SemaTemplate.cpp revision 4bda1d8cfe7d42b2798a06d16a5b776d980aad5f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337        else
338          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339            << Name << CorrectedQuotedStr
340            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342          Diag(Template->getLocation(), diag::note_previous_decl)
343            << CorrectedQuotedStr;
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358      !(getLangOpts().CPlusPlus0x && !Found.empty())) {
359    // C++03 [basic.lookup.classref]p1:
360    //   [...] If the lookup in the class of the object expression finds a
361    //   template, the name is also looked up in the context of the entire
362    //   postfix-expression and [...]
363    //
364    // Note: C++11 does not perform this second lookup.
365    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                            LookupOrdinaryName);
367    LookupName(FoundOuter, S);
368    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370    if (FoundOuter.empty()) {
371      //   - if the name is not found, the name found in the class of the
372      //     object expression is used, otherwise
373    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374               FoundOuter.isAmbiguous()) {
375      //   - if the name is found in the context of the entire
376      //     postfix-expression and does not name a class template, the name
377      //     found in the class of the object expression is used, otherwise
378      FoundOuter.clear();
379    } else if (!Found.isSuppressingDiagnostics()) {
380      //   - if the name found is a class template, it must refer to the same
381      //     entity as the one found in the class of the object expression,
382      //     otherwise the program is ill-formed.
383      if (!Found.isSingleResult() ||
384          Found.getFoundDecl()->getCanonicalDecl()
385            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386        Diag(Found.getNameLoc(),
387             diag::ext_nested_name_member_ref_lookup_ambiguous)
388          << Found.getLookupName()
389          << ObjectType;
390        Diag(Found.getRepresentativeDecl()->getLocation(),
391             diag::note_ambig_member_ref_object_type)
392          << ObjectType;
393        Diag(FoundOuter.getFoundDecl()->getLocation(),
394             diag::note_ambig_member_ref_scope);
395
396        // Recover by taking the template that we found in the object
397        // expression's type.
398      }
399    }
400  }
401}
402
403/// ActOnDependentIdExpression - Handle a dependent id-expression that
404/// was just parsed.  This is only possible with an explicit scope
405/// specifier naming a dependent type.
406ExprResult
407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                 SourceLocation TemplateKWLoc,
409                                 const DeclarationNameInfo &NameInfo,
410                                 bool isAddressOfOperand,
411                           const TemplateArgumentListInfo *TemplateArgs) {
412  DeclContext *DC = getFunctionLevelDeclContext();
413
414  if (!isAddressOfOperand &&
415      isa<CXXMethodDecl>(DC) &&
416      cast<CXXMethodDecl>(DC)->isInstance()) {
417    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419    // Since the 'this' expression is synthesized, we don't need to
420    // perform the double-lookup check.
421    NamedDecl *FirstQualifierInScope = 0;
422
423    return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                     /*This*/ 0, ThisType,
425                                                     /*IsArrow*/ true,
426                                                     /*Op*/ SourceLocation(),
427                                               SS.getWithLocInContext(Context),
428                                                     TemplateKWLoc,
429                                                     FirstQualifierInScope,
430                                                     NameInfo,
431                                                     TemplateArgs));
432  }
433
434  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435}
436
437ExprResult
438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                SourceLocation TemplateKWLoc,
440                                const DeclarationNameInfo &NameInfo,
441                                const TemplateArgumentListInfo *TemplateArgs) {
442  return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                               SS.getWithLocInContext(Context),
444                                                 TemplateKWLoc,
445                                                 NameInfo,
446                                                 TemplateArgs));
447}
448
449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450/// that the template parameter 'PrevDecl' is being shadowed by a new
451/// declaration at location Loc. Returns true to indicate that this is
452/// an error, and false otherwise.
453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456  // Microsoft Visual C++ permits template parameters to be shadowed.
457  if (getLangOpts().MicrosoftExt)
458    return;
459
460  // C++ [temp.local]p4:
461  //   A template-parameter shall not be redeclared within its
462  //   scope (including nested scopes).
463  Diag(Loc, diag::err_template_param_shadow)
464    << cast<NamedDecl>(PrevDecl)->getDeclName();
465  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466  return;
467}
468
469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470/// the parameter D to reference the templated declaration and return a pointer
471/// to the template declaration. Otherwise, do nothing to D and return null.
472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474    D = Temp->getTemplatedDecl();
475    return Temp;
476  }
477  return 0;
478}
479
480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                             SourceLocation EllipsisLoc) const {
482  assert(Kind == Template &&
483         "Only template template arguments can be pack expansions here");
484  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485         "Template template argument pack expansion without packs");
486  ParsedTemplateArgument Result(*this);
487  Result.EllipsisLoc = EllipsisLoc;
488  return Result;
489}
490
491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                            const ParsedTemplateArgument &Arg) {
493
494  switch (Arg.getKind()) {
495  case ParsedTemplateArgument::Type: {
496    TypeSourceInfo *DI;
497    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498    if (!DI)
499      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500    return TemplateArgumentLoc(TemplateArgument(T), DI);
501  }
502
503  case ParsedTemplateArgument::NonType: {
504    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505    return TemplateArgumentLoc(TemplateArgument(E), E);
506  }
507
508  case ParsedTemplateArgument::Template: {
509    TemplateName Template = Arg.getAsTemplate().get();
510    TemplateArgument TArg;
511    if (Arg.getEllipsisLoc().isValid())
512      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
513    else
514      TArg = Template;
515    return TemplateArgumentLoc(TArg,
516                               Arg.getScopeSpec().getWithLocInContext(
517                                                              SemaRef.Context),
518                               Arg.getLocation(),
519                               Arg.getEllipsisLoc());
520  }
521  }
522
523  llvm_unreachable("Unhandled parsed template argument");
524}
525
526/// \brief Translates template arguments as provided by the parser
527/// into template arguments used by semantic analysis.
528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                      TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531   TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                      TemplateArgsIn[I]));
533}
534
535/// ActOnTypeParameter - Called when a C++ template type parameter
536/// (e.g., "typename T") has been parsed. Typename specifies whether
537/// the keyword "typename" was used to declare the type parameter
538/// (otherwise, "class" was used), and KeyLoc is the location of the
539/// "class" or "typename" keyword. ParamName is the name of the
540/// parameter (NULL indicates an unnamed template parameter) and
541/// ParamNameLoc is the location of the parameter name (if any).
542/// If the type parameter has a default argument, it will be added
543/// later via ActOnTypeParameterDefault.
544Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
545                               SourceLocation EllipsisLoc,
546                               SourceLocation KeyLoc,
547                               IdentifierInfo *ParamName,
548                               SourceLocation ParamNameLoc,
549                               unsigned Depth, unsigned Position,
550                               SourceLocation EqualLoc,
551                               ParsedType DefaultArg) {
552  assert(S->isTemplateParamScope() &&
553         "Template type parameter not in template parameter scope!");
554  bool Invalid = false;
555
556  if (ParamName) {
557    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
558                                           LookupOrdinaryName,
559                                           ForRedeclaration);
560    if (PrevDecl && PrevDecl->isTemplateParameter()) {
561      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
562      PrevDecl = 0;
563    }
564  }
565
566  SourceLocation Loc = ParamNameLoc;
567  if (!ParamName)
568    Loc = KeyLoc;
569
570  TemplateTypeParmDecl *Param
571    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
572                                   KeyLoc, Loc, Depth, Position, ParamName,
573                                   Typename, Ellipsis);
574  Param->setAccess(AS_public);
575  if (Invalid)
576    Param->setInvalidDecl();
577
578  if (ParamName) {
579    // Add the template parameter into the current scope.
580    S->AddDecl(Param);
581    IdResolver.AddDecl(Param);
582  }
583
584  // C++0x [temp.param]p9:
585  //   A default template-argument may be specified for any kind of
586  //   template-parameter that is not a template parameter pack.
587  if (DefaultArg && Ellipsis) {
588    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
589    DefaultArg = ParsedType();
590  }
591
592  // Handle the default argument, if provided.
593  if (DefaultArg) {
594    TypeSourceInfo *DefaultTInfo;
595    GetTypeFromParser(DefaultArg, &DefaultTInfo);
596
597    assert(DefaultTInfo && "expected source information for type");
598
599    // Check for unexpanded parameter packs.
600    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
601                                        UPPC_DefaultArgument))
602      return Param;
603
604    // Check the template argument itself.
605    if (CheckTemplateArgument(Param, DefaultTInfo)) {
606      Param->setInvalidDecl();
607      return Param;
608    }
609
610    Param->setDefaultArgument(DefaultTInfo, false);
611  }
612
613  return Param;
614}
615
616/// \brief Check that the type of a non-type template parameter is
617/// well-formed.
618///
619/// \returns the (possibly-promoted) parameter type if valid;
620/// otherwise, produces a diagnostic and returns a NULL type.
621QualType
622Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
623  // We don't allow variably-modified types as the type of non-type template
624  // parameters.
625  if (T->isVariablyModifiedType()) {
626    Diag(Loc, diag::err_variably_modified_nontype_template_param)
627      << T;
628    return QualType();
629  }
630
631  // C++ [temp.param]p4:
632  //
633  // A non-type template-parameter shall have one of the following
634  // (optionally cv-qualified) types:
635  //
636  //       -- integral or enumeration type,
637  if (T->isIntegralOrEnumerationType() ||
638      //   -- pointer to object or pointer to function,
639      T->isPointerType() ||
640      //   -- reference to object or reference to function,
641      T->isReferenceType() ||
642      //   -- pointer to member,
643      T->isMemberPointerType() ||
644      //   -- std::nullptr_t.
645      T->isNullPtrType() ||
646      // If T is a dependent type, we can't do the check now, so we
647      // assume that it is well-formed.
648      T->isDependentType()) {
649    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
650    // are ignored when determining its type.
651    return T.getUnqualifiedType();
652  }
653
654  // C++ [temp.param]p8:
655  //
656  //   A non-type template-parameter of type "array of T" or
657  //   "function returning T" is adjusted to be of type "pointer to
658  //   T" or "pointer to function returning T", respectively.
659  else if (T->isArrayType())
660    // FIXME: Keep the type prior to promotion?
661    return Context.getArrayDecayedType(T);
662  else if (T->isFunctionType())
663    // FIXME: Keep the type prior to promotion?
664    return Context.getPointerType(T);
665
666  Diag(Loc, diag::err_template_nontype_parm_bad_type)
667    << T;
668
669  return QualType();
670}
671
672Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
673                                          unsigned Depth,
674                                          unsigned Position,
675                                          SourceLocation EqualLoc,
676                                          Expr *Default) {
677  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
678  QualType T = TInfo->getType();
679
680  assert(S->isTemplateParamScope() &&
681         "Non-type template parameter not in template parameter scope!");
682  bool Invalid = false;
683
684  IdentifierInfo *ParamName = D.getIdentifier();
685  if (ParamName) {
686    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
687                                           LookupOrdinaryName,
688                                           ForRedeclaration);
689    if (PrevDecl && PrevDecl->isTemplateParameter()) {
690      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
691      PrevDecl = 0;
692    }
693  }
694
695  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
696  if (T.isNull()) {
697    T = Context.IntTy; // Recover with an 'int' type.
698    Invalid = true;
699  }
700
701  bool IsParameterPack = D.hasEllipsis();
702  NonTypeTemplateParmDecl *Param
703    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
704                                      D.getLocStart(),
705                                      D.getIdentifierLoc(),
706                                      Depth, Position, ParamName, T,
707                                      IsParameterPack, TInfo);
708  Param->setAccess(AS_public);
709
710  if (Invalid)
711    Param->setInvalidDecl();
712
713  if (D.getIdentifier()) {
714    // Add the template parameter into the current scope.
715    S->AddDecl(Param);
716    IdResolver.AddDecl(Param);
717  }
718
719  // C++0x [temp.param]p9:
720  //   A default template-argument may be specified for any kind of
721  //   template-parameter that is not a template parameter pack.
722  if (Default && IsParameterPack) {
723    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
724    Default = 0;
725  }
726
727  // Check the well-formedness of the default template argument, if provided.
728  if (Default) {
729    // Check for unexpanded parameter packs.
730    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
731      return Param;
732
733    TemplateArgument Converted;
734    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
735    if (DefaultRes.isInvalid()) {
736      Param->setInvalidDecl();
737      return Param;
738    }
739    Default = DefaultRes.take();
740
741    Param->setDefaultArgument(Default, false);
742  }
743
744  return Param;
745}
746
747/// ActOnTemplateTemplateParameter - Called when a C++ template template
748/// parameter (e.g. T in template <template \<typename> class T> class array)
749/// has been parsed. S is the current scope.
750Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
751                                           SourceLocation TmpLoc,
752                                           TemplateParameterList *Params,
753                                           SourceLocation EllipsisLoc,
754                                           IdentifierInfo *Name,
755                                           SourceLocation NameLoc,
756                                           unsigned Depth,
757                                           unsigned Position,
758                                           SourceLocation EqualLoc,
759                                           ParsedTemplateArgument Default) {
760  assert(S->isTemplateParamScope() &&
761         "Template template parameter not in template parameter scope!");
762
763  // Construct the parameter object.
764  bool IsParameterPack = EllipsisLoc.isValid();
765  TemplateTemplateParmDecl *Param =
766    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
767                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
768                                     Depth, Position, IsParameterPack,
769                                     Name, Params);
770  Param->setAccess(AS_public);
771
772  // If the template template parameter has a name, then link the identifier
773  // into the scope and lookup mechanisms.
774  if (Name) {
775    S->AddDecl(Param);
776    IdResolver.AddDecl(Param);
777  }
778
779  if (Params->size() == 0) {
780    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
781    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
782    Param->setInvalidDecl();
783  }
784
785  // C++0x [temp.param]p9:
786  //   A default template-argument may be specified for any kind of
787  //   template-parameter that is not a template parameter pack.
788  if (IsParameterPack && !Default.isInvalid()) {
789    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
790    Default = ParsedTemplateArgument();
791  }
792
793  if (!Default.isInvalid()) {
794    // Check only that we have a template template argument. We don't want to
795    // try to check well-formedness now, because our template template parameter
796    // might have dependent types in its template parameters, which we wouldn't
797    // be able to match now.
798    //
799    // If none of the template template parameter's template arguments mention
800    // other template parameters, we could actually perform more checking here.
801    // However, it isn't worth doing.
802    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
803    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
804      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
805        << DefaultArg.getSourceRange();
806      return Param;
807    }
808
809    // Check for unexpanded parameter packs.
810    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
811                                        DefaultArg.getArgument().getAsTemplate(),
812                                        UPPC_DefaultArgument))
813      return Param;
814
815    Param->setDefaultArgument(DefaultArg, false);
816  }
817
818  return Param;
819}
820
821/// ActOnTemplateParameterList - Builds a TemplateParameterList that
822/// contains the template parameters in Params/NumParams.
823TemplateParameterList *
824Sema::ActOnTemplateParameterList(unsigned Depth,
825                                 SourceLocation ExportLoc,
826                                 SourceLocation TemplateLoc,
827                                 SourceLocation LAngleLoc,
828                                 Decl **Params, unsigned NumParams,
829                                 SourceLocation RAngleLoc) {
830  if (ExportLoc.isValid())
831    Diag(ExportLoc, diag::warn_template_export_unsupported);
832
833  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
834                                       (NamedDecl**)Params, NumParams,
835                                       RAngleLoc);
836}
837
838static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
839  if (SS.isSet())
840    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
841}
842
843DeclResult
844Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
845                         SourceLocation KWLoc, CXXScopeSpec &SS,
846                         IdentifierInfo *Name, SourceLocation NameLoc,
847                         AttributeList *Attr,
848                         TemplateParameterList *TemplateParams,
849                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
850                         unsigned NumOuterTemplateParamLists,
851                         TemplateParameterList** OuterTemplateParamLists) {
852  assert(TemplateParams && TemplateParams->size() > 0 &&
853         "No template parameters");
854  assert(TUK != TUK_Reference && "Can only declare or define class templates");
855  bool Invalid = false;
856
857  // Check that we can declare a template here.
858  if (CheckTemplateDeclScope(S, TemplateParams))
859    return true;
860
861  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
862  assert(Kind != TTK_Enum && "can't build template of enumerated type");
863
864  // There is no such thing as an unnamed class template.
865  if (!Name) {
866    Diag(KWLoc, diag::err_template_unnamed_class);
867    return true;
868  }
869
870  // Find any previous declaration with this name. For a friend with no
871  // scope explicitly specified, we only look for tag declarations (per
872  // C++11 [basic.lookup.elab]p2).
873  DeclContext *SemanticContext;
874  LookupResult Previous(*this, Name, NameLoc,
875                        (SS.isEmpty() && TUK == TUK_Friend)
876                          ? LookupTagName : LookupOrdinaryName,
877                        ForRedeclaration);
878  if (SS.isNotEmpty() && !SS.isInvalid()) {
879    SemanticContext = computeDeclContext(SS, true);
880    if (!SemanticContext) {
881      // FIXME: Horrible, horrible hack! We can't currently represent this
882      // in the AST, and historically we have just ignored such friend
883      // class templates, so don't complain here.
884      if (TUK != TUK_Friend)
885        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
886          << SS.getScopeRep() << SS.getRange();
887      return true;
888    }
889
890    if (RequireCompleteDeclContext(SS, SemanticContext))
891      return true;
892
893    // If we're adding a template to a dependent context, we may need to
894    // rebuilding some of the types used within the template parameter list,
895    // now that we know what the current instantiation is.
896    if (SemanticContext->isDependentContext()) {
897      ContextRAII SavedContext(*this, SemanticContext);
898      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
899        Invalid = true;
900    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
901      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
902
903    LookupQualifiedName(Previous, SemanticContext);
904  } else {
905    SemanticContext = CurContext;
906    LookupName(Previous, S);
907  }
908
909  if (Previous.isAmbiguous())
910    return true;
911
912  NamedDecl *PrevDecl = 0;
913  if (Previous.begin() != Previous.end())
914    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
915
916  // If there is a previous declaration with the same name, check
917  // whether this is a valid redeclaration.
918  ClassTemplateDecl *PrevClassTemplate
919    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
920
921  // We may have found the injected-class-name of a class template,
922  // class template partial specialization, or class template specialization.
923  // In these cases, grab the template that is being defined or specialized.
924  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
925      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
926    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
927    PrevClassTemplate
928      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
929    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
930      PrevClassTemplate
931        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
932            ->getSpecializedTemplate();
933    }
934  }
935
936  if (TUK == TUK_Friend) {
937    // C++ [namespace.memdef]p3:
938    //   [...] When looking for a prior declaration of a class or a function
939    //   declared as a friend, and when the name of the friend class or
940    //   function is neither a qualified name nor a template-id, scopes outside
941    //   the innermost enclosing namespace scope are not considered.
942    if (!SS.isSet()) {
943      DeclContext *OutermostContext = CurContext;
944      while (!OutermostContext->isFileContext())
945        OutermostContext = OutermostContext->getLookupParent();
946
947      if (PrevDecl &&
948          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
949           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
950        SemanticContext = PrevDecl->getDeclContext();
951      } else {
952        // Declarations in outer scopes don't matter. However, the outermost
953        // context we computed is the semantic context for our new
954        // declaration.
955        PrevDecl = PrevClassTemplate = 0;
956        SemanticContext = OutermostContext;
957
958        // Check that the chosen semantic context doesn't already contain a
959        // declaration of this name as a non-tag type.
960        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
961                              ForRedeclaration);
962        DeclContext *LookupContext = SemanticContext;
963        while (LookupContext->isTransparentContext())
964          LookupContext = LookupContext->getLookupParent();
965        LookupQualifiedName(Previous, LookupContext);
966
967        if (Previous.isAmbiguous())
968          return true;
969
970        if (Previous.begin() != Previous.end())
971          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
972      }
973    }
974  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
975    PrevDecl = PrevClassTemplate = 0;
976
977  if (PrevClassTemplate) {
978    // Ensure that the template parameter lists are compatible. Skip this check
979    // for a friend in a dependent context: the template parameter list itself
980    // could be dependent.
981    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
982        !TemplateParameterListsAreEqual(TemplateParams,
983                                   PrevClassTemplate->getTemplateParameters(),
984                                        /*Complain=*/true,
985                                        TPL_TemplateMatch))
986      return true;
987
988    // C++ [temp.class]p4:
989    //   In a redeclaration, partial specialization, explicit
990    //   specialization or explicit instantiation of a class template,
991    //   the class-key shall agree in kind with the original class
992    //   template declaration (7.1.5.3).
993    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
994    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
995                                      TUK == TUK_Definition,  KWLoc, *Name)) {
996      Diag(KWLoc, diag::err_use_with_wrong_tag)
997        << Name
998        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
999      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1000      Kind = PrevRecordDecl->getTagKind();
1001    }
1002
1003    // Check for redefinition of this class template.
1004    if (TUK == TUK_Definition) {
1005      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1006        Diag(NameLoc, diag::err_redefinition) << Name;
1007        Diag(Def->getLocation(), diag::note_previous_definition);
1008        // FIXME: Would it make sense to try to "forget" the previous
1009        // definition, as part of error recovery?
1010        return true;
1011      }
1012    }
1013  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1014    // Maybe we will complain about the shadowed template parameter.
1015    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1016    // Just pretend that we didn't see the previous declaration.
1017    PrevDecl = 0;
1018  } else if (PrevDecl) {
1019    // C++ [temp]p5:
1020    //   A class template shall not have the same name as any other
1021    //   template, class, function, object, enumeration, enumerator,
1022    //   namespace, or type in the same scope (3.3), except as specified
1023    //   in (14.5.4).
1024    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1025    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1026    return true;
1027  }
1028
1029  // Check the template parameter list of this declaration, possibly
1030  // merging in the template parameter list from the previous class
1031  // template declaration. Skip this check for a friend in a dependent
1032  // context, because the template parameter list might be dependent.
1033  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1034      CheckTemplateParameterList(TemplateParams,
1035            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1036                                 (SS.isSet() && SemanticContext &&
1037                                  SemanticContext->isRecord() &&
1038                                  SemanticContext->isDependentContext())
1039                                   ? TPC_ClassTemplateMember
1040                                   : TPC_ClassTemplate))
1041    Invalid = true;
1042
1043  if (SS.isSet()) {
1044    // If the name of the template was qualified, we must be defining the
1045    // template out-of-line.
1046    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1047      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1048                                      : diag::err_member_def_does_not_match)
1049        << Name << SemanticContext << SS.getRange();
1050      Invalid = true;
1051    }
1052  }
1053
1054  CXXRecordDecl *NewClass =
1055    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1056                          PrevClassTemplate?
1057                            PrevClassTemplate->getTemplatedDecl() : 0,
1058                          /*DelayTypeCreation=*/true);
1059  SetNestedNameSpecifier(NewClass, SS);
1060  if (NumOuterTemplateParamLists > 0)
1061    NewClass->setTemplateParameterListsInfo(Context,
1062                                            NumOuterTemplateParamLists,
1063                                            OuterTemplateParamLists);
1064
1065  // Add alignment attributes if necessary; these attributes are checked when
1066  // the ASTContext lays out the structure.
1067  if (TUK == TUK_Definition) {
1068    AddAlignmentAttributesForRecord(NewClass);
1069    AddMsStructLayoutForRecord(NewClass);
1070  }
1071
1072  ClassTemplateDecl *NewTemplate
1073    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1074                                DeclarationName(Name), TemplateParams,
1075                                NewClass, PrevClassTemplate);
1076  NewClass->setDescribedClassTemplate(NewTemplate);
1077
1078  if (ModulePrivateLoc.isValid())
1079    NewTemplate->setModulePrivate();
1080
1081  // Build the type for the class template declaration now.
1082  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1083  T = Context.getInjectedClassNameType(NewClass, T);
1084  assert(T->isDependentType() && "Class template type is not dependent?");
1085  (void)T;
1086
1087  // If we are providing an explicit specialization of a member that is a
1088  // class template, make a note of that.
1089  if (PrevClassTemplate &&
1090      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1091    PrevClassTemplate->setMemberSpecialization();
1092
1093  // Set the access specifier.
1094  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1095    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1096
1097  // Set the lexical context of these templates
1098  NewClass->setLexicalDeclContext(CurContext);
1099  NewTemplate->setLexicalDeclContext(CurContext);
1100
1101  if (TUK == TUK_Definition)
1102    NewClass->startDefinition();
1103
1104  if (Attr)
1105    ProcessDeclAttributeList(S, NewClass, Attr);
1106
1107  if (PrevClassTemplate)
1108    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1109
1110  AddPushedVisibilityAttribute(NewClass);
1111
1112  if (TUK != TUK_Friend)
1113    PushOnScopeChains(NewTemplate, S);
1114  else {
1115    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1116      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1117      NewClass->setAccess(PrevClassTemplate->getAccess());
1118    }
1119
1120    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1121                                       PrevClassTemplate != NULL);
1122
1123    // Friend templates are visible in fairly strange ways.
1124    if (!CurContext->isDependentContext()) {
1125      DeclContext *DC = SemanticContext->getRedeclContext();
1126      DC->makeDeclVisibleInContext(NewTemplate);
1127      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1128        PushOnScopeChains(NewTemplate, EnclosingScope,
1129                          /* AddToContext = */ false);
1130    }
1131
1132    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1133                                            NewClass->getLocation(),
1134                                            NewTemplate,
1135                                    /*FIXME:*/NewClass->getLocation());
1136    Friend->setAccess(AS_public);
1137    CurContext->addDecl(Friend);
1138  }
1139
1140  if (Invalid) {
1141    NewTemplate->setInvalidDecl();
1142    NewClass->setInvalidDecl();
1143  }
1144
1145  ActOnDocumentableDecl(NewTemplate);
1146
1147  return NewTemplate;
1148}
1149
1150/// \brief Diagnose the presence of a default template argument on a
1151/// template parameter, which is ill-formed in certain contexts.
1152///
1153/// \returns true if the default template argument should be dropped.
1154static bool DiagnoseDefaultTemplateArgument(Sema &S,
1155                                            Sema::TemplateParamListContext TPC,
1156                                            SourceLocation ParamLoc,
1157                                            SourceRange DefArgRange) {
1158  switch (TPC) {
1159  case Sema::TPC_ClassTemplate:
1160  case Sema::TPC_TypeAliasTemplate:
1161    return false;
1162
1163  case Sema::TPC_FunctionTemplate:
1164  case Sema::TPC_FriendFunctionTemplateDefinition:
1165    // C++ [temp.param]p9:
1166    //   A default template-argument shall not be specified in a
1167    //   function template declaration or a function template
1168    //   definition [...]
1169    //   If a friend function template declaration specifies a default
1170    //   template-argument, that declaration shall be a definition and shall be
1171    //   the only declaration of the function template in the translation unit.
1172    // (C++98/03 doesn't have this wording; see DR226).
1173    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1174         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1175           : diag::ext_template_parameter_default_in_function_template)
1176      << DefArgRange;
1177    return false;
1178
1179  case Sema::TPC_ClassTemplateMember:
1180    // C++0x [temp.param]p9:
1181    //   A default template-argument shall not be specified in the
1182    //   template-parameter-lists of the definition of a member of a
1183    //   class template that appears outside of the member's class.
1184    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1185      << DefArgRange;
1186    return true;
1187
1188  case Sema::TPC_FriendFunctionTemplate:
1189    // C++ [temp.param]p9:
1190    //   A default template-argument shall not be specified in a
1191    //   friend template declaration.
1192    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1193      << DefArgRange;
1194    return true;
1195
1196    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1197    // for friend function templates if there is only a single
1198    // declaration (and it is a definition). Strange!
1199  }
1200
1201  llvm_unreachable("Invalid TemplateParamListContext!");
1202}
1203
1204/// \brief Check for unexpanded parameter packs within the template parameters
1205/// of a template template parameter, recursively.
1206static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1207                                             TemplateTemplateParmDecl *TTP) {
1208  TemplateParameterList *Params = TTP->getTemplateParameters();
1209  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1210    NamedDecl *P = Params->getParam(I);
1211    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1212      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1213                                            NTTP->getTypeSourceInfo(),
1214                                      Sema::UPPC_NonTypeTemplateParameterType))
1215        return true;
1216
1217      continue;
1218    }
1219
1220    if (TemplateTemplateParmDecl *InnerTTP
1221                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1222      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1223        return true;
1224  }
1225
1226  return false;
1227}
1228
1229/// \brief Checks the validity of a template parameter list, possibly
1230/// considering the template parameter list from a previous
1231/// declaration.
1232///
1233/// If an "old" template parameter list is provided, it must be
1234/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1235/// template parameter list.
1236///
1237/// \param NewParams Template parameter list for a new template
1238/// declaration. This template parameter list will be updated with any
1239/// default arguments that are carried through from the previous
1240/// template parameter list.
1241///
1242/// \param OldParams If provided, template parameter list from a
1243/// previous declaration of the same template. Default template
1244/// arguments will be merged from the old template parameter list to
1245/// the new template parameter list.
1246///
1247/// \param TPC Describes the context in which we are checking the given
1248/// template parameter list.
1249///
1250/// \returns true if an error occurred, false otherwise.
1251bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1252                                      TemplateParameterList *OldParams,
1253                                      TemplateParamListContext TPC) {
1254  bool Invalid = false;
1255
1256  // C++ [temp.param]p10:
1257  //   The set of default template-arguments available for use with a
1258  //   template declaration or definition is obtained by merging the
1259  //   default arguments from the definition (if in scope) and all
1260  //   declarations in scope in the same way default function
1261  //   arguments are (8.3.6).
1262  bool SawDefaultArgument = false;
1263  SourceLocation PreviousDefaultArgLoc;
1264
1265  // Dummy initialization to avoid warnings.
1266  TemplateParameterList::iterator OldParam = NewParams->end();
1267  if (OldParams)
1268    OldParam = OldParams->begin();
1269
1270  bool RemoveDefaultArguments = false;
1271  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1272                                    NewParamEnd = NewParams->end();
1273       NewParam != NewParamEnd; ++NewParam) {
1274    // Variables used to diagnose redundant default arguments
1275    bool RedundantDefaultArg = false;
1276    SourceLocation OldDefaultLoc;
1277    SourceLocation NewDefaultLoc;
1278
1279    // Variable used to diagnose missing default arguments
1280    bool MissingDefaultArg = false;
1281
1282    // Variable used to diagnose non-final parameter packs
1283    bool SawParameterPack = false;
1284
1285    if (TemplateTypeParmDecl *NewTypeParm
1286          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1287      // Check the presence of a default argument here.
1288      if (NewTypeParm->hasDefaultArgument() &&
1289          DiagnoseDefaultTemplateArgument(*this, TPC,
1290                                          NewTypeParm->getLocation(),
1291               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1292                                                       .getSourceRange()))
1293        NewTypeParm->removeDefaultArgument();
1294
1295      // Merge default arguments for template type parameters.
1296      TemplateTypeParmDecl *OldTypeParm
1297          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1298
1299      if (NewTypeParm->isParameterPack()) {
1300        assert(!NewTypeParm->hasDefaultArgument() &&
1301               "Parameter packs can't have a default argument!");
1302        SawParameterPack = true;
1303      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1304                 NewTypeParm->hasDefaultArgument()) {
1305        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1306        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1307        SawDefaultArgument = true;
1308        RedundantDefaultArg = true;
1309        PreviousDefaultArgLoc = NewDefaultLoc;
1310      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1311        // Merge the default argument from the old declaration to the
1312        // new declaration.
1313        SawDefaultArgument = true;
1314        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1315                                        true);
1316        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1317      } else if (NewTypeParm->hasDefaultArgument()) {
1318        SawDefaultArgument = true;
1319        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1320      } else if (SawDefaultArgument)
1321        MissingDefaultArg = true;
1322    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1323               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1324      // Check for unexpanded parameter packs.
1325      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1326                                          NewNonTypeParm->getTypeSourceInfo(),
1327                                          UPPC_NonTypeTemplateParameterType)) {
1328        Invalid = true;
1329        continue;
1330      }
1331
1332      // Check the presence of a default argument here.
1333      if (NewNonTypeParm->hasDefaultArgument() &&
1334          DiagnoseDefaultTemplateArgument(*this, TPC,
1335                                          NewNonTypeParm->getLocation(),
1336                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1337        NewNonTypeParm->removeDefaultArgument();
1338      }
1339
1340      // Merge default arguments for non-type template parameters
1341      NonTypeTemplateParmDecl *OldNonTypeParm
1342        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1343      if (NewNonTypeParm->isParameterPack()) {
1344        assert(!NewNonTypeParm->hasDefaultArgument() &&
1345               "Parameter packs can't have a default argument!");
1346        SawParameterPack = true;
1347      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1348          NewNonTypeParm->hasDefaultArgument()) {
1349        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1350        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1351        SawDefaultArgument = true;
1352        RedundantDefaultArg = true;
1353        PreviousDefaultArgLoc = NewDefaultLoc;
1354      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1355        // Merge the default argument from the old declaration to the
1356        // new declaration.
1357        SawDefaultArgument = true;
1358        // FIXME: We need to create a new kind of "default argument"
1359        // expression that points to a previous non-type template
1360        // parameter.
1361        NewNonTypeParm->setDefaultArgument(
1362                                         OldNonTypeParm->getDefaultArgument(),
1363                                         /*Inherited=*/ true);
1364        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1365      } else if (NewNonTypeParm->hasDefaultArgument()) {
1366        SawDefaultArgument = true;
1367        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1368      } else if (SawDefaultArgument)
1369        MissingDefaultArg = true;
1370    } else {
1371      TemplateTemplateParmDecl *NewTemplateParm
1372        = cast<TemplateTemplateParmDecl>(*NewParam);
1373
1374      // Check for unexpanded parameter packs, recursively.
1375      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1376        Invalid = true;
1377        continue;
1378      }
1379
1380      // Check the presence of a default argument here.
1381      if (NewTemplateParm->hasDefaultArgument() &&
1382          DiagnoseDefaultTemplateArgument(*this, TPC,
1383                                          NewTemplateParm->getLocation(),
1384                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1385        NewTemplateParm->removeDefaultArgument();
1386
1387      // Merge default arguments for template template parameters
1388      TemplateTemplateParmDecl *OldTemplateParm
1389        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1390      if (NewTemplateParm->isParameterPack()) {
1391        assert(!NewTemplateParm->hasDefaultArgument() &&
1392               "Parameter packs can't have a default argument!");
1393        SawParameterPack = true;
1394      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1395          NewTemplateParm->hasDefaultArgument()) {
1396        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1397        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1398        SawDefaultArgument = true;
1399        RedundantDefaultArg = true;
1400        PreviousDefaultArgLoc = NewDefaultLoc;
1401      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1402        // Merge the default argument from the old declaration to the
1403        // new declaration.
1404        SawDefaultArgument = true;
1405        // FIXME: We need to create a new kind of "default argument" expression
1406        // that points to a previous template template parameter.
1407        NewTemplateParm->setDefaultArgument(
1408                                          OldTemplateParm->getDefaultArgument(),
1409                                          /*Inherited=*/ true);
1410        PreviousDefaultArgLoc
1411          = OldTemplateParm->getDefaultArgument().getLocation();
1412      } else if (NewTemplateParm->hasDefaultArgument()) {
1413        SawDefaultArgument = true;
1414        PreviousDefaultArgLoc
1415          = NewTemplateParm->getDefaultArgument().getLocation();
1416      } else if (SawDefaultArgument)
1417        MissingDefaultArg = true;
1418    }
1419
1420    // C++0x [temp.param]p11:
1421    //   If a template parameter of a primary class template or alias template
1422    //   is a template parameter pack, it shall be the last template parameter.
1423    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1424        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1425      Diag((*NewParam)->getLocation(),
1426           diag::err_template_param_pack_must_be_last_template_parameter);
1427      Invalid = true;
1428    }
1429
1430    if (RedundantDefaultArg) {
1431      // C++ [temp.param]p12:
1432      //   A template-parameter shall not be given default arguments
1433      //   by two different declarations in the same scope.
1434      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1435      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1436      Invalid = true;
1437    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1438      // C++ [temp.param]p11:
1439      //   If a template-parameter of a class template has a default
1440      //   template-argument, each subsequent template-parameter shall either
1441      //   have a default template-argument supplied or be a template parameter
1442      //   pack.
1443      Diag((*NewParam)->getLocation(),
1444           diag::err_template_param_default_arg_missing);
1445      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1446      Invalid = true;
1447      RemoveDefaultArguments = true;
1448    }
1449
1450    // If we have an old template parameter list that we're merging
1451    // in, move on to the next parameter.
1452    if (OldParams)
1453      ++OldParam;
1454  }
1455
1456  // We were missing some default arguments at the end of the list, so remove
1457  // all of the default arguments.
1458  if (RemoveDefaultArguments) {
1459    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1460                                      NewParamEnd = NewParams->end();
1461         NewParam != NewParamEnd; ++NewParam) {
1462      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1463        TTP->removeDefaultArgument();
1464      else if (NonTypeTemplateParmDecl *NTTP
1465                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1466        NTTP->removeDefaultArgument();
1467      else
1468        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1469    }
1470  }
1471
1472  return Invalid;
1473}
1474
1475namespace {
1476
1477/// A class which looks for a use of a certain level of template
1478/// parameter.
1479struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1480  typedef RecursiveASTVisitor<DependencyChecker> super;
1481
1482  unsigned Depth;
1483  bool Match;
1484
1485  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1486    NamedDecl *ND = Params->getParam(0);
1487    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1488      Depth = PD->getDepth();
1489    } else if (NonTypeTemplateParmDecl *PD =
1490                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1491      Depth = PD->getDepth();
1492    } else {
1493      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1494    }
1495  }
1496
1497  bool Matches(unsigned ParmDepth) {
1498    if (ParmDepth >= Depth) {
1499      Match = true;
1500      return true;
1501    }
1502    return false;
1503  }
1504
1505  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1506    return !Matches(T->getDepth());
1507  }
1508
1509  bool TraverseTemplateName(TemplateName N) {
1510    if (TemplateTemplateParmDecl *PD =
1511          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1512      if (Matches(PD->getDepth())) return false;
1513    return super::TraverseTemplateName(N);
1514  }
1515
1516  bool VisitDeclRefExpr(DeclRefExpr *E) {
1517    if (NonTypeTemplateParmDecl *PD =
1518          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1519      if (PD->getDepth() == Depth) {
1520        Match = true;
1521        return false;
1522      }
1523    }
1524    return super::VisitDeclRefExpr(E);
1525  }
1526
1527  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1528    return TraverseType(T->getInjectedSpecializationType());
1529  }
1530};
1531}
1532
1533/// Determines whether a given type depends on the given parameter
1534/// list.
1535static bool
1536DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1537  DependencyChecker Checker(Params);
1538  Checker.TraverseType(T);
1539  return Checker.Match;
1540}
1541
1542// Find the source range corresponding to the named type in the given
1543// nested-name-specifier, if any.
1544static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1545                                                       QualType T,
1546                                                       const CXXScopeSpec &SS) {
1547  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1548  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1549    if (const Type *CurType = NNS->getAsType()) {
1550      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1551        return NNSLoc.getTypeLoc().getSourceRange();
1552    } else
1553      break;
1554
1555    NNSLoc = NNSLoc.getPrefix();
1556  }
1557
1558  return SourceRange();
1559}
1560
1561/// \brief Match the given template parameter lists to the given scope
1562/// specifier, returning the template parameter list that applies to the
1563/// name.
1564///
1565/// \param DeclStartLoc the start of the declaration that has a scope
1566/// specifier or a template parameter list.
1567///
1568/// \param DeclLoc The location of the declaration itself.
1569///
1570/// \param SS the scope specifier that will be matched to the given template
1571/// parameter lists. This scope specifier precedes a qualified name that is
1572/// being declared.
1573///
1574/// \param ParamLists the template parameter lists, from the outermost to the
1575/// innermost template parameter lists.
1576///
1577/// \param NumParamLists the number of template parameter lists in ParamLists.
1578///
1579/// \param IsFriend Whether to apply the slightly different rules for
1580/// matching template parameters to scope specifiers in friend
1581/// declarations.
1582///
1583/// \param IsExplicitSpecialization will be set true if the entity being
1584/// declared is an explicit specialization, false otherwise.
1585///
1586/// \returns the template parameter list, if any, that corresponds to the
1587/// name that is preceded by the scope specifier @p SS. This template
1588/// parameter list may have template parameters (if we're declaring a
1589/// template) or may have no template parameters (if we're declaring a
1590/// template specialization), or may be NULL (if what we're declaring isn't
1591/// itself a template).
1592TemplateParameterList *
1593Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1594                                              SourceLocation DeclLoc,
1595                                              const CXXScopeSpec &SS,
1596                                          TemplateParameterList **ParamLists,
1597                                              unsigned NumParamLists,
1598                                              bool IsFriend,
1599                                              bool &IsExplicitSpecialization,
1600                                              bool &Invalid) {
1601  IsExplicitSpecialization = false;
1602  Invalid = false;
1603
1604  // The sequence of nested types to which we will match up the template
1605  // parameter lists. We first build this list by starting with the type named
1606  // by the nested-name-specifier and walking out until we run out of types.
1607  SmallVector<QualType, 4> NestedTypes;
1608  QualType T;
1609  if (SS.getScopeRep()) {
1610    if (CXXRecordDecl *Record
1611              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1612      T = Context.getTypeDeclType(Record);
1613    else
1614      T = QualType(SS.getScopeRep()->getAsType(), 0);
1615  }
1616
1617  // If we found an explicit specialization that prevents us from needing
1618  // 'template<>' headers, this will be set to the location of that
1619  // explicit specialization.
1620  SourceLocation ExplicitSpecLoc;
1621
1622  while (!T.isNull()) {
1623    NestedTypes.push_back(T);
1624
1625    // Retrieve the parent of a record type.
1626    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1627      // If this type is an explicit specialization, we're done.
1628      if (ClassTemplateSpecializationDecl *Spec
1629          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1630        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1631            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1632          ExplicitSpecLoc = Spec->getLocation();
1633          break;
1634        }
1635      } else if (Record->getTemplateSpecializationKind()
1636                                                == TSK_ExplicitSpecialization) {
1637        ExplicitSpecLoc = Record->getLocation();
1638        break;
1639      }
1640
1641      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1642        T = Context.getTypeDeclType(Parent);
1643      else
1644        T = QualType();
1645      continue;
1646    }
1647
1648    if (const TemplateSpecializationType *TST
1649                                     = T->getAs<TemplateSpecializationType>()) {
1650      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1651        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1652          T = Context.getTypeDeclType(Parent);
1653        else
1654          T = QualType();
1655        continue;
1656      }
1657    }
1658
1659    // Look one step prior in a dependent template specialization type.
1660    if (const DependentTemplateSpecializationType *DependentTST
1661                          = T->getAs<DependentTemplateSpecializationType>()) {
1662      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1663        T = QualType(NNS->getAsType(), 0);
1664      else
1665        T = QualType();
1666      continue;
1667    }
1668
1669    // Look one step prior in a dependent name type.
1670    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1671      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1672        T = QualType(NNS->getAsType(), 0);
1673      else
1674        T = QualType();
1675      continue;
1676    }
1677
1678    // Retrieve the parent of an enumeration type.
1679    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1680      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1681      // check here.
1682      EnumDecl *Enum = EnumT->getDecl();
1683
1684      // Get to the parent type.
1685      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1686        T = Context.getTypeDeclType(Parent);
1687      else
1688        T = QualType();
1689      continue;
1690    }
1691
1692    T = QualType();
1693  }
1694  // Reverse the nested types list, since we want to traverse from the outermost
1695  // to the innermost while checking template-parameter-lists.
1696  std::reverse(NestedTypes.begin(), NestedTypes.end());
1697
1698  // C++0x [temp.expl.spec]p17:
1699  //   A member or a member template may be nested within many
1700  //   enclosing class templates. In an explicit specialization for
1701  //   such a member, the member declaration shall be preceded by a
1702  //   template<> for each enclosing class template that is
1703  //   explicitly specialized.
1704  bool SawNonEmptyTemplateParameterList = false;
1705  unsigned ParamIdx = 0;
1706  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1707       ++TypeIdx) {
1708    T = NestedTypes[TypeIdx];
1709
1710    // Whether we expect a 'template<>' header.
1711    bool NeedEmptyTemplateHeader = false;
1712
1713    // Whether we expect a template header with parameters.
1714    bool NeedNonemptyTemplateHeader = false;
1715
1716    // For a dependent type, the set of template parameters that we
1717    // expect to see.
1718    TemplateParameterList *ExpectedTemplateParams = 0;
1719
1720    // C++0x [temp.expl.spec]p15:
1721    //   A member or a member template may be nested within many enclosing
1722    //   class templates. In an explicit specialization for such a member, the
1723    //   member declaration shall be preceded by a template<> for each
1724    //   enclosing class template that is explicitly specialized.
1725    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1726      if (ClassTemplatePartialSpecializationDecl *Partial
1727            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1728        ExpectedTemplateParams = Partial->getTemplateParameters();
1729        NeedNonemptyTemplateHeader = true;
1730      } else if (Record->isDependentType()) {
1731        if (Record->getDescribedClassTemplate()) {
1732          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1733                                                      ->getTemplateParameters();
1734          NeedNonemptyTemplateHeader = true;
1735        }
1736      } else if (ClassTemplateSpecializationDecl *Spec
1737                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1738        // C++0x [temp.expl.spec]p4:
1739        //   Members of an explicitly specialized class template are defined
1740        //   in the same manner as members of normal classes, and not using
1741        //   the template<> syntax.
1742        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1743          NeedEmptyTemplateHeader = true;
1744        else
1745          continue;
1746      } else if (Record->getTemplateSpecializationKind()) {
1747        if (Record->getTemplateSpecializationKind()
1748                                                != TSK_ExplicitSpecialization &&
1749            TypeIdx == NumTypes - 1)
1750          IsExplicitSpecialization = true;
1751
1752        continue;
1753      }
1754    } else if (const TemplateSpecializationType *TST
1755                                     = T->getAs<TemplateSpecializationType>()) {
1756      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1757        ExpectedTemplateParams = Template->getTemplateParameters();
1758        NeedNonemptyTemplateHeader = true;
1759      }
1760    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1761      // FIXME:  We actually could/should check the template arguments here
1762      // against the corresponding template parameter list.
1763      NeedNonemptyTemplateHeader = false;
1764    }
1765
1766    // C++ [temp.expl.spec]p16:
1767    //   In an explicit specialization declaration for a member of a class
1768    //   template or a member template that ap- pears in namespace scope, the
1769    //   member template and some of its enclosing class templates may remain
1770    //   unspecialized, except that the declaration shall not explicitly
1771    //   specialize a class member template if its en- closing class templates
1772    //   are not explicitly specialized as well.
1773    if (ParamIdx < NumParamLists) {
1774      if (ParamLists[ParamIdx]->size() == 0) {
1775        if (SawNonEmptyTemplateParameterList) {
1776          Diag(DeclLoc, diag::err_specialize_member_of_template)
1777            << ParamLists[ParamIdx]->getSourceRange();
1778          Invalid = true;
1779          IsExplicitSpecialization = false;
1780          return 0;
1781        }
1782      } else
1783        SawNonEmptyTemplateParameterList = true;
1784    }
1785
1786    if (NeedEmptyTemplateHeader) {
1787      // If we're on the last of the types, and we need a 'template<>' header
1788      // here, then it's an explicit specialization.
1789      if (TypeIdx == NumTypes - 1)
1790        IsExplicitSpecialization = true;
1791
1792      if (ParamIdx < NumParamLists) {
1793        if (ParamLists[ParamIdx]->size() > 0) {
1794          // The header has template parameters when it shouldn't. Complain.
1795          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1796               diag::err_template_param_list_matches_nontemplate)
1797            << T
1798            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1799                           ParamLists[ParamIdx]->getRAngleLoc())
1800            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1801          Invalid = true;
1802          return 0;
1803        }
1804
1805        // Consume this template header.
1806        ++ParamIdx;
1807        continue;
1808      }
1809
1810      if (!IsFriend) {
1811        // We don't have a template header, but we should.
1812        SourceLocation ExpectedTemplateLoc;
1813        if (NumParamLists > 0)
1814          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1815        else
1816          ExpectedTemplateLoc = DeclStartLoc;
1817
1818        Diag(DeclLoc, diag::err_template_spec_needs_header)
1819          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1820          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1821      }
1822
1823      continue;
1824    }
1825
1826    if (NeedNonemptyTemplateHeader) {
1827      // In friend declarations we can have template-ids which don't
1828      // depend on the corresponding template parameter lists.  But
1829      // assume that empty parameter lists are supposed to match this
1830      // template-id.
1831      if (IsFriend && T->isDependentType()) {
1832        if (ParamIdx < NumParamLists &&
1833            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1834          ExpectedTemplateParams = 0;
1835        else
1836          continue;
1837      }
1838
1839      if (ParamIdx < NumParamLists) {
1840        // Check the template parameter list, if we can.
1841        if (ExpectedTemplateParams &&
1842            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1843                                            ExpectedTemplateParams,
1844                                            true, TPL_TemplateMatch))
1845          Invalid = true;
1846
1847        if (!Invalid &&
1848            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1849                                       TPC_ClassTemplateMember))
1850          Invalid = true;
1851
1852        ++ParamIdx;
1853        continue;
1854      }
1855
1856      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1857        << T
1858        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1859      Invalid = true;
1860      continue;
1861    }
1862  }
1863
1864  // If there were at least as many template-ids as there were template
1865  // parameter lists, then there are no template parameter lists remaining for
1866  // the declaration itself.
1867  if (ParamIdx >= NumParamLists)
1868    return 0;
1869
1870  // If there were too many template parameter lists, complain about that now.
1871  if (ParamIdx < NumParamLists - 1) {
1872    bool HasAnyExplicitSpecHeader = false;
1873    bool AllExplicitSpecHeaders = true;
1874    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1875      if (ParamLists[I]->size() == 0)
1876        HasAnyExplicitSpecHeader = true;
1877      else
1878        AllExplicitSpecHeaders = false;
1879    }
1880
1881    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1882         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1883                               : diag::err_template_spec_extra_headers)
1884      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1885                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1886
1887    // If there was a specialization somewhere, such that 'template<>' is
1888    // not required, and there were any 'template<>' headers, note where the
1889    // specialization occurred.
1890    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1891      Diag(ExplicitSpecLoc,
1892           diag::note_explicit_template_spec_does_not_need_header)
1893        << NestedTypes.back();
1894
1895    // We have a template parameter list with no corresponding scope, which
1896    // means that the resulting template declaration can't be instantiated
1897    // properly (we'll end up with dependent nodes when we shouldn't).
1898    if (!AllExplicitSpecHeaders)
1899      Invalid = true;
1900  }
1901
1902  // C++ [temp.expl.spec]p16:
1903  //   In an explicit specialization declaration for a member of a class
1904  //   template or a member template that ap- pears in namespace scope, the
1905  //   member template and some of its enclosing class templates may remain
1906  //   unspecialized, except that the declaration shall not explicitly
1907  //   specialize a class member template if its en- closing class templates
1908  //   are not explicitly specialized as well.
1909  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1910      SawNonEmptyTemplateParameterList) {
1911    Diag(DeclLoc, diag::err_specialize_member_of_template)
1912      << ParamLists[ParamIdx]->getSourceRange();
1913    Invalid = true;
1914    IsExplicitSpecialization = false;
1915    return 0;
1916  }
1917
1918  // Return the last template parameter list, which corresponds to the
1919  // entity being declared.
1920  return ParamLists[NumParamLists - 1];
1921}
1922
1923void Sema::NoteAllFoundTemplates(TemplateName Name) {
1924  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1925    Diag(Template->getLocation(), diag::note_template_declared_here)
1926      << (isa<FunctionTemplateDecl>(Template)? 0
1927          : isa<ClassTemplateDecl>(Template)? 1
1928          : isa<TypeAliasTemplateDecl>(Template)? 2
1929          : 3)
1930      << Template->getDeclName();
1931    return;
1932  }
1933
1934  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1935    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1936                                          IEnd = OST->end();
1937         I != IEnd; ++I)
1938      Diag((*I)->getLocation(), diag::note_template_declared_here)
1939        << 0 << (*I)->getDeclName();
1940
1941    return;
1942  }
1943}
1944
1945QualType Sema::CheckTemplateIdType(TemplateName Name,
1946                                   SourceLocation TemplateLoc,
1947                                   TemplateArgumentListInfo &TemplateArgs) {
1948  DependentTemplateName *DTN
1949    = Name.getUnderlying().getAsDependentTemplateName();
1950  if (DTN && DTN->isIdentifier())
1951    // When building a template-id where the template-name is dependent,
1952    // assume the template is a type template. Either our assumption is
1953    // correct, or the code is ill-formed and will be diagnosed when the
1954    // dependent name is substituted.
1955    return Context.getDependentTemplateSpecializationType(ETK_None,
1956                                                          DTN->getQualifier(),
1957                                                          DTN->getIdentifier(),
1958                                                          TemplateArgs);
1959
1960  TemplateDecl *Template = Name.getAsTemplateDecl();
1961  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1962    // We might have a substituted template template parameter pack. If so,
1963    // build a template specialization type for it.
1964    if (Name.getAsSubstTemplateTemplateParmPack())
1965      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1966
1967    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1968      << Name;
1969    NoteAllFoundTemplates(Name);
1970    return QualType();
1971  }
1972
1973  // Check that the template argument list is well-formed for this
1974  // template.
1975  SmallVector<TemplateArgument, 4> Converted;
1976  bool ExpansionIntoFixedList = false;
1977  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1978                                false, Converted, &ExpansionIntoFixedList))
1979    return QualType();
1980
1981  QualType CanonType;
1982
1983  bool InstantiationDependent = false;
1984  TypeAliasTemplateDecl *AliasTemplate = 0;
1985  if (!ExpansionIntoFixedList &&
1986      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1987    // Find the canonical type for this type alias template specialization.
1988    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1989    if (Pattern->isInvalidDecl())
1990      return QualType();
1991
1992    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1993                                      Converted.data(), Converted.size());
1994
1995    // Only substitute for the innermost template argument list.
1996    MultiLevelTemplateArgumentList TemplateArgLists;
1997    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1998    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1999    for (unsigned I = 0; I < Depth; ++I)
2000      TemplateArgLists.addOuterTemplateArguments(0, 0);
2001
2002    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2003    if (Inst)
2004      return QualType();
2005    CanonType = SubstType(Pattern->getUnderlyingType(),
2006                          TemplateArgLists, AliasTemplate->getLocation(),
2007                          AliasTemplate->getDeclName());
2008    if (CanonType.isNull())
2009      return QualType();
2010  } else if (Name.isDependent() ||
2011             TemplateSpecializationType::anyDependentTemplateArguments(
2012               TemplateArgs, InstantiationDependent)) {
2013    // This class template specialization is a dependent
2014    // type. Therefore, its canonical type is another class template
2015    // specialization type that contains all of the converted
2016    // arguments in canonical form. This ensures that, e.g., A<T> and
2017    // A<T, T> have identical types when A is declared as:
2018    //
2019    //   template<typename T, typename U = T> struct A;
2020    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2021    CanonType = Context.getTemplateSpecializationType(CanonName,
2022                                                      Converted.data(),
2023                                                      Converted.size());
2024
2025    // FIXME: CanonType is not actually the canonical type, and unfortunately
2026    // it is a TemplateSpecializationType that we will never use again.
2027    // In the future, we need to teach getTemplateSpecializationType to only
2028    // build the canonical type and return that to us.
2029    CanonType = Context.getCanonicalType(CanonType);
2030
2031    // This might work out to be a current instantiation, in which
2032    // case the canonical type needs to be the InjectedClassNameType.
2033    //
2034    // TODO: in theory this could be a simple hashtable lookup; most
2035    // changes to CurContext don't change the set of current
2036    // instantiations.
2037    if (isa<ClassTemplateDecl>(Template)) {
2038      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2039        // If we get out to a namespace, we're done.
2040        if (Ctx->isFileContext()) break;
2041
2042        // If this isn't a record, keep looking.
2043        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2044        if (!Record) continue;
2045
2046        // Look for one of the two cases with InjectedClassNameTypes
2047        // and check whether it's the same template.
2048        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2049            !Record->getDescribedClassTemplate())
2050          continue;
2051
2052        // Fetch the injected class name type and check whether its
2053        // injected type is equal to the type we just built.
2054        QualType ICNT = Context.getTypeDeclType(Record);
2055        QualType Injected = cast<InjectedClassNameType>(ICNT)
2056          ->getInjectedSpecializationType();
2057
2058        if (CanonType != Injected->getCanonicalTypeInternal())
2059          continue;
2060
2061        // If so, the canonical type of this TST is the injected
2062        // class name type of the record we just found.
2063        assert(ICNT.isCanonical());
2064        CanonType = ICNT;
2065        break;
2066      }
2067    }
2068  } else if (ClassTemplateDecl *ClassTemplate
2069               = dyn_cast<ClassTemplateDecl>(Template)) {
2070    // Find the class template specialization declaration that
2071    // corresponds to these arguments.
2072    void *InsertPos = 0;
2073    ClassTemplateSpecializationDecl *Decl
2074      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2075                                          InsertPos);
2076    if (!Decl) {
2077      // This is the first time we have referenced this class template
2078      // specialization. Create the canonical declaration and add it to
2079      // the set of specializations.
2080      Decl = ClassTemplateSpecializationDecl::Create(Context,
2081                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2082                                                ClassTemplate->getDeclContext(),
2083                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2084                                                ClassTemplate->getLocation(),
2085                                                     ClassTemplate,
2086                                                     Converted.data(),
2087                                                     Converted.size(), 0);
2088      ClassTemplate->AddSpecialization(Decl, InsertPos);
2089      Decl->setLexicalDeclContext(CurContext);
2090    }
2091
2092    CanonType = Context.getTypeDeclType(Decl);
2093    assert(isa<RecordType>(CanonType) &&
2094           "type of non-dependent specialization is not a RecordType");
2095  }
2096
2097  // Build the fully-sugared type for this class template
2098  // specialization, which refers back to the class template
2099  // specialization we created or found.
2100  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2101}
2102
2103TypeResult
2104Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2105                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2106                          SourceLocation LAngleLoc,
2107                          ASTTemplateArgsPtr TemplateArgsIn,
2108                          SourceLocation RAngleLoc,
2109                          bool IsCtorOrDtorName) {
2110  if (SS.isInvalid())
2111    return true;
2112
2113  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2114
2115  // Translate the parser's template argument list in our AST format.
2116  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2117  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2118
2119  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2120    QualType T
2121      = Context.getDependentTemplateSpecializationType(ETK_None,
2122                                                       DTN->getQualifier(),
2123                                                       DTN->getIdentifier(),
2124                                                       TemplateArgs);
2125    // Build type-source information.
2126    TypeLocBuilder TLB;
2127    DependentTemplateSpecializationTypeLoc SpecTL
2128      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2129    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2130    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2131    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2132    SpecTL.setTemplateNameLoc(TemplateLoc);
2133    SpecTL.setLAngleLoc(LAngleLoc);
2134    SpecTL.setRAngleLoc(RAngleLoc);
2135    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2136      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2137    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2138  }
2139
2140  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2141  TemplateArgsIn.release();
2142
2143  if (Result.isNull())
2144    return true;
2145
2146  // Build type-source information.
2147  TypeLocBuilder TLB;
2148  TemplateSpecializationTypeLoc SpecTL
2149    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2150  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2151  SpecTL.setTemplateNameLoc(TemplateLoc);
2152  SpecTL.setLAngleLoc(LAngleLoc);
2153  SpecTL.setRAngleLoc(RAngleLoc);
2154  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2155    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2156
2157  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2158  // constructor or destructor name (in such a case, the scope specifier
2159  // will be attached to the enclosing Decl or Expr node).
2160  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2161    // Create an elaborated-type-specifier containing the nested-name-specifier.
2162    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2163    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2164    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2165    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2166  }
2167
2168  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2169}
2170
2171TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2172                                        TypeSpecifierType TagSpec,
2173                                        SourceLocation TagLoc,
2174                                        CXXScopeSpec &SS,
2175                                        SourceLocation TemplateKWLoc,
2176                                        TemplateTy TemplateD,
2177                                        SourceLocation TemplateLoc,
2178                                        SourceLocation LAngleLoc,
2179                                        ASTTemplateArgsPtr TemplateArgsIn,
2180                                        SourceLocation RAngleLoc) {
2181  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2182
2183  // Translate the parser's template argument list in our AST format.
2184  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2185  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2186
2187  // Determine the tag kind
2188  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2189  ElaboratedTypeKeyword Keyword
2190    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2191
2192  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2193    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2194                                                          DTN->getQualifier(),
2195                                                          DTN->getIdentifier(),
2196                                                                TemplateArgs);
2197
2198    // Build type-source information.
2199    TypeLocBuilder TLB;
2200    DependentTemplateSpecializationTypeLoc SpecTL
2201      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2202    SpecTL.setElaboratedKeywordLoc(TagLoc);
2203    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2204    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2205    SpecTL.setTemplateNameLoc(TemplateLoc);
2206    SpecTL.setLAngleLoc(LAngleLoc);
2207    SpecTL.setRAngleLoc(RAngleLoc);
2208    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2209      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2210    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2211  }
2212
2213  if (TypeAliasTemplateDecl *TAT =
2214        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2215    // C++0x [dcl.type.elab]p2:
2216    //   If the identifier resolves to a typedef-name or the simple-template-id
2217    //   resolves to an alias template specialization, the
2218    //   elaborated-type-specifier is ill-formed.
2219    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2220    Diag(TAT->getLocation(), diag::note_declared_at);
2221  }
2222
2223  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2224  if (Result.isNull())
2225    return TypeResult(true);
2226
2227  // Check the tag kind
2228  if (const RecordType *RT = Result->getAs<RecordType>()) {
2229    RecordDecl *D = RT->getDecl();
2230
2231    IdentifierInfo *Id = D->getIdentifier();
2232    assert(Id && "templated class must have an identifier");
2233
2234    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2235                                      TagLoc, *Id)) {
2236      Diag(TagLoc, diag::err_use_with_wrong_tag)
2237        << Result
2238        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2239      Diag(D->getLocation(), diag::note_previous_use);
2240    }
2241  }
2242
2243  // Provide source-location information for the template specialization.
2244  TypeLocBuilder TLB;
2245  TemplateSpecializationTypeLoc SpecTL
2246    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2247  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2248  SpecTL.setTemplateNameLoc(TemplateLoc);
2249  SpecTL.setLAngleLoc(LAngleLoc);
2250  SpecTL.setRAngleLoc(RAngleLoc);
2251  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2252    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2253
2254  // Construct an elaborated type containing the nested-name-specifier (if any)
2255  // and tag keyword.
2256  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2257  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2258  ElabTL.setElaboratedKeywordLoc(TagLoc);
2259  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2260  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2261}
2262
2263ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2264                                     SourceLocation TemplateKWLoc,
2265                                     LookupResult &R,
2266                                     bool RequiresADL,
2267                                 const TemplateArgumentListInfo *TemplateArgs) {
2268  // FIXME: Can we do any checking at this point? I guess we could check the
2269  // template arguments that we have against the template name, if the template
2270  // name refers to a single template. That's not a terribly common case,
2271  // though.
2272  // foo<int> could identify a single function unambiguously
2273  // This approach does NOT work, since f<int>(1);
2274  // gets resolved prior to resorting to overload resolution
2275  // i.e., template<class T> void f(double);
2276  //       vs template<class T, class U> void f(U);
2277
2278  // These should be filtered out by our callers.
2279  assert(!R.empty() && "empty lookup results when building templateid");
2280  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2281
2282  // We don't want lookup warnings at this point.
2283  R.suppressDiagnostics();
2284
2285  UnresolvedLookupExpr *ULE
2286    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2287                                   SS.getWithLocInContext(Context),
2288                                   TemplateKWLoc,
2289                                   R.getLookupNameInfo(),
2290                                   RequiresADL, TemplateArgs,
2291                                   R.begin(), R.end());
2292
2293  return Owned(ULE);
2294}
2295
2296// We actually only call this from template instantiation.
2297ExprResult
2298Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2299                                   SourceLocation TemplateKWLoc,
2300                                   const DeclarationNameInfo &NameInfo,
2301                             const TemplateArgumentListInfo *TemplateArgs) {
2302  assert(TemplateArgs || TemplateKWLoc.isValid());
2303  DeclContext *DC;
2304  if (!(DC = computeDeclContext(SS, false)) ||
2305      DC->isDependentContext() ||
2306      RequireCompleteDeclContext(SS, DC))
2307    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2308
2309  bool MemberOfUnknownSpecialization;
2310  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2311  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2312                     MemberOfUnknownSpecialization);
2313
2314  if (R.isAmbiguous())
2315    return ExprError();
2316
2317  if (R.empty()) {
2318    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2319      << NameInfo.getName() << SS.getRange();
2320    return ExprError();
2321  }
2322
2323  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2324    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2325      << (NestedNameSpecifier*) SS.getScopeRep()
2326      << NameInfo.getName() << SS.getRange();
2327    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2328    return ExprError();
2329  }
2330
2331  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2332}
2333
2334/// \brief Form a dependent template name.
2335///
2336/// This action forms a dependent template name given the template
2337/// name and its (presumably dependent) scope specifier. For
2338/// example, given "MetaFun::template apply", the scope specifier \p
2339/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2340/// of the "template" keyword, and "apply" is the \p Name.
2341TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2342                                                  CXXScopeSpec &SS,
2343                                                  SourceLocation TemplateKWLoc,
2344                                                  UnqualifiedId &Name,
2345                                                  ParsedType ObjectType,
2346                                                  bool EnteringContext,
2347                                                  TemplateTy &Result) {
2348  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2349    Diag(TemplateKWLoc,
2350         getLangOpts().CPlusPlus0x ?
2351           diag::warn_cxx98_compat_template_outside_of_template :
2352           diag::ext_template_outside_of_template)
2353      << FixItHint::CreateRemoval(TemplateKWLoc);
2354
2355  DeclContext *LookupCtx = 0;
2356  if (SS.isSet())
2357    LookupCtx = computeDeclContext(SS, EnteringContext);
2358  if (!LookupCtx && ObjectType)
2359    LookupCtx = computeDeclContext(ObjectType.get());
2360  if (LookupCtx) {
2361    // C++0x [temp.names]p5:
2362    //   If a name prefixed by the keyword template is not the name of
2363    //   a template, the program is ill-formed. [Note: the keyword
2364    //   template may not be applied to non-template members of class
2365    //   templates. -end note ] [ Note: as is the case with the
2366    //   typename prefix, the template prefix is allowed in cases
2367    //   where it is not strictly necessary; i.e., when the
2368    //   nested-name-specifier or the expression on the left of the ->
2369    //   or . is not dependent on a template-parameter, or the use
2370    //   does not appear in the scope of a template. -end note]
2371    //
2372    // Note: C++03 was more strict here, because it banned the use of
2373    // the "template" keyword prior to a template-name that was not a
2374    // dependent name. C++ DR468 relaxed this requirement (the
2375    // "template" keyword is now permitted). We follow the C++0x
2376    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2377    bool MemberOfUnknownSpecialization;
2378    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2379                                          ObjectType, EnteringContext, Result,
2380                                          MemberOfUnknownSpecialization);
2381    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2382        isa<CXXRecordDecl>(LookupCtx) &&
2383        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2384         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2385      // This is a dependent template. Handle it below.
2386    } else if (TNK == TNK_Non_template) {
2387      Diag(Name.getLocStart(),
2388           diag::err_template_kw_refers_to_non_template)
2389        << GetNameFromUnqualifiedId(Name).getName()
2390        << Name.getSourceRange()
2391        << TemplateKWLoc;
2392      return TNK_Non_template;
2393    } else {
2394      // We found something; return it.
2395      return TNK;
2396    }
2397  }
2398
2399  NestedNameSpecifier *Qualifier
2400    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2401
2402  switch (Name.getKind()) {
2403  case UnqualifiedId::IK_Identifier:
2404    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2405                                                              Name.Identifier));
2406    return TNK_Dependent_template_name;
2407
2408  case UnqualifiedId::IK_OperatorFunctionId:
2409    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2410                                             Name.OperatorFunctionId.Operator));
2411    return TNK_Dependent_template_name;
2412
2413  case UnqualifiedId::IK_LiteralOperatorId:
2414    llvm_unreachable(
2415            "We don't support these; Parse shouldn't have allowed propagation");
2416
2417  default:
2418    break;
2419  }
2420
2421  Diag(Name.getLocStart(),
2422       diag::err_template_kw_refers_to_non_template)
2423    << GetNameFromUnqualifiedId(Name).getName()
2424    << Name.getSourceRange()
2425    << TemplateKWLoc;
2426  return TNK_Non_template;
2427}
2428
2429bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2430                                     const TemplateArgumentLoc &AL,
2431                          SmallVectorImpl<TemplateArgument> &Converted) {
2432  const TemplateArgument &Arg = AL.getArgument();
2433
2434  // Check template type parameter.
2435  switch(Arg.getKind()) {
2436  case TemplateArgument::Type:
2437    // C++ [temp.arg.type]p1:
2438    //   A template-argument for a template-parameter which is a
2439    //   type shall be a type-id.
2440    break;
2441  case TemplateArgument::Template: {
2442    // We have a template type parameter but the template argument
2443    // is a template without any arguments.
2444    SourceRange SR = AL.getSourceRange();
2445    TemplateName Name = Arg.getAsTemplate();
2446    Diag(SR.getBegin(), diag::err_template_missing_args)
2447      << Name << SR;
2448    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2449      Diag(Decl->getLocation(), diag::note_template_decl_here);
2450
2451    return true;
2452  }
2453  case TemplateArgument::Expression: {
2454    // We have a template type parameter but the template argument is an
2455    // expression; see if maybe it is missing the "typename" keyword.
2456    CXXScopeSpec SS;
2457    DeclarationNameInfo NameInfo;
2458
2459    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2460      SS.Adopt(ArgExpr->getQualifierLoc());
2461      NameInfo = ArgExpr->getNameInfo();
2462    } else if (DependentScopeDeclRefExpr *ArgExpr =
2463               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2464      SS.Adopt(ArgExpr->getQualifierLoc());
2465      NameInfo = ArgExpr->getNameInfo();
2466    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2467               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2468      if (ArgExpr->isImplicitAccess()) {
2469        SS.Adopt(ArgExpr->getQualifierLoc());
2470        NameInfo = ArgExpr->getMemberNameInfo();
2471      }
2472    }
2473
2474    if (NameInfo.getName().isIdentifier()) {
2475      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2476      LookupParsedName(Result, CurScope, &SS);
2477
2478      if (Result.getAsSingle<TypeDecl>() ||
2479          Result.getResultKind() ==
2480            LookupResult::NotFoundInCurrentInstantiation) {
2481        // FIXME: Add a FixIt and fix up the template argument for recovery.
2482        SourceLocation Loc = AL.getSourceRange().getBegin();
2483        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2484        Diag(Param->getLocation(), diag::note_template_param_here);
2485        return true;
2486      }
2487    }
2488    // fallthrough
2489  }
2490  default: {
2491    // We have a template type parameter but the template argument
2492    // is not a type.
2493    SourceRange SR = AL.getSourceRange();
2494    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2495    Diag(Param->getLocation(), diag::note_template_param_here);
2496
2497    return true;
2498  }
2499  }
2500
2501  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2502    return true;
2503
2504  // Add the converted template type argument.
2505  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2506
2507  // Objective-C ARC:
2508  //   If an explicitly-specified template argument type is a lifetime type
2509  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2510  if (getLangOpts().ObjCAutoRefCount &&
2511      ArgType->isObjCLifetimeType() &&
2512      !ArgType.getObjCLifetime()) {
2513    Qualifiers Qs;
2514    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2515    ArgType = Context.getQualifiedType(ArgType, Qs);
2516  }
2517
2518  Converted.push_back(TemplateArgument(ArgType));
2519  return false;
2520}
2521
2522/// \brief Substitute template arguments into the default template argument for
2523/// the given template type parameter.
2524///
2525/// \param SemaRef the semantic analysis object for which we are performing
2526/// the substitution.
2527///
2528/// \param Template the template that we are synthesizing template arguments
2529/// for.
2530///
2531/// \param TemplateLoc the location of the template name that started the
2532/// template-id we are checking.
2533///
2534/// \param RAngleLoc the location of the right angle bracket ('>') that
2535/// terminates the template-id.
2536///
2537/// \param Param the template template parameter whose default we are
2538/// substituting into.
2539///
2540/// \param Converted the list of template arguments provided for template
2541/// parameters that precede \p Param in the template parameter list.
2542/// \returns the substituted template argument, or NULL if an error occurred.
2543static TypeSourceInfo *
2544SubstDefaultTemplateArgument(Sema &SemaRef,
2545                             TemplateDecl *Template,
2546                             SourceLocation TemplateLoc,
2547                             SourceLocation RAngleLoc,
2548                             TemplateTypeParmDecl *Param,
2549                         SmallVectorImpl<TemplateArgument> &Converted) {
2550  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2551
2552  // If the argument type is dependent, instantiate it now based
2553  // on the previously-computed template arguments.
2554  if (ArgType->getType()->isDependentType()) {
2555    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2556                                      Converted.data(), Converted.size());
2557
2558    MultiLevelTemplateArgumentList AllTemplateArgs
2559      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2560
2561    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2562                                     Template, Converted,
2563                                     SourceRange(TemplateLoc, RAngleLoc));
2564    if (Inst)
2565      return 0;
2566
2567    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2568    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2569                                Param->getDefaultArgumentLoc(),
2570                                Param->getDeclName());
2571  }
2572
2573  return ArgType;
2574}
2575
2576/// \brief Substitute template arguments into the default template argument for
2577/// the given non-type template parameter.
2578///
2579/// \param SemaRef the semantic analysis object for which we are performing
2580/// the substitution.
2581///
2582/// \param Template the template that we are synthesizing template arguments
2583/// for.
2584///
2585/// \param TemplateLoc the location of the template name that started the
2586/// template-id we are checking.
2587///
2588/// \param RAngleLoc the location of the right angle bracket ('>') that
2589/// terminates the template-id.
2590///
2591/// \param Param the non-type template parameter whose default we are
2592/// substituting into.
2593///
2594/// \param Converted the list of template arguments provided for template
2595/// parameters that precede \p Param in the template parameter list.
2596///
2597/// \returns the substituted template argument, or NULL if an error occurred.
2598static ExprResult
2599SubstDefaultTemplateArgument(Sema &SemaRef,
2600                             TemplateDecl *Template,
2601                             SourceLocation TemplateLoc,
2602                             SourceLocation RAngleLoc,
2603                             NonTypeTemplateParmDecl *Param,
2604                        SmallVectorImpl<TemplateArgument> &Converted) {
2605  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2606                                    Converted.data(), Converted.size());
2607
2608  MultiLevelTemplateArgumentList AllTemplateArgs
2609    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2610
2611  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2612                                   Template, Converted,
2613                                   SourceRange(TemplateLoc, RAngleLoc));
2614  if (Inst)
2615    return ExprError();
2616
2617  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2618  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
2619  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2620}
2621
2622/// \brief Substitute template arguments into the default template argument for
2623/// the given template template parameter.
2624///
2625/// \param SemaRef the semantic analysis object for which we are performing
2626/// the substitution.
2627///
2628/// \param Template the template that we are synthesizing template arguments
2629/// for.
2630///
2631/// \param TemplateLoc the location of the template name that started the
2632/// template-id we are checking.
2633///
2634/// \param RAngleLoc the location of the right angle bracket ('>') that
2635/// terminates the template-id.
2636///
2637/// \param Param the template template parameter whose default we are
2638/// substituting into.
2639///
2640/// \param Converted the list of template arguments provided for template
2641/// parameters that precede \p Param in the template parameter list.
2642///
2643/// \param QualifierLoc Will be set to the nested-name-specifier (with
2644/// source-location information) that precedes the template name.
2645///
2646/// \returns the substituted template argument, or NULL if an error occurred.
2647static TemplateName
2648SubstDefaultTemplateArgument(Sema &SemaRef,
2649                             TemplateDecl *Template,
2650                             SourceLocation TemplateLoc,
2651                             SourceLocation RAngleLoc,
2652                             TemplateTemplateParmDecl *Param,
2653                       SmallVectorImpl<TemplateArgument> &Converted,
2654                             NestedNameSpecifierLoc &QualifierLoc) {
2655  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2656                                    Converted.data(), Converted.size());
2657
2658  MultiLevelTemplateArgumentList AllTemplateArgs
2659    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2660
2661  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2662                                   Template, Converted,
2663                                   SourceRange(TemplateLoc, RAngleLoc));
2664  if (Inst)
2665    return TemplateName();
2666
2667  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2668  // Substitute into the nested-name-specifier first,
2669  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2670  if (QualifierLoc) {
2671    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2672                                                       AllTemplateArgs);
2673    if (!QualifierLoc)
2674      return TemplateName();
2675  }
2676
2677  return SemaRef.SubstTemplateName(QualifierLoc,
2678                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2679                              Param->getDefaultArgument().getTemplateNameLoc(),
2680                                   AllTemplateArgs);
2681}
2682
2683/// \brief If the given template parameter has a default template
2684/// argument, substitute into that default template argument and
2685/// return the corresponding template argument.
2686TemplateArgumentLoc
2687Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2688                                              SourceLocation TemplateLoc,
2689                                              SourceLocation RAngleLoc,
2690                                              Decl *Param,
2691                      SmallVectorImpl<TemplateArgument> &Converted) {
2692   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2693    if (!TypeParm->hasDefaultArgument())
2694      return TemplateArgumentLoc();
2695
2696    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2697                                                      TemplateLoc,
2698                                                      RAngleLoc,
2699                                                      TypeParm,
2700                                                      Converted);
2701    if (DI)
2702      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2703
2704    return TemplateArgumentLoc();
2705  }
2706
2707  if (NonTypeTemplateParmDecl *NonTypeParm
2708        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2709    if (!NonTypeParm->hasDefaultArgument())
2710      return TemplateArgumentLoc();
2711
2712    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2713                                                  TemplateLoc,
2714                                                  RAngleLoc,
2715                                                  NonTypeParm,
2716                                                  Converted);
2717    if (Arg.isInvalid())
2718      return TemplateArgumentLoc();
2719
2720    Expr *ArgE = Arg.takeAs<Expr>();
2721    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2722  }
2723
2724  TemplateTemplateParmDecl *TempTempParm
2725    = cast<TemplateTemplateParmDecl>(Param);
2726  if (!TempTempParm->hasDefaultArgument())
2727    return TemplateArgumentLoc();
2728
2729
2730  NestedNameSpecifierLoc QualifierLoc;
2731  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2732                                                    TemplateLoc,
2733                                                    RAngleLoc,
2734                                                    TempTempParm,
2735                                                    Converted,
2736                                                    QualifierLoc);
2737  if (TName.isNull())
2738    return TemplateArgumentLoc();
2739
2740  return TemplateArgumentLoc(TemplateArgument(TName),
2741                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2742                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2743}
2744
2745/// \brief Check that the given template argument corresponds to the given
2746/// template parameter.
2747///
2748/// \param Param The template parameter against which the argument will be
2749/// checked.
2750///
2751/// \param Arg The template argument.
2752///
2753/// \param Template The template in which the template argument resides.
2754///
2755/// \param TemplateLoc The location of the template name for the template
2756/// whose argument list we're matching.
2757///
2758/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2759/// the template argument list.
2760///
2761/// \param ArgumentPackIndex The index into the argument pack where this
2762/// argument will be placed. Only valid if the parameter is a parameter pack.
2763///
2764/// \param Converted The checked, converted argument will be added to the
2765/// end of this small vector.
2766///
2767/// \param CTAK Describes how we arrived at this particular template argument:
2768/// explicitly written, deduced, etc.
2769///
2770/// \returns true on error, false otherwise.
2771bool Sema::CheckTemplateArgument(NamedDecl *Param,
2772                                 const TemplateArgumentLoc &Arg,
2773                                 NamedDecl *Template,
2774                                 SourceLocation TemplateLoc,
2775                                 SourceLocation RAngleLoc,
2776                                 unsigned ArgumentPackIndex,
2777                            SmallVectorImpl<TemplateArgument> &Converted,
2778                                 CheckTemplateArgumentKind CTAK) {
2779  // Check template type parameters.
2780  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2781    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2782
2783  // Check non-type template parameters.
2784  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2785    // Do substitution on the type of the non-type template parameter
2786    // with the template arguments we've seen thus far.  But if the
2787    // template has a dependent context then we cannot substitute yet.
2788    QualType NTTPType = NTTP->getType();
2789    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2790      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2791
2792    if (NTTPType->isDependentType() &&
2793        !isa<TemplateTemplateParmDecl>(Template) &&
2794        !Template->getDeclContext()->isDependentContext()) {
2795      // Do substitution on the type of the non-type template parameter.
2796      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2797                                 NTTP, Converted,
2798                                 SourceRange(TemplateLoc, RAngleLoc));
2799      if (Inst)
2800        return true;
2801
2802      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2803                                        Converted.data(), Converted.size());
2804      NTTPType = SubstType(NTTPType,
2805                           MultiLevelTemplateArgumentList(TemplateArgs),
2806                           NTTP->getLocation(),
2807                           NTTP->getDeclName());
2808      // If that worked, check the non-type template parameter type
2809      // for validity.
2810      if (!NTTPType.isNull())
2811        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2812                                                     NTTP->getLocation());
2813      if (NTTPType.isNull())
2814        return true;
2815    }
2816
2817    switch (Arg.getArgument().getKind()) {
2818    case TemplateArgument::Null:
2819      llvm_unreachable("Should never see a NULL template argument here");
2820
2821    case TemplateArgument::Expression: {
2822      TemplateArgument Result;
2823      ExprResult Res =
2824        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2825                              Result, CTAK);
2826      if (Res.isInvalid())
2827        return true;
2828
2829      Converted.push_back(Result);
2830      break;
2831    }
2832
2833    case TemplateArgument::Declaration:
2834    case TemplateArgument::Integral:
2835      // We've already checked this template argument, so just copy
2836      // it to the list of converted arguments.
2837      Converted.push_back(Arg.getArgument());
2838      break;
2839
2840    case TemplateArgument::Template:
2841    case TemplateArgument::TemplateExpansion:
2842      // We were given a template template argument. It may not be ill-formed;
2843      // see below.
2844      if (DependentTemplateName *DTN
2845            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2846                                              .getAsDependentTemplateName()) {
2847        // We have a template argument such as \c T::template X, which we
2848        // parsed as a template template argument. However, since we now
2849        // know that we need a non-type template argument, convert this
2850        // template name into an expression.
2851
2852        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2853                                     Arg.getTemplateNameLoc());
2854
2855        CXXScopeSpec SS;
2856        SS.Adopt(Arg.getTemplateQualifierLoc());
2857        // FIXME: the template-template arg was a DependentTemplateName,
2858        // so it was provided with a template keyword. However, its source
2859        // location is not stored in the template argument structure.
2860        SourceLocation TemplateKWLoc;
2861        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2862                                                SS.getWithLocInContext(Context),
2863                                                               TemplateKWLoc,
2864                                                               NameInfo, 0));
2865
2866        // If we parsed the template argument as a pack expansion, create a
2867        // pack expansion expression.
2868        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2869          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2870          if (E.isInvalid())
2871            return true;
2872        }
2873
2874        TemplateArgument Result;
2875        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2876        if (E.isInvalid())
2877          return true;
2878
2879        Converted.push_back(Result);
2880        break;
2881      }
2882
2883      // We have a template argument that actually does refer to a class
2884      // template, alias template, or template template parameter, and
2885      // therefore cannot be a non-type template argument.
2886      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2887        << Arg.getSourceRange();
2888
2889      Diag(Param->getLocation(), diag::note_template_param_here);
2890      return true;
2891
2892    case TemplateArgument::Type: {
2893      // We have a non-type template parameter but the template
2894      // argument is a type.
2895
2896      // C++ [temp.arg]p2:
2897      //   In a template-argument, an ambiguity between a type-id and
2898      //   an expression is resolved to a type-id, regardless of the
2899      //   form of the corresponding template-parameter.
2900      //
2901      // We warn specifically about this case, since it can be rather
2902      // confusing for users.
2903      QualType T = Arg.getArgument().getAsType();
2904      SourceRange SR = Arg.getSourceRange();
2905      if (T->isFunctionType())
2906        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2907      else
2908        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2909      Diag(Param->getLocation(), diag::note_template_param_here);
2910      return true;
2911    }
2912
2913    case TemplateArgument::Pack:
2914      llvm_unreachable("Caller must expand template argument packs");
2915    }
2916
2917    return false;
2918  }
2919
2920
2921  // Check template template parameters.
2922  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2923
2924  // Substitute into the template parameter list of the template
2925  // template parameter, since previously-supplied template arguments
2926  // may appear within the template template parameter.
2927  {
2928    // Set up a template instantiation context.
2929    LocalInstantiationScope Scope(*this);
2930    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2931                               TempParm, Converted,
2932                               SourceRange(TemplateLoc, RAngleLoc));
2933    if (Inst)
2934      return true;
2935
2936    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2937                                      Converted.data(), Converted.size());
2938    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2939                      SubstDecl(TempParm, CurContext,
2940                                MultiLevelTemplateArgumentList(TemplateArgs)));
2941    if (!TempParm)
2942      return true;
2943  }
2944
2945  switch (Arg.getArgument().getKind()) {
2946  case TemplateArgument::Null:
2947    llvm_unreachable("Should never see a NULL template argument here");
2948
2949  case TemplateArgument::Template:
2950  case TemplateArgument::TemplateExpansion:
2951    if (CheckTemplateArgument(TempParm, Arg))
2952      return true;
2953
2954    Converted.push_back(Arg.getArgument());
2955    break;
2956
2957  case TemplateArgument::Expression:
2958  case TemplateArgument::Type:
2959    // We have a template template parameter but the template
2960    // argument does not refer to a template.
2961    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2962      << getLangOpts().CPlusPlus0x;
2963    return true;
2964
2965  case TemplateArgument::Declaration:
2966    llvm_unreachable("Declaration argument with template template parameter");
2967  case TemplateArgument::Integral:
2968    llvm_unreachable("Integral argument with template template parameter");
2969
2970  case TemplateArgument::Pack:
2971    llvm_unreachable("Caller must expand template argument packs");
2972  }
2973
2974  return false;
2975}
2976
2977/// \brief Diagnose an arity mismatch in the
2978static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2979                                  SourceLocation TemplateLoc,
2980                                  TemplateArgumentListInfo &TemplateArgs) {
2981  TemplateParameterList *Params = Template->getTemplateParameters();
2982  unsigned NumParams = Params->size();
2983  unsigned NumArgs = TemplateArgs.size();
2984
2985  SourceRange Range;
2986  if (NumArgs > NumParams)
2987    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2988                        TemplateArgs.getRAngleLoc());
2989  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2990    << (NumArgs > NumParams)
2991    << (isa<ClassTemplateDecl>(Template)? 0 :
2992        isa<FunctionTemplateDecl>(Template)? 1 :
2993        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2994    << Template << Range;
2995  S.Diag(Template->getLocation(), diag::note_template_decl_here)
2996    << Params->getSourceRange();
2997  return true;
2998}
2999
3000/// \brief Check that the given template argument list is well-formed
3001/// for specializing the given template.
3002bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3003                                     SourceLocation TemplateLoc,
3004                                     TemplateArgumentListInfo &TemplateArgs,
3005                                     bool PartialTemplateArgs,
3006                          SmallVectorImpl<TemplateArgument> &Converted,
3007                                     bool *ExpansionIntoFixedList) {
3008  if (ExpansionIntoFixedList)
3009    *ExpansionIntoFixedList = false;
3010
3011  TemplateParameterList *Params = Template->getTemplateParameters();
3012  unsigned NumParams = Params->size();
3013  unsigned NumArgs = TemplateArgs.size();
3014  bool Invalid = false;
3015
3016  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3017
3018  bool HasParameterPack =
3019    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
3020
3021  // C++ [temp.arg]p1:
3022  //   [...] The type and form of each template-argument specified in
3023  //   a template-id shall match the type and form specified for the
3024  //   corresponding parameter declared by the template in its
3025  //   template-parameter-list.
3026  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3027  SmallVector<TemplateArgument, 2> ArgumentPack;
3028  TemplateParameterList::iterator Param = Params->begin(),
3029                               ParamEnd = Params->end();
3030  unsigned ArgIdx = 0;
3031  LocalInstantiationScope InstScope(*this, true);
3032  bool SawPackExpansion = false;
3033  while (Param != ParamEnd) {
3034    if (ArgIdx < NumArgs) {
3035      // If we have an expanded parameter pack, make sure we don't have too
3036      // many arguments.
3037      // FIXME: This really should fall out from the normal arity checking.
3038      if (NonTypeTemplateParmDecl *NTTP
3039                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3040        if (NTTP->isExpandedParameterPack() &&
3041            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
3042          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3043            << true
3044            << (isa<ClassTemplateDecl>(Template)? 0 :
3045                isa<FunctionTemplateDecl>(Template)? 1 :
3046                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3047            << Template;
3048          Diag(Template->getLocation(), diag::note_template_decl_here)
3049            << Params->getSourceRange();
3050          return true;
3051        }
3052      }
3053
3054      // Check the template argument we were given.
3055      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3056                                TemplateLoc, RAngleLoc,
3057                                ArgumentPack.size(), Converted))
3058        return true;
3059
3060      if ((*Param)->isTemplateParameterPack()) {
3061        // The template parameter was a template parameter pack, so take the
3062        // deduced argument and place it on the argument pack. Note that we
3063        // stay on the same template parameter so that we can deduce more
3064        // arguments.
3065        ArgumentPack.push_back(Converted.back());
3066        Converted.pop_back();
3067      } else {
3068        // Move to the next template parameter.
3069        ++Param;
3070      }
3071
3072      // If this template argument is a pack expansion, record that fact
3073      // and break out; we can't actually check any more.
3074      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
3075        SawPackExpansion = true;
3076        ++ArgIdx;
3077        break;
3078      }
3079
3080      ++ArgIdx;
3081      continue;
3082    }
3083
3084    // If we're checking a partial template argument list, we're done.
3085    if (PartialTemplateArgs) {
3086      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3087        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3088                                                         ArgumentPack.data(),
3089                                                         ArgumentPack.size()));
3090
3091      return Invalid;
3092    }
3093
3094    // If we have a template parameter pack with no more corresponding
3095    // arguments, just break out now and we'll fill in the argument pack below.
3096    if ((*Param)->isTemplateParameterPack())
3097      break;
3098
3099    // Check whether we have a default argument.
3100    TemplateArgumentLoc Arg;
3101
3102    // Retrieve the default template argument from the template
3103    // parameter. For each kind of template parameter, we substitute the
3104    // template arguments provided thus far and any "outer" template arguments
3105    // (when the template parameter was part of a nested template) into
3106    // the default argument.
3107    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3108      if (!TTP->hasDefaultArgument())
3109        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3110                                     TemplateArgs);
3111
3112      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3113                                                             Template,
3114                                                             TemplateLoc,
3115                                                             RAngleLoc,
3116                                                             TTP,
3117                                                             Converted);
3118      if (!ArgType)
3119        return true;
3120
3121      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3122                                ArgType);
3123    } else if (NonTypeTemplateParmDecl *NTTP
3124                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3125      if (!NTTP->hasDefaultArgument())
3126        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3127                                     TemplateArgs);
3128
3129      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3130                                                              TemplateLoc,
3131                                                              RAngleLoc,
3132                                                              NTTP,
3133                                                              Converted);
3134      if (E.isInvalid())
3135        return true;
3136
3137      Expr *Ex = E.takeAs<Expr>();
3138      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3139    } else {
3140      TemplateTemplateParmDecl *TempParm
3141        = cast<TemplateTemplateParmDecl>(*Param);
3142
3143      if (!TempParm->hasDefaultArgument())
3144        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3145                                     TemplateArgs);
3146
3147      NestedNameSpecifierLoc QualifierLoc;
3148      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3149                                                       TemplateLoc,
3150                                                       RAngleLoc,
3151                                                       TempParm,
3152                                                       Converted,
3153                                                       QualifierLoc);
3154      if (Name.isNull())
3155        return true;
3156
3157      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3158                           TempParm->getDefaultArgument().getTemplateNameLoc());
3159    }
3160
3161    // Introduce an instantiation record that describes where we are using
3162    // the default template argument.
3163    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3164                                        *Param, Converted,
3165                                        SourceRange(TemplateLoc, RAngleLoc));
3166    if (Instantiating)
3167      return true;
3168
3169    // Check the default template argument.
3170    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3171                              RAngleLoc, 0, Converted))
3172      return true;
3173
3174    // Core issue 150 (assumed resolution): if this is a template template
3175    // parameter, keep track of the default template arguments from the
3176    // template definition.
3177    if (isTemplateTemplateParameter)
3178      TemplateArgs.addArgument(Arg);
3179
3180    // Move to the next template parameter and argument.
3181    ++Param;
3182    ++ArgIdx;
3183  }
3184
3185  // If we saw a pack expansion, then directly convert the remaining arguments,
3186  // because we don't know what parameters they'll match up with.
3187  if (SawPackExpansion) {
3188    bool AddToArgumentPack
3189      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3190    while (ArgIdx < NumArgs) {
3191      if (AddToArgumentPack)
3192        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3193      else
3194        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3195      ++ArgIdx;
3196    }
3197
3198    // Push the argument pack onto the list of converted arguments.
3199    if (AddToArgumentPack) {
3200      if (ArgumentPack.empty())
3201        Converted.push_back(TemplateArgument(0, 0));
3202      else {
3203        Converted.push_back(
3204          TemplateArgument::CreatePackCopy(Context,
3205                                           ArgumentPack.data(),
3206                                           ArgumentPack.size()));
3207        ArgumentPack.clear();
3208      }
3209    } else if (ExpansionIntoFixedList) {
3210      // We have expanded a pack into a fixed list.
3211      *ExpansionIntoFixedList = true;
3212    }
3213
3214    return Invalid;
3215  }
3216
3217  // If we have any leftover arguments, then there were too many arguments.
3218  // Complain and fail.
3219  if (ArgIdx < NumArgs)
3220    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3221
3222  // If we have an expanded parameter pack, make sure we don't have too
3223  // many arguments.
3224  // FIXME: This really should fall out from the normal arity checking.
3225  if (Param != ParamEnd) {
3226    if (NonTypeTemplateParmDecl *NTTP
3227          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3228      if (NTTP->isExpandedParameterPack() &&
3229          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3230        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3231          << false
3232          << (isa<ClassTemplateDecl>(Template)? 0 :
3233              isa<FunctionTemplateDecl>(Template)? 1 :
3234              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3235          << Template;
3236        Diag(Template->getLocation(), diag::note_template_decl_here)
3237          << Params->getSourceRange();
3238        return true;
3239      }
3240    }
3241  }
3242
3243  // Form argument packs for each of the parameter packs remaining.
3244  while (Param != ParamEnd) {
3245    // If we're checking a partial list of template arguments, don't fill
3246    // in arguments for non-template parameter packs.
3247    if ((*Param)->isTemplateParameterPack()) {
3248      if (!HasParameterPack)
3249        return true;
3250      if (ArgumentPack.empty())
3251        Converted.push_back(TemplateArgument(0, 0));
3252      else {
3253        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3254                                                          ArgumentPack.data(),
3255                                                         ArgumentPack.size()));
3256        ArgumentPack.clear();
3257      }
3258    } else if (!PartialTemplateArgs)
3259      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3260
3261    ++Param;
3262  }
3263
3264  return Invalid;
3265}
3266
3267namespace {
3268  class UnnamedLocalNoLinkageFinder
3269    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3270  {
3271    Sema &S;
3272    SourceRange SR;
3273
3274    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3275
3276  public:
3277    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3278
3279    bool Visit(QualType T) {
3280      return inherited::Visit(T.getTypePtr());
3281    }
3282
3283#define TYPE(Class, Parent) \
3284    bool Visit##Class##Type(const Class##Type *);
3285#define ABSTRACT_TYPE(Class, Parent) \
3286    bool Visit##Class##Type(const Class##Type *) { return false; }
3287#define NON_CANONICAL_TYPE(Class, Parent) \
3288    bool Visit##Class##Type(const Class##Type *) { return false; }
3289#include "clang/AST/TypeNodes.def"
3290
3291    bool VisitTagDecl(const TagDecl *Tag);
3292    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3293  };
3294}
3295
3296bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3297  return false;
3298}
3299
3300bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3301  return Visit(T->getElementType());
3302}
3303
3304bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3305  return Visit(T->getPointeeType());
3306}
3307
3308bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3309                                                    const BlockPointerType* T) {
3310  return Visit(T->getPointeeType());
3311}
3312
3313bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3314                                                const LValueReferenceType* T) {
3315  return Visit(T->getPointeeType());
3316}
3317
3318bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3319                                                const RValueReferenceType* T) {
3320  return Visit(T->getPointeeType());
3321}
3322
3323bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3324                                                  const MemberPointerType* T) {
3325  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3326}
3327
3328bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3329                                                  const ConstantArrayType* T) {
3330  return Visit(T->getElementType());
3331}
3332
3333bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3334                                                 const IncompleteArrayType* T) {
3335  return Visit(T->getElementType());
3336}
3337
3338bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3339                                                   const VariableArrayType* T) {
3340  return Visit(T->getElementType());
3341}
3342
3343bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3344                                            const DependentSizedArrayType* T) {
3345  return Visit(T->getElementType());
3346}
3347
3348bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3349                                         const DependentSizedExtVectorType* T) {
3350  return Visit(T->getElementType());
3351}
3352
3353bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3354  return Visit(T->getElementType());
3355}
3356
3357bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3358  return Visit(T->getElementType());
3359}
3360
3361bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3362                                                  const FunctionProtoType* T) {
3363  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3364                                         AEnd = T->arg_type_end();
3365       A != AEnd; ++A) {
3366    if (Visit(*A))
3367      return true;
3368  }
3369
3370  return Visit(T->getResultType());
3371}
3372
3373bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3374                                               const FunctionNoProtoType* T) {
3375  return Visit(T->getResultType());
3376}
3377
3378bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3379                                                  const UnresolvedUsingType*) {
3380  return false;
3381}
3382
3383bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3384  return false;
3385}
3386
3387bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3388  return Visit(T->getUnderlyingType());
3389}
3390
3391bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3392  return false;
3393}
3394
3395bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3396                                                    const UnaryTransformType*) {
3397  return false;
3398}
3399
3400bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3401  return Visit(T->getDeducedType());
3402}
3403
3404bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3405  return VisitTagDecl(T->getDecl());
3406}
3407
3408bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3409  return VisitTagDecl(T->getDecl());
3410}
3411
3412bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3413                                                 const TemplateTypeParmType*) {
3414  return false;
3415}
3416
3417bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3418                                        const SubstTemplateTypeParmPackType *) {
3419  return false;
3420}
3421
3422bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3423                                            const TemplateSpecializationType*) {
3424  return false;
3425}
3426
3427bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3428                                              const InjectedClassNameType* T) {
3429  return VisitTagDecl(T->getDecl());
3430}
3431
3432bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3433                                                   const DependentNameType* T) {
3434  return VisitNestedNameSpecifier(T->getQualifier());
3435}
3436
3437bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3438                                 const DependentTemplateSpecializationType* T) {
3439  return VisitNestedNameSpecifier(T->getQualifier());
3440}
3441
3442bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3443                                                   const PackExpansionType* T) {
3444  return Visit(T->getPattern());
3445}
3446
3447bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3448  return false;
3449}
3450
3451bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3452                                                   const ObjCInterfaceType *) {
3453  return false;
3454}
3455
3456bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3457                                                const ObjCObjectPointerType *) {
3458  return false;
3459}
3460
3461bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3462  return Visit(T->getValueType());
3463}
3464
3465bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3466  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3467    S.Diag(SR.getBegin(),
3468           S.getLangOpts().CPlusPlus0x ?
3469             diag::warn_cxx98_compat_template_arg_local_type :
3470             diag::ext_template_arg_local_type)
3471      << S.Context.getTypeDeclType(Tag) << SR;
3472    return true;
3473  }
3474
3475  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3476    S.Diag(SR.getBegin(),
3477           S.getLangOpts().CPlusPlus0x ?
3478             diag::warn_cxx98_compat_template_arg_unnamed_type :
3479             diag::ext_template_arg_unnamed_type) << SR;
3480    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3481    return true;
3482  }
3483
3484  return false;
3485}
3486
3487bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3488                                                    NestedNameSpecifier *NNS) {
3489  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3490    return true;
3491
3492  switch (NNS->getKind()) {
3493  case NestedNameSpecifier::Identifier:
3494  case NestedNameSpecifier::Namespace:
3495  case NestedNameSpecifier::NamespaceAlias:
3496  case NestedNameSpecifier::Global:
3497    return false;
3498
3499  case NestedNameSpecifier::TypeSpec:
3500  case NestedNameSpecifier::TypeSpecWithTemplate:
3501    return Visit(QualType(NNS->getAsType(), 0));
3502  }
3503  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3504}
3505
3506
3507/// \brief Check a template argument against its corresponding
3508/// template type parameter.
3509///
3510/// This routine implements the semantics of C++ [temp.arg.type]. It
3511/// returns true if an error occurred, and false otherwise.
3512bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3513                                 TypeSourceInfo *ArgInfo) {
3514  assert(ArgInfo && "invalid TypeSourceInfo");
3515  QualType Arg = ArgInfo->getType();
3516  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3517
3518  if (Arg->isVariablyModifiedType()) {
3519    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3520  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3521    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3522  }
3523
3524  // C++03 [temp.arg.type]p2:
3525  //   A local type, a type with no linkage, an unnamed type or a type
3526  //   compounded from any of these types shall not be used as a
3527  //   template-argument for a template type-parameter.
3528  //
3529  // C++11 allows these, and even in C++03 we allow them as an extension with
3530  // a warning.
3531  if (LangOpts.CPlusPlus0x ?
3532     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3533                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3534      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3535                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3536      Arg->hasUnnamedOrLocalType()) {
3537    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3538    (void)Finder.Visit(Context.getCanonicalType(Arg));
3539  }
3540
3541  return false;
3542}
3543
3544enum NullPointerValueKind {
3545  NPV_NotNullPointer,
3546  NPV_NullPointer,
3547  NPV_Error
3548};
3549
3550/// \brief Determine whether the given template argument is a null pointer
3551/// value of the appropriate type.
3552static NullPointerValueKind
3553isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3554                                   QualType ParamType, Expr *Arg) {
3555  if (Arg->isValueDependent() || Arg->isTypeDependent())
3556    return NPV_NotNullPointer;
3557
3558  if (!S.getLangOpts().CPlusPlus0x)
3559    return NPV_NotNullPointer;
3560
3561  // Determine whether we have a constant expression.
3562  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3563  if (ArgRV.isInvalid())
3564    return NPV_Error;
3565  Arg = ArgRV.take();
3566
3567  Expr::EvalResult EvalResult;
3568  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3569  EvalResult.Diag = &Notes;
3570  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3571      EvalResult.HasSideEffects) {
3572    SourceLocation DiagLoc = Arg->getExprLoc();
3573
3574    // If our only note is the usual "invalid subexpression" note, just point
3575    // the caret at its location rather than producing an essentially
3576    // redundant note.
3577    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3578        diag::note_invalid_subexpr_in_const_expr) {
3579      DiagLoc = Notes[0].first;
3580      Notes.clear();
3581    }
3582
3583    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3584      << Arg->getType() << Arg->getSourceRange();
3585    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3586      S.Diag(Notes[I].first, Notes[I].second);
3587
3588    S.Diag(Param->getLocation(), diag::note_template_param_here);
3589    return NPV_Error;
3590  }
3591
3592  // C++11 [temp.arg.nontype]p1:
3593  //   - an address constant expression of type std::nullptr_t
3594  if (Arg->getType()->isNullPtrType())
3595    return NPV_NullPointer;
3596
3597  //   - a constant expression that evaluates to a null pointer value (4.10); or
3598  //   - a constant expression that evaluates to a null member pointer value
3599  //     (4.11); or
3600  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3601      (EvalResult.Val.isMemberPointer() &&
3602       !EvalResult.Val.getMemberPointerDecl())) {
3603    // If our expression has an appropriate type, we've succeeded.
3604    bool ObjCLifetimeConversion;
3605    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3606        S.IsQualificationConversion(Arg->getType(), ParamType, false,
3607                                     ObjCLifetimeConversion))
3608      return NPV_NullPointer;
3609
3610    // The types didn't match, but we know we got a null pointer; complain,
3611    // then recover as if the types were correct.
3612    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3613      << Arg->getType() << ParamType << Arg->getSourceRange();
3614    S.Diag(Param->getLocation(), diag::note_template_param_here);
3615    return NPV_NullPointer;
3616  }
3617
3618  // If we don't have a null pointer value, but we do have a NULL pointer
3619  // constant, suggest a cast to the appropriate type.
3620  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3621    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3622    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3623      << ParamType
3624      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3625      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3626                                    ")");
3627    S.Diag(Param->getLocation(), diag::note_template_param_here);
3628    return NPV_NullPointer;
3629  }
3630
3631  // FIXME: If we ever want to support general, address-constant expressions
3632  // as non-type template arguments, we should return the ExprResult here to
3633  // be interpreted by the caller.
3634  return NPV_NotNullPointer;
3635}
3636
3637/// \brief Checks whether the given template argument is the address
3638/// of an object or function according to C++ [temp.arg.nontype]p1.
3639static bool
3640CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3641                                               NonTypeTemplateParmDecl *Param,
3642                                               QualType ParamType,
3643                                               Expr *ArgIn,
3644                                               TemplateArgument &Converted) {
3645  bool Invalid = false;
3646  Expr *Arg = ArgIn;
3647  QualType ArgType = Arg->getType();
3648
3649  // If our parameter has pointer type, check for a null template value.
3650  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3651    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3652    case NPV_NullPointer:
3653      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3654      Converted = TemplateArgument((Decl *)0);
3655      return false;
3656
3657    case NPV_Error:
3658      return true;
3659
3660    case NPV_NotNullPointer:
3661      break;
3662    }
3663  }
3664
3665  // See through any implicit casts we added to fix the type.
3666  Arg = Arg->IgnoreImpCasts();
3667
3668  // C++ [temp.arg.nontype]p1:
3669  //
3670  //   A template-argument for a non-type, non-template
3671  //   template-parameter shall be one of: [...]
3672  //
3673  //     -- the address of an object or function with external
3674  //        linkage, including function templates and function
3675  //        template-ids but excluding non-static class members,
3676  //        expressed as & id-expression where the & is optional if
3677  //        the name refers to a function or array, or if the
3678  //        corresponding template-parameter is a reference; or
3679
3680  // In C++98/03 mode, give an extension warning on any extra parentheses.
3681  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3682  bool ExtraParens = false;
3683  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3684    if (!Invalid && !ExtraParens) {
3685      S.Diag(Arg->getLocStart(),
3686             S.getLangOpts().CPlusPlus0x ?
3687               diag::warn_cxx98_compat_template_arg_extra_parens :
3688               diag::ext_template_arg_extra_parens)
3689        << Arg->getSourceRange();
3690      ExtraParens = true;
3691    }
3692
3693    Arg = Parens->getSubExpr();
3694  }
3695
3696  while (SubstNonTypeTemplateParmExpr *subst =
3697           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3698    Arg = subst->getReplacement()->IgnoreImpCasts();
3699
3700  bool AddressTaken = false;
3701  SourceLocation AddrOpLoc;
3702  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3703    if (UnOp->getOpcode() == UO_AddrOf) {
3704      Arg = UnOp->getSubExpr();
3705      AddressTaken = true;
3706      AddrOpLoc = UnOp->getOperatorLoc();
3707    }
3708  }
3709
3710  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3711    Converted = TemplateArgument(ArgIn);
3712    return false;
3713  }
3714
3715  while (SubstNonTypeTemplateParmExpr *subst =
3716           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3717    Arg = subst->getReplacement()->IgnoreImpCasts();
3718
3719  // Stop checking the precise nature of the argument if it is value dependent,
3720  // it should be checked when instantiated.
3721  if (Arg->isValueDependent()) {
3722    Converted = TemplateArgument(ArgIn);
3723    return false;
3724  }
3725
3726  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3727  if (!DRE) {
3728    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3729    << Arg->getSourceRange();
3730    S.Diag(Param->getLocation(), diag::note_template_param_here);
3731    return true;
3732  }
3733
3734  if (!isa<ValueDecl>(DRE->getDecl())) {
3735    S.Diag(Arg->getLocStart(),
3736           diag::err_template_arg_not_object_or_func_form)
3737      << Arg->getSourceRange();
3738    S.Diag(Param->getLocation(), diag::note_template_param_here);
3739    return true;
3740  }
3741
3742  NamedDecl *Entity = DRE->getDecl();
3743
3744  // Cannot refer to non-static data members
3745  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3746    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3747      << Field << Arg->getSourceRange();
3748    S.Diag(Param->getLocation(), diag::note_template_param_here);
3749    return true;
3750  }
3751
3752  // Cannot refer to non-static member functions
3753  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3754    if (!Method->isStatic()) {
3755      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3756        << Method << Arg->getSourceRange();
3757      S.Diag(Param->getLocation(), diag::note_template_param_here);
3758      return true;
3759    }
3760  }
3761
3762  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3763  VarDecl *Var = dyn_cast<VarDecl>(Entity);
3764
3765  // A non-type template argument must refer to an object or function.
3766  if (!Func && !Var) {
3767    // We found something, but we don't know specifically what it is.
3768    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3769      << Arg->getSourceRange();
3770    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3771    return true;
3772  }
3773
3774  // Address / reference template args must have external linkage in C++98.
3775  if (Entity->getLinkage() == InternalLinkage) {
3776    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3777             diag::warn_cxx98_compat_template_arg_object_internal :
3778             diag::ext_template_arg_object_internal)
3779      << !Func << Entity << Arg->getSourceRange();
3780    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3781      << !Func;
3782  } else if (Entity->getLinkage() == NoLinkage) {
3783    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3784      << !Func << Entity << Arg->getSourceRange();
3785    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3786      << !Func;
3787    return true;
3788  }
3789
3790  if (Func) {
3791    // If the template parameter has pointer type, the function decays.
3792    if (ParamType->isPointerType() && !AddressTaken)
3793      ArgType = S.Context.getPointerType(Func->getType());
3794    else if (AddressTaken && ParamType->isReferenceType()) {
3795      // If we originally had an address-of operator, but the
3796      // parameter has reference type, complain and (if things look
3797      // like they will work) drop the address-of operator.
3798      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3799                                            ParamType.getNonReferenceType())) {
3800        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3801          << ParamType;
3802        S.Diag(Param->getLocation(), diag::note_template_param_here);
3803        return true;
3804      }
3805
3806      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3807        << ParamType
3808        << FixItHint::CreateRemoval(AddrOpLoc);
3809      S.Diag(Param->getLocation(), diag::note_template_param_here);
3810
3811      ArgType = Func->getType();
3812    }
3813  } else {
3814    // A value of reference type is not an object.
3815    if (Var->getType()->isReferenceType()) {
3816      S.Diag(Arg->getLocStart(),
3817             diag::err_template_arg_reference_var)
3818        << Var->getType() << Arg->getSourceRange();
3819      S.Diag(Param->getLocation(), diag::note_template_param_here);
3820      return true;
3821    }
3822
3823    // A template argument must have static storage duration.
3824    // FIXME: Ensure this works for thread_local as well as __thread.
3825    if (Var->isThreadSpecified()) {
3826      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3827        << Arg->getSourceRange();
3828      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3829      return true;
3830    }
3831
3832    // If the template parameter has pointer type, we must have taken
3833    // the address of this object.
3834    if (ParamType->isReferenceType()) {
3835      if (AddressTaken) {
3836        // If we originally had an address-of operator, but the
3837        // parameter has reference type, complain and (if things look
3838        // like they will work) drop the address-of operator.
3839        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3840                                            ParamType.getNonReferenceType())) {
3841          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3842            << ParamType;
3843          S.Diag(Param->getLocation(), diag::note_template_param_here);
3844          return true;
3845        }
3846
3847        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3848          << ParamType
3849          << FixItHint::CreateRemoval(AddrOpLoc);
3850        S.Diag(Param->getLocation(), diag::note_template_param_here);
3851
3852        ArgType = Var->getType();
3853      }
3854    } else if (!AddressTaken && ParamType->isPointerType()) {
3855      if (Var->getType()->isArrayType()) {
3856        // Array-to-pointer decay.
3857        ArgType = S.Context.getArrayDecayedType(Var->getType());
3858      } else {
3859        // If the template parameter has pointer type but the address of
3860        // this object was not taken, complain and (possibly) recover by
3861        // taking the address of the entity.
3862        ArgType = S.Context.getPointerType(Var->getType());
3863        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3864          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3865            << ParamType;
3866          S.Diag(Param->getLocation(), diag::note_template_param_here);
3867          return true;
3868        }
3869
3870        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3871          << ParamType
3872          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3873
3874        S.Diag(Param->getLocation(), diag::note_template_param_here);
3875      }
3876    }
3877  }
3878
3879  bool ObjCLifetimeConversion;
3880  if (ParamType->isPointerType() &&
3881      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3882      S.IsQualificationConversion(ArgType, ParamType, false,
3883                                  ObjCLifetimeConversion)) {
3884    // For pointer-to-object types, qualification conversions are
3885    // permitted.
3886  } else {
3887    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3888      if (!ParamRef->getPointeeType()->isFunctionType()) {
3889        // C++ [temp.arg.nontype]p5b3:
3890        //   For a non-type template-parameter of type reference to
3891        //   object, no conversions apply. The type referred to by the
3892        //   reference may be more cv-qualified than the (otherwise
3893        //   identical) type of the template- argument. The
3894        //   template-parameter is bound directly to the
3895        //   template-argument, which shall be an lvalue.
3896
3897        // FIXME: Other qualifiers?
3898        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3899        unsigned ArgQuals = ArgType.getCVRQualifiers();
3900
3901        if ((ParamQuals | ArgQuals) != ParamQuals) {
3902          S.Diag(Arg->getLocStart(),
3903                 diag::err_template_arg_ref_bind_ignores_quals)
3904            << ParamType << Arg->getType()
3905            << Arg->getSourceRange();
3906          S.Diag(Param->getLocation(), diag::note_template_param_here);
3907          return true;
3908        }
3909      }
3910    }
3911
3912    // At this point, the template argument refers to an object or
3913    // function with external linkage. We now need to check whether the
3914    // argument and parameter types are compatible.
3915    if (!S.Context.hasSameUnqualifiedType(ArgType,
3916                                          ParamType.getNonReferenceType())) {
3917      // We can't perform this conversion or binding.
3918      if (ParamType->isReferenceType())
3919        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3920          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3921      else
3922        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3923          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3924      S.Diag(Param->getLocation(), diag::note_template_param_here);
3925      return true;
3926    }
3927  }
3928
3929  // Create the template argument.
3930  Converted = TemplateArgument(Entity->getCanonicalDecl());
3931  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3932  return false;
3933}
3934
3935/// \brief Checks whether the given template argument is a pointer to
3936/// member constant according to C++ [temp.arg.nontype]p1.
3937static bool CheckTemplateArgumentPointerToMember(Sema &S,
3938                                                 NonTypeTemplateParmDecl *Param,
3939                                                 QualType ParamType,
3940                                                 Expr *&ResultArg,
3941                                                 TemplateArgument &Converted) {
3942  bool Invalid = false;
3943
3944  // Check for a null pointer value.
3945  Expr *Arg = ResultArg;
3946  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3947  case NPV_Error:
3948    return true;
3949  case NPV_NullPointer:
3950    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3951    Converted = TemplateArgument((Decl *)0);
3952    return false;
3953  case NPV_NotNullPointer:
3954    break;
3955  }
3956
3957  bool ObjCLifetimeConversion;
3958  if (S.IsQualificationConversion(Arg->getType(),
3959                                  ParamType.getNonReferenceType(),
3960                                  false, ObjCLifetimeConversion)) {
3961    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3962                              Arg->getValueKind()).take();
3963    ResultArg = Arg;
3964  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3965                ParamType.getNonReferenceType())) {
3966    // We can't perform this conversion.
3967    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3968      << Arg->getType() << ParamType << Arg->getSourceRange();
3969    S.Diag(Param->getLocation(), diag::note_template_param_here);
3970    return true;
3971  }
3972
3973  // See through any implicit casts we added to fix the type.
3974  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3975    Arg = Cast->getSubExpr();
3976
3977  // C++ [temp.arg.nontype]p1:
3978  //
3979  //   A template-argument for a non-type, non-template
3980  //   template-parameter shall be one of: [...]
3981  //
3982  //     -- a pointer to member expressed as described in 5.3.1.
3983  DeclRefExpr *DRE = 0;
3984
3985  // In C++98/03 mode, give an extension warning on any extra parentheses.
3986  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3987  bool ExtraParens = false;
3988  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3989    if (!Invalid && !ExtraParens) {
3990      S.Diag(Arg->getLocStart(),
3991             S.getLangOpts().CPlusPlus0x ?
3992               diag::warn_cxx98_compat_template_arg_extra_parens :
3993               diag::ext_template_arg_extra_parens)
3994        << Arg->getSourceRange();
3995      ExtraParens = true;
3996    }
3997
3998    Arg = Parens->getSubExpr();
3999  }
4000
4001  while (SubstNonTypeTemplateParmExpr *subst =
4002           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4003    Arg = subst->getReplacement()->IgnoreImpCasts();
4004
4005  // A pointer-to-member constant written &Class::member.
4006  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4007    if (UnOp->getOpcode() == UO_AddrOf) {
4008      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4009      if (DRE && !DRE->getQualifier())
4010        DRE = 0;
4011    }
4012  }
4013  // A constant of pointer-to-member type.
4014  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4015    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4016      if (VD->getType()->isMemberPointerType()) {
4017        if (isa<NonTypeTemplateParmDecl>(VD) ||
4018            (isa<VarDecl>(VD) &&
4019             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4020          if (Arg->isTypeDependent() || Arg->isValueDependent())
4021            Converted = TemplateArgument(Arg);
4022          else
4023            Converted = TemplateArgument(VD->getCanonicalDecl());
4024          return Invalid;
4025        }
4026      }
4027    }
4028
4029    DRE = 0;
4030  }
4031
4032  if (!DRE)
4033    return S.Diag(Arg->getLocStart(),
4034                  diag::err_template_arg_not_pointer_to_member_form)
4035      << Arg->getSourceRange();
4036
4037  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4038    assert((isa<FieldDecl>(DRE->getDecl()) ||
4039            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4040           "Only non-static member pointers can make it here");
4041
4042    // Okay: this is the address of a non-static member, and therefore
4043    // a member pointer constant.
4044    if (Arg->isTypeDependent() || Arg->isValueDependent())
4045      Converted = TemplateArgument(Arg);
4046    else
4047      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
4048    return Invalid;
4049  }
4050
4051  // We found something else, but we don't know specifically what it is.
4052  S.Diag(Arg->getLocStart(),
4053         diag::err_template_arg_not_pointer_to_member_form)
4054    << Arg->getSourceRange();
4055  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4056  return true;
4057}
4058
4059/// \brief Check a template argument against its corresponding
4060/// non-type template parameter.
4061///
4062/// This routine implements the semantics of C++ [temp.arg.nontype].
4063/// If an error occurred, it returns ExprError(); otherwise, it
4064/// returns the converted template argument. \p
4065/// InstantiatedParamType is the type of the non-type template
4066/// parameter after it has been instantiated.
4067ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4068                                       QualType InstantiatedParamType, Expr *Arg,
4069                                       TemplateArgument &Converted,
4070                                       CheckTemplateArgumentKind CTAK) {
4071  SourceLocation StartLoc = Arg->getLocStart();
4072
4073  // If either the parameter has a dependent type or the argument is
4074  // type-dependent, there's nothing we can check now.
4075  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4076    // FIXME: Produce a cloned, canonical expression?
4077    Converted = TemplateArgument(Arg);
4078    return Owned(Arg);
4079  }
4080
4081  // C++ [temp.arg.nontype]p5:
4082  //   The following conversions are performed on each expression used
4083  //   as a non-type template-argument. If a non-type
4084  //   template-argument cannot be converted to the type of the
4085  //   corresponding template-parameter then the program is
4086  //   ill-formed.
4087  QualType ParamType = InstantiatedParamType;
4088  if (ParamType->isIntegralOrEnumerationType()) {
4089    // C++11:
4090    //   -- for a non-type template-parameter of integral or
4091    //      enumeration type, conversions permitted in a converted
4092    //      constant expression are applied.
4093    //
4094    // C++98:
4095    //   -- for a non-type template-parameter of integral or
4096    //      enumeration type, integral promotions (4.5) and integral
4097    //      conversions (4.7) are applied.
4098
4099    if (CTAK == CTAK_Deduced &&
4100        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4101      // C++ [temp.deduct.type]p17:
4102      //   If, in the declaration of a function template with a non-type
4103      //   template-parameter, the non-type template-parameter is used
4104      //   in an expression in the function parameter-list and, if the
4105      //   corresponding template-argument is deduced, the
4106      //   template-argument type shall match the type of the
4107      //   template-parameter exactly, except that a template-argument
4108      //   deduced from an array bound may be of any integral type.
4109      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4110        << Arg->getType().getUnqualifiedType()
4111        << ParamType.getUnqualifiedType();
4112      Diag(Param->getLocation(), diag::note_template_param_here);
4113      return ExprError();
4114    }
4115
4116    if (getLangOpts().CPlusPlus0x) {
4117      // We can't check arbitrary value-dependent arguments.
4118      // FIXME: If there's no viable conversion to the template parameter type,
4119      // we should be able to diagnose that prior to instantiation.
4120      if (Arg->isValueDependent()) {
4121        Converted = TemplateArgument(Arg);
4122        return Owned(Arg);
4123      }
4124
4125      // C++ [temp.arg.nontype]p1:
4126      //   A template-argument for a non-type, non-template template-parameter
4127      //   shall be one of:
4128      //
4129      //     -- for a non-type template-parameter of integral or enumeration
4130      //        type, a converted constant expression of the type of the
4131      //        template-parameter; or
4132      llvm::APSInt Value;
4133      ExprResult ArgResult =
4134        CheckConvertedConstantExpression(Arg, ParamType, Value,
4135                                         CCEK_TemplateArg);
4136      if (ArgResult.isInvalid())
4137        return ExprError();
4138
4139      // Widen the argument value to sizeof(parameter type). This is almost
4140      // always a no-op, except when the parameter type is bool. In
4141      // that case, this may extend the argument from 1 bit to 8 bits.
4142      QualType IntegerType = ParamType;
4143      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4144        IntegerType = Enum->getDecl()->getIntegerType();
4145      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4146
4147      Converted = TemplateArgument(Context, Value,
4148                                   Context.getCanonicalType(ParamType));
4149      return ArgResult;
4150    }
4151
4152    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4153    if (ArgResult.isInvalid())
4154      return ExprError();
4155    Arg = ArgResult.take();
4156
4157    QualType ArgType = Arg->getType();
4158
4159    // C++ [temp.arg.nontype]p1:
4160    //   A template-argument for a non-type, non-template
4161    //   template-parameter shall be one of:
4162    //
4163    //     -- an integral constant-expression of integral or enumeration
4164    //        type; or
4165    //     -- the name of a non-type template-parameter; or
4166    SourceLocation NonConstantLoc;
4167    llvm::APSInt Value;
4168    if (!ArgType->isIntegralOrEnumerationType()) {
4169      Diag(Arg->getLocStart(),
4170           diag::err_template_arg_not_integral_or_enumeral)
4171        << ArgType << Arg->getSourceRange();
4172      Diag(Param->getLocation(), diag::note_template_param_here);
4173      return ExprError();
4174    } else if (!Arg->isValueDependent()) {
4175      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4176        QualType T;
4177
4178      public:
4179        TmplArgICEDiagnoser(QualType T) : T(T) { }
4180
4181        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4182                                    SourceRange SR) {
4183          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4184        }
4185      } Diagnoser(ArgType);
4186
4187      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4188                                            false).take();
4189      if (!Arg)
4190        return ExprError();
4191    }
4192
4193    // From here on out, all we care about are the unqualified forms
4194    // of the parameter and argument types.
4195    ParamType = ParamType.getUnqualifiedType();
4196    ArgType = ArgType.getUnqualifiedType();
4197
4198    // Try to convert the argument to the parameter's type.
4199    if (Context.hasSameType(ParamType, ArgType)) {
4200      // Okay: no conversion necessary
4201    } else if (ParamType->isBooleanType()) {
4202      // This is an integral-to-boolean conversion.
4203      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4204    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4205               !ParamType->isEnumeralType()) {
4206      // This is an integral promotion or conversion.
4207      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4208    } else {
4209      // We can't perform this conversion.
4210      Diag(Arg->getLocStart(),
4211           diag::err_template_arg_not_convertible)
4212        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4213      Diag(Param->getLocation(), diag::note_template_param_here);
4214      return ExprError();
4215    }
4216
4217    // Add the value of this argument to the list of converted
4218    // arguments. We use the bitwidth and signedness of the template
4219    // parameter.
4220    if (Arg->isValueDependent()) {
4221      // The argument is value-dependent. Create a new
4222      // TemplateArgument with the converted expression.
4223      Converted = TemplateArgument(Arg);
4224      return Owned(Arg);
4225    }
4226
4227    QualType IntegerType = Context.getCanonicalType(ParamType);
4228    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4229      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4230
4231    if (ParamType->isBooleanType()) {
4232      // Value must be zero or one.
4233      Value = Value != 0;
4234      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4235      if (Value.getBitWidth() != AllowedBits)
4236        Value = Value.extOrTrunc(AllowedBits);
4237      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4238    } else {
4239      llvm::APSInt OldValue = Value;
4240
4241      // Coerce the template argument's value to the value it will have
4242      // based on the template parameter's type.
4243      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4244      if (Value.getBitWidth() != AllowedBits)
4245        Value = Value.extOrTrunc(AllowedBits);
4246      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4247
4248      // Complain if an unsigned parameter received a negative value.
4249      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4250               && (OldValue.isSigned() && OldValue.isNegative())) {
4251        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4252          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4253          << Arg->getSourceRange();
4254        Diag(Param->getLocation(), diag::note_template_param_here);
4255      }
4256
4257      // Complain if we overflowed the template parameter's type.
4258      unsigned RequiredBits;
4259      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4260        RequiredBits = OldValue.getActiveBits();
4261      else if (OldValue.isUnsigned())
4262        RequiredBits = OldValue.getActiveBits() + 1;
4263      else
4264        RequiredBits = OldValue.getMinSignedBits();
4265      if (RequiredBits > AllowedBits) {
4266        Diag(Arg->getLocStart(),
4267             diag::warn_template_arg_too_large)
4268          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4269          << Arg->getSourceRange();
4270        Diag(Param->getLocation(), diag::note_template_param_here);
4271      }
4272    }
4273
4274    Converted = TemplateArgument(Context, Value,
4275                                 ParamType->isEnumeralType()
4276                                   ? Context.getCanonicalType(ParamType)
4277                                   : IntegerType);
4278    return Owned(Arg);
4279  }
4280
4281  QualType ArgType = Arg->getType();
4282  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4283
4284  // Handle pointer-to-function, reference-to-function, and
4285  // pointer-to-member-function all in (roughly) the same way.
4286  if (// -- For a non-type template-parameter of type pointer to
4287      //    function, only the function-to-pointer conversion (4.3) is
4288      //    applied. If the template-argument represents a set of
4289      //    overloaded functions (or a pointer to such), the matching
4290      //    function is selected from the set (13.4).
4291      (ParamType->isPointerType() &&
4292       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4293      // -- For a non-type template-parameter of type reference to
4294      //    function, no conversions apply. If the template-argument
4295      //    represents a set of overloaded functions, the matching
4296      //    function is selected from the set (13.4).
4297      (ParamType->isReferenceType() &&
4298       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4299      // -- For a non-type template-parameter of type pointer to
4300      //    member function, no conversions apply. If the
4301      //    template-argument represents a set of overloaded member
4302      //    functions, the matching member function is selected from
4303      //    the set (13.4).
4304      (ParamType->isMemberPointerType() &&
4305       ParamType->getAs<MemberPointerType>()->getPointeeType()
4306         ->isFunctionType())) {
4307
4308    if (Arg->getType() == Context.OverloadTy) {
4309      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4310                                                                true,
4311                                                                FoundResult)) {
4312        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4313          return ExprError();
4314
4315        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4316        ArgType = Arg->getType();
4317      } else
4318        return ExprError();
4319    }
4320
4321    if (!ParamType->isMemberPointerType()) {
4322      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4323                                                         ParamType,
4324                                                         Arg, Converted))
4325        return ExprError();
4326      return Owned(Arg);
4327    }
4328
4329    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4330                                             Converted))
4331      return ExprError();
4332    return Owned(Arg);
4333  }
4334
4335  if (ParamType->isPointerType()) {
4336    //   -- for a non-type template-parameter of type pointer to
4337    //      object, qualification conversions (4.4) and the
4338    //      array-to-pointer conversion (4.2) are applied.
4339    // C++0x also allows a value of std::nullptr_t.
4340    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4341           "Only object pointers allowed here");
4342
4343    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4344                                                       ParamType,
4345                                                       Arg, Converted))
4346      return ExprError();
4347    return Owned(Arg);
4348  }
4349
4350  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4351    //   -- For a non-type template-parameter of type reference to
4352    //      object, no conversions apply. The type referred to by the
4353    //      reference may be more cv-qualified than the (otherwise
4354    //      identical) type of the template-argument. The
4355    //      template-parameter is bound directly to the
4356    //      template-argument, which must be an lvalue.
4357    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4358           "Only object references allowed here");
4359
4360    if (Arg->getType() == Context.OverloadTy) {
4361      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4362                                                 ParamRefType->getPointeeType(),
4363                                                                true,
4364                                                                FoundResult)) {
4365        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4366          return ExprError();
4367
4368        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4369        ArgType = Arg->getType();
4370      } else
4371        return ExprError();
4372    }
4373
4374    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4375                                                       ParamType,
4376                                                       Arg, Converted))
4377      return ExprError();
4378    return Owned(Arg);
4379  }
4380
4381  // Deal with parameters of type std::nullptr_t.
4382  if (ParamType->isNullPtrType()) {
4383    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4384      Converted = TemplateArgument(Arg);
4385      return Owned(Arg);
4386    }
4387
4388    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4389    case NPV_NotNullPointer:
4390      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4391        << Arg->getType() << ParamType;
4392      Diag(Param->getLocation(), diag::note_template_param_here);
4393      return ExprError();
4394
4395    case NPV_Error:
4396      return ExprError();
4397
4398    case NPV_NullPointer:
4399      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4400      Converted = TemplateArgument((Decl *)0);
4401      return Owned(Arg);;
4402    }
4403  }
4404
4405  //     -- For a non-type template-parameter of type pointer to data
4406  //        member, qualification conversions (4.4) are applied.
4407  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4408
4409  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4410                                           Converted))
4411    return ExprError();
4412  return Owned(Arg);
4413}
4414
4415/// \brief Check a template argument against its corresponding
4416/// template template parameter.
4417///
4418/// This routine implements the semantics of C++ [temp.arg.template].
4419/// It returns true if an error occurred, and false otherwise.
4420bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4421                                 const TemplateArgumentLoc &Arg) {
4422  TemplateName Name = Arg.getArgument().getAsTemplate();
4423  TemplateDecl *Template = Name.getAsTemplateDecl();
4424  if (!Template) {
4425    // Any dependent template name is fine.
4426    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4427    return false;
4428  }
4429
4430  // C++0x [temp.arg.template]p1:
4431  //   A template-argument for a template template-parameter shall be
4432  //   the name of a class template or an alias template, expressed as an
4433  //   id-expression. When the template-argument names a class template, only
4434  //   primary class templates are considered when matching the
4435  //   template template argument with the corresponding parameter;
4436  //   partial specializations are not considered even if their
4437  //   parameter lists match that of the template template parameter.
4438  //
4439  // Note that we also allow template template parameters here, which
4440  // will happen when we are dealing with, e.g., class template
4441  // partial specializations.
4442  if (!isa<ClassTemplateDecl>(Template) &&
4443      !isa<TemplateTemplateParmDecl>(Template) &&
4444      !isa<TypeAliasTemplateDecl>(Template)) {
4445    assert(isa<FunctionTemplateDecl>(Template) &&
4446           "Only function templates are possible here");
4447    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4448    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4449      << Template;
4450  }
4451
4452  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4453                                         Param->getTemplateParameters(),
4454                                         true,
4455                                         TPL_TemplateTemplateArgumentMatch,
4456                                         Arg.getLocation());
4457}
4458
4459/// \brief Given a non-type template argument that refers to a
4460/// declaration and the type of its corresponding non-type template
4461/// parameter, produce an expression that properly refers to that
4462/// declaration.
4463ExprResult
4464Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4465                                              QualType ParamType,
4466                                              SourceLocation Loc) {
4467  assert(Arg.getKind() == TemplateArgument::Declaration &&
4468         "Only declaration template arguments permitted here");
4469
4470  // For a NULL non-type template argument, return nullptr casted to the
4471  // parameter's type.
4472  if (!Arg.getAsDecl()) {
4473    return ImpCastExprToType(
4474             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4475                             ParamType,
4476                             ParamType->getAs<MemberPointerType>()
4477                               ? CK_NullToMemberPointer
4478                               : CK_NullToPointer);
4479  }
4480
4481  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4482
4483  if (VD->getDeclContext()->isRecord() &&
4484      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4485    // If the value is a class member, we might have a pointer-to-member.
4486    // Determine whether the non-type template template parameter is of
4487    // pointer-to-member type. If so, we need to build an appropriate
4488    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4489    // would refer to the member itself.
4490    if (ParamType->isMemberPointerType()) {
4491      QualType ClassType
4492        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4493      NestedNameSpecifier *Qualifier
4494        = NestedNameSpecifier::Create(Context, 0, false,
4495                                      ClassType.getTypePtr());
4496      CXXScopeSpec SS;
4497      SS.MakeTrivial(Context, Qualifier, Loc);
4498
4499      // The actual value-ness of this is unimportant, but for
4500      // internal consistency's sake, references to instance methods
4501      // are r-values.
4502      ExprValueKind VK = VK_LValue;
4503      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4504        VK = VK_RValue;
4505
4506      ExprResult RefExpr = BuildDeclRefExpr(VD,
4507                                            VD->getType().getNonReferenceType(),
4508                                            VK,
4509                                            Loc,
4510                                            &SS);
4511      if (RefExpr.isInvalid())
4512        return ExprError();
4513
4514      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4515
4516      // We might need to perform a trailing qualification conversion, since
4517      // the element type on the parameter could be more qualified than the
4518      // element type in the expression we constructed.
4519      bool ObjCLifetimeConversion;
4520      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4521                                    ParamType.getUnqualifiedType(), false,
4522                                    ObjCLifetimeConversion))
4523        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4524
4525      assert(!RefExpr.isInvalid() &&
4526             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4527                                 ParamType.getUnqualifiedType()));
4528      return move(RefExpr);
4529    }
4530  }
4531
4532  QualType T = VD->getType().getNonReferenceType();
4533  if (ParamType->isPointerType()) {
4534    // When the non-type template parameter is a pointer, take the
4535    // address of the declaration.
4536    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4537    if (RefExpr.isInvalid())
4538      return ExprError();
4539
4540    if (T->isFunctionType() || T->isArrayType()) {
4541      // Decay functions and arrays.
4542      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4543      if (RefExpr.isInvalid())
4544        return ExprError();
4545
4546      return move(RefExpr);
4547    }
4548
4549    // Take the address of everything else
4550    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4551  }
4552
4553  ExprValueKind VK = VK_RValue;
4554
4555  // If the non-type template parameter has reference type, qualify the
4556  // resulting declaration reference with the extra qualifiers on the
4557  // type that the reference refers to.
4558  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4559    VK = VK_LValue;
4560    T = Context.getQualifiedType(T,
4561                              TargetRef->getPointeeType().getQualifiers());
4562  }
4563
4564  return BuildDeclRefExpr(VD, T, VK, Loc);
4565}
4566
4567/// \brief Construct a new expression that refers to the given
4568/// integral template argument with the given source-location
4569/// information.
4570///
4571/// This routine takes care of the mapping from an integral template
4572/// argument (which may have any integral type) to the appropriate
4573/// literal value.
4574ExprResult
4575Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4576                                                  SourceLocation Loc) {
4577  assert(Arg.getKind() == TemplateArgument::Integral &&
4578         "Operation is only valid for integral template arguments");
4579  QualType T = Arg.getIntegralType();
4580  if (T->isAnyCharacterType()) {
4581    CharacterLiteral::CharacterKind Kind;
4582    if (T->isWideCharType())
4583      Kind = CharacterLiteral::Wide;
4584    else if (T->isChar16Type())
4585      Kind = CharacterLiteral::UTF16;
4586    else if (T->isChar32Type())
4587      Kind = CharacterLiteral::UTF32;
4588    else
4589      Kind = CharacterLiteral::Ascii;
4590
4591    return Owned(new (Context) CharacterLiteral(
4592                                            Arg.getAsIntegral().getZExtValue(),
4593                                            Kind, T, Loc));
4594  }
4595
4596  if (T->isBooleanType())
4597    return Owned(new (Context) CXXBoolLiteralExpr(
4598                                            Arg.getAsIntegral().getBoolValue(),
4599                                            T, Loc));
4600
4601  if (T->isNullPtrType())
4602    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4603
4604  // If this is an enum type that we're instantiating, we need to use an integer
4605  // type the same size as the enumerator.  We don't want to build an
4606  // IntegerLiteral with enum type.
4607  QualType BT;
4608  if (const EnumType *ET = T->getAs<EnumType>())
4609    BT = ET->getDecl()->getIntegerType();
4610  else
4611    BT = T;
4612
4613  Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc);
4614  if (T->isEnumeralType()) {
4615    // FIXME: This is a hack. We need a better way to handle substituted
4616    // non-type template parameters.
4617    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4618                               Context.getTrivialTypeSourceInfo(T, Loc),
4619                               Loc, Loc);
4620  }
4621
4622  return Owned(E);
4623}
4624
4625/// \brief Match two template parameters within template parameter lists.
4626static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4627                                       bool Complain,
4628                                     Sema::TemplateParameterListEqualKind Kind,
4629                                       SourceLocation TemplateArgLoc) {
4630  // Check the actual kind (type, non-type, template).
4631  if (Old->getKind() != New->getKind()) {
4632    if (Complain) {
4633      unsigned NextDiag = diag::err_template_param_different_kind;
4634      if (TemplateArgLoc.isValid()) {
4635        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4636        NextDiag = diag::note_template_param_different_kind;
4637      }
4638      S.Diag(New->getLocation(), NextDiag)
4639        << (Kind != Sema::TPL_TemplateMatch);
4640      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4641        << (Kind != Sema::TPL_TemplateMatch);
4642    }
4643
4644    return false;
4645  }
4646
4647  // Check that both are parameter packs are neither are parameter packs.
4648  // However, if we are matching a template template argument to a
4649  // template template parameter, the template template parameter can have
4650  // a parameter pack where the template template argument does not.
4651  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4652      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4653        Old->isTemplateParameterPack())) {
4654    if (Complain) {
4655      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4656      if (TemplateArgLoc.isValid()) {
4657        S.Diag(TemplateArgLoc,
4658             diag::err_template_arg_template_params_mismatch);
4659        NextDiag = diag::note_template_parameter_pack_non_pack;
4660      }
4661
4662      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4663                      : isa<NonTypeTemplateParmDecl>(New)? 1
4664                      : 2;
4665      S.Diag(New->getLocation(), NextDiag)
4666        << ParamKind << New->isParameterPack();
4667      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4668        << ParamKind << Old->isParameterPack();
4669    }
4670
4671    return false;
4672  }
4673
4674  // For non-type template parameters, check the type of the parameter.
4675  if (NonTypeTemplateParmDecl *OldNTTP
4676                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4677    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4678
4679    // If we are matching a template template argument to a template
4680    // template parameter and one of the non-type template parameter types
4681    // is dependent, then we must wait until template instantiation time
4682    // to actually compare the arguments.
4683    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4684        (OldNTTP->getType()->isDependentType() ||
4685         NewNTTP->getType()->isDependentType()))
4686      return true;
4687
4688    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4689      if (Complain) {
4690        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4691        if (TemplateArgLoc.isValid()) {
4692          S.Diag(TemplateArgLoc,
4693                 diag::err_template_arg_template_params_mismatch);
4694          NextDiag = diag::note_template_nontype_parm_different_type;
4695        }
4696        S.Diag(NewNTTP->getLocation(), NextDiag)
4697          << NewNTTP->getType()
4698          << (Kind != Sema::TPL_TemplateMatch);
4699        S.Diag(OldNTTP->getLocation(),
4700               diag::note_template_nontype_parm_prev_declaration)
4701          << OldNTTP->getType();
4702      }
4703
4704      return false;
4705    }
4706
4707    return true;
4708  }
4709
4710  // For template template parameters, check the template parameter types.
4711  // The template parameter lists of template template
4712  // parameters must agree.
4713  if (TemplateTemplateParmDecl *OldTTP
4714                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4715    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4716    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4717                                            OldTTP->getTemplateParameters(),
4718                                            Complain,
4719                                        (Kind == Sema::TPL_TemplateMatch
4720                                           ? Sema::TPL_TemplateTemplateParmMatch
4721                                           : Kind),
4722                                            TemplateArgLoc);
4723  }
4724
4725  return true;
4726}
4727
4728/// \brief Diagnose a known arity mismatch when comparing template argument
4729/// lists.
4730static
4731void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4732                                                TemplateParameterList *New,
4733                                                TemplateParameterList *Old,
4734                                      Sema::TemplateParameterListEqualKind Kind,
4735                                                SourceLocation TemplateArgLoc) {
4736  unsigned NextDiag = diag::err_template_param_list_different_arity;
4737  if (TemplateArgLoc.isValid()) {
4738    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4739    NextDiag = diag::note_template_param_list_different_arity;
4740  }
4741  S.Diag(New->getTemplateLoc(), NextDiag)
4742    << (New->size() > Old->size())
4743    << (Kind != Sema::TPL_TemplateMatch)
4744    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4745  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4746    << (Kind != Sema::TPL_TemplateMatch)
4747    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4748}
4749
4750/// \brief Determine whether the given template parameter lists are
4751/// equivalent.
4752///
4753/// \param New  The new template parameter list, typically written in the
4754/// source code as part of a new template declaration.
4755///
4756/// \param Old  The old template parameter list, typically found via
4757/// name lookup of the template declared with this template parameter
4758/// list.
4759///
4760/// \param Complain  If true, this routine will produce a diagnostic if
4761/// the template parameter lists are not equivalent.
4762///
4763/// \param Kind describes how we are to match the template parameter lists.
4764///
4765/// \param TemplateArgLoc If this source location is valid, then we
4766/// are actually checking the template parameter list of a template
4767/// argument (New) against the template parameter list of its
4768/// corresponding template template parameter (Old). We produce
4769/// slightly different diagnostics in this scenario.
4770///
4771/// \returns True if the template parameter lists are equal, false
4772/// otherwise.
4773bool
4774Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4775                                     TemplateParameterList *Old,
4776                                     bool Complain,
4777                                     TemplateParameterListEqualKind Kind,
4778                                     SourceLocation TemplateArgLoc) {
4779  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4780    if (Complain)
4781      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4782                                                 TemplateArgLoc);
4783
4784    return false;
4785  }
4786
4787  // C++0x [temp.arg.template]p3:
4788  //   A template-argument matches a template template-parameter (call it P)
4789  //   when each of the template parameters in the template-parameter-list of
4790  //   the template-argument's corresponding class template or alias template
4791  //   (call it A) matches the corresponding template parameter in the
4792  //   template-parameter-list of P. [...]
4793  TemplateParameterList::iterator NewParm = New->begin();
4794  TemplateParameterList::iterator NewParmEnd = New->end();
4795  for (TemplateParameterList::iterator OldParm = Old->begin(),
4796                                    OldParmEnd = Old->end();
4797       OldParm != OldParmEnd; ++OldParm) {
4798    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4799        !(*OldParm)->isTemplateParameterPack()) {
4800      if (NewParm == NewParmEnd) {
4801        if (Complain)
4802          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4803                                                     TemplateArgLoc);
4804
4805        return false;
4806      }
4807
4808      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4809                                      Kind, TemplateArgLoc))
4810        return false;
4811
4812      ++NewParm;
4813      continue;
4814    }
4815
4816    // C++0x [temp.arg.template]p3:
4817    //   [...] When P's template- parameter-list contains a template parameter
4818    //   pack (14.5.3), the template parameter pack will match zero or more
4819    //   template parameters or template parameter packs in the
4820    //   template-parameter-list of A with the same type and form as the
4821    //   template parameter pack in P (ignoring whether those template
4822    //   parameters are template parameter packs).
4823    for (; NewParm != NewParmEnd; ++NewParm) {
4824      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4825                                      Kind, TemplateArgLoc))
4826        return false;
4827    }
4828  }
4829
4830  // Make sure we exhausted all of the arguments.
4831  if (NewParm != NewParmEnd) {
4832    if (Complain)
4833      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4834                                                 TemplateArgLoc);
4835
4836    return false;
4837  }
4838
4839  return true;
4840}
4841
4842/// \brief Check whether a template can be declared within this scope.
4843///
4844/// If the template declaration is valid in this scope, returns
4845/// false. Otherwise, issues a diagnostic and returns true.
4846bool
4847Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4848  if (!S)
4849    return false;
4850
4851  // Find the nearest enclosing declaration scope.
4852  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4853         (S->getFlags() & Scope::TemplateParamScope) != 0)
4854    S = S->getParent();
4855
4856  // C++ [temp]p2:
4857  //   A template-declaration can appear only as a namespace scope or
4858  //   class scope declaration.
4859  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4860  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4861      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4862    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4863             << TemplateParams->getSourceRange();
4864
4865  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4866    Ctx = Ctx->getParent();
4867
4868  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4869    return false;
4870
4871  return Diag(TemplateParams->getTemplateLoc(),
4872              diag::err_template_outside_namespace_or_class_scope)
4873    << TemplateParams->getSourceRange();
4874}
4875
4876/// \brief Determine what kind of template specialization the given declaration
4877/// is.
4878static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4879  if (!D)
4880    return TSK_Undeclared;
4881
4882  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4883    return Record->getTemplateSpecializationKind();
4884  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4885    return Function->getTemplateSpecializationKind();
4886  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4887    return Var->getTemplateSpecializationKind();
4888
4889  return TSK_Undeclared;
4890}
4891
4892/// \brief Check whether a specialization is well-formed in the current
4893/// context.
4894///
4895/// This routine determines whether a template specialization can be declared
4896/// in the current context (C++ [temp.expl.spec]p2).
4897///
4898/// \param S the semantic analysis object for which this check is being
4899/// performed.
4900///
4901/// \param Specialized the entity being specialized or instantiated, which
4902/// may be a kind of template (class template, function template, etc.) or
4903/// a member of a class template (member function, static data member,
4904/// member class).
4905///
4906/// \param PrevDecl the previous declaration of this entity, if any.
4907///
4908/// \param Loc the location of the explicit specialization or instantiation of
4909/// this entity.
4910///
4911/// \param IsPartialSpecialization whether this is a partial specialization of
4912/// a class template.
4913///
4914/// \returns true if there was an error that we cannot recover from, false
4915/// otherwise.
4916static bool CheckTemplateSpecializationScope(Sema &S,
4917                                             NamedDecl *Specialized,
4918                                             NamedDecl *PrevDecl,
4919                                             SourceLocation Loc,
4920                                             bool IsPartialSpecialization) {
4921  // Keep these "kind" numbers in sync with the %select statements in the
4922  // various diagnostics emitted by this routine.
4923  int EntityKind = 0;
4924  if (isa<ClassTemplateDecl>(Specialized))
4925    EntityKind = IsPartialSpecialization? 1 : 0;
4926  else if (isa<FunctionTemplateDecl>(Specialized))
4927    EntityKind = 2;
4928  else if (isa<CXXMethodDecl>(Specialized))
4929    EntityKind = 3;
4930  else if (isa<VarDecl>(Specialized))
4931    EntityKind = 4;
4932  else if (isa<RecordDecl>(Specialized))
4933    EntityKind = 5;
4934  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4935    EntityKind = 6;
4936  else {
4937    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4938      << S.getLangOpts().CPlusPlus0x;
4939    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4940    return true;
4941  }
4942
4943  // C++ [temp.expl.spec]p2:
4944  //   An explicit specialization shall be declared in the namespace
4945  //   of which the template is a member, or, for member templates, in
4946  //   the namespace of which the enclosing class or enclosing class
4947  //   template is a member. An explicit specialization of a member
4948  //   function, member class or static data member of a class
4949  //   template shall be declared in the namespace of which the class
4950  //   template is a member. Such a declaration may also be a
4951  //   definition. If the declaration is not a definition, the
4952  //   specialization may be defined later in the name- space in which
4953  //   the explicit specialization was declared, or in a namespace
4954  //   that encloses the one in which the explicit specialization was
4955  //   declared.
4956  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4957    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4958      << Specialized;
4959    return true;
4960  }
4961
4962  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4963    if (S.getLangOpts().MicrosoftExt) {
4964      // Do not warn for class scope explicit specialization during
4965      // instantiation, warning was already emitted during pattern
4966      // semantic analysis.
4967      if (!S.ActiveTemplateInstantiations.size())
4968        S.Diag(Loc, diag::ext_function_specialization_in_class)
4969          << Specialized;
4970    } else {
4971      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4972        << Specialized;
4973      return true;
4974    }
4975  }
4976
4977  if (S.CurContext->isRecord() &&
4978      !S.CurContext->Equals(Specialized->getDeclContext())) {
4979    // Make sure that we're specializing in the right record context.
4980    // Otherwise, things can go horribly wrong.
4981    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4982      << Specialized;
4983    return true;
4984  }
4985
4986  // C++ [temp.class.spec]p6:
4987  //   A class template partial specialization may be declared or redeclared
4988  //   in any namespace scope in which its definition may be defined (14.5.1
4989  //   and 14.5.2).
4990  bool ComplainedAboutScope = false;
4991  DeclContext *SpecializedContext
4992    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4993  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4994  if ((!PrevDecl ||
4995       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4996       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4997    // C++ [temp.exp.spec]p2:
4998    //   An explicit specialization shall be declared in the namespace of which
4999    //   the template is a member, or, for member templates, in the namespace
5000    //   of which the enclosing class or enclosing class template is a member.
5001    //   An explicit specialization of a member function, member class or
5002    //   static data member of a class template shall be declared in the
5003    //   namespace of which the class template is a member.
5004    //
5005    // C++0x [temp.expl.spec]p2:
5006    //   An explicit specialization shall be declared in a namespace enclosing
5007    //   the specialized template.
5008    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5009      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
5010      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5011        assert(!IsCPlusPlus0xExtension &&
5012               "DC encloses TU but isn't in enclosing namespace set");
5013        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5014          << EntityKind << Specialized;
5015      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5016        int Diag;
5017        if (!IsCPlusPlus0xExtension)
5018          Diag = diag::err_template_spec_decl_out_of_scope;
5019        else if (!S.getLangOpts().CPlusPlus0x)
5020          Diag = diag::ext_template_spec_decl_out_of_scope;
5021        else
5022          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5023        S.Diag(Loc, Diag)
5024          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5025      }
5026
5027      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5028      ComplainedAboutScope =
5029        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
5030    }
5031  }
5032
5033  // Make sure that this redeclaration (or definition) occurs in an enclosing
5034  // namespace.
5035  // Note that HandleDeclarator() performs this check for explicit
5036  // specializations of function templates, static data members, and member
5037  // functions, so we skip the check here for those kinds of entities.
5038  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5039  // Should we refactor that check, so that it occurs later?
5040  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5041      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5042        isa<FunctionDecl>(Specialized))) {
5043    if (isa<TranslationUnitDecl>(SpecializedContext))
5044      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5045        << EntityKind << Specialized;
5046    else if (isa<NamespaceDecl>(SpecializedContext))
5047      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5048        << EntityKind << Specialized
5049        << cast<NamedDecl>(SpecializedContext);
5050
5051    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5052  }
5053
5054  // FIXME: check for specialization-after-instantiation errors and such.
5055
5056  return false;
5057}
5058
5059/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
5060/// that checks non-type template partial specialization arguments.
5061static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
5062                                                NonTypeTemplateParmDecl *Param,
5063                                                  const TemplateArgument *Args,
5064                                                        unsigned NumArgs) {
5065  for (unsigned I = 0; I != NumArgs; ++I) {
5066    if (Args[I].getKind() == TemplateArgument::Pack) {
5067      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5068                                                           Args[I].pack_begin(),
5069                                                           Args[I].pack_size()))
5070        return true;
5071
5072      continue;
5073    }
5074
5075    Expr *ArgExpr = Args[I].getAsExpr();
5076    if (!ArgExpr) {
5077      continue;
5078    }
5079
5080    // We can have a pack expansion of any of the bullets below.
5081    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5082      ArgExpr = Expansion->getPattern();
5083
5084    // Strip off any implicit casts we added as part of type checking.
5085    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5086      ArgExpr = ICE->getSubExpr();
5087
5088    // C++ [temp.class.spec]p8:
5089    //   A non-type argument is non-specialized if it is the name of a
5090    //   non-type parameter. All other non-type arguments are
5091    //   specialized.
5092    //
5093    // Below, we check the two conditions that only apply to
5094    // specialized non-type arguments, so skip any non-specialized
5095    // arguments.
5096    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5097      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5098        continue;
5099
5100    // C++ [temp.class.spec]p9:
5101    //   Within the argument list of a class template partial
5102    //   specialization, the following restrictions apply:
5103    //     -- A partially specialized non-type argument expression
5104    //        shall not involve a template parameter of the partial
5105    //        specialization except when the argument expression is a
5106    //        simple identifier.
5107    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5108      S.Diag(ArgExpr->getLocStart(),
5109           diag::err_dependent_non_type_arg_in_partial_spec)
5110        << ArgExpr->getSourceRange();
5111      return true;
5112    }
5113
5114    //     -- The type of a template parameter corresponding to a
5115    //        specialized non-type argument shall not be dependent on a
5116    //        parameter of the specialization.
5117    if (Param->getType()->isDependentType()) {
5118      S.Diag(ArgExpr->getLocStart(),
5119           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5120        << Param->getType()
5121        << ArgExpr->getSourceRange();
5122      S.Diag(Param->getLocation(), diag::note_template_param_here);
5123      return true;
5124    }
5125  }
5126
5127  return false;
5128}
5129
5130/// \brief Check the non-type template arguments of a class template
5131/// partial specialization according to C++ [temp.class.spec]p9.
5132///
5133/// \param TemplateParams the template parameters of the primary class
5134/// template.
5135///
5136/// \param TemplateArgs the template arguments of the class template
5137/// partial specialization.
5138///
5139/// \returns true if there was an error, false otherwise.
5140static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5141                                        TemplateParameterList *TemplateParams,
5142                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5143  const TemplateArgument *ArgList = TemplateArgs.data();
5144
5145  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5146    NonTypeTemplateParmDecl *Param
5147      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5148    if (!Param)
5149      continue;
5150
5151    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5152                                                           &ArgList[I], 1))
5153      return true;
5154  }
5155
5156  return false;
5157}
5158
5159DeclResult
5160Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5161                                       TagUseKind TUK,
5162                                       SourceLocation KWLoc,
5163                                       SourceLocation ModulePrivateLoc,
5164                                       CXXScopeSpec &SS,
5165                                       TemplateTy TemplateD,
5166                                       SourceLocation TemplateNameLoc,
5167                                       SourceLocation LAngleLoc,
5168                                       ASTTemplateArgsPtr TemplateArgsIn,
5169                                       SourceLocation RAngleLoc,
5170                                       AttributeList *Attr,
5171                               MultiTemplateParamsArg TemplateParameterLists) {
5172  assert(TUK != TUK_Reference && "References are not specializations");
5173
5174  // NOTE: KWLoc is the location of the tag keyword. This will instead
5175  // store the location of the outermost template keyword in the declaration.
5176  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5177    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
5178
5179  // Find the class template we're specializing
5180  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5181  ClassTemplateDecl *ClassTemplate
5182    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5183
5184  if (!ClassTemplate) {
5185    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5186      << (Name.getAsTemplateDecl() &&
5187          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5188    return true;
5189  }
5190
5191  bool isExplicitSpecialization = false;
5192  bool isPartialSpecialization = false;
5193
5194  // Check the validity of the template headers that introduce this
5195  // template.
5196  // FIXME: We probably shouldn't complain about these headers for
5197  // friend declarations.
5198  bool Invalid = false;
5199  TemplateParameterList *TemplateParams
5200    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5201                                              TemplateNameLoc,
5202                                              SS,
5203                        (TemplateParameterList**)TemplateParameterLists.get(),
5204                                              TemplateParameterLists.size(),
5205                                              TUK == TUK_Friend,
5206                                              isExplicitSpecialization,
5207                                              Invalid);
5208  if (Invalid)
5209    return true;
5210
5211  if (TemplateParams && TemplateParams->size() > 0) {
5212    isPartialSpecialization = true;
5213
5214    if (TUK == TUK_Friend) {
5215      Diag(KWLoc, diag::err_partial_specialization_friend)
5216        << SourceRange(LAngleLoc, RAngleLoc);
5217      return true;
5218    }
5219
5220    // C++ [temp.class.spec]p10:
5221    //   The template parameter list of a specialization shall not
5222    //   contain default template argument values.
5223    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5224      Decl *Param = TemplateParams->getParam(I);
5225      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5226        if (TTP->hasDefaultArgument()) {
5227          Diag(TTP->getDefaultArgumentLoc(),
5228               diag::err_default_arg_in_partial_spec);
5229          TTP->removeDefaultArgument();
5230        }
5231      } else if (NonTypeTemplateParmDecl *NTTP
5232                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5233        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5234          Diag(NTTP->getDefaultArgumentLoc(),
5235               diag::err_default_arg_in_partial_spec)
5236            << DefArg->getSourceRange();
5237          NTTP->removeDefaultArgument();
5238        }
5239      } else {
5240        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5241        if (TTP->hasDefaultArgument()) {
5242          Diag(TTP->getDefaultArgument().getLocation(),
5243               diag::err_default_arg_in_partial_spec)
5244            << TTP->getDefaultArgument().getSourceRange();
5245          TTP->removeDefaultArgument();
5246        }
5247      }
5248    }
5249  } else if (TemplateParams) {
5250    if (TUK == TUK_Friend)
5251      Diag(KWLoc, diag::err_template_spec_friend)
5252        << FixItHint::CreateRemoval(
5253                                SourceRange(TemplateParams->getTemplateLoc(),
5254                                            TemplateParams->getRAngleLoc()))
5255        << SourceRange(LAngleLoc, RAngleLoc);
5256    else
5257      isExplicitSpecialization = true;
5258  } else if (TUK != TUK_Friend) {
5259    Diag(KWLoc, diag::err_template_spec_needs_header)
5260      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5261    isExplicitSpecialization = true;
5262  }
5263
5264  // Check that the specialization uses the same tag kind as the
5265  // original template.
5266  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5267  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5268  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5269                                    Kind, TUK == TUK_Definition, KWLoc,
5270                                    *ClassTemplate->getIdentifier())) {
5271    Diag(KWLoc, diag::err_use_with_wrong_tag)
5272      << ClassTemplate
5273      << FixItHint::CreateReplacement(KWLoc,
5274                            ClassTemplate->getTemplatedDecl()->getKindName());
5275    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5276         diag::note_previous_use);
5277    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5278  }
5279
5280  // Translate the parser's template argument list in our AST format.
5281  TemplateArgumentListInfo TemplateArgs;
5282  TemplateArgs.setLAngleLoc(LAngleLoc);
5283  TemplateArgs.setRAngleLoc(RAngleLoc);
5284  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5285
5286  // Check for unexpanded parameter packs in any of the template arguments.
5287  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5288    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5289                                        UPPC_PartialSpecialization))
5290      return true;
5291
5292  // Check that the template argument list is well-formed for this
5293  // template.
5294  SmallVector<TemplateArgument, 4> Converted;
5295  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5296                                TemplateArgs, false, Converted))
5297    return true;
5298
5299  // Find the class template (partial) specialization declaration that
5300  // corresponds to these arguments.
5301  if (isPartialSpecialization) {
5302    if (CheckClassTemplatePartialSpecializationArgs(*this,
5303                                         ClassTemplate->getTemplateParameters(),
5304                                         Converted))
5305      return true;
5306
5307    bool InstantiationDependent;
5308    if (!Name.isDependent() &&
5309        !TemplateSpecializationType::anyDependentTemplateArguments(
5310                                             TemplateArgs.getArgumentArray(),
5311                                                         TemplateArgs.size(),
5312                                                     InstantiationDependent)) {
5313      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5314        << ClassTemplate->getDeclName();
5315      isPartialSpecialization = false;
5316    }
5317  }
5318
5319  void *InsertPos = 0;
5320  ClassTemplateSpecializationDecl *PrevDecl = 0;
5321
5322  if (isPartialSpecialization)
5323    // FIXME: Template parameter list matters, too
5324    PrevDecl
5325      = ClassTemplate->findPartialSpecialization(Converted.data(),
5326                                                 Converted.size(),
5327                                                 InsertPos);
5328  else
5329    PrevDecl
5330      = ClassTemplate->findSpecialization(Converted.data(),
5331                                          Converted.size(), InsertPos);
5332
5333  ClassTemplateSpecializationDecl *Specialization = 0;
5334
5335  // Check whether we can declare a class template specialization in
5336  // the current scope.
5337  if (TUK != TUK_Friend &&
5338      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5339                                       TemplateNameLoc,
5340                                       isPartialSpecialization))
5341    return true;
5342
5343  // The canonical type
5344  QualType CanonType;
5345  if (PrevDecl &&
5346      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5347               TUK == TUK_Friend)) {
5348    // Since the only prior class template specialization with these
5349    // arguments was referenced but not declared, or we're only
5350    // referencing this specialization as a friend, reuse that
5351    // declaration node as our own, updating its source location and
5352    // the list of outer template parameters to reflect our new declaration.
5353    Specialization = PrevDecl;
5354    Specialization->setLocation(TemplateNameLoc);
5355    if (TemplateParameterLists.size() > 0) {
5356      Specialization->setTemplateParameterListsInfo(Context,
5357                                              TemplateParameterLists.size(),
5358                    (TemplateParameterList**) TemplateParameterLists.release());
5359    }
5360    PrevDecl = 0;
5361    CanonType = Context.getTypeDeclType(Specialization);
5362  } else if (isPartialSpecialization) {
5363    // Build the canonical type that describes the converted template
5364    // arguments of the class template partial specialization.
5365    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5366    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5367                                                      Converted.data(),
5368                                                      Converted.size());
5369
5370    if (Context.hasSameType(CanonType,
5371                        ClassTemplate->getInjectedClassNameSpecialization())) {
5372      // C++ [temp.class.spec]p9b3:
5373      //
5374      //   -- The argument list of the specialization shall not be identical
5375      //      to the implicit argument list of the primary template.
5376      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5377        << (TUK == TUK_Definition)
5378        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5379      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5380                                ClassTemplate->getIdentifier(),
5381                                TemplateNameLoc,
5382                                Attr,
5383                                TemplateParams,
5384                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5385                                TemplateParameterLists.size() - 1,
5386                  (TemplateParameterList**) TemplateParameterLists.release());
5387    }
5388
5389    // Create a new class template partial specialization declaration node.
5390    ClassTemplatePartialSpecializationDecl *PrevPartial
5391      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5392    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5393                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5394    ClassTemplatePartialSpecializationDecl *Partial
5395      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5396                                             ClassTemplate->getDeclContext(),
5397                                                       KWLoc, TemplateNameLoc,
5398                                                       TemplateParams,
5399                                                       ClassTemplate,
5400                                                       Converted.data(),
5401                                                       Converted.size(),
5402                                                       TemplateArgs,
5403                                                       CanonType,
5404                                                       PrevPartial,
5405                                                       SequenceNumber);
5406    SetNestedNameSpecifier(Partial, SS);
5407    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5408      Partial->setTemplateParameterListsInfo(Context,
5409                                             TemplateParameterLists.size() - 1,
5410                    (TemplateParameterList**) TemplateParameterLists.release());
5411    }
5412
5413    if (!PrevPartial)
5414      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5415    Specialization = Partial;
5416
5417    // If we are providing an explicit specialization of a member class
5418    // template specialization, make a note of that.
5419    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5420      PrevPartial->setMemberSpecialization();
5421
5422    // Check that all of the template parameters of the class template
5423    // partial specialization are deducible from the template
5424    // arguments. If not, this class template partial specialization
5425    // will never be used.
5426    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5427    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5428                               TemplateParams->getDepth(),
5429                               DeducibleParams);
5430
5431    if (!DeducibleParams.all()) {
5432      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5433      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5434        << (NumNonDeducible > 1)
5435        << SourceRange(TemplateNameLoc, RAngleLoc);
5436      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5437        if (!DeducibleParams[I]) {
5438          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5439          if (Param->getDeclName())
5440            Diag(Param->getLocation(),
5441                 diag::note_partial_spec_unused_parameter)
5442              << Param->getDeclName();
5443          else
5444            Diag(Param->getLocation(),
5445                 diag::note_partial_spec_unused_parameter)
5446              << "<anonymous>";
5447        }
5448      }
5449    }
5450  } else {
5451    // Create a new class template specialization declaration node for
5452    // this explicit specialization or friend declaration.
5453    Specialization
5454      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5455                                             ClassTemplate->getDeclContext(),
5456                                                KWLoc, TemplateNameLoc,
5457                                                ClassTemplate,
5458                                                Converted.data(),
5459                                                Converted.size(),
5460                                                PrevDecl);
5461    SetNestedNameSpecifier(Specialization, SS);
5462    if (TemplateParameterLists.size() > 0) {
5463      Specialization->setTemplateParameterListsInfo(Context,
5464                                              TemplateParameterLists.size(),
5465                    (TemplateParameterList**) TemplateParameterLists.release());
5466    }
5467
5468    if (!PrevDecl)
5469      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5470
5471    CanonType = Context.getTypeDeclType(Specialization);
5472  }
5473
5474  // C++ [temp.expl.spec]p6:
5475  //   If a template, a member template or the member of a class template is
5476  //   explicitly specialized then that specialization shall be declared
5477  //   before the first use of that specialization that would cause an implicit
5478  //   instantiation to take place, in every translation unit in which such a
5479  //   use occurs; no diagnostic is required.
5480  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5481    bool Okay = false;
5482    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5483      // Is there any previous explicit specialization declaration?
5484      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5485        Okay = true;
5486        break;
5487      }
5488    }
5489
5490    if (!Okay) {
5491      SourceRange Range(TemplateNameLoc, RAngleLoc);
5492      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5493        << Context.getTypeDeclType(Specialization) << Range;
5494
5495      Diag(PrevDecl->getPointOfInstantiation(),
5496           diag::note_instantiation_required_here)
5497        << (PrevDecl->getTemplateSpecializationKind()
5498                                                != TSK_ImplicitInstantiation);
5499      return true;
5500    }
5501  }
5502
5503  // If this is not a friend, note that this is an explicit specialization.
5504  if (TUK != TUK_Friend)
5505    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5506
5507  // Check that this isn't a redefinition of this specialization.
5508  if (TUK == TUK_Definition) {
5509    if (RecordDecl *Def = Specialization->getDefinition()) {
5510      SourceRange Range(TemplateNameLoc, RAngleLoc);
5511      Diag(TemplateNameLoc, diag::err_redefinition)
5512        << Context.getTypeDeclType(Specialization) << Range;
5513      Diag(Def->getLocation(), diag::note_previous_definition);
5514      Specialization->setInvalidDecl();
5515      return true;
5516    }
5517  }
5518
5519  if (Attr)
5520    ProcessDeclAttributeList(S, Specialization, Attr);
5521
5522  // Add alignment attributes if necessary; these attributes are checked when
5523  // the ASTContext lays out the structure.
5524  if (TUK == TUK_Definition) {
5525    AddAlignmentAttributesForRecord(Specialization);
5526    AddMsStructLayoutForRecord(Specialization);
5527  }
5528
5529  if (ModulePrivateLoc.isValid())
5530    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5531      << (isPartialSpecialization? 1 : 0)
5532      << FixItHint::CreateRemoval(ModulePrivateLoc);
5533
5534  // Build the fully-sugared type for this class template
5535  // specialization as the user wrote in the specialization
5536  // itself. This means that we'll pretty-print the type retrieved
5537  // from the specialization's declaration the way that the user
5538  // actually wrote the specialization, rather than formatting the
5539  // name based on the "canonical" representation used to store the
5540  // template arguments in the specialization.
5541  TypeSourceInfo *WrittenTy
5542    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5543                                                TemplateArgs, CanonType);
5544  if (TUK != TUK_Friend) {
5545    Specialization->setTypeAsWritten(WrittenTy);
5546    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5547  }
5548  TemplateArgsIn.release();
5549
5550  // C++ [temp.expl.spec]p9:
5551  //   A template explicit specialization is in the scope of the
5552  //   namespace in which the template was defined.
5553  //
5554  // We actually implement this paragraph where we set the semantic
5555  // context (in the creation of the ClassTemplateSpecializationDecl),
5556  // but we also maintain the lexical context where the actual
5557  // definition occurs.
5558  Specialization->setLexicalDeclContext(CurContext);
5559
5560  // We may be starting the definition of this specialization.
5561  if (TUK == TUK_Definition)
5562    Specialization->startDefinition();
5563
5564  if (TUK == TUK_Friend) {
5565    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5566                                            TemplateNameLoc,
5567                                            WrittenTy,
5568                                            /*FIXME:*/KWLoc);
5569    Friend->setAccess(AS_public);
5570    CurContext->addDecl(Friend);
5571  } else {
5572    // Add the specialization into its lexical context, so that it can
5573    // be seen when iterating through the list of declarations in that
5574    // context. However, specializations are not found by name lookup.
5575    CurContext->addDecl(Specialization);
5576  }
5577  return Specialization;
5578}
5579
5580Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5581                              MultiTemplateParamsArg TemplateParameterLists,
5582                                    Declarator &D) {
5583  Decl *NewDecl = HandleDeclarator(S, D, move(TemplateParameterLists));
5584  ActOnDocumentableDecl(NewDecl);
5585  return NewDecl;
5586}
5587
5588Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5589                               MultiTemplateParamsArg TemplateParameterLists,
5590                                            Declarator &D) {
5591  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5592  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5593
5594  if (FTI.hasPrototype) {
5595    // FIXME: Diagnose arguments without names in C.
5596  }
5597
5598  Scope *ParentScope = FnBodyScope->getParent();
5599
5600  D.setFunctionDefinitionKind(FDK_Definition);
5601  Decl *DP = HandleDeclarator(ParentScope, D,
5602                              move(TemplateParameterLists));
5603  if (FunctionTemplateDecl *FunctionTemplate
5604        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5605    return ActOnStartOfFunctionDef(FnBodyScope,
5606                                   FunctionTemplate->getTemplatedDecl());
5607  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5608    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5609  return 0;
5610}
5611
5612/// \brief Strips various properties off an implicit instantiation
5613/// that has just been explicitly specialized.
5614static void StripImplicitInstantiation(NamedDecl *D) {
5615  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5616  D->dropAttrs();
5617
5618  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5619    FD->setInlineSpecified(false);
5620  }
5621}
5622
5623/// \brief Compute the diagnostic location for an explicit instantiation
5624//  declaration or definition.
5625static SourceLocation DiagLocForExplicitInstantiation(
5626    NamedDecl* D, SourceLocation PointOfInstantiation) {
5627  // Explicit instantiations following a specialization have no effect and
5628  // hence no PointOfInstantiation. In that case, walk decl backwards
5629  // until a valid name loc is found.
5630  SourceLocation PrevDiagLoc = PointOfInstantiation;
5631  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5632       Prev = Prev->getPreviousDecl()) {
5633    PrevDiagLoc = Prev->getLocation();
5634  }
5635  assert(PrevDiagLoc.isValid() &&
5636         "Explicit instantiation without point of instantiation?");
5637  return PrevDiagLoc;
5638}
5639
5640/// \brief Diagnose cases where we have an explicit template specialization
5641/// before/after an explicit template instantiation, producing diagnostics
5642/// for those cases where they are required and determining whether the
5643/// new specialization/instantiation will have any effect.
5644///
5645/// \param NewLoc the location of the new explicit specialization or
5646/// instantiation.
5647///
5648/// \param NewTSK the kind of the new explicit specialization or instantiation.
5649///
5650/// \param PrevDecl the previous declaration of the entity.
5651///
5652/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5653///
5654/// \param PrevPointOfInstantiation if valid, indicates where the previus
5655/// declaration was instantiated (either implicitly or explicitly).
5656///
5657/// \param HasNoEffect will be set to true to indicate that the new
5658/// specialization or instantiation has no effect and should be ignored.
5659///
5660/// \returns true if there was an error that should prevent the introduction of
5661/// the new declaration into the AST, false otherwise.
5662bool
5663Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5664                                             TemplateSpecializationKind NewTSK,
5665                                             NamedDecl *PrevDecl,
5666                                             TemplateSpecializationKind PrevTSK,
5667                                        SourceLocation PrevPointOfInstantiation,
5668                                             bool &HasNoEffect) {
5669  HasNoEffect = false;
5670
5671  switch (NewTSK) {
5672  case TSK_Undeclared:
5673  case TSK_ImplicitInstantiation:
5674    llvm_unreachable("Don't check implicit instantiations here");
5675
5676  case TSK_ExplicitSpecialization:
5677    switch (PrevTSK) {
5678    case TSK_Undeclared:
5679    case TSK_ExplicitSpecialization:
5680      // Okay, we're just specializing something that is either already
5681      // explicitly specialized or has merely been mentioned without any
5682      // instantiation.
5683      return false;
5684
5685    case TSK_ImplicitInstantiation:
5686      if (PrevPointOfInstantiation.isInvalid()) {
5687        // The declaration itself has not actually been instantiated, so it is
5688        // still okay to specialize it.
5689        StripImplicitInstantiation(PrevDecl);
5690        return false;
5691      }
5692      // Fall through
5693
5694    case TSK_ExplicitInstantiationDeclaration:
5695    case TSK_ExplicitInstantiationDefinition:
5696      assert((PrevTSK == TSK_ImplicitInstantiation ||
5697              PrevPointOfInstantiation.isValid()) &&
5698             "Explicit instantiation without point of instantiation?");
5699
5700      // C++ [temp.expl.spec]p6:
5701      //   If a template, a member template or the member of a class template
5702      //   is explicitly specialized then that specialization shall be declared
5703      //   before the first use of that specialization that would cause an
5704      //   implicit instantiation to take place, in every translation unit in
5705      //   which such a use occurs; no diagnostic is required.
5706      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5707        // Is there any previous explicit specialization declaration?
5708        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5709          return false;
5710      }
5711
5712      Diag(NewLoc, diag::err_specialization_after_instantiation)
5713        << PrevDecl;
5714      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5715        << (PrevTSK != TSK_ImplicitInstantiation);
5716
5717      return true;
5718    }
5719
5720  case TSK_ExplicitInstantiationDeclaration:
5721    switch (PrevTSK) {
5722    case TSK_ExplicitInstantiationDeclaration:
5723      // This explicit instantiation declaration is redundant (that's okay).
5724      HasNoEffect = true;
5725      return false;
5726
5727    case TSK_Undeclared:
5728    case TSK_ImplicitInstantiation:
5729      // We're explicitly instantiating something that may have already been
5730      // implicitly instantiated; that's fine.
5731      return false;
5732
5733    case TSK_ExplicitSpecialization:
5734      // C++0x [temp.explicit]p4:
5735      //   For a given set of template parameters, if an explicit instantiation
5736      //   of a template appears after a declaration of an explicit
5737      //   specialization for that template, the explicit instantiation has no
5738      //   effect.
5739      HasNoEffect = true;
5740      return false;
5741
5742    case TSK_ExplicitInstantiationDefinition:
5743      // C++0x [temp.explicit]p10:
5744      //   If an entity is the subject of both an explicit instantiation
5745      //   declaration and an explicit instantiation definition in the same
5746      //   translation unit, the definition shall follow the declaration.
5747      Diag(NewLoc,
5748           diag::err_explicit_instantiation_declaration_after_definition);
5749
5750      // Explicit instantiations following a specialization have no effect and
5751      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5752      // until a valid name loc is found.
5753      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5754           diag::note_explicit_instantiation_definition_here);
5755      HasNoEffect = true;
5756      return false;
5757    }
5758
5759  case TSK_ExplicitInstantiationDefinition:
5760    switch (PrevTSK) {
5761    case TSK_Undeclared:
5762    case TSK_ImplicitInstantiation:
5763      // We're explicitly instantiating something that may have already been
5764      // implicitly instantiated; that's fine.
5765      return false;
5766
5767    case TSK_ExplicitSpecialization:
5768      // C++ DR 259, C++0x [temp.explicit]p4:
5769      //   For a given set of template parameters, if an explicit
5770      //   instantiation of a template appears after a declaration of
5771      //   an explicit specialization for that template, the explicit
5772      //   instantiation has no effect.
5773      //
5774      // In C++98/03 mode, we only give an extension warning here, because it
5775      // is not harmful to try to explicitly instantiate something that
5776      // has been explicitly specialized.
5777      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5778           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5779           diag::ext_explicit_instantiation_after_specialization)
5780        << PrevDecl;
5781      Diag(PrevDecl->getLocation(),
5782           diag::note_previous_template_specialization);
5783      HasNoEffect = true;
5784      return false;
5785
5786    case TSK_ExplicitInstantiationDeclaration:
5787      // We're explicity instantiating a definition for something for which we
5788      // were previously asked to suppress instantiations. That's fine.
5789
5790      // C++0x [temp.explicit]p4:
5791      //   For a given set of template parameters, if an explicit instantiation
5792      //   of a template appears after a declaration of an explicit
5793      //   specialization for that template, the explicit instantiation has no
5794      //   effect.
5795      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5796        // Is there any previous explicit specialization declaration?
5797        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5798          HasNoEffect = true;
5799          break;
5800        }
5801      }
5802
5803      return false;
5804
5805    case TSK_ExplicitInstantiationDefinition:
5806      // C++0x [temp.spec]p5:
5807      //   For a given template and a given set of template-arguments,
5808      //     - an explicit instantiation definition shall appear at most once
5809      //       in a program,
5810      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5811        << PrevDecl;
5812      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5813           diag::note_previous_explicit_instantiation);
5814      HasNoEffect = true;
5815      return false;
5816    }
5817  }
5818
5819  llvm_unreachable("Missing specialization/instantiation case?");
5820}
5821
5822/// \brief Perform semantic analysis for the given dependent function
5823/// template specialization.
5824///
5825/// The only possible way to get a dependent function template specialization
5826/// is with a friend declaration, like so:
5827///
5828/// \code
5829///   template \<class T> void foo(T);
5830///   template \<class T> class A {
5831///     friend void foo<>(T);
5832///   };
5833/// \endcode
5834///
5835/// There really isn't any useful analysis we can do here, so we
5836/// just store the information.
5837bool
5838Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5839                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5840                                                   LookupResult &Previous) {
5841  // Remove anything from Previous that isn't a function template in
5842  // the correct context.
5843  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5844  LookupResult::Filter F = Previous.makeFilter();
5845  while (F.hasNext()) {
5846    NamedDecl *D = F.next()->getUnderlyingDecl();
5847    if (!isa<FunctionTemplateDecl>(D) ||
5848        !FDLookupContext->InEnclosingNamespaceSetOf(
5849                              D->getDeclContext()->getRedeclContext()))
5850      F.erase();
5851  }
5852  F.done();
5853
5854  // Should this be diagnosed here?
5855  if (Previous.empty()) return true;
5856
5857  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5858                                         ExplicitTemplateArgs);
5859  return false;
5860}
5861
5862/// \brief Perform semantic analysis for the given function template
5863/// specialization.
5864///
5865/// This routine performs all of the semantic analysis required for an
5866/// explicit function template specialization. On successful completion,
5867/// the function declaration \p FD will become a function template
5868/// specialization.
5869///
5870/// \param FD the function declaration, which will be updated to become a
5871/// function template specialization.
5872///
5873/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5874/// if any. Note that this may be valid info even when 0 arguments are
5875/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5876/// as it anyway contains info on the angle brackets locations.
5877///
5878/// \param Previous the set of declarations that may be specialized by
5879/// this function specialization.
5880bool
5881Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5882                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5883                                          LookupResult &Previous) {
5884  // The set of function template specializations that could match this
5885  // explicit function template specialization.
5886  UnresolvedSet<8> Candidates;
5887
5888  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5889  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5890         I != E; ++I) {
5891    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5892    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5893      // Only consider templates found within the same semantic lookup scope as
5894      // FD.
5895      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5896                                Ovl->getDeclContext()->getRedeclContext()))
5897        continue;
5898
5899      // C++ [temp.expl.spec]p11:
5900      //   A trailing template-argument can be left unspecified in the
5901      //   template-id naming an explicit function template specialization
5902      //   provided it can be deduced from the function argument type.
5903      // Perform template argument deduction to determine whether we may be
5904      // specializing this template.
5905      // FIXME: It is somewhat wasteful to build
5906      TemplateDeductionInfo Info(Context, FD->getLocation());
5907      FunctionDecl *Specialization = 0;
5908      if (TemplateDeductionResult TDK
5909            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5910                                      FD->getType(),
5911                                      Specialization,
5912                                      Info)) {
5913        // FIXME: Template argument deduction failed; record why it failed, so
5914        // that we can provide nifty diagnostics.
5915        (void)TDK;
5916        continue;
5917      }
5918
5919      // Record this candidate.
5920      Candidates.addDecl(Specialization, I.getAccess());
5921    }
5922  }
5923
5924  // Find the most specialized function template.
5925  UnresolvedSetIterator Result
5926    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5927                         TPOC_Other, 0, FD->getLocation(),
5928                  PDiag(diag::err_function_template_spec_no_match)
5929                    << FD->getDeclName(),
5930                  PDiag(diag::err_function_template_spec_ambiguous)
5931                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5932                  PDiag(diag::note_function_template_spec_matched));
5933  if (Result == Candidates.end())
5934    return true;
5935
5936  // Ignore access information;  it doesn't figure into redeclaration checking.
5937  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5938
5939  FunctionTemplateSpecializationInfo *SpecInfo
5940    = Specialization->getTemplateSpecializationInfo();
5941  assert(SpecInfo && "Function template specialization info missing?");
5942
5943  // Note: do not overwrite location info if previous template
5944  // specialization kind was explicit.
5945  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5946  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5947    Specialization->setLocation(FD->getLocation());
5948    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5949    // function can differ from the template declaration with respect to
5950    // the constexpr specifier.
5951    Specialization->setConstexpr(FD->isConstexpr());
5952  }
5953
5954  // FIXME: Check if the prior specialization has a point of instantiation.
5955  // If so, we have run afoul of .
5956
5957  // If this is a friend declaration, then we're not really declaring
5958  // an explicit specialization.
5959  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5960
5961  // Check the scope of this explicit specialization.
5962  if (!isFriend &&
5963      CheckTemplateSpecializationScope(*this,
5964                                       Specialization->getPrimaryTemplate(),
5965                                       Specialization, FD->getLocation(),
5966                                       false))
5967    return true;
5968
5969  // C++ [temp.expl.spec]p6:
5970  //   If a template, a member template or the member of a class template is
5971  //   explicitly specialized then that specialization shall be declared
5972  //   before the first use of that specialization that would cause an implicit
5973  //   instantiation to take place, in every translation unit in which such a
5974  //   use occurs; no diagnostic is required.
5975  bool HasNoEffect = false;
5976  if (!isFriend &&
5977      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5978                                             TSK_ExplicitSpecialization,
5979                                             Specialization,
5980                                   SpecInfo->getTemplateSpecializationKind(),
5981                                         SpecInfo->getPointOfInstantiation(),
5982                                             HasNoEffect))
5983    return true;
5984
5985  // Mark the prior declaration as an explicit specialization, so that later
5986  // clients know that this is an explicit specialization.
5987  if (!isFriend) {
5988    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5989    MarkUnusedFileScopedDecl(Specialization);
5990  }
5991
5992  // Turn the given function declaration into a function template
5993  // specialization, with the template arguments from the previous
5994  // specialization.
5995  // Take copies of (semantic and syntactic) template argument lists.
5996  const TemplateArgumentList* TemplArgs = new (Context)
5997    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5998  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5999                                        TemplArgs, /*InsertPos=*/0,
6000                                    SpecInfo->getTemplateSpecializationKind(),
6001                                        ExplicitTemplateArgs);
6002  FD->setStorageClass(Specialization->getStorageClass());
6003
6004  // The "previous declaration" for this function template specialization is
6005  // the prior function template specialization.
6006  Previous.clear();
6007  Previous.addDecl(Specialization);
6008  return false;
6009}
6010
6011/// \brief Perform semantic analysis for the given non-template member
6012/// specialization.
6013///
6014/// This routine performs all of the semantic analysis required for an
6015/// explicit member function specialization. On successful completion,
6016/// the function declaration \p FD will become a member function
6017/// specialization.
6018///
6019/// \param Member the member declaration, which will be updated to become a
6020/// specialization.
6021///
6022/// \param Previous the set of declarations, one of which may be specialized
6023/// by this function specialization;  the set will be modified to contain the
6024/// redeclared member.
6025bool
6026Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6027  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6028
6029  // Try to find the member we are instantiating.
6030  NamedDecl *Instantiation = 0;
6031  NamedDecl *InstantiatedFrom = 0;
6032  MemberSpecializationInfo *MSInfo = 0;
6033
6034  if (Previous.empty()) {
6035    // Nowhere to look anyway.
6036  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6037    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6038           I != E; ++I) {
6039      NamedDecl *D = (*I)->getUnderlyingDecl();
6040      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6041        if (Context.hasSameType(Function->getType(), Method->getType())) {
6042          Instantiation = Method;
6043          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6044          MSInfo = Method->getMemberSpecializationInfo();
6045          break;
6046        }
6047      }
6048    }
6049  } else if (isa<VarDecl>(Member)) {
6050    VarDecl *PrevVar;
6051    if (Previous.isSingleResult() &&
6052        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6053      if (PrevVar->isStaticDataMember()) {
6054        Instantiation = PrevVar;
6055        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6056        MSInfo = PrevVar->getMemberSpecializationInfo();
6057      }
6058  } else if (isa<RecordDecl>(Member)) {
6059    CXXRecordDecl *PrevRecord;
6060    if (Previous.isSingleResult() &&
6061        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6062      Instantiation = PrevRecord;
6063      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6064      MSInfo = PrevRecord->getMemberSpecializationInfo();
6065    }
6066  } else if (isa<EnumDecl>(Member)) {
6067    EnumDecl *PrevEnum;
6068    if (Previous.isSingleResult() &&
6069        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6070      Instantiation = PrevEnum;
6071      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6072      MSInfo = PrevEnum->getMemberSpecializationInfo();
6073    }
6074  }
6075
6076  if (!Instantiation) {
6077    // There is no previous declaration that matches. Since member
6078    // specializations are always out-of-line, the caller will complain about
6079    // this mismatch later.
6080    return false;
6081  }
6082
6083  // If this is a friend, just bail out here before we start turning
6084  // things into explicit specializations.
6085  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6086    // Preserve instantiation information.
6087    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6088      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6089                                      cast<CXXMethodDecl>(InstantiatedFrom),
6090        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6091    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6092      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6093                                      cast<CXXRecordDecl>(InstantiatedFrom),
6094        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6095    }
6096
6097    Previous.clear();
6098    Previous.addDecl(Instantiation);
6099    return false;
6100  }
6101
6102  // Make sure that this is a specialization of a member.
6103  if (!InstantiatedFrom) {
6104    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6105      << Member;
6106    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6107    return true;
6108  }
6109
6110  // C++ [temp.expl.spec]p6:
6111  //   If a template, a member template or the member of a class template is
6112  //   explicitly specialized then that specialization shall be declared
6113  //   before the first use of that specialization that would cause an implicit
6114  //   instantiation to take place, in every translation unit in which such a
6115  //   use occurs; no diagnostic is required.
6116  assert(MSInfo && "Member specialization info missing?");
6117
6118  bool HasNoEffect = false;
6119  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6120                                             TSK_ExplicitSpecialization,
6121                                             Instantiation,
6122                                     MSInfo->getTemplateSpecializationKind(),
6123                                           MSInfo->getPointOfInstantiation(),
6124                                             HasNoEffect))
6125    return true;
6126
6127  // Check the scope of this explicit specialization.
6128  if (CheckTemplateSpecializationScope(*this,
6129                                       InstantiatedFrom,
6130                                       Instantiation, Member->getLocation(),
6131                                       false))
6132    return true;
6133
6134  // Note that this is an explicit instantiation of a member.
6135  // the original declaration to note that it is an explicit specialization
6136  // (if it was previously an implicit instantiation). This latter step
6137  // makes bookkeeping easier.
6138  if (isa<FunctionDecl>(Member)) {
6139    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6140    if (InstantiationFunction->getTemplateSpecializationKind() ==
6141          TSK_ImplicitInstantiation) {
6142      InstantiationFunction->setTemplateSpecializationKind(
6143                                                  TSK_ExplicitSpecialization);
6144      InstantiationFunction->setLocation(Member->getLocation());
6145    }
6146
6147    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6148                                        cast<CXXMethodDecl>(InstantiatedFrom),
6149                                                  TSK_ExplicitSpecialization);
6150    MarkUnusedFileScopedDecl(InstantiationFunction);
6151  } else if (isa<VarDecl>(Member)) {
6152    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6153    if (InstantiationVar->getTemplateSpecializationKind() ==
6154          TSK_ImplicitInstantiation) {
6155      InstantiationVar->setTemplateSpecializationKind(
6156                                                  TSK_ExplicitSpecialization);
6157      InstantiationVar->setLocation(Member->getLocation());
6158    }
6159
6160    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6161                                                cast<VarDecl>(InstantiatedFrom),
6162                                                TSK_ExplicitSpecialization);
6163    MarkUnusedFileScopedDecl(InstantiationVar);
6164  } else if (isa<CXXRecordDecl>(Member)) {
6165    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6166    if (InstantiationClass->getTemplateSpecializationKind() ==
6167          TSK_ImplicitInstantiation) {
6168      InstantiationClass->setTemplateSpecializationKind(
6169                                                   TSK_ExplicitSpecialization);
6170      InstantiationClass->setLocation(Member->getLocation());
6171    }
6172
6173    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6174                                        cast<CXXRecordDecl>(InstantiatedFrom),
6175                                                   TSK_ExplicitSpecialization);
6176  } else {
6177    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6178    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6179    if (InstantiationEnum->getTemplateSpecializationKind() ==
6180          TSK_ImplicitInstantiation) {
6181      InstantiationEnum->setTemplateSpecializationKind(
6182                                                   TSK_ExplicitSpecialization);
6183      InstantiationEnum->setLocation(Member->getLocation());
6184    }
6185
6186    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6187        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6188  }
6189
6190  // Save the caller the trouble of having to figure out which declaration
6191  // this specialization matches.
6192  Previous.clear();
6193  Previous.addDecl(Instantiation);
6194  return false;
6195}
6196
6197/// \brief Check the scope of an explicit instantiation.
6198///
6199/// \returns true if a serious error occurs, false otherwise.
6200static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6201                                            SourceLocation InstLoc,
6202                                            bool WasQualifiedName) {
6203  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6204  DeclContext *CurContext = S.CurContext->getRedeclContext();
6205
6206  if (CurContext->isRecord()) {
6207    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6208      << D;
6209    return true;
6210  }
6211
6212  // C++11 [temp.explicit]p3:
6213  //   An explicit instantiation shall appear in an enclosing namespace of its
6214  //   template. If the name declared in the explicit instantiation is an
6215  //   unqualified name, the explicit instantiation shall appear in the
6216  //   namespace where its template is declared or, if that namespace is inline
6217  //   (7.3.1), any namespace from its enclosing namespace set.
6218  //
6219  // This is DR275, which we do not retroactively apply to C++98/03.
6220  if (WasQualifiedName) {
6221    if (CurContext->Encloses(OrigContext))
6222      return false;
6223  } else {
6224    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6225      return false;
6226  }
6227
6228  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6229    if (WasQualifiedName)
6230      S.Diag(InstLoc,
6231             S.getLangOpts().CPlusPlus0x?
6232               diag::err_explicit_instantiation_out_of_scope :
6233               diag::warn_explicit_instantiation_out_of_scope_0x)
6234        << D << NS;
6235    else
6236      S.Diag(InstLoc,
6237             S.getLangOpts().CPlusPlus0x?
6238               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6239               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6240        << D << NS;
6241  } else
6242    S.Diag(InstLoc,
6243           S.getLangOpts().CPlusPlus0x?
6244             diag::err_explicit_instantiation_must_be_global :
6245             diag::warn_explicit_instantiation_must_be_global_0x)
6246      << D;
6247  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6248  return false;
6249}
6250
6251/// \brief Determine whether the given scope specifier has a template-id in it.
6252static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6253  if (!SS.isSet())
6254    return false;
6255
6256  // C++11 [temp.explicit]p3:
6257  //   If the explicit instantiation is for a member function, a member class
6258  //   or a static data member of a class template specialization, the name of
6259  //   the class template specialization in the qualified-id for the member
6260  //   name shall be a simple-template-id.
6261  //
6262  // C++98 has the same restriction, just worded differently.
6263  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6264       NNS; NNS = NNS->getPrefix())
6265    if (const Type *T = NNS->getAsType())
6266      if (isa<TemplateSpecializationType>(T))
6267        return true;
6268
6269  return false;
6270}
6271
6272// Explicit instantiation of a class template specialization
6273DeclResult
6274Sema::ActOnExplicitInstantiation(Scope *S,
6275                                 SourceLocation ExternLoc,
6276                                 SourceLocation TemplateLoc,
6277                                 unsigned TagSpec,
6278                                 SourceLocation KWLoc,
6279                                 const CXXScopeSpec &SS,
6280                                 TemplateTy TemplateD,
6281                                 SourceLocation TemplateNameLoc,
6282                                 SourceLocation LAngleLoc,
6283                                 ASTTemplateArgsPtr TemplateArgsIn,
6284                                 SourceLocation RAngleLoc,
6285                                 AttributeList *Attr) {
6286  // Find the class template we're specializing
6287  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6288  ClassTemplateDecl *ClassTemplate
6289    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6290
6291  // Check that the specialization uses the same tag kind as the
6292  // original template.
6293  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6294  assert(Kind != TTK_Enum &&
6295         "Invalid enum tag in class template explicit instantiation!");
6296  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6297                                    Kind, /*isDefinition*/false, KWLoc,
6298                                    *ClassTemplate->getIdentifier())) {
6299    Diag(KWLoc, diag::err_use_with_wrong_tag)
6300      << ClassTemplate
6301      << FixItHint::CreateReplacement(KWLoc,
6302                            ClassTemplate->getTemplatedDecl()->getKindName());
6303    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6304         diag::note_previous_use);
6305    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6306  }
6307
6308  // C++0x [temp.explicit]p2:
6309  //   There are two forms of explicit instantiation: an explicit instantiation
6310  //   definition and an explicit instantiation declaration. An explicit
6311  //   instantiation declaration begins with the extern keyword. [...]
6312  TemplateSpecializationKind TSK
6313    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6314                           : TSK_ExplicitInstantiationDeclaration;
6315
6316  // Translate the parser's template argument list in our AST format.
6317  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6318  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6319
6320  // Check that the template argument list is well-formed for this
6321  // template.
6322  SmallVector<TemplateArgument, 4> Converted;
6323  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6324                                TemplateArgs, false, Converted))
6325    return true;
6326
6327  // Find the class template specialization declaration that
6328  // corresponds to these arguments.
6329  void *InsertPos = 0;
6330  ClassTemplateSpecializationDecl *PrevDecl
6331    = ClassTemplate->findSpecialization(Converted.data(),
6332                                        Converted.size(), InsertPos);
6333
6334  TemplateSpecializationKind PrevDecl_TSK
6335    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6336
6337  // C++0x [temp.explicit]p2:
6338  //   [...] An explicit instantiation shall appear in an enclosing
6339  //   namespace of its template. [...]
6340  //
6341  // This is C++ DR 275.
6342  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6343                                      SS.isSet()))
6344    return true;
6345
6346  ClassTemplateSpecializationDecl *Specialization = 0;
6347
6348  bool HasNoEffect = false;
6349  if (PrevDecl) {
6350    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6351                                               PrevDecl, PrevDecl_TSK,
6352                                            PrevDecl->getPointOfInstantiation(),
6353                                               HasNoEffect))
6354      return PrevDecl;
6355
6356    // Even though HasNoEffect == true means that this explicit instantiation
6357    // has no effect on semantics, we go on to put its syntax in the AST.
6358
6359    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6360        PrevDecl_TSK == TSK_Undeclared) {
6361      // Since the only prior class template specialization with these
6362      // arguments was referenced but not declared, reuse that
6363      // declaration node as our own, updating the source location
6364      // for the template name to reflect our new declaration.
6365      // (Other source locations will be updated later.)
6366      Specialization = PrevDecl;
6367      Specialization->setLocation(TemplateNameLoc);
6368      PrevDecl = 0;
6369    }
6370  }
6371
6372  if (!Specialization) {
6373    // Create a new class template specialization declaration node for
6374    // this explicit specialization.
6375    Specialization
6376      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6377                                             ClassTemplate->getDeclContext(),
6378                                                KWLoc, TemplateNameLoc,
6379                                                ClassTemplate,
6380                                                Converted.data(),
6381                                                Converted.size(),
6382                                                PrevDecl);
6383    SetNestedNameSpecifier(Specialization, SS);
6384
6385    if (!HasNoEffect && !PrevDecl) {
6386      // Insert the new specialization.
6387      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6388    }
6389  }
6390
6391  // Build the fully-sugared type for this explicit instantiation as
6392  // the user wrote in the explicit instantiation itself. This means
6393  // that we'll pretty-print the type retrieved from the
6394  // specialization's declaration the way that the user actually wrote
6395  // the explicit instantiation, rather than formatting the name based
6396  // on the "canonical" representation used to store the template
6397  // arguments in the specialization.
6398  TypeSourceInfo *WrittenTy
6399    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6400                                                TemplateArgs,
6401                                  Context.getTypeDeclType(Specialization));
6402  Specialization->setTypeAsWritten(WrittenTy);
6403  TemplateArgsIn.release();
6404
6405  // Set source locations for keywords.
6406  Specialization->setExternLoc(ExternLoc);
6407  Specialization->setTemplateKeywordLoc(TemplateLoc);
6408
6409  if (Attr)
6410    ProcessDeclAttributeList(S, Specialization, Attr);
6411
6412  // Add the explicit instantiation into its lexical context. However,
6413  // since explicit instantiations are never found by name lookup, we
6414  // just put it into the declaration context directly.
6415  Specialization->setLexicalDeclContext(CurContext);
6416  CurContext->addDecl(Specialization);
6417
6418  // Syntax is now OK, so return if it has no other effect on semantics.
6419  if (HasNoEffect) {
6420    // Set the template specialization kind.
6421    Specialization->setTemplateSpecializationKind(TSK);
6422    return Specialization;
6423  }
6424
6425  // C++ [temp.explicit]p3:
6426  //   A definition of a class template or class member template
6427  //   shall be in scope at the point of the explicit instantiation of
6428  //   the class template or class member template.
6429  //
6430  // This check comes when we actually try to perform the
6431  // instantiation.
6432  ClassTemplateSpecializationDecl *Def
6433    = cast_or_null<ClassTemplateSpecializationDecl>(
6434                                              Specialization->getDefinition());
6435  if (!Def)
6436    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6437  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6438    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6439    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6440  }
6441
6442  // Instantiate the members of this class template specialization.
6443  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6444                                       Specialization->getDefinition());
6445  if (Def) {
6446    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6447
6448    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6449    // TSK_ExplicitInstantiationDefinition
6450    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6451        TSK == TSK_ExplicitInstantiationDefinition)
6452      Def->setTemplateSpecializationKind(TSK);
6453
6454    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6455  }
6456
6457  // Set the template specialization kind.
6458  Specialization->setTemplateSpecializationKind(TSK);
6459  return Specialization;
6460}
6461
6462// Explicit instantiation of a member class of a class template.
6463DeclResult
6464Sema::ActOnExplicitInstantiation(Scope *S,
6465                                 SourceLocation ExternLoc,
6466                                 SourceLocation TemplateLoc,
6467                                 unsigned TagSpec,
6468                                 SourceLocation KWLoc,
6469                                 CXXScopeSpec &SS,
6470                                 IdentifierInfo *Name,
6471                                 SourceLocation NameLoc,
6472                                 AttributeList *Attr) {
6473
6474  bool Owned = false;
6475  bool IsDependent = false;
6476  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6477                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6478                        /*ModulePrivateLoc=*/SourceLocation(),
6479                        MultiTemplateParamsArg(*this, 0, 0),
6480                        Owned, IsDependent, SourceLocation(), false,
6481                        TypeResult());
6482  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6483
6484  if (!TagD)
6485    return true;
6486
6487  TagDecl *Tag = cast<TagDecl>(TagD);
6488  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6489
6490  if (Tag->isInvalidDecl())
6491    return true;
6492
6493  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6494  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6495  if (!Pattern) {
6496    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6497      << Context.getTypeDeclType(Record);
6498    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6499    return true;
6500  }
6501
6502  // C++0x [temp.explicit]p2:
6503  //   If the explicit instantiation is for a class or member class, the
6504  //   elaborated-type-specifier in the declaration shall include a
6505  //   simple-template-id.
6506  //
6507  // C++98 has the same restriction, just worded differently.
6508  if (!ScopeSpecifierHasTemplateId(SS))
6509    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6510      << Record << SS.getRange();
6511
6512  // C++0x [temp.explicit]p2:
6513  //   There are two forms of explicit instantiation: an explicit instantiation
6514  //   definition and an explicit instantiation declaration. An explicit
6515  //   instantiation declaration begins with the extern keyword. [...]
6516  TemplateSpecializationKind TSK
6517    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6518                           : TSK_ExplicitInstantiationDeclaration;
6519
6520  // C++0x [temp.explicit]p2:
6521  //   [...] An explicit instantiation shall appear in an enclosing
6522  //   namespace of its template. [...]
6523  //
6524  // This is C++ DR 275.
6525  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6526
6527  // Verify that it is okay to explicitly instantiate here.
6528  CXXRecordDecl *PrevDecl
6529    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6530  if (!PrevDecl && Record->getDefinition())
6531    PrevDecl = Record;
6532  if (PrevDecl) {
6533    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6534    bool HasNoEffect = false;
6535    assert(MSInfo && "No member specialization information?");
6536    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6537                                               PrevDecl,
6538                                        MSInfo->getTemplateSpecializationKind(),
6539                                             MSInfo->getPointOfInstantiation(),
6540                                               HasNoEffect))
6541      return true;
6542    if (HasNoEffect)
6543      return TagD;
6544  }
6545
6546  CXXRecordDecl *RecordDef
6547    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6548  if (!RecordDef) {
6549    // C++ [temp.explicit]p3:
6550    //   A definition of a member class of a class template shall be in scope
6551    //   at the point of an explicit instantiation of the member class.
6552    CXXRecordDecl *Def
6553      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6554    if (!Def) {
6555      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6556        << 0 << Record->getDeclName() << Record->getDeclContext();
6557      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6558        << Pattern;
6559      return true;
6560    } else {
6561      if (InstantiateClass(NameLoc, Record, Def,
6562                           getTemplateInstantiationArgs(Record),
6563                           TSK))
6564        return true;
6565
6566      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6567      if (!RecordDef)
6568        return true;
6569    }
6570  }
6571
6572  // Instantiate all of the members of the class.
6573  InstantiateClassMembers(NameLoc, RecordDef,
6574                          getTemplateInstantiationArgs(Record), TSK);
6575
6576  if (TSK == TSK_ExplicitInstantiationDefinition)
6577    MarkVTableUsed(NameLoc, RecordDef, true);
6578
6579  // FIXME: We don't have any representation for explicit instantiations of
6580  // member classes. Such a representation is not needed for compilation, but it
6581  // should be available for clients that want to see all of the declarations in
6582  // the source code.
6583  return TagD;
6584}
6585
6586DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6587                                            SourceLocation ExternLoc,
6588                                            SourceLocation TemplateLoc,
6589                                            Declarator &D) {
6590  // Explicit instantiations always require a name.
6591  // TODO: check if/when DNInfo should replace Name.
6592  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6593  DeclarationName Name = NameInfo.getName();
6594  if (!Name) {
6595    if (!D.isInvalidType())
6596      Diag(D.getDeclSpec().getLocStart(),
6597           diag::err_explicit_instantiation_requires_name)
6598        << D.getDeclSpec().getSourceRange()
6599        << D.getSourceRange();
6600
6601    return true;
6602  }
6603
6604  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6605  // we find one that is.
6606  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6607         (S->getFlags() & Scope::TemplateParamScope) != 0)
6608    S = S->getParent();
6609
6610  // Determine the type of the declaration.
6611  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6612  QualType R = T->getType();
6613  if (R.isNull())
6614    return true;
6615
6616  // C++ [dcl.stc]p1:
6617  //   A storage-class-specifier shall not be specified in [...] an explicit
6618  //   instantiation (14.7.2) directive.
6619  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6620    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6621      << Name;
6622    return true;
6623  } else if (D.getDeclSpec().getStorageClassSpec()
6624                                                != DeclSpec::SCS_unspecified) {
6625    // Complain about then remove the storage class specifier.
6626    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6627      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6628
6629    D.getMutableDeclSpec().ClearStorageClassSpecs();
6630  }
6631
6632  // C++0x [temp.explicit]p1:
6633  //   [...] An explicit instantiation of a function template shall not use the
6634  //   inline or constexpr specifiers.
6635  // Presumably, this also applies to member functions of class templates as
6636  // well.
6637  if (D.getDeclSpec().isInlineSpecified())
6638    Diag(D.getDeclSpec().getInlineSpecLoc(),
6639         getLangOpts().CPlusPlus0x ?
6640           diag::err_explicit_instantiation_inline :
6641           diag::warn_explicit_instantiation_inline_0x)
6642      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6643  if (D.getDeclSpec().isConstexprSpecified())
6644    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6645    // not already specified.
6646    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6647         diag::err_explicit_instantiation_constexpr);
6648
6649  // C++0x [temp.explicit]p2:
6650  //   There are two forms of explicit instantiation: an explicit instantiation
6651  //   definition and an explicit instantiation declaration. An explicit
6652  //   instantiation declaration begins with the extern keyword. [...]
6653  TemplateSpecializationKind TSK
6654    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6655                           : TSK_ExplicitInstantiationDeclaration;
6656
6657  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6658  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6659
6660  if (!R->isFunctionType()) {
6661    // C++ [temp.explicit]p1:
6662    //   A [...] static data member of a class template can be explicitly
6663    //   instantiated from the member definition associated with its class
6664    //   template.
6665    if (Previous.isAmbiguous())
6666      return true;
6667
6668    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6669    if (!Prev || !Prev->isStaticDataMember()) {
6670      // We expect to see a data data member here.
6671      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6672        << Name;
6673      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6674           P != PEnd; ++P)
6675        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6676      return true;
6677    }
6678
6679    if (!Prev->getInstantiatedFromStaticDataMember()) {
6680      // FIXME: Check for explicit specialization?
6681      Diag(D.getIdentifierLoc(),
6682           diag::err_explicit_instantiation_data_member_not_instantiated)
6683        << Prev;
6684      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6685      // FIXME: Can we provide a note showing where this was declared?
6686      return true;
6687    }
6688
6689    // C++0x [temp.explicit]p2:
6690    //   If the explicit instantiation is for a member function, a member class
6691    //   or a static data member of a class template specialization, the name of
6692    //   the class template specialization in the qualified-id for the member
6693    //   name shall be a simple-template-id.
6694    //
6695    // C++98 has the same restriction, just worded differently.
6696    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6697      Diag(D.getIdentifierLoc(),
6698           diag::ext_explicit_instantiation_without_qualified_id)
6699        << Prev << D.getCXXScopeSpec().getRange();
6700
6701    // Check the scope of this explicit instantiation.
6702    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6703
6704    // Verify that it is okay to explicitly instantiate here.
6705    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6706    assert(MSInfo && "Missing static data member specialization info?");
6707    bool HasNoEffect = false;
6708    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6709                                        MSInfo->getTemplateSpecializationKind(),
6710                                              MSInfo->getPointOfInstantiation(),
6711                                               HasNoEffect))
6712      return true;
6713    if (HasNoEffect)
6714      return (Decl*) 0;
6715
6716    // Instantiate static data member.
6717    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6718    if (TSK == TSK_ExplicitInstantiationDefinition)
6719      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6720
6721    // FIXME: Create an ExplicitInstantiation node?
6722    return (Decl*) 0;
6723  }
6724
6725  // If the declarator is a template-id, translate the parser's template
6726  // argument list into our AST format.
6727  bool HasExplicitTemplateArgs = false;
6728  TemplateArgumentListInfo TemplateArgs;
6729  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6730    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6731    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6732    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6733    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6734                                       TemplateId->getTemplateArgs(),
6735                                       TemplateId->NumArgs);
6736    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6737    HasExplicitTemplateArgs = true;
6738    TemplateArgsPtr.release();
6739  }
6740
6741  // C++ [temp.explicit]p1:
6742  //   A [...] function [...] can be explicitly instantiated from its template.
6743  //   A member function [...] of a class template can be explicitly
6744  //  instantiated from the member definition associated with its class
6745  //  template.
6746  UnresolvedSet<8> Matches;
6747  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6748       P != PEnd; ++P) {
6749    NamedDecl *Prev = *P;
6750    if (!HasExplicitTemplateArgs) {
6751      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6752        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6753          Matches.clear();
6754
6755          Matches.addDecl(Method, P.getAccess());
6756          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6757            break;
6758        }
6759      }
6760    }
6761
6762    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6763    if (!FunTmpl)
6764      continue;
6765
6766    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6767    FunctionDecl *Specialization = 0;
6768    if (TemplateDeductionResult TDK
6769          = DeduceTemplateArguments(FunTmpl,
6770                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6771                                    R, Specialization, Info)) {
6772      // FIXME: Keep track of almost-matches?
6773      (void)TDK;
6774      continue;
6775    }
6776
6777    Matches.addDecl(Specialization, P.getAccess());
6778  }
6779
6780  // Find the most specialized function template specialization.
6781  UnresolvedSetIterator Result
6782    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6783                         D.getIdentifierLoc(),
6784                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6785                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6786                         PDiag(diag::note_explicit_instantiation_candidate));
6787
6788  if (Result == Matches.end())
6789    return true;
6790
6791  // Ignore access control bits, we don't need them for redeclaration checking.
6792  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6793
6794  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6795    Diag(D.getIdentifierLoc(),
6796         diag::err_explicit_instantiation_member_function_not_instantiated)
6797      << Specialization
6798      << (Specialization->getTemplateSpecializationKind() ==
6799          TSK_ExplicitSpecialization);
6800    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6801    return true;
6802  }
6803
6804  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6805  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6806    PrevDecl = Specialization;
6807
6808  if (PrevDecl) {
6809    bool HasNoEffect = false;
6810    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6811                                               PrevDecl,
6812                                     PrevDecl->getTemplateSpecializationKind(),
6813                                          PrevDecl->getPointOfInstantiation(),
6814                                               HasNoEffect))
6815      return true;
6816
6817    // FIXME: We may still want to build some representation of this
6818    // explicit specialization.
6819    if (HasNoEffect)
6820      return (Decl*) 0;
6821  }
6822
6823  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6824  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6825  if (Attr)
6826    ProcessDeclAttributeList(S, Specialization, Attr);
6827
6828  if (TSK == TSK_ExplicitInstantiationDefinition)
6829    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6830
6831  // C++0x [temp.explicit]p2:
6832  //   If the explicit instantiation is for a member function, a member class
6833  //   or a static data member of a class template specialization, the name of
6834  //   the class template specialization in the qualified-id for the member
6835  //   name shall be a simple-template-id.
6836  //
6837  // C++98 has the same restriction, just worded differently.
6838  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6839  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6840      D.getCXXScopeSpec().isSet() &&
6841      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6842    Diag(D.getIdentifierLoc(),
6843         diag::ext_explicit_instantiation_without_qualified_id)
6844    << Specialization << D.getCXXScopeSpec().getRange();
6845
6846  CheckExplicitInstantiationScope(*this,
6847                   FunTmpl? (NamedDecl *)FunTmpl
6848                          : Specialization->getInstantiatedFromMemberFunction(),
6849                                  D.getIdentifierLoc(),
6850                                  D.getCXXScopeSpec().isSet());
6851
6852  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6853  return (Decl*) 0;
6854}
6855
6856TypeResult
6857Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6858                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6859                        SourceLocation TagLoc, SourceLocation NameLoc) {
6860  // This has to hold, because SS is expected to be defined.
6861  assert(Name && "Expected a name in a dependent tag");
6862
6863  NestedNameSpecifier *NNS
6864    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6865  if (!NNS)
6866    return true;
6867
6868  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6869
6870  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6871    Diag(NameLoc, diag::err_dependent_tag_decl)
6872      << (TUK == TUK_Definition) << Kind << SS.getRange();
6873    return true;
6874  }
6875
6876  // Create the resulting type.
6877  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6878  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6879
6880  // Create type-source location information for this type.
6881  TypeLocBuilder TLB;
6882  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6883  TL.setElaboratedKeywordLoc(TagLoc);
6884  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6885  TL.setNameLoc(NameLoc);
6886  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6887}
6888
6889TypeResult
6890Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6891                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6892                        SourceLocation IdLoc) {
6893  if (SS.isInvalid())
6894    return true;
6895
6896  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6897    Diag(TypenameLoc,
6898         getLangOpts().CPlusPlus0x ?
6899           diag::warn_cxx98_compat_typename_outside_of_template :
6900           diag::ext_typename_outside_of_template)
6901      << FixItHint::CreateRemoval(TypenameLoc);
6902
6903  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6904  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6905                                 TypenameLoc, QualifierLoc, II, IdLoc);
6906  if (T.isNull())
6907    return true;
6908
6909  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6910  if (isa<DependentNameType>(T)) {
6911    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6912    TL.setElaboratedKeywordLoc(TypenameLoc);
6913    TL.setQualifierLoc(QualifierLoc);
6914    TL.setNameLoc(IdLoc);
6915  } else {
6916    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6917    TL.setElaboratedKeywordLoc(TypenameLoc);
6918    TL.setQualifierLoc(QualifierLoc);
6919    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6920  }
6921
6922  return CreateParsedType(T, TSI);
6923}
6924
6925TypeResult
6926Sema::ActOnTypenameType(Scope *S,
6927                        SourceLocation TypenameLoc,
6928                        const CXXScopeSpec &SS,
6929                        SourceLocation TemplateKWLoc,
6930                        TemplateTy TemplateIn,
6931                        SourceLocation TemplateNameLoc,
6932                        SourceLocation LAngleLoc,
6933                        ASTTemplateArgsPtr TemplateArgsIn,
6934                        SourceLocation RAngleLoc) {
6935  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6936    Diag(TypenameLoc,
6937         getLangOpts().CPlusPlus0x ?
6938           diag::warn_cxx98_compat_typename_outside_of_template :
6939           diag::ext_typename_outside_of_template)
6940      << FixItHint::CreateRemoval(TypenameLoc);
6941
6942  // Translate the parser's template argument list in our AST format.
6943  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6944  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6945
6946  TemplateName Template = TemplateIn.get();
6947  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6948    // Construct a dependent template specialization type.
6949    assert(DTN && "dependent template has non-dependent name?");
6950    assert(DTN->getQualifier()
6951           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6952    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6953                                                          DTN->getQualifier(),
6954                                                          DTN->getIdentifier(),
6955                                                                TemplateArgs);
6956
6957    // Create source-location information for this type.
6958    TypeLocBuilder Builder;
6959    DependentTemplateSpecializationTypeLoc SpecTL
6960    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6961    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6962    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6963    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6964    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6965    SpecTL.setLAngleLoc(LAngleLoc);
6966    SpecTL.setRAngleLoc(RAngleLoc);
6967    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6968      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6969    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6970  }
6971
6972  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6973  if (T.isNull())
6974    return true;
6975
6976  // Provide source-location information for the template specialization type.
6977  TypeLocBuilder Builder;
6978  TemplateSpecializationTypeLoc SpecTL
6979    = Builder.push<TemplateSpecializationTypeLoc>(T);
6980  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6981  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6982  SpecTL.setLAngleLoc(LAngleLoc);
6983  SpecTL.setRAngleLoc(RAngleLoc);
6984  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6985    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6986
6987  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6988  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6989  TL.setElaboratedKeywordLoc(TypenameLoc);
6990  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6991
6992  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6993  return CreateParsedType(T, TSI);
6994}
6995
6996
6997/// Determine whether this failed name lookup should be treated as being
6998/// disabled by a usage of std::enable_if.
6999static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7000                       SourceRange &CondRange) {
7001  // We must be looking for a ::type...
7002  if (!II.isStr("type"))
7003    return false;
7004
7005  // ... within an explicitly-written template specialization...
7006  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7007    return false;
7008  TypeLoc EnableIfTy = NNS.getTypeLoc();
7009  TemplateSpecializationTypeLoc *EnableIfTSTLoc =
7010    dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy);
7011  if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0)
7012    return false;
7013  const TemplateSpecializationType *EnableIfTST =
7014    cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr());
7015
7016  // ... which names a complete class template declaration...
7017  const TemplateDecl *EnableIfDecl =
7018    EnableIfTST->getTemplateName().getAsTemplateDecl();
7019  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7020    return false;
7021
7022  // ... called "enable_if".
7023  const IdentifierInfo *EnableIfII =
7024    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7025  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7026    return false;
7027
7028  // Assume the first template argument is the condition.
7029  CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange();
7030  return true;
7031}
7032
7033/// \brief Build the type that describes a C++ typename specifier,
7034/// e.g., "typename T::type".
7035QualType
7036Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7037                        SourceLocation KeywordLoc,
7038                        NestedNameSpecifierLoc QualifierLoc,
7039                        const IdentifierInfo &II,
7040                        SourceLocation IILoc) {
7041  CXXScopeSpec SS;
7042  SS.Adopt(QualifierLoc);
7043
7044  DeclContext *Ctx = computeDeclContext(SS);
7045  if (!Ctx) {
7046    // If the nested-name-specifier is dependent and couldn't be
7047    // resolved to a type, build a typename type.
7048    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7049    return Context.getDependentNameType(Keyword,
7050                                        QualifierLoc.getNestedNameSpecifier(),
7051                                        &II);
7052  }
7053
7054  // If the nested-name-specifier refers to the current instantiation,
7055  // the "typename" keyword itself is superfluous. In C++03, the
7056  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7057  // allows such extraneous "typename" keywords, and we retroactively
7058  // apply this DR to C++03 code with only a warning. In any case we continue.
7059
7060  if (RequireCompleteDeclContext(SS, Ctx))
7061    return QualType();
7062
7063  DeclarationName Name(&II);
7064  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7065  LookupQualifiedName(Result, Ctx);
7066  unsigned DiagID = 0;
7067  Decl *Referenced = 0;
7068  switch (Result.getResultKind()) {
7069  case LookupResult::NotFound: {
7070    // If we're looking up 'type' within a template named 'enable_if', produce
7071    // a more specific diagnostic.
7072    SourceRange CondRange;
7073    if (isEnableIf(QualifierLoc, II, CondRange)) {
7074      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7075        << Ctx << CondRange;
7076      return QualType();
7077    }
7078
7079    DiagID = diag::err_typename_nested_not_found;
7080    break;
7081  }
7082
7083  case LookupResult::FoundUnresolvedValue: {
7084    // We found a using declaration that is a value. Most likely, the using
7085    // declaration itself is meant to have the 'typename' keyword.
7086    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7087                          IILoc);
7088    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7089      << Name << Ctx << FullRange;
7090    if (UnresolvedUsingValueDecl *Using
7091          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7092      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7093      Diag(Loc, diag::note_using_value_decl_missing_typename)
7094        << FixItHint::CreateInsertion(Loc, "typename ");
7095    }
7096  }
7097  // Fall through to create a dependent typename type, from which we can recover
7098  // better.
7099
7100  case LookupResult::NotFoundInCurrentInstantiation:
7101    // Okay, it's a member of an unknown instantiation.
7102    return Context.getDependentNameType(Keyword,
7103                                        QualifierLoc.getNestedNameSpecifier(),
7104                                        &II);
7105
7106  case LookupResult::Found:
7107    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7108      // We found a type. Build an ElaboratedType, since the
7109      // typename-specifier was just sugar.
7110      return Context.getElaboratedType(ETK_Typename,
7111                                       QualifierLoc.getNestedNameSpecifier(),
7112                                       Context.getTypeDeclType(Type));
7113    }
7114
7115    DiagID = diag::err_typename_nested_not_type;
7116    Referenced = Result.getFoundDecl();
7117    break;
7118
7119  case LookupResult::FoundOverloaded:
7120    DiagID = diag::err_typename_nested_not_type;
7121    Referenced = *Result.begin();
7122    break;
7123
7124  case LookupResult::Ambiguous:
7125    return QualType();
7126  }
7127
7128  // If we get here, it's because name lookup did not find a
7129  // type. Emit an appropriate diagnostic and return an error.
7130  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7131                        IILoc);
7132  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7133  if (Referenced)
7134    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7135      << Name;
7136  return QualType();
7137}
7138
7139namespace {
7140  // See Sema::RebuildTypeInCurrentInstantiation
7141  class CurrentInstantiationRebuilder
7142    : public TreeTransform<CurrentInstantiationRebuilder> {
7143    SourceLocation Loc;
7144    DeclarationName Entity;
7145
7146  public:
7147    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7148
7149    CurrentInstantiationRebuilder(Sema &SemaRef,
7150                                  SourceLocation Loc,
7151                                  DeclarationName Entity)
7152    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7153      Loc(Loc), Entity(Entity) { }
7154
7155    /// \brief Determine whether the given type \p T has already been
7156    /// transformed.
7157    ///
7158    /// For the purposes of type reconstruction, a type has already been
7159    /// transformed if it is NULL or if it is not dependent.
7160    bool AlreadyTransformed(QualType T) {
7161      return T.isNull() || !T->isDependentType();
7162    }
7163
7164    /// \brief Returns the location of the entity whose type is being
7165    /// rebuilt.
7166    SourceLocation getBaseLocation() { return Loc; }
7167
7168    /// \brief Returns the name of the entity whose type is being rebuilt.
7169    DeclarationName getBaseEntity() { return Entity; }
7170
7171    /// \brief Sets the "base" location and entity when that
7172    /// information is known based on another transformation.
7173    void setBase(SourceLocation Loc, DeclarationName Entity) {
7174      this->Loc = Loc;
7175      this->Entity = Entity;
7176    }
7177
7178    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7179      // Lambdas never need to be transformed.
7180      return E;
7181    }
7182  };
7183}
7184
7185/// \brief Rebuilds a type within the context of the current instantiation.
7186///
7187/// The type \p T is part of the type of an out-of-line member definition of
7188/// a class template (or class template partial specialization) that was parsed
7189/// and constructed before we entered the scope of the class template (or
7190/// partial specialization thereof). This routine will rebuild that type now
7191/// that we have entered the declarator's scope, which may produce different
7192/// canonical types, e.g.,
7193///
7194/// \code
7195/// template<typename T>
7196/// struct X {
7197///   typedef T* pointer;
7198///   pointer data();
7199/// };
7200///
7201/// template<typename T>
7202/// typename X<T>::pointer X<T>::data() { ... }
7203/// \endcode
7204///
7205/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7206/// since we do not know that we can look into X<T> when we parsed the type.
7207/// This function will rebuild the type, performing the lookup of "pointer"
7208/// in X<T> and returning an ElaboratedType whose canonical type is the same
7209/// as the canonical type of T*, allowing the return types of the out-of-line
7210/// definition and the declaration to match.
7211TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7212                                                        SourceLocation Loc,
7213                                                        DeclarationName Name) {
7214  if (!T || !T->getType()->isDependentType())
7215    return T;
7216
7217  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7218  return Rebuilder.TransformType(T);
7219}
7220
7221ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7222  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7223                                          DeclarationName());
7224  return Rebuilder.TransformExpr(E);
7225}
7226
7227bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7228  if (SS.isInvalid())
7229    return true;
7230
7231  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7232  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7233                                          DeclarationName());
7234  NestedNameSpecifierLoc Rebuilt
7235    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7236  if (!Rebuilt)
7237    return true;
7238
7239  SS.Adopt(Rebuilt);
7240  return false;
7241}
7242
7243/// \brief Rebuild the template parameters now that we know we're in a current
7244/// instantiation.
7245bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7246                                               TemplateParameterList *Params) {
7247  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7248    Decl *Param = Params->getParam(I);
7249
7250    // There is nothing to rebuild in a type parameter.
7251    if (isa<TemplateTypeParmDecl>(Param))
7252      continue;
7253
7254    // Rebuild the template parameter list of a template template parameter.
7255    if (TemplateTemplateParmDecl *TTP
7256        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7257      if (RebuildTemplateParamsInCurrentInstantiation(
7258            TTP->getTemplateParameters()))
7259        return true;
7260
7261      continue;
7262    }
7263
7264    // Rebuild the type of a non-type template parameter.
7265    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7266    TypeSourceInfo *NewTSI
7267      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7268                                          NTTP->getLocation(),
7269                                          NTTP->getDeclName());
7270    if (!NewTSI)
7271      return true;
7272
7273    if (NewTSI != NTTP->getTypeSourceInfo()) {
7274      NTTP->setTypeSourceInfo(NewTSI);
7275      NTTP->setType(NewTSI->getType());
7276    }
7277  }
7278
7279  return false;
7280}
7281
7282/// \brief Produces a formatted string that describes the binding of
7283/// template parameters to template arguments.
7284std::string
7285Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7286                                      const TemplateArgumentList &Args) {
7287  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7288}
7289
7290std::string
7291Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7292                                      const TemplateArgument *Args,
7293                                      unsigned NumArgs) {
7294  SmallString<128> Str;
7295  llvm::raw_svector_ostream Out(Str);
7296
7297  if (!Params || Params->size() == 0 || NumArgs == 0)
7298    return std::string();
7299
7300  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7301    if (I >= NumArgs)
7302      break;
7303
7304    if (I == 0)
7305      Out << "[with ";
7306    else
7307      Out << ", ";
7308
7309    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7310      Out << Id->getName();
7311    } else {
7312      Out << '$' << I;
7313    }
7314
7315    Out << " = ";
7316    Args[I].print(getPrintingPolicy(), Out);
7317  }
7318
7319  Out << ']';
7320  return Out.str();
7321}
7322
7323void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7324  if (!FD)
7325    return;
7326  FD->setLateTemplateParsed(Flag);
7327}
7328
7329bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7330  DeclContext *DC = CurContext;
7331
7332  while (DC) {
7333    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7334      const FunctionDecl *FD = RD->isLocalClass();
7335      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7336    } else if (DC->isTranslationUnit() || DC->isNamespace())
7337      return false;
7338
7339    DC = DC->getParent();
7340  }
7341  return false;
7342}
7343