //   template is a member. Such a declaration may also be a
2302  //   definition. If the declaration is not a definition, the
2303  //   specialization may be defined later in the name- space in which
2304  //   the explicit specialization was declared, or in a namespace
2305  //   that encloses the one in which the explicit specialization was
2306  //   declared.
2307  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2308    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2309    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
2310      << Kind << ClassTemplate;
2311    return true;
2312  }
2313
2314  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
2315  DeclContext *TemplateContext
2316    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
2317  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
2318      !ExplicitInstantiation) {
2319    // There is no prior declaration of this entity, so this
2320    // specialization must be in the same context as the template
2321    // itself.
2322    if (DC != TemplateContext) {
2323      if (isa<TranslationUnitDecl>(TemplateContext))
2324        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
2325          << PartialSpecialization
2326          << ClassTemplate << ScopeSpecifierRange;
2327      else if (isa<NamespaceDecl>(TemplateContext))
2328        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
2329          << PartialSpecialization << ClassTemplate
2330          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2331
2332      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2333    }
2334
2335    return false;
2336  }
2337
2338  // We have a previous declaration of this entity. Make sure that
2339  // this redeclaration (or definition) occurs in an enclosing namespace.
2340  if (!CurContext->Encloses(TemplateContext)) {
2341    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
2342    // dependent on a -Wc++0x flag.
2343    bool SuppressedDiag = false;
2344    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2345    if (isa<TranslationUnitDecl>(TemplateContext)) {
2346      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2347        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
2348          << Kind << ClassTemplate << ScopeSpecifierRange;
2349      else
2350        SuppressedDiag = true;
2351    } else if (isa<NamespaceDecl>(TemplateContext)) {
2352      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2353        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2354          << Kind << ClassTemplate
2355          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2356      else
2357        SuppressedDiag = true;
2358    }
2359
2360    if (!SuppressedDiag)
2361      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2362  }
2363
2364  return false;
2365}
2366
2367/// \brief Check the non-type template arguments of a class template
2368/// partial specialization according to C++ [temp.class.spec]p9.
2369///
2370/// \param TemplateParams the template parameters of the primary class
2371/// template.
2372///
2373/// \param TemplateArg the template arguments of the class template
2374/// partial specialization.
2375///
2376/// \param MirrorsPrimaryTemplate will be set true if the class
2377/// template partial specialization arguments are identical to the
2378/// implicit template arguments of the primary template. This is not
2379/// necessarily an error (C++0x), and it is left to the caller to diagnose
2380/// this condition when it is an error.
2381///
2382/// \returns true if there was an error, false otherwise.
2383bool Sema::CheckClassTemplatePartialSpecializationArgs(
2384                                        TemplateParameterList *TemplateParams,
2385                             const TemplateArgumentListBuilder &TemplateArgs,
2386                                        bool &MirrorsPrimaryTemplate) {
2387  // FIXME: the interface to this function will have to change to
2388  // accommodate variadic templates.
2389  MirrorsPrimaryTemplate = true;
2390
2391  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2392
2393  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2394    // Determine whether the template argument list of the partial
2395    // specialization is identical to the implicit argument list of
2396    // the primary template. The caller may need to diagnostic this as
2397    // an error per C++ [temp.class.spec]p9b3.
2398    if (MirrorsPrimaryTemplate) {
2399      if (TemplateTypeParmDecl *TTP
2400            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2401        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2402              Context.getCanonicalType(ArgList[I].getAsType()))
2403          MirrorsPrimaryTemplate = false;
2404      } else if (TemplateTemplateParmDecl *TTP
2405                   = dyn_cast<TemplateTemplateParmDecl>(
2406                                                 TemplateParams->getParam(I))) {
2407        // FIXME: We should settle on either Declaration storage or
2408        // Expression storage for template template parameters.
2409        TemplateTemplateParmDecl *ArgDecl
2410          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2411                                                  ArgList[I].getAsDecl());
2412        if (!ArgDecl)
2413          if (DeclRefExpr *DRE
2414                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2415            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2416
2417        if (!ArgDecl ||
2418            ArgDecl->getIndex() != TTP->getIndex() ||
2419            ArgDecl->getDepth() != TTP->getDepth())
2420          MirrorsPrimaryTemplate = false;
2421      }
2422    }
2423
2424    NonTypeTemplateParmDecl *Param
2425      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2426    if (!Param) {
2427      continue;
2428    }
2429
2430    Expr *ArgExpr = ArgList[I].getAsExpr();
2431    if (!ArgExpr) {
2432      MirrorsPrimaryTemplate = false;
2433      continue;
2434    }
2435
2436    // C++ [temp.class.spec]p8:
2437    //   A non-type argument is non-specialized if it is the name of a
2438    //   non-type parameter. All other non-type arguments are
2439    //   specialized.
2440    //
2441    // Below, we check the two conditions that only apply to
2442    // specialized non-type arguments, so skip any non-specialized
2443    // arguments.
2444    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2445      if (NonTypeTemplateParmDecl *NTTP
2446            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2447        if (MirrorsPrimaryTemplate &&
2448            (Param->getIndex() != NTTP->getIndex() ||
2449             Param->getDepth() != NTTP->getDepth()))
2450          MirrorsPrimaryTemplate = false;
2451
2452        continue;
2453      }
2454
2455    // C++ [temp.class.spec]p9:
2456    //   Within the argument list of a class template partial
2457    //   specialization, the following restrictions apply:
2458    //     -- A partially specialized non-type argument expression
2459    //        shall not involve a template parameter of the partial
2460    //        specialization except when the argument expression is a
2461    //        simple identifier.
2462    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2463      Diag(ArgExpr->getLocStart(),
2464           diag::err_dependent_non_type_arg_in_partial_spec)
2465        << ArgExpr->getSourceRange();
2466      return true;
2467    }
2468
2469    //     -- The type of a template parameter corresponding to a
2470    //        specialized non-type argument shall not be dependent on a
2471    //        parameter of the specialization.
2472    if (Param->getType()->isDependentType()) {
2473      Diag(ArgExpr->getLocStart(),
2474           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2475        << Param->getType()
2476        << ArgExpr->getSourceRange();
2477      Diag(Param->getLocation(), diag::note_template_param_here);
2478      return true;
2479    }
2480
2481    MirrorsPrimaryTemplate = false;
2482  }
2483
2484  return false;
2485}
2486
2487Sema::DeclResult
2488Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2489                                       TagUseKind TUK,
2490                                       SourceLocation KWLoc,
2491                                       const CXXScopeSpec &SS,
2492                                       TemplateTy TemplateD,
2493                                       SourceLocation TemplateNameLoc,
2494                                       SourceLocation LAngleLoc,
2495                                       ASTTemplateArgsPtr TemplateArgsIn,
2496                                       SourceLocation *TemplateArgLocs,
2497                                       SourceLocation RAngleLoc,
2498                                       AttributeList *Attr,
2499                               MultiTemplateParamsArg TemplateParameterLists) {
2500  // Find the class template we're specializing
2501  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2502  ClassTemplateDecl *ClassTemplate
2503    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2504
2505  bool isPartialSpecialization = false;
2506
2507  // Check the validity of the template headers that introduce this
2508  // template.
2509  TemplateParameterList *TemplateParams
2510    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2511                        (TemplateParameterList**)TemplateParameterLists.get(),
2512                                              TemplateParameterLists.size());
2513  if (TemplateParams && TemplateParams->size() > 0) {
2514    isPartialSpecialization = true;
2515
2516    // C++ [temp.class.spec]p10:
2517    //   The template parameter list of a specialization shall not
2518    //   contain default template argument values.
2519    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2520      Decl *Param = TemplateParams->getParam(I);
2521      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2522        if (TTP->hasDefaultArgument()) {
2523          Diag(TTP->getDefaultArgumentLoc(),
2524               diag::err_default_arg_in_partial_spec);
2525          TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2526        }
2527      } else if (NonTypeTemplateParmDecl *NTTP
2528                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2529        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2530          Diag(NTTP->getDefaultArgumentLoc(),
2531               diag::err_default_arg_in_partial_spec)
2532            << DefArg->getSourceRange();
2533          NTTP->setDefaultArgument(0);
2534          DefArg->Destroy(Context);
2535        }
2536      } else {
2537        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2538        if (Expr *DefArg = TTP->getDefaultArgument()) {
2539          Diag(TTP->getDefaultArgumentLoc(),
2540               diag::err_default_arg_in_partial_spec)
2541            << DefArg->getSourceRange();
2542          TTP->setDefaultArgument(0);
2543          DefArg->Destroy(Context);
2544        }
2545      }
2546    }
2547  } else if (!TemplateParams)
2548    Diag(KWLoc, diag::err_template_spec_needs_header)
2549      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2550
2551  // Check that the specialization uses the same tag kind as the
2552  // original template.
2553  TagDecl::TagKind Kind;
2554  switch (TagSpec) {
2555  default: assert(0 && "Unknown tag type!");
2556  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2557  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2558  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2559  }
2560  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2561                                    Kind, KWLoc,
2562                                    *ClassTemplate->getIdentifier())) {
2563    Diag(KWLoc, diag::err_use_with_wrong_tag)
2564      << ClassTemplate
2565      << CodeModificationHint::CreateReplacement(KWLoc,
2566                            ClassTemplate->getTemplatedDecl()->getKindName());
2567    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2568         diag::note_previous_use);
2569    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2570  }
2571
2572  // Translate the parser's template argument list in our AST format.
2573  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2574  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2575
2576  // Check that the template argument list is well-formed for this
2577  // template.
2578  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2579                                        TemplateArgs.size());
2580  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2581                                TemplateArgs.data(), TemplateArgs.size(),
2582                                RAngleLoc, false, Converted))
2583    return true;
2584
2585  assert((Converted.structuredSize() ==
2586            ClassTemplate->getTemplateParameters()->size()) &&
2587         "Converted template argument list is too short!");
2588
2589  // Find the class template (partial) specialization declaration that
2590  // corresponds to these arguments.
2591  llvm::FoldingSetNodeID ID;
2592  if (isPartialSpecialization) {
2593    bool MirrorsPrimaryTemplate;
2594    if (CheckClassTemplatePartialSpecializationArgs(
2595                                         ClassTemplate->getTemplateParameters(),
2596                                         Converted, MirrorsPrimaryTemplate))
2597      return true;
2598
2599    if (MirrorsPrimaryTemplate) {
2600      // C++ [temp.class.spec]p9b3:
2601      //
2602      //   -- The argument list of the specialization shall not be identical
2603      //      to the implicit argument list of the primary template.
2604      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2605        << (TUK == TUK_Definition)
2606        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2607                                                           RAngleLoc));
2608      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2609                                ClassTemplate->getIdentifier(),
2610                                TemplateNameLoc,
2611                                Attr,
2612                                TemplateParams,
2613                                AS_none);
2614    }
2615
2616    // FIXME: Template parameter list matters, too
2617    ClassTemplatePartialSpecializationDecl::Profile(ID,
2618                                                   Converted.getFlatArguments(),
2619                                                   Converted.flatSize(),
2620                                                    Context);
2621  } else
2622    ClassTemplateSpecializationDecl::Profile(ID,
2623                                             Converted.getFlatArguments(),
2624                                             Converted.flatSize(),
2625                                             Context);
2626  void *InsertPos = 0;
2627  ClassTemplateSpecializationDecl *PrevDecl = 0;
2628
2629  if (isPartialSpecialization)
2630    PrevDecl
2631      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2632                                                                    InsertPos);
2633  else
2634    PrevDecl
2635      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2636
2637  ClassTemplateSpecializationDecl *Specialization = 0;
2638
2639  // Check whether we can declare a class template specialization in
2640  // the current scope.
2641  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2642                                            TemplateNameLoc,
2643                                            SS.getRange(),
2644                                            isPartialSpecialization,
2645                                            /*ExplicitInstantiation=*/false))
2646    return true;
2647
2648  // The canonical type
2649  QualType CanonType;
2650  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2651    // Since the only prior class template specialization with these
2652    // arguments was referenced but not declared, reuse that
2653    // declaration node as our own, updating its source location to
2654    // reflect our new declaration.
2655    Specialization = PrevDecl;
2656    Specialization->setLocation(TemplateNameLoc);
2657    PrevDecl = 0;
2658    CanonType = Context.getTypeDeclType(Specialization);
2659  } else if (isPartialSpecialization) {
2660    // Build the canonical type that describes the converted template
2661    // arguments of the class template partial specialization.
2662    CanonType = Context.getTemplateSpecializationType(
2663                                                  TemplateName(ClassTemplate),
2664                                                  Converted.getFlatArguments(),
2665                                                  Converted.flatSize());
2666
2667    // Create a new class template partial specialization declaration node.
2668    TemplateParameterList *TemplateParams
2669      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2670    ClassTemplatePartialSpecializationDecl *PrevPartial
2671      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2672    ClassTemplatePartialSpecializationDecl *Partial
2673      = ClassTemplatePartialSpecializationDecl::Create(Context,
2674                                             ClassTemplate->getDeclContext(),
2675                                                       TemplateNameLoc,
2676                                                       TemplateParams,
2677                                                       ClassTemplate,
2678                                                       Converted,
2679                                                       PrevPartial);
2680
2681    if (PrevPartial) {
2682      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2683      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2684    } else {
2685      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2686    }
2687    Specialization = Partial;
2688
2689    // Check that all of the template parameters of the class template
2690    // partial specialization are deducible from the template
2691    // arguments. If not, this class template partial specialization
2692    // will never be used.
2693    llvm::SmallVector<bool, 8> DeducibleParams;
2694    DeducibleParams.resize(TemplateParams->size());
2695    MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams);
2696    unsigned NumNonDeducible = 0;
2697    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2698      if (!DeducibleParams[I])
2699        ++NumNonDeducible;
2700
2701    if (NumNonDeducible) {
2702      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2703        << (NumNonDeducible > 1)
2704        << SourceRange(TemplateNameLoc, RAngleLoc);
2705      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2706        if (!DeducibleParams[I]) {
2707          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2708          if (Param->getDeclName())
2709            Diag(Param->getLocation(),
2710                 diag::note_partial_spec_unused_parameter)
2711              << Param->getDeclName();
2712          else
2713            Diag(Param->getLocation(),
2714                 diag::note_partial_spec_unused_parameter)
2715              << std::string("<anonymous>");
2716        }
2717      }
2718    }
2719  } else {
2720    // Create a new class template specialization declaration node for
2721    // this explicit specialization.
2722    Specialization
2723      = ClassTemplateSpecializationDecl::Create(Context,
2724                                             ClassTemplate->getDeclContext(),
2725                                                TemplateNameLoc,
2726                                                ClassTemplate,
2727                                                Converted,
2728                                                PrevDecl);
2729
2730    if (PrevDecl) {
2731      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2732      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2733    } else {
2734      ClassTemplate->getSpecializations().InsertNode(Specialization,
2735                                                     InsertPos);
2736    }
2737
2738    CanonType = Context.getTypeDeclType(Specialization);
2739  }
2740
2741  // Note that this is an explicit specialization.
2742  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2743
2744  // Check that this isn't a redefinition of this specialization.
2745  if (TUK == TUK_Definition) {
2746    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2747      // FIXME: Should also handle explicit specialization after implicit
2748      // instantiation with a special diagnostic.
2749      SourceRange Range(TemplateNameLoc, RAngleLoc);
2750      Diag(TemplateNameLoc, diag::err_redefinition)
2751        << Context.getTypeDeclType(Specialization) << Range;
2752      Diag(Def->getLocation(), diag::note_previous_definition);
2753      Specialization->setInvalidDecl();
2754      return true;
2755    }
2756  }
2757
2758  // Build the fully-sugared type for this class template
2759  // specialization as the user wrote in the specialization
2760  // itself. This means that we'll pretty-print the type retrieved
2761  // from the specialization's declaration the way that the user
2762  // actually wrote the specialization, rather than formatting the
2763  // name based on the "canonical" representation used to store the
2764  // template arguments in the specialization.
2765  QualType WrittenTy
2766    = Context.getTemplateSpecializationType(Name,
2767                                            TemplateArgs.data(),
2768                                            TemplateArgs.size(),
2769                                            CanonType);
2770  Specialization->setTypeAsWritten(WrittenTy);
2771  TemplateArgsIn.release();
2772
2773  // C++ [temp.expl.spec]p9:
2774  //   A template explicit specialization is in the scope of the
2775  //   namespace in which the template was defined.
2776  //
2777  // We actually implement this paragraph where we set the semantic
2778  // context (in the creation of the ClassTemplateSpecializationDecl),
2779  // but we also maintain the lexical context where the actual
2780  // definition occurs.
2781  Specialization->setLexicalDeclContext(CurContext);
2782
2783  // We may be starting the definition of this specialization.
2784  if (TUK == TUK_Definition)
2785    Specialization->startDefinition();
2786
2787  // Add the specialization into its lexical context, so that it can
2788  // be seen when iterating through the list of declarations in that
2789  // context. However, specializations are not found by name lookup.
2790  CurContext->addDecl(Specialization);
2791  return DeclPtrTy::make(Specialization);
2792}
2793
2794Sema::DeclPtrTy
2795Sema::ActOnTemplateDeclarator(Scope *S,
2796                              MultiTemplateParamsArg TemplateParameterLists,
2797                              Declarator &D) {
2798  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2799}
2800
2801Sema::DeclPtrTy
2802Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2803                               MultiTemplateParamsArg TemplateParameterLists,
2804                                      Declarator &D) {
2805  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2806  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2807         "Not a function declarator!");
2808  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2809
2810  if (FTI.hasPrototype) {
2811    // FIXME: Diagnose arguments without names in C.
2812  }
2813
2814  Scope *ParentScope = FnBodyScope->getParent();
2815
2816  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2817                                  move(TemplateParameterLists),
2818                                  /*IsFunctionDefinition=*/true);
2819  if (FunctionTemplateDecl *FunctionTemplate
2820        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2821    return ActOnStartOfFunctionDef(FnBodyScope,
2822                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2823  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2824    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2825  return DeclPtrTy();
2826}
2827
2828// Explicit instantiation of a class template specialization
2829Sema::DeclResult
2830Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2831                                 unsigned TagSpec,
2832                                 SourceLocation KWLoc,
2833                                 const CXXScopeSpec &SS,
2834                                 TemplateTy TemplateD,
2835                                 SourceLocation TemplateNameLoc,
2836                                 SourceLocation LAngleLoc,
2837                                 ASTTemplateArgsPtr TemplateArgsIn,
2838                                 SourceLocation *TemplateArgLocs,
2839                                 SourceLocation RAngleLoc,
2840                                 AttributeList *Attr) {
2841  // Find the class template we're specializing
2842  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2843  ClassTemplateDecl *ClassTemplate
2844    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2845
2846  // Check that the specialization uses the same tag kind as the
2847  // original template.
2848  TagDecl::TagKind Kind;
2849  switch (TagSpec) {
2850  default: assert(0 && "Unknown tag type!");
2851  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2852  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2853  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2854  }
2855  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2856                                    Kind, KWLoc,
2857                                    *ClassTemplate->getIdentifier())) {
2858    Diag(KWLoc, diag::err_use_with_wrong_tag)
2859      << ClassTemplate
2860      << CodeModificationHint::CreateReplacement(KWLoc,
2861                            ClassTemplate->getTemplatedDecl()->getKindName());
2862    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2863         diag::note_previous_use);
2864    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2865  }
2866
2867  // C++0x [temp.explicit]p2:
2868  //   [...] An explicit instantiation shall appear in an enclosing
2869  //   namespace of its template. [...]
2870  //
2871  // This is C++ DR 275.
2872  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2873                                            TemplateNameLoc,
2874                                            SS.getRange(),
2875                                            /*PartialSpecialization=*/false,
2876                                            /*ExplicitInstantiation=*/true))
2877    return true;
2878
2879  // Translate the parser's template argument list in our AST format.
2880  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2881  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2882
2883  // Check that the template argument list is well-formed for this
2884  // template.
2885  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2886                                        TemplateArgs.size());
2887  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2888                                TemplateArgs.data(), TemplateArgs.size(),
2889                                RAngleLoc, false, Converted))
2890    return true;
2891
2892  assert((Converted.structuredSize() ==
2893            ClassTemplate->getTemplateParameters()->size()) &&
2894         "Converted template argument list is too short!");
2895
2896  // Find the class template specialization declaration that
2897  // corresponds to these arguments.
2898  llvm::FoldingSetNodeID ID;
2899  ClassTemplateSpecializationDecl::Profile(ID,
2900                                           Converted.getFlatArguments(),
2901                                           Converted.flatSize(),
2902                                           Context);
2903  void *InsertPos = 0;
2904  ClassTemplateSpecializationDecl *PrevDecl
2905    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2906
2907  ClassTemplateSpecializationDecl *Specialization = 0;
2908
2909  bool SpecializationRequiresInstantiation = true;
2910  if (PrevDecl) {
2911    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2912      // This particular specialization has already been declared or
2913      // instantiated. We cannot explicitly instantiate it.
2914      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2915        << Context.getTypeDeclType(PrevDecl);
2916      Diag(PrevDecl->getLocation(),
2917           diag::note_previous_explicit_instantiation);
2918      return DeclPtrTy::make(PrevDecl);
2919    }
2920
2921    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2922      // C++ DR 259, C++0x [temp.explicit]p4:
2923      //   For a given set of template parameters, if an explicit
2924      //   instantiation of a template appears after a declaration of
2925      //   an explicit specialization for that template, the explicit
2926      //   instantiation has no effect.
2927      if (!getLangOptions().CPlusPlus0x) {
2928        Diag(TemplateNameLoc,
2929             diag::ext_explicit_instantiation_after_specialization)
2930          << Context.getTypeDeclType(PrevDecl);
2931        Diag(PrevDecl->getLocation(),
2932             diag::note_previous_template_specialization);
2933      }
2934
2935      // Create a new class template specialization declaration node
2936      // for this explicit specialization. This node is only used to
2937      // record the existence of this explicit instantiation for
2938      // accurate reproduction of the source code; we don't actually
2939      // use it for anything, since it is semantically irrelevant.
2940      Specialization
2941        = ClassTemplateSpecializationDecl::Create(Context,
2942                                             ClassTemplate->getDeclContext(),
2943                                                  TemplateNameLoc,
2944                                                  ClassTemplate,
2945                                                  Converted, 0);
2946      Specialization->setLexicalDeclContext(CurContext);
2947      CurContext->addDecl(Specialization);
2948      return DeclPtrTy::make(Specialization);
2949    }
2950
2951    // If we have already (implicitly) instantiated this
2952    // specialization, there is less work to do.
2953    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2954      SpecializationRequiresInstantiation = false;
2955
2956    // Since the only prior class template specialization with these
2957    // arguments was referenced but not declared, reuse that
2958    // declaration node as our own, updating its source location to
2959    // reflect our new declaration.
2960    Specialization = PrevDecl;
2961    Specialization->setLocation(TemplateNameLoc);
2962    PrevDecl = 0;
2963  } else {
2964    // Create a new class template specialization declaration node for
2965    // this explicit specialization.
2966    Specialization
2967      = ClassTemplateSpecializationDecl::Create(Context,
2968                                             ClassTemplate->getDeclContext(),
2969                                                TemplateNameLoc,
2970                                                ClassTemplate,
2971                                                Converted, 0);
2972
2973    ClassTemplate->getSpecializations().InsertNode(Specialization,
2974                                                   InsertPos);
2975  }
2976
2977  // Build the fully-sugared type for this explicit instantiation as
2978  // the user wrote in the explicit instantiation itself. This means
2979  // that we'll pretty-print the type retrieved from the
2980  // specialization's declaration the way that the user actually wrote
2981  // the explicit instantiation, rather than formatting the name based
2982  // on the "canonical" representation used to store the template
2983  // arguments in the specialization.
2984  QualType WrittenTy
2985    = Context.getTemplateSpecializationType(Name,
2986                                            TemplateArgs.data(),
2987                                            TemplateArgs.size(),
2988                                  Context.getTypeDeclType(Specialization));
2989  Specialization->setTypeAsWritten(WrittenTy);
2990  TemplateArgsIn.release();
2991
2992  // Add the explicit instantiation into its lexical context. However,
2993  // since explicit instantiations are never found by name lookup, we
2994  // just put it into the declaration context directly.
2995  Specialization->setLexicalDeclContext(CurContext);
2996  CurContext->addDecl(Specialization);
2997
2998  // C++ [temp.explicit]p3:
2999  //   A definition of a class template or class member template
3000  //   shall be in scope at the point of the explicit instantiation of
3001  //   the class template or class member template.
3002  //
3003  // This check comes when we actually try to perform the
3004  // instantiation.
3005  if (SpecializationRequiresInstantiation)
3006    InstantiateClassTemplateSpecialization(Specialization, true);
3007  else // Instantiate the members of this class template specialization.
3008    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
3009
3010  return DeclPtrTy::make(Specialization);
3011}
3012
3013// Explicit instantiation of a member class of a class template.
3014Sema::DeclResult
3015Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
3016                                 unsigned TagSpec,
3017                                 SourceLocation KWLoc,
3018                                 const CXXScopeSpec &SS,
3019                                 IdentifierInfo *Name,
3020                                 SourceLocation NameLoc,
3021                                 AttributeList *Attr) {
3022
3023  bool Owned = false;
3024  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
3025                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
3026                            MultiTemplateParamsArg(*this, 0, 0), Owned);
3027  if (!TagD)
3028    return true;
3029
3030  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3031  if (Tag->isEnum()) {
3032    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
3033      << Context.getTypeDeclType(Tag);
3034    return true;
3035  }
3036
3037  if (Tag->isInvalidDecl())
3038    return true;
3039
3040  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
3041  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
3042  if (!Pattern) {
3043    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
3044      << Context.getTypeDeclType(Record);
3045    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
3046    return true;
3047  }
3048
3049  // C++0x [temp.explicit]p2:
3050  //   [...] An explicit instantiation shall appear in an enclosing
3051  //   namespace of its template. [...]
3052  //
3053  // This is C++ DR 275.
3054  if (getLangOptions().CPlusPlus0x) {
3055    // FIXME: In C++98, we would like to turn these errors into warnings,
3056    // dependent on a -Wc++0x flag.
3057    DeclContext *PatternContext
3058      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
3059    if (!CurContext->Encloses(PatternContext)) {
3060      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
3061        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
3062      Diag(Pattern->getLocation(), diag::note_previous_declaration);
3063    }
3064  }
3065
3066  if (!Record->getDefinition(Context)) {
3067    // If the class has a definition, instantiate it (and all of its
3068    // members, recursively).
3069    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
3070    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
3071                                    getTemplateInstantiationArgs(Record),
3072                                    /*ExplicitInstantiation=*/true))
3073      return true;
3074  } else // Instantiate all of the members of the class.
3075    InstantiateClassMembers(TemplateLoc, Record,
3076                            getTemplateInstantiationArgs(Record));
3077
3078  // FIXME: We don't have any representation for explicit instantiations of
3079  // member classes. Such a representation is not needed for compilation, but it
3080  // should be available for clients that want to see all of the declarations in
3081  // the source code.
3082  return TagD;
3083}
3084
3085Sema::TypeResult
3086Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
3087                        const IdentifierInfo &II, SourceLocation IdLoc) {
3088  NestedNameSpecifier *NNS
3089    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3090  if (!NNS)
3091    return true;
3092
3093  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
3094  if (T.isNull())
3095    return true;
3096  return T.getAsOpaquePtr();
3097}
3098
3099Sema::TypeResult
3100Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
3101                        SourceLocation TemplateLoc, TypeTy *Ty) {
3102  QualType T = GetTypeFromParser(Ty);
3103  NestedNameSpecifier *NNS
3104    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3105  const TemplateSpecializationType *TemplateId
3106    = T->getAsTemplateSpecializationType();
3107  assert(TemplateId && "Expected a template specialization type");
3108
3109  if (computeDeclContext(SS, false)) {
3110    // If we can compute a declaration context, then the "typename"
3111    // keyword was superfluous. Just build a QualifiedNameType to keep
3112    // track of the nested-name-specifier.
3113
3114    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
3115    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
3116  }
3117
3118  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
3119}
3120
3121/// \brief Build the type that describes a C++ typename specifier,
3122/// e.g., "typename T::type".
3123QualType
3124Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
3125                        SourceRange Range) {
3126  CXXRecordDecl *CurrentInstantiation = 0;
3127  if (NNS->isDependent()) {
3128    CurrentInstantiation = getCurrentInstantiationOf(NNS);
3129
3130    // If the nested-name-specifier does not refer to the current
3131    // instantiation, then build a typename type.
3132    if (!CurrentInstantiation)
3133      return Context.getTypenameType(NNS, &II);
3134
3135    // The nested-name-specifier refers to the current instantiation, so the
3136    // "typename" keyword itself is superfluous. In C++03, the program is
3137    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
3138    // extraneous "typename" keywords, and we retroactively apply this DR to
3139    // C++03 code.
3140  }
3141
3142  DeclContext *Ctx = 0;
3143
3144  if (CurrentInstantiation)
3145    Ctx = CurrentInstantiation;
3146  else {
3147    CXXScopeSpec SS;
3148    SS.setScopeRep(NNS);
3149    SS.setRange(Range);
3150    if (RequireCompleteDeclContext(SS))
3151      return QualType();
3152
3153    Ctx = computeDeclContext(SS);
3154  }
3155  assert(Ctx && "No declaration context?");
3156
3157  DeclarationName Name(&II);
3158  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3159                                            false);
3160  unsigned DiagID = 0;
3161  Decl *Referenced = 0;
3162  switch (Result.getKind()) {
3163  case LookupResult::NotFound:
3164    if (Ctx->isTranslationUnit())
3165      DiagID = diag::err_typename_nested_not_found_global;
3166    else
3167      DiagID = diag::err_typename_nested_not_found;
3168    break;
3169
3170  case LookupResult::Found:
3171    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3172      // We found a type. Build a QualifiedNameType, since the
3173      // typename-specifier was just sugar. FIXME: Tell
3174      // QualifiedNameType that it has a "typename" prefix.
3175      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3176    }
3177
3178    DiagID = diag::err_typename_nested_not_type;
3179    Referenced = Result.getAsDecl();
3180    break;
3181
3182  case LookupResult::FoundOverloaded:
3183    DiagID = diag::err_typename_nested_not_type;
3184    Referenced = *Result.begin();
3185    break;
3186
3187  case LookupResult::AmbiguousBaseSubobjectTypes:
3188  case LookupResult::AmbiguousBaseSubobjects:
3189  case LookupResult::AmbiguousReference:
3190    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3191    return QualType();
3192  }
3193
3194  // If we get here, it's because name lookup did not find a
3195  // type. Emit an appropriate diagnostic and return an error.
3196  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3197    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3198  else
3199    Diag(Range.getEnd(), DiagID) << Range << Name;
3200  if (Referenced)
3201    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3202      << Name;
3203  return QualType();
3204}
3205
3206namespace {
3207  // See Sema::RebuildTypeInCurrentInstantiation
3208  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
3209    : public TreeTransform<CurrentInstantiationRebuilder>
3210  {
3211    SourceLocation Loc;
3212    DeclarationName Entity;
3213
3214  public:
3215    CurrentInstantiationRebuilder(Sema &SemaRef,
3216                                  SourceLocation Loc,
3217                                  DeclarationName Entity)
3218    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
3219      Loc(Loc), Entity(Entity) { }
3220
3221    /// \brief Determine whether the given type \p T has already been
3222    /// transformed.
3223    ///
3224    /// For the purposes of type reconstruction, a type has already been
3225    /// transformed if it is NULL or if it is not dependent.
3226    bool AlreadyTransformed(QualType T) {
3227      return T.isNull() || !T->isDependentType();
3228    }
3229
3230    /// \brief Returns the location of the entity whose type is being
3231    /// rebuilt.
3232    SourceLocation getBaseLocation() { return Loc; }
3233
3234    /// \brief Returns the name of the entity whose type is being rebuilt.
3235    DeclarationName getBaseEntity() { return Entity; }
3236
3237    /// \brief Transforms an expression by returning the expression itself
3238    /// (an identity function).
3239    ///
3240    /// FIXME: This is completely unsafe; we will need to actually clone the
3241    /// expressions.
3242    Sema::OwningExprResult TransformExpr(Expr *E) {
3243      return getSema().Owned(E);
3244    }
3245
3246    /// \brief Transforms a typename type by determining whether the type now
3247    /// refers to a member of the current instantiation, and then
3248    /// type-checking and building a QualifiedNameType (when possible).
3249    QualType TransformTypenameType(const TypenameType *T);
3250  };
3251}
3252
3253QualType
3254CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) {
3255  NestedNameSpecifier *NNS
3256    = TransformNestedNameSpecifier(T->getQualifier(),
3257                              /*FIXME:*/SourceRange(getBaseLocation()));
3258  if (!NNS)
3259    return QualType();
3260
3261  // If the nested-name-specifier did not change, and we cannot compute the
3262  // context corresponding to the nested-name-specifier, then this
3263  // typename type will not change; exit early.
3264  CXXScopeSpec SS;
3265  SS.setRange(SourceRange(getBaseLocation()));
3266  SS.setScopeRep(NNS);
3267  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
3268    return QualType(T, 0);
3269
3270  // Rebuild the typename type, which will probably turn into a
3271  // QualifiedNameType.
3272  if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
3273    QualType NewTemplateId
3274      = TransformType(QualType(TemplateId, 0));
3275    if (NewTemplateId.isNull())
3276      return QualType();
3277
3278    if (NNS == T->getQualifier() &&
3279        NewTemplateId == QualType(TemplateId, 0))
3280      return QualType(T, 0);
3281
3282    return getDerived().RebuildTypenameType(NNS, NewTemplateId);
3283  }
3284
3285  return getDerived().RebuildTypenameType(NNS, T->getIdentifier());
3286}
3287
3288/// \brief Rebuilds a type within the context of the current instantiation.
3289///
3290/// The type \p T is part of the type of an out-of-line member definition of
3291/// a class template (or class template partial specialization) that was parsed
3292/// and constructed before we entered the scope of the class template (or
3293/// partial specialization thereof). This routine will rebuild that type now
3294/// that we have entered the declarator's scope, which may produce different
3295/// canonical types, e.g.,
3296///
3297/// \code
3298/// template<typename T>
3299/// struct X {
3300///   typedef T* pointer;
3301///   pointer data();
3302/// };
3303///
3304/// template<typename T>
3305/// typename X<T>::pointer X<T>::data() { ... }
3306/// \endcode
3307///
3308/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
3309/// since we do not know that we can look into X<T> when we parsed the type.
3310/// This function will rebuild the type, performing the lookup of "pointer"
3311/// in X<T> and returning a QualifiedNameType whose canonical type is the same
3312/// as the canonical type of T*, allowing the return types of the out-of-line
3313/// definition and the declaration to match.
3314QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
3315                                                 DeclarationName Name) {
3316  if (T.isNull() || !T->isDependentType())
3317    return T;
3318
3319  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
3320  return Rebuilder.TransformType(T);
3321}
3322