SemaTemplate.cpp revision 3fa5cae9b3812cab9fab6c042c3329bb70a3d046
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33/// \brief Determine whether the declaration found is acceptable as the name 34/// of a template and, if so, return that template declaration. Otherwise, 35/// returns NULL. 36static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 37 NamedDecl *Orig) { 38 NamedDecl *D = Orig->getUnderlyingDecl(); 39 40 if (isa<TemplateDecl>(D)) 41 return Orig; 42 43 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 44 // C++ [temp.local]p1: 45 // Like normal (non-template) classes, class templates have an 46 // injected-class-name (Clause 9). The injected-class-name 47 // can be used with or without a template-argument-list. When 48 // it is used without a template-argument-list, it is 49 // equivalent to the injected-class-name followed by the 50 // template-parameters of the class template enclosed in 51 // <>. When it is used with a template-argument-list, it 52 // refers to the specified class template specialization, 53 // which could be the current specialization or another 54 // specialization. 55 if (Record->isInjectedClassName()) { 56 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 57 if (Record->getDescribedClassTemplate()) 58 return Record->getDescribedClassTemplate(); 59 60 if (ClassTemplateSpecializationDecl *Spec 61 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 62 return Spec->getSpecializedTemplate(); 63 } 64 65 return 0; 66 } 67 68 return 0; 69} 70 71static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 72 // The set of class templates we've already seen. 73 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 74 LookupResult::Filter filter = R.makeFilter(); 75 while (filter.hasNext()) { 76 NamedDecl *Orig = filter.next(); 77 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 78 if (!Repl) 79 filter.erase(); 80 else if (Repl != Orig) { 81 82 // C++ [temp.local]p3: 83 // A lookup that finds an injected-class-name (10.2) can result in an 84 // ambiguity in certain cases (for example, if it is found in more than 85 // one base class). If all of the injected-class-names that are found 86 // refer to specializations of the same class template, and if the name 87 // is followed by a template-argument-list, the reference refers to the 88 // class template itself and not a specialization thereof, and is not 89 // ambiguous. 90 // 91 // FIXME: Will we eventually have to do the same for alias templates? 92 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 93 if (!ClassTemplates.insert(ClassTmpl)) { 94 filter.erase(); 95 continue; 96 } 97 98 // FIXME: we promote access to public here as a workaround to 99 // the fact that LookupResult doesn't let us remember that we 100 // found this template through a particular injected class name, 101 // which means we end up doing nasty things to the invariants. 102 // Pretending that access is public is *much* safer. 103 filter.replace(Repl, AS_public); 104 } 105 } 106 filter.done(); 107} 108 109TemplateNameKind Sema::isTemplateName(Scope *S, 110 CXXScopeSpec &SS, 111 bool hasTemplateKeyword, 112 UnqualifiedId &Name, 113 ParsedType ObjectTypePtr, 114 bool EnteringContext, 115 TemplateTy &TemplateResult, 116 bool &MemberOfUnknownSpecialization) { 117 assert(getLangOptions().CPlusPlus && "No template names in C!"); 118 119 DeclarationName TName; 120 MemberOfUnknownSpecialization = false; 121 122 switch (Name.getKind()) { 123 case UnqualifiedId::IK_Identifier: 124 TName = DeclarationName(Name.Identifier); 125 break; 126 127 case UnqualifiedId::IK_OperatorFunctionId: 128 TName = Context.DeclarationNames.getCXXOperatorName( 129 Name.OperatorFunctionId.Operator); 130 break; 131 132 case UnqualifiedId::IK_LiteralOperatorId: 133 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 134 break; 135 136 default: 137 return TNK_Non_template; 138 } 139 140 QualType ObjectType = ObjectTypePtr.get(); 141 142 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 143 LookupOrdinaryName); 144 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 145 MemberOfUnknownSpecialization); 146 if (R.empty()) return TNK_Non_template; 147 if (R.isAmbiguous()) { 148 // Suppress diagnostics; we'll redo this lookup later. 149 R.suppressDiagnostics(); 150 151 // FIXME: we might have ambiguous templates, in which case we 152 // should at least parse them properly! 153 return TNK_Non_template; 154 } 155 156 TemplateName Template; 157 TemplateNameKind TemplateKind; 158 159 unsigned ResultCount = R.end() - R.begin(); 160 if (ResultCount > 1) { 161 // We assume that we'll preserve the qualifier from a function 162 // template name in other ways. 163 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 164 TemplateKind = TNK_Function_template; 165 166 // We'll do this lookup again later. 167 R.suppressDiagnostics(); 168 } else { 169 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 170 171 if (SS.isSet() && !SS.isInvalid()) { 172 NestedNameSpecifier *Qualifier 173 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 174 Template = Context.getQualifiedTemplateName(Qualifier, 175 hasTemplateKeyword, TD); 176 } else { 177 Template = TemplateName(TD); 178 } 179 180 if (isa<FunctionTemplateDecl>(TD)) { 181 TemplateKind = TNK_Function_template; 182 183 // We'll do this lookup again later. 184 R.suppressDiagnostics(); 185 } else { 186 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 187 TemplateKind = TNK_Type_template; 188 } 189 } 190 191 TemplateResult = TemplateTy::make(Template); 192 return TemplateKind; 193} 194 195bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 196 SourceLocation IILoc, 197 Scope *S, 198 const CXXScopeSpec *SS, 199 TemplateTy &SuggestedTemplate, 200 TemplateNameKind &SuggestedKind) { 201 // We can't recover unless there's a dependent scope specifier preceding the 202 // template name. 203 // FIXME: Typo correction? 204 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 205 computeDeclContext(*SS)) 206 return false; 207 208 // The code is missing a 'template' keyword prior to the dependent template 209 // name. 210 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 211 Diag(IILoc, diag::err_template_kw_missing) 212 << Qualifier << II.getName() 213 << FixItHint::CreateInsertion(IILoc, "template "); 214 SuggestedTemplate 215 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 216 SuggestedKind = TNK_Dependent_template_name; 217 return true; 218} 219 220void Sema::LookupTemplateName(LookupResult &Found, 221 Scope *S, CXXScopeSpec &SS, 222 QualType ObjectType, 223 bool EnteringContext, 224 bool &MemberOfUnknownSpecialization) { 225 // Determine where to perform name lookup 226 MemberOfUnknownSpecialization = false; 227 DeclContext *LookupCtx = 0; 228 bool isDependent = false; 229 if (!ObjectType.isNull()) { 230 // This nested-name-specifier occurs in a member access expression, e.g., 231 // x->B::f, and we are looking into the type of the object. 232 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 233 LookupCtx = computeDeclContext(ObjectType); 234 isDependent = ObjectType->isDependentType(); 235 assert((isDependent || !ObjectType->isIncompleteType()) && 236 "Caller should have completed object type"); 237 } else if (SS.isSet()) { 238 // This nested-name-specifier occurs after another nested-name-specifier, 239 // so long into the context associated with the prior nested-name-specifier. 240 LookupCtx = computeDeclContext(SS, EnteringContext); 241 isDependent = isDependentScopeSpecifier(SS); 242 243 // The declaration context must be complete. 244 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 245 return; 246 } 247 248 bool ObjectTypeSearchedInScope = false; 249 if (LookupCtx) { 250 // Perform "qualified" name lookup into the declaration context we 251 // computed, which is either the type of the base of a member access 252 // expression or the declaration context associated with a prior 253 // nested-name-specifier. 254 LookupQualifiedName(Found, LookupCtx); 255 256 if (!ObjectType.isNull() && Found.empty()) { 257 // C++ [basic.lookup.classref]p1: 258 // In a class member access expression (5.2.5), if the . or -> token is 259 // immediately followed by an identifier followed by a <, the 260 // identifier must be looked up to determine whether the < is the 261 // beginning of a template argument list (14.2) or a less-than operator. 262 // The identifier is first looked up in the class of the object 263 // expression. If the identifier is not found, it is then looked up in 264 // the context of the entire postfix-expression and shall name a class 265 // or function template. 266 if (S) LookupName(Found, S); 267 ObjectTypeSearchedInScope = true; 268 } 269 } else if (isDependent && (!S || ObjectType.isNull())) { 270 // We cannot look into a dependent object type or nested nme 271 // specifier. 272 MemberOfUnknownSpecialization = true; 273 return; 274 } else { 275 // Perform unqualified name lookup in the current scope. 276 LookupName(Found, S); 277 } 278 279 if (Found.empty() && !isDependent) { 280 // If we did not find any names, attempt to correct any typos. 281 DeclarationName Name = Found.getLookupName(); 282 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 283 false, CTC_CXXCasts)) { 284 FilterAcceptableTemplateNames(Context, Found); 285 if (!Found.empty()) { 286 if (LookupCtx) 287 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 288 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 289 << FixItHint::CreateReplacement(Found.getNameLoc(), 290 Found.getLookupName().getAsString()); 291 else 292 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 293 << Name << Found.getLookupName() 294 << FixItHint::CreateReplacement(Found.getNameLoc(), 295 Found.getLookupName().getAsString()); 296 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 297 Diag(Template->getLocation(), diag::note_previous_decl) 298 << Template->getDeclName(); 299 } 300 } else { 301 Found.clear(); 302 Found.setLookupName(Name); 303 } 304 } 305 306 FilterAcceptableTemplateNames(Context, Found); 307 if (Found.empty()) { 308 if (isDependent) 309 MemberOfUnknownSpecialization = true; 310 return; 311 } 312 313 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 314 // C++ [basic.lookup.classref]p1: 315 // [...] If the lookup in the class of the object expression finds a 316 // template, the name is also looked up in the context of the entire 317 // postfix-expression and [...] 318 // 319 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 320 LookupOrdinaryName); 321 LookupName(FoundOuter, S); 322 FilterAcceptableTemplateNames(Context, FoundOuter); 323 324 if (FoundOuter.empty()) { 325 // - if the name is not found, the name found in the class of the 326 // object expression is used, otherwise 327 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 328 // - if the name is found in the context of the entire 329 // postfix-expression and does not name a class template, the name 330 // found in the class of the object expression is used, otherwise 331 } else if (!Found.isSuppressingDiagnostics()) { 332 // - if the name found is a class template, it must refer to the same 333 // entity as the one found in the class of the object expression, 334 // otherwise the program is ill-formed. 335 if (!Found.isSingleResult() || 336 Found.getFoundDecl()->getCanonicalDecl() 337 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 338 Diag(Found.getNameLoc(), 339 diag::ext_nested_name_member_ref_lookup_ambiguous) 340 << Found.getLookupName() 341 << ObjectType; 342 Diag(Found.getRepresentativeDecl()->getLocation(), 343 diag::note_ambig_member_ref_object_type) 344 << ObjectType; 345 Diag(FoundOuter.getFoundDecl()->getLocation(), 346 diag::note_ambig_member_ref_scope); 347 348 // Recover by taking the template that we found in the object 349 // expression's type. 350 } 351 } 352 } 353} 354 355/// ActOnDependentIdExpression - Handle a dependent id-expression that 356/// was just parsed. This is only possible with an explicit scope 357/// specifier naming a dependent type. 358ExprResult 359Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 360 const DeclarationNameInfo &NameInfo, 361 bool isAddressOfOperand, 362 const TemplateArgumentListInfo *TemplateArgs) { 363 NestedNameSpecifier *Qualifier 364 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 365 366 DeclContext *DC = getFunctionLevelDeclContext(); 367 368 if (!isAddressOfOperand && 369 isa<CXXMethodDecl>(DC) && 370 cast<CXXMethodDecl>(DC)->isInstance()) { 371 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 372 373 // Since the 'this' expression is synthesized, we don't need to 374 // perform the double-lookup check. 375 NamedDecl *FirstQualifierInScope = 0; 376 377 return Owned(CXXDependentScopeMemberExpr::Create(Context, 378 /*This*/ 0, ThisType, 379 /*IsArrow*/ true, 380 /*Op*/ SourceLocation(), 381 Qualifier, SS.getRange(), 382 FirstQualifierInScope, 383 NameInfo, 384 TemplateArgs)); 385 } 386 387 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 388} 389 390ExprResult 391Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 392 const DeclarationNameInfo &NameInfo, 393 const TemplateArgumentListInfo *TemplateArgs) { 394 return Owned(DependentScopeDeclRefExpr::Create(Context, 395 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 396 SS.getRange(), 397 NameInfo, 398 TemplateArgs)); 399} 400 401/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 402/// that the template parameter 'PrevDecl' is being shadowed by a new 403/// declaration at location Loc. Returns true to indicate that this is 404/// an error, and false otherwise. 405bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 406 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 407 408 // Microsoft Visual C++ permits template parameters to be shadowed. 409 if (getLangOptions().Microsoft) 410 return false; 411 412 // C++ [temp.local]p4: 413 // A template-parameter shall not be redeclared within its 414 // scope (including nested scopes). 415 Diag(Loc, diag::err_template_param_shadow) 416 << cast<NamedDecl>(PrevDecl)->getDeclName(); 417 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 418 return true; 419} 420 421/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 422/// the parameter D to reference the templated declaration and return a pointer 423/// to the template declaration. Otherwise, do nothing to D and return null. 424TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 425 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 426 D = Temp->getTemplatedDecl(); 427 return Temp; 428 } 429 return 0; 430} 431 432static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 433 const ParsedTemplateArgument &Arg) { 434 435 switch (Arg.getKind()) { 436 case ParsedTemplateArgument::Type: { 437 TypeSourceInfo *DI; 438 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 439 if (!DI) 440 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 441 return TemplateArgumentLoc(TemplateArgument(T), DI); 442 } 443 444 case ParsedTemplateArgument::NonType: { 445 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 446 return TemplateArgumentLoc(TemplateArgument(E), E); 447 } 448 449 case ParsedTemplateArgument::Template: { 450 TemplateName Template = Arg.getAsTemplate().get(); 451 return TemplateArgumentLoc(TemplateArgument(Template), 452 Arg.getScopeSpec().getRange(), 453 Arg.getLocation()); 454 } 455 } 456 457 llvm_unreachable("Unhandled parsed template argument"); 458 return TemplateArgumentLoc(); 459} 460 461/// \brief Translates template arguments as provided by the parser 462/// into template arguments used by semantic analysis. 463void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 464 TemplateArgumentListInfo &TemplateArgs) { 465 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 466 TemplateArgs.addArgument(translateTemplateArgument(*this, 467 TemplateArgsIn[I])); 468} 469 470/// ActOnTypeParameter - Called when a C++ template type parameter 471/// (e.g., "typename T") has been parsed. Typename specifies whether 472/// the keyword "typename" was used to declare the type parameter 473/// (otherwise, "class" was used), and KeyLoc is the location of the 474/// "class" or "typename" keyword. ParamName is the name of the 475/// parameter (NULL indicates an unnamed template parameter) and 476/// ParamName is the location of the parameter name (if any). 477/// If the type parameter has a default argument, it will be added 478/// later via ActOnTypeParameterDefault. 479Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 480 SourceLocation EllipsisLoc, 481 SourceLocation KeyLoc, 482 IdentifierInfo *ParamName, 483 SourceLocation ParamNameLoc, 484 unsigned Depth, unsigned Position, 485 SourceLocation EqualLoc, 486 ParsedType DefaultArg) { 487 assert(S->isTemplateParamScope() && 488 "Template type parameter not in template parameter scope!"); 489 bool Invalid = false; 490 491 if (ParamName) { 492 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 493 LookupOrdinaryName, 494 ForRedeclaration); 495 if (PrevDecl && PrevDecl->isTemplateParameter()) 496 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 497 PrevDecl); 498 } 499 500 SourceLocation Loc = ParamNameLoc; 501 if (!ParamName) 502 Loc = KeyLoc; 503 504 TemplateTypeParmDecl *Param 505 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 506 Loc, Depth, Position, ParamName, Typename, 507 Ellipsis); 508 if (Invalid) 509 Param->setInvalidDecl(); 510 511 if (ParamName) { 512 // Add the template parameter into the current scope. 513 S->AddDecl(Param); 514 IdResolver.AddDecl(Param); 515 } 516 517 // Handle the default argument, if provided. 518 if (DefaultArg) { 519 TypeSourceInfo *DefaultTInfo; 520 GetTypeFromParser(DefaultArg, &DefaultTInfo); 521 522 assert(DefaultTInfo && "expected source information for type"); 523 524 // C++0x [temp.param]p9: 525 // A default template-argument may be specified for any kind of 526 // template-parameter that is not a template parameter pack. 527 if (Ellipsis) { 528 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 529 return Param; 530 } 531 532 // Check the template argument itself. 533 if (CheckTemplateArgument(Param, DefaultTInfo)) { 534 Param->setInvalidDecl(); 535 return Param; 536 } 537 538 Param->setDefaultArgument(DefaultTInfo, false); 539 } 540 541 return Param; 542} 543 544/// \brief Check that the type of a non-type template parameter is 545/// well-formed. 546/// 547/// \returns the (possibly-promoted) parameter type if valid; 548/// otherwise, produces a diagnostic and returns a NULL type. 549QualType 550Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 551 // We don't allow variably-modified types as the type of non-type template 552 // parameters. 553 if (T->isVariablyModifiedType()) { 554 Diag(Loc, diag::err_variably_modified_nontype_template_param) 555 << T; 556 return QualType(); 557 } 558 559 // C++ [temp.param]p4: 560 // 561 // A non-type template-parameter shall have one of the following 562 // (optionally cv-qualified) types: 563 // 564 // -- integral or enumeration type, 565 if (T->isIntegralOrEnumerationType() || 566 // -- pointer to object or pointer to function, 567 T->isPointerType() || 568 // -- reference to object or reference to function, 569 T->isReferenceType() || 570 // -- pointer to member. 571 T->isMemberPointerType() || 572 // If T is a dependent type, we can't do the check now, so we 573 // assume that it is well-formed. 574 T->isDependentType()) 575 return T; 576 // C++ [temp.param]p8: 577 // 578 // A non-type template-parameter of type "array of T" or 579 // "function returning T" is adjusted to be of type "pointer to 580 // T" or "pointer to function returning T", respectively. 581 else if (T->isArrayType()) 582 // FIXME: Keep the type prior to promotion? 583 return Context.getArrayDecayedType(T); 584 else if (T->isFunctionType()) 585 // FIXME: Keep the type prior to promotion? 586 return Context.getPointerType(T); 587 588 Diag(Loc, diag::err_template_nontype_parm_bad_type) 589 << T; 590 591 return QualType(); 592} 593 594Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 595 unsigned Depth, 596 unsigned Position, 597 SourceLocation EqualLoc, 598 Expr *Default) { 599 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 600 QualType T = TInfo->getType(); 601 602 assert(S->isTemplateParamScope() && 603 "Non-type template parameter not in template parameter scope!"); 604 bool Invalid = false; 605 606 IdentifierInfo *ParamName = D.getIdentifier(); 607 if (ParamName) { 608 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 609 LookupOrdinaryName, 610 ForRedeclaration); 611 if (PrevDecl && PrevDecl->isTemplateParameter()) 612 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 613 PrevDecl); 614 } 615 616 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 617 if (T.isNull()) { 618 T = Context.IntTy; // Recover with an 'int' type. 619 Invalid = true; 620 } 621 622 NonTypeTemplateParmDecl *Param 623 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 624 D.getIdentifierLoc(), 625 Depth, Position, ParamName, T, TInfo); 626 if (Invalid) 627 Param->setInvalidDecl(); 628 629 if (D.getIdentifier()) { 630 // Add the template parameter into the current scope. 631 S->AddDecl(Param); 632 IdResolver.AddDecl(Param); 633 } 634 635 // Check the well-formedness of the default template argument, if provided. 636 if (Default) { 637 TemplateArgument Converted; 638 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 639 Param->setInvalidDecl(); 640 return Param; 641 } 642 643 Param->setDefaultArgument(Default, false); 644 } 645 646 return Param; 647} 648 649/// ActOnTemplateTemplateParameter - Called when a C++ template template 650/// parameter (e.g. T in template <template <typename> class T> class array) 651/// has been parsed. S is the current scope. 652Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 653 SourceLocation TmpLoc, 654 TemplateParamsTy *Params, 655 IdentifierInfo *Name, 656 SourceLocation NameLoc, 657 unsigned Depth, 658 unsigned Position, 659 SourceLocation EqualLoc, 660 const ParsedTemplateArgument &Default) { 661 assert(S->isTemplateParamScope() && 662 "Template template parameter not in template parameter scope!"); 663 664 // Construct the parameter object. 665 TemplateTemplateParmDecl *Param = 666 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 667 NameLoc.isInvalid()? TmpLoc : NameLoc, 668 Depth, Position, Name, 669 Params); 670 671 // If the template template parameter has a name, then link the identifier 672 // into the scope and lookup mechanisms. 673 if (Name) { 674 S->AddDecl(Param); 675 IdResolver.AddDecl(Param); 676 } 677 678 if (!Default.isInvalid()) { 679 // Check only that we have a template template argument. We don't want to 680 // try to check well-formedness now, because our template template parameter 681 // might have dependent types in its template parameters, which we wouldn't 682 // be able to match now. 683 // 684 // If none of the template template parameter's template arguments mention 685 // other template parameters, we could actually perform more checking here. 686 // However, it isn't worth doing. 687 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 688 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 689 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 690 << DefaultArg.getSourceRange(); 691 return Param; 692 } 693 694 Param->setDefaultArgument(DefaultArg, false); 695 } 696 697 if (Params->size() == 0) { 698 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 699 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 700 Param->setInvalidDecl(); 701 } 702 return Param; 703} 704 705/// ActOnTemplateParameterList - Builds a TemplateParameterList that 706/// contains the template parameters in Params/NumParams. 707Sema::TemplateParamsTy * 708Sema::ActOnTemplateParameterList(unsigned Depth, 709 SourceLocation ExportLoc, 710 SourceLocation TemplateLoc, 711 SourceLocation LAngleLoc, 712 Decl **Params, unsigned NumParams, 713 SourceLocation RAngleLoc) { 714 if (ExportLoc.isValid()) 715 Diag(ExportLoc, diag::warn_template_export_unsupported); 716 717 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 718 (NamedDecl**)Params, NumParams, 719 RAngleLoc); 720} 721 722static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 723 if (SS.isSet()) 724 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 725 SS.getRange()); 726} 727 728DeclResult 729Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 730 SourceLocation KWLoc, CXXScopeSpec &SS, 731 IdentifierInfo *Name, SourceLocation NameLoc, 732 AttributeList *Attr, 733 TemplateParameterList *TemplateParams, 734 AccessSpecifier AS) { 735 assert(TemplateParams && TemplateParams->size() > 0 && 736 "No template parameters"); 737 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 738 bool Invalid = false; 739 740 // Check that we can declare a template here. 741 if (CheckTemplateDeclScope(S, TemplateParams)) 742 return true; 743 744 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 745 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 746 747 // There is no such thing as an unnamed class template. 748 if (!Name) { 749 Diag(KWLoc, diag::err_template_unnamed_class); 750 return true; 751 } 752 753 // Find any previous declaration with this name. 754 DeclContext *SemanticContext; 755 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 756 ForRedeclaration); 757 if (SS.isNotEmpty() && !SS.isInvalid()) { 758 SemanticContext = computeDeclContext(SS, true); 759 if (!SemanticContext) { 760 // FIXME: Produce a reasonable diagnostic here 761 return true; 762 } 763 764 if (RequireCompleteDeclContext(SS, SemanticContext)) 765 return true; 766 767 LookupQualifiedName(Previous, SemanticContext); 768 } else { 769 SemanticContext = CurContext; 770 LookupName(Previous, S); 771 } 772 773 if (Previous.isAmbiguous()) 774 return true; 775 776 NamedDecl *PrevDecl = 0; 777 if (Previous.begin() != Previous.end()) 778 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 779 780 // If there is a previous declaration with the same name, check 781 // whether this is a valid redeclaration. 782 ClassTemplateDecl *PrevClassTemplate 783 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 784 785 // We may have found the injected-class-name of a class template, 786 // class template partial specialization, or class template specialization. 787 // In these cases, grab the template that is being defined or specialized. 788 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 789 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 790 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 791 PrevClassTemplate 792 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 793 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 794 PrevClassTemplate 795 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 796 ->getSpecializedTemplate(); 797 } 798 } 799 800 if (TUK == TUK_Friend) { 801 // C++ [namespace.memdef]p3: 802 // [...] When looking for a prior declaration of a class or a function 803 // declared as a friend, and when the name of the friend class or 804 // function is neither a qualified name nor a template-id, scopes outside 805 // the innermost enclosing namespace scope are not considered. 806 if (!SS.isSet()) { 807 DeclContext *OutermostContext = CurContext; 808 while (!OutermostContext->isFileContext()) 809 OutermostContext = OutermostContext->getLookupParent(); 810 811 if (PrevDecl && 812 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 813 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 814 SemanticContext = PrevDecl->getDeclContext(); 815 } else { 816 // Declarations in outer scopes don't matter. However, the outermost 817 // context we computed is the semantic context for our new 818 // declaration. 819 PrevDecl = PrevClassTemplate = 0; 820 SemanticContext = OutermostContext; 821 } 822 } 823 824 if (CurContext->isDependentContext()) { 825 // If this is a dependent context, we don't want to link the friend 826 // class template to the template in scope, because that would perform 827 // checking of the template parameter lists that can't be performed 828 // until the outer context is instantiated. 829 PrevDecl = PrevClassTemplate = 0; 830 } 831 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 832 PrevDecl = PrevClassTemplate = 0; 833 834 if (PrevClassTemplate) { 835 // Ensure that the template parameter lists are compatible. 836 if (!TemplateParameterListsAreEqual(TemplateParams, 837 PrevClassTemplate->getTemplateParameters(), 838 /*Complain=*/true, 839 TPL_TemplateMatch)) 840 return true; 841 842 // C++ [temp.class]p4: 843 // In a redeclaration, partial specialization, explicit 844 // specialization or explicit instantiation of a class template, 845 // the class-key shall agree in kind with the original class 846 // template declaration (7.1.5.3). 847 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 848 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 849 Diag(KWLoc, diag::err_use_with_wrong_tag) 850 << Name 851 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 852 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 853 Kind = PrevRecordDecl->getTagKind(); 854 } 855 856 // Check for redefinition of this class template. 857 if (TUK == TUK_Definition) { 858 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 859 Diag(NameLoc, diag::err_redefinition) << Name; 860 Diag(Def->getLocation(), diag::note_previous_definition); 861 // FIXME: Would it make sense to try to "forget" the previous 862 // definition, as part of error recovery? 863 return true; 864 } 865 } 866 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 867 // Maybe we will complain about the shadowed template parameter. 868 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 869 // Just pretend that we didn't see the previous declaration. 870 PrevDecl = 0; 871 } else if (PrevDecl) { 872 // C++ [temp]p5: 873 // A class template shall not have the same name as any other 874 // template, class, function, object, enumeration, enumerator, 875 // namespace, or type in the same scope (3.3), except as specified 876 // in (14.5.4). 877 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 878 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 879 return true; 880 } 881 882 // Check the template parameter list of this declaration, possibly 883 // merging in the template parameter list from the previous class 884 // template declaration. 885 if (CheckTemplateParameterList(TemplateParams, 886 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 887 TPC_ClassTemplate)) 888 Invalid = true; 889 890 if (SS.isSet()) { 891 // If the name of the template was qualified, we must be defining the 892 // template out-of-line. 893 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 894 !(TUK == TUK_Friend && CurContext->isDependentContext())) 895 Diag(NameLoc, diag::err_member_def_does_not_match) 896 << Name << SemanticContext << SS.getRange(); 897 } 898 899 CXXRecordDecl *NewClass = 900 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 901 PrevClassTemplate? 902 PrevClassTemplate->getTemplatedDecl() : 0, 903 /*DelayTypeCreation=*/true); 904 SetNestedNameSpecifier(NewClass, SS); 905 906 ClassTemplateDecl *NewTemplate 907 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 908 DeclarationName(Name), TemplateParams, 909 NewClass, PrevClassTemplate); 910 NewClass->setDescribedClassTemplate(NewTemplate); 911 912 // Build the type for the class template declaration now. 913 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 914 T = Context.getInjectedClassNameType(NewClass, T); 915 assert(T->isDependentType() && "Class template type is not dependent?"); 916 (void)T; 917 918 // If we are providing an explicit specialization of a member that is a 919 // class template, make a note of that. 920 if (PrevClassTemplate && 921 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 922 PrevClassTemplate->setMemberSpecialization(); 923 924 // Set the access specifier. 925 if (!Invalid && TUK != TUK_Friend) 926 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 927 928 // Set the lexical context of these templates 929 NewClass->setLexicalDeclContext(CurContext); 930 NewTemplate->setLexicalDeclContext(CurContext); 931 932 if (TUK == TUK_Definition) 933 NewClass->startDefinition(); 934 935 if (Attr) 936 ProcessDeclAttributeList(S, NewClass, Attr); 937 938 if (TUK != TUK_Friend) 939 PushOnScopeChains(NewTemplate, S); 940 else { 941 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 942 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 943 NewClass->setAccess(PrevClassTemplate->getAccess()); 944 } 945 946 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 947 PrevClassTemplate != NULL); 948 949 // Friend templates are visible in fairly strange ways. 950 if (!CurContext->isDependentContext()) { 951 DeclContext *DC = SemanticContext->getRedeclContext(); 952 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 953 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 954 PushOnScopeChains(NewTemplate, EnclosingScope, 955 /* AddToContext = */ false); 956 } 957 958 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 959 NewClass->getLocation(), 960 NewTemplate, 961 /*FIXME:*/NewClass->getLocation()); 962 Friend->setAccess(AS_public); 963 CurContext->addDecl(Friend); 964 } 965 966 if (Invalid) { 967 NewTemplate->setInvalidDecl(); 968 NewClass->setInvalidDecl(); 969 } 970 return NewTemplate; 971} 972 973/// \brief Diagnose the presence of a default template argument on a 974/// template parameter, which is ill-formed in certain contexts. 975/// 976/// \returns true if the default template argument should be dropped. 977static bool DiagnoseDefaultTemplateArgument(Sema &S, 978 Sema::TemplateParamListContext TPC, 979 SourceLocation ParamLoc, 980 SourceRange DefArgRange) { 981 switch (TPC) { 982 case Sema::TPC_ClassTemplate: 983 return false; 984 985 case Sema::TPC_FunctionTemplate: 986 // C++ [temp.param]p9: 987 // A default template-argument shall not be specified in a 988 // function template declaration or a function template 989 // definition [...] 990 // (This sentence is not in C++0x, per DR226). 991 if (!S.getLangOptions().CPlusPlus0x) 992 S.Diag(ParamLoc, 993 diag::err_template_parameter_default_in_function_template) 994 << DefArgRange; 995 return false; 996 997 case Sema::TPC_ClassTemplateMember: 998 // C++0x [temp.param]p9: 999 // A default template-argument shall not be specified in the 1000 // template-parameter-lists of the definition of a member of a 1001 // class template that appears outside of the member's class. 1002 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1003 << DefArgRange; 1004 return true; 1005 1006 case Sema::TPC_FriendFunctionTemplate: 1007 // C++ [temp.param]p9: 1008 // A default template-argument shall not be specified in a 1009 // friend template declaration. 1010 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1011 << DefArgRange; 1012 return true; 1013 1014 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1015 // for friend function templates if there is only a single 1016 // declaration (and it is a definition). Strange! 1017 } 1018 1019 return false; 1020} 1021 1022/// \brief Checks the validity of a template parameter list, possibly 1023/// considering the template parameter list from a previous 1024/// declaration. 1025/// 1026/// If an "old" template parameter list is provided, it must be 1027/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1028/// template parameter list. 1029/// 1030/// \param NewParams Template parameter list for a new template 1031/// declaration. This template parameter list will be updated with any 1032/// default arguments that are carried through from the previous 1033/// template parameter list. 1034/// 1035/// \param OldParams If provided, template parameter list from a 1036/// previous declaration of the same template. Default template 1037/// arguments will be merged from the old template parameter list to 1038/// the new template parameter list. 1039/// 1040/// \param TPC Describes the context in which we are checking the given 1041/// template parameter list. 1042/// 1043/// \returns true if an error occurred, false otherwise. 1044bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1045 TemplateParameterList *OldParams, 1046 TemplateParamListContext TPC) { 1047 bool Invalid = false; 1048 1049 // C++ [temp.param]p10: 1050 // The set of default template-arguments available for use with a 1051 // template declaration or definition is obtained by merging the 1052 // default arguments from the definition (if in scope) and all 1053 // declarations in scope in the same way default function 1054 // arguments are (8.3.6). 1055 bool SawDefaultArgument = false; 1056 SourceLocation PreviousDefaultArgLoc; 1057 1058 bool SawParameterPack = false; 1059 SourceLocation ParameterPackLoc; 1060 1061 // Dummy initialization to avoid warnings. 1062 TemplateParameterList::iterator OldParam = NewParams->end(); 1063 if (OldParams) 1064 OldParam = OldParams->begin(); 1065 1066 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1067 NewParamEnd = NewParams->end(); 1068 NewParam != NewParamEnd; ++NewParam) { 1069 // Variables used to diagnose redundant default arguments 1070 bool RedundantDefaultArg = false; 1071 SourceLocation OldDefaultLoc; 1072 SourceLocation NewDefaultLoc; 1073 1074 // Variables used to diagnose missing default arguments 1075 bool MissingDefaultArg = false; 1076 1077 // C++0x [temp.param]p11: 1078 // If a template parameter of a class template is a template parameter pack, 1079 // it must be the last template parameter. 1080 if (SawParameterPack) { 1081 Diag(ParameterPackLoc, 1082 diag::err_template_param_pack_must_be_last_template_parameter); 1083 Invalid = true; 1084 } 1085 1086 if (TemplateTypeParmDecl *NewTypeParm 1087 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1088 // Check the presence of a default argument here. 1089 if (NewTypeParm->hasDefaultArgument() && 1090 DiagnoseDefaultTemplateArgument(*this, TPC, 1091 NewTypeParm->getLocation(), 1092 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1093 .getSourceRange())) 1094 NewTypeParm->removeDefaultArgument(); 1095 1096 // Merge default arguments for template type parameters. 1097 TemplateTypeParmDecl *OldTypeParm 1098 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1099 1100 if (NewTypeParm->isParameterPack()) { 1101 assert(!NewTypeParm->hasDefaultArgument() && 1102 "Parameter packs can't have a default argument!"); 1103 SawParameterPack = true; 1104 ParameterPackLoc = NewTypeParm->getLocation(); 1105 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1106 NewTypeParm->hasDefaultArgument()) { 1107 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1108 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1109 SawDefaultArgument = true; 1110 RedundantDefaultArg = true; 1111 PreviousDefaultArgLoc = NewDefaultLoc; 1112 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1113 // Merge the default argument from the old declaration to the 1114 // new declaration. 1115 SawDefaultArgument = true; 1116 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1117 true); 1118 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1119 } else if (NewTypeParm->hasDefaultArgument()) { 1120 SawDefaultArgument = true; 1121 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1122 } else if (SawDefaultArgument) 1123 MissingDefaultArg = true; 1124 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1125 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1126 // Check the presence of a default argument here. 1127 if (NewNonTypeParm->hasDefaultArgument() && 1128 DiagnoseDefaultTemplateArgument(*this, TPC, 1129 NewNonTypeParm->getLocation(), 1130 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1131 NewNonTypeParm->removeDefaultArgument(); 1132 } 1133 1134 // Merge default arguments for non-type template parameters 1135 NonTypeTemplateParmDecl *OldNonTypeParm 1136 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1137 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1138 NewNonTypeParm->hasDefaultArgument()) { 1139 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1140 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1141 SawDefaultArgument = true; 1142 RedundantDefaultArg = true; 1143 PreviousDefaultArgLoc = NewDefaultLoc; 1144 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1145 // Merge the default argument from the old declaration to the 1146 // new declaration. 1147 SawDefaultArgument = true; 1148 // FIXME: We need to create a new kind of "default argument" 1149 // expression that points to a previous template template 1150 // parameter. 1151 NewNonTypeParm->setDefaultArgument( 1152 OldNonTypeParm->getDefaultArgument(), 1153 /*Inherited=*/ true); 1154 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1155 } else if (NewNonTypeParm->hasDefaultArgument()) { 1156 SawDefaultArgument = true; 1157 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1158 } else if (SawDefaultArgument) 1159 MissingDefaultArg = true; 1160 } else { 1161 // Check the presence of a default argument here. 1162 TemplateTemplateParmDecl *NewTemplateParm 1163 = cast<TemplateTemplateParmDecl>(*NewParam); 1164 if (NewTemplateParm->hasDefaultArgument() && 1165 DiagnoseDefaultTemplateArgument(*this, TPC, 1166 NewTemplateParm->getLocation(), 1167 NewTemplateParm->getDefaultArgument().getSourceRange())) 1168 NewTemplateParm->removeDefaultArgument(); 1169 1170 // Merge default arguments for template template parameters 1171 TemplateTemplateParmDecl *OldTemplateParm 1172 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1173 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1174 NewTemplateParm->hasDefaultArgument()) { 1175 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1176 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1177 SawDefaultArgument = true; 1178 RedundantDefaultArg = true; 1179 PreviousDefaultArgLoc = NewDefaultLoc; 1180 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1181 // Merge the default argument from the old declaration to the 1182 // new declaration. 1183 SawDefaultArgument = true; 1184 // FIXME: We need to create a new kind of "default argument" expression 1185 // that points to a previous template template parameter. 1186 NewTemplateParm->setDefaultArgument( 1187 OldTemplateParm->getDefaultArgument(), 1188 /*Inherited=*/ true); 1189 PreviousDefaultArgLoc 1190 = OldTemplateParm->getDefaultArgument().getLocation(); 1191 } else if (NewTemplateParm->hasDefaultArgument()) { 1192 SawDefaultArgument = true; 1193 PreviousDefaultArgLoc 1194 = NewTemplateParm->getDefaultArgument().getLocation(); 1195 } else if (SawDefaultArgument) 1196 MissingDefaultArg = true; 1197 } 1198 1199 if (RedundantDefaultArg) { 1200 // C++ [temp.param]p12: 1201 // A template-parameter shall not be given default arguments 1202 // by two different declarations in the same scope. 1203 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1204 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1205 Invalid = true; 1206 } else if (MissingDefaultArg) { 1207 // C++ [temp.param]p11: 1208 // If a template-parameter has a default template-argument, 1209 // all subsequent template-parameters shall have a default 1210 // template-argument supplied. 1211 Diag((*NewParam)->getLocation(), 1212 diag::err_template_param_default_arg_missing); 1213 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1214 Invalid = true; 1215 } 1216 1217 // If we have an old template parameter list that we're merging 1218 // in, move on to the next parameter. 1219 if (OldParams) 1220 ++OldParam; 1221 } 1222 1223 return Invalid; 1224} 1225 1226namespace { 1227 1228/// A class which looks for a use of a certain level of template 1229/// parameter. 1230struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1231 typedef RecursiveASTVisitor<DependencyChecker> super; 1232 1233 unsigned Depth; 1234 bool Match; 1235 1236 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1237 NamedDecl *ND = Params->getParam(0); 1238 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1239 Depth = PD->getDepth(); 1240 } else if (NonTypeTemplateParmDecl *PD = 1241 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1242 Depth = PD->getDepth(); 1243 } else { 1244 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1245 } 1246 } 1247 1248 bool Matches(unsigned ParmDepth) { 1249 if (ParmDepth >= Depth) { 1250 Match = true; 1251 return true; 1252 } 1253 return false; 1254 } 1255 1256 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1257 return !Matches(T->getDepth()); 1258 } 1259 1260 bool TraverseTemplateName(TemplateName N) { 1261 if (TemplateTemplateParmDecl *PD = 1262 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1263 if (Matches(PD->getDepth())) return false; 1264 return super::TraverseTemplateName(N); 1265 } 1266 1267 bool VisitDeclRefExpr(DeclRefExpr *E) { 1268 if (NonTypeTemplateParmDecl *PD = 1269 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1270 if (PD->getDepth() == Depth) { 1271 Match = true; 1272 return false; 1273 } 1274 } 1275 return super::VisitDeclRefExpr(E); 1276 } 1277}; 1278} 1279 1280/// Determines whether a template-id depends on the given parameter 1281/// list. 1282static bool 1283DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1284 TemplateParameterList *Params) { 1285 DependencyChecker Checker(Params); 1286 Checker.TraverseType(QualType(TemplateId, 0)); 1287 return Checker.Match; 1288} 1289 1290/// \brief Match the given template parameter lists to the given scope 1291/// specifier, returning the template parameter list that applies to the 1292/// name. 1293/// 1294/// \param DeclStartLoc the start of the declaration that has a scope 1295/// specifier or a template parameter list. 1296/// 1297/// \param SS the scope specifier that will be matched to the given template 1298/// parameter lists. This scope specifier precedes a qualified name that is 1299/// being declared. 1300/// 1301/// \param ParamLists the template parameter lists, from the outermost to the 1302/// innermost template parameter lists. 1303/// 1304/// \param NumParamLists the number of template parameter lists in ParamLists. 1305/// 1306/// \param IsFriend Whether to apply the slightly different rules for 1307/// matching template parameters to scope specifiers in friend 1308/// declarations. 1309/// 1310/// \param IsExplicitSpecialization will be set true if the entity being 1311/// declared is an explicit specialization, false otherwise. 1312/// 1313/// \returns the template parameter list, if any, that corresponds to the 1314/// name that is preceded by the scope specifier @p SS. This template 1315/// parameter list may be have template parameters (if we're declaring a 1316/// template) or may have no template parameters (if we're declaring a 1317/// template specialization), or may be NULL (if we were's declaring isn't 1318/// itself a template). 1319TemplateParameterList * 1320Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1321 const CXXScopeSpec &SS, 1322 TemplateParameterList **ParamLists, 1323 unsigned NumParamLists, 1324 bool IsFriend, 1325 bool &IsExplicitSpecialization, 1326 bool &Invalid) { 1327 IsExplicitSpecialization = false; 1328 1329 // Find the template-ids that occur within the nested-name-specifier. These 1330 // template-ids will match up with the template parameter lists. 1331 llvm::SmallVector<const TemplateSpecializationType *, 4> 1332 TemplateIdsInSpecifier; 1333 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1334 ExplicitSpecializationsInSpecifier; 1335 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1336 NNS; NNS = NNS->getPrefix()) { 1337 const Type *T = NNS->getAsType(); 1338 if (!T) break; 1339 1340 // C++0x [temp.expl.spec]p17: 1341 // A member or a member template may be nested within many 1342 // enclosing class templates. In an explicit specialization for 1343 // such a member, the member declaration shall be preceded by a 1344 // template<> for each enclosing class template that is 1345 // explicitly specialized. 1346 // 1347 // Following the existing practice of GNU and EDG, we allow a typedef of a 1348 // template specialization type. 1349 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1350 T = TT->LookThroughTypedefs().getTypePtr(); 1351 1352 if (const TemplateSpecializationType *SpecType 1353 = dyn_cast<TemplateSpecializationType>(T)) { 1354 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1355 if (!Template) 1356 continue; // FIXME: should this be an error? probably... 1357 1358 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1359 ClassTemplateSpecializationDecl *SpecDecl 1360 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1361 // If the nested name specifier refers to an explicit specialization, 1362 // we don't need a template<> header. 1363 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1364 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1365 continue; 1366 } 1367 } 1368 1369 TemplateIdsInSpecifier.push_back(SpecType); 1370 } 1371 } 1372 1373 // Reverse the list of template-ids in the scope specifier, so that we can 1374 // more easily match up the template-ids and the template parameter lists. 1375 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1376 1377 SourceLocation FirstTemplateLoc = DeclStartLoc; 1378 if (NumParamLists) 1379 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1380 1381 // Match the template-ids found in the specifier to the template parameter 1382 // lists. 1383 unsigned ParamIdx = 0, TemplateIdx = 0; 1384 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1385 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1386 const TemplateSpecializationType *TemplateId 1387 = TemplateIdsInSpecifier[TemplateIdx]; 1388 bool DependentTemplateId = TemplateId->isDependentType(); 1389 1390 // In friend declarations we can have template-ids which don't 1391 // depend on the corresponding template parameter lists. But 1392 // assume that empty parameter lists are supposed to match this 1393 // template-id. 1394 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1395 if (!DependentTemplateId || 1396 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1397 continue; 1398 } 1399 1400 if (ParamIdx >= NumParamLists) { 1401 // We have a template-id without a corresponding template parameter 1402 // list. 1403 1404 // ...which is fine if this is a friend declaration. 1405 if (IsFriend) { 1406 IsExplicitSpecialization = true; 1407 break; 1408 } 1409 1410 if (DependentTemplateId) { 1411 // FIXME: the location information here isn't great. 1412 Diag(SS.getRange().getBegin(), 1413 diag::err_template_spec_needs_template_parameters) 1414 << QualType(TemplateId, 0) 1415 << SS.getRange(); 1416 Invalid = true; 1417 } else { 1418 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1419 << SS.getRange() 1420 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1421 IsExplicitSpecialization = true; 1422 } 1423 return 0; 1424 } 1425 1426 // Check the template parameter list against its corresponding template-id. 1427 if (DependentTemplateId) { 1428 TemplateParameterList *ExpectedTemplateParams = 0; 1429 1430 // Are there cases in (e.g.) friends where this won't match? 1431 if (const InjectedClassNameType *Injected 1432 = TemplateId->getAs<InjectedClassNameType>()) { 1433 CXXRecordDecl *Record = Injected->getDecl(); 1434 if (ClassTemplatePartialSpecializationDecl *Partial = 1435 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1436 ExpectedTemplateParams = Partial->getTemplateParameters(); 1437 else 1438 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1439 ->getTemplateParameters(); 1440 } 1441 1442 if (ExpectedTemplateParams) 1443 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1444 ExpectedTemplateParams, 1445 true, TPL_TemplateMatch); 1446 1447 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1448 TPC_ClassTemplateMember); 1449 } else if (ParamLists[ParamIdx]->size() > 0) 1450 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1451 diag::err_template_param_list_matches_nontemplate) 1452 << TemplateId 1453 << ParamLists[ParamIdx]->getSourceRange(); 1454 else 1455 IsExplicitSpecialization = true; 1456 1457 ++ParamIdx; 1458 } 1459 1460 // If there were at least as many template-ids as there were template 1461 // parameter lists, then there are no template parameter lists remaining for 1462 // the declaration itself. 1463 if (ParamIdx >= NumParamLists) 1464 return 0; 1465 1466 // If there were too many template parameter lists, complain about that now. 1467 if (ParamIdx != NumParamLists - 1) { 1468 while (ParamIdx < NumParamLists - 1) { 1469 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1470 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1471 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1472 : diag::err_template_spec_extra_headers) 1473 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1474 ParamLists[ParamIdx]->getRAngleLoc()); 1475 1476 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1477 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1478 diag::note_explicit_template_spec_does_not_need_header) 1479 << ExplicitSpecializationsInSpecifier.back(); 1480 ExplicitSpecializationsInSpecifier.pop_back(); 1481 } 1482 1483 // We have a template parameter list with no corresponding scope, which 1484 // means that the resulting template declaration can't be instantiated 1485 // properly (we'll end up with dependent nodes when we shouldn't). 1486 if (!isExplicitSpecHeader) 1487 Invalid = true; 1488 1489 ++ParamIdx; 1490 } 1491 } 1492 1493 // Return the last template parameter list, which corresponds to the 1494 // entity being declared. 1495 return ParamLists[NumParamLists - 1]; 1496} 1497 1498QualType Sema::CheckTemplateIdType(TemplateName Name, 1499 SourceLocation TemplateLoc, 1500 const TemplateArgumentListInfo &TemplateArgs) { 1501 TemplateDecl *Template = Name.getAsTemplateDecl(); 1502 if (!Template) { 1503 // The template name does not resolve to a template, so we just 1504 // build a dependent template-id type. 1505 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1506 } 1507 1508 // Check that the template argument list is well-formed for this 1509 // template. 1510 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1511 TemplateArgs.size()); 1512 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1513 false, Converted)) 1514 return QualType(); 1515 1516 assert((Converted.structuredSize() == 1517 Template->getTemplateParameters()->size()) && 1518 "Converted template argument list is too short!"); 1519 1520 QualType CanonType; 1521 1522 if (Name.isDependent() || 1523 TemplateSpecializationType::anyDependentTemplateArguments( 1524 TemplateArgs)) { 1525 // This class template specialization is a dependent 1526 // type. Therefore, its canonical type is another class template 1527 // specialization type that contains all of the converted 1528 // arguments in canonical form. This ensures that, e.g., A<T> and 1529 // A<T, T> have identical types when A is declared as: 1530 // 1531 // template<typename T, typename U = T> struct A; 1532 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1533 CanonType = Context.getTemplateSpecializationType(CanonName, 1534 Converted.getFlatArguments(), 1535 Converted.flatSize()); 1536 1537 // FIXME: CanonType is not actually the canonical type, and unfortunately 1538 // it is a TemplateSpecializationType that we will never use again. 1539 // In the future, we need to teach getTemplateSpecializationType to only 1540 // build the canonical type and return that to us. 1541 CanonType = Context.getCanonicalType(CanonType); 1542 1543 // This might work out to be a current instantiation, in which 1544 // case the canonical type needs to be the InjectedClassNameType. 1545 // 1546 // TODO: in theory this could be a simple hashtable lookup; most 1547 // changes to CurContext don't change the set of current 1548 // instantiations. 1549 if (isa<ClassTemplateDecl>(Template)) { 1550 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1551 // If we get out to a namespace, we're done. 1552 if (Ctx->isFileContext()) break; 1553 1554 // If this isn't a record, keep looking. 1555 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1556 if (!Record) continue; 1557 1558 // Look for one of the two cases with InjectedClassNameTypes 1559 // and check whether it's the same template. 1560 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1561 !Record->getDescribedClassTemplate()) 1562 continue; 1563 1564 // Fetch the injected class name type and check whether its 1565 // injected type is equal to the type we just built. 1566 QualType ICNT = Context.getTypeDeclType(Record); 1567 QualType Injected = cast<InjectedClassNameType>(ICNT) 1568 ->getInjectedSpecializationType(); 1569 1570 if (CanonType != Injected->getCanonicalTypeInternal()) 1571 continue; 1572 1573 // If so, the canonical type of this TST is the injected 1574 // class name type of the record we just found. 1575 assert(ICNT.isCanonical()); 1576 CanonType = ICNT; 1577 break; 1578 } 1579 } 1580 } else if (ClassTemplateDecl *ClassTemplate 1581 = dyn_cast<ClassTemplateDecl>(Template)) { 1582 // Find the class template specialization declaration that 1583 // corresponds to these arguments. 1584 void *InsertPos = 0; 1585 ClassTemplateSpecializationDecl *Decl 1586 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 1587 Converted.flatSize(), InsertPos); 1588 if (!Decl) { 1589 // This is the first time we have referenced this class template 1590 // specialization. Create the canonical declaration and add it to 1591 // the set of specializations. 1592 Decl = ClassTemplateSpecializationDecl::Create(Context, 1593 ClassTemplate->getTemplatedDecl()->getTagKind(), 1594 ClassTemplate->getDeclContext(), 1595 ClassTemplate->getLocation(), 1596 ClassTemplate, 1597 Converted, 0); 1598 ClassTemplate->AddSpecialization(Decl, InsertPos); 1599 Decl->setLexicalDeclContext(CurContext); 1600 } 1601 1602 CanonType = Context.getTypeDeclType(Decl); 1603 assert(isa<RecordType>(CanonType) && 1604 "type of non-dependent specialization is not a RecordType"); 1605 } 1606 1607 // Build the fully-sugared type for this class template 1608 // specialization, which refers back to the class template 1609 // specialization we created or found. 1610 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1611} 1612 1613TypeResult 1614Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1615 SourceLocation LAngleLoc, 1616 ASTTemplateArgsPtr TemplateArgsIn, 1617 SourceLocation RAngleLoc) { 1618 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1619 1620 // Translate the parser's template argument list in our AST format. 1621 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1622 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1623 1624 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1625 TemplateArgsIn.release(); 1626 1627 if (Result.isNull()) 1628 return true; 1629 1630 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1631 TemplateSpecializationTypeLoc TL 1632 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1633 TL.setTemplateNameLoc(TemplateLoc); 1634 TL.setLAngleLoc(LAngleLoc); 1635 TL.setRAngleLoc(RAngleLoc); 1636 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1637 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1638 1639 return CreateParsedType(Result, DI); 1640} 1641 1642TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1643 TagUseKind TUK, 1644 TypeSpecifierType TagSpec, 1645 SourceLocation TagLoc) { 1646 if (TypeResult.isInvalid()) 1647 return ::TypeResult(); 1648 1649 // FIXME: preserve source info, ideally without copying the DI. 1650 TypeSourceInfo *DI; 1651 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1652 1653 // Verify the tag specifier. 1654 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1655 1656 if (const RecordType *RT = Type->getAs<RecordType>()) { 1657 RecordDecl *D = RT->getDecl(); 1658 1659 IdentifierInfo *Id = D->getIdentifier(); 1660 assert(Id && "templated class must have an identifier"); 1661 1662 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1663 Diag(TagLoc, diag::err_use_with_wrong_tag) 1664 << Type 1665 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1666 Diag(D->getLocation(), diag::note_previous_use); 1667 } 1668 } 1669 1670 ElaboratedTypeKeyword Keyword 1671 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1672 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1673 1674 return ParsedType::make(ElabType); 1675} 1676 1677ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1678 LookupResult &R, 1679 bool RequiresADL, 1680 const TemplateArgumentListInfo &TemplateArgs) { 1681 // FIXME: Can we do any checking at this point? I guess we could check the 1682 // template arguments that we have against the template name, if the template 1683 // name refers to a single template. That's not a terribly common case, 1684 // though. 1685 1686 // These should be filtered out by our callers. 1687 assert(!R.empty() && "empty lookup results when building templateid"); 1688 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1689 1690 NestedNameSpecifier *Qualifier = 0; 1691 SourceRange QualifierRange; 1692 if (SS.isSet()) { 1693 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1694 QualifierRange = SS.getRange(); 1695 } 1696 1697 // We don't want lookup warnings at this point. 1698 R.suppressDiagnostics(); 1699 1700 bool Dependent 1701 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1702 &TemplateArgs); 1703 UnresolvedLookupExpr *ULE 1704 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1705 Qualifier, QualifierRange, 1706 R.getLookupNameInfo(), 1707 RequiresADL, TemplateArgs, 1708 R.begin(), R.end()); 1709 1710 return Owned(ULE); 1711} 1712 1713// We actually only call this from template instantiation. 1714ExprResult 1715Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1716 const DeclarationNameInfo &NameInfo, 1717 const TemplateArgumentListInfo &TemplateArgs) { 1718 DeclContext *DC; 1719 if (!(DC = computeDeclContext(SS, false)) || 1720 DC->isDependentContext() || 1721 RequireCompleteDeclContext(SS, DC)) 1722 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1723 1724 bool MemberOfUnknownSpecialization; 1725 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1726 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1727 MemberOfUnknownSpecialization); 1728 1729 if (R.isAmbiguous()) 1730 return ExprError(); 1731 1732 if (R.empty()) { 1733 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1734 << NameInfo.getName() << SS.getRange(); 1735 return ExprError(); 1736 } 1737 1738 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1739 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1740 << (NestedNameSpecifier*) SS.getScopeRep() 1741 << NameInfo.getName() << SS.getRange(); 1742 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1743 return ExprError(); 1744 } 1745 1746 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1747} 1748 1749/// \brief Form a dependent template name. 1750/// 1751/// This action forms a dependent template name given the template 1752/// name and its (presumably dependent) scope specifier. For 1753/// example, given "MetaFun::template apply", the scope specifier \p 1754/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1755/// of the "template" keyword, and "apply" is the \p Name. 1756TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1757 SourceLocation TemplateKWLoc, 1758 CXXScopeSpec &SS, 1759 UnqualifiedId &Name, 1760 ParsedType ObjectType, 1761 bool EnteringContext, 1762 TemplateTy &Result) { 1763 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1764 !getLangOptions().CPlusPlus0x) 1765 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1766 << FixItHint::CreateRemoval(TemplateKWLoc); 1767 1768 DeclContext *LookupCtx = 0; 1769 if (SS.isSet()) 1770 LookupCtx = computeDeclContext(SS, EnteringContext); 1771 if (!LookupCtx && ObjectType) 1772 LookupCtx = computeDeclContext(ObjectType.get()); 1773 if (LookupCtx) { 1774 // C++0x [temp.names]p5: 1775 // If a name prefixed by the keyword template is not the name of 1776 // a template, the program is ill-formed. [Note: the keyword 1777 // template may not be applied to non-template members of class 1778 // templates. -end note ] [ Note: as is the case with the 1779 // typename prefix, the template prefix is allowed in cases 1780 // where it is not strictly necessary; i.e., when the 1781 // nested-name-specifier or the expression on the left of the -> 1782 // or . is not dependent on a template-parameter, or the use 1783 // does not appear in the scope of a template. -end note] 1784 // 1785 // Note: C++03 was more strict here, because it banned the use of 1786 // the "template" keyword prior to a template-name that was not a 1787 // dependent name. C++ DR468 relaxed this requirement (the 1788 // "template" keyword is now permitted). We follow the C++0x 1789 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1790 bool MemberOfUnknownSpecialization; 1791 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1792 ObjectType, EnteringContext, Result, 1793 MemberOfUnknownSpecialization); 1794 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1795 isa<CXXRecordDecl>(LookupCtx) && 1796 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1797 // This is a dependent template. Handle it below. 1798 } else if (TNK == TNK_Non_template) { 1799 Diag(Name.getSourceRange().getBegin(), 1800 diag::err_template_kw_refers_to_non_template) 1801 << GetNameFromUnqualifiedId(Name).getName() 1802 << Name.getSourceRange() 1803 << TemplateKWLoc; 1804 return TNK_Non_template; 1805 } else { 1806 // We found something; return it. 1807 return TNK; 1808 } 1809 } 1810 1811 NestedNameSpecifier *Qualifier 1812 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1813 1814 switch (Name.getKind()) { 1815 case UnqualifiedId::IK_Identifier: 1816 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1817 Name.Identifier)); 1818 return TNK_Dependent_template_name; 1819 1820 case UnqualifiedId::IK_OperatorFunctionId: 1821 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1822 Name.OperatorFunctionId.Operator)); 1823 return TNK_Dependent_template_name; 1824 1825 case UnqualifiedId::IK_LiteralOperatorId: 1826 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1827 1828 default: 1829 break; 1830 } 1831 1832 Diag(Name.getSourceRange().getBegin(), 1833 diag::err_template_kw_refers_to_non_template) 1834 << GetNameFromUnqualifiedId(Name).getName() 1835 << Name.getSourceRange() 1836 << TemplateKWLoc; 1837 return TNK_Non_template; 1838} 1839 1840bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1841 const TemplateArgumentLoc &AL, 1842 TemplateArgumentListBuilder &Converted) { 1843 const TemplateArgument &Arg = AL.getArgument(); 1844 1845 // Check template type parameter. 1846 switch(Arg.getKind()) { 1847 case TemplateArgument::Type: 1848 // C++ [temp.arg.type]p1: 1849 // A template-argument for a template-parameter which is a 1850 // type shall be a type-id. 1851 break; 1852 case TemplateArgument::Template: { 1853 // We have a template type parameter but the template argument 1854 // is a template without any arguments. 1855 SourceRange SR = AL.getSourceRange(); 1856 TemplateName Name = Arg.getAsTemplate(); 1857 Diag(SR.getBegin(), diag::err_template_missing_args) 1858 << Name << SR; 1859 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1860 Diag(Decl->getLocation(), diag::note_template_decl_here); 1861 1862 return true; 1863 } 1864 default: { 1865 // We have a template type parameter but the template argument 1866 // is not a type. 1867 SourceRange SR = AL.getSourceRange(); 1868 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1869 Diag(Param->getLocation(), diag::note_template_param_here); 1870 1871 return true; 1872 } 1873 } 1874 1875 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1876 return true; 1877 1878 // Add the converted template type argument. 1879 Converted.Append( 1880 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1881 return false; 1882} 1883 1884/// \brief Substitute template arguments into the default template argument for 1885/// the given template type parameter. 1886/// 1887/// \param SemaRef the semantic analysis object for which we are performing 1888/// the substitution. 1889/// 1890/// \param Template the template that we are synthesizing template arguments 1891/// for. 1892/// 1893/// \param TemplateLoc the location of the template name that started the 1894/// template-id we are checking. 1895/// 1896/// \param RAngleLoc the location of the right angle bracket ('>') that 1897/// terminates the template-id. 1898/// 1899/// \param Param the template template parameter whose default we are 1900/// substituting into. 1901/// 1902/// \param Converted the list of template arguments provided for template 1903/// parameters that precede \p Param in the template parameter list. 1904/// 1905/// \returns the substituted template argument, or NULL if an error occurred. 1906static TypeSourceInfo * 1907SubstDefaultTemplateArgument(Sema &SemaRef, 1908 TemplateDecl *Template, 1909 SourceLocation TemplateLoc, 1910 SourceLocation RAngleLoc, 1911 TemplateTypeParmDecl *Param, 1912 TemplateArgumentListBuilder &Converted) { 1913 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1914 1915 // If the argument type is dependent, instantiate it now based 1916 // on the previously-computed template arguments. 1917 if (ArgType->getType()->isDependentType()) { 1918 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1919 /*TakeArgs=*/false); 1920 1921 MultiLevelTemplateArgumentList AllTemplateArgs 1922 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1923 1924 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1925 Template, Converted.getFlatArguments(), 1926 Converted.flatSize(), 1927 SourceRange(TemplateLoc, RAngleLoc)); 1928 1929 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1930 Param->getDefaultArgumentLoc(), 1931 Param->getDeclName()); 1932 } 1933 1934 return ArgType; 1935} 1936 1937/// \brief Substitute template arguments into the default template argument for 1938/// the given non-type template parameter. 1939/// 1940/// \param SemaRef the semantic analysis object for which we are performing 1941/// the substitution. 1942/// 1943/// \param Template the template that we are synthesizing template arguments 1944/// for. 1945/// 1946/// \param TemplateLoc the location of the template name that started the 1947/// template-id we are checking. 1948/// 1949/// \param RAngleLoc the location of the right angle bracket ('>') that 1950/// terminates the template-id. 1951/// 1952/// \param Param the non-type template parameter whose default we are 1953/// substituting into. 1954/// 1955/// \param Converted the list of template arguments provided for template 1956/// parameters that precede \p Param in the template parameter list. 1957/// 1958/// \returns the substituted template argument, or NULL if an error occurred. 1959static ExprResult 1960SubstDefaultTemplateArgument(Sema &SemaRef, 1961 TemplateDecl *Template, 1962 SourceLocation TemplateLoc, 1963 SourceLocation RAngleLoc, 1964 NonTypeTemplateParmDecl *Param, 1965 TemplateArgumentListBuilder &Converted) { 1966 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1967 /*TakeArgs=*/false); 1968 1969 MultiLevelTemplateArgumentList AllTemplateArgs 1970 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1971 1972 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1973 Template, Converted.getFlatArguments(), 1974 Converted.flatSize(), 1975 SourceRange(TemplateLoc, RAngleLoc)); 1976 1977 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1978} 1979 1980/// \brief Substitute template arguments into the default template argument for 1981/// the given template template parameter. 1982/// 1983/// \param SemaRef the semantic analysis object for which we are performing 1984/// the substitution. 1985/// 1986/// \param Template the template that we are synthesizing template arguments 1987/// for. 1988/// 1989/// \param TemplateLoc the location of the template name that started the 1990/// template-id we are checking. 1991/// 1992/// \param RAngleLoc the location of the right angle bracket ('>') that 1993/// terminates the template-id. 1994/// 1995/// \param Param the template template parameter whose default we are 1996/// substituting into. 1997/// 1998/// \param Converted the list of template arguments provided for template 1999/// parameters that precede \p Param in the template parameter list. 2000/// 2001/// \returns the substituted template argument, or NULL if an error occurred. 2002static TemplateName 2003SubstDefaultTemplateArgument(Sema &SemaRef, 2004 TemplateDecl *Template, 2005 SourceLocation TemplateLoc, 2006 SourceLocation RAngleLoc, 2007 TemplateTemplateParmDecl *Param, 2008 TemplateArgumentListBuilder &Converted) { 2009 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 2010 /*TakeArgs=*/false); 2011 2012 MultiLevelTemplateArgumentList AllTemplateArgs 2013 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2014 2015 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2016 Template, Converted.getFlatArguments(), 2017 Converted.flatSize(), 2018 SourceRange(TemplateLoc, RAngleLoc)); 2019 2020 return SemaRef.SubstTemplateName( 2021 Param->getDefaultArgument().getArgument().getAsTemplate(), 2022 Param->getDefaultArgument().getTemplateNameLoc(), 2023 AllTemplateArgs); 2024} 2025 2026/// \brief If the given template parameter has a default template 2027/// argument, substitute into that default template argument and 2028/// return the corresponding template argument. 2029TemplateArgumentLoc 2030Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2031 SourceLocation TemplateLoc, 2032 SourceLocation RAngleLoc, 2033 Decl *Param, 2034 TemplateArgumentListBuilder &Converted) { 2035 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2036 if (!TypeParm->hasDefaultArgument()) 2037 return TemplateArgumentLoc(); 2038 2039 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2040 TemplateLoc, 2041 RAngleLoc, 2042 TypeParm, 2043 Converted); 2044 if (DI) 2045 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2046 2047 return TemplateArgumentLoc(); 2048 } 2049 2050 if (NonTypeTemplateParmDecl *NonTypeParm 2051 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2052 if (!NonTypeParm->hasDefaultArgument()) 2053 return TemplateArgumentLoc(); 2054 2055 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2056 TemplateLoc, 2057 RAngleLoc, 2058 NonTypeParm, 2059 Converted); 2060 if (Arg.isInvalid()) 2061 return TemplateArgumentLoc(); 2062 2063 Expr *ArgE = Arg.takeAs<Expr>(); 2064 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2065 } 2066 2067 TemplateTemplateParmDecl *TempTempParm 2068 = cast<TemplateTemplateParmDecl>(Param); 2069 if (!TempTempParm->hasDefaultArgument()) 2070 return TemplateArgumentLoc(); 2071 2072 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2073 TemplateLoc, 2074 RAngleLoc, 2075 TempTempParm, 2076 Converted); 2077 if (TName.isNull()) 2078 return TemplateArgumentLoc(); 2079 2080 return TemplateArgumentLoc(TemplateArgument(TName), 2081 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2082 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2083} 2084 2085/// \brief Check that the given template argument corresponds to the given 2086/// template parameter. 2087bool Sema::CheckTemplateArgument(NamedDecl *Param, 2088 const TemplateArgumentLoc &Arg, 2089 TemplateDecl *Template, 2090 SourceLocation TemplateLoc, 2091 SourceLocation RAngleLoc, 2092 TemplateArgumentListBuilder &Converted, 2093 CheckTemplateArgumentKind CTAK) { 2094 // Check template type parameters. 2095 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2096 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2097 2098 // Check non-type template parameters. 2099 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2100 // Do substitution on the type of the non-type template parameter 2101 // with the template arguments we've seen thus far. 2102 QualType NTTPType = NTTP->getType(); 2103 if (NTTPType->isDependentType()) { 2104 // Do substitution on the type of the non-type template parameter. 2105 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2106 NTTP, Converted.getFlatArguments(), 2107 Converted.flatSize(), 2108 SourceRange(TemplateLoc, RAngleLoc)); 2109 2110 TemplateArgumentList TemplateArgs(Context, Converted, 2111 /*TakeArgs=*/false); 2112 NTTPType = SubstType(NTTPType, 2113 MultiLevelTemplateArgumentList(TemplateArgs), 2114 NTTP->getLocation(), 2115 NTTP->getDeclName()); 2116 // If that worked, check the non-type template parameter type 2117 // for validity. 2118 if (!NTTPType.isNull()) 2119 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2120 NTTP->getLocation()); 2121 if (NTTPType.isNull()) 2122 return true; 2123 } 2124 2125 switch (Arg.getArgument().getKind()) { 2126 case TemplateArgument::Null: 2127 assert(false && "Should never see a NULL template argument here"); 2128 return true; 2129 2130 case TemplateArgument::Expression: { 2131 Expr *E = Arg.getArgument().getAsExpr(); 2132 TemplateArgument Result; 2133 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2134 return true; 2135 2136 Converted.Append(Result); 2137 break; 2138 } 2139 2140 case TemplateArgument::Declaration: 2141 case TemplateArgument::Integral: 2142 // We've already checked this template argument, so just copy 2143 // it to the list of converted arguments. 2144 Converted.Append(Arg.getArgument()); 2145 break; 2146 2147 case TemplateArgument::Template: 2148 // We were given a template template argument. It may not be ill-formed; 2149 // see below. 2150 if (DependentTemplateName *DTN 2151 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2152 // We have a template argument such as \c T::template X, which we 2153 // parsed as a template template argument. However, since we now 2154 // know that we need a non-type template argument, convert this 2155 // template name into an expression. 2156 2157 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2158 Arg.getTemplateNameLoc()); 2159 2160 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2161 DTN->getQualifier(), 2162 Arg.getTemplateQualifierRange(), 2163 NameInfo); 2164 2165 TemplateArgument Result; 2166 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2167 return true; 2168 2169 Converted.Append(Result); 2170 break; 2171 } 2172 2173 // We have a template argument that actually does refer to a class 2174 // template, template alias, or template template parameter, and 2175 // therefore cannot be a non-type template argument. 2176 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2177 << Arg.getSourceRange(); 2178 2179 Diag(Param->getLocation(), diag::note_template_param_here); 2180 return true; 2181 2182 case TemplateArgument::Type: { 2183 // We have a non-type template parameter but the template 2184 // argument is a type. 2185 2186 // C++ [temp.arg]p2: 2187 // In a template-argument, an ambiguity between a type-id and 2188 // an expression is resolved to a type-id, regardless of the 2189 // form of the corresponding template-parameter. 2190 // 2191 // We warn specifically about this case, since it can be rather 2192 // confusing for users. 2193 QualType T = Arg.getArgument().getAsType(); 2194 SourceRange SR = Arg.getSourceRange(); 2195 if (T->isFunctionType()) 2196 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2197 else 2198 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2199 Diag(Param->getLocation(), diag::note_template_param_here); 2200 return true; 2201 } 2202 2203 case TemplateArgument::Pack: 2204 llvm_unreachable("Caller must expand template argument packs"); 2205 break; 2206 } 2207 2208 return false; 2209 } 2210 2211 2212 // Check template template parameters. 2213 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2214 2215 // Substitute into the template parameter list of the template 2216 // template parameter, since previously-supplied template arguments 2217 // may appear within the template template parameter. 2218 { 2219 // Set up a template instantiation context. 2220 LocalInstantiationScope Scope(*this); 2221 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2222 TempParm, Converted.getFlatArguments(), 2223 Converted.flatSize(), 2224 SourceRange(TemplateLoc, RAngleLoc)); 2225 2226 TemplateArgumentList TemplateArgs(Context, Converted, 2227 /*TakeArgs=*/false); 2228 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2229 SubstDecl(TempParm, CurContext, 2230 MultiLevelTemplateArgumentList(TemplateArgs))); 2231 if (!TempParm) 2232 return true; 2233 2234 // FIXME: TempParam is leaked. 2235 } 2236 2237 switch (Arg.getArgument().getKind()) { 2238 case TemplateArgument::Null: 2239 assert(false && "Should never see a NULL template argument here"); 2240 return true; 2241 2242 case TemplateArgument::Template: 2243 if (CheckTemplateArgument(TempParm, Arg)) 2244 return true; 2245 2246 Converted.Append(Arg.getArgument()); 2247 break; 2248 2249 case TemplateArgument::Expression: 2250 case TemplateArgument::Type: 2251 // We have a template template parameter but the template 2252 // argument does not refer to a template. 2253 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2254 return true; 2255 2256 case TemplateArgument::Declaration: 2257 llvm_unreachable( 2258 "Declaration argument with template template parameter"); 2259 break; 2260 case TemplateArgument::Integral: 2261 llvm_unreachable( 2262 "Integral argument with template template parameter"); 2263 break; 2264 2265 case TemplateArgument::Pack: 2266 llvm_unreachable("Caller must expand template argument packs"); 2267 break; 2268 } 2269 2270 return false; 2271} 2272 2273/// \brief Check that the given template argument list is well-formed 2274/// for specializing the given template. 2275bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2276 SourceLocation TemplateLoc, 2277 const TemplateArgumentListInfo &TemplateArgs, 2278 bool PartialTemplateArgs, 2279 TemplateArgumentListBuilder &Converted) { 2280 TemplateParameterList *Params = Template->getTemplateParameters(); 2281 unsigned NumParams = Params->size(); 2282 unsigned NumArgs = TemplateArgs.size(); 2283 bool Invalid = false; 2284 2285 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2286 2287 bool HasParameterPack = 2288 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2289 2290 if ((NumArgs > NumParams && !HasParameterPack) || 2291 (NumArgs < Params->getMinRequiredArguments() && 2292 !PartialTemplateArgs)) { 2293 // FIXME: point at either the first arg beyond what we can handle, 2294 // or the '>', depending on whether we have too many or too few 2295 // arguments. 2296 SourceRange Range; 2297 if (NumArgs > NumParams) 2298 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2299 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2300 << (NumArgs > NumParams) 2301 << (isa<ClassTemplateDecl>(Template)? 0 : 2302 isa<FunctionTemplateDecl>(Template)? 1 : 2303 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2304 << Template << Range; 2305 Diag(Template->getLocation(), diag::note_template_decl_here) 2306 << Params->getSourceRange(); 2307 Invalid = true; 2308 } 2309 2310 // C++ [temp.arg]p1: 2311 // [...] The type and form of each template-argument specified in 2312 // a template-id shall match the type and form specified for the 2313 // corresponding parameter declared by the template in its 2314 // template-parameter-list. 2315 unsigned ArgIdx = 0; 2316 for (TemplateParameterList::iterator Param = Params->begin(), 2317 ParamEnd = Params->end(); 2318 Param != ParamEnd; ++Param, ++ArgIdx) { 2319 if (ArgIdx > NumArgs && PartialTemplateArgs) 2320 break; 2321 2322 // If we have a template parameter pack, check every remaining template 2323 // argument against that template parameter pack. 2324 if ((*Param)->isTemplateParameterPack()) { 2325 Converted.BeginPack(); 2326 for (; ArgIdx < NumArgs; ++ArgIdx) { 2327 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2328 TemplateLoc, RAngleLoc, Converted)) { 2329 Invalid = true; 2330 break; 2331 } 2332 } 2333 Converted.EndPack(); 2334 continue; 2335 } 2336 2337 if (ArgIdx < NumArgs) { 2338 // Check the template argument we were given. 2339 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2340 TemplateLoc, RAngleLoc, Converted)) 2341 return true; 2342 2343 continue; 2344 } 2345 2346 // We have a default template argument that we will use. 2347 TemplateArgumentLoc Arg; 2348 2349 // Retrieve the default template argument from the template 2350 // parameter. For each kind of template parameter, we substitute the 2351 // template arguments provided thus far and any "outer" template arguments 2352 // (when the template parameter was part of a nested template) into 2353 // the default argument. 2354 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2355 if (!TTP->hasDefaultArgument()) { 2356 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2357 break; 2358 } 2359 2360 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2361 Template, 2362 TemplateLoc, 2363 RAngleLoc, 2364 TTP, 2365 Converted); 2366 if (!ArgType) 2367 return true; 2368 2369 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2370 ArgType); 2371 } else if (NonTypeTemplateParmDecl *NTTP 2372 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2373 if (!NTTP->hasDefaultArgument()) { 2374 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2375 break; 2376 } 2377 2378 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2379 TemplateLoc, 2380 RAngleLoc, 2381 NTTP, 2382 Converted); 2383 if (E.isInvalid()) 2384 return true; 2385 2386 Expr *Ex = E.takeAs<Expr>(); 2387 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2388 } else { 2389 TemplateTemplateParmDecl *TempParm 2390 = cast<TemplateTemplateParmDecl>(*Param); 2391 2392 if (!TempParm->hasDefaultArgument()) { 2393 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2394 break; 2395 } 2396 2397 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2398 TemplateLoc, 2399 RAngleLoc, 2400 TempParm, 2401 Converted); 2402 if (Name.isNull()) 2403 return true; 2404 2405 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2406 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2407 TempParm->getDefaultArgument().getTemplateNameLoc()); 2408 } 2409 2410 // Introduce an instantiation record that describes where we are using 2411 // the default template argument. 2412 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2413 Converted.getFlatArguments(), 2414 Converted.flatSize(), 2415 SourceRange(TemplateLoc, RAngleLoc)); 2416 2417 // Check the default template argument. 2418 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2419 RAngleLoc, Converted)) 2420 return true; 2421 } 2422 2423 return Invalid; 2424} 2425 2426namespace { 2427 class UnnamedLocalNoLinkageFinder 2428 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2429 { 2430 Sema &S; 2431 SourceRange SR; 2432 2433 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2434 2435 public: 2436 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2437 2438 bool Visit(QualType T) { 2439 return inherited::Visit(T.getTypePtr()); 2440 } 2441 2442#define TYPE(Class, Parent) \ 2443 bool Visit##Class##Type(const Class##Type *); 2444#define ABSTRACT_TYPE(Class, Parent) \ 2445 bool Visit##Class##Type(const Class##Type *) { return false; } 2446#define NON_CANONICAL_TYPE(Class, Parent) \ 2447 bool Visit##Class##Type(const Class##Type *) { return false; } 2448#include "clang/AST/TypeNodes.def" 2449 2450 bool VisitTagDecl(const TagDecl *Tag); 2451 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2452 }; 2453} 2454 2455bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2456 return false; 2457} 2458 2459bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2460 return Visit(T->getElementType()); 2461} 2462 2463bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2464 return Visit(T->getPointeeType()); 2465} 2466 2467bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2468 const BlockPointerType* T) { 2469 return Visit(T->getPointeeType()); 2470} 2471 2472bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2473 const LValueReferenceType* T) { 2474 return Visit(T->getPointeeType()); 2475} 2476 2477bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2478 const RValueReferenceType* T) { 2479 return Visit(T->getPointeeType()); 2480} 2481 2482bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2483 const MemberPointerType* T) { 2484 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2485} 2486 2487bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2488 const ConstantArrayType* T) { 2489 return Visit(T->getElementType()); 2490} 2491 2492bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2493 const IncompleteArrayType* T) { 2494 return Visit(T->getElementType()); 2495} 2496 2497bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2498 const VariableArrayType* T) { 2499 return Visit(T->getElementType()); 2500} 2501 2502bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2503 const DependentSizedArrayType* T) { 2504 return Visit(T->getElementType()); 2505} 2506 2507bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2508 const DependentSizedExtVectorType* T) { 2509 return Visit(T->getElementType()); 2510} 2511 2512bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2513 return Visit(T->getElementType()); 2514} 2515 2516bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2517 return Visit(T->getElementType()); 2518} 2519 2520bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2521 const FunctionProtoType* T) { 2522 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2523 AEnd = T->arg_type_end(); 2524 A != AEnd; ++A) { 2525 if (Visit(*A)) 2526 return true; 2527 } 2528 2529 return Visit(T->getResultType()); 2530} 2531 2532bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2533 const FunctionNoProtoType* T) { 2534 return Visit(T->getResultType()); 2535} 2536 2537bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2538 const UnresolvedUsingType*) { 2539 return false; 2540} 2541 2542bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2543 return false; 2544} 2545 2546bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2547 return Visit(T->getUnderlyingType()); 2548} 2549 2550bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2551 return false; 2552} 2553 2554bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2555 return VisitTagDecl(T->getDecl()); 2556} 2557 2558bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2559 return VisitTagDecl(T->getDecl()); 2560} 2561 2562bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2563 const TemplateTypeParmType*) { 2564 return false; 2565} 2566 2567bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2568 const TemplateSpecializationType*) { 2569 return false; 2570} 2571 2572bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2573 const InjectedClassNameType* T) { 2574 return VisitTagDecl(T->getDecl()); 2575} 2576 2577bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2578 const DependentNameType* T) { 2579 return VisitNestedNameSpecifier(T->getQualifier()); 2580} 2581 2582bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2583 const DependentTemplateSpecializationType* T) { 2584 return VisitNestedNameSpecifier(T->getQualifier()); 2585} 2586 2587bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2588 return false; 2589} 2590 2591bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2592 const ObjCInterfaceType *) { 2593 return false; 2594} 2595 2596bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2597 const ObjCObjectPointerType *) { 2598 return false; 2599} 2600 2601bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2602 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2603 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2604 << S.Context.getTypeDeclType(Tag) << SR; 2605 return true; 2606 } 2607 2608 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2609 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2610 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2611 return true; 2612 } 2613 2614 return false; 2615} 2616 2617bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2618 NestedNameSpecifier *NNS) { 2619 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2620 return true; 2621 2622 switch (NNS->getKind()) { 2623 case NestedNameSpecifier::Identifier: 2624 case NestedNameSpecifier::Namespace: 2625 case NestedNameSpecifier::Global: 2626 return false; 2627 2628 case NestedNameSpecifier::TypeSpec: 2629 case NestedNameSpecifier::TypeSpecWithTemplate: 2630 return Visit(QualType(NNS->getAsType(), 0)); 2631 } 2632 return false; 2633} 2634 2635 2636/// \brief Check a template argument against its corresponding 2637/// template type parameter. 2638/// 2639/// This routine implements the semantics of C++ [temp.arg.type]. It 2640/// returns true if an error occurred, and false otherwise. 2641bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2642 TypeSourceInfo *ArgInfo) { 2643 assert(ArgInfo && "invalid TypeSourceInfo"); 2644 QualType Arg = ArgInfo->getType(); 2645 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2646 2647 if (Arg->isVariablyModifiedType()) { 2648 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2649 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2650 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2651 } 2652 2653 // C++03 [temp.arg.type]p2: 2654 // A local type, a type with no linkage, an unnamed type or a type 2655 // compounded from any of these types shall not be used as a 2656 // template-argument for a template type-parameter. 2657 // 2658 // C++0x allows these, and even in C++03 we allow them as an extension with 2659 // a warning. 2660 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2661 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2662 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2663 } 2664 2665 return false; 2666} 2667 2668/// \brief Checks whether the given template argument is the address 2669/// of an object or function according to C++ [temp.arg.nontype]p1. 2670static bool 2671CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2672 NonTypeTemplateParmDecl *Param, 2673 QualType ParamType, 2674 Expr *ArgIn, 2675 TemplateArgument &Converted) { 2676 bool Invalid = false; 2677 Expr *Arg = ArgIn; 2678 QualType ArgType = Arg->getType(); 2679 2680 // See through any implicit casts we added to fix the type. 2681 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2682 Arg = Cast->getSubExpr(); 2683 2684 // C++ [temp.arg.nontype]p1: 2685 // 2686 // A template-argument for a non-type, non-template 2687 // template-parameter shall be one of: [...] 2688 // 2689 // -- the address of an object or function with external 2690 // linkage, including function templates and function 2691 // template-ids but excluding non-static class members, 2692 // expressed as & id-expression where the & is optional if 2693 // the name refers to a function or array, or if the 2694 // corresponding template-parameter is a reference; or 2695 DeclRefExpr *DRE = 0; 2696 2697 // In C++98/03 mode, give an extension warning on any extra parentheses. 2698 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2699 bool ExtraParens = false; 2700 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2701 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2702 S.Diag(Arg->getSourceRange().getBegin(), 2703 diag::ext_template_arg_extra_parens) 2704 << Arg->getSourceRange(); 2705 ExtraParens = true; 2706 } 2707 2708 Arg = Parens->getSubExpr(); 2709 } 2710 2711 bool AddressTaken = false; 2712 SourceLocation AddrOpLoc; 2713 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2714 if (UnOp->getOpcode() == UO_AddrOf) { 2715 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2716 AddressTaken = true; 2717 AddrOpLoc = UnOp->getOperatorLoc(); 2718 } 2719 } else 2720 DRE = dyn_cast<DeclRefExpr>(Arg); 2721 2722 if (!DRE) { 2723 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2724 << Arg->getSourceRange(); 2725 S.Diag(Param->getLocation(), diag::note_template_param_here); 2726 return true; 2727 } 2728 2729 // Stop checking the precise nature of the argument if it is value dependent, 2730 // it should be checked when instantiated. 2731 if (Arg->isValueDependent()) { 2732 Converted = TemplateArgument(ArgIn); 2733 return false; 2734 } 2735 2736 if (!isa<ValueDecl>(DRE->getDecl())) { 2737 S.Diag(Arg->getSourceRange().getBegin(), 2738 diag::err_template_arg_not_object_or_func_form) 2739 << Arg->getSourceRange(); 2740 S.Diag(Param->getLocation(), diag::note_template_param_here); 2741 return true; 2742 } 2743 2744 NamedDecl *Entity = 0; 2745 2746 // Cannot refer to non-static data members 2747 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2748 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2749 << Field << Arg->getSourceRange(); 2750 S.Diag(Param->getLocation(), diag::note_template_param_here); 2751 return true; 2752 } 2753 2754 // Cannot refer to non-static member functions 2755 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2756 if (!Method->isStatic()) { 2757 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2758 << Method << Arg->getSourceRange(); 2759 S.Diag(Param->getLocation(), diag::note_template_param_here); 2760 return true; 2761 } 2762 2763 // Functions must have external linkage. 2764 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2765 if (!isExternalLinkage(Func->getLinkage())) { 2766 S.Diag(Arg->getSourceRange().getBegin(), 2767 diag::err_template_arg_function_not_extern) 2768 << Func << Arg->getSourceRange(); 2769 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2770 << true; 2771 return true; 2772 } 2773 2774 // Okay: we've named a function with external linkage. 2775 Entity = Func; 2776 2777 // If the template parameter has pointer type, the function decays. 2778 if (ParamType->isPointerType() && !AddressTaken) 2779 ArgType = S.Context.getPointerType(Func->getType()); 2780 else if (AddressTaken && ParamType->isReferenceType()) { 2781 // If we originally had an address-of operator, but the 2782 // parameter has reference type, complain and (if things look 2783 // like they will work) drop the address-of operator. 2784 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2785 ParamType.getNonReferenceType())) { 2786 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2787 << ParamType; 2788 S.Diag(Param->getLocation(), diag::note_template_param_here); 2789 return true; 2790 } 2791 2792 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2793 << ParamType 2794 << FixItHint::CreateRemoval(AddrOpLoc); 2795 S.Diag(Param->getLocation(), diag::note_template_param_here); 2796 2797 ArgType = Func->getType(); 2798 } 2799 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2800 if (!isExternalLinkage(Var->getLinkage())) { 2801 S.Diag(Arg->getSourceRange().getBegin(), 2802 diag::err_template_arg_object_not_extern) 2803 << Var << Arg->getSourceRange(); 2804 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2805 << true; 2806 return true; 2807 } 2808 2809 // A value of reference type is not an object. 2810 if (Var->getType()->isReferenceType()) { 2811 S.Diag(Arg->getSourceRange().getBegin(), 2812 diag::err_template_arg_reference_var) 2813 << Var->getType() << Arg->getSourceRange(); 2814 S.Diag(Param->getLocation(), diag::note_template_param_here); 2815 return true; 2816 } 2817 2818 // Okay: we've named an object with external linkage 2819 Entity = Var; 2820 2821 // If the template parameter has pointer type, we must have taken 2822 // the address of this object. 2823 if (ParamType->isReferenceType()) { 2824 if (AddressTaken) { 2825 // If we originally had an address-of operator, but the 2826 // parameter has reference type, complain and (if things look 2827 // like they will work) drop the address-of operator. 2828 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2829 ParamType.getNonReferenceType())) { 2830 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2831 << ParamType; 2832 S.Diag(Param->getLocation(), diag::note_template_param_here); 2833 return true; 2834 } 2835 2836 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2837 << ParamType 2838 << FixItHint::CreateRemoval(AddrOpLoc); 2839 S.Diag(Param->getLocation(), diag::note_template_param_here); 2840 2841 ArgType = Var->getType(); 2842 } 2843 } else if (!AddressTaken && ParamType->isPointerType()) { 2844 if (Var->getType()->isArrayType()) { 2845 // Array-to-pointer decay. 2846 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2847 } else { 2848 // If the template parameter has pointer type but the address of 2849 // this object was not taken, complain and (possibly) recover by 2850 // taking the address of the entity. 2851 ArgType = S.Context.getPointerType(Var->getType()); 2852 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2853 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2854 << ParamType; 2855 S.Diag(Param->getLocation(), diag::note_template_param_here); 2856 return true; 2857 } 2858 2859 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2860 << ParamType 2861 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2862 2863 S.Diag(Param->getLocation(), diag::note_template_param_here); 2864 } 2865 } 2866 } else { 2867 // We found something else, but we don't know specifically what it is. 2868 S.Diag(Arg->getSourceRange().getBegin(), 2869 diag::err_template_arg_not_object_or_func) 2870 << Arg->getSourceRange(); 2871 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2872 return true; 2873 } 2874 2875 if (ParamType->isPointerType() && 2876 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2877 S.IsQualificationConversion(ArgType, ParamType)) { 2878 // For pointer-to-object types, qualification conversions are 2879 // permitted. 2880 } else { 2881 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2882 if (!ParamRef->getPointeeType()->isFunctionType()) { 2883 // C++ [temp.arg.nontype]p5b3: 2884 // For a non-type template-parameter of type reference to 2885 // object, no conversions apply. The type referred to by the 2886 // reference may be more cv-qualified than the (otherwise 2887 // identical) type of the template- argument. The 2888 // template-parameter is bound directly to the 2889 // template-argument, which shall be an lvalue. 2890 2891 // FIXME: Other qualifiers? 2892 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2893 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2894 2895 if ((ParamQuals | ArgQuals) != ParamQuals) { 2896 S.Diag(Arg->getSourceRange().getBegin(), 2897 diag::err_template_arg_ref_bind_ignores_quals) 2898 << ParamType << Arg->getType() 2899 << Arg->getSourceRange(); 2900 S.Diag(Param->getLocation(), diag::note_template_param_here); 2901 return true; 2902 } 2903 } 2904 } 2905 2906 // At this point, the template argument refers to an object or 2907 // function with external linkage. We now need to check whether the 2908 // argument and parameter types are compatible. 2909 if (!S.Context.hasSameUnqualifiedType(ArgType, 2910 ParamType.getNonReferenceType())) { 2911 // We can't perform this conversion or binding. 2912 if (ParamType->isReferenceType()) 2913 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2914 << ParamType << Arg->getType() << Arg->getSourceRange(); 2915 else 2916 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2917 << Arg->getType() << ParamType << Arg->getSourceRange(); 2918 S.Diag(Param->getLocation(), diag::note_template_param_here); 2919 return true; 2920 } 2921 } 2922 2923 // Create the template argument. 2924 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2925 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2926 return false; 2927} 2928 2929/// \brief Checks whether the given template argument is a pointer to 2930/// member constant according to C++ [temp.arg.nontype]p1. 2931bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2932 TemplateArgument &Converted) { 2933 bool Invalid = false; 2934 2935 // See through any implicit casts we added to fix the type. 2936 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2937 Arg = Cast->getSubExpr(); 2938 2939 // C++ [temp.arg.nontype]p1: 2940 // 2941 // A template-argument for a non-type, non-template 2942 // template-parameter shall be one of: [...] 2943 // 2944 // -- a pointer to member expressed as described in 5.3.1. 2945 DeclRefExpr *DRE = 0; 2946 2947 // In C++98/03 mode, give an extension warning on any extra parentheses. 2948 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2949 bool ExtraParens = false; 2950 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2951 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 2952 Diag(Arg->getSourceRange().getBegin(), 2953 diag::ext_template_arg_extra_parens) 2954 << Arg->getSourceRange(); 2955 ExtraParens = true; 2956 } 2957 2958 Arg = Parens->getSubExpr(); 2959 } 2960 2961 // A pointer-to-member constant written &Class::member. 2962 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2963 if (UnOp->getOpcode() == UO_AddrOf) { 2964 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2965 if (DRE && !DRE->getQualifier()) 2966 DRE = 0; 2967 } 2968 } 2969 // A constant of pointer-to-member type. 2970 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2971 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2972 if (VD->getType()->isMemberPointerType()) { 2973 if (isa<NonTypeTemplateParmDecl>(VD) || 2974 (isa<VarDecl>(VD) && 2975 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2976 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2977 Converted = TemplateArgument(Arg); 2978 else 2979 Converted = TemplateArgument(VD->getCanonicalDecl()); 2980 return Invalid; 2981 } 2982 } 2983 } 2984 2985 DRE = 0; 2986 } 2987 2988 if (!DRE) 2989 return Diag(Arg->getSourceRange().getBegin(), 2990 diag::err_template_arg_not_pointer_to_member_form) 2991 << Arg->getSourceRange(); 2992 2993 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2994 assert((isa<FieldDecl>(DRE->getDecl()) || 2995 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2996 "Only non-static member pointers can make it here"); 2997 2998 // Okay: this is the address of a non-static member, and therefore 2999 // a member pointer constant. 3000 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3001 Converted = TemplateArgument(Arg); 3002 else 3003 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3004 return Invalid; 3005 } 3006 3007 // We found something else, but we don't know specifically what it is. 3008 Diag(Arg->getSourceRange().getBegin(), 3009 diag::err_template_arg_not_pointer_to_member_form) 3010 << Arg->getSourceRange(); 3011 Diag(DRE->getDecl()->getLocation(), 3012 diag::note_template_arg_refers_here); 3013 return true; 3014} 3015 3016/// \brief Check a template argument against its corresponding 3017/// non-type template parameter. 3018/// 3019/// This routine implements the semantics of C++ [temp.arg.nontype]. 3020/// It returns true if an error occurred, and false otherwise. \p 3021/// InstantiatedParamType is the type of the non-type template 3022/// parameter after it has been instantiated. 3023/// 3024/// If no error was detected, Converted receives the converted template argument. 3025bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3026 QualType InstantiatedParamType, Expr *&Arg, 3027 TemplateArgument &Converted, 3028 CheckTemplateArgumentKind CTAK) { 3029 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3030 3031 // If either the parameter has a dependent type or the argument is 3032 // type-dependent, there's nothing we can check now. 3033 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3034 // FIXME: Produce a cloned, canonical expression? 3035 Converted = TemplateArgument(Arg); 3036 return false; 3037 } 3038 3039 // C++ [temp.arg.nontype]p5: 3040 // The following conversions are performed on each expression used 3041 // as a non-type template-argument. If a non-type 3042 // template-argument cannot be converted to the type of the 3043 // corresponding template-parameter then the program is 3044 // ill-formed. 3045 // 3046 // -- for a non-type template-parameter of integral or 3047 // enumeration type, integral promotions (4.5) and integral 3048 // conversions (4.7) are applied. 3049 QualType ParamType = InstantiatedParamType; 3050 QualType ArgType = Arg->getType(); 3051 if (ParamType->isIntegralOrEnumerationType()) { 3052 // C++ [temp.arg.nontype]p1: 3053 // A template-argument for a non-type, non-template 3054 // template-parameter shall be one of: 3055 // 3056 // -- an integral constant-expression of integral or enumeration 3057 // type; or 3058 // -- the name of a non-type template-parameter; or 3059 SourceLocation NonConstantLoc; 3060 llvm::APSInt Value; 3061 if (!ArgType->isIntegralOrEnumerationType()) { 3062 Diag(Arg->getSourceRange().getBegin(), 3063 diag::err_template_arg_not_integral_or_enumeral) 3064 << ArgType << Arg->getSourceRange(); 3065 Diag(Param->getLocation(), diag::note_template_param_here); 3066 return true; 3067 } else if (!Arg->isValueDependent() && 3068 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3069 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3070 << ArgType << Arg->getSourceRange(); 3071 return true; 3072 } 3073 3074 // From here on out, all we care about are the unqualified forms 3075 // of the parameter and argument types. 3076 ParamType = ParamType.getUnqualifiedType(); 3077 ArgType = ArgType.getUnqualifiedType(); 3078 3079 // Try to convert the argument to the parameter's type. 3080 if (Context.hasSameType(ParamType, ArgType)) { 3081 // Okay: no conversion necessary 3082 } else if (CTAK == CTAK_Deduced) { 3083 // C++ [temp.deduct.type]p17: 3084 // If, in the declaration of a function template with a non-type 3085 // template-parameter, the non-type template- parameter is used 3086 // in an expression in the function parameter-list and, if the 3087 // corresponding template-argument is deduced, the 3088 // template-argument type shall match the type of the 3089 // template-parameter exactly, except that a template-argument 3090 // deduced from an array bound may be of any integral type. 3091 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3092 << ArgType << ParamType; 3093 Diag(Param->getLocation(), diag::note_template_param_here); 3094 return true; 3095 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3096 !ParamType->isEnumeralType()) { 3097 // This is an integral promotion or conversion. 3098 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3099 } else { 3100 // We can't perform this conversion. 3101 Diag(Arg->getSourceRange().getBegin(), 3102 diag::err_template_arg_not_convertible) 3103 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3104 Diag(Param->getLocation(), diag::note_template_param_here); 3105 return true; 3106 } 3107 3108 QualType IntegerType = Context.getCanonicalType(ParamType); 3109 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3110 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3111 3112 if (!Arg->isValueDependent()) { 3113 llvm::APSInt OldValue = Value; 3114 3115 // Coerce the template argument's value to the value it will have 3116 // based on the template parameter's type. 3117 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3118 if (Value.getBitWidth() != AllowedBits) 3119 Value.extOrTrunc(AllowedBits); 3120 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3121 3122 // Complain if an unsigned parameter received a negative value. 3123 if (IntegerType->isUnsignedIntegerType() 3124 && (OldValue.isSigned() && OldValue.isNegative())) { 3125 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3126 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3127 << Arg->getSourceRange(); 3128 Diag(Param->getLocation(), diag::note_template_param_here); 3129 } 3130 3131 // Complain if we overflowed the template parameter's type. 3132 unsigned RequiredBits; 3133 if (IntegerType->isUnsignedIntegerType()) 3134 RequiredBits = OldValue.getActiveBits(); 3135 else if (OldValue.isUnsigned()) 3136 RequiredBits = OldValue.getActiveBits() + 1; 3137 else 3138 RequiredBits = OldValue.getMinSignedBits(); 3139 if (RequiredBits > AllowedBits) { 3140 Diag(Arg->getSourceRange().getBegin(), 3141 diag::warn_template_arg_too_large) 3142 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3143 << Arg->getSourceRange(); 3144 Diag(Param->getLocation(), diag::note_template_param_here); 3145 } 3146 } 3147 3148 // Add the value of this argument to the list of converted 3149 // arguments. We use the bitwidth and signedness of the template 3150 // parameter. 3151 if (Arg->isValueDependent()) { 3152 // The argument is value-dependent. Create a new 3153 // TemplateArgument with the converted expression. 3154 Converted = TemplateArgument(Arg); 3155 return false; 3156 } 3157 3158 Converted = TemplateArgument(Value, 3159 ParamType->isEnumeralType() ? ParamType 3160 : IntegerType); 3161 return false; 3162 } 3163 3164 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3165 3166 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3167 // from a template argument of type std::nullptr_t to a non-type 3168 // template parameter of type pointer to object, pointer to 3169 // function, or pointer-to-member, respectively. 3170 if (ArgType->isNullPtrType() && 3171 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3172 Converted = TemplateArgument((NamedDecl *)0); 3173 return false; 3174 } 3175 3176 // Handle pointer-to-function, reference-to-function, and 3177 // pointer-to-member-function all in (roughly) the same way. 3178 if (// -- For a non-type template-parameter of type pointer to 3179 // function, only the function-to-pointer conversion (4.3) is 3180 // applied. If the template-argument represents a set of 3181 // overloaded functions (or a pointer to such), the matching 3182 // function is selected from the set (13.4). 3183 (ParamType->isPointerType() && 3184 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3185 // -- For a non-type template-parameter of type reference to 3186 // function, no conversions apply. If the template-argument 3187 // represents a set of overloaded functions, the matching 3188 // function is selected from the set (13.4). 3189 (ParamType->isReferenceType() && 3190 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3191 // -- For a non-type template-parameter of type pointer to 3192 // member function, no conversions apply. If the 3193 // template-argument represents a set of overloaded member 3194 // functions, the matching member function is selected from 3195 // the set (13.4). 3196 (ParamType->isMemberPointerType() && 3197 ParamType->getAs<MemberPointerType>()->getPointeeType() 3198 ->isFunctionType())) { 3199 3200 if (Arg->getType() == Context.OverloadTy) { 3201 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3202 true, 3203 FoundResult)) { 3204 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3205 return true; 3206 3207 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3208 ArgType = Arg->getType(); 3209 } else 3210 return true; 3211 } 3212 3213 if (!ParamType->isMemberPointerType()) 3214 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3215 ParamType, 3216 Arg, Converted); 3217 3218 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 3219 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3220 } else if (!Context.hasSameUnqualifiedType(ArgType, 3221 ParamType.getNonReferenceType())) { 3222 // We can't perform this conversion. 3223 Diag(Arg->getSourceRange().getBegin(), 3224 diag::err_template_arg_not_convertible) 3225 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3226 Diag(Param->getLocation(), diag::note_template_param_here); 3227 return true; 3228 } 3229 3230 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3231 } 3232 3233 if (ParamType->isPointerType()) { 3234 // -- for a non-type template-parameter of type pointer to 3235 // object, qualification conversions (4.4) and the 3236 // array-to-pointer conversion (4.2) are applied. 3237 // C++0x also allows a value of std::nullptr_t. 3238 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3239 "Only object pointers allowed here"); 3240 3241 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3242 ParamType, 3243 Arg, Converted); 3244 } 3245 3246 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3247 // -- For a non-type template-parameter of type reference to 3248 // object, no conversions apply. The type referred to by the 3249 // reference may be more cv-qualified than the (otherwise 3250 // identical) type of the template-argument. The 3251 // template-parameter is bound directly to the 3252 // template-argument, which must be an lvalue. 3253 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3254 "Only object references allowed here"); 3255 3256 if (Arg->getType() == Context.OverloadTy) { 3257 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3258 ParamRefType->getPointeeType(), 3259 true, 3260 FoundResult)) { 3261 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3262 return true; 3263 3264 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3265 ArgType = Arg->getType(); 3266 } else 3267 return true; 3268 } 3269 3270 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3271 ParamType, 3272 Arg, Converted); 3273 } 3274 3275 // -- For a non-type template-parameter of type pointer to data 3276 // member, qualification conversions (4.4) are applied. 3277 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3278 3279 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3280 // Types match exactly: nothing more to do here. 3281 } else if (IsQualificationConversion(ArgType, ParamType)) { 3282 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3283 } else { 3284 // We can't perform this conversion. 3285 Diag(Arg->getSourceRange().getBegin(), 3286 diag::err_template_arg_not_convertible) 3287 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3288 Diag(Param->getLocation(), diag::note_template_param_here); 3289 return true; 3290 } 3291 3292 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3293} 3294 3295/// \brief Check a template argument against its corresponding 3296/// template template parameter. 3297/// 3298/// This routine implements the semantics of C++ [temp.arg.template]. 3299/// It returns true if an error occurred, and false otherwise. 3300bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3301 const TemplateArgumentLoc &Arg) { 3302 TemplateName Name = Arg.getArgument().getAsTemplate(); 3303 TemplateDecl *Template = Name.getAsTemplateDecl(); 3304 if (!Template) { 3305 // Any dependent template name is fine. 3306 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3307 return false; 3308 } 3309 3310 // C++ [temp.arg.template]p1: 3311 // A template-argument for a template template-parameter shall be 3312 // the name of a class template, expressed as id-expression. Only 3313 // primary class templates are considered when matching the 3314 // template template argument with the corresponding parameter; 3315 // partial specializations are not considered even if their 3316 // parameter lists match that of the template template parameter. 3317 // 3318 // Note that we also allow template template parameters here, which 3319 // will happen when we are dealing with, e.g., class template 3320 // partial specializations. 3321 if (!isa<ClassTemplateDecl>(Template) && 3322 !isa<TemplateTemplateParmDecl>(Template)) { 3323 assert(isa<FunctionTemplateDecl>(Template) && 3324 "Only function templates are possible here"); 3325 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3326 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3327 << Template; 3328 } 3329 3330 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3331 Param->getTemplateParameters(), 3332 true, 3333 TPL_TemplateTemplateArgumentMatch, 3334 Arg.getLocation()); 3335} 3336 3337/// \brief Given a non-type template argument that refers to a 3338/// declaration and the type of its corresponding non-type template 3339/// parameter, produce an expression that properly refers to that 3340/// declaration. 3341ExprResult 3342Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3343 QualType ParamType, 3344 SourceLocation Loc) { 3345 assert(Arg.getKind() == TemplateArgument::Declaration && 3346 "Only declaration template arguments permitted here"); 3347 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3348 3349 if (VD->getDeclContext()->isRecord() && 3350 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3351 // If the value is a class member, we might have a pointer-to-member. 3352 // Determine whether the non-type template template parameter is of 3353 // pointer-to-member type. If so, we need to build an appropriate 3354 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3355 // would refer to the member itself. 3356 if (ParamType->isMemberPointerType()) { 3357 QualType ClassType 3358 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3359 NestedNameSpecifier *Qualifier 3360 = NestedNameSpecifier::Create(Context, 0, false, 3361 ClassType.getTypePtr()); 3362 CXXScopeSpec SS; 3363 SS.setScopeRep(Qualifier); 3364 ExprResult RefExpr = BuildDeclRefExpr(VD, 3365 VD->getType().getNonReferenceType(), 3366 Loc, 3367 &SS); 3368 if (RefExpr.isInvalid()) 3369 return ExprError(); 3370 3371 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3372 3373 // We might need to perform a trailing qualification conversion, since 3374 // the element type on the parameter could be more qualified than the 3375 // element type in the expression we constructed. 3376 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3377 ParamType.getUnqualifiedType())) { 3378 Expr *RefE = RefExpr.takeAs<Expr>(); 3379 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3380 RefExpr = Owned(RefE); 3381 } 3382 3383 assert(!RefExpr.isInvalid() && 3384 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3385 ParamType.getUnqualifiedType())); 3386 return move(RefExpr); 3387 } 3388 } 3389 3390 QualType T = VD->getType().getNonReferenceType(); 3391 if (ParamType->isPointerType()) { 3392 // When the non-type template parameter is a pointer, take the 3393 // address of the declaration. 3394 ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3395 if (RefExpr.isInvalid()) 3396 return ExprError(); 3397 3398 if (T->isFunctionType() || T->isArrayType()) { 3399 // Decay functions and arrays. 3400 Expr *RefE = (Expr *)RefExpr.get(); 3401 DefaultFunctionArrayConversion(RefE); 3402 if (RefE != RefExpr.get()) { 3403 RefExpr.release(); 3404 RefExpr = Owned(RefE); 3405 } 3406 3407 return move(RefExpr); 3408 } 3409 3410 // Take the address of everything else 3411 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3412 } 3413 3414 // If the non-type template parameter has reference type, qualify the 3415 // resulting declaration reference with the extra qualifiers on the 3416 // type that the reference refers to. 3417 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3418 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3419 3420 return BuildDeclRefExpr(VD, T, Loc); 3421} 3422 3423/// \brief Construct a new expression that refers to the given 3424/// integral template argument with the given source-location 3425/// information. 3426/// 3427/// This routine takes care of the mapping from an integral template 3428/// argument (which may have any integral type) to the appropriate 3429/// literal value. 3430ExprResult 3431Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3432 SourceLocation Loc) { 3433 assert(Arg.getKind() == TemplateArgument::Integral && 3434 "Operation is only value for integral template arguments"); 3435 QualType T = Arg.getIntegralType(); 3436 if (T->isCharType() || T->isWideCharType()) 3437 return Owned(new (Context) CharacterLiteral( 3438 Arg.getAsIntegral()->getZExtValue(), 3439 T->isWideCharType(), 3440 T, 3441 Loc)); 3442 if (T->isBooleanType()) 3443 return Owned(new (Context) CXXBoolLiteralExpr( 3444 Arg.getAsIntegral()->getBoolValue(), 3445 T, 3446 Loc)); 3447 3448 return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc)); 3449} 3450 3451 3452/// \brief Determine whether the given template parameter lists are 3453/// equivalent. 3454/// 3455/// \param New The new template parameter list, typically written in the 3456/// source code as part of a new template declaration. 3457/// 3458/// \param Old The old template parameter list, typically found via 3459/// name lookup of the template declared with this template parameter 3460/// list. 3461/// 3462/// \param Complain If true, this routine will produce a diagnostic if 3463/// the template parameter lists are not equivalent. 3464/// 3465/// \param Kind describes how we are to match the template parameter lists. 3466/// 3467/// \param TemplateArgLoc If this source location is valid, then we 3468/// are actually checking the template parameter list of a template 3469/// argument (New) against the template parameter list of its 3470/// corresponding template template parameter (Old). We produce 3471/// slightly different diagnostics in this scenario. 3472/// 3473/// \returns True if the template parameter lists are equal, false 3474/// otherwise. 3475bool 3476Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3477 TemplateParameterList *Old, 3478 bool Complain, 3479 TemplateParameterListEqualKind Kind, 3480 SourceLocation TemplateArgLoc) { 3481 if (Old->size() != New->size()) { 3482 if (Complain) { 3483 unsigned NextDiag = diag::err_template_param_list_different_arity; 3484 if (TemplateArgLoc.isValid()) { 3485 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3486 NextDiag = diag::note_template_param_list_different_arity; 3487 } 3488 Diag(New->getTemplateLoc(), NextDiag) 3489 << (New->size() > Old->size()) 3490 << (Kind != TPL_TemplateMatch) 3491 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3492 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3493 << (Kind != TPL_TemplateMatch) 3494 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3495 } 3496 3497 return false; 3498 } 3499 3500 for (TemplateParameterList::iterator OldParm = Old->begin(), 3501 OldParmEnd = Old->end(), NewParm = New->begin(); 3502 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3503 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3504 if (Complain) { 3505 unsigned NextDiag = diag::err_template_param_different_kind; 3506 if (TemplateArgLoc.isValid()) { 3507 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3508 NextDiag = diag::note_template_param_different_kind; 3509 } 3510 Diag((*NewParm)->getLocation(), NextDiag) 3511 << (Kind != TPL_TemplateMatch); 3512 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3513 << (Kind != TPL_TemplateMatch); 3514 } 3515 return false; 3516 } 3517 3518 if (TemplateTypeParmDecl *OldTTP 3519 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3520 // Template type parameters are equivalent if either both are template 3521 // type parameter packs or neither are (since we know we're at the same 3522 // index). 3523 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3524 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3525 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3526 // allow one to match a template parameter pack in the template 3527 // parameter list of a template template parameter to one or more 3528 // template parameters in the template parameter list of the 3529 // corresponding template template argument. 3530 if (Complain) { 3531 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3532 if (TemplateArgLoc.isValid()) { 3533 Diag(TemplateArgLoc, 3534 diag::err_template_arg_template_params_mismatch); 3535 NextDiag = diag::note_template_parameter_pack_non_pack; 3536 } 3537 Diag(NewTTP->getLocation(), NextDiag) 3538 << 0 << NewTTP->isParameterPack(); 3539 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3540 << 0 << OldTTP->isParameterPack(); 3541 } 3542 return false; 3543 } 3544 } else if (NonTypeTemplateParmDecl *OldNTTP 3545 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3546 // The types of non-type template parameters must agree. 3547 NonTypeTemplateParmDecl *NewNTTP 3548 = cast<NonTypeTemplateParmDecl>(*NewParm); 3549 3550 // If we are matching a template template argument to a template 3551 // template parameter and one of the non-type template parameter types 3552 // is dependent, then we must wait until template instantiation time 3553 // to actually compare the arguments. 3554 if (Kind == TPL_TemplateTemplateArgumentMatch && 3555 (OldNTTP->getType()->isDependentType() || 3556 NewNTTP->getType()->isDependentType())) 3557 continue; 3558 3559 if (Context.getCanonicalType(OldNTTP->getType()) != 3560 Context.getCanonicalType(NewNTTP->getType())) { 3561 if (Complain) { 3562 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3563 if (TemplateArgLoc.isValid()) { 3564 Diag(TemplateArgLoc, 3565 diag::err_template_arg_template_params_mismatch); 3566 NextDiag = diag::note_template_nontype_parm_different_type; 3567 } 3568 Diag(NewNTTP->getLocation(), NextDiag) 3569 << NewNTTP->getType() 3570 << (Kind != TPL_TemplateMatch); 3571 Diag(OldNTTP->getLocation(), 3572 diag::note_template_nontype_parm_prev_declaration) 3573 << OldNTTP->getType(); 3574 } 3575 return false; 3576 } 3577 } else { 3578 // The template parameter lists of template template 3579 // parameters must agree. 3580 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3581 "Only template template parameters handled here"); 3582 TemplateTemplateParmDecl *OldTTP 3583 = cast<TemplateTemplateParmDecl>(*OldParm); 3584 TemplateTemplateParmDecl *NewTTP 3585 = cast<TemplateTemplateParmDecl>(*NewParm); 3586 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3587 OldTTP->getTemplateParameters(), 3588 Complain, 3589 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3590 TemplateArgLoc)) 3591 return false; 3592 } 3593 } 3594 3595 return true; 3596} 3597 3598/// \brief Check whether a template can be declared within this scope. 3599/// 3600/// If the template declaration is valid in this scope, returns 3601/// false. Otherwise, issues a diagnostic and returns true. 3602bool 3603Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3604 // Find the nearest enclosing declaration scope. 3605 while ((S->getFlags() & Scope::DeclScope) == 0 || 3606 (S->getFlags() & Scope::TemplateParamScope) != 0) 3607 S = S->getParent(); 3608 3609 // C++ [temp]p2: 3610 // A template-declaration can appear only as a namespace scope or 3611 // class scope declaration. 3612 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3613 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3614 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3615 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3616 << TemplateParams->getSourceRange(); 3617 3618 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3619 Ctx = Ctx->getParent(); 3620 3621 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3622 return false; 3623 3624 return Diag(TemplateParams->getTemplateLoc(), 3625 diag::err_template_outside_namespace_or_class_scope) 3626 << TemplateParams->getSourceRange(); 3627} 3628 3629/// \brief Determine what kind of template specialization the given declaration 3630/// is. 3631static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3632 if (!D) 3633 return TSK_Undeclared; 3634 3635 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3636 return Record->getTemplateSpecializationKind(); 3637 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3638 return Function->getTemplateSpecializationKind(); 3639 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3640 return Var->getTemplateSpecializationKind(); 3641 3642 return TSK_Undeclared; 3643} 3644 3645/// \brief Check whether a specialization is well-formed in the current 3646/// context. 3647/// 3648/// This routine determines whether a template specialization can be declared 3649/// in the current context (C++ [temp.expl.spec]p2). 3650/// 3651/// \param S the semantic analysis object for which this check is being 3652/// performed. 3653/// 3654/// \param Specialized the entity being specialized or instantiated, which 3655/// may be a kind of template (class template, function template, etc.) or 3656/// a member of a class template (member function, static data member, 3657/// member class). 3658/// 3659/// \param PrevDecl the previous declaration of this entity, if any. 3660/// 3661/// \param Loc the location of the explicit specialization or instantiation of 3662/// this entity. 3663/// 3664/// \param IsPartialSpecialization whether this is a partial specialization of 3665/// a class template. 3666/// 3667/// \returns true if there was an error that we cannot recover from, false 3668/// otherwise. 3669static bool CheckTemplateSpecializationScope(Sema &S, 3670 NamedDecl *Specialized, 3671 NamedDecl *PrevDecl, 3672 SourceLocation Loc, 3673 bool IsPartialSpecialization) { 3674 // Keep these "kind" numbers in sync with the %select statements in the 3675 // various diagnostics emitted by this routine. 3676 int EntityKind = 0; 3677 bool isTemplateSpecialization = false; 3678 if (isa<ClassTemplateDecl>(Specialized)) { 3679 EntityKind = IsPartialSpecialization? 1 : 0; 3680 isTemplateSpecialization = true; 3681 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3682 EntityKind = 2; 3683 isTemplateSpecialization = true; 3684 } else if (isa<CXXMethodDecl>(Specialized)) 3685 EntityKind = 3; 3686 else if (isa<VarDecl>(Specialized)) 3687 EntityKind = 4; 3688 else if (isa<RecordDecl>(Specialized)) 3689 EntityKind = 5; 3690 else { 3691 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3692 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3693 return true; 3694 } 3695 3696 // C++ [temp.expl.spec]p2: 3697 // An explicit specialization shall be declared in the namespace 3698 // of which the template is a member, or, for member templates, in 3699 // the namespace of which the enclosing class or enclosing class 3700 // template is a member. An explicit specialization of a member 3701 // function, member class or static data member of a class 3702 // template shall be declared in the namespace of which the class 3703 // template is a member. Such a declaration may also be a 3704 // definition. If the declaration is not a definition, the 3705 // specialization may be defined later in the name- space in which 3706 // the explicit specialization was declared, or in a namespace 3707 // that encloses the one in which the explicit specialization was 3708 // declared. 3709 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 3710 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3711 << Specialized; 3712 return true; 3713 } 3714 3715 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3716 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3717 << Specialized; 3718 return true; 3719 } 3720 3721 // C++ [temp.class.spec]p6: 3722 // A class template partial specialization may be declared or redeclared 3723 // in any namespace scope in which its definition may be defined (14.5.1 3724 // and 14.5.2). 3725 bool ComplainedAboutScope = false; 3726 DeclContext *SpecializedContext 3727 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3728 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3729 if ((!PrevDecl || 3730 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3731 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3732 // C++ [temp.exp.spec]p2: 3733 // An explicit specialization shall be declared in the namespace of which 3734 // the template is a member, or, for member templates, in the namespace 3735 // of which the enclosing class or enclosing class template is a member. 3736 // An explicit specialization of a member function, member class or 3737 // static data member of a class template shall be declared in the 3738 // namespace of which the class template is a member. 3739 // 3740 // C++0x [temp.expl.spec]p2: 3741 // An explicit specialization shall be declared in a namespace enclosing 3742 // the specialized template. 3743 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 3744 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 3745 bool IsCPlusPlus0xExtension 3746 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 3747 if (isa<TranslationUnitDecl>(SpecializedContext)) 3748 S.Diag(Loc, IsCPlusPlus0xExtension 3749 ? diag::ext_template_spec_decl_out_of_scope_global 3750 : diag::err_template_spec_decl_out_of_scope_global) 3751 << EntityKind << Specialized; 3752 else if (isa<NamespaceDecl>(SpecializedContext)) 3753 S.Diag(Loc, IsCPlusPlus0xExtension 3754 ? diag::ext_template_spec_decl_out_of_scope 3755 : diag::err_template_spec_decl_out_of_scope) 3756 << EntityKind << Specialized 3757 << cast<NamedDecl>(SpecializedContext); 3758 3759 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3760 ComplainedAboutScope = true; 3761 } 3762 } 3763 3764 // Make sure that this redeclaration (or definition) occurs in an enclosing 3765 // namespace. 3766 // Note that HandleDeclarator() performs this check for explicit 3767 // specializations of function templates, static data members, and member 3768 // functions, so we skip the check here for those kinds of entities. 3769 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3770 // Should we refactor that check, so that it occurs later? 3771 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3772 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3773 isa<FunctionDecl>(Specialized))) { 3774 if (isa<TranslationUnitDecl>(SpecializedContext)) 3775 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3776 << EntityKind << Specialized; 3777 else if (isa<NamespaceDecl>(SpecializedContext)) 3778 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3779 << EntityKind << Specialized 3780 << cast<NamedDecl>(SpecializedContext); 3781 3782 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3783 } 3784 3785 // FIXME: check for specialization-after-instantiation errors and such. 3786 3787 return false; 3788} 3789 3790/// \brief Check the non-type template arguments of a class template 3791/// partial specialization according to C++ [temp.class.spec]p9. 3792/// 3793/// \param TemplateParams the template parameters of the primary class 3794/// template. 3795/// 3796/// \param TemplateArg the template arguments of the class template 3797/// partial specialization. 3798/// 3799/// \param MirrorsPrimaryTemplate will be set true if the class 3800/// template partial specialization arguments are identical to the 3801/// implicit template arguments of the primary template. This is not 3802/// necessarily an error (C++0x), and it is left to the caller to diagnose 3803/// this condition when it is an error. 3804/// 3805/// \returns true if there was an error, false otherwise. 3806bool Sema::CheckClassTemplatePartialSpecializationArgs( 3807 TemplateParameterList *TemplateParams, 3808 const TemplateArgumentListBuilder &TemplateArgs, 3809 bool &MirrorsPrimaryTemplate) { 3810 // FIXME: the interface to this function will have to change to 3811 // accommodate variadic templates. 3812 MirrorsPrimaryTemplate = true; 3813 3814 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3815 3816 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3817 // Determine whether the template argument list of the partial 3818 // specialization is identical to the implicit argument list of 3819 // the primary template. The caller may need to diagnostic this as 3820 // an error per C++ [temp.class.spec]p9b3. 3821 if (MirrorsPrimaryTemplate) { 3822 if (TemplateTypeParmDecl *TTP 3823 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3824 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3825 Context.getCanonicalType(ArgList[I].getAsType())) 3826 MirrorsPrimaryTemplate = false; 3827 } else if (TemplateTemplateParmDecl *TTP 3828 = dyn_cast<TemplateTemplateParmDecl>( 3829 TemplateParams->getParam(I))) { 3830 TemplateName Name = ArgList[I].getAsTemplate(); 3831 TemplateTemplateParmDecl *ArgDecl 3832 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3833 if (!ArgDecl || 3834 ArgDecl->getIndex() != TTP->getIndex() || 3835 ArgDecl->getDepth() != TTP->getDepth()) 3836 MirrorsPrimaryTemplate = false; 3837 } 3838 } 3839 3840 NonTypeTemplateParmDecl *Param 3841 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3842 if (!Param) { 3843 continue; 3844 } 3845 3846 Expr *ArgExpr = ArgList[I].getAsExpr(); 3847 if (!ArgExpr) { 3848 MirrorsPrimaryTemplate = false; 3849 continue; 3850 } 3851 3852 // C++ [temp.class.spec]p8: 3853 // A non-type argument is non-specialized if it is the name of a 3854 // non-type parameter. All other non-type arguments are 3855 // specialized. 3856 // 3857 // Below, we check the two conditions that only apply to 3858 // specialized non-type arguments, so skip any non-specialized 3859 // arguments. 3860 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3861 if (NonTypeTemplateParmDecl *NTTP 3862 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3863 if (MirrorsPrimaryTemplate && 3864 (Param->getIndex() != NTTP->getIndex() || 3865 Param->getDepth() != NTTP->getDepth())) 3866 MirrorsPrimaryTemplate = false; 3867 3868 continue; 3869 } 3870 3871 // C++ [temp.class.spec]p9: 3872 // Within the argument list of a class template partial 3873 // specialization, the following restrictions apply: 3874 // -- A partially specialized non-type argument expression 3875 // shall not involve a template parameter of the partial 3876 // specialization except when the argument expression is a 3877 // simple identifier. 3878 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3879 Diag(ArgExpr->getLocStart(), 3880 diag::err_dependent_non_type_arg_in_partial_spec) 3881 << ArgExpr->getSourceRange(); 3882 return true; 3883 } 3884 3885 // -- The type of a template parameter corresponding to a 3886 // specialized non-type argument shall not be dependent on a 3887 // parameter of the specialization. 3888 if (Param->getType()->isDependentType()) { 3889 Diag(ArgExpr->getLocStart(), 3890 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3891 << Param->getType() 3892 << ArgExpr->getSourceRange(); 3893 Diag(Param->getLocation(), diag::note_template_param_here); 3894 return true; 3895 } 3896 3897 MirrorsPrimaryTemplate = false; 3898 } 3899 3900 return false; 3901} 3902 3903/// \brief Retrieve the previous declaration of the given declaration. 3904static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3905 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3906 return VD->getPreviousDeclaration(); 3907 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3908 return FD->getPreviousDeclaration(); 3909 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3910 return TD->getPreviousDeclaration(); 3911 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3912 return TD->getPreviousDeclaration(); 3913 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3914 return FTD->getPreviousDeclaration(); 3915 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3916 return CTD->getPreviousDeclaration(); 3917 return 0; 3918} 3919 3920DeclResult 3921Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3922 TagUseKind TUK, 3923 SourceLocation KWLoc, 3924 CXXScopeSpec &SS, 3925 TemplateTy TemplateD, 3926 SourceLocation TemplateNameLoc, 3927 SourceLocation LAngleLoc, 3928 ASTTemplateArgsPtr TemplateArgsIn, 3929 SourceLocation RAngleLoc, 3930 AttributeList *Attr, 3931 MultiTemplateParamsArg TemplateParameterLists) { 3932 assert(TUK != TUK_Reference && "References are not specializations"); 3933 3934 // Find the class template we're specializing 3935 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3936 ClassTemplateDecl *ClassTemplate 3937 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3938 3939 if (!ClassTemplate) { 3940 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3941 << (Name.getAsTemplateDecl() && 3942 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3943 return true; 3944 } 3945 3946 bool isExplicitSpecialization = false; 3947 bool isPartialSpecialization = false; 3948 3949 // Check the validity of the template headers that introduce this 3950 // template. 3951 // FIXME: We probably shouldn't complain about these headers for 3952 // friend declarations. 3953 bool Invalid = false; 3954 TemplateParameterList *TemplateParams 3955 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3956 (TemplateParameterList**)TemplateParameterLists.get(), 3957 TemplateParameterLists.size(), 3958 TUK == TUK_Friend, 3959 isExplicitSpecialization, 3960 Invalid); 3961 if (Invalid) 3962 return true; 3963 3964 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3965 if (TemplateParams) 3966 --NumMatchedTemplateParamLists; 3967 3968 if (TemplateParams && TemplateParams->size() > 0) { 3969 isPartialSpecialization = true; 3970 3971 // C++ [temp.class.spec]p10: 3972 // The template parameter list of a specialization shall not 3973 // contain default template argument values. 3974 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3975 Decl *Param = TemplateParams->getParam(I); 3976 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3977 if (TTP->hasDefaultArgument()) { 3978 Diag(TTP->getDefaultArgumentLoc(), 3979 diag::err_default_arg_in_partial_spec); 3980 TTP->removeDefaultArgument(); 3981 } 3982 } else if (NonTypeTemplateParmDecl *NTTP 3983 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3984 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3985 Diag(NTTP->getDefaultArgumentLoc(), 3986 diag::err_default_arg_in_partial_spec) 3987 << DefArg->getSourceRange(); 3988 NTTP->removeDefaultArgument(); 3989 } 3990 } else { 3991 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3992 if (TTP->hasDefaultArgument()) { 3993 Diag(TTP->getDefaultArgument().getLocation(), 3994 diag::err_default_arg_in_partial_spec) 3995 << TTP->getDefaultArgument().getSourceRange(); 3996 TTP->removeDefaultArgument(); 3997 } 3998 } 3999 } 4000 } else if (TemplateParams) { 4001 if (TUK == TUK_Friend) 4002 Diag(KWLoc, diag::err_template_spec_friend) 4003 << FixItHint::CreateRemoval( 4004 SourceRange(TemplateParams->getTemplateLoc(), 4005 TemplateParams->getRAngleLoc())) 4006 << SourceRange(LAngleLoc, RAngleLoc); 4007 else 4008 isExplicitSpecialization = true; 4009 } else if (TUK != TUK_Friend) { 4010 Diag(KWLoc, diag::err_template_spec_needs_header) 4011 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4012 isExplicitSpecialization = true; 4013 } 4014 4015 // Check that the specialization uses the same tag kind as the 4016 // original template. 4017 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4018 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4019 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4020 Kind, KWLoc, 4021 *ClassTemplate->getIdentifier())) { 4022 Diag(KWLoc, diag::err_use_with_wrong_tag) 4023 << ClassTemplate 4024 << FixItHint::CreateReplacement(KWLoc, 4025 ClassTemplate->getTemplatedDecl()->getKindName()); 4026 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4027 diag::note_previous_use); 4028 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4029 } 4030 4031 // Translate the parser's template argument list in our AST format. 4032 TemplateArgumentListInfo TemplateArgs; 4033 TemplateArgs.setLAngleLoc(LAngleLoc); 4034 TemplateArgs.setRAngleLoc(RAngleLoc); 4035 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4036 4037 // Check that the template argument list is well-formed for this 4038 // template. 4039 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4040 TemplateArgs.size()); 4041 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4042 TemplateArgs, false, Converted)) 4043 return true; 4044 4045 assert((Converted.structuredSize() == 4046 ClassTemplate->getTemplateParameters()->size()) && 4047 "Converted template argument list is too short!"); 4048 4049 // Find the class template (partial) specialization declaration that 4050 // corresponds to these arguments. 4051 if (isPartialSpecialization) { 4052 bool MirrorsPrimaryTemplate; 4053 if (CheckClassTemplatePartialSpecializationArgs( 4054 ClassTemplate->getTemplateParameters(), 4055 Converted, MirrorsPrimaryTemplate)) 4056 return true; 4057 4058 if (MirrorsPrimaryTemplate) { 4059 // C++ [temp.class.spec]p9b3: 4060 // 4061 // -- The argument list of the specialization shall not be identical 4062 // to the implicit argument list of the primary template. 4063 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4064 << (TUK == TUK_Definition) 4065 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4066 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4067 ClassTemplate->getIdentifier(), 4068 TemplateNameLoc, 4069 Attr, 4070 TemplateParams, 4071 AS_none); 4072 } 4073 4074 // FIXME: Diagnose friend partial specializations 4075 4076 if (!Name.isDependent() && 4077 !TemplateSpecializationType::anyDependentTemplateArguments( 4078 TemplateArgs.getArgumentArray(), 4079 TemplateArgs.size())) { 4080 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4081 << ClassTemplate->getDeclName(); 4082 isPartialSpecialization = false; 4083 } 4084 } 4085 4086 void *InsertPos = 0; 4087 ClassTemplateSpecializationDecl *PrevDecl = 0; 4088 4089 if (isPartialSpecialization) 4090 // FIXME: Template parameter list matters, too 4091 PrevDecl 4092 = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(), 4093 Converted.flatSize(), 4094 InsertPos); 4095 else 4096 PrevDecl 4097 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 4098 Converted.flatSize(), InsertPos); 4099 4100 ClassTemplateSpecializationDecl *Specialization = 0; 4101 4102 // Check whether we can declare a class template specialization in 4103 // the current scope. 4104 if (TUK != TUK_Friend && 4105 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4106 TemplateNameLoc, 4107 isPartialSpecialization)) 4108 return true; 4109 4110 // The canonical type 4111 QualType CanonType; 4112 if (PrevDecl && 4113 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4114 TUK == TUK_Friend)) { 4115 // Since the only prior class template specialization with these 4116 // arguments was referenced but not declared, or we're only 4117 // referencing this specialization as a friend, reuse that 4118 // declaration node as our own, updating its source location to 4119 // reflect our new declaration. 4120 Specialization = PrevDecl; 4121 Specialization->setLocation(TemplateNameLoc); 4122 PrevDecl = 0; 4123 CanonType = Context.getTypeDeclType(Specialization); 4124 } else if (isPartialSpecialization) { 4125 // Build the canonical type that describes the converted template 4126 // arguments of the class template partial specialization. 4127 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4128 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4129 Converted.getFlatArguments(), 4130 Converted.flatSize()); 4131 4132 // Create a new class template partial specialization declaration node. 4133 ClassTemplatePartialSpecializationDecl *PrevPartial 4134 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4135 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4136 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4137 ClassTemplatePartialSpecializationDecl *Partial 4138 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4139 ClassTemplate->getDeclContext(), 4140 TemplateNameLoc, 4141 TemplateParams, 4142 ClassTemplate, 4143 Converted, 4144 TemplateArgs, 4145 CanonType, 4146 PrevPartial, 4147 SequenceNumber); 4148 SetNestedNameSpecifier(Partial, SS); 4149 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4150 Partial->setTemplateParameterListsInfo(Context, 4151 NumMatchedTemplateParamLists, 4152 (TemplateParameterList**) TemplateParameterLists.release()); 4153 } 4154 4155 if (!PrevPartial) 4156 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4157 Specialization = Partial; 4158 4159 // If we are providing an explicit specialization of a member class 4160 // template specialization, make a note of that. 4161 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4162 PrevPartial->setMemberSpecialization(); 4163 4164 // Check that all of the template parameters of the class template 4165 // partial specialization are deducible from the template 4166 // arguments. If not, this class template partial specialization 4167 // will never be used. 4168 llvm::SmallVector<bool, 8> DeducibleParams; 4169 DeducibleParams.resize(TemplateParams->size()); 4170 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4171 TemplateParams->getDepth(), 4172 DeducibleParams); 4173 unsigned NumNonDeducible = 0; 4174 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4175 if (!DeducibleParams[I]) 4176 ++NumNonDeducible; 4177 4178 if (NumNonDeducible) { 4179 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4180 << (NumNonDeducible > 1) 4181 << SourceRange(TemplateNameLoc, RAngleLoc); 4182 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4183 if (!DeducibleParams[I]) { 4184 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4185 if (Param->getDeclName()) 4186 Diag(Param->getLocation(), 4187 diag::note_partial_spec_unused_parameter) 4188 << Param->getDeclName(); 4189 else 4190 Diag(Param->getLocation(), 4191 diag::note_partial_spec_unused_parameter) 4192 << "<anonymous>"; 4193 } 4194 } 4195 } 4196 } else { 4197 // Create a new class template specialization declaration node for 4198 // this explicit specialization or friend declaration. 4199 Specialization 4200 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4201 ClassTemplate->getDeclContext(), 4202 TemplateNameLoc, 4203 ClassTemplate, 4204 Converted, 4205 PrevDecl); 4206 SetNestedNameSpecifier(Specialization, SS); 4207 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4208 Specialization->setTemplateParameterListsInfo(Context, 4209 NumMatchedTemplateParamLists, 4210 (TemplateParameterList**) TemplateParameterLists.release()); 4211 } 4212 4213 if (!PrevDecl) 4214 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4215 4216 CanonType = Context.getTypeDeclType(Specialization); 4217 } 4218 4219 // C++ [temp.expl.spec]p6: 4220 // If a template, a member template or the member of a class template is 4221 // explicitly specialized then that specialization shall be declared 4222 // before the first use of that specialization that would cause an implicit 4223 // instantiation to take place, in every translation unit in which such a 4224 // use occurs; no diagnostic is required. 4225 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4226 bool Okay = false; 4227 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4228 // Is there any previous explicit specialization declaration? 4229 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4230 Okay = true; 4231 break; 4232 } 4233 } 4234 4235 if (!Okay) { 4236 SourceRange Range(TemplateNameLoc, RAngleLoc); 4237 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4238 << Context.getTypeDeclType(Specialization) << Range; 4239 4240 Diag(PrevDecl->getPointOfInstantiation(), 4241 diag::note_instantiation_required_here) 4242 << (PrevDecl->getTemplateSpecializationKind() 4243 != TSK_ImplicitInstantiation); 4244 return true; 4245 } 4246 } 4247 4248 // If this is not a friend, note that this is an explicit specialization. 4249 if (TUK != TUK_Friend) 4250 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4251 4252 // Check that this isn't a redefinition of this specialization. 4253 if (TUK == TUK_Definition) { 4254 if (RecordDecl *Def = Specialization->getDefinition()) { 4255 SourceRange Range(TemplateNameLoc, RAngleLoc); 4256 Diag(TemplateNameLoc, diag::err_redefinition) 4257 << Context.getTypeDeclType(Specialization) << Range; 4258 Diag(Def->getLocation(), diag::note_previous_definition); 4259 Specialization->setInvalidDecl(); 4260 return true; 4261 } 4262 } 4263 4264 // Build the fully-sugared type for this class template 4265 // specialization as the user wrote in the specialization 4266 // itself. This means that we'll pretty-print the type retrieved 4267 // from the specialization's declaration the way that the user 4268 // actually wrote the specialization, rather than formatting the 4269 // name based on the "canonical" representation used to store the 4270 // template arguments in the specialization. 4271 TypeSourceInfo *WrittenTy 4272 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4273 TemplateArgs, CanonType); 4274 if (TUK != TUK_Friend) { 4275 Specialization->setTypeAsWritten(WrittenTy); 4276 if (TemplateParams) 4277 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4278 } 4279 TemplateArgsIn.release(); 4280 4281 // C++ [temp.expl.spec]p9: 4282 // A template explicit specialization is in the scope of the 4283 // namespace in which the template was defined. 4284 // 4285 // We actually implement this paragraph where we set the semantic 4286 // context (in the creation of the ClassTemplateSpecializationDecl), 4287 // but we also maintain the lexical context where the actual 4288 // definition occurs. 4289 Specialization->setLexicalDeclContext(CurContext); 4290 4291 // We may be starting the definition of this specialization. 4292 if (TUK == TUK_Definition) 4293 Specialization->startDefinition(); 4294 4295 if (TUK == TUK_Friend) { 4296 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4297 TemplateNameLoc, 4298 WrittenTy, 4299 /*FIXME:*/KWLoc); 4300 Friend->setAccess(AS_public); 4301 CurContext->addDecl(Friend); 4302 } else { 4303 // Add the specialization into its lexical context, so that it can 4304 // be seen when iterating through the list of declarations in that 4305 // context. However, specializations are not found by name lookup. 4306 CurContext->addDecl(Specialization); 4307 } 4308 return Specialization; 4309} 4310 4311Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4312 MultiTemplateParamsArg TemplateParameterLists, 4313 Declarator &D) { 4314 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4315} 4316 4317Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4318 MultiTemplateParamsArg TemplateParameterLists, 4319 Declarator &D) { 4320 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4321 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 4322 "Not a function declarator!"); 4323 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 4324 4325 if (FTI.hasPrototype) { 4326 // FIXME: Diagnose arguments without names in C. 4327 } 4328 4329 Scope *ParentScope = FnBodyScope->getParent(); 4330 4331 Decl *DP = HandleDeclarator(ParentScope, D, 4332 move(TemplateParameterLists), 4333 /*IsFunctionDefinition=*/true); 4334 if (FunctionTemplateDecl *FunctionTemplate 4335 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4336 return ActOnStartOfFunctionDef(FnBodyScope, 4337 FunctionTemplate->getTemplatedDecl()); 4338 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4339 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4340 return 0; 4341} 4342 4343/// \brief Strips various properties off an implicit instantiation 4344/// that has just been explicitly specialized. 4345static void StripImplicitInstantiation(NamedDecl *D) { 4346 D->dropAttrs(); 4347 4348 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4349 FD->setInlineSpecified(false); 4350 } 4351} 4352 4353/// \brief Diagnose cases where we have an explicit template specialization 4354/// before/after an explicit template instantiation, producing diagnostics 4355/// for those cases where they are required and determining whether the 4356/// new specialization/instantiation will have any effect. 4357/// 4358/// \param NewLoc the location of the new explicit specialization or 4359/// instantiation. 4360/// 4361/// \param NewTSK the kind of the new explicit specialization or instantiation. 4362/// 4363/// \param PrevDecl the previous declaration of the entity. 4364/// 4365/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4366/// 4367/// \param PrevPointOfInstantiation if valid, indicates where the previus 4368/// declaration was instantiated (either implicitly or explicitly). 4369/// 4370/// \param HasNoEffect will be set to true to indicate that the new 4371/// specialization or instantiation has no effect and should be ignored. 4372/// 4373/// \returns true if there was an error that should prevent the introduction of 4374/// the new declaration into the AST, false otherwise. 4375bool 4376Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4377 TemplateSpecializationKind NewTSK, 4378 NamedDecl *PrevDecl, 4379 TemplateSpecializationKind PrevTSK, 4380 SourceLocation PrevPointOfInstantiation, 4381 bool &HasNoEffect) { 4382 HasNoEffect = false; 4383 4384 switch (NewTSK) { 4385 case TSK_Undeclared: 4386 case TSK_ImplicitInstantiation: 4387 assert(false && "Don't check implicit instantiations here"); 4388 return false; 4389 4390 case TSK_ExplicitSpecialization: 4391 switch (PrevTSK) { 4392 case TSK_Undeclared: 4393 case TSK_ExplicitSpecialization: 4394 // Okay, we're just specializing something that is either already 4395 // explicitly specialized or has merely been mentioned without any 4396 // instantiation. 4397 return false; 4398 4399 case TSK_ImplicitInstantiation: 4400 if (PrevPointOfInstantiation.isInvalid()) { 4401 // The declaration itself has not actually been instantiated, so it is 4402 // still okay to specialize it. 4403 StripImplicitInstantiation(PrevDecl); 4404 return false; 4405 } 4406 // Fall through 4407 4408 case TSK_ExplicitInstantiationDeclaration: 4409 case TSK_ExplicitInstantiationDefinition: 4410 assert((PrevTSK == TSK_ImplicitInstantiation || 4411 PrevPointOfInstantiation.isValid()) && 4412 "Explicit instantiation without point of instantiation?"); 4413 4414 // C++ [temp.expl.spec]p6: 4415 // If a template, a member template or the member of a class template 4416 // is explicitly specialized then that specialization shall be declared 4417 // before the first use of that specialization that would cause an 4418 // implicit instantiation to take place, in every translation unit in 4419 // which such a use occurs; no diagnostic is required. 4420 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4421 // Is there any previous explicit specialization declaration? 4422 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4423 return false; 4424 } 4425 4426 Diag(NewLoc, diag::err_specialization_after_instantiation) 4427 << PrevDecl; 4428 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4429 << (PrevTSK != TSK_ImplicitInstantiation); 4430 4431 return true; 4432 } 4433 break; 4434 4435 case TSK_ExplicitInstantiationDeclaration: 4436 switch (PrevTSK) { 4437 case TSK_ExplicitInstantiationDeclaration: 4438 // This explicit instantiation declaration is redundant (that's okay). 4439 HasNoEffect = true; 4440 return false; 4441 4442 case TSK_Undeclared: 4443 case TSK_ImplicitInstantiation: 4444 // We're explicitly instantiating something that may have already been 4445 // implicitly instantiated; that's fine. 4446 return false; 4447 4448 case TSK_ExplicitSpecialization: 4449 // C++0x [temp.explicit]p4: 4450 // For a given set of template parameters, if an explicit instantiation 4451 // of a template appears after a declaration of an explicit 4452 // specialization for that template, the explicit instantiation has no 4453 // effect. 4454 HasNoEffect = true; 4455 return false; 4456 4457 case TSK_ExplicitInstantiationDefinition: 4458 // C++0x [temp.explicit]p10: 4459 // If an entity is the subject of both an explicit instantiation 4460 // declaration and an explicit instantiation definition in the same 4461 // translation unit, the definition shall follow the declaration. 4462 Diag(NewLoc, 4463 diag::err_explicit_instantiation_declaration_after_definition); 4464 Diag(PrevPointOfInstantiation, 4465 diag::note_explicit_instantiation_definition_here); 4466 assert(PrevPointOfInstantiation.isValid() && 4467 "Explicit instantiation without point of instantiation?"); 4468 HasNoEffect = true; 4469 return false; 4470 } 4471 break; 4472 4473 case TSK_ExplicitInstantiationDefinition: 4474 switch (PrevTSK) { 4475 case TSK_Undeclared: 4476 case TSK_ImplicitInstantiation: 4477 // We're explicitly instantiating something that may have already been 4478 // implicitly instantiated; that's fine. 4479 return false; 4480 4481 case TSK_ExplicitSpecialization: 4482 // C++ DR 259, C++0x [temp.explicit]p4: 4483 // For a given set of template parameters, if an explicit 4484 // instantiation of a template appears after a declaration of 4485 // an explicit specialization for that template, the explicit 4486 // instantiation has no effect. 4487 // 4488 // In C++98/03 mode, we only give an extension warning here, because it 4489 // is not harmful to try to explicitly instantiate something that 4490 // has been explicitly specialized. 4491 if (!getLangOptions().CPlusPlus0x) { 4492 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4493 << PrevDecl; 4494 Diag(PrevDecl->getLocation(), 4495 diag::note_previous_template_specialization); 4496 } 4497 HasNoEffect = true; 4498 return false; 4499 4500 case TSK_ExplicitInstantiationDeclaration: 4501 // We're explicity instantiating a definition for something for which we 4502 // were previously asked to suppress instantiations. That's fine. 4503 return false; 4504 4505 case TSK_ExplicitInstantiationDefinition: 4506 // C++0x [temp.spec]p5: 4507 // For a given template and a given set of template-arguments, 4508 // - an explicit instantiation definition shall appear at most once 4509 // in a program, 4510 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4511 << PrevDecl; 4512 Diag(PrevPointOfInstantiation, 4513 diag::note_previous_explicit_instantiation); 4514 HasNoEffect = true; 4515 return false; 4516 } 4517 break; 4518 } 4519 4520 assert(false && "Missing specialization/instantiation case?"); 4521 4522 return false; 4523} 4524 4525/// \brief Perform semantic analysis for the given dependent function 4526/// template specialization. The only possible way to get a dependent 4527/// function template specialization is with a friend declaration, 4528/// like so: 4529/// 4530/// template <class T> void foo(T); 4531/// template <class T> class A { 4532/// friend void foo<>(T); 4533/// }; 4534/// 4535/// There really isn't any useful analysis we can do here, so we 4536/// just store the information. 4537bool 4538Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4539 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4540 LookupResult &Previous) { 4541 // Remove anything from Previous that isn't a function template in 4542 // the correct context. 4543 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4544 LookupResult::Filter F = Previous.makeFilter(); 4545 while (F.hasNext()) { 4546 NamedDecl *D = F.next()->getUnderlyingDecl(); 4547 if (!isa<FunctionTemplateDecl>(D) || 4548 !FDLookupContext->InEnclosingNamespaceSetOf( 4549 D->getDeclContext()->getRedeclContext())) 4550 F.erase(); 4551 } 4552 F.done(); 4553 4554 // Should this be diagnosed here? 4555 if (Previous.empty()) return true; 4556 4557 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4558 ExplicitTemplateArgs); 4559 return false; 4560} 4561 4562/// \brief Perform semantic analysis for the given function template 4563/// specialization. 4564/// 4565/// This routine performs all of the semantic analysis required for an 4566/// explicit function template specialization. On successful completion, 4567/// the function declaration \p FD will become a function template 4568/// specialization. 4569/// 4570/// \param FD the function declaration, which will be updated to become a 4571/// function template specialization. 4572/// 4573/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4574/// if any. Note that this may be valid info even when 0 arguments are 4575/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4576/// as it anyway contains info on the angle brackets locations. 4577/// 4578/// \param PrevDecl the set of declarations that may be specialized by 4579/// this function specialization. 4580bool 4581Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4582 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4583 LookupResult &Previous) { 4584 // The set of function template specializations that could match this 4585 // explicit function template specialization. 4586 UnresolvedSet<8> Candidates; 4587 4588 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4589 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4590 I != E; ++I) { 4591 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4592 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4593 // Only consider templates found within the same semantic lookup scope as 4594 // FD. 4595 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4596 Ovl->getDeclContext()->getRedeclContext())) 4597 continue; 4598 4599 // C++ [temp.expl.spec]p11: 4600 // A trailing template-argument can be left unspecified in the 4601 // template-id naming an explicit function template specialization 4602 // provided it can be deduced from the function argument type. 4603 // Perform template argument deduction to determine whether we may be 4604 // specializing this template. 4605 // FIXME: It is somewhat wasteful to build 4606 TemplateDeductionInfo Info(Context, FD->getLocation()); 4607 FunctionDecl *Specialization = 0; 4608 if (TemplateDeductionResult TDK 4609 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4610 FD->getType(), 4611 Specialization, 4612 Info)) { 4613 // FIXME: Template argument deduction failed; record why it failed, so 4614 // that we can provide nifty diagnostics. 4615 (void)TDK; 4616 continue; 4617 } 4618 4619 // Record this candidate. 4620 Candidates.addDecl(Specialization, I.getAccess()); 4621 } 4622 } 4623 4624 // Find the most specialized function template. 4625 UnresolvedSetIterator Result 4626 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4627 TPOC_Other, FD->getLocation(), 4628 PDiag(diag::err_function_template_spec_no_match) 4629 << FD->getDeclName(), 4630 PDiag(diag::err_function_template_spec_ambiguous) 4631 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4632 PDiag(diag::note_function_template_spec_matched)); 4633 if (Result == Candidates.end()) 4634 return true; 4635 4636 // Ignore access information; it doesn't figure into redeclaration checking. 4637 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4638 Specialization->setLocation(FD->getLocation()); 4639 4640 // FIXME: Check if the prior specialization has a point of instantiation. 4641 // If so, we have run afoul of . 4642 4643 // If this is a friend declaration, then we're not really declaring 4644 // an explicit specialization. 4645 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4646 4647 // Check the scope of this explicit specialization. 4648 if (!isFriend && 4649 CheckTemplateSpecializationScope(*this, 4650 Specialization->getPrimaryTemplate(), 4651 Specialization, FD->getLocation(), 4652 false)) 4653 return true; 4654 4655 // C++ [temp.expl.spec]p6: 4656 // If a template, a member template or the member of a class template is 4657 // explicitly specialized then that specialization shall be declared 4658 // before the first use of that specialization that would cause an implicit 4659 // instantiation to take place, in every translation unit in which such a 4660 // use occurs; no diagnostic is required. 4661 FunctionTemplateSpecializationInfo *SpecInfo 4662 = Specialization->getTemplateSpecializationInfo(); 4663 assert(SpecInfo && "Function template specialization info missing?"); 4664 4665 bool HasNoEffect = false; 4666 if (!isFriend && 4667 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4668 TSK_ExplicitSpecialization, 4669 Specialization, 4670 SpecInfo->getTemplateSpecializationKind(), 4671 SpecInfo->getPointOfInstantiation(), 4672 HasNoEffect)) 4673 return true; 4674 4675 // Mark the prior declaration as an explicit specialization, so that later 4676 // clients know that this is an explicit specialization. 4677 if (!isFriend) { 4678 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4679 MarkUnusedFileScopedDecl(Specialization); 4680 } 4681 4682 // Turn the given function declaration into a function template 4683 // specialization, with the template arguments from the previous 4684 // specialization. 4685 // Take copies of (semantic and syntactic) template argument lists. 4686 const TemplateArgumentList* TemplArgs = new (Context) 4687 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4688 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4689 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4690 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4691 TemplArgs, /*InsertPos=*/0, 4692 SpecInfo->getTemplateSpecializationKind(), 4693 TemplArgsAsWritten); 4694 4695 // The "previous declaration" for this function template specialization is 4696 // the prior function template specialization. 4697 Previous.clear(); 4698 Previous.addDecl(Specialization); 4699 return false; 4700} 4701 4702/// \brief Perform semantic analysis for the given non-template member 4703/// specialization. 4704/// 4705/// This routine performs all of the semantic analysis required for an 4706/// explicit member function specialization. On successful completion, 4707/// the function declaration \p FD will become a member function 4708/// specialization. 4709/// 4710/// \param Member the member declaration, which will be updated to become a 4711/// specialization. 4712/// 4713/// \param Previous the set of declarations, one of which may be specialized 4714/// by this function specialization; the set will be modified to contain the 4715/// redeclared member. 4716bool 4717Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4718 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4719 4720 // Try to find the member we are instantiating. 4721 NamedDecl *Instantiation = 0; 4722 NamedDecl *InstantiatedFrom = 0; 4723 MemberSpecializationInfo *MSInfo = 0; 4724 4725 if (Previous.empty()) { 4726 // Nowhere to look anyway. 4727 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4728 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4729 I != E; ++I) { 4730 NamedDecl *D = (*I)->getUnderlyingDecl(); 4731 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4732 if (Context.hasSameType(Function->getType(), Method->getType())) { 4733 Instantiation = Method; 4734 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4735 MSInfo = Method->getMemberSpecializationInfo(); 4736 break; 4737 } 4738 } 4739 } 4740 } else if (isa<VarDecl>(Member)) { 4741 VarDecl *PrevVar; 4742 if (Previous.isSingleResult() && 4743 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4744 if (PrevVar->isStaticDataMember()) { 4745 Instantiation = PrevVar; 4746 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4747 MSInfo = PrevVar->getMemberSpecializationInfo(); 4748 } 4749 } else if (isa<RecordDecl>(Member)) { 4750 CXXRecordDecl *PrevRecord; 4751 if (Previous.isSingleResult() && 4752 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4753 Instantiation = PrevRecord; 4754 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4755 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4756 } 4757 } 4758 4759 if (!Instantiation) { 4760 // There is no previous declaration that matches. Since member 4761 // specializations are always out-of-line, the caller will complain about 4762 // this mismatch later. 4763 return false; 4764 } 4765 4766 // If this is a friend, just bail out here before we start turning 4767 // things into explicit specializations. 4768 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4769 // Preserve instantiation information. 4770 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4771 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4772 cast<CXXMethodDecl>(InstantiatedFrom), 4773 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4774 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4775 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4776 cast<CXXRecordDecl>(InstantiatedFrom), 4777 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4778 } 4779 4780 Previous.clear(); 4781 Previous.addDecl(Instantiation); 4782 return false; 4783 } 4784 4785 // Make sure that this is a specialization of a member. 4786 if (!InstantiatedFrom) { 4787 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4788 << Member; 4789 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4790 return true; 4791 } 4792 4793 // C++ [temp.expl.spec]p6: 4794 // If a template, a member template or the member of a class template is 4795 // explicitly specialized then that spe- cialization shall be declared 4796 // before the first use of that specialization that would cause an implicit 4797 // instantiation to take place, in every translation unit in which such a 4798 // use occurs; no diagnostic is required. 4799 assert(MSInfo && "Member specialization info missing?"); 4800 4801 bool HasNoEffect = false; 4802 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4803 TSK_ExplicitSpecialization, 4804 Instantiation, 4805 MSInfo->getTemplateSpecializationKind(), 4806 MSInfo->getPointOfInstantiation(), 4807 HasNoEffect)) 4808 return true; 4809 4810 // Check the scope of this explicit specialization. 4811 if (CheckTemplateSpecializationScope(*this, 4812 InstantiatedFrom, 4813 Instantiation, Member->getLocation(), 4814 false)) 4815 return true; 4816 4817 // Note that this is an explicit instantiation of a member. 4818 // the original declaration to note that it is an explicit specialization 4819 // (if it was previously an implicit instantiation). This latter step 4820 // makes bookkeeping easier. 4821 if (isa<FunctionDecl>(Member)) { 4822 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4823 if (InstantiationFunction->getTemplateSpecializationKind() == 4824 TSK_ImplicitInstantiation) { 4825 InstantiationFunction->setTemplateSpecializationKind( 4826 TSK_ExplicitSpecialization); 4827 InstantiationFunction->setLocation(Member->getLocation()); 4828 } 4829 4830 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4831 cast<CXXMethodDecl>(InstantiatedFrom), 4832 TSK_ExplicitSpecialization); 4833 MarkUnusedFileScopedDecl(InstantiationFunction); 4834 } else if (isa<VarDecl>(Member)) { 4835 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4836 if (InstantiationVar->getTemplateSpecializationKind() == 4837 TSK_ImplicitInstantiation) { 4838 InstantiationVar->setTemplateSpecializationKind( 4839 TSK_ExplicitSpecialization); 4840 InstantiationVar->setLocation(Member->getLocation()); 4841 } 4842 4843 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4844 cast<VarDecl>(InstantiatedFrom), 4845 TSK_ExplicitSpecialization); 4846 MarkUnusedFileScopedDecl(InstantiationVar); 4847 } else { 4848 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4849 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4850 if (InstantiationClass->getTemplateSpecializationKind() == 4851 TSK_ImplicitInstantiation) { 4852 InstantiationClass->setTemplateSpecializationKind( 4853 TSK_ExplicitSpecialization); 4854 InstantiationClass->setLocation(Member->getLocation()); 4855 } 4856 4857 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4858 cast<CXXRecordDecl>(InstantiatedFrom), 4859 TSK_ExplicitSpecialization); 4860 } 4861 4862 // Save the caller the trouble of having to figure out which declaration 4863 // this specialization matches. 4864 Previous.clear(); 4865 Previous.addDecl(Instantiation); 4866 return false; 4867} 4868 4869/// \brief Check the scope of an explicit instantiation. 4870/// 4871/// \returns true if a serious error occurs, false otherwise. 4872static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4873 SourceLocation InstLoc, 4874 bool WasQualifiedName) { 4875 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 4876 DeclContext *CurContext = S.CurContext->getRedeclContext(); 4877 4878 if (CurContext->isRecord()) { 4879 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 4880 << D; 4881 return true; 4882 } 4883 4884 // C++0x [temp.explicit]p2: 4885 // An explicit instantiation shall appear in an enclosing namespace of its 4886 // template. 4887 // 4888 // This is DR275, which we do not retroactively apply to C++98/03. 4889 if (S.getLangOptions().CPlusPlus0x && 4890 !CurContext->Encloses(OrigContext)) { 4891 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 4892 S.Diag(InstLoc, 4893 S.getLangOptions().CPlusPlus0x? 4894 diag::err_explicit_instantiation_out_of_scope 4895 : diag::warn_explicit_instantiation_out_of_scope_0x) 4896 << D << NS; 4897 else 4898 S.Diag(InstLoc, 4899 S.getLangOptions().CPlusPlus0x? 4900 diag::err_explicit_instantiation_must_be_global 4901 : diag::warn_explicit_instantiation_out_of_scope_0x) 4902 << D; 4903 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4904 return false; 4905 } 4906 4907 // C++0x [temp.explicit]p2: 4908 // If the name declared in the explicit instantiation is an unqualified 4909 // name, the explicit instantiation shall appear in the namespace where 4910 // its template is declared or, if that namespace is inline (7.3.1), any 4911 // namespace from its enclosing namespace set. 4912 if (WasQualifiedName) 4913 return false; 4914 4915 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 4916 return false; 4917 4918 S.Diag(InstLoc, 4919 S.getLangOptions().CPlusPlus0x? 4920 diag::err_explicit_instantiation_unqualified_wrong_namespace 4921 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4922 << D << OrigContext; 4923 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4924 return false; 4925} 4926 4927/// \brief Determine whether the given scope specifier has a template-id in it. 4928static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4929 if (!SS.isSet()) 4930 return false; 4931 4932 // C++0x [temp.explicit]p2: 4933 // If the explicit instantiation is for a member function, a member class 4934 // or a static data member of a class template specialization, the name of 4935 // the class template specialization in the qualified-id for the member 4936 // name shall be a simple-template-id. 4937 // 4938 // C++98 has the same restriction, just worded differently. 4939 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4940 NNS; NNS = NNS->getPrefix()) 4941 if (Type *T = NNS->getAsType()) 4942 if (isa<TemplateSpecializationType>(T)) 4943 return true; 4944 4945 return false; 4946} 4947 4948// Explicit instantiation of a class template specialization 4949DeclResult 4950Sema::ActOnExplicitInstantiation(Scope *S, 4951 SourceLocation ExternLoc, 4952 SourceLocation TemplateLoc, 4953 unsigned TagSpec, 4954 SourceLocation KWLoc, 4955 const CXXScopeSpec &SS, 4956 TemplateTy TemplateD, 4957 SourceLocation TemplateNameLoc, 4958 SourceLocation LAngleLoc, 4959 ASTTemplateArgsPtr TemplateArgsIn, 4960 SourceLocation RAngleLoc, 4961 AttributeList *Attr) { 4962 // Find the class template we're specializing 4963 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4964 ClassTemplateDecl *ClassTemplate 4965 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4966 4967 // Check that the specialization uses the same tag kind as the 4968 // original template. 4969 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4970 assert(Kind != TTK_Enum && 4971 "Invalid enum tag in class template explicit instantiation!"); 4972 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4973 Kind, KWLoc, 4974 *ClassTemplate->getIdentifier())) { 4975 Diag(KWLoc, diag::err_use_with_wrong_tag) 4976 << ClassTemplate 4977 << FixItHint::CreateReplacement(KWLoc, 4978 ClassTemplate->getTemplatedDecl()->getKindName()); 4979 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4980 diag::note_previous_use); 4981 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4982 } 4983 4984 // C++0x [temp.explicit]p2: 4985 // There are two forms of explicit instantiation: an explicit instantiation 4986 // definition and an explicit instantiation declaration. An explicit 4987 // instantiation declaration begins with the extern keyword. [...] 4988 TemplateSpecializationKind TSK 4989 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4990 : TSK_ExplicitInstantiationDeclaration; 4991 4992 // Translate the parser's template argument list in our AST format. 4993 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4994 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4995 4996 // Check that the template argument list is well-formed for this 4997 // template. 4998 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4999 TemplateArgs.size()); 5000 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5001 TemplateArgs, false, Converted)) 5002 return true; 5003 5004 assert((Converted.structuredSize() == 5005 ClassTemplate->getTemplateParameters()->size()) && 5006 "Converted template argument list is too short!"); 5007 5008 // Find the class template specialization declaration that 5009 // corresponds to these arguments. 5010 void *InsertPos = 0; 5011 ClassTemplateSpecializationDecl *PrevDecl 5012 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 5013 Converted.flatSize(), InsertPos); 5014 5015 TemplateSpecializationKind PrevDecl_TSK 5016 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5017 5018 // C++0x [temp.explicit]p2: 5019 // [...] An explicit instantiation shall appear in an enclosing 5020 // namespace of its template. [...] 5021 // 5022 // This is C++ DR 275. 5023 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5024 SS.isSet())) 5025 return true; 5026 5027 ClassTemplateSpecializationDecl *Specialization = 0; 5028 5029 bool ReusedDecl = false; 5030 bool HasNoEffect = false; 5031 if (PrevDecl) { 5032 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5033 PrevDecl, PrevDecl_TSK, 5034 PrevDecl->getPointOfInstantiation(), 5035 HasNoEffect)) 5036 return PrevDecl; 5037 5038 // Even though HasNoEffect == true means that this explicit instantiation 5039 // has no effect on semantics, we go on to put its syntax in the AST. 5040 5041 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5042 PrevDecl_TSK == TSK_Undeclared) { 5043 // Since the only prior class template specialization with these 5044 // arguments was referenced but not declared, reuse that 5045 // declaration node as our own, updating the source location 5046 // for the template name to reflect our new declaration. 5047 // (Other source locations will be updated later.) 5048 Specialization = PrevDecl; 5049 Specialization->setLocation(TemplateNameLoc); 5050 PrevDecl = 0; 5051 ReusedDecl = true; 5052 } 5053 } 5054 5055 if (!Specialization) { 5056 // Create a new class template specialization declaration node for 5057 // this explicit specialization. 5058 Specialization 5059 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5060 ClassTemplate->getDeclContext(), 5061 TemplateNameLoc, 5062 ClassTemplate, 5063 Converted, PrevDecl); 5064 SetNestedNameSpecifier(Specialization, SS); 5065 5066 if (!HasNoEffect && !PrevDecl) { 5067 // Insert the new specialization. 5068 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5069 } 5070 } 5071 5072 // Build the fully-sugared type for this explicit instantiation as 5073 // the user wrote in the explicit instantiation itself. This means 5074 // that we'll pretty-print the type retrieved from the 5075 // specialization's declaration the way that the user actually wrote 5076 // the explicit instantiation, rather than formatting the name based 5077 // on the "canonical" representation used to store the template 5078 // arguments in the specialization. 5079 TypeSourceInfo *WrittenTy 5080 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5081 TemplateArgs, 5082 Context.getTypeDeclType(Specialization)); 5083 Specialization->setTypeAsWritten(WrittenTy); 5084 TemplateArgsIn.release(); 5085 5086 // Set source locations for keywords. 5087 Specialization->setExternLoc(ExternLoc); 5088 Specialization->setTemplateKeywordLoc(TemplateLoc); 5089 5090 // Add the explicit instantiation into its lexical context. However, 5091 // since explicit instantiations are never found by name lookup, we 5092 // just put it into the declaration context directly. 5093 Specialization->setLexicalDeclContext(CurContext); 5094 CurContext->addDecl(Specialization); 5095 5096 // Syntax is now OK, so return if it has no other effect on semantics. 5097 if (HasNoEffect) { 5098 // Set the template specialization kind. 5099 Specialization->setTemplateSpecializationKind(TSK); 5100 return Specialization; 5101 } 5102 5103 // C++ [temp.explicit]p3: 5104 // A definition of a class template or class member template 5105 // shall be in scope at the point of the explicit instantiation of 5106 // the class template or class member template. 5107 // 5108 // This check comes when we actually try to perform the 5109 // instantiation. 5110 ClassTemplateSpecializationDecl *Def 5111 = cast_or_null<ClassTemplateSpecializationDecl>( 5112 Specialization->getDefinition()); 5113 if (!Def) 5114 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5115 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5116 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5117 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5118 } 5119 5120 // Instantiate the members of this class template specialization. 5121 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5122 Specialization->getDefinition()); 5123 if (Def) { 5124 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5125 5126 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5127 // TSK_ExplicitInstantiationDefinition 5128 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5129 TSK == TSK_ExplicitInstantiationDefinition) 5130 Def->setTemplateSpecializationKind(TSK); 5131 5132 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5133 } 5134 5135 // Set the template specialization kind. 5136 Specialization->setTemplateSpecializationKind(TSK); 5137 return Specialization; 5138} 5139 5140// Explicit instantiation of a member class of a class template. 5141DeclResult 5142Sema::ActOnExplicitInstantiation(Scope *S, 5143 SourceLocation ExternLoc, 5144 SourceLocation TemplateLoc, 5145 unsigned TagSpec, 5146 SourceLocation KWLoc, 5147 CXXScopeSpec &SS, 5148 IdentifierInfo *Name, 5149 SourceLocation NameLoc, 5150 AttributeList *Attr) { 5151 5152 bool Owned = false; 5153 bool IsDependent = false; 5154 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5155 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5156 MultiTemplateParamsArg(*this, 0, 0), 5157 Owned, IsDependent, false, 5158 TypeResult()); 5159 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5160 5161 if (!TagD) 5162 return true; 5163 5164 TagDecl *Tag = cast<TagDecl>(TagD); 5165 if (Tag->isEnum()) { 5166 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5167 << Context.getTypeDeclType(Tag); 5168 return true; 5169 } 5170 5171 if (Tag->isInvalidDecl()) 5172 return true; 5173 5174 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5175 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5176 if (!Pattern) { 5177 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5178 << Context.getTypeDeclType(Record); 5179 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5180 return true; 5181 } 5182 5183 // C++0x [temp.explicit]p2: 5184 // If the explicit instantiation is for a class or member class, the 5185 // elaborated-type-specifier in the declaration shall include a 5186 // simple-template-id. 5187 // 5188 // C++98 has the same restriction, just worded differently. 5189 if (!ScopeSpecifierHasTemplateId(SS)) 5190 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5191 << Record << SS.getRange(); 5192 5193 // C++0x [temp.explicit]p2: 5194 // There are two forms of explicit instantiation: an explicit instantiation 5195 // definition and an explicit instantiation declaration. An explicit 5196 // instantiation declaration begins with the extern keyword. [...] 5197 TemplateSpecializationKind TSK 5198 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5199 : TSK_ExplicitInstantiationDeclaration; 5200 5201 // C++0x [temp.explicit]p2: 5202 // [...] An explicit instantiation shall appear in an enclosing 5203 // namespace of its template. [...] 5204 // 5205 // This is C++ DR 275. 5206 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5207 5208 // Verify that it is okay to explicitly instantiate here. 5209 CXXRecordDecl *PrevDecl 5210 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5211 if (!PrevDecl && Record->getDefinition()) 5212 PrevDecl = Record; 5213 if (PrevDecl) { 5214 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5215 bool HasNoEffect = false; 5216 assert(MSInfo && "No member specialization information?"); 5217 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5218 PrevDecl, 5219 MSInfo->getTemplateSpecializationKind(), 5220 MSInfo->getPointOfInstantiation(), 5221 HasNoEffect)) 5222 return true; 5223 if (HasNoEffect) 5224 return TagD; 5225 } 5226 5227 CXXRecordDecl *RecordDef 5228 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5229 if (!RecordDef) { 5230 // C++ [temp.explicit]p3: 5231 // A definition of a member class of a class template shall be in scope 5232 // at the point of an explicit instantiation of the member class. 5233 CXXRecordDecl *Def 5234 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5235 if (!Def) { 5236 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5237 << 0 << Record->getDeclName() << Record->getDeclContext(); 5238 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5239 << Pattern; 5240 return true; 5241 } else { 5242 if (InstantiateClass(NameLoc, Record, Def, 5243 getTemplateInstantiationArgs(Record), 5244 TSK)) 5245 return true; 5246 5247 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5248 if (!RecordDef) 5249 return true; 5250 } 5251 } 5252 5253 // Instantiate all of the members of the class. 5254 InstantiateClassMembers(NameLoc, RecordDef, 5255 getTemplateInstantiationArgs(Record), TSK); 5256 5257 if (TSK == TSK_ExplicitInstantiationDefinition) 5258 MarkVTableUsed(NameLoc, RecordDef, true); 5259 5260 // FIXME: We don't have any representation for explicit instantiations of 5261 // member classes. Such a representation is not needed for compilation, but it 5262 // should be available for clients that want to see all of the declarations in 5263 // the source code. 5264 return TagD; 5265} 5266 5267DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5268 SourceLocation ExternLoc, 5269 SourceLocation TemplateLoc, 5270 Declarator &D) { 5271 // Explicit instantiations always require a name. 5272 // TODO: check if/when DNInfo should replace Name. 5273 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5274 DeclarationName Name = NameInfo.getName(); 5275 if (!Name) { 5276 if (!D.isInvalidType()) 5277 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5278 diag::err_explicit_instantiation_requires_name) 5279 << D.getDeclSpec().getSourceRange() 5280 << D.getSourceRange(); 5281 5282 return true; 5283 } 5284 5285 // The scope passed in may not be a decl scope. Zip up the scope tree until 5286 // we find one that is. 5287 while ((S->getFlags() & Scope::DeclScope) == 0 || 5288 (S->getFlags() & Scope::TemplateParamScope) != 0) 5289 S = S->getParent(); 5290 5291 // Determine the type of the declaration. 5292 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5293 QualType R = T->getType(); 5294 if (R.isNull()) 5295 return true; 5296 5297 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5298 // Cannot explicitly instantiate a typedef. 5299 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5300 << Name; 5301 return true; 5302 } 5303 5304 // C++0x [temp.explicit]p1: 5305 // [...] An explicit instantiation of a function template shall not use the 5306 // inline or constexpr specifiers. 5307 // Presumably, this also applies to member functions of class templates as 5308 // well. 5309 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5310 Diag(D.getDeclSpec().getInlineSpecLoc(), 5311 diag::err_explicit_instantiation_inline) 5312 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5313 5314 // FIXME: check for constexpr specifier. 5315 5316 // C++0x [temp.explicit]p2: 5317 // There are two forms of explicit instantiation: an explicit instantiation 5318 // definition and an explicit instantiation declaration. An explicit 5319 // instantiation declaration begins with the extern keyword. [...] 5320 TemplateSpecializationKind TSK 5321 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5322 : TSK_ExplicitInstantiationDeclaration; 5323 5324 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5325 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5326 5327 if (!R->isFunctionType()) { 5328 // C++ [temp.explicit]p1: 5329 // A [...] static data member of a class template can be explicitly 5330 // instantiated from the member definition associated with its class 5331 // template. 5332 if (Previous.isAmbiguous()) 5333 return true; 5334 5335 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5336 if (!Prev || !Prev->isStaticDataMember()) { 5337 // We expect to see a data data member here. 5338 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5339 << Name; 5340 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5341 P != PEnd; ++P) 5342 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5343 return true; 5344 } 5345 5346 if (!Prev->getInstantiatedFromStaticDataMember()) { 5347 // FIXME: Check for explicit specialization? 5348 Diag(D.getIdentifierLoc(), 5349 diag::err_explicit_instantiation_data_member_not_instantiated) 5350 << Prev; 5351 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5352 // FIXME: Can we provide a note showing where this was declared? 5353 return true; 5354 } 5355 5356 // C++0x [temp.explicit]p2: 5357 // If the explicit instantiation is for a member function, a member class 5358 // or a static data member of a class template specialization, the name of 5359 // the class template specialization in the qualified-id for the member 5360 // name shall be a simple-template-id. 5361 // 5362 // C++98 has the same restriction, just worded differently. 5363 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5364 Diag(D.getIdentifierLoc(), 5365 diag::ext_explicit_instantiation_without_qualified_id) 5366 << Prev << D.getCXXScopeSpec().getRange(); 5367 5368 // Check the scope of this explicit instantiation. 5369 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5370 5371 // Verify that it is okay to explicitly instantiate here. 5372 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5373 assert(MSInfo && "Missing static data member specialization info?"); 5374 bool HasNoEffect = false; 5375 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5376 MSInfo->getTemplateSpecializationKind(), 5377 MSInfo->getPointOfInstantiation(), 5378 HasNoEffect)) 5379 return true; 5380 if (HasNoEffect) 5381 return (Decl*) 0; 5382 5383 // Instantiate static data member. 5384 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5385 if (TSK == TSK_ExplicitInstantiationDefinition) 5386 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5387 5388 // FIXME: Create an ExplicitInstantiation node? 5389 return (Decl*) 0; 5390 } 5391 5392 // If the declarator is a template-id, translate the parser's template 5393 // argument list into our AST format. 5394 bool HasExplicitTemplateArgs = false; 5395 TemplateArgumentListInfo TemplateArgs; 5396 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5397 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5398 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5399 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5400 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5401 TemplateId->getTemplateArgs(), 5402 TemplateId->NumArgs); 5403 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5404 HasExplicitTemplateArgs = true; 5405 TemplateArgsPtr.release(); 5406 } 5407 5408 // C++ [temp.explicit]p1: 5409 // A [...] function [...] can be explicitly instantiated from its template. 5410 // A member function [...] of a class template can be explicitly 5411 // instantiated from the member definition associated with its class 5412 // template. 5413 UnresolvedSet<8> Matches; 5414 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5415 P != PEnd; ++P) { 5416 NamedDecl *Prev = *P; 5417 if (!HasExplicitTemplateArgs) { 5418 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5419 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5420 Matches.clear(); 5421 5422 Matches.addDecl(Method, P.getAccess()); 5423 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5424 break; 5425 } 5426 } 5427 } 5428 5429 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5430 if (!FunTmpl) 5431 continue; 5432 5433 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5434 FunctionDecl *Specialization = 0; 5435 if (TemplateDeductionResult TDK 5436 = DeduceTemplateArguments(FunTmpl, 5437 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5438 R, Specialization, Info)) { 5439 // FIXME: Keep track of almost-matches? 5440 (void)TDK; 5441 continue; 5442 } 5443 5444 Matches.addDecl(Specialization, P.getAccess()); 5445 } 5446 5447 // Find the most specialized function template specialization. 5448 UnresolvedSetIterator Result 5449 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5450 D.getIdentifierLoc(), 5451 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5452 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5453 PDiag(diag::note_explicit_instantiation_candidate)); 5454 5455 if (Result == Matches.end()) 5456 return true; 5457 5458 // Ignore access control bits, we don't need them for redeclaration checking. 5459 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5460 5461 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5462 Diag(D.getIdentifierLoc(), 5463 diag::err_explicit_instantiation_member_function_not_instantiated) 5464 << Specialization 5465 << (Specialization->getTemplateSpecializationKind() == 5466 TSK_ExplicitSpecialization); 5467 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5468 return true; 5469 } 5470 5471 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5472 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5473 PrevDecl = Specialization; 5474 5475 if (PrevDecl) { 5476 bool HasNoEffect = false; 5477 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5478 PrevDecl, 5479 PrevDecl->getTemplateSpecializationKind(), 5480 PrevDecl->getPointOfInstantiation(), 5481 HasNoEffect)) 5482 return true; 5483 5484 // FIXME: We may still want to build some representation of this 5485 // explicit specialization. 5486 if (HasNoEffect) 5487 return (Decl*) 0; 5488 } 5489 5490 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5491 5492 if (TSK == TSK_ExplicitInstantiationDefinition) 5493 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5494 5495 // C++0x [temp.explicit]p2: 5496 // If the explicit instantiation is for a member function, a member class 5497 // or a static data member of a class template specialization, the name of 5498 // the class template specialization in the qualified-id for the member 5499 // name shall be a simple-template-id. 5500 // 5501 // C++98 has the same restriction, just worded differently. 5502 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5503 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5504 D.getCXXScopeSpec().isSet() && 5505 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5506 Diag(D.getIdentifierLoc(), 5507 diag::ext_explicit_instantiation_without_qualified_id) 5508 << Specialization << D.getCXXScopeSpec().getRange(); 5509 5510 CheckExplicitInstantiationScope(*this, 5511 FunTmpl? (NamedDecl *)FunTmpl 5512 : Specialization->getInstantiatedFromMemberFunction(), 5513 D.getIdentifierLoc(), 5514 D.getCXXScopeSpec().isSet()); 5515 5516 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5517 return (Decl*) 0; 5518} 5519 5520TypeResult 5521Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5522 const CXXScopeSpec &SS, IdentifierInfo *Name, 5523 SourceLocation TagLoc, SourceLocation NameLoc) { 5524 // This has to hold, because SS is expected to be defined. 5525 assert(Name && "Expected a name in a dependent tag"); 5526 5527 NestedNameSpecifier *NNS 5528 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5529 if (!NNS) 5530 return true; 5531 5532 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5533 5534 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5535 Diag(NameLoc, diag::err_dependent_tag_decl) 5536 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5537 return true; 5538 } 5539 5540 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5541 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5542} 5543 5544TypeResult 5545Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5546 const CXXScopeSpec &SS, const IdentifierInfo &II, 5547 SourceLocation IdLoc) { 5548 NestedNameSpecifier *NNS 5549 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5550 if (!NNS) 5551 return true; 5552 5553 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5554 !getLangOptions().CPlusPlus0x) 5555 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5556 << FixItHint::CreateRemoval(TypenameLoc); 5557 5558 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5559 TypenameLoc, SS.getRange(), IdLoc); 5560 if (T.isNull()) 5561 return true; 5562 5563 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5564 if (isa<DependentNameType>(T)) { 5565 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5566 TL.setKeywordLoc(TypenameLoc); 5567 TL.setQualifierRange(SS.getRange()); 5568 TL.setNameLoc(IdLoc); 5569 } else { 5570 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5571 TL.setKeywordLoc(TypenameLoc); 5572 TL.setQualifierRange(SS.getRange()); 5573 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5574 } 5575 5576 return CreateParsedType(T, TSI); 5577} 5578 5579TypeResult 5580Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5581 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5582 ParsedType Ty) { 5583 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5584 !getLangOptions().CPlusPlus0x) 5585 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5586 << FixItHint::CreateRemoval(TypenameLoc); 5587 5588 TypeSourceInfo *InnerTSI = 0; 5589 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5590 5591 assert(isa<TemplateSpecializationType>(T) && 5592 "Expected a template specialization type"); 5593 5594 if (computeDeclContext(SS, false)) { 5595 // If we can compute a declaration context, then the "typename" 5596 // keyword was superfluous. Just build an ElaboratedType to keep 5597 // track of the nested-name-specifier. 5598 5599 // Push the inner type, preserving its source locations if possible. 5600 TypeLocBuilder Builder; 5601 if (InnerTSI) 5602 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5603 else 5604 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5605 5606 /* Note: NNS already embedded in template specialization type T. */ 5607 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5608 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5609 TL.setKeywordLoc(TypenameLoc); 5610 TL.setQualifierRange(SS.getRange()); 5611 5612 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5613 return CreateParsedType(T, TSI); 5614 } 5615 5616 // TODO: it's really silly that we make a template specialization 5617 // type earlier only to drop it again here. 5618 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5619 DependentTemplateName *DTN = 5620 TST->getTemplateName().getAsDependentTemplateName(); 5621 assert(DTN && "dependent template has non-dependent name?"); 5622 assert(DTN->getQualifier() 5623 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5624 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5625 DTN->getQualifier(), 5626 DTN->getIdentifier(), 5627 TST->getNumArgs(), 5628 TST->getArgs()); 5629 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5630 DependentTemplateSpecializationTypeLoc TL = 5631 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5632 if (InnerTSI) { 5633 TemplateSpecializationTypeLoc TSTL = 5634 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5635 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5636 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5637 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5638 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5639 } else { 5640 TL.initializeLocal(SourceLocation()); 5641 } 5642 TL.setKeywordLoc(TypenameLoc); 5643 TL.setQualifierRange(SS.getRange()); 5644 return CreateParsedType(T, TSI); 5645} 5646 5647/// \brief Build the type that describes a C++ typename specifier, 5648/// e.g., "typename T::type". 5649QualType 5650Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5651 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5652 SourceLocation KeywordLoc, SourceRange NNSRange, 5653 SourceLocation IILoc) { 5654 CXXScopeSpec SS; 5655 SS.setScopeRep(NNS); 5656 SS.setRange(NNSRange); 5657 5658 DeclContext *Ctx = computeDeclContext(SS); 5659 if (!Ctx) { 5660 // If the nested-name-specifier is dependent and couldn't be 5661 // resolved to a type, build a typename type. 5662 assert(NNS->isDependent()); 5663 return Context.getDependentNameType(Keyword, NNS, &II); 5664 } 5665 5666 // If the nested-name-specifier refers to the current instantiation, 5667 // the "typename" keyword itself is superfluous. In C++03, the 5668 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5669 // allows such extraneous "typename" keywords, and we retroactively 5670 // apply this DR to C++03 code with only a warning. In any case we continue. 5671 5672 if (RequireCompleteDeclContext(SS, Ctx)) 5673 return QualType(); 5674 5675 DeclarationName Name(&II); 5676 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5677 LookupQualifiedName(Result, Ctx); 5678 unsigned DiagID = 0; 5679 Decl *Referenced = 0; 5680 switch (Result.getResultKind()) { 5681 case LookupResult::NotFound: 5682 DiagID = diag::err_typename_nested_not_found; 5683 break; 5684 5685 case LookupResult::NotFoundInCurrentInstantiation: 5686 // Okay, it's a member of an unknown instantiation. 5687 return Context.getDependentNameType(Keyword, NNS, &II); 5688 5689 case LookupResult::Found: 5690 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5691 // We found a type. Build an ElaboratedType, since the 5692 // typename-specifier was just sugar. 5693 return Context.getElaboratedType(ETK_Typename, NNS, 5694 Context.getTypeDeclType(Type)); 5695 } 5696 5697 DiagID = diag::err_typename_nested_not_type; 5698 Referenced = Result.getFoundDecl(); 5699 break; 5700 5701 case LookupResult::FoundUnresolvedValue: 5702 llvm_unreachable("unresolved using decl in non-dependent context"); 5703 return QualType(); 5704 5705 case LookupResult::FoundOverloaded: 5706 DiagID = diag::err_typename_nested_not_type; 5707 Referenced = *Result.begin(); 5708 break; 5709 5710 case LookupResult::Ambiguous: 5711 return QualType(); 5712 } 5713 5714 // If we get here, it's because name lookup did not find a 5715 // type. Emit an appropriate diagnostic and return an error. 5716 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5717 IILoc); 5718 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5719 if (Referenced) 5720 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5721 << Name; 5722 return QualType(); 5723} 5724 5725namespace { 5726 // See Sema::RebuildTypeInCurrentInstantiation 5727 class CurrentInstantiationRebuilder 5728 : public TreeTransform<CurrentInstantiationRebuilder> { 5729 SourceLocation Loc; 5730 DeclarationName Entity; 5731 5732 public: 5733 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5734 5735 CurrentInstantiationRebuilder(Sema &SemaRef, 5736 SourceLocation Loc, 5737 DeclarationName Entity) 5738 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5739 Loc(Loc), Entity(Entity) { } 5740 5741 /// \brief Determine whether the given type \p T has already been 5742 /// transformed. 5743 /// 5744 /// For the purposes of type reconstruction, a type has already been 5745 /// transformed if it is NULL or if it is not dependent. 5746 bool AlreadyTransformed(QualType T) { 5747 return T.isNull() || !T->isDependentType(); 5748 } 5749 5750 /// \brief Returns the location of the entity whose type is being 5751 /// rebuilt. 5752 SourceLocation getBaseLocation() { return Loc; } 5753 5754 /// \brief Returns the name of the entity whose type is being rebuilt. 5755 DeclarationName getBaseEntity() { return Entity; } 5756 5757 /// \brief Sets the "base" location and entity when that 5758 /// information is known based on another transformation. 5759 void setBase(SourceLocation Loc, DeclarationName Entity) { 5760 this->Loc = Loc; 5761 this->Entity = Entity; 5762 } 5763 }; 5764} 5765 5766/// \brief Rebuilds a type within the context of the current instantiation. 5767/// 5768/// The type \p T is part of the type of an out-of-line member definition of 5769/// a class template (or class template partial specialization) that was parsed 5770/// and constructed before we entered the scope of the class template (or 5771/// partial specialization thereof). This routine will rebuild that type now 5772/// that we have entered the declarator's scope, which may produce different 5773/// canonical types, e.g., 5774/// 5775/// \code 5776/// template<typename T> 5777/// struct X { 5778/// typedef T* pointer; 5779/// pointer data(); 5780/// }; 5781/// 5782/// template<typename T> 5783/// typename X<T>::pointer X<T>::data() { ... } 5784/// \endcode 5785/// 5786/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5787/// since we do not know that we can look into X<T> when we parsed the type. 5788/// This function will rebuild the type, performing the lookup of "pointer" 5789/// in X<T> and returning an ElaboratedType whose canonical type is the same 5790/// as the canonical type of T*, allowing the return types of the out-of-line 5791/// definition and the declaration to match. 5792TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5793 SourceLocation Loc, 5794 DeclarationName Name) { 5795 if (!T || !T->getType()->isDependentType()) 5796 return T; 5797 5798 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5799 return Rebuilder.TransformType(T); 5800} 5801 5802ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 5803 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 5804 DeclarationName()); 5805 return Rebuilder.TransformExpr(E); 5806} 5807 5808bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5809 if (SS.isInvalid()) return true; 5810 5811 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5812 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5813 DeclarationName()); 5814 NestedNameSpecifier *Rebuilt = 5815 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5816 if (!Rebuilt) return true; 5817 5818 SS.setScopeRep(Rebuilt); 5819 return false; 5820} 5821 5822/// \brief Produces a formatted string that describes the binding of 5823/// template parameters to template arguments. 5824std::string 5825Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5826 const TemplateArgumentList &Args) { 5827 // FIXME: For variadic templates, we'll need to get the structured list. 5828 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5829 Args.flat_size()); 5830} 5831 5832std::string 5833Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5834 const TemplateArgument *Args, 5835 unsigned NumArgs) { 5836 std::string Result; 5837 5838 if (!Params || Params->size() == 0 || NumArgs == 0) 5839 return Result; 5840 5841 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5842 if (I >= NumArgs) 5843 break; 5844 5845 if (I == 0) 5846 Result += "[with "; 5847 else 5848 Result += ", "; 5849 5850 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5851 Result += Id->getName(); 5852 } else { 5853 Result += '$'; 5854 Result += llvm::utostr(I); 5855 } 5856 5857 Result += " = "; 5858 5859 switch (Args[I].getKind()) { 5860 case TemplateArgument::Null: 5861 Result += "<no value>"; 5862 break; 5863 5864 case TemplateArgument::Type: { 5865 std::string TypeStr; 5866 Args[I].getAsType().getAsStringInternal(TypeStr, 5867 Context.PrintingPolicy); 5868 Result += TypeStr; 5869 break; 5870 } 5871 5872 case TemplateArgument::Declaration: { 5873 bool Unnamed = true; 5874 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5875 if (ND->getDeclName()) { 5876 Unnamed = false; 5877 Result += ND->getNameAsString(); 5878 } 5879 } 5880 5881 if (Unnamed) { 5882 Result += "<anonymous>"; 5883 } 5884 break; 5885 } 5886 5887 case TemplateArgument::Template: { 5888 std::string Str; 5889 llvm::raw_string_ostream OS(Str); 5890 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5891 Result += OS.str(); 5892 break; 5893 } 5894 5895 case TemplateArgument::Integral: { 5896 Result += Args[I].getAsIntegral()->toString(10); 5897 break; 5898 } 5899 5900 case TemplateArgument::Expression: { 5901 // FIXME: This is non-optimal, since we're regurgitating the 5902 // expression we were given. 5903 std::string Str; 5904 { 5905 llvm::raw_string_ostream OS(Str); 5906 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5907 Context.PrintingPolicy); 5908 } 5909 Result += Str; 5910 break; 5911 } 5912 5913 case TemplateArgument::Pack: 5914 // FIXME: Format template argument packs 5915 Result += "<template argument pack>"; 5916 break; 5917 } 5918 } 5919 5920 Result += ']'; 5921 return Result; 5922} 5923