SemaTemplate.cpp revision 4c9be89bb615ec07eb3ed507c8fa9d0baa8a5ad7
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  DeclContext *DC = getFunctionLevelDeclContext();
372
373  if (!isAddressOfOperand &&
374      isa<CXXMethodDecl>(DC) &&
375      cast<CXXMethodDecl>(DC)->isInstance()) {
376    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
377
378    // Since the 'this' expression is synthesized, we don't need to
379    // perform the double-lookup check.
380    NamedDecl *FirstQualifierInScope = 0;
381
382    return Owned(CXXDependentScopeMemberExpr::Create(Context,
383                                                     /*This*/ 0, ThisType,
384                                                     /*IsArrow*/ true,
385                                                     /*Op*/ SourceLocation(),
386                                               SS.getWithLocInContext(Context),
387                                                     FirstQualifierInScope,
388                                                     NameInfo,
389                                                     TemplateArgs));
390  }
391
392  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
393}
394
395ExprResult
396Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
397                                const DeclarationNameInfo &NameInfo,
398                                const TemplateArgumentListInfo *TemplateArgs) {
399  return Owned(DependentScopeDeclRefExpr::Create(Context,
400                                               SS.getWithLocInContext(Context),
401                                                 NameInfo,
402                                                 TemplateArgs));
403}
404
405/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
406/// that the template parameter 'PrevDecl' is being shadowed by a new
407/// declaration at location Loc. Returns true to indicate that this is
408/// an error, and false otherwise.
409bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
410  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
411
412  // Microsoft Visual C++ permits template parameters to be shadowed.
413  if (getLangOptions().Microsoft)
414    return false;
415
416  // C++ [temp.local]p4:
417  //   A template-parameter shall not be redeclared within its
418  //   scope (including nested scopes).
419  Diag(Loc, diag::err_template_param_shadow)
420    << cast<NamedDecl>(PrevDecl)->getDeclName();
421  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
422  return true;
423}
424
425/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
426/// the parameter D to reference the templated declaration and return a pointer
427/// to the template declaration. Otherwise, do nothing to D and return null.
428TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
429  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
430    D = Temp->getTemplatedDecl();
431    return Temp;
432  }
433  return 0;
434}
435
436ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
437                                             SourceLocation EllipsisLoc) const {
438  assert(Kind == Template &&
439         "Only template template arguments can be pack expansions here");
440  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
441         "Template template argument pack expansion without packs");
442  ParsedTemplateArgument Result(*this);
443  Result.EllipsisLoc = EllipsisLoc;
444  return Result;
445}
446
447static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
448                                            const ParsedTemplateArgument &Arg) {
449
450  switch (Arg.getKind()) {
451  case ParsedTemplateArgument::Type: {
452    TypeSourceInfo *DI;
453    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
454    if (!DI)
455      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
456    return TemplateArgumentLoc(TemplateArgument(T), DI);
457  }
458
459  case ParsedTemplateArgument::NonType: {
460    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
461    return TemplateArgumentLoc(TemplateArgument(E), E);
462  }
463
464  case ParsedTemplateArgument::Template: {
465    TemplateName Template = Arg.getAsTemplate().get();
466    TemplateArgument TArg;
467    if (Arg.getEllipsisLoc().isValid())
468      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
469    else
470      TArg = Template;
471    return TemplateArgumentLoc(TArg,
472                               Arg.getScopeSpec().getRange(),
473                               Arg.getLocation(),
474                               Arg.getEllipsisLoc());
475  }
476  }
477
478  llvm_unreachable("Unhandled parsed template argument");
479  return TemplateArgumentLoc();
480}
481
482/// \brief Translates template arguments as provided by the parser
483/// into template arguments used by semantic analysis.
484void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
485                                      TemplateArgumentListInfo &TemplateArgs) {
486 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
487   TemplateArgs.addArgument(translateTemplateArgument(*this,
488                                                      TemplateArgsIn[I]));
489}
490
491/// ActOnTypeParameter - Called when a C++ template type parameter
492/// (e.g., "typename T") has been parsed. Typename specifies whether
493/// the keyword "typename" was used to declare the type parameter
494/// (otherwise, "class" was used), and KeyLoc is the location of the
495/// "class" or "typename" keyword. ParamName is the name of the
496/// parameter (NULL indicates an unnamed template parameter) and
497/// ParamName is the location of the parameter name (if any).
498/// If the type parameter has a default argument, it will be added
499/// later via ActOnTypeParameterDefault.
500Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
501                               SourceLocation EllipsisLoc,
502                               SourceLocation KeyLoc,
503                               IdentifierInfo *ParamName,
504                               SourceLocation ParamNameLoc,
505                               unsigned Depth, unsigned Position,
506                               SourceLocation EqualLoc,
507                               ParsedType DefaultArg) {
508  assert(S->isTemplateParamScope() &&
509         "Template type parameter not in template parameter scope!");
510  bool Invalid = false;
511
512  if (ParamName) {
513    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
514                                           LookupOrdinaryName,
515                                           ForRedeclaration);
516    if (PrevDecl && PrevDecl->isTemplateParameter())
517      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
518                                                           PrevDecl);
519  }
520
521  SourceLocation Loc = ParamNameLoc;
522  if (!ParamName)
523    Loc = KeyLoc;
524
525  TemplateTypeParmDecl *Param
526    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
527                                   Loc, Depth, Position, ParamName, Typename,
528                                   Ellipsis);
529  if (Invalid)
530    Param->setInvalidDecl();
531
532  if (ParamName) {
533    // Add the template parameter into the current scope.
534    S->AddDecl(Param);
535    IdResolver.AddDecl(Param);
536  }
537
538  // C++0x [temp.param]p9:
539  //   A default template-argument may be specified for any kind of
540  //   template-parameter that is not a template parameter pack.
541  if (DefaultArg && Ellipsis) {
542    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
543    DefaultArg = ParsedType();
544  }
545
546  // Handle the default argument, if provided.
547  if (DefaultArg) {
548    TypeSourceInfo *DefaultTInfo;
549    GetTypeFromParser(DefaultArg, &DefaultTInfo);
550
551    assert(DefaultTInfo && "expected source information for type");
552
553    // Check for unexpanded parameter packs.
554    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
555                                        UPPC_DefaultArgument))
556      return Param;
557
558    // Check the template argument itself.
559    if (CheckTemplateArgument(Param, DefaultTInfo)) {
560      Param->setInvalidDecl();
561      return Param;
562    }
563
564    Param->setDefaultArgument(DefaultTInfo, false);
565  }
566
567  return Param;
568}
569
570/// \brief Check that the type of a non-type template parameter is
571/// well-formed.
572///
573/// \returns the (possibly-promoted) parameter type if valid;
574/// otherwise, produces a diagnostic and returns a NULL type.
575QualType
576Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
577  // We don't allow variably-modified types as the type of non-type template
578  // parameters.
579  if (T->isVariablyModifiedType()) {
580    Diag(Loc, diag::err_variably_modified_nontype_template_param)
581      << T;
582    return QualType();
583  }
584
585  // C++ [temp.param]p4:
586  //
587  // A non-type template-parameter shall have one of the following
588  // (optionally cv-qualified) types:
589  //
590  //       -- integral or enumeration type,
591  if (T->isIntegralOrEnumerationType() ||
592      //   -- pointer to object or pointer to function,
593      T->isPointerType() ||
594      //   -- reference to object or reference to function,
595      T->isReferenceType() ||
596      //   -- pointer to member.
597      T->isMemberPointerType() ||
598      // If T is a dependent type, we can't do the check now, so we
599      // assume that it is well-formed.
600      T->isDependentType())
601    return T;
602  // C++ [temp.param]p8:
603  //
604  //   A non-type template-parameter of type "array of T" or
605  //   "function returning T" is adjusted to be of type "pointer to
606  //   T" or "pointer to function returning T", respectively.
607  else if (T->isArrayType())
608    // FIXME: Keep the type prior to promotion?
609    return Context.getArrayDecayedType(T);
610  else if (T->isFunctionType())
611    // FIXME: Keep the type prior to promotion?
612    return Context.getPointerType(T);
613
614  Diag(Loc, diag::err_template_nontype_parm_bad_type)
615    << T;
616
617  return QualType();
618}
619
620Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
621                                          unsigned Depth,
622                                          unsigned Position,
623                                          SourceLocation EqualLoc,
624                                          Expr *Default) {
625  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
626  QualType T = TInfo->getType();
627
628  assert(S->isTemplateParamScope() &&
629         "Non-type template parameter not in template parameter scope!");
630  bool Invalid = false;
631
632  IdentifierInfo *ParamName = D.getIdentifier();
633  if (ParamName) {
634    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
635                                           LookupOrdinaryName,
636                                           ForRedeclaration);
637    if (PrevDecl && PrevDecl->isTemplateParameter())
638      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
639                                                           PrevDecl);
640  }
641
642  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
643  if (T.isNull()) {
644    T = Context.IntTy; // Recover with an 'int' type.
645    Invalid = true;
646  }
647
648  bool IsParameterPack = D.hasEllipsis();
649  NonTypeTemplateParmDecl *Param
650    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
651                                      D.getIdentifierLoc(),
652                                      Depth, Position, ParamName, T,
653                                      IsParameterPack, TInfo);
654  if (Invalid)
655    Param->setInvalidDecl();
656
657  if (D.getIdentifier()) {
658    // Add the template parameter into the current scope.
659    S->AddDecl(Param);
660    IdResolver.AddDecl(Param);
661  }
662
663  // C++0x [temp.param]p9:
664  //   A default template-argument may be specified for any kind of
665  //   template-parameter that is not a template parameter pack.
666  if (Default && IsParameterPack) {
667    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
668    Default = 0;
669  }
670
671  // Check the well-formedness of the default template argument, if provided.
672  if (Default) {
673    // Check for unexpanded parameter packs.
674    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
675      return Param;
676
677    TemplateArgument Converted;
678    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
679      Param->setInvalidDecl();
680      return Param;
681    }
682
683    Param->setDefaultArgument(Default, false);
684  }
685
686  return Param;
687}
688
689/// ActOnTemplateTemplateParameter - Called when a C++ template template
690/// parameter (e.g. T in template <template <typename> class T> class array)
691/// has been parsed. S is the current scope.
692Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
693                                           SourceLocation TmpLoc,
694                                           TemplateParamsTy *Params,
695                                           SourceLocation EllipsisLoc,
696                                           IdentifierInfo *Name,
697                                           SourceLocation NameLoc,
698                                           unsigned Depth,
699                                           unsigned Position,
700                                           SourceLocation EqualLoc,
701                                           ParsedTemplateArgument Default) {
702  assert(S->isTemplateParamScope() &&
703         "Template template parameter not in template parameter scope!");
704
705  // Construct the parameter object.
706  bool IsParameterPack = EllipsisLoc.isValid();
707  // FIXME: Pack-ness is dropped
708  TemplateTemplateParmDecl *Param =
709    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
710                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
711                                     Depth, Position, IsParameterPack,
712                                     Name, Params);
713
714  // If the template template parameter has a name, then link the identifier
715  // into the scope and lookup mechanisms.
716  if (Name) {
717    S->AddDecl(Param);
718    IdResolver.AddDecl(Param);
719  }
720
721  if (Params->size() == 0) {
722    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
723    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
724    Param->setInvalidDecl();
725  }
726
727  // C++0x [temp.param]p9:
728  //   A default template-argument may be specified for any kind of
729  //   template-parameter that is not a template parameter pack.
730  if (IsParameterPack && !Default.isInvalid()) {
731    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
732    Default = ParsedTemplateArgument();
733  }
734
735  if (!Default.isInvalid()) {
736    // Check only that we have a template template argument. We don't want to
737    // try to check well-formedness now, because our template template parameter
738    // might have dependent types in its template parameters, which we wouldn't
739    // be able to match now.
740    //
741    // If none of the template template parameter's template arguments mention
742    // other template parameters, we could actually perform more checking here.
743    // However, it isn't worth doing.
744    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
745    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
746      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
747        << DefaultArg.getSourceRange();
748      return Param;
749    }
750
751    // Check for unexpanded parameter packs.
752    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
753                                        DefaultArg.getArgument().getAsTemplate(),
754                                        UPPC_DefaultArgument))
755      return Param;
756
757    Param->setDefaultArgument(DefaultArg, false);
758  }
759
760  return Param;
761}
762
763/// ActOnTemplateParameterList - Builds a TemplateParameterList that
764/// contains the template parameters in Params/NumParams.
765Sema::TemplateParamsTy *
766Sema::ActOnTemplateParameterList(unsigned Depth,
767                                 SourceLocation ExportLoc,
768                                 SourceLocation TemplateLoc,
769                                 SourceLocation LAngleLoc,
770                                 Decl **Params, unsigned NumParams,
771                                 SourceLocation RAngleLoc) {
772  if (ExportLoc.isValid())
773    Diag(ExportLoc, diag::warn_template_export_unsupported);
774
775  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
776                                       (NamedDecl**)Params, NumParams,
777                                       RAngleLoc);
778}
779
780static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
781  if (SS.isSet())
782    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
783}
784
785DeclResult
786Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
787                         SourceLocation KWLoc, CXXScopeSpec &SS,
788                         IdentifierInfo *Name, SourceLocation NameLoc,
789                         AttributeList *Attr,
790                         TemplateParameterList *TemplateParams,
791                         AccessSpecifier AS) {
792  assert(TemplateParams && TemplateParams->size() > 0 &&
793         "No template parameters");
794  assert(TUK != TUK_Reference && "Can only declare or define class templates");
795  bool Invalid = false;
796
797  // Check that we can declare a template here.
798  if (CheckTemplateDeclScope(S, TemplateParams))
799    return true;
800
801  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
802  assert(Kind != TTK_Enum && "can't build template of enumerated type");
803
804  // There is no such thing as an unnamed class template.
805  if (!Name) {
806    Diag(KWLoc, diag::err_template_unnamed_class);
807    return true;
808  }
809
810  // Find any previous declaration with this name.
811  DeclContext *SemanticContext;
812  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
813                        ForRedeclaration);
814  if (SS.isNotEmpty() && !SS.isInvalid()) {
815    SemanticContext = computeDeclContext(SS, true);
816    if (!SemanticContext) {
817      // FIXME: Produce a reasonable diagnostic here
818      return true;
819    }
820
821    if (RequireCompleteDeclContext(SS, SemanticContext))
822      return true;
823
824    LookupQualifiedName(Previous, SemanticContext);
825  } else {
826    SemanticContext = CurContext;
827    LookupName(Previous, S);
828  }
829
830  if (Previous.isAmbiguous())
831    return true;
832
833  NamedDecl *PrevDecl = 0;
834  if (Previous.begin() != Previous.end())
835    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
836
837  // If there is a previous declaration with the same name, check
838  // whether this is a valid redeclaration.
839  ClassTemplateDecl *PrevClassTemplate
840    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
841
842  // We may have found the injected-class-name of a class template,
843  // class template partial specialization, or class template specialization.
844  // In these cases, grab the template that is being defined or specialized.
845  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
846      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
847    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
848    PrevClassTemplate
849      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
850    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
851      PrevClassTemplate
852        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
853            ->getSpecializedTemplate();
854    }
855  }
856
857  if (TUK == TUK_Friend) {
858    // C++ [namespace.memdef]p3:
859    //   [...] When looking for a prior declaration of a class or a function
860    //   declared as a friend, and when the name of the friend class or
861    //   function is neither a qualified name nor a template-id, scopes outside
862    //   the innermost enclosing namespace scope are not considered.
863    if (!SS.isSet()) {
864      DeclContext *OutermostContext = CurContext;
865      while (!OutermostContext->isFileContext())
866        OutermostContext = OutermostContext->getLookupParent();
867
868      if (PrevDecl &&
869          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
870           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
871        SemanticContext = PrevDecl->getDeclContext();
872      } else {
873        // Declarations in outer scopes don't matter. However, the outermost
874        // context we computed is the semantic context for our new
875        // declaration.
876        PrevDecl = PrevClassTemplate = 0;
877        SemanticContext = OutermostContext;
878      }
879    }
880
881    if (CurContext->isDependentContext()) {
882      // If this is a dependent context, we don't want to link the friend
883      // class template to the template in scope, because that would perform
884      // checking of the template parameter lists that can't be performed
885      // until the outer context is instantiated.
886      PrevDecl = PrevClassTemplate = 0;
887    }
888  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
889    PrevDecl = PrevClassTemplate = 0;
890
891  if (PrevClassTemplate) {
892    // Ensure that the template parameter lists are compatible.
893    if (!TemplateParameterListsAreEqual(TemplateParams,
894                                   PrevClassTemplate->getTemplateParameters(),
895                                        /*Complain=*/true,
896                                        TPL_TemplateMatch))
897      return true;
898
899    // C++ [temp.class]p4:
900    //   In a redeclaration, partial specialization, explicit
901    //   specialization or explicit instantiation of a class template,
902    //   the class-key shall agree in kind with the original class
903    //   template declaration (7.1.5.3).
904    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
905    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
906      Diag(KWLoc, diag::err_use_with_wrong_tag)
907        << Name
908        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
909      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
910      Kind = PrevRecordDecl->getTagKind();
911    }
912
913    // Check for redefinition of this class template.
914    if (TUK == TUK_Definition) {
915      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
916        Diag(NameLoc, diag::err_redefinition) << Name;
917        Diag(Def->getLocation(), diag::note_previous_definition);
918        // FIXME: Would it make sense to try to "forget" the previous
919        // definition, as part of error recovery?
920        return true;
921      }
922    }
923  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
924    // Maybe we will complain about the shadowed template parameter.
925    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
926    // Just pretend that we didn't see the previous declaration.
927    PrevDecl = 0;
928  } else if (PrevDecl) {
929    // C++ [temp]p5:
930    //   A class template shall not have the same name as any other
931    //   template, class, function, object, enumeration, enumerator,
932    //   namespace, or type in the same scope (3.3), except as specified
933    //   in (14.5.4).
934    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
935    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
936    return true;
937  }
938
939  // Check the template parameter list of this declaration, possibly
940  // merging in the template parameter list from the previous class
941  // template declaration.
942  if (CheckTemplateParameterList(TemplateParams,
943            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
944                                 (SS.isSet() && SemanticContext &&
945                                  SemanticContext->isRecord() &&
946                                  SemanticContext->isDependentContext())
947                                   ? TPC_ClassTemplateMember
948                                   : TPC_ClassTemplate))
949    Invalid = true;
950
951  if (SS.isSet()) {
952    // If the name of the template was qualified, we must be defining the
953    // template out-of-line.
954    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
955        !(TUK == TUK_Friend && CurContext->isDependentContext()))
956      Diag(NameLoc, diag::err_member_def_does_not_match)
957        << Name << SemanticContext << SS.getRange();
958  }
959
960  CXXRecordDecl *NewClass =
961    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
962                          PrevClassTemplate?
963                            PrevClassTemplate->getTemplatedDecl() : 0,
964                          /*DelayTypeCreation=*/true);
965  SetNestedNameSpecifier(NewClass, SS);
966
967  ClassTemplateDecl *NewTemplate
968    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
969                                DeclarationName(Name), TemplateParams,
970                                NewClass, PrevClassTemplate);
971  NewClass->setDescribedClassTemplate(NewTemplate);
972
973  // Build the type for the class template declaration now.
974  QualType T = NewTemplate->getInjectedClassNameSpecialization();
975  T = Context.getInjectedClassNameType(NewClass, T);
976  assert(T->isDependentType() && "Class template type is not dependent?");
977  (void)T;
978
979  // If we are providing an explicit specialization of a member that is a
980  // class template, make a note of that.
981  if (PrevClassTemplate &&
982      PrevClassTemplate->getInstantiatedFromMemberTemplate())
983    PrevClassTemplate->setMemberSpecialization();
984
985  // Set the access specifier.
986  if (!Invalid && TUK != TUK_Friend)
987    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
988
989  // Set the lexical context of these templates
990  NewClass->setLexicalDeclContext(CurContext);
991  NewTemplate->setLexicalDeclContext(CurContext);
992
993  if (TUK == TUK_Definition)
994    NewClass->startDefinition();
995
996  if (Attr)
997    ProcessDeclAttributeList(S, NewClass, Attr);
998
999  if (TUK != TUK_Friend)
1000    PushOnScopeChains(NewTemplate, S);
1001  else {
1002    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1003      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1004      NewClass->setAccess(PrevClassTemplate->getAccess());
1005    }
1006
1007    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1008                                       PrevClassTemplate != NULL);
1009
1010    // Friend templates are visible in fairly strange ways.
1011    if (!CurContext->isDependentContext()) {
1012      DeclContext *DC = SemanticContext->getRedeclContext();
1013      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1014      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1015        PushOnScopeChains(NewTemplate, EnclosingScope,
1016                          /* AddToContext = */ false);
1017    }
1018
1019    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1020                                            NewClass->getLocation(),
1021                                            NewTemplate,
1022                                    /*FIXME:*/NewClass->getLocation());
1023    Friend->setAccess(AS_public);
1024    CurContext->addDecl(Friend);
1025  }
1026
1027  if (Invalid) {
1028    NewTemplate->setInvalidDecl();
1029    NewClass->setInvalidDecl();
1030  }
1031  return NewTemplate;
1032}
1033
1034/// \brief Diagnose the presence of a default template argument on a
1035/// template parameter, which is ill-formed in certain contexts.
1036///
1037/// \returns true if the default template argument should be dropped.
1038static bool DiagnoseDefaultTemplateArgument(Sema &S,
1039                                            Sema::TemplateParamListContext TPC,
1040                                            SourceLocation ParamLoc,
1041                                            SourceRange DefArgRange) {
1042  switch (TPC) {
1043  case Sema::TPC_ClassTemplate:
1044    return false;
1045
1046  case Sema::TPC_FunctionTemplate:
1047  case Sema::TPC_FriendFunctionTemplateDefinition:
1048    // C++ [temp.param]p9:
1049    //   A default template-argument shall not be specified in a
1050    //   function template declaration or a function template
1051    //   definition [...]
1052    //   If a friend function template declaration specifies a default
1053    //   template-argument, that declaration shall be a definition and shall be
1054    //   the only declaration of the function template in the translation unit.
1055    // (C++98/03 doesn't have this wording; see DR226).
1056    if (!S.getLangOptions().CPlusPlus0x)
1057      S.Diag(ParamLoc,
1058             diag::ext_template_parameter_default_in_function_template)
1059        << DefArgRange;
1060    return false;
1061
1062  case Sema::TPC_ClassTemplateMember:
1063    // C++0x [temp.param]p9:
1064    //   A default template-argument shall not be specified in the
1065    //   template-parameter-lists of the definition of a member of a
1066    //   class template that appears outside of the member's class.
1067    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1068      << DefArgRange;
1069    return true;
1070
1071  case Sema::TPC_FriendFunctionTemplate:
1072    // C++ [temp.param]p9:
1073    //   A default template-argument shall not be specified in a
1074    //   friend template declaration.
1075    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1076      << DefArgRange;
1077    return true;
1078
1079    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1080    // for friend function templates if there is only a single
1081    // declaration (and it is a definition). Strange!
1082  }
1083
1084  return false;
1085}
1086
1087/// \brief Check for unexpanded parameter packs within the template parameters
1088/// of a template template parameter, recursively.
1089bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1090  TemplateParameterList *Params = TTP->getTemplateParameters();
1091  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1092    NamedDecl *P = Params->getParam(I);
1093    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1094      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1095                                            NTTP->getTypeSourceInfo(),
1096                                      Sema::UPPC_NonTypeTemplateParameterType))
1097        return true;
1098
1099      continue;
1100    }
1101
1102    if (TemplateTemplateParmDecl *InnerTTP
1103                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1104      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1105        return true;
1106  }
1107
1108  return false;
1109}
1110
1111/// \brief Checks the validity of a template parameter list, possibly
1112/// considering the template parameter list from a previous
1113/// declaration.
1114///
1115/// If an "old" template parameter list is provided, it must be
1116/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1117/// template parameter list.
1118///
1119/// \param NewParams Template parameter list for a new template
1120/// declaration. This template parameter list will be updated with any
1121/// default arguments that are carried through from the previous
1122/// template parameter list.
1123///
1124/// \param OldParams If provided, template parameter list from a
1125/// previous declaration of the same template. Default template
1126/// arguments will be merged from the old template parameter list to
1127/// the new template parameter list.
1128///
1129/// \param TPC Describes the context in which we are checking the given
1130/// template parameter list.
1131///
1132/// \returns true if an error occurred, false otherwise.
1133bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1134                                      TemplateParameterList *OldParams,
1135                                      TemplateParamListContext TPC) {
1136  bool Invalid = false;
1137
1138  // C++ [temp.param]p10:
1139  //   The set of default template-arguments available for use with a
1140  //   template declaration or definition is obtained by merging the
1141  //   default arguments from the definition (if in scope) and all
1142  //   declarations in scope in the same way default function
1143  //   arguments are (8.3.6).
1144  bool SawDefaultArgument = false;
1145  SourceLocation PreviousDefaultArgLoc;
1146
1147  bool SawParameterPack = false;
1148  SourceLocation ParameterPackLoc;
1149
1150  // Dummy initialization to avoid warnings.
1151  TemplateParameterList::iterator OldParam = NewParams->end();
1152  if (OldParams)
1153    OldParam = OldParams->begin();
1154
1155  bool RemoveDefaultArguments = false;
1156  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1157                                    NewParamEnd = NewParams->end();
1158       NewParam != NewParamEnd; ++NewParam) {
1159    // Variables used to diagnose redundant default arguments
1160    bool RedundantDefaultArg = false;
1161    SourceLocation OldDefaultLoc;
1162    SourceLocation NewDefaultLoc;
1163
1164    // Variables used to diagnose missing default arguments
1165    bool MissingDefaultArg = false;
1166
1167    // C++0x [temp.param]p11:
1168    //   If a template parameter of a primary class template is a template
1169    //   parameter pack, it shall be the last template parameter.
1170    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1171      Diag(ParameterPackLoc,
1172           diag::err_template_param_pack_must_be_last_template_parameter);
1173      Invalid = true;
1174    }
1175
1176    if (TemplateTypeParmDecl *NewTypeParm
1177          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1178      // Check the presence of a default argument here.
1179      if (NewTypeParm->hasDefaultArgument() &&
1180          DiagnoseDefaultTemplateArgument(*this, TPC,
1181                                          NewTypeParm->getLocation(),
1182               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1183                                                       .getSourceRange()))
1184        NewTypeParm->removeDefaultArgument();
1185
1186      // Merge default arguments for template type parameters.
1187      TemplateTypeParmDecl *OldTypeParm
1188          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1189
1190      if (NewTypeParm->isParameterPack()) {
1191        assert(!NewTypeParm->hasDefaultArgument() &&
1192               "Parameter packs can't have a default argument!");
1193        SawParameterPack = true;
1194        ParameterPackLoc = NewTypeParm->getLocation();
1195      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1196                 NewTypeParm->hasDefaultArgument()) {
1197        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1198        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1199        SawDefaultArgument = true;
1200        RedundantDefaultArg = true;
1201        PreviousDefaultArgLoc = NewDefaultLoc;
1202      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1203        // Merge the default argument from the old declaration to the
1204        // new declaration.
1205        SawDefaultArgument = true;
1206        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1207                                        true);
1208        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1209      } else if (NewTypeParm->hasDefaultArgument()) {
1210        SawDefaultArgument = true;
1211        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1212      } else if (SawDefaultArgument)
1213        MissingDefaultArg = true;
1214    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1215               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1216      // Check for unexpanded parameter packs.
1217      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1218                                          NewNonTypeParm->getTypeSourceInfo(),
1219                                          UPPC_NonTypeTemplateParameterType)) {
1220        Invalid = true;
1221        continue;
1222      }
1223
1224      // Check the presence of a default argument here.
1225      if (NewNonTypeParm->hasDefaultArgument() &&
1226          DiagnoseDefaultTemplateArgument(*this, TPC,
1227                                          NewNonTypeParm->getLocation(),
1228                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1229        NewNonTypeParm->removeDefaultArgument();
1230      }
1231
1232      // Merge default arguments for non-type template parameters
1233      NonTypeTemplateParmDecl *OldNonTypeParm
1234        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1235      if (NewNonTypeParm->isParameterPack()) {
1236        assert(!NewNonTypeParm->hasDefaultArgument() &&
1237               "Parameter packs can't have a default argument!");
1238        SawParameterPack = true;
1239        ParameterPackLoc = NewNonTypeParm->getLocation();
1240      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1241          NewNonTypeParm->hasDefaultArgument()) {
1242        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1243        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1244        SawDefaultArgument = true;
1245        RedundantDefaultArg = true;
1246        PreviousDefaultArgLoc = NewDefaultLoc;
1247      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1248        // Merge the default argument from the old declaration to the
1249        // new declaration.
1250        SawDefaultArgument = true;
1251        // FIXME: We need to create a new kind of "default argument"
1252        // expression that points to a previous non-type template
1253        // parameter.
1254        NewNonTypeParm->setDefaultArgument(
1255                                         OldNonTypeParm->getDefaultArgument(),
1256                                         /*Inherited=*/ true);
1257        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1258      } else if (NewNonTypeParm->hasDefaultArgument()) {
1259        SawDefaultArgument = true;
1260        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1261      } else if (SawDefaultArgument)
1262        MissingDefaultArg = true;
1263    } else {
1264      // Check the presence of a default argument here.
1265      TemplateTemplateParmDecl *NewTemplateParm
1266        = cast<TemplateTemplateParmDecl>(*NewParam);
1267
1268      // Check for unexpanded parameter packs, recursively.
1269      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1270        Invalid = true;
1271        continue;
1272      }
1273
1274      if (NewTemplateParm->hasDefaultArgument() &&
1275          DiagnoseDefaultTemplateArgument(*this, TPC,
1276                                          NewTemplateParm->getLocation(),
1277                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1278        NewTemplateParm->removeDefaultArgument();
1279
1280      // Merge default arguments for template template parameters
1281      TemplateTemplateParmDecl *OldTemplateParm
1282        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1283      if (NewTemplateParm->isParameterPack()) {
1284        assert(!NewTemplateParm->hasDefaultArgument() &&
1285               "Parameter packs can't have a default argument!");
1286        SawParameterPack = true;
1287        ParameterPackLoc = NewTemplateParm->getLocation();
1288      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1289          NewTemplateParm->hasDefaultArgument()) {
1290        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1291        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1292        SawDefaultArgument = true;
1293        RedundantDefaultArg = true;
1294        PreviousDefaultArgLoc = NewDefaultLoc;
1295      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1296        // Merge the default argument from the old declaration to the
1297        // new declaration.
1298        SawDefaultArgument = true;
1299        // FIXME: We need to create a new kind of "default argument" expression
1300        // that points to a previous template template parameter.
1301        NewTemplateParm->setDefaultArgument(
1302                                          OldTemplateParm->getDefaultArgument(),
1303                                          /*Inherited=*/ true);
1304        PreviousDefaultArgLoc
1305          = OldTemplateParm->getDefaultArgument().getLocation();
1306      } else if (NewTemplateParm->hasDefaultArgument()) {
1307        SawDefaultArgument = true;
1308        PreviousDefaultArgLoc
1309          = NewTemplateParm->getDefaultArgument().getLocation();
1310      } else if (SawDefaultArgument)
1311        MissingDefaultArg = true;
1312    }
1313
1314    if (RedundantDefaultArg) {
1315      // C++ [temp.param]p12:
1316      //   A template-parameter shall not be given default arguments
1317      //   by two different declarations in the same scope.
1318      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1319      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1320      Invalid = true;
1321    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1322      // C++ [temp.param]p11:
1323      //   If a template-parameter of a class template has a default
1324      //   template-argument, each subsequent template-parameter shall either
1325      //   have a default template-argument supplied or be a template parameter
1326      //   pack.
1327      Diag((*NewParam)->getLocation(),
1328           diag::err_template_param_default_arg_missing);
1329      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1330      Invalid = true;
1331      RemoveDefaultArguments = true;
1332    }
1333
1334    // If we have an old template parameter list that we're merging
1335    // in, move on to the next parameter.
1336    if (OldParams)
1337      ++OldParam;
1338  }
1339
1340  // We were missing some default arguments at the end of the list, so remove
1341  // all of the default arguments.
1342  if (RemoveDefaultArguments) {
1343    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1344                                      NewParamEnd = NewParams->end();
1345         NewParam != NewParamEnd; ++NewParam) {
1346      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1347        TTP->removeDefaultArgument();
1348      else if (NonTypeTemplateParmDecl *NTTP
1349                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1350        NTTP->removeDefaultArgument();
1351      else
1352        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1353    }
1354  }
1355
1356  return Invalid;
1357}
1358
1359namespace {
1360
1361/// A class which looks for a use of a certain level of template
1362/// parameter.
1363struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1364  typedef RecursiveASTVisitor<DependencyChecker> super;
1365
1366  unsigned Depth;
1367  bool Match;
1368
1369  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1370    NamedDecl *ND = Params->getParam(0);
1371    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1372      Depth = PD->getDepth();
1373    } else if (NonTypeTemplateParmDecl *PD =
1374                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1375      Depth = PD->getDepth();
1376    } else {
1377      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1378    }
1379  }
1380
1381  bool Matches(unsigned ParmDepth) {
1382    if (ParmDepth >= Depth) {
1383      Match = true;
1384      return true;
1385    }
1386    return false;
1387  }
1388
1389  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1390    return !Matches(T->getDepth());
1391  }
1392
1393  bool TraverseTemplateName(TemplateName N) {
1394    if (TemplateTemplateParmDecl *PD =
1395          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1396      if (Matches(PD->getDepth())) return false;
1397    return super::TraverseTemplateName(N);
1398  }
1399
1400  bool VisitDeclRefExpr(DeclRefExpr *E) {
1401    if (NonTypeTemplateParmDecl *PD =
1402          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1403      if (PD->getDepth() == Depth) {
1404        Match = true;
1405        return false;
1406      }
1407    }
1408    return super::VisitDeclRefExpr(E);
1409  }
1410};
1411}
1412
1413/// Determines whether a template-id depends on the given parameter
1414/// list.
1415static bool
1416DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1417                            TemplateParameterList *Params) {
1418  DependencyChecker Checker(Params);
1419  Checker.TraverseType(QualType(TemplateId, 0));
1420  return Checker.Match;
1421}
1422
1423/// \brief Match the given template parameter lists to the given scope
1424/// specifier, returning the template parameter list that applies to the
1425/// name.
1426///
1427/// \param DeclStartLoc the start of the declaration that has a scope
1428/// specifier or a template parameter list.
1429///
1430/// \param SS the scope specifier that will be matched to the given template
1431/// parameter lists. This scope specifier precedes a qualified name that is
1432/// being declared.
1433///
1434/// \param ParamLists the template parameter lists, from the outermost to the
1435/// innermost template parameter lists.
1436///
1437/// \param NumParamLists the number of template parameter lists in ParamLists.
1438///
1439/// \param IsFriend Whether to apply the slightly different rules for
1440/// matching template parameters to scope specifiers in friend
1441/// declarations.
1442///
1443/// \param IsExplicitSpecialization will be set true if the entity being
1444/// declared is an explicit specialization, false otherwise.
1445///
1446/// \returns the template parameter list, if any, that corresponds to the
1447/// name that is preceded by the scope specifier @p SS. This template
1448/// parameter list may be have template parameters (if we're declaring a
1449/// template) or may have no template parameters (if we're declaring a
1450/// template specialization), or may be NULL (if we were's declaring isn't
1451/// itself a template).
1452TemplateParameterList *
1453Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1454                                              const CXXScopeSpec &SS,
1455                                          TemplateParameterList **ParamLists,
1456                                              unsigned NumParamLists,
1457                                              bool IsFriend,
1458                                              bool &IsExplicitSpecialization,
1459                                              bool &Invalid) {
1460  IsExplicitSpecialization = false;
1461
1462  // Find the template-ids that occur within the nested-name-specifier. These
1463  // template-ids will match up with the template parameter lists.
1464  llvm::SmallVector<const TemplateSpecializationType *, 4>
1465    TemplateIdsInSpecifier;
1466  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1467    ExplicitSpecializationsInSpecifier;
1468  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1469       NNS; NNS = NNS->getPrefix()) {
1470    const Type *T = NNS->getAsType();
1471    if (!T) break;
1472
1473    // C++0x [temp.expl.spec]p17:
1474    //   A member or a member template may be nested within many
1475    //   enclosing class templates. In an explicit specialization for
1476    //   such a member, the member declaration shall be preceded by a
1477    //   template<> for each enclosing class template that is
1478    //   explicitly specialized.
1479    //
1480    // Following the existing practice of GNU and EDG, we allow a typedef of a
1481    // template specialization type.
1482    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1483      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1484
1485    if (const TemplateSpecializationType *SpecType
1486                                  = dyn_cast<TemplateSpecializationType>(T)) {
1487      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1488      if (!Template)
1489        continue; // FIXME: should this be an error? probably...
1490
1491      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1492        ClassTemplateSpecializationDecl *SpecDecl
1493          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1494        // If the nested name specifier refers to an explicit specialization,
1495        // we don't need a template<> header.
1496        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1497          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1498          continue;
1499        }
1500      }
1501
1502      TemplateIdsInSpecifier.push_back(SpecType);
1503    }
1504  }
1505
1506  // Reverse the list of template-ids in the scope specifier, so that we can
1507  // more easily match up the template-ids and the template parameter lists.
1508  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1509
1510  SourceLocation FirstTemplateLoc = DeclStartLoc;
1511  if (NumParamLists)
1512    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1513
1514  // Match the template-ids found in the specifier to the template parameter
1515  // lists.
1516  unsigned ParamIdx = 0, TemplateIdx = 0;
1517  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1518       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1519    const TemplateSpecializationType *TemplateId
1520      = TemplateIdsInSpecifier[TemplateIdx];
1521    bool DependentTemplateId = TemplateId->isDependentType();
1522
1523    // In friend declarations we can have template-ids which don't
1524    // depend on the corresponding template parameter lists.  But
1525    // assume that empty parameter lists are supposed to match this
1526    // template-id.
1527    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1528      if (!DependentTemplateId ||
1529          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1530        continue;
1531    }
1532
1533    if (ParamIdx >= NumParamLists) {
1534      // We have a template-id without a corresponding template parameter
1535      // list.
1536
1537      // ...which is fine if this is a friend declaration.
1538      if (IsFriend) {
1539        IsExplicitSpecialization = true;
1540        break;
1541      }
1542
1543      if (DependentTemplateId) {
1544        // FIXME: the location information here isn't great.
1545        Diag(SS.getRange().getBegin(),
1546             diag::err_template_spec_needs_template_parameters)
1547          << QualType(TemplateId, 0)
1548          << SS.getRange();
1549        Invalid = true;
1550      } else {
1551        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1552          << SS.getRange()
1553          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1554        IsExplicitSpecialization = true;
1555      }
1556      return 0;
1557    }
1558
1559    // Check the template parameter list against its corresponding template-id.
1560    if (DependentTemplateId) {
1561      TemplateParameterList *ExpectedTemplateParams = 0;
1562
1563      // Are there cases in (e.g.) friends where this won't match?
1564      if (const InjectedClassNameType *Injected
1565            = TemplateId->getAs<InjectedClassNameType>()) {
1566        CXXRecordDecl *Record = Injected->getDecl();
1567        if (ClassTemplatePartialSpecializationDecl *Partial =
1568              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1569          ExpectedTemplateParams = Partial->getTemplateParameters();
1570        else
1571          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1572            ->getTemplateParameters();
1573      }
1574
1575      if (ExpectedTemplateParams)
1576        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1577                                       ExpectedTemplateParams,
1578                                       true, TPL_TemplateMatch);
1579
1580      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1581                                 TPC_ClassTemplateMember);
1582    } else if (ParamLists[ParamIdx]->size() > 0)
1583      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1584           diag::err_template_param_list_matches_nontemplate)
1585        << TemplateId
1586        << ParamLists[ParamIdx]->getSourceRange();
1587    else
1588      IsExplicitSpecialization = true;
1589
1590    ++ParamIdx;
1591  }
1592
1593  // If there were at least as many template-ids as there were template
1594  // parameter lists, then there are no template parameter lists remaining for
1595  // the declaration itself.
1596  if (ParamIdx >= NumParamLists)
1597    return 0;
1598
1599  // If there were too many template parameter lists, complain about that now.
1600  if (ParamIdx != NumParamLists - 1) {
1601    while (ParamIdx < NumParamLists - 1) {
1602      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1603      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1604           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1605                               : diag::err_template_spec_extra_headers)
1606        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1607                       ParamLists[ParamIdx]->getRAngleLoc());
1608
1609      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1610        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1611             diag::note_explicit_template_spec_does_not_need_header)
1612          << ExplicitSpecializationsInSpecifier.back();
1613        ExplicitSpecializationsInSpecifier.pop_back();
1614      }
1615
1616      // We have a template parameter list with no corresponding scope, which
1617      // means that the resulting template declaration can't be instantiated
1618      // properly (we'll end up with dependent nodes when we shouldn't).
1619      if (!isExplicitSpecHeader)
1620        Invalid = true;
1621
1622      ++ParamIdx;
1623    }
1624  }
1625
1626  // Return the last template parameter list, which corresponds to the
1627  // entity being declared.
1628  return ParamLists[NumParamLists - 1];
1629}
1630
1631QualType Sema::CheckTemplateIdType(TemplateName Name,
1632                                   SourceLocation TemplateLoc,
1633                              const TemplateArgumentListInfo &TemplateArgs) {
1634  TemplateDecl *Template = Name.getAsTemplateDecl();
1635  if (!Template) {
1636    // The template name does not resolve to a template, so we just
1637    // build a dependent template-id type.
1638    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1639  }
1640
1641  // Check that the template argument list is well-formed for this
1642  // template.
1643  llvm::SmallVector<TemplateArgument, 4> Converted;
1644  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1645                                false, Converted))
1646    return QualType();
1647
1648  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1649         "Converted template argument list is too short!");
1650
1651  QualType CanonType;
1652
1653  if (Name.isDependent() ||
1654      TemplateSpecializationType::anyDependentTemplateArguments(
1655                                                      TemplateArgs)) {
1656    // This class template specialization is a dependent
1657    // type. Therefore, its canonical type is another class template
1658    // specialization type that contains all of the converted
1659    // arguments in canonical form. This ensures that, e.g., A<T> and
1660    // A<T, T> have identical types when A is declared as:
1661    //
1662    //   template<typename T, typename U = T> struct A;
1663    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1664    CanonType = Context.getTemplateSpecializationType(CanonName,
1665                                                      Converted.data(),
1666                                                      Converted.size());
1667
1668    // FIXME: CanonType is not actually the canonical type, and unfortunately
1669    // it is a TemplateSpecializationType that we will never use again.
1670    // In the future, we need to teach getTemplateSpecializationType to only
1671    // build the canonical type and return that to us.
1672    CanonType = Context.getCanonicalType(CanonType);
1673
1674    // This might work out to be a current instantiation, in which
1675    // case the canonical type needs to be the InjectedClassNameType.
1676    //
1677    // TODO: in theory this could be a simple hashtable lookup; most
1678    // changes to CurContext don't change the set of current
1679    // instantiations.
1680    if (isa<ClassTemplateDecl>(Template)) {
1681      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1682        // If we get out to a namespace, we're done.
1683        if (Ctx->isFileContext()) break;
1684
1685        // If this isn't a record, keep looking.
1686        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1687        if (!Record) continue;
1688
1689        // Look for one of the two cases with InjectedClassNameTypes
1690        // and check whether it's the same template.
1691        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1692            !Record->getDescribedClassTemplate())
1693          continue;
1694
1695        // Fetch the injected class name type and check whether its
1696        // injected type is equal to the type we just built.
1697        QualType ICNT = Context.getTypeDeclType(Record);
1698        QualType Injected = cast<InjectedClassNameType>(ICNT)
1699          ->getInjectedSpecializationType();
1700
1701        if (CanonType != Injected->getCanonicalTypeInternal())
1702          continue;
1703
1704        // If so, the canonical type of this TST is the injected
1705        // class name type of the record we just found.
1706        assert(ICNT.isCanonical());
1707        CanonType = ICNT;
1708        break;
1709      }
1710    }
1711  } else if (ClassTemplateDecl *ClassTemplate
1712               = dyn_cast<ClassTemplateDecl>(Template)) {
1713    // Find the class template specialization declaration that
1714    // corresponds to these arguments.
1715    void *InsertPos = 0;
1716    ClassTemplateSpecializationDecl *Decl
1717      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1718                                          InsertPos);
1719    if (!Decl) {
1720      // This is the first time we have referenced this class template
1721      // specialization. Create the canonical declaration and add it to
1722      // the set of specializations.
1723      Decl = ClassTemplateSpecializationDecl::Create(Context,
1724                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1725                                                ClassTemplate->getDeclContext(),
1726                                                ClassTemplate->getLocation(),
1727                                                     ClassTemplate,
1728                                                     Converted.data(),
1729                                                     Converted.size(), 0);
1730      ClassTemplate->AddSpecialization(Decl, InsertPos);
1731      Decl->setLexicalDeclContext(CurContext);
1732    }
1733
1734    CanonType = Context.getTypeDeclType(Decl);
1735    assert(isa<RecordType>(CanonType) &&
1736           "type of non-dependent specialization is not a RecordType");
1737  }
1738
1739  // Build the fully-sugared type for this class template
1740  // specialization, which refers back to the class template
1741  // specialization we created or found.
1742  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1743}
1744
1745TypeResult
1746Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1747                          SourceLocation LAngleLoc,
1748                          ASTTemplateArgsPtr TemplateArgsIn,
1749                          SourceLocation RAngleLoc) {
1750  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1751
1752  // Translate the parser's template argument list in our AST format.
1753  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1754  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1755
1756  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1757    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
1758                                                           DTN->getQualifier(),
1759                                                           DTN->getIdentifier(),
1760                                                                TemplateArgs);
1761
1762    // Build type-source information.
1763    TypeLocBuilder TLB;
1764    DependentTemplateSpecializationTypeLoc SpecTL
1765      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1766    SpecTL.setKeywordLoc(SourceLocation()); // FIXME: 'template' location
1767    SpecTL.setNameLoc(TemplateLoc);
1768    SpecTL.setLAngleLoc(LAngleLoc);
1769    SpecTL.setRAngleLoc(RAngleLoc);
1770    SpecTL.setQualifierRange(TemplateLoc); // FIXME: nested-name-specifier loc
1771    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1772      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1773    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1774  }
1775
1776  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1777  TemplateArgsIn.release();
1778
1779  if (Result.isNull())
1780    return true;
1781
1782  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1783  TemplateSpecializationTypeLoc TL
1784    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1785  TL.setTemplateNameLoc(TemplateLoc);
1786  TL.setLAngleLoc(LAngleLoc);
1787  TL.setRAngleLoc(RAngleLoc);
1788  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1789    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1790
1791  return CreateParsedType(Result, DI);
1792}
1793
1794TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1795                                        TypeResult TypeResult,
1796                                        TagUseKind TUK,
1797                                        TypeSpecifierType TagSpec,
1798                                        SourceLocation TagLoc) {
1799  if (TypeResult.isInvalid())
1800    return ::TypeResult();
1801
1802  TypeSourceInfo *DI;
1803  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1804
1805  // Verify the tag specifier.
1806  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1807
1808  if (const RecordType *RT = Type->getAs<RecordType>()) {
1809    RecordDecl *D = RT->getDecl();
1810
1811    IdentifierInfo *Id = D->getIdentifier();
1812    assert(Id && "templated class must have an identifier");
1813
1814    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1815      Diag(TagLoc, diag::err_use_with_wrong_tag)
1816        << Type
1817        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1818      Diag(D->getLocation(), diag::note_previous_use);
1819    }
1820  }
1821
1822  ElaboratedTypeKeyword Keyword
1823    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1824  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1825
1826  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1827  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1828  TL.setKeywordLoc(TagLoc);
1829  TL.setQualifierRange(SS.getRange());
1830  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1831  return CreateParsedType(ElabType, ElabDI);
1832}
1833
1834ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1835                                     LookupResult &R,
1836                                     bool RequiresADL,
1837                                 const TemplateArgumentListInfo &TemplateArgs) {
1838  // FIXME: Can we do any checking at this point? I guess we could check the
1839  // template arguments that we have against the template name, if the template
1840  // name refers to a single template. That's not a terribly common case,
1841  // though.
1842  // foo<int> could identify a single function unambiguously
1843  // This approach does NOT work, since f<int>(1);
1844  // gets resolved prior to resorting to overload resolution
1845  // i.e., template<class T> void f(double);
1846  //       vs template<class T, class U> void f(U);
1847
1848  // These should be filtered out by our callers.
1849  assert(!R.empty() && "empty lookup results when building templateid");
1850  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1851
1852  // We don't want lookup warnings at this point.
1853  R.suppressDiagnostics();
1854
1855  UnresolvedLookupExpr *ULE
1856    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1857                                   SS.getWithLocInContext(Context),
1858                                   R.getLookupNameInfo(),
1859                                   RequiresADL, TemplateArgs,
1860                                   R.begin(), R.end());
1861
1862  return Owned(ULE);
1863}
1864
1865// We actually only call this from template instantiation.
1866ExprResult
1867Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1868                                   const DeclarationNameInfo &NameInfo,
1869                             const TemplateArgumentListInfo &TemplateArgs) {
1870  DeclContext *DC;
1871  if (!(DC = computeDeclContext(SS, false)) ||
1872      DC->isDependentContext() ||
1873      RequireCompleteDeclContext(SS, DC))
1874    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1875
1876  bool MemberOfUnknownSpecialization;
1877  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1878  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1879                     MemberOfUnknownSpecialization);
1880
1881  if (R.isAmbiguous())
1882    return ExprError();
1883
1884  if (R.empty()) {
1885    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1886      << NameInfo.getName() << SS.getRange();
1887    return ExprError();
1888  }
1889
1890  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1891    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1892      << (NestedNameSpecifier*) SS.getScopeRep()
1893      << NameInfo.getName() << SS.getRange();
1894    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1895    return ExprError();
1896  }
1897
1898  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1899}
1900
1901/// \brief Form a dependent template name.
1902///
1903/// This action forms a dependent template name given the template
1904/// name and its (presumably dependent) scope specifier. For
1905/// example, given "MetaFun::template apply", the scope specifier \p
1906/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1907/// of the "template" keyword, and "apply" is the \p Name.
1908TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1909                                                  SourceLocation TemplateKWLoc,
1910                                                  CXXScopeSpec &SS,
1911                                                  UnqualifiedId &Name,
1912                                                  ParsedType ObjectType,
1913                                                  bool EnteringContext,
1914                                                  TemplateTy &Result) {
1915  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1916      !getLangOptions().CPlusPlus0x)
1917    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1918      << FixItHint::CreateRemoval(TemplateKWLoc);
1919
1920  DeclContext *LookupCtx = 0;
1921  if (SS.isSet())
1922    LookupCtx = computeDeclContext(SS, EnteringContext);
1923  if (!LookupCtx && ObjectType)
1924    LookupCtx = computeDeclContext(ObjectType.get());
1925  if (LookupCtx) {
1926    // C++0x [temp.names]p5:
1927    //   If a name prefixed by the keyword template is not the name of
1928    //   a template, the program is ill-formed. [Note: the keyword
1929    //   template may not be applied to non-template members of class
1930    //   templates. -end note ] [ Note: as is the case with the
1931    //   typename prefix, the template prefix is allowed in cases
1932    //   where it is not strictly necessary; i.e., when the
1933    //   nested-name-specifier or the expression on the left of the ->
1934    //   or . is not dependent on a template-parameter, or the use
1935    //   does not appear in the scope of a template. -end note]
1936    //
1937    // Note: C++03 was more strict here, because it banned the use of
1938    // the "template" keyword prior to a template-name that was not a
1939    // dependent name. C++ DR468 relaxed this requirement (the
1940    // "template" keyword is now permitted). We follow the C++0x
1941    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1942    bool MemberOfUnknownSpecialization;
1943    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1944                                          ObjectType, EnteringContext, Result,
1945                                          MemberOfUnknownSpecialization);
1946    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1947        isa<CXXRecordDecl>(LookupCtx) &&
1948        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1949      // This is a dependent template. Handle it below.
1950    } else if (TNK == TNK_Non_template) {
1951      Diag(Name.getSourceRange().getBegin(),
1952           diag::err_template_kw_refers_to_non_template)
1953        << GetNameFromUnqualifiedId(Name).getName()
1954        << Name.getSourceRange()
1955        << TemplateKWLoc;
1956      return TNK_Non_template;
1957    } else {
1958      // We found something; return it.
1959      return TNK;
1960    }
1961  }
1962
1963  NestedNameSpecifier *Qualifier
1964    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1965
1966  switch (Name.getKind()) {
1967  case UnqualifiedId::IK_Identifier:
1968    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1969                                                              Name.Identifier));
1970    return TNK_Dependent_template_name;
1971
1972  case UnqualifiedId::IK_OperatorFunctionId:
1973    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1974                                             Name.OperatorFunctionId.Operator));
1975    return TNK_Dependent_template_name;
1976
1977  case UnqualifiedId::IK_LiteralOperatorId:
1978    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1979
1980  default:
1981    break;
1982  }
1983
1984  Diag(Name.getSourceRange().getBegin(),
1985       diag::err_template_kw_refers_to_non_template)
1986    << GetNameFromUnqualifiedId(Name).getName()
1987    << Name.getSourceRange()
1988    << TemplateKWLoc;
1989  return TNK_Non_template;
1990}
1991
1992bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1993                                     const TemplateArgumentLoc &AL,
1994                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1995  const TemplateArgument &Arg = AL.getArgument();
1996
1997  // Check template type parameter.
1998  switch(Arg.getKind()) {
1999  case TemplateArgument::Type:
2000    // C++ [temp.arg.type]p1:
2001    //   A template-argument for a template-parameter which is a
2002    //   type shall be a type-id.
2003    break;
2004  case TemplateArgument::Template: {
2005    // We have a template type parameter but the template argument
2006    // is a template without any arguments.
2007    SourceRange SR = AL.getSourceRange();
2008    TemplateName Name = Arg.getAsTemplate();
2009    Diag(SR.getBegin(), diag::err_template_missing_args)
2010      << Name << SR;
2011    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2012      Diag(Decl->getLocation(), diag::note_template_decl_here);
2013
2014    return true;
2015  }
2016  default: {
2017    // We have a template type parameter but the template argument
2018    // is not a type.
2019    SourceRange SR = AL.getSourceRange();
2020    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2021    Diag(Param->getLocation(), diag::note_template_param_here);
2022
2023    return true;
2024  }
2025  }
2026
2027  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2028    return true;
2029
2030  // Add the converted template type argument.
2031  Converted.push_back(
2032                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2033  return false;
2034}
2035
2036/// \brief Substitute template arguments into the default template argument for
2037/// the given template type parameter.
2038///
2039/// \param SemaRef the semantic analysis object for which we are performing
2040/// the substitution.
2041///
2042/// \param Template the template that we are synthesizing template arguments
2043/// for.
2044///
2045/// \param TemplateLoc the location of the template name that started the
2046/// template-id we are checking.
2047///
2048/// \param RAngleLoc the location of the right angle bracket ('>') that
2049/// terminates the template-id.
2050///
2051/// \param Param the template template parameter whose default we are
2052/// substituting into.
2053///
2054/// \param Converted the list of template arguments provided for template
2055/// parameters that precede \p Param in the template parameter list.
2056///
2057/// \returns the substituted template argument, or NULL if an error occurred.
2058static TypeSourceInfo *
2059SubstDefaultTemplateArgument(Sema &SemaRef,
2060                             TemplateDecl *Template,
2061                             SourceLocation TemplateLoc,
2062                             SourceLocation RAngleLoc,
2063                             TemplateTypeParmDecl *Param,
2064                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2065  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2066
2067  // If the argument type is dependent, instantiate it now based
2068  // on the previously-computed template arguments.
2069  if (ArgType->getType()->isDependentType()) {
2070    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2071                                      Converted.data(), Converted.size());
2072
2073    MultiLevelTemplateArgumentList AllTemplateArgs
2074      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2075
2076    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2077                                     Template, Converted.data(),
2078                                     Converted.size(),
2079                                     SourceRange(TemplateLoc, RAngleLoc));
2080
2081    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2082                                Param->getDefaultArgumentLoc(),
2083                                Param->getDeclName());
2084  }
2085
2086  return ArgType;
2087}
2088
2089/// \brief Substitute template arguments into the default template argument for
2090/// the given non-type template parameter.
2091///
2092/// \param SemaRef the semantic analysis object for which we are performing
2093/// the substitution.
2094///
2095/// \param Template the template that we are synthesizing template arguments
2096/// for.
2097///
2098/// \param TemplateLoc the location of the template name that started the
2099/// template-id we are checking.
2100///
2101/// \param RAngleLoc the location of the right angle bracket ('>') that
2102/// terminates the template-id.
2103///
2104/// \param Param the non-type template parameter whose default we are
2105/// substituting into.
2106///
2107/// \param Converted the list of template arguments provided for template
2108/// parameters that precede \p Param in the template parameter list.
2109///
2110/// \returns the substituted template argument, or NULL if an error occurred.
2111static ExprResult
2112SubstDefaultTemplateArgument(Sema &SemaRef,
2113                             TemplateDecl *Template,
2114                             SourceLocation TemplateLoc,
2115                             SourceLocation RAngleLoc,
2116                             NonTypeTemplateParmDecl *Param,
2117                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2118  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2119                                    Converted.data(), Converted.size());
2120
2121  MultiLevelTemplateArgumentList AllTemplateArgs
2122    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2123
2124  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2125                                   Template, Converted.data(),
2126                                   Converted.size(),
2127                                   SourceRange(TemplateLoc, RAngleLoc));
2128
2129  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2130}
2131
2132/// \brief Substitute template arguments into the default template argument for
2133/// the given template template parameter.
2134///
2135/// \param SemaRef the semantic analysis object for which we are performing
2136/// the substitution.
2137///
2138/// \param Template the template that we are synthesizing template arguments
2139/// for.
2140///
2141/// \param TemplateLoc the location of the template name that started the
2142/// template-id we are checking.
2143///
2144/// \param RAngleLoc the location of the right angle bracket ('>') that
2145/// terminates the template-id.
2146///
2147/// \param Param the template template parameter whose default we are
2148/// substituting into.
2149///
2150/// \param Converted the list of template arguments provided for template
2151/// parameters that precede \p Param in the template parameter list.
2152///
2153/// \returns the substituted template argument, or NULL if an error occurred.
2154static TemplateName
2155SubstDefaultTemplateArgument(Sema &SemaRef,
2156                             TemplateDecl *Template,
2157                             SourceLocation TemplateLoc,
2158                             SourceLocation RAngleLoc,
2159                             TemplateTemplateParmDecl *Param,
2160                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2161  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2162                                    Converted.data(), Converted.size());
2163
2164  MultiLevelTemplateArgumentList AllTemplateArgs
2165    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2166
2167  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2168                                   Template, Converted.data(),
2169                                   Converted.size(),
2170                                   SourceRange(TemplateLoc, RAngleLoc));
2171
2172  return SemaRef.SubstTemplateName(
2173                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2174                              Param->getDefaultArgument().getTemplateNameLoc(),
2175                                   AllTemplateArgs);
2176}
2177
2178/// \brief If the given template parameter has a default template
2179/// argument, substitute into that default template argument and
2180/// return the corresponding template argument.
2181TemplateArgumentLoc
2182Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2183                                              SourceLocation TemplateLoc,
2184                                              SourceLocation RAngleLoc,
2185                                              Decl *Param,
2186                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2187   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2188    if (!TypeParm->hasDefaultArgument())
2189      return TemplateArgumentLoc();
2190
2191    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2192                                                      TemplateLoc,
2193                                                      RAngleLoc,
2194                                                      TypeParm,
2195                                                      Converted);
2196    if (DI)
2197      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2198
2199    return TemplateArgumentLoc();
2200  }
2201
2202  if (NonTypeTemplateParmDecl *NonTypeParm
2203        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2204    if (!NonTypeParm->hasDefaultArgument())
2205      return TemplateArgumentLoc();
2206
2207    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2208                                                        TemplateLoc,
2209                                                        RAngleLoc,
2210                                                        NonTypeParm,
2211                                                        Converted);
2212    if (Arg.isInvalid())
2213      return TemplateArgumentLoc();
2214
2215    Expr *ArgE = Arg.takeAs<Expr>();
2216    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2217  }
2218
2219  TemplateTemplateParmDecl *TempTempParm
2220    = cast<TemplateTemplateParmDecl>(Param);
2221  if (!TempTempParm->hasDefaultArgument())
2222    return TemplateArgumentLoc();
2223
2224  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2225                                                    TemplateLoc,
2226                                                    RAngleLoc,
2227                                                    TempTempParm,
2228                                                    Converted);
2229  if (TName.isNull())
2230    return TemplateArgumentLoc();
2231
2232  return TemplateArgumentLoc(TemplateArgument(TName),
2233                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2234                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2235}
2236
2237/// \brief Check that the given template argument corresponds to the given
2238/// template parameter.
2239///
2240/// \param Param The template parameter against which the argument will be
2241/// checked.
2242///
2243/// \param Arg The template argument.
2244///
2245/// \param Template The template in which the template argument resides.
2246///
2247/// \param TemplateLoc The location of the template name for the template
2248/// whose argument list we're matching.
2249///
2250/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2251/// the template argument list.
2252///
2253/// \param ArgumentPackIndex The index into the argument pack where this
2254/// argument will be placed. Only valid if the parameter is a parameter pack.
2255///
2256/// \param Converted The checked, converted argument will be added to the
2257/// end of this small vector.
2258///
2259/// \param CTAK Describes how we arrived at this particular template argument:
2260/// explicitly written, deduced, etc.
2261///
2262/// \returns true on error, false otherwise.
2263bool Sema::CheckTemplateArgument(NamedDecl *Param,
2264                                 const TemplateArgumentLoc &Arg,
2265                                 NamedDecl *Template,
2266                                 SourceLocation TemplateLoc,
2267                                 SourceLocation RAngleLoc,
2268                                 unsigned ArgumentPackIndex,
2269                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2270                                 CheckTemplateArgumentKind CTAK) {
2271  // Check template type parameters.
2272  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2273    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2274
2275  // Check non-type template parameters.
2276  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2277    // Do substitution on the type of the non-type template parameter
2278    // with the template arguments we've seen thus far.  But if the
2279    // template has a dependent context then we cannot substitute yet.
2280    QualType NTTPType = NTTP->getType();
2281    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2282      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2283
2284    if (NTTPType->isDependentType() &&
2285        !isa<TemplateTemplateParmDecl>(Template) &&
2286        !Template->getDeclContext()->isDependentContext()) {
2287      // Do substitution on the type of the non-type template parameter.
2288      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2289                                 NTTP, Converted.data(), Converted.size(),
2290                                 SourceRange(TemplateLoc, RAngleLoc));
2291
2292      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2293                                        Converted.data(), Converted.size());
2294      NTTPType = SubstType(NTTPType,
2295                           MultiLevelTemplateArgumentList(TemplateArgs),
2296                           NTTP->getLocation(),
2297                           NTTP->getDeclName());
2298      // If that worked, check the non-type template parameter type
2299      // for validity.
2300      if (!NTTPType.isNull())
2301        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2302                                                     NTTP->getLocation());
2303      if (NTTPType.isNull())
2304        return true;
2305    }
2306
2307    switch (Arg.getArgument().getKind()) {
2308    case TemplateArgument::Null:
2309      assert(false && "Should never see a NULL template argument here");
2310      return true;
2311
2312    case TemplateArgument::Expression: {
2313      Expr *E = Arg.getArgument().getAsExpr();
2314      TemplateArgument Result;
2315      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2316        return true;
2317
2318      Converted.push_back(Result);
2319      break;
2320    }
2321
2322    case TemplateArgument::Declaration:
2323    case TemplateArgument::Integral:
2324      // We've already checked this template argument, so just copy
2325      // it to the list of converted arguments.
2326      Converted.push_back(Arg.getArgument());
2327      break;
2328
2329    case TemplateArgument::Template:
2330    case TemplateArgument::TemplateExpansion:
2331      // We were given a template template argument. It may not be ill-formed;
2332      // see below.
2333      if (DependentTemplateName *DTN
2334            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2335                                              .getAsDependentTemplateName()) {
2336        // We have a template argument such as \c T::template X, which we
2337        // parsed as a template template argument. However, since we now
2338        // know that we need a non-type template argument, convert this
2339        // template name into an expression.
2340
2341        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2342                                     Arg.getTemplateNameLoc());
2343
2344        // FIXME: TemplateArgumentLoc should store a NestedNameSpecifierLoc
2345        // for the template name.
2346        CXXScopeSpec SS;
2347        SS.MakeTrivial(Context, DTN->getQualifier(),
2348                       Arg.getTemplateQualifierRange());
2349        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2350                                                SS.getWithLocInContext(Context),
2351                                                    NameInfo);
2352
2353        // If we parsed the template argument as a pack expansion, create a
2354        // pack expansion expression.
2355        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2356          ExprResult Expansion = ActOnPackExpansion(E,
2357                                                  Arg.getTemplateEllipsisLoc());
2358          if (Expansion.isInvalid())
2359            return true;
2360
2361          E = Expansion.get();
2362        }
2363
2364        TemplateArgument Result;
2365        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2366          return true;
2367
2368        Converted.push_back(Result);
2369        break;
2370      }
2371
2372      // We have a template argument that actually does refer to a class
2373      // template, template alias, or template template parameter, and
2374      // therefore cannot be a non-type template argument.
2375      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2376        << Arg.getSourceRange();
2377
2378      Diag(Param->getLocation(), diag::note_template_param_here);
2379      return true;
2380
2381    case TemplateArgument::Type: {
2382      // We have a non-type template parameter but the template
2383      // argument is a type.
2384
2385      // C++ [temp.arg]p2:
2386      //   In a template-argument, an ambiguity between a type-id and
2387      //   an expression is resolved to a type-id, regardless of the
2388      //   form of the corresponding template-parameter.
2389      //
2390      // We warn specifically about this case, since it can be rather
2391      // confusing for users.
2392      QualType T = Arg.getArgument().getAsType();
2393      SourceRange SR = Arg.getSourceRange();
2394      if (T->isFunctionType())
2395        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2396      else
2397        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2398      Diag(Param->getLocation(), diag::note_template_param_here);
2399      return true;
2400    }
2401
2402    case TemplateArgument::Pack:
2403      llvm_unreachable("Caller must expand template argument packs");
2404      break;
2405    }
2406
2407    return false;
2408  }
2409
2410
2411  // Check template template parameters.
2412  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2413
2414  // Substitute into the template parameter list of the template
2415  // template parameter, since previously-supplied template arguments
2416  // may appear within the template template parameter.
2417  {
2418    // Set up a template instantiation context.
2419    LocalInstantiationScope Scope(*this);
2420    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2421                               TempParm, Converted.data(), Converted.size(),
2422                               SourceRange(TemplateLoc, RAngleLoc));
2423
2424    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2425                                      Converted.data(), Converted.size());
2426    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2427                      SubstDecl(TempParm, CurContext,
2428                                MultiLevelTemplateArgumentList(TemplateArgs)));
2429    if (!TempParm)
2430      return true;
2431  }
2432
2433  switch (Arg.getArgument().getKind()) {
2434  case TemplateArgument::Null:
2435    assert(false && "Should never see a NULL template argument here");
2436    return true;
2437
2438  case TemplateArgument::Template:
2439  case TemplateArgument::TemplateExpansion:
2440    if (CheckTemplateArgument(TempParm, Arg))
2441      return true;
2442
2443    Converted.push_back(Arg.getArgument());
2444    break;
2445
2446  case TemplateArgument::Expression:
2447  case TemplateArgument::Type:
2448    // We have a template template parameter but the template
2449    // argument does not refer to a template.
2450    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2451    return true;
2452
2453  case TemplateArgument::Declaration:
2454    llvm_unreachable(
2455                       "Declaration argument with template template parameter");
2456    break;
2457  case TemplateArgument::Integral:
2458    llvm_unreachable(
2459                          "Integral argument with template template parameter");
2460    break;
2461
2462  case TemplateArgument::Pack:
2463    llvm_unreachable("Caller must expand template argument packs");
2464    break;
2465  }
2466
2467  return false;
2468}
2469
2470/// \brief Check that the given template argument list is well-formed
2471/// for specializing the given template.
2472bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2473                                     SourceLocation TemplateLoc,
2474                                const TemplateArgumentListInfo &TemplateArgs,
2475                                     bool PartialTemplateArgs,
2476                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2477  TemplateParameterList *Params = Template->getTemplateParameters();
2478  unsigned NumParams = Params->size();
2479  unsigned NumArgs = TemplateArgs.size();
2480  bool Invalid = false;
2481
2482  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2483
2484  bool HasParameterPack =
2485    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2486
2487  if ((NumArgs > NumParams && !HasParameterPack) ||
2488      (NumArgs < Params->getMinRequiredArguments() &&
2489       !PartialTemplateArgs)) {
2490    // FIXME: point at either the first arg beyond what we can handle,
2491    // or the '>', depending on whether we have too many or too few
2492    // arguments.
2493    SourceRange Range;
2494    if (NumArgs > NumParams)
2495      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2496    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2497      << (NumArgs > NumParams)
2498      << (isa<ClassTemplateDecl>(Template)? 0 :
2499          isa<FunctionTemplateDecl>(Template)? 1 :
2500          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2501      << Template << Range;
2502    Diag(Template->getLocation(), diag::note_template_decl_here)
2503      << Params->getSourceRange();
2504    Invalid = true;
2505  }
2506
2507  // C++ [temp.arg]p1:
2508  //   [...] The type and form of each template-argument specified in
2509  //   a template-id shall match the type and form specified for the
2510  //   corresponding parameter declared by the template in its
2511  //   template-parameter-list.
2512  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2513  TemplateParameterList::iterator Param = Params->begin(),
2514                               ParamEnd = Params->end();
2515  unsigned ArgIdx = 0;
2516  LocalInstantiationScope InstScope(*this, true);
2517  while (Param != ParamEnd) {
2518    if (ArgIdx > NumArgs && PartialTemplateArgs)
2519      break;
2520
2521    if (ArgIdx < NumArgs) {
2522      // If we have an expanded parameter pack, make sure we don't have too
2523      // many arguments.
2524      if (NonTypeTemplateParmDecl *NTTP
2525                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2526        if (NTTP->isExpandedParameterPack() &&
2527            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2528          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2529            << true
2530            << (isa<ClassTemplateDecl>(Template)? 0 :
2531                isa<FunctionTemplateDecl>(Template)? 1 :
2532                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2533            << Template;
2534          Diag(Template->getLocation(), diag::note_template_decl_here)
2535            << Params->getSourceRange();
2536          return true;
2537        }
2538      }
2539
2540      // Check the template argument we were given.
2541      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2542                                TemplateLoc, RAngleLoc,
2543                                ArgumentPack.size(), Converted))
2544        return true;
2545
2546      if ((*Param)->isTemplateParameterPack()) {
2547        // The template parameter was a template parameter pack, so take the
2548        // deduced argument and place it on the argument pack. Note that we
2549        // stay on the same template parameter so that we can deduce more
2550        // arguments.
2551        ArgumentPack.push_back(Converted.back());
2552        Converted.pop_back();
2553      } else {
2554        // Move to the next template parameter.
2555        ++Param;
2556      }
2557      ++ArgIdx;
2558      continue;
2559    }
2560
2561    // If we have a template parameter pack with no more corresponding
2562    // arguments, just break out now and we'll fill in the argument pack below.
2563    if ((*Param)->isTemplateParameterPack())
2564      break;
2565
2566    // We have a default template argument that we will use.
2567    TemplateArgumentLoc Arg;
2568
2569    // Retrieve the default template argument from the template
2570    // parameter. For each kind of template parameter, we substitute the
2571    // template arguments provided thus far and any "outer" template arguments
2572    // (when the template parameter was part of a nested template) into
2573    // the default argument.
2574    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2575      if (!TTP->hasDefaultArgument()) {
2576        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2577        break;
2578      }
2579
2580      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2581                                                             Template,
2582                                                             TemplateLoc,
2583                                                             RAngleLoc,
2584                                                             TTP,
2585                                                             Converted);
2586      if (!ArgType)
2587        return true;
2588
2589      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2590                                ArgType);
2591    } else if (NonTypeTemplateParmDecl *NTTP
2592                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2593      if (!NTTP->hasDefaultArgument()) {
2594        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2595        break;
2596      }
2597
2598      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2599                                                              TemplateLoc,
2600                                                              RAngleLoc,
2601                                                              NTTP,
2602                                                              Converted);
2603      if (E.isInvalid())
2604        return true;
2605
2606      Expr *Ex = E.takeAs<Expr>();
2607      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2608    } else {
2609      TemplateTemplateParmDecl *TempParm
2610        = cast<TemplateTemplateParmDecl>(*Param);
2611
2612      if (!TempParm->hasDefaultArgument()) {
2613        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2614        break;
2615      }
2616
2617      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2618                                                       TemplateLoc,
2619                                                       RAngleLoc,
2620                                                       TempParm,
2621                                                       Converted);
2622      if (Name.isNull())
2623        return true;
2624
2625      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2626                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2627                  TempParm->getDefaultArgument().getTemplateNameLoc());
2628    }
2629
2630    // Introduce an instantiation record that describes where we are using
2631    // the default template argument.
2632    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2633                                        Converted.data(), Converted.size(),
2634                                        SourceRange(TemplateLoc, RAngleLoc));
2635
2636    // Check the default template argument.
2637    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2638                              RAngleLoc, 0, Converted))
2639      return true;
2640
2641    // Move to the next template parameter and argument.
2642    ++Param;
2643    ++ArgIdx;
2644  }
2645
2646  // Form argument packs for each of the parameter packs remaining.
2647  while (Param != ParamEnd) {
2648    // If we're checking a partial list of template arguments, don't fill
2649    // in arguments for non-template parameter packs.
2650
2651    if ((*Param)->isTemplateParameterPack()) {
2652      if (PartialTemplateArgs && ArgumentPack.empty()) {
2653        Converted.push_back(TemplateArgument());
2654      } else if (ArgumentPack.empty())
2655        Converted.push_back(TemplateArgument(0, 0));
2656      else {
2657        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2658                                                          ArgumentPack.data(),
2659                                                         ArgumentPack.size()));
2660        ArgumentPack.clear();
2661      }
2662    }
2663
2664    ++Param;
2665  }
2666
2667  return Invalid;
2668}
2669
2670namespace {
2671  class UnnamedLocalNoLinkageFinder
2672    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2673  {
2674    Sema &S;
2675    SourceRange SR;
2676
2677    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2678
2679  public:
2680    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2681
2682    bool Visit(QualType T) {
2683      return inherited::Visit(T.getTypePtr());
2684    }
2685
2686#define TYPE(Class, Parent) \
2687    bool Visit##Class##Type(const Class##Type *);
2688#define ABSTRACT_TYPE(Class, Parent) \
2689    bool Visit##Class##Type(const Class##Type *) { return false; }
2690#define NON_CANONICAL_TYPE(Class, Parent) \
2691    bool Visit##Class##Type(const Class##Type *) { return false; }
2692#include "clang/AST/TypeNodes.def"
2693
2694    bool VisitTagDecl(const TagDecl *Tag);
2695    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2696  };
2697}
2698
2699bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2700  return false;
2701}
2702
2703bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2704  return Visit(T->getElementType());
2705}
2706
2707bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2708  return Visit(T->getPointeeType());
2709}
2710
2711bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2712                                                    const BlockPointerType* T) {
2713  return Visit(T->getPointeeType());
2714}
2715
2716bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2717                                                const LValueReferenceType* T) {
2718  return Visit(T->getPointeeType());
2719}
2720
2721bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2722                                                const RValueReferenceType* T) {
2723  return Visit(T->getPointeeType());
2724}
2725
2726bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2727                                                  const MemberPointerType* T) {
2728  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2729}
2730
2731bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2732                                                  const ConstantArrayType* T) {
2733  return Visit(T->getElementType());
2734}
2735
2736bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2737                                                 const IncompleteArrayType* T) {
2738  return Visit(T->getElementType());
2739}
2740
2741bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2742                                                   const VariableArrayType* T) {
2743  return Visit(T->getElementType());
2744}
2745
2746bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2747                                            const DependentSizedArrayType* T) {
2748  return Visit(T->getElementType());
2749}
2750
2751bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2752                                         const DependentSizedExtVectorType* T) {
2753  return Visit(T->getElementType());
2754}
2755
2756bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2757  return Visit(T->getElementType());
2758}
2759
2760bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2761  return Visit(T->getElementType());
2762}
2763
2764bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2765                                                  const FunctionProtoType* T) {
2766  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2767                                         AEnd = T->arg_type_end();
2768       A != AEnd; ++A) {
2769    if (Visit(*A))
2770      return true;
2771  }
2772
2773  return Visit(T->getResultType());
2774}
2775
2776bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2777                                               const FunctionNoProtoType* T) {
2778  return Visit(T->getResultType());
2779}
2780
2781bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2782                                                  const UnresolvedUsingType*) {
2783  return false;
2784}
2785
2786bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2787  return false;
2788}
2789
2790bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2791  return Visit(T->getUnderlyingType());
2792}
2793
2794bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2795  return false;
2796}
2797
2798bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
2799  return Visit(T->getDeducedType());
2800}
2801
2802bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2803  return VisitTagDecl(T->getDecl());
2804}
2805
2806bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2807  return VisitTagDecl(T->getDecl());
2808}
2809
2810bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2811                                                 const TemplateTypeParmType*) {
2812  return false;
2813}
2814
2815bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2816                                        const SubstTemplateTypeParmPackType *) {
2817  return false;
2818}
2819
2820bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2821                                            const TemplateSpecializationType*) {
2822  return false;
2823}
2824
2825bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2826                                              const InjectedClassNameType* T) {
2827  return VisitTagDecl(T->getDecl());
2828}
2829
2830bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2831                                                   const DependentNameType* T) {
2832  return VisitNestedNameSpecifier(T->getQualifier());
2833}
2834
2835bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2836                                 const DependentTemplateSpecializationType* T) {
2837  return VisitNestedNameSpecifier(T->getQualifier());
2838}
2839
2840bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2841                                                   const PackExpansionType* T) {
2842  return Visit(T->getPattern());
2843}
2844
2845bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2846  return false;
2847}
2848
2849bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2850                                                   const ObjCInterfaceType *) {
2851  return false;
2852}
2853
2854bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2855                                                const ObjCObjectPointerType *) {
2856  return false;
2857}
2858
2859bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2860  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2861    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2862      << S.Context.getTypeDeclType(Tag) << SR;
2863    return true;
2864  }
2865
2866  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2867    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2868    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2869    return true;
2870  }
2871
2872  return false;
2873}
2874
2875bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2876                                                    NestedNameSpecifier *NNS) {
2877  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2878    return true;
2879
2880  switch (NNS->getKind()) {
2881  case NestedNameSpecifier::Identifier:
2882  case NestedNameSpecifier::Namespace:
2883  case NestedNameSpecifier::NamespaceAlias:
2884  case NestedNameSpecifier::Global:
2885    return false;
2886
2887  case NestedNameSpecifier::TypeSpec:
2888  case NestedNameSpecifier::TypeSpecWithTemplate:
2889    return Visit(QualType(NNS->getAsType(), 0));
2890  }
2891  return false;
2892}
2893
2894
2895/// \brief Check a template argument against its corresponding
2896/// template type parameter.
2897///
2898/// This routine implements the semantics of C++ [temp.arg.type]. It
2899/// returns true if an error occurred, and false otherwise.
2900bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2901                                 TypeSourceInfo *ArgInfo) {
2902  assert(ArgInfo && "invalid TypeSourceInfo");
2903  QualType Arg = ArgInfo->getType();
2904  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2905
2906  if (Arg->isVariablyModifiedType()) {
2907    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2908  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2909    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2910  }
2911
2912  // C++03 [temp.arg.type]p2:
2913  //   A local type, a type with no linkage, an unnamed type or a type
2914  //   compounded from any of these types shall not be used as a
2915  //   template-argument for a template type-parameter.
2916  //
2917  // C++0x allows these, and even in C++03 we allow them as an extension with
2918  // a warning.
2919  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2920    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2921    (void)Finder.Visit(Context.getCanonicalType(Arg));
2922  }
2923
2924  return false;
2925}
2926
2927/// \brief Checks whether the given template argument is the address
2928/// of an object or function according to C++ [temp.arg.nontype]p1.
2929static bool
2930CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2931                                               NonTypeTemplateParmDecl *Param,
2932                                               QualType ParamType,
2933                                               Expr *ArgIn,
2934                                               TemplateArgument &Converted) {
2935  bool Invalid = false;
2936  Expr *Arg = ArgIn;
2937  QualType ArgType = Arg->getType();
2938
2939  // See through any implicit casts we added to fix the type.
2940  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2941    Arg = Cast->getSubExpr();
2942
2943  // C++ [temp.arg.nontype]p1:
2944  //
2945  //   A template-argument for a non-type, non-template
2946  //   template-parameter shall be one of: [...]
2947  //
2948  //     -- the address of an object or function with external
2949  //        linkage, including function templates and function
2950  //        template-ids but excluding non-static class members,
2951  //        expressed as & id-expression where the & is optional if
2952  //        the name refers to a function or array, or if the
2953  //        corresponding template-parameter is a reference; or
2954  DeclRefExpr *DRE = 0;
2955
2956  // In C++98/03 mode, give an extension warning on any extra parentheses.
2957  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2958  bool ExtraParens = false;
2959  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2960    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2961      S.Diag(Arg->getSourceRange().getBegin(),
2962             diag::ext_template_arg_extra_parens)
2963        << Arg->getSourceRange();
2964      ExtraParens = true;
2965    }
2966
2967    Arg = Parens->getSubExpr();
2968  }
2969
2970  bool AddressTaken = false;
2971  SourceLocation AddrOpLoc;
2972  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2973    if (UnOp->getOpcode() == UO_AddrOf) {
2974      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2975      AddressTaken = true;
2976      AddrOpLoc = UnOp->getOperatorLoc();
2977    }
2978  } else
2979    DRE = dyn_cast<DeclRefExpr>(Arg);
2980
2981  if (!DRE) {
2982    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2983      << Arg->getSourceRange();
2984    S.Diag(Param->getLocation(), diag::note_template_param_here);
2985    return true;
2986  }
2987
2988  // Stop checking the precise nature of the argument if it is value dependent,
2989  // it should be checked when instantiated.
2990  if (Arg->isValueDependent()) {
2991    Converted = TemplateArgument(ArgIn);
2992    return false;
2993  }
2994
2995  if (!isa<ValueDecl>(DRE->getDecl())) {
2996    S.Diag(Arg->getSourceRange().getBegin(),
2997           diag::err_template_arg_not_object_or_func_form)
2998      << Arg->getSourceRange();
2999    S.Diag(Param->getLocation(), diag::note_template_param_here);
3000    return true;
3001  }
3002
3003  NamedDecl *Entity = 0;
3004
3005  // Cannot refer to non-static data members
3006  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3007    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3008      << Field << Arg->getSourceRange();
3009    S.Diag(Param->getLocation(), diag::note_template_param_here);
3010    return true;
3011  }
3012
3013  // Cannot refer to non-static member functions
3014  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3015    if (!Method->isStatic()) {
3016      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3017        << Method << Arg->getSourceRange();
3018      S.Diag(Param->getLocation(), diag::note_template_param_here);
3019      return true;
3020    }
3021
3022  // Functions must have external linkage.
3023  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3024    if (!isExternalLinkage(Func->getLinkage())) {
3025      S.Diag(Arg->getSourceRange().getBegin(),
3026             diag::err_template_arg_function_not_extern)
3027        << Func << Arg->getSourceRange();
3028      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3029        << true;
3030      return true;
3031    }
3032
3033    // Okay: we've named a function with external linkage.
3034    Entity = Func;
3035
3036    // If the template parameter has pointer type, the function decays.
3037    if (ParamType->isPointerType() && !AddressTaken)
3038      ArgType = S.Context.getPointerType(Func->getType());
3039    else if (AddressTaken && ParamType->isReferenceType()) {
3040      // If we originally had an address-of operator, but the
3041      // parameter has reference type, complain and (if things look
3042      // like they will work) drop the address-of operator.
3043      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3044                                            ParamType.getNonReferenceType())) {
3045        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3046          << ParamType;
3047        S.Diag(Param->getLocation(), diag::note_template_param_here);
3048        return true;
3049      }
3050
3051      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3052        << ParamType
3053        << FixItHint::CreateRemoval(AddrOpLoc);
3054      S.Diag(Param->getLocation(), diag::note_template_param_here);
3055
3056      ArgType = Func->getType();
3057    }
3058  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3059    if (!isExternalLinkage(Var->getLinkage())) {
3060      S.Diag(Arg->getSourceRange().getBegin(),
3061             diag::err_template_arg_object_not_extern)
3062        << Var << Arg->getSourceRange();
3063      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3064        << true;
3065      return true;
3066    }
3067
3068    // A value of reference type is not an object.
3069    if (Var->getType()->isReferenceType()) {
3070      S.Diag(Arg->getSourceRange().getBegin(),
3071             diag::err_template_arg_reference_var)
3072        << Var->getType() << Arg->getSourceRange();
3073      S.Diag(Param->getLocation(), diag::note_template_param_here);
3074      return true;
3075    }
3076
3077    // Okay: we've named an object with external linkage
3078    Entity = Var;
3079
3080    // If the template parameter has pointer type, we must have taken
3081    // the address of this object.
3082    if (ParamType->isReferenceType()) {
3083      if (AddressTaken) {
3084        // If we originally had an address-of operator, but the
3085        // parameter has reference type, complain and (if things look
3086        // like they will work) drop the address-of operator.
3087        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3088                                            ParamType.getNonReferenceType())) {
3089          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3090            << ParamType;
3091          S.Diag(Param->getLocation(), diag::note_template_param_here);
3092          return true;
3093        }
3094
3095        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3096          << ParamType
3097          << FixItHint::CreateRemoval(AddrOpLoc);
3098        S.Diag(Param->getLocation(), diag::note_template_param_here);
3099
3100        ArgType = Var->getType();
3101      }
3102    } else if (!AddressTaken && ParamType->isPointerType()) {
3103      if (Var->getType()->isArrayType()) {
3104        // Array-to-pointer decay.
3105        ArgType = S.Context.getArrayDecayedType(Var->getType());
3106      } else {
3107        // If the template parameter has pointer type but the address of
3108        // this object was not taken, complain and (possibly) recover by
3109        // taking the address of the entity.
3110        ArgType = S.Context.getPointerType(Var->getType());
3111        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3112          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3113            << ParamType;
3114          S.Diag(Param->getLocation(), diag::note_template_param_here);
3115          return true;
3116        }
3117
3118        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3119          << ParamType
3120          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3121
3122        S.Diag(Param->getLocation(), diag::note_template_param_here);
3123      }
3124    }
3125  } else {
3126    // We found something else, but we don't know specifically what it is.
3127    S.Diag(Arg->getSourceRange().getBegin(),
3128           diag::err_template_arg_not_object_or_func)
3129      << Arg->getSourceRange();
3130    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3131    return true;
3132  }
3133
3134  if (ParamType->isPointerType() &&
3135      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3136      S.IsQualificationConversion(ArgType, ParamType, false)) {
3137    // For pointer-to-object types, qualification conversions are
3138    // permitted.
3139  } else {
3140    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3141      if (!ParamRef->getPointeeType()->isFunctionType()) {
3142        // C++ [temp.arg.nontype]p5b3:
3143        //   For a non-type template-parameter of type reference to
3144        //   object, no conversions apply. The type referred to by the
3145        //   reference may be more cv-qualified than the (otherwise
3146        //   identical) type of the template- argument. The
3147        //   template-parameter is bound directly to the
3148        //   template-argument, which shall be an lvalue.
3149
3150        // FIXME: Other qualifiers?
3151        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3152        unsigned ArgQuals = ArgType.getCVRQualifiers();
3153
3154        if ((ParamQuals | ArgQuals) != ParamQuals) {
3155          S.Diag(Arg->getSourceRange().getBegin(),
3156                 diag::err_template_arg_ref_bind_ignores_quals)
3157            << ParamType << Arg->getType()
3158            << Arg->getSourceRange();
3159          S.Diag(Param->getLocation(), diag::note_template_param_here);
3160          return true;
3161        }
3162      }
3163    }
3164
3165    // At this point, the template argument refers to an object or
3166    // function with external linkage. We now need to check whether the
3167    // argument and parameter types are compatible.
3168    if (!S.Context.hasSameUnqualifiedType(ArgType,
3169                                          ParamType.getNonReferenceType())) {
3170      // We can't perform this conversion or binding.
3171      if (ParamType->isReferenceType())
3172        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3173          << ParamType << Arg->getType() << Arg->getSourceRange();
3174      else
3175        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3176          << Arg->getType() << ParamType << Arg->getSourceRange();
3177      S.Diag(Param->getLocation(), diag::note_template_param_here);
3178      return true;
3179    }
3180  }
3181
3182  // Create the template argument.
3183  Converted = TemplateArgument(Entity->getCanonicalDecl());
3184  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3185  return false;
3186}
3187
3188/// \brief Checks whether the given template argument is a pointer to
3189/// member constant according to C++ [temp.arg.nontype]p1.
3190bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3191                                                TemplateArgument &Converted) {
3192  bool Invalid = false;
3193
3194  // See through any implicit casts we added to fix the type.
3195  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3196    Arg = Cast->getSubExpr();
3197
3198  // C++ [temp.arg.nontype]p1:
3199  //
3200  //   A template-argument for a non-type, non-template
3201  //   template-parameter shall be one of: [...]
3202  //
3203  //     -- a pointer to member expressed as described in 5.3.1.
3204  DeclRefExpr *DRE = 0;
3205
3206  // In C++98/03 mode, give an extension warning on any extra parentheses.
3207  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3208  bool ExtraParens = false;
3209  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3210    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3211      Diag(Arg->getSourceRange().getBegin(),
3212           diag::ext_template_arg_extra_parens)
3213        << Arg->getSourceRange();
3214      ExtraParens = true;
3215    }
3216
3217    Arg = Parens->getSubExpr();
3218  }
3219
3220  // A pointer-to-member constant written &Class::member.
3221  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3222    if (UnOp->getOpcode() == UO_AddrOf) {
3223      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3224      if (DRE && !DRE->getQualifier())
3225        DRE = 0;
3226    }
3227  }
3228  // A constant of pointer-to-member type.
3229  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3230    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3231      if (VD->getType()->isMemberPointerType()) {
3232        if (isa<NonTypeTemplateParmDecl>(VD) ||
3233            (isa<VarDecl>(VD) &&
3234             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3235          if (Arg->isTypeDependent() || Arg->isValueDependent())
3236            Converted = TemplateArgument(Arg);
3237          else
3238            Converted = TemplateArgument(VD->getCanonicalDecl());
3239          return Invalid;
3240        }
3241      }
3242    }
3243
3244    DRE = 0;
3245  }
3246
3247  if (!DRE)
3248    return Diag(Arg->getSourceRange().getBegin(),
3249                diag::err_template_arg_not_pointer_to_member_form)
3250      << Arg->getSourceRange();
3251
3252  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3253    assert((isa<FieldDecl>(DRE->getDecl()) ||
3254            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3255           "Only non-static member pointers can make it here");
3256
3257    // Okay: this is the address of a non-static member, and therefore
3258    // a member pointer constant.
3259    if (Arg->isTypeDependent() || Arg->isValueDependent())
3260      Converted = TemplateArgument(Arg);
3261    else
3262      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3263    return Invalid;
3264  }
3265
3266  // We found something else, but we don't know specifically what it is.
3267  Diag(Arg->getSourceRange().getBegin(),
3268       diag::err_template_arg_not_pointer_to_member_form)
3269      << Arg->getSourceRange();
3270  Diag(DRE->getDecl()->getLocation(),
3271       diag::note_template_arg_refers_here);
3272  return true;
3273}
3274
3275/// \brief Check a template argument against its corresponding
3276/// non-type template parameter.
3277///
3278/// This routine implements the semantics of C++ [temp.arg.nontype].
3279/// It returns true if an error occurred, and false otherwise. \p
3280/// InstantiatedParamType is the type of the non-type template
3281/// parameter after it has been instantiated.
3282///
3283/// If no error was detected, Converted receives the converted template argument.
3284bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3285                                 QualType InstantiatedParamType, Expr *&Arg,
3286                                 TemplateArgument &Converted,
3287                                 CheckTemplateArgumentKind CTAK) {
3288  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3289
3290  // If either the parameter has a dependent type or the argument is
3291  // type-dependent, there's nothing we can check now.
3292  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3293    // FIXME: Produce a cloned, canonical expression?
3294    Converted = TemplateArgument(Arg);
3295    return false;
3296  }
3297
3298  // C++ [temp.arg.nontype]p5:
3299  //   The following conversions are performed on each expression used
3300  //   as a non-type template-argument. If a non-type
3301  //   template-argument cannot be converted to the type of the
3302  //   corresponding template-parameter then the program is
3303  //   ill-formed.
3304  //
3305  //     -- for a non-type template-parameter of integral or
3306  //        enumeration type, integral promotions (4.5) and integral
3307  //        conversions (4.7) are applied.
3308  QualType ParamType = InstantiatedParamType;
3309  QualType ArgType = Arg->getType();
3310  if (ParamType->isIntegralOrEnumerationType()) {
3311    // C++ [temp.arg.nontype]p1:
3312    //   A template-argument for a non-type, non-template
3313    //   template-parameter shall be one of:
3314    //
3315    //     -- an integral constant-expression of integral or enumeration
3316    //        type; or
3317    //     -- the name of a non-type template-parameter; or
3318    SourceLocation NonConstantLoc;
3319    llvm::APSInt Value;
3320    if (!ArgType->isIntegralOrEnumerationType()) {
3321      Diag(Arg->getSourceRange().getBegin(),
3322           diag::err_template_arg_not_integral_or_enumeral)
3323        << ArgType << Arg->getSourceRange();
3324      Diag(Param->getLocation(), diag::note_template_param_here);
3325      return true;
3326    } else if (!Arg->isValueDependent() &&
3327               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3328      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3329        << ArgType << Arg->getSourceRange();
3330      return true;
3331    }
3332
3333    // From here on out, all we care about are the unqualified forms
3334    // of the parameter and argument types.
3335    ParamType = ParamType.getUnqualifiedType();
3336    ArgType = ArgType.getUnqualifiedType();
3337
3338    // Try to convert the argument to the parameter's type.
3339    if (Context.hasSameType(ParamType, ArgType)) {
3340      // Okay: no conversion necessary
3341    } else if (CTAK == CTAK_Deduced) {
3342      // C++ [temp.deduct.type]p17:
3343      //   If, in the declaration of a function template with a non-type
3344      //   template-parameter, the non-type template- parameter is used
3345      //   in an expression in the function parameter-list and, if the
3346      //   corresponding template-argument is deduced, the
3347      //   template-argument type shall match the type of the
3348      //   template-parameter exactly, except that a template-argument
3349      //   deduced from an array bound may be of any integral type.
3350      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3351        << ArgType << ParamType;
3352      Diag(Param->getLocation(), diag::note_template_param_here);
3353      return true;
3354    } else if (ParamType->isBooleanType()) {
3355      // This is an integral-to-boolean conversion.
3356      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3357    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3358               !ParamType->isEnumeralType()) {
3359      // This is an integral promotion or conversion.
3360      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3361    } else {
3362      // We can't perform this conversion.
3363      Diag(Arg->getSourceRange().getBegin(),
3364           diag::err_template_arg_not_convertible)
3365        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3366      Diag(Param->getLocation(), diag::note_template_param_here);
3367      return true;
3368    }
3369
3370    QualType IntegerType = Context.getCanonicalType(ParamType);
3371    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3372      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3373
3374    if (!Arg->isValueDependent()) {
3375      llvm::APSInt OldValue = Value;
3376
3377      // Coerce the template argument's value to the value it will have
3378      // based on the template parameter's type.
3379      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3380      if (Value.getBitWidth() != AllowedBits)
3381        Value = Value.extOrTrunc(AllowedBits);
3382      Value.setIsSigned(IntegerType->isSignedIntegerType());
3383
3384      // Complain if an unsigned parameter received a negative value.
3385      if (IntegerType->isUnsignedIntegerType()
3386          && (OldValue.isSigned() && OldValue.isNegative())) {
3387        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3388          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3389          << Arg->getSourceRange();
3390        Diag(Param->getLocation(), diag::note_template_param_here);
3391      }
3392
3393      // Complain if we overflowed the template parameter's type.
3394      unsigned RequiredBits;
3395      if (IntegerType->isUnsignedIntegerType())
3396        RequiredBits = OldValue.getActiveBits();
3397      else if (OldValue.isUnsigned())
3398        RequiredBits = OldValue.getActiveBits() + 1;
3399      else
3400        RequiredBits = OldValue.getMinSignedBits();
3401      if (RequiredBits > AllowedBits) {
3402        Diag(Arg->getSourceRange().getBegin(),
3403             diag::warn_template_arg_too_large)
3404          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3405          << Arg->getSourceRange();
3406        Diag(Param->getLocation(), diag::note_template_param_here);
3407      }
3408    }
3409
3410    // Add the value of this argument to the list of converted
3411    // arguments. We use the bitwidth and signedness of the template
3412    // parameter.
3413    if (Arg->isValueDependent()) {
3414      // The argument is value-dependent. Create a new
3415      // TemplateArgument with the converted expression.
3416      Converted = TemplateArgument(Arg);
3417      return false;
3418    }
3419
3420    Converted = TemplateArgument(Value,
3421                                 ParamType->isEnumeralType() ? ParamType
3422                                                             : IntegerType);
3423    return false;
3424  }
3425
3426  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3427
3428  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3429  // from a template argument of type std::nullptr_t to a non-type
3430  // template parameter of type pointer to object, pointer to
3431  // function, or pointer-to-member, respectively.
3432  if (ArgType->isNullPtrType() &&
3433      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3434    Converted = TemplateArgument((NamedDecl *)0);
3435    return false;
3436  }
3437
3438  // Handle pointer-to-function, reference-to-function, and
3439  // pointer-to-member-function all in (roughly) the same way.
3440  if (// -- For a non-type template-parameter of type pointer to
3441      //    function, only the function-to-pointer conversion (4.3) is
3442      //    applied. If the template-argument represents a set of
3443      //    overloaded functions (or a pointer to such), the matching
3444      //    function is selected from the set (13.4).
3445      (ParamType->isPointerType() &&
3446       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3447      // -- For a non-type template-parameter of type reference to
3448      //    function, no conversions apply. If the template-argument
3449      //    represents a set of overloaded functions, the matching
3450      //    function is selected from the set (13.4).
3451      (ParamType->isReferenceType() &&
3452       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3453      // -- For a non-type template-parameter of type pointer to
3454      //    member function, no conversions apply. If the
3455      //    template-argument represents a set of overloaded member
3456      //    functions, the matching member function is selected from
3457      //    the set (13.4).
3458      (ParamType->isMemberPointerType() &&
3459       ParamType->getAs<MemberPointerType>()->getPointeeType()
3460         ->isFunctionType())) {
3461
3462    if (Arg->getType() == Context.OverloadTy) {
3463      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3464                                                                true,
3465                                                                FoundResult)) {
3466        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3467          return true;
3468
3469        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3470        ArgType = Arg->getType();
3471      } else
3472        return true;
3473    }
3474
3475    if (!ParamType->isMemberPointerType())
3476      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3477                                                            ParamType,
3478                                                            Arg, Converted);
3479
3480    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3481                                  false)) {
3482      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3483    } else if (!Context.hasSameUnqualifiedType(ArgType,
3484                                           ParamType.getNonReferenceType())) {
3485      // We can't perform this conversion.
3486      Diag(Arg->getSourceRange().getBegin(),
3487           diag::err_template_arg_not_convertible)
3488        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3489      Diag(Param->getLocation(), diag::note_template_param_here);
3490      return true;
3491    }
3492
3493    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3494  }
3495
3496  if (ParamType->isPointerType()) {
3497    //   -- for a non-type template-parameter of type pointer to
3498    //      object, qualification conversions (4.4) and the
3499    //      array-to-pointer conversion (4.2) are applied.
3500    // C++0x also allows a value of std::nullptr_t.
3501    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3502           "Only object pointers allowed here");
3503
3504    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3505                                                          ParamType,
3506                                                          Arg, Converted);
3507  }
3508
3509  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3510    //   -- For a non-type template-parameter of type reference to
3511    //      object, no conversions apply. The type referred to by the
3512    //      reference may be more cv-qualified than the (otherwise
3513    //      identical) type of the template-argument. The
3514    //      template-parameter is bound directly to the
3515    //      template-argument, which must be an lvalue.
3516    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3517           "Only object references allowed here");
3518
3519    if (Arg->getType() == Context.OverloadTy) {
3520      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3521                                                 ParamRefType->getPointeeType(),
3522                                                                true,
3523                                                                FoundResult)) {
3524        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3525          return true;
3526
3527        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3528        ArgType = Arg->getType();
3529      } else
3530        return true;
3531    }
3532
3533    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3534                                                          ParamType,
3535                                                          Arg, Converted);
3536  }
3537
3538  //     -- For a non-type template-parameter of type pointer to data
3539  //        member, qualification conversions (4.4) are applied.
3540  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3541
3542  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3543    // Types match exactly: nothing more to do here.
3544  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3545    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3546  } else {
3547    // We can't perform this conversion.
3548    Diag(Arg->getSourceRange().getBegin(),
3549         diag::err_template_arg_not_convertible)
3550      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3551    Diag(Param->getLocation(), diag::note_template_param_here);
3552    return true;
3553  }
3554
3555  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3556}
3557
3558/// \brief Check a template argument against its corresponding
3559/// template template parameter.
3560///
3561/// This routine implements the semantics of C++ [temp.arg.template].
3562/// It returns true if an error occurred, and false otherwise.
3563bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3564                                 const TemplateArgumentLoc &Arg) {
3565  TemplateName Name = Arg.getArgument().getAsTemplate();
3566  TemplateDecl *Template = Name.getAsTemplateDecl();
3567  if (!Template) {
3568    // Any dependent template name is fine.
3569    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3570    return false;
3571  }
3572
3573  // C++ [temp.arg.template]p1:
3574  //   A template-argument for a template template-parameter shall be
3575  //   the name of a class template, expressed as id-expression. Only
3576  //   primary class templates are considered when matching the
3577  //   template template argument with the corresponding parameter;
3578  //   partial specializations are not considered even if their
3579  //   parameter lists match that of the template template parameter.
3580  //
3581  // Note that we also allow template template parameters here, which
3582  // will happen when we are dealing with, e.g., class template
3583  // partial specializations.
3584  if (!isa<ClassTemplateDecl>(Template) &&
3585      !isa<TemplateTemplateParmDecl>(Template)) {
3586    assert(isa<FunctionTemplateDecl>(Template) &&
3587           "Only function templates are possible here");
3588    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3589    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3590      << Template;
3591  }
3592
3593  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3594                                         Param->getTemplateParameters(),
3595                                         true,
3596                                         TPL_TemplateTemplateArgumentMatch,
3597                                         Arg.getLocation());
3598}
3599
3600/// \brief Given a non-type template argument that refers to a
3601/// declaration and the type of its corresponding non-type template
3602/// parameter, produce an expression that properly refers to that
3603/// declaration.
3604ExprResult
3605Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3606                                              QualType ParamType,
3607                                              SourceLocation Loc) {
3608  assert(Arg.getKind() == TemplateArgument::Declaration &&
3609         "Only declaration template arguments permitted here");
3610  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3611
3612  if (VD->getDeclContext()->isRecord() &&
3613      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3614    // If the value is a class member, we might have a pointer-to-member.
3615    // Determine whether the non-type template template parameter is of
3616    // pointer-to-member type. If so, we need to build an appropriate
3617    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3618    // would refer to the member itself.
3619    if (ParamType->isMemberPointerType()) {
3620      QualType ClassType
3621        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3622      NestedNameSpecifier *Qualifier
3623        = NestedNameSpecifier::Create(Context, 0, false,
3624                                      ClassType.getTypePtr());
3625      CXXScopeSpec SS;
3626      SS.MakeTrivial(Context, Qualifier, Loc);
3627
3628      // The actual value-ness of this is unimportant, but for
3629      // internal consistency's sake, references to instance methods
3630      // are r-values.
3631      ExprValueKind VK = VK_LValue;
3632      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3633        VK = VK_RValue;
3634
3635      ExprResult RefExpr = BuildDeclRefExpr(VD,
3636                                            VD->getType().getNonReferenceType(),
3637                                            VK,
3638                                            Loc,
3639                                            &SS);
3640      if (RefExpr.isInvalid())
3641        return ExprError();
3642
3643      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3644
3645      // We might need to perform a trailing qualification conversion, since
3646      // the element type on the parameter could be more qualified than the
3647      // element type in the expression we constructed.
3648      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3649                                    ParamType.getUnqualifiedType(), false)) {
3650        Expr *RefE = RefExpr.takeAs<Expr>();
3651        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3652        RefExpr = Owned(RefE);
3653      }
3654
3655      assert(!RefExpr.isInvalid() &&
3656             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3657                                 ParamType.getUnqualifiedType()));
3658      return move(RefExpr);
3659    }
3660  }
3661
3662  QualType T = VD->getType().getNonReferenceType();
3663  if (ParamType->isPointerType()) {
3664    // When the non-type template parameter is a pointer, take the
3665    // address of the declaration.
3666    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3667    if (RefExpr.isInvalid())
3668      return ExprError();
3669
3670    if (T->isFunctionType() || T->isArrayType()) {
3671      // Decay functions and arrays.
3672      Expr *RefE = (Expr *)RefExpr.get();
3673      DefaultFunctionArrayConversion(RefE);
3674      if (RefE != RefExpr.get()) {
3675        RefExpr.release();
3676        RefExpr = Owned(RefE);
3677      }
3678
3679      return move(RefExpr);
3680    }
3681
3682    // Take the address of everything else
3683    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3684  }
3685
3686  ExprValueKind VK = VK_RValue;
3687
3688  // If the non-type template parameter has reference type, qualify the
3689  // resulting declaration reference with the extra qualifiers on the
3690  // type that the reference refers to.
3691  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3692    VK = VK_LValue;
3693    T = Context.getQualifiedType(T,
3694                              TargetRef->getPointeeType().getQualifiers());
3695  }
3696
3697  return BuildDeclRefExpr(VD, T, VK, Loc);
3698}
3699
3700/// \brief Construct a new expression that refers to the given
3701/// integral template argument with the given source-location
3702/// information.
3703///
3704/// This routine takes care of the mapping from an integral template
3705/// argument (which may have any integral type) to the appropriate
3706/// literal value.
3707ExprResult
3708Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3709                                                  SourceLocation Loc) {
3710  assert(Arg.getKind() == TemplateArgument::Integral &&
3711         "Operation is only valid for integral template arguments");
3712  QualType T = Arg.getIntegralType();
3713  if (T->isCharType() || T->isWideCharType())
3714    return Owned(new (Context) CharacterLiteral(
3715                                             Arg.getAsIntegral()->getZExtValue(),
3716                                             T->isWideCharType(),
3717                                             T,
3718                                             Loc));
3719  if (T->isBooleanType())
3720    return Owned(new (Context) CXXBoolLiteralExpr(
3721                                            Arg.getAsIntegral()->getBoolValue(),
3722                                            T,
3723                                            Loc));
3724
3725  QualType BT;
3726  if (const EnumType *ET = T->getAs<EnumType>())
3727    BT = ET->getDecl()->getPromotionType();
3728  else
3729    BT = T;
3730
3731  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3732  if (T->isEnumeralType()) {
3733    // FIXME: This is a hack. We need a better way to handle substituted
3734    // non-type template parameters.
3735    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast,
3736                                      E, 0,
3737                                      Context.getTrivialTypeSourceInfo(T, Loc),
3738                                      Loc, Loc);
3739  }
3740
3741  return Owned(E);
3742}
3743
3744/// \brief Match two template parameters within template parameter lists.
3745static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3746                                       bool Complain,
3747                                     Sema::TemplateParameterListEqualKind Kind,
3748                                       SourceLocation TemplateArgLoc) {
3749  // Check the actual kind (type, non-type, template).
3750  if (Old->getKind() != New->getKind()) {
3751    if (Complain) {
3752      unsigned NextDiag = diag::err_template_param_different_kind;
3753      if (TemplateArgLoc.isValid()) {
3754        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3755        NextDiag = diag::note_template_param_different_kind;
3756      }
3757      S.Diag(New->getLocation(), NextDiag)
3758        << (Kind != Sema::TPL_TemplateMatch);
3759      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3760        << (Kind != Sema::TPL_TemplateMatch);
3761    }
3762
3763    return false;
3764  }
3765
3766  // Check that both are parameter packs are neither are parameter packs.
3767  // However, if we are matching a template template argument to a
3768  // template template parameter, the template template parameter can have
3769  // a parameter pack where the template template argument does not.
3770  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3771      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3772        Old->isTemplateParameterPack())) {
3773    if (Complain) {
3774      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3775      if (TemplateArgLoc.isValid()) {
3776        S.Diag(TemplateArgLoc,
3777             diag::err_template_arg_template_params_mismatch);
3778        NextDiag = diag::note_template_parameter_pack_non_pack;
3779      }
3780
3781      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3782                      : isa<NonTypeTemplateParmDecl>(New)? 1
3783                      : 2;
3784      S.Diag(New->getLocation(), NextDiag)
3785        << ParamKind << New->isParameterPack();
3786      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3787        << ParamKind << Old->isParameterPack();
3788    }
3789
3790    return false;
3791  }
3792
3793  // For non-type template parameters, check the type of the parameter.
3794  if (NonTypeTemplateParmDecl *OldNTTP
3795                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3796    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3797
3798    // If we are matching a template template argument to a template
3799    // template parameter and one of the non-type template parameter types
3800    // is dependent, then we must wait until template instantiation time
3801    // to actually compare the arguments.
3802    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3803        (OldNTTP->getType()->isDependentType() ||
3804         NewNTTP->getType()->isDependentType()))
3805      return true;
3806
3807    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3808      if (Complain) {
3809        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3810        if (TemplateArgLoc.isValid()) {
3811          S.Diag(TemplateArgLoc,
3812                 diag::err_template_arg_template_params_mismatch);
3813          NextDiag = diag::note_template_nontype_parm_different_type;
3814        }
3815        S.Diag(NewNTTP->getLocation(), NextDiag)
3816          << NewNTTP->getType()
3817          << (Kind != Sema::TPL_TemplateMatch);
3818        S.Diag(OldNTTP->getLocation(),
3819               diag::note_template_nontype_parm_prev_declaration)
3820          << OldNTTP->getType();
3821      }
3822
3823      return false;
3824    }
3825
3826    return true;
3827  }
3828
3829  // For template template parameters, check the template parameter types.
3830  // The template parameter lists of template template
3831  // parameters must agree.
3832  if (TemplateTemplateParmDecl *OldTTP
3833                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3834    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3835    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3836                                            OldTTP->getTemplateParameters(),
3837                                            Complain,
3838                                        (Kind == Sema::TPL_TemplateMatch
3839                                           ? Sema::TPL_TemplateTemplateParmMatch
3840                                           : Kind),
3841                                            TemplateArgLoc);
3842  }
3843
3844  return true;
3845}
3846
3847/// \brief Diagnose a known arity mismatch when comparing template argument
3848/// lists.
3849static
3850void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3851                                                TemplateParameterList *New,
3852                                                TemplateParameterList *Old,
3853                                      Sema::TemplateParameterListEqualKind Kind,
3854                                                SourceLocation TemplateArgLoc) {
3855  unsigned NextDiag = diag::err_template_param_list_different_arity;
3856  if (TemplateArgLoc.isValid()) {
3857    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3858    NextDiag = diag::note_template_param_list_different_arity;
3859  }
3860  S.Diag(New->getTemplateLoc(), NextDiag)
3861    << (New->size() > Old->size())
3862    << (Kind != Sema::TPL_TemplateMatch)
3863    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3864  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3865    << (Kind != Sema::TPL_TemplateMatch)
3866    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3867}
3868
3869/// \brief Determine whether the given template parameter lists are
3870/// equivalent.
3871///
3872/// \param New  The new template parameter list, typically written in the
3873/// source code as part of a new template declaration.
3874///
3875/// \param Old  The old template parameter list, typically found via
3876/// name lookup of the template declared with this template parameter
3877/// list.
3878///
3879/// \param Complain  If true, this routine will produce a diagnostic if
3880/// the template parameter lists are not equivalent.
3881///
3882/// \param Kind describes how we are to match the template parameter lists.
3883///
3884/// \param TemplateArgLoc If this source location is valid, then we
3885/// are actually checking the template parameter list of a template
3886/// argument (New) against the template parameter list of its
3887/// corresponding template template parameter (Old). We produce
3888/// slightly different diagnostics in this scenario.
3889///
3890/// \returns True if the template parameter lists are equal, false
3891/// otherwise.
3892bool
3893Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3894                                     TemplateParameterList *Old,
3895                                     bool Complain,
3896                                     TemplateParameterListEqualKind Kind,
3897                                     SourceLocation TemplateArgLoc) {
3898  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
3899    if (Complain)
3900      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3901                                                 TemplateArgLoc);
3902
3903    return false;
3904  }
3905
3906  // C++0x [temp.arg.template]p3:
3907  //   A template-argument matches a template template-parameter (call it P)
3908  //   when each of the template parameters in the template-parameter-list of
3909  //   the template-argument's corresponding class template or template alias
3910  //   (call it A) matches the corresponding template parameter in the
3911  //   template-parameter-list of P. [...]
3912  TemplateParameterList::iterator NewParm = New->begin();
3913  TemplateParameterList::iterator NewParmEnd = New->end();
3914  for (TemplateParameterList::iterator OldParm = Old->begin(),
3915                                    OldParmEnd = Old->end();
3916       OldParm != OldParmEnd; ++OldParm) {
3917    if (Kind != TPL_TemplateTemplateArgumentMatch ||
3918        !(*OldParm)->isTemplateParameterPack()) {
3919      if (NewParm == NewParmEnd) {
3920        if (Complain)
3921          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3922                                                     TemplateArgLoc);
3923
3924        return false;
3925      }
3926
3927      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3928                                      Kind, TemplateArgLoc))
3929        return false;
3930
3931      ++NewParm;
3932      continue;
3933    }
3934
3935    // C++0x [temp.arg.template]p3:
3936    //   [...] When P's template- parameter-list contains a template parameter
3937    //   pack (14.5.3), the template parameter pack will match zero or more
3938    //   template parameters or template parameter packs in the
3939    //   template-parameter-list of A with the same type and form as the
3940    //   template parameter pack in P (ignoring whether those template
3941    //   parameters are template parameter packs).
3942    for (; NewParm != NewParmEnd; ++NewParm) {
3943      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3944                                      Kind, TemplateArgLoc))
3945        return false;
3946    }
3947  }
3948
3949  // Make sure we exhausted all of the arguments.
3950  if (NewParm != NewParmEnd) {
3951    if (Complain)
3952      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3953                                                 TemplateArgLoc);
3954
3955    return false;
3956  }
3957
3958  return true;
3959}
3960
3961/// \brief Check whether a template can be declared within this scope.
3962///
3963/// If the template declaration is valid in this scope, returns
3964/// false. Otherwise, issues a diagnostic and returns true.
3965bool
3966Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3967  // Find the nearest enclosing declaration scope.
3968  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3969         (S->getFlags() & Scope::TemplateParamScope) != 0)
3970    S = S->getParent();
3971
3972  // C++ [temp]p2:
3973  //   A template-declaration can appear only as a namespace scope or
3974  //   class scope declaration.
3975  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3976  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3977      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3978    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3979             << TemplateParams->getSourceRange();
3980
3981  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3982    Ctx = Ctx->getParent();
3983
3984  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3985    return false;
3986
3987  return Diag(TemplateParams->getTemplateLoc(),
3988              diag::err_template_outside_namespace_or_class_scope)
3989    << TemplateParams->getSourceRange();
3990}
3991
3992/// \brief Determine what kind of template specialization the given declaration
3993/// is.
3994static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3995  if (!D)
3996    return TSK_Undeclared;
3997
3998  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3999    return Record->getTemplateSpecializationKind();
4000  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4001    return Function->getTemplateSpecializationKind();
4002  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4003    return Var->getTemplateSpecializationKind();
4004
4005  return TSK_Undeclared;
4006}
4007
4008/// \brief Check whether a specialization is well-formed in the current
4009/// context.
4010///
4011/// This routine determines whether a template specialization can be declared
4012/// in the current context (C++ [temp.expl.spec]p2).
4013///
4014/// \param S the semantic analysis object for which this check is being
4015/// performed.
4016///
4017/// \param Specialized the entity being specialized or instantiated, which
4018/// may be a kind of template (class template, function template, etc.) or
4019/// a member of a class template (member function, static data member,
4020/// member class).
4021///
4022/// \param PrevDecl the previous declaration of this entity, if any.
4023///
4024/// \param Loc the location of the explicit specialization or instantiation of
4025/// this entity.
4026///
4027/// \param IsPartialSpecialization whether this is a partial specialization of
4028/// a class template.
4029///
4030/// \returns true if there was an error that we cannot recover from, false
4031/// otherwise.
4032static bool CheckTemplateSpecializationScope(Sema &S,
4033                                             NamedDecl *Specialized,
4034                                             NamedDecl *PrevDecl,
4035                                             SourceLocation Loc,
4036                                             bool IsPartialSpecialization) {
4037  // Keep these "kind" numbers in sync with the %select statements in the
4038  // various diagnostics emitted by this routine.
4039  int EntityKind = 0;
4040  if (isa<ClassTemplateDecl>(Specialized))
4041    EntityKind = IsPartialSpecialization? 1 : 0;
4042  else if (isa<FunctionTemplateDecl>(Specialized))
4043    EntityKind = 2;
4044  else if (isa<CXXMethodDecl>(Specialized))
4045    EntityKind = 3;
4046  else if (isa<VarDecl>(Specialized))
4047    EntityKind = 4;
4048  else if (isa<RecordDecl>(Specialized))
4049    EntityKind = 5;
4050  else {
4051    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4052    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4053    return true;
4054  }
4055
4056  // C++ [temp.expl.spec]p2:
4057  //   An explicit specialization shall be declared in the namespace
4058  //   of which the template is a member, or, for member templates, in
4059  //   the namespace of which the enclosing class or enclosing class
4060  //   template is a member. An explicit specialization of a member
4061  //   function, member class or static data member of a class
4062  //   template shall be declared in the namespace of which the class
4063  //   template is a member. Such a declaration may also be a
4064  //   definition. If the declaration is not a definition, the
4065  //   specialization may be defined later in the name- space in which
4066  //   the explicit specialization was declared, or in a namespace
4067  //   that encloses the one in which the explicit specialization was
4068  //   declared.
4069  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4070    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4071      << Specialized;
4072    return true;
4073  }
4074
4075  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4076    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4077      << Specialized;
4078    return true;
4079  }
4080
4081  // C++ [temp.class.spec]p6:
4082  //   A class template partial specialization may be declared or redeclared
4083  //   in any namespace scope in which its definition may be defined (14.5.1
4084  //   and 14.5.2).
4085  bool ComplainedAboutScope = false;
4086  DeclContext *SpecializedContext
4087    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4088  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4089  if ((!PrevDecl ||
4090       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4091       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4092    // C++ [temp.exp.spec]p2:
4093    //   An explicit specialization shall be declared in the namespace of which
4094    //   the template is a member, or, for member templates, in the namespace
4095    //   of which the enclosing class or enclosing class template is a member.
4096    //   An explicit specialization of a member function, member class or
4097    //   static data member of a class template shall be declared in the
4098    //   namespace of which the class template is a member.
4099    //
4100    // C++0x [temp.expl.spec]p2:
4101    //   An explicit specialization shall be declared in a namespace enclosing
4102    //   the specialized template.
4103    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4104        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4105      bool IsCPlusPlus0xExtension
4106        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4107      if (isa<TranslationUnitDecl>(SpecializedContext))
4108        S.Diag(Loc, IsCPlusPlus0xExtension
4109                      ? diag::ext_template_spec_decl_out_of_scope_global
4110                      : diag::err_template_spec_decl_out_of_scope_global)
4111          << EntityKind << Specialized;
4112      else if (isa<NamespaceDecl>(SpecializedContext))
4113        S.Diag(Loc, IsCPlusPlus0xExtension
4114                      ? diag::ext_template_spec_decl_out_of_scope
4115                      : diag::err_template_spec_decl_out_of_scope)
4116          << EntityKind << Specialized
4117          << cast<NamedDecl>(SpecializedContext);
4118
4119      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4120      ComplainedAboutScope = true;
4121    }
4122  }
4123
4124  // Make sure that this redeclaration (or definition) occurs in an enclosing
4125  // namespace.
4126  // Note that HandleDeclarator() performs this check for explicit
4127  // specializations of function templates, static data members, and member
4128  // functions, so we skip the check here for those kinds of entities.
4129  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4130  // Should we refactor that check, so that it occurs later?
4131  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4132      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4133        isa<FunctionDecl>(Specialized))) {
4134    if (isa<TranslationUnitDecl>(SpecializedContext))
4135      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4136        << EntityKind << Specialized;
4137    else if (isa<NamespaceDecl>(SpecializedContext))
4138      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4139        << EntityKind << Specialized
4140        << cast<NamedDecl>(SpecializedContext);
4141
4142    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4143  }
4144
4145  // FIXME: check for specialization-after-instantiation errors and such.
4146
4147  return false;
4148}
4149
4150/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4151/// that checks non-type template partial specialization arguments.
4152static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4153                                                NonTypeTemplateParmDecl *Param,
4154                                                  const TemplateArgument *Args,
4155                                                        unsigned NumArgs) {
4156  for (unsigned I = 0; I != NumArgs; ++I) {
4157    if (Args[I].getKind() == TemplateArgument::Pack) {
4158      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4159                                                           Args[I].pack_begin(),
4160                                                           Args[I].pack_size()))
4161        return true;
4162
4163      continue;
4164    }
4165
4166    Expr *ArgExpr = Args[I].getAsExpr();
4167    if (!ArgExpr) {
4168      continue;
4169    }
4170
4171    // We can have a pack expansion of any of the bullets below.
4172    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4173      ArgExpr = Expansion->getPattern();
4174
4175    // Strip off any implicit casts we added as part of type checking.
4176    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4177      ArgExpr = ICE->getSubExpr();
4178
4179    // C++ [temp.class.spec]p8:
4180    //   A non-type argument is non-specialized if it is the name of a
4181    //   non-type parameter. All other non-type arguments are
4182    //   specialized.
4183    //
4184    // Below, we check the two conditions that only apply to
4185    // specialized non-type arguments, so skip any non-specialized
4186    // arguments.
4187    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4188      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4189        continue;
4190
4191    // C++ [temp.class.spec]p9:
4192    //   Within the argument list of a class template partial
4193    //   specialization, the following restrictions apply:
4194    //     -- A partially specialized non-type argument expression
4195    //        shall not involve a template parameter of the partial
4196    //        specialization except when the argument expression is a
4197    //        simple identifier.
4198    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4199      S.Diag(ArgExpr->getLocStart(),
4200           diag::err_dependent_non_type_arg_in_partial_spec)
4201        << ArgExpr->getSourceRange();
4202      return true;
4203    }
4204
4205    //     -- The type of a template parameter corresponding to a
4206    //        specialized non-type argument shall not be dependent on a
4207    //        parameter of the specialization.
4208    if (Param->getType()->isDependentType()) {
4209      S.Diag(ArgExpr->getLocStart(),
4210           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4211        << Param->getType()
4212        << ArgExpr->getSourceRange();
4213      S.Diag(Param->getLocation(), diag::note_template_param_here);
4214      return true;
4215    }
4216  }
4217
4218  return false;
4219}
4220
4221/// \brief Check the non-type template arguments of a class template
4222/// partial specialization according to C++ [temp.class.spec]p9.
4223///
4224/// \param TemplateParams the template parameters of the primary class
4225/// template.
4226///
4227/// \param TemplateArg the template arguments of the class template
4228/// partial specialization.
4229///
4230/// \returns true if there was an error, false otherwise.
4231static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4232                                        TemplateParameterList *TemplateParams,
4233                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4234  const TemplateArgument *ArgList = TemplateArgs.data();
4235
4236  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4237    NonTypeTemplateParmDecl *Param
4238      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4239    if (!Param)
4240      continue;
4241
4242    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4243                                                           &ArgList[I], 1))
4244      return true;
4245  }
4246
4247  return false;
4248}
4249
4250/// \brief Retrieve the previous declaration of the given declaration.
4251static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4252  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4253    return VD->getPreviousDeclaration();
4254  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4255    return FD->getPreviousDeclaration();
4256  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4257    return TD->getPreviousDeclaration();
4258  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4259    return TD->getPreviousDeclaration();
4260  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4261    return FTD->getPreviousDeclaration();
4262  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4263    return CTD->getPreviousDeclaration();
4264  return 0;
4265}
4266
4267DeclResult
4268Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4269                                       TagUseKind TUK,
4270                                       SourceLocation KWLoc,
4271                                       CXXScopeSpec &SS,
4272                                       TemplateTy TemplateD,
4273                                       SourceLocation TemplateNameLoc,
4274                                       SourceLocation LAngleLoc,
4275                                       ASTTemplateArgsPtr TemplateArgsIn,
4276                                       SourceLocation RAngleLoc,
4277                                       AttributeList *Attr,
4278                               MultiTemplateParamsArg TemplateParameterLists) {
4279  assert(TUK != TUK_Reference && "References are not specializations");
4280
4281  // Find the class template we're specializing
4282  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4283  ClassTemplateDecl *ClassTemplate
4284    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4285
4286  if (!ClassTemplate) {
4287    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4288      << (Name.getAsTemplateDecl() &&
4289          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4290    return true;
4291  }
4292
4293  bool isExplicitSpecialization = false;
4294  bool isPartialSpecialization = false;
4295
4296  // Check the validity of the template headers that introduce this
4297  // template.
4298  // FIXME: We probably shouldn't complain about these headers for
4299  // friend declarations.
4300  bool Invalid = false;
4301  TemplateParameterList *TemplateParams
4302    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4303                        (TemplateParameterList**)TemplateParameterLists.get(),
4304                                              TemplateParameterLists.size(),
4305                                              TUK == TUK_Friend,
4306                                              isExplicitSpecialization,
4307                                              Invalid);
4308  if (Invalid)
4309    return true;
4310
4311  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4312  if (TemplateParams)
4313    --NumMatchedTemplateParamLists;
4314
4315  if (TemplateParams && TemplateParams->size() > 0) {
4316    isPartialSpecialization = true;
4317
4318    if (TUK == TUK_Friend) {
4319      Diag(KWLoc, diag::err_partial_specialization_friend)
4320        << SourceRange(LAngleLoc, RAngleLoc);
4321      return true;
4322    }
4323
4324    // C++ [temp.class.spec]p10:
4325    //   The template parameter list of a specialization shall not
4326    //   contain default template argument values.
4327    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4328      Decl *Param = TemplateParams->getParam(I);
4329      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4330        if (TTP->hasDefaultArgument()) {
4331          Diag(TTP->getDefaultArgumentLoc(),
4332               diag::err_default_arg_in_partial_spec);
4333          TTP->removeDefaultArgument();
4334        }
4335      } else if (NonTypeTemplateParmDecl *NTTP
4336                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4337        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4338          Diag(NTTP->getDefaultArgumentLoc(),
4339               diag::err_default_arg_in_partial_spec)
4340            << DefArg->getSourceRange();
4341          NTTP->removeDefaultArgument();
4342        }
4343      } else {
4344        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4345        if (TTP->hasDefaultArgument()) {
4346          Diag(TTP->getDefaultArgument().getLocation(),
4347               diag::err_default_arg_in_partial_spec)
4348            << TTP->getDefaultArgument().getSourceRange();
4349          TTP->removeDefaultArgument();
4350        }
4351      }
4352    }
4353  } else if (TemplateParams) {
4354    if (TUK == TUK_Friend)
4355      Diag(KWLoc, diag::err_template_spec_friend)
4356        << FixItHint::CreateRemoval(
4357                                SourceRange(TemplateParams->getTemplateLoc(),
4358                                            TemplateParams->getRAngleLoc()))
4359        << SourceRange(LAngleLoc, RAngleLoc);
4360    else
4361      isExplicitSpecialization = true;
4362  } else if (TUK != TUK_Friend) {
4363    Diag(KWLoc, diag::err_template_spec_needs_header)
4364      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4365    isExplicitSpecialization = true;
4366  }
4367
4368  // Check that the specialization uses the same tag kind as the
4369  // original template.
4370  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4371  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4372  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4373                                    Kind, KWLoc,
4374                                    *ClassTemplate->getIdentifier())) {
4375    Diag(KWLoc, diag::err_use_with_wrong_tag)
4376      << ClassTemplate
4377      << FixItHint::CreateReplacement(KWLoc,
4378                            ClassTemplate->getTemplatedDecl()->getKindName());
4379    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4380         diag::note_previous_use);
4381    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4382  }
4383
4384  // Translate the parser's template argument list in our AST format.
4385  TemplateArgumentListInfo TemplateArgs;
4386  TemplateArgs.setLAngleLoc(LAngleLoc);
4387  TemplateArgs.setRAngleLoc(RAngleLoc);
4388  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4389
4390  // Check for unexpanded parameter packs in any of the template arguments.
4391  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4392    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4393                                        UPPC_PartialSpecialization))
4394      return true;
4395
4396  // Check that the template argument list is well-formed for this
4397  // template.
4398  llvm::SmallVector<TemplateArgument, 4> Converted;
4399  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4400                                TemplateArgs, false, Converted))
4401    return true;
4402
4403  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4404         "Converted template argument list is too short!");
4405
4406  // Find the class template (partial) specialization declaration that
4407  // corresponds to these arguments.
4408  if (isPartialSpecialization) {
4409    if (CheckClassTemplatePartialSpecializationArgs(*this,
4410                                         ClassTemplate->getTemplateParameters(),
4411                                         Converted))
4412      return true;
4413
4414    if (!Name.isDependent() &&
4415        !TemplateSpecializationType::anyDependentTemplateArguments(
4416                                             TemplateArgs.getArgumentArray(),
4417                                                         TemplateArgs.size())) {
4418      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4419        << ClassTemplate->getDeclName();
4420      isPartialSpecialization = false;
4421    }
4422  }
4423
4424  void *InsertPos = 0;
4425  ClassTemplateSpecializationDecl *PrevDecl = 0;
4426
4427  if (isPartialSpecialization)
4428    // FIXME: Template parameter list matters, too
4429    PrevDecl
4430      = ClassTemplate->findPartialSpecialization(Converted.data(),
4431                                                 Converted.size(),
4432                                                 InsertPos);
4433  else
4434    PrevDecl
4435      = ClassTemplate->findSpecialization(Converted.data(),
4436                                          Converted.size(), InsertPos);
4437
4438  ClassTemplateSpecializationDecl *Specialization = 0;
4439
4440  // Check whether we can declare a class template specialization in
4441  // the current scope.
4442  if (TUK != TUK_Friend &&
4443      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4444                                       TemplateNameLoc,
4445                                       isPartialSpecialization))
4446    return true;
4447
4448  // The canonical type
4449  QualType CanonType;
4450  if (PrevDecl &&
4451      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4452               TUK == TUK_Friend)) {
4453    // Since the only prior class template specialization with these
4454    // arguments was referenced but not declared, or we're only
4455    // referencing this specialization as a friend, reuse that
4456    // declaration node as our own, updating its source location to
4457    // reflect our new declaration.
4458    Specialization = PrevDecl;
4459    Specialization->setLocation(TemplateNameLoc);
4460    PrevDecl = 0;
4461    CanonType = Context.getTypeDeclType(Specialization);
4462  } else if (isPartialSpecialization) {
4463    // Build the canonical type that describes the converted template
4464    // arguments of the class template partial specialization.
4465    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4466    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4467                                                      Converted.data(),
4468                                                      Converted.size());
4469
4470    if (Context.hasSameType(CanonType,
4471                        ClassTemplate->getInjectedClassNameSpecialization())) {
4472      // C++ [temp.class.spec]p9b3:
4473      //
4474      //   -- The argument list of the specialization shall not be identical
4475      //      to the implicit argument list of the primary template.
4476      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4477      << (TUK == TUK_Definition)
4478      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4479      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4480                                ClassTemplate->getIdentifier(),
4481                                TemplateNameLoc,
4482                                Attr,
4483                                TemplateParams,
4484                                AS_none);
4485    }
4486
4487    // Create a new class template partial specialization declaration node.
4488    ClassTemplatePartialSpecializationDecl *PrevPartial
4489      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4490    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4491                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4492    ClassTemplatePartialSpecializationDecl *Partial
4493      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4494                                             ClassTemplate->getDeclContext(),
4495                                                       TemplateNameLoc,
4496                                                       TemplateParams,
4497                                                       ClassTemplate,
4498                                                       Converted.data(),
4499                                                       Converted.size(),
4500                                                       TemplateArgs,
4501                                                       CanonType,
4502                                                       PrevPartial,
4503                                                       SequenceNumber);
4504    SetNestedNameSpecifier(Partial, SS);
4505    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4506      Partial->setTemplateParameterListsInfo(Context,
4507                                             NumMatchedTemplateParamLists,
4508                    (TemplateParameterList**) TemplateParameterLists.release());
4509    }
4510
4511    if (!PrevPartial)
4512      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4513    Specialization = Partial;
4514
4515    // If we are providing an explicit specialization of a member class
4516    // template specialization, make a note of that.
4517    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4518      PrevPartial->setMemberSpecialization();
4519
4520    // Check that all of the template parameters of the class template
4521    // partial specialization are deducible from the template
4522    // arguments. If not, this class template partial specialization
4523    // will never be used.
4524    llvm::SmallVector<bool, 8> DeducibleParams;
4525    DeducibleParams.resize(TemplateParams->size());
4526    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4527                               TemplateParams->getDepth(),
4528                               DeducibleParams);
4529    unsigned NumNonDeducible = 0;
4530    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4531      if (!DeducibleParams[I])
4532        ++NumNonDeducible;
4533
4534    if (NumNonDeducible) {
4535      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4536        << (NumNonDeducible > 1)
4537        << SourceRange(TemplateNameLoc, RAngleLoc);
4538      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4539        if (!DeducibleParams[I]) {
4540          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4541          if (Param->getDeclName())
4542            Diag(Param->getLocation(),
4543                 diag::note_partial_spec_unused_parameter)
4544              << Param->getDeclName();
4545          else
4546            Diag(Param->getLocation(),
4547                 diag::note_partial_spec_unused_parameter)
4548              << "<anonymous>";
4549        }
4550      }
4551    }
4552  } else {
4553    // Create a new class template specialization declaration node for
4554    // this explicit specialization or friend declaration.
4555    Specialization
4556      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4557                                             ClassTemplate->getDeclContext(),
4558                                                TemplateNameLoc,
4559                                                ClassTemplate,
4560                                                Converted.data(),
4561                                                Converted.size(),
4562                                                PrevDecl);
4563    SetNestedNameSpecifier(Specialization, SS);
4564    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4565      Specialization->setTemplateParameterListsInfo(Context,
4566                                                  NumMatchedTemplateParamLists,
4567                    (TemplateParameterList**) TemplateParameterLists.release());
4568    }
4569
4570    if (!PrevDecl)
4571      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4572
4573    CanonType = Context.getTypeDeclType(Specialization);
4574  }
4575
4576  // C++ [temp.expl.spec]p6:
4577  //   If a template, a member template or the member of a class template is
4578  //   explicitly specialized then that specialization shall be declared
4579  //   before the first use of that specialization that would cause an implicit
4580  //   instantiation to take place, in every translation unit in which such a
4581  //   use occurs; no diagnostic is required.
4582  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4583    bool Okay = false;
4584    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4585      // Is there any previous explicit specialization declaration?
4586      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4587        Okay = true;
4588        break;
4589      }
4590    }
4591
4592    if (!Okay) {
4593      SourceRange Range(TemplateNameLoc, RAngleLoc);
4594      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4595        << Context.getTypeDeclType(Specialization) << Range;
4596
4597      Diag(PrevDecl->getPointOfInstantiation(),
4598           diag::note_instantiation_required_here)
4599        << (PrevDecl->getTemplateSpecializationKind()
4600                                                != TSK_ImplicitInstantiation);
4601      return true;
4602    }
4603  }
4604
4605  // If this is not a friend, note that this is an explicit specialization.
4606  if (TUK != TUK_Friend)
4607    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4608
4609  // Check that this isn't a redefinition of this specialization.
4610  if (TUK == TUK_Definition) {
4611    if (RecordDecl *Def = Specialization->getDefinition()) {
4612      SourceRange Range(TemplateNameLoc, RAngleLoc);
4613      Diag(TemplateNameLoc, diag::err_redefinition)
4614        << Context.getTypeDeclType(Specialization) << Range;
4615      Diag(Def->getLocation(), diag::note_previous_definition);
4616      Specialization->setInvalidDecl();
4617      return true;
4618    }
4619  }
4620
4621  if (Attr)
4622    ProcessDeclAttributeList(S, Specialization, Attr);
4623
4624  // Build the fully-sugared type for this class template
4625  // specialization as the user wrote in the specialization
4626  // itself. This means that we'll pretty-print the type retrieved
4627  // from the specialization's declaration the way that the user
4628  // actually wrote the specialization, rather than formatting the
4629  // name based on the "canonical" representation used to store the
4630  // template arguments in the specialization.
4631  TypeSourceInfo *WrittenTy
4632    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4633                                                TemplateArgs, CanonType);
4634  if (TUK != TUK_Friend) {
4635    Specialization->setTypeAsWritten(WrittenTy);
4636    if (TemplateParams)
4637      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4638  }
4639  TemplateArgsIn.release();
4640
4641  // C++ [temp.expl.spec]p9:
4642  //   A template explicit specialization is in the scope of the
4643  //   namespace in which the template was defined.
4644  //
4645  // We actually implement this paragraph where we set the semantic
4646  // context (in the creation of the ClassTemplateSpecializationDecl),
4647  // but we also maintain the lexical context where the actual
4648  // definition occurs.
4649  Specialization->setLexicalDeclContext(CurContext);
4650
4651  // We may be starting the definition of this specialization.
4652  if (TUK == TUK_Definition)
4653    Specialization->startDefinition();
4654
4655  if (TUK == TUK_Friend) {
4656    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4657                                            TemplateNameLoc,
4658                                            WrittenTy,
4659                                            /*FIXME:*/KWLoc);
4660    Friend->setAccess(AS_public);
4661    CurContext->addDecl(Friend);
4662  } else {
4663    // Add the specialization into its lexical context, so that it can
4664    // be seen when iterating through the list of declarations in that
4665    // context. However, specializations are not found by name lookup.
4666    CurContext->addDecl(Specialization);
4667  }
4668  return Specialization;
4669}
4670
4671Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4672                              MultiTemplateParamsArg TemplateParameterLists,
4673                                    Declarator &D) {
4674  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4675}
4676
4677Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4678                               MultiTemplateParamsArg TemplateParameterLists,
4679                                            Declarator &D) {
4680  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4681  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4682
4683  if (FTI.hasPrototype) {
4684    // FIXME: Diagnose arguments without names in C.
4685  }
4686
4687  Scope *ParentScope = FnBodyScope->getParent();
4688
4689  Decl *DP = HandleDeclarator(ParentScope, D,
4690                              move(TemplateParameterLists),
4691                              /*IsFunctionDefinition=*/true);
4692  if (FunctionTemplateDecl *FunctionTemplate
4693        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4694    return ActOnStartOfFunctionDef(FnBodyScope,
4695                                   FunctionTemplate->getTemplatedDecl());
4696  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4697    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4698  return 0;
4699}
4700
4701/// \brief Strips various properties off an implicit instantiation
4702/// that has just been explicitly specialized.
4703static void StripImplicitInstantiation(NamedDecl *D) {
4704  D->dropAttrs();
4705
4706  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4707    FD->setInlineSpecified(false);
4708  }
4709}
4710
4711/// \brief Diagnose cases where we have an explicit template specialization
4712/// before/after an explicit template instantiation, producing diagnostics
4713/// for those cases where they are required and determining whether the
4714/// new specialization/instantiation will have any effect.
4715///
4716/// \param NewLoc the location of the new explicit specialization or
4717/// instantiation.
4718///
4719/// \param NewTSK the kind of the new explicit specialization or instantiation.
4720///
4721/// \param PrevDecl the previous declaration of the entity.
4722///
4723/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4724///
4725/// \param PrevPointOfInstantiation if valid, indicates where the previus
4726/// declaration was instantiated (either implicitly or explicitly).
4727///
4728/// \param HasNoEffect will be set to true to indicate that the new
4729/// specialization or instantiation has no effect and should be ignored.
4730///
4731/// \returns true if there was an error that should prevent the introduction of
4732/// the new declaration into the AST, false otherwise.
4733bool
4734Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4735                                             TemplateSpecializationKind NewTSK,
4736                                             NamedDecl *PrevDecl,
4737                                             TemplateSpecializationKind PrevTSK,
4738                                        SourceLocation PrevPointOfInstantiation,
4739                                             bool &HasNoEffect) {
4740  HasNoEffect = false;
4741
4742  switch (NewTSK) {
4743  case TSK_Undeclared:
4744  case TSK_ImplicitInstantiation:
4745    assert(false && "Don't check implicit instantiations here");
4746    return false;
4747
4748  case TSK_ExplicitSpecialization:
4749    switch (PrevTSK) {
4750    case TSK_Undeclared:
4751    case TSK_ExplicitSpecialization:
4752      // Okay, we're just specializing something that is either already
4753      // explicitly specialized or has merely been mentioned without any
4754      // instantiation.
4755      return false;
4756
4757    case TSK_ImplicitInstantiation:
4758      if (PrevPointOfInstantiation.isInvalid()) {
4759        // The declaration itself has not actually been instantiated, so it is
4760        // still okay to specialize it.
4761        StripImplicitInstantiation(PrevDecl);
4762        return false;
4763      }
4764      // Fall through
4765
4766    case TSK_ExplicitInstantiationDeclaration:
4767    case TSK_ExplicitInstantiationDefinition:
4768      assert((PrevTSK == TSK_ImplicitInstantiation ||
4769              PrevPointOfInstantiation.isValid()) &&
4770             "Explicit instantiation without point of instantiation?");
4771
4772      // C++ [temp.expl.spec]p6:
4773      //   If a template, a member template or the member of a class template
4774      //   is explicitly specialized then that specialization shall be declared
4775      //   before the first use of that specialization that would cause an
4776      //   implicit instantiation to take place, in every translation unit in
4777      //   which such a use occurs; no diagnostic is required.
4778      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4779        // Is there any previous explicit specialization declaration?
4780        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4781          return false;
4782      }
4783
4784      Diag(NewLoc, diag::err_specialization_after_instantiation)
4785        << PrevDecl;
4786      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4787        << (PrevTSK != TSK_ImplicitInstantiation);
4788
4789      return true;
4790    }
4791    break;
4792
4793  case TSK_ExplicitInstantiationDeclaration:
4794    switch (PrevTSK) {
4795    case TSK_ExplicitInstantiationDeclaration:
4796      // This explicit instantiation declaration is redundant (that's okay).
4797      HasNoEffect = true;
4798      return false;
4799
4800    case TSK_Undeclared:
4801    case TSK_ImplicitInstantiation:
4802      // We're explicitly instantiating something that may have already been
4803      // implicitly instantiated; that's fine.
4804      return false;
4805
4806    case TSK_ExplicitSpecialization:
4807      // C++0x [temp.explicit]p4:
4808      //   For a given set of template parameters, if an explicit instantiation
4809      //   of a template appears after a declaration of an explicit
4810      //   specialization for that template, the explicit instantiation has no
4811      //   effect.
4812      HasNoEffect = true;
4813      return false;
4814
4815    case TSK_ExplicitInstantiationDefinition:
4816      // C++0x [temp.explicit]p10:
4817      //   If an entity is the subject of both an explicit instantiation
4818      //   declaration and an explicit instantiation definition in the same
4819      //   translation unit, the definition shall follow the declaration.
4820      Diag(NewLoc,
4821           diag::err_explicit_instantiation_declaration_after_definition);
4822      Diag(PrevPointOfInstantiation,
4823           diag::note_explicit_instantiation_definition_here);
4824      assert(PrevPointOfInstantiation.isValid() &&
4825             "Explicit instantiation without point of instantiation?");
4826      HasNoEffect = true;
4827      return false;
4828    }
4829    break;
4830
4831  case TSK_ExplicitInstantiationDefinition:
4832    switch (PrevTSK) {
4833    case TSK_Undeclared:
4834    case TSK_ImplicitInstantiation:
4835      // We're explicitly instantiating something that may have already been
4836      // implicitly instantiated; that's fine.
4837      return false;
4838
4839    case TSK_ExplicitSpecialization:
4840      // C++ DR 259, C++0x [temp.explicit]p4:
4841      //   For a given set of template parameters, if an explicit
4842      //   instantiation of a template appears after a declaration of
4843      //   an explicit specialization for that template, the explicit
4844      //   instantiation has no effect.
4845      //
4846      // In C++98/03 mode, we only give an extension warning here, because it
4847      // is not harmful to try to explicitly instantiate something that
4848      // has been explicitly specialized.
4849      if (!getLangOptions().CPlusPlus0x) {
4850        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4851          << PrevDecl;
4852        Diag(PrevDecl->getLocation(),
4853             diag::note_previous_template_specialization);
4854      }
4855      HasNoEffect = true;
4856      return false;
4857
4858    case TSK_ExplicitInstantiationDeclaration:
4859      // We're explicity instantiating a definition for something for which we
4860      // were previously asked to suppress instantiations. That's fine.
4861      return false;
4862
4863    case TSK_ExplicitInstantiationDefinition:
4864      // C++0x [temp.spec]p5:
4865      //   For a given template and a given set of template-arguments,
4866      //     - an explicit instantiation definition shall appear at most once
4867      //       in a program,
4868      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4869        << PrevDecl;
4870      Diag(PrevPointOfInstantiation,
4871           diag::note_previous_explicit_instantiation);
4872      HasNoEffect = true;
4873      return false;
4874    }
4875    break;
4876  }
4877
4878  assert(false && "Missing specialization/instantiation case?");
4879
4880  return false;
4881}
4882
4883/// \brief Perform semantic analysis for the given dependent function
4884/// template specialization.  The only possible way to get a dependent
4885/// function template specialization is with a friend declaration,
4886/// like so:
4887///
4888///   template <class T> void foo(T);
4889///   template <class T> class A {
4890///     friend void foo<>(T);
4891///   };
4892///
4893/// There really isn't any useful analysis we can do here, so we
4894/// just store the information.
4895bool
4896Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4897                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4898                                                   LookupResult &Previous) {
4899  // Remove anything from Previous that isn't a function template in
4900  // the correct context.
4901  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4902  LookupResult::Filter F = Previous.makeFilter();
4903  while (F.hasNext()) {
4904    NamedDecl *D = F.next()->getUnderlyingDecl();
4905    if (!isa<FunctionTemplateDecl>(D) ||
4906        !FDLookupContext->InEnclosingNamespaceSetOf(
4907                              D->getDeclContext()->getRedeclContext()))
4908      F.erase();
4909  }
4910  F.done();
4911
4912  // Should this be diagnosed here?
4913  if (Previous.empty()) return true;
4914
4915  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4916                                         ExplicitTemplateArgs);
4917  return false;
4918}
4919
4920/// \brief Perform semantic analysis for the given function template
4921/// specialization.
4922///
4923/// This routine performs all of the semantic analysis required for an
4924/// explicit function template specialization. On successful completion,
4925/// the function declaration \p FD will become a function template
4926/// specialization.
4927///
4928/// \param FD the function declaration, which will be updated to become a
4929/// function template specialization.
4930///
4931/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4932/// if any. Note that this may be valid info even when 0 arguments are
4933/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4934/// as it anyway contains info on the angle brackets locations.
4935///
4936/// \param PrevDecl the set of declarations that may be specialized by
4937/// this function specialization.
4938bool
4939Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4940                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4941                                          LookupResult &Previous) {
4942  // The set of function template specializations that could match this
4943  // explicit function template specialization.
4944  UnresolvedSet<8> Candidates;
4945
4946  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4947  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4948         I != E; ++I) {
4949    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4950    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4951      // Only consider templates found within the same semantic lookup scope as
4952      // FD.
4953      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4954                                Ovl->getDeclContext()->getRedeclContext()))
4955        continue;
4956
4957      // C++ [temp.expl.spec]p11:
4958      //   A trailing template-argument can be left unspecified in the
4959      //   template-id naming an explicit function template specialization
4960      //   provided it can be deduced from the function argument type.
4961      // Perform template argument deduction to determine whether we may be
4962      // specializing this template.
4963      // FIXME: It is somewhat wasteful to build
4964      TemplateDeductionInfo Info(Context, FD->getLocation());
4965      FunctionDecl *Specialization = 0;
4966      if (TemplateDeductionResult TDK
4967            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4968                                      FD->getType(),
4969                                      Specialization,
4970                                      Info)) {
4971        // FIXME: Template argument deduction failed; record why it failed, so
4972        // that we can provide nifty diagnostics.
4973        (void)TDK;
4974        continue;
4975      }
4976
4977      // Record this candidate.
4978      Candidates.addDecl(Specialization, I.getAccess());
4979    }
4980  }
4981
4982  // Find the most specialized function template.
4983  UnresolvedSetIterator Result
4984    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4985                         TPOC_Other, 0, FD->getLocation(),
4986                  PDiag(diag::err_function_template_spec_no_match)
4987                    << FD->getDeclName(),
4988                  PDiag(diag::err_function_template_spec_ambiguous)
4989                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4990                  PDiag(diag::note_function_template_spec_matched));
4991  if (Result == Candidates.end())
4992    return true;
4993
4994  // Ignore access information;  it doesn't figure into redeclaration checking.
4995  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4996  Specialization->setLocation(FD->getLocation());
4997
4998  // FIXME: Check if the prior specialization has a point of instantiation.
4999  // If so, we have run afoul of .
5000
5001  // If this is a friend declaration, then we're not really declaring
5002  // an explicit specialization.
5003  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5004
5005  // Check the scope of this explicit specialization.
5006  if (!isFriend &&
5007      CheckTemplateSpecializationScope(*this,
5008                                       Specialization->getPrimaryTemplate(),
5009                                       Specialization, FD->getLocation(),
5010                                       false))
5011    return true;
5012
5013  // C++ [temp.expl.spec]p6:
5014  //   If a template, a member template or the member of a class template is
5015  //   explicitly specialized then that specialization shall be declared
5016  //   before the first use of that specialization that would cause an implicit
5017  //   instantiation to take place, in every translation unit in which such a
5018  //   use occurs; no diagnostic is required.
5019  FunctionTemplateSpecializationInfo *SpecInfo
5020    = Specialization->getTemplateSpecializationInfo();
5021  assert(SpecInfo && "Function template specialization info missing?");
5022
5023  bool HasNoEffect = false;
5024  if (!isFriend &&
5025      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5026                                             TSK_ExplicitSpecialization,
5027                                             Specialization,
5028                                   SpecInfo->getTemplateSpecializationKind(),
5029                                         SpecInfo->getPointOfInstantiation(),
5030                                             HasNoEffect))
5031    return true;
5032
5033  // Mark the prior declaration as an explicit specialization, so that later
5034  // clients know that this is an explicit specialization.
5035  if (!isFriend) {
5036    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5037    MarkUnusedFileScopedDecl(Specialization);
5038  }
5039
5040  // Turn the given function declaration into a function template
5041  // specialization, with the template arguments from the previous
5042  // specialization.
5043  // Take copies of (semantic and syntactic) template argument lists.
5044  const TemplateArgumentList* TemplArgs = new (Context)
5045    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5046  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5047    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5048  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5049                                        TemplArgs, /*InsertPos=*/0,
5050                                    SpecInfo->getTemplateSpecializationKind(),
5051                                        TemplArgsAsWritten);
5052
5053  // The "previous declaration" for this function template specialization is
5054  // the prior function template specialization.
5055  Previous.clear();
5056  Previous.addDecl(Specialization);
5057  return false;
5058}
5059
5060/// \brief Perform semantic analysis for the given non-template member
5061/// specialization.
5062///
5063/// This routine performs all of the semantic analysis required for an
5064/// explicit member function specialization. On successful completion,
5065/// the function declaration \p FD will become a member function
5066/// specialization.
5067///
5068/// \param Member the member declaration, which will be updated to become a
5069/// specialization.
5070///
5071/// \param Previous the set of declarations, one of which may be specialized
5072/// by this function specialization;  the set will be modified to contain the
5073/// redeclared member.
5074bool
5075Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5076  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5077
5078  // Try to find the member we are instantiating.
5079  NamedDecl *Instantiation = 0;
5080  NamedDecl *InstantiatedFrom = 0;
5081  MemberSpecializationInfo *MSInfo = 0;
5082
5083  if (Previous.empty()) {
5084    // Nowhere to look anyway.
5085  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5086    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5087           I != E; ++I) {
5088      NamedDecl *D = (*I)->getUnderlyingDecl();
5089      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5090        if (Context.hasSameType(Function->getType(), Method->getType())) {
5091          Instantiation = Method;
5092          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5093          MSInfo = Method->getMemberSpecializationInfo();
5094          break;
5095        }
5096      }
5097    }
5098  } else if (isa<VarDecl>(Member)) {
5099    VarDecl *PrevVar;
5100    if (Previous.isSingleResult() &&
5101        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5102      if (PrevVar->isStaticDataMember()) {
5103        Instantiation = PrevVar;
5104        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5105        MSInfo = PrevVar->getMemberSpecializationInfo();
5106      }
5107  } else if (isa<RecordDecl>(Member)) {
5108    CXXRecordDecl *PrevRecord;
5109    if (Previous.isSingleResult() &&
5110        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5111      Instantiation = PrevRecord;
5112      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5113      MSInfo = PrevRecord->getMemberSpecializationInfo();
5114    }
5115  }
5116
5117  if (!Instantiation) {
5118    // There is no previous declaration that matches. Since member
5119    // specializations are always out-of-line, the caller will complain about
5120    // this mismatch later.
5121    return false;
5122  }
5123
5124  // If this is a friend, just bail out here before we start turning
5125  // things into explicit specializations.
5126  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5127    // Preserve instantiation information.
5128    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5129      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5130                                      cast<CXXMethodDecl>(InstantiatedFrom),
5131        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5132    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5133      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5134                                      cast<CXXRecordDecl>(InstantiatedFrom),
5135        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5136    }
5137
5138    Previous.clear();
5139    Previous.addDecl(Instantiation);
5140    return false;
5141  }
5142
5143  // Make sure that this is a specialization of a member.
5144  if (!InstantiatedFrom) {
5145    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5146      << Member;
5147    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5148    return true;
5149  }
5150
5151  // C++ [temp.expl.spec]p6:
5152  //   If a template, a member template or the member of a class template is
5153  //   explicitly specialized then that spe- cialization shall be declared
5154  //   before the first use of that specialization that would cause an implicit
5155  //   instantiation to take place, in every translation unit in which such a
5156  //   use occurs; no diagnostic is required.
5157  assert(MSInfo && "Member specialization info missing?");
5158
5159  bool HasNoEffect = false;
5160  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5161                                             TSK_ExplicitSpecialization,
5162                                             Instantiation,
5163                                     MSInfo->getTemplateSpecializationKind(),
5164                                           MSInfo->getPointOfInstantiation(),
5165                                             HasNoEffect))
5166    return true;
5167
5168  // Check the scope of this explicit specialization.
5169  if (CheckTemplateSpecializationScope(*this,
5170                                       InstantiatedFrom,
5171                                       Instantiation, Member->getLocation(),
5172                                       false))
5173    return true;
5174
5175  // Note that this is an explicit instantiation of a member.
5176  // the original declaration to note that it is an explicit specialization
5177  // (if it was previously an implicit instantiation). This latter step
5178  // makes bookkeeping easier.
5179  if (isa<FunctionDecl>(Member)) {
5180    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5181    if (InstantiationFunction->getTemplateSpecializationKind() ==
5182          TSK_ImplicitInstantiation) {
5183      InstantiationFunction->setTemplateSpecializationKind(
5184                                                  TSK_ExplicitSpecialization);
5185      InstantiationFunction->setLocation(Member->getLocation());
5186    }
5187
5188    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5189                                        cast<CXXMethodDecl>(InstantiatedFrom),
5190                                                  TSK_ExplicitSpecialization);
5191    MarkUnusedFileScopedDecl(InstantiationFunction);
5192  } else if (isa<VarDecl>(Member)) {
5193    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5194    if (InstantiationVar->getTemplateSpecializationKind() ==
5195          TSK_ImplicitInstantiation) {
5196      InstantiationVar->setTemplateSpecializationKind(
5197                                                  TSK_ExplicitSpecialization);
5198      InstantiationVar->setLocation(Member->getLocation());
5199    }
5200
5201    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5202                                                cast<VarDecl>(InstantiatedFrom),
5203                                                TSK_ExplicitSpecialization);
5204    MarkUnusedFileScopedDecl(InstantiationVar);
5205  } else {
5206    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5207    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5208    if (InstantiationClass->getTemplateSpecializationKind() ==
5209          TSK_ImplicitInstantiation) {
5210      InstantiationClass->setTemplateSpecializationKind(
5211                                                   TSK_ExplicitSpecialization);
5212      InstantiationClass->setLocation(Member->getLocation());
5213    }
5214
5215    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5216                                        cast<CXXRecordDecl>(InstantiatedFrom),
5217                                                   TSK_ExplicitSpecialization);
5218  }
5219
5220  // Save the caller the trouble of having to figure out which declaration
5221  // this specialization matches.
5222  Previous.clear();
5223  Previous.addDecl(Instantiation);
5224  return false;
5225}
5226
5227/// \brief Check the scope of an explicit instantiation.
5228///
5229/// \returns true if a serious error occurs, false otherwise.
5230static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5231                                            SourceLocation InstLoc,
5232                                            bool WasQualifiedName) {
5233  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5234  DeclContext *CurContext = S.CurContext->getRedeclContext();
5235
5236  if (CurContext->isRecord()) {
5237    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5238      << D;
5239    return true;
5240  }
5241
5242  // C++0x [temp.explicit]p2:
5243  //   An explicit instantiation shall appear in an enclosing namespace of its
5244  //   template.
5245  //
5246  // This is DR275, which we do not retroactively apply to C++98/03.
5247  if (S.getLangOptions().CPlusPlus0x &&
5248      !CurContext->Encloses(OrigContext)) {
5249    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5250      S.Diag(InstLoc,
5251             S.getLangOptions().CPlusPlus0x?
5252                 diag::err_explicit_instantiation_out_of_scope
5253               : diag::warn_explicit_instantiation_out_of_scope_0x)
5254        << D << NS;
5255    else
5256      S.Diag(InstLoc,
5257             S.getLangOptions().CPlusPlus0x?
5258                 diag::err_explicit_instantiation_must_be_global
5259               : diag::warn_explicit_instantiation_out_of_scope_0x)
5260        << D;
5261    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5262    return false;
5263  }
5264
5265  // C++0x [temp.explicit]p2:
5266  //   If the name declared in the explicit instantiation is an unqualified
5267  //   name, the explicit instantiation shall appear in the namespace where
5268  //   its template is declared or, if that namespace is inline (7.3.1), any
5269  //   namespace from its enclosing namespace set.
5270  if (WasQualifiedName)
5271    return false;
5272
5273  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5274    return false;
5275
5276  S.Diag(InstLoc,
5277         S.getLangOptions().CPlusPlus0x?
5278             diag::err_explicit_instantiation_unqualified_wrong_namespace
5279           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5280    << D << OrigContext;
5281  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5282  return false;
5283}
5284
5285/// \brief Determine whether the given scope specifier has a template-id in it.
5286static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5287  if (!SS.isSet())
5288    return false;
5289
5290  // C++0x [temp.explicit]p2:
5291  //   If the explicit instantiation is for a member function, a member class
5292  //   or a static data member of a class template specialization, the name of
5293  //   the class template specialization in the qualified-id for the member
5294  //   name shall be a simple-template-id.
5295  //
5296  // C++98 has the same restriction, just worded differently.
5297  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5298       NNS; NNS = NNS->getPrefix())
5299    if (const Type *T = NNS->getAsType())
5300      if (isa<TemplateSpecializationType>(T))
5301        return true;
5302
5303  return false;
5304}
5305
5306// Explicit instantiation of a class template specialization
5307DeclResult
5308Sema::ActOnExplicitInstantiation(Scope *S,
5309                                 SourceLocation ExternLoc,
5310                                 SourceLocation TemplateLoc,
5311                                 unsigned TagSpec,
5312                                 SourceLocation KWLoc,
5313                                 const CXXScopeSpec &SS,
5314                                 TemplateTy TemplateD,
5315                                 SourceLocation TemplateNameLoc,
5316                                 SourceLocation LAngleLoc,
5317                                 ASTTemplateArgsPtr TemplateArgsIn,
5318                                 SourceLocation RAngleLoc,
5319                                 AttributeList *Attr) {
5320  // Find the class template we're specializing
5321  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5322  ClassTemplateDecl *ClassTemplate
5323    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5324
5325  // Check that the specialization uses the same tag kind as the
5326  // original template.
5327  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5328  assert(Kind != TTK_Enum &&
5329         "Invalid enum tag in class template explicit instantiation!");
5330  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5331                                    Kind, KWLoc,
5332                                    *ClassTemplate->getIdentifier())) {
5333    Diag(KWLoc, diag::err_use_with_wrong_tag)
5334      << ClassTemplate
5335      << FixItHint::CreateReplacement(KWLoc,
5336                            ClassTemplate->getTemplatedDecl()->getKindName());
5337    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5338         diag::note_previous_use);
5339    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5340  }
5341
5342  // C++0x [temp.explicit]p2:
5343  //   There are two forms of explicit instantiation: an explicit instantiation
5344  //   definition and an explicit instantiation declaration. An explicit
5345  //   instantiation declaration begins with the extern keyword. [...]
5346  TemplateSpecializationKind TSK
5347    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5348                           : TSK_ExplicitInstantiationDeclaration;
5349
5350  // Translate the parser's template argument list in our AST format.
5351  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5352  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5353
5354  // Check that the template argument list is well-formed for this
5355  // template.
5356  llvm::SmallVector<TemplateArgument, 4> Converted;
5357  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5358                                TemplateArgs, false, Converted))
5359    return true;
5360
5361  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5362         "Converted template argument list is too short!");
5363
5364  // Find the class template specialization declaration that
5365  // corresponds to these arguments.
5366  void *InsertPos = 0;
5367  ClassTemplateSpecializationDecl *PrevDecl
5368    = ClassTemplate->findSpecialization(Converted.data(),
5369                                        Converted.size(), InsertPos);
5370
5371  TemplateSpecializationKind PrevDecl_TSK
5372    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5373
5374  // C++0x [temp.explicit]p2:
5375  //   [...] An explicit instantiation shall appear in an enclosing
5376  //   namespace of its template. [...]
5377  //
5378  // This is C++ DR 275.
5379  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5380                                      SS.isSet()))
5381    return true;
5382
5383  ClassTemplateSpecializationDecl *Specialization = 0;
5384
5385  bool HasNoEffect = false;
5386  if (PrevDecl) {
5387    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5388                                               PrevDecl, PrevDecl_TSK,
5389                                            PrevDecl->getPointOfInstantiation(),
5390                                               HasNoEffect))
5391      return PrevDecl;
5392
5393    // Even though HasNoEffect == true means that this explicit instantiation
5394    // has no effect on semantics, we go on to put its syntax in the AST.
5395
5396    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5397        PrevDecl_TSK == TSK_Undeclared) {
5398      // Since the only prior class template specialization with these
5399      // arguments was referenced but not declared, reuse that
5400      // declaration node as our own, updating the source location
5401      // for the template name to reflect our new declaration.
5402      // (Other source locations will be updated later.)
5403      Specialization = PrevDecl;
5404      Specialization->setLocation(TemplateNameLoc);
5405      PrevDecl = 0;
5406    }
5407  }
5408
5409  if (!Specialization) {
5410    // Create a new class template specialization declaration node for
5411    // this explicit specialization.
5412    Specialization
5413      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5414                                             ClassTemplate->getDeclContext(),
5415                                                TemplateNameLoc,
5416                                                ClassTemplate,
5417                                                Converted.data(),
5418                                                Converted.size(),
5419                                                PrevDecl);
5420    SetNestedNameSpecifier(Specialization, SS);
5421
5422    if (!HasNoEffect && !PrevDecl) {
5423      // Insert the new specialization.
5424      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5425    }
5426  }
5427
5428  // Build the fully-sugared type for this explicit instantiation as
5429  // the user wrote in the explicit instantiation itself. This means
5430  // that we'll pretty-print the type retrieved from the
5431  // specialization's declaration the way that the user actually wrote
5432  // the explicit instantiation, rather than formatting the name based
5433  // on the "canonical" representation used to store the template
5434  // arguments in the specialization.
5435  TypeSourceInfo *WrittenTy
5436    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5437                                                TemplateArgs,
5438                                  Context.getTypeDeclType(Specialization));
5439  Specialization->setTypeAsWritten(WrittenTy);
5440  TemplateArgsIn.release();
5441
5442  // Set source locations for keywords.
5443  Specialization->setExternLoc(ExternLoc);
5444  Specialization->setTemplateKeywordLoc(TemplateLoc);
5445
5446  // Add the explicit instantiation into its lexical context. However,
5447  // since explicit instantiations are never found by name lookup, we
5448  // just put it into the declaration context directly.
5449  Specialization->setLexicalDeclContext(CurContext);
5450  CurContext->addDecl(Specialization);
5451
5452  // Syntax is now OK, so return if it has no other effect on semantics.
5453  if (HasNoEffect) {
5454    // Set the template specialization kind.
5455    Specialization->setTemplateSpecializationKind(TSK);
5456    return Specialization;
5457  }
5458
5459  // C++ [temp.explicit]p3:
5460  //   A definition of a class template or class member template
5461  //   shall be in scope at the point of the explicit instantiation of
5462  //   the class template or class member template.
5463  //
5464  // This check comes when we actually try to perform the
5465  // instantiation.
5466  ClassTemplateSpecializationDecl *Def
5467    = cast_or_null<ClassTemplateSpecializationDecl>(
5468                                              Specialization->getDefinition());
5469  if (!Def)
5470    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5471  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5472    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5473    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5474  }
5475
5476  // Instantiate the members of this class template specialization.
5477  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5478                                       Specialization->getDefinition());
5479  if (Def) {
5480    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5481
5482    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5483    // TSK_ExplicitInstantiationDefinition
5484    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5485        TSK == TSK_ExplicitInstantiationDefinition)
5486      Def->setTemplateSpecializationKind(TSK);
5487
5488    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5489  }
5490
5491  // Set the template specialization kind.
5492  Specialization->setTemplateSpecializationKind(TSK);
5493  return Specialization;
5494}
5495
5496// Explicit instantiation of a member class of a class template.
5497DeclResult
5498Sema::ActOnExplicitInstantiation(Scope *S,
5499                                 SourceLocation ExternLoc,
5500                                 SourceLocation TemplateLoc,
5501                                 unsigned TagSpec,
5502                                 SourceLocation KWLoc,
5503                                 CXXScopeSpec &SS,
5504                                 IdentifierInfo *Name,
5505                                 SourceLocation NameLoc,
5506                                 AttributeList *Attr) {
5507
5508  bool Owned = false;
5509  bool IsDependent = false;
5510  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5511                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5512                        MultiTemplateParamsArg(*this, 0, 0),
5513                        Owned, IsDependent, false, false,
5514                        TypeResult());
5515  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5516
5517  if (!TagD)
5518    return true;
5519
5520  TagDecl *Tag = cast<TagDecl>(TagD);
5521  if (Tag->isEnum()) {
5522    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5523      << Context.getTypeDeclType(Tag);
5524    return true;
5525  }
5526
5527  if (Tag->isInvalidDecl())
5528    return true;
5529
5530  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5531  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5532  if (!Pattern) {
5533    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5534      << Context.getTypeDeclType(Record);
5535    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5536    return true;
5537  }
5538
5539  // C++0x [temp.explicit]p2:
5540  //   If the explicit instantiation is for a class or member class, the
5541  //   elaborated-type-specifier in the declaration shall include a
5542  //   simple-template-id.
5543  //
5544  // C++98 has the same restriction, just worded differently.
5545  if (!ScopeSpecifierHasTemplateId(SS))
5546    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5547      << Record << SS.getRange();
5548
5549  // C++0x [temp.explicit]p2:
5550  //   There are two forms of explicit instantiation: an explicit instantiation
5551  //   definition and an explicit instantiation declaration. An explicit
5552  //   instantiation declaration begins with the extern keyword. [...]
5553  TemplateSpecializationKind TSK
5554    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5555                           : TSK_ExplicitInstantiationDeclaration;
5556
5557  // C++0x [temp.explicit]p2:
5558  //   [...] An explicit instantiation shall appear in an enclosing
5559  //   namespace of its template. [...]
5560  //
5561  // This is C++ DR 275.
5562  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5563
5564  // Verify that it is okay to explicitly instantiate here.
5565  CXXRecordDecl *PrevDecl
5566    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5567  if (!PrevDecl && Record->getDefinition())
5568    PrevDecl = Record;
5569  if (PrevDecl) {
5570    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5571    bool HasNoEffect = false;
5572    assert(MSInfo && "No member specialization information?");
5573    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5574                                               PrevDecl,
5575                                        MSInfo->getTemplateSpecializationKind(),
5576                                             MSInfo->getPointOfInstantiation(),
5577                                               HasNoEffect))
5578      return true;
5579    if (HasNoEffect)
5580      return TagD;
5581  }
5582
5583  CXXRecordDecl *RecordDef
5584    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5585  if (!RecordDef) {
5586    // C++ [temp.explicit]p3:
5587    //   A definition of a member class of a class template shall be in scope
5588    //   at the point of an explicit instantiation of the member class.
5589    CXXRecordDecl *Def
5590      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5591    if (!Def) {
5592      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5593        << 0 << Record->getDeclName() << Record->getDeclContext();
5594      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5595        << Pattern;
5596      return true;
5597    } else {
5598      if (InstantiateClass(NameLoc, Record, Def,
5599                           getTemplateInstantiationArgs(Record),
5600                           TSK))
5601        return true;
5602
5603      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5604      if (!RecordDef)
5605        return true;
5606    }
5607  }
5608
5609  // Instantiate all of the members of the class.
5610  InstantiateClassMembers(NameLoc, RecordDef,
5611                          getTemplateInstantiationArgs(Record), TSK);
5612
5613  if (TSK == TSK_ExplicitInstantiationDefinition)
5614    MarkVTableUsed(NameLoc, RecordDef, true);
5615
5616  // FIXME: We don't have any representation for explicit instantiations of
5617  // member classes. Such a representation is not needed for compilation, but it
5618  // should be available for clients that want to see all of the declarations in
5619  // the source code.
5620  return TagD;
5621}
5622
5623DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5624                                            SourceLocation ExternLoc,
5625                                            SourceLocation TemplateLoc,
5626                                            Declarator &D) {
5627  // Explicit instantiations always require a name.
5628  // TODO: check if/when DNInfo should replace Name.
5629  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5630  DeclarationName Name = NameInfo.getName();
5631  if (!Name) {
5632    if (!D.isInvalidType())
5633      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5634           diag::err_explicit_instantiation_requires_name)
5635        << D.getDeclSpec().getSourceRange()
5636        << D.getSourceRange();
5637
5638    return true;
5639  }
5640
5641  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5642  // we find one that is.
5643  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5644         (S->getFlags() & Scope::TemplateParamScope) != 0)
5645    S = S->getParent();
5646
5647  // Determine the type of the declaration.
5648  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5649  QualType R = T->getType();
5650  if (R.isNull())
5651    return true;
5652
5653  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5654    // Cannot explicitly instantiate a typedef.
5655    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5656      << Name;
5657    return true;
5658  }
5659
5660  // C++0x [temp.explicit]p1:
5661  //   [...] An explicit instantiation of a function template shall not use the
5662  //   inline or constexpr specifiers.
5663  // Presumably, this also applies to member functions of class templates as
5664  // well.
5665  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5666    Diag(D.getDeclSpec().getInlineSpecLoc(),
5667         diag::err_explicit_instantiation_inline)
5668      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5669
5670  // FIXME: check for constexpr specifier.
5671
5672  // C++0x [temp.explicit]p2:
5673  //   There are two forms of explicit instantiation: an explicit instantiation
5674  //   definition and an explicit instantiation declaration. An explicit
5675  //   instantiation declaration begins with the extern keyword. [...]
5676  TemplateSpecializationKind TSK
5677    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5678                           : TSK_ExplicitInstantiationDeclaration;
5679
5680  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5681  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5682
5683  if (!R->isFunctionType()) {
5684    // C++ [temp.explicit]p1:
5685    //   A [...] static data member of a class template can be explicitly
5686    //   instantiated from the member definition associated with its class
5687    //   template.
5688    if (Previous.isAmbiguous())
5689      return true;
5690
5691    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5692    if (!Prev || !Prev->isStaticDataMember()) {
5693      // We expect to see a data data member here.
5694      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5695        << Name;
5696      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5697           P != PEnd; ++P)
5698        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5699      return true;
5700    }
5701
5702    if (!Prev->getInstantiatedFromStaticDataMember()) {
5703      // FIXME: Check for explicit specialization?
5704      Diag(D.getIdentifierLoc(),
5705           diag::err_explicit_instantiation_data_member_not_instantiated)
5706        << Prev;
5707      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5708      // FIXME: Can we provide a note showing where this was declared?
5709      return true;
5710    }
5711
5712    // C++0x [temp.explicit]p2:
5713    //   If the explicit instantiation is for a member function, a member class
5714    //   or a static data member of a class template specialization, the name of
5715    //   the class template specialization in the qualified-id for the member
5716    //   name shall be a simple-template-id.
5717    //
5718    // C++98 has the same restriction, just worded differently.
5719    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5720      Diag(D.getIdentifierLoc(),
5721           diag::ext_explicit_instantiation_without_qualified_id)
5722        << Prev << D.getCXXScopeSpec().getRange();
5723
5724    // Check the scope of this explicit instantiation.
5725    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5726
5727    // Verify that it is okay to explicitly instantiate here.
5728    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5729    assert(MSInfo && "Missing static data member specialization info?");
5730    bool HasNoEffect = false;
5731    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5732                                        MSInfo->getTemplateSpecializationKind(),
5733                                              MSInfo->getPointOfInstantiation(),
5734                                               HasNoEffect))
5735      return true;
5736    if (HasNoEffect)
5737      return (Decl*) 0;
5738
5739    // Instantiate static data member.
5740    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5741    if (TSK == TSK_ExplicitInstantiationDefinition)
5742      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5743
5744    // FIXME: Create an ExplicitInstantiation node?
5745    return (Decl*) 0;
5746  }
5747
5748  // If the declarator is a template-id, translate the parser's template
5749  // argument list into our AST format.
5750  bool HasExplicitTemplateArgs = false;
5751  TemplateArgumentListInfo TemplateArgs;
5752  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5753    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5754    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5755    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5756    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5757                                       TemplateId->getTemplateArgs(),
5758                                       TemplateId->NumArgs);
5759    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5760    HasExplicitTemplateArgs = true;
5761    TemplateArgsPtr.release();
5762  }
5763
5764  // C++ [temp.explicit]p1:
5765  //   A [...] function [...] can be explicitly instantiated from its template.
5766  //   A member function [...] of a class template can be explicitly
5767  //  instantiated from the member definition associated with its class
5768  //  template.
5769  UnresolvedSet<8> Matches;
5770  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5771       P != PEnd; ++P) {
5772    NamedDecl *Prev = *P;
5773    if (!HasExplicitTemplateArgs) {
5774      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5775        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5776          Matches.clear();
5777
5778          Matches.addDecl(Method, P.getAccess());
5779          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5780            break;
5781        }
5782      }
5783    }
5784
5785    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5786    if (!FunTmpl)
5787      continue;
5788
5789    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5790    FunctionDecl *Specialization = 0;
5791    if (TemplateDeductionResult TDK
5792          = DeduceTemplateArguments(FunTmpl,
5793                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5794                                    R, Specialization, Info)) {
5795      // FIXME: Keep track of almost-matches?
5796      (void)TDK;
5797      continue;
5798    }
5799
5800    Matches.addDecl(Specialization, P.getAccess());
5801  }
5802
5803  // Find the most specialized function template specialization.
5804  UnresolvedSetIterator Result
5805    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5806                         D.getIdentifierLoc(),
5807                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5808                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5809                         PDiag(diag::note_explicit_instantiation_candidate));
5810
5811  if (Result == Matches.end())
5812    return true;
5813
5814  // Ignore access control bits, we don't need them for redeclaration checking.
5815  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5816
5817  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5818    Diag(D.getIdentifierLoc(),
5819         diag::err_explicit_instantiation_member_function_not_instantiated)
5820      << Specialization
5821      << (Specialization->getTemplateSpecializationKind() ==
5822          TSK_ExplicitSpecialization);
5823    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5824    return true;
5825  }
5826
5827  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5828  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5829    PrevDecl = Specialization;
5830
5831  if (PrevDecl) {
5832    bool HasNoEffect = false;
5833    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5834                                               PrevDecl,
5835                                     PrevDecl->getTemplateSpecializationKind(),
5836                                          PrevDecl->getPointOfInstantiation(),
5837                                               HasNoEffect))
5838      return true;
5839
5840    // FIXME: We may still want to build some representation of this
5841    // explicit specialization.
5842    if (HasNoEffect)
5843      return (Decl*) 0;
5844  }
5845
5846  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5847
5848  if (TSK == TSK_ExplicitInstantiationDefinition)
5849    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5850
5851  // C++0x [temp.explicit]p2:
5852  //   If the explicit instantiation is for a member function, a member class
5853  //   or a static data member of a class template specialization, the name of
5854  //   the class template specialization in the qualified-id for the member
5855  //   name shall be a simple-template-id.
5856  //
5857  // C++98 has the same restriction, just worded differently.
5858  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5859  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5860      D.getCXXScopeSpec().isSet() &&
5861      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5862    Diag(D.getIdentifierLoc(),
5863         diag::ext_explicit_instantiation_without_qualified_id)
5864    << Specialization << D.getCXXScopeSpec().getRange();
5865
5866  CheckExplicitInstantiationScope(*this,
5867                   FunTmpl? (NamedDecl *)FunTmpl
5868                          : Specialization->getInstantiatedFromMemberFunction(),
5869                                  D.getIdentifierLoc(),
5870                                  D.getCXXScopeSpec().isSet());
5871
5872  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5873  return (Decl*) 0;
5874}
5875
5876TypeResult
5877Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5878                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5879                        SourceLocation TagLoc, SourceLocation NameLoc) {
5880  // This has to hold, because SS is expected to be defined.
5881  assert(Name && "Expected a name in a dependent tag");
5882
5883  NestedNameSpecifier *NNS
5884    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5885  if (!NNS)
5886    return true;
5887
5888  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5889
5890  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5891    Diag(NameLoc, diag::err_dependent_tag_decl)
5892      << (TUK == TUK_Definition) << Kind << SS.getRange();
5893    return true;
5894  }
5895
5896  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5897  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5898}
5899
5900TypeResult
5901Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5902                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5903                        SourceLocation IdLoc) {
5904  NestedNameSpecifier *NNS
5905    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5906  if (!NNS)
5907    return true;
5908
5909  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5910      !getLangOptions().CPlusPlus0x)
5911    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5912      << FixItHint::CreateRemoval(TypenameLoc);
5913
5914  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5915                                 TypenameLoc, SS.getRange(), IdLoc);
5916  if (T.isNull())
5917    return true;
5918
5919  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5920  if (isa<DependentNameType>(T)) {
5921    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5922    TL.setKeywordLoc(TypenameLoc);
5923    TL.setQualifierRange(SS.getRange());
5924    TL.setNameLoc(IdLoc);
5925  } else {
5926    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5927    TL.setKeywordLoc(TypenameLoc);
5928    TL.setQualifierRange(SS.getRange());
5929    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5930  }
5931
5932  return CreateParsedType(T, TSI);
5933}
5934
5935TypeResult
5936Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5937                        const CXXScopeSpec &SS,
5938                        SourceLocation TemplateLoc,
5939                        TemplateTy TemplateIn,
5940                        SourceLocation TemplateNameLoc,
5941                        SourceLocation LAngleLoc,
5942                        ASTTemplateArgsPtr TemplateArgsIn,
5943                        SourceLocation RAngleLoc) {
5944  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5945      !getLangOptions().CPlusPlus0x)
5946    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5947    << FixItHint::CreateRemoval(TypenameLoc);
5948
5949  // Translate the parser's template argument list in our AST format.
5950  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5951  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5952
5953  TemplateName Template = TemplateIn.get();
5954
5955  if (computeDeclContext(SS, false)) {
5956    // If we can compute a declaration context, then the "typename"
5957    // keyword was superfluous. Just build an ElaboratedType to keep
5958    // track of the nested-name-specifier.
5959
5960    QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
5961    if (T.isNull())
5962      return true;
5963
5964    // Provide source-location information for the template specialization
5965    // type.
5966    TypeLocBuilder Builder;
5967    TemplateSpecializationTypeLoc SpecTL
5968    = Builder.push<TemplateSpecializationTypeLoc>(T);
5969
5970    // FIXME: No place to set the location of the 'template' keyword!
5971    SpecTL.setLAngleLoc(LAngleLoc);
5972    SpecTL.setRAngleLoc(RAngleLoc);
5973    SpecTL.setTemplateNameLoc(TemplateNameLoc);
5974    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5975      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
5976
5977    // FIXME: This is a hack. We really want to push the nested-name-specifier
5978    // into TemplateSpecializationType.
5979
5980    /* Note: NNS already embedded in template specialization type T. */
5981    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5982    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5983    TL.setKeywordLoc(TypenameLoc);
5984    TL.setQualifierRange(SS.getRange());
5985
5986    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5987    return CreateParsedType(T, TSI);
5988  }
5989
5990  // Construct a dependent template specialization type.
5991  DependentTemplateName *DTN = Template.getAsDependentTemplateName();
5992  assert(DTN && "dependent template has non-dependent name?");
5993  assert(DTN->getQualifier()
5994         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5995  QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5996                                                          DTN->getQualifier(),
5997                                                          DTN->getIdentifier(),
5998                                                              TemplateArgs);
5999
6000  // Create source-location information for this type.
6001  TypeLocBuilder Builder;
6002  DependentTemplateSpecializationTypeLoc SpecTL
6003  = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6004  SpecTL.setLAngleLoc(LAngleLoc);
6005  SpecTL.setRAngleLoc(RAngleLoc);
6006  SpecTL.setKeywordLoc(TypenameLoc);
6007  SpecTL.setNameLoc(TemplateNameLoc);
6008  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6009    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6010
6011  // FIXME: Nested-name-specifier source locations.
6012  SpecTL.setQualifierRange(SS.getRange());
6013  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6014}
6015
6016
6017/// \brief Build the type that describes a C++ typename specifier,
6018/// e.g., "typename T::type".
6019QualType
6020Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6021                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
6022                        SourceLocation KeywordLoc, SourceRange NNSRange,
6023                        SourceLocation IILoc) {
6024  CXXScopeSpec SS;
6025  SS.MakeTrivial(Context, NNS, NNSRange);
6026
6027  DeclContext *Ctx = computeDeclContext(SS);
6028  if (!Ctx) {
6029    // If the nested-name-specifier is dependent and couldn't be
6030    // resolved to a type, build a typename type.
6031    assert(NNS->isDependent());
6032    return Context.getDependentNameType(Keyword, NNS, &II);
6033  }
6034
6035  // If the nested-name-specifier refers to the current instantiation,
6036  // the "typename" keyword itself is superfluous. In C++03, the
6037  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6038  // allows such extraneous "typename" keywords, and we retroactively
6039  // apply this DR to C++03 code with only a warning. In any case we continue.
6040
6041  if (RequireCompleteDeclContext(SS, Ctx))
6042    return QualType();
6043
6044  DeclarationName Name(&II);
6045  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6046  LookupQualifiedName(Result, Ctx);
6047  unsigned DiagID = 0;
6048  Decl *Referenced = 0;
6049  switch (Result.getResultKind()) {
6050  case LookupResult::NotFound:
6051    DiagID = diag::err_typename_nested_not_found;
6052    break;
6053
6054  case LookupResult::FoundUnresolvedValue: {
6055    // We found a using declaration that is a value. Most likely, the using
6056    // declaration itself is meant to have the 'typename' keyword.
6057    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
6058                          IILoc);
6059    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6060      << Name << Ctx << FullRange;
6061    if (UnresolvedUsingValueDecl *Using
6062          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6063      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6064      Diag(Loc, diag::note_using_value_decl_missing_typename)
6065        << FixItHint::CreateInsertion(Loc, "typename ");
6066    }
6067  }
6068  // Fall through to create a dependent typename type, from which we can recover
6069  // better.
6070
6071  case LookupResult::NotFoundInCurrentInstantiation:
6072    // Okay, it's a member of an unknown instantiation.
6073    return Context.getDependentNameType(Keyword, NNS, &II);
6074
6075  case LookupResult::Found:
6076    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6077      // We found a type. Build an ElaboratedType, since the
6078      // typename-specifier was just sugar.
6079      return Context.getElaboratedType(ETK_Typename, NNS,
6080                                       Context.getTypeDeclType(Type));
6081    }
6082
6083    DiagID = diag::err_typename_nested_not_type;
6084    Referenced = Result.getFoundDecl();
6085    break;
6086
6087
6088    llvm_unreachable("unresolved using decl in non-dependent context");
6089    return QualType();
6090
6091  case LookupResult::FoundOverloaded:
6092    DiagID = diag::err_typename_nested_not_type;
6093    Referenced = *Result.begin();
6094    break;
6095
6096  case LookupResult::Ambiguous:
6097    return QualType();
6098  }
6099
6100  // If we get here, it's because name lookup did not find a
6101  // type. Emit an appropriate diagnostic and return an error.
6102  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
6103                        IILoc);
6104  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6105  if (Referenced)
6106    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6107      << Name;
6108  return QualType();
6109}
6110
6111namespace {
6112  // See Sema::RebuildTypeInCurrentInstantiation
6113  class CurrentInstantiationRebuilder
6114    : public TreeTransform<CurrentInstantiationRebuilder> {
6115    SourceLocation Loc;
6116    DeclarationName Entity;
6117
6118  public:
6119    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6120
6121    CurrentInstantiationRebuilder(Sema &SemaRef,
6122                                  SourceLocation Loc,
6123                                  DeclarationName Entity)
6124    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6125      Loc(Loc), Entity(Entity) { }
6126
6127    /// \brief Determine whether the given type \p T has already been
6128    /// transformed.
6129    ///
6130    /// For the purposes of type reconstruction, a type has already been
6131    /// transformed if it is NULL or if it is not dependent.
6132    bool AlreadyTransformed(QualType T) {
6133      return T.isNull() || !T->isDependentType();
6134    }
6135
6136    /// \brief Returns the location of the entity whose type is being
6137    /// rebuilt.
6138    SourceLocation getBaseLocation() { return Loc; }
6139
6140    /// \brief Returns the name of the entity whose type is being rebuilt.
6141    DeclarationName getBaseEntity() { return Entity; }
6142
6143    /// \brief Sets the "base" location and entity when that
6144    /// information is known based on another transformation.
6145    void setBase(SourceLocation Loc, DeclarationName Entity) {
6146      this->Loc = Loc;
6147      this->Entity = Entity;
6148    }
6149  };
6150}
6151
6152/// \brief Rebuilds a type within the context of the current instantiation.
6153///
6154/// The type \p T is part of the type of an out-of-line member definition of
6155/// a class template (or class template partial specialization) that was parsed
6156/// and constructed before we entered the scope of the class template (or
6157/// partial specialization thereof). This routine will rebuild that type now
6158/// that we have entered the declarator's scope, which may produce different
6159/// canonical types, e.g.,
6160///
6161/// \code
6162/// template<typename T>
6163/// struct X {
6164///   typedef T* pointer;
6165///   pointer data();
6166/// };
6167///
6168/// template<typename T>
6169/// typename X<T>::pointer X<T>::data() { ... }
6170/// \endcode
6171///
6172/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6173/// since we do not know that we can look into X<T> when we parsed the type.
6174/// This function will rebuild the type, performing the lookup of "pointer"
6175/// in X<T> and returning an ElaboratedType whose canonical type is the same
6176/// as the canonical type of T*, allowing the return types of the out-of-line
6177/// definition and the declaration to match.
6178TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6179                                                        SourceLocation Loc,
6180                                                        DeclarationName Name) {
6181  if (!T || !T->getType()->isDependentType())
6182    return T;
6183
6184  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6185  return Rebuilder.TransformType(T);
6186}
6187
6188ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6189  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6190                                          DeclarationName());
6191  return Rebuilder.TransformExpr(E);
6192}
6193
6194bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6195  if (SS.isInvalid())
6196    return true;
6197
6198  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6199  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6200                                          DeclarationName());
6201  NestedNameSpecifierLoc Rebuilt
6202    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6203  if (!Rebuilt)
6204    return true;
6205
6206  SS.Adopt(Rebuilt);
6207  return false;
6208}
6209
6210/// \brief Produces a formatted string that describes the binding of
6211/// template parameters to template arguments.
6212std::string
6213Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6214                                      const TemplateArgumentList &Args) {
6215  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6216}
6217
6218std::string
6219Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6220                                      const TemplateArgument *Args,
6221                                      unsigned NumArgs) {
6222  llvm::SmallString<128> Str;
6223  llvm::raw_svector_ostream Out(Str);
6224
6225  if (!Params || Params->size() == 0 || NumArgs == 0)
6226    return std::string();
6227
6228  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6229    if (I >= NumArgs)
6230      break;
6231
6232    if (I == 0)
6233      Out << "[with ";
6234    else
6235      Out << ", ";
6236
6237    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6238      Out << Id->getName();
6239    } else {
6240      Out << '$' << I;
6241    }
6242
6243    Out << " = ";
6244    Args[I].print(Context.PrintingPolicy, Out);
6245  }
6246
6247  Out << ']';
6248  return Out.str();
6249}
6250