SemaTemplate.cpp revision 4bda1d8cfe7d42b2798a06d16a5b776d980aad5f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/SmallString.h" 31#include "llvm/ADT/StringExtras.h" 32using namespace clang; 33using namespace sema; 34 35// Exported for use by Parser. 36SourceRange 37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41} 42 43/// \brief Determine whether the declaration found is acceptable as the name 44/// of a template and, if so, return that template declaration. Otherwise, 45/// returns NULL. 46static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84} 85 86void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122} 123 124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131} 132 133TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217} 218 219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242} 243 244void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 337 else 338 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 339 << Name << CorrectedQuotedStr 340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 342 Diag(Template->getLocation(), diag::note_previous_decl) 343 << CorrectedQuotedStr; 344 } 345 } else { 346 Found.setLookupName(Name); 347 } 348 } 349 350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 351 if (Found.empty()) { 352 if (isDependent) 353 MemberOfUnknownSpecialization = true; 354 return; 355 } 356 357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 358 !(getLangOpts().CPlusPlus0x && !Found.empty())) { 359 // C++03 [basic.lookup.classref]p1: 360 // [...] If the lookup in the class of the object expression finds a 361 // template, the name is also looked up in the context of the entire 362 // postfix-expression and [...] 363 // 364 // Note: C++11 does not perform this second lookup. 365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 366 LookupOrdinaryName); 367 LookupName(FoundOuter, S); 368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 369 370 if (FoundOuter.empty()) { 371 // - if the name is not found, the name found in the class of the 372 // object expression is used, otherwise 373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 374 FoundOuter.isAmbiguous()) { 375 // - if the name is found in the context of the entire 376 // postfix-expression and does not name a class template, the name 377 // found in the class of the object expression is used, otherwise 378 FoundOuter.clear(); 379 } else if (!Found.isSuppressingDiagnostics()) { 380 // - if the name found is a class template, it must refer to the same 381 // entity as the one found in the class of the object expression, 382 // otherwise the program is ill-formed. 383 if (!Found.isSingleResult() || 384 Found.getFoundDecl()->getCanonicalDecl() 385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 386 Diag(Found.getNameLoc(), 387 diag::ext_nested_name_member_ref_lookup_ambiguous) 388 << Found.getLookupName() 389 << ObjectType; 390 Diag(Found.getRepresentativeDecl()->getLocation(), 391 diag::note_ambig_member_ref_object_type) 392 << ObjectType; 393 Diag(FoundOuter.getFoundDecl()->getLocation(), 394 diag::note_ambig_member_ref_scope); 395 396 // Recover by taking the template that we found in the object 397 // expression's type. 398 } 399 } 400 } 401} 402 403/// ActOnDependentIdExpression - Handle a dependent id-expression that 404/// was just parsed. This is only possible with an explicit scope 405/// specifier naming a dependent type. 406ExprResult 407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 408 SourceLocation TemplateKWLoc, 409 const DeclarationNameInfo &NameInfo, 410 bool isAddressOfOperand, 411 const TemplateArgumentListInfo *TemplateArgs) { 412 DeclContext *DC = getFunctionLevelDeclContext(); 413 414 if (!isAddressOfOperand && 415 isa<CXXMethodDecl>(DC) && 416 cast<CXXMethodDecl>(DC)->isInstance()) { 417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 418 419 // Since the 'this' expression is synthesized, we don't need to 420 // perform the double-lookup check. 421 NamedDecl *FirstQualifierInScope = 0; 422 423 return Owned(CXXDependentScopeMemberExpr::Create(Context, 424 /*This*/ 0, ThisType, 425 /*IsArrow*/ true, 426 /*Op*/ SourceLocation(), 427 SS.getWithLocInContext(Context), 428 TemplateKWLoc, 429 FirstQualifierInScope, 430 NameInfo, 431 TemplateArgs)); 432 } 433 434 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 435} 436 437ExprResult 438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 439 SourceLocation TemplateKWLoc, 440 const DeclarationNameInfo &NameInfo, 441 const TemplateArgumentListInfo *TemplateArgs) { 442 return Owned(DependentScopeDeclRefExpr::Create(Context, 443 SS.getWithLocInContext(Context), 444 TemplateKWLoc, 445 NameInfo, 446 TemplateArgs)); 447} 448 449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 450/// that the template parameter 'PrevDecl' is being shadowed by a new 451/// declaration at location Loc. Returns true to indicate that this is 452/// an error, and false otherwise. 453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 454 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 455 456 // Microsoft Visual C++ permits template parameters to be shadowed. 457 if (getLangOpts().MicrosoftExt) 458 return; 459 460 // C++ [temp.local]p4: 461 // A template-parameter shall not be redeclared within its 462 // scope (including nested scopes). 463 Diag(Loc, diag::err_template_param_shadow) 464 << cast<NamedDecl>(PrevDecl)->getDeclName(); 465 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 466 return; 467} 468 469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 470/// the parameter D to reference the templated declaration and return a pointer 471/// to the template declaration. Otherwise, do nothing to D and return null. 472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 473 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 474 D = Temp->getTemplatedDecl(); 475 return Temp; 476 } 477 return 0; 478} 479 480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 481 SourceLocation EllipsisLoc) const { 482 assert(Kind == Template && 483 "Only template template arguments can be pack expansions here"); 484 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 485 "Template template argument pack expansion without packs"); 486 ParsedTemplateArgument Result(*this); 487 Result.EllipsisLoc = EllipsisLoc; 488 return Result; 489} 490 491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 492 const ParsedTemplateArgument &Arg) { 493 494 switch (Arg.getKind()) { 495 case ParsedTemplateArgument::Type: { 496 TypeSourceInfo *DI; 497 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 498 if (!DI) 499 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 500 return TemplateArgumentLoc(TemplateArgument(T), DI); 501 } 502 503 case ParsedTemplateArgument::NonType: { 504 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 505 return TemplateArgumentLoc(TemplateArgument(E), E); 506 } 507 508 case ParsedTemplateArgument::Template: { 509 TemplateName Template = Arg.getAsTemplate().get(); 510 TemplateArgument TArg; 511 if (Arg.getEllipsisLoc().isValid()) 512 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 513 else 514 TArg = Template; 515 return TemplateArgumentLoc(TArg, 516 Arg.getScopeSpec().getWithLocInContext( 517 SemaRef.Context), 518 Arg.getLocation(), 519 Arg.getEllipsisLoc()); 520 } 521 } 522 523 llvm_unreachable("Unhandled parsed template argument"); 524} 525 526/// \brief Translates template arguments as provided by the parser 527/// into template arguments used by semantic analysis. 528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 529 TemplateArgumentListInfo &TemplateArgs) { 530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 531 TemplateArgs.addArgument(translateTemplateArgument(*this, 532 TemplateArgsIn[I])); 533} 534 535/// ActOnTypeParameter - Called when a C++ template type parameter 536/// (e.g., "typename T") has been parsed. Typename specifies whether 537/// the keyword "typename" was used to declare the type parameter 538/// (otherwise, "class" was used), and KeyLoc is the location of the 539/// "class" or "typename" keyword. ParamName is the name of the 540/// parameter (NULL indicates an unnamed template parameter) and 541/// ParamNameLoc is the location of the parameter name (if any). 542/// If the type parameter has a default argument, it will be added 543/// later via ActOnTypeParameterDefault. 544Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 545 SourceLocation EllipsisLoc, 546 SourceLocation KeyLoc, 547 IdentifierInfo *ParamName, 548 SourceLocation ParamNameLoc, 549 unsigned Depth, unsigned Position, 550 SourceLocation EqualLoc, 551 ParsedType DefaultArg) { 552 assert(S->isTemplateParamScope() && 553 "Template type parameter not in template parameter scope!"); 554 bool Invalid = false; 555 556 if (ParamName) { 557 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 558 LookupOrdinaryName, 559 ForRedeclaration); 560 if (PrevDecl && PrevDecl->isTemplateParameter()) { 561 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 562 PrevDecl = 0; 563 } 564 } 565 566 SourceLocation Loc = ParamNameLoc; 567 if (!ParamName) 568 Loc = KeyLoc; 569 570 TemplateTypeParmDecl *Param 571 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 572 KeyLoc, Loc, Depth, Position, ParamName, 573 Typename, Ellipsis); 574 Param->setAccess(AS_public); 575 if (Invalid) 576 Param->setInvalidDecl(); 577 578 if (ParamName) { 579 // Add the template parameter into the current scope. 580 S->AddDecl(Param); 581 IdResolver.AddDecl(Param); 582 } 583 584 // C++0x [temp.param]p9: 585 // A default template-argument may be specified for any kind of 586 // template-parameter that is not a template parameter pack. 587 if (DefaultArg && Ellipsis) { 588 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 589 DefaultArg = ParsedType(); 590 } 591 592 // Handle the default argument, if provided. 593 if (DefaultArg) { 594 TypeSourceInfo *DefaultTInfo; 595 GetTypeFromParser(DefaultArg, &DefaultTInfo); 596 597 assert(DefaultTInfo && "expected source information for type"); 598 599 // Check for unexpanded parameter packs. 600 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 601 UPPC_DefaultArgument)) 602 return Param; 603 604 // Check the template argument itself. 605 if (CheckTemplateArgument(Param, DefaultTInfo)) { 606 Param->setInvalidDecl(); 607 return Param; 608 } 609 610 Param->setDefaultArgument(DefaultTInfo, false); 611 } 612 613 return Param; 614} 615 616/// \brief Check that the type of a non-type template parameter is 617/// well-formed. 618/// 619/// \returns the (possibly-promoted) parameter type if valid; 620/// otherwise, produces a diagnostic and returns a NULL type. 621QualType 622Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 623 // We don't allow variably-modified types as the type of non-type template 624 // parameters. 625 if (T->isVariablyModifiedType()) { 626 Diag(Loc, diag::err_variably_modified_nontype_template_param) 627 << T; 628 return QualType(); 629 } 630 631 // C++ [temp.param]p4: 632 // 633 // A non-type template-parameter shall have one of the following 634 // (optionally cv-qualified) types: 635 // 636 // -- integral or enumeration type, 637 if (T->isIntegralOrEnumerationType() || 638 // -- pointer to object or pointer to function, 639 T->isPointerType() || 640 // -- reference to object or reference to function, 641 T->isReferenceType() || 642 // -- pointer to member, 643 T->isMemberPointerType() || 644 // -- std::nullptr_t. 645 T->isNullPtrType() || 646 // If T is a dependent type, we can't do the check now, so we 647 // assume that it is well-formed. 648 T->isDependentType()) { 649 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 650 // are ignored when determining its type. 651 return T.getUnqualifiedType(); 652 } 653 654 // C++ [temp.param]p8: 655 // 656 // A non-type template-parameter of type "array of T" or 657 // "function returning T" is adjusted to be of type "pointer to 658 // T" or "pointer to function returning T", respectively. 659 else if (T->isArrayType()) 660 // FIXME: Keep the type prior to promotion? 661 return Context.getArrayDecayedType(T); 662 else if (T->isFunctionType()) 663 // FIXME: Keep the type prior to promotion? 664 return Context.getPointerType(T); 665 666 Diag(Loc, diag::err_template_nontype_parm_bad_type) 667 << T; 668 669 return QualType(); 670} 671 672Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 673 unsigned Depth, 674 unsigned Position, 675 SourceLocation EqualLoc, 676 Expr *Default) { 677 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 678 QualType T = TInfo->getType(); 679 680 assert(S->isTemplateParamScope() && 681 "Non-type template parameter not in template parameter scope!"); 682 bool Invalid = false; 683 684 IdentifierInfo *ParamName = D.getIdentifier(); 685 if (ParamName) { 686 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 687 LookupOrdinaryName, 688 ForRedeclaration); 689 if (PrevDecl && PrevDecl->isTemplateParameter()) { 690 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 691 PrevDecl = 0; 692 } 693 } 694 695 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 696 if (T.isNull()) { 697 T = Context.IntTy; // Recover with an 'int' type. 698 Invalid = true; 699 } 700 701 bool IsParameterPack = D.hasEllipsis(); 702 NonTypeTemplateParmDecl *Param 703 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 704 D.getLocStart(), 705 D.getIdentifierLoc(), 706 Depth, Position, ParamName, T, 707 IsParameterPack, TInfo); 708 Param->setAccess(AS_public); 709 710 if (Invalid) 711 Param->setInvalidDecl(); 712 713 if (D.getIdentifier()) { 714 // Add the template parameter into the current scope. 715 S->AddDecl(Param); 716 IdResolver.AddDecl(Param); 717 } 718 719 // C++0x [temp.param]p9: 720 // A default template-argument may be specified for any kind of 721 // template-parameter that is not a template parameter pack. 722 if (Default && IsParameterPack) { 723 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 724 Default = 0; 725 } 726 727 // Check the well-formedness of the default template argument, if provided. 728 if (Default) { 729 // Check for unexpanded parameter packs. 730 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 731 return Param; 732 733 TemplateArgument Converted; 734 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 735 if (DefaultRes.isInvalid()) { 736 Param->setInvalidDecl(); 737 return Param; 738 } 739 Default = DefaultRes.take(); 740 741 Param->setDefaultArgument(Default, false); 742 } 743 744 return Param; 745} 746 747/// ActOnTemplateTemplateParameter - Called when a C++ template template 748/// parameter (e.g. T in template <template \<typename> class T> class array) 749/// has been parsed. S is the current scope. 750Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 751 SourceLocation TmpLoc, 752 TemplateParameterList *Params, 753 SourceLocation EllipsisLoc, 754 IdentifierInfo *Name, 755 SourceLocation NameLoc, 756 unsigned Depth, 757 unsigned Position, 758 SourceLocation EqualLoc, 759 ParsedTemplateArgument Default) { 760 assert(S->isTemplateParamScope() && 761 "Template template parameter not in template parameter scope!"); 762 763 // Construct the parameter object. 764 bool IsParameterPack = EllipsisLoc.isValid(); 765 TemplateTemplateParmDecl *Param = 766 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 767 NameLoc.isInvalid()? TmpLoc : NameLoc, 768 Depth, Position, IsParameterPack, 769 Name, Params); 770 Param->setAccess(AS_public); 771 772 // If the template template parameter has a name, then link the identifier 773 // into the scope and lookup mechanisms. 774 if (Name) { 775 S->AddDecl(Param); 776 IdResolver.AddDecl(Param); 777 } 778 779 if (Params->size() == 0) { 780 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 781 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 782 Param->setInvalidDecl(); 783 } 784 785 // C++0x [temp.param]p9: 786 // A default template-argument may be specified for any kind of 787 // template-parameter that is not a template parameter pack. 788 if (IsParameterPack && !Default.isInvalid()) { 789 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 790 Default = ParsedTemplateArgument(); 791 } 792 793 if (!Default.isInvalid()) { 794 // Check only that we have a template template argument. We don't want to 795 // try to check well-formedness now, because our template template parameter 796 // might have dependent types in its template parameters, which we wouldn't 797 // be able to match now. 798 // 799 // If none of the template template parameter's template arguments mention 800 // other template parameters, we could actually perform more checking here. 801 // However, it isn't worth doing. 802 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 803 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 804 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 805 << DefaultArg.getSourceRange(); 806 return Param; 807 } 808 809 // Check for unexpanded parameter packs. 810 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 811 DefaultArg.getArgument().getAsTemplate(), 812 UPPC_DefaultArgument)) 813 return Param; 814 815 Param->setDefaultArgument(DefaultArg, false); 816 } 817 818 return Param; 819} 820 821/// ActOnTemplateParameterList - Builds a TemplateParameterList that 822/// contains the template parameters in Params/NumParams. 823TemplateParameterList * 824Sema::ActOnTemplateParameterList(unsigned Depth, 825 SourceLocation ExportLoc, 826 SourceLocation TemplateLoc, 827 SourceLocation LAngleLoc, 828 Decl **Params, unsigned NumParams, 829 SourceLocation RAngleLoc) { 830 if (ExportLoc.isValid()) 831 Diag(ExportLoc, diag::warn_template_export_unsupported); 832 833 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 834 (NamedDecl**)Params, NumParams, 835 RAngleLoc); 836} 837 838static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 839 if (SS.isSet()) 840 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 841} 842 843DeclResult 844Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 845 SourceLocation KWLoc, CXXScopeSpec &SS, 846 IdentifierInfo *Name, SourceLocation NameLoc, 847 AttributeList *Attr, 848 TemplateParameterList *TemplateParams, 849 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 850 unsigned NumOuterTemplateParamLists, 851 TemplateParameterList** OuterTemplateParamLists) { 852 assert(TemplateParams && TemplateParams->size() > 0 && 853 "No template parameters"); 854 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 855 bool Invalid = false; 856 857 // Check that we can declare a template here. 858 if (CheckTemplateDeclScope(S, TemplateParams)) 859 return true; 860 861 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 862 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 863 864 // There is no such thing as an unnamed class template. 865 if (!Name) { 866 Diag(KWLoc, diag::err_template_unnamed_class); 867 return true; 868 } 869 870 // Find any previous declaration with this name. For a friend with no 871 // scope explicitly specified, we only look for tag declarations (per 872 // C++11 [basic.lookup.elab]p2). 873 DeclContext *SemanticContext; 874 LookupResult Previous(*this, Name, NameLoc, 875 (SS.isEmpty() && TUK == TUK_Friend) 876 ? LookupTagName : LookupOrdinaryName, 877 ForRedeclaration); 878 if (SS.isNotEmpty() && !SS.isInvalid()) { 879 SemanticContext = computeDeclContext(SS, true); 880 if (!SemanticContext) { 881 // FIXME: Horrible, horrible hack! We can't currently represent this 882 // in the AST, and historically we have just ignored such friend 883 // class templates, so don't complain here. 884 if (TUK != TUK_Friend) 885 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 886 << SS.getScopeRep() << SS.getRange(); 887 return true; 888 } 889 890 if (RequireCompleteDeclContext(SS, SemanticContext)) 891 return true; 892 893 // If we're adding a template to a dependent context, we may need to 894 // rebuilding some of the types used within the template parameter list, 895 // now that we know what the current instantiation is. 896 if (SemanticContext->isDependentContext()) { 897 ContextRAII SavedContext(*this, SemanticContext); 898 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 899 Invalid = true; 900 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 901 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 902 903 LookupQualifiedName(Previous, SemanticContext); 904 } else { 905 SemanticContext = CurContext; 906 LookupName(Previous, S); 907 } 908 909 if (Previous.isAmbiguous()) 910 return true; 911 912 NamedDecl *PrevDecl = 0; 913 if (Previous.begin() != Previous.end()) 914 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 915 916 // If there is a previous declaration with the same name, check 917 // whether this is a valid redeclaration. 918 ClassTemplateDecl *PrevClassTemplate 919 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 920 921 // We may have found the injected-class-name of a class template, 922 // class template partial specialization, or class template specialization. 923 // In these cases, grab the template that is being defined or specialized. 924 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 925 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 926 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 927 PrevClassTemplate 928 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 929 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 930 PrevClassTemplate 931 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 932 ->getSpecializedTemplate(); 933 } 934 } 935 936 if (TUK == TUK_Friend) { 937 // C++ [namespace.memdef]p3: 938 // [...] When looking for a prior declaration of a class or a function 939 // declared as a friend, and when the name of the friend class or 940 // function is neither a qualified name nor a template-id, scopes outside 941 // the innermost enclosing namespace scope are not considered. 942 if (!SS.isSet()) { 943 DeclContext *OutermostContext = CurContext; 944 while (!OutermostContext->isFileContext()) 945 OutermostContext = OutermostContext->getLookupParent(); 946 947 if (PrevDecl && 948 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 949 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 950 SemanticContext = PrevDecl->getDeclContext(); 951 } else { 952 // Declarations in outer scopes don't matter. However, the outermost 953 // context we computed is the semantic context for our new 954 // declaration. 955 PrevDecl = PrevClassTemplate = 0; 956 SemanticContext = OutermostContext; 957 958 // Check that the chosen semantic context doesn't already contain a 959 // declaration of this name as a non-tag type. 960 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 961 ForRedeclaration); 962 DeclContext *LookupContext = SemanticContext; 963 while (LookupContext->isTransparentContext()) 964 LookupContext = LookupContext->getLookupParent(); 965 LookupQualifiedName(Previous, LookupContext); 966 967 if (Previous.isAmbiguous()) 968 return true; 969 970 if (Previous.begin() != Previous.end()) 971 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 972 } 973 } 974 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 975 PrevDecl = PrevClassTemplate = 0; 976 977 if (PrevClassTemplate) { 978 // Ensure that the template parameter lists are compatible. Skip this check 979 // for a friend in a dependent context: the template parameter list itself 980 // could be dependent. 981 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 982 !TemplateParameterListsAreEqual(TemplateParams, 983 PrevClassTemplate->getTemplateParameters(), 984 /*Complain=*/true, 985 TPL_TemplateMatch)) 986 return true; 987 988 // C++ [temp.class]p4: 989 // In a redeclaration, partial specialization, explicit 990 // specialization or explicit instantiation of a class template, 991 // the class-key shall agree in kind with the original class 992 // template declaration (7.1.5.3). 993 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 994 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 995 TUK == TUK_Definition, KWLoc, *Name)) { 996 Diag(KWLoc, diag::err_use_with_wrong_tag) 997 << Name 998 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 999 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1000 Kind = PrevRecordDecl->getTagKind(); 1001 } 1002 1003 // Check for redefinition of this class template. 1004 if (TUK == TUK_Definition) { 1005 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1006 Diag(NameLoc, diag::err_redefinition) << Name; 1007 Diag(Def->getLocation(), diag::note_previous_definition); 1008 // FIXME: Would it make sense to try to "forget" the previous 1009 // definition, as part of error recovery? 1010 return true; 1011 } 1012 } 1013 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1014 // Maybe we will complain about the shadowed template parameter. 1015 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1016 // Just pretend that we didn't see the previous declaration. 1017 PrevDecl = 0; 1018 } else if (PrevDecl) { 1019 // C++ [temp]p5: 1020 // A class template shall not have the same name as any other 1021 // template, class, function, object, enumeration, enumerator, 1022 // namespace, or type in the same scope (3.3), except as specified 1023 // in (14.5.4). 1024 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1025 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1026 return true; 1027 } 1028 1029 // Check the template parameter list of this declaration, possibly 1030 // merging in the template parameter list from the previous class 1031 // template declaration. Skip this check for a friend in a dependent 1032 // context, because the template parameter list might be dependent. 1033 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1034 CheckTemplateParameterList(TemplateParams, 1035 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1036 (SS.isSet() && SemanticContext && 1037 SemanticContext->isRecord() && 1038 SemanticContext->isDependentContext()) 1039 ? TPC_ClassTemplateMember 1040 : TPC_ClassTemplate)) 1041 Invalid = true; 1042 1043 if (SS.isSet()) { 1044 // If the name of the template was qualified, we must be defining the 1045 // template out-of-line. 1046 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1047 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1048 : diag::err_member_def_does_not_match) 1049 << Name << SemanticContext << SS.getRange(); 1050 Invalid = true; 1051 } 1052 } 1053 1054 CXXRecordDecl *NewClass = 1055 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1056 PrevClassTemplate? 1057 PrevClassTemplate->getTemplatedDecl() : 0, 1058 /*DelayTypeCreation=*/true); 1059 SetNestedNameSpecifier(NewClass, SS); 1060 if (NumOuterTemplateParamLists > 0) 1061 NewClass->setTemplateParameterListsInfo(Context, 1062 NumOuterTemplateParamLists, 1063 OuterTemplateParamLists); 1064 1065 // Add alignment attributes if necessary; these attributes are checked when 1066 // the ASTContext lays out the structure. 1067 if (TUK == TUK_Definition) { 1068 AddAlignmentAttributesForRecord(NewClass); 1069 AddMsStructLayoutForRecord(NewClass); 1070 } 1071 1072 ClassTemplateDecl *NewTemplate 1073 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1074 DeclarationName(Name), TemplateParams, 1075 NewClass, PrevClassTemplate); 1076 NewClass->setDescribedClassTemplate(NewTemplate); 1077 1078 if (ModulePrivateLoc.isValid()) 1079 NewTemplate->setModulePrivate(); 1080 1081 // Build the type for the class template declaration now. 1082 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1083 T = Context.getInjectedClassNameType(NewClass, T); 1084 assert(T->isDependentType() && "Class template type is not dependent?"); 1085 (void)T; 1086 1087 // If we are providing an explicit specialization of a member that is a 1088 // class template, make a note of that. 1089 if (PrevClassTemplate && 1090 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1091 PrevClassTemplate->setMemberSpecialization(); 1092 1093 // Set the access specifier. 1094 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1095 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1096 1097 // Set the lexical context of these templates 1098 NewClass->setLexicalDeclContext(CurContext); 1099 NewTemplate->setLexicalDeclContext(CurContext); 1100 1101 if (TUK == TUK_Definition) 1102 NewClass->startDefinition(); 1103 1104 if (Attr) 1105 ProcessDeclAttributeList(S, NewClass, Attr); 1106 1107 if (PrevClassTemplate) 1108 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1109 1110 AddPushedVisibilityAttribute(NewClass); 1111 1112 if (TUK != TUK_Friend) 1113 PushOnScopeChains(NewTemplate, S); 1114 else { 1115 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1116 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1117 NewClass->setAccess(PrevClassTemplate->getAccess()); 1118 } 1119 1120 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1121 PrevClassTemplate != NULL); 1122 1123 // Friend templates are visible in fairly strange ways. 1124 if (!CurContext->isDependentContext()) { 1125 DeclContext *DC = SemanticContext->getRedeclContext(); 1126 DC->makeDeclVisibleInContext(NewTemplate); 1127 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1128 PushOnScopeChains(NewTemplate, EnclosingScope, 1129 /* AddToContext = */ false); 1130 } 1131 1132 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1133 NewClass->getLocation(), 1134 NewTemplate, 1135 /*FIXME:*/NewClass->getLocation()); 1136 Friend->setAccess(AS_public); 1137 CurContext->addDecl(Friend); 1138 } 1139 1140 if (Invalid) { 1141 NewTemplate->setInvalidDecl(); 1142 NewClass->setInvalidDecl(); 1143 } 1144 1145 ActOnDocumentableDecl(NewTemplate); 1146 1147 return NewTemplate; 1148} 1149 1150/// \brief Diagnose the presence of a default template argument on a 1151/// template parameter, which is ill-formed in certain contexts. 1152/// 1153/// \returns true if the default template argument should be dropped. 1154static bool DiagnoseDefaultTemplateArgument(Sema &S, 1155 Sema::TemplateParamListContext TPC, 1156 SourceLocation ParamLoc, 1157 SourceRange DefArgRange) { 1158 switch (TPC) { 1159 case Sema::TPC_ClassTemplate: 1160 case Sema::TPC_TypeAliasTemplate: 1161 return false; 1162 1163 case Sema::TPC_FunctionTemplate: 1164 case Sema::TPC_FriendFunctionTemplateDefinition: 1165 // C++ [temp.param]p9: 1166 // A default template-argument shall not be specified in a 1167 // function template declaration or a function template 1168 // definition [...] 1169 // If a friend function template declaration specifies a default 1170 // template-argument, that declaration shall be a definition and shall be 1171 // the only declaration of the function template in the translation unit. 1172 // (C++98/03 doesn't have this wording; see DR226). 1173 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ? 1174 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1175 : diag::ext_template_parameter_default_in_function_template) 1176 << DefArgRange; 1177 return false; 1178 1179 case Sema::TPC_ClassTemplateMember: 1180 // C++0x [temp.param]p9: 1181 // A default template-argument shall not be specified in the 1182 // template-parameter-lists of the definition of a member of a 1183 // class template that appears outside of the member's class. 1184 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1185 << DefArgRange; 1186 return true; 1187 1188 case Sema::TPC_FriendFunctionTemplate: 1189 // C++ [temp.param]p9: 1190 // A default template-argument shall not be specified in a 1191 // friend template declaration. 1192 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1193 << DefArgRange; 1194 return true; 1195 1196 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1197 // for friend function templates if there is only a single 1198 // declaration (and it is a definition). Strange! 1199 } 1200 1201 llvm_unreachable("Invalid TemplateParamListContext!"); 1202} 1203 1204/// \brief Check for unexpanded parameter packs within the template parameters 1205/// of a template template parameter, recursively. 1206static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1207 TemplateTemplateParmDecl *TTP) { 1208 TemplateParameterList *Params = TTP->getTemplateParameters(); 1209 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1210 NamedDecl *P = Params->getParam(I); 1211 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1212 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1213 NTTP->getTypeSourceInfo(), 1214 Sema::UPPC_NonTypeTemplateParameterType)) 1215 return true; 1216 1217 continue; 1218 } 1219 1220 if (TemplateTemplateParmDecl *InnerTTP 1221 = dyn_cast<TemplateTemplateParmDecl>(P)) 1222 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1223 return true; 1224 } 1225 1226 return false; 1227} 1228 1229/// \brief Checks the validity of a template parameter list, possibly 1230/// considering the template parameter list from a previous 1231/// declaration. 1232/// 1233/// If an "old" template parameter list is provided, it must be 1234/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1235/// template parameter list. 1236/// 1237/// \param NewParams Template parameter list for a new template 1238/// declaration. This template parameter list will be updated with any 1239/// default arguments that are carried through from the previous 1240/// template parameter list. 1241/// 1242/// \param OldParams If provided, template parameter list from a 1243/// previous declaration of the same template. Default template 1244/// arguments will be merged from the old template parameter list to 1245/// the new template parameter list. 1246/// 1247/// \param TPC Describes the context in which we are checking the given 1248/// template parameter list. 1249/// 1250/// \returns true if an error occurred, false otherwise. 1251bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1252 TemplateParameterList *OldParams, 1253 TemplateParamListContext TPC) { 1254 bool Invalid = false; 1255 1256 // C++ [temp.param]p10: 1257 // The set of default template-arguments available for use with a 1258 // template declaration or definition is obtained by merging the 1259 // default arguments from the definition (if in scope) and all 1260 // declarations in scope in the same way default function 1261 // arguments are (8.3.6). 1262 bool SawDefaultArgument = false; 1263 SourceLocation PreviousDefaultArgLoc; 1264 1265 // Dummy initialization to avoid warnings. 1266 TemplateParameterList::iterator OldParam = NewParams->end(); 1267 if (OldParams) 1268 OldParam = OldParams->begin(); 1269 1270 bool RemoveDefaultArguments = false; 1271 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1272 NewParamEnd = NewParams->end(); 1273 NewParam != NewParamEnd; ++NewParam) { 1274 // Variables used to diagnose redundant default arguments 1275 bool RedundantDefaultArg = false; 1276 SourceLocation OldDefaultLoc; 1277 SourceLocation NewDefaultLoc; 1278 1279 // Variable used to diagnose missing default arguments 1280 bool MissingDefaultArg = false; 1281 1282 // Variable used to diagnose non-final parameter packs 1283 bool SawParameterPack = false; 1284 1285 if (TemplateTypeParmDecl *NewTypeParm 1286 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1287 // Check the presence of a default argument here. 1288 if (NewTypeParm->hasDefaultArgument() && 1289 DiagnoseDefaultTemplateArgument(*this, TPC, 1290 NewTypeParm->getLocation(), 1291 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1292 .getSourceRange())) 1293 NewTypeParm->removeDefaultArgument(); 1294 1295 // Merge default arguments for template type parameters. 1296 TemplateTypeParmDecl *OldTypeParm 1297 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1298 1299 if (NewTypeParm->isParameterPack()) { 1300 assert(!NewTypeParm->hasDefaultArgument() && 1301 "Parameter packs can't have a default argument!"); 1302 SawParameterPack = true; 1303 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1304 NewTypeParm->hasDefaultArgument()) { 1305 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1306 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1307 SawDefaultArgument = true; 1308 RedundantDefaultArg = true; 1309 PreviousDefaultArgLoc = NewDefaultLoc; 1310 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1311 // Merge the default argument from the old declaration to the 1312 // new declaration. 1313 SawDefaultArgument = true; 1314 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1315 true); 1316 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1317 } else if (NewTypeParm->hasDefaultArgument()) { 1318 SawDefaultArgument = true; 1319 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1320 } else if (SawDefaultArgument) 1321 MissingDefaultArg = true; 1322 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1323 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1324 // Check for unexpanded parameter packs. 1325 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1326 NewNonTypeParm->getTypeSourceInfo(), 1327 UPPC_NonTypeTemplateParameterType)) { 1328 Invalid = true; 1329 continue; 1330 } 1331 1332 // Check the presence of a default argument here. 1333 if (NewNonTypeParm->hasDefaultArgument() && 1334 DiagnoseDefaultTemplateArgument(*this, TPC, 1335 NewNonTypeParm->getLocation(), 1336 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1337 NewNonTypeParm->removeDefaultArgument(); 1338 } 1339 1340 // Merge default arguments for non-type template parameters 1341 NonTypeTemplateParmDecl *OldNonTypeParm 1342 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1343 if (NewNonTypeParm->isParameterPack()) { 1344 assert(!NewNonTypeParm->hasDefaultArgument() && 1345 "Parameter packs can't have a default argument!"); 1346 SawParameterPack = true; 1347 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1348 NewNonTypeParm->hasDefaultArgument()) { 1349 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1350 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1351 SawDefaultArgument = true; 1352 RedundantDefaultArg = true; 1353 PreviousDefaultArgLoc = NewDefaultLoc; 1354 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1355 // Merge the default argument from the old declaration to the 1356 // new declaration. 1357 SawDefaultArgument = true; 1358 // FIXME: We need to create a new kind of "default argument" 1359 // expression that points to a previous non-type template 1360 // parameter. 1361 NewNonTypeParm->setDefaultArgument( 1362 OldNonTypeParm->getDefaultArgument(), 1363 /*Inherited=*/ true); 1364 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1365 } else if (NewNonTypeParm->hasDefaultArgument()) { 1366 SawDefaultArgument = true; 1367 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1368 } else if (SawDefaultArgument) 1369 MissingDefaultArg = true; 1370 } else { 1371 TemplateTemplateParmDecl *NewTemplateParm 1372 = cast<TemplateTemplateParmDecl>(*NewParam); 1373 1374 // Check for unexpanded parameter packs, recursively. 1375 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1376 Invalid = true; 1377 continue; 1378 } 1379 1380 // Check the presence of a default argument here. 1381 if (NewTemplateParm->hasDefaultArgument() && 1382 DiagnoseDefaultTemplateArgument(*this, TPC, 1383 NewTemplateParm->getLocation(), 1384 NewTemplateParm->getDefaultArgument().getSourceRange())) 1385 NewTemplateParm->removeDefaultArgument(); 1386 1387 // Merge default arguments for template template parameters 1388 TemplateTemplateParmDecl *OldTemplateParm 1389 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1390 if (NewTemplateParm->isParameterPack()) { 1391 assert(!NewTemplateParm->hasDefaultArgument() && 1392 "Parameter packs can't have a default argument!"); 1393 SawParameterPack = true; 1394 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1395 NewTemplateParm->hasDefaultArgument()) { 1396 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1397 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1398 SawDefaultArgument = true; 1399 RedundantDefaultArg = true; 1400 PreviousDefaultArgLoc = NewDefaultLoc; 1401 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1402 // Merge the default argument from the old declaration to the 1403 // new declaration. 1404 SawDefaultArgument = true; 1405 // FIXME: We need to create a new kind of "default argument" expression 1406 // that points to a previous template template parameter. 1407 NewTemplateParm->setDefaultArgument( 1408 OldTemplateParm->getDefaultArgument(), 1409 /*Inherited=*/ true); 1410 PreviousDefaultArgLoc 1411 = OldTemplateParm->getDefaultArgument().getLocation(); 1412 } else if (NewTemplateParm->hasDefaultArgument()) { 1413 SawDefaultArgument = true; 1414 PreviousDefaultArgLoc 1415 = NewTemplateParm->getDefaultArgument().getLocation(); 1416 } else if (SawDefaultArgument) 1417 MissingDefaultArg = true; 1418 } 1419 1420 // C++0x [temp.param]p11: 1421 // If a template parameter of a primary class template or alias template 1422 // is a template parameter pack, it shall be the last template parameter. 1423 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1424 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1425 Diag((*NewParam)->getLocation(), 1426 diag::err_template_param_pack_must_be_last_template_parameter); 1427 Invalid = true; 1428 } 1429 1430 if (RedundantDefaultArg) { 1431 // C++ [temp.param]p12: 1432 // A template-parameter shall not be given default arguments 1433 // by two different declarations in the same scope. 1434 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1435 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1436 Invalid = true; 1437 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1438 // C++ [temp.param]p11: 1439 // If a template-parameter of a class template has a default 1440 // template-argument, each subsequent template-parameter shall either 1441 // have a default template-argument supplied or be a template parameter 1442 // pack. 1443 Diag((*NewParam)->getLocation(), 1444 diag::err_template_param_default_arg_missing); 1445 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1446 Invalid = true; 1447 RemoveDefaultArguments = true; 1448 } 1449 1450 // If we have an old template parameter list that we're merging 1451 // in, move on to the next parameter. 1452 if (OldParams) 1453 ++OldParam; 1454 } 1455 1456 // We were missing some default arguments at the end of the list, so remove 1457 // all of the default arguments. 1458 if (RemoveDefaultArguments) { 1459 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1460 NewParamEnd = NewParams->end(); 1461 NewParam != NewParamEnd; ++NewParam) { 1462 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1463 TTP->removeDefaultArgument(); 1464 else if (NonTypeTemplateParmDecl *NTTP 1465 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1466 NTTP->removeDefaultArgument(); 1467 else 1468 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1469 } 1470 } 1471 1472 return Invalid; 1473} 1474 1475namespace { 1476 1477/// A class which looks for a use of a certain level of template 1478/// parameter. 1479struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1480 typedef RecursiveASTVisitor<DependencyChecker> super; 1481 1482 unsigned Depth; 1483 bool Match; 1484 1485 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1486 NamedDecl *ND = Params->getParam(0); 1487 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1488 Depth = PD->getDepth(); 1489 } else if (NonTypeTemplateParmDecl *PD = 1490 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1491 Depth = PD->getDepth(); 1492 } else { 1493 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1494 } 1495 } 1496 1497 bool Matches(unsigned ParmDepth) { 1498 if (ParmDepth >= Depth) { 1499 Match = true; 1500 return true; 1501 } 1502 return false; 1503 } 1504 1505 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1506 return !Matches(T->getDepth()); 1507 } 1508 1509 bool TraverseTemplateName(TemplateName N) { 1510 if (TemplateTemplateParmDecl *PD = 1511 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1512 if (Matches(PD->getDepth())) return false; 1513 return super::TraverseTemplateName(N); 1514 } 1515 1516 bool VisitDeclRefExpr(DeclRefExpr *E) { 1517 if (NonTypeTemplateParmDecl *PD = 1518 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1519 if (PD->getDepth() == Depth) { 1520 Match = true; 1521 return false; 1522 } 1523 } 1524 return super::VisitDeclRefExpr(E); 1525 } 1526 1527 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1528 return TraverseType(T->getInjectedSpecializationType()); 1529 } 1530}; 1531} 1532 1533/// Determines whether a given type depends on the given parameter 1534/// list. 1535static bool 1536DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1537 DependencyChecker Checker(Params); 1538 Checker.TraverseType(T); 1539 return Checker.Match; 1540} 1541 1542// Find the source range corresponding to the named type in the given 1543// nested-name-specifier, if any. 1544static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1545 QualType T, 1546 const CXXScopeSpec &SS) { 1547 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1548 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1549 if (const Type *CurType = NNS->getAsType()) { 1550 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1551 return NNSLoc.getTypeLoc().getSourceRange(); 1552 } else 1553 break; 1554 1555 NNSLoc = NNSLoc.getPrefix(); 1556 } 1557 1558 return SourceRange(); 1559} 1560 1561/// \brief Match the given template parameter lists to the given scope 1562/// specifier, returning the template parameter list that applies to the 1563/// name. 1564/// 1565/// \param DeclStartLoc the start of the declaration that has a scope 1566/// specifier or a template parameter list. 1567/// 1568/// \param DeclLoc The location of the declaration itself. 1569/// 1570/// \param SS the scope specifier that will be matched to the given template 1571/// parameter lists. This scope specifier precedes a qualified name that is 1572/// being declared. 1573/// 1574/// \param ParamLists the template parameter lists, from the outermost to the 1575/// innermost template parameter lists. 1576/// 1577/// \param NumParamLists the number of template parameter lists in ParamLists. 1578/// 1579/// \param IsFriend Whether to apply the slightly different rules for 1580/// matching template parameters to scope specifiers in friend 1581/// declarations. 1582/// 1583/// \param IsExplicitSpecialization will be set true if the entity being 1584/// declared is an explicit specialization, false otherwise. 1585/// 1586/// \returns the template parameter list, if any, that corresponds to the 1587/// name that is preceded by the scope specifier @p SS. This template 1588/// parameter list may have template parameters (if we're declaring a 1589/// template) or may have no template parameters (if we're declaring a 1590/// template specialization), or may be NULL (if what we're declaring isn't 1591/// itself a template). 1592TemplateParameterList * 1593Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1594 SourceLocation DeclLoc, 1595 const CXXScopeSpec &SS, 1596 TemplateParameterList **ParamLists, 1597 unsigned NumParamLists, 1598 bool IsFriend, 1599 bool &IsExplicitSpecialization, 1600 bool &Invalid) { 1601 IsExplicitSpecialization = false; 1602 Invalid = false; 1603 1604 // The sequence of nested types to which we will match up the template 1605 // parameter lists. We first build this list by starting with the type named 1606 // by the nested-name-specifier and walking out until we run out of types. 1607 SmallVector<QualType, 4> NestedTypes; 1608 QualType T; 1609 if (SS.getScopeRep()) { 1610 if (CXXRecordDecl *Record 1611 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1612 T = Context.getTypeDeclType(Record); 1613 else 1614 T = QualType(SS.getScopeRep()->getAsType(), 0); 1615 } 1616 1617 // If we found an explicit specialization that prevents us from needing 1618 // 'template<>' headers, this will be set to the location of that 1619 // explicit specialization. 1620 SourceLocation ExplicitSpecLoc; 1621 1622 while (!T.isNull()) { 1623 NestedTypes.push_back(T); 1624 1625 // Retrieve the parent of a record type. 1626 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1627 // If this type is an explicit specialization, we're done. 1628 if (ClassTemplateSpecializationDecl *Spec 1629 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1630 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1631 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1632 ExplicitSpecLoc = Spec->getLocation(); 1633 break; 1634 } 1635 } else if (Record->getTemplateSpecializationKind() 1636 == TSK_ExplicitSpecialization) { 1637 ExplicitSpecLoc = Record->getLocation(); 1638 break; 1639 } 1640 1641 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1642 T = Context.getTypeDeclType(Parent); 1643 else 1644 T = QualType(); 1645 continue; 1646 } 1647 1648 if (const TemplateSpecializationType *TST 1649 = T->getAs<TemplateSpecializationType>()) { 1650 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1651 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1652 T = Context.getTypeDeclType(Parent); 1653 else 1654 T = QualType(); 1655 continue; 1656 } 1657 } 1658 1659 // Look one step prior in a dependent template specialization type. 1660 if (const DependentTemplateSpecializationType *DependentTST 1661 = T->getAs<DependentTemplateSpecializationType>()) { 1662 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1663 T = QualType(NNS->getAsType(), 0); 1664 else 1665 T = QualType(); 1666 continue; 1667 } 1668 1669 // Look one step prior in a dependent name type. 1670 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1671 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1672 T = QualType(NNS->getAsType(), 0); 1673 else 1674 T = QualType(); 1675 continue; 1676 } 1677 1678 // Retrieve the parent of an enumeration type. 1679 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1680 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1681 // check here. 1682 EnumDecl *Enum = EnumT->getDecl(); 1683 1684 // Get to the parent type. 1685 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1686 T = Context.getTypeDeclType(Parent); 1687 else 1688 T = QualType(); 1689 continue; 1690 } 1691 1692 T = QualType(); 1693 } 1694 // Reverse the nested types list, since we want to traverse from the outermost 1695 // to the innermost while checking template-parameter-lists. 1696 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1697 1698 // C++0x [temp.expl.spec]p17: 1699 // A member or a member template may be nested within many 1700 // enclosing class templates. In an explicit specialization for 1701 // such a member, the member declaration shall be preceded by a 1702 // template<> for each enclosing class template that is 1703 // explicitly specialized. 1704 bool SawNonEmptyTemplateParameterList = false; 1705 unsigned ParamIdx = 0; 1706 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1707 ++TypeIdx) { 1708 T = NestedTypes[TypeIdx]; 1709 1710 // Whether we expect a 'template<>' header. 1711 bool NeedEmptyTemplateHeader = false; 1712 1713 // Whether we expect a template header with parameters. 1714 bool NeedNonemptyTemplateHeader = false; 1715 1716 // For a dependent type, the set of template parameters that we 1717 // expect to see. 1718 TemplateParameterList *ExpectedTemplateParams = 0; 1719 1720 // C++0x [temp.expl.spec]p15: 1721 // A member or a member template may be nested within many enclosing 1722 // class templates. In an explicit specialization for such a member, the 1723 // member declaration shall be preceded by a template<> for each 1724 // enclosing class template that is explicitly specialized. 1725 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1726 if (ClassTemplatePartialSpecializationDecl *Partial 1727 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1728 ExpectedTemplateParams = Partial->getTemplateParameters(); 1729 NeedNonemptyTemplateHeader = true; 1730 } else if (Record->isDependentType()) { 1731 if (Record->getDescribedClassTemplate()) { 1732 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1733 ->getTemplateParameters(); 1734 NeedNonemptyTemplateHeader = true; 1735 } 1736 } else if (ClassTemplateSpecializationDecl *Spec 1737 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1738 // C++0x [temp.expl.spec]p4: 1739 // Members of an explicitly specialized class template are defined 1740 // in the same manner as members of normal classes, and not using 1741 // the template<> syntax. 1742 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1743 NeedEmptyTemplateHeader = true; 1744 else 1745 continue; 1746 } else if (Record->getTemplateSpecializationKind()) { 1747 if (Record->getTemplateSpecializationKind() 1748 != TSK_ExplicitSpecialization && 1749 TypeIdx == NumTypes - 1) 1750 IsExplicitSpecialization = true; 1751 1752 continue; 1753 } 1754 } else if (const TemplateSpecializationType *TST 1755 = T->getAs<TemplateSpecializationType>()) { 1756 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1757 ExpectedTemplateParams = Template->getTemplateParameters(); 1758 NeedNonemptyTemplateHeader = true; 1759 } 1760 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1761 // FIXME: We actually could/should check the template arguments here 1762 // against the corresponding template parameter list. 1763 NeedNonemptyTemplateHeader = false; 1764 } 1765 1766 // C++ [temp.expl.spec]p16: 1767 // In an explicit specialization declaration for a member of a class 1768 // template or a member template that ap- pears in namespace scope, the 1769 // member template and some of its enclosing class templates may remain 1770 // unspecialized, except that the declaration shall not explicitly 1771 // specialize a class member template if its en- closing class templates 1772 // are not explicitly specialized as well. 1773 if (ParamIdx < NumParamLists) { 1774 if (ParamLists[ParamIdx]->size() == 0) { 1775 if (SawNonEmptyTemplateParameterList) { 1776 Diag(DeclLoc, diag::err_specialize_member_of_template) 1777 << ParamLists[ParamIdx]->getSourceRange(); 1778 Invalid = true; 1779 IsExplicitSpecialization = false; 1780 return 0; 1781 } 1782 } else 1783 SawNonEmptyTemplateParameterList = true; 1784 } 1785 1786 if (NeedEmptyTemplateHeader) { 1787 // If we're on the last of the types, and we need a 'template<>' header 1788 // here, then it's an explicit specialization. 1789 if (TypeIdx == NumTypes - 1) 1790 IsExplicitSpecialization = true; 1791 1792 if (ParamIdx < NumParamLists) { 1793 if (ParamLists[ParamIdx]->size() > 0) { 1794 // The header has template parameters when it shouldn't. Complain. 1795 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1796 diag::err_template_param_list_matches_nontemplate) 1797 << T 1798 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1799 ParamLists[ParamIdx]->getRAngleLoc()) 1800 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1801 Invalid = true; 1802 return 0; 1803 } 1804 1805 // Consume this template header. 1806 ++ParamIdx; 1807 continue; 1808 } 1809 1810 if (!IsFriend) { 1811 // We don't have a template header, but we should. 1812 SourceLocation ExpectedTemplateLoc; 1813 if (NumParamLists > 0) 1814 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1815 else 1816 ExpectedTemplateLoc = DeclStartLoc; 1817 1818 Diag(DeclLoc, diag::err_template_spec_needs_header) 1819 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1820 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1821 } 1822 1823 continue; 1824 } 1825 1826 if (NeedNonemptyTemplateHeader) { 1827 // In friend declarations we can have template-ids which don't 1828 // depend on the corresponding template parameter lists. But 1829 // assume that empty parameter lists are supposed to match this 1830 // template-id. 1831 if (IsFriend && T->isDependentType()) { 1832 if (ParamIdx < NumParamLists && 1833 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1834 ExpectedTemplateParams = 0; 1835 else 1836 continue; 1837 } 1838 1839 if (ParamIdx < NumParamLists) { 1840 // Check the template parameter list, if we can. 1841 if (ExpectedTemplateParams && 1842 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1843 ExpectedTemplateParams, 1844 true, TPL_TemplateMatch)) 1845 Invalid = true; 1846 1847 if (!Invalid && 1848 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1849 TPC_ClassTemplateMember)) 1850 Invalid = true; 1851 1852 ++ParamIdx; 1853 continue; 1854 } 1855 1856 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1857 << T 1858 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1859 Invalid = true; 1860 continue; 1861 } 1862 } 1863 1864 // If there were at least as many template-ids as there were template 1865 // parameter lists, then there are no template parameter lists remaining for 1866 // the declaration itself. 1867 if (ParamIdx >= NumParamLists) 1868 return 0; 1869 1870 // If there were too many template parameter lists, complain about that now. 1871 if (ParamIdx < NumParamLists - 1) { 1872 bool HasAnyExplicitSpecHeader = false; 1873 bool AllExplicitSpecHeaders = true; 1874 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1875 if (ParamLists[I]->size() == 0) 1876 HasAnyExplicitSpecHeader = true; 1877 else 1878 AllExplicitSpecHeaders = false; 1879 } 1880 1881 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1882 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1883 : diag::err_template_spec_extra_headers) 1884 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1885 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1886 1887 // If there was a specialization somewhere, such that 'template<>' is 1888 // not required, and there were any 'template<>' headers, note where the 1889 // specialization occurred. 1890 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1891 Diag(ExplicitSpecLoc, 1892 diag::note_explicit_template_spec_does_not_need_header) 1893 << NestedTypes.back(); 1894 1895 // We have a template parameter list with no corresponding scope, which 1896 // means that the resulting template declaration can't be instantiated 1897 // properly (we'll end up with dependent nodes when we shouldn't). 1898 if (!AllExplicitSpecHeaders) 1899 Invalid = true; 1900 } 1901 1902 // C++ [temp.expl.spec]p16: 1903 // In an explicit specialization declaration for a member of a class 1904 // template or a member template that ap- pears in namespace scope, the 1905 // member template and some of its enclosing class templates may remain 1906 // unspecialized, except that the declaration shall not explicitly 1907 // specialize a class member template if its en- closing class templates 1908 // are not explicitly specialized as well. 1909 if (ParamLists[NumParamLists - 1]->size() == 0 && 1910 SawNonEmptyTemplateParameterList) { 1911 Diag(DeclLoc, diag::err_specialize_member_of_template) 1912 << ParamLists[ParamIdx]->getSourceRange(); 1913 Invalid = true; 1914 IsExplicitSpecialization = false; 1915 return 0; 1916 } 1917 1918 // Return the last template parameter list, which corresponds to the 1919 // entity being declared. 1920 return ParamLists[NumParamLists - 1]; 1921} 1922 1923void Sema::NoteAllFoundTemplates(TemplateName Name) { 1924 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1925 Diag(Template->getLocation(), diag::note_template_declared_here) 1926 << (isa<FunctionTemplateDecl>(Template)? 0 1927 : isa<ClassTemplateDecl>(Template)? 1 1928 : isa<TypeAliasTemplateDecl>(Template)? 2 1929 : 3) 1930 << Template->getDeclName(); 1931 return; 1932 } 1933 1934 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1935 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1936 IEnd = OST->end(); 1937 I != IEnd; ++I) 1938 Diag((*I)->getLocation(), diag::note_template_declared_here) 1939 << 0 << (*I)->getDeclName(); 1940 1941 return; 1942 } 1943} 1944 1945QualType Sema::CheckTemplateIdType(TemplateName Name, 1946 SourceLocation TemplateLoc, 1947 TemplateArgumentListInfo &TemplateArgs) { 1948 DependentTemplateName *DTN 1949 = Name.getUnderlying().getAsDependentTemplateName(); 1950 if (DTN && DTN->isIdentifier()) 1951 // When building a template-id where the template-name is dependent, 1952 // assume the template is a type template. Either our assumption is 1953 // correct, or the code is ill-formed and will be diagnosed when the 1954 // dependent name is substituted. 1955 return Context.getDependentTemplateSpecializationType(ETK_None, 1956 DTN->getQualifier(), 1957 DTN->getIdentifier(), 1958 TemplateArgs); 1959 1960 TemplateDecl *Template = Name.getAsTemplateDecl(); 1961 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1962 // We might have a substituted template template parameter pack. If so, 1963 // build a template specialization type for it. 1964 if (Name.getAsSubstTemplateTemplateParmPack()) 1965 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1966 1967 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1968 << Name; 1969 NoteAllFoundTemplates(Name); 1970 return QualType(); 1971 } 1972 1973 // Check that the template argument list is well-formed for this 1974 // template. 1975 SmallVector<TemplateArgument, 4> Converted; 1976 bool ExpansionIntoFixedList = false; 1977 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1978 false, Converted, &ExpansionIntoFixedList)) 1979 return QualType(); 1980 1981 QualType CanonType; 1982 1983 bool InstantiationDependent = false; 1984 TypeAliasTemplateDecl *AliasTemplate = 0; 1985 if (!ExpansionIntoFixedList && 1986 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1987 // Find the canonical type for this type alias template specialization. 1988 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1989 if (Pattern->isInvalidDecl()) 1990 return QualType(); 1991 1992 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1993 Converted.data(), Converted.size()); 1994 1995 // Only substitute for the innermost template argument list. 1996 MultiLevelTemplateArgumentList TemplateArgLists; 1997 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1998 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1999 for (unsigned I = 0; I < Depth; ++I) 2000 TemplateArgLists.addOuterTemplateArguments(0, 0); 2001 2002 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2003 if (Inst) 2004 return QualType(); 2005 CanonType = SubstType(Pattern->getUnderlyingType(), 2006 TemplateArgLists, AliasTemplate->getLocation(), 2007 AliasTemplate->getDeclName()); 2008 if (CanonType.isNull()) 2009 return QualType(); 2010 } else if (Name.isDependent() || 2011 TemplateSpecializationType::anyDependentTemplateArguments( 2012 TemplateArgs, InstantiationDependent)) { 2013 // This class template specialization is a dependent 2014 // type. Therefore, its canonical type is another class template 2015 // specialization type that contains all of the converted 2016 // arguments in canonical form. This ensures that, e.g., A<T> and 2017 // A<T, T> have identical types when A is declared as: 2018 // 2019 // template<typename T, typename U = T> struct A; 2020 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2021 CanonType = Context.getTemplateSpecializationType(CanonName, 2022 Converted.data(), 2023 Converted.size()); 2024 2025 // FIXME: CanonType is not actually the canonical type, and unfortunately 2026 // it is a TemplateSpecializationType that we will never use again. 2027 // In the future, we need to teach getTemplateSpecializationType to only 2028 // build the canonical type and return that to us. 2029 CanonType = Context.getCanonicalType(CanonType); 2030 2031 // This might work out to be a current instantiation, in which 2032 // case the canonical type needs to be the InjectedClassNameType. 2033 // 2034 // TODO: in theory this could be a simple hashtable lookup; most 2035 // changes to CurContext don't change the set of current 2036 // instantiations. 2037 if (isa<ClassTemplateDecl>(Template)) { 2038 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2039 // If we get out to a namespace, we're done. 2040 if (Ctx->isFileContext()) break; 2041 2042 // If this isn't a record, keep looking. 2043 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2044 if (!Record) continue; 2045 2046 // Look for one of the two cases with InjectedClassNameTypes 2047 // and check whether it's the same template. 2048 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2049 !Record->getDescribedClassTemplate()) 2050 continue; 2051 2052 // Fetch the injected class name type and check whether its 2053 // injected type is equal to the type we just built. 2054 QualType ICNT = Context.getTypeDeclType(Record); 2055 QualType Injected = cast<InjectedClassNameType>(ICNT) 2056 ->getInjectedSpecializationType(); 2057 2058 if (CanonType != Injected->getCanonicalTypeInternal()) 2059 continue; 2060 2061 // If so, the canonical type of this TST is the injected 2062 // class name type of the record we just found. 2063 assert(ICNT.isCanonical()); 2064 CanonType = ICNT; 2065 break; 2066 } 2067 } 2068 } else if (ClassTemplateDecl *ClassTemplate 2069 = dyn_cast<ClassTemplateDecl>(Template)) { 2070 // Find the class template specialization declaration that 2071 // corresponds to these arguments. 2072 void *InsertPos = 0; 2073 ClassTemplateSpecializationDecl *Decl 2074 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2075 InsertPos); 2076 if (!Decl) { 2077 // This is the first time we have referenced this class template 2078 // specialization. Create the canonical declaration and add it to 2079 // the set of specializations. 2080 Decl = ClassTemplateSpecializationDecl::Create(Context, 2081 ClassTemplate->getTemplatedDecl()->getTagKind(), 2082 ClassTemplate->getDeclContext(), 2083 ClassTemplate->getTemplatedDecl()->getLocStart(), 2084 ClassTemplate->getLocation(), 2085 ClassTemplate, 2086 Converted.data(), 2087 Converted.size(), 0); 2088 ClassTemplate->AddSpecialization(Decl, InsertPos); 2089 Decl->setLexicalDeclContext(CurContext); 2090 } 2091 2092 CanonType = Context.getTypeDeclType(Decl); 2093 assert(isa<RecordType>(CanonType) && 2094 "type of non-dependent specialization is not a RecordType"); 2095 } 2096 2097 // Build the fully-sugared type for this class template 2098 // specialization, which refers back to the class template 2099 // specialization we created or found. 2100 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2101} 2102 2103TypeResult 2104Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2105 TemplateTy TemplateD, SourceLocation TemplateLoc, 2106 SourceLocation LAngleLoc, 2107 ASTTemplateArgsPtr TemplateArgsIn, 2108 SourceLocation RAngleLoc, 2109 bool IsCtorOrDtorName) { 2110 if (SS.isInvalid()) 2111 return true; 2112 2113 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2114 2115 // Translate the parser's template argument list in our AST format. 2116 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2117 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2118 2119 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2120 QualType T 2121 = Context.getDependentTemplateSpecializationType(ETK_None, 2122 DTN->getQualifier(), 2123 DTN->getIdentifier(), 2124 TemplateArgs); 2125 // Build type-source information. 2126 TypeLocBuilder TLB; 2127 DependentTemplateSpecializationTypeLoc SpecTL 2128 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2129 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2130 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2131 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2132 SpecTL.setTemplateNameLoc(TemplateLoc); 2133 SpecTL.setLAngleLoc(LAngleLoc); 2134 SpecTL.setRAngleLoc(RAngleLoc); 2135 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2136 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2137 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2138 } 2139 2140 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2141 TemplateArgsIn.release(); 2142 2143 if (Result.isNull()) 2144 return true; 2145 2146 // Build type-source information. 2147 TypeLocBuilder TLB; 2148 TemplateSpecializationTypeLoc SpecTL 2149 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2150 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2151 SpecTL.setTemplateNameLoc(TemplateLoc); 2152 SpecTL.setLAngleLoc(LAngleLoc); 2153 SpecTL.setRAngleLoc(RAngleLoc); 2154 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2155 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2156 2157 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2158 // constructor or destructor name (in such a case, the scope specifier 2159 // will be attached to the enclosing Decl or Expr node). 2160 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2161 // Create an elaborated-type-specifier containing the nested-name-specifier. 2162 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2163 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2164 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2165 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2166 } 2167 2168 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2169} 2170 2171TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2172 TypeSpecifierType TagSpec, 2173 SourceLocation TagLoc, 2174 CXXScopeSpec &SS, 2175 SourceLocation TemplateKWLoc, 2176 TemplateTy TemplateD, 2177 SourceLocation TemplateLoc, 2178 SourceLocation LAngleLoc, 2179 ASTTemplateArgsPtr TemplateArgsIn, 2180 SourceLocation RAngleLoc) { 2181 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2182 2183 // Translate the parser's template argument list in our AST format. 2184 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2185 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2186 2187 // Determine the tag kind 2188 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2189 ElaboratedTypeKeyword Keyword 2190 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2191 2192 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2193 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2194 DTN->getQualifier(), 2195 DTN->getIdentifier(), 2196 TemplateArgs); 2197 2198 // Build type-source information. 2199 TypeLocBuilder TLB; 2200 DependentTemplateSpecializationTypeLoc SpecTL 2201 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2202 SpecTL.setElaboratedKeywordLoc(TagLoc); 2203 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2204 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2205 SpecTL.setTemplateNameLoc(TemplateLoc); 2206 SpecTL.setLAngleLoc(LAngleLoc); 2207 SpecTL.setRAngleLoc(RAngleLoc); 2208 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2209 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2210 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2211 } 2212 2213 if (TypeAliasTemplateDecl *TAT = 2214 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2215 // C++0x [dcl.type.elab]p2: 2216 // If the identifier resolves to a typedef-name or the simple-template-id 2217 // resolves to an alias template specialization, the 2218 // elaborated-type-specifier is ill-formed. 2219 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2220 Diag(TAT->getLocation(), diag::note_declared_at); 2221 } 2222 2223 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2224 if (Result.isNull()) 2225 return TypeResult(true); 2226 2227 // Check the tag kind 2228 if (const RecordType *RT = Result->getAs<RecordType>()) { 2229 RecordDecl *D = RT->getDecl(); 2230 2231 IdentifierInfo *Id = D->getIdentifier(); 2232 assert(Id && "templated class must have an identifier"); 2233 2234 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2235 TagLoc, *Id)) { 2236 Diag(TagLoc, diag::err_use_with_wrong_tag) 2237 << Result 2238 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2239 Diag(D->getLocation(), diag::note_previous_use); 2240 } 2241 } 2242 2243 // Provide source-location information for the template specialization. 2244 TypeLocBuilder TLB; 2245 TemplateSpecializationTypeLoc SpecTL 2246 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2247 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2248 SpecTL.setTemplateNameLoc(TemplateLoc); 2249 SpecTL.setLAngleLoc(LAngleLoc); 2250 SpecTL.setRAngleLoc(RAngleLoc); 2251 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2252 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2253 2254 // Construct an elaborated type containing the nested-name-specifier (if any) 2255 // and tag keyword. 2256 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2257 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2258 ElabTL.setElaboratedKeywordLoc(TagLoc); 2259 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2260 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2261} 2262 2263ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2264 SourceLocation TemplateKWLoc, 2265 LookupResult &R, 2266 bool RequiresADL, 2267 const TemplateArgumentListInfo *TemplateArgs) { 2268 // FIXME: Can we do any checking at this point? I guess we could check the 2269 // template arguments that we have against the template name, if the template 2270 // name refers to a single template. That's not a terribly common case, 2271 // though. 2272 // foo<int> could identify a single function unambiguously 2273 // This approach does NOT work, since f<int>(1); 2274 // gets resolved prior to resorting to overload resolution 2275 // i.e., template<class T> void f(double); 2276 // vs template<class T, class U> void f(U); 2277 2278 // These should be filtered out by our callers. 2279 assert(!R.empty() && "empty lookup results when building templateid"); 2280 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2281 2282 // We don't want lookup warnings at this point. 2283 R.suppressDiagnostics(); 2284 2285 UnresolvedLookupExpr *ULE 2286 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2287 SS.getWithLocInContext(Context), 2288 TemplateKWLoc, 2289 R.getLookupNameInfo(), 2290 RequiresADL, TemplateArgs, 2291 R.begin(), R.end()); 2292 2293 return Owned(ULE); 2294} 2295 2296// We actually only call this from template instantiation. 2297ExprResult 2298Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2299 SourceLocation TemplateKWLoc, 2300 const DeclarationNameInfo &NameInfo, 2301 const TemplateArgumentListInfo *TemplateArgs) { 2302 assert(TemplateArgs || TemplateKWLoc.isValid()); 2303 DeclContext *DC; 2304 if (!(DC = computeDeclContext(SS, false)) || 2305 DC->isDependentContext() || 2306 RequireCompleteDeclContext(SS, DC)) 2307 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2308 2309 bool MemberOfUnknownSpecialization; 2310 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2311 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2312 MemberOfUnknownSpecialization); 2313 2314 if (R.isAmbiguous()) 2315 return ExprError(); 2316 2317 if (R.empty()) { 2318 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2319 << NameInfo.getName() << SS.getRange(); 2320 return ExprError(); 2321 } 2322 2323 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2324 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2325 << (NestedNameSpecifier*) SS.getScopeRep() 2326 << NameInfo.getName() << SS.getRange(); 2327 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2328 return ExprError(); 2329 } 2330 2331 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2332} 2333 2334/// \brief Form a dependent template name. 2335/// 2336/// This action forms a dependent template name given the template 2337/// name and its (presumably dependent) scope specifier. For 2338/// example, given "MetaFun::template apply", the scope specifier \p 2339/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2340/// of the "template" keyword, and "apply" is the \p Name. 2341TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2342 CXXScopeSpec &SS, 2343 SourceLocation TemplateKWLoc, 2344 UnqualifiedId &Name, 2345 ParsedType ObjectType, 2346 bool EnteringContext, 2347 TemplateTy &Result) { 2348 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2349 Diag(TemplateKWLoc, 2350 getLangOpts().CPlusPlus0x ? 2351 diag::warn_cxx98_compat_template_outside_of_template : 2352 diag::ext_template_outside_of_template) 2353 << FixItHint::CreateRemoval(TemplateKWLoc); 2354 2355 DeclContext *LookupCtx = 0; 2356 if (SS.isSet()) 2357 LookupCtx = computeDeclContext(SS, EnteringContext); 2358 if (!LookupCtx && ObjectType) 2359 LookupCtx = computeDeclContext(ObjectType.get()); 2360 if (LookupCtx) { 2361 // C++0x [temp.names]p5: 2362 // If a name prefixed by the keyword template is not the name of 2363 // a template, the program is ill-formed. [Note: the keyword 2364 // template may not be applied to non-template members of class 2365 // templates. -end note ] [ Note: as is the case with the 2366 // typename prefix, the template prefix is allowed in cases 2367 // where it is not strictly necessary; i.e., when the 2368 // nested-name-specifier or the expression on the left of the -> 2369 // or . is not dependent on a template-parameter, or the use 2370 // does not appear in the scope of a template. -end note] 2371 // 2372 // Note: C++03 was more strict here, because it banned the use of 2373 // the "template" keyword prior to a template-name that was not a 2374 // dependent name. C++ DR468 relaxed this requirement (the 2375 // "template" keyword is now permitted). We follow the C++0x 2376 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2377 bool MemberOfUnknownSpecialization; 2378 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2379 ObjectType, EnteringContext, Result, 2380 MemberOfUnknownSpecialization); 2381 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2382 isa<CXXRecordDecl>(LookupCtx) && 2383 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2384 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2385 // This is a dependent template. Handle it below. 2386 } else if (TNK == TNK_Non_template) { 2387 Diag(Name.getLocStart(), 2388 diag::err_template_kw_refers_to_non_template) 2389 << GetNameFromUnqualifiedId(Name).getName() 2390 << Name.getSourceRange() 2391 << TemplateKWLoc; 2392 return TNK_Non_template; 2393 } else { 2394 // We found something; return it. 2395 return TNK; 2396 } 2397 } 2398 2399 NestedNameSpecifier *Qualifier 2400 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2401 2402 switch (Name.getKind()) { 2403 case UnqualifiedId::IK_Identifier: 2404 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2405 Name.Identifier)); 2406 return TNK_Dependent_template_name; 2407 2408 case UnqualifiedId::IK_OperatorFunctionId: 2409 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2410 Name.OperatorFunctionId.Operator)); 2411 return TNK_Dependent_template_name; 2412 2413 case UnqualifiedId::IK_LiteralOperatorId: 2414 llvm_unreachable( 2415 "We don't support these; Parse shouldn't have allowed propagation"); 2416 2417 default: 2418 break; 2419 } 2420 2421 Diag(Name.getLocStart(), 2422 diag::err_template_kw_refers_to_non_template) 2423 << GetNameFromUnqualifiedId(Name).getName() 2424 << Name.getSourceRange() 2425 << TemplateKWLoc; 2426 return TNK_Non_template; 2427} 2428 2429bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2430 const TemplateArgumentLoc &AL, 2431 SmallVectorImpl<TemplateArgument> &Converted) { 2432 const TemplateArgument &Arg = AL.getArgument(); 2433 2434 // Check template type parameter. 2435 switch(Arg.getKind()) { 2436 case TemplateArgument::Type: 2437 // C++ [temp.arg.type]p1: 2438 // A template-argument for a template-parameter which is a 2439 // type shall be a type-id. 2440 break; 2441 case TemplateArgument::Template: { 2442 // We have a template type parameter but the template argument 2443 // is a template without any arguments. 2444 SourceRange SR = AL.getSourceRange(); 2445 TemplateName Name = Arg.getAsTemplate(); 2446 Diag(SR.getBegin(), diag::err_template_missing_args) 2447 << Name << SR; 2448 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2449 Diag(Decl->getLocation(), diag::note_template_decl_here); 2450 2451 return true; 2452 } 2453 case TemplateArgument::Expression: { 2454 // We have a template type parameter but the template argument is an 2455 // expression; see if maybe it is missing the "typename" keyword. 2456 CXXScopeSpec SS; 2457 DeclarationNameInfo NameInfo; 2458 2459 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2460 SS.Adopt(ArgExpr->getQualifierLoc()); 2461 NameInfo = ArgExpr->getNameInfo(); 2462 } else if (DependentScopeDeclRefExpr *ArgExpr = 2463 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2464 SS.Adopt(ArgExpr->getQualifierLoc()); 2465 NameInfo = ArgExpr->getNameInfo(); 2466 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2467 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2468 if (ArgExpr->isImplicitAccess()) { 2469 SS.Adopt(ArgExpr->getQualifierLoc()); 2470 NameInfo = ArgExpr->getMemberNameInfo(); 2471 } 2472 } 2473 2474 if (NameInfo.getName().isIdentifier()) { 2475 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2476 LookupParsedName(Result, CurScope, &SS); 2477 2478 if (Result.getAsSingle<TypeDecl>() || 2479 Result.getResultKind() == 2480 LookupResult::NotFoundInCurrentInstantiation) { 2481 // FIXME: Add a FixIt and fix up the template argument for recovery. 2482 SourceLocation Loc = AL.getSourceRange().getBegin(); 2483 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2484 Diag(Param->getLocation(), diag::note_template_param_here); 2485 return true; 2486 } 2487 } 2488 // fallthrough 2489 } 2490 default: { 2491 // We have a template type parameter but the template argument 2492 // is not a type. 2493 SourceRange SR = AL.getSourceRange(); 2494 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2495 Diag(Param->getLocation(), diag::note_template_param_here); 2496 2497 return true; 2498 } 2499 } 2500 2501 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2502 return true; 2503 2504 // Add the converted template type argument. 2505 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2506 2507 // Objective-C ARC: 2508 // If an explicitly-specified template argument type is a lifetime type 2509 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2510 if (getLangOpts().ObjCAutoRefCount && 2511 ArgType->isObjCLifetimeType() && 2512 !ArgType.getObjCLifetime()) { 2513 Qualifiers Qs; 2514 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2515 ArgType = Context.getQualifiedType(ArgType, Qs); 2516 } 2517 2518 Converted.push_back(TemplateArgument(ArgType)); 2519 return false; 2520} 2521 2522/// \brief Substitute template arguments into the default template argument for 2523/// the given template type parameter. 2524/// 2525/// \param SemaRef the semantic analysis object for which we are performing 2526/// the substitution. 2527/// 2528/// \param Template the template that we are synthesizing template arguments 2529/// for. 2530/// 2531/// \param TemplateLoc the location of the template name that started the 2532/// template-id we are checking. 2533/// 2534/// \param RAngleLoc the location of the right angle bracket ('>') that 2535/// terminates the template-id. 2536/// 2537/// \param Param the template template parameter whose default we are 2538/// substituting into. 2539/// 2540/// \param Converted the list of template arguments provided for template 2541/// parameters that precede \p Param in the template parameter list. 2542/// \returns the substituted template argument, or NULL if an error occurred. 2543static TypeSourceInfo * 2544SubstDefaultTemplateArgument(Sema &SemaRef, 2545 TemplateDecl *Template, 2546 SourceLocation TemplateLoc, 2547 SourceLocation RAngleLoc, 2548 TemplateTypeParmDecl *Param, 2549 SmallVectorImpl<TemplateArgument> &Converted) { 2550 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2551 2552 // If the argument type is dependent, instantiate it now based 2553 // on the previously-computed template arguments. 2554 if (ArgType->getType()->isDependentType()) { 2555 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2556 Converted.data(), Converted.size()); 2557 2558 MultiLevelTemplateArgumentList AllTemplateArgs 2559 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2560 2561 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2562 Template, Converted, 2563 SourceRange(TemplateLoc, RAngleLoc)); 2564 if (Inst) 2565 return 0; 2566 2567 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2568 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2569 Param->getDefaultArgumentLoc(), 2570 Param->getDeclName()); 2571 } 2572 2573 return ArgType; 2574} 2575 2576/// \brief Substitute template arguments into the default template argument for 2577/// the given non-type template parameter. 2578/// 2579/// \param SemaRef the semantic analysis object for which we are performing 2580/// the substitution. 2581/// 2582/// \param Template the template that we are synthesizing template arguments 2583/// for. 2584/// 2585/// \param TemplateLoc the location of the template name that started the 2586/// template-id we are checking. 2587/// 2588/// \param RAngleLoc the location of the right angle bracket ('>') that 2589/// terminates the template-id. 2590/// 2591/// \param Param the non-type template parameter whose default we are 2592/// substituting into. 2593/// 2594/// \param Converted the list of template arguments provided for template 2595/// parameters that precede \p Param in the template parameter list. 2596/// 2597/// \returns the substituted template argument, or NULL if an error occurred. 2598static ExprResult 2599SubstDefaultTemplateArgument(Sema &SemaRef, 2600 TemplateDecl *Template, 2601 SourceLocation TemplateLoc, 2602 SourceLocation RAngleLoc, 2603 NonTypeTemplateParmDecl *Param, 2604 SmallVectorImpl<TemplateArgument> &Converted) { 2605 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2606 Converted.data(), Converted.size()); 2607 2608 MultiLevelTemplateArgumentList AllTemplateArgs 2609 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2610 2611 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2612 Template, Converted, 2613 SourceRange(TemplateLoc, RAngleLoc)); 2614 if (Inst) 2615 return ExprError(); 2616 2617 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2618 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 2619 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2620} 2621 2622/// \brief Substitute template arguments into the default template argument for 2623/// the given template template parameter. 2624/// 2625/// \param SemaRef the semantic analysis object for which we are performing 2626/// the substitution. 2627/// 2628/// \param Template the template that we are synthesizing template arguments 2629/// for. 2630/// 2631/// \param TemplateLoc the location of the template name that started the 2632/// template-id we are checking. 2633/// 2634/// \param RAngleLoc the location of the right angle bracket ('>') that 2635/// terminates the template-id. 2636/// 2637/// \param Param the template template parameter whose default we are 2638/// substituting into. 2639/// 2640/// \param Converted the list of template arguments provided for template 2641/// parameters that precede \p Param in the template parameter list. 2642/// 2643/// \param QualifierLoc Will be set to the nested-name-specifier (with 2644/// source-location information) that precedes the template name. 2645/// 2646/// \returns the substituted template argument, or NULL if an error occurred. 2647static TemplateName 2648SubstDefaultTemplateArgument(Sema &SemaRef, 2649 TemplateDecl *Template, 2650 SourceLocation TemplateLoc, 2651 SourceLocation RAngleLoc, 2652 TemplateTemplateParmDecl *Param, 2653 SmallVectorImpl<TemplateArgument> &Converted, 2654 NestedNameSpecifierLoc &QualifierLoc) { 2655 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2656 Converted.data(), Converted.size()); 2657 2658 MultiLevelTemplateArgumentList AllTemplateArgs 2659 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2660 2661 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2662 Template, Converted, 2663 SourceRange(TemplateLoc, RAngleLoc)); 2664 if (Inst) 2665 return TemplateName(); 2666 2667 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2668 // Substitute into the nested-name-specifier first, 2669 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2670 if (QualifierLoc) { 2671 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2672 AllTemplateArgs); 2673 if (!QualifierLoc) 2674 return TemplateName(); 2675 } 2676 2677 return SemaRef.SubstTemplateName(QualifierLoc, 2678 Param->getDefaultArgument().getArgument().getAsTemplate(), 2679 Param->getDefaultArgument().getTemplateNameLoc(), 2680 AllTemplateArgs); 2681} 2682 2683/// \brief If the given template parameter has a default template 2684/// argument, substitute into that default template argument and 2685/// return the corresponding template argument. 2686TemplateArgumentLoc 2687Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2688 SourceLocation TemplateLoc, 2689 SourceLocation RAngleLoc, 2690 Decl *Param, 2691 SmallVectorImpl<TemplateArgument> &Converted) { 2692 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2693 if (!TypeParm->hasDefaultArgument()) 2694 return TemplateArgumentLoc(); 2695 2696 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2697 TemplateLoc, 2698 RAngleLoc, 2699 TypeParm, 2700 Converted); 2701 if (DI) 2702 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2703 2704 return TemplateArgumentLoc(); 2705 } 2706 2707 if (NonTypeTemplateParmDecl *NonTypeParm 2708 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2709 if (!NonTypeParm->hasDefaultArgument()) 2710 return TemplateArgumentLoc(); 2711 2712 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2713 TemplateLoc, 2714 RAngleLoc, 2715 NonTypeParm, 2716 Converted); 2717 if (Arg.isInvalid()) 2718 return TemplateArgumentLoc(); 2719 2720 Expr *ArgE = Arg.takeAs<Expr>(); 2721 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2722 } 2723 2724 TemplateTemplateParmDecl *TempTempParm 2725 = cast<TemplateTemplateParmDecl>(Param); 2726 if (!TempTempParm->hasDefaultArgument()) 2727 return TemplateArgumentLoc(); 2728 2729 2730 NestedNameSpecifierLoc QualifierLoc; 2731 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2732 TemplateLoc, 2733 RAngleLoc, 2734 TempTempParm, 2735 Converted, 2736 QualifierLoc); 2737 if (TName.isNull()) 2738 return TemplateArgumentLoc(); 2739 2740 return TemplateArgumentLoc(TemplateArgument(TName), 2741 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2742 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2743} 2744 2745/// \brief Check that the given template argument corresponds to the given 2746/// template parameter. 2747/// 2748/// \param Param The template parameter against which the argument will be 2749/// checked. 2750/// 2751/// \param Arg The template argument. 2752/// 2753/// \param Template The template in which the template argument resides. 2754/// 2755/// \param TemplateLoc The location of the template name for the template 2756/// whose argument list we're matching. 2757/// 2758/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2759/// the template argument list. 2760/// 2761/// \param ArgumentPackIndex The index into the argument pack where this 2762/// argument will be placed. Only valid if the parameter is a parameter pack. 2763/// 2764/// \param Converted The checked, converted argument will be added to the 2765/// end of this small vector. 2766/// 2767/// \param CTAK Describes how we arrived at this particular template argument: 2768/// explicitly written, deduced, etc. 2769/// 2770/// \returns true on error, false otherwise. 2771bool Sema::CheckTemplateArgument(NamedDecl *Param, 2772 const TemplateArgumentLoc &Arg, 2773 NamedDecl *Template, 2774 SourceLocation TemplateLoc, 2775 SourceLocation RAngleLoc, 2776 unsigned ArgumentPackIndex, 2777 SmallVectorImpl<TemplateArgument> &Converted, 2778 CheckTemplateArgumentKind CTAK) { 2779 // Check template type parameters. 2780 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2781 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2782 2783 // Check non-type template parameters. 2784 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2785 // Do substitution on the type of the non-type template parameter 2786 // with the template arguments we've seen thus far. But if the 2787 // template has a dependent context then we cannot substitute yet. 2788 QualType NTTPType = NTTP->getType(); 2789 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2790 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2791 2792 if (NTTPType->isDependentType() && 2793 !isa<TemplateTemplateParmDecl>(Template) && 2794 !Template->getDeclContext()->isDependentContext()) { 2795 // Do substitution on the type of the non-type template parameter. 2796 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2797 NTTP, Converted, 2798 SourceRange(TemplateLoc, RAngleLoc)); 2799 if (Inst) 2800 return true; 2801 2802 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2803 Converted.data(), Converted.size()); 2804 NTTPType = SubstType(NTTPType, 2805 MultiLevelTemplateArgumentList(TemplateArgs), 2806 NTTP->getLocation(), 2807 NTTP->getDeclName()); 2808 // If that worked, check the non-type template parameter type 2809 // for validity. 2810 if (!NTTPType.isNull()) 2811 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2812 NTTP->getLocation()); 2813 if (NTTPType.isNull()) 2814 return true; 2815 } 2816 2817 switch (Arg.getArgument().getKind()) { 2818 case TemplateArgument::Null: 2819 llvm_unreachable("Should never see a NULL template argument here"); 2820 2821 case TemplateArgument::Expression: { 2822 TemplateArgument Result; 2823 ExprResult Res = 2824 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2825 Result, CTAK); 2826 if (Res.isInvalid()) 2827 return true; 2828 2829 Converted.push_back(Result); 2830 break; 2831 } 2832 2833 case TemplateArgument::Declaration: 2834 case TemplateArgument::Integral: 2835 // We've already checked this template argument, so just copy 2836 // it to the list of converted arguments. 2837 Converted.push_back(Arg.getArgument()); 2838 break; 2839 2840 case TemplateArgument::Template: 2841 case TemplateArgument::TemplateExpansion: 2842 // We were given a template template argument. It may not be ill-formed; 2843 // see below. 2844 if (DependentTemplateName *DTN 2845 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2846 .getAsDependentTemplateName()) { 2847 // We have a template argument such as \c T::template X, which we 2848 // parsed as a template template argument. However, since we now 2849 // know that we need a non-type template argument, convert this 2850 // template name into an expression. 2851 2852 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2853 Arg.getTemplateNameLoc()); 2854 2855 CXXScopeSpec SS; 2856 SS.Adopt(Arg.getTemplateQualifierLoc()); 2857 // FIXME: the template-template arg was a DependentTemplateName, 2858 // so it was provided with a template keyword. However, its source 2859 // location is not stored in the template argument structure. 2860 SourceLocation TemplateKWLoc; 2861 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2862 SS.getWithLocInContext(Context), 2863 TemplateKWLoc, 2864 NameInfo, 0)); 2865 2866 // If we parsed the template argument as a pack expansion, create a 2867 // pack expansion expression. 2868 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2869 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2870 if (E.isInvalid()) 2871 return true; 2872 } 2873 2874 TemplateArgument Result; 2875 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2876 if (E.isInvalid()) 2877 return true; 2878 2879 Converted.push_back(Result); 2880 break; 2881 } 2882 2883 // We have a template argument that actually does refer to a class 2884 // template, alias template, or template template parameter, and 2885 // therefore cannot be a non-type template argument. 2886 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2887 << Arg.getSourceRange(); 2888 2889 Diag(Param->getLocation(), diag::note_template_param_here); 2890 return true; 2891 2892 case TemplateArgument::Type: { 2893 // We have a non-type template parameter but the template 2894 // argument is a type. 2895 2896 // C++ [temp.arg]p2: 2897 // In a template-argument, an ambiguity between a type-id and 2898 // an expression is resolved to a type-id, regardless of the 2899 // form of the corresponding template-parameter. 2900 // 2901 // We warn specifically about this case, since it can be rather 2902 // confusing for users. 2903 QualType T = Arg.getArgument().getAsType(); 2904 SourceRange SR = Arg.getSourceRange(); 2905 if (T->isFunctionType()) 2906 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2907 else 2908 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2909 Diag(Param->getLocation(), diag::note_template_param_here); 2910 return true; 2911 } 2912 2913 case TemplateArgument::Pack: 2914 llvm_unreachable("Caller must expand template argument packs"); 2915 } 2916 2917 return false; 2918 } 2919 2920 2921 // Check template template parameters. 2922 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2923 2924 // Substitute into the template parameter list of the template 2925 // template parameter, since previously-supplied template arguments 2926 // may appear within the template template parameter. 2927 { 2928 // Set up a template instantiation context. 2929 LocalInstantiationScope Scope(*this); 2930 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2931 TempParm, Converted, 2932 SourceRange(TemplateLoc, RAngleLoc)); 2933 if (Inst) 2934 return true; 2935 2936 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2937 Converted.data(), Converted.size()); 2938 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2939 SubstDecl(TempParm, CurContext, 2940 MultiLevelTemplateArgumentList(TemplateArgs))); 2941 if (!TempParm) 2942 return true; 2943 } 2944 2945 switch (Arg.getArgument().getKind()) { 2946 case TemplateArgument::Null: 2947 llvm_unreachable("Should never see a NULL template argument here"); 2948 2949 case TemplateArgument::Template: 2950 case TemplateArgument::TemplateExpansion: 2951 if (CheckTemplateArgument(TempParm, Arg)) 2952 return true; 2953 2954 Converted.push_back(Arg.getArgument()); 2955 break; 2956 2957 case TemplateArgument::Expression: 2958 case TemplateArgument::Type: 2959 // We have a template template parameter but the template 2960 // argument does not refer to a template. 2961 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2962 << getLangOpts().CPlusPlus0x; 2963 return true; 2964 2965 case TemplateArgument::Declaration: 2966 llvm_unreachable("Declaration argument with template template parameter"); 2967 case TemplateArgument::Integral: 2968 llvm_unreachable("Integral argument with template template parameter"); 2969 2970 case TemplateArgument::Pack: 2971 llvm_unreachable("Caller must expand template argument packs"); 2972 } 2973 2974 return false; 2975} 2976 2977/// \brief Diagnose an arity mismatch in the 2978static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2979 SourceLocation TemplateLoc, 2980 TemplateArgumentListInfo &TemplateArgs) { 2981 TemplateParameterList *Params = Template->getTemplateParameters(); 2982 unsigned NumParams = Params->size(); 2983 unsigned NumArgs = TemplateArgs.size(); 2984 2985 SourceRange Range; 2986 if (NumArgs > NumParams) 2987 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 2988 TemplateArgs.getRAngleLoc()); 2989 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2990 << (NumArgs > NumParams) 2991 << (isa<ClassTemplateDecl>(Template)? 0 : 2992 isa<FunctionTemplateDecl>(Template)? 1 : 2993 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2994 << Template << Range; 2995 S.Diag(Template->getLocation(), diag::note_template_decl_here) 2996 << Params->getSourceRange(); 2997 return true; 2998} 2999 3000/// \brief Check that the given template argument list is well-formed 3001/// for specializing the given template. 3002bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3003 SourceLocation TemplateLoc, 3004 TemplateArgumentListInfo &TemplateArgs, 3005 bool PartialTemplateArgs, 3006 SmallVectorImpl<TemplateArgument> &Converted, 3007 bool *ExpansionIntoFixedList) { 3008 if (ExpansionIntoFixedList) 3009 *ExpansionIntoFixedList = false; 3010 3011 TemplateParameterList *Params = Template->getTemplateParameters(); 3012 unsigned NumParams = Params->size(); 3013 unsigned NumArgs = TemplateArgs.size(); 3014 bool Invalid = false; 3015 3016 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3017 3018 bool HasParameterPack = 3019 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 3020 3021 // C++ [temp.arg]p1: 3022 // [...] The type and form of each template-argument specified in 3023 // a template-id shall match the type and form specified for the 3024 // corresponding parameter declared by the template in its 3025 // template-parameter-list. 3026 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3027 SmallVector<TemplateArgument, 2> ArgumentPack; 3028 TemplateParameterList::iterator Param = Params->begin(), 3029 ParamEnd = Params->end(); 3030 unsigned ArgIdx = 0; 3031 LocalInstantiationScope InstScope(*this, true); 3032 bool SawPackExpansion = false; 3033 while (Param != ParamEnd) { 3034 if (ArgIdx < NumArgs) { 3035 // If we have an expanded parameter pack, make sure we don't have too 3036 // many arguments. 3037 // FIXME: This really should fall out from the normal arity checking. 3038 if (NonTypeTemplateParmDecl *NTTP 3039 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3040 if (NTTP->isExpandedParameterPack() && 3041 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 3042 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3043 << true 3044 << (isa<ClassTemplateDecl>(Template)? 0 : 3045 isa<FunctionTemplateDecl>(Template)? 1 : 3046 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3047 << Template; 3048 Diag(Template->getLocation(), diag::note_template_decl_here) 3049 << Params->getSourceRange(); 3050 return true; 3051 } 3052 } 3053 3054 // Check the template argument we were given. 3055 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3056 TemplateLoc, RAngleLoc, 3057 ArgumentPack.size(), Converted)) 3058 return true; 3059 3060 if ((*Param)->isTemplateParameterPack()) { 3061 // The template parameter was a template parameter pack, so take the 3062 // deduced argument and place it on the argument pack. Note that we 3063 // stay on the same template parameter so that we can deduce more 3064 // arguments. 3065 ArgumentPack.push_back(Converted.back()); 3066 Converted.pop_back(); 3067 } else { 3068 // Move to the next template parameter. 3069 ++Param; 3070 } 3071 3072 // If this template argument is a pack expansion, record that fact 3073 // and break out; we can't actually check any more. 3074 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) { 3075 SawPackExpansion = true; 3076 ++ArgIdx; 3077 break; 3078 } 3079 3080 ++ArgIdx; 3081 continue; 3082 } 3083 3084 // If we're checking a partial template argument list, we're done. 3085 if (PartialTemplateArgs) { 3086 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3087 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3088 ArgumentPack.data(), 3089 ArgumentPack.size())); 3090 3091 return Invalid; 3092 } 3093 3094 // If we have a template parameter pack with no more corresponding 3095 // arguments, just break out now and we'll fill in the argument pack below. 3096 if ((*Param)->isTemplateParameterPack()) 3097 break; 3098 3099 // Check whether we have a default argument. 3100 TemplateArgumentLoc Arg; 3101 3102 // Retrieve the default template argument from the template 3103 // parameter. For each kind of template parameter, we substitute the 3104 // template arguments provided thus far and any "outer" template arguments 3105 // (when the template parameter was part of a nested template) into 3106 // the default argument. 3107 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3108 if (!TTP->hasDefaultArgument()) 3109 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3110 TemplateArgs); 3111 3112 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3113 Template, 3114 TemplateLoc, 3115 RAngleLoc, 3116 TTP, 3117 Converted); 3118 if (!ArgType) 3119 return true; 3120 3121 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3122 ArgType); 3123 } else if (NonTypeTemplateParmDecl *NTTP 3124 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3125 if (!NTTP->hasDefaultArgument()) 3126 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3127 TemplateArgs); 3128 3129 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3130 TemplateLoc, 3131 RAngleLoc, 3132 NTTP, 3133 Converted); 3134 if (E.isInvalid()) 3135 return true; 3136 3137 Expr *Ex = E.takeAs<Expr>(); 3138 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3139 } else { 3140 TemplateTemplateParmDecl *TempParm 3141 = cast<TemplateTemplateParmDecl>(*Param); 3142 3143 if (!TempParm->hasDefaultArgument()) 3144 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3145 TemplateArgs); 3146 3147 NestedNameSpecifierLoc QualifierLoc; 3148 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3149 TemplateLoc, 3150 RAngleLoc, 3151 TempParm, 3152 Converted, 3153 QualifierLoc); 3154 if (Name.isNull()) 3155 return true; 3156 3157 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3158 TempParm->getDefaultArgument().getTemplateNameLoc()); 3159 } 3160 3161 // Introduce an instantiation record that describes where we are using 3162 // the default template argument. 3163 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3164 *Param, Converted, 3165 SourceRange(TemplateLoc, RAngleLoc)); 3166 if (Instantiating) 3167 return true; 3168 3169 // Check the default template argument. 3170 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3171 RAngleLoc, 0, Converted)) 3172 return true; 3173 3174 // Core issue 150 (assumed resolution): if this is a template template 3175 // parameter, keep track of the default template arguments from the 3176 // template definition. 3177 if (isTemplateTemplateParameter) 3178 TemplateArgs.addArgument(Arg); 3179 3180 // Move to the next template parameter and argument. 3181 ++Param; 3182 ++ArgIdx; 3183 } 3184 3185 // If we saw a pack expansion, then directly convert the remaining arguments, 3186 // because we don't know what parameters they'll match up with. 3187 if (SawPackExpansion) { 3188 bool AddToArgumentPack 3189 = Param != ParamEnd && (*Param)->isTemplateParameterPack(); 3190 while (ArgIdx < NumArgs) { 3191 if (AddToArgumentPack) 3192 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3193 else 3194 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3195 ++ArgIdx; 3196 } 3197 3198 // Push the argument pack onto the list of converted arguments. 3199 if (AddToArgumentPack) { 3200 if (ArgumentPack.empty()) 3201 Converted.push_back(TemplateArgument(0, 0)); 3202 else { 3203 Converted.push_back( 3204 TemplateArgument::CreatePackCopy(Context, 3205 ArgumentPack.data(), 3206 ArgumentPack.size())); 3207 ArgumentPack.clear(); 3208 } 3209 } else if (ExpansionIntoFixedList) { 3210 // We have expanded a pack into a fixed list. 3211 *ExpansionIntoFixedList = true; 3212 } 3213 3214 return Invalid; 3215 } 3216 3217 // If we have any leftover arguments, then there were too many arguments. 3218 // Complain and fail. 3219 if (ArgIdx < NumArgs) 3220 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3221 3222 // If we have an expanded parameter pack, make sure we don't have too 3223 // many arguments. 3224 // FIXME: This really should fall out from the normal arity checking. 3225 if (Param != ParamEnd) { 3226 if (NonTypeTemplateParmDecl *NTTP 3227 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3228 if (NTTP->isExpandedParameterPack() && 3229 ArgumentPack.size() < NTTP->getNumExpansionTypes()) { 3230 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3231 << false 3232 << (isa<ClassTemplateDecl>(Template)? 0 : 3233 isa<FunctionTemplateDecl>(Template)? 1 : 3234 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3235 << Template; 3236 Diag(Template->getLocation(), diag::note_template_decl_here) 3237 << Params->getSourceRange(); 3238 return true; 3239 } 3240 } 3241 } 3242 3243 // Form argument packs for each of the parameter packs remaining. 3244 while (Param != ParamEnd) { 3245 // If we're checking a partial list of template arguments, don't fill 3246 // in arguments for non-template parameter packs. 3247 if ((*Param)->isTemplateParameterPack()) { 3248 if (!HasParameterPack) 3249 return true; 3250 if (ArgumentPack.empty()) 3251 Converted.push_back(TemplateArgument(0, 0)); 3252 else { 3253 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3254 ArgumentPack.data(), 3255 ArgumentPack.size())); 3256 ArgumentPack.clear(); 3257 } 3258 } else if (!PartialTemplateArgs) 3259 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3260 3261 ++Param; 3262 } 3263 3264 return Invalid; 3265} 3266 3267namespace { 3268 class UnnamedLocalNoLinkageFinder 3269 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3270 { 3271 Sema &S; 3272 SourceRange SR; 3273 3274 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3275 3276 public: 3277 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3278 3279 bool Visit(QualType T) { 3280 return inherited::Visit(T.getTypePtr()); 3281 } 3282 3283#define TYPE(Class, Parent) \ 3284 bool Visit##Class##Type(const Class##Type *); 3285#define ABSTRACT_TYPE(Class, Parent) \ 3286 bool Visit##Class##Type(const Class##Type *) { return false; } 3287#define NON_CANONICAL_TYPE(Class, Parent) \ 3288 bool Visit##Class##Type(const Class##Type *) { return false; } 3289#include "clang/AST/TypeNodes.def" 3290 3291 bool VisitTagDecl(const TagDecl *Tag); 3292 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3293 }; 3294} 3295 3296bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3297 return false; 3298} 3299 3300bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3301 return Visit(T->getElementType()); 3302} 3303 3304bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3305 return Visit(T->getPointeeType()); 3306} 3307 3308bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3309 const BlockPointerType* T) { 3310 return Visit(T->getPointeeType()); 3311} 3312 3313bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3314 const LValueReferenceType* T) { 3315 return Visit(T->getPointeeType()); 3316} 3317 3318bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3319 const RValueReferenceType* T) { 3320 return Visit(T->getPointeeType()); 3321} 3322 3323bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3324 const MemberPointerType* T) { 3325 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3326} 3327 3328bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3329 const ConstantArrayType* T) { 3330 return Visit(T->getElementType()); 3331} 3332 3333bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3334 const IncompleteArrayType* T) { 3335 return Visit(T->getElementType()); 3336} 3337 3338bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3339 const VariableArrayType* T) { 3340 return Visit(T->getElementType()); 3341} 3342 3343bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3344 const DependentSizedArrayType* T) { 3345 return Visit(T->getElementType()); 3346} 3347 3348bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3349 const DependentSizedExtVectorType* T) { 3350 return Visit(T->getElementType()); 3351} 3352 3353bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3354 return Visit(T->getElementType()); 3355} 3356 3357bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3358 return Visit(T->getElementType()); 3359} 3360 3361bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3362 const FunctionProtoType* T) { 3363 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3364 AEnd = T->arg_type_end(); 3365 A != AEnd; ++A) { 3366 if (Visit(*A)) 3367 return true; 3368 } 3369 3370 return Visit(T->getResultType()); 3371} 3372 3373bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3374 const FunctionNoProtoType* T) { 3375 return Visit(T->getResultType()); 3376} 3377 3378bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3379 const UnresolvedUsingType*) { 3380 return false; 3381} 3382 3383bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3384 return false; 3385} 3386 3387bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3388 return Visit(T->getUnderlyingType()); 3389} 3390 3391bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3392 return false; 3393} 3394 3395bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3396 const UnaryTransformType*) { 3397 return false; 3398} 3399 3400bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3401 return Visit(T->getDeducedType()); 3402} 3403 3404bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3405 return VisitTagDecl(T->getDecl()); 3406} 3407 3408bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3409 return VisitTagDecl(T->getDecl()); 3410} 3411 3412bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3413 const TemplateTypeParmType*) { 3414 return false; 3415} 3416 3417bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3418 const SubstTemplateTypeParmPackType *) { 3419 return false; 3420} 3421 3422bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3423 const TemplateSpecializationType*) { 3424 return false; 3425} 3426 3427bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3428 const InjectedClassNameType* T) { 3429 return VisitTagDecl(T->getDecl()); 3430} 3431 3432bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3433 const DependentNameType* T) { 3434 return VisitNestedNameSpecifier(T->getQualifier()); 3435} 3436 3437bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3438 const DependentTemplateSpecializationType* T) { 3439 return VisitNestedNameSpecifier(T->getQualifier()); 3440} 3441 3442bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3443 const PackExpansionType* T) { 3444 return Visit(T->getPattern()); 3445} 3446 3447bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3448 return false; 3449} 3450 3451bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3452 const ObjCInterfaceType *) { 3453 return false; 3454} 3455 3456bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3457 const ObjCObjectPointerType *) { 3458 return false; 3459} 3460 3461bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3462 return Visit(T->getValueType()); 3463} 3464 3465bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3466 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3467 S.Diag(SR.getBegin(), 3468 S.getLangOpts().CPlusPlus0x ? 3469 diag::warn_cxx98_compat_template_arg_local_type : 3470 diag::ext_template_arg_local_type) 3471 << S.Context.getTypeDeclType(Tag) << SR; 3472 return true; 3473 } 3474 3475 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3476 S.Diag(SR.getBegin(), 3477 S.getLangOpts().CPlusPlus0x ? 3478 diag::warn_cxx98_compat_template_arg_unnamed_type : 3479 diag::ext_template_arg_unnamed_type) << SR; 3480 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3481 return true; 3482 } 3483 3484 return false; 3485} 3486 3487bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3488 NestedNameSpecifier *NNS) { 3489 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3490 return true; 3491 3492 switch (NNS->getKind()) { 3493 case NestedNameSpecifier::Identifier: 3494 case NestedNameSpecifier::Namespace: 3495 case NestedNameSpecifier::NamespaceAlias: 3496 case NestedNameSpecifier::Global: 3497 return false; 3498 3499 case NestedNameSpecifier::TypeSpec: 3500 case NestedNameSpecifier::TypeSpecWithTemplate: 3501 return Visit(QualType(NNS->getAsType(), 0)); 3502 } 3503 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3504} 3505 3506 3507/// \brief Check a template argument against its corresponding 3508/// template type parameter. 3509/// 3510/// This routine implements the semantics of C++ [temp.arg.type]. It 3511/// returns true if an error occurred, and false otherwise. 3512bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3513 TypeSourceInfo *ArgInfo) { 3514 assert(ArgInfo && "invalid TypeSourceInfo"); 3515 QualType Arg = ArgInfo->getType(); 3516 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3517 3518 if (Arg->isVariablyModifiedType()) { 3519 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3520 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3521 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3522 } 3523 3524 // C++03 [temp.arg.type]p2: 3525 // A local type, a type with no linkage, an unnamed type or a type 3526 // compounded from any of these types shall not be used as a 3527 // template-argument for a template type-parameter. 3528 // 3529 // C++11 allows these, and even in C++03 we allow them as an extension with 3530 // a warning. 3531 if (LangOpts.CPlusPlus0x ? 3532 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3533 SR.getBegin()) != DiagnosticsEngine::Ignored || 3534 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3535 SR.getBegin()) != DiagnosticsEngine::Ignored : 3536 Arg->hasUnnamedOrLocalType()) { 3537 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3538 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3539 } 3540 3541 return false; 3542} 3543 3544enum NullPointerValueKind { 3545 NPV_NotNullPointer, 3546 NPV_NullPointer, 3547 NPV_Error 3548}; 3549 3550/// \brief Determine whether the given template argument is a null pointer 3551/// value of the appropriate type. 3552static NullPointerValueKind 3553isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3554 QualType ParamType, Expr *Arg) { 3555 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3556 return NPV_NotNullPointer; 3557 3558 if (!S.getLangOpts().CPlusPlus0x) 3559 return NPV_NotNullPointer; 3560 3561 // Determine whether we have a constant expression. 3562 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3563 if (ArgRV.isInvalid()) 3564 return NPV_Error; 3565 Arg = ArgRV.take(); 3566 3567 Expr::EvalResult EvalResult; 3568 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 3569 EvalResult.Diag = &Notes; 3570 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3571 EvalResult.HasSideEffects) { 3572 SourceLocation DiagLoc = Arg->getExprLoc(); 3573 3574 // If our only note is the usual "invalid subexpression" note, just point 3575 // the caret at its location rather than producing an essentially 3576 // redundant note. 3577 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3578 diag::note_invalid_subexpr_in_const_expr) { 3579 DiagLoc = Notes[0].first; 3580 Notes.clear(); 3581 } 3582 3583 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3584 << Arg->getType() << Arg->getSourceRange(); 3585 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3586 S.Diag(Notes[I].first, Notes[I].second); 3587 3588 S.Diag(Param->getLocation(), diag::note_template_param_here); 3589 return NPV_Error; 3590 } 3591 3592 // C++11 [temp.arg.nontype]p1: 3593 // - an address constant expression of type std::nullptr_t 3594 if (Arg->getType()->isNullPtrType()) 3595 return NPV_NullPointer; 3596 3597 // - a constant expression that evaluates to a null pointer value (4.10); or 3598 // - a constant expression that evaluates to a null member pointer value 3599 // (4.11); or 3600 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3601 (EvalResult.Val.isMemberPointer() && 3602 !EvalResult.Val.getMemberPointerDecl())) { 3603 // If our expression has an appropriate type, we've succeeded. 3604 bool ObjCLifetimeConversion; 3605 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3606 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3607 ObjCLifetimeConversion)) 3608 return NPV_NullPointer; 3609 3610 // The types didn't match, but we know we got a null pointer; complain, 3611 // then recover as if the types were correct. 3612 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3613 << Arg->getType() << ParamType << Arg->getSourceRange(); 3614 S.Diag(Param->getLocation(), diag::note_template_param_here); 3615 return NPV_NullPointer; 3616 } 3617 3618 // If we don't have a null pointer value, but we do have a NULL pointer 3619 // constant, suggest a cast to the appropriate type. 3620 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3621 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3622 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3623 << ParamType 3624 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3625 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3626 ")"); 3627 S.Diag(Param->getLocation(), diag::note_template_param_here); 3628 return NPV_NullPointer; 3629 } 3630 3631 // FIXME: If we ever want to support general, address-constant expressions 3632 // as non-type template arguments, we should return the ExprResult here to 3633 // be interpreted by the caller. 3634 return NPV_NotNullPointer; 3635} 3636 3637/// \brief Checks whether the given template argument is the address 3638/// of an object or function according to C++ [temp.arg.nontype]p1. 3639static bool 3640CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3641 NonTypeTemplateParmDecl *Param, 3642 QualType ParamType, 3643 Expr *ArgIn, 3644 TemplateArgument &Converted) { 3645 bool Invalid = false; 3646 Expr *Arg = ArgIn; 3647 QualType ArgType = Arg->getType(); 3648 3649 // If our parameter has pointer type, check for a null template value. 3650 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3651 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3652 case NPV_NullPointer: 3653 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3654 Converted = TemplateArgument((Decl *)0); 3655 return false; 3656 3657 case NPV_Error: 3658 return true; 3659 3660 case NPV_NotNullPointer: 3661 break; 3662 } 3663 } 3664 3665 // See through any implicit casts we added to fix the type. 3666 Arg = Arg->IgnoreImpCasts(); 3667 3668 // C++ [temp.arg.nontype]p1: 3669 // 3670 // A template-argument for a non-type, non-template 3671 // template-parameter shall be one of: [...] 3672 // 3673 // -- the address of an object or function with external 3674 // linkage, including function templates and function 3675 // template-ids but excluding non-static class members, 3676 // expressed as & id-expression where the & is optional if 3677 // the name refers to a function or array, or if the 3678 // corresponding template-parameter is a reference; or 3679 3680 // In C++98/03 mode, give an extension warning on any extra parentheses. 3681 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3682 bool ExtraParens = false; 3683 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3684 if (!Invalid && !ExtraParens) { 3685 S.Diag(Arg->getLocStart(), 3686 S.getLangOpts().CPlusPlus0x ? 3687 diag::warn_cxx98_compat_template_arg_extra_parens : 3688 diag::ext_template_arg_extra_parens) 3689 << Arg->getSourceRange(); 3690 ExtraParens = true; 3691 } 3692 3693 Arg = Parens->getSubExpr(); 3694 } 3695 3696 while (SubstNonTypeTemplateParmExpr *subst = 3697 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3698 Arg = subst->getReplacement()->IgnoreImpCasts(); 3699 3700 bool AddressTaken = false; 3701 SourceLocation AddrOpLoc; 3702 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3703 if (UnOp->getOpcode() == UO_AddrOf) { 3704 Arg = UnOp->getSubExpr(); 3705 AddressTaken = true; 3706 AddrOpLoc = UnOp->getOperatorLoc(); 3707 } 3708 } 3709 3710 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3711 Converted = TemplateArgument(ArgIn); 3712 return false; 3713 } 3714 3715 while (SubstNonTypeTemplateParmExpr *subst = 3716 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3717 Arg = subst->getReplacement()->IgnoreImpCasts(); 3718 3719 // Stop checking the precise nature of the argument if it is value dependent, 3720 // it should be checked when instantiated. 3721 if (Arg->isValueDependent()) { 3722 Converted = TemplateArgument(ArgIn); 3723 return false; 3724 } 3725 3726 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3727 if (!DRE) { 3728 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3729 << Arg->getSourceRange(); 3730 S.Diag(Param->getLocation(), diag::note_template_param_here); 3731 return true; 3732 } 3733 3734 if (!isa<ValueDecl>(DRE->getDecl())) { 3735 S.Diag(Arg->getLocStart(), 3736 diag::err_template_arg_not_object_or_func_form) 3737 << Arg->getSourceRange(); 3738 S.Diag(Param->getLocation(), diag::note_template_param_here); 3739 return true; 3740 } 3741 3742 NamedDecl *Entity = DRE->getDecl(); 3743 3744 // Cannot refer to non-static data members 3745 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3746 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3747 << Field << Arg->getSourceRange(); 3748 S.Diag(Param->getLocation(), diag::note_template_param_here); 3749 return true; 3750 } 3751 3752 // Cannot refer to non-static member functions 3753 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3754 if (!Method->isStatic()) { 3755 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3756 << Method << Arg->getSourceRange(); 3757 S.Diag(Param->getLocation(), diag::note_template_param_here); 3758 return true; 3759 } 3760 } 3761 3762 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3763 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3764 3765 // A non-type template argument must refer to an object or function. 3766 if (!Func && !Var) { 3767 // We found something, but we don't know specifically what it is. 3768 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3769 << Arg->getSourceRange(); 3770 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3771 return true; 3772 } 3773 3774 // Address / reference template args must have external linkage in C++98. 3775 if (Entity->getLinkage() == InternalLinkage) { 3776 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ? 3777 diag::warn_cxx98_compat_template_arg_object_internal : 3778 diag::ext_template_arg_object_internal) 3779 << !Func << Entity << Arg->getSourceRange(); 3780 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3781 << !Func; 3782 } else if (Entity->getLinkage() == NoLinkage) { 3783 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3784 << !Func << Entity << Arg->getSourceRange(); 3785 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3786 << !Func; 3787 return true; 3788 } 3789 3790 if (Func) { 3791 // If the template parameter has pointer type, the function decays. 3792 if (ParamType->isPointerType() && !AddressTaken) 3793 ArgType = S.Context.getPointerType(Func->getType()); 3794 else if (AddressTaken && ParamType->isReferenceType()) { 3795 // If we originally had an address-of operator, but the 3796 // parameter has reference type, complain and (if things look 3797 // like they will work) drop the address-of operator. 3798 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3799 ParamType.getNonReferenceType())) { 3800 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3801 << ParamType; 3802 S.Diag(Param->getLocation(), diag::note_template_param_here); 3803 return true; 3804 } 3805 3806 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3807 << ParamType 3808 << FixItHint::CreateRemoval(AddrOpLoc); 3809 S.Diag(Param->getLocation(), diag::note_template_param_here); 3810 3811 ArgType = Func->getType(); 3812 } 3813 } else { 3814 // A value of reference type is not an object. 3815 if (Var->getType()->isReferenceType()) { 3816 S.Diag(Arg->getLocStart(), 3817 diag::err_template_arg_reference_var) 3818 << Var->getType() << Arg->getSourceRange(); 3819 S.Diag(Param->getLocation(), diag::note_template_param_here); 3820 return true; 3821 } 3822 3823 // A template argument must have static storage duration. 3824 // FIXME: Ensure this works for thread_local as well as __thread. 3825 if (Var->isThreadSpecified()) { 3826 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3827 << Arg->getSourceRange(); 3828 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3829 return true; 3830 } 3831 3832 // If the template parameter has pointer type, we must have taken 3833 // the address of this object. 3834 if (ParamType->isReferenceType()) { 3835 if (AddressTaken) { 3836 // If we originally had an address-of operator, but the 3837 // parameter has reference type, complain and (if things look 3838 // like they will work) drop the address-of operator. 3839 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3840 ParamType.getNonReferenceType())) { 3841 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3842 << ParamType; 3843 S.Diag(Param->getLocation(), diag::note_template_param_here); 3844 return true; 3845 } 3846 3847 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3848 << ParamType 3849 << FixItHint::CreateRemoval(AddrOpLoc); 3850 S.Diag(Param->getLocation(), diag::note_template_param_here); 3851 3852 ArgType = Var->getType(); 3853 } 3854 } else if (!AddressTaken && ParamType->isPointerType()) { 3855 if (Var->getType()->isArrayType()) { 3856 // Array-to-pointer decay. 3857 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3858 } else { 3859 // If the template parameter has pointer type but the address of 3860 // this object was not taken, complain and (possibly) recover by 3861 // taking the address of the entity. 3862 ArgType = S.Context.getPointerType(Var->getType()); 3863 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3864 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3865 << ParamType; 3866 S.Diag(Param->getLocation(), diag::note_template_param_here); 3867 return true; 3868 } 3869 3870 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3871 << ParamType 3872 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3873 3874 S.Diag(Param->getLocation(), diag::note_template_param_here); 3875 } 3876 } 3877 } 3878 3879 bool ObjCLifetimeConversion; 3880 if (ParamType->isPointerType() && 3881 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3882 S.IsQualificationConversion(ArgType, ParamType, false, 3883 ObjCLifetimeConversion)) { 3884 // For pointer-to-object types, qualification conversions are 3885 // permitted. 3886 } else { 3887 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3888 if (!ParamRef->getPointeeType()->isFunctionType()) { 3889 // C++ [temp.arg.nontype]p5b3: 3890 // For a non-type template-parameter of type reference to 3891 // object, no conversions apply. The type referred to by the 3892 // reference may be more cv-qualified than the (otherwise 3893 // identical) type of the template- argument. The 3894 // template-parameter is bound directly to the 3895 // template-argument, which shall be an lvalue. 3896 3897 // FIXME: Other qualifiers? 3898 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3899 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3900 3901 if ((ParamQuals | ArgQuals) != ParamQuals) { 3902 S.Diag(Arg->getLocStart(), 3903 diag::err_template_arg_ref_bind_ignores_quals) 3904 << ParamType << Arg->getType() 3905 << Arg->getSourceRange(); 3906 S.Diag(Param->getLocation(), diag::note_template_param_here); 3907 return true; 3908 } 3909 } 3910 } 3911 3912 // At this point, the template argument refers to an object or 3913 // function with external linkage. We now need to check whether the 3914 // argument and parameter types are compatible. 3915 if (!S.Context.hasSameUnqualifiedType(ArgType, 3916 ParamType.getNonReferenceType())) { 3917 // We can't perform this conversion or binding. 3918 if (ParamType->isReferenceType()) 3919 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3920 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3921 else 3922 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3923 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3924 S.Diag(Param->getLocation(), diag::note_template_param_here); 3925 return true; 3926 } 3927 } 3928 3929 // Create the template argument. 3930 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3931 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity); 3932 return false; 3933} 3934 3935/// \brief Checks whether the given template argument is a pointer to 3936/// member constant according to C++ [temp.arg.nontype]p1. 3937static bool CheckTemplateArgumentPointerToMember(Sema &S, 3938 NonTypeTemplateParmDecl *Param, 3939 QualType ParamType, 3940 Expr *&ResultArg, 3941 TemplateArgument &Converted) { 3942 bool Invalid = false; 3943 3944 // Check for a null pointer value. 3945 Expr *Arg = ResultArg; 3946 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3947 case NPV_Error: 3948 return true; 3949 case NPV_NullPointer: 3950 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3951 Converted = TemplateArgument((Decl *)0); 3952 return false; 3953 case NPV_NotNullPointer: 3954 break; 3955 } 3956 3957 bool ObjCLifetimeConversion; 3958 if (S.IsQualificationConversion(Arg->getType(), 3959 ParamType.getNonReferenceType(), 3960 false, ObjCLifetimeConversion)) { 3961 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3962 Arg->getValueKind()).take(); 3963 ResultArg = Arg; 3964 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3965 ParamType.getNonReferenceType())) { 3966 // We can't perform this conversion. 3967 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3968 << Arg->getType() << ParamType << Arg->getSourceRange(); 3969 S.Diag(Param->getLocation(), diag::note_template_param_here); 3970 return true; 3971 } 3972 3973 // See through any implicit casts we added to fix the type. 3974 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3975 Arg = Cast->getSubExpr(); 3976 3977 // C++ [temp.arg.nontype]p1: 3978 // 3979 // A template-argument for a non-type, non-template 3980 // template-parameter shall be one of: [...] 3981 // 3982 // -- a pointer to member expressed as described in 5.3.1. 3983 DeclRefExpr *DRE = 0; 3984 3985 // In C++98/03 mode, give an extension warning on any extra parentheses. 3986 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3987 bool ExtraParens = false; 3988 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3989 if (!Invalid && !ExtraParens) { 3990 S.Diag(Arg->getLocStart(), 3991 S.getLangOpts().CPlusPlus0x ? 3992 diag::warn_cxx98_compat_template_arg_extra_parens : 3993 diag::ext_template_arg_extra_parens) 3994 << Arg->getSourceRange(); 3995 ExtraParens = true; 3996 } 3997 3998 Arg = Parens->getSubExpr(); 3999 } 4000 4001 while (SubstNonTypeTemplateParmExpr *subst = 4002 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4003 Arg = subst->getReplacement()->IgnoreImpCasts(); 4004 4005 // A pointer-to-member constant written &Class::member. 4006 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4007 if (UnOp->getOpcode() == UO_AddrOf) { 4008 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4009 if (DRE && !DRE->getQualifier()) 4010 DRE = 0; 4011 } 4012 } 4013 // A constant of pointer-to-member type. 4014 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4015 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4016 if (VD->getType()->isMemberPointerType()) { 4017 if (isa<NonTypeTemplateParmDecl>(VD) || 4018 (isa<VarDecl>(VD) && 4019 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4020 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4021 Converted = TemplateArgument(Arg); 4022 else 4023 Converted = TemplateArgument(VD->getCanonicalDecl()); 4024 return Invalid; 4025 } 4026 } 4027 } 4028 4029 DRE = 0; 4030 } 4031 4032 if (!DRE) 4033 return S.Diag(Arg->getLocStart(), 4034 diag::err_template_arg_not_pointer_to_member_form) 4035 << Arg->getSourceRange(); 4036 4037 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4038 assert((isa<FieldDecl>(DRE->getDecl()) || 4039 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4040 "Only non-static member pointers can make it here"); 4041 4042 // Okay: this is the address of a non-static member, and therefore 4043 // a member pointer constant. 4044 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4045 Converted = TemplateArgument(Arg); 4046 else 4047 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 4048 return Invalid; 4049 } 4050 4051 // We found something else, but we don't know specifically what it is. 4052 S.Diag(Arg->getLocStart(), 4053 diag::err_template_arg_not_pointer_to_member_form) 4054 << Arg->getSourceRange(); 4055 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4056 return true; 4057} 4058 4059/// \brief Check a template argument against its corresponding 4060/// non-type template parameter. 4061/// 4062/// This routine implements the semantics of C++ [temp.arg.nontype]. 4063/// If an error occurred, it returns ExprError(); otherwise, it 4064/// returns the converted template argument. \p 4065/// InstantiatedParamType is the type of the non-type template 4066/// parameter after it has been instantiated. 4067ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4068 QualType InstantiatedParamType, Expr *Arg, 4069 TemplateArgument &Converted, 4070 CheckTemplateArgumentKind CTAK) { 4071 SourceLocation StartLoc = Arg->getLocStart(); 4072 4073 // If either the parameter has a dependent type or the argument is 4074 // type-dependent, there's nothing we can check now. 4075 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4076 // FIXME: Produce a cloned, canonical expression? 4077 Converted = TemplateArgument(Arg); 4078 return Owned(Arg); 4079 } 4080 4081 // C++ [temp.arg.nontype]p5: 4082 // The following conversions are performed on each expression used 4083 // as a non-type template-argument. If a non-type 4084 // template-argument cannot be converted to the type of the 4085 // corresponding template-parameter then the program is 4086 // ill-formed. 4087 QualType ParamType = InstantiatedParamType; 4088 if (ParamType->isIntegralOrEnumerationType()) { 4089 // C++11: 4090 // -- for a non-type template-parameter of integral or 4091 // enumeration type, conversions permitted in a converted 4092 // constant expression are applied. 4093 // 4094 // C++98: 4095 // -- for a non-type template-parameter of integral or 4096 // enumeration type, integral promotions (4.5) and integral 4097 // conversions (4.7) are applied. 4098 4099 if (CTAK == CTAK_Deduced && 4100 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4101 // C++ [temp.deduct.type]p17: 4102 // If, in the declaration of a function template with a non-type 4103 // template-parameter, the non-type template-parameter is used 4104 // in an expression in the function parameter-list and, if the 4105 // corresponding template-argument is deduced, the 4106 // template-argument type shall match the type of the 4107 // template-parameter exactly, except that a template-argument 4108 // deduced from an array bound may be of any integral type. 4109 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4110 << Arg->getType().getUnqualifiedType() 4111 << ParamType.getUnqualifiedType(); 4112 Diag(Param->getLocation(), diag::note_template_param_here); 4113 return ExprError(); 4114 } 4115 4116 if (getLangOpts().CPlusPlus0x) { 4117 // We can't check arbitrary value-dependent arguments. 4118 // FIXME: If there's no viable conversion to the template parameter type, 4119 // we should be able to diagnose that prior to instantiation. 4120 if (Arg->isValueDependent()) { 4121 Converted = TemplateArgument(Arg); 4122 return Owned(Arg); 4123 } 4124 4125 // C++ [temp.arg.nontype]p1: 4126 // A template-argument for a non-type, non-template template-parameter 4127 // shall be one of: 4128 // 4129 // -- for a non-type template-parameter of integral or enumeration 4130 // type, a converted constant expression of the type of the 4131 // template-parameter; or 4132 llvm::APSInt Value; 4133 ExprResult ArgResult = 4134 CheckConvertedConstantExpression(Arg, ParamType, Value, 4135 CCEK_TemplateArg); 4136 if (ArgResult.isInvalid()) 4137 return ExprError(); 4138 4139 // Widen the argument value to sizeof(parameter type). This is almost 4140 // always a no-op, except when the parameter type is bool. In 4141 // that case, this may extend the argument from 1 bit to 8 bits. 4142 QualType IntegerType = ParamType; 4143 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4144 IntegerType = Enum->getDecl()->getIntegerType(); 4145 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4146 4147 Converted = TemplateArgument(Context, Value, 4148 Context.getCanonicalType(ParamType)); 4149 return ArgResult; 4150 } 4151 4152 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4153 if (ArgResult.isInvalid()) 4154 return ExprError(); 4155 Arg = ArgResult.take(); 4156 4157 QualType ArgType = Arg->getType(); 4158 4159 // C++ [temp.arg.nontype]p1: 4160 // A template-argument for a non-type, non-template 4161 // template-parameter shall be one of: 4162 // 4163 // -- an integral constant-expression of integral or enumeration 4164 // type; or 4165 // -- the name of a non-type template-parameter; or 4166 SourceLocation NonConstantLoc; 4167 llvm::APSInt Value; 4168 if (!ArgType->isIntegralOrEnumerationType()) { 4169 Diag(Arg->getLocStart(), 4170 diag::err_template_arg_not_integral_or_enumeral) 4171 << ArgType << Arg->getSourceRange(); 4172 Diag(Param->getLocation(), diag::note_template_param_here); 4173 return ExprError(); 4174 } else if (!Arg->isValueDependent()) { 4175 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4176 QualType T; 4177 4178 public: 4179 TmplArgICEDiagnoser(QualType T) : T(T) { } 4180 4181 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4182 SourceRange SR) { 4183 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4184 } 4185 } Diagnoser(ArgType); 4186 4187 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4188 false).take(); 4189 if (!Arg) 4190 return ExprError(); 4191 } 4192 4193 // From here on out, all we care about are the unqualified forms 4194 // of the parameter and argument types. 4195 ParamType = ParamType.getUnqualifiedType(); 4196 ArgType = ArgType.getUnqualifiedType(); 4197 4198 // Try to convert the argument to the parameter's type. 4199 if (Context.hasSameType(ParamType, ArgType)) { 4200 // Okay: no conversion necessary 4201 } else if (ParamType->isBooleanType()) { 4202 // This is an integral-to-boolean conversion. 4203 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4204 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4205 !ParamType->isEnumeralType()) { 4206 // This is an integral promotion or conversion. 4207 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4208 } else { 4209 // We can't perform this conversion. 4210 Diag(Arg->getLocStart(), 4211 diag::err_template_arg_not_convertible) 4212 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4213 Diag(Param->getLocation(), diag::note_template_param_here); 4214 return ExprError(); 4215 } 4216 4217 // Add the value of this argument to the list of converted 4218 // arguments. We use the bitwidth and signedness of the template 4219 // parameter. 4220 if (Arg->isValueDependent()) { 4221 // The argument is value-dependent. Create a new 4222 // TemplateArgument with the converted expression. 4223 Converted = TemplateArgument(Arg); 4224 return Owned(Arg); 4225 } 4226 4227 QualType IntegerType = Context.getCanonicalType(ParamType); 4228 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4229 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4230 4231 if (ParamType->isBooleanType()) { 4232 // Value must be zero or one. 4233 Value = Value != 0; 4234 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4235 if (Value.getBitWidth() != AllowedBits) 4236 Value = Value.extOrTrunc(AllowedBits); 4237 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4238 } else { 4239 llvm::APSInt OldValue = Value; 4240 4241 // Coerce the template argument's value to the value it will have 4242 // based on the template parameter's type. 4243 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4244 if (Value.getBitWidth() != AllowedBits) 4245 Value = Value.extOrTrunc(AllowedBits); 4246 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4247 4248 // Complain if an unsigned parameter received a negative value. 4249 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4250 && (OldValue.isSigned() && OldValue.isNegative())) { 4251 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4252 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4253 << Arg->getSourceRange(); 4254 Diag(Param->getLocation(), diag::note_template_param_here); 4255 } 4256 4257 // Complain if we overflowed the template parameter's type. 4258 unsigned RequiredBits; 4259 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4260 RequiredBits = OldValue.getActiveBits(); 4261 else if (OldValue.isUnsigned()) 4262 RequiredBits = OldValue.getActiveBits() + 1; 4263 else 4264 RequiredBits = OldValue.getMinSignedBits(); 4265 if (RequiredBits > AllowedBits) { 4266 Diag(Arg->getLocStart(), 4267 diag::warn_template_arg_too_large) 4268 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4269 << Arg->getSourceRange(); 4270 Diag(Param->getLocation(), diag::note_template_param_here); 4271 } 4272 } 4273 4274 Converted = TemplateArgument(Context, Value, 4275 ParamType->isEnumeralType() 4276 ? Context.getCanonicalType(ParamType) 4277 : IntegerType); 4278 return Owned(Arg); 4279 } 4280 4281 QualType ArgType = Arg->getType(); 4282 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4283 4284 // Handle pointer-to-function, reference-to-function, and 4285 // pointer-to-member-function all in (roughly) the same way. 4286 if (// -- For a non-type template-parameter of type pointer to 4287 // function, only the function-to-pointer conversion (4.3) is 4288 // applied. If the template-argument represents a set of 4289 // overloaded functions (or a pointer to such), the matching 4290 // function is selected from the set (13.4). 4291 (ParamType->isPointerType() && 4292 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4293 // -- For a non-type template-parameter of type reference to 4294 // function, no conversions apply. If the template-argument 4295 // represents a set of overloaded functions, the matching 4296 // function is selected from the set (13.4). 4297 (ParamType->isReferenceType() && 4298 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4299 // -- For a non-type template-parameter of type pointer to 4300 // member function, no conversions apply. If the 4301 // template-argument represents a set of overloaded member 4302 // functions, the matching member function is selected from 4303 // the set (13.4). 4304 (ParamType->isMemberPointerType() && 4305 ParamType->getAs<MemberPointerType>()->getPointeeType() 4306 ->isFunctionType())) { 4307 4308 if (Arg->getType() == Context.OverloadTy) { 4309 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4310 true, 4311 FoundResult)) { 4312 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4313 return ExprError(); 4314 4315 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4316 ArgType = Arg->getType(); 4317 } else 4318 return ExprError(); 4319 } 4320 4321 if (!ParamType->isMemberPointerType()) { 4322 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4323 ParamType, 4324 Arg, Converted)) 4325 return ExprError(); 4326 return Owned(Arg); 4327 } 4328 4329 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4330 Converted)) 4331 return ExprError(); 4332 return Owned(Arg); 4333 } 4334 4335 if (ParamType->isPointerType()) { 4336 // -- for a non-type template-parameter of type pointer to 4337 // object, qualification conversions (4.4) and the 4338 // array-to-pointer conversion (4.2) are applied. 4339 // C++0x also allows a value of std::nullptr_t. 4340 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4341 "Only object pointers allowed here"); 4342 4343 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4344 ParamType, 4345 Arg, Converted)) 4346 return ExprError(); 4347 return Owned(Arg); 4348 } 4349 4350 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4351 // -- For a non-type template-parameter of type reference to 4352 // object, no conversions apply. The type referred to by the 4353 // reference may be more cv-qualified than the (otherwise 4354 // identical) type of the template-argument. The 4355 // template-parameter is bound directly to the 4356 // template-argument, which must be an lvalue. 4357 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4358 "Only object references allowed here"); 4359 4360 if (Arg->getType() == Context.OverloadTy) { 4361 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4362 ParamRefType->getPointeeType(), 4363 true, 4364 FoundResult)) { 4365 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4366 return ExprError(); 4367 4368 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4369 ArgType = Arg->getType(); 4370 } else 4371 return ExprError(); 4372 } 4373 4374 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4375 ParamType, 4376 Arg, Converted)) 4377 return ExprError(); 4378 return Owned(Arg); 4379 } 4380 4381 // Deal with parameters of type std::nullptr_t. 4382 if (ParamType->isNullPtrType()) { 4383 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4384 Converted = TemplateArgument(Arg); 4385 return Owned(Arg); 4386 } 4387 4388 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4389 case NPV_NotNullPointer: 4390 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4391 << Arg->getType() << ParamType; 4392 Diag(Param->getLocation(), diag::note_template_param_here); 4393 return ExprError(); 4394 4395 case NPV_Error: 4396 return ExprError(); 4397 4398 case NPV_NullPointer: 4399 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4400 Converted = TemplateArgument((Decl *)0); 4401 return Owned(Arg);; 4402 } 4403 } 4404 4405 // -- For a non-type template-parameter of type pointer to data 4406 // member, qualification conversions (4.4) are applied. 4407 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4408 4409 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4410 Converted)) 4411 return ExprError(); 4412 return Owned(Arg); 4413} 4414 4415/// \brief Check a template argument against its corresponding 4416/// template template parameter. 4417/// 4418/// This routine implements the semantics of C++ [temp.arg.template]. 4419/// It returns true if an error occurred, and false otherwise. 4420bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4421 const TemplateArgumentLoc &Arg) { 4422 TemplateName Name = Arg.getArgument().getAsTemplate(); 4423 TemplateDecl *Template = Name.getAsTemplateDecl(); 4424 if (!Template) { 4425 // Any dependent template name is fine. 4426 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4427 return false; 4428 } 4429 4430 // C++0x [temp.arg.template]p1: 4431 // A template-argument for a template template-parameter shall be 4432 // the name of a class template or an alias template, expressed as an 4433 // id-expression. When the template-argument names a class template, only 4434 // primary class templates are considered when matching the 4435 // template template argument with the corresponding parameter; 4436 // partial specializations are not considered even if their 4437 // parameter lists match that of the template template parameter. 4438 // 4439 // Note that we also allow template template parameters here, which 4440 // will happen when we are dealing with, e.g., class template 4441 // partial specializations. 4442 if (!isa<ClassTemplateDecl>(Template) && 4443 !isa<TemplateTemplateParmDecl>(Template) && 4444 !isa<TypeAliasTemplateDecl>(Template)) { 4445 assert(isa<FunctionTemplateDecl>(Template) && 4446 "Only function templates are possible here"); 4447 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4448 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4449 << Template; 4450 } 4451 4452 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4453 Param->getTemplateParameters(), 4454 true, 4455 TPL_TemplateTemplateArgumentMatch, 4456 Arg.getLocation()); 4457} 4458 4459/// \brief Given a non-type template argument that refers to a 4460/// declaration and the type of its corresponding non-type template 4461/// parameter, produce an expression that properly refers to that 4462/// declaration. 4463ExprResult 4464Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4465 QualType ParamType, 4466 SourceLocation Loc) { 4467 assert(Arg.getKind() == TemplateArgument::Declaration && 4468 "Only declaration template arguments permitted here"); 4469 4470 // For a NULL non-type template argument, return nullptr casted to the 4471 // parameter's type. 4472 if (!Arg.getAsDecl()) { 4473 return ImpCastExprToType( 4474 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4475 ParamType, 4476 ParamType->getAs<MemberPointerType>() 4477 ? CK_NullToMemberPointer 4478 : CK_NullToPointer); 4479 } 4480 4481 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4482 4483 if (VD->getDeclContext()->isRecord() && 4484 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4485 // If the value is a class member, we might have a pointer-to-member. 4486 // Determine whether the non-type template template parameter is of 4487 // pointer-to-member type. If so, we need to build an appropriate 4488 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4489 // would refer to the member itself. 4490 if (ParamType->isMemberPointerType()) { 4491 QualType ClassType 4492 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4493 NestedNameSpecifier *Qualifier 4494 = NestedNameSpecifier::Create(Context, 0, false, 4495 ClassType.getTypePtr()); 4496 CXXScopeSpec SS; 4497 SS.MakeTrivial(Context, Qualifier, Loc); 4498 4499 // The actual value-ness of this is unimportant, but for 4500 // internal consistency's sake, references to instance methods 4501 // are r-values. 4502 ExprValueKind VK = VK_LValue; 4503 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4504 VK = VK_RValue; 4505 4506 ExprResult RefExpr = BuildDeclRefExpr(VD, 4507 VD->getType().getNonReferenceType(), 4508 VK, 4509 Loc, 4510 &SS); 4511 if (RefExpr.isInvalid()) 4512 return ExprError(); 4513 4514 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4515 4516 // We might need to perform a trailing qualification conversion, since 4517 // the element type on the parameter could be more qualified than the 4518 // element type in the expression we constructed. 4519 bool ObjCLifetimeConversion; 4520 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4521 ParamType.getUnqualifiedType(), false, 4522 ObjCLifetimeConversion)) 4523 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4524 4525 assert(!RefExpr.isInvalid() && 4526 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4527 ParamType.getUnqualifiedType())); 4528 return move(RefExpr); 4529 } 4530 } 4531 4532 QualType T = VD->getType().getNonReferenceType(); 4533 if (ParamType->isPointerType()) { 4534 // When the non-type template parameter is a pointer, take the 4535 // address of the declaration. 4536 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4537 if (RefExpr.isInvalid()) 4538 return ExprError(); 4539 4540 if (T->isFunctionType() || T->isArrayType()) { 4541 // Decay functions and arrays. 4542 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4543 if (RefExpr.isInvalid()) 4544 return ExprError(); 4545 4546 return move(RefExpr); 4547 } 4548 4549 // Take the address of everything else 4550 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4551 } 4552 4553 ExprValueKind VK = VK_RValue; 4554 4555 // If the non-type template parameter has reference type, qualify the 4556 // resulting declaration reference with the extra qualifiers on the 4557 // type that the reference refers to. 4558 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4559 VK = VK_LValue; 4560 T = Context.getQualifiedType(T, 4561 TargetRef->getPointeeType().getQualifiers()); 4562 } 4563 4564 return BuildDeclRefExpr(VD, T, VK, Loc); 4565} 4566 4567/// \brief Construct a new expression that refers to the given 4568/// integral template argument with the given source-location 4569/// information. 4570/// 4571/// This routine takes care of the mapping from an integral template 4572/// argument (which may have any integral type) to the appropriate 4573/// literal value. 4574ExprResult 4575Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4576 SourceLocation Loc) { 4577 assert(Arg.getKind() == TemplateArgument::Integral && 4578 "Operation is only valid for integral template arguments"); 4579 QualType T = Arg.getIntegralType(); 4580 if (T->isAnyCharacterType()) { 4581 CharacterLiteral::CharacterKind Kind; 4582 if (T->isWideCharType()) 4583 Kind = CharacterLiteral::Wide; 4584 else if (T->isChar16Type()) 4585 Kind = CharacterLiteral::UTF16; 4586 else if (T->isChar32Type()) 4587 Kind = CharacterLiteral::UTF32; 4588 else 4589 Kind = CharacterLiteral::Ascii; 4590 4591 return Owned(new (Context) CharacterLiteral( 4592 Arg.getAsIntegral().getZExtValue(), 4593 Kind, T, Loc)); 4594 } 4595 4596 if (T->isBooleanType()) 4597 return Owned(new (Context) CXXBoolLiteralExpr( 4598 Arg.getAsIntegral().getBoolValue(), 4599 T, Loc)); 4600 4601 if (T->isNullPtrType()) 4602 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4603 4604 // If this is an enum type that we're instantiating, we need to use an integer 4605 // type the same size as the enumerator. We don't want to build an 4606 // IntegerLiteral with enum type. 4607 QualType BT; 4608 if (const EnumType *ET = T->getAs<EnumType>()) 4609 BT = ET->getDecl()->getIntegerType(); 4610 else 4611 BT = T; 4612 4613 Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc); 4614 if (T->isEnumeralType()) { 4615 // FIXME: This is a hack. We need a better way to handle substituted 4616 // non-type template parameters. 4617 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4618 Context.getTrivialTypeSourceInfo(T, Loc), 4619 Loc, Loc); 4620 } 4621 4622 return Owned(E); 4623} 4624 4625/// \brief Match two template parameters within template parameter lists. 4626static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4627 bool Complain, 4628 Sema::TemplateParameterListEqualKind Kind, 4629 SourceLocation TemplateArgLoc) { 4630 // Check the actual kind (type, non-type, template). 4631 if (Old->getKind() != New->getKind()) { 4632 if (Complain) { 4633 unsigned NextDiag = diag::err_template_param_different_kind; 4634 if (TemplateArgLoc.isValid()) { 4635 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4636 NextDiag = diag::note_template_param_different_kind; 4637 } 4638 S.Diag(New->getLocation(), NextDiag) 4639 << (Kind != Sema::TPL_TemplateMatch); 4640 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4641 << (Kind != Sema::TPL_TemplateMatch); 4642 } 4643 4644 return false; 4645 } 4646 4647 // Check that both are parameter packs are neither are parameter packs. 4648 // However, if we are matching a template template argument to a 4649 // template template parameter, the template template parameter can have 4650 // a parameter pack where the template template argument does not. 4651 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4652 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4653 Old->isTemplateParameterPack())) { 4654 if (Complain) { 4655 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4656 if (TemplateArgLoc.isValid()) { 4657 S.Diag(TemplateArgLoc, 4658 diag::err_template_arg_template_params_mismatch); 4659 NextDiag = diag::note_template_parameter_pack_non_pack; 4660 } 4661 4662 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4663 : isa<NonTypeTemplateParmDecl>(New)? 1 4664 : 2; 4665 S.Diag(New->getLocation(), NextDiag) 4666 << ParamKind << New->isParameterPack(); 4667 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4668 << ParamKind << Old->isParameterPack(); 4669 } 4670 4671 return false; 4672 } 4673 4674 // For non-type template parameters, check the type of the parameter. 4675 if (NonTypeTemplateParmDecl *OldNTTP 4676 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4677 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4678 4679 // If we are matching a template template argument to a template 4680 // template parameter and one of the non-type template parameter types 4681 // is dependent, then we must wait until template instantiation time 4682 // to actually compare the arguments. 4683 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4684 (OldNTTP->getType()->isDependentType() || 4685 NewNTTP->getType()->isDependentType())) 4686 return true; 4687 4688 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4689 if (Complain) { 4690 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4691 if (TemplateArgLoc.isValid()) { 4692 S.Diag(TemplateArgLoc, 4693 diag::err_template_arg_template_params_mismatch); 4694 NextDiag = diag::note_template_nontype_parm_different_type; 4695 } 4696 S.Diag(NewNTTP->getLocation(), NextDiag) 4697 << NewNTTP->getType() 4698 << (Kind != Sema::TPL_TemplateMatch); 4699 S.Diag(OldNTTP->getLocation(), 4700 diag::note_template_nontype_parm_prev_declaration) 4701 << OldNTTP->getType(); 4702 } 4703 4704 return false; 4705 } 4706 4707 return true; 4708 } 4709 4710 // For template template parameters, check the template parameter types. 4711 // The template parameter lists of template template 4712 // parameters must agree. 4713 if (TemplateTemplateParmDecl *OldTTP 4714 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4715 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4716 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4717 OldTTP->getTemplateParameters(), 4718 Complain, 4719 (Kind == Sema::TPL_TemplateMatch 4720 ? Sema::TPL_TemplateTemplateParmMatch 4721 : Kind), 4722 TemplateArgLoc); 4723 } 4724 4725 return true; 4726} 4727 4728/// \brief Diagnose a known arity mismatch when comparing template argument 4729/// lists. 4730static 4731void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4732 TemplateParameterList *New, 4733 TemplateParameterList *Old, 4734 Sema::TemplateParameterListEqualKind Kind, 4735 SourceLocation TemplateArgLoc) { 4736 unsigned NextDiag = diag::err_template_param_list_different_arity; 4737 if (TemplateArgLoc.isValid()) { 4738 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4739 NextDiag = diag::note_template_param_list_different_arity; 4740 } 4741 S.Diag(New->getTemplateLoc(), NextDiag) 4742 << (New->size() > Old->size()) 4743 << (Kind != Sema::TPL_TemplateMatch) 4744 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4745 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4746 << (Kind != Sema::TPL_TemplateMatch) 4747 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4748} 4749 4750/// \brief Determine whether the given template parameter lists are 4751/// equivalent. 4752/// 4753/// \param New The new template parameter list, typically written in the 4754/// source code as part of a new template declaration. 4755/// 4756/// \param Old The old template parameter list, typically found via 4757/// name lookup of the template declared with this template parameter 4758/// list. 4759/// 4760/// \param Complain If true, this routine will produce a diagnostic if 4761/// the template parameter lists are not equivalent. 4762/// 4763/// \param Kind describes how we are to match the template parameter lists. 4764/// 4765/// \param TemplateArgLoc If this source location is valid, then we 4766/// are actually checking the template parameter list of a template 4767/// argument (New) against the template parameter list of its 4768/// corresponding template template parameter (Old). We produce 4769/// slightly different diagnostics in this scenario. 4770/// 4771/// \returns True if the template parameter lists are equal, false 4772/// otherwise. 4773bool 4774Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4775 TemplateParameterList *Old, 4776 bool Complain, 4777 TemplateParameterListEqualKind Kind, 4778 SourceLocation TemplateArgLoc) { 4779 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4780 if (Complain) 4781 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4782 TemplateArgLoc); 4783 4784 return false; 4785 } 4786 4787 // C++0x [temp.arg.template]p3: 4788 // A template-argument matches a template template-parameter (call it P) 4789 // when each of the template parameters in the template-parameter-list of 4790 // the template-argument's corresponding class template or alias template 4791 // (call it A) matches the corresponding template parameter in the 4792 // template-parameter-list of P. [...] 4793 TemplateParameterList::iterator NewParm = New->begin(); 4794 TemplateParameterList::iterator NewParmEnd = New->end(); 4795 for (TemplateParameterList::iterator OldParm = Old->begin(), 4796 OldParmEnd = Old->end(); 4797 OldParm != OldParmEnd; ++OldParm) { 4798 if (Kind != TPL_TemplateTemplateArgumentMatch || 4799 !(*OldParm)->isTemplateParameterPack()) { 4800 if (NewParm == NewParmEnd) { 4801 if (Complain) 4802 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4803 TemplateArgLoc); 4804 4805 return false; 4806 } 4807 4808 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4809 Kind, TemplateArgLoc)) 4810 return false; 4811 4812 ++NewParm; 4813 continue; 4814 } 4815 4816 // C++0x [temp.arg.template]p3: 4817 // [...] When P's template- parameter-list contains a template parameter 4818 // pack (14.5.3), the template parameter pack will match zero or more 4819 // template parameters or template parameter packs in the 4820 // template-parameter-list of A with the same type and form as the 4821 // template parameter pack in P (ignoring whether those template 4822 // parameters are template parameter packs). 4823 for (; NewParm != NewParmEnd; ++NewParm) { 4824 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4825 Kind, TemplateArgLoc)) 4826 return false; 4827 } 4828 } 4829 4830 // Make sure we exhausted all of the arguments. 4831 if (NewParm != NewParmEnd) { 4832 if (Complain) 4833 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4834 TemplateArgLoc); 4835 4836 return false; 4837 } 4838 4839 return true; 4840} 4841 4842/// \brief Check whether a template can be declared within this scope. 4843/// 4844/// If the template declaration is valid in this scope, returns 4845/// false. Otherwise, issues a diagnostic and returns true. 4846bool 4847Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4848 if (!S) 4849 return false; 4850 4851 // Find the nearest enclosing declaration scope. 4852 while ((S->getFlags() & Scope::DeclScope) == 0 || 4853 (S->getFlags() & Scope::TemplateParamScope) != 0) 4854 S = S->getParent(); 4855 4856 // C++ [temp]p2: 4857 // A template-declaration can appear only as a namespace scope or 4858 // class scope declaration. 4859 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4860 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4861 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4862 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4863 << TemplateParams->getSourceRange(); 4864 4865 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4866 Ctx = Ctx->getParent(); 4867 4868 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4869 return false; 4870 4871 return Diag(TemplateParams->getTemplateLoc(), 4872 diag::err_template_outside_namespace_or_class_scope) 4873 << TemplateParams->getSourceRange(); 4874} 4875 4876/// \brief Determine what kind of template specialization the given declaration 4877/// is. 4878static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4879 if (!D) 4880 return TSK_Undeclared; 4881 4882 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4883 return Record->getTemplateSpecializationKind(); 4884 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4885 return Function->getTemplateSpecializationKind(); 4886 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4887 return Var->getTemplateSpecializationKind(); 4888 4889 return TSK_Undeclared; 4890} 4891 4892/// \brief Check whether a specialization is well-formed in the current 4893/// context. 4894/// 4895/// This routine determines whether a template specialization can be declared 4896/// in the current context (C++ [temp.expl.spec]p2). 4897/// 4898/// \param S the semantic analysis object for which this check is being 4899/// performed. 4900/// 4901/// \param Specialized the entity being specialized or instantiated, which 4902/// may be a kind of template (class template, function template, etc.) or 4903/// a member of a class template (member function, static data member, 4904/// member class). 4905/// 4906/// \param PrevDecl the previous declaration of this entity, if any. 4907/// 4908/// \param Loc the location of the explicit specialization or instantiation of 4909/// this entity. 4910/// 4911/// \param IsPartialSpecialization whether this is a partial specialization of 4912/// a class template. 4913/// 4914/// \returns true if there was an error that we cannot recover from, false 4915/// otherwise. 4916static bool CheckTemplateSpecializationScope(Sema &S, 4917 NamedDecl *Specialized, 4918 NamedDecl *PrevDecl, 4919 SourceLocation Loc, 4920 bool IsPartialSpecialization) { 4921 // Keep these "kind" numbers in sync with the %select statements in the 4922 // various diagnostics emitted by this routine. 4923 int EntityKind = 0; 4924 if (isa<ClassTemplateDecl>(Specialized)) 4925 EntityKind = IsPartialSpecialization? 1 : 0; 4926 else if (isa<FunctionTemplateDecl>(Specialized)) 4927 EntityKind = 2; 4928 else if (isa<CXXMethodDecl>(Specialized)) 4929 EntityKind = 3; 4930 else if (isa<VarDecl>(Specialized)) 4931 EntityKind = 4; 4932 else if (isa<RecordDecl>(Specialized)) 4933 EntityKind = 5; 4934 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x) 4935 EntityKind = 6; 4936 else { 4937 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4938 << S.getLangOpts().CPlusPlus0x; 4939 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4940 return true; 4941 } 4942 4943 // C++ [temp.expl.spec]p2: 4944 // An explicit specialization shall be declared in the namespace 4945 // of which the template is a member, or, for member templates, in 4946 // the namespace of which the enclosing class or enclosing class 4947 // template is a member. An explicit specialization of a member 4948 // function, member class or static data member of a class 4949 // template shall be declared in the namespace of which the class 4950 // template is a member. Such a declaration may also be a 4951 // definition. If the declaration is not a definition, the 4952 // specialization may be defined later in the name- space in which 4953 // the explicit specialization was declared, or in a namespace 4954 // that encloses the one in which the explicit specialization was 4955 // declared. 4956 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4957 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4958 << Specialized; 4959 return true; 4960 } 4961 4962 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4963 if (S.getLangOpts().MicrosoftExt) { 4964 // Do not warn for class scope explicit specialization during 4965 // instantiation, warning was already emitted during pattern 4966 // semantic analysis. 4967 if (!S.ActiveTemplateInstantiations.size()) 4968 S.Diag(Loc, diag::ext_function_specialization_in_class) 4969 << Specialized; 4970 } else { 4971 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4972 << Specialized; 4973 return true; 4974 } 4975 } 4976 4977 if (S.CurContext->isRecord() && 4978 !S.CurContext->Equals(Specialized->getDeclContext())) { 4979 // Make sure that we're specializing in the right record context. 4980 // Otherwise, things can go horribly wrong. 4981 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4982 << Specialized; 4983 return true; 4984 } 4985 4986 // C++ [temp.class.spec]p6: 4987 // A class template partial specialization may be declared or redeclared 4988 // in any namespace scope in which its definition may be defined (14.5.1 4989 // and 14.5.2). 4990 bool ComplainedAboutScope = false; 4991 DeclContext *SpecializedContext 4992 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4993 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4994 if ((!PrevDecl || 4995 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4996 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4997 // C++ [temp.exp.spec]p2: 4998 // An explicit specialization shall be declared in the namespace of which 4999 // the template is a member, or, for member templates, in the namespace 5000 // of which the enclosing class or enclosing class template is a member. 5001 // An explicit specialization of a member function, member class or 5002 // static data member of a class template shall be declared in the 5003 // namespace of which the class template is a member. 5004 // 5005 // C++0x [temp.expl.spec]p2: 5006 // An explicit specialization shall be declared in a namespace enclosing 5007 // the specialized template. 5008 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5009 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 5010 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5011 assert(!IsCPlusPlus0xExtension && 5012 "DC encloses TU but isn't in enclosing namespace set"); 5013 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5014 << EntityKind << Specialized; 5015 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5016 int Diag; 5017 if (!IsCPlusPlus0xExtension) 5018 Diag = diag::err_template_spec_decl_out_of_scope; 5019 else if (!S.getLangOpts().CPlusPlus0x) 5020 Diag = diag::ext_template_spec_decl_out_of_scope; 5021 else 5022 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5023 S.Diag(Loc, Diag) 5024 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5025 } 5026 5027 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5028 ComplainedAboutScope = 5029 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x); 5030 } 5031 } 5032 5033 // Make sure that this redeclaration (or definition) occurs in an enclosing 5034 // namespace. 5035 // Note that HandleDeclarator() performs this check for explicit 5036 // specializations of function templates, static data members, and member 5037 // functions, so we skip the check here for those kinds of entities. 5038 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5039 // Should we refactor that check, so that it occurs later? 5040 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5041 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5042 isa<FunctionDecl>(Specialized))) { 5043 if (isa<TranslationUnitDecl>(SpecializedContext)) 5044 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5045 << EntityKind << Specialized; 5046 else if (isa<NamespaceDecl>(SpecializedContext)) 5047 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5048 << EntityKind << Specialized 5049 << cast<NamedDecl>(SpecializedContext); 5050 5051 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5052 } 5053 5054 // FIXME: check for specialization-after-instantiation errors and such. 5055 5056 return false; 5057} 5058 5059/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 5060/// that checks non-type template partial specialization arguments. 5061static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 5062 NonTypeTemplateParmDecl *Param, 5063 const TemplateArgument *Args, 5064 unsigned NumArgs) { 5065 for (unsigned I = 0; I != NumArgs; ++I) { 5066 if (Args[I].getKind() == TemplateArgument::Pack) { 5067 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5068 Args[I].pack_begin(), 5069 Args[I].pack_size())) 5070 return true; 5071 5072 continue; 5073 } 5074 5075 Expr *ArgExpr = Args[I].getAsExpr(); 5076 if (!ArgExpr) { 5077 continue; 5078 } 5079 5080 // We can have a pack expansion of any of the bullets below. 5081 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5082 ArgExpr = Expansion->getPattern(); 5083 5084 // Strip off any implicit casts we added as part of type checking. 5085 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5086 ArgExpr = ICE->getSubExpr(); 5087 5088 // C++ [temp.class.spec]p8: 5089 // A non-type argument is non-specialized if it is the name of a 5090 // non-type parameter. All other non-type arguments are 5091 // specialized. 5092 // 5093 // Below, we check the two conditions that only apply to 5094 // specialized non-type arguments, so skip any non-specialized 5095 // arguments. 5096 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5097 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5098 continue; 5099 5100 // C++ [temp.class.spec]p9: 5101 // Within the argument list of a class template partial 5102 // specialization, the following restrictions apply: 5103 // -- A partially specialized non-type argument expression 5104 // shall not involve a template parameter of the partial 5105 // specialization except when the argument expression is a 5106 // simple identifier. 5107 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5108 S.Diag(ArgExpr->getLocStart(), 5109 diag::err_dependent_non_type_arg_in_partial_spec) 5110 << ArgExpr->getSourceRange(); 5111 return true; 5112 } 5113 5114 // -- The type of a template parameter corresponding to a 5115 // specialized non-type argument shall not be dependent on a 5116 // parameter of the specialization. 5117 if (Param->getType()->isDependentType()) { 5118 S.Diag(ArgExpr->getLocStart(), 5119 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5120 << Param->getType() 5121 << ArgExpr->getSourceRange(); 5122 S.Diag(Param->getLocation(), diag::note_template_param_here); 5123 return true; 5124 } 5125 } 5126 5127 return false; 5128} 5129 5130/// \brief Check the non-type template arguments of a class template 5131/// partial specialization according to C++ [temp.class.spec]p9. 5132/// 5133/// \param TemplateParams the template parameters of the primary class 5134/// template. 5135/// 5136/// \param TemplateArgs the template arguments of the class template 5137/// partial specialization. 5138/// 5139/// \returns true if there was an error, false otherwise. 5140static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5141 TemplateParameterList *TemplateParams, 5142 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5143 const TemplateArgument *ArgList = TemplateArgs.data(); 5144 5145 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5146 NonTypeTemplateParmDecl *Param 5147 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5148 if (!Param) 5149 continue; 5150 5151 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5152 &ArgList[I], 1)) 5153 return true; 5154 } 5155 5156 return false; 5157} 5158 5159DeclResult 5160Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5161 TagUseKind TUK, 5162 SourceLocation KWLoc, 5163 SourceLocation ModulePrivateLoc, 5164 CXXScopeSpec &SS, 5165 TemplateTy TemplateD, 5166 SourceLocation TemplateNameLoc, 5167 SourceLocation LAngleLoc, 5168 ASTTemplateArgsPtr TemplateArgsIn, 5169 SourceLocation RAngleLoc, 5170 AttributeList *Attr, 5171 MultiTemplateParamsArg TemplateParameterLists) { 5172 assert(TUK != TUK_Reference && "References are not specializations"); 5173 5174 // NOTE: KWLoc is the location of the tag keyword. This will instead 5175 // store the location of the outermost template keyword in the declaration. 5176 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5177 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 5178 5179 // Find the class template we're specializing 5180 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5181 ClassTemplateDecl *ClassTemplate 5182 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5183 5184 if (!ClassTemplate) { 5185 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5186 << (Name.getAsTemplateDecl() && 5187 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5188 return true; 5189 } 5190 5191 bool isExplicitSpecialization = false; 5192 bool isPartialSpecialization = false; 5193 5194 // Check the validity of the template headers that introduce this 5195 // template. 5196 // FIXME: We probably shouldn't complain about these headers for 5197 // friend declarations. 5198 bool Invalid = false; 5199 TemplateParameterList *TemplateParams 5200 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5201 TemplateNameLoc, 5202 SS, 5203 (TemplateParameterList**)TemplateParameterLists.get(), 5204 TemplateParameterLists.size(), 5205 TUK == TUK_Friend, 5206 isExplicitSpecialization, 5207 Invalid); 5208 if (Invalid) 5209 return true; 5210 5211 if (TemplateParams && TemplateParams->size() > 0) { 5212 isPartialSpecialization = true; 5213 5214 if (TUK == TUK_Friend) { 5215 Diag(KWLoc, diag::err_partial_specialization_friend) 5216 << SourceRange(LAngleLoc, RAngleLoc); 5217 return true; 5218 } 5219 5220 // C++ [temp.class.spec]p10: 5221 // The template parameter list of a specialization shall not 5222 // contain default template argument values. 5223 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5224 Decl *Param = TemplateParams->getParam(I); 5225 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5226 if (TTP->hasDefaultArgument()) { 5227 Diag(TTP->getDefaultArgumentLoc(), 5228 diag::err_default_arg_in_partial_spec); 5229 TTP->removeDefaultArgument(); 5230 } 5231 } else if (NonTypeTemplateParmDecl *NTTP 5232 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5233 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5234 Diag(NTTP->getDefaultArgumentLoc(), 5235 diag::err_default_arg_in_partial_spec) 5236 << DefArg->getSourceRange(); 5237 NTTP->removeDefaultArgument(); 5238 } 5239 } else { 5240 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5241 if (TTP->hasDefaultArgument()) { 5242 Diag(TTP->getDefaultArgument().getLocation(), 5243 diag::err_default_arg_in_partial_spec) 5244 << TTP->getDefaultArgument().getSourceRange(); 5245 TTP->removeDefaultArgument(); 5246 } 5247 } 5248 } 5249 } else if (TemplateParams) { 5250 if (TUK == TUK_Friend) 5251 Diag(KWLoc, diag::err_template_spec_friend) 5252 << FixItHint::CreateRemoval( 5253 SourceRange(TemplateParams->getTemplateLoc(), 5254 TemplateParams->getRAngleLoc())) 5255 << SourceRange(LAngleLoc, RAngleLoc); 5256 else 5257 isExplicitSpecialization = true; 5258 } else if (TUK != TUK_Friend) { 5259 Diag(KWLoc, diag::err_template_spec_needs_header) 5260 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5261 isExplicitSpecialization = true; 5262 } 5263 5264 // Check that the specialization uses the same tag kind as the 5265 // original template. 5266 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5267 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5268 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5269 Kind, TUK == TUK_Definition, KWLoc, 5270 *ClassTemplate->getIdentifier())) { 5271 Diag(KWLoc, diag::err_use_with_wrong_tag) 5272 << ClassTemplate 5273 << FixItHint::CreateReplacement(KWLoc, 5274 ClassTemplate->getTemplatedDecl()->getKindName()); 5275 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5276 diag::note_previous_use); 5277 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5278 } 5279 5280 // Translate the parser's template argument list in our AST format. 5281 TemplateArgumentListInfo TemplateArgs; 5282 TemplateArgs.setLAngleLoc(LAngleLoc); 5283 TemplateArgs.setRAngleLoc(RAngleLoc); 5284 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5285 5286 // Check for unexpanded parameter packs in any of the template arguments. 5287 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5288 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5289 UPPC_PartialSpecialization)) 5290 return true; 5291 5292 // Check that the template argument list is well-formed for this 5293 // template. 5294 SmallVector<TemplateArgument, 4> Converted; 5295 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5296 TemplateArgs, false, Converted)) 5297 return true; 5298 5299 // Find the class template (partial) specialization declaration that 5300 // corresponds to these arguments. 5301 if (isPartialSpecialization) { 5302 if (CheckClassTemplatePartialSpecializationArgs(*this, 5303 ClassTemplate->getTemplateParameters(), 5304 Converted)) 5305 return true; 5306 5307 bool InstantiationDependent; 5308 if (!Name.isDependent() && 5309 !TemplateSpecializationType::anyDependentTemplateArguments( 5310 TemplateArgs.getArgumentArray(), 5311 TemplateArgs.size(), 5312 InstantiationDependent)) { 5313 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5314 << ClassTemplate->getDeclName(); 5315 isPartialSpecialization = false; 5316 } 5317 } 5318 5319 void *InsertPos = 0; 5320 ClassTemplateSpecializationDecl *PrevDecl = 0; 5321 5322 if (isPartialSpecialization) 5323 // FIXME: Template parameter list matters, too 5324 PrevDecl 5325 = ClassTemplate->findPartialSpecialization(Converted.data(), 5326 Converted.size(), 5327 InsertPos); 5328 else 5329 PrevDecl 5330 = ClassTemplate->findSpecialization(Converted.data(), 5331 Converted.size(), InsertPos); 5332 5333 ClassTemplateSpecializationDecl *Specialization = 0; 5334 5335 // Check whether we can declare a class template specialization in 5336 // the current scope. 5337 if (TUK != TUK_Friend && 5338 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5339 TemplateNameLoc, 5340 isPartialSpecialization)) 5341 return true; 5342 5343 // The canonical type 5344 QualType CanonType; 5345 if (PrevDecl && 5346 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5347 TUK == TUK_Friend)) { 5348 // Since the only prior class template specialization with these 5349 // arguments was referenced but not declared, or we're only 5350 // referencing this specialization as a friend, reuse that 5351 // declaration node as our own, updating its source location and 5352 // the list of outer template parameters to reflect our new declaration. 5353 Specialization = PrevDecl; 5354 Specialization->setLocation(TemplateNameLoc); 5355 if (TemplateParameterLists.size() > 0) { 5356 Specialization->setTemplateParameterListsInfo(Context, 5357 TemplateParameterLists.size(), 5358 (TemplateParameterList**) TemplateParameterLists.release()); 5359 } 5360 PrevDecl = 0; 5361 CanonType = Context.getTypeDeclType(Specialization); 5362 } else if (isPartialSpecialization) { 5363 // Build the canonical type that describes the converted template 5364 // arguments of the class template partial specialization. 5365 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5366 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5367 Converted.data(), 5368 Converted.size()); 5369 5370 if (Context.hasSameType(CanonType, 5371 ClassTemplate->getInjectedClassNameSpecialization())) { 5372 // C++ [temp.class.spec]p9b3: 5373 // 5374 // -- The argument list of the specialization shall not be identical 5375 // to the implicit argument list of the primary template. 5376 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5377 << (TUK == TUK_Definition) 5378 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5379 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5380 ClassTemplate->getIdentifier(), 5381 TemplateNameLoc, 5382 Attr, 5383 TemplateParams, 5384 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5385 TemplateParameterLists.size() - 1, 5386 (TemplateParameterList**) TemplateParameterLists.release()); 5387 } 5388 5389 // Create a new class template partial specialization declaration node. 5390 ClassTemplatePartialSpecializationDecl *PrevPartial 5391 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5392 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5393 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5394 ClassTemplatePartialSpecializationDecl *Partial 5395 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5396 ClassTemplate->getDeclContext(), 5397 KWLoc, TemplateNameLoc, 5398 TemplateParams, 5399 ClassTemplate, 5400 Converted.data(), 5401 Converted.size(), 5402 TemplateArgs, 5403 CanonType, 5404 PrevPartial, 5405 SequenceNumber); 5406 SetNestedNameSpecifier(Partial, SS); 5407 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5408 Partial->setTemplateParameterListsInfo(Context, 5409 TemplateParameterLists.size() - 1, 5410 (TemplateParameterList**) TemplateParameterLists.release()); 5411 } 5412 5413 if (!PrevPartial) 5414 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5415 Specialization = Partial; 5416 5417 // If we are providing an explicit specialization of a member class 5418 // template specialization, make a note of that. 5419 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5420 PrevPartial->setMemberSpecialization(); 5421 5422 // Check that all of the template parameters of the class template 5423 // partial specialization are deducible from the template 5424 // arguments. If not, this class template partial specialization 5425 // will never be used. 5426 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5427 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5428 TemplateParams->getDepth(), 5429 DeducibleParams); 5430 5431 if (!DeducibleParams.all()) { 5432 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5433 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5434 << (NumNonDeducible > 1) 5435 << SourceRange(TemplateNameLoc, RAngleLoc); 5436 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5437 if (!DeducibleParams[I]) { 5438 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5439 if (Param->getDeclName()) 5440 Diag(Param->getLocation(), 5441 diag::note_partial_spec_unused_parameter) 5442 << Param->getDeclName(); 5443 else 5444 Diag(Param->getLocation(), 5445 diag::note_partial_spec_unused_parameter) 5446 << "<anonymous>"; 5447 } 5448 } 5449 } 5450 } else { 5451 // Create a new class template specialization declaration node for 5452 // this explicit specialization or friend declaration. 5453 Specialization 5454 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5455 ClassTemplate->getDeclContext(), 5456 KWLoc, TemplateNameLoc, 5457 ClassTemplate, 5458 Converted.data(), 5459 Converted.size(), 5460 PrevDecl); 5461 SetNestedNameSpecifier(Specialization, SS); 5462 if (TemplateParameterLists.size() > 0) { 5463 Specialization->setTemplateParameterListsInfo(Context, 5464 TemplateParameterLists.size(), 5465 (TemplateParameterList**) TemplateParameterLists.release()); 5466 } 5467 5468 if (!PrevDecl) 5469 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5470 5471 CanonType = Context.getTypeDeclType(Specialization); 5472 } 5473 5474 // C++ [temp.expl.spec]p6: 5475 // If a template, a member template or the member of a class template is 5476 // explicitly specialized then that specialization shall be declared 5477 // before the first use of that specialization that would cause an implicit 5478 // instantiation to take place, in every translation unit in which such a 5479 // use occurs; no diagnostic is required. 5480 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5481 bool Okay = false; 5482 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5483 // Is there any previous explicit specialization declaration? 5484 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5485 Okay = true; 5486 break; 5487 } 5488 } 5489 5490 if (!Okay) { 5491 SourceRange Range(TemplateNameLoc, RAngleLoc); 5492 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5493 << Context.getTypeDeclType(Specialization) << Range; 5494 5495 Diag(PrevDecl->getPointOfInstantiation(), 5496 diag::note_instantiation_required_here) 5497 << (PrevDecl->getTemplateSpecializationKind() 5498 != TSK_ImplicitInstantiation); 5499 return true; 5500 } 5501 } 5502 5503 // If this is not a friend, note that this is an explicit specialization. 5504 if (TUK != TUK_Friend) 5505 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5506 5507 // Check that this isn't a redefinition of this specialization. 5508 if (TUK == TUK_Definition) { 5509 if (RecordDecl *Def = Specialization->getDefinition()) { 5510 SourceRange Range(TemplateNameLoc, RAngleLoc); 5511 Diag(TemplateNameLoc, diag::err_redefinition) 5512 << Context.getTypeDeclType(Specialization) << Range; 5513 Diag(Def->getLocation(), diag::note_previous_definition); 5514 Specialization->setInvalidDecl(); 5515 return true; 5516 } 5517 } 5518 5519 if (Attr) 5520 ProcessDeclAttributeList(S, Specialization, Attr); 5521 5522 // Add alignment attributes if necessary; these attributes are checked when 5523 // the ASTContext lays out the structure. 5524 if (TUK == TUK_Definition) { 5525 AddAlignmentAttributesForRecord(Specialization); 5526 AddMsStructLayoutForRecord(Specialization); 5527 } 5528 5529 if (ModulePrivateLoc.isValid()) 5530 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5531 << (isPartialSpecialization? 1 : 0) 5532 << FixItHint::CreateRemoval(ModulePrivateLoc); 5533 5534 // Build the fully-sugared type for this class template 5535 // specialization as the user wrote in the specialization 5536 // itself. This means that we'll pretty-print the type retrieved 5537 // from the specialization's declaration the way that the user 5538 // actually wrote the specialization, rather than formatting the 5539 // name based on the "canonical" representation used to store the 5540 // template arguments in the specialization. 5541 TypeSourceInfo *WrittenTy 5542 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5543 TemplateArgs, CanonType); 5544 if (TUK != TUK_Friend) { 5545 Specialization->setTypeAsWritten(WrittenTy); 5546 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5547 } 5548 TemplateArgsIn.release(); 5549 5550 // C++ [temp.expl.spec]p9: 5551 // A template explicit specialization is in the scope of the 5552 // namespace in which the template was defined. 5553 // 5554 // We actually implement this paragraph where we set the semantic 5555 // context (in the creation of the ClassTemplateSpecializationDecl), 5556 // but we also maintain the lexical context where the actual 5557 // definition occurs. 5558 Specialization->setLexicalDeclContext(CurContext); 5559 5560 // We may be starting the definition of this specialization. 5561 if (TUK == TUK_Definition) 5562 Specialization->startDefinition(); 5563 5564 if (TUK == TUK_Friend) { 5565 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5566 TemplateNameLoc, 5567 WrittenTy, 5568 /*FIXME:*/KWLoc); 5569 Friend->setAccess(AS_public); 5570 CurContext->addDecl(Friend); 5571 } else { 5572 // Add the specialization into its lexical context, so that it can 5573 // be seen when iterating through the list of declarations in that 5574 // context. However, specializations are not found by name lookup. 5575 CurContext->addDecl(Specialization); 5576 } 5577 return Specialization; 5578} 5579 5580Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5581 MultiTemplateParamsArg TemplateParameterLists, 5582 Declarator &D) { 5583 Decl *NewDecl = HandleDeclarator(S, D, move(TemplateParameterLists)); 5584 ActOnDocumentableDecl(NewDecl); 5585 return NewDecl; 5586} 5587 5588Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5589 MultiTemplateParamsArg TemplateParameterLists, 5590 Declarator &D) { 5591 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5592 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5593 5594 if (FTI.hasPrototype) { 5595 // FIXME: Diagnose arguments without names in C. 5596 } 5597 5598 Scope *ParentScope = FnBodyScope->getParent(); 5599 5600 D.setFunctionDefinitionKind(FDK_Definition); 5601 Decl *DP = HandleDeclarator(ParentScope, D, 5602 move(TemplateParameterLists)); 5603 if (FunctionTemplateDecl *FunctionTemplate 5604 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5605 return ActOnStartOfFunctionDef(FnBodyScope, 5606 FunctionTemplate->getTemplatedDecl()); 5607 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5608 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5609 return 0; 5610} 5611 5612/// \brief Strips various properties off an implicit instantiation 5613/// that has just been explicitly specialized. 5614static void StripImplicitInstantiation(NamedDecl *D) { 5615 // FIXME: "make check" is clean if the call to dropAttrs() is commented out. 5616 D->dropAttrs(); 5617 5618 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5619 FD->setInlineSpecified(false); 5620 } 5621} 5622 5623/// \brief Compute the diagnostic location for an explicit instantiation 5624// declaration or definition. 5625static SourceLocation DiagLocForExplicitInstantiation( 5626 NamedDecl* D, SourceLocation PointOfInstantiation) { 5627 // Explicit instantiations following a specialization have no effect and 5628 // hence no PointOfInstantiation. In that case, walk decl backwards 5629 // until a valid name loc is found. 5630 SourceLocation PrevDiagLoc = PointOfInstantiation; 5631 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5632 Prev = Prev->getPreviousDecl()) { 5633 PrevDiagLoc = Prev->getLocation(); 5634 } 5635 assert(PrevDiagLoc.isValid() && 5636 "Explicit instantiation without point of instantiation?"); 5637 return PrevDiagLoc; 5638} 5639 5640/// \brief Diagnose cases where we have an explicit template specialization 5641/// before/after an explicit template instantiation, producing diagnostics 5642/// for those cases where they are required and determining whether the 5643/// new specialization/instantiation will have any effect. 5644/// 5645/// \param NewLoc the location of the new explicit specialization or 5646/// instantiation. 5647/// 5648/// \param NewTSK the kind of the new explicit specialization or instantiation. 5649/// 5650/// \param PrevDecl the previous declaration of the entity. 5651/// 5652/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5653/// 5654/// \param PrevPointOfInstantiation if valid, indicates where the previus 5655/// declaration was instantiated (either implicitly or explicitly). 5656/// 5657/// \param HasNoEffect will be set to true to indicate that the new 5658/// specialization or instantiation has no effect and should be ignored. 5659/// 5660/// \returns true if there was an error that should prevent the introduction of 5661/// the new declaration into the AST, false otherwise. 5662bool 5663Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5664 TemplateSpecializationKind NewTSK, 5665 NamedDecl *PrevDecl, 5666 TemplateSpecializationKind PrevTSK, 5667 SourceLocation PrevPointOfInstantiation, 5668 bool &HasNoEffect) { 5669 HasNoEffect = false; 5670 5671 switch (NewTSK) { 5672 case TSK_Undeclared: 5673 case TSK_ImplicitInstantiation: 5674 llvm_unreachable("Don't check implicit instantiations here"); 5675 5676 case TSK_ExplicitSpecialization: 5677 switch (PrevTSK) { 5678 case TSK_Undeclared: 5679 case TSK_ExplicitSpecialization: 5680 // Okay, we're just specializing something that is either already 5681 // explicitly specialized or has merely been mentioned without any 5682 // instantiation. 5683 return false; 5684 5685 case TSK_ImplicitInstantiation: 5686 if (PrevPointOfInstantiation.isInvalid()) { 5687 // The declaration itself has not actually been instantiated, so it is 5688 // still okay to specialize it. 5689 StripImplicitInstantiation(PrevDecl); 5690 return false; 5691 } 5692 // Fall through 5693 5694 case TSK_ExplicitInstantiationDeclaration: 5695 case TSK_ExplicitInstantiationDefinition: 5696 assert((PrevTSK == TSK_ImplicitInstantiation || 5697 PrevPointOfInstantiation.isValid()) && 5698 "Explicit instantiation without point of instantiation?"); 5699 5700 // C++ [temp.expl.spec]p6: 5701 // If a template, a member template or the member of a class template 5702 // is explicitly specialized then that specialization shall be declared 5703 // before the first use of that specialization that would cause an 5704 // implicit instantiation to take place, in every translation unit in 5705 // which such a use occurs; no diagnostic is required. 5706 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5707 // Is there any previous explicit specialization declaration? 5708 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5709 return false; 5710 } 5711 5712 Diag(NewLoc, diag::err_specialization_after_instantiation) 5713 << PrevDecl; 5714 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5715 << (PrevTSK != TSK_ImplicitInstantiation); 5716 5717 return true; 5718 } 5719 5720 case TSK_ExplicitInstantiationDeclaration: 5721 switch (PrevTSK) { 5722 case TSK_ExplicitInstantiationDeclaration: 5723 // This explicit instantiation declaration is redundant (that's okay). 5724 HasNoEffect = true; 5725 return false; 5726 5727 case TSK_Undeclared: 5728 case TSK_ImplicitInstantiation: 5729 // We're explicitly instantiating something that may have already been 5730 // implicitly instantiated; that's fine. 5731 return false; 5732 5733 case TSK_ExplicitSpecialization: 5734 // C++0x [temp.explicit]p4: 5735 // For a given set of template parameters, if an explicit instantiation 5736 // of a template appears after a declaration of an explicit 5737 // specialization for that template, the explicit instantiation has no 5738 // effect. 5739 HasNoEffect = true; 5740 return false; 5741 5742 case TSK_ExplicitInstantiationDefinition: 5743 // C++0x [temp.explicit]p10: 5744 // If an entity is the subject of both an explicit instantiation 5745 // declaration and an explicit instantiation definition in the same 5746 // translation unit, the definition shall follow the declaration. 5747 Diag(NewLoc, 5748 diag::err_explicit_instantiation_declaration_after_definition); 5749 5750 // Explicit instantiations following a specialization have no effect and 5751 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5752 // until a valid name loc is found. 5753 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5754 diag::note_explicit_instantiation_definition_here); 5755 HasNoEffect = true; 5756 return false; 5757 } 5758 5759 case TSK_ExplicitInstantiationDefinition: 5760 switch (PrevTSK) { 5761 case TSK_Undeclared: 5762 case TSK_ImplicitInstantiation: 5763 // We're explicitly instantiating something that may have already been 5764 // implicitly instantiated; that's fine. 5765 return false; 5766 5767 case TSK_ExplicitSpecialization: 5768 // C++ DR 259, C++0x [temp.explicit]p4: 5769 // For a given set of template parameters, if an explicit 5770 // instantiation of a template appears after a declaration of 5771 // an explicit specialization for that template, the explicit 5772 // instantiation has no effect. 5773 // 5774 // In C++98/03 mode, we only give an extension warning here, because it 5775 // is not harmful to try to explicitly instantiate something that 5776 // has been explicitly specialized. 5777 Diag(NewLoc, getLangOpts().CPlusPlus0x ? 5778 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5779 diag::ext_explicit_instantiation_after_specialization) 5780 << PrevDecl; 5781 Diag(PrevDecl->getLocation(), 5782 diag::note_previous_template_specialization); 5783 HasNoEffect = true; 5784 return false; 5785 5786 case TSK_ExplicitInstantiationDeclaration: 5787 // We're explicity instantiating a definition for something for which we 5788 // were previously asked to suppress instantiations. That's fine. 5789 5790 // C++0x [temp.explicit]p4: 5791 // For a given set of template parameters, if an explicit instantiation 5792 // of a template appears after a declaration of an explicit 5793 // specialization for that template, the explicit instantiation has no 5794 // effect. 5795 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5796 // Is there any previous explicit specialization declaration? 5797 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5798 HasNoEffect = true; 5799 break; 5800 } 5801 } 5802 5803 return false; 5804 5805 case TSK_ExplicitInstantiationDefinition: 5806 // C++0x [temp.spec]p5: 5807 // For a given template and a given set of template-arguments, 5808 // - an explicit instantiation definition shall appear at most once 5809 // in a program, 5810 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5811 << PrevDecl; 5812 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5813 diag::note_previous_explicit_instantiation); 5814 HasNoEffect = true; 5815 return false; 5816 } 5817 } 5818 5819 llvm_unreachable("Missing specialization/instantiation case?"); 5820} 5821 5822/// \brief Perform semantic analysis for the given dependent function 5823/// template specialization. 5824/// 5825/// The only possible way to get a dependent function template specialization 5826/// is with a friend declaration, like so: 5827/// 5828/// \code 5829/// template \<class T> void foo(T); 5830/// template \<class T> class A { 5831/// friend void foo<>(T); 5832/// }; 5833/// \endcode 5834/// 5835/// There really isn't any useful analysis we can do here, so we 5836/// just store the information. 5837bool 5838Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5839 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5840 LookupResult &Previous) { 5841 // Remove anything from Previous that isn't a function template in 5842 // the correct context. 5843 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5844 LookupResult::Filter F = Previous.makeFilter(); 5845 while (F.hasNext()) { 5846 NamedDecl *D = F.next()->getUnderlyingDecl(); 5847 if (!isa<FunctionTemplateDecl>(D) || 5848 !FDLookupContext->InEnclosingNamespaceSetOf( 5849 D->getDeclContext()->getRedeclContext())) 5850 F.erase(); 5851 } 5852 F.done(); 5853 5854 // Should this be diagnosed here? 5855 if (Previous.empty()) return true; 5856 5857 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5858 ExplicitTemplateArgs); 5859 return false; 5860} 5861 5862/// \brief Perform semantic analysis for the given function template 5863/// specialization. 5864/// 5865/// This routine performs all of the semantic analysis required for an 5866/// explicit function template specialization. On successful completion, 5867/// the function declaration \p FD will become a function template 5868/// specialization. 5869/// 5870/// \param FD the function declaration, which will be updated to become a 5871/// function template specialization. 5872/// 5873/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5874/// if any. Note that this may be valid info even when 0 arguments are 5875/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5876/// as it anyway contains info on the angle brackets locations. 5877/// 5878/// \param Previous the set of declarations that may be specialized by 5879/// this function specialization. 5880bool 5881Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5882 TemplateArgumentListInfo *ExplicitTemplateArgs, 5883 LookupResult &Previous) { 5884 // The set of function template specializations that could match this 5885 // explicit function template specialization. 5886 UnresolvedSet<8> Candidates; 5887 5888 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5889 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5890 I != E; ++I) { 5891 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5892 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5893 // Only consider templates found within the same semantic lookup scope as 5894 // FD. 5895 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5896 Ovl->getDeclContext()->getRedeclContext())) 5897 continue; 5898 5899 // C++ [temp.expl.spec]p11: 5900 // A trailing template-argument can be left unspecified in the 5901 // template-id naming an explicit function template specialization 5902 // provided it can be deduced from the function argument type. 5903 // Perform template argument deduction to determine whether we may be 5904 // specializing this template. 5905 // FIXME: It is somewhat wasteful to build 5906 TemplateDeductionInfo Info(Context, FD->getLocation()); 5907 FunctionDecl *Specialization = 0; 5908 if (TemplateDeductionResult TDK 5909 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5910 FD->getType(), 5911 Specialization, 5912 Info)) { 5913 // FIXME: Template argument deduction failed; record why it failed, so 5914 // that we can provide nifty diagnostics. 5915 (void)TDK; 5916 continue; 5917 } 5918 5919 // Record this candidate. 5920 Candidates.addDecl(Specialization, I.getAccess()); 5921 } 5922 } 5923 5924 // Find the most specialized function template. 5925 UnresolvedSetIterator Result 5926 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5927 TPOC_Other, 0, FD->getLocation(), 5928 PDiag(diag::err_function_template_spec_no_match) 5929 << FD->getDeclName(), 5930 PDiag(diag::err_function_template_spec_ambiguous) 5931 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5932 PDiag(diag::note_function_template_spec_matched)); 5933 if (Result == Candidates.end()) 5934 return true; 5935 5936 // Ignore access information; it doesn't figure into redeclaration checking. 5937 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5938 5939 FunctionTemplateSpecializationInfo *SpecInfo 5940 = Specialization->getTemplateSpecializationInfo(); 5941 assert(SpecInfo && "Function template specialization info missing?"); 5942 5943 // Note: do not overwrite location info if previous template 5944 // specialization kind was explicit. 5945 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5946 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 5947 Specialization->setLocation(FD->getLocation()); 5948 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 5949 // function can differ from the template declaration with respect to 5950 // the constexpr specifier. 5951 Specialization->setConstexpr(FD->isConstexpr()); 5952 } 5953 5954 // FIXME: Check if the prior specialization has a point of instantiation. 5955 // If so, we have run afoul of . 5956 5957 // If this is a friend declaration, then we're not really declaring 5958 // an explicit specialization. 5959 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5960 5961 // Check the scope of this explicit specialization. 5962 if (!isFriend && 5963 CheckTemplateSpecializationScope(*this, 5964 Specialization->getPrimaryTemplate(), 5965 Specialization, FD->getLocation(), 5966 false)) 5967 return true; 5968 5969 // C++ [temp.expl.spec]p6: 5970 // If a template, a member template or the member of a class template is 5971 // explicitly specialized then that specialization shall be declared 5972 // before the first use of that specialization that would cause an implicit 5973 // instantiation to take place, in every translation unit in which such a 5974 // use occurs; no diagnostic is required. 5975 bool HasNoEffect = false; 5976 if (!isFriend && 5977 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5978 TSK_ExplicitSpecialization, 5979 Specialization, 5980 SpecInfo->getTemplateSpecializationKind(), 5981 SpecInfo->getPointOfInstantiation(), 5982 HasNoEffect)) 5983 return true; 5984 5985 // Mark the prior declaration as an explicit specialization, so that later 5986 // clients know that this is an explicit specialization. 5987 if (!isFriend) { 5988 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5989 MarkUnusedFileScopedDecl(Specialization); 5990 } 5991 5992 // Turn the given function declaration into a function template 5993 // specialization, with the template arguments from the previous 5994 // specialization. 5995 // Take copies of (semantic and syntactic) template argument lists. 5996 const TemplateArgumentList* TemplArgs = new (Context) 5997 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5998 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5999 TemplArgs, /*InsertPos=*/0, 6000 SpecInfo->getTemplateSpecializationKind(), 6001 ExplicitTemplateArgs); 6002 FD->setStorageClass(Specialization->getStorageClass()); 6003 6004 // The "previous declaration" for this function template specialization is 6005 // the prior function template specialization. 6006 Previous.clear(); 6007 Previous.addDecl(Specialization); 6008 return false; 6009} 6010 6011/// \brief Perform semantic analysis for the given non-template member 6012/// specialization. 6013/// 6014/// This routine performs all of the semantic analysis required for an 6015/// explicit member function specialization. On successful completion, 6016/// the function declaration \p FD will become a member function 6017/// specialization. 6018/// 6019/// \param Member the member declaration, which will be updated to become a 6020/// specialization. 6021/// 6022/// \param Previous the set of declarations, one of which may be specialized 6023/// by this function specialization; the set will be modified to contain the 6024/// redeclared member. 6025bool 6026Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6027 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6028 6029 // Try to find the member we are instantiating. 6030 NamedDecl *Instantiation = 0; 6031 NamedDecl *InstantiatedFrom = 0; 6032 MemberSpecializationInfo *MSInfo = 0; 6033 6034 if (Previous.empty()) { 6035 // Nowhere to look anyway. 6036 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6037 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6038 I != E; ++I) { 6039 NamedDecl *D = (*I)->getUnderlyingDecl(); 6040 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6041 if (Context.hasSameType(Function->getType(), Method->getType())) { 6042 Instantiation = Method; 6043 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6044 MSInfo = Method->getMemberSpecializationInfo(); 6045 break; 6046 } 6047 } 6048 } 6049 } else if (isa<VarDecl>(Member)) { 6050 VarDecl *PrevVar; 6051 if (Previous.isSingleResult() && 6052 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6053 if (PrevVar->isStaticDataMember()) { 6054 Instantiation = PrevVar; 6055 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6056 MSInfo = PrevVar->getMemberSpecializationInfo(); 6057 } 6058 } else if (isa<RecordDecl>(Member)) { 6059 CXXRecordDecl *PrevRecord; 6060 if (Previous.isSingleResult() && 6061 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6062 Instantiation = PrevRecord; 6063 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6064 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6065 } 6066 } else if (isa<EnumDecl>(Member)) { 6067 EnumDecl *PrevEnum; 6068 if (Previous.isSingleResult() && 6069 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6070 Instantiation = PrevEnum; 6071 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6072 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6073 } 6074 } 6075 6076 if (!Instantiation) { 6077 // There is no previous declaration that matches. Since member 6078 // specializations are always out-of-line, the caller will complain about 6079 // this mismatch later. 6080 return false; 6081 } 6082 6083 // If this is a friend, just bail out here before we start turning 6084 // things into explicit specializations. 6085 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6086 // Preserve instantiation information. 6087 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6088 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6089 cast<CXXMethodDecl>(InstantiatedFrom), 6090 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6091 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6092 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6093 cast<CXXRecordDecl>(InstantiatedFrom), 6094 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6095 } 6096 6097 Previous.clear(); 6098 Previous.addDecl(Instantiation); 6099 return false; 6100 } 6101 6102 // Make sure that this is a specialization of a member. 6103 if (!InstantiatedFrom) { 6104 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6105 << Member; 6106 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6107 return true; 6108 } 6109 6110 // C++ [temp.expl.spec]p6: 6111 // If a template, a member template or the member of a class template is 6112 // explicitly specialized then that specialization shall be declared 6113 // before the first use of that specialization that would cause an implicit 6114 // instantiation to take place, in every translation unit in which such a 6115 // use occurs; no diagnostic is required. 6116 assert(MSInfo && "Member specialization info missing?"); 6117 6118 bool HasNoEffect = false; 6119 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6120 TSK_ExplicitSpecialization, 6121 Instantiation, 6122 MSInfo->getTemplateSpecializationKind(), 6123 MSInfo->getPointOfInstantiation(), 6124 HasNoEffect)) 6125 return true; 6126 6127 // Check the scope of this explicit specialization. 6128 if (CheckTemplateSpecializationScope(*this, 6129 InstantiatedFrom, 6130 Instantiation, Member->getLocation(), 6131 false)) 6132 return true; 6133 6134 // Note that this is an explicit instantiation of a member. 6135 // the original declaration to note that it is an explicit specialization 6136 // (if it was previously an implicit instantiation). This latter step 6137 // makes bookkeeping easier. 6138 if (isa<FunctionDecl>(Member)) { 6139 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6140 if (InstantiationFunction->getTemplateSpecializationKind() == 6141 TSK_ImplicitInstantiation) { 6142 InstantiationFunction->setTemplateSpecializationKind( 6143 TSK_ExplicitSpecialization); 6144 InstantiationFunction->setLocation(Member->getLocation()); 6145 } 6146 6147 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6148 cast<CXXMethodDecl>(InstantiatedFrom), 6149 TSK_ExplicitSpecialization); 6150 MarkUnusedFileScopedDecl(InstantiationFunction); 6151 } else if (isa<VarDecl>(Member)) { 6152 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6153 if (InstantiationVar->getTemplateSpecializationKind() == 6154 TSK_ImplicitInstantiation) { 6155 InstantiationVar->setTemplateSpecializationKind( 6156 TSK_ExplicitSpecialization); 6157 InstantiationVar->setLocation(Member->getLocation()); 6158 } 6159 6160 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6161 cast<VarDecl>(InstantiatedFrom), 6162 TSK_ExplicitSpecialization); 6163 MarkUnusedFileScopedDecl(InstantiationVar); 6164 } else if (isa<CXXRecordDecl>(Member)) { 6165 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6166 if (InstantiationClass->getTemplateSpecializationKind() == 6167 TSK_ImplicitInstantiation) { 6168 InstantiationClass->setTemplateSpecializationKind( 6169 TSK_ExplicitSpecialization); 6170 InstantiationClass->setLocation(Member->getLocation()); 6171 } 6172 6173 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6174 cast<CXXRecordDecl>(InstantiatedFrom), 6175 TSK_ExplicitSpecialization); 6176 } else { 6177 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6178 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6179 if (InstantiationEnum->getTemplateSpecializationKind() == 6180 TSK_ImplicitInstantiation) { 6181 InstantiationEnum->setTemplateSpecializationKind( 6182 TSK_ExplicitSpecialization); 6183 InstantiationEnum->setLocation(Member->getLocation()); 6184 } 6185 6186 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6187 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6188 } 6189 6190 // Save the caller the trouble of having to figure out which declaration 6191 // this specialization matches. 6192 Previous.clear(); 6193 Previous.addDecl(Instantiation); 6194 return false; 6195} 6196 6197/// \brief Check the scope of an explicit instantiation. 6198/// 6199/// \returns true if a serious error occurs, false otherwise. 6200static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6201 SourceLocation InstLoc, 6202 bool WasQualifiedName) { 6203 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6204 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6205 6206 if (CurContext->isRecord()) { 6207 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6208 << D; 6209 return true; 6210 } 6211 6212 // C++11 [temp.explicit]p3: 6213 // An explicit instantiation shall appear in an enclosing namespace of its 6214 // template. If the name declared in the explicit instantiation is an 6215 // unqualified name, the explicit instantiation shall appear in the 6216 // namespace where its template is declared or, if that namespace is inline 6217 // (7.3.1), any namespace from its enclosing namespace set. 6218 // 6219 // This is DR275, which we do not retroactively apply to C++98/03. 6220 if (WasQualifiedName) { 6221 if (CurContext->Encloses(OrigContext)) 6222 return false; 6223 } else { 6224 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6225 return false; 6226 } 6227 6228 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6229 if (WasQualifiedName) 6230 S.Diag(InstLoc, 6231 S.getLangOpts().CPlusPlus0x? 6232 diag::err_explicit_instantiation_out_of_scope : 6233 diag::warn_explicit_instantiation_out_of_scope_0x) 6234 << D << NS; 6235 else 6236 S.Diag(InstLoc, 6237 S.getLangOpts().CPlusPlus0x? 6238 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6239 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6240 << D << NS; 6241 } else 6242 S.Diag(InstLoc, 6243 S.getLangOpts().CPlusPlus0x? 6244 diag::err_explicit_instantiation_must_be_global : 6245 diag::warn_explicit_instantiation_must_be_global_0x) 6246 << D; 6247 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6248 return false; 6249} 6250 6251/// \brief Determine whether the given scope specifier has a template-id in it. 6252static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6253 if (!SS.isSet()) 6254 return false; 6255 6256 // C++11 [temp.explicit]p3: 6257 // If the explicit instantiation is for a member function, a member class 6258 // or a static data member of a class template specialization, the name of 6259 // the class template specialization in the qualified-id for the member 6260 // name shall be a simple-template-id. 6261 // 6262 // C++98 has the same restriction, just worded differently. 6263 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6264 NNS; NNS = NNS->getPrefix()) 6265 if (const Type *T = NNS->getAsType()) 6266 if (isa<TemplateSpecializationType>(T)) 6267 return true; 6268 6269 return false; 6270} 6271 6272// Explicit instantiation of a class template specialization 6273DeclResult 6274Sema::ActOnExplicitInstantiation(Scope *S, 6275 SourceLocation ExternLoc, 6276 SourceLocation TemplateLoc, 6277 unsigned TagSpec, 6278 SourceLocation KWLoc, 6279 const CXXScopeSpec &SS, 6280 TemplateTy TemplateD, 6281 SourceLocation TemplateNameLoc, 6282 SourceLocation LAngleLoc, 6283 ASTTemplateArgsPtr TemplateArgsIn, 6284 SourceLocation RAngleLoc, 6285 AttributeList *Attr) { 6286 // Find the class template we're specializing 6287 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6288 ClassTemplateDecl *ClassTemplate 6289 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6290 6291 // Check that the specialization uses the same tag kind as the 6292 // original template. 6293 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6294 assert(Kind != TTK_Enum && 6295 "Invalid enum tag in class template explicit instantiation!"); 6296 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6297 Kind, /*isDefinition*/false, KWLoc, 6298 *ClassTemplate->getIdentifier())) { 6299 Diag(KWLoc, diag::err_use_with_wrong_tag) 6300 << ClassTemplate 6301 << FixItHint::CreateReplacement(KWLoc, 6302 ClassTemplate->getTemplatedDecl()->getKindName()); 6303 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6304 diag::note_previous_use); 6305 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6306 } 6307 6308 // C++0x [temp.explicit]p2: 6309 // There are two forms of explicit instantiation: an explicit instantiation 6310 // definition and an explicit instantiation declaration. An explicit 6311 // instantiation declaration begins with the extern keyword. [...] 6312 TemplateSpecializationKind TSK 6313 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6314 : TSK_ExplicitInstantiationDeclaration; 6315 6316 // Translate the parser's template argument list in our AST format. 6317 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6318 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6319 6320 // Check that the template argument list is well-formed for this 6321 // template. 6322 SmallVector<TemplateArgument, 4> Converted; 6323 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6324 TemplateArgs, false, Converted)) 6325 return true; 6326 6327 // Find the class template specialization declaration that 6328 // corresponds to these arguments. 6329 void *InsertPos = 0; 6330 ClassTemplateSpecializationDecl *PrevDecl 6331 = ClassTemplate->findSpecialization(Converted.data(), 6332 Converted.size(), InsertPos); 6333 6334 TemplateSpecializationKind PrevDecl_TSK 6335 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6336 6337 // C++0x [temp.explicit]p2: 6338 // [...] An explicit instantiation shall appear in an enclosing 6339 // namespace of its template. [...] 6340 // 6341 // This is C++ DR 275. 6342 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6343 SS.isSet())) 6344 return true; 6345 6346 ClassTemplateSpecializationDecl *Specialization = 0; 6347 6348 bool HasNoEffect = false; 6349 if (PrevDecl) { 6350 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6351 PrevDecl, PrevDecl_TSK, 6352 PrevDecl->getPointOfInstantiation(), 6353 HasNoEffect)) 6354 return PrevDecl; 6355 6356 // Even though HasNoEffect == true means that this explicit instantiation 6357 // has no effect on semantics, we go on to put its syntax in the AST. 6358 6359 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6360 PrevDecl_TSK == TSK_Undeclared) { 6361 // Since the only prior class template specialization with these 6362 // arguments was referenced but not declared, reuse that 6363 // declaration node as our own, updating the source location 6364 // for the template name to reflect our new declaration. 6365 // (Other source locations will be updated later.) 6366 Specialization = PrevDecl; 6367 Specialization->setLocation(TemplateNameLoc); 6368 PrevDecl = 0; 6369 } 6370 } 6371 6372 if (!Specialization) { 6373 // Create a new class template specialization declaration node for 6374 // this explicit specialization. 6375 Specialization 6376 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6377 ClassTemplate->getDeclContext(), 6378 KWLoc, TemplateNameLoc, 6379 ClassTemplate, 6380 Converted.data(), 6381 Converted.size(), 6382 PrevDecl); 6383 SetNestedNameSpecifier(Specialization, SS); 6384 6385 if (!HasNoEffect && !PrevDecl) { 6386 // Insert the new specialization. 6387 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6388 } 6389 } 6390 6391 // Build the fully-sugared type for this explicit instantiation as 6392 // the user wrote in the explicit instantiation itself. This means 6393 // that we'll pretty-print the type retrieved from the 6394 // specialization's declaration the way that the user actually wrote 6395 // the explicit instantiation, rather than formatting the name based 6396 // on the "canonical" representation used to store the template 6397 // arguments in the specialization. 6398 TypeSourceInfo *WrittenTy 6399 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6400 TemplateArgs, 6401 Context.getTypeDeclType(Specialization)); 6402 Specialization->setTypeAsWritten(WrittenTy); 6403 TemplateArgsIn.release(); 6404 6405 // Set source locations for keywords. 6406 Specialization->setExternLoc(ExternLoc); 6407 Specialization->setTemplateKeywordLoc(TemplateLoc); 6408 6409 if (Attr) 6410 ProcessDeclAttributeList(S, Specialization, Attr); 6411 6412 // Add the explicit instantiation into its lexical context. However, 6413 // since explicit instantiations are never found by name lookup, we 6414 // just put it into the declaration context directly. 6415 Specialization->setLexicalDeclContext(CurContext); 6416 CurContext->addDecl(Specialization); 6417 6418 // Syntax is now OK, so return if it has no other effect on semantics. 6419 if (HasNoEffect) { 6420 // Set the template specialization kind. 6421 Specialization->setTemplateSpecializationKind(TSK); 6422 return Specialization; 6423 } 6424 6425 // C++ [temp.explicit]p3: 6426 // A definition of a class template or class member template 6427 // shall be in scope at the point of the explicit instantiation of 6428 // the class template or class member template. 6429 // 6430 // This check comes when we actually try to perform the 6431 // instantiation. 6432 ClassTemplateSpecializationDecl *Def 6433 = cast_or_null<ClassTemplateSpecializationDecl>( 6434 Specialization->getDefinition()); 6435 if (!Def) 6436 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6437 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6438 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6439 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6440 } 6441 6442 // Instantiate the members of this class template specialization. 6443 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6444 Specialization->getDefinition()); 6445 if (Def) { 6446 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6447 6448 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6449 // TSK_ExplicitInstantiationDefinition 6450 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6451 TSK == TSK_ExplicitInstantiationDefinition) 6452 Def->setTemplateSpecializationKind(TSK); 6453 6454 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6455 } 6456 6457 // Set the template specialization kind. 6458 Specialization->setTemplateSpecializationKind(TSK); 6459 return Specialization; 6460} 6461 6462// Explicit instantiation of a member class of a class template. 6463DeclResult 6464Sema::ActOnExplicitInstantiation(Scope *S, 6465 SourceLocation ExternLoc, 6466 SourceLocation TemplateLoc, 6467 unsigned TagSpec, 6468 SourceLocation KWLoc, 6469 CXXScopeSpec &SS, 6470 IdentifierInfo *Name, 6471 SourceLocation NameLoc, 6472 AttributeList *Attr) { 6473 6474 bool Owned = false; 6475 bool IsDependent = false; 6476 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6477 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6478 /*ModulePrivateLoc=*/SourceLocation(), 6479 MultiTemplateParamsArg(*this, 0, 0), 6480 Owned, IsDependent, SourceLocation(), false, 6481 TypeResult()); 6482 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6483 6484 if (!TagD) 6485 return true; 6486 6487 TagDecl *Tag = cast<TagDecl>(TagD); 6488 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6489 6490 if (Tag->isInvalidDecl()) 6491 return true; 6492 6493 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6494 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6495 if (!Pattern) { 6496 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6497 << Context.getTypeDeclType(Record); 6498 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6499 return true; 6500 } 6501 6502 // C++0x [temp.explicit]p2: 6503 // If the explicit instantiation is for a class or member class, the 6504 // elaborated-type-specifier in the declaration shall include a 6505 // simple-template-id. 6506 // 6507 // C++98 has the same restriction, just worded differently. 6508 if (!ScopeSpecifierHasTemplateId(SS)) 6509 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6510 << Record << SS.getRange(); 6511 6512 // C++0x [temp.explicit]p2: 6513 // There are two forms of explicit instantiation: an explicit instantiation 6514 // definition and an explicit instantiation declaration. An explicit 6515 // instantiation declaration begins with the extern keyword. [...] 6516 TemplateSpecializationKind TSK 6517 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6518 : TSK_ExplicitInstantiationDeclaration; 6519 6520 // C++0x [temp.explicit]p2: 6521 // [...] An explicit instantiation shall appear in an enclosing 6522 // namespace of its template. [...] 6523 // 6524 // This is C++ DR 275. 6525 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6526 6527 // Verify that it is okay to explicitly instantiate here. 6528 CXXRecordDecl *PrevDecl 6529 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6530 if (!PrevDecl && Record->getDefinition()) 6531 PrevDecl = Record; 6532 if (PrevDecl) { 6533 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6534 bool HasNoEffect = false; 6535 assert(MSInfo && "No member specialization information?"); 6536 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6537 PrevDecl, 6538 MSInfo->getTemplateSpecializationKind(), 6539 MSInfo->getPointOfInstantiation(), 6540 HasNoEffect)) 6541 return true; 6542 if (HasNoEffect) 6543 return TagD; 6544 } 6545 6546 CXXRecordDecl *RecordDef 6547 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6548 if (!RecordDef) { 6549 // C++ [temp.explicit]p3: 6550 // A definition of a member class of a class template shall be in scope 6551 // at the point of an explicit instantiation of the member class. 6552 CXXRecordDecl *Def 6553 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6554 if (!Def) { 6555 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6556 << 0 << Record->getDeclName() << Record->getDeclContext(); 6557 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6558 << Pattern; 6559 return true; 6560 } else { 6561 if (InstantiateClass(NameLoc, Record, Def, 6562 getTemplateInstantiationArgs(Record), 6563 TSK)) 6564 return true; 6565 6566 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6567 if (!RecordDef) 6568 return true; 6569 } 6570 } 6571 6572 // Instantiate all of the members of the class. 6573 InstantiateClassMembers(NameLoc, RecordDef, 6574 getTemplateInstantiationArgs(Record), TSK); 6575 6576 if (TSK == TSK_ExplicitInstantiationDefinition) 6577 MarkVTableUsed(NameLoc, RecordDef, true); 6578 6579 // FIXME: We don't have any representation for explicit instantiations of 6580 // member classes. Such a representation is not needed for compilation, but it 6581 // should be available for clients that want to see all of the declarations in 6582 // the source code. 6583 return TagD; 6584} 6585 6586DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6587 SourceLocation ExternLoc, 6588 SourceLocation TemplateLoc, 6589 Declarator &D) { 6590 // Explicit instantiations always require a name. 6591 // TODO: check if/when DNInfo should replace Name. 6592 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6593 DeclarationName Name = NameInfo.getName(); 6594 if (!Name) { 6595 if (!D.isInvalidType()) 6596 Diag(D.getDeclSpec().getLocStart(), 6597 diag::err_explicit_instantiation_requires_name) 6598 << D.getDeclSpec().getSourceRange() 6599 << D.getSourceRange(); 6600 6601 return true; 6602 } 6603 6604 // The scope passed in may not be a decl scope. Zip up the scope tree until 6605 // we find one that is. 6606 while ((S->getFlags() & Scope::DeclScope) == 0 || 6607 (S->getFlags() & Scope::TemplateParamScope) != 0) 6608 S = S->getParent(); 6609 6610 // Determine the type of the declaration. 6611 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6612 QualType R = T->getType(); 6613 if (R.isNull()) 6614 return true; 6615 6616 // C++ [dcl.stc]p1: 6617 // A storage-class-specifier shall not be specified in [...] an explicit 6618 // instantiation (14.7.2) directive. 6619 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6620 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6621 << Name; 6622 return true; 6623 } else if (D.getDeclSpec().getStorageClassSpec() 6624 != DeclSpec::SCS_unspecified) { 6625 // Complain about then remove the storage class specifier. 6626 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6627 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6628 6629 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6630 } 6631 6632 // C++0x [temp.explicit]p1: 6633 // [...] An explicit instantiation of a function template shall not use the 6634 // inline or constexpr specifiers. 6635 // Presumably, this also applies to member functions of class templates as 6636 // well. 6637 if (D.getDeclSpec().isInlineSpecified()) 6638 Diag(D.getDeclSpec().getInlineSpecLoc(), 6639 getLangOpts().CPlusPlus0x ? 6640 diag::err_explicit_instantiation_inline : 6641 diag::warn_explicit_instantiation_inline_0x) 6642 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6643 if (D.getDeclSpec().isConstexprSpecified()) 6644 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6645 // not already specified. 6646 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6647 diag::err_explicit_instantiation_constexpr); 6648 6649 // C++0x [temp.explicit]p2: 6650 // There are two forms of explicit instantiation: an explicit instantiation 6651 // definition and an explicit instantiation declaration. An explicit 6652 // instantiation declaration begins with the extern keyword. [...] 6653 TemplateSpecializationKind TSK 6654 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6655 : TSK_ExplicitInstantiationDeclaration; 6656 6657 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6658 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6659 6660 if (!R->isFunctionType()) { 6661 // C++ [temp.explicit]p1: 6662 // A [...] static data member of a class template can be explicitly 6663 // instantiated from the member definition associated with its class 6664 // template. 6665 if (Previous.isAmbiguous()) 6666 return true; 6667 6668 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6669 if (!Prev || !Prev->isStaticDataMember()) { 6670 // We expect to see a data data member here. 6671 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6672 << Name; 6673 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6674 P != PEnd; ++P) 6675 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6676 return true; 6677 } 6678 6679 if (!Prev->getInstantiatedFromStaticDataMember()) { 6680 // FIXME: Check for explicit specialization? 6681 Diag(D.getIdentifierLoc(), 6682 diag::err_explicit_instantiation_data_member_not_instantiated) 6683 << Prev; 6684 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6685 // FIXME: Can we provide a note showing where this was declared? 6686 return true; 6687 } 6688 6689 // C++0x [temp.explicit]p2: 6690 // If the explicit instantiation is for a member function, a member class 6691 // or a static data member of a class template specialization, the name of 6692 // the class template specialization in the qualified-id for the member 6693 // name shall be a simple-template-id. 6694 // 6695 // C++98 has the same restriction, just worded differently. 6696 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6697 Diag(D.getIdentifierLoc(), 6698 diag::ext_explicit_instantiation_without_qualified_id) 6699 << Prev << D.getCXXScopeSpec().getRange(); 6700 6701 // Check the scope of this explicit instantiation. 6702 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6703 6704 // Verify that it is okay to explicitly instantiate here. 6705 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6706 assert(MSInfo && "Missing static data member specialization info?"); 6707 bool HasNoEffect = false; 6708 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6709 MSInfo->getTemplateSpecializationKind(), 6710 MSInfo->getPointOfInstantiation(), 6711 HasNoEffect)) 6712 return true; 6713 if (HasNoEffect) 6714 return (Decl*) 0; 6715 6716 // Instantiate static data member. 6717 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6718 if (TSK == TSK_ExplicitInstantiationDefinition) 6719 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6720 6721 // FIXME: Create an ExplicitInstantiation node? 6722 return (Decl*) 0; 6723 } 6724 6725 // If the declarator is a template-id, translate the parser's template 6726 // argument list into our AST format. 6727 bool HasExplicitTemplateArgs = false; 6728 TemplateArgumentListInfo TemplateArgs; 6729 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6730 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6731 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6732 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6733 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6734 TemplateId->getTemplateArgs(), 6735 TemplateId->NumArgs); 6736 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6737 HasExplicitTemplateArgs = true; 6738 TemplateArgsPtr.release(); 6739 } 6740 6741 // C++ [temp.explicit]p1: 6742 // A [...] function [...] can be explicitly instantiated from its template. 6743 // A member function [...] of a class template can be explicitly 6744 // instantiated from the member definition associated with its class 6745 // template. 6746 UnresolvedSet<8> Matches; 6747 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6748 P != PEnd; ++P) { 6749 NamedDecl *Prev = *P; 6750 if (!HasExplicitTemplateArgs) { 6751 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6752 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6753 Matches.clear(); 6754 6755 Matches.addDecl(Method, P.getAccess()); 6756 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6757 break; 6758 } 6759 } 6760 } 6761 6762 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6763 if (!FunTmpl) 6764 continue; 6765 6766 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6767 FunctionDecl *Specialization = 0; 6768 if (TemplateDeductionResult TDK 6769 = DeduceTemplateArguments(FunTmpl, 6770 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6771 R, Specialization, Info)) { 6772 // FIXME: Keep track of almost-matches? 6773 (void)TDK; 6774 continue; 6775 } 6776 6777 Matches.addDecl(Specialization, P.getAccess()); 6778 } 6779 6780 // Find the most specialized function template specialization. 6781 UnresolvedSetIterator Result 6782 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6783 D.getIdentifierLoc(), 6784 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6785 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6786 PDiag(diag::note_explicit_instantiation_candidate)); 6787 6788 if (Result == Matches.end()) 6789 return true; 6790 6791 // Ignore access control bits, we don't need them for redeclaration checking. 6792 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6793 6794 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6795 Diag(D.getIdentifierLoc(), 6796 diag::err_explicit_instantiation_member_function_not_instantiated) 6797 << Specialization 6798 << (Specialization->getTemplateSpecializationKind() == 6799 TSK_ExplicitSpecialization); 6800 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6801 return true; 6802 } 6803 6804 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6805 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6806 PrevDecl = Specialization; 6807 6808 if (PrevDecl) { 6809 bool HasNoEffect = false; 6810 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6811 PrevDecl, 6812 PrevDecl->getTemplateSpecializationKind(), 6813 PrevDecl->getPointOfInstantiation(), 6814 HasNoEffect)) 6815 return true; 6816 6817 // FIXME: We may still want to build some representation of this 6818 // explicit specialization. 6819 if (HasNoEffect) 6820 return (Decl*) 0; 6821 } 6822 6823 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6824 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6825 if (Attr) 6826 ProcessDeclAttributeList(S, Specialization, Attr); 6827 6828 if (TSK == TSK_ExplicitInstantiationDefinition) 6829 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6830 6831 // C++0x [temp.explicit]p2: 6832 // If the explicit instantiation is for a member function, a member class 6833 // or a static data member of a class template specialization, the name of 6834 // the class template specialization in the qualified-id for the member 6835 // name shall be a simple-template-id. 6836 // 6837 // C++98 has the same restriction, just worded differently. 6838 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6839 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6840 D.getCXXScopeSpec().isSet() && 6841 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6842 Diag(D.getIdentifierLoc(), 6843 diag::ext_explicit_instantiation_without_qualified_id) 6844 << Specialization << D.getCXXScopeSpec().getRange(); 6845 6846 CheckExplicitInstantiationScope(*this, 6847 FunTmpl? (NamedDecl *)FunTmpl 6848 : Specialization->getInstantiatedFromMemberFunction(), 6849 D.getIdentifierLoc(), 6850 D.getCXXScopeSpec().isSet()); 6851 6852 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6853 return (Decl*) 0; 6854} 6855 6856TypeResult 6857Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6858 const CXXScopeSpec &SS, IdentifierInfo *Name, 6859 SourceLocation TagLoc, SourceLocation NameLoc) { 6860 // This has to hold, because SS is expected to be defined. 6861 assert(Name && "Expected a name in a dependent tag"); 6862 6863 NestedNameSpecifier *NNS 6864 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6865 if (!NNS) 6866 return true; 6867 6868 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6869 6870 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6871 Diag(NameLoc, diag::err_dependent_tag_decl) 6872 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6873 return true; 6874 } 6875 6876 // Create the resulting type. 6877 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6878 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6879 6880 // Create type-source location information for this type. 6881 TypeLocBuilder TLB; 6882 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6883 TL.setElaboratedKeywordLoc(TagLoc); 6884 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6885 TL.setNameLoc(NameLoc); 6886 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6887} 6888 6889TypeResult 6890Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6891 const CXXScopeSpec &SS, const IdentifierInfo &II, 6892 SourceLocation IdLoc) { 6893 if (SS.isInvalid()) 6894 return true; 6895 6896 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6897 Diag(TypenameLoc, 6898 getLangOpts().CPlusPlus0x ? 6899 diag::warn_cxx98_compat_typename_outside_of_template : 6900 diag::ext_typename_outside_of_template) 6901 << FixItHint::CreateRemoval(TypenameLoc); 6902 6903 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6904 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6905 TypenameLoc, QualifierLoc, II, IdLoc); 6906 if (T.isNull()) 6907 return true; 6908 6909 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6910 if (isa<DependentNameType>(T)) { 6911 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6912 TL.setElaboratedKeywordLoc(TypenameLoc); 6913 TL.setQualifierLoc(QualifierLoc); 6914 TL.setNameLoc(IdLoc); 6915 } else { 6916 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6917 TL.setElaboratedKeywordLoc(TypenameLoc); 6918 TL.setQualifierLoc(QualifierLoc); 6919 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6920 } 6921 6922 return CreateParsedType(T, TSI); 6923} 6924 6925TypeResult 6926Sema::ActOnTypenameType(Scope *S, 6927 SourceLocation TypenameLoc, 6928 const CXXScopeSpec &SS, 6929 SourceLocation TemplateKWLoc, 6930 TemplateTy TemplateIn, 6931 SourceLocation TemplateNameLoc, 6932 SourceLocation LAngleLoc, 6933 ASTTemplateArgsPtr TemplateArgsIn, 6934 SourceLocation RAngleLoc) { 6935 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6936 Diag(TypenameLoc, 6937 getLangOpts().CPlusPlus0x ? 6938 diag::warn_cxx98_compat_typename_outside_of_template : 6939 diag::ext_typename_outside_of_template) 6940 << FixItHint::CreateRemoval(TypenameLoc); 6941 6942 // Translate the parser's template argument list in our AST format. 6943 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6944 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6945 6946 TemplateName Template = TemplateIn.get(); 6947 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6948 // Construct a dependent template specialization type. 6949 assert(DTN && "dependent template has non-dependent name?"); 6950 assert(DTN->getQualifier() 6951 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6952 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6953 DTN->getQualifier(), 6954 DTN->getIdentifier(), 6955 TemplateArgs); 6956 6957 // Create source-location information for this type. 6958 TypeLocBuilder Builder; 6959 DependentTemplateSpecializationTypeLoc SpecTL 6960 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6961 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 6962 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6963 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6964 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6965 SpecTL.setLAngleLoc(LAngleLoc); 6966 SpecTL.setRAngleLoc(RAngleLoc); 6967 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6968 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6969 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6970 } 6971 6972 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6973 if (T.isNull()) 6974 return true; 6975 6976 // Provide source-location information for the template specialization type. 6977 TypeLocBuilder Builder; 6978 TemplateSpecializationTypeLoc SpecTL 6979 = Builder.push<TemplateSpecializationTypeLoc>(T); 6980 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6981 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6982 SpecTL.setLAngleLoc(LAngleLoc); 6983 SpecTL.setRAngleLoc(RAngleLoc); 6984 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6985 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6986 6987 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6988 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6989 TL.setElaboratedKeywordLoc(TypenameLoc); 6990 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6991 6992 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6993 return CreateParsedType(T, TSI); 6994} 6995 6996 6997/// Determine whether this failed name lookup should be treated as being 6998/// disabled by a usage of std::enable_if. 6999static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7000 SourceRange &CondRange) { 7001 // We must be looking for a ::type... 7002 if (!II.isStr("type")) 7003 return false; 7004 7005 // ... within an explicitly-written template specialization... 7006 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7007 return false; 7008 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7009 TemplateSpecializationTypeLoc *EnableIfTSTLoc = 7010 dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy); 7011 if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0) 7012 return false; 7013 const TemplateSpecializationType *EnableIfTST = 7014 cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr()); 7015 7016 // ... which names a complete class template declaration... 7017 const TemplateDecl *EnableIfDecl = 7018 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7019 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7020 return false; 7021 7022 // ... called "enable_if". 7023 const IdentifierInfo *EnableIfII = 7024 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7025 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7026 return false; 7027 7028 // Assume the first template argument is the condition. 7029 CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange(); 7030 return true; 7031} 7032 7033/// \brief Build the type that describes a C++ typename specifier, 7034/// e.g., "typename T::type". 7035QualType 7036Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7037 SourceLocation KeywordLoc, 7038 NestedNameSpecifierLoc QualifierLoc, 7039 const IdentifierInfo &II, 7040 SourceLocation IILoc) { 7041 CXXScopeSpec SS; 7042 SS.Adopt(QualifierLoc); 7043 7044 DeclContext *Ctx = computeDeclContext(SS); 7045 if (!Ctx) { 7046 // If the nested-name-specifier is dependent and couldn't be 7047 // resolved to a type, build a typename type. 7048 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7049 return Context.getDependentNameType(Keyword, 7050 QualifierLoc.getNestedNameSpecifier(), 7051 &II); 7052 } 7053 7054 // If the nested-name-specifier refers to the current instantiation, 7055 // the "typename" keyword itself is superfluous. In C++03, the 7056 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7057 // allows such extraneous "typename" keywords, and we retroactively 7058 // apply this DR to C++03 code with only a warning. In any case we continue. 7059 7060 if (RequireCompleteDeclContext(SS, Ctx)) 7061 return QualType(); 7062 7063 DeclarationName Name(&II); 7064 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7065 LookupQualifiedName(Result, Ctx); 7066 unsigned DiagID = 0; 7067 Decl *Referenced = 0; 7068 switch (Result.getResultKind()) { 7069 case LookupResult::NotFound: { 7070 // If we're looking up 'type' within a template named 'enable_if', produce 7071 // a more specific diagnostic. 7072 SourceRange CondRange; 7073 if (isEnableIf(QualifierLoc, II, CondRange)) { 7074 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7075 << Ctx << CondRange; 7076 return QualType(); 7077 } 7078 7079 DiagID = diag::err_typename_nested_not_found; 7080 break; 7081 } 7082 7083 case LookupResult::FoundUnresolvedValue: { 7084 // We found a using declaration that is a value. Most likely, the using 7085 // declaration itself is meant to have the 'typename' keyword. 7086 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7087 IILoc); 7088 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7089 << Name << Ctx << FullRange; 7090 if (UnresolvedUsingValueDecl *Using 7091 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7092 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7093 Diag(Loc, diag::note_using_value_decl_missing_typename) 7094 << FixItHint::CreateInsertion(Loc, "typename "); 7095 } 7096 } 7097 // Fall through to create a dependent typename type, from which we can recover 7098 // better. 7099 7100 case LookupResult::NotFoundInCurrentInstantiation: 7101 // Okay, it's a member of an unknown instantiation. 7102 return Context.getDependentNameType(Keyword, 7103 QualifierLoc.getNestedNameSpecifier(), 7104 &II); 7105 7106 case LookupResult::Found: 7107 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7108 // We found a type. Build an ElaboratedType, since the 7109 // typename-specifier was just sugar. 7110 return Context.getElaboratedType(ETK_Typename, 7111 QualifierLoc.getNestedNameSpecifier(), 7112 Context.getTypeDeclType(Type)); 7113 } 7114 7115 DiagID = diag::err_typename_nested_not_type; 7116 Referenced = Result.getFoundDecl(); 7117 break; 7118 7119 case LookupResult::FoundOverloaded: 7120 DiagID = diag::err_typename_nested_not_type; 7121 Referenced = *Result.begin(); 7122 break; 7123 7124 case LookupResult::Ambiguous: 7125 return QualType(); 7126 } 7127 7128 // If we get here, it's because name lookup did not find a 7129 // type. Emit an appropriate diagnostic and return an error. 7130 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7131 IILoc); 7132 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7133 if (Referenced) 7134 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7135 << Name; 7136 return QualType(); 7137} 7138 7139namespace { 7140 // See Sema::RebuildTypeInCurrentInstantiation 7141 class CurrentInstantiationRebuilder 7142 : public TreeTransform<CurrentInstantiationRebuilder> { 7143 SourceLocation Loc; 7144 DeclarationName Entity; 7145 7146 public: 7147 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7148 7149 CurrentInstantiationRebuilder(Sema &SemaRef, 7150 SourceLocation Loc, 7151 DeclarationName Entity) 7152 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7153 Loc(Loc), Entity(Entity) { } 7154 7155 /// \brief Determine whether the given type \p T has already been 7156 /// transformed. 7157 /// 7158 /// For the purposes of type reconstruction, a type has already been 7159 /// transformed if it is NULL or if it is not dependent. 7160 bool AlreadyTransformed(QualType T) { 7161 return T.isNull() || !T->isDependentType(); 7162 } 7163 7164 /// \brief Returns the location of the entity whose type is being 7165 /// rebuilt. 7166 SourceLocation getBaseLocation() { return Loc; } 7167 7168 /// \brief Returns the name of the entity whose type is being rebuilt. 7169 DeclarationName getBaseEntity() { return Entity; } 7170 7171 /// \brief Sets the "base" location and entity when that 7172 /// information is known based on another transformation. 7173 void setBase(SourceLocation Loc, DeclarationName Entity) { 7174 this->Loc = Loc; 7175 this->Entity = Entity; 7176 } 7177 7178 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7179 // Lambdas never need to be transformed. 7180 return E; 7181 } 7182 }; 7183} 7184 7185/// \brief Rebuilds a type within the context of the current instantiation. 7186/// 7187/// The type \p T is part of the type of an out-of-line member definition of 7188/// a class template (or class template partial specialization) that was parsed 7189/// and constructed before we entered the scope of the class template (or 7190/// partial specialization thereof). This routine will rebuild that type now 7191/// that we have entered the declarator's scope, which may produce different 7192/// canonical types, e.g., 7193/// 7194/// \code 7195/// template<typename T> 7196/// struct X { 7197/// typedef T* pointer; 7198/// pointer data(); 7199/// }; 7200/// 7201/// template<typename T> 7202/// typename X<T>::pointer X<T>::data() { ... } 7203/// \endcode 7204/// 7205/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7206/// since we do not know that we can look into X<T> when we parsed the type. 7207/// This function will rebuild the type, performing the lookup of "pointer" 7208/// in X<T> and returning an ElaboratedType whose canonical type is the same 7209/// as the canonical type of T*, allowing the return types of the out-of-line 7210/// definition and the declaration to match. 7211TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7212 SourceLocation Loc, 7213 DeclarationName Name) { 7214 if (!T || !T->getType()->isDependentType()) 7215 return T; 7216 7217 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7218 return Rebuilder.TransformType(T); 7219} 7220 7221ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7222 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7223 DeclarationName()); 7224 return Rebuilder.TransformExpr(E); 7225} 7226 7227bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7228 if (SS.isInvalid()) 7229 return true; 7230 7231 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7232 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7233 DeclarationName()); 7234 NestedNameSpecifierLoc Rebuilt 7235 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7236 if (!Rebuilt) 7237 return true; 7238 7239 SS.Adopt(Rebuilt); 7240 return false; 7241} 7242 7243/// \brief Rebuild the template parameters now that we know we're in a current 7244/// instantiation. 7245bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7246 TemplateParameterList *Params) { 7247 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7248 Decl *Param = Params->getParam(I); 7249 7250 // There is nothing to rebuild in a type parameter. 7251 if (isa<TemplateTypeParmDecl>(Param)) 7252 continue; 7253 7254 // Rebuild the template parameter list of a template template parameter. 7255 if (TemplateTemplateParmDecl *TTP 7256 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7257 if (RebuildTemplateParamsInCurrentInstantiation( 7258 TTP->getTemplateParameters())) 7259 return true; 7260 7261 continue; 7262 } 7263 7264 // Rebuild the type of a non-type template parameter. 7265 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7266 TypeSourceInfo *NewTSI 7267 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7268 NTTP->getLocation(), 7269 NTTP->getDeclName()); 7270 if (!NewTSI) 7271 return true; 7272 7273 if (NewTSI != NTTP->getTypeSourceInfo()) { 7274 NTTP->setTypeSourceInfo(NewTSI); 7275 NTTP->setType(NewTSI->getType()); 7276 } 7277 } 7278 7279 return false; 7280} 7281 7282/// \brief Produces a formatted string that describes the binding of 7283/// template parameters to template arguments. 7284std::string 7285Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7286 const TemplateArgumentList &Args) { 7287 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7288} 7289 7290std::string 7291Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7292 const TemplateArgument *Args, 7293 unsigned NumArgs) { 7294 SmallString<128> Str; 7295 llvm::raw_svector_ostream Out(Str); 7296 7297 if (!Params || Params->size() == 0 || NumArgs == 0) 7298 return std::string(); 7299 7300 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7301 if (I >= NumArgs) 7302 break; 7303 7304 if (I == 0) 7305 Out << "[with "; 7306 else 7307 Out << ", "; 7308 7309 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7310 Out << Id->getName(); 7311 } else { 7312 Out << '$' << I; 7313 } 7314 7315 Out << " = "; 7316 Args[I].print(getPrintingPolicy(), Out); 7317 } 7318 7319 Out << ']'; 7320 return Out.str(); 7321} 7322 7323void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7324 if (!FD) 7325 return; 7326 FD->setLateTemplateParsed(Flag); 7327} 7328 7329bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7330 DeclContext *DC = CurContext; 7331 7332 while (DC) { 7333 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7334 const FunctionDecl *FD = RD->isLocalClass(); 7335 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7336 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7337 return false; 7338 7339 DC = DC->getParent(); 7340 } 7341 return false; 7342} 7343