SemaTemplate.cpp revision 3f9a0566e6793151b99a65ab936220971cf96c1b
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Basic/LangOptions.h" 20#include "clang/Basic/PartialDiagnostic.h" 21#include "llvm/Support/Compiler.h" 22#include "llvm/ADT/StringExtras.h" 23using namespace clang; 24 25/// \brief Determine whether the declaration found is acceptable as the name 26/// of a template and, if so, return that template declaration. Otherwise, 27/// returns NULL. 28static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 29 if (!D) 30 return 0; 31 32 if (isa<TemplateDecl>(D)) 33 return D; 34 35 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 36 // C++ [temp.local]p1: 37 // Like normal (non-template) classes, class templates have an 38 // injected-class-name (Clause 9). The injected-class-name 39 // can be used with or without a template-argument-list. When 40 // it is used without a template-argument-list, it is 41 // equivalent to the injected-class-name followed by the 42 // template-parameters of the class template enclosed in 43 // <>. When it is used with a template-argument-list, it 44 // refers to the specified class template specialization, 45 // which could be the current specialization or another 46 // specialization. 47 if (Record->isInjectedClassName()) { 48 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 49 if (Record->getDescribedClassTemplate()) 50 return Record->getDescribedClassTemplate(); 51 52 if (ClassTemplateSpecializationDecl *Spec 53 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 54 return Spec->getSpecializedTemplate(); 55 } 56 57 return 0; 58 } 59 60 OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D); 61 if (!Ovl) 62 return 0; 63 64 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 65 FEnd = Ovl->function_end(); 66 F != FEnd; ++F) { 67 if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) { 68 // We've found a function template. Determine whether there are 69 // any other function templates we need to bundle together in an 70 // OverloadedFunctionDecl 71 for (++F; F != FEnd; ++F) { 72 if (isa<FunctionTemplateDecl>(*F)) 73 break; 74 } 75 76 if (F != FEnd) { 77 // Build an overloaded function decl containing only the 78 // function templates in Ovl. 79 OverloadedFunctionDecl *OvlTemplate 80 = OverloadedFunctionDecl::Create(Context, 81 Ovl->getDeclContext(), 82 Ovl->getDeclName()); 83 OvlTemplate->addOverload(FuncTmpl); 84 OvlTemplate->addOverload(*F); 85 for (++F; F != FEnd; ++F) { 86 if (isa<FunctionTemplateDecl>(*F)) 87 OvlTemplate->addOverload(*F); 88 } 89 90 return OvlTemplate; 91 } 92 93 return FuncTmpl; 94 } 95 } 96 97 return 0; 98} 99 100TemplateNameKind Sema::isTemplateName(Scope *S, 101 const IdentifierInfo &II, 102 SourceLocation IdLoc, 103 const CXXScopeSpec *SS, 104 TypeTy *ObjectTypePtr, 105 bool EnteringContext, 106 TemplateTy &TemplateResult) { 107 // Determine where to perform name lookup 108 DeclContext *LookupCtx = 0; 109 bool isDependent = false; 110 if (ObjectTypePtr) { 111 // This nested-name-specifier occurs in a member access expression, e.g., 112 // x->B::f, and we are looking into the type of the object. 113 assert((!SS || !SS->isSet()) && 114 "ObjectType and scope specifier cannot coexist"); 115 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 116 LookupCtx = computeDeclContext(ObjectType); 117 isDependent = ObjectType->isDependentType(); 118 } else if (SS && SS->isSet()) { 119 // This nested-name-specifier occurs after another nested-name-specifier, 120 // so long into the context associated with the prior nested-name-specifier. 121 122 LookupCtx = computeDeclContext(*SS, EnteringContext); 123 isDependent = isDependentScopeSpecifier(*SS); 124 } 125 126 LookupResult Found; 127 bool ObjectTypeSearchedInScope = false; 128 if (LookupCtx) { 129 // Perform "qualified" name lookup into the declaration context we 130 // computed, which is either the type of the base of a member access 131 // expression or the declaration context associated with a prior 132 // nested-name-specifier. 133 134 // The declaration context must be complete. 135 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS)) 136 return TNK_Non_template; 137 138 LookupQualifiedName(Found, LookupCtx, &II, LookupOrdinaryName); 139 140 if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { 141 // C++ [basic.lookup.classref]p1: 142 // In a class member access expression (5.2.5), if the . or -> token is 143 // immediately followed by an identifier followed by a <, the 144 // identifier must be looked up to determine whether the < is the 145 // beginning of a template argument list (14.2) or a less-than operator. 146 // The identifier is first looked up in the class of the object 147 // expression. If the identifier is not found, it is then looked up in 148 // the context of the entire postfix-expression and shall name a class 149 // or function template. 150 // 151 // FIXME: When we're instantiating a template, do we actually have to 152 // look in the scope of the template? Seems fishy... 153 LookupName(Found, S, &II, LookupOrdinaryName); 154 ObjectTypeSearchedInScope = true; 155 } 156 } else if (isDependent) { 157 // We cannot look into a dependent object type or 158 return TNK_Non_template; 159 } else { 160 // Perform unqualified name lookup in the current scope. 161 LookupName(Found, S, &II, LookupOrdinaryName); 162 } 163 164 // FIXME: Cope with ambiguous name-lookup results. 165 assert(!Found.isAmbiguous() && 166 "Cannot handle template name-lookup ambiguities"); 167 168 NamedDecl *Template 169 = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context)); 170 if (!Template) 171 return TNK_Non_template; 172 173 if (ObjectTypePtr && !ObjectTypeSearchedInScope) { 174 // C++ [basic.lookup.classref]p1: 175 // [...] If the lookup in the class of the object expression finds a 176 // template, the name is also looked up in the context of the entire 177 // postfix-expression and [...] 178 // 179 LookupResult FoundOuter; 180 LookupName(FoundOuter, S, &II, LookupOrdinaryName); 181 // FIXME: Handle ambiguities in this lookup better 182 NamedDecl *OuterTemplate 183 = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context)); 184 185 if (!OuterTemplate) { 186 // - if the name is not found, the name found in the class of the 187 // object expression is used, otherwise 188 } else if (!isa<ClassTemplateDecl>(OuterTemplate)) { 189 // - if the name is found in the context of the entire 190 // postfix-expression and does not name a class template, the name 191 // found in the class of the object expression is used, otherwise 192 } else { 193 // - if the name found is a class template, it must refer to the same 194 // entity as the one found in the class of the object expression, 195 // otherwise the program is ill-formed. 196 if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { 197 Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) 198 << &II; 199 Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) 200 << QualType::getFromOpaquePtr(ObjectTypePtr); 201 Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); 202 203 // Recover by taking the template that we found in the object 204 // expression's type. 205 } 206 } 207 } 208 209 if (SS && SS->isSet() && !SS->isInvalid()) { 210 NestedNameSpecifier *Qualifier 211 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 212 if (OverloadedFunctionDecl *Ovl 213 = dyn_cast<OverloadedFunctionDecl>(Template)) 214 TemplateResult 215 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 216 Ovl)); 217 else 218 TemplateResult 219 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 220 cast<TemplateDecl>(Template))); 221 } else if (OverloadedFunctionDecl *Ovl 222 = dyn_cast<OverloadedFunctionDecl>(Template)) { 223 TemplateResult = TemplateTy::make(TemplateName(Ovl)); 224 } else { 225 TemplateResult = TemplateTy::make( 226 TemplateName(cast<TemplateDecl>(Template))); 227 } 228 229 if (isa<ClassTemplateDecl>(Template) || 230 isa<TemplateTemplateParmDecl>(Template)) 231 return TNK_Type_template; 232 233 assert((isa<FunctionTemplateDecl>(Template) || 234 isa<OverloadedFunctionDecl>(Template)) && 235 "Unhandled template kind in Sema::isTemplateName"); 236 return TNK_Function_template; 237} 238 239/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 240/// that the template parameter 'PrevDecl' is being shadowed by a new 241/// declaration at location Loc. Returns true to indicate that this is 242/// an error, and false otherwise. 243bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 244 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 245 246 // Microsoft Visual C++ permits template parameters to be shadowed. 247 if (getLangOptions().Microsoft) 248 return false; 249 250 // C++ [temp.local]p4: 251 // A template-parameter shall not be redeclared within its 252 // scope (including nested scopes). 253 Diag(Loc, diag::err_template_param_shadow) 254 << cast<NamedDecl>(PrevDecl)->getDeclName(); 255 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 256 return true; 257} 258 259/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 260/// the parameter D to reference the templated declaration and return a pointer 261/// to the template declaration. Otherwise, do nothing to D and return null. 262TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 263 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 264 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 265 return Temp; 266 } 267 return 0; 268} 269 270/// ActOnTypeParameter - Called when a C++ template type parameter 271/// (e.g., "typename T") has been parsed. Typename specifies whether 272/// the keyword "typename" was used to declare the type parameter 273/// (otherwise, "class" was used), and KeyLoc is the location of the 274/// "class" or "typename" keyword. ParamName is the name of the 275/// parameter (NULL indicates an unnamed template parameter) and 276/// ParamName is the location of the parameter name (if any). 277/// If the type parameter has a default argument, it will be added 278/// later via ActOnTypeParameterDefault. 279Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 280 SourceLocation EllipsisLoc, 281 SourceLocation KeyLoc, 282 IdentifierInfo *ParamName, 283 SourceLocation ParamNameLoc, 284 unsigned Depth, unsigned Position) { 285 assert(S->isTemplateParamScope() && 286 "Template type parameter not in template parameter scope!"); 287 bool Invalid = false; 288 289 if (ParamName) { 290 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 291 if (PrevDecl && PrevDecl->isTemplateParameter()) 292 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 293 PrevDecl); 294 } 295 296 SourceLocation Loc = ParamNameLoc; 297 if (!ParamName) 298 Loc = KeyLoc; 299 300 TemplateTypeParmDecl *Param 301 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 302 Depth, Position, ParamName, Typename, 303 Ellipsis); 304 if (Invalid) 305 Param->setInvalidDecl(); 306 307 if (ParamName) { 308 // Add the template parameter into the current scope. 309 S->AddDecl(DeclPtrTy::make(Param)); 310 IdResolver.AddDecl(Param); 311 } 312 313 return DeclPtrTy::make(Param); 314} 315 316/// ActOnTypeParameterDefault - Adds a default argument (the type 317/// Default) to the given template type parameter (TypeParam). 318void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 319 SourceLocation EqualLoc, 320 SourceLocation DefaultLoc, 321 TypeTy *DefaultT) { 322 TemplateTypeParmDecl *Parm 323 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 324 325 DeclaratorInfo *DefaultDInfo; 326 GetTypeFromParser(DefaultT, &DefaultDInfo); 327 328 assert(DefaultDInfo && "expected source information for type"); 329 330 // C++0x [temp.param]p9: 331 // A default template-argument may be specified for any kind of 332 // template-parameter that is not a template parameter pack. 333 if (Parm->isParameterPack()) { 334 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 335 return; 336 } 337 338 // C++ [temp.param]p14: 339 // A template-parameter shall not be used in its own default argument. 340 // FIXME: Implement this check! Needs a recursive walk over the types. 341 342 // Check the template argument itself. 343 if (CheckTemplateArgument(Parm, DefaultDInfo)) { 344 Parm->setInvalidDecl(); 345 return; 346 } 347 348 Parm->setDefaultArgument(DefaultDInfo, false); 349} 350 351/// \brief Check that the type of a non-type template parameter is 352/// well-formed. 353/// 354/// \returns the (possibly-promoted) parameter type if valid; 355/// otherwise, produces a diagnostic and returns a NULL type. 356QualType 357Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 358 // C++ [temp.param]p4: 359 // 360 // A non-type template-parameter shall have one of the following 361 // (optionally cv-qualified) types: 362 // 363 // -- integral or enumeration type, 364 if (T->isIntegralType() || T->isEnumeralType() || 365 // -- pointer to object or pointer to function, 366 (T->isPointerType() && 367 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 368 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 369 // -- reference to object or reference to function, 370 T->isReferenceType() || 371 // -- pointer to member. 372 T->isMemberPointerType() || 373 // If T is a dependent type, we can't do the check now, so we 374 // assume that it is well-formed. 375 T->isDependentType()) 376 return T; 377 // C++ [temp.param]p8: 378 // 379 // A non-type template-parameter of type "array of T" or 380 // "function returning T" is adjusted to be of type "pointer to 381 // T" or "pointer to function returning T", respectively. 382 else if (T->isArrayType()) 383 // FIXME: Keep the type prior to promotion? 384 return Context.getArrayDecayedType(T); 385 else if (T->isFunctionType()) 386 // FIXME: Keep the type prior to promotion? 387 return Context.getPointerType(T); 388 389 Diag(Loc, diag::err_template_nontype_parm_bad_type) 390 << T; 391 392 return QualType(); 393} 394 395/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 396/// template parameter (e.g., "int Size" in "template<int Size> 397/// class Array") has been parsed. S is the current scope and D is 398/// the parsed declarator. 399Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 400 unsigned Depth, 401 unsigned Position) { 402 DeclaratorInfo *DInfo = 0; 403 QualType T = GetTypeForDeclarator(D, S, &DInfo); 404 405 assert(S->isTemplateParamScope() && 406 "Non-type template parameter not in template parameter scope!"); 407 bool Invalid = false; 408 409 IdentifierInfo *ParamName = D.getIdentifier(); 410 if (ParamName) { 411 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 412 if (PrevDecl && PrevDecl->isTemplateParameter()) 413 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 414 PrevDecl); 415 } 416 417 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 418 if (T.isNull()) { 419 T = Context.IntTy; // Recover with an 'int' type. 420 Invalid = true; 421 } 422 423 NonTypeTemplateParmDecl *Param 424 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 425 Depth, Position, ParamName, T, DInfo); 426 if (Invalid) 427 Param->setInvalidDecl(); 428 429 if (D.getIdentifier()) { 430 // Add the template parameter into the current scope. 431 S->AddDecl(DeclPtrTy::make(Param)); 432 IdResolver.AddDecl(Param); 433 } 434 return DeclPtrTy::make(Param); 435} 436 437/// \brief Adds a default argument to the given non-type template 438/// parameter. 439void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 440 SourceLocation EqualLoc, 441 ExprArg DefaultE) { 442 NonTypeTemplateParmDecl *TemplateParm 443 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 444 Expr *Default = static_cast<Expr *>(DefaultE.get()); 445 446 // C++ [temp.param]p14: 447 // A template-parameter shall not be used in its own default argument. 448 // FIXME: Implement this check! Needs a recursive walk over the types. 449 450 // Check the well-formedness of the default template argument. 451 TemplateArgument Converted; 452 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 453 Converted)) { 454 TemplateParm->setInvalidDecl(); 455 return; 456 } 457 458 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 459} 460 461 462/// ActOnTemplateTemplateParameter - Called when a C++ template template 463/// parameter (e.g. T in template <template <typename> class T> class array) 464/// has been parsed. S is the current scope. 465Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 466 SourceLocation TmpLoc, 467 TemplateParamsTy *Params, 468 IdentifierInfo *Name, 469 SourceLocation NameLoc, 470 unsigned Depth, 471 unsigned Position) { 472 assert(S->isTemplateParamScope() && 473 "Template template parameter not in template parameter scope!"); 474 475 // Construct the parameter object. 476 TemplateTemplateParmDecl *Param = 477 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 478 Position, Name, 479 (TemplateParameterList*)Params); 480 481 // Make sure the parameter is valid. 482 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 483 // do anything yet. However, if the template parameter list or (eventual) 484 // default value is ever invalidated, that will propagate here. 485 bool Invalid = false; 486 if (Invalid) { 487 Param->setInvalidDecl(); 488 } 489 490 // If the tt-param has a name, then link the identifier into the scope 491 // and lookup mechanisms. 492 if (Name) { 493 S->AddDecl(DeclPtrTy::make(Param)); 494 IdResolver.AddDecl(Param); 495 } 496 497 return DeclPtrTy::make(Param); 498} 499 500/// \brief Adds a default argument to the given template template 501/// parameter. 502void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 503 SourceLocation EqualLoc, 504 ExprArg DefaultE) { 505 TemplateTemplateParmDecl *TemplateParm 506 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 507 508 // Since a template-template parameter's default argument is an 509 // id-expression, it must be a DeclRefExpr. 510 DeclRefExpr *Default 511 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 512 513 // C++ [temp.param]p14: 514 // A template-parameter shall not be used in its own default argument. 515 // FIXME: Implement this check! Needs a recursive walk over the types. 516 517 // Check the well-formedness of the template argument. 518 if (!isa<TemplateDecl>(Default->getDecl())) { 519 Diag(Default->getSourceRange().getBegin(), 520 diag::err_template_arg_must_be_template) 521 << Default->getSourceRange(); 522 TemplateParm->setInvalidDecl(); 523 return; 524 } 525 if (CheckTemplateArgument(TemplateParm, Default)) { 526 TemplateParm->setInvalidDecl(); 527 return; 528 } 529 530 DefaultE.release(); 531 TemplateParm->setDefaultArgument(Default); 532} 533 534/// ActOnTemplateParameterList - Builds a TemplateParameterList that 535/// contains the template parameters in Params/NumParams. 536Sema::TemplateParamsTy * 537Sema::ActOnTemplateParameterList(unsigned Depth, 538 SourceLocation ExportLoc, 539 SourceLocation TemplateLoc, 540 SourceLocation LAngleLoc, 541 DeclPtrTy *Params, unsigned NumParams, 542 SourceLocation RAngleLoc) { 543 if (ExportLoc.isValid()) 544 Diag(ExportLoc, diag::note_template_export_unsupported); 545 546 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 547 (NamedDecl**)Params, NumParams, 548 RAngleLoc); 549} 550 551Sema::DeclResult 552Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 553 SourceLocation KWLoc, const CXXScopeSpec &SS, 554 IdentifierInfo *Name, SourceLocation NameLoc, 555 AttributeList *Attr, 556 TemplateParameterList *TemplateParams, 557 AccessSpecifier AS) { 558 assert(TemplateParams && TemplateParams->size() > 0 && 559 "No template parameters"); 560 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 561 bool Invalid = false; 562 563 // Check that we can declare a template here. 564 if (CheckTemplateDeclScope(S, TemplateParams)) 565 return true; 566 567 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 568 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 569 570 // There is no such thing as an unnamed class template. 571 if (!Name) { 572 Diag(KWLoc, diag::err_template_unnamed_class); 573 return true; 574 } 575 576 // Find any previous declaration with this name. 577 DeclContext *SemanticContext; 578 LookupResult Previous; 579 if (SS.isNotEmpty() && !SS.isInvalid()) { 580 if (RequireCompleteDeclContext(SS)) 581 return true; 582 583 SemanticContext = computeDeclContext(SS, true); 584 if (!SemanticContext) { 585 // FIXME: Produce a reasonable diagnostic here 586 return true; 587 } 588 589 LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName, 590 true); 591 } else { 592 SemanticContext = CurContext; 593 LookupName(Previous, S, Name, LookupOrdinaryName, true); 594 } 595 596 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 597 NamedDecl *PrevDecl = 0; 598 if (Previous.begin() != Previous.end()) 599 PrevDecl = *Previous.begin(); 600 601 if (PrevDecl && TUK == TUK_Friend) { 602 // C++ [namespace.memdef]p3: 603 // [...] When looking for a prior declaration of a class or a function 604 // declared as a friend, and when the name of the friend class or 605 // function is neither a qualified name nor a template-id, scopes outside 606 // the innermost enclosing namespace scope are not considered. 607 DeclContext *OutermostContext = CurContext; 608 while (!OutermostContext->isFileContext()) 609 OutermostContext = OutermostContext->getLookupParent(); 610 611 if (OutermostContext->Equals(PrevDecl->getDeclContext()) || 612 OutermostContext->Encloses(PrevDecl->getDeclContext())) { 613 SemanticContext = PrevDecl->getDeclContext(); 614 } else { 615 // Declarations in outer scopes don't matter. However, the outermost 616 // context we computed is the semantic context for our new 617 // declaration. 618 PrevDecl = 0; 619 SemanticContext = OutermostContext; 620 } 621 622 if (CurContext->isDependentContext()) { 623 // If this is a dependent context, we don't want to link the friend 624 // class template to the template in scope, because that would perform 625 // checking of the template parameter lists that can't be performed 626 // until the outer context is instantiated. 627 PrevDecl = 0; 628 } 629 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 630 PrevDecl = 0; 631 632 // If there is a previous declaration with the same name, check 633 // whether this is a valid redeclaration. 634 ClassTemplateDecl *PrevClassTemplate 635 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 636 637 // We may have found the injected-class-name of a class template, 638 // class template partial specialization, or class template specialization. 639 // In these cases, grab the template that is being defined or specialized. 640 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 641 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 642 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 643 PrevClassTemplate 644 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 645 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 646 PrevClassTemplate 647 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 648 ->getSpecializedTemplate(); 649 } 650 } 651 652 if (PrevClassTemplate) { 653 // Ensure that the template parameter lists are compatible. 654 if (!TemplateParameterListsAreEqual(TemplateParams, 655 PrevClassTemplate->getTemplateParameters(), 656 /*Complain=*/true)) 657 return true; 658 659 // C++ [temp.class]p4: 660 // In a redeclaration, partial specialization, explicit 661 // specialization or explicit instantiation of a class template, 662 // the class-key shall agree in kind with the original class 663 // template declaration (7.1.5.3). 664 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 665 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 666 Diag(KWLoc, diag::err_use_with_wrong_tag) 667 << Name 668 << CodeModificationHint::CreateReplacement(KWLoc, 669 PrevRecordDecl->getKindName()); 670 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 671 Kind = PrevRecordDecl->getTagKind(); 672 } 673 674 // Check for redefinition of this class template. 675 if (TUK == TUK_Definition) { 676 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 677 Diag(NameLoc, diag::err_redefinition) << Name; 678 Diag(Def->getLocation(), diag::note_previous_definition); 679 // FIXME: Would it make sense to try to "forget" the previous 680 // definition, as part of error recovery? 681 return true; 682 } 683 } 684 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 685 // Maybe we will complain about the shadowed template parameter. 686 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 687 // Just pretend that we didn't see the previous declaration. 688 PrevDecl = 0; 689 } else if (PrevDecl) { 690 // C++ [temp]p5: 691 // A class template shall not have the same name as any other 692 // template, class, function, object, enumeration, enumerator, 693 // namespace, or type in the same scope (3.3), except as specified 694 // in (14.5.4). 695 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 696 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 697 return true; 698 } 699 700 // Check the template parameter list of this declaration, possibly 701 // merging in the template parameter list from the previous class 702 // template declaration. 703 if (CheckTemplateParameterList(TemplateParams, 704 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 705 Invalid = true; 706 707 // FIXME: If we had a scope specifier, we better have a previous template 708 // declaration! 709 710 CXXRecordDecl *NewClass = 711 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 712 PrevClassTemplate? 713 PrevClassTemplate->getTemplatedDecl() : 0, 714 /*DelayTypeCreation=*/true); 715 716 ClassTemplateDecl *NewTemplate 717 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 718 DeclarationName(Name), TemplateParams, 719 NewClass, PrevClassTemplate); 720 NewClass->setDescribedClassTemplate(NewTemplate); 721 722 // Build the type for the class template declaration now. 723 QualType T = 724 Context.getTypeDeclType(NewClass, 725 PrevClassTemplate? 726 PrevClassTemplate->getTemplatedDecl() : 0); 727 assert(T->isDependentType() && "Class template type is not dependent?"); 728 (void)T; 729 730 // If we are providing an explicit specialization of a member that is a 731 // class template, make a note of that. 732 if (PrevClassTemplate && 733 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 734 PrevClassTemplate->setMemberSpecialization(); 735 736 // Set the access specifier. 737 if (!Invalid && TUK != TUK_Friend) 738 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 739 740 // Set the lexical context of these templates 741 NewClass->setLexicalDeclContext(CurContext); 742 NewTemplate->setLexicalDeclContext(CurContext); 743 744 if (TUK == TUK_Definition) 745 NewClass->startDefinition(); 746 747 if (Attr) 748 ProcessDeclAttributeList(S, NewClass, Attr); 749 750 if (TUK != TUK_Friend) 751 PushOnScopeChains(NewTemplate, S); 752 else { 753 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 754 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 755 NewClass->setAccess(PrevClassTemplate->getAccess()); 756 } 757 758 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 759 PrevClassTemplate != NULL); 760 761 // Friend templates are visible in fairly strange ways. 762 if (!CurContext->isDependentContext()) { 763 DeclContext *DC = SemanticContext->getLookupContext(); 764 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 765 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 766 PushOnScopeChains(NewTemplate, EnclosingScope, 767 /* AddToContext = */ false); 768 } 769 770 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 771 NewClass->getLocation(), 772 NewTemplate, 773 /*FIXME:*/NewClass->getLocation()); 774 Friend->setAccess(AS_public); 775 CurContext->addDecl(Friend); 776 } 777 778 if (Invalid) { 779 NewTemplate->setInvalidDecl(); 780 NewClass->setInvalidDecl(); 781 } 782 return DeclPtrTy::make(NewTemplate); 783} 784 785/// \brief Checks the validity of a template parameter list, possibly 786/// considering the template parameter list from a previous 787/// declaration. 788/// 789/// If an "old" template parameter list is provided, it must be 790/// equivalent (per TemplateParameterListsAreEqual) to the "new" 791/// template parameter list. 792/// 793/// \param NewParams Template parameter list for a new template 794/// declaration. This template parameter list will be updated with any 795/// default arguments that are carried through from the previous 796/// template parameter list. 797/// 798/// \param OldParams If provided, template parameter list from a 799/// previous declaration of the same template. Default template 800/// arguments will be merged from the old template parameter list to 801/// the new template parameter list. 802/// 803/// \returns true if an error occurred, false otherwise. 804bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 805 TemplateParameterList *OldParams) { 806 bool Invalid = false; 807 808 // C++ [temp.param]p10: 809 // The set of default template-arguments available for use with a 810 // template declaration or definition is obtained by merging the 811 // default arguments from the definition (if in scope) and all 812 // declarations in scope in the same way default function 813 // arguments are (8.3.6). 814 bool SawDefaultArgument = false; 815 SourceLocation PreviousDefaultArgLoc; 816 817 bool SawParameterPack = false; 818 SourceLocation ParameterPackLoc; 819 820 // Dummy initialization to avoid warnings. 821 TemplateParameterList::iterator OldParam = NewParams->end(); 822 if (OldParams) 823 OldParam = OldParams->begin(); 824 825 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 826 NewParamEnd = NewParams->end(); 827 NewParam != NewParamEnd; ++NewParam) { 828 // Variables used to diagnose redundant default arguments 829 bool RedundantDefaultArg = false; 830 SourceLocation OldDefaultLoc; 831 SourceLocation NewDefaultLoc; 832 833 // Variables used to diagnose missing default arguments 834 bool MissingDefaultArg = false; 835 836 // C++0x [temp.param]p11: 837 // If a template parameter of a class template is a template parameter pack, 838 // it must be the last template parameter. 839 if (SawParameterPack) { 840 Diag(ParameterPackLoc, 841 diag::err_template_param_pack_must_be_last_template_parameter); 842 Invalid = true; 843 } 844 845 // Merge default arguments for template type parameters. 846 if (TemplateTypeParmDecl *NewTypeParm 847 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 848 TemplateTypeParmDecl *OldTypeParm 849 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 850 851 if (NewTypeParm->isParameterPack()) { 852 assert(!NewTypeParm->hasDefaultArgument() && 853 "Parameter packs can't have a default argument!"); 854 SawParameterPack = true; 855 ParameterPackLoc = NewTypeParm->getLocation(); 856 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 857 NewTypeParm->hasDefaultArgument()) { 858 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 859 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 860 SawDefaultArgument = true; 861 RedundantDefaultArg = true; 862 PreviousDefaultArgLoc = NewDefaultLoc; 863 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 864 // Merge the default argument from the old declaration to the 865 // new declaration. 866 SawDefaultArgument = true; 867 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 868 true); 869 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 870 } else if (NewTypeParm->hasDefaultArgument()) { 871 SawDefaultArgument = true; 872 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 873 } else if (SawDefaultArgument) 874 MissingDefaultArg = true; 875 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 876 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 877 // Merge default arguments for non-type template parameters 878 NonTypeTemplateParmDecl *OldNonTypeParm 879 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 880 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 881 NewNonTypeParm->hasDefaultArgument()) { 882 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 883 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 884 SawDefaultArgument = true; 885 RedundantDefaultArg = true; 886 PreviousDefaultArgLoc = NewDefaultLoc; 887 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 888 // Merge the default argument from the old declaration to the 889 // new declaration. 890 SawDefaultArgument = true; 891 // FIXME: We need to create a new kind of "default argument" 892 // expression that points to a previous template template 893 // parameter. 894 NewNonTypeParm->setDefaultArgument( 895 OldNonTypeParm->getDefaultArgument()); 896 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 897 } else if (NewNonTypeParm->hasDefaultArgument()) { 898 SawDefaultArgument = true; 899 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 900 } else if (SawDefaultArgument) 901 MissingDefaultArg = true; 902 } else { 903 // Merge default arguments for template template parameters 904 TemplateTemplateParmDecl *NewTemplateParm 905 = cast<TemplateTemplateParmDecl>(*NewParam); 906 TemplateTemplateParmDecl *OldTemplateParm 907 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 908 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 909 NewTemplateParm->hasDefaultArgument()) { 910 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 911 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 912 SawDefaultArgument = true; 913 RedundantDefaultArg = true; 914 PreviousDefaultArgLoc = NewDefaultLoc; 915 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 916 // Merge the default argument from the old declaration to the 917 // new declaration. 918 SawDefaultArgument = true; 919 // FIXME: We need to create a new kind of "default argument" expression 920 // that points to a previous template template parameter. 921 NewTemplateParm->setDefaultArgument( 922 OldTemplateParm->getDefaultArgument()); 923 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 924 } else if (NewTemplateParm->hasDefaultArgument()) { 925 SawDefaultArgument = true; 926 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 927 } else if (SawDefaultArgument) 928 MissingDefaultArg = true; 929 } 930 931 if (RedundantDefaultArg) { 932 // C++ [temp.param]p12: 933 // A template-parameter shall not be given default arguments 934 // by two different declarations in the same scope. 935 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 936 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 937 Invalid = true; 938 } else if (MissingDefaultArg) { 939 // C++ [temp.param]p11: 940 // If a template-parameter has a default template-argument, 941 // all subsequent template-parameters shall have a default 942 // template-argument supplied. 943 Diag((*NewParam)->getLocation(), 944 diag::err_template_param_default_arg_missing); 945 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 946 Invalid = true; 947 } 948 949 // If we have an old template parameter list that we're merging 950 // in, move on to the next parameter. 951 if (OldParams) 952 ++OldParam; 953 } 954 955 return Invalid; 956} 957 958/// \brief Match the given template parameter lists to the given scope 959/// specifier, returning the template parameter list that applies to the 960/// name. 961/// 962/// \param DeclStartLoc the start of the declaration that has a scope 963/// specifier or a template parameter list. 964/// 965/// \param SS the scope specifier that will be matched to the given template 966/// parameter lists. This scope specifier precedes a qualified name that is 967/// being declared. 968/// 969/// \param ParamLists the template parameter lists, from the outermost to the 970/// innermost template parameter lists. 971/// 972/// \param NumParamLists the number of template parameter lists in ParamLists. 973/// 974/// \param IsExplicitSpecialization will be set true if the entity being 975/// declared is an explicit specialization, false otherwise. 976/// 977/// \returns the template parameter list, if any, that corresponds to the 978/// name that is preceded by the scope specifier @p SS. This template 979/// parameter list may be have template parameters (if we're declaring a 980/// template) or may have no template parameters (if we're declaring a 981/// template specialization), or may be NULL (if we were's declaring isn't 982/// itself a template). 983TemplateParameterList * 984Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 985 const CXXScopeSpec &SS, 986 TemplateParameterList **ParamLists, 987 unsigned NumParamLists, 988 bool &IsExplicitSpecialization) { 989 IsExplicitSpecialization = false; 990 991 // Find the template-ids that occur within the nested-name-specifier. These 992 // template-ids will match up with the template parameter lists. 993 llvm::SmallVector<const TemplateSpecializationType *, 4> 994 TemplateIdsInSpecifier; 995 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 996 NNS; NNS = NNS->getPrefix()) { 997 if (const TemplateSpecializationType *SpecType 998 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 999 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1000 if (!Template) 1001 continue; // FIXME: should this be an error? probably... 1002 1003 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1004 ClassTemplateSpecializationDecl *SpecDecl 1005 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1006 // If the nested name specifier refers to an explicit specialization, 1007 // we don't need a template<> header. 1008 // FIXME: revisit this approach once we cope with specializations 1009 // properly. 1010 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 1011 continue; 1012 } 1013 1014 TemplateIdsInSpecifier.push_back(SpecType); 1015 } 1016 } 1017 1018 // Reverse the list of template-ids in the scope specifier, so that we can 1019 // more easily match up the template-ids and the template parameter lists. 1020 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1021 1022 SourceLocation FirstTemplateLoc = DeclStartLoc; 1023 if (NumParamLists) 1024 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1025 1026 // Match the template-ids found in the specifier to the template parameter 1027 // lists. 1028 unsigned Idx = 0; 1029 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1030 Idx != NumTemplateIds; ++Idx) { 1031 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1032 bool DependentTemplateId = TemplateId->isDependentType(); 1033 if (Idx >= NumParamLists) { 1034 // We have a template-id without a corresponding template parameter 1035 // list. 1036 if (DependentTemplateId) { 1037 // FIXME: the location information here isn't great. 1038 Diag(SS.getRange().getBegin(), 1039 diag::err_template_spec_needs_template_parameters) 1040 << TemplateId 1041 << SS.getRange(); 1042 } else { 1043 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1044 << SS.getRange() 1045 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1046 "template<> "); 1047 IsExplicitSpecialization = true; 1048 } 1049 return 0; 1050 } 1051 1052 // Check the template parameter list against its corresponding template-id. 1053 if (DependentTemplateId) { 1054 TemplateDecl *Template 1055 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1056 1057 if (ClassTemplateDecl *ClassTemplate 1058 = dyn_cast<ClassTemplateDecl>(Template)) { 1059 TemplateParameterList *ExpectedTemplateParams = 0; 1060 // Is this template-id naming the primary template? 1061 if (Context.hasSameType(TemplateId, 1062 ClassTemplate->getInjectedClassNameType(Context))) 1063 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1064 // ... or a partial specialization? 1065 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1066 = ClassTemplate->findPartialSpecialization(TemplateId)) 1067 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1068 1069 if (ExpectedTemplateParams) 1070 TemplateParameterListsAreEqual(ParamLists[Idx], 1071 ExpectedTemplateParams, 1072 true); 1073 } 1074 } else if (ParamLists[Idx]->size() > 0) 1075 Diag(ParamLists[Idx]->getTemplateLoc(), 1076 diag::err_template_param_list_matches_nontemplate) 1077 << TemplateId 1078 << ParamLists[Idx]->getSourceRange(); 1079 else 1080 IsExplicitSpecialization = true; 1081 } 1082 1083 // If there were at least as many template-ids as there were template 1084 // parameter lists, then there are no template parameter lists remaining for 1085 // the declaration itself. 1086 if (Idx >= NumParamLists) 1087 return 0; 1088 1089 // If there were too many template parameter lists, complain about that now. 1090 if (Idx != NumParamLists - 1) { 1091 while (Idx < NumParamLists - 1) { 1092 Diag(ParamLists[Idx]->getTemplateLoc(), 1093 diag::err_template_spec_extra_headers) 1094 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1095 ParamLists[Idx]->getRAngleLoc()); 1096 ++Idx; 1097 } 1098 } 1099 1100 // Return the last template parameter list, which corresponds to the 1101 // entity being declared. 1102 return ParamLists[NumParamLists - 1]; 1103} 1104 1105/// \brief Translates template arguments as provided by the parser 1106/// into template arguments used by semantic analysis. 1107void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 1108 SourceLocation *TemplateArgLocs, 1109 llvm::SmallVector<TemplateArgumentLoc, 16> &TemplateArgs) { 1110 TemplateArgs.reserve(TemplateArgsIn.size()); 1111 1112 void **Args = TemplateArgsIn.getArgs(); 1113 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 1114 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 1115 if (ArgIsType[Arg]) { 1116 DeclaratorInfo *DI; 1117 QualType T = Sema::GetTypeFromParser(Args[Arg], &DI); 1118 if (!DI) DI = Context.getTrivialDeclaratorInfo(T, TemplateArgLocs[Arg]); 1119 TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(T), DI)); 1120 } else { 1121 Expr *E = reinterpret_cast<Expr *>(Args[Arg]); 1122 TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(E), E)); 1123 } 1124 } 1125} 1126 1127QualType Sema::CheckTemplateIdType(TemplateName Name, 1128 SourceLocation TemplateLoc, 1129 SourceLocation LAngleLoc, 1130 const TemplateArgumentLoc *TemplateArgs, 1131 unsigned NumTemplateArgs, 1132 SourceLocation RAngleLoc) { 1133 TemplateDecl *Template = Name.getAsTemplateDecl(); 1134 if (!Template) { 1135 // The template name does not resolve to a template, so we just 1136 // build a dependent template-id type. 1137 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1138 NumTemplateArgs); 1139 } 1140 1141 // Check that the template argument list is well-formed for this 1142 // template. 1143 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1144 NumTemplateArgs); 1145 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 1146 TemplateArgs, NumTemplateArgs, RAngleLoc, 1147 false, Converted)) 1148 return QualType(); 1149 1150 assert((Converted.structuredSize() == 1151 Template->getTemplateParameters()->size()) && 1152 "Converted template argument list is too short!"); 1153 1154 QualType CanonType; 1155 1156 if (TemplateSpecializationType::anyDependentTemplateArguments( 1157 TemplateArgs, 1158 NumTemplateArgs)) { 1159 // This class template specialization is a dependent 1160 // type. Therefore, its canonical type is another class template 1161 // specialization type that contains all of the converted 1162 // arguments in canonical form. This ensures that, e.g., A<T> and 1163 // A<T, T> have identical types when A is declared as: 1164 // 1165 // template<typename T, typename U = T> struct A; 1166 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1167 CanonType = Context.getTemplateSpecializationType(CanonName, 1168 Converted.getFlatArguments(), 1169 Converted.flatSize()); 1170 1171 // FIXME: CanonType is not actually the canonical type, and unfortunately 1172 // it is a TemplateSpecializationType that we will never use again. 1173 // In the future, we need to teach getTemplateSpecializationType to only 1174 // build the canonical type and return that to us. 1175 CanonType = Context.getCanonicalType(CanonType); 1176 } else if (ClassTemplateDecl *ClassTemplate 1177 = dyn_cast<ClassTemplateDecl>(Template)) { 1178 // Find the class template specialization declaration that 1179 // corresponds to these arguments. 1180 llvm::FoldingSetNodeID ID; 1181 ClassTemplateSpecializationDecl::Profile(ID, 1182 Converted.getFlatArguments(), 1183 Converted.flatSize(), 1184 Context); 1185 void *InsertPos = 0; 1186 ClassTemplateSpecializationDecl *Decl 1187 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1188 if (!Decl) { 1189 // This is the first time we have referenced this class template 1190 // specialization. Create the canonical declaration and add it to 1191 // the set of specializations. 1192 Decl = ClassTemplateSpecializationDecl::Create(Context, 1193 ClassTemplate->getDeclContext(), 1194 ClassTemplate->getLocation(), 1195 ClassTemplate, 1196 Converted, 0); 1197 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1198 Decl->setLexicalDeclContext(CurContext); 1199 } 1200 1201 CanonType = Context.getTypeDeclType(Decl); 1202 } 1203 1204 // Build the fully-sugared type for this class template 1205 // specialization, which refers back to the class template 1206 // specialization we created or found. 1207 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1208 NumTemplateArgs, CanonType); 1209} 1210 1211Action::TypeResult 1212Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1213 SourceLocation LAngleLoc, 1214 ASTTemplateArgsPtr TemplateArgsIn, 1215 SourceLocation *TemplateArgLocsIn, 1216 SourceLocation RAngleLoc) { 1217 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1218 1219 // Translate the parser's template argument list in our AST format. 1220 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1221 translateTemplateArguments(TemplateArgsIn, TemplateArgLocsIn, TemplateArgs); 1222 1223 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1224 TemplateArgs.data(), 1225 TemplateArgs.size(), 1226 RAngleLoc); 1227 TemplateArgsIn.release(); 1228 1229 if (Result.isNull()) 1230 return true; 1231 1232 DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result); 1233 TemplateSpecializationTypeLoc TL 1234 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1235 TL.setTemplateNameLoc(TemplateLoc); 1236 TL.setLAngleLoc(LAngleLoc); 1237 TL.setRAngleLoc(RAngleLoc); 1238 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1239 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1240 1241 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1242} 1243 1244Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1245 TagUseKind TUK, 1246 DeclSpec::TST TagSpec, 1247 SourceLocation TagLoc) { 1248 if (TypeResult.isInvalid()) 1249 return Sema::TypeResult(); 1250 1251 // FIXME: preserve source info, ideally without copying the DI. 1252 DeclaratorInfo *DI; 1253 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1254 1255 // Verify the tag specifier. 1256 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1257 1258 if (const RecordType *RT = Type->getAs<RecordType>()) { 1259 RecordDecl *D = RT->getDecl(); 1260 1261 IdentifierInfo *Id = D->getIdentifier(); 1262 assert(Id && "templated class must have an identifier"); 1263 1264 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1265 Diag(TagLoc, diag::err_use_with_wrong_tag) 1266 << Type 1267 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1268 D->getKindName()); 1269 Diag(D->getLocation(), diag::note_previous_use); 1270 } 1271 } 1272 1273 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1274 1275 return ElabType.getAsOpaquePtr(); 1276} 1277 1278Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier, 1279 SourceRange QualifierRange, 1280 TemplateName Template, 1281 SourceLocation TemplateNameLoc, 1282 SourceLocation LAngleLoc, 1283 const TemplateArgumentLoc *TemplateArgs, 1284 unsigned NumTemplateArgs, 1285 SourceLocation RAngleLoc) { 1286 // FIXME: Can we do any checking at this point? I guess we could check the 1287 // template arguments that we have against the template name, if the template 1288 // name refers to a single template. That's not a terribly common case, 1289 // though. 1290 1291 // Cope with an implicit member access in a C++ non-static member function. 1292 NamedDecl *D = Template.getAsTemplateDecl(); 1293 if (!D) 1294 D = Template.getAsOverloadedFunctionDecl(); 1295 1296 CXXScopeSpec SS; 1297 SS.setRange(QualifierRange); 1298 SS.setScopeRep(Qualifier); 1299 QualType ThisType, MemberType; 1300 if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc, 1301 ThisType, MemberType)) { 1302 Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType); 1303 return Owned(MemberExpr::Create(Context, This, true, 1304 Qualifier, QualifierRange, 1305 D, TemplateNameLoc, true, 1306 LAngleLoc, TemplateArgs, 1307 NumTemplateArgs, RAngleLoc, 1308 Context.OverloadTy)); 1309 } 1310 1311 return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy, 1312 Qualifier, QualifierRange, 1313 Template, TemplateNameLoc, LAngleLoc, 1314 TemplateArgs, 1315 NumTemplateArgs, RAngleLoc)); 1316} 1317 1318Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS, 1319 TemplateTy TemplateD, 1320 SourceLocation TemplateNameLoc, 1321 SourceLocation LAngleLoc, 1322 ASTTemplateArgsPtr TemplateArgsIn, 1323 SourceLocation *TemplateArgSLs, 1324 SourceLocation RAngleLoc) { 1325 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1326 1327 // Translate the parser's template argument list in our AST format. 1328 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1329 translateTemplateArguments(TemplateArgsIn, TemplateArgSLs, TemplateArgs); 1330 TemplateArgsIn.release(); 1331 1332 return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(), 1333 SS.getRange(), 1334 Template, TemplateNameLoc, LAngleLoc, 1335 TemplateArgs.data(), TemplateArgs.size(), 1336 RAngleLoc); 1337} 1338 1339Sema::OwningExprResult 1340Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base, 1341 SourceLocation OpLoc, 1342 tok::TokenKind OpKind, 1343 const CXXScopeSpec &SS, 1344 TemplateTy TemplateD, 1345 SourceLocation TemplateNameLoc, 1346 SourceLocation LAngleLoc, 1347 ASTTemplateArgsPtr TemplateArgsIn, 1348 SourceLocation *TemplateArgLocs, 1349 SourceLocation RAngleLoc) { 1350 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1351 1352 // FIXME: We're going to end up looking up the template based on its name, 1353 // twice! 1354 DeclarationName Name; 1355 if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl()) 1356 Name = ActualTemplate->getDeclName(); 1357 else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl()) 1358 Name = Ovl->getDeclName(); 1359 else 1360 Name = Template.getAsDependentTemplateName()->getName(); 1361 1362 // Translate the parser's template argument list in our AST format. 1363 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1364 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1365 TemplateArgsIn.release(); 1366 1367 // Do we have the save the actual template name? We might need it... 1368 return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc, 1369 Name, true, LAngleLoc, 1370 TemplateArgs.data(), TemplateArgs.size(), 1371 RAngleLoc, DeclPtrTy(), &SS); 1372} 1373 1374/// \brief Form a dependent template name. 1375/// 1376/// This action forms a dependent template name given the template 1377/// name and its (presumably dependent) scope specifier. For 1378/// example, given "MetaFun::template apply", the scope specifier \p 1379/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1380/// of the "template" keyword, and "apply" is the \p Name. 1381Sema::TemplateTy 1382Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1383 const IdentifierInfo &Name, 1384 SourceLocation NameLoc, 1385 const CXXScopeSpec &SS, 1386 TypeTy *ObjectType) { 1387 if ((ObjectType && 1388 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1389 (SS.isSet() && computeDeclContext(SS, false))) { 1390 // C++0x [temp.names]p5: 1391 // If a name prefixed by the keyword template is not the name of 1392 // a template, the program is ill-formed. [Note: the keyword 1393 // template may not be applied to non-template members of class 1394 // templates. -end note ] [ Note: as is the case with the 1395 // typename prefix, the template prefix is allowed in cases 1396 // where it is not strictly necessary; i.e., when the 1397 // nested-name-specifier or the expression on the left of the -> 1398 // or . is not dependent on a template-parameter, or the use 1399 // does not appear in the scope of a template. -end note] 1400 // 1401 // Note: C++03 was more strict here, because it banned the use of 1402 // the "template" keyword prior to a template-name that was not a 1403 // dependent name. C++ DR468 relaxed this requirement (the 1404 // "template" keyword is now permitted). We follow the C++0x 1405 // rules, even in C++03 mode, retroactively applying the DR. 1406 TemplateTy Template; 1407 TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType, 1408 false, Template); 1409 if (TNK == TNK_Non_template) { 1410 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1411 << &Name; 1412 return TemplateTy(); 1413 } 1414 1415 return Template; 1416 } 1417 1418 NestedNameSpecifier *Qualifier 1419 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1420 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name)); 1421} 1422 1423bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1424 const TemplateArgumentLoc &AL, 1425 TemplateArgumentListBuilder &Converted) { 1426 const TemplateArgument &Arg = AL.getArgument(); 1427 1428 // Check template type parameter. 1429 if (Arg.getKind() != TemplateArgument::Type) { 1430 // C++ [temp.arg.type]p1: 1431 // A template-argument for a template-parameter which is a 1432 // type shall be a type-id. 1433 1434 // We have a template type parameter but the template argument 1435 // is not a type. 1436 SourceRange SR = AL.getSourceRange(); 1437 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1438 Diag(Param->getLocation(), diag::note_template_param_here); 1439 1440 return true; 1441 } 1442 1443 if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo())) 1444 return true; 1445 1446 // Add the converted template type argument. 1447 Converted.Append( 1448 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1449 return false; 1450} 1451 1452/// \brief Check that the given template argument list is well-formed 1453/// for specializing the given template. 1454bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1455 SourceLocation TemplateLoc, 1456 SourceLocation LAngleLoc, 1457 const TemplateArgumentLoc *TemplateArgs, 1458 unsigned NumTemplateArgs, 1459 SourceLocation RAngleLoc, 1460 bool PartialTemplateArgs, 1461 TemplateArgumentListBuilder &Converted) { 1462 TemplateParameterList *Params = Template->getTemplateParameters(); 1463 unsigned NumParams = Params->size(); 1464 unsigned NumArgs = NumTemplateArgs; 1465 bool Invalid = false; 1466 1467 bool HasParameterPack = 1468 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1469 1470 if ((NumArgs > NumParams && !HasParameterPack) || 1471 (NumArgs < Params->getMinRequiredArguments() && 1472 !PartialTemplateArgs)) { 1473 // FIXME: point at either the first arg beyond what we can handle, 1474 // or the '>', depending on whether we have too many or too few 1475 // arguments. 1476 SourceRange Range; 1477 if (NumArgs > NumParams) 1478 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1479 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1480 << (NumArgs > NumParams) 1481 << (isa<ClassTemplateDecl>(Template)? 0 : 1482 isa<FunctionTemplateDecl>(Template)? 1 : 1483 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1484 << Template << Range; 1485 Diag(Template->getLocation(), diag::note_template_decl_here) 1486 << Params->getSourceRange(); 1487 Invalid = true; 1488 } 1489 1490 // C++ [temp.arg]p1: 1491 // [...] The type and form of each template-argument specified in 1492 // a template-id shall match the type and form specified for the 1493 // corresponding parameter declared by the template in its 1494 // template-parameter-list. 1495 unsigned ArgIdx = 0; 1496 for (TemplateParameterList::iterator Param = Params->begin(), 1497 ParamEnd = Params->end(); 1498 Param != ParamEnd; ++Param, ++ArgIdx) { 1499 if (ArgIdx > NumArgs && PartialTemplateArgs) 1500 break; 1501 1502 // Decode the template argument 1503 TemplateArgumentLoc Arg; 1504 1505 if (ArgIdx >= NumArgs) { 1506 // Retrieve the default template argument from the template 1507 // parameter. 1508 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1509 if (TTP->isParameterPack()) { 1510 // We have an empty argument pack. 1511 Converted.BeginPack(); 1512 Converted.EndPack(); 1513 break; 1514 } 1515 1516 if (!TTP->hasDefaultArgument()) 1517 break; 1518 1519 DeclaratorInfo *ArgType = TTP->getDefaultArgumentInfo(); 1520 1521 // If the argument type is dependent, instantiate it now based 1522 // on the previously-computed template arguments. 1523 if (ArgType->getType()->isDependentType()) { 1524 InstantiatingTemplate Inst(*this, TemplateLoc, 1525 Template, Converted.getFlatArguments(), 1526 Converted.flatSize(), 1527 SourceRange(TemplateLoc, RAngleLoc)); 1528 1529 TemplateArgumentList TemplateArgs(Context, Converted, 1530 /*TakeArgs=*/false); 1531 ArgType = SubstType(ArgType, 1532 MultiLevelTemplateArgumentList(TemplateArgs), 1533 TTP->getDefaultArgumentLoc(), 1534 TTP->getDeclName()); 1535 } 1536 1537 if (!ArgType) 1538 return true; 1539 1540 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), ArgType); 1541 } else if (NonTypeTemplateParmDecl *NTTP 1542 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1543 if (!NTTP->hasDefaultArgument()) 1544 break; 1545 1546 InstantiatingTemplate Inst(*this, TemplateLoc, 1547 Template, Converted.getFlatArguments(), 1548 Converted.flatSize(), 1549 SourceRange(TemplateLoc, RAngleLoc)); 1550 1551 TemplateArgumentList TemplateArgs(Context, Converted, 1552 /*TakeArgs=*/false); 1553 1554 Sema::OwningExprResult E 1555 = SubstExpr(NTTP->getDefaultArgument(), 1556 MultiLevelTemplateArgumentList(TemplateArgs)); 1557 if (E.isInvalid()) 1558 return true; 1559 1560 Expr *Ex = E.takeAs<Expr>(); 1561 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 1562 } else { 1563 TemplateTemplateParmDecl *TempParm 1564 = cast<TemplateTemplateParmDecl>(*Param); 1565 1566 if (!TempParm->hasDefaultArgument()) 1567 break; 1568 1569 // FIXME: Subst default argument 1570 Arg = TemplateArgumentLoc(TemplateArgument(TempParm->getDefaultArgument()), 1571 TempParm->getDefaultArgument()); 1572 } 1573 } else { 1574 // Retrieve the template argument produced by the user. 1575 Arg = TemplateArgs[ArgIdx]; 1576 } 1577 1578 1579 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1580 if (TTP->isParameterPack()) { 1581 Converted.BeginPack(); 1582 // Check all the remaining arguments (if any). 1583 for (; ArgIdx < NumArgs; ++ArgIdx) { 1584 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1585 Invalid = true; 1586 } 1587 1588 Converted.EndPack(); 1589 } else { 1590 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1591 Invalid = true; 1592 } 1593 } else if (NonTypeTemplateParmDecl *NTTP 1594 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1595 // Check non-type template parameters. 1596 1597 // Do substitution on the type of the non-type template parameter 1598 // with the template arguments we've seen thus far. 1599 QualType NTTPType = NTTP->getType(); 1600 if (NTTPType->isDependentType()) { 1601 // Do substitution on the type of the non-type template parameter. 1602 InstantiatingTemplate Inst(*this, TemplateLoc, 1603 Template, Converted.getFlatArguments(), 1604 Converted.flatSize(), 1605 SourceRange(TemplateLoc, RAngleLoc)); 1606 1607 TemplateArgumentList TemplateArgs(Context, Converted, 1608 /*TakeArgs=*/false); 1609 NTTPType = SubstType(NTTPType, 1610 MultiLevelTemplateArgumentList(TemplateArgs), 1611 NTTP->getLocation(), 1612 NTTP->getDeclName()); 1613 // If that worked, check the non-type template parameter type 1614 // for validity. 1615 if (!NTTPType.isNull()) 1616 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1617 NTTP->getLocation()); 1618 if (NTTPType.isNull()) { 1619 Invalid = true; 1620 break; 1621 } 1622 } 1623 1624 switch (Arg.getArgument().getKind()) { 1625 case TemplateArgument::Null: 1626 assert(false && "Should never see a NULL template argument here"); 1627 break; 1628 1629 case TemplateArgument::Expression: { 1630 Expr *E = Arg.getArgument().getAsExpr(); 1631 TemplateArgument Result; 1632 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1633 Invalid = true; 1634 else 1635 Converted.Append(Result); 1636 break; 1637 } 1638 1639 case TemplateArgument::Declaration: 1640 case TemplateArgument::Integral: 1641 // We've already checked this template argument, so just copy 1642 // it to the list of converted arguments. 1643 Converted.Append(Arg.getArgument()); 1644 break; 1645 1646 case TemplateArgument::Type: { 1647 // We have a non-type template parameter but the template 1648 // argument is a type. 1649 1650 // C++ [temp.arg]p2: 1651 // In a template-argument, an ambiguity between a type-id and 1652 // an expression is resolved to a type-id, regardless of the 1653 // form of the corresponding template-parameter. 1654 // 1655 // We warn specifically about this case, since it can be rather 1656 // confusing for users. 1657 QualType T = Arg.getArgument().getAsType(); 1658 SourceRange SR = Arg.getSourceRange(); 1659 if (T->isFunctionType()) 1660 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) 1661 << SR << T; 1662 else 1663 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1664 Diag((*Param)->getLocation(), diag::note_template_param_here); 1665 Invalid = true; 1666 break; 1667 } 1668 1669 case TemplateArgument::Pack: 1670 assert(0 && "FIXME: Implement!"); 1671 break; 1672 } 1673 } else { 1674 // Check template template parameters. 1675 TemplateTemplateParmDecl *TempParm 1676 = cast<TemplateTemplateParmDecl>(*Param); 1677 1678 switch (Arg.getArgument().getKind()) { 1679 case TemplateArgument::Null: 1680 assert(false && "Should never see a NULL template argument here"); 1681 break; 1682 1683 case TemplateArgument::Expression: { 1684 Expr *ArgExpr = Arg.getArgument().getAsExpr(); 1685 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1686 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1687 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1688 Invalid = true; 1689 1690 // Add the converted template argument. 1691 Decl *D 1692 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1693 Converted.Append(TemplateArgument(D)); 1694 continue; 1695 } 1696 } 1697 // fall through 1698 1699 case TemplateArgument::Type: { 1700 // We have a template template parameter but the template 1701 // argument does not refer to a template. 1702 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1703 Invalid = true; 1704 break; 1705 } 1706 1707 case TemplateArgument::Declaration: 1708 // We've already checked this template argument, so just copy 1709 // it to the list of converted arguments. 1710 Converted.Append(Arg.getArgument()); 1711 break; 1712 1713 case TemplateArgument::Integral: 1714 assert(false && "Integral argument with template template parameter"); 1715 break; 1716 1717 case TemplateArgument::Pack: 1718 assert(0 && "FIXME: Implement!"); 1719 break; 1720 } 1721 } 1722 } 1723 1724 return Invalid; 1725} 1726 1727/// \brief Check a template argument against its corresponding 1728/// template type parameter. 1729/// 1730/// This routine implements the semantics of C++ [temp.arg.type]. It 1731/// returns true if an error occurred, and false otherwise. 1732bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1733 DeclaratorInfo *ArgInfo) { 1734 assert(ArgInfo && "invalid DeclaratorInfo"); 1735 QualType Arg = ArgInfo->getType(); 1736 1737 // C++ [temp.arg.type]p2: 1738 // A local type, a type with no linkage, an unnamed type or a type 1739 // compounded from any of these types shall not be used as a 1740 // template-argument for a template type-parameter. 1741 // 1742 // FIXME: Perform the recursive and no-linkage type checks. 1743 const TagType *Tag = 0; 1744 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 1745 Tag = EnumT; 1746 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1747 Tag = RecordT; 1748 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 1749 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 1750 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 1751 << QualType(Tag, 0) << SR; 1752 } else if (Tag && !Tag->getDecl()->getDeclName() && 1753 !Tag->getDecl()->getTypedefForAnonDecl()) { 1754 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 1755 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 1756 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1757 return true; 1758 } 1759 1760 return false; 1761} 1762 1763/// \brief Checks whether the given template argument is the address 1764/// of an object or function according to C++ [temp.arg.nontype]p1. 1765bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1766 NamedDecl *&Entity) { 1767 bool Invalid = false; 1768 1769 // See through any implicit casts we added to fix the type. 1770 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1771 Arg = Cast->getSubExpr(); 1772 1773 // C++0x allows nullptr, and there's no further checking to be done for that. 1774 if (Arg->getType()->isNullPtrType()) 1775 return false; 1776 1777 // C++ [temp.arg.nontype]p1: 1778 // 1779 // A template-argument for a non-type, non-template 1780 // template-parameter shall be one of: [...] 1781 // 1782 // -- the address of an object or function with external 1783 // linkage, including function templates and function 1784 // template-ids but excluding non-static class members, 1785 // expressed as & id-expression where the & is optional if 1786 // the name refers to a function or array, or if the 1787 // corresponding template-parameter is a reference; or 1788 DeclRefExpr *DRE = 0; 1789 1790 // Ignore (and complain about) any excess parentheses. 1791 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1792 if (!Invalid) { 1793 Diag(Arg->getSourceRange().getBegin(), 1794 diag::err_template_arg_extra_parens) 1795 << Arg->getSourceRange(); 1796 Invalid = true; 1797 } 1798 1799 Arg = Parens->getSubExpr(); 1800 } 1801 1802 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1803 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1804 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1805 } else 1806 DRE = dyn_cast<DeclRefExpr>(Arg); 1807 1808 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1809 return Diag(Arg->getSourceRange().getBegin(), 1810 diag::err_template_arg_not_object_or_func_form) 1811 << Arg->getSourceRange(); 1812 1813 // Cannot refer to non-static data members 1814 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1815 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1816 << Field << Arg->getSourceRange(); 1817 1818 // Cannot refer to non-static member functions 1819 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1820 if (!Method->isStatic()) 1821 return Diag(Arg->getSourceRange().getBegin(), 1822 diag::err_template_arg_method) 1823 << Method << Arg->getSourceRange(); 1824 1825 // Functions must have external linkage. 1826 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1827 if (Func->getStorageClass() == FunctionDecl::Static) { 1828 Diag(Arg->getSourceRange().getBegin(), 1829 diag::err_template_arg_function_not_extern) 1830 << Func << Arg->getSourceRange(); 1831 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1832 << true; 1833 return true; 1834 } 1835 1836 // Okay: we've named a function with external linkage. 1837 Entity = Func; 1838 return Invalid; 1839 } 1840 1841 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1842 if (!Var->hasGlobalStorage()) { 1843 Diag(Arg->getSourceRange().getBegin(), 1844 diag::err_template_arg_object_not_extern) 1845 << Var << Arg->getSourceRange(); 1846 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1847 << true; 1848 return true; 1849 } 1850 1851 // Okay: we've named an object with external linkage 1852 Entity = Var; 1853 return Invalid; 1854 } 1855 1856 // We found something else, but we don't know specifically what it is. 1857 Diag(Arg->getSourceRange().getBegin(), 1858 diag::err_template_arg_not_object_or_func) 1859 << Arg->getSourceRange(); 1860 Diag(DRE->getDecl()->getLocation(), 1861 diag::note_template_arg_refers_here); 1862 return true; 1863} 1864 1865/// \brief Checks whether the given template argument is a pointer to 1866/// member constant according to C++ [temp.arg.nontype]p1. 1867bool 1868Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1869 bool Invalid = false; 1870 1871 // See through any implicit casts we added to fix the type. 1872 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1873 Arg = Cast->getSubExpr(); 1874 1875 // C++0x allows nullptr, and there's no further checking to be done for that. 1876 if (Arg->getType()->isNullPtrType()) 1877 return false; 1878 1879 // C++ [temp.arg.nontype]p1: 1880 // 1881 // A template-argument for a non-type, non-template 1882 // template-parameter shall be one of: [...] 1883 // 1884 // -- a pointer to member expressed as described in 5.3.1. 1885 DeclRefExpr *DRE = 0; 1886 1887 // Ignore (and complain about) any excess parentheses. 1888 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1889 if (!Invalid) { 1890 Diag(Arg->getSourceRange().getBegin(), 1891 diag::err_template_arg_extra_parens) 1892 << Arg->getSourceRange(); 1893 Invalid = true; 1894 } 1895 1896 Arg = Parens->getSubExpr(); 1897 } 1898 1899 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1900 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 1901 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1902 if (DRE && !DRE->getQualifier()) 1903 DRE = 0; 1904 } 1905 1906 if (!DRE) 1907 return Diag(Arg->getSourceRange().getBegin(), 1908 diag::err_template_arg_not_pointer_to_member_form) 1909 << Arg->getSourceRange(); 1910 1911 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1912 assert((isa<FieldDecl>(DRE->getDecl()) || 1913 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1914 "Only non-static member pointers can make it here"); 1915 1916 // Okay: this is the address of a non-static member, and therefore 1917 // a member pointer constant. 1918 Member = DRE->getDecl(); 1919 return Invalid; 1920 } 1921 1922 // We found something else, but we don't know specifically what it is. 1923 Diag(Arg->getSourceRange().getBegin(), 1924 diag::err_template_arg_not_pointer_to_member_form) 1925 << Arg->getSourceRange(); 1926 Diag(DRE->getDecl()->getLocation(), 1927 diag::note_template_arg_refers_here); 1928 return true; 1929} 1930 1931/// \brief Check a template argument against its corresponding 1932/// non-type template parameter. 1933/// 1934/// This routine implements the semantics of C++ [temp.arg.nontype]. 1935/// It returns true if an error occurred, and false otherwise. \p 1936/// InstantiatedParamType is the type of the non-type template 1937/// parameter after it has been instantiated. 1938/// 1939/// If no error was detected, Converted receives the converted template argument. 1940bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1941 QualType InstantiatedParamType, Expr *&Arg, 1942 TemplateArgument &Converted) { 1943 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1944 1945 // If either the parameter has a dependent type or the argument is 1946 // type-dependent, there's nothing we can check now. 1947 // FIXME: Add template argument to Converted! 1948 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1949 // FIXME: Produce a cloned, canonical expression? 1950 Converted = TemplateArgument(Arg); 1951 return false; 1952 } 1953 1954 // C++ [temp.arg.nontype]p5: 1955 // The following conversions are performed on each expression used 1956 // as a non-type template-argument. If a non-type 1957 // template-argument cannot be converted to the type of the 1958 // corresponding template-parameter then the program is 1959 // ill-formed. 1960 // 1961 // -- for a non-type template-parameter of integral or 1962 // enumeration type, integral promotions (4.5) and integral 1963 // conversions (4.7) are applied. 1964 QualType ParamType = InstantiatedParamType; 1965 QualType ArgType = Arg->getType(); 1966 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1967 // C++ [temp.arg.nontype]p1: 1968 // A template-argument for a non-type, non-template 1969 // template-parameter shall be one of: 1970 // 1971 // -- an integral constant-expression of integral or enumeration 1972 // type; or 1973 // -- the name of a non-type template-parameter; or 1974 SourceLocation NonConstantLoc; 1975 llvm::APSInt Value; 1976 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1977 Diag(Arg->getSourceRange().getBegin(), 1978 diag::err_template_arg_not_integral_or_enumeral) 1979 << ArgType << Arg->getSourceRange(); 1980 Diag(Param->getLocation(), diag::note_template_param_here); 1981 return true; 1982 } else if (!Arg->isValueDependent() && 1983 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1984 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1985 << ArgType << Arg->getSourceRange(); 1986 return true; 1987 } 1988 1989 // FIXME: We need some way to more easily get the unqualified form 1990 // of the types without going all the way to the 1991 // canonical type. 1992 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1993 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1994 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1995 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1996 1997 // Try to convert the argument to the parameter's type. 1998 if (ParamType == ArgType) { 1999 // Okay: no conversion necessary 2000 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2001 !ParamType->isEnumeralType()) { 2002 // This is an integral promotion or conversion. 2003 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2004 } else { 2005 // We can't perform this conversion. 2006 Diag(Arg->getSourceRange().getBegin(), 2007 diag::err_template_arg_not_convertible) 2008 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2009 Diag(Param->getLocation(), diag::note_template_param_here); 2010 return true; 2011 } 2012 2013 QualType IntegerType = Context.getCanonicalType(ParamType); 2014 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2015 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2016 2017 if (!Arg->isValueDependent()) { 2018 // Check that an unsigned parameter does not receive a negative 2019 // value. 2020 if (IntegerType->isUnsignedIntegerType() 2021 && (Value.isSigned() && Value.isNegative())) { 2022 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2023 << Value.toString(10) << Param->getType() 2024 << Arg->getSourceRange(); 2025 Diag(Param->getLocation(), diag::note_template_param_here); 2026 return true; 2027 } 2028 2029 // Check that we don't overflow the template parameter type. 2030 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2031 if (Value.getActiveBits() > AllowedBits) { 2032 Diag(Arg->getSourceRange().getBegin(), 2033 diag::err_template_arg_too_large) 2034 << Value.toString(10) << Param->getType() 2035 << Arg->getSourceRange(); 2036 Diag(Param->getLocation(), diag::note_template_param_here); 2037 return true; 2038 } 2039 2040 if (Value.getBitWidth() != AllowedBits) 2041 Value.extOrTrunc(AllowedBits); 2042 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2043 } 2044 2045 // Add the value of this argument to the list of converted 2046 // arguments. We use the bitwidth and signedness of the template 2047 // parameter. 2048 if (Arg->isValueDependent()) { 2049 // The argument is value-dependent. Create a new 2050 // TemplateArgument with the converted expression. 2051 Converted = TemplateArgument(Arg); 2052 return false; 2053 } 2054 2055 Converted = TemplateArgument(Value, 2056 ParamType->isEnumeralType() ? ParamType 2057 : IntegerType); 2058 return false; 2059 } 2060 2061 // Handle pointer-to-function, reference-to-function, and 2062 // pointer-to-member-function all in (roughly) the same way. 2063 if (// -- For a non-type template-parameter of type pointer to 2064 // function, only the function-to-pointer conversion (4.3) is 2065 // applied. If the template-argument represents a set of 2066 // overloaded functions (or a pointer to such), the matching 2067 // function is selected from the set (13.4). 2068 // In C++0x, any std::nullptr_t value can be converted. 2069 (ParamType->isPointerType() && 2070 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2071 // -- For a non-type template-parameter of type reference to 2072 // function, no conversions apply. If the template-argument 2073 // represents a set of overloaded functions, the matching 2074 // function is selected from the set (13.4). 2075 (ParamType->isReferenceType() && 2076 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2077 // -- For a non-type template-parameter of type pointer to 2078 // member function, no conversions apply. If the 2079 // template-argument represents a set of overloaded member 2080 // functions, the matching member function is selected from 2081 // the set (13.4). 2082 // Again, C++0x allows a std::nullptr_t value. 2083 (ParamType->isMemberPointerType() && 2084 ParamType->getAs<MemberPointerType>()->getPointeeType() 2085 ->isFunctionType())) { 2086 if (Context.hasSameUnqualifiedType(ArgType, 2087 ParamType.getNonReferenceType())) { 2088 // We don't have to do anything: the types already match. 2089 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2090 ParamType->isMemberPointerType())) { 2091 ArgType = ParamType; 2092 if (ParamType->isMemberPointerType()) 2093 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2094 else 2095 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2096 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2097 ArgType = Context.getPointerType(ArgType); 2098 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2099 } else if (FunctionDecl *Fn 2100 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2101 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2102 return true; 2103 2104 Arg = FixOverloadedFunctionReference(Arg, Fn); 2105 ArgType = Arg->getType(); 2106 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2107 ArgType = Context.getPointerType(Arg->getType()); 2108 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2109 } 2110 } 2111 2112 if (!Context.hasSameUnqualifiedType(ArgType, 2113 ParamType.getNonReferenceType())) { 2114 // We can't perform this conversion. 2115 Diag(Arg->getSourceRange().getBegin(), 2116 diag::err_template_arg_not_convertible) 2117 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2118 Diag(Param->getLocation(), diag::note_template_param_here); 2119 return true; 2120 } 2121 2122 if (ParamType->isMemberPointerType()) { 2123 NamedDecl *Member = 0; 2124 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2125 return true; 2126 2127 if (Member) 2128 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2129 Converted = TemplateArgument(Member); 2130 return false; 2131 } 2132 2133 NamedDecl *Entity = 0; 2134 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2135 return true; 2136 2137 if (Entity) 2138 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2139 Converted = TemplateArgument(Entity); 2140 return false; 2141 } 2142 2143 if (ParamType->isPointerType()) { 2144 // -- for a non-type template-parameter of type pointer to 2145 // object, qualification conversions (4.4) and the 2146 // array-to-pointer conversion (4.2) are applied. 2147 // C++0x also allows a value of std::nullptr_t. 2148 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2149 "Only object pointers allowed here"); 2150 2151 if (ArgType->isNullPtrType()) { 2152 ArgType = ParamType; 2153 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2154 } else if (ArgType->isArrayType()) { 2155 ArgType = Context.getArrayDecayedType(ArgType); 2156 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2157 } 2158 2159 if (IsQualificationConversion(ArgType, ParamType)) { 2160 ArgType = ParamType; 2161 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2162 } 2163 2164 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2165 // We can't perform this conversion. 2166 Diag(Arg->getSourceRange().getBegin(), 2167 diag::err_template_arg_not_convertible) 2168 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2169 Diag(Param->getLocation(), diag::note_template_param_here); 2170 return true; 2171 } 2172 2173 NamedDecl *Entity = 0; 2174 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2175 return true; 2176 2177 if (Entity) 2178 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2179 Converted = TemplateArgument(Entity); 2180 return false; 2181 } 2182 2183 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2184 // -- For a non-type template-parameter of type reference to 2185 // object, no conversions apply. The type referred to by the 2186 // reference may be more cv-qualified than the (otherwise 2187 // identical) type of the template-argument. The 2188 // template-parameter is bound directly to the 2189 // template-argument, which must be an lvalue. 2190 assert(ParamRefType->getPointeeType()->isObjectType() && 2191 "Only object references allowed here"); 2192 2193 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2194 Diag(Arg->getSourceRange().getBegin(), 2195 diag::err_template_arg_no_ref_bind) 2196 << InstantiatedParamType << Arg->getType() 2197 << Arg->getSourceRange(); 2198 Diag(Param->getLocation(), diag::note_template_param_here); 2199 return true; 2200 } 2201 2202 unsigned ParamQuals 2203 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2204 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2205 2206 if ((ParamQuals | ArgQuals) != ParamQuals) { 2207 Diag(Arg->getSourceRange().getBegin(), 2208 diag::err_template_arg_ref_bind_ignores_quals) 2209 << InstantiatedParamType << Arg->getType() 2210 << Arg->getSourceRange(); 2211 Diag(Param->getLocation(), diag::note_template_param_here); 2212 return true; 2213 } 2214 2215 NamedDecl *Entity = 0; 2216 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2217 return true; 2218 2219 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2220 Converted = TemplateArgument(Entity); 2221 return false; 2222 } 2223 2224 // -- For a non-type template-parameter of type pointer to data 2225 // member, qualification conversions (4.4) are applied. 2226 // C++0x allows std::nullptr_t values. 2227 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2228 2229 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2230 // Types match exactly: nothing more to do here. 2231 } else if (ArgType->isNullPtrType()) { 2232 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2233 } else if (IsQualificationConversion(ArgType, ParamType)) { 2234 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2235 } else { 2236 // We can't perform this conversion. 2237 Diag(Arg->getSourceRange().getBegin(), 2238 diag::err_template_arg_not_convertible) 2239 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2240 Diag(Param->getLocation(), diag::note_template_param_here); 2241 return true; 2242 } 2243 2244 NamedDecl *Member = 0; 2245 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2246 return true; 2247 2248 if (Member) 2249 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2250 Converted = TemplateArgument(Member); 2251 return false; 2252} 2253 2254/// \brief Check a template argument against its corresponding 2255/// template template parameter. 2256/// 2257/// This routine implements the semantics of C++ [temp.arg.template]. 2258/// It returns true if an error occurred, and false otherwise. 2259bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2260 DeclRefExpr *Arg) { 2261 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 2262 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 2263 2264 // C++ [temp.arg.template]p1: 2265 // A template-argument for a template template-parameter shall be 2266 // the name of a class template, expressed as id-expression. Only 2267 // primary class templates are considered when matching the 2268 // template template argument with the corresponding parameter; 2269 // partial specializations are not considered even if their 2270 // parameter lists match that of the template template parameter. 2271 // 2272 // Note that we also allow template template parameters here, which 2273 // will happen when we are dealing with, e.g., class template 2274 // partial specializations. 2275 if (!isa<ClassTemplateDecl>(Template) && 2276 !isa<TemplateTemplateParmDecl>(Template)) { 2277 assert(isa<FunctionTemplateDecl>(Template) && 2278 "Only function templates are possible here"); 2279 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 2280 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2281 << Template; 2282 } 2283 2284 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2285 Param->getTemplateParameters(), 2286 true, true, 2287 Arg->getSourceRange().getBegin()); 2288} 2289 2290/// \brief Determine whether the given template parameter lists are 2291/// equivalent. 2292/// 2293/// \param New The new template parameter list, typically written in the 2294/// source code as part of a new template declaration. 2295/// 2296/// \param Old The old template parameter list, typically found via 2297/// name lookup of the template declared with this template parameter 2298/// list. 2299/// 2300/// \param Complain If true, this routine will produce a diagnostic if 2301/// the template parameter lists are not equivalent. 2302/// 2303/// \param IsTemplateTemplateParm If true, this routine is being 2304/// called to compare the template parameter lists of a template 2305/// template parameter. 2306/// 2307/// \param TemplateArgLoc If this source location is valid, then we 2308/// are actually checking the template parameter list of a template 2309/// argument (New) against the template parameter list of its 2310/// corresponding template template parameter (Old). We produce 2311/// slightly different diagnostics in this scenario. 2312/// 2313/// \returns True if the template parameter lists are equal, false 2314/// otherwise. 2315bool 2316Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2317 TemplateParameterList *Old, 2318 bool Complain, 2319 bool IsTemplateTemplateParm, 2320 SourceLocation TemplateArgLoc) { 2321 if (Old->size() != New->size()) { 2322 if (Complain) { 2323 unsigned NextDiag = diag::err_template_param_list_different_arity; 2324 if (TemplateArgLoc.isValid()) { 2325 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2326 NextDiag = diag::note_template_param_list_different_arity; 2327 } 2328 Diag(New->getTemplateLoc(), NextDiag) 2329 << (New->size() > Old->size()) 2330 << IsTemplateTemplateParm 2331 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2332 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2333 << IsTemplateTemplateParm 2334 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2335 } 2336 2337 return false; 2338 } 2339 2340 for (TemplateParameterList::iterator OldParm = Old->begin(), 2341 OldParmEnd = Old->end(), NewParm = New->begin(); 2342 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2343 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2344 if (Complain) { 2345 unsigned NextDiag = diag::err_template_param_different_kind; 2346 if (TemplateArgLoc.isValid()) { 2347 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2348 NextDiag = diag::note_template_param_different_kind; 2349 } 2350 Diag((*NewParm)->getLocation(), NextDiag) 2351 << IsTemplateTemplateParm; 2352 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2353 << IsTemplateTemplateParm; 2354 } 2355 return false; 2356 } 2357 2358 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2359 // Okay; all template type parameters are equivalent (since we 2360 // know we're at the same index). 2361#if 0 2362 // FIXME: Enable this code in debug mode *after* we properly go through 2363 // and "instantiate" the template parameter lists of template template 2364 // parameters. It's only after this instantiation that (1) any dependent 2365 // types within the template parameter list of the template template 2366 // parameter can be checked, and (2) the template type parameter depths 2367 // will match up. 2368 QualType OldParmType 2369 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2370 QualType NewParmType 2371 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2372 assert(Context.getCanonicalType(OldParmType) == 2373 Context.getCanonicalType(NewParmType) && 2374 "type parameter mismatch?"); 2375#endif 2376 } else if (NonTypeTemplateParmDecl *OldNTTP 2377 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2378 // The types of non-type template parameters must agree. 2379 NonTypeTemplateParmDecl *NewNTTP 2380 = cast<NonTypeTemplateParmDecl>(*NewParm); 2381 if (Context.getCanonicalType(OldNTTP->getType()) != 2382 Context.getCanonicalType(NewNTTP->getType())) { 2383 if (Complain) { 2384 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2385 if (TemplateArgLoc.isValid()) { 2386 Diag(TemplateArgLoc, 2387 diag::err_template_arg_template_params_mismatch); 2388 NextDiag = diag::note_template_nontype_parm_different_type; 2389 } 2390 Diag(NewNTTP->getLocation(), NextDiag) 2391 << NewNTTP->getType() 2392 << IsTemplateTemplateParm; 2393 Diag(OldNTTP->getLocation(), 2394 diag::note_template_nontype_parm_prev_declaration) 2395 << OldNTTP->getType(); 2396 } 2397 return false; 2398 } 2399 } else { 2400 // The template parameter lists of template template 2401 // parameters must agree. 2402 // FIXME: Could we perform a faster "type" comparison here? 2403 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2404 "Only template template parameters handled here"); 2405 TemplateTemplateParmDecl *OldTTP 2406 = cast<TemplateTemplateParmDecl>(*OldParm); 2407 TemplateTemplateParmDecl *NewTTP 2408 = cast<TemplateTemplateParmDecl>(*NewParm); 2409 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2410 OldTTP->getTemplateParameters(), 2411 Complain, 2412 /*IsTemplateTemplateParm=*/true, 2413 TemplateArgLoc)) 2414 return false; 2415 } 2416 } 2417 2418 return true; 2419} 2420 2421/// \brief Check whether a template can be declared within this scope. 2422/// 2423/// If the template declaration is valid in this scope, returns 2424/// false. Otherwise, issues a diagnostic and returns true. 2425bool 2426Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2427 // Find the nearest enclosing declaration scope. 2428 while ((S->getFlags() & Scope::DeclScope) == 0 || 2429 (S->getFlags() & Scope::TemplateParamScope) != 0) 2430 S = S->getParent(); 2431 2432 // C++ [temp]p2: 2433 // A template-declaration can appear only as a namespace scope or 2434 // class scope declaration. 2435 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2436 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2437 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2438 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2439 << TemplateParams->getSourceRange(); 2440 2441 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2442 Ctx = Ctx->getParent(); 2443 2444 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2445 return false; 2446 2447 return Diag(TemplateParams->getTemplateLoc(), 2448 diag::err_template_outside_namespace_or_class_scope) 2449 << TemplateParams->getSourceRange(); 2450} 2451 2452/// \brief Determine what kind of template specialization the given declaration 2453/// is. 2454static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2455 if (!D) 2456 return TSK_Undeclared; 2457 2458 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2459 return Record->getTemplateSpecializationKind(); 2460 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2461 return Function->getTemplateSpecializationKind(); 2462 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2463 return Var->getTemplateSpecializationKind(); 2464 2465 return TSK_Undeclared; 2466} 2467 2468/// \brief Check whether a specialization is well-formed in the current 2469/// context. 2470/// 2471/// This routine determines whether a template specialization can be declared 2472/// in the current context (C++ [temp.expl.spec]p2). 2473/// 2474/// \param S the semantic analysis object for which this check is being 2475/// performed. 2476/// 2477/// \param Specialized the entity being specialized or instantiated, which 2478/// may be a kind of template (class template, function template, etc.) or 2479/// a member of a class template (member function, static data member, 2480/// member class). 2481/// 2482/// \param PrevDecl the previous declaration of this entity, if any. 2483/// 2484/// \param Loc the location of the explicit specialization or instantiation of 2485/// this entity. 2486/// 2487/// \param IsPartialSpecialization whether this is a partial specialization of 2488/// a class template. 2489/// 2490/// \returns true if there was an error that we cannot recover from, false 2491/// otherwise. 2492static bool CheckTemplateSpecializationScope(Sema &S, 2493 NamedDecl *Specialized, 2494 NamedDecl *PrevDecl, 2495 SourceLocation Loc, 2496 bool IsPartialSpecialization) { 2497 // Keep these "kind" numbers in sync with the %select statements in the 2498 // various diagnostics emitted by this routine. 2499 int EntityKind = 0; 2500 bool isTemplateSpecialization = false; 2501 if (isa<ClassTemplateDecl>(Specialized)) { 2502 EntityKind = IsPartialSpecialization? 1 : 0; 2503 isTemplateSpecialization = true; 2504 } else if (isa<FunctionTemplateDecl>(Specialized)) { 2505 EntityKind = 2; 2506 isTemplateSpecialization = true; 2507 } else if (isa<CXXMethodDecl>(Specialized)) 2508 EntityKind = 3; 2509 else if (isa<VarDecl>(Specialized)) 2510 EntityKind = 4; 2511 else if (isa<RecordDecl>(Specialized)) 2512 EntityKind = 5; 2513 else { 2514 S.Diag(Loc, diag::err_template_spec_unknown_kind); 2515 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2516 return true; 2517 } 2518 2519 // C++ [temp.expl.spec]p2: 2520 // An explicit specialization shall be declared in the namespace 2521 // of which the template is a member, or, for member templates, in 2522 // the namespace of which the enclosing class or enclosing class 2523 // template is a member. An explicit specialization of a member 2524 // function, member class or static data member of a class 2525 // template shall be declared in the namespace of which the class 2526 // template is a member. Such a declaration may also be a 2527 // definition. If the declaration is not a definition, the 2528 // specialization may be defined later in the name- space in which 2529 // the explicit specialization was declared, or in a namespace 2530 // that encloses the one in which the explicit specialization was 2531 // declared. 2532 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 2533 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 2534 << Specialized; 2535 return true; 2536 } 2537 2538 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 2539 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 2540 << Specialized; 2541 return true; 2542 } 2543 2544 // C++ [temp.class.spec]p6: 2545 // A class template partial specialization may be declared or redeclared 2546 // in any namespace scope in which its definition may be defined (14.5.1 2547 // and 14.5.2). 2548 bool ComplainedAboutScope = false; 2549 DeclContext *SpecializedContext 2550 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 2551 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 2552 if ((!PrevDecl || 2553 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 2554 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 2555 // There is no prior declaration of this entity, so this 2556 // specialization must be in the same context as the template 2557 // itself. 2558 if (!DC->Equals(SpecializedContext)) { 2559 if (isa<TranslationUnitDecl>(SpecializedContext)) 2560 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 2561 << EntityKind << Specialized; 2562 else if (isa<NamespaceDecl>(SpecializedContext)) 2563 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 2564 << EntityKind << Specialized 2565 << cast<NamedDecl>(SpecializedContext); 2566 2567 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2568 ComplainedAboutScope = true; 2569 } 2570 } 2571 2572 // Make sure that this redeclaration (or definition) occurs in an enclosing 2573 // namespace. 2574 // Note that HandleDeclarator() performs this check for explicit 2575 // specializations of function templates, static data members, and member 2576 // functions, so we skip the check here for those kinds of entities. 2577 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 2578 // Should we refactor that check, so that it occurs later? 2579 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 2580 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 2581 isa<FunctionDecl>(Specialized))) { 2582 if (isa<TranslationUnitDecl>(SpecializedContext)) 2583 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 2584 << EntityKind << Specialized; 2585 else if (isa<NamespaceDecl>(SpecializedContext)) 2586 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 2587 << EntityKind << Specialized 2588 << cast<NamedDecl>(SpecializedContext); 2589 2590 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2591 } 2592 2593 // FIXME: check for specialization-after-instantiation errors and such. 2594 2595 return false; 2596} 2597 2598/// \brief Check the non-type template arguments of a class template 2599/// partial specialization according to C++ [temp.class.spec]p9. 2600/// 2601/// \param TemplateParams the template parameters of the primary class 2602/// template. 2603/// 2604/// \param TemplateArg the template arguments of the class template 2605/// partial specialization. 2606/// 2607/// \param MirrorsPrimaryTemplate will be set true if the class 2608/// template partial specialization arguments are identical to the 2609/// implicit template arguments of the primary template. This is not 2610/// necessarily an error (C++0x), and it is left to the caller to diagnose 2611/// this condition when it is an error. 2612/// 2613/// \returns true if there was an error, false otherwise. 2614bool Sema::CheckClassTemplatePartialSpecializationArgs( 2615 TemplateParameterList *TemplateParams, 2616 const TemplateArgumentListBuilder &TemplateArgs, 2617 bool &MirrorsPrimaryTemplate) { 2618 // FIXME: the interface to this function will have to change to 2619 // accommodate variadic templates. 2620 MirrorsPrimaryTemplate = true; 2621 2622 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2623 2624 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2625 // Determine whether the template argument list of the partial 2626 // specialization is identical to the implicit argument list of 2627 // the primary template. The caller may need to diagnostic this as 2628 // an error per C++ [temp.class.spec]p9b3. 2629 if (MirrorsPrimaryTemplate) { 2630 if (TemplateTypeParmDecl *TTP 2631 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2632 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2633 Context.getCanonicalType(ArgList[I].getAsType())) 2634 MirrorsPrimaryTemplate = false; 2635 } else if (TemplateTemplateParmDecl *TTP 2636 = dyn_cast<TemplateTemplateParmDecl>( 2637 TemplateParams->getParam(I))) { 2638 // FIXME: We should settle on either Declaration storage or 2639 // Expression storage for template template parameters. 2640 TemplateTemplateParmDecl *ArgDecl 2641 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2642 ArgList[I].getAsDecl()); 2643 if (!ArgDecl) 2644 if (DeclRefExpr *DRE 2645 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2646 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2647 2648 if (!ArgDecl || 2649 ArgDecl->getIndex() != TTP->getIndex() || 2650 ArgDecl->getDepth() != TTP->getDepth()) 2651 MirrorsPrimaryTemplate = false; 2652 } 2653 } 2654 2655 NonTypeTemplateParmDecl *Param 2656 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2657 if (!Param) { 2658 continue; 2659 } 2660 2661 Expr *ArgExpr = ArgList[I].getAsExpr(); 2662 if (!ArgExpr) { 2663 MirrorsPrimaryTemplate = false; 2664 continue; 2665 } 2666 2667 // C++ [temp.class.spec]p8: 2668 // A non-type argument is non-specialized if it is the name of a 2669 // non-type parameter. All other non-type arguments are 2670 // specialized. 2671 // 2672 // Below, we check the two conditions that only apply to 2673 // specialized non-type arguments, so skip any non-specialized 2674 // arguments. 2675 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2676 if (NonTypeTemplateParmDecl *NTTP 2677 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2678 if (MirrorsPrimaryTemplate && 2679 (Param->getIndex() != NTTP->getIndex() || 2680 Param->getDepth() != NTTP->getDepth())) 2681 MirrorsPrimaryTemplate = false; 2682 2683 continue; 2684 } 2685 2686 // C++ [temp.class.spec]p9: 2687 // Within the argument list of a class template partial 2688 // specialization, the following restrictions apply: 2689 // -- A partially specialized non-type argument expression 2690 // shall not involve a template parameter of the partial 2691 // specialization except when the argument expression is a 2692 // simple identifier. 2693 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2694 Diag(ArgExpr->getLocStart(), 2695 diag::err_dependent_non_type_arg_in_partial_spec) 2696 << ArgExpr->getSourceRange(); 2697 return true; 2698 } 2699 2700 // -- The type of a template parameter corresponding to a 2701 // specialized non-type argument shall not be dependent on a 2702 // parameter of the specialization. 2703 if (Param->getType()->isDependentType()) { 2704 Diag(ArgExpr->getLocStart(), 2705 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2706 << Param->getType() 2707 << ArgExpr->getSourceRange(); 2708 Diag(Param->getLocation(), diag::note_template_param_here); 2709 return true; 2710 } 2711 2712 MirrorsPrimaryTemplate = false; 2713 } 2714 2715 return false; 2716} 2717 2718Sema::DeclResult 2719Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2720 TagUseKind TUK, 2721 SourceLocation KWLoc, 2722 const CXXScopeSpec &SS, 2723 TemplateTy TemplateD, 2724 SourceLocation TemplateNameLoc, 2725 SourceLocation LAngleLoc, 2726 ASTTemplateArgsPtr TemplateArgsIn, 2727 SourceLocation *TemplateArgLocs, 2728 SourceLocation RAngleLoc, 2729 AttributeList *Attr, 2730 MultiTemplateParamsArg TemplateParameterLists) { 2731 assert(TUK != TUK_Reference && "References are not specializations"); 2732 2733 // Find the class template we're specializing 2734 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2735 ClassTemplateDecl *ClassTemplate 2736 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2737 2738 bool isExplicitSpecialization = false; 2739 bool isPartialSpecialization = false; 2740 2741 // Check the validity of the template headers that introduce this 2742 // template. 2743 // FIXME: We probably shouldn't complain about these headers for 2744 // friend declarations. 2745 TemplateParameterList *TemplateParams 2746 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2747 (TemplateParameterList**)TemplateParameterLists.get(), 2748 TemplateParameterLists.size(), 2749 isExplicitSpecialization); 2750 if (TemplateParams && TemplateParams->size() > 0) { 2751 isPartialSpecialization = true; 2752 2753 // C++ [temp.class.spec]p10: 2754 // The template parameter list of a specialization shall not 2755 // contain default template argument values. 2756 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2757 Decl *Param = TemplateParams->getParam(I); 2758 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2759 if (TTP->hasDefaultArgument()) { 2760 Diag(TTP->getDefaultArgumentLoc(), 2761 diag::err_default_arg_in_partial_spec); 2762 TTP->removeDefaultArgument(); 2763 } 2764 } else if (NonTypeTemplateParmDecl *NTTP 2765 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2766 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2767 Diag(NTTP->getDefaultArgumentLoc(), 2768 diag::err_default_arg_in_partial_spec) 2769 << DefArg->getSourceRange(); 2770 NTTP->setDefaultArgument(0); 2771 DefArg->Destroy(Context); 2772 } 2773 } else { 2774 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2775 if (Expr *DefArg = TTP->getDefaultArgument()) { 2776 Diag(TTP->getDefaultArgumentLoc(), 2777 diag::err_default_arg_in_partial_spec) 2778 << DefArg->getSourceRange(); 2779 TTP->setDefaultArgument(0); 2780 DefArg->Destroy(Context); 2781 } 2782 } 2783 } 2784 } else if (TemplateParams) { 2785 if (TUK == TUK_Friend) 2786 Diag(KWLoc, diag::err_template_spec_friend) 2787 << CodeModificationHint::CreateRemoval( 2788 SourceRange(TemplateParams->getTemplateLoc(), 2789 TemplateParams->getRAngleLoc())) 2790 << SourceRange(LAngleLoc, RAngleLoc); 2791 else 2792 isExplicitSpecialization = true; 2793 } else if (TUK != TUK_Friend) { 2794 Diag(KWLoc, diag::err_template_spec_needs_header) 2795 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2796 isExplicitSpecialization = true; 2797 } 2798 2799 // Check that the specialization uses the same tag kind as the 2800 // original template. 2801 TagDecl::TagKind Kind; 2802 switch (TagSpec) { 2803 default: assert(0 && "Unknown tag type!"); 2804 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2805 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2806 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2807 } 2808 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2809 Kind, KWLoc, 2810 *ClassTemplate->getIdentifier())) { 2811 Diag(KWLoc, diag::err_use_with_wrong_tag) 2812 << ClassTemplate 2813 << CodeModificationHint::CreateReplacement(KWLoc, 2814 ClassTemplate->getTemplatedDecl()->getKindName()); 2815 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2816 diag::note_previous_use); 2817 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2818 } 2819 2820 // Translate the parser's template argument list in our AST format. 2821 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 2822 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2823 2824 // Check that the template argument list is well-formed for this 2825 // template. 2826 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2827 TemplateArgs.size()); 2828 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2829 TemplateArgs.data(), TemplateArgs.size(), 2830 RAngleLoc, false, Converted)) 2831 return true; 2832 2833 assert((Converted.structuredSize() == 2834 ClassTemplate->getTemplateParameters()->size()) && 2835 "Converted template argument list is too short!"); 2836 2837 // Find the class template (partial) specialization declaration that 2838 // corresponds to these arguments. 2839 llvm::FoldingSetNodeID ID; 2840 if (isPartialSpecialization) { 2841 bool MirrorsPrimaryTemplate; 2842 if (CheckClassTemplatePartialSpecializationArgs( 2843 ClassTemplate->getTemplateParameters(), 2844 Converted, MirrorsPrimaryTemplate)) 2845 return true; 2846 2847 if (MirrorsPrimaryTemplate) { 2848 // C++ [temp.class.spec]p9b3: 2849 // 2850 // -- The argument list of the specialization shall not be identical 2851 // to the implicit argument list of the primary template. 2852 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2853 << (TUK == TUK_Definition) 2854 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2855 RAngleLoc)); 2856 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 2857 ClassTemplate->getIdentifier(), 2858 TemplateNameLoc, 2859 Attr, 2860 TemplateParams, 2861 AS_none); 2862 } 2863 2864 // FIXME: Diagnose friend partial specializations 2865 2866 // FIXME: Template parameter list matters, too 2867 ClassTemplatePartialSpecializationDecl::Profile(ID, 2868 Converted.getFlatArguments(), 2869 Converted.flatSize(), 2870 Context); 2871 } else 2872 ClassTemplateSpecializationDecl::Profile(ID, 2873 Converted.getFlatArguments(), 2874 Converted.flatSize(), 2875 Context); 2876 void *InsertPos = 0; 2877 ClassTemplateSpecializationDecl *PrevDecl = 0; 2878 2879 if (isPartialSpecialization) 2880 PrevDecl 2881 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2882 InsertPos); 2883 else 2884 PrevDecl 2885 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2886 2887 ClassTemplateSpecializationDecl *Specialization = 0; 2888 2889 // Check whether we can declare a class template specialization in 2890 // the current scope. 2891 if (TUK != TUK_Friend && 2892 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 2893 TemplateNameLoc, 2894 isPartialSpecialization)) 2895 return true; 2896 2897 // The canonical type 2898 QualType CanonType; 2899 if (PrevDecl && 2900 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 2901 TUK == TUK_Friend)) { 2902 // Since the only prior class template specialization with these 2903 // arguments was referenced but not declared, or we're only 2904 // referencing this specialization as a friend, reuse that 2905 // declaration node as our own, updating its source location to 2906 // reflect our new declaration. 2907 Specialization = PrevDecl; 2908 Specialization->setLocation(TemplateNameLoc); 2909 PrevDecl = 0; 2910 CanonType = Context.getTypeDeclType(Specialization); 2911 } else if (isPartialSpecialization) { 2912 // Build the canonical type that describes the converted template 2913 // arguments of the class template partial specialization. 2914 CanonType = Context.getTemplateSpecializationType( 2915 TemplateName(ClassTemplate), 2916 Converted.getFlatArguments(), 2917 Converted.flatSize()); 2918 2919 // Create a new class template partial specialization declaration node. 2920 ClassTemplatePartialSpecializationDecl *PrevPartial 2921 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2922 ClassTemplatePartialSpecializationDecl *Partial 2923 = ClassTemplatePartialSpecializationDecl::Create(Context, 2924 ClassTemplate->getDeclContext(), 2925 TemplateNameLoc, 2926 TemplateParams, 2927 ClassTemplate, 2928 Converted, 2929 TemplateArgs.data(), 2930 TemplateArgs.size(), 2931 PrevPartial); 2932 2933 if (PrevPartial) { 2934 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2935 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2936 } else { 2937 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2938 } 2939 Specialization = Partial; 2940 2941 // If we are providing an explicit specialization of a member class 2942 // template specialization, make a note of that. 2943 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 2944 PrevPartial->setMemberSpecialization(); 2945 2946 // Check that all of the template parameters of the class template 2947 // partial specialization are deducible from the template 2948 // arguments. If not, this class template partial specialization 2949 // will never be used. 2950 llvm::SmallVector<bool, 8> DeducibleParams; 2951 DeducibleParams.resize(TemplateParams->size()); 2952 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 2953 TemplateParams->getDepth(), 2954 DeducibleParams); 2955 unsigned NumNonDeducible = 0; 2956 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2957 if (!DeducibleParams[I]) 2958 ++NumNonDeducible; 2959 2960 if (NumNonDeducible) { 2961 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2962 << (NumNonDeducible > 1) 2963 << SourceRange(TemplateNameLoc, RAngleLoc); 2964 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2965 if (!DeducibleParams[I]) { 2966 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2967 if (Param->getDeclName()) 2968 Diag(Param->getLocation(), 2969 diag::note_partial_spec_unused_parameter) 2970 << Param->getDeclName(); 2971 else 2972 Diag(Param->getLocation(), 2973 diag::note_partial_spec_unused_parameter) 2974 << std::string("<anonymous>"); 2975 } 2976 } 2977 } 2978 } else { 2979 // Create a new class template specialization declaration node for 2980 // this explicit specialization or friend declaration. 2981 Specialization 2982 = ClassTemplateSpecializationDecl::Create(Context, 2983 ClassTemplate->getDeclContext(), 2984 TemplateNameLoc, 2985 ClassTemplate, 2986 Converted, 2987 PrevDecl); 2988 2989 if (PrevDecl) { 2990 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2991 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2992 } else { 2993 ClassTemplate->getSpecializations().InsertNode(Specialization, 2994 InsertPos); 2995 } 2996 2997 CanonType = Context.getTypeDeclType(Specialization); 2998 } 2999 3000 // C++ [temp.expl.spec]p6: 3001 // If a template, a member template or the member of a class template is 3002 // explicitly specialized then that specialization shall be declared 3003 // before the first use of that specialization that would cause an implicit 3004 // instantiation to take place, in every translation unit in which such a 3005 // use occurs; no diagnostic is required. 3006 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3007 SourceRange Range(TemplateNameLoc, RAngleLoc); 3008 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3009 << Context.getTypeDeclType(Specialization) << Range; 3010 3011 Diag(PrevDecl->getPointOfInstantiation(), 3012 diag::note_instantiation_required_here) 3013 << (PrevDecl->getTemplateSpecializationKind() 3014 != TSK_ImplicitInstantiation); 3015 return true; 3016 } 3017 3018 // If this is not a friend, note that this is an explicit specialization. 3019 if (TUK != TUK_Friend) 3020 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3021 3022 // Check that this isn't a redefinition of this specialization. 3023 if (TUK == TUK_Definition) { 3024 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 3025 SourceRange Range(TemplateNameLoc, RAngleLoc); 3026 Diag(TemplateNameLoc, diag::err_redefinition) 3027 << Context.getTypeDeclType(Specialization) << Range; 3028 Diag(Def->getLocation(), diag::note_previous_definition); 3029 Specialization->setInvalidDecl(); 3030 return true; 3031 } 3032 } 3033 3034 // Build the fully-sugared type for this class template 3035 // specialization as the user wrote in the specialization 3036 // itself. This means that we'll pretty-print the type retrieved 3037 // from the specialization's declaration the way that the user 3038 // actually wrote the specialization, rather than formatting the 3039 // name based on the "canonical" representation used to store the 3040 // template arguments in the specialization. 3041 QualType WrittenTy 3042 = Context.getTemplateSpecializationType(Name, 3043 TemplateArgs.data(), 3044 TemplateArgs.size(), 3045 CanonType); 3046 if (TUK != TUK_Friend) 3047 Specialization->setTypeAsWritten(WrittenTy); 3048 TemplateArgsIn.release(); 3049 3050 // C++ [temp.expl.spec]p9: 3051 // A template explicit specialization is in the scope of the 3052 // namespace in which the template was defined. 3053 // 3054 // We actually implement this paragraph where we set the semantic 3055 // context (in the creation of the ClassTemplateSpecializationDecl), 3056 // but we also maintain the lexical context where the actual 3057 // definition occurs. 3058 Specialization->setLexicalDeclContext(CurContext); 3059 3060 // We may be starting the definition of this specialization. 3061 if (TUK == TUK_Definition) 3062 Specialization->startDefinition(); 3063 3064 if (TUK == TUK_Friend) { 3065 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3066 TemplateNameLoc, 3067 WrittenTy.getTypePtr(), 3068 /*FIXME:*/KWLoc); 3069 Friend->setAccess(AS_public); 3070 CurContext->addDecl(Friend); 3071 } else { 3072 // Add the specialization into its lexical context, so that it can 3073 // be seen when iterating through the list of declarations in that 3074 // context. However, specializations are not found by name lookup. 3075 CurContext->addDecl(Specialization); 3076 } 3077 return DeclPtrTy::make(Specialization); 3078} 3079 3080Sema::DeclPtrTy 3081Sema::ActOnTemplateDeclarator(Scope *S, 3082 MultiTemplateParamsArg TemplateParameterLists, 3083 Declarator &D) { 3084 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3085} 3086 3087Sema::DeclPtrTy 3088Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3089 MultiTemplateParamsArg TemplateParameterLists, 3090 Declarator &D) { 3091 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3092 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3093 "Not a function declarator!"); 3094 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3095 3096 if (FTI.hasPrototype) { 3097 // FIXME: Diagnose arguments without names in C. 3098 } 3099 3100 Scope *ParentScope = FnBodyScope->getParent(); 3101 3102 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3103 move(TemplateParameterLists), 3104 /*IsFunctionDefinition=*/true); 3105 if (FunctionTemplateDecl *FunctionTemplate 3106 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3107 return ActOnStartOfFunctionDef(FnBodyScope, 3108 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3109 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3110 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3111 return DeclPtrTy(); 3112} 3113 3114/// \brief Diagnose cases where we have an explicit template specialization 3115/// before/after an explicit template instantiation, producing diagnostics 3116/// for those cases where they are required and determining whether the 3117/// new specialization/instantiation will have any effect. 3118/// 3119/// \param NewLoc the location of the new explicit specialization or 3120/// instantiation. 3121/// 3122/// \param NewTSK the kind of the new explicit specialization or instantiation. 3123/// 3124/// \param PrevDecl the previous declaration of the entity. 3125/// 3126/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3127/// 3128/// \param PrevPointOfInstantiation if valid, indicates where the previus 3129/// declaration was instantiated (either implicitly or explicitly). 3130/// 3131/// \param SuppressNew will be set to true to indicate that the new 3132/// specialization or instantiation has no effect and should be ignored. 3133/// 3134/// \returns true if there was an error that should prevent the introduction of 3135/// the new declaration into the AST, false otherwise. 3136bool 3137Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3138 TemplateSpecializationKind NewTSK, 3139 NamedDecl *PrevDecl, 3140 TemplateSpecializationKind PrevTSK, 3141 SourceLocation PrevPointOfInstantiation, 3142 bool &SuppressNew) { 3143 SuppressNew = false; 3144 3145 switch (NewTSK) { 3146 case TSK_Undeclared: 3147 case TSK_ImplicitInstantiation: 3148 assert(false && "Don't check implicit instantiations here"); 3149 return false; 3150 3151 case TSK_ExplicitSpecialization: 3152 switch (PrevTSK) { 3153 case TSK_Undeclared: 3154 case TSK_ExplicitSpecialization: 3155 // Okay, we're just specializing something that is either already 3156 // explicitly specialized or has merely been mentioned without any 3157 // instantiation. 3158 return false; 3159 3160 case TSK_ImplicitInstantiation: 3161 if (PrevPointOfInstantiation.isInvalid()) { 3162 // The declaration itself has not actually been instantiated, so it is 3163 // still okay to specialize it. 3164 return false; 3165 } 3166 // Fall through 3167 3168 case TSK_ExplicitInstantiationDeclaration: 3169 case TSK_ExplicitInstantiationDefinition: 3170 assert((PrevTSK == TSK_ImplicitInstantiation || 3171 PrevPointOfInstantiation.isValid()) && 3172 "Explicit instantiation without point of instantiation?"); 3173 3174 // C++ [temp.expl.spec]p6: 3175 // If a template, a member template or the member of a class template 3176 // is explicitly specialized then that specialization shall be declared 3177 // before the first use of that specialization that would cause an 3178 // implicit instantiation to take place, in every translation unit in 3179 // which such a use occurs; no diagnostic is required. 3180 Diag(NewLoc, diag::err_specialization_after_instantiation) 3181 << PrevDecl; 3182 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3183 << (PrevTSK != TSK_ImplicitInstantiation); 3184 3185 return true; 3186 } 3187 break; 3188 3189 case TSK_ExplicitInstantiationDeclaration: 3190 switch (PrevTSK) { 3191 case TSK_ExplicitInstantiationDeclaration: 3192 // This explicit instantiation declaration is redundant (that's okay). 3193 SuppressNew = true; 3194 return false; 3195 3196 case TSK_Undeclared: 3197 case TSK_ImplicitInstantiation: 3198 // We're explicitly instantiating something that may have already been 3199 // implicitly instantiated; that's fine. 3200 return false; 3201 3202 case TSK_ExplicitSpecialization: 3203 // C++0x [temp.explicit]p4: 3204 // For a given set of template parameters, if an explicit instantiation 3205 // of a template appears after a declaration of an explicit 3206 // specialization for that template, the explicit instantiation has no 3207 // effect. 3208 return false; 3209 3210 case TSK_ExplicitInstantiationDefinition: 3211 // C++0x [temp.explicit]p10: 3212 // If an entity is the subject of both an explicit instantiation 3213 // declaration and an explicit instantiation definition in the same 3214 // translation unit, the definition shall follow the declaration. 3215 Diag(NewLoc, 3216 diag::err_explicit_instantiation_declaration_after_definition); 3217 Diag(PrevPointOfInstantiation, 3218 diag::note_explicit_instantiation_definition_here); 3219 assert(PrevPointOfInstantiation.isValid() && 3220 "Explicit instantiation without point of instantiation?"); 3221 SuppressNew = true; 3222 return false; 3223 } 3224 break; 3225 3226 case TSK_ExplicitInstantiationDefinition: 3227 switch (PrevTSK) { 3228 case TSK_Undeclared: 3229 case TSK_ImplicitInstantiation: 3230 // We're explicitly instantiating something that may have already been 3231 // implicitly instantiated; that's fine. 3232 return false; 3233 3234 case TSK_ExplicitSpecialization: 3235 // C++ DR 259, C++0x [temp.explicit]p4: 3236 // For a given set of template parameters, if an explicit 3237 // instantiation of a template appears after a declaration of 3238 // an explicit specialization for that template, the explicit 3239 // instantiation has no effect. 3240 // 3241 // In C++98/03 mode, we only give an extension warning here, because it 3242 // is not not harmful to try to explicitly instantiate something that 3243 // has been explicitly specialized. 3244 if (!getLangOptions().CPlusPlus0x) { 3245 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3246 << PrevDecl; 3247 Diag(PrevDecl->getLocation(), 3248 diag::note_previous_template_specialization); 3249 } 3250 SuppressNew = true; 3251 return false; 3252 3253 case TSK_ExplicitInstantiationDeclaration: 3254 // We're explicity instantiating a definition for something for which we 3255 // were previously asked to suppress instantiations. That's fine. 3256 return false; 3257 3258 case TSK_ExplicitInstantiationDefinition: 3259 // C++0x [temp.spec]p5: 3260 // For a given template and a given set of template-arguments, 3261 // - an explicit instantiation definition shall appear at most once 3262 // in a program, 3263 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3264 << PrevDecl; 3265 Diag(PrevPointOfInstantiation, 3266 diag::note_previous_explicit_instantiation); 3267 SuppressNew = true; 3268 return false; 3269 } 3270 break; 3271 } 3272 3273 assert(false && "Missing specialization/instantiation case?"); 3274 3275 return false; 3276} 3277 3278/// \brief Perform semantic analysis for the given function template 3279/// specialization. 3280/// 3281/// This routine performs all of the semantic analysis required for an 3282/// explicit function template specialization. On successful completion, 3283/// the function declaration \p FD will become a function template 3284/// specialization. 3285/// 3286/// \param FD the function declaration, which will be updated to become a 3287/// function template specialization. 3288/// 3289/// \param HasExplicitTemplateArgs whether any template arguments were 3290/// explicitly provided. 3291/// 3292/// \param LAngleLoc the location of the left angle bracket ('<'), if 3293/// template arguments were explicitly provided. 3294/// 3295/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3296/// if any. 3297/// 3298/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3299/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3300/// true as in, e.g., \c void sort<>(char*, char*); 3301/// 3302/// \param RAngleLoc the location of the right angle bracket ('>'), if 3303/// template arguments were explicitly provided. 3304/// 3305/// \param PrevDecl the set of declarations that 3306bool 3307Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3308 bool HasExplicitTemplateArgs, 3309 SourceLocation LAngleLoc, 3310 const TemplateArgumentLoc *ExplicitTemplateArgs, 3311 unsigned NumExplicitTemplateArgs, 3312 SourceLocation RAngleLoc, 3313 NamedDecl *&PrevDecl) { 3314 // The set of function template specializations that could match this 3315 // explicit function template specialization. 3316 typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet; 3317 CandidateSet Candidates; 3318 3319 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3320 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3321 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) { 3322 // Only consider templates found within the same semantic lookup scope as 3323 // FD. 3324 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3325 continue; 3326 3327 // C++ [temp.expl.spec]p11: 3328 // A trailing template-argument can be left unspecified in the 3329 // template-id naming an explicit function template specialization 3330 // provided it can be deduced from the function argument type. 3331 // Perform template argument deduction to determine whether we may be 3332 // specializing this template. 3333 // FIXME: It is somewhat wasteful to build 3334 TemplateDeductionInfo Info(Context); 3335 FunctionDecl *Specialization = 0; 3336 if (TemplateDeductionResult TDK 3337 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 3338 ExplicitTemplateArgs, 3339 NumExplicitTemplateArgs, 3340 FD->getType(), 3341 Specialization, 3342 Info)) { 3343 // FIXME: Template argument deduction failed; record why it failed, so 3344 // that we can provide nifty diagnostics. 3345 (void)TDK; 3346 continue; 3347 } 3348 3349 // Record this candidate. 3350 Candidates.push_back(Specialization); 3351 } 3352 } 3353 3354 // Find the most specialized function template. 3355 FunctionDecl *Specialization = getMostSpecialized(Candidates.data(), 3356 Candidates.size(), 3357 TPOC_Other, 3358 FD->getLocation(), 3359 PartialDiagnostic(diag::err_function_template_spec_no_match) 3360 << FD->getDeclName(), 3361 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3362 << FD->getDeclName() << HasExplicitTemplateArgs, 3363 PartialDiagnostic(diag::note_function_template_spec_matched)); 3364 if (!Specialization) 3365 return true; 3366 3367 // FIXME: Check if the prior specialization has a point of instantiation. 3368 // If so, we have run afoul of . 3369 3370 // Check the scope of this explicit specialization. 3371 if (CheckTemplateSpecializationScope(*this, 3372 Specialization->getPrimaryTemplate(), 3373 Specialization, FD->getLocation(), 3374 false)) 3375 return true; 3376 3377 // C++ [temp.expl.spec]p6: 3378 // If a template, a member template or the member of a class template is 3379 // explicitly specialized then that specialization shall be declared 3380 // before the first use of that specialization that would cause an implicit 3381 // instantiation to take place, in every translation unit in which such a 3382 // use occurs; no diagnostic is required. 3383 FunctionTemplateSpecializationInfo *SpecInfo 3384 = Specialization->getTemplateSpecializationInfo(); 3385 assert(SpecInfo && "Function template specialization info missing?"); 3386 if (SpecInfo->getPointOfInstantiation().isValid()) { 3387 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3388 << FD; 3389 Diag(SpecInfo->getPointOfInstantiation(), 3390 diag::note_instantiation_required_here) 3391 << (Specialization->getTemplateSpecializationKind() 3392 != TSK_ImplicitInstantiation); 3393 return true; 3394 } 3395 3396 // Mark the prior declaration as an explicit specialization, so that later 3397 // clients know that this is an explicit specialization. 3398 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3399 3400 // Turn the given function declaration into a function template 3401 // specialization, with the template arguments from the previous 3402 // specialization. 3403 FD->setFunctionTemplateSpecialization(Context, 3404 Specialization->getPrimaryTemplate(), 3405 new (Context) TemplateArgumentList( 3406 *Specialization->getTemplateSpecializationArgs()), 3407 /*InsertPos=*/0, 3408 TSK_ExplicitSpecialization); 3409 3410 // The "previous declaration" for this function template specialization is 3411 // the prior function template specialization. 3412 PrevDecl = Specialization; 3413 return false; 3414} 3415 3416/// \brief Perform semantic analysis for the given non-template member 3417/// specialization. 3418/// 3419/// This routine performs all of the semantic analysis required for an 3420/// explicit member function specialization. On successful completion, 3421/// the function declaration \p FD will become a member function 3422/// specialization. 3423/// 3424/// \param Member the member declaration, which will be updated to become a 3425/// specialization. 3426/// 3427/// \param PrevDecl the set of declarations, one of which may be specialized 3428/// by this function specialization. 3429bool 3430Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) { 3431 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3432 3433 // Try to find the member we are instantiating. 3434 NamedDecl *Instantiation = 0; 3435 NamedDecl *InstantiatedFrom = 0; 3436 MemberSpecializationInfo *MSInfo = 0; 3437 3438 if (!PrevDecl) { 3439 // Nowhere to look anyway. 3440 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3441 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3442 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) { 3443 if (Context.hasSameType(Function->getType(), Method->getType())) { 3444 Instantiation = Method; 3445 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3446 MSInfo = Method->getMemberSpecializationInfo(); 3447 break; 3448 } 3449 } 3450 } 3451 } else if (isa<VarDecl>(Member)) { 3452 if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl)) 3453 if (PrevVar->isStaticDataMember()) { 3454 Instantiation = PrevDecl; 3455 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3456 MSInfo = PrevVar->getMemberSpecializationInfo(); 3457 } 3458 } else if (isa<RecordDecl>(Member)) { 3459 if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) { 3460 Instantiation = PrevDecl; 3461 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 3462 MSInfo = PrevRecord->getMemberSpecializationInfo(); 3463 } 3464 } 3465 3466 if (!Instantiation) { 3467 // There is no previous declaration that matches. Since member 3468 // specializations are always out-of-line, the caller will complain about 3469 // this mismatch later. 3470 return false; 3471 } 3472 3473 // Make sure that this is a specialization of a member. 3474 if (!InstantiatedFrom) { 3475 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 3476 << Member; 3477 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 3478 return true; 3479 } 3480 3481 // C++ [temp.expl.spec]p6: 3482 // If a template, a member template or the member of a class template is 3483 // explicitly specialized then that spe- cialization shall be declared 3484 // before the first use of that specialization that would cause an implicit 3485 // instantiation to take place, in every translation unit in which such a 3486 // use occurs; no diagnostic is required. 3487 assert(MSInfo && "Member specialization info missing?"); 3488 if (MSInfo->getPointOfInstantiation().isValid()) { 3489 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 3490 << Member; 3491 Diag(MSInfo->getPointOfInstantiation(), 3492 diag::note_instantiation_required_here) 3493 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 3494 return true; 3495 } 3496 3497 // Check the scope of this explicit specialization. 3498 if (CheckTemplateSpecializationScope(*this, 3499 InstantiatedFrom, 3500 Instantiation, Member->getLocation(), 3501 false)) 3502 return true; 3503 3504 // Note that this is an explicit instantiation of a member. 3505 // the original declaration to note that it is an explicit specialization 3506 // (if it was previously an implicit instantiation). This latter step 3507 // makes bookkeeping easier. 3508 if (isa<FunctionDecl>(Member)) { 3509 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 3510 if (InstantiationFunction->getTemplateSpecializationKind() == 3511 TSK_ImplicitInstantiation) { 3512 InstantiationFunction->setTemplateSpecializationKind( 3513 TSK_ExplicitSpecialization); 3514 InstantiationFunction->setLocation(Member->getLocation()); 3515 } 3516 3517 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 3518 cast<CXXMethodDecl>(InstantiatedFrom), 3519 TSK_ExplicitSpecialization); 3520 } else if (isa<VarDecl>(Member)) { 3521 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 3522 if (InstantiationVar->getTemplateSpecializationKind() == 3523 TSK_ImplicitInstantiation) { 3524 InstantiationVar->setTemplateSpecializationKind( 3525 TSK_ExplicitSpecialization); 3526 InstantiationVar->setLocation(Member->getLocation()); 3527 } 3528 3529 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 3530 cast<VarDecl>(InstantiatedFrom), 3531 TSK_ExplicitSpecialization); 3532 } else { 3533 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 3534 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 3535 if (InstantiationClass->getTemplateSpecializationKind() == 3536 TSK_ImplicitInstantiation) { 3537 InstantiationClass->setTemplateSpecializationKind( 3538 TSK_ExplicitSpecialization); 3539 InstantiationClass->setLocation(Member->getLocation()); 3540 } 3541 3542 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 3543 cast<CXXRecordDecl>(InstantiatedFrom), 3544 TSK_ExplicitSpecialization); 3545 } 3546 3547 // Save the caller the trouble of having to figure out which declaration 3548 // this specialization matches. 3549 PrevDecl = Instantiation; 3550 return false; 3551} 3552 3553/// \brief Check the scope of an explicit instantiation. 3554static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 3555 SourceLocation InstLoc, 3556 bool WasQualifiedName) { 3557 DeclContext *ExpectedContext 3558 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 3559 DeclContext *CurContext = S.CurContext->getLookupContext(); 3560 3561 // C++0x [temp.explicit]p2: 3562 // An explicit instantiation shall appear in an enclosing namespace of its 3563 // template. 3564 // 3565 // This is DR275, which we do not retroactively apply to C++98/03. 3566 if (S.getLangOptions().CPlusPlus0x && 3567 !CurContext->Encloses(ExpectedContext)) { 3568 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 3569 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 3570 << D << NS; 3571 else 3572 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 3573 << D; 3574 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3575 return; 3576 } 3577 3578 // C++0x [temp.explicit]p2: 3579 // If the name declared in the explicit instantiation is an unqualified 3580 // name, the explicit instantiation shall appear in the namespace where 3581 // its template is declared or, if that namespace is inline (7.3.1), any 3582 // namespace from its enclosing namespace set. 3583 if (WasQualifiedName) 3584 return; 3585 3586 if (CurContext->Equals(ExpectedContext)) 3587 return; 3588 3589 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 3590 << D << ExpectedContext; 3591 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3592} 3593 3594/// \brief Determine whether the given scope specifier has a template-id in it. 3595static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 3596 if (!SS.isSet()) 3597 return false; 3598 3599 // C++0x [temp.explicit]p2: 3600 // If the explicit instantiation is for a member function, a member class 3601 // or a static data member of a class template specialization, the name of 3602 // the class template specialization in the qualified-id for the member 3603 // name shall be a simple-template-id. 3604 // 3605 // C++98 has the same restriction, just worded differently. 3606 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 3607 NNS; NNS = NNS->getPrefix()) 3608 if (Type *T = NNS->getAsType()) 3609 if (isa<TemplateSpecializationType>(T)) 3610 return true; 3611 3612 return false; 3613} 3614 3615// Explicit instantiation of a class template specialization 3616// FIXME: Implement extern template semantics 3617Sema::DeclResult 3618Sema::ActOnExplicitInstantiation(Scope *S, 3619 SourceLocation ExternLoc, 3620 SourceLocation TemplateLoc, 3621 unsigned TagSpec, 3622 SourceLocation KWLoc, 3623 const CXXScopeSpec &SS, 3624 TemplateTy TemplateD, 3625 SourceLocation TemplateNameLoc, 3626 SourceLocation LAngleLoc, 3627 ASTTemplateArgsPtr TemplateArgsIn, 3628 SourceLocation *TemplateArgLocs, 3629 SourceLocation RAngleLoc, 3630 AttributeList *Attr) { 3631 // Find the class template we're specializing 3632 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3633 ClassTemplateDecl *ClassTemplate 3634 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3635 3636 // Check that the specialization uses the same tag kind as the 3637 // original template. 3638 TagDecl::TagKind Kind; 3639 switch (TagSpec) { 3640 default: assert(0 && "Unknown tag type!"); 3641 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3642 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3643 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3644 } 3645 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3646 Kind, KWLoc, 3647 *ClassTemplate->getIdentifier())) { 3648 Diag(KWLoc, diag::err_use_with_wrong_tag) 3649 << ClassTemplate 3650 << CodeModificationHint::CreateReplacement(KWLoc, 3651 ClassTemplate->getTemplatedDecl()->getKindName()); 3652 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3653 diag::note_previous_use); 3654 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3655 } 3656 3657 // C++0x [temp.explicit]p2: 3658 // There are two forms of explicit instantiation: an explicit instantiation 3659 // definition and an explicit instantiation declaration. An explicit 3660 // instantiation declaration begins with the extern keyword. [...] 3661 TemplateSpecializationKind TSK 3662 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3663 : TSK_ExplicitInstantiationDeclaration; 3664 3665 // Translate the parser's template argument list in our AST format. 3666 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 3667 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 3668 3669 // Check that the template argument list is well-formed for this 3670 // template. 3671 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3672 TemplateArgs.size()); 3673 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 3674 TemplateArgs.data(), TemplateArgs.size(), 3675 RAngleLoc, false, Converted)) 3676 return true; 3677 3678 assert((Converted.structuredSize() == 3679 ClassTemplate->getTemplateParameters()->size()) && 3680 "Converted template argument list is too short!"); 3681 3682 // Find the class template specialization declaration that 3683 // corresponds to these arguments. 3684 llvm::FoldingSetNodeID ID; 3685 ClassTemplateSpecializationDecl::Profile(ID, 3686 Converted.getFlatArguments(), 3687 Converted.flatSize(), 3688 Context); 3689 void *InsertPos = 0; 3690 ClassTemplateSpecializationDecl *PrevDecl 3691 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3692 3693 // C++0x [temp.explicit]p2: 3694 // [...] An explicit instantiation shall appear in an enclosing 3695 // namespace of its template. [...] 3696 // 3697 // This is C++ DR 275. 3698 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 3699 SS.isSet()); 3700 3701 ClassTemplateSpecializationDecl *Specialization = 0; 3702 3703 if (PrevDecl) { 3704 bool SuppressNew = false; 3705 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 3706 PrevDecl, 3707 PrevDecl->getSpecializationKind(), 3708 PrevDecl->getPointOfInstantiation(), 3709 SuppressNew)) 3710 return DeclPtrTy::make(PrevDecl); 3711 3712 if (SuppressNew) 3713 return DeclPtrTy::make(PrevDecl); 3714 3715 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 3716 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 3717 // Since the only prior class template specialization with these 3718 // arguments was referenced but not declared, reuse that 3719 // declaration node as our own, updating its source location to 3720 // reflect our new declaration. 3721 Specialization = PrevDecl; 3722 Specialization->setLocation(TemplateNameLoc); 3723 PrevDecl = 0; 3724 } 3725 } 3726 3727 if (!Specialization) { 3728 // Create a new class template specialization declaration node for 3729 // this explicit specialization. 3730 Specialization 3731 = ClassTemplateSpecializationDecl::Create(Context, 3732 ClassTemplate->getDeclContext(), 3733 TemplateNameLoc, 3734 ClassTemplate, 3735 Converted, PrevDecl); 3736 3737 if (PrevDecl) { 3738 // Remove the previous declaration from the folding set, since we want 3739 // to introduce a new declaration. 3740 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3741 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3742 } 3743 3744 // Insert the new specialization. 3745 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 3746 } 3747 3748 // Build the fully-sugared type for this explicit instantiation as 3749 // the user wrote in the explicit instantiation itself. This means 3750 // that we'll pretty-print the type retrieved from the 3751 // specialization's declaration the way that the user actually wrote 3752 // the explicit instantiation, rather than formatting the name based 3753 // on the "canonical" representation used to store the template 3754 // arguments in the specialization. 3755 QualType WrittenTy 3756 = Context.getTemplateSpecializationType(Name, 3757 TemplateArgs.data(), 3758 TemplateArgs.size(), 3759 Context.getTypeDeclType(Specialization)); 3760 Specialization->setTypeAsWritten(WrittenTy); 3761 TemplateArgsIn.release(); 3762 3763 // Add the explicit instantiation into its lexical context. However, 3764 // since explicit instantiations are never found by name lookup, we 3765 // just put it into the declaration context directly. 3766 Specialization->setLexicalDeclContext(CurContext); 3767 CurContext->addDecl(Specialization); 3768 3769 // C++ [temp.explicit]p3: 3770 // A definition of a class template or class member template 3771 // shall be in scope at the point of the explicit instantiation of 3772 // the class template or class member template. 3773 // 3774 // This check comes when we actually try to perform the 3775 // instantiation. 3776 ClassTemplateSpecializationDecl *Def 3777 = cast_or_null<ClassTemplateSpecializationDecl>( 3778 Specialization->getDefinition(Context)); 3779 if (!Def) 3780 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 3781 3782 // Instantiate the members of this class template specialization. 3783 Def = cast_or_null<ClassTemplateSpecializationDecl>( 3784 Specialization->getDefinition(Context)); 3785 if (Def) 3786 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 3787 3788 return DeclPtrTy::make(Specialization); 3789} 3790 3791// Explicit instantiation of a member class of a class template. 3792Sema::DeclResult 3793Sema::ActOnExplicitInstantiation(Scope *S, 3794 SourceLocation ExternLoc, 3795 SourceLocation TemplateLoc, 3796 unsigned TagSpec, 3797 SourceLocation KWLoc, 3798 const CXXScopeSpec &SS, 3799 IdentifierInfo *Name, 3800 SourceLocation NameLoc, 3801 AttributeList *Attr) { 3802 3803 bool Owned = false; 3804 bool IsDependent = false; 3805 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 3806 KWLoc, SS, Name, NameLoc, Attr, AS_none, 3807 MultiTemplateParamsArg(*this, 0, 0), 3808 Owned, IsDependent); 3809 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 3810 3811 if (!TagD) 3812 return true; 3813 3814 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 3815 if (Tag->isEnum()) { 3816 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 3817 << Context.getTypeDeclType(Tag); 3818 return true; 3819 } 3820 3821 if (Tag->isInvalidDecl()) 3822 return true; 3823 3824 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 3825 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 3826 if (!Pattern) { 3827 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 3828 << Context.getTypeDeclType(Record); 3829 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 3830 return true; 3831 } 3832 3833 // C++0x [temp.explicit]p2: 3834 // If the explicit instantiation is for a class or member class, the 3835 // elaborated-type-specifier in the declaration shall include a 3836 // simple-template-id. 3837 // 3838 // C++98 has the same restriction, just worded differently. 3839 if (!ScopeSpecifierHasTemplateId(SS)) 3840 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 3841 << Record << SS.getRange(); 3842 3843 // C++0x [temp.explicit]p2: 3844 // There are two forms of explicit instantiation: an explicit instantiation 3845 // definition and an explicit instantiation declaration. An explicit 3846 // instantiation declaration begins with the extern keyword. [...] 3847 TemplateSpecializationKind TSK 3848 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3849 : TSK_ExplicitInstantiationDeclaration; 3850 3851 // C++0x [temp.explicit]p2: 3852 // [...] An explicit instantiation shall appear in an enclosing 3853 // namespace of its template. [...] 3854 // 3855 // This is C++ DR 275. 3856 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 3857 3858 // Verify that it is okay to explicitly instantiate here. 3859 CXXRecordDecl *PrevDecl 3860 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 3861 if (!PrevDecl && Record->getDefinition(Context)) 3862 PrevDecl = Record; 3863 if (PrevDecl) { 3864 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 3865 bool SuppressNew = false; 3866 assert(MSInfo && "No member specialization information?"); 3867 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 3868 PrevDecl, 3869 MSInfo->getTemplateSpecializationKind(), 3870 MSInfo->getPointOfInstantiation(), 3871 SuppressNew)) 3872 return true; 3873 if (SuppressNew) 3874 return TagD; 3875 } 3876 3877 CXXRecordDecl *RecordDef 3878 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 3879 if (!RecordDef) { 3880 // C++ [temp.explicit]p3: 3881 // A definition of a member class of a class template shall be in scope 3882 // at the point of an explicit instantiation of the member class. 3883 CXXRecordDecl *Def 3884 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 3885 if (!Def) { 3886 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 3887 << 0 << Record->getDeclName() << Record->getDeclContext(); 3888 Diag(Pattern->getLocation(), diag::note_forward_declaration) 3889 << Pattern; 3890 return true; 3891 } else { 3892 if (InstantiateClass(NameLoc, Record, Def, 3893 getTemplateInstantiationArgs(Record), 3894 TSK)) 3895 return true; 3896 3897 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 3898 if (!RecordDef) 3899 return true; 3900 } 3901 } 3902 3903 // Instantiate all of the members of the class. 3904 InstantiateClassMembers(NameLoc, RecordDef, 3905 getTemplateInstantiationArgs(Record), TSK); 3906 3907 // FIXME: We don't have any representation for explicit instantiations of 3908 // member classes. Such a representation is not needed for compilation, but it 3909 // should be available for clients that want to see all of the declarations in 3910 // the source code. 3911 return TagD; 3912} 3913 3914Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 3915 SourceLocation ExternLoc, 3916 SourceLocation TemplateLoc, 3917 Declarator &D) { 3918 // Explicit instantiations always require a name. 3919 DeclarationName Name = GetNameForDeclarator(D); 3920 if (!Name) { 3921 if (!D.isInvalidType()) 3922 Diag(D.getDeclSpec().getSourceRange().getBegin(), 3923 diag::err_explicit_instantiation_requires_name) 3924 << D.getDeclSpec().getSourceRange() 3925 << D.getSourceRange(); 3926 3927 return true; 3928 } 3929 3930 // The scope passed in may not be a decl scope. Zip up the scope tree until 3931 // we find one that is. 3932 while ((S->getFlags() & Scope::DeclScope) == 0 || 3933 (S->getFlags() & Scope::TemplateParamScope) != 0) 3934 S = S->getParent(); 3935 3936 // Determine the type of the declaration. 3937 QualType R = GetTypeForDeclarator(D, S, 0); 3938 if (R.isNull()) 3939 return true; 3940 3941 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 3942 // Cannot explicitly instantiate a typedef. 3943 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 3944 << Name; 3945 return true; 3946 } 3947 3948 // C++0x [temp.explicit]p1: 3949 // [...] An explicit instantiation of a function template shall not use the 3950 // inline or constexpr specifiers. 3951 // Presumably, this also applies to member functions of class templates as 3952 // well. 3953 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 3954 Diag(D.getDeclSpec().getInlineSpecLoc(), 3955 diag::err_explicit_instantiation_inline) 3956 << CodeModificationHint::CreateRemoval( 3957 SourceRange(D.getDeclSpec().getInlineSpecLoc())); 3958 3959 // FIXME: check for constexpr specifier. 3960 3961 // C++0x [temp.explicit]p2: 3962 // There are two forms of explicit instantiation: an explicit instantiation 3963 // definition and an explicit instantiation declaration. An explicit 3964 // instantiation declaration begins with the extern keyword. [...] 3965 TemplateSpecializationKind TSK 3966 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3967 : TSK_ExplicitInstantiationDeclaration; 3968 3969 LookupResult Previous; 3970 LookupParsedName(Previous, S, &D.getCXXScopeSpec(), 3971 Name, LookupOrdinaryName); 3972 3973 if (!R->isFunctionType()) { 3974 // C++ [temp.explicit]p1: 3975 // A [...] static data member of a class template can be explicitly 3976 // instantiated from the member definition associated with its class 3977 // template. 3978 if (Previous.isAmbiguous()) { 3979 return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(), 3980 D.getSourceRange()); 3981 } 3982 3983 VarDecl *Prev = dyn_cast_or_null<VarDecl>( 3984 Previous.getAsSingleDecl(Context)); 3985 if (!Prev || !Prev->isStaticDataMember()) { 3986 // We expect to see a data data member here. 3987 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 3988 << Name; 3989 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 3990 P != PEnd; ++P) 3991 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 3992 return true; 3993 } 3994 3995 if (!Prev->getInstantiatedFromStaticDataMember()) { 3996 // FIXME: Check for explicit specialization? 3997 Diag(D.getIdentifierLoc(), 3998 diag::err_explicit_instantiation_data_member_not_instantiated) 3999 << Prev; 4000 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4001 // FIXME: Can we provide a note showing where this was declared? 4002 return true; 4003 } 4004 4005 // C++0x [temp.explicit]p2: 4006 // If the explicit instantiation is for a member function, a member class 4007 // or a static data member of a class template specialization, the name of 4008 // the class template specialization in the qualified-id for the member 4009 // name shall be a simple-template-id. 4010 // 4011 // C++98 has the same restriction, just worded differently. 4012 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4013 Diag(D.getIdentifierLoc(), 4014 diag::err_explicit_instantiation_without_qualified_id) 4015 << Prev << D.getCXXScopeSpec().getRange(); 4016 4017 // Check the scope of this explicit instantiation. 4018 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4019 4020 // Verify that it is okay to explicitly instantiate here. 4021 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4022 assert(MSInfo && "Missing static data member specialization info?"); 4023 bool SuppressNew = false; 4024 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4025 MSInfo->getTemplateSpecializationKind(), 4026 MSInfo->getPointOfInstantiation(), 4027 SuppressNew)) 4028 return true; 4029 if (SuppressNew) 4030 return DeclPtrTy(); 4031 4032 // Instantiate static data member. 4033 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4034 if (TSK == TSK_ExplicitInstantiationDefinition) 4035 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4036 /*DefinitionRequired=*/true); 4037 4038 // FIXME: Create an ExplicitInstantiation node? 4039 return DeclPtrTy(); 4040 } 4041 4042 // If the declarator is a template-id, translate the parser's template 4043 // argument list into our AST format. 4044 bool HasExplicitTemplateArgs = false; 4045 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 4046 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4047 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4048 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4049 TemplateId->getTemplateArgs(), 4050 TemplateId->getTemplateArgIsType(), 4051 TemplateId->NumArgs); 4052 translateTemplateArguments(TemplateArgsPtr, 4053 TemplateId->getTemplateArgLocations(), 4054 TemplateArgs); 4055 HasExplicitTemplateArgs = true; 4056 TemplateArgsPtr.release(); 4057 } 4058 4059 // C++ [temp.explicit]p1: 4060 // A [...] function [...] can be explicitly instantiated from its template. 4061 // A member function [...] of a class template can be explicitly 4062 // instantiated from the member definition associated with its class 4063 // template. 4064 llvm::SmallVector<FunctionDecl *, 8> Matches; 4065 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4066 P != PEnd; ++P) { 4067 NamedDecl *Prev = *P; 4068 if (!HasExplicitTemplateArgs) { 4069 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4070 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4071 Matches.clear(); 4072 Matches.push_back(Method); 4073 break; 4074 } 4075 } 4076 } 4077 4078 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4079 if (!FunTmpl) 4080 continue; 4081 4082 TemplateDeductionInfo Info(Context); 4083 FunctionDecl *Specialization = 0; 4084 if (TemplateDeductionResult TDK 4085 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 4086 TemplateArgs.data(), TemplateArgs.size(), 4087 R, Specialization, Info)) { 4088 // FIXME: Keep track of almost-matches? 4089 (void)TDK; 4090 continue; 4091 } 4092 4093 Matches.push_back(Specialization); 4094 } 4095 4096 // Find the most specialized function template specialization. 4097 FunctionDecl *Specialization 4098 = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 4099 D.getIdentifierLoc(), 4100 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4101 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4102 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4103 4104 if (!Specialization) 4105 return true; 4106 4107 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4108 Diag(D.getIdentifierLoc(), 4109 diag::err_explicit_instantiation_member_function_not_instantiated) 4110 << Specialization 4111 << (Specialization->getTemplateSpecializationKind() == 4112 TSK_ExplicitSpecialization); 4113 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4114 return true; 4115 } 4116 4117 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4118 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4119 PrevDecl = Specialization; 4120 4121 if (PrevDecl) { 4122 bool SuppressNew = false; 4123 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4124 PrevDecl, 4125 PrevDecl->getTemplateSpecializationKind(), 4126 PrevDecl->getPointOfInstantiation(), 4127 SuppressNew)) 4128 return true; 4129 4130 // FIXME: We may still want to build some representation of this 4131 // explicit specialization. 4132 if (SuppressNew) 4133 return DeclPtrTy(); 4134 } 4135 4136 if (TSK == TSK_ExplicitInstantiationDefinition) 4137 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4138 false, /*DefinitionRequired=*/true); 4139 4140 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4141 4142 // C++0x [temp.explicit]p2: 4143 // If the explicit instantiation is for a member function, a member class 4144 // or a static data member of a class template specialization, the name of 4145 // the class template specialization in the qualified-id for the member 4146 // name shall be a simple-template-id. 4147 // 4148 // C++98 has the same restriction, just worded differently. 4149 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4150 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4151 D.getCXXScopeSpec().isSet() && 4152 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4153 Diag(D.getIdentifierLoc(), 4154 diag::err_explicit_instantiation_without_qualified_id) 4155 << Specialization << D.getCXXScopeSpec().getRange(); 4156 4157 CheckExplicitInstantiationScope(*this, 4158 FunTmpl? (NamedDecl *)FunTmpl 4159 : Specialization->getInstantiatedFromMemberFunction(), 4160 D.getIdentifierLoc(), 4161 D.getCXXScopeSpec().isSet()); 4162 4163 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4164 return DeclPtrTy(); 4165} 4166 4167Sema::TypeResult 4168Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4169 const CXXScopeSpec &SS, IdentifierInfo *Name, 4170 SourceLocation TagLoc, SourceLocation NameLoc) { 4171 // This has to hold, because SS is expected to be defined. 4172 assert(Name && "Expected a name in a dependent tag"); 4173 4174 NestedNameSpecifier *NNS 4175 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4176 if (!NNS) 4177 return true; 4178 4179 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4180 if (T.isNull()) 4181 return true; 4182 4183 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4184 QualType ElabType = Context.getElaboratedType(T, TagKind); 4185 4186 return ElabType.getAsOpaquePtr(); 4187} 4188 4189Sema::TypeResult 4190Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4191 const IdentifierInfo &II, SourceLocation IdLoc) { 4192 NestedNameSpecifier *NNS 4193 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4194 if (!NNS) 4195 return true; 4196 4197 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4198 if (T.isNull()) 4199 return true; 4200 return T.getAsOpaquePtr(); 4201} 4202 4203Sema::TypeResult 4204Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4205 SourceLocation TemplateLoc, TypeTy *Ty) { 4206 QualType T = GetTypeFromParser(Ty); 4207 NestedNameSpecifier *NNS 4208 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4209 const TemplateSpecializationType *TemplateId 4210 = T->getAs<TemplateSpecializationType>(); 4211 assert(TemplateId && "Expected a template specialization type"); 4212 4213 if (computeDeclContext(SS, false)) { 4214 // If we can compute a declaration context, then the "typename" 4215 // keyword was superfluous. Just build a QualifiedNameType to keep 4216 // track of the nested-name-specifier. 4217 4218 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4219 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4220 } 4221 4222 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4223} 4224 4225/// \brief Build the type that describes a C++ typename specifier, 4226/// e.g., "typename T::type". 4227QualType 4228Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4229 SourceRange Range) { 4230 CXXRecordDecl *CurrentInstantiation = 0; 4231 if (NNS->isDependent()) { 4232 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4233 4234 // If the nested-name-specifier does not refer to the current 4235 // instantiation, then build a typename type. 4236 if (!CurrentInstantiation) 4237 return Context.getTypenameType(NNS, &II); 4238 4239 // The nested-name-specifier refers to the current instantiation, so the 4240 // "typename" keyword itself is superfluous. In C++03, the program is 4241 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4242 // extraneous "typename" keywords, and we retroactively apply this DR to 4243 // C++03 code. 4244 } 4245 4246 DeclContext *Ctx = 0; 4247 4248 if (CurrentInstantiation) 4249 Ctx = CurrentInstantiation; 4250 else { 4251 CXXScopeSpec SS; 4252 SS.setScopeRep(NNS); 4253 SS.setRange(Range); 4254 if (RequireCompleteDeclContext(SS)) 4255 return QualType(); 4256 4257 Ctx = computeDeclContext(SS); 4258 } 4259 assert(Ctx && "No declaration context?"); 4260 4261 DeclarationName Name(&II); 4262 LookupResult Result; 4263 LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false); 4264 unsigned DiagID = 0; 4265 Decl *Referenced = 0; 4266 switch (Result.getKind()) { 4267 case LookupResult::NotFound: 4268 DiagID = diag::err_typename_nested_not_found; 4269 break; 4270 4271 case LookupResult::Found: 4272 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4273 // We found a type. Build a QualifiedNameType, since the 4274 // typename-specifier was just sugar. FIXME: Tell 4275 // QualifiedNameType that it has a "typename" prefix. 4276 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4277 } 4278 4279 DiagID = diag::err_typename_nested_not_type; 4280 Referenced = Result.getFoundDecl(); 4281 break; 4282 4283 case LookupResult::FoundOverloaded: 4284 DiagID = diag::err_typename_nested_not_type; 4285 Referenced = *Result.begin(); 4286 break; 4287 4288 case LookupResult::Ambiguous: 4289 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 4290 return QualType(); 4291 } 4292 4293 // If we get here, it's because name lookup did not find a 4294 // type. Emit an appropriate diagnostic and return an error. 4295 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4296 if (Referenced) 4297 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4298 << Name; 4299 return QualType(); 4300} 4301 4302namespace { 4303 // See Sema::RebuildTypeInCurrentInstantiation 4304 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 4305 : public TreeTransform<CurrentInstantiationRebuilder> { 4306 SourceLocation Loc; 4307 DeclarationName Entity; 4308 4309 public: 4310 CurrentInstantiationRebuilder(Sema &SemaRef, 4311 SourceLocation Loc, 4312 DeclarationName Entity) 4313 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4314 Loc(Loc), Entity(Entity) { } 4315 4316 /// \brief Determine whether the given type \p T has already been 4317 /// transformed. 4318 /// 4319 /// For the purposes of type reconstruction, a type has already been 4320 /// transformed if it is NULL or if it is not dependent. 4321 bool AlreadyTransformed(QualType T) { 4322 return T.isNull() || !T->isDependentType(); 4323 } 4324 4325 /// \brief Returns the location of the entity whose type is being 4326 /// rebuilt. 4327 SourceLocation getBaseLocation() { return Loc; } 4328 4329 /// \brief Returns the name of the entity whose type is being rebuilt. 4330 DeclarationName getBaseEntity() { return Entity; } 4331 4332 /// \brief Sets the "base" location and entity when that 4333 /// information is known based on another transformation. 4334 void setBase(SourceLocation Loc, DeclarationName Entity) { 4335 this->Loc = Loc; 4336 this->Entity = Entity; 4337 } 4338 4339 /// \brief Transforms an expression by returning the expression itself 4340 /// (an identity function). 4341 /// 4342 /// FIXME: This is completely unsafe; we will need to actually clone the 4343 /// expressions. 4344 Sema::OwningExprResult TransformExpr(Expr *E) { 4345 return getSema().Owned(E); 4346 } 4347 4348 /// \brief Transforms a typename type by determining whether the type now 4349 /// refers to a member of the current instantiation, and then 4350 /// type-checking and building a QualifiedNameType (when possible). 4351 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4352 }; 4353} 4354 4355QualType 4356CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4357 TypenameTypeLoc TL) { 4358 TypenameType *T = TL.getTypePtr(); 4359 4360 NestedNameSpecifier *NNS 4361 = TransformNestedNameSpecifier(T->getQualifier(), 4362 /*FIXME:*/SourceRange(getBaseLocation())); 4363 if (!NNS) 4364 return QualType(); 4365 4366 // If the nested-name-specifier did not change, and we cannot compute the 4367 // context corresponding to the nested-name-specifier, then this 4368 // typename type will not change; exit early. 4369 CXXScopeSpec SS; 4370 SS.setRange(SourceRange(getBaseLocation())); 4371 SS.setScopeRep(NNS); 4372 4373 QualType Result; 4374 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4375 Result = QualType(T, 0); 4376 4377 // Rebuild the typename type, which will probably turn into a 4378 // QualifiedNameType. 4379 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4380 QualType NewTemplateId 4381 = TransformType(QualType(TemplateId, 0)); 4382 if (NewTemplateId.isNull()) 4383 return QualType(); 4384 4385 if (NNS == T->getQualifier() && 4386 NewTemplateId == QualType(TemplateId, 0)) 4387 Result = QualType(T, 0); 4388 else 4389 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4390 } else 4391 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4392 SourceRange(TL.getNameLoc())); 4393 4394 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4395 NewTL.setNameLoc(TL.getNameLoc()); 4396 return Result; 4397} 4398 4399/// \brief Rebuilds a type within the context of the current instantiation. 4400/// 4401/// The type \p T is part of the type of an out-of-line member definition of 4402/// a class template (or class template partial specialization) that was parsed 4403/// and constructed before we entered the scope of the class template (or 4404/// partial specialization thereof). This routine will rebuild that type now 4405/// that we have entered the declarator's scope, which may produce different 4406/// canonical types, e.g., 4407/// 4408/// \code 4409/// template<typename T> 4410/// struct X { 4411/// typedef T* pointer; 4412/// pointer data(); 4413/// }; 4414/// 4415/// template<typename T> 4416/// typename X<T>::pointer X<T>::data() { ... } 4417/// \endcode 4418/// 4419/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4420/// since we do not know that we can look into X<T> when we parsed the type. 4421/// This function will rebuild the type, performing the lookup of "pointer" 4422/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4423/// as the canonical type of T*, allowing the return types of the out-of-line 4424/// definition and the declaration to match. 4425QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4426 DeclarationName Name) { 4427 if (T.isNull() || !T->isDependentType()) 4428 return T; 4429 4430 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4431 return Rebuilder.TransformType(T); 4432} 4433 4434/// \brief Produces a formatted string that describes the binding of 4435/// template parameters to template arguments. 4436std::string 4437Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4438 const TemplateArgumentList &Args) { 4439 std::string Result; 4440 4441 if (!Params || Params->size() == 0) 4442 return Result; 4443 4444 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4445 if (I == 0) 4446 Result += "[with "; 4447 else 4448 Result += ", "; 4449 4450 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 4451 Result += Id->getName(); 4452 } else { 4453 Result += '$'; 4454 Result += llvm::utostr(I); 4455 } 4456 4457 Result += " = "; 4458 4459 switch (Args[I].getKind()) { 4460 case TemplateArgument::Null: 4461 Result += "<no value>"; 4462 break; 4463 4464 case TemplateArgument::Type: { 4465 std::string TypeStr; 4466 Args[I].getAsType().getAsStringInternal(TypeStr, 4467 Context.PrintingPolicy); 4468 Result += TypeStr; 4469 break; 4470 } 4471 4472 case TemplateArgument::Declaration: { 4473 bool Unnamed = true; 4474 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 4475 if (ND->getDeclName()) { 4476 Unnamed = false; 4477 Result += ND->getNameAsString(); 4478 } 4479 } 4480 4481 if (Unnamed) { 4482 Result += "<anonymous>"; 4483 } 4484 break; 4485 } 4486 4487 case TemplateArgument::Integral: { 4488 Result += Args[I].getAsIntegral()->toString(10); 4489 break; 4490 } 4491 4492 case TemplateArgument::Expression: { 4493 assert(false && "No expressions in deduced template arguments!"); 4494 Result += "<expression>"; 4495 break; 4496 } 4497 4498 case TemplateArgument::Pack: 4499 // FIXME: Format template argument packs 4500 Result += "<template argument pack>"; 4501 break; 4502 } 4503 } 4504 4505 Result += ']'; 4506 return Result; 4507} 4508