SemaTemplate.cpp revision 3a51d418b267c2b302f1f6a10273049c6ce95e2b
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 Found.clear(); 298 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 299 Found.getLookupKind(), S, &SS, 300 LookupCtx, false, 301 CTC_CXXCasts)) { 302 Found.setLookupName(Corrected.getCorrection()); 303 if (Corrected.getCorrectionDecl()) 304 Found.addDecl(Corrected.getCorrectionDecl()); 305 FilterAcceptableTemplateNames(Found); 306 if (!Found.empty()) { 307 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 308 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 309 if (LookupCtx) 310 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 311 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 312 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 313 else 314 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 315 << Name << CorrectedQuotedStr 316 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 317 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 318 Diag(Template->getLocation(), diag::note_previous_decl) 319 << CorrectedQuotedStr; 320 } 321 } else { 322 Found.setLookupName(Name); 323 } 324 } 325 326 FilterAcceptableTemplateNames(Found); 327 if (Found.empty()) { 328 if (isDependent) 329 MemberOfUnknownSpecialization = true; 330 return; 331 } 332 333 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 334 // C++ [basic.lookup.classref]p1: 335 // [...] If the lookup in the class of the object expression finds a 336 // template, the name is also looked up in the context of the entire 337 // postfix-expression and [...] 338 // 339 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 340 LookupOrdinaryName); 341 LookupName(FoundOuter, S); 342 FilterAcceptableTemplateNames(FoundOuter); 343 344 if (FoundOuter.empty()) { 345 // - if the name is not found, the name found in the class of the 346 // object expression is used, otherwise 347 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 348 FoundOuter.isAmbiguous()) { 349 // - if the name is found in the context of the entire 350 // postfix-expression and does not name a class template, the name 351 // found in the class of the object expression is used, otherwise 352 FoundOuter.clear(); 353 } else if (!Found.isSuppressingDiagnostics()) { 354 // - if the name found is a class template, it must refer to the same 355 // entity as the one found in the class of the object expression, 356 // otherwise the program is ill-formed. 357 if (!Found.isSingleResult() || 358 Found.getFoundDecl()->getCanonicalDecl() 359 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 360 Diag(Found.getNameLoc(), 361 diag::ext_nested_name_member_ref_lookup_ambiguous) 362 << Found.getLookupName() 363 << ObjectType; 364 Diag(Found.getRepresentativeDecl()->getLocation(), 365 diag::note_ambig_member_ref_object_type) 366 << ObjectType; 367 Diag(FoundOuter.getFoundDecl()->getLocation(), 368 diag::note_ambig_member_ref_scope); 369 370 // Recover by taking the template that we found in the object 371 // expression's type. 372 } 373 } 374 } 375} 376 377/// ActOnDependentIdExpression - Handle a dependent id-expression that 378/// was just parsed. This is only possible with an explicit scope 379/// specifier naming a dependent type. 380ExprResult 381Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 382 const DeclarationNameInfo &NameInfo, 383 bool isAddressOfOperand, 384 const TemplateArgumentListInfo *TemplateArgs) { 385 DeclContext *DC = getFunctionLevelDeclContext(); 386 387 if (!isAddressOfOperand && 388 isa<CXXMethodDecl>(DC) && 389 cast<CXXMethodDecl>(DC)->isInstance()) { 390 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 391 392 // Since the 'this' expression is synthesized, we don't need to 393 // perform the double-lookup check. 394 NamedDecl *FirstQualifierInScope = 0; 395 396 return Owned(CXXDependentScopeMemberExpr::Create(Context, 397 /*This*/ 0, ThisType, 398 /*IsArrow*/ true, 399 /*Op*/ SourceLocation(), 400 SS.getWithLocInContext(Context), 401 FirstQualifierInScope, 402 NameInfo, 403 TemplateArgs)); 404 } 405 406 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 407} 408 409ExprResult 410Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 411 const DeclarationNameInfo &NameInfo, 412 const TemplateArgumentListInfo *TemplateArgs) { 413 return Owned(DependentScopeDeclRefExpr::Create(Context, 414 SS.getWithLocInContext(Context), 415 NameInfo, 416 TemplateArgs)); 417} 418 419/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 420/// that the template parameter 'PrevDecl' is being shadowed by a new 421/// declaration at location Loc. Returns true to indicate that this is 422/// an error, and false otherwise. 423bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 424 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 425 426 // Microsoft Visual C++ permits template parameters to be shadowed. 427 if (getLangOptions().Microsoft) 428 return false; 429 430 // C++ [temp.local]p4: 431 // A template-parameter shall not be redeclared within its 432 // scope (including nested scopes). 433 Diag(Loc, diag::err_template_param_shadow) 434 << cast<NamedDecl>(PrevDecl)->getDeclName(); 435 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 436 return true; 437} 438 439/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 440/// the parameter D to reference the templated declaration and return a pointer 441/// to the template declaration. Otherwise, do nothing to D and return null. 442TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 443 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 444 D = Temp->getTemplatedDecl(); 445 return Temp; 446 } 447 return 0; 448} 449 450ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 451 SourceLocation EllipsisLoc) const { 452 assert(Kind == Template && 453 "Only template template arguments can be pack expansions here"); 454 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 455 "Template template argument pack expansion without packs"); 456 ParsedTemplateArgument Result(*this); 457 Result.EllipsisLoc = EllipsisLoc; 458 return Result; 459} 460 461static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 462 const ParsedTemplateArgument &Arg) { 463 464 switch (Arg.getKind()) { 465 case ParsedTemplateArgument::Type: { 466 TypeSourceInfo *DI; 467 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 468 if (!DI) 469 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 470 return TemplateArgumentLoc(TemplateArgument(T), DI); 471 } 472 473 case ParsedTemplateArgument::NonType: { 474 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 475 return TemplateArgumentLoc(TemplateArgument(E), E); 476 } 477 478 case ParsedTemplateArgument::Template: { 479 TemplateName Template = Arg.getAsTemplate().get(); 480 TemplateArgument TArg; 481 if (Arg.getEllipsisLoc().isValid()) 482 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 483 else 484 TArg = Template; 485 return TemplateArgumentLoc(TArg, 486 Arg.getScopeSpec().getWithLocInContext( 487 SemaRef.Context), 488 Arg.getLocation(), 489 Arg.getEllipsisLoc()); 490 } 491 } 492 493 llvm_unreachable("Unhandled parsed template argument"); 494 return TemplateArgumentLoc(); 495} 496 497/// \brief Translates template arguments as provided by the parser 498/// into template arguments used by semantic analysis. 499void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 500 TemplateArgumentListInfo &TemplateArgs) { 501 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 502 TemplateArgs.addArgument(translateTemplateArgument(*this, 503 TemplateArgsIn[I])); 504} 505 506/// ActOnTypeParameter - Called when a C++ template type parameter 507/// (e.g., "typename T") has been parsed. Typename specifies whether 508/// the keyword "typename" was used to declare the type parameter 509/// (otherwise, "class" was used), and KeyLoc is the location of the 510/// "class" or "typename" keyword. ParamName is the name of the 511/// parameter (NULL indicates an unnamed template parameter) and 512/// ParamNameLoc is the location of the parameter name (if any). 513/// If the type parameter has a default argument, it will be added 514/// later via ActOnTypeParameterDefault. 515Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 516 SourceLocation EllipsisLoc, 517 SourceLocation KeyLoc, 518 IdentifierInfo *ParamName, 519 SourceLocation ParamNameLoc, 520 unsigned Depth, unsigned Position, 521 SourceLocation EqualLoc, 522 ParsedType DefaultArg) { 523 assert(S->isTemplateParamScope() && 524 "Template type parameter not in template parameter scope!"); 525 bool Invalid = false; 526 527 if (ParamName) { 528 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 529 LookupOrdinaryName, 530 ForRedeclaration); 531 if (PrevDecl && PrevDecl->isTemplateParameter()) 532 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 533 PrevDecl); 534 } 535 536 SourceLocation Loc = ParamNameLoc; 537 if (!ParamName) 538 Loc = KeyLoc; 539 540 TemplateTypeParmDecl *Param 541 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 542 KeyLoc, Loc, Depth, Position, ParamName, 543 Typename, Ellipsis); 544 Param->setAccess(AS_public); 545 if (Invalid) 546 Param->setInvalidDecl(); 547 548 if (ParamName) { 549 // Add the template parameter into the current scope. 550 S->AddDecl(Param); 551 IdResolver.AddDecl(Param); 552 } 553 554 // C++0x [temp.param]p9: 555 // A default template-argument may be specified for any kind of 556 // template-parameter that is not a template parameter pack. 557 if (DefaultArg && Ellipsis) { 558 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 559 DefaultArg = ParsedType(); 560 } 561 562 // Handle the default argument, if provided. 563 if (DefaultArg) { 564 TypeSourceInfo *DefaultTInfo; 565 GetTypeFromParser(DefaultArg, &DefaultTInfo); 566 567 assert(DefaultTInfo && "expected source information for type"); 568 569 // Check for unexpanded parameter packs. 570 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 571 UPPC_DefaultArgument)) 572 return Param; 573 574 // Check the template argument itself. 575 if (CheckTemplateArgument(Param, DefaultTInfo)) { 576 Param->setInvalidDecl(); 577 return Param; 578 } 579 580 Param->setDefaultArgument(DefaultTInfo, false); 581 } 582 583 return Param; 584} 585 586/// \brief Check that the type of a non-type template parameter is 587/// well-formed. 588/// 589/// \returns the (possibly-promoted) parameter type if valid; 590/// otherwise, produces a diagnostic and returns a NULL type. 591QualType 592Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 593 // We don't allow variably-modified types as the type of non-type template 594 // parameters. 595 if (T->isVariablyModifiedType()) { 596 Diag(Loc, diag::err_variably_modified_nontype_template_param) 597 << T; 598 return QualType(); 599 } 600 601 // C++ [temp.param]p4: 602 // 603 // A non-type template-parameter shall have one of the following 604 // (optionally cv-qualified) types: 605 // 606 // -- integral or enumeration type, 607 if (T->isIntegralOrEnumerationType() || 608 // -- pointer to object or pointer to function, 609 T->isPointerType() || 610 // -- reference to object or reference to function, 611 T->isReferenceType() || 612 // -- pointer to member, 613 T->isMemberPointerType() || 614 // -- std::nullptr_t. 615 T->isNullPtrType() || 616 // If T is a dependent type, we can't do the check now, so we 617 // assume that it is well-formed. 618 T->isDependentType()) 619 return T; 620 // C++ [temp.param]p8: 621 // 622 // A non-type template-parameter of type "array of T" or 623 // "function returning T" is adjusted to be of type "pointer to 624 // T" or "pointer to function returning T", respectively. 625 else if (T->isArrayType()) 626 // FIXME: Keep the type prior to promotion? 627 return Context.getArrayDecayedType(T); 628 else if (T->isFunctionType()) 629 // FIXME: Keep the type prior to promotion? 630 return Context.getPointerType(T); 631 632 Diag(Loc, diag::err_template_nontype_parm_bad_type) 633 << T; 634 635 return QualType(); 636} 637 638Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 639 unsigned Depth, 640 unsigned Position, 641 SourceLocation EqualLoc, 642 Expr *Default) { 643 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 644 QualType T = TInfo->getType(); 645 646 assert(S->isTemplateParamScope() && 647 "Non-type template parameter not in template parameter scope!"); 648 bool Invalid = false; 649 650 IdentifierInfo *ParamName = D.getIdentifier(); 651 if (ParamName) { 652 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 653 LookupOrdinaryName, 654 ForRedeclaration); 655 if (PrevDecl && PrevDecl->isTemplateParameter()) 656 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 657 PrevDecl); 658 } 659 660 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 661 if (T.isNull()) { 662 T = Context.IntTy; // Recover with an 'int' type. 663 Invalid = true; 664 } 665 666 bool IsParameterPack = D.hasEllipsis(); 667 NonTypeTemplateParmDecl *Param 668 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 669 D.getSourceRange().getBegin(), 670 D.getIdentifierLoc(), 671 Depth, Position, ParamName, T, 672 IsParameterPack, TInfo); 673 Param->setAccess(AS_public); 674 675 if (Invalid) 676 Param->setInvalidDecl(); 677 678 if (D.getIdentifier()) { 679 // Add the template parameter into the current scope. 680 S->AddDecl(Param); 681 IdResolver.AddDecl(Param); 682 } 683 684 // C++0x [temp.param]p9: 685 // A default template-argument may be specified for any kind of 686 // template-parameter that is not a template parameter pack. 687 if (Default && IsParameterPack) { 688 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 689 Default = 0; 690 } 691 692 // Check the well-formedness of the default template argument, if provided. 693 if (Default) { 694 // Check for unexpanded parameter packs. 695 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 696 return Param; 697 698 TemplateArgument Converted; 699 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 700 if (DefaultRes.isInvalid()) { 701 Param->setInvalidDecl(); 702 return Param; 703 } 704 Default = DefaultRes.take(); 705 706 Param->setDefaultArgument(Default, false); 707 } 708 709 return Param; 710} 711 712/// ActOnTemplateTemplateParameter - Called when a C++ template template 713/// parameter (e.g. T in template <template <typename> class T> class array) 714/// has been parsed. S is the current scope. 715Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 716 SourceLocation TmpLoc, 717 TemplateParamsTy *Params, 718 SourceLocation EllipsisLoc, 719 IdentifierInfo *Name, 720 SourceLocation NameLoc, 721 unsigned Depth, 722 unsigned Position, 723 SourceLocation EqualLoc, 724 ParsedTemplateArgument Default) { 725 assert(S->isTemplateParamScope() && 726 "Template template parameter not in template parameter scope!"); 727 728 // Construct the parameter object. 729 bool IsParameterPack = EllipsisLoc.isValid(); 730 TemplateTemplateParmDecl *Param = 731 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 732 NameLoc.isInvalid()? TmpLoc : NameLoc, 733 Depth, Position, IsParameterPack, 734 Name, Params); 735 Param->setAccess(AS_public); 736 737 // If the template template parameter has a name, then link the identifier 738 // into the scope and lookup mechanisms. 739 if (Name) { 740 S->AddDecl(Param); 741 IdResolver.AddDecl(Param); 742 } 743 744 if (Params->size() == 0) { 745 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 746 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 747 Param->setInvalidDecl(); 748 } 749 750 // C++0x [temp.param]p9: 751 // A default template-argument may be specified for any kind of 752 // template-parameter that is not a template parameter pack. 753 if (IsParameterPack && !Default.isInvalid()) { 754 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 755 Default = ParsedTemplateArgument(); 756 } 757 758 if (!Default.isInvalid()) { 759 // Check only that we have a template template argument. We don't want to 760 // try to check well-formedness now, because our template template parameter 761 // might have dependent types in its template parameters, which we wouldn't 762 // be able to match now. 763 // 764 // If none of the template template parameter's template arguments mention 765 // other template parameters, we could actually perform more checking here. 766 // However, it isn't worth doing. 767 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 768 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 769 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 770 << DefaultArg.getSourceRange(); 771 return Param; 772 } 773 774 // Check for unexpanded parameter packs. 775 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 776 DefaultArg.getArgument().getAsTemplate(), 777 UPPC_DefaultArgument)) 778 return Param; 779 780 Param->setDefaultArgument(DefaultArg, false); 781 } 782 783 return Param; 784} 785 786/// ActOnTemplateParameterList - Builds a TemplateParameterList that 787/// contains the template parameters in Params/NumParams. 788Sema::TemplateParamsTy * 789Sema::ActOnTemplateParameterList(unsigned Depth, 790 SourceLocation ExportLoc, 791 SourceLocation TemplateLoc, 792 SourceLocation LAngleLoc, 793 Decl **Params, unsigned NumParams, 794 SourceLocation RAngleLoc) { 795 if (ExportLoc.isValid()) 796 Diag(ExportLoc, diag::warn_template_export_unsupported); 797 798 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 799 (NamedDecl**)Params, NumParams, 800 RAngleLoc); 801} 802 803static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 804 if (SS.isSet()) 805 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 806} 807 808DeclResult 809Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 810 SourceLocation KWLoc, CXXScopeSpec &SS, 811 IdentifierInfo *Name, SourceLocation NameLoc, 812 AttributeList *Attr, 813 TemplateParameterList *TemplateParams, 814 AccessSpecifier AS, 815 unsigned NumOuterTemplateParamLists, 816 TemplateParameterList** OuterTemplateParamLists) { 817 assert(TemplateParams && TemplateParams->size() > 0 && 818 "No template parameters"); 819 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 820 bool Invalid = false; 821 822 // Check that we can declare a template here. 823 if (CheckTemplateDeclScope(S, TemplateParams)) 824 return true; 825 826 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 827 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 828 829 // There is no such thing as an unnamed class template. 830 if (!Name) { 831 Diag(KWLoc, diag::err_template_unnamed_class); 832 return true; 833 } 834 835 // Find any previous declaration with this name. 836 DeclContext *SemanticContext; 837 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 838 ForRedeclaration); 839 if (SS.isNotEmpty() && !SS.isInvalid()) { 840 SemanticContext = computeDeclContext(SS, true); 841 if (!SemanticContext) { 842 // FIXME: Produce a reasonable diagnostic here 843 return true; 844 } 845 846 if (RequireCompleteDeclContext(SS, SemanticContext)) 847 return true; 848 849 LookupQualifiedName(Previous, SemanticContext); 850 } else { 851 SemanticContext = CurContext; 852 LookupName(Previous, S); 853 } 854 855 if (Previous.isAmbiguous()) 856 return true; 857 858 NamedDecl *PrevDecl = 0; 859 if (Previous.begin() != Previous.end()) 860 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 861 862 // If there is a previous declaration with the same name, check 863 // whether this is a valid redeclaration. 864 ClassTemplateDecl *PrevClassTemplate 865 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 866 867 // We may have found the injected-class-name of a class template, 868 // class template partial specialization, or class template specialization. 869 // In these cases, grab the template that is being defined or specialized. 870 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 871 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 872 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 873 PrevClassTemplate 874 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 875 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 876 PrevClassTemplate 877 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 878 ->getSpecializedTemplate(); 879 } 880 } 881 882 if (TUK == TUK_Friend) { 883 // C++ [namespace.memdef]p3: 884 // [...] When looking for a prior declaration of a class or a function 885 // declared as a friend, and when the name of the friend class or 886 // function is neither a qualified name nor a template-id, scopes outside 887 // the innermost enclosing namespace scope are not considered. 888 if (!SS.isSet()) { 889 DeclContext *OutermostContext = CurContext; 890 while (!OutermostContext->isFileContext()) 891 OutermostContext = OutermostContext->getLookupParent(); 892 893 if (PrevDecl && 894 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 895 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 896 SemanticContext = PrevDecl->getDeclContext(); 897 } else { 898 // Declarations in outer scopes don't matter. However, the outermost 899 // context we computed is the semantic context for our new 900 // declaration. 901 PrevDecl = PrevClassTemplate = 0; 902 SemanticContext = OutermostContext; 903 } 904 } 905 906 if (CurContext->isDependentContext()) { 907 // If this is a dependent context, we don't want to link the friend 908 // class template to the template in scope, because that would perform 909 // checking of the template parameter lists that can't be performed 910 // until the outer context is instantiated. 911 PrevDecl = PrevClassTemplate = 0; 912 } 913 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 914 PrevDecl = PrevClassTemplate = 0; 915 916 if (PrevClassTemplate) { 917 // Ensure that the template parameter lists are compatible. 918 if (!TemplateParameterListsAreEqual(TemplateParams, 919 PrevClassTemplate->getTemplateParameters(), 920 /*Complain=*/true, 921 TPL_TemplateMatch)) 922 return true; 923 924 // C++ [temp.class]p4: 925 // In a redeclaration, partial specialization, explicit 926 // specialization or explicit instantiation of a class template, 927 // the class-key shall agree in kind with the original class 928 // template declaration (7.1.5.3). 929 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 930 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 931 TUK == TUK_Definition, KWLoc, *Name)) { 932 Diag(KWLoc, diag::err_use_with_wrong_tag) 933 << Name 934 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 935 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 936 Kind = PrevRecordDecl->getTagKind(); 937 } 938 939 // Check for redefinition of this class template. 940 if (TUK == TUK_Definition) { 941 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 942 Diag(NameLoc, diag::err_redefinition) << Name; 943 Diag(Def->getLocation(), diag::note_previous_definition); 944 // FIXME: Would it make sense to try to "forget" the previous 945 // definition, as part of error recovery? 946 return true; 947 } 948 } 949 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 950 // Maybe we will complain about the shadowed template parameter. 951 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 952 // Just pretend that we didn't see the previous declaration. 953 PrevDecl = 0; 954 } else if (PrevDecl) { 955 // C++ [temp]p5: 956 // A class template shall not have the same name as any other 957 // template, class, function, object, enumeration, enumerator, 958 // namespace, or type in the same scope (3.3), except as specified 959 // in (14.5.4). 960 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 961 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 962 return true; 963 } 964 965 // Check the template parameter list of this declaration, possibly 966 // merging in the template parameter list from the previous class 967 // template declaration. 968 if (CheckTemplateParameterList(TemplateParams, 969 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 970 (SS.isSet() && SemanticContext && 971 SemanticContext->isRecord() && 972 SemanticContext->isDependentContext()) 973 ? TPC_ClassTemplateMember 974 : TPC_ClassTemplate)) 975 Invalid = true; 976 977 if (SS.isSet()) { 978 // If the name of the template was qualified, we must be defining the 979 // template out-of-line. 980 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 981 !(TUK == TUK_Friend && CurContext->isDependentContext())) 982 Diag(NameLoc, diag::err_member_def_does_not_match) 983 << Name << SemanticContext << SS.getRange(); 984 } 985 986 CXXRecordDecl *NewClass = 987 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 988 PrevClassTemplate? 989 PrevClassTemplate->getTemplatedDecl() : 0, 990 /*DelayTypeCreation=*/true); 991 SetNestedNameSpecifier(NewClass, SS); 992 if (NumOuterTemplateParamLists > 0) 993 NewClass->setTemplateParameterListsInfo(Context, 994 NumOuterTemplateParamLists, 995 OuterTemplateParamLists); 996 997 ClassTemplateDecl *NewTemplate 998 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 999 DeclarationName(Name), TemplateParams, 1000 NewClass, PrevClassTemplate); 1001 NewClass->setDescribedClassTemplate(NewTemplate); 1002 1003 // Build the type for the class template declaration now. 1004 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1005 T = Context.getInjectedClassNameType(NewClass, T); 1006 assert(T->isDependentType() && "Class template type is not dependent?"); 1007 (void)T; 1008 1009 // If we are providing an explicit specialization of a member that is a 1010 // class template, make a note of that. 1011 if (PrevClassTemplate && 1012 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1013 PrevClassTemplate->setMemberSpecialization(); 1014 1015 // Set the access specifier. 1016 if (!Invalid && TUK != TUK_Friend) 1017 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1018 1019 // Set the lexical context of these templates 1020 NewClass->setLexicalDeclContext(CurContext); 1021 NewTemplate->setLexicalDeclContext(CurContext); 1022 1023 if (TUK == TUK_Definition) 1024 NewClass->startDefinition(); 1025 1026 if (Attr) 1027 ProcessDeclAttributeList(S, NewClass, Attr); 1028 1029 if (TUK != TUK_Friend) 1030 PushOnScopeChains(NewTemplate, S); 1031 else { 1032 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1033 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1034 NewClass->setAccess(PrevClassTemplate->getAccess()); 1035 } 1036 1037 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1038 PrevClassTemplate != NULL); 1039 1040 // Friend templates are visible in fairly strange ways. 1041 if (!CurContext->isDependentContext()) { 1042 DeclContext *DC = SemanticContext->getRedeclContext(); 1043 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1044 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1045 PushOnScopeChains(NewTemplate, EnclosingScope, 1046 /* AddToContext = */ false); 1047 } 1048 1049 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1050 NewClass->getLocation(), 1051 NewTemplate, 1052 /*FIXME:*/NewClass->getLocation()); 1053 Friend->setAccess(AS_public); 1054 CurContext->addDecl(Friend); 1055 } 1056 1057 if (Invalid) { 1058 NewTemplate->setInvalidDecl(); 1059 NewClass->setInvalidDecl(); 1060 } 1061 return NewTemplate; 1062} 1063 1064/// \brief Diagnose the presence of a default template argument on a 1065/// template parameter, which is ill-formed in certain contexts. 1066/// 1067/// \returns true if the default template argument should be dropped. 1068static bool DiagnoseDefaultTemplateArgument(Sema &S, 1069 Sema::TemplateParamListContext TPC, 1070 SourceLocation ParamLoc, 1071 SourceRange DefArgRange) { 1072 switch (TPC) { 1073 case Sema::TPC_ClassTemplate: 1074 case Sema::TPC_TypeAliasTemplate: 1075 return false; 1076 1077 case Sema::TPC_FunctionTemplate: 1078 case Sema::TPC_FriendFunctionTemplateDefinition: 1079 // C++ [temp.param]p9: 1080 // A default template-argument shall not be specified in a 1081 // function template declaration or a function template 1082 // definition [...] 1083 // If a friend function template declaration specifies a default 1084 // template-argument, that declaration shall be a definition and shall be 1085 // the only declaration of the function template in the translation unit. 1086 // (C++98/03 doesn't have this wording; see DR226). 1087 if (!S.getLangOptions().CPlusPlus0x) 1088 S.Diag(ParamLoc, 1089 diag::ext_template_parameter_default_in_function_template) 1090 << DefArgRange; 1091 return false; 1092 1093 case Sema::TPC_ClassTemplateMember: 1094 // C++0x [temp.param]p9: 1095 // A default template-argument shall not be specified in the 1096 // template-parameter-lists of the definition of a member of a 1097 // class template that appears outside of the member's class. 1098 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1099 << DefArgRange; 1100 return true; 1101 1102 case Sema::TPC_FriendFunctionTemplate: 1103 // C++ [temp.param]p9: 1104 // A default template-argument shall not be specified in a 1105 // friend template declaration. 1106 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1107 << DefArgRange; 1108 return true; 1109 1110 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1111 // for friend function templates if there is only a single 1112 // declaration (and it is a definition). Strange! 1113 } 1114 1115 return false; 1116} 1117 1118/// \brief Check for unexpanded parameter packs within the template parameters 1119/// of a template template parameter, recursively. 1120static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1121 TemplateTemplateParmDecl *TTP) { 1122 TemplateParameterList *Params = TTP->getTemplateParameters(); 1123 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1124 NamedDecl *P = Params->getParam(I); 1125 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1126 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1127 NTTP->getTypeSourceInfo(), 1128 Sema::UPPC_NonTypeTemplateParameterType)) 1129 return true; 1130 1131 continue; 1132 } 1133 1134 if (TemplateTemplateParmDecl *InnerTTP 1135 = dyn_cast<TemplateTemplateParmDecl>(P)) 1136 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1137 return true; 1138 } 1139 1140 return false; 1141} 1142 1143/// \brief Checks the validity of a template parameter list, possibly 1144/// considering the template parameter list from a previous 1145/// declaration. 1146/// 1147/// If an "old" template parameter list is provided, it must be 1148/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1149/// template parameter list. 1150/// 1151/// \param NewParams Template parameter list for a new template 1152/// declaration. This template parameter list will be updated with any 1153/// default arguments that are carried through from the previous 1154/// template parameter list. 1155/// 1156/// \param OldParams If provided, template parameter list from a 1157/// previous declaration of the same template. Default template 1158/// arguments will be merged from the old template parameter list to 1159/// the new template parameter list. 1160/// 1161/// \param TPC Describes the context in which we are checking the given 1162/// template parameter list. 1163/// 1164/// \returns true if an error occurred, false otherwise. 1165bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1166 TemplateParameterList *OldParams, 1167 TemplateParamListContext TPC) { 1168 bool Invalid = false; 1169 1170 // C++ [temp.param]p10: 1171 // The set of default template-arguments available for use with a 1172 // template declaration or definition is obtained by merging the 1173 // default arguments from the definition (if in scope) and all 1174 // declarations in scope in the same way default function 1175 // arguments are (8.3.6). 1176 bool SawDefaultArgument = false; 1177 SourceLocation PreviousDefaultArgLoc; 1178 1179 bool SawParameterPack = false; 1180 SourceLocation ParameterPackLoc; 1181 1182 // Dummy initialization to avoid warnings. 1183 TemplateParameterList::iterator OldParam = NewParams->end(); 1184 if (OldParams) 1185 OldParam = OldParams->begin(); 1186 1187 bool RemoveDefaultArguments = false; 1188 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1189 NewParamEnd = NewParams->end(); 1190 NewParam != NewParamEnd; ++NewParam) { 1191 // Variables used to diagnose redundant default arguments 1192 bool RedundantDefaultArg = false; 1193 SourceLocation OldDefaultLoc; 1194 SourceLocation NewDefaultLoc; 1195 1196 // Variables used to diagnose missing default arguments 1197 bool MissingDefaultArg = false; 1198 1199 // C++0x [temp.param]p11: 1200 // If a template parameter of a primary class template or alias template 1201 // is a template parameter pack, it shall be the last template parameter. 1202 if (SawParameterPack && 1203 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1204 Diag(ParameterPackLoc, 1205 diag::err_template_param_pack_must_be_last_template_parameter); 1206 Invalid = true; 1207 } 1208 1209 if (TemplateTypeParmDecl *NewTypeParm 1210 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1211 // Check the presence of a default argument here. 1212 if (NewTypeParm->hasDefaultArgument() && 1213 DiagnoseDefaultTemplateArgument(*this, TPC, 1214 NewTypeParm->getLocation(), 1215 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1216 .getSourceRange())) 1217 NewTypeParm->removeDefaultArgument(); 1218 1219 // Merge default arguments for template type parameters. 1220 TemplateTypeParmDecl *OldTypeParm 1221 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1222 1223 if (NewTypeParm->isParameterPack()) { 1224 assert(!NewTypeParm->hasDefaultArgument() && 1225 "Parameter packs can't have a default argument!"); 1226 SawParameterPack = true; 1227 ParameterPackLoc = NewTypeParm->getLocation(); 1228 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1229 NewTypeParm->hasDefaultArgument()) { 1230 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1231 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1232 SawDefaultArgument = true; 1233 RedundantDefaultArg = true; 1234 PreviousDefaultArgLoc = NewDefaultLoc; 1235 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1236 // Merge the default argument from the old declaration to the 1237 // new declaration. 1238 SawDefaultArgument = true; 1239 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1240 true); 1241 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1242 } else if (NewTypeParm->hasDefaultArgument()) { 1243 SawDefaultArgument = true; 1244 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1245 } else if (SawDefaultArgument) 1246 MissingDefaultArg = true; 1247 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1248 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1249 // Check for unexpanded parameter packs. 1250 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1251 NewNonTypeParm->getTypeSourceInfo(), 1252 UPPC_NonTypeTemplateParameterType)) { 1253 Invalid = true; 1254 continue; 1255 } 1256 1257 // Check the presence of a default argument here. 1258 if (NewNonTypeParm->hasDefaultArgument() && 1259 DiagnoseDefaultTemplateArgument(*this, TPC, 1260 NewNonTypeParm->getLocation(), 1261 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1262 NewNonTypeParm->removeDefaultArgument(); 1263 } 1264 1265 // Merge default arguments for non-type template parameters 1266 NonTypeTemplateParmDecl *OldNonTypeParm 1267 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1268 if (NewNonTypeParm->isParameterPack()) { 1269 assert(!NewNonTypeParm->hasDefaultArgument() && 1270 "Parameter packs can't have a default argument!"); 1271 SawParameterPack = true; 1272 ParameterPackLoc = NewNonTypeParm->getLocation(); 1273 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1274 NewNonTypeParm->hasDefaultArgument()) { 1275 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1276 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1277 SawDefaultArgument = true; 1278 RedundantDefaultArg = true; 1279 PreviousDefaultArgLoc = NewDefaultLoc; 1280 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1281 // Merge the default argument from the old declaration to the 1282 // new declaration. 1283 SawDefaultArgument = true; 1284 // FIXME: We need to create a new kind of "default argument" 1285 // expression that points to a previous non-type template 1286 // parameter. 1287 NewNonTypeParm->setDefaultArgument( 1288 OldNonTypeParm->getDefaultArgument(), 1289 /*Inherited=*/ true); 1290 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1291 } else if (NewNonTypeParm->hasDefaultArgument()) { 1292 SawDefaultArgument = true; 1293 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1294 } else if (SawDefaultArgument) 1295 MissingDefaultArg = true; 1296 } else { 1297 // Check the presence of a default argument here. 1298 TemplateTemplateParmDecl *NewTemplateParm 1299 = cast<TemplateTemplateParmDecl>(*NewParam); 1300 1301 // Check for unexpanded parameter packs, recursively. 1302 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1303 Invalid = true; 1304 continue; 1305 } 1306 1307 if (NewTemplateParm->hasDefaultArgument() && 1308 DiagnoseDefaultTemplateArgument(*this, TPC, 1309 NewTemplateParm->getLocation(), 1310 NewTemplateParm->getDefaultArgument().getSourceRange())) 1311 NewTemplateParm->removeDefaultArgument(); 1312 1313 // Merge default arguments for template template parameters 1314 TemplateTemplateParmDecl *OldTemplateParm 1315 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1316 if (NewTemplateParm->isParameterPack()) { 1317 assert(!NewTemplateParm->hasDefaultArgument() && 1318 "Parameter packs can't have a default argument!"); 1319 SawParameterPack = true; 1320 ParameterPackLoc = NewTemplateParm->getLocation(); 1321 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1322 NewTemplateParm->hasDefaultArgument()) { 1323 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1324 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1325 SawDefaultArgument = true; 1326 RedundantDefaultArg = true; 1327 PreviousDefaultArgLoc = NewDefaultLoc; 1328 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1329 // Merge the default argument from the old declaration to the 1330 // new declaration. 1331 SawDefaultArgument = true; 1332 // FIXME: We need to create a new kind of "default argument" expression 1333 // that points to a previous template template parameter. 1334 NewTemplateParm->setDefaultArgument( 1335 OldTemplateParm->getDefaultArgument(), 1336 /*Inherited=*/ true); 1337 PreviousDefaultArgLoc 1338 = OldTemplateParm->getDefaultArgument().getLocation(); 1339 } else if (NewTemplateParm->hasDefaultArgument()) { 1340 SawDefaultArgument = true; 1341 PreviousDefaultArgLoc 1342 = NewTemplateParm->getDefaultArgument().getLocation(); 1343 } else if (SawDefaultArgument) 1344 MissingDefaultArg = true; 1345 } 1346 1347 if (RedundantDefaultArg) { 1348 // C++ [temp.param]p12: 1349 // A template-parameter shall not be given default arguments 1350 // by two different declarations in the same scope. 1351 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1352 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1353 Invalid = true; 1354 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1355 // C++ [temp.param]p11: 1356 // If a template-parameter of a class template has a default 1357 // template-argument, each subsequent template-parameter shall either 1358 // have a default template-argument supplied or be a template parameter 1359 // pack. 1360 Diag((*NewParam)->getLocation(), 1361 diag::err_template_param_default_arg_missing); 1362 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1363 Invalid = true; 1364 RemoveDefaultArguments = true; 1365 } 1366 1367 // If we have an old template parameter list that we're merging 1368 // in, move on to the next parameter. 1369 if (OldParams) 1370 ++OldParam; 1371 } 1372 1373 // We were missing some default arguments at the end of the list, so remove 1374 // all of the default arguments. 1375 if (RemoveDefaultArguments) { 1376 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1377 NewParamEnd = NewParams->end(); 1378 NewParam != NewParamEnd; ++NewParam) { 1379 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1380 TTP->removeDefaultArgument(); 1381 else if (NonTypeTemplateParmDecl *NTTP 1382 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1383 NTTP->removeDefaultArgument(); 1384 else 1385 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1386 } 1387 } 1388 1389 return Invalid; 1390} 1391 1392namespace { 1393 1394/// A class which looks for a use of a certain level of template 1395/// parameter. 1396struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1397 typedef RecursiveASTVisitor<DependencyChecker> super; 1398 1399 unsigned Depth; 1400 bool Match; 1401 1402 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1403 NamedDecl *ND = Params->getParam(0); 1404 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1405 Depth = PD->getDepth(); 1406 } else if (NonTypeTemplateParmDecl *PD = 1407 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1408 Depth = PD->getDepth(); 1409 } else { 1410 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1411 } 1412 } 1413 1414 bool Matches(unsigned ParmDepth) { 1415 if (ParmDepth >= Depth) { 1416 Match = true; 1417 return true; 1418 } 1419 return false; 1420 } 1421 1422 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1423 return !Matches(T->getDepth()); 1424 } 1425 1426 bool TraverseTemplateName(TemplateName N) { 1427 if (TemplateTemplateParmDecl *PD = 1428 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1429 if (Matches(PD->getDepth())) return false; 1430 return super::TraverseTemplateName(N); 1431 } 1432 1433 bool VisitDeclRefExpr(DeclRefExpr *E) { 1434 if (NonTypeTemplateParmDecl *PD = 1435 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1436 if (PD->getDepth() == Depth) { 1437 Match = true; 1438 return false; 1439 } 1440 } 1441 return super::VisitDeclRefExpr(E); 1442 } 1443 1444 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1445 return TraverseType(T->getInjectedSpecializationType()); 1446 } 1447}; 1448} 1449 1450/// Determines whether a given type depends on the given parameter 1451/// list. 1452static bool 1453DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1454 DependencyChecker Checker(Params); 1455 Checker.TraverseType(T); 1456 return Checker.Match; 1457} 1458 1459// Find the source range corresponding to the named type in the given 1460// nested-name-specifier, if any. 1461static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1462 QualType T, 1463 const CXXScopeSpec &SS) { 1464 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1465 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1466 if (const Type *CurType = NNS->getAsType()) { 1467 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1468 return NNSLoc.getTypeLoc().getSourceRange(); 1469 } else 1470 break; 1471 1472 NNSLoc = NNSLoc.getPrefix(); 1473 } 1474 1475 return SourceRange(); 1476} 1477 1478/// \brief Match the given template parameter lists to the given scope 1479/// specifier, returning the template parameter list that applies to the 1480/// name. 1481/// 1482/// \param DeclStartLoc the start of the declaration that has a scope 1483/// specifier or a template parameter list. 1484/// 1485/// \param DeclLoc The location of the declaration itself. 1486/// 1487/// \param SS the scope specifier that will be matched to the given template 1488/// parameter lists. This scope specifier precedes a qualified name that is 1489/// being declared. 1490/// 1491/// \param ParamLists the template parameter lists, from the outermost to the 1492/// innermost template parameter lists. 1493/// 1494/// \param NumParamLists the number of template parameter lists in ParamLists. 1495/// 1496/// \param IsFriend Whether to apply the slightly different rules for 1497/// matching template parameters to scope specifiers in friend 1498/// declarations. 1499/// 1500/// \param IsExplicitSpecialization will be set true if the entity being 1501/// declared is an explicit specialization, false otherwise. 1502/// 1503/// \returns the template parameter list, if any, that corresponds to the 1504/// name that is preceded by the scope specifier @p SS. This template 1505/// parameter list may have template parameters (if we're declaring a 1506/// template) or may have no template parameters (if we're declaring a 1507/// template specialization), or may be NULL (if what we're declaring isn't 1508/// itself a template). 1509TemplateParameterList * 1510Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1511 SourceLocation DeclLoc, 1512 const CXXScopeSpec &SS, 1513 TemplateParameterList **ParamLists, 1514 unsigned NumParamLists, 1515 bool IsFriend, 1516 bool &IsExplicitSpecialization, 1517 bool &Invalid) { 1518 IsExplicitSpecialization = false; 1519 Invalid = false; 1520 1521 // The sequence of nested types to which we will match up the template 1522 // parameter lists. We first build this list by starting with the type named 1523 // by the nested-name-specifier and walking out until we run out of types. 1524 SmallVector<QualType, 4> NestedTypes; 1525 QualType T; 1526 if (SS.getScopeRep()) { 1527 if (CXXRecordDecl *Record 1528 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1529 T = Context.getTypeDeclType(Record); 1530 else 1531 T = QualType(SS.getScopeRep()->getAsType(), 0); 1532 } 1533 1534 // If we found an explicit specialization that prevents us from needing 1535 // 'template<>' headers, this will be set to the location of that 1536 // explicit specialization. 1537 SourceLocation ExplicitSpecLoc; 1538 1539 while (!T.isNull()) { 1540 NestedTypes.push_back(T); 1541 1542 // Retrieve the parent of a record type. 1543 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1544 // If this type is an explicit specialization, we're done. 1545 if (ClassTemplateSpecializationDecl *Spec 1546 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1547 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1548 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1549 ExplicitSpecLoc = Spec->getLocation(); 1550 break; 1551 } 1552 } else if (Record->getTemplateSpecializationKind() 1553 == TSK_ExplicitSpecialization) { 1554 ExplicitSpecLoc = Record->getLocation(); 1555 break; 1556 } 1557 1558 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1559 T = Context.getTypeDeclType(Parent); 1560 else 1561 T = QualType(); 1562 continue; 1563 } 1564 1565 if (const TemplateSpecializationType *TST 1566 = T->getAs<TemplateSpecializationType>()) { 1567 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1568 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1569 T = Context.getTypeDeclType(Parent); 1570 else 1571 T = QualType(); 1572 continue; 1573 } 1574 } 1575 1576 // Look one step prior in a dependent template specialization type. 1577 if (const DependentTemplateSpecializationType *DependentTST 1578 = T->getAs<DependentTemplateSpecializationType>()) { 1579 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1580 T = QualType(NNS->getAsType(), 0); 1581 else 1582 T = QualType(); 1583 continue; 1584 } 1585 1586 // Look one step prior in a dependent name type. 1587 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1588 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1589 T = QualType(NNS->getAsType(), 0); 1590 else 1591 T = QualType(); 1592 continue; 1593 } 1594 1595 // Retrieve the parent of an enumeration type. 1596 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1597 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1598 // check here. 1599 EnumDecl *Enum = EnumT->getDecl(); 1600 1601 // Get to the parent type. 1602 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1603 T = Context.getTypeDeclType(Parent); 1604 else 1605 T = QualType(); 1606 continue; 1607 } 1608 1609 T = QualType(); 1610 } 1611 // Reverse the nested types list, since we want to traverse from the outermost 1612 // to the innermost while checking template-parameter-lists. 1613 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1614 1615 // C++0x [temp.expl.spec]p17: 1616 // A member or a member template may be nested within many 1617 // enclosing class templates. In an explicit specialization for 1618 // such a member, the member declaration shall be preceded by a 1619 // template<> for each enclosing class template that is 1620 // explicitly specialized. 1621 bool SawNonEmptyTemplateParameterList = false; 1622 unsigned ParamIdx = 0; 1623 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1624 ++TypeIdx) { 1625 T = NestedTypes[TypeIdx]; 1626 1627 // Whether we expect a 'template<>' header. 1628 bool NeedEmptyTemplateHeader = false; 1629 1630 // Whether we expect a template header with parameters. 1631 bool NeedNonemptyTemplateHeader = false; 1632 1633 // For a dependent type, the set of template parameters that we 1634 // expect to see. 1635 TemplateParameterList *ExpectedTemplateParams = 0; 1636 1637 // C++0x [temp.expl.spec]p15: 1638 // A member or a member template may be nested within many enclosing 1639 // class templates. In an explicit specialization for such a member, the 1640 // member declaration shall be preceded by a template<> for each 1641 // enclosing class template that is explicitly specialized. 1642 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1643 if (ClassTemplatePartialSpecializationDecl *Partial 1644 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1645 ExpectedTemplateParams = Partial->getTemplateParameters(); 1646 NeedNonemptyTemplateHeader = true; 1647 } else if (Record->isDependentType()) { 1648 if (Record->getDescribedClassTemplate()) { 1649 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1650 ->getTemplateParameters(); 1651 NeedNonemptyTemplateHeader = true; 1652 } 1653 } else if (ClassTemplateSpecializationDecl *Spec 1654 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1655 // C++0x [temp.expl.spec]p4: 1656 // Members of an explicitly specialized class template are defined 1657 // in the same manner as members of normal classes, and not using 1658 // the template<> syntax. 1659 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1660 NeedEmptyTemplateHeader = true; 1661 else 1662 continue; 1663 } else if (Record->getTemplateSpecializationKind()) { 1664 if (Record->getTemplateSpecializationKind() 1665 != TSK_ExplicitSpecialization && 1666 TypeIdx == NumTypes - 1) 1667 IsExplicitSpecialization = true; 1668 1669 continue; 1670 } 1671 } else if (const TemplateSpecializationType *TST 1672 = T->getAs<TemplateSpecializationType>()) { 1673 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1674 ExpectedTemplateParams = Template->getTemplateParameters(); 1675 NeedNonemptyTemplateHeader = true; 1676 } 1677 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1678 // FIXME: We actually could/should check the template arguments here 1679 // against the corresponding template parameter list. 1680 NeedNonemptyTemplateHeader = false; 1681 } 1682 1683 // C++ [temp.expl.spec]p16: 1684 // In an explicit specialization declaration for a member of a class 1685 // template or a member template that ap- pears in namespace scope, the 1686 // member template and some of its enclosing class templates may remain 1687 // unspecialized, except that the declaration shall not explicitly 1688 // specialize a class member template if its en- closing class templates 1689 // are not explicitly specialized as well. 1690 if (ParamIdx < NumParamLists) { 1691 if (ParamLists[ParamIdx]->size() == 0) { 1692 if (SawNonEmptyTemplateParameterList) { 1693 Diag(DeclLoc, diag::err_specialize_member_of_template) 1694 << ParamLists[ParamIdx]->getSourceRange(); 1695 Invalid = true; 1696 IsExplicitSpecialization = false; 1697 return 0; 1698 } 1699 } else 1700 SawNonEmptyTemplateParameterList = true; 1701 } 1702 1703 if (NeedEmptyTemplateHeader) { 1704 // If we're on the last of the types, and we need a 'template<>' header 1705 // here, then it's an explicit specialization. 1706 if (TypeIdx == NumTypes - 1) 1707 IsExplicitSpecialization = true; 1708 1709 if (ParamIdx < NumParamLists) { 1710 if (ParamLists[ParamIdx]->size() > 0) { 1711 // The header has template parameters when it shouldn't. Complain. 1712 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1713 diag::err_template_param_list_matches_nontemplate) 1714 << T 1715 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1716 ParamLists[ParamIdx]->getRAngleLoc()) 1717 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1718 Invalid = true; 1719 return 0; 1720 } 1721 1722 // Consume this template header. 1723 ++ParamIdx; 1724 continue; 1725 } 1726 1727 if (!IsFriend) { 1728 // We don't have a template header, but we should. 1729 SourceLocation ExpectedTemplateLoc; 1730 if (NumParamLists > 0) 1731 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1732 else 1733 ExpectedTemplateLoc = DeclStartLoc; 1734 1735 Diag(DeclLoc, diag::err_template_spec_needs_header) 1736 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1737 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1738 } 1739 1740 continue; 1741 } 1742 1743 if (NeedNonemptyTemplateHeader) { 1744 // In friend declarations we can have template-ids which don't 1745 // depend on the corresponding template parameter lists. But 1746 // assume that empty parameter lists are supposed to match this 1747 // template-id. 1748 if (IsFriend && T->isDependentType()) { 1749 if (ParamIdx < NumParamLists && 1750 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1751 ExpectedTemplateParams = 0; 1752 else 1753 continue; 1754 } 1755 1756 if (ParamIdx < NumParamLists) { 1757 // Check the template parameter list, if we can. 1758 if (ExpectedTemplateParams && 1759 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1760 ExpectedTemplateParams, 1761 true, TPL_TemplateMatch)) 1762 Invalid = true; 1763 1764 if (!Invalid && 1765 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1766 TPC_ClassTemplateMember)) 1767 Invalid = true; 1768 1769 ++ParamIdx; 1770 continue; 1771 } 1772 1773 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1774 << T 1775 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1776 Invalid = true; 1777 continue; 1778 } 1779 } 1780 1781 // If there were at least as many template-ids as there were template 1782 // parameter lists, then there are no template parameter lists remaining for 1783 // the declaration itself. 1784 if (ParamIdx >= NumParamLists) 1785 return 0; 1786 1787 // If there were too many template parameter lists, complain about that now. 1788 if (ParamIdx < NumParamLists - 1) { 1789 bool HasAnyExplicitSpecHeader = false; 1790 bool AllExplicitSpecHeaders = true; 1791 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1792 if (ParamLists[I]->size() == 0) 1793 HasAnyExplicitSpecHeader = true; 1794 else 1795 AllExplicitSpecHeaders = false; 1796 } 1797 1798 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1799 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1800 : diag::err_template_spec_extra_headers) 1801 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1802 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1803 1804 // If there was a specialization somewhere, such that 'template<>' is 1805 // not required, and there were any 'template<>' headers, note where the 1806 // specialization occurred. 1807 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1808 Diag(ExplicitSpecLoc, 1809 diag::note_explicit_template_spec_does_not_need_header) 1810 << NestedTypes.back(); 1811 1812 // We have a template parameter list with no corresponding scope, which 1813 // means that the resulting template declaration can't be instantiated 1814 // properly (we'll end up with dependent nodes when we shouldn't). 1815 if (!AllExplicitSpecHeaders) 1816 Invalid = true; 1817 } 1818 1819 // C++ [temp.expl.spec]p16: 1820 // In an explicit specialization declaration for a member of a class 1821 // template or a member template that ap- pears in namespace scope, the 1822 // member template and some of its enclosing class templates may remain 1823 // unspecialized, except that the declaration shall not explicitly 1824 // specialize a class member template if its en- closing class templates 1825 // are not explicitly specialized as well. 1826 if (ParamLists[NumParamLists - 1]->size() == 0 && 1827 SawNonEmptyTemplateParameterList) { 1828 Diag(DeclLoc, diag::err_specialize_member_of_template) 1829 << ParamLists[ParamIdx]->getSourceRange(); 1830 Invalid = true; 1831 IsExplicitSpecialization = false; 1832 return 0; 1833 } 1834 1835 // Return the last template parameter list, which corresponds to the 1836 // entity being declared. 1837 return ParamLists[NumParamLists - 1]; 1838} 1839 1840void Sema::NoteAllFoundTemplates(TemplateName Name) { 1841 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1842 Diag(Template->getLocation(), diag::note_template_declared_here) 1843 << (isa<FunctionTemplateDecl>(Template)? 0 1844 : isa<ClassTemplateDecl>(Template)? 1 1845 : isa<TypeAliasTemplateDecl>(Template)? 2 1846 : 3) 1847 << Template->getDeclName(); 1848 return; 1849 } 1850 1851 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1852 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1853 IEnd = OST->end(); 1854 I != IEnd; ++I) 1855 Diag((*I)->getLocation(), diag::note_template_declared_here) 1856 << 0 << (*I)->getDeclName(); 1857 1858 return; 1859 } 1860} 1861 1862 1863QualType Sema::CheckTemplateIdType(TemplateName Name, 1864 SourceLocation TemplateLoc, 1865 TemplateArgumentListInfo &TemplateArgs) { 1866 DependentTemplateName *DTN 1867 = Name.getUnderlying().getAsDependentTemplateName(); 1868 if (DTN && DTN->isIdentifier()) 1869 // When building a template-id where the template-name is dependent, 1870 // assume the template is a type template. Either our assumption is 1871 // correct, or the code is ill-formed and will be diagnosed when the 1872 // dependent name is substituted. 1873 return Context.getDependentTemplateSpecializationType(ETK_None, 1874 DTN->getQualifier(), 1875 DTN->getIdentifier(), 1876 TemplateArgs); 1877 1878 TemplateDecl *Template = Name.getAsTemplateDecl(); 1879 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1880 // We might have a substituted template template parameter pack. If so, 1881 // build a template specialization type for it. 1882 if (Name.getAsSubstTemplateTemplateParmPack()) 1883 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1884 1885 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1886 << Name; 1887 NoteAllFoundTemplates(Name); 1888 return QualType(); 1889 } 1890 1891 // Check that the template argument list is well-formed for this 1892 // template. 1893 SmallVector<TemplateArgument, 4> Converted; 1894 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1895 false, Converted)) 1896 return QualType(); 1897 1898 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1899 "Converted template argument list is too short!"); 1900 1901 QualType CanonType; 1902 1903 bool InstantiationDependent = false; 1904 if (TypeAliasTemplateDecl *AliasTemplate 1905 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1906 // Find the canonical type for this type alias template specialization. 1907 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1908 if (Pattern->isInvalidDecl()) 1909 return QualType(); 1910 1911 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1912 Converted.data(), Converted.size()); 1913 1914 // Only substitute for the innermost template argument list. 1915 MultiLevelTemplateArgumentList TemplateArgLists; 1916 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1917 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1918 for (unsigned I = 0; I < Depth; ++I) 1919 TemplateArgLists.addOuterTemplateArguments(0, 0); 1920 1921 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1922 CanonType = SubstType(Pattern->getUnderlyingType(), 1923 TemplateArgLists, AliasTemplate->getLocation(), 1924 AliasTemplate->getDeclName()); 1925 if (CanonType.isNull()) 1926 return QualType(); 1927 } else if (Name.isDependent() || 1928 TemplateSpecializationType::anyDependentTemplateArguments( 1929 TemplateArgs, InstantiationDependent)) { 1930 // This class template specialization is a dependent 1931 // type. Therefore, its canonical type is another class template 1932 // specialization type that contains all of the converted 1933 // arguments in canonical form. This ensures that, e.g., A<T> and 1934 // A<T, T> have identical types when A is declared as: 1935 // 1936 // template<typename T, typename U = T> struct A; 1937 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1938 CanonType = Context.getTemplateSpecializationType(CanonName, 1939 Converted.data(), 1940 Converted.size()); 1941 1942 // FIXME: CanonType is not actually the canonical type, and unfortunately 1943 // it is a TemplateSpecializationType that we will never use again. 1944 // In the future, we need to teach getTemplateSpecializationType to only 1945 // build the canonical type and return that to us. 1946 CanonType = Context.getCanonicalType(CanonType); 1947 1948 // This might work out to be a current instantiation, in which 1949 // case the canonical type needs to be the InjectedClassNameType. 1950 // 1951 // TODO: in theory this could be a simple hashtable lookup; most 1952 // changes to CurContext don't change the set of current 1953 // instantiations. 1954 if (isa<ClassTemplateDecl>(Template)) { 1955 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1956 // If we get out to a namespace, we're done. 1957 if (Ctx->isFileContext()) break; 1958 1959 // If this isn't a record, keep looking. 1960 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1961 if (!Record) continue; 1962 1963 // Look for one of the two cases with InjectedClassNameTypes 1964 // and check whether it's the same template. 1965 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1966 !Record->getDescribedClassTemplate()) 1967 continue; 1968 1969 // Fetch the injected class name type and check whether its 1970 // injected type is equal to the type we just built. 1971 QualType ICNT = Context.getTypeDeclType(Record); 1972 QualType Injected = cast<InjectedClassNameType>(ICNT) 1973 ->getInjectedSpecializationType(); 1974 1975 if (CanonType != Injected->getCanonicalTypeInternal()) 1976 continue; 1977 1978 // If so, the canonical type of this TST is the injected 1979 // class name type of the record we just found. 1980 assert(ICNT.isCanonical()); 1981 CanonType = ICNT; 1982 break; 1983 } 1984 } 1985 } else if (ClassTemplateDecl *ClassTemplate 1986 = dyn_cast<ClassTemplateDecl>(Template)) { 1987 // Find the class template specialization declaration that 1988 // corresponds to these arguments. 1989 void *InsertPos = 0; 1990 ClassTemplateSpecializationDecl *Decl 1991 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1992 InsertPos); 1993 if (!Decl) { 1994 // This is the first time we have referenced this class template 1995 // specialization. Create the canonical declaration and add it to 1996 // the set of specializations. 1997 Decl = ClassTemplateSpecializationDecl::Create(Context, 1998 ClassTemplate->getTemplatedDecl()->getTagKind(), 1999 ClassTemplate->getDeclContext(), 2000 ClassTemplate->getLocation(), 2001 ClassTemplate->getLocation(), 2002 ClassTemplate, 2003 Converted.data(), 2004 Converted.size(), 0); 2005 ClassTemplate->AddSpecialization(Decl, InsertPos); 2006 Decl->setLexicalDeclContext(CurContext); 2007 } 2008 2009 CanonType = Context.getTypeDeclType(Decl); 2010 assert(isa<RecordType>(CanonType) && 2011 "type of non-dependent specialization is not a RecordType"); 2012 } 2013 2014 // Build the fully-sugared type for this class template 2015 // specialization, which refers back to the class template 2016 // specialization we created or found. 2017 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2018} 2019 2020TypeResult 2021Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 2022 TemplateTy TemplateD, SourceLocation TemplateLoc, 2023 SourceLocation LAngleLoc, 2024 ASTTemplateArgsPtr TemplateArgsIn, 2025 SourceLocation RAngleLoc) { 2026 if (SS.isInvalid()) 2027 return true; 2028 2029 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2030 2031 // Translate the parser's template argument list in our AST format. 2032 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2033 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2034 2035 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2036 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 2037 DTN->getQualifier(), 2038 DTN->getIdentifier(), 2039 TemplateArgs); 2040 2041 // Build type-source information. 2042 TypeLocBuilder TLB; 2043 DependentTemplateSpecializationTypeLoc SpecTL 2044 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2045 SpecTL.setKeywordLoc(SourceLocation()); 2046 SpecTL.setNameLoc(TemplateLoc); 2047 SpecTL.setLAngleLoc(LAngleLoc); 2048 SpecTL.setRAngleLoc(RAngleLoc); 2049 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2050 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2051 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2052 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2053 } 2054 2055 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2056 TemplateArgsIn.release(); 2057 2058 if (Result.isNull()) 2059 return true; 2060 2061 // Build type-source information. 2062 TypeLocBuilder TLB; 2063 TemplateSpecializationTypeLoc SpecTL 2064 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2065 SpecTL.setTemplateNameLoc(TemplateLoc); 2066 SpecTL.setLAngleLoc(LAngleLoc); 2067 SpecTL.setRAngleLoc(RAngleLoc); 2068 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2069 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2070 2071 if (SS.isNotEmpty()) { 2072 // Create an elaborated-type-specifier containing the nested-name-specifier. 2073 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2074 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2075 ElabTL.setKeywordLoc(SourceLocation()); 2076 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2077 } 2078 2079 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2080} 2081 2082TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2083 TypeSpecifierType TagSpec, 2084 SourceLocation TagLoc, 2085 CXXScopeSpec &SS, 2086 TemplateTy TemplateD, 2087 SourceLocation TemplateLoc, 2088 SourceLocation LAngleLoc, 2089 ASTTemplateArgsPtr TemplateArgsIn, 2090 SourceLocation RAngleLoc) { 2091 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2092 2093 // Translate the parser's template argument list in our AST format. 2094 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2095 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2096 2097 // Determine the tag kind 2098 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2099 ElaboratedTypeKeyword Keyword 2100 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2101 2102 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2103 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2104 DTN->getQualifier(), 2105 DTN->getIdentifier(), 2106 TemplateArgs); 2107 2108 // Build type-source information. 2109 TypeLocBuilder TLB; 2110 DependentTemplateSpecializationTypeLoc SpecTL 2111 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2112 SpecTL.setKeywordLoc(TagLoc); 2113 SpecTL.setNameLoc(TemplateLoc); 2114 SpecTL.setLAngleLoc(LAngleLoc); 2115 SpecTL.setRAngleLoc(RAngleLoc); 2116 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2117 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2118 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2119 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2120 } 2121 2122 if (TypeAliasTemplateDecl *TAT = 2123 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2124 // C++0x [dcl.type.elab]p2: 2125 // If the identifier resolves to a typedef-name or the simple-template-id 2126 // resolves to an alias template specialization, the 2127 // elaborated-type-specifier is ill-formed. 2128 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2129 Diag(TAT->getLocation(), diag::note_declared_at); 2130 } 2131 2132 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2133 if (Result.isNull()) 2134 return TypeResult(true); 2135 2136 // Check the tag kind 2137 if (const RecordType *RT = Result->getAs<RecordType>()) { 2138 RecordDecl *D = RT->getDecl(); 2139 2140 IdentifierInfo *Id = D->getIdentifier(); 2141 assert(Id && "templated class must have an identifier"); 2142 2143 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2144 TagLoc, *Id)) { 2145 Diag(TagLoc, diag::err_use_with_wrong_tag) 2146 << Result 2147 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2148 Diag(D->getLocation(), diag::note_previous_use); 2149 } 2150 } 2151 2152 // Provide source-location information for the template specialization. 2153 TypeLocBuilder TLB; 2154 TemplateSpecializationTypeLoc SpecTL 2155 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2156 SpecTL.setTemplateNameLoc(TemplateLoc); 2157 SpecTL.setLAngleLoc(LAngleLoc); 2158 SpecTL.setRAngleLoc(RAngleLoc); 2159 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2160 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2161 2162 // Construct an elaborated type containing the nested-name-specifier (if any) 2163 // and keyword. 2164 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2165 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2166 ElabTL.setKeywordLoc(TagLoc); 2167 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2168 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2169} 2170 2171ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2172 LookupResult &R, 2173 bool RequiresADL, 2174 const TemplateArgumentListInfo &TemplateArgs) { 2175 // FIXME: Can we do any checking at this point? I guess we could check the 2176 // template arguments that we have against the template name, if the template 2177 // name refers to a single template. That's not a terribly common case, 2178 // though. 2179 // foo<int> could identify a single function unambiguously 2180 // This approach does NOT work, since f<int>(1); 2181 // gets resolved prior to resorting to overload resolution 2182 // i.e., template<class T> void f(double); 2183 // vs template<class T, class U> void f(U); 2184 2185 // These should be filtered out by our callers. 2186 assert(!R.empty() && "empty lookup results when building templateid"); 2187 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2188 2189 // We don't want lookup warnings at this point. 2190 R.suppressDiagnostics(); 2191 2192 UnresolvedLookupExpr *ULE 2193 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2194 SS.getWithLocInContext(Context), 2195 R.getLookupNameInfo(), 2196 RequiresADL, TemplateArgs, 2197 R.begin(), R.end()); 2198 2199 return Owned(ULE); 2200} 2201 2202// We actually only call this from template instantiation. 2203ExprResult 2204Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2205 const DeclarationNameInfo &NameInfo, 2206 const TemplateArgumentListInfo &TemplateArgs) { 2207 DeclContext *DC; 2208 if (!(DC = computeDeclContext(SS, false)) || 2209 DC->isDependentContext() || 2210 RequireCompleteDeclContext(SS, DC)) 2211 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2212 2213 bool MemberOfUnknownSpecialization; 2214 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2215 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2216 MemberOfUnknownSpecialization); 2217 2218 if (R.isAmbiguous()) 2219 return ExprError(); 2220 2221 if (R.empty()) { 2222 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2223 << NameInfo.getName() << SS.getRange(); 2224 return ExprError(); 2225 } 2226 2227 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2228 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2229 << (NestedNameSpecifier*) SS.getScopeRep() 2230 << NameInfo.getName() << SS.getRange(); 2231 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2232 return ExprError(); 2233 } 2234 2235 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2236} 2237 2238/// \brief Form a dependent template name. 2239/// 2240/// This action forms a dependent template name given the template 2241/// name and its (presumably dependent) scope specifier. For 2242/// example, given "MetaFun::template apply", the scope specifier \p 2243/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2244/// of the "template" keyword, and "apply" is the \p Name. 2245TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2246 SourceLocation TemplateKWLoc, 2247 CXXScopeSpec &SS, 2248 UnqualifiedId &Name, 2249 ParsedType ObjectType, 2250 bool EnteringContext, 2251 TemplateTy &Result) { 2252 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2253 !getLangOptions().CPlusPlus0x) 2254 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2255 << FixItHint::CreateRemoval(TemplateKWLoc); 2256 2257 DeclContext *LookupCtx = 0; 2258 if (SS.isSet()) 2259 LookupCtx = computeDeclContext(SS, EnteringContext); 2260 if (!LookupCtx && ObjectType) 2261 LookupCtx = computeDeclContext(ObjectType.get()); 2262 if (LookupCtx) { 2263 // C++0x [temp.names]p5: 2264 // If a name prefixed by the keyword template is not the name of 2265 // a template, the program is ill-formed. [Note: the keyword 2266 // template may not be applied to non-template members of class 2267 // templates. -end note ] [ Note: as is the case with the 2268 // typename prefix, the template prefix is allowed in cases 2269 // where it is not strictly necessary; i.e., when the 2270 // nested-name-specifier or the expression on the left of the -> 2271 // or . is not dependent on a template-parameter, or the use 2272 // does not appear in the scope of a template. -end note] 2273 // 2274 // Note: C++03 was more strict here, because it banned the use of 2275 // the "template" keyword prior to a template-name that was not a 2276 // dependent name. C++ DR468 relaxed this requirement (the 2277 // "template" keyword is now permitted). We follow the C++0x 2278 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2279 bool MemberOfUnknownSpecialization; 2280 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2281 ObjectType, EnteringContext, Result, 2282 MemberOfUnknownSpecialization); 2283 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2284 isa<CXXRecordDecl>(LookupCtx) && 2285 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2286 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2287 // This is a dependent template. Handle it below. 2288 } else if (TNK == TNK_Non_template) { 2289 Diag(Name.getSourceRange().getBegin(), 2290 diag::err_template_kw_refers_to_non_template) 2291 << GetNameFromUnqualifiedId(Name).getName() 2292 << Name.getSourceRange() 2293 << TemplateKWLoc; 2294 return TNK_Non_template; 2295 } else { 2296 // We found something; return it. 2297 return TNK; 2298 } 2299 } 2300 2301 NestedNameSpecifier *Qualifier 2302 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2303 2304 switch (Name.getKind()) { 2305 case UnqualifiedId::IK_Identifier: 2306 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2307 Name.Identifier)); 2308 return TNK_Dependent_template_name; 2309 2310 case UnqualifiedId::IK_OperatorFunctionId: 2311 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2312 Name.OperatorFunctionId.Operator)); 2313 return TNK_Dependent_template_name; 2314 2315 case UnqualifiedId::IK_LiteralOperatorId: 2316 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2317 2318 default: 2319 break; 2320 } 2321 2322 Diag(Name.getSourceRange().getBegin(), 2323 diag::err_template_kw_refers_to_non_template) 2324 << GetNameFromUnqualifiedId(Name).getName() 2325 << Name.getSourceRange() 2326 << TemplateKWLoc; 2327 return TNK_Non_template; 2328} 2329 2330bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2331 const TemplateArgumentLoc &AL, 2332 SmallVectorImpl<TemplateArgument> &Converted) { 2333 const TemplateArgument &Arg = AL.getArgument(); 2334 2335 // Check template type parameter. 2336 switch(Arg.getKind()) { 2337 case TemplateArgument::Type: 2338 // C++ [temp.arg.type]p1: 2339 // A template-argument for a template-parameter which is a 2340 // type shall be a type-id. 2341 break; 2342 case TemplateArgument::Template: { 2343 // We have a template type parameter but the template argument 2344 // is a template without any arguments. 2345 SourceRange SR = AL.getSourceRange(); 2346 TemplateName Name = Arg.getAsTemplate(); 2347 Diag(SR.getBegin(), diag::err_template_missing_args) 2348 << Name << SR; 2349 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2350 Diag(Decl->getLocation(), diag::note_template_decl_here); 2351 2352 return true; 2353 } 2354 default: { 2355 // We have a template type parameter but the template argument 2356 // is not a type. 2357 SourceRange SR = AL.getSourceRange(); 2358 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2359 Diag(Param->getLocation(), diag::note_template_param_here); 2360 2361 return true; 2362 } 2363 } 2364 2365 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2366 return true; 2367 2368 // Add the converted template type argument. 2369 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2370 2371 // Objective-C ARC: 2372 // If an explicitly-specified template argument type is a lifetime type 2373 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2374 if (getLangOptions().ObjCAutoRefCount && 2375 ArgType->isObjCLifetimeType() && 2376 !ArgType.getObjCLifetime()) { 2377 Qualifiers Qs; 2378 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2379 ArgType = Context.getQualifiedType(ArgType, Qs); 2380 } 2381 2382 Converted.push_back(TemplateArgument(ArgType)); 2383 return false; 2384} 2385 2386/// \brief Substitute template arguments into the default template argument for 2387/// the given template type parameter. 2388/// 2389/// \param SemaRef the semantic analysis object for which we are performing 2390/// the substitution. 2391/// 2392/// \param Template the template that we are synthesizing template arguments 2393/// for. 2394/// 2395/// \param TemplateLoc the location of the template name that started the 2396/// template-id we are checking. 2397/// 2398/// \param RAngleLoc the location of the right angle bracket ('>') that 2399/// terminates the template-id. 2400/// 2401/// \param Param the template template parameter whose default we are 2402/// substituting into. 2403/// 2404/// \param Converted the list of template arguments provided for template 2405/// parameters that precede \p Param in the template parameter list. 2406/// \returns the substituted template argument, or NULL if an error occurred. 2407static TypeSourceInfo * 2408SubstDefaultTemplateArgument(Sema &SemaRef, 2409 TemplateDecl *Template, 2410 SourceLocation TemplateLoc, 2411 SourceLocation RAngleLoc, 2412 TemplateTypeParmDecl *Param, 2413 SmallVectorImpl<TemplateArgument> &Converted) { 2414 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2415 2416 // If the argument type is dependent, instantiate it now based 2417 // on the previously-computed template arguments. 2418 if (ArgType->getType()->isDependentType()) { 2419 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2420 Converted.data(), Converted.size()); 2421 2422 MultiLevelTemplateArgumentList AllTemplateArgs 2423 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2424 2425 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2426 Template, Converted.data(), 2427 Converted.size(), 2428 SourceRange(TemplateLoc, RAngleLoc)); 2429 2430 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2431 Param->getDefaultArgumentLoc(), 2432 Param->getDeclName()); 2433 } 2434 2435 return ArgType; 2436} 2437 2438/// \brief Substitute template arguments into the default template argument for 2439/// the given non-type template parameter. 2440/// 2441/// \param SemaRef the semantic analysis object for which we are performing 2442/// the substitution. 2443/// 2444/// \param Template the template that we are synthesizing template arguments 2445/// for. 2446/// 2447/// \param TemplateLoc the location of the template name that started the 2448/// template-id we are checking. 2449/// 2450/// \param RAngleLoc the location of the right angle bracket ('>') that 2451/// terminates the template-id. 2452/// 2453/// \param Param the non-type template parameter whose default we are 2454/// substituting into. 2455/// 2456/// \param Converted the list of template arguments provided for template 2457/// parameters that precede \p Param in the template parameter list. 2458/// 2459/// \returns the substituted template argument, or NULL if an error occurred. 2460static ExprResult 2461SubstDefaultTemplateArgument(Sema &SemaRef, 2462 TemplateDecl *Template, 2463 SourceLocation TemplateLoc, 2464 SourceLocation RAngleLoc, 2465 NonTypeTemplateParmDecl *Param, 2466 SmallVectorImpl<TemplateArgument> &Converted) { 2467 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2468 Converted.data(), Converted.size()); 2469 2470 MultiLevelTemplateArgumentList AllTemplateArgs 2471 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2472 2473 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2474 Template, Converted.data(), 2475 Converted.size(), 2476 SourceRange(TemplateLoc, RAngleLoc)); 2477 2478 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2479} 2480 2481/// \brief Substitute template arguments into the default template argument for 2482/// the given template template parameter. 2483/// 2484/// \param SemaRef the semantic analysis object for which we are performing 2485/// the substitution. 2486/// 2487/// \param Template the template that we are synthesizing template arguments 2488/// for. 2489/// 2490/// \param TemplateLoc the location of the template name that started the 2491/// template-id we are checking. 2492/// 2493/// \param RAngleLoc the location of the right angle bracket ('>') that 2494/// terminates the template-id. 2495/// 2496/// \param Param the template template parameter whose default we are 2497/// substituting into. 2498/// 2499/// \param Converted the list of template arguments provided for template 2500/// parameters that precede \p Param in the template parameter list. 2501/// 2502/// \param QualifierLoc Will be set to the nested-name-specifier (with 2503/// source-location information) that precedes the template name. 2504/// 2505/// \returns the substituted template argument, or NULL if an error occurred. 2506static TemplateName 2507SubstDefaultTemplateArgument(Sema &SemaRef, 2508 TemplateDecl *Template, 2509 SourceLocation TemplateLoc, 2510 SourceLocation RAngleLoc, 2511 TemplateTemplateParmDecl *Param, 2512 SmallVectorImpl<TemplateArgument> &Converted, 2513 NestedNameSpecifierLoc &QualifierLoc) { 2514 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2515 Converted.data(), Converted.size()); 2516 2517 MultiLevelTemplateArgumentList AllTemplateArgs 2518 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2519 2520 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2521 Template, Converted.data(), 2522 Converted.size(), 2523 SourceRange(TemplateLoc, RAngleLoc)); 2524 2525 // Substitute into the nested-name-specifier first, 2526 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2527 if (QualifierLoc) { 2528 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2529 AllTemplateArgs); 2530 if (!QualifierLoc) 2531 return TemplateName(); 2532 } 2533 2534 return SemaRef.SubstTemplateName(QualifierLoc, 2535 Param->getDefaultArgument().getArgument().getAsTemplate(), 2536 Param->getDefaultArgument().getTemplateNameLoc(), 2537 AllTemplateArgs); 2538} 2539 2540/// \brief If the given template parameter has a default template 2541/// argument, substitute into that default template argument and 2542/// return the corresponding template argument. 2543TemplateArgumentLoc 2544Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2545 SourceLocation TemplateLoc, 2546 SourceLocation RAngleLoc, 2547 Decl *Param, 2548 SmallVectorImpl<TemplateArgument> &Converted) { 2549 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2550 if (!TypeParm->hasDefaultArgument()) 2551 return TemplateArgumentLoc(); 2552 2553 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2554 TemplateLoc, 2555 RAngleLoc, 2556 TypeParm, 2557 Converted); 2558 if (DI) 2559 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2560 2561 return TemplateArgumentLoc(); 2562 } 2563 2564 if (NonTypeTemplateParmDecl *NonTypeParm 2565 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2566 if (!NonTypeParm->hasDefaultArgument()) 2567 return TemplateArgumentLoc(); 2568 2569 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2570 TemplateLoc, 2571 RAngleLoc, 2572 NonTypeParm, 2573 Converted); 2574 if (Arg.isInvalid()) 2575 return TemplateArgumentLoc(); 2576 2577 Expr *ArgE = Arg.takeAs<Expr>(); 2578 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2579 } 2580 2581 TemplateTemplateParmDecl *TempTempParm 2582 = cast<TemplateTemplateParmDecl>(Param); 2583 if (!TempTempParm->hasDefaultArgument()) 2584 return TemplateArgumentLoc(); 2585 2586 2587 NestedNameSpecifierLoc QualifierLoc; 2588 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2589 TemplateLoc, 2590 RAngleLoc, 2591 TempTempParm, 2592 Converted, 2593 QualifierLoc); 2594 if (TName.isNull()) 2595 return TemplateArgumentLoc(); 2596 2597 return TemplateArgumentLoc(TemplateArgument(TName), 2598 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2599 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2600} 2601 2602/// \brief Check that the given template argument corresponds to the given 2603/// template parameter. 2604/// 2605/// \param Param The template parameter against which the argument will be 2606/// checked. 2607/// 2608/// \param Arg The template argument. 2609/// 2610/// \param Template The template in which the template argument resides. 2611/// 2612/// \param TemplateLoc The location of the template name for the template 2613/// whose argument list we're matching. 2614/// 2615/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2616/// the template argument list. 2617/// 2618/// \param ArgumentPackIndex The index into the argument pack where this 2619/// argument will be placed. Only valid if the parameter is a parameter pack. 2620/// 2621/// \param Converted The checked, converted argument will be added to the 2622/// end of this small vector. 2623/// 2624/// \param CTAK Describes how we arrived at this particular template argument: 2625/// explicitly written, deduced, etc. 2626/// 2627/// \returns true on error, false otherwise. 2628bool Sema::CheckTemplateArgument(NamedDecl *Param, 2629 const TemplateArgumentLoc &Arg, 2630 NamedDecl *Template, 2631 SourceLocation TemplateLoc, 2632 SourceLocation RAngleLoc, 2633 unsigned ArgumentPackIndex, 2634 SmallVectorImpl<TemplateArgument> &Converted, 2635 CheckTemplateArgumentKind CTAK) { 2636 // Check template type parameters. 2637 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2638 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2639 2640 // Check non-type template parameters. 2641 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2642 // Do substitution on the type of the non-type template parameter 2643 // with the template arguments we've seen thus far. But if the 2644 // template has a dependent context then we cannot substitute yet. 2645 QualType NTTPType = NTTP->getType(); 2646 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2647 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2648 2649 if (NTTPType->isDependentType() && 2650 !isa<TemplateTemplateParmDecl>(Template) && 2651 !Template->getDeclContext()->isDependentContext()) { 2652 // Do substitution on the type of the non-type template parameter. 2653 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2654 NTTP, Converted.data(), Converted.size(), 2655 SourceRange(TemplateLoc, RAngleLoc)); 2656 2657 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2658 Converted.data(), Converted.size()); 2659 NTTPType = SubstType(NTTPType, 2660 MultiLevelTemplateArgumentList(TemplateArgs), 2661 NTTP->getLocation(), 2662 NTTP->getDeclName()); 2663 // If that worked, check the non-type template parameter type 2664 // for validity. 2665 if (!NTTPType.isNull()) 2666 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2667 NTTP->getLocation()); 2668 if (NTTPType.isNull()) 2669 return true; 2670 } 2671 2672 switch (Arg.getArgument().getKind()) { 2673 case TemplateArgument::Null: 2674 assert(false && "Should never see a NULL template argument here"); 2675 return true; 2676 2677 case TemplateArgument::Expression: { 2678 TemplateArgument Result; 2679 ExprResult Res = 2680 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2681 Result, CTAK); 2682 if (Res.isInvalid()) 2683 return true; 2684 2685 Converted.push_back(Result); 2686 break; 2687 } 2688 2689 case TemplateArgument::Declaration: 2690 case TemplateArgument::Integral: 2691 // We've already checked this template argument, so just copy 2692 // it to the list of converted arguments. 2693 Converted.push_back(Arg.getArgument()); 2694 break; 2695 2696 case TemplateArgument::Template: 2697 case TemplateArgument::TemplateExpansion: 2698 // We were given a template template argument. It may not be ill-formed; 2699 // see below. 2700 if (DependentTemplateName *DTN 2701 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2702 .getAsDependentTemplateName()) { 2703 // We have a template argument such as \c T::template X, which we 2704 // parsed as a template template argument. However, since we now 2705 // know that we need a non-type template argument, convert this 2706 // template name into an expression. 2707 2708 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2709 Arg.getTemplateNameLoc()); 2710 2711 CXXScopeSpec SS; 2712 SS.Adopt(Arg.getTemplateQualifierLoc()); 2713 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2714 SS.getWithLocInContext(Context), 2715 NameInfo)); 2716 2717 // If we parsed the template argument as a pack expansion, create a 2718 // pack expansion expression. 2719 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2720 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2721 if (E.isInvalid()) 2722 return true; 2723 } 2724 2725 TemplateArgument Result; 2726 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2727 if (E.isInvalid()) 2728 return true; 2729 2730 Converted.push_back(Result); 2731 break; 2732 } 2733 2734 // We have a template argument that actually does refer to a class 2735 // template, alias template, or template template parameter, and 2736 // therefore cannot be a non-type template argument. 2737 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2738 << Arg.getSourceRange(); 2739 2740 Diag(Param->getLocation(), diag::note_template_param_here); 2741 return true; 2742 2743 case TemplateArgument::Type: { 2744 // We have a non-type template parameter but the template 2745 // argument is a type. 2746 2747 // C++ [temp.arg]p2: 2748 // In a template-argument, an ambiguity between a type-id and 2749 // an expression is resolved to a type-id, regardless of the 2750 // form of the corresponding template-parameter. 2751 // 2752 // We warn specifically about this case, since it can be rather 2753 // confusing for users. 2754 QualType T = Arg.getArgument().getAsType(); 2755 SourceRange SR = Arg.getSourceRange(); 2756 if (T->isFunctionType()) 2757 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2758 else 2759 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2760 Diag(Param->getLocation(), diag::note_template_param_here); 2761 return true; 2762 } 2763 2764 case TemplateArgument::Pack: 2765 llvm_unreachable("Caller must expand template argument packs"); 2766 break; 2767 } 2768 2769 return false; 2770 } 2771 2772 2773 // Check template template parameters. 2774 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2775 2776 // Substitute into the template parameter list of the template 2777 // template parameter, since previously-supplied template arguments 2778 // may appear within the template template parameter. 2779 { 2780 // Set up a template instantiation context. 2781 LocalInstantiationScope Scope(*this); 2782 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2783 TempParm, Converted.data(), Converted.size(), 2784 SourceRange(TemplateLoc, RAngleLoc)); 2785 2786 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2787 Converted.data(), Converted.size()); 2788 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2789 SubstDecl(TempParm, CurContext, 2790 MultiLevelTemplateArgumentList(TemplateArgs))); 2791 if (!TempParm) 2792 return true; 2793 } 2794 2795 switch (Arg.getArgument().getKind()) { 2796 case TemplateArgument::Null: 2797 assert(false && "Should never see a NULL template argument here"); 2798 return true; 2799 2800 case TemplateArgument::Template: 2801 case TemplateArgument::TemplateExpansion: 2802 if (CheckTemplateArgument(TempParm, Arg)) 2803 return true; 2804 2805 Converted.push_back(Arg.getArgument()); 2806 break; 2807 2808 case TemplateArgument::Expression: 2809 case TemplateArgument::Type: 2810 // We have a template template parameter but the template 2811 // argument does not refer to a template. 2812 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2813 << getLangOptions().CPlusPlus0x; 2814 return true; 2815 2816 case TemplateArgument::Declaration: 2817 llvm_unreachable( 2818 "Declaration argument with template template parameter"); 2819 break; 2820 case TemplateArgument::Integral: 2821 llvm_unreachable( 2822 "Integral argument with template template parameter"); 2823 break; 2824 2825 case TemplateArgument::Pack: 2826 llvm_unreachable("Caller must expand template argument packs"); 2827 break; 2828 } 2829 2830 return false; 2831} 2832 2833/// \brief Check that the given template argument list is well-formed 2834/// for specializing the given template. 2835bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2836 SourceLocation TemplateLoc, 2837 TemplateArgumentListInfo &TemplateArgs, 2838 bool PartialTemplateArgs, 2839 SmallVectorImpl<TemplateArgument> &Converted) { 2840 TemplateParameterList *Params = Template->getTemplateParameters(); 2841 unsigned NumParams = Params->size(); 2842 unsigned NumArgs = TemplateArgs.size(); 2843 bool Invalid = false; 2844 2845 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2846 2847 bool HasParameterPack = 2848 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2849 2850 if ((NumArgs > NumParams && !HasParameterPack) || 2851 (NumArgs < Params->getMinRequiredArguments() && 2852 !PartialTemplateArgs)) { 2853 // FIXME: point at either the first arg beyond what we can handle, 2854 // or the '>', depending on whether we have too many or too few 2855 // arguments. 2856 SourceRange Range; 2857 if (NumArgs > NumParams) 2858 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2859 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2860 << (NumArgs > NumParams) 2861 << (isa<ClassTemplateDecl>(Template)? 0 : 2862 isa<FunctionTemplateDecl>(Template)? 1 : 2863 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2864 << Template << Range; 2865 Diag(Template->getLocation(), diag::note_template_decl_here) 2866 << Params->getSourceRange(); 2867 Invalid = true; 2868 } 2869 2870 // C++ [temp.arg]p1: 2871 // [...] The type and form of each template-argument specified in 2872 // a template-id shall match the type and form specified for the 2873 // corresponding parameter declared by the template in its 2874 // template-parameter-list. 2875 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2876 SmallVector<TemplateArgument, 2> ArgumentPack; 2877 TemplateParameterList::iterator Param = Params->begin(), 2878 ParamEnd = Params->end(); 2879 unsigned ArgIdx = 0; 2880 LocalInstantiationScope InstScope(*this, true); 2881 while (Param != ParamEnd) { 2882 if (ArgIdx < NumArgs) { 2883 // If we have an expanded parameter pack, make sure we don't have too 2884 // many arguments. 2885 if (NonTypeTemplateParmDecl *NTTP 2886 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2887 if (NTTP->isExpandedParameterPack() && 2888 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2889 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2890 << true 2891 << (isa<ClassTemplateDecl>(Template)? 0 : 2892 isa<FunctionTemplateDecl>(Template)? 1 : 2893 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2894 << Template; 2895 Diag(Template->getLocation(), diag::note_template_decl_here) 2896 << Params->getSourceRange(); 2897 return true; 2898 } 2899 } 2900 2901 // Check the template argument we were given. 2902 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2903 TemplateLoc, RAngleLoc, 2904 ArgumentPack.size(), Converted)) 2905 return true; 2906 2907 if ((*Param)->isTemplateParameterPack()) { 2908 // The template parameter was a template parameter pack, so take the 2909 // deduced argument and place it on the argument pack. Note that we 2910 // stay on the same template parameter so that we can deduce more 2911 // arguments. 2912 ArgumentPack.push_back(Converted.back()); 2913 Converted.pop_back(); 2914 } else { 2915 // Move to the next template parameter. 2916 ++Param; 2917 } 2918 ++ArgIdx; 2919 continue; 2920 } 2921 2922 // If we're checking a partial template argument list, we're done. 2923 if (PartialTemplateArgs) { 2924 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2925 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2926 ArgumentPack.data(), 2927 ArgumentPack.size())); 2928 2929 return Invalid; 2930 } 2931 2932 // If we have a template parameter pack with no more corresponding 2933 // arguments, just break out now and we'll fill in the argument pack below. 2934 if ((*Param)->isTemplateParameterPack()) 2935 break; 2936 2937 // We have a default template argument that we will use. 2938 TemplateArgumentLoc Arg; 2939 2940 // Retrieve the default template argument from the template 2941 // parameter. For each kind of template parameter, we substitute the 2942 // template arguments provided thus far and any "outer" template arguments 2943 // (when the template parameter was part of a nested template) into 2944 // the default argument. 2945 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2946 if (!TTP->hasDefaultArgument()) { 2947 assert(Invalid && "Missing default argument"); 2948 break; 2949 } 2950 2951 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2952 Template, 2953 TemplateLoc, 2954 RAngleLoc, 2955 TTP, 2956 Converted); 2957 if (!ArgType) 2958 return true; 2959 2960 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2961 ArgType); 2962 } else if (NonTypeTemplateParmDecl *NTTP 2963 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2964 if (!NTTP->hasDefaultArgument()) { 2965 assert(Invalid && "Missing default argument"); 2966 break; 2967 } 2968 2969 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2970 TemplateLoc, 2971 RAngleLoc, 2972 NTTP, 2973 Converted); 2974 if (E.isInvalid()) 2975 return true; 2976 2977 Expr *Ex = E.takeAs<Expr>(); 2978 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2979 } else { 2980 TemplateTemplateParmDecl *TempParm 2981 = cast<TemplateTemplateParmDecl>(*Param); 2982 2983 if (!TempParm->hasDefaultArgument()) { 2984 assert(Invalid && "Missing default argument"); 2985 break; 2986 } 2987 2988 NestedNameSpecifierLoc QualifierLoc; 2989 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2990 TemplateLoc, 2991 RAngleLoc, 2992 TempParm, 2993 Converted, 2994 QualifierLoc); 2995 if (Name.isNull()) 2996 return true; 2997 2998 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2999 TempParm->getDefaultArgument().getTemplateNameLoc()); 3000 } 3001 3002 // Introduce an instantiation record that describes where we are using 3003 // the default template argument. 3004 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3005 Converted.data(), Converted.size(), 3006 SourceRange(TemplateLoc, RAngleLoc)); 3007 3008 // Check the default template argument. 3009 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3010 RAngleLoc, 0, Converted)) 3011 return true; 3012 3013 // Core issue 150 (assumed resolution): if this is a template template 3014 // parameter, keep track of the default template arguments from the 3015 // template definition. 3016 if (isTemplateTemplateParameter) 3017 TemplateArgs.addArgument(Arg); 3018 3019 // Move to the next template parameter and argument. 3020 ++Param; 3021 ++ArgIdx; 3022 } 3023 3024 // Form argument packs for each of the parameter packs remaining. 3025 while (Param != ParamEnd) { 3026 // If we're checking a partial list of template arguments, don't fill 3027 // in arguments for non-template parameter packs. 3028 3029 if ((*Param)->isTemplateParameterPack()) { 3030 if (ArgumentPack.empty()) 3031 Converted.push_back(TemplateArgument(0, 0)); 3032 else { 3033 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3034 ArgumentPack.data(), 3035 ArgumentPack.size())); 3036 ArgumentPack.clear(); 3037 } 3038 } 3039 3040 ++Param; 3041 } 3042 3043 return Invalid; 3044} 3045 3046namespace { 3047 class UnnamedLocalNoLinkageFinder 3048 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3049 { 3050 Sema &S; 3051 SourceRange SR; 3052 3053 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3054 3055 public: 3056 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3057 3058 bool Visit(QualType T) { 3059 return inherited::Visit(T.getTypePtr()); 3060 } 3061 3062#define TYPE(Class, Parent) \ 3063 bool Visit##Class##Type(const Class##Type *); 3064#define ABSTRACT_TYPE(Class, Parent) \ 3065 bool Visit##Class##Type(const Class##Type *) { return false; } 3066#define NON_CANONICAL_TYPE(Class, Parent) \ 3067 bool Visit##Class##Type(const Class##Type *) { return false; } 3068#include "clang/AST/TypeNodes.def" 3069 3070 bool VisitTagDecl(const TagDecl *Tag); 3071 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3072 }; 3073} 3074 3075bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3076 return false; 3077} 3078 3079bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3080 return Visit(T->getElementType()); 3081} 3082 3083bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3084 return Visit(T->getPointeeType()); 3085} 3086 3087bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3088 const BlockPointerType* T) { 3089 return Visit(T->getPointeeType()); 3090} 3091 3092bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3093 const LValueReferenceType* T) { 3094 return Visit(T->getPointeeType()); 3095} 3096 3097bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3098 const RValueReferenceType* T) { 3099 return Visit(T->getPointeeType()); 3100} 3101 3102bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3103 const MemberPointerType* T) { 3104 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3105} 3106 3107bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3108 const ConstantArrayType* T) { 3109 return Visit(T->getElementType()); 3110} 3111 3112bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3113 const IncompleteArrayType* T) { 3114 return Visit(T->getElementType()); 3115} 3116 3117bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3118 const VariableArrayType* T) { 3119 return Visit(T->getElementType()); 3120} 3121 3122bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3123 const DependentSizedArrayType* T) { 3124 return Visit(T->getElementType()); 3125} 3126 3127bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3128 const DependentSizedExtVectorType* T) { 3129 return Visit(T->getElementType()); 3130} 3131 3132bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3133 return Visit(T->getElementType()); 3134} 3135 3136bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3137 return Visit(T->getElementType()); 3138} 3139 3140bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3141 const FunctionProtoType* T) { 3142 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3143 AEnd = T->arg_type_end(); 3144 A != AEnd; ++A) { 3145 if (Visit(*A)) 3146 return true; 3147 } 3148 3149 return Visit(T->getResultType()); 3150} 3151 3152bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3153 const FunctionNoProtoType* T) { 3154 return Visit(T->getResultType()); 3155} 3156 3157bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3158 const UnresolvedUsingType*) { 3159 return false; 3160} 3161 3162bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3163 return false; 3164} 3165 3166bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3167 return Visit(T->getUnderlyingType()); 3168} 3169 3170bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3171 return false; 3172} 3173 3174bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3175 const UnaryTransformType*) { 3176 return false; 3177} 3178 3179bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3180 return Visit(T->getDeducedType()); 3181} 3182 3183bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3184 return VisitTagDecl(T->getDecl()); 3185} 3186 3187bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3188 return VisitTagDecl(T->getDecl()); 3189} 3190 3191bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3192 const TemplateTypeParmType*) { 3193 return false; 3194} 3195 3196bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3197 const SubstTemplateTypeParmPackType *) { 3198 return false; 3199} 3200 3201bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3202 const TemplateSpecializationType*) { 3203 return false; 3204} 3205 3206bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3207 const InjectedClassNameType* T) { 3208 return VisitTagDecl(T->getDecl()); 3209} 3210 3211bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3212 const DependentNameType* T) { 3213 return VisitNestedNameSpecifier(T->getQualifier()); 3214} 3215 3216bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3217 const DependentTemplateSpecializationType* T) { 3218 return VisitNestedNameSpecifier(T->getQualifier()); 3219} 3220 3221bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3222 const PackExpansionType* T) { 3223 return Visit(T->getPattern()); 3224} 3225 3226bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3227 return false; 3228} 3229 3230bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3231 const ObjCInterfaceType *) { 3232 return false; 3233} 3234 3235bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3236 const ObjCObjectPointerType *) { 3237 return false; 3238} 3239 3240bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3241 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3242 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3243 << S.Context.getTypeDeclType(Tag) << SR; 3244 return true; 3245 } 3246 3247 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3248 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3249 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3250 return true; 3251 } 3252 3253 return false; 3254} 3255 3256bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3257 NestedNameSpecifier *NNS) { 3258 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3259 return true; 3260 3261 switch (NNS->getKind()) { 3262 case NestedNameSpecifier::Identifier: 3263 case NestedNameSpecifier::Namespace: 3264 case NestedNameSpecifier::NamespaceAlias: 3265 case NestedNameSpecifier::Global: 3266 return false; 3267 3268 case NestedNameSpecifier::TypeSpec: 3269 case NestedNameSpecifier::TypeSpecWithTemplate: 3270 return Visit(QualType(NNS->getAsType(), 0)); 3271 } 3272 return false; 3273} 3274 3275 3276/// \brief Check a template argument against its corresponding 3277/// template type parameter. 3278/// 3279/// This routine implements the semantics of C++ [temp.arg.type]. It 3280/// returns true if an error occurred, and false otherwise. 3281bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3282 TypeSourceInfo *ArgInfo) { 3283 assert(ArgInfo && "invalid TypeSourceInfo"); 3284 QualType Arg = ArgInfo->getType(); 3285 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3286 3287 if (Arg->isVariablyModifiedType()) { 3288 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3289 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3290 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3291 } 3292 3293 // C++03 [temp.arg.type]p2: 3294 // A local type, a type with no linkage, an unnamed type or a type 3295 // compounded from any of these types shall not be used as a 3296 // template-argument for a template type-parameter. 3297 // 3298 // C++0x allows these, and even in C++03 we allow them as an extension with 3299 // a warning. 3300 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3301 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3302 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3303 } 3304 3305 return false; 3306} 3307 3308/// \brief Checks whether the given template argument is the address 3309/// of an object or function according to C++ [temp.arg.nontype]p1. 3310static bool 3311CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3312 NonTypeTemplateParmDecl *Param, 3313 QualType ParamType, 3314 Expr *ArgIn, 3315 TemplateArgument &Converted) { 3316 bool Invalid = false; 3317 Expr *Arg = ArgIn; 3318 QualType ArgType = Arg->getType(); 3319 3320 // See through any implicit casts we added to fix the type. 3321 Arg = Arg->IgnoreImpCasts(); 3322 3323 // C++ [temp.arg.nontype]p1: 3324 // 3325 // A template-argument for a non-type, non-template 3326 // template-parameter shall be one of: [...] 3327 // 3328 // -- the address of an object or function with external 3329 // linkage, including function templates and function 3330 // template-ids but excluding non-static class members, 3331 // expressed as & id-expression where the & is optional if 3332 // the name refers to a function or array, or if the 3333 // corresponding template-parameter is a reference; or 3334 3335 // In C++98/03 mode, give an extension warning on any extra parentheses. 3336 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3337 bool ExtraParens = false; 3338 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3339 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3340 S.Diag(Arg->getSourceRange().getBegin(), 3341 diag::ext_template_arg_extra_parens) 3342 << Arg->getSourceRange(); 3343 ExtraParens = true; 3344 } 3345 3346 Arg = Parens->getSubExpr(); 3347 } 3348 3349 while (SubstNonTypeTemplateParmExpr *subst = 3350 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3351 Arg = subst->getReplacement()->IgnoreImpCasts(); 3352 3353 bool AddressTaken = false; 3354 SourceLocation AddrOpLoc; 3355 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3356 if (UnOp->getOpcode() == UO_AddrOf) { 3357 Arg = UnOp->getSubExpr(); 3358 AddressTaken = true; 3359 AddrOpLoc = UnOp->getOperatorLoc(); 3360 } 3361 } 3362 3363 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3364 Converted = TemplateArgument(ArgIn); 3365 return false; 3366 } 3367 3368 while (SubstNonTypeTemplateParmExpr *subst = 3369 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3370 Arg = subst->getReplacement()->IgnoreImpCasts(); 3371 3372 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3373 if (!DRE) { 3374 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3375 << Arg->getSourceRange(); 3376 S.Diag(Param->getLocation(), diag::note_template_param_here); 3377 return true; 3378 } 3379 3380 // Stop checking the precise nature of the argument if it is value dependent, 3381 // it should be checked when instantiated. 3382 if (Arg->isValueDependent()) { 3383 Converted = TemplateArgument(ArgIn); 3384 return false; 3385 } 3386 3387 if (!isa<ValueDecl>(DRE->getDecl())) { 3388 S.Diag(Arg->getSourceRange().getBegin(), 3389 diag::err_template_arg_not_object_or_func_form) 3390 << Arg->getSourceRange(); 3391 S.Diag(Param->getLocation(), diag::note_template_param_here); 3392 return true; 3393 } 3394 3395 NamedDecl *Entity = 0; 3396 3397 // Cannot refer to non-static data members 3398 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3399 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3400 << Field << Arg->getSourceRange(); 3401 S.Diag(Param->getLocation(), diag::note_template_param_here); 3402 return true; 3403 } 3404 3405 // Cannot refer to non-static member functions 3406 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3407 if (!Method->isStatic()) { 3408 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3409 << Method << Arg->getSourceRange(); 3410 S.Diag(Param->getLocation(), diag::note_template_param_here); 3411 return true; 3412 } 3413 3414 // Functions must have external linkage. 3415 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3416 if (!isExternalLinkage(Func->getLinkage())) { 3417 S.Diag(Arg->getSourceRange().getBegin(), 3418 diag::err_template_arg_function_not_extern) 3419 << Func << Arg->getSourceRange(); 3420 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3421 << true; 3422 return true; 3423 } 3424 3425 // Okay: we've named a function with external linkage. 3426 Entity = Func; 3427 3428 // If the template parameter has pointer type, the function decays. 3429 if (ParamType->isPointerType() && !AddressTaken) 3430 ArgType = S.Context.getPointerType(Func->getType()); 3431 else if (AddressTaken && ParamType->isReferenceType()) { 3432 // If we originally had an address-of operator, but the 3433 // parameter has reference type, complain and (if things look 3434 // like they will work) drop the address-of operator. 3435 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3436 ParamType.getNonReferenceType())) { 3437 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3438 << ParamType; 3439 S.Diag(Param->getLocation(), diag::note_template_param_here); 3440 return true; 3441 } 3442 3443 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3444 << ParamType 3445 << FixItHint::CreateRemoval(AddrOpLoc); 3446 S.Diag(Param->getLocation(), diag::note_template_param_here); 3447 3448 ArgType = Func->getType(); 3449 } 3450 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3451 if (!isExternalLinkage(Var->getLinkage())) { 3452 S.Diag(Arg->getSourceRange().getBegin(), 3453 diag::err_template_arg_object_not_extern) 3454 << Var << Arg->getSourceRange(); 3455 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3456 << true; 3457 return true; 3458 } 3459 3460 // A value of reference type is not an object. 3461 if (Var->getType()->isReferenceType()) { 3462 S.Diag(Arg->getSourceRange().getBegin(), 3463 diag::err_template_arg_reference_var) 3464 << Var->getType() << Arg->getSourceRange(); 3465 S.Diag(Param->getLocation(), diag::note_template_param_here); 3466 return true; 3467 } 3468 3469 // Okay: we've named an object with external linkage 3470 Entity = Var; 3471 3472 // If the template parameter has pointer type, we must have taken 3473 // the address of this object. 3474 if (ParamType->isReferenceType()) { 3475 if (AddressTaken) { 3476 // If we originally had an address-of operator, but the 3477 // parameter has reference type, complain and (if things look 3478 // like they will work) drop the address-of operator. 3479 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3480 ParamType.getNonReferenceType())) { 3481 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3482 << ParamType; 3483 S.Diag(Param->getLocation(), diag::note_template_param_here); 3484 return true; 3485 } 3486 3487 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3488 << ParamType 3489 << FixItHint::CreateRemoval(AddrOpLoc); 3490 S.Diag(Param->getLocation(), diag::note_template_param_here); 3491 3492 ArgType = Var->getType(); 3493 } 3494 } else if (!AddressTaken && ParamType->isPointerType()) { 3495 if (Var->getType()->isArrayType()) { 3496 // Array-to-pointer decay. 3497 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3498 } else { 3499 // If the template parameter has pointer type but the address of 3500 // this object was not taken, complain and (possibly) recover by 3501 // taking the address of the entity. 3502 ArgType = S.Context.getPointerType(Var->getType()); 3503 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3504 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3505 << ParamType; 3506 S.Diag(Param->getLocation(), diag::note_template_param_here); 3507 return true; 3508 } 3509 3510 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3511 << ParamType 3512 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3513 3514 S.Diag(Param->getLocation(), diag::note_template_param_here); 3515 } 3516 } 3517 } else { 3518 // We found something else, but we don't know specifically what it is. 3519 S.Diag(Arg->getSourceRange().getBegin(), 3520 diag::err_template_arg_not_object_or_func) 3521 << Arg->getSourceRange(); 3522 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3523 return true; 3524 } 3525 3526 bool ObjCLifetimeConversion; 3527 if (ParamType->isPointerType() && 3528 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3529 S.IsQualificationConversion(ArgType, ParamType, false, 3530 ObjCLifetimeConversion)) { 3531 // For pointer-to-object types, qualification conversions are 3532 // permitted. 3533 } else { 3534 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3535 if (!ParamRef->getPointeeType()->isFunctionType()) { 3536 // C++ [temp.arg.nontype]p5b3: 3537 // For a non-type template-parameter of type reference to 3538 // object, no conversions apply. The type referred to by the 3539 // reference may be more cv-qualified than the (otherwise 3540 // identical) type of the template- argument. The 3541 // template-parameter is bound directly to the 3542 // template-argument, which shall be an lvalue. 3543 3544 // FIXME: Other qualifiers? 3545 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3546 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3547 3548 if ((ParamQuals | ArgQuals) != ParamQuals) { 3549 S.Diag(Arg->getSourceRange().getBegin(), 3550 diag::err_template_arg_ref_bind_ignores_quals) 3551 << ParamType << Arg->getType() 3552 << Arg->getSourceRange(); 3553 S.Diag(Param->getLocation(), diag::note_template_param_here); 3554 return true; 3555 } 3556 } 3557 } 3558 3559 // At this point, the template argument refers to an object or 3560 // function with external linkage. We now need to check whether the 3561 // argument and parameter types are compatible. 3562 if (!S.Context.hasSameUnqualifiedType(ArgType, 3563 ParamType.getNonReferenceType())) { 3564 // We can't perform this conversion or binding. 3565 if (ParamType->isReferenceType()) 3566 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3567 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3568 else 3569 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3570 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3571 S.Diag(Param->getLocation(), diag::note_template_param_here); 3572 return true; 3573 } 3574 } 3575 3576 // Create the template argument. 3577 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3578 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3579 return false; 3580} 3581 3582/// \brief Checks whether the given template argument is a pointer to 3583/// member constant according to C++ [temp.arg.nontype]p1. 3584bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3585 TemplateArgument &Converted) { 3586 bool Invalid = false; 3587 3588 // See through any implicit casts we added to fix the type. 3589 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3590 Arg = Cast->getSubExpr(); 3591 3592 // C++ [temp.arg.nontype]p1: 3593 // 3594 // A template-argument for a non-type, non-template 3595 // template-parameter shall be one of: [...] 3596 // 3597 // -- a pointer to member expressed as described in 5.3.1. 3598 DeclRefExpr *DRE = 0; 3599 3600 // In C++98/03 mode, give an extension warning on any extra parentheses. 3601 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3602 bool ExtraParens = false; 3603 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3604 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3605 Diag(Arg->getSourceRange().getBegin(), 3606 diag::ext_template_arg_extra_parens) 3607 << Arg->getSourceRange(); 3608 ExtraParens = true; 3609 } 3610 3611 Arg = Parens->getSubExpr(); 3612 } 3613 3614 while (SubstNonTypeTemplateParmExpr *subst = 3615 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3616 Arg = subst->getReplacement()->IgnoreImpCasts(); 3617 3618 // A pointer-to-member constant written &Class::member. 3619 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3620 if (UnOp->getOpcode() == UO_AddrOf) { 3621 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3622 if (DRE && !DRE->getQualifier()) 3623 DRE = 0; 3624 } 3625 } 3626 // A constant of pointer-to-member type. 3627 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3628 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3629 if (VD->getType()->isMemberPointerType()) { 3630 if (isa<NonTypeTemplateParmDecl>(VD) || 3631 (isa<VarDecl>(VD) && 3632 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3633 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3634 Converted = TemplateArgument(Arg); 3635 else 3636 Converted = TemplateArgument(VD->getCanonicalDecl()); 3637 return Invalid; 3638 } 3639 } 3640 } 3641 3642 DRE = 0; 3643 } 3644 3645 if (!DRE) 3646 return Diag(Arg->getSourceRange().getBegin(), 3647 diag::err_template_arg_not_pointer_to_member_form) 3648 << Arg->getSourceRange(); 3649 3650 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3651 assert((isa<FieldDecl>(DRE->getDecl()) || 3652 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3653 "Only non-static member pointers can make it here"); 3654 3655 // Okay: this is the address of a non-static member, and therefore 3656 // a member pointer constant. 3657 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3658 Converted = TemplateArgument(Arg); 3659 else 3660 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3661 return Invalid; 3662 } 3663 3664 // We found something else, but we don't know specifically what it is. 3665 Diag(Arg->getSourceRange().getBegin(), 3666 diag::err_template_arg_not_pointer_to_member_form) 3667 << Arg->getSourceRange(); 3668 Diag(DRE->getDecl()->getLocation(), 3669 diag::note_template_arg_refers_here); 3670 return true; 3671} 3672 3673/// \brief Check a template argument against its corresponding 3674/// non-type template parameter. 3675/// 3676/// This routine implements the semantics of C++ [temp.arg.nontype]. 3677/// If an error occurred, it returns ExprError(); otherwise, it 3678/// returns the converted template argument. \p 3679/// InstantiatedParamType is the type of the non-type template 3680/// parameter after it has been instantiated. 3681ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3682 QualType InstantiatedParamType, Expr *Arg, 3683 TemplateArgument &Converted, 3684 CheckTemplateArgumentKind CTAK) { 3685 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3686 3687 // If either the parameter has a dependent type or the argument is 3688 // type-dependent, there's nothing we can check now. 3689 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3690 // FIXME: Produce a cloned, canonical expression? 3691 Converted = TemplateArgument(Arg); 3692 return Owned(Arg); 3693 } 3694 3695 // C++ [temp.arg.nontype]p5: 3696 // The following conversions are performed on each expression used 3697 // as a non-type template-argument. If a non-type 3698 // template-argument cannot be converted to the type of the 3699 // corresponding template-parameter then the program is 3700 // ill-formed. 3701 // 3702 // -- for a non-type template-parameter of integral or 3703 // enumeration type, integral promotions (4.5) and integral 3704 // conversions (4.7) are applied. 3705 QualType ParamType = InstantiatedParamType; 3706 QualType ArgType = Arg->getType(); 3707 if (ParamType->isIntegralOrEnumerationType()) { 3708 // C++ [temp.arg.nontype]p1: 3709 // A template-argument for a non-type, non-template 3710 // template-parameter shall be one of: 3711 // 3712 // -- an integral constant-expression of integral or enumeration 3713 // type; or 3714 // -- the name of a non-type template-parameter; or 3715 SourceLocation NonConstantLoc; 3716 llvm::APSInt Value; 3717 if (!ArgType->isIntegralOrEnumerationType()) { 3718 Diag(Arg->getSourceRange().getBegin(), 3719 diag::err_template_arg_not_integral_or_enumeral) 3720 << ArgType << Arg->getSourceRange(); 3721 Diag(Param->getLocation(), diag::note_template_param_here); 3722 return ExprError(); 3723 } else if (!Arg->isValueDependent() && 3724 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3725 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3726 << ArgType << Arg->getSourceRange(); 3727 return ExprError(); 3728 } 3729 3730 // From here on out, all we care about are the unqualified forms 3731 // of the parameter and argument types. 3732 ParamType = ParamType.getUnqualifiedType(); 3733 ArgType = ArgType.getUnqualifiedType(); 3734 3735 // Try to convert the argument to the parameter's type. 3736 if (Context.hasSameType(ParamType, ArgType)) { 3737 // Okay: no conversion necessary 3738 } else if (CTAK == CTAK_Deduced) { 3739 // C++ [temp.deduct.type]p17: 3740 // If, in the declaration of a function template with a non-type 3741 // template-parameter, the non-type template- parameter is used 3742 // in an expression in the function parameter-list and, if the 3743 // corresponding template-argument is deduced, the 3744 // template-argument type shall match the type of the 3745 // template-parameter exactly, except that a template-argument 3746 // deduced from an array bound may be of any integral type. 3747 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3748 << ArgType << ParamType; 3749 Diag(Param->getLocation(), diag::note_template_param_here); 3750 return ExprError(); 3751 } else if (ParamType->isBooleanType()) { 3752 // This is an integral-to-boolean conversion. 3753 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3754 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3755 !ParamType->isEnumeralType()) { 3756 // This is an integral promotion or conversion. 3757 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3758 } else { 3759 // We can't perform this conversion. 3760 Diag(Arg->getSourceRange().getBegin(), 3761 diag::err_template_arg_not_convertible) 3762 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3763 Diag(Param->getLocation(), diag::note_template_param_here); 3764 return ExprError(); 3765 } 3766 3767 // Add the value of this argument to the list of converted 3768 // arguments. We use the bitwidth and signedness of the template 3769 // parameter. 3770 if (Arg->isValueDependent()) { 3771 // The argument is value-dependent. Create a new 3772 // TemplateArgument with the converted expression. 3773 Converted = TemplateArgument(Arg); 3774 return Owned(Arg); 3775 } 3776 3777 QualType IntegerType = Context.getCanonicalType(ParamType); 3778 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3779 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3780 3781 if (ParamType->isBooleanType()) { 3782 // Value must be zero or one. 3783 Value = Value != 0; 3784 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3785 if (Value.getBitWidth() != AllowedBits) 3786 Value = Value.extOrTrunc(AllowedBits); 3787 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3788 } else { 3789 llvm::APSInt OldValue = Value; 3790 3791 // Coerce the template argument's value to the value it will have 3792 // based on the template parameter's type. 3793 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3794 if (Value.getBitWidth() != AllowedBits) 3795 Value = Value.extOrTrunc(AllowedBits); 3796 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3797 3798 // Complain if an unsigned parameter received a negative value. 3799 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3800 && (OldValue.isSigned() && OldValue.isNegative())) { 3801 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3802 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3803 << Arg->getSourceRange(); 3804 Diag(Param->getLocation(), diag::note_template_param_here); 3805 } 3806 3807 // Complain if we overflowed the template parameter's type. 3808 unsigned RequiredBits; 3809 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3810 RequiredBits = OldValue.getActiveBits(); 3811 else if (OldValue.isUnsigned()) 3812 RequiredBits = OldValue.getActiveBits() + 1; 3813 else 3814 RequiredBits = OldValue.getMinSignedBits(); 3815 if (RequiredBits > AllowedBits) { 3816 Diag(Arg->getSourceRange().getBegin(), 3817 diag::warn_template_arg_too_large) 3818 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3819 << Arg->getSourceRange(); 3820 Diag(Param->getLocation(), diag::note_template_param_here); 3821 } 3822 } 3823 3824 Converted = TemplateArgument(Value, 3825 ParamType->isEnumeralType() 3826 ? Context.getCanonicalType(ParamType) 3827 : IntegerType); 3828 return Owned(Arg); 3829 } 3830 3831 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3832 3833 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3834 // from a template argument of type std::nullptr_t to a non-type 3835 // template parameter of type pointer to object, pointer to 3836 // function, or pointer-to-member, respectively. 3837 if (ArgType->isNullPtrType()) { 3838 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3839 Converted = TemplateArgument((NamedDecl *)0); 3840 return Owned(Arg); 3841 } 3842 3843 if (ParamType->isNullPtrType()) { 3844 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3845 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3846 return Owned(Arg); 3847 } 3848 } 3849 3850 // Handle pointer-to-function, reference-to-function, and 3851 // pointer-to-member-function all in (roughly) the same way. 3852 if (// -- For a non-type template-parameter of type pointer to 3853 // function, only the function-to-pointer conversion (4.3) is 3854 // applied. If the template-argument represents a set of 3855 // overloaded functions (or a pointer to such), the matching 3856 // function is selected from the set (13.4). 3857 (ParamType->isPointerType() && 3858 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3859 // -- For a non-type template-parameter of type reference to 3860 // function, no conversions apply. If the template-argument 3861 // represents a set of overloaded functions, the matching 3862 // function is selected from the set (13.4). 3863 (ParamType->isReferenceType() && 3864 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3865 // -- For a non-type template-parameter of type pointer to 3866 // member function, no conversions apply. If the 3867 // template-argument represents a set of overloaded member 3868 // functions, the matching member function is selected from 3869 // the set (13.4). 3870 (ParamType->isMemberPointerType() && 3871 ParamType->getAs<MemberPointerType>()->getPointeeType() 3872 ->isFunctionType())) { 3873 3874 if (Arg->getType() == Context.OverloadTy) { 3875 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3876 true, 3877 FoundResult)) { 3878 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3879 return ExprError(); 3880 3881 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3882 ArgType = Arg->getType(); 3883 } else 3884 return ExprError(); 3885 } 3886 3887 if (!ParamType->isMemberPointerType()) { 3888 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3889 ParamType, 3890 Arg, Converted)) 3891 return ExprError(); 3892 return Owned(Arg); 3893 } 3894 3895 bool ObjCLifetimeConversion; 3896 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3897 false, ObjCLifetimeConversion)) { 3898 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3899 } else if (!Context.hasSameUnqualifiedType(ArgType, 3900 ParamType.getNonReferenceType())) { 3901 // We can't perform this conversion. 3902 Diag(Arg->getSourceRange().getBegin(), 3903 diag::err_template_arg_not_convertible) 3904 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3905 Diag(Param->getLocation(), diag::note_template_param_here); 3906 return ExprError(); 3907 } 3908 3909 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3910 return ExprError(); 3911 return Owned(Arg); 3912 } 3913 3914 if (ParamType->isPointerType()) { 3915 // -- for a non-type template-parameter of type pointer to 3916 // object, qualification conversions (4.4) and the 3917 // array-to-pointer conversion (4.2) are applied. 3918 // C++0x also allows a value of std::nullptr_t. 3919 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3920 "Only object pointers allowed here"); 3921 3922 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3923 ParamType, 3924 Arg, Converted)) 3925 return ExprError(); 3926 return Owned(Arg); 3927 } 3928 3929 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3930 // -- For a non-type template-parameter of type reference to 3931 // object, no conversions apply. The type referred to by the 3932 // reference may be more cv-qualified than the (otherwise 3933 // identical) type of the template-argument. The 3934 // template-parameter is bound directly to the 3935 // template-argument, which must be an lvalue. 3936 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3937 "Only object references allowed here"); 3938 3939 if (Arg->getType() == Context.OverloadTy) { 3940 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3941 ParamRefType->getPointeeType(), 3942 true, 3943 FoundResult)) { 3944 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3945 return ExprError(); 3946 3947 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3948 ArgType = Arg->getType(); 3949 } else 3950 return ExprError(); 3951 } 3952 3953 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3954 ParamType, 3955 Arg, Converted)) 3956 return ExprError(); 3957 return Owned(Arg); 3958 } 3959 3960 // -- For a non-type template-parameter of type pointer to data 3961 // member, qualification conversions (4.4) are applied. 3962 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3963 3964 bool ObjCLifetimeConversion; 3965 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3966 // Types match exactly: nothing more to do here. 3967 } else if (IsQualificationConversion(ArgType, ParamType, false, 3968 ObjCLifetimeConversion)) { 3969 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3970 } else { 3971 // We can't perform this conversion. 3972 Diag(Arg->getSourceRange().getBegin(), 3973 diag::err_template_arg_not_convertible) 3974 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3975 Diag(Param->getLocation(), diag::note_template_param_here); 3976 return ExprError(); 3977 } 3978 3979 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3980 return ExprError(); 3981 return Owned(Arg); 3982} 3983 3984/// \brief Check a template argument against its corresponding 3985/// template template parameter. 3986/// 3987/// This routine implements the semantics of C++ [temp.arg.template]. 3988/// It returns true if an error occurred, and false otherwise. 3989bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3990 const TemplateArgumentLoc &Arg) { 3991 TemplateName Name = Arg.getArgument().getAsTemplate(); 3992 TemplateDecl *Template = Name.getAsTemplateDecl(); 3993 if (!Template) { 3994 // Any dependent template name is fine. 3995 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3996 return false; 3997 } 3998 3999 // C++0x [temp.arg.template]p1: 4000 // A template-argument for a template template-parameter shall be 4001 // the name of a class template or an alias template, expressed as an 4002 // id-expression. When the template-argument names a class template, only 4003 // primary class templates are considered when matching the 4004 // template template argument with the corresponding parameter; 4005 // partial specializations are not considered even if their 4006 // parameter lists match that of the template template parameter. 4007 // 4008 // Note that we also allow template template parameters here, which 4009 // will happen when we are dealing with, e.g., class template 4010 // partial specializations. 4011 if (!isa<ClassTemplateDecl>(Template) && 4012 !isa<TemplateTemplateParmDecl>(Template) && 4013 !isa<TypeAliasTemplateDecl>(Template)) { 4014 assert(isa<FunctionTemplateDecl>(Template) && 4015 "Only function templates are possible here"); 4016 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4017 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4018 << Template; 4019 } 4020 4021 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4022 Param->getTemplateParameters(), 4023 true, 4024 TPL_TemplateTemplateArgumentMatch, 4025 Arg.getLocation()); 4026} 4027 4028/// \brief Given a non-type template argument that refers to a 4029/// declaration and the type of its corresponding non-type template 4030/// parameter, produce an expression that properly refers to that 4031/// declaration. 4032ExprResult 4033Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4034 QualType ParamType, 4035 SourceLocation Loc) { 4036 assert(Arg.getKind() == TemplateArgument::Declaration && 4037 "Only declaration template arguments permitted here"); 4038 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4039 4040 if (VD->getDeclContext()->isRecord() && 4041 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4042 // If the value is a class member, we might have a pointer-to-member. 4043 // Determine whether the non-type template template parameter is of 4044 // pointer-to-member type. If so, we need to build an appropriate 4045 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4046 // would refer to the member itself. 4047 if (ParamType->isMemberPointerType()) { 4048 QualType ClassType 4049 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4050 NestedNameSpecifier *Qualifier 4051 = NestedNameSpecifier::Create(Context, 0, false, 4052 ClassType.getTypePtr()); 4053 CXXScopeSpec SS; 4054 SS.MakeTrivial(Context, Qualifier, Loc); 4055 4056 // The actual value-ness of this is unimportant, but for 4057 // internal consistency's sake, references to instance methods 4058 // are r-values. 4059 ExprValueKind VK = VK_LValue; 4060 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4061 VK = VK_RValue; 4062 4063 ExprResult RefExpr = BuildDeclRefExpr(VD, 4064 VD->getType().getNonReferenceType(), 4065 VK, 4066 Loc, 4067 &SS); 4068 if (RefExpr.isInvalid()) 4069 return ExprError(); 4070 4071 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4072 4073 // We might need to perform a trailing qualification conversion, since 4074 // the element type on the parameter could be more qualified than the 4075 // element type in the expression we constructed. 4076 bool ObjCLifetimeConversion; 4077 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4078 ParamType.getUnqualifiedType(), false, 4079 ObjCLifetimeConversion)) 4080 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4081 4082 assert(!RefExpr.isInvalid() && 4083 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4084 ParamType.getUnqualifiedType())); 4085 return move(RefExpr); 4086 } 4087 } 4088 4089 QualType T = VD->getType().getNonReferenceType(); 4090 if (ParamType->isPointerType()) { 4091 // When the non-type template parameter is a pointer, take the 4092 // address of the declaration. 4093 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4094 if (RefExpr.isInvalid()) 4095 return ExprError(); 4096 4097 if (T->isFunctionType() || T->isArrayType()) { 4098 // Decay functions and arrays. 4099 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4100 if (RefExpr.isInvalid()) 4101 return ExprError(); 4102 4103 return move(RefExpr); 4104 } 4105 4106 // Take the address of everything else 4107 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4108 } 4109 4110 ExprValueKind VK = VK_RValue; 4111 4112 // If the non-type template parameter has reference type, qualify the 4113 // resulting declaration reference with the extra qualifiers on the 4114 // type that the reference refers to. 4115 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4116 VK = VK_LValue; 4117 T = Context.getQualifiedType(T, 4118 TargetRef->getPointeeType().getQualifiers()); 4119 } 4120 4121 return BuildDeclRefExpr(VD, T, VK, Loc); 4122} 4123 4124/// \brief Construct a new expression that refers to the given 4125/// integral template argument with the given source-location 4126/// information. 4127/// 4128/// This routine takes care of the mapping from an integral template 4129/// argument (which may have any integral type) to the appropriate 4130/// literal value. 4131ExprResult 4132Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4133 SourceLocation Loc) { 4134 assert(Arg.getKind() == TemplateArgument::Integral && 4135 "Operation is only valid for integral template arguments"); 4136 QualType T = Arg.getIntegralType(); 4137 if (T->isAnyCharacterType()) { 4138 CharacterLiteral::CharacterKind Kind; 4139 if (T->isWideCharType()) 4140 Kind = CharacterLiteral::Wide; 4141 else if (T->isChar16Type()) 4142 Kind = CharacterLiteral::UTF16; 4143 else if (T->isChar32Type()) 4144 Kind = CharacterLiteral::UTF32; 4145 else 4146 Kind = CharacterLiteral::Ascii; 4147 4148 return Owned(new (Context) CharacterLiteral( 4149 Arg.getAsIntegral()->getZExtValue(), 4150 Kind, T, Loc)); 4151 } 4152 4153 if (T->isBooleanType()) 4154 return Owned(new (Context) CXXBoolLiteralExpr( 4155 Arg.getAsIntegral()->getBoolValue(), 4156 T, Loc)); 4157 4158 if (T->isNullPtrType()) 4159 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4160 4161 // If this is an enum type that we're instantiating, we need to use an integer 4162 // type the same size as the enumerator. We don't want to build an 4163 // IntegerLiteral with enum type. 4164 QualType BT; 4165 if (const EnumType *ET = T->getAs<EnumType>()) 4166 BT = ET->getDecl()->getIntegerType(); 4167 else 4168 BT = T; 4169 4170 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4171 if (T->isEnumeralType()) { 4172 // FIXME: This is a hack. We need a better way to handle substituted 4173 // non-type template parameters. 4174 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4175 Context.getTrivialTypeSourceInfo(T, Loc), 4176 Loc, Loc); 4177 } 4178 4179 return Owned(E); 4180} 4181 4182/// \brief Match two template parameters within template parameter lists. 4183static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4184 bool Complain, 4185 Sema::TemplateParameterListEqualKind Kind, 4186 SourceLocation TemplateArgLoc) { 4187 // Check the actual kind (type, non-type, template). 4188 if (Old->getKind() != New->getKind()) { 4189 if (Complain) { 4190 unsigned NextDiag = diag::err_template_param_different_kind; 4191 if (TemplateArgLoc.isValid()) { 4192 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4193 NextDiag = diag::note_template_param_different_kind; 4194 } 4195 S.Diag(New->getLocation(), NextDiag) 4196 << (Kind != Sema::TPL_TemplateMatch); 4197 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4198 << (Kind != Sema::TPL_TemplateMatch); 4199 } 4200 4201 return false; 4202 } 4203 4204 // Check that both are parameter packs are neither are parameter packs. 4205 // However, if we are matching a template template argument to a 4206 // template template parameter, the template template parameter can have 4207 // a parameter pack where the template template argument does not. 4208 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4209 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4210 Old->isTemplateParameterPack())) { 4211 if (Complain) { 4212 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4213 if (TemplateArgLoc.isValid()) { 4214 S.Diag(TemplateArgLoc, 4215 diag::err_template_arg_template_params_mismatch); 4216 NextDiag = diag::note_template_parameter_pack_non_pack; 4217 } 4218 4219 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4220 : isa<NonTypeTemplateParmDecl>(New)? 1 4221 : 2; 4222 S.Diag(New->getLocation(), NextDiag) 4223 << ParamKind << New->isParameterPack(); 4224 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4225 << ParamKind << Old->isParameterPack(); 4226 } 4227 4228 return false; 4229 } 4230 4231 // For non-type template parameters, check the type of the parameter. 4232 if (NonTypeTemplateParmDecl *OldNTTP 4233 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4234 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4235 4236 // If we are matching a template template argument to a template 4237 // template parameter and one of the non-type template parameter types 4238 // is dependent, then we must wait until template instantiation time 4239 // to actually compare the arguments. 4240 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4241 (OldNTTP->getType()->isDependentType() || 4242 NewNTTP->getType()->isDependentType())) 4243 return true; 4244 4245 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4246 if (Complain) { 4247 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4248 if (TemplateArgLoc.isValid()) { 4249 S.Diag(TemplateArgLoc, 4250 diag::err_template_arg_template_params_mismatch); 4251 NextDiag = diag::note_template_nontype_parm_different_type; 4252 } 4253 S.Diag(NewNTTP->getLocation(), NextDiag) 4254 << NewNTTP->getType() 4255 << (Kind != Sema::TPL_TemplateMatch); 4256 S.Diag(OldNTTP->getLocation(), 4257 diag::note_template_nontype_parm_prev_declaration) 4258 << OldNTTP->getType(); 4259 } 4260 4261 return false; 4262 } 4263 4264 return true; 4265 } 4266 4267 // For template template parameters, check the template parameter types. 4268 // The template parameter lists of template template 4269 // parameters must agree. 4270 if (TemplateTemplateParmDecl *OldTTP 4271 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4272 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4273 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4274 OldTTP->getTemplateParameters(), 4275 Complain, 4276 (Kind == Sema::TPL_TemplateMatch 4277 ? Sema::TPL_TemplateTemplateParmMatch 4278 : Kind), 4279 TemplateArgLoc); 4280 } 4281 4282 return true; 4283} 4284 4285/// \brief Diagnose a known arity mismatch when comparing template argument 4286/// lists. 4287static 4288void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4289 TemplateParameterList *New, 4290 TemplateParameterList *Old, 4291 Sema::TemplateParameterListEqualKind Kind, 4292 SourceLocation TemplateArgLoc) { 4293 unsigned NextDiag = diag::err_template_param_list_different_arity; 4294 if (TemplateArgLoc.isValid()) { 4295 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4296 NextDiag = diag::note_template_param_list_different_arity; 4297 } 4298 S.Diag(New->getTemplateLoc(), NextDiag) 4299 << (New->size() > Old->size()) 4300 << (Kind != Sema::TPL_TemplateMatch) 4301 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4302 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4303 << (Kind != Sema::TPL_TemplateMatch) 4304 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4305} 4306 4307/// \brief Determine whether the given template parameter lists are 4308/// equivalent. 4309/// 4310/// \param New The new template parameter list, typically written in the 4311/// source code as part of a new template declaration. 4312/// 4313/// \param Old The old template parameter list, typically found via 4314/// name lookup of the template declared with this template parameter 4315/// list. 4316/// 4317/// \param Complain If true, this routine will produce a diagnostic if 4318/// the template parameter lists are not equivalent. 4319/// 4320/// \param Kind describes how we are to match the template parameter lists. 4321/// 4322/// \param TemplateArgLoc If this source location is valid, then we 4323/// are actually checking the template parameter list of a template 4324/// argument (New) against the template parameter list of its 4325/// corresponding template template parameter (Old). We produce 4326/// slightly different diagnostics in this scenario. 4327/// 4328/// \returns True if the template parameter lists are equal, false 4329/// otherwise. 4330bool 4331Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4332 TemplateParameterList *Old, 4333 bool Complain, 4334 TemplateParameterListEqualKind Kind, 4335 SourceLocation TemplateArgLoc) { 4336 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4337 if (Complain) 4338 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4339 TemplateArgLoc); 4340 4341 return false; 4342 } 4343 4344 // C++0x [temp.arg.template]p3: 4345 // A template-argument matches a template template-parameter (call it P) 4346 // when each of the template parameters in the template-parameter-list of 4347 // the template-argument's corresponding class template or alias template 4348 // (call it A) matches the corresponding template parameter in the 4349 // template-parameter-list of P. [...] 4350 TemplateParameterList::iterator NewParm = New->begin(); 4351 TemplateParameterList::iterator NewParmEnd = New->end(); 4352 for (TemplateParameterList::iterator OldParm = Old->begin(), 4353 OldParmEnd = Old->end(); 4354 OldParm != OldParmEnd; ++OldParm) { 4355 if (Kind != TPL_TemplateTemplateArgumentMatch || 4356 !(*OldParm)->isTemplateParameterPack()) { 4357 if (NewParm == NewParmEnd) { 4358 if (Complain) 4359 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4360 TemplateArgLoc); 4361 4362 return false; 4363 } 4364 4365 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4366 Kind, TemplateArgLoc)) 4367 return false; 4368 4369 ++NewParm; 4370 continue; 4371 } 4372 4373 // C++0x [temp.arg.template]p3: 4374 // [...] When P's template- parameter-list contains a template parameter 4375 // pack (14.5.3), the template parameter pack will match zero or more 4376 // template parameters or template parameter packs in the 4377 // template-parameter-list of A with the same type and form as the 4378 // template parameter pack in P (ignoring whether those template 4379 // parameters are template parameter packs). 4380 for (; NewParm != NewParmEnd; ++NewParm) { 4381 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4382 Kind, TemplateArgLoc)) 4383 return false; 4384 } 4385 } 4386 4387 // Make sure we exhausted all of the arguments. 4388 if (NewParm != NewParmEnd) { 4389 if (Complain) 4390 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4391 TemplateArgLoc); 4392 4393 return false; 4394 } 4395 4396 return true; 4397} 4398 4399/// \brief Check whether a template can be declared within this scope. 4400/// 4401/// If the template declaration is valid in this scope, returns 4402/// false. Otherwise, issues a diagnostic and returns true. 4403bool 4404Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4405 // Find the nearest enclosing declaration scope. 4406 while ((S->getFlags() & Scope::DeclScope) == 0 || 4407 (S->getFlags() & Scope::TemplateParamScope) != 0) 4408 S = S->getParent(); 4409 4410 // C++ [temp]p2: 4411 // A template-declaration can appear only as a namespace scope or 4412 // class scope declaration. 4413 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4414 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4415 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4416 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4417 << TemplateParams->getSourceRange(); 4418 4419 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4420 Ctx = Ctx->getParent(); 4421 4422 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4423 return false; 4424 4425 return Diag(TemplateParams->getTemplateLoc(), 4426 diag::err_template_outside_namespace_or_class_scope) 4427 << TemplateParams->getSourceRange(); 4428} 4429 4430/// \brief Determine what kind of template specialization the given declaration 4431/// is. 4432static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4433 if (!D) 4434 return TSK_Undeclared; 4435 4436 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4437 return Record->getTemplateSpecializationKind(); 4438 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4439 return Function->getTemplateSpecializationKind(); 4440 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4441 return Var->getTemplateSpecializationKind(); 4442 4443 return TSK_Undeclared; 4444} 4445 4446/// \brief Check whether a specialization is well-formed in the current 4447/// context. 4448/// 4449/// This routine determines whether a template specialization can be declared 4450/// in the current context (C++ [temp.expl.spec]p2). 4451/// 4452/// \param S the semantic analysis object for which this check is being 4453/// performed. 4454/// 4455/// \param Specialized the entity being specialized or instantiated, which 4456/// may be a kind of template (class template, function template, etc.) or 4457/// a member of a class template (member function, static data member, 4458/// member class). 4459/// 4460/// \param PrevDecl the previous declaration of this entity, if any. 4461/// 4462/// \param Loc the location of the explicit specialization or instantiation of 4463/// this entity. 4464/// 4465/// \param IsPartialSpecialization whether this is a partial specialization of 4466/// a class template. 4467/// 4468/// \returns true if there was an error that we cannot recover from, false 4469/// otherwise. 4470static bool CheckTemplateSpecializationScope(Sema &S, 4471 NamedDecl *Specialized, 4472 NamedDecl *PrevDecl, 4473 SourceLocation Loc, 4474 bool IsPartialSpecialization) { 4475 // Keep these "kind" numbers in sync with the %select statements in the 4476 // various diagnostics emitted by this routine. 4477 int EntityKind = 0; 4478 if (isa<ClassTemplateDecl>(Specialized)) 4479 EntityKind = IsPartialSpecialization? 1 : 0; 4480 else if (isa<FunctionTemplateDecl>(Specialized)) 4481 EntityKind = 2; 4482 else if (isa<CXXMethodDecl>(Specialized)) 4483 EntityKind = 3; 4484 else if (isa<VarDecl>(Specialized)) 4485 EntityKind = 4; 4486 else if (isa<RecordDecl>(Specialized)) 4487 EntityKind = 5; 4488 else { 4489 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4490 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4491 return true; 4492 } 4493 4494 // C++ [temp.expl.spec]p2: 4495 // An explicit specialization shall be declared in the namespace 4496 // of which the template is a member, or, for member templates, in 4497 // the namespace of which the enclosing class or enclosing class 4498 // template is a member. An explicit specialization of a member 4499 // function, member class or static data member of a class 4500 // template shall be declared in the namespace of which the class 4501 // template is a member. Such a declaration may also be a 4502 // definition. If the declaration is not a definition, the 4503 // specialization may be defined later in the name- space in which 4504 // the explicit specialization was declared, or in a namespace 4505 // that encloses the one in which the explicit specialization was 4506 // declared. 4507 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4508 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4509 << Specialized; 4510 return true; 4511 } 4512 4513 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4514 if (S.getLangOptions().Microsoft) { 4515 // Do not warn for class scope explicit specialization during 4516 // instantiation, warning was already emitted during pattern 4517 // semantic analysis. 4518 if (!S.ActiveTemplateInstantiations.size()) 4519 S.Diag(Loc, diag::ext_function_specialization_in_class) 4520 << Specialized; 4521 } else { 4522 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4523 << Specialized; 4524 return true; 4525 } 4526 } 4527 4528 // C++ [temp.class.spec]p6: 4529 // A class template partial specialization may be declared or redeclared 4530 // in any namespace scope in which its definition may be defined (14.5.1 4531 // and 14.5.2). 4532 bool ComplainedAboutScope = false; 4533 DeclContext *SpecializedContext 4534 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4535 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4536 if ((!PrevDecl || 4537 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4538 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4539 // C++ [temp.exp.spec]p2: 4540 // An explicit specialization shall be declared in the namespace of which 4541 // the template is a member, or, for member templates, in the namespace 4542 // of which the enclosing class or enclosing class template is a member. 4543 // An explicit specialization of a member function, member class or 4544 // static data member of a class template shall be declared in the 4545 // namespace of which the class template is a member. 4546 // 4547 // C++0x [temp.expl.spec]p2: 4548 // An explicit specialization shall be declared in a namespace enclosing 4549 // the specialized template. 4550 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4551 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4552 bool IsCPlusPlus0xExtension 4553 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4554 if (isa<TranslationUnitDecl>(SpecializedContext)) 4555 S.Diag(Loc, IsCPlusPlus0xExtension 4556 ? diag::ext_template_spec_decl_out_of_scope_global 4557 : diag::err_template_spec_decl_out_of_scope_global) 4558 << EntityKind << Specialized; 4559 else if (isa<NamespaceDecl>(SpecializedContext)) 4560 S.Diag(Loc, IsCPlusPlus0xExtension 4561 ? diag::ext_template_spec_decl_out_of_scope 4562 : diag::err_template_spec_decl_out_of_scope) 4563 << EntityKind << Specialized 4564 << cast<NamedDecl>(SpecializedContext); 4565 4566 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4567 ComplainedAboutScope = true; 4568 } 4569 } 4570 4571 // Make sure that this redeclaration (or definition) occurs in an enclosing 4572 // namespace. 4573 // Note that HandleDeclarator() performs this check for explicit 4574 // specializations of function templates, static data members, and member 4575 // functions, so we skip the check here for those kinds of entities. 4576 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4577 // Should we refactor that check, so that it occurs later? 4578 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4579 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4580 isa<FunctionDecl>(Specialized))) { 4581 if (isa<TranslationUnitDecl>(SpecializedContext)) 4582 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4583 << EntityKind << Specialized; 4584 else if (isa<NamespaceDecl>(SpecializedContext)) 4585 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4586 << EntityKind << Specialized 4587 << cast<NamedDecl>(SpecializedContext); 4588 4589 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4590 } 4591 4592 // FIXME: check for specialization-after-instantiation errors and such. 4593 4594 return false; 4595} 4596 4597/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4598/// that checks non-type template partial specialization arguments. 4599static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4600 NonTypeTemplateParmDecl *Param, 4601 const TemplateArgument *Args, 4602 unsigned NumArgs) { 4603 for (unsigned I = 0; I != NumArgs; ++I) { 4604 if (Args[I].getKind() == TemplateArgument::Pack) { 4605 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4606 Args[I].pack_begin(), 4607 Args[I].pack_size())) 4608 return true; 4609 4610 continue; 4611 } 4612 4613 Expr *ArgExpr = Args[I].getAsExpr(); 4614 if (!ArgExpr) { 4615 continue; 4616 } 4617 4618 // We can have a pack expansion of any of the bullets below. 4619 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4620 ArgExpr = Expansion->getPattern(); 4621 4622 // Strip off any implicit casts we added as part of type checking. 4623 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4624 ArgExpr = ICE->getSubExpr(); 4625 4626 // C++ [temp.class.spec]p8: 4627 // A non-type argument is non-specialized if it is the name of a 4628 // non-type parameter. All other non-type arguments are 4629 // specialized. 4630 // 4631 // Below, we check the two conditions that only apply to 4632 // specialized non-type arguments, so skip any non-specialized 4633 // arguments. 4634 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4635 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4636 continue; 4637 4638 // C++ [temp.class.spec]p9: 4639 // Within the argument list of a class template partial 4640 // specialization, the following restrictions apply: 4641 // -- A partially specialized non-type argument expression 4642 // shall not involve a template parameter of the partial 4643 // specialization except when the argument expression is a 4644 // simple identifier. 4645 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4646 S.Diag(ArgExpr->getLocStart(), 4647 diag::err_dependent_non_type_arg_in_partial_spec) 4648 << ArgExpr->getSourceRange(); 4649 return true; 4650 } 4651 4652 // -- The type of a template parameter corresponding to a 4653 // specialized non-type argument shall not be dependent on a 4654 // parameter of the specialization. 4655 if (Param->getType()->isDependentType()) { 4656 S.Diag(ArgExpr->getLocStart(), 4657 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4658 << Param->getType() 4659 << ArgExpr->getSourceRange(); 4660 S.Diag(Param->getLocation(), diag::note_template_param_here); 4661 return true; 4662 } 4663 } 4664 4665 return false; 4666} 4667 4668/// \brief Check the non-type template arguments of a class template 4669/// partial specialization according to C++ [temp.class.spec]p9. 4670/// 4671/// \param TemplateParams the template parameters of the primary class 4672/// template. 4673/// 4674/// \param TemplateArg the template arguments of the class template 4675/// partial specialization. 4676/// 4677/// \returns true if there was an error, false otherwise. 4678static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4679 TemplateParameterList *TemplateParams, 4680 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4681 const TemplateArgument *ArgList = TemplateArgs.data(); 4682 4683 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4684 NonTypeTemplateParmDecl *Param 4685 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4686 if (!Param) 4687 continue; 4688 4689 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4690 &ArgList[I], 1)) 4691 return true; 4692 } 4693 4694 return false; 4695} 4696 4697/// \brief Retrieve the previous declaration of the given declaration. 4698static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4699 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4700 return VD->getPreviousDeclaration(); 4701 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4702 return FD->getPreviousDeclaration(); 4703 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4704 return TD->getPreviousDeclaration(); 4705 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4706 return TD->getPreviousDeclaration(); 4707 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4708 return FTD->getPreviousDeclaration(); 4709 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4710 return CTD->getPreviousDeclaration(); 4711 return 0; 4712} 4713 4714DeclResult 4715Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4716 TagUseKind TUK, 4717 SourceLocation KWLoc, 4718 CXXScopeSpec &SS, 4719 TemplateTy TemplateD, 4720 SourceLocation TemplateNameLoc, 4721 SourceLocation LAngleLoc, 4722 ASTTemplateArgsPtr TemplateArgsIn, 4723 SourceLocation RAngleLoc, 4724 AttributeList *Attr, 4725 MultiTemplateParamsArg TemplateParameterLists) { 4726 assert(TUK != TUK_Reference && "References are not specializations"); 4727 4728 // NOTE: KWLoc is the location of the tag keyword. This will instead 4729 // store the location of the outermost template keyword in the declaration. 4730 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4731 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4732 4733 // Find the class template we're specializing 4734 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4735 ClassTemplateDecl *ClassTemplate 4736 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4737 4738 if (!ClassTemplate) { 4739 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4740 << (Name.getAsTemplateDecl() && 4741 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4742 return true; 4743 } 4744 4745 bool isExplicitSpecialization = false; 4746 bool isPartialSpecialization = false; 4747 4748 // Check the validity of the template headers that introduce this 4749 // template. 4750 // FIXME: We probably shouldn't complain about these headers for 4751 // friend declarations. 4752 bool Invalid = false; 4753 TemplateParameterList *TemplateParams 4754 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4755 TemplateNameLoc, 4756 SS, 4757 (TemplateParameterList**)TemplateParameterLists.get(), 4758 TemplateParameterLists.size(), 4759 TUK == TUK_Friend, 4760 isExplicitSpecialization, 4761 Invalid); 4762 if (Invalid) 4763 return true; 4764 4765 if (TemplateParams && TemplateParams->size() > 0) { 4766 isPartialSpecialization = true; 4767 4768 if (TUK == TUK_Friend) { 4769 Diag(KWLoc, diag::err_partial_specialization_friend) 4770 << SourceRange(LAngleLoc, RAngleLoc); 4771 return true; 4772 } 4773 4774 // C++ [temp.class.spec]p10: 4775 // The template parameter list of a specialization shall not 4776 // contain default template argument values. 4777 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4778 Decl *Param = TemplateParams->getParam(I); 4779 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4780 if (TTP->hasDefaultArgument()) { 4781 Diag(TTP->getDefaultArgumentLoc(), 4782 diag::err_default_arg_in_partial_spec); 4783 TTP->removeDefaultArgument(); 4784 } 4785 } else if (NonTypeTemplateParmDecl *NTTP 4786 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4787 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4788 Diag(NTTP->getDefaultArgumentLoc(), 4789 diag::err_default_arg_in_partial_spec) 4790 << DefArg->getSourceRange(); 4791 NTTP->removeDefaultArgument(); 4792 } 4793 } else { 4794 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4795 if (TTP->hasDefaultArgument()) { 4796 Diag(TTP->getDefaultArgument().getLocation(), 4797 diag::err_default_arg_in_partial_spec) 4798 << TTP->getDefaultArgument().getSourceRange(); 4799 TTP->removeDefaultArgument(); 4800 } 4801 } 4802 } 4803 } else if (TemplateParams) { 4804 if (TUK == TUK_Friend) 4805 Diag(KWLoc, diag::err_template_spec_friend) 4806 << FixItHint::CreateRemoval( 4807 SourceRange(TemplateParams->getTemplateLoc(), 4808 TemplateParams->getRAngleLoc())) 4809 << SourceRange(LAngleLoc, RAngleLoc); 4810 else 4811 isExplicitSpecialization = true; 4812 } else if (TUK != TUK_Friend) { 4813 Diag(KWLoc, diag::err_template_spec_needs_header) 4814 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4815 isExplicitSpecialization = true; 4816 } 4817 4818 // Check that the specialization uses the same tag kind as the 4819 // original template. 4820 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4821 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4822 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4823 Kind, TUK == TUK_Definition, KWLoc, 4824 *ClassTemplate->getIdentifier())) { 4825 Diag(KWLoc, diag::err_use_with_wrong_tag) 4826 << ClassTemplate 4827 << FixItHint::CreateReplacement(KWLoc, 4828 ClassTemplate->getTemplatedDecl()->getKindName()); 4829 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4830 diag::note_previous_use); 4831 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4832 } 4833 4834 // Translate the parser's template argument list in our AST format. 4835 TemplateArgumentListInfo TemplateArgs; 4836 TemplateArgs.setLAngleLoc(LAngleLoc); 4837 TemplateArgs.setRAngleLoc(RAngleLoc); 4838 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4839 4840 // Check for unexpanded parameter packs in any of the template arguments. 4841 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4842 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4843 UPPC_PartialSpecialization)) 4844 return true; 4845 4846 // Check that the template argument list is well-formed for this 4847 // template. 4848 SmallVector<TemplateArgument, 4> Converted; 4849 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4850 TemplateArgs, false, Converted)) 4851 return true; 4852 4853 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4854 "Converted template argument list is too short!"); 4855 4856 // Find the class template (partial) specialization declaration that 4857 // corresponds to these arguments. 4858 if (isPartialSpecialization) { 4859 if (CheckClassTemplatePartialSpecializationArgs(*this, 4860 ClassTemplate->getTemplateParameters(), 4861 Converted)) 4862 return true; 4863 4864 bool InstantiationDependent; 4865 if (!Name.isDependent() && 4866 !TemplateSpecializationType::anyDependentTemplateArguments( 4867 TemplateArgs.getArgumentArray(), 4868 TemplateArgs.size(), 4869 InstantiationDependent)) { 4870 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4871 << ClassTemplate->getDeclName(); 4872 isPartialSpecialization = false; 4873 } 4874 } 4875 4876 void *InsertPos = 0; 4877 ClassTemplateSpecializationDecl *PrevDecl = 0; 4878 4879 if (isPartialSpecialization) 4880 // FIXME: Template parameter list matters, too 4881 PrevDecl 4882 = ClassTemplate->findPartialSpecialization(Converted.data(), 4883 Converted.size(), 4884 InsertPos); 4885 else 4886 PrevDecl 4887 = ClassTemplate->findSpecialization(Converted.data(), 4888 Converted.size(), InsertPos); 4889 4890 ClassTemplateSpecializationDecl *Specialization = 0; 4891 4892 // Check whether we can declare a class template specialization in 4893 // the current scope. 4894 if (TUK != TUK_Friend && 4895 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4896 TemplateNameLoc, 4897 isPartialSpecialization)) 4898 return true; 4899 4900 // The canonical type 4901 QualType CanonType; 4902 if (PrevDecl && 4903 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4904 TUK == TUK_Friend)) { 4905 // Since the only prior class template specialization with these 4906 // arguments was referenced but not declared, or we're only 4907 // referencing this specialization as a friend, reuse that 4908 // declaration node as our own, updating its source location and 4909 // the list of outer template parameters to reflect our new declaration. 4910 Specialization = PrevDecl; 4911 Specialization->setLocation(TemplateNameLoc); 4912 if (TemplateParameterLists.size() > 0) { 4913 Specialization->setTemplateParameterListsInfo(Context, 4914 TemplateParameterLists.size(), 4915 (TemplateParameterList**) TemplateParameterLists.release()); 4916 } 4917 PrevDecl = 0; 4918 CanonType = Context.getTypeDeclType(Specialization); 4919 } else if (isPartialSpecialization) { 4920 // Build the canonical type that describes the converted template 4921 // arguments of the class template partial specialization. 4922 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4923 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4924 Converted.data(), 4925 Converted.size()); 4926 4927 if (Context.hasSameType(CanonType, 4928 ClassTemplate->getInjectedClassNameSpecialization())) { 4929 // C++ [temp.class.spec]p9b3: 4930 // 4931 // -- The argument list of the specialization shall not be identical 4932 // to the implicit argument list of the primary template. 4933 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4934 << (TUK == TUK_Definition) 4935 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4936 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4937 ClassTemplate->getIdentifier(), 4938 TemplateNameLoc, 4939 Attr, 4940 TemplateParams, 4941 AS_none, 4942 TemplateParameterLists.size() - 1, 4943 (TemplateParameterList**) TemplateParameterLists.release()); 4944 } 4945 4946 // Create a new class template partial specialization declaration node. 4947 ClassTemplatePartialSpecializationDecl *PrevPartial 4948 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4949 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4950 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4951 ClassTemplatePartialSpecializationDecl *Partial 4952 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4953 ClassTemplate->getDeclContext(), 4954 KWLoc, TemplateNameLoc, 4955 TemplateParams, 4956 ClassTemplate, 4957 Converted.data(), 4958 Converted.size(), 4959 TemplateArgs, 4960 CanonType, 4961 PrevPartial, 4962 SequenceNumber); 4963 SetNestedNameSpecifier(Partial, SS); 4964 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4965 Partial->setTemplateParameterListsInfo(Context, 4966 TemplateParameterLists.size() - 1, 4967 (TemplateParameterList**) TemplateParameterLists.release()); 4968 } 4969 4970 if (!PrevPartial) 4971 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4972 Specialization = Partial; 4973 4974 // If we are providing an explicit specialization of a member class 4975 // template specialization, make a note of that. 4976 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4977 PrevPartial->setMemberSpecialization(); 4978 4979 // Check that all of the template parameters of the class template 4980 // partial specialization are deducible from the template 4981 // arguments. If not, this class template partial specialization 4982 // will never be used. 4983 SmallVector<bool, 8> DeducibleParams; 4984 DeducibleParams.resize(TemplateParams->size()); 4985 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4986 TemplateParams->getDepth(), 4987 DeducibleParams); 4988 unsigned NumNonDeducible = 0; 4989 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4990 if (!DeducibleParams[I]) 4991 ++NumNonDeducible; 4992 4993 if (NumNonDeducible) { 4994 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4995 << (NumNonDeducible > 1) 4996 << SourceRange(TemplateNameLoc, RAngleLoc); 4997 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4998 if (!DeducibleParams[I]) { 4999 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5000 if (Param->getDeclName()) 5001 Diag(Param->getLocation(), 5002 diag::note_partial_spec_unused_parameter) 5003 << Param->getDeclName(); 5004 else 5005 Diag(Param->getLocation(), 5006 diag::note_partial_spec_unused_parameter) 5007 << "<anonymous>"; 5008 } 5009 } 5010 } 5011 } else { 5012 // Create a new class template specialization declaration node for 5013 // this explicit specialization or friend declaration. 5014 Specialization 5015 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5016 ClassTemplate->getDeclContext(), 5017 KWLoc, TemplateNameLoc, 5018 ClassTemplate, 5019 Converted.data(), 5020 Converted.size(), 5021 PrevDecl); 5022 SetNestedNameSpecifier(Specialization, SS); 5023 if (TemplateParameterLists.size() > 0) { 5024 Specialization->setTemplateParameterListsInfo(Context, 5025 TemplateParameterLists.size(), 5026 (TemplateParameterList**) TemplateParameterLists.release()); 5027 } 5028 5029 if (!PrevDecl) 5030 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5031 5032 CanonType = Context.getTypeDeclType(Specialization); 5033 } 5034 5035 // C++ [temp.expl.spec]p6: 5036 // If a template, a member template or the member of a class template is 5037 // explicitly specialized then that specialization shall be declared 5038 // before the first use of that specialization that would cause an implicit 5039 // instantiation to take place, in every translation unit in which such a 5040 // use occurs; no diagnostic is required. 5041 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5042 bool Okay = false; 5043 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5044 // Is there any previous explicit specialization declaration? 5045 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5046 Okay = true; 5047 break; 5048 } 5049 } 5050 5051 if (!Okay) { 5052 SourceRange Range(TemplateNameLoc, RAngleLoc); 5053 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5054 << Context.getTypeDeclType(Specialization) << Range; 5055 5056 Diag(PrevDecl->getPointOfInstantiation(), 5057 diag::note_instantiation_required_here) 5058 << (PrevDecl->getTemplateSpecializationKind() 5059 != TSK_ImplicitInstantiation); 5060 return true; 5061 } 5062 } 5063 5064 // If this is not a friend, note that this is an explicit specialization. 5065 if (TUK != TUK_Friend) 5066 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5067 5068 // Check that this isn't a redefinition of this specialization. 5069 if (TUK == TUK_Definition) { 5070 if (RecordDecl *Def = Specialization->getDefinition()) { 5071 SourceRange Range(TemplateNameLoc, RAngleLoc); 5072 Diag(TemplateNameLoc, diag::err_redefinition) 5073 << Context.getTypeDeclType(Specialization) << Range; 5074 Diag(Def->getLocation(), diag::note_previous_definition); 5075 Specialization->setInvalidDecl(); 5076 return true; 5077 } 5078 } 5079 5080 if (Attr) 5081 ProcessDeclAttributeList(S, Specialization, Attr); 5082 5083 // Build the fully-sugared type for this class template 5084 // specialization as the user wrote in the specialization 5085 // itself. This means that we'll pretty-print the type retrieved 5086 // from the specialization's declaration the way that the user 5087 // actually wrote the specialization, rather than formatting the 5088 // name based on the "canonical" representation used to store the 5089 // template arguments in the specialization. 5090 TypeSourceInfo *WrittenTy 5091 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5092 TemplateArgs, CanonType); 5093 if (TUK != TUK_Friend) { 5094 Specialization->setTypeAsWritten(WrittenTy); 5095 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5096 } 5097 TemplateArgsIn.release(); 5098 5099 // C++ [temp.expl.spec]p9: 5100 // A template explicit specialization is in the scope of the 5101 // namespace in which the template was defined. 5102 // 5103 // We actually implement this paragraph where we set the semantic 5104 // context (in the creation of the ClassTemplateSpecializationDecl), 5105 // but we also maintain the lexical context where the actual 5106 // definition occurs. 5107 Specialization->setLexicalDeclContext(CurContext); 5108 5109 // We may be starting the definition of this specialization. 5110 if (TUK == TUK_Definition) 5111 Specialization->startDefinition(); 5112 5113 if (TUK == TUK_Friend) { 5114 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5115 TemplateNameLoc, 5116 WrittenTy, 5117 /*FIXME:*/KWLoc); 5118 Friend->setAccess(AS_public); 5119 CurContext->addDecl(Friend); 5120 } else { 5121 // Add the specialization into its lexical context, so that it can 5122 // be seen when iterating through the list of declarations in that 5123 // context. However, specializations are not found by name lookup. 5124 CurContext->addDecl(Specialization); 5125 } 5126 return Specialization; 5127} 5128 5129Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5130 MultiTemplateParamsArg TemplateParameterLists, 5131 Declarator &D) { 5132 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5133} 5134 5135Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5136 MultiTemplateParamsArg TemplateParameterLists, 5137 Declarator &D) { 5138 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5139 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5140 5141 if (FTI.hasPrototype) { 5142 // FIXME: Diagnose arguments without names in C. 5143 } 5144 5145 Scope *ParentScope = FnBodyScope->getParent(); 5146 5147 Decl *DP = HandleDeclarator(ParentScope, D, 5148 move(TemplateParameterLists), 5149 /*IsFunctionDefinition=*/true); 5150 if (FunctionTemplateDecl *FunctionTemplate 5151 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5152 return ActOnStartOfFunctionDef(FnBodyScope, 5153 FunctionTemplate->getTemplatedDecl()); 5154 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5155 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5156 return 0; 5157} 5158 5159/// \brief Strips various properties off an implicit instantiation 5160/// that has just been explicitly specialized. 5161static void StripImplicitInstantiation(NamedDecl *D) { 5162 D->dropAttrs(); 5163 5164 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5165 FD->setInlineSpecified(false); 5166 } 5167} 5168 5169/// \brief Diagnose cases where we have an explicit template specialization 5170/// before/after an explicit template instantiation, producing diagnostics 5171/// for those cases where they are required and determining whether the 5172/// new specialization/instantiation will have any effect. 5173/// 5174/// \param NewLoc the location of the new explicit specialization or 5175/// instantiation. 5176/// 5177/// \param NewTSK the kind of the new explicit specialization or instantiation. 5178/// 5179/// \param PrevDecl the previous declaration of the entity. 5180/// 5181/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5182/// 5183/// \param PrevPointOfInstantiation if valid, indicates where the previus 5184/// declaration was instantiated (either implicitly or explicitly). 5185/// 5186/// \param HasNoEffect will be set to true to indicate that the new 5187/// specialization or instantiation has no effect and should be ignored. 5188/// 5189/// \returns true if there was an error that should prevent the introduction of 5190/// the new declaration into the AST, false otherwise. 5191bool 5192Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5193 TemplateSpecializationKind NewTSK, 5194 NamedDecl *PrevDecl, 5195 TemplateSpecializationKind PrevTSK, 5196 SourceLocation PrevPointOfInstantiation, 5197 bool &HasNoEffect) { 5198 HasNoEffect = false; 5199 5200 switch (NewTSK) { 5201 case TSK_Undeclared: 5202 case TSK_ImplicitInstantiation: 5203 assert(false && "Don't check implicit instantiations here"); 5204 return false; 5205 5206 case TSK_ExplicitSpecialization: 5207 switch (PrevTSK) { 5208 case TSK_Undeclared: 5209 case TSK_ExplicitSpecialization: 5210 // Okay, we're just specializing something that is either already 5211 // explicitly specialized or has merely been mentioned without any 5212 // instantiation. 5213 return false; 5214 5215 case TSK_ImplicitInstantiation: 5216 if (PrevPointOfInstantiation.isInvalid()) { 5217 // The declaration itself has not actually been instantiated, so it is 5218 // still okay to specialize it. 5219 StripImplicitInstantiation(PrevDecl); 5220 return false; 5221 } 5222 // Fall through 5223 5224 case TSK_ExplicitInstantiationDeclaration: 5225 case TSK_ExplicitInstantiationDefinition: 5226 assert((PrevTSK == TSK_ImplicitInstantiation || 5227 PrevPointOfInstantiation.isValid()) && 5228 "Explicit instantiation without point of instantiation?"); 5229 5230 // C++ [temp.expl.spec]p6: 5231 // If a template, a member template or the member of a class template 5232 // is explicitly specialized then that specialization shall be declared 5233 // before the first use of that specialization that would cause an 5234 // implicit instantiation to take place, in every translation unit in 5235 // which such a use occurs; no diagnostic is required. 5236 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5237 // Is there any previous explicit specialization declaration? 5238 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5239 return false; 5240 } 5241 5242 Diag(NewLoc, diag::err_specialization_after_instantiation) 5243 << PrevDecl; 5244 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5245 << (PrevTSK != TSK_ImplicitInstantiation); 5246 5247 return true; 5248 } 5249 break; 5250 5251 case TSK_ExplicitInstantiationDeclaration: 5252 switch (PrevTSK) { 5253 case TSK_ExplicitInstantiationDeclaration: 5254 // This explicit instantiation declaration is redundant (that's okay). 5255 HasNoEffect = true; 5256 return false; 5257 5258 case TSK_Undeclared: 5259 case TSK_ImplicitInstantiation: 5260 // We're explicitly instantiating something that may have already been 5261 // implicitly instantiated; that's fine. 5262 return false; 5263 5264 case TSK_ExplicitSpecialization: 5265 // C++0x [temp.explicit]p4: 5266 // For a given set of template parameters, if an explicit instantiation 5267 // of a template appears after a declaration of an explicit 5268 // specialization for that template, the explicit instantiation has no 5269 // effect. 5270 HasNoEffect = true; 5271 return false; 5272 5273 case TSK_ExplicitInstantiationDefinition: 5274 // C++0x [temp.explicit]p10: 5275 // If an entity is the subject of both an explicit instantiation 5276 // declaration and an explicit instantiation definition in the same 5277 // translation unit, the definition shall follow the declaration. 5278 Diag(NewLoc, 5279 diag::err_explicit_instantiation_declaration_after_definition); 5280 Diag(PrevPointOfInstantiation, 5281 diag::note_explicit_instantiation_definition_here); 5282 assert(PrevPointOfInstantiation.isValid() && 5283 "Explicit instantiation without point of instantiation?"); 5284 HasNoEffect = true; 5285 return false; 5286 } 5287 break; 5288 5289 case TSK_ExplicitInstantiationDefinition: 5290 switch (PrevTSK) { 5291 case TSK_Undeclared: 5292 case TSK_ImplicitInstantiation: 5293 // We're explicitly instantiating something that may have already been 5294 // implicitly instantiated; that's fine. 5295 return false; 5296 5297 case TSK_ExplicitSpecialization: 5298 // C++ DR 259, C++0x [temp.explicit]p4: 5299 // For a given set of template parameters, if an explicit 5300 // instantiation of a template appears after a declaration of 5301 // an explicit specialization for that template, the explicit 5302 // instantiation has no effect. 5303 // 5304 // In C++98/03 mode, we only give an extension warning here, because it 5305 // is not harmful to try to explicitly instantiate something that 5306 // has been explicitly specialized. 5307 if (!getLangOptions().CPlusPlus0x) { 5308 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5309 << PrevDecl; 5310 Diag(PrevDecl->getLocation(), 5311 diag::note_previous_template_specialization); 5312 } 5313 HasNoEffect = true; 5314 return false; 5315 5316 case TSK_ExplicitInstantiationDeclaration: 5317 // We're explicity instantiating a definition for something for which we 5318 // were previously asked to suppress instantiations. That's fine. 5319 return false; 5320 5321 case TSK_ExplicitInstantiationDefinition: 5322 // C++0x [temp.spec]p5: 5323 // For a given template and a given set of template-arguments, 5324 // - an explicit instantiation definition shall appear at most once 5325 // in a program, 5326 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5327 << PrevDecl; 5328 Diag(PrevPointOfInstantiation, 5329 diag::note_previous_explicit_instantiation); 5330 HasNoEffect = true; 5331 return false; 5332 } 5333 break; 5334 } 5335 5336 assert(false && "Missing specialization/instantiation case?"); 5337 5338 return false; 5339} 5340 5341/// \brief Perform semantic analysis for the given dependent function 5342/// template specialization. The only possible way to get a dependent 5343/// function template specialization is with a friend declaration, 5344/// like so: 5345/// 5346/// template <class T> void foo(T); 5347/// template <class T> class A { 5348/// friend void foo<>(T); 5349/// }; 5350/// 5351/// There really isn't any useful analysis we can do here, so we 5352/// just store the information. 5353bool 5354Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5355 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5356 LookupResult &Previous) { 5357 // Remove anything from Previous that isn't a function template in 5358 // the correct context. 5359 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5360 LookupResult::Filter F = Previous.makeFilter(); 5361 while (F.hasNext()) { 5362 NamedDecl *D = F.next()->getUnderlyingDecl(); 5363 if (!isa<FunctionTemplateDecl>(D) || 5364 !FDLookupContext->InEnclosingNamespaceSetOf( 5365 D->getDeclContext()->getRedeclContext())) 5366 F.erase(); 5367 } 5368 F.done(); 5369 5370 // Should this be diagnosed here? 5371 if (Previous.empty()) return true; 5372 5373 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5374 ExplicitTemplateArgs); 5375 return false; 5376} 5377 5378/// \brief Perform semantic analysis for the given function template 5379/// specialization. 5380/// 5381/// This routine performs all of the semantic analysis required for an 5382/// explicit function template specialization. On successful completion, 5383/// the function declaration \p FD will become a function template 5384/// specialization. 5385/// 5386/// \param FD the function declaration, which will be updated to become a 5387/// function template specialization. 5388/// 5389/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5390/// if any. Note that this may be valid info even when 0 arguments are 5391/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5392/// as it anyway contains info on the angle brackets locations. 5393/// 5394/// \param Previous the set of declarations that may be specialized by 5395/// this function specialization. 5396bool 5397Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5398 TemplateArgumentListInfo *ExplicitTemplateArgs, 5399 LookupResult &Previous) { 5400 // The set of function template specializations that could match this 5401 // explicit function template specialization. 5402 UnresolvedSet<8> Candidates; 5403 5404 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5405 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5406 I != E; ++I) { 5407 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5408 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5409 // Only consider templates found within the same semantic lookup scope as 5410 // FD. 5411 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5412 Ovl->getDeclContext()->getRedeclContext())) 5413 continue; 5414 5415 // C++ [temp.expl.spec]p11: 5416 // A trailing template-argument can be left unspecified in the 5417 // template-id naming an explicit function template specialization 5418 // provided it can be deduced from the function argument type. 5419 // Perform template argument deduction to determine whether we may be 5420 // specializing this template. 5421 // FIXME: It is somewhat wasteful to build 5422 TemplateDeductionInfo Info(Context, FD->getLocation()); 5423 FunctionDecl *Specialization = 0; 5424 if (TemplateDeductionResult TDK 5425 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5426 FD->getType(), 5427 Specialization, 5428 Info)) { 5429 // FIXME: Template argument deduction failed; record why it failed, so 5430 // that we can provide nifty diagnostics. 5431 (void)TDK; 5432 continue; 5433 } 5434 5435 // Record this candidate. 5436 Candidates.addDecl(Specialization, I.getAccess()); 5437 } 5438 } 5439 5440 // Find the most specialized function template. 5441 UnresolvedSetIterator Result 5442 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5443 TPOC_Other, 0, FD->getLocation(), 5444 PDiag(diag::err_function_template_spec_no_match) 5445 << FD->getDeclName(), 5446 PDiag(diag::err_function_template_spec_ambiguous) 5447 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5448 PDiag(diag::note_function_template_spec_matched)); 5449 if (Result == Candidates.end()) 5450 return true; 5451 5452 // Ignore access information; it doesn't figure into redeclaration checking. 5453 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5454 5455 FunctionTemplateSpecializationInfo *SpecInfo 5456 = Specialization->getTemplateSpecializationInfo(); 5457 assert(SpecInfo && "Function template specialization info missing?"); 5458 5459 // Note: do not overwrite location info if previous template 5460 // specialization kind was explicit. 5461 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5462 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5463 Specialization->setLocation(FD->getLocation()); 5464 5465 // FIXME: Check if the prior specialization has a point of instantiation. 5466 // If so, we have run afoul of . 5467 5468 // If this is a friend declaration, then we're not really declaring 5469 // an explicit specialization. 5470 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5471 5472 // Check the scope of this explicit specialization. 5473 if (!isFriend && 5474 CheckTemplateSpecializationScope(*this, 5475 Specialization->getPrimaryTemplate(), 5476 Specialization, FD->getLocation(), 5477 false)) 5478 return true; 5479 5480 // C++ [temp.expl.spec]p6: 5481 // If a template, a member template or the member of a class template is 5482 // explicitly specialized then that specialization shall be declared 5483 // before the first use of that specialization that would cause an implicit 5484 // instantiation to take place, in every translation unit in which such a 5485 // use occurs; no diagnostic is required. 5486 bool HasNoEffect = false; 5487 if (!isFriend && 5488 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5489 TSK_ExplicitSpecialization, 5490 Specialization, 5491 SpecInfo->getTemplateSpecializationKind(), 5492 SpecInfo->getPointOfInstantiation(), 5493 HasNoEffect)) 5494 return true; 5495 5496 // Mark the prior declaration as an explicit specialization, so that later 5497 // clients know that this is an explicit specialization. 5498 if (!isFriend) { 5499 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5500 MarkUnusedFileScopedDecl(Specialization); 5501 } 5502 5503 // Turn the given function declaration into a function template 5504 // specialization, with the template arguments from the previous 5505 // specialization. 5506 // Take copies of (semantic and syntactic) template argument lists. 5507 const TemplateArgumentList* TemplArgs = new (Context) 5508 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5509 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5510 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5511 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5512 TemplArgs, /*InsertPos=*/0, 5513 SpecInfo->getTemplateSpecializationKind(), 5514 TemplArgsAsWritten); 5515 FD->setStorageClass(Specialization->getStorageClass()); 5516 5517 // The "previous declaration" for this function template specialization is 5518 // the prior function template specialization. 5519 Previous.clear(); 5520 Previous.addDecl(Specialization); 5521 return false; 5522} 5523 5524/// \brief Perform semantic analysis for the given non-template member 5525/// specialization. 5526/// 5527/// This routine performs all of the semantic analysis required for an 5528/// explicit member function specialization. On successful completion, 5529/// the function declaration \p FD will become a member function 5530/// specialization. 5531/// 5532/// \param Member the member declaration, which will be updated to become a 5533/// specialization. 5534/// 5535/// \param Previous the set of declarations, one of which may be specialized 5536/// by this function specialization; the set will be modified to contain the 5537/// redeclared member. 5538bool 5539Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5540 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5541 5542 // Try to find the member we are instantiating. 5543 NamedDecl *Instantiation = 0; 5544 NamedDecl *InstantiatedFrom = 0; 5545 MemberSpecializationInfo *MSInfo = 0; 5546 5547 if (Previous.empty()) { 5548 // Nowhere to look anyway. 5549 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5550 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5551 I != E; ++I) { 5552 NamedDecl *D = (*I)->getUnderlyingDecl(); 5553 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5554 if (Context.hasSameType(Function->getType(), Method->getType())) { 5555 Instantiation = Method; 5556 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5557 MSInfo = Method->getMemberSpecializationInfo(); 5558 break; 5559 } 5560 } 5561 } 5562 } else if (isa<VarDecl>(Member)) { 5563 VarDecl *PrevVar; 5564 if (Previous.isSingleResult() && 5565 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5566 if (PrevVar->isStaticDataMember()) { 5567 Instantiation = PrevVar; 5568 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5569 MSInfo = PrevVar->getMemberSpecializationInfo(); 5570 } 5571 } else if (isa<RecordDecl>(Member)) { 5572 CXXRecordDecl *PrevRecord; 5573 if (Previous.isSingleResult() && 5574 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5575 Instantiation = PrevRecord; 5576 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5577 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5578 } 5579 } 5580 5581 if (!Instantiation) { 5582 // There is no previous declaration that matches. Since member 5583 // specializations are always out-of-line, the caller will complain about 5584 // this mismatch later. 5585 return false; 5586 } 5587 5588 // If this is a friend, just bail out here before we start turning 5589 // things into explicit specializations. 5590 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5591 // Preserve instantiation information. 5592 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5593 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5594 cast<CXXMethodDecl>(InstantiatedFrom), 5595 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5596 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5597 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5598 cast<CXXRecordDecl>(InstantiatedFrom), 5599 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5600 } 5601 5602 Previous.clear(); 5603 Previous.addDecl(Instantiation); 5604 return false; 5605 } 5606 5607 // Make sure that this is a specialization of a member. 5608 if (!InstantiatedFrom) { 5609 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5610 << Member; 5611 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5612 return true; 5613 } 5614 5615 // C++ [temp.expl.spec]p6: 5616 // If a template, a member template or the member of a class template is 5617 // explicitly specialized then that spe- cialization shall be declared 5618 // before the first use of that specialization that would cause an implicit 5619 // instantiation to take place, in every translation unit in which such a 5620 // use occurs; no diagnostic is required. 5621 assert(MSInfo && "Member specialization info missing?"); 5622 5623 bool HasNoEffect = false; 5624 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5625 TSK_ExplicitSpecialization, 5626 Instantiation, 5627 MSInfo->getTemplateSpecializationKind(), 5628 MSInfo->getPointOfInstantiation(), 5629 HasNoEffect)) 5630 return true; 5631 5632 // Check the scope of this explicit specialization. 5633 if (CheckTemplateSpecializationScope(*this, 5634 InstantiatedFrom, 5635 Instantiation, Member->getLocation(), 5636 false)) 5637 return true; 5638 5639 // Note that this is an explicit instantiation of a member. 5640 // the original declaration to note that it is an explicit specialization 5641 // (if it was previously an implicit instantiation). This latter step 5642 // makes bookkeeping easier. 5643 if (isa<FunctionDecl>(Member)) { 5644 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5645 if (InstantiationFunction->getTemplateSpecializationKind() == 5646 TSK_ImplicitInstantiation) { 5647 InstantiationFunction->setTemplateSpecializationKind( 5648 TSK_ExplicitSpecialization); 5649 InstantiationFunction->setLocation(Member->getLocation()); 5650 } 5651 5652 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5653 cast<CXXMethodDecl>(InstantiatedFrom), 5654 TSK_ExplicitSpecialization); 5655 MarkUnusedFileScopedDecl(InstantiationFunction); 5656 } else if (isa<VarDecl>(Member)) { 5657 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5658 if (InstantiationVar->getTemplateSpecializationKind() == 5659 TSK_ImplicitInstantiation) { 5660 InstantiationVar->setTemplateSpecializationKind( 5661 TSK_ExplicitSpecialization); 5662 InstantiationVar->setLocation(Member->getLocation()); 5663 } 5664 5665 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5666 cast<VarDecl>(InstantiatedFrom), 5667 TSK_ExplicitSpecialization); 5668 MarkUnusedFileScopedDecl(InstantiationVar); 5669 } else { 5670 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5671 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5672 if (InstantiationClass->getTemplateSpecializationKind() == 5673 TSK_ImplicitInstantiation) { 5674 InstantiationClass->setTemplateSpecializationKind( 5675 TSK_ExplicitSpecialization); 5676 InstantiationClass->setLocation(Member->getLocation()); 5677 } 5678 5679 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5680 cast<CXXRecordDecl>(InstantiatedFrom), 5681 TSK_ExplicitSpecialization); 5682 } 5683 5684 // Save the caller the trouble of having to figure out which declaration 5685 // this specialization matches. 5686 Previous.clear(); 5687 Previous.addDecl(Instantiation); 5688 return false; 5689} 5690 5691/// \brief Check the scope of an explicit instantiation. 5692/// 5693/// \returns true if a serious error occurs, false otherwise. 5694static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5695 SourceLocation InstLoc, 5696 bool WasQualifiedName) { 5697 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5698 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5699 5700 if (CurContext->isRecord()) { 5701 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5702 << D; 5703 return true; 5704 } 5705 5706 // C++0x [temp.explicit]p2: 5707 // An explicit instantiation shall appear in an enclosing namespace of its 5708 // template. 5709 // 5710 // This is DR275, which we do not retroactively apply to C++98/03. 5711 if (S.getLangOptions().CPlusPlus0x && 5712 !CurContext->Encloses(OrigContext)) { 5713 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5714 S.Diag(InstLoc, 5715 S.getLangOptions().CPlusPlus0x? 5716 diag::err_explicit_instantiation_out_of_scope 5717 : diag::warn_explicit_instantiation_out_of_scope_0x) 5718 << D << NS; 5719 else 5720 S.Diag(InstLoc, 5721 S.getLangOptions().CPlusPlus0x? 5722 diag::err_explicit_instantiation_must_be_global 5723 : diag::warn_explicit_instantiation_out_of_scope_0x) 5724 << D; 5725 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5726 return false; 5727 } 5728 5729 // C++0x [temp.explicit]p2: 5730 // If the name declared in the explicit instantiation is an unqualified 5731 // name, the explicit instantiation shall appear in the namespace where 5732 // its template is declared or, if that namespace is inline (7.3.1), any 5733 // namespace from its enclosing namespace set. 5734 if (WasQualifiedName) 5735 return false; 5736 5737 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5738 return false; 5739 5740 S.Diag(InstLoc, 5741 S.getLangOptions().CPlusPlus0x? 5742 diag::err_explicit_instantiation_unqualified_wrong_namespace 5743 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5744 << D << OrigContext; 5745 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5746 return false; 5747} 5748 5749/// \brief Determine whether the given scope specifier has a template-id in it. 5750static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5751 if (!SS.isSet()) 5752 return false; 5753 5754 // C++0x [temp.explicit]p2: 5755 // If the explicit instantiation is for a member function, a member class 5756 // or a static data member of a class template specialization, the name of 5757 // the class template specialization in the qualified-id for the member 5758 // name shall be a simple-template-id. 5759 // 5760 // C++98 has the same restriction, just worded differently. 5761 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5762 NNS; NNS = NNS->getPrefix()) 5763 if (const Type *T = NNS->getAsType()) 5764 if (isa<TemplateSpecializationType>(T)) 5765 return true; 5766 5767 return false; 5768} 5769 5770// Explicit instantiation of a class template specialization 5771DeclResult 5772Sema::ActOnExplicitInstantiation(Scope *S, 5773 SourceLocation ExternLoc, 5774 SourceLocation TemplateLoc, 5775 unsigned TagSpec, 5776 SourceLocation KWLoc, 5777 const CXXScopeSpec &SS, 5778 TemplateTy TemplateD, 5779 SourceLocation TemplateNameLoc, 5780 SourceLocation LAngleLoc, 5781 ASTTemplateArgsPtr TemplateArgsIn, 5782 SourceLocation RAngleLoc, 5783 AttributeList *Attr) { 5784 // Find the class template we're specializing 5785 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5786 ClassTemplateDecl *ClassTemplate 5787 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5788 5789 // Check that the specialization uses the same tag kind as the 5790 // original template. 5791 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5792 assert(Kind != TTK_Enum && 5793 "Invalid enum tag in class template explicit instantiation!"); 5794 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5795 Kind, /*isDefinition*/false, KWLoc, 5796 *ClassTemplate->getIdentifier())) { 5797 Diag(KWLoc, diag::err_use_with_wrong_tag) 5798 << ClassTemplate 5799 << FixItHint::CreateReplacement(KWLoc, 5800 ClassTemplate->getTemplatedDecl()->getKindName()); 5801 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5802 diag::note_previous_use); 5803 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5804 } 5805 5806 // C++0x [temp.explicit]p2: 5807 // There are two forms of explicit instantiation: an explicit instantiation 5808 // definition and an explicit instantiation declaration. An explicit 5809 // instantiation declaration begins with the extern keyword. [...] 5810 TemplateSpecializationKind TSK 5811 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5812 : TSK_ExplicitInstantiationDeclaration; 5813 5814 // Translate the parser's template argument list in our AST format. 5815 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5816 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5817 5818 // Check that the template argument list is well-formed for this 5819 // template. 5820 SmallVector<TemplateArgument, 4> Converted; 5821 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5822 TemplateArgs, false, Converted)) 5823 return true; 5824 5825 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5826 "Converted template argument list is too short!"); 5827 5828 // Find the class template specialization declaration that 5829 // corresponds to these arguments. 5830 void *InsertPos = 0; 5831 ClassTemplateSpecializationDecl *PrevDecl 5832 = ClassTemplate->findSpecialization(Converted.data(), 5833 Converted.size(), InsertPos); 5834 5835 TemplateSpecializationKind PrevDecl_TSK 5836 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5837 5838 // C++0x [temp.explicit]p2: 5839 // [...] An explicit instantiation shall appear in an enclosing 5840 // namespace of its template. [...] 5841 // 5842 // This is C++ DR 275. 5843 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5844 SS.isSet())) 5845 return true; 5846 5847 ClassTemplateSpecializationDecl *Specialization = 0; 5848 5849 bool HasNoEffect = false; 5850 if (PrevDecl) { 5851 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5852 PrevDecl, PrevDecl_TSK, 5853 PrevDecl->getPointOfInstantiation(), 5854 HasNoEffect)) 5855 return PrevDecl; 5856 5857 // Even though HasNoEffect == true means that this explicit instantiation 5858 // has no effect on semantics, we go on to put its syntax in the AST. 5859 5860 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5861 PrevDecl_TSK == TSK_Undeclared) { 5862 // Since the only prior class template specialization with these 5863 // arguments was referenced but not declared, reuse that 5864 // declaration node as our own, updating the source location 5865 // for the template name to reflect our new declaration. 5866 // (Other source locations will be updated later.) 5867 Specialization = PrevDecl; 5868 Specialization->setLocation(TemplateNameLoc); 5869 PrevDecl = 0; 5870 } 5871 } 5872 5873 if (!Specialization) { 5874 // Create a new class template specialization declaration node for 5875 // this explicit specialization. 5876 Specialization 5877 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5878 ClassTemplate->getDeclContext(), 5879 KWLoc, TemplateNameLoc, 5880 ClassTemplate, 5881 Converted.data(), 5882 Converted.size(), 5883 PrevDecl); 5884 SetNestedNameSpecifier(Specialization, SS); 5885 5886 if (!HasNoEffect && !PrevDecl) { 5887 // Insert the new specialization. 5888 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5889 } 5890 } 5891 5892 // Build the fully-sugared type for this explicit instantiation as 5893 // the user wrote in the explicit instantiation itself. This means 5894 // that we'll pretty-print the type retrieved from the 5895 // specialization's declaration the way that the user actually wrote 5896 // the explicit instantiation, rather than formatting the name based 5897 // on the "canonical" representation used to store the template 5898 // arguments in the specialization. 5899 TypeSourceInfo *WrittenTy 5900 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5901 TemplateArgs, 5902 Context.getTypeDeclType(Specialization)); 5903 Specialization->setTypeAsWritten(WrittenTy); 5904 TemplateArgsIn.release(); 5905 5906 // Set source locations for keywords. 5907 Specialization->setExternLoc(ExternLoc); 5908 Specialization->setTemplateKeywordLoc(TemplateLoc); 5909 5910 // Add the explicit instantiation into its lexical context. However, 5911 // since explicit instantiations are never found by name lookup, we 5912 // just put it into the declaration context directly. 5913 Specialization->setLexicalDeclContext(CurContext); 5914 CurContext->addDecl(Specialization); 5915 5916 // Syntax is now OK, so return if it has no other effect on semantics. 5917 if (HasNoEffect) { 5918 // Set the template specialization kind. 5919 Specialization->setTemplateSpecializationKind(TSK); 5920 return Specialization; 5921 } 5922 5923 // C++ [temp.explicit]p3: 5924 // A definition of a class template or class member template 5925 // shall be in scope at the point of the explicit instantiation of 5926 // the class template or class member template. 5927 // 5928 // This check comes when we actually try to perform the 5929 // instantiation. 5930 ClassTemplateSpecializationDecl *Def 5931 = cast_or_null<ClassTemplateSpecializationDecl>( 5932 Specialization->getDefinition()); 5933 if (!Def) 5934 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5935 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5936 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5937 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5938 } 5939 5940 // Instantiate the members of this class template specialization. 5941 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5942 Specialization->getDefinition()); 5943 if (Def) { 5944 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5945 5946 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5947 // TSK_ExplicitInstantiationDefinition 5948 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5949 TSK == TSK_ExplicitInstantiationDefinition) 5950 Def->setTemplateSpecializationKind(TSK); 5951 5952 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5953 } 5954 5955 // Set the template specialization kind. 5956 Specialization->setTemplateSpecializationKind(TSK); 5957 return Specialization; 5958} 5959 5960// Explicit instantiation of a member class of a class template. 5961DeclResult 5962Sema::ActOnExplicitInstantiation(Scope *S, 5963 SourceLocation ExternLoc, 5964 SourceLocation TemplateLoc, 5965 unsigned TagSpec, 5966 SourceLocation KWLoc, 5967 CXXScopeSpec &SS, 5968 IdentifierInfo *Name, 5969 SourceLocation NameLoc, 5970 AttributeList *Attr) { 5971 5972 bool Owned = false; 5973 bool IsDependent = false; 5974 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5975 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5976 MultiTemplateParamsArg(*this, 0, 0), 5977 Owned, IsDependent, false, false, 5978 TypeResult()); 5979 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5980 5981 if (!TagD) 5982 return true; 5983 5984 TagDecl *Tag = cast<TagDecl>(TagD); 5985 if (Tag->isEnum()) { 5986 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5987 << Context.getTypeDeclType(Tag); 5988 return true; 5989 } 5990 5991 if (Tag->isInvalidDecl()) 5992 return true; 5993 5994 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5995 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5996 if (!Pattern) { 5997 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5998 << Context.getTypeDeclType(Record); 5999 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6000 return true; 6001 } 6002 6003 // C++0x [temp.explicit]p2: 6004 // If the explicit instantiation is for a class or member class, the 6005 // elaborated-type-specifier in the declaration shall include a 6006 // simple-template-id. 6007 // 6008 // C++98 has the same restriction, just worded differently. 6009 if (!ScopeSpecifierHasTemplateId(SS)) 6010 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6011 << Record << SS.getRange(); 6012 6013 // C++0x [temp.explicit]p2: 6014 // There are two forms of explicit instantiation: an explicit instantiation 6015 // definition and an explicit instantiation declaration. An explicit 6016 // instantiation declaration begins with the extern keyword. [...] 6017 TemplateSpecializationKind TSK 6018 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6019 : TSK_ExplicitInstantiationDeclaration; 6020 6021 // C++0x [temp.explicit]p2: 6022 // [...] An explicit instantiation shall appear in an enclosing 6023 // namespace of its template. [...] 6024 // 6025 // This is C++ DR 275. 6026 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6027 6028 // Verify that it is okay to explicitly instantiate here. 6029 CXXRecordDecl *PrevDecl 6030 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 6031 if (!PrevDecl && Record->getDefinition()) 6032 PrevDecl = Record; 6033 if (PrevDecl) { 6034 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6035 bool HasNoEffect = false; 6036 assert(MSInfo && "No member specialization information?"); 6037 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6038 PrevDecl, 6039 MSInfo->getTemplateSpecializationKind(), 6040 MSInfo->getPointOfInstantiation(), 6041 HasNoEffect)) 6042 return true; 6043 if (HasNoEffect) 6044 return TagD; 6045 } 6046 6047 CXXRecordDecl *RecordDef 6048 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6049 if (!RecordDef) { 6050 // C++ [temp.explicit]p3: 6051 // A definition of a member class of a class template shall be in scope 6052 // at the point of an explicit instantiation of the member class. 6053 CXXRecordDecl *Def 6054 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6055 if (!Def) { 6056 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6057 << 0 << Record->getDeclName() << Record->getDeclContext(); 6058 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6059 << Pattern; 6060 return true; 6061 } else { 6062 if (InstantiateClass(NameLoc, Record, Def, 6063 getTemplateInstantiationArgs(Record), 6064 TSK)) 6065 return true; 6066 6067 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6068 if (!RecordDef) 6069 return true; 6070 } 6071 } 6072 6073 // Instantiate all of the members of the class. 6074 InstantiateClassMembers(NameLoc, RecordDef, 6075 getTemplateInstantiationArgs(Record), TSK); 6076 6077 if (TSK == TSK_ExplicitInstantiationDefinition) 6078 MarkVTableUsed(NameLoc, RecordDef, true); 6079 6080 // FIXME: We don't have any representation for explicit instantiations of 6081 // member classes. Such a representation is not needed for compilation, but it 6082 // should be available for clients that want to see all of the declarations in 6083 // the source code. 6084 return TagD; 6085} 6086 6087DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6088 SourceLocation ExternLoc, 6089 SourceLocation TemplateLoc, 6090 Declarator &D) { 6091 // Explicit instantiations always require a name. 6092 // TODO: check if/when DNInfo should replace Name. 6093 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6094 DeclarationName Name = NameInfo.getName(); 6095 if (!Name) { 6096 if (!D.isInvalidType()) 6097 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6098 diag::err_explicit_instantiation_requires_name) 6099 << D.getDeclSpec().getSourceRange() 6100 << D.getSourceRange(); 6101 6102 return true; 6103 } 6104 6105 // The scope passed in may not be a decl scope. Zip up the scope tree until 6106 // we find one that is. 6107 while ((S->getFlags() & Scope::DeclScope) == 0 || 6108 (S->getFlags() & Scope::TemplateParamScope) != 0) 6109 S = S->getParent(); 6110 6111 // Determine the type of the declaration. 6112 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6113 QualType R = T->getType(); 6114 if (R.isNull()) 6115 return true; 6116 6117 // C++ [dcl.stc]p1: 6118 // A storage-class-specifier shall not be specified in [...] an explicit 6119 // instantiation (14.7.2) directive. 6120 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6121 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6122 << Name; 6123 return true; 6124 } else if (D.getDeclSpec().getStorageClassSpec() 6125 != DeclSpec::SCS_unspecified) { 6126 // Complain about then remove the storage class specifier. 6127 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6128 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6129 6130 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6131 } 6132 6133 // C++0x [temp.explicit]p1: 6134 // [...] An explicit instantiation of a function template shall not use the 6135 // inline or constexpr specifiers. 6136 // Presumably, this also applies to member functions of class templates as 6137 // well. 6138 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6139 Diag(D.getDeclSpec().getInlineSpecLoc(), 6140 diag::err_explicit_instantiation_inline) 6141 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6142 6143 // FIXME: check for constexpr specifier. 6144 6145 // C++0x [temp.explicit]p2: 6146 // There are two forms of explicit instantiation: an explicit instantiation 6147 // definition and an explicit instantiation declaration. An explicit 6148 // instantiation declaration begins with the extern keyword. [...] 6149 TemplateSpecializationKind TSK 6150 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6151 : TSK_ExplicitInstantiationDeclaration; 6152 6153 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6154 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6155 6156 if (!R->isFunctionType()) { 6157 // C++ [temp.explicit]p1: 6158 // A [...] static data member of a class template can be explicitly 6159 // instantiated from the member definition associated with its class 6160 // template. 6161 if (Previous.isAmbiguous()) 6162 return true; 6163 6164 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6165 if (!Prev || !Prev->isStaticDataMember()) { 6166 // We expect to see a data data member here. 6167 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6168 << Name; 6169 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6170 P != PEnd; ++P) 6171 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6172 return true; 6173 } 6174 6175 if (!Prev->getInstantiatedFromStaticDataMember()) { 6176 // FIXME: Check for explicit specialization? 6177 Diag(D.getIdentifierLoc(), 6178 diag::err_explicit_instantiation_data_member_not_instantiated) 6179 << Prev; 6180 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6181 // FIXME: Can we provide a note showing where this was declared? 6182 return true; 6183 } 6184 6185 // C++0x [temp.explicit]p2: 6186 // If the explicit instantiation is for a member function, a member class 6187 // or a static data member of a class template specialization, the name of 6188 // the class template specialization in the qualified-id for the member 6189 // name shall be a simple-template-id. 6190 // 6191 // C++98 has the same restriction, just worded differently. 6192 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6193 Diag(D.getIdentifierLoc(), 6194 diag::ext_explicit_instantiation_without_qualified_id) 6195 << Prev << D.getCXXScopeSpec().getRange(); 6196 6197 // Check the scope of this explicit instantiation. 6198 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6199 6200 // Verify that it is okay to explicitly instantiate here. 6201 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6202 assert(MSInfo && "Missing static data member specialization info?"); 6203 bool HasNoEffect = false; 6204 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6205 MSInfo->getTemplateSpecializationKind(), 6206 MSInfo->getPointOfInstantiation(), 6207 HasNoEffect)) 6208 return true; 6209 if (HasNoEffect) 6210 return (Decl*) 0; 6211 6212 // Instantiate static data member. 6213 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6214 if (TSK == TSK_ExplicitInstantiationDefinition) 6215 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6216 6217 // FIXME: Create an ExplicitInstantiation node? 6218 return (Decl*) 0; 6219 } 6220 6221 // If the declarator is a template-id, translate the parser's template 6222 // argument list into our AST format. 6223 bool HasExplicitTemplateArgs = false; 6224 TemplateArgumentListInfo TemplateArgs; 6225 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6226 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6227 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6228 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6229 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6230 TemplateId->getTemplateArgs(), 6231 TemplateId->NumArgs); 6232 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6233 HasExplicitTemplateArgs = true; 6234 TemplateArgsPtr.release(); 6235 } 6236 6237 // C++ [temp.explicit]p1: 6238 // A [...] function [...] can be explicitly instantiated from its template. 6239 // A member function [...] of a class template can be explicitly 6240 // instantiated from the member definition associated with its class 6241 // template. 6242 UnresolvedSet<8> Matches; 6243 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6244 P != PEnd; ++P) { 6245 NamedDecl *Prev = *P; 6246 if (!HasExplicitTemplateArgs) { 6247 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6248 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6249 Matches.clear(); 6250 6251 Matches.addDecl(Method, P.getAccess()); 6252 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6253 break; 6254 } 6255 } 6256 } 6257 6258 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6259 if (!FunTmpl) 6260 continue; 6261 6262 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6263 FunctionDecl *Specialization = 0; 6264 if (TemplateDeductionResult TDK 6265 = DeduceTemplateArguments(FunTmpl, 6266 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6267 R, Specialization, Info)) { 6268 // FIXME: Keep track of almost-matches? 6269 (void)TDK; 6270 continue; 6271 } 6272 6273 Matches.addDecl(Specialization, P.getAccess()); 6274 } 6275 6276 // Find the most specialized function template specialization. 6277 UnresolvedSetIterator Result 6278 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6279 D.getIdentifierLoc(), 6280 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6281 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6282 PDiag(diag::note_explicit_instantiation_candidate)); 6283 6284 if (Result == Matches.end()) 6285 return true; 6286 6287 // Ignore access control bits, we don't need them for redeclaration checking. 6288 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6289 6290 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6291 Diag(D.getIdentifierLoc(), 6292 diag::err_explicit_instantiation_member_function_not_instantiated) 6293 << Specialization 6294 << (Specialization->getTemplateSpecializationKind() == 6295 TSK_ExplicitSpecialization); 6296 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6297 return true; 6298 } 6299 6300 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6301 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6302 PrevDecl = Specialization; 6303 6304 if (PrevDecl) { 6305 bool HasNoEffect = false; 6306 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6307 PrevDecl, 6308 PrevDecl->getTemplateSpecializationKind(), 6309 PrevDecl->getPointOfInstantiation(), 6310 HasNoEffect)) 6311 return true; 6312 6313 // FIXME: We may still want to build some representation of this 6314 // explicit specialization. 6315 if (HasNoEffect) 6316 return (Decl*) 0; 6317 } 6318 6319 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6320 6321 if (TSK == TSK_ExplicitInstantiationDefinition) 6322 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6323 6324 // C++0x [temp.explicit]p2: 6325 // If the explicit instantiation is for a member function, a member class 6326 // or a static data member of a class template specialization, the name of 6327 // the class template specialization in the qualified-id for the member 6328 // name shall be a simple-template-id. 6329 // 6330 // C++98 has the same restriction, just worded differently. 6331 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6332 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6333 D.getCXXScopeSpec().isSet() && 6334 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6335 Diag(D.getIdentifierLoc(), 6336 diag::ext_explicit_instantiation_without_qualified_id) 6337 << Specialization << D.getCXXScopeSpec().getRange(); 6338 6339 CheckExplicitInstantiationScope(*this, 6340 FunTmpl? (NamedDecl *)FunTmpl 6341 : Specialization->getInstantiatedFromMemberFunction(), 6342 D.getIdentifierLoc(), 6343 D.getCXXScopeSpec().isSet()); 6344 6345 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6346 return (Decl*) 0; 6347} 6348 6349TypeResult 6350Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6351 const CXXScopeSpec &SS, IdentifierInfo *Name, 6352 SourceLocation TagLoc, SourceLocation NameLoc) { 6353 // This has to hold, because SS is expected to be defined. 6354 assert(Name && "Expected a name in a dependent tag"); 6355 6356 NestedNameSpecifier *NNS 6357 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6358 if (!NNS) 6359 return true; 6360 6361 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6362 6363 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6364 Diag(NameLoc, diag::err_dependent_tag_decl) 6365 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6366 return true; 6367 } 6368 6369 // Create the resulting type. 6370 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6371 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6372 6373 // Create type-source location information for this type. 6374 TypeLocBuilder TLB; 6375 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6376 TL.setKeywordLoc(TagLoc); 6377 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6378 TL.setNameLoc(NameLoc); 6379 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6380} 6381 6382TypeResult 6383Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6384 const CXXScopeSpec &SS, const IdentifierInfo &II, 6385 SourceLocation IdLoc) { 6386 if (SS.isInvalid()) 6387 return true; 6388 6389 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6390 !getLangOptions().CPlusPlus0x) 6391 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6392 << FixItHint::CreateRemoval(TypenameLoc); 6393 6394 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6395 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6396 TypenameLoc, QualifierLoc, II, IdLoc); 6397 if (T.isNull()) 6398 return true; 6399 6400 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6401 if (isa<DependentNameType>(T)) { 6402 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6403 TL.setKeywordLoc(TypenameLoc); 6404 TL.setQualifierLoc(QualifierLoc); 6405 TL.setNameLoc(IdLoc); 6406 } else { 6407 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6408 TL.setKeywordLoc(TypenameLoc); 6409 TL.setQualifierLoc(QualifierLoc); 6410 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6411 } 6412 6413 return CreateParsedType(T, TSI); 6414} 6415 6416TypeResult 6417Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6418 const CXXScopeSpec &SS, 6419 SourceLocation TemplateLoc, 6420 TemplateTy TemplateIn, 6421 SourceLocation TemplateNameLoc, 6422 SourceLocation LAngleLoc, 6423 ASTTemplateArgsPtr TemplateArgsIn, 6424 SourceLocation RAngleLoc) { 6425 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6426 !getLangOptions().CPlusPlus0x) 6427 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6428 << FixItHint::CreateRemoval(TypenameLoc); 6429 6430 // Translate the parser's template argument list in our AST format. 6431 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6432 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6433 6434 TemplateName Template = TemplateIn.get(); 6435 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6436 // Construct a dependent template specialization type. 6437 assert(DTN && "dependent template has non-dependent name?"); 6438 assert(DTN->getQualifier() 6439 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6440 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6441 DTN->getQualifier(), 6442 DTN->getIdentifier(), 6443 TemplateArgs); 6444 6445 // Create source-location information for this type. 6446 TypeLocBuilder Builder; 6447 DependentTemplateSpecializationTypeLoc SpecTL 6448 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6449 SpecTL.setLAngleLoc(LAngleLoc); 6450 SpecTL.setRAngleLoc(RAngleLoc); 6451 SpecTL.setKeywordLoc(TypenameLoc); 6452 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6453 SpecTL.setNameLoc(TemplateNameLoc); 6454 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6455 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6456 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6457 } 6458 6459 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6460 if (T.isNull()) 6461 return true; 6462 6463 // Provide source-location information for the template specialization 6464 // type. 6465 TypeLocBuilder Builder; 6466 TemplateSpecializationTypeLoc SpecTL 6467 = Builder.push<TemplateSpecializationTypeLoc>(T); 6468 6469 // FIXME: No place to set the location of the 'template' keyword! 6470 SpecTL.setLAngleLoc(LAngleLoc); 6471 SpecTL.setRAngleLoc(RAngleLoc); 6472 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6473 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6474 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6475 6476 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6477 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6478 TL.setKeywordLoc(TypenameLoc); 6479 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6480 6481 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6482 return CreateParsedType(T, TSI); 6483} 6484 6485 6486/// \brief Build the type that describes a C++ typename specifier, 6487/// e.g., "typename T::type". 6488QualType 6489Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6490 SourceLocation KeywordLoc, 6491 NestedNameSpecifierLoc QualifierLoc, 6492 const IdentifierInfo &II, 6493 SourceLocation IILoc) { 6494 CXXScopeSpec SS; 6495 SS.Adopt(QualifierLoc); 6496 6497 DeclContext *Ctx = computeDeclContext(SS); 6498 if (!Ctx) { 6499 // If the nested-name-specifier is dependent and couldn't be 6500 // resolved to a type, build a typename type. 6501 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6502 return Context.getDependentNameType(Keyword, 6503 QualifierLoc.getNestedNameSpecifier(), 6504 &II); 6505 } 6506 6507 // If the nested-name-specifier refers to the current instantiation, 6508 // the "typename" keyword itself is superfluous. In C++03, the 6509 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6510 // allows such extraneous "typename" keywords, and we retroactively 6511 // apply this DR to C++03 code with only a warning. In any case we continue. 6512 6513 if (RequireCompleteDeclContext(SS, Ctx)) 6514 return QualType(); 6515 6516 DeclarationName Name(&II); 6517 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6518 LookupQualifiedName(Result, Ctx); 6519 unsigned DiagID = 0; 6520 Decl *Referenced = 0; 6521 switch (Result.getResultKind()) { 6522 case LookupResult::NotFound: 6523 DiagID = diag::err_typename_nested_not_found; 6524 break; 6525 6526 case LookupResult::FoundUnresolvedValue: { 6527 // We found a using declaration that is a value. Most likely, the using 6528 // declaration itself is meant to have the 'typename' keyword. 6529 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6530 IILoc); 6531 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6532 << Name << Ctx << FullRange; 6533 if (UnresolvedUsingValueDecl *Using 6534 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6535 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6536 Diag(Loc, diag::note_using_value_decl_missing_typename) 6537 << FixItHint::CreateInsertion(Loc, "typename "); 6538 } 6539 } 6540 // Fall through to create a dependent typename type, from which we can recover 6541 // better. 6542 6543 case LookupResult::NotFoundInCurrentInstantiation: 6544 // Okay, it's a member of an unknown instantiation. 6545 return Context.getDependentNameType(Keyword, 6546 QualifierLoc.getNestedNameSpecifier(), 6547 &II); 6548 6549 case LookupResult::Found: 6550 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6551 // We found a type. Build an ElaboratedType, since the 6552 // typename-specifier was just sugar. 6553 return Context.getElaboratedType(ETK_Typename, 6554 QualifierLoc.getNestedNameSpecifier(), 6555 Context.getTypeDeclType(Type)); 6556 } 6557 6558 DiagID = diag::err_typename_nested_not_type; 6559 Referenced = Result.getFoundDecl(); 6560 break; 6561 6562 6563 llvm_unreachable("unresolved using decl in non-dependent context"); 6564 return QualType(); 6565 6566 case LookupResult::FoundOverloaded: 6567 DiagID = diag::err_typename_nested_not_type; 6568 Referenced = *Result.begin(); 6569 break; 6570 6571 case LookupResult::Ambiguous: 6572 return QualType(); 6573 } 6574 6575 // If we get here, it's because name lookup did not find a 6576 // type. Emit an appropriate diagnostic and return an error. 6577 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6578 IILoc); 6579 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6580 if (Referenced) 6581 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6582 << Name; 6583 return QualType(); 6584} 6585 6586namespace { 6587 // See Sema::RebuildTypeInCurrentInstantiation 6588 class CurrentInstantiationRebuilder 6589 : public TreeTransform<CurrentInstantiationRebuilder> { 6590 SourceLocation Loc; 6591 DeclarationName Entity; 6592 6593 public: 6594 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6595 6596 CurrentInstantiationRebuilder(Sema &SemaRef, 6597 SourceLocation Loc, 6598 DeclarationName Entity) 6599 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6600 Loc(Loc), Entity(Entity) { } 6601 6602 /// \brief Determine whether the given type \p T has already been 6603 /// transformed. 6604 /// 6605 /// For the purposes of type reconstruction, a type has already been 6606 /// transformed if it is NULL or if it is not dependent. 6607 bool AlreadyTransformed(QualType T) { 6608 return T.isNull() || !T->isDependentType(); 6609 } 6610 6611 /// \brief Returns the location of the entity whose type is being 6612 /// rebuilt. 6613 SourceLocation getBaseLocation() { return Loc; } 6614 6615 /// \brief Returns the name of the entity whose type is being rebuilt. 6616 DeclarationName getBaseEntity() { return Entity; } 6617 6618 /// \brief Sets the "base" location and entity when that 6619 /// information is known based on another transformation. 6620 void setBase(SourceLocation Loc, DeclarationName Entity) { 6621 this->Loc = Loc; 6622 this->Entity = Entity; 6623 } 6624 }; 6625} 6626 6627/// \brief Rebuilds a type within the context of the current instantiation. 6628/// 6629/// The type \p T is part of the type of an out-of-line member definition of 6630/// a class template (or class template partial specialization) that was parsed 6631/// and constructed before we entered the scope of the class template (or 6632/// partial specialization thereof). This routine will rebuild that type now 6633/// that we have entered the declarator's scope, which may produce different 6634/// canonical types, e.g., 6635/// 6636/// \code 6637/// template<typename T> 6638/// struct X { 6639/// typedef T* pointer; 6640/// pointer data(); 6641/// }; 6642/// 6643/// template<typename T> 6644/// typename X<T>::pointer X<T>::data() { ... } 6645/// \endcode 6646/// 6647/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6648/// since we do not know that we can look into X<T> when we parsed the type. 6649/// This function will rebuild the type, performing the lookup of "pointer" 6650/// in X<T> and returning an ElaboratedType whose canonical type is the same 6651/// as the canonical type of T*, allowing the return types of the out-of-line 6652/// definition and the declaration to match. 6653TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6654 SourceLocation Loc, 6655 DeclarationName Name) { 6656 if (!T || !T->getType()->isDependentType()) 6657 return T; 6658 6659 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6660 return Rebuilder.TransformType(T); 6661} 6662 6663ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6664 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6665 DeclarationName()); 6666 return Rebuilder.TransformExpr(E); 6667} 6668 6669bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6670 if (SS.isInvalid()) 6671 return true; 6672 6673 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6674 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6675 DeclarationName()); 6676 NestedNameSpecifierLoc Rebuilt 6677 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6678 if (!Rebuilt) 6679 return true; 6680 6681 SS.Adopt(Rebuilt); 6682 return false; 6683} 6684 6685/// \brief Produces a formatted string that describes the binding of 6686/// template parameters to template arguments. 6687std::string 6688Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6689 const TemplateArgumentList &Args) { 6690 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6691} 6692 6693std::string 6694Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6695 const TemplateArgument *Args, 6696 unsigned NumArgs) { 6697 llvm::SmallString<128> Str; 6698 llvm::raw_svector_ostream Out(Str); 6699 6700 if (!Params || Params->size() == 0 || NumArgs == 0) 6701 return std::string(); 6702 6703 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6704 if (I >= NumArgs) 6705 break; 6706 6707 if (I == 0) 6708 Out << "[with "; 6709 else 6710 Out << ", "; 6711 6712 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6713 Out << Id->getName(); 6714 } else { 6715 Out << '$' << I; 6716 } 6717 6718 Out << " = "; 6719 Args[I].print(Context.PrintingPolicy, Out); 6720 } 6721 6722 Out << ']'; 6723 return Out.str(); 6724} 6725 6726void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6727 if (!FD) 6728 return; 6729 FD->setLateTemplateParsed(Flag); 6730} 6731 6732bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6733 DeclContext *DC = CurContext; 6734 6735 while (DC) { 6736 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6737 const FunctionDecl *FD = RD->isLocalClass(); 6738 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6739 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6740 return false; 6741 6742 DC = DC->getParent(); 6743 } 6744 return false; 6745} 6746